
Chemistry and Biological 
Activity of Steroids

Edited by Jorge António Ribeiro Salvador  
and Maria Manuel Cruz Silva

Edited by Jorge António Ribeiro Salvador  
and Maria Manuel Cruz Silva

The steroid scaffold continues to be the structural basis of new drugs for a variety 
of targets and diseases. Indeed, steroids interact with enzymes and receptors in 
a strikingly specific manner. Chemistry and Biological Activity of Steroids aims 
to provide an updated overview of recent advances in the medicinal chemistry 

of steroids. Novel synthetic methods in the steroids field, including steroid 
biotransformations, new steroids able to tackle steroid receptors, and steroid enzymes 
with clinical relevance, are critically reviewed in this book. Furthermore, the diverse 
physiopathological roles of oxysterols and their therapeutic value are also discussed.

Published in London, UK 

©  2020 IntechOpen 
©  MaxxieMW / iStock

ISBN 978-1-78985-515-9

C
hem

istry and Biological A
ctivity of Steroids





Chemistry and Biological 
Activity of Steroids

Edited by Jorge António Ribeiro Salvador 
and Maria Manuel Cruz Silva

Published in London, United Kingdom





Supporting open minds since 2005



Chemistry and Biological Activity of Steroids
http://dx.doi.org/10.5772/intechopen.77331
Edited by Jorge António Ribeiro Salvador and Maria Manuel Cruz Silva

Contributors
Leandro Fernández-Pérez, Borja Guerra, Carlota Recio, Mercedes De Mirecki-Garrido, Svetlana 
Morozkina, Alexander Grigorievich Shavva, Ruilong Sheng, Dilip Mukherjee, Arturo Cano-Flores, 
Rigoberto Ramos, Javier Gomez, Maria Manuel Cruz Silva, Jorge António Ribeiro Salvador

© The Editor(s) and the Author(s) 2020
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2020 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 7th floor, 10 Lower Thames Street, London,  
EC3R 6AF, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Chemistry and Biological Activity of Steroids
Edited by Jorge António Ribeiro Salvador and Maria Manuel Cruz Silva
p. cm.
Print ISBN 978-1-78985-515-9
Online ISBN 978-1-78985-516-6
eBook (PDF) ISBN 978-1-78985-608-8



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,600+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

120,000+
International  authors and editors

135M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editors

Jorge António Ribeiro Salvador has a degree in Pharmaceutical 
Sciences, a Master’s degree in Organic and Technological Chem-
istry, and a PhD in Pharmaceutical Chemistry. He has a position 
as Full Professor at the Faculty of Pharmacy, University of Co-
imbra, Portugal, and is a non-executive member of the board of 
CHEM4PHARMA, a start-up pharmaceutical company located 
in Portugal. His research activity is focused on the development 

of new drugs, mainly for cancer treatment. He has published about 100 SCI journal 
papers, 13 book chapters, and 10 patents (two US patents). In addition, he is the 
author/coauthor of 250 presentations in national and international conferences and 
workshops. Over the last few years he has conducted several research projects in the 
field of pharmaceutical/medicinal chemistry, which have contributed to his signifi-
cant expertise in drug discovery.

Maria Manuel Cruz Silva has a degree in Pharmaceutical Sci-
ences, a Master’s degree in Drugs Technologies, and a PhD in 
Pharmaceutical Chemistry from the University of Coimbra in 
collaboration with the CNR, Milan, Italy. She has a position as 
Assistant Professor at the Faculty of Pharmacy of the University 
of Coimbra, Portugal. Her research is currently devoted to the 
synthesis of novel bioactive steroids. She is the author and coau-

thor of 25 publications in peer-reviewed journals and three book chapters.



