
Sustainability 2021, 13, 3902
9.
Godard, A.; De Caro, P.; Thiebaud-Roux, S.; Vedrenne, E.; Mouloungui, Z. New Environmentally Friendly Oxidative Scission of
Oleic Acid into Azelaic Acid and Pelargonic Acid. J. Am. Oil Chem. Soc. 2013, 90, 133–140. [CrossRef]
10.
Petrone, M.T.; Stoppiello, G.; De Bari, I. Environmental impact of second-generation sugars production from cardoon residues.
Environ. Eng. Manag. J. 2017, 16, 1769–1774. [CrossRef]
11.
Cavalaglio, G.; Cotana, F.; Nicolini, A.; Coccia, V.; Petrozzi, A.; Formica, A.; Bertini, A. Characterization of Various Biomass
Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project. Sustainability
2020
, 12, 6678.
[CrossRef]
12.
Ciria, C.; Sanz, M.; Carrasco, J.; Ciria, P. Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes
in Spain. Sustainability 2019, 11, 1833. [CrossRef]
13.
Raccuia, S.A.; Melilli, M.G. Cynara cardunculus L., a potential source of inulin in the Mediterranean environment: Screening of
genetic variability. Aust. J. Agric. Res. 2004, 55, 693. [CrossRef]
14.
Raccuia, S.A.; Melilli, M.G. Seasonal dynamics of biomass, inulin, and water-soluble sugars in roots of Cynara cardunculus L. Field
Crop. Res. 2010, 116, 147–153. [CrossRef]
15.
Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and Functional Properties of Cynara Crops (Globe Artichoke and Cardoon)
and Their Potential Applications: A Review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70.
16. Niness, K.R. Inulin and oligofructose: What are they? J. Nutr. 1999, 129, 1402–1406. [CrossRef]
17.
López-Molina, D.; Navarro-Martínez, M.D.; Rojas-Melgarejo, F.; Hiner, A.N.P.; Chazarra, S.; Rodríguez-López, J.N. Molecular
properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry
2005
, 66, 1476–1484.
[CrossRef]
18.
Mensink, M.A.; Frijlink, H.W.; Van Der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its
physicochemical characteristics. Carbohydr. Polym. 2015, 130, 405–419. [CrossRef]
19.
Raccuia, S.A.; Genovese, C.; Leonardi, C.; Bognanni, R.; Platania, C.; Calderaro, P.; Melilli, M.G. Fructose production by Cynara
cardunculus inulin hydrolysis. Proc. Acta Hortic. Int. Soc. Hortic. Sci. 2016, 1147, 309–314. [CrossRef]
20.
Martínez, C.M.; Adamovic, T.; Cantero, D.A.; Cocero, M.J. Ultrafast hydrolysis of inulin in supercritical water: Fructooligosaccha-
rides reaction pathway and Jerusalem artichoke valorization. Ind. Crop. Prod. 2019, 133, 72–78. [CrossRef]
21.
Lv, S.; Wang, R.; Xiao, Y.; Li, F.; Mu, Y.; Lu, Y.; Gao, W.; Yang, B.; Kou, Y.; Zeng, J.; et al. Growth, yield formation, and inulin
performance of a non-food energy crop, Jerusalem artichoke (Helianthus tuberosus L.), in a semi-arid area of China. Ind. Crop. Prod.
2019, 134, 71–79. [CrossRef]
22.
Clauser, N.M.; González, G.; Mendieta, C.M.; Kruyeniski, J.; Area, M.C.; Vallejos, M.E. Biomass Waste as Sustainable Raw Material
for Energy and Fuels. Sustainability 2021, 13, 794. [CrossRef]
23.
Gholami, H.; Raouf Fard, F.; Saharkhiz, M.J.; Ghani, A. Yield and physicochemical properties of inulin obtained from Iranian
chicory roots under vermicompost and humic acid treatments. Ind. Crop. Prod. 2018, 123, 610–616. [CrossRef]
24.
Melilli, M.G.; Branca, F.; Sillitti, C.; Scandurra, S.; Calderaro, P.; Di Stefano, V. Germplasm evaluation to obtain inulin with high
degree of polymerization in Mediterranean environment. Nat. Prod. Res. 2020, 34, 187–191. [CrossRef]
25.
Pari, L.; Scarfone, A.; Santangelo, E.; Figorilli, S.; Crognale, S.; Petruccioli, M.; Suardi, A.; Gallucci, F.; Barontini, M. Alternative
storage systems of Arundo donax L. and characterization of the stored biomass. Ind. Crop. Prod. 2015, 75, 59–65. [CrossRef]
26.
Saengthongpinit, W.; Sajjaanantakul, T. Influence of harvest time and storage temperature on characteristics of inulin from
Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol. 2005, 37, 93–100. [CrossRef]
27.
Maicaurkaew, S.; Jogloy, S.; Hamaker, B.R.; Ningsanond, S. Fructan:fructan 1-fructosyltransferase and inulin hydrolase activities
relating to inulin and soluble sugars in Jerusalem artichoke (Helianthus tuberosus Linn.) tubers during storage. J. Food Sci. Technol.
2017, 54, 698–706. [CrossRef][PubMed]
28.
Pandino, G.; Barbagallo, R.N.; Lombardo, S.; Restuccia, C.; Muratore, G.; Licciardello, F.; Mazzaglia, A.; Ricceri, J.; Pesce, G.R.;
Mauromicale, G. Quality traits of ready-to-use globe artichoke slices as affected by genotype, harvest time and storage time.
Part I: Biochemical and physical aspects. LWT Food Sci. Technol. 2017, 76, 181–189. [CrossRef]
29.
Löhmar, K.; Theurillat, V. Chicory beverages. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands,
2003; pp. 1144–1149.
30.
Towey, R.; Webster, K.; Darr, M. Influence of Storage Moisture and Temperature on Lignocellulosic Degradation. AgriEngineering
2019, 1, 332–342. [CrossRef]
31.
Mujumdar, A.S.; Law, C.L. Drying Technology: Trends and Applications in Postharvest Processing. Food Bioprocess Technol.
2010
,
3, 843–852. [CrossRef]
32.
Chung, L.L.; Waje, S.S.; Thorat, B.N.; Mujumdar, A.S. Advances and recent developments in thermal drying for bio-origin and
agricultural products. Stewart Postharvest Rev. 2008, 4, 1–23.
33.
Suardi, A.; Latterini, F.; Alfano, V.; Palmieri, N.; Bergonzoli, S.; Pari, L. Analysis of the Work Productivity and Costs of a Stationary
Chipper Applied to the Harvesting of Olive Tree Pruning for Bio-Energy Production. Energies 2020, 13, 1359. [CrossRef]
34.
Singh, R.; Brar, G.S. Optimized biomass collection and transportation to biomass-based power plants. J. Adv. Res. Dyn. Control
Syst. 2020, 12, 2322–2327.
35.
Spinelli, R.; Marchi, E. Trends and Perspectives in the Design of Mobile Wood Chippers. Croat. J. For. Eng.
2021
, 42, 25–38.
[CrossRef]
82