Contents

Preface III

Chapter 1 1
Introductory Chapter: Chemistry and Biological Activity  
of Steroids - Scope and Overview
by Maria Manuel Cruz Silva and Jorge António Ribeiro Salvador

Chapter 2 5
Biotransformation of Steroids Using Different Microorganisms
by Arturo Cano-Flores, Javier Gómez and Rigoberto Ramos

Chapter 3 37
Estrone Sulfatase Inhibitors as New Anticancer Agents
by Svetlana N. Morozkina and Alexander G. Shavva

Chapter 4 63
Control of Liver Gene Expression by Sex Steroids and Growth  
Hormone Interplay
by Leandro Fernández-Pérez, Mercedes de Mirecki-Garrido, Carlota Recio  
and Borja Guerra

Chapter 5 87
Role of Androgens in Cardiovascular Diseases in Men: A Comprehensive  
Review
by Dilip Mukherjee, Koushik Sen, Shreyasi Gupta, Piyali Chowdhury,  
Suravi Majumder and Payel Guha

Chapter 6 111
Steroid-Based Supramolecular Systems and their Biomedical Applications: 
Biomolecular Recognition and Transportation
by Ruilong Sheng



Contents

Preface XIII

Chapter 1 1
Introductory Chapter: Chemistry and Biological Activity  
of Steroids - Scope and Overview
by Maria Manuel Cruz Silva and Jorge António Ribeiro Salvador

Chapter 2 5
Biotransformation of Steroids Using Different Microorganisms
by Arturo Cano-Flores, Javier Gómez and Rigoberto Ramos

Chapter 3 37
Estrone Sulfatase Inhibitors as New Anticancer Agents
by Svetlana N. Morozkina and Alexander G. Shavva

Chapter 4 63
Control of Liver Gene Expression by Sex Steroids and Growth  
Hormone Interplay
by Leandro Fernández-Pérez, Mercedes de Mirecki-Garrido, Carlota Recio 
and Borja Guerra

Chapter 5 87
Role of Androgens in Cardiovascular Diseases in Men: A Comprehensive 
Review
by Dilip Mukherjee, Koushik Sen, Shreyasi Gupta, Piyali Chowdhury,  
Suravi Majumder and Payel Guha

Chapter 6 111
Steroid-Based Supramolecular Systems and their Biomedical Applications: 
Biomolecular Recognition and Transportation
by Ruilong Sheng



Preface

Chemistry and Biological Activity of Steroids puts together recent contributions of 
scientific research to understand the physiological roles of steroids and discover 
new bioactive steroidal molecules.

The chapters that compose this book encompass the biotransformations of ste-
roids, taking advantage of the striking regio- and stereoselectivity of oxidizing 
enzymes affording functionalized steroids that would be very difficult to obtain by 
conventional methods.

Estrone sulfatase is a clinically validated drug target in estrogen-dependent cancers 
and its inhibition by synthetic steroids is reviewed.  The role of steroids in the 
somatotropic–liver axis, intermediate metabolism, or gender dimorphism is also 
discussed. Finally, exploitation of the steroid structure to develop supramolecular 
systems and nanomaterials for biomedical application is examined.

The editors sincerely thank the authors, who have shared their knowledge through-
out the chapters of this book.

Maria Manuel Cruz Silva
Centro de Neurociências e Biologia Celular,

Universidade de Coimbra,
Coimbra, Portugal

Jorge António Ribeiro Salvador 
Laboratório de Química Farmacêutica,

Faculdade de Farmácia,
Universidade de Coimbra,

Coimbra, Portugal 
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Chapter 1

Introductory Chapter: Chemistry 
and Biological Activity of  
Steroids - Scope and Overview
Maria Manuel Cruz Silva and  
Jorge António Ribeiro Salvador

1. Introduction

Steroid compounds are widely present in living organisms playing an important 
role in their vital activities.

The steroidal basic structure is constituted by a common chemical skeleton of 
four fused rings, consisting of three six-membered rings and a five-membered ring. 
This hydrocarbon scaffold contains 17 carbons and has the cyclopentanoperhydro-
phenanthrene basic structure [1, 2]. The four steroid rings are labelled as A, B, C 
and D, and their carbon atoms are numbered according to the universal conven-
tion (International Union of Pure and Applied Chemistry/International Union of 
Biochemistry Joint Commission on Biochemical Nomenclature). Angular methyl 
groups at C13 and C10 are designated as 18-CH3 and 19-CH3, respectively, and alkyl 
substituents at C17 are the steroid side chain. The 18- and 19-methyl groups stand 
above the plane of the steroid skeleton and, by convention, have β-configuration. 
Therefore, other atoms or substituents located above this plane also have 
β-configuration, while those below it have α-configuration [3].

Steroids interact with enzymes and receptors in a strikingly specific manner. 
Small changes in the steroid structure afford major biological differences.

Several natural and synthetic steroids are important therapeutic tools for a wide 
range of diseases [4, 5]. The steroid classes present in drug therapy include, among 
others, corticosteroids, neurosteroids, sexual hormones, bile acids, vitamin D and 
cardiotonic steroids [4].

Hundreds of steroid compounds have been isolated from natural sources, and 
many thousands of them have been obtained synthetically over the last decades, 
and their chemical and biological investigation continues to be very active. In fact, 
the steroid scaffold continues to be the structural basis of new drugs for a variety of 
targets and diseases.

The book Chemistry and Biological Activity of Steroids aims to provide an updated 
overview of the recent advances in the medicinal chemistry of steroids.

Novel synthetic methods of steroids through the use of microorganisms as carri-
ers of strikingly selective enzyme catalysts, able to promote reactions that would be 
very difficult by conventional chemical methods, continue to be an area of intensive 
research and enormous industrial interest. Several biotransformations at industrial 
scale have been applied in the production of steroids, through chemo-, regio- and 
stereoselective reactions, namely, hydroxylations. The chapter concerning steroid 
biotransformations gives an overview of the recent achievements in this field.
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The steroid hormones were discovered almost a century ago and have been 
found to be involved in important physiopathological conditions, being therefore 
important starting points for the development of drugs.

Oestrogens and androgens are two classes of steroid sex hormones responsible for 
female and male differentiation, respectively, and continue to be a source of ques-
tions and opportunities in deciphering the mechanisms of homeostasis and disease.

A chapter concerning the discovery of novel inhibitors of oestrone sulphatase, 
a clinically validated drug target in oestrogen-dependent cancers, presents the 
medicinal chemistry rational behind the design, synthesis and safety assessment of 
anticancer drug candidates for this pharmacological target. Furthermore examples 
of dual aromatase-sulfatase inhibitors are given, disclosing the potential of a 
synergistic dual inhibition.

On the other hand, sex steroids have important physiological actions, not limited 
to the reproductive organs. They exert important physiological roles, including the 
regulation of somatotropic-liver axis, intermediate metabolism or gender dimor-
phism. This is in part because the liver is a sex steroid-responsive organ where sex 
steroid- and growth hormone-dependent signalling pathways connect to regulate 
complex gene expression networks. Deficiency of sex steroid- and GH-dependent 
signalling pathways has an impact on the mammalian liver physiology. This inter-
esting and vast topic is discussed in Chapter 4.

Finally, the usefulness of steroids in the cutting-edge technology of supramolec-
ular systems and nanomaterials for biomedical application is discussed in the fifth 
chapter. The renewable and economic natural steroid compounds can be employed 
as building blocks in the design and construction of steroid-based supramolecular 
systems. Interesting characteristics of steroids, concerning physicochemical and 
biological properties, biocompatibility and bioactivities, make them attractive as 
building blocks of supramolecular systems to be employed in biomolecular recogni-
tion/sensing and biomolecular transportation.

The chemical and biological properties of steroids include a large variety of topics. 
This book contributes with a selection of different chapters that give updated infor-
mation and critical discussions, illustrating the novelty of this old class of molecules.

Author details
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Chapter 2

Biotransformation of Steroids 
Using Different Microorganisms
Arturo Cano-Flores, Javier Gómez and Rigoberto Ramos

Abstract

The introduction of a hydroxyl group “biohydroxylation” in the steroid skel-
eton is an important step in the synthesis of new steroids used physiologically as 
hormones and active drugs. There are currently about 300 known steroid drugs 
whose production constitutes the second category within the pharmaceutical 
market after antibiotics. Several biotransformations at industrial scale have been 
applied in the production of steroid hormones and drugs, which have functional-
ized different types of raw materials by means of chemo-, regio-, and stereoselec-
tive reactions (hydroxylation, Baeyer-Villiger oxidation, oxidation reactions, 
reduction of group carbonyl, isomerization, and Michael additions, condensa-
tion reactions, among others). In Green Chemistry, biotransformations are an 
important chemical methodology toward more sustainable industrial processes.

Keywords: biotransformation, steroid compounds, biological transformation, 
bioconversions, microorganisms

1. Introduction

Steroids (stereos = solids) are organic compounds derived from alcohols, which 
are widely distributed in the animal and plant kingdoms. Their base skeleton has 17 
carbon atoms in a tetracyclic ring system known as cyclopentanoperhydrophenan-
threnes (gonane and estrane). In this group of substances, life-vital compounds are 
categorized, such as cholesterol, bile acids, sex hormones, vitamin D, corticoste-
roids, cardiac aglycones, and antibiotics, among others.

Some of the most potent toxins are steroid alkaloids. Steroids are responsible for 
important biological functions in the cell; for example, the steroids derived from 
androstane, pregnane, and estrane have hormonal activity [1–5]; bile acids are 
important for the digestion and absorption of fats; and cardiotonic aglycones are 
used for the treatment of heart disease. Sterols are constituents of the cell mem-
brane, essential for cell stability and development; also, they are precursors of bile 
acids and steroid hormones.

A large number of steroids are used as anti-inflammatory agents [6], immu-
nosuppressants, progestational agents, diuretics, anabolics, and contraceptives 
[7–9]. Some are used for the treatment of prostate and breast cancer [10, 11], for 
adrenal insufficiency [12], for prevention of heart disease [13], as antifungal agents 
[14], and as active ingredients used for the treatment of obesity [15] and AIDS 
[16]. Recently, the antiviral activity against the herpes simplex virus type I of some 
steroid glycosides was determined [17].
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The therapeutic action of some steroid hormones has been associated with their 
interaction with intracellular receptors, which act as transcription factors in the 
regulation of gene expression [18]. It has been reported that some steroids, such 
as dehydroepiandrosterone (DHEA), progesterone, pregnenolone and its sulfated 
derivatives [19, 20], as well as, 17β-estradiol, allopregnanolone and its synthetic 
derivatives (afoxolaner and ganaxolone) are considered neurosteroids, due to their 
action at the level of the CNS [19].

The physiological activity of steroids depends on their structure, the type, 
number, spatial orientation, and reactivity of the different functional groups pres-
ent in the tetracyclic core as well as the oxidation state of the rings. For example, the 
presence of an oxygenated function in C-11β is crucial for the anti-inflammatory 
activity; the hydroxyl function in C-17β determines androgenic properties; the 
aromatization of ring A confers estrogenic effect; and corticosteroids have the 
3-keto-4-ene group and the pregnane side chain at C-17 [21, 22].

Currently, about 300 steroid drugs are known, and this number tends to grow. 
Their production represents the second category in the pharmaceutical market 
after antibiotics [24, 25]. Nowadays, steroids represent one of the largest sectors in 
pharmaceutical industry with world markets in the region of US$ 10 billion and the 
production exceeding 1,000,000 tons per year [23].

The production of steroid drugs and hormones is one of the best examples 
of the applications that biotransformations have on an industrial scale [3, 21]. 
Microbiological transformations are an effective tool for the preparation of various 
compounds [26], which can be difficult to obtain by conventional chemical methods 
and have been widely used in the bioconversion of steroids [25]. In 1950, the pharma-
cological effects of cortisol and progesterone were reported, in addition to the hydrox-
ylation of the latter in C-11α using Rhizopus species. This began a very important stage 
in the development of the synthesis of steroids with biological activity [4, 5].

Currently, a great versatility of microbial systems in the pharmaceutical indus-
try for the commercial production of steroids and other drugs is recognized [27, 28]. 
Several hundreds of microbiological transformations of steroids have been reported 
in the literature; also, many bioconversions have been incorporated into numer-
ous partial syntheses of new compounds for their evaluation such as hormones or 
drugs [21, 29–32]. Chemical derivatives of some steroids are reported to have better 
therapeutic advantages than the starting materials.

However, the main objectives in the research and development of the steroid 
drug industry currently consist of the detection and isolation of microbial strains 
with novel activity or more efficient transformation capacity, where genetic engi-
neering and metabolic engineering can play a prominent role in the metabolism of 
bacteria, fungi, and plants [33–36].

The aim of the present review is to emphasize the importance of biotransforma-
tion using microorganisms to obtain steroid compounds with pharmaceutical inter-
est, as a chemical-biological strategy that alternates with the chemical synthesis, 
and to highlight the chemical reaction made by different types of microorganisms in 
the functionalization of the steroid skeleton.

2. Microbiological transformations of steroids

In Green Chemistry, biotransformations constitute an important methodology in 
organic chemistry [37]. The microbiological transformations of steroids have been 
an essential chemical tool used for the preparation of many intermediaries and in the 
generation of new drugs, where chemical functionalization-hydroxylation, Baeyer-
Villiger oxidation, reduction, isomerization, Michael additions, and condensation 
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reactions can be carried out in different positions of the steroid skeleton in chemo-, 
regio-, and stereoselective ways, being very complicated or even impossible by the 
classic chemical methods. Currently, any stereogenic center of the steroid skeleton 
can be specifically hydroxylated stereoselectively. Nowadays, biohydroxylations in 
C-11α, 11β, 15α, and 16α are industrially carried out via a microbial hydroxylation 
with good yields and enantiomeric excess (ee). Below are some of the microbiologi-
cal transformations performed on different natural and synthetic steroids [25].

In the literature, it is the well-documented regio- and stereoselective hydroxyl-
ation in C-14 with α orientation in progesterone (1) and other steroids by well-func-
tioning fungi, such as Thamnostylum piriforme (ATCC 8992), Mucor griseocyanus 
(ATCC 1207a), Actinomucor elegans (MMP 3132), and Zygodesmus sp. (ATCC 14716).

From the incubation of 1 with T. piriforme, 14α-hydroxyprogesterone (2, 32%) 
and 9α-hydroxyprogesterone (3, 1.4%) were obtained; whereas in the incubation 
of 1 with M. griseocyanus, 2 (13.4%), 7α,14α-dihydroxyprogesterone (4, 6.5%) 
and 6β,14α-dihydroxyprogesterone (5, 2.8%) were obtained. In the biotrans-
formation of 1 using A. fumigatus after 24 h of incubation, different mono-and 
dihydroxylated products were obtained: 11α-hydroxyprogesterone (6, 33%), 
11α,15β-dihydroxyprogesterone (7, 17%), 7β,15β-dihydroxyprogesterone (8, 14%), 
15β-hydroxyprogesterone (9), 7β-hydroxyprogesterone (10), where 9 and 10 were 
detected in minimal quantity. Finally, at 72 h, the main products were 7 (48%) and 
8 (25%), with the positions 11α and 15β being hydroxylated more easily than the 
position 7β in 1 [38, 39].

In the incubation of 1 with Saprolegnia hypogyna, 4-androstene-3,17-dione 
(11), testosterone (12), and testolactone (13) were obtained [40]. The compounds 
13 (98%) were also obtained from the bioconversion of 1 using A. sojae (PTCC 
5196). The biotransformation pathway indicating the presence of Baeyer-Villiger 
monooxygenase (BVMO) can carry out both oxygenative esterification of 20-keto-
steroids and oxygenative lactonization of 17-ketosteroids [41]. The compounds 
15α-hydroxyprogesterone (14, 47%) and 12β,15α-dihydroxyprogesterone (15, 25%) 
were isolated in the biotransformation of 1 using Fusarium culmorum [42]. In the 
biotransformation of 1 using the bacterium, thermophilic Bacillus stearothermophi-
lus, four products of monohydroxylation, 20α-hydroxyprogesterone (16, 61%), 
6β-hydroxyprogesterone (17, 21%) and 6α-hydroxyprogesterone (18, 14%), and 
9,10-seco-pregnen-3,9,20-trione (19, 4%), were isolated [43].

An efficient regio- and stereoselectivity was observed in the biotransforma-
tion of 1 on a large scale by the system Mucor 881 (M881) to give the hydroxylated 
derivatives 6, 6β,11α-dihydroxyprogesterone (20), and 6β-hydroxypregn-4-ene-
3,11,20-trione (21). In the literature, it is described that species of the genus Mucor 
and Rhizopus can hydroxylate said positions but with lower yields. The fungal 
system M881 showed the ability to carry out hydroxylation at 6β and 11α positions 
of 4-ene-3-one steroids (1, 11, 12 and 211) [44].

Recently, it was reported that in the biotransformation of 1 using Penicillium 
aurantiogriseum for 10 days, 11 and androsta-1.4-dien-3,17-dione (22) were obtained. 
These products were observed in the biotransformation of 1 using Bacillus sphaericus; 
the hydroxylation in C-17 was mainly observed [45, 46]. Biotransformation of 1 
using Geobacillus gargensis (DSM 15378) has resulted in the production of secoderiva-
tives: 19 and 23 (9,10-seco-4-pregnene-20α-hydroxy-3,9-dione), which are produced 
by the rupture of the ring B of 1 (Figure 1) [47]. Secosteroids are an important 
group, which exhibits a variety of different biological activities [48, 49].

In the biotransformation of 5β-dihydroprogesterone (24) using T. piriformis, 
14α-hydroxy-5β-pregnan-3,20-dione (25, 11.8%), 3β,14α-dihydroxy-5β-pregnan-20-
one (26, 0.5%), and 14α,15β-dihydroxy-5β-pregnan-3,20-dione (27, 0.4%) were char-
acterized, while in the biotransformation of 3β-hydroxy-5β-pregnan-20-one (28), 26 
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The therapeutic action of some steroid hormones has been associated with their 
interaction with intracellular receptors, which act as transcription factors in the 
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drugs [21, 29–32]. Chemical derivatives of some steroids are reported to have better 
therapeutic advantages than the starting materials.

However, the main objectives in the research and development of the steroid 
drug industry currently consist of the detection and isolation of microbial strains 
with novel activity or more efficient transformation capacity, where genetic engi-
neering and metabolic engineering can play a prominent role in the metabolism of 
bacteria, fungi, and plants [33–36].

The aim of the present review is to emphasize the importance of biotransforma-
tion using microorganisms to obtain steroid compounds with pharmaceutical inter-
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In Green Chemistry, biotransformations constitute an important methodology in 
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reactions can be carried out in different positions of the steroid skeleton in chemo-, 
regio-, and stereoselective ways, being very complicated or even impossible by the 
classic chemical methods. Currently, any stereogenic center of the steroid skeleton 
can be specifically hydroxylated stereoselectively. Nowadays, biohydroxylations in 
C-11α, 11β, 15α, and 16α are industrially carried out via a microbial hydroxylation 
with good yields and enantiomeric excess (ee). Below are some of the microbiologi-
cal transformations performed on different natural and synthetic steroids [25].

In the literature, it is the well-documented regio- and stereoselective hydroxyl-
ation in C-14 with α orientation in progesterone (1) and other steroids by well-func-
tioning fungi, such as Thamnostylum piriforme (ATCC 8992), Mucor griseocyanus 
(ATCC 1207a), Actinomucor elegans (MMP 3132), and Zygodesmus sp. (ATCC 14716).

From the incubation of 1 with T. piriforme, 14α-hydroxyprogesterone (2, 32%) 
and 9α-hydroxyprogesterone (3, 1.4%) were obtained; whereas in the incubation 
of 1 with M. griseocyanus, 2 (13.4%), 7α,14α-dihydroxyprogesterone (4, 6.5%) 
and 6β,14α-dihydroxyprogesterone (5, 2.8%) were obtained. In the biotrans-
formation of 1 using A. fumigatus after 24 h of incubation, different mono-and 
dihydroxylated products were obtained: 11α-hydroxyprogesterone (6, 33%), 
11α,15β-dihydroxyprogesterone (7, 17%), 7β,15β-dihydroxyprogesterone (8, 14%), 
15β-hydroxyprogesterone (9), 7β-hydroxyprogesterone (10), where 9 and 10 were 
detected in minimal quantity. Finally, at 72 h, the main products were 7 (48%) and 
8 (25%), with the positions 11α and 15β being hydroxylated more easily than the 
position 7β in 1 [38, 39].

In the incubation of 1 with Saprolegnia hypogyna, 4-androstene-3,17-dione 
(11), testosterone (12), and testolactone (13) were obtained [40]. The compounds 
13 (98%) were also obtained from the bioconversion of 1 using A. sojae (PTCC 
5196). The biotransformation pathway indicating the presence of Baeyer-Villiger 
monooxygenase (BVMO) can carry out both oxygenative esterification of 20-keto-
steroids and oxygenative lactonization of 17-ketosteroids [41]. The compounds 
15α-hydroxyprogesterone (14, 47%) and 12β,15α-dihydroxyprogesterone (15, 25%) 
were isolated in the biotransformation of 1 using Fusarium culmorum [42]. In the 
biotransformation of 1 using the bacterium, thermophilic Bacillus stearothermophi-
lus, four products of monohydroxylation, 20α-hydroxyprogesterone (16, 61%), 
6β-hydroxyprogesterone (17, 21%) and 6α-hydroxyprogesterone (18, 14%), and 
9,10-seco-pregnen-3,9,20-trione (19, 4%), were isolated [43].

An efficient regio- and stereoselectivity was observed in the biotransforma-
tion of 1 on a large scale by the system Mucor 881 (M881) to give the hydroxylated 
derivatives 6, 6β,11α-dihydroxyprogesterone (20), and 6β-hydroxypregn-4-ene-
3,11,20-trione (21). In the literature, it is described that species of the genus Mucor 
and Rhizopus can hydroxylate said positions but with lower yields. The fungal 
system M881 showed the ability to carry out hydroxylation at 6β and 11α positions 
of 4-ene-3-one steroids (1, 11, 12 and 211) [44].

Recently, it was reported that in the biotransformation of 1 using Penicillium 
aurantiogriseum for 10 days, 11 and androsta-1.4-dien-3,17-dione (22) were obtained. 
These products were observed in the biotransformation of 1 using Bacillus sphaericus; 
the hydroxylation in C-17 was mainly observed [45, 46]. Biotransformation of 1 
using Geobacillus gargensis (DSM 15378) has resulted in the production of secoderiva-
tives: 19 and 23 (9,10-seco-4-pregnene-20α-hydroxy-3,9-dione), which are produced 
by the rupture of the ring B of 1 (Figure 1) [47]. Secosteroids are an important 
group, which exhibits a variety of different biological activities [48, 49].

In the biotransformation of 5β-dihydroprogesterone (24) using T. piriformis, 
14α-hydroxy-5β-pregnan-3,20-dione (25, 11.8%), 3β,14α-dihydroxy-5β-pregnan-20-
one (26, 0.5%), and 14α,15β-dihydroxy-5β-pregnan-3,20-dione (27, 0.4%) were char-
acterized, while in the biotransformation of 3β-hydroxy-5β-pregnan-20-one (28), 26 
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(0.6%) and 3β,9α,14α-trihydroxy-5β-pregnan-20-one (29, 16%) were isolated, after 
being incubated for 96 h. The microbiological transformation of 28 using Actinomucor 
elegans produced the compounds 25 and 28 in lower yield than T. piriforme and a minor 
product identified as 3β,9α-dihydroxy-5α-pregnan-20-one (30) (Figure 2) [38].

The biotransformation of 16-dehydroprogesterone (4,16-pregnadien-3,20-dione, 
31) using Mucor piriformis has been reported to give different hydroxylation products: 
14α-hydroxypregna-4,16-dien-3,20-dione (32, 1%), 7α,14α-dihydroxypregna-4,16-
dien-3,20-dione (33, 78%), 3β,7α,14α-trihydroxy-5α-pregna-16-en-20-one (34, 3%), 
and 3α,7α,14α-trihydroxy-5α-pregna-16-en-20-one (35, 2%); while the microsomes 

Figure 1. 
Biotransformation products of progesterone (1).

Figure 2. 
Biotransformation products of 5β-dihydroprogesterone (24).
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prepared from 31 transformed the hydroxylate to 14α-hydroxy derivative (32). 
Incubation of 32 with M. piriformis resulted in the formation of 33–35 (Figure 3) [50].

In contrast, in the biotransformation of 17α-hydroxyprogesterone (36) using 
M. piriformis, after 48 h of incubation, four compounds were obtained: 17α,20α-
dihydroxypregn-4-en-3-one (37, 19%), 7α,17α-dihydroxypregn-4-en-3,20-dione 
(38, 25%), 6β,17α,20α-trihydroxy-pregn-4-en-3-one (39, 18%), and 11α,17α,20α-
trihydroxypregn-4-en-3-one (40, 25%); it was observed that M. piriformis was able 
to hydroxylate the C-6, C-7, C-11, and C-14 positions stereospecifically, in addition 
to reducing the 4-en-3-one system in ring A and the keto group of C-20 (Figure 4) 
[50]. The biotransformation of 36 using Fusarium culmorum led to the formation of 
14 (47%) and 15 (25%) [42].

Pregnenolone (3β-hydroxypregn-5-en-20-one, 41), the precursor of many ste-
roid hormones, was biotransformed by Mucor piriformis to obtain two metabolites, 
3β,7α-dihydroxypregn-5-en-20-one (42) and 3β,7α,11α-trihydroxypregn-5-en-
20-one (43) [51], where 43 (46.4%) was also a bioconversion product of 41 using 
Mucor circinelloides var. lusitanicus [52]. Two metabolites of pregnenolone (41) 
obtained from biotransformation of B. cinereae were characterized as 3β,11α,16β-
trihydroxypregn-5-en-20-one (44, 39%) and 11α,16β-dihydroxypregn-4-en-3,20-
dione (45, 6%). The formation of the hydroxylation products in C-11 and C-16 by 
B. cinereae can be determined by the presence of the acetyl group in C-20 [53]. The 
biotransformation of 41 using different microorganisms (Cunninghamella elegans, 
R. stolonifer, and G. fujikuroi) was reported by Choudhary et al. [54]. Incubation of 
41 with C. elegans produced 3β,7β,11α-trihydroxypregn-5-en-20-one (46, 28%), 
3β,6α,11α,12β,15β-pentahydroxypregn-4-en-20-one (47, 4%), and 3β,6β,11α-
trihydroxypregn-4-en-20-one (48, 2%), while incubation with G. fujikuroi, two 
products 3β,7β-dihydroxypregn-5-en-20-one (49, 3%) and 6β,15β-dihydroxypregn-
4-en-3,20-dione (50, 2%) were obtained. In the microbiological transformation of 
41 using different Bacillus strains, 42, 49, and 7-oxo-pregnenolone (51) were the 
major products obtained [55], while by using Fusarium oxysporum var. cubense, 42 
was the only product obtained [56]. The biotransformation of pregnenolone acetate 
(52) using C. elegans generated 41, 22, 6β,15β-dihydroxyandrosta-4-en-3,17-dione 
(53), and 11α,15β-dihydroxypregn-4-en-3,20-dione (54), while by using R. stoloni-
fer, 11α-hydroxypregn-4-en-3,20-dione (55) and 53 were obtained (Figure5) [54].

The microbiological transformation of the racemic mixture of 13-ethyl-17β-
hydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one (56) was tested with different fungi 
Rhizopus nigricans, R. arrhizus, Aspergillus niger, A. ochraceus, and Curvularia lunata. 
The bioconversion of the racemic mixture of 53 by R. arrhizus produced only one major 
product, (±)-13-ethyl-10β,17β-dihydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one 

Figure 3. 
Biotransformation products of 16-dehydroprogesterone (31).
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prepared from 31 transformed the hydroxylate to 14α-hydroxy derivative (32). 
Incubation of 32 with M. piriformis resulted in the formation of 33–35 (Figure 3) [50].

In contrast, in the biotransformation of 17α-hydroxyprogesterone (36) using 
M. piriformis, after 48 h of incubation, four compounds were obtained: 17α,20α-
dihydroxypregn-4-en-3-one (37, 19%), 7α,17α-dihydroxypregn-4-en-3,20-dione 
(38, 25%), 6β,17α,20α-trihydroxy-pregn-4-en-3-one (39, 18%), and 11α,17α,20α-
trihydroxypregn-4-en-3-one (40, 25%); it was observed that M. piriformis was able 
to hydroxylate the C-6, C-7, C-11, and C-14 positions stereospecifically, in addition 
to reducing the 4-en-3-one system in ring A and the keto group of C-20 (Figure 4) 
[50]. The biotransformation of 36 using Fusarium culmorum led to the formation of 
14 (47%) and 15 (25%) [42].

Pregnenolone (3β-hydroxypregn-5-en-20-one, 41), the precursor of many ste-
roid hormones, was biotransformed by Mucor piriformis to obtain two metabolites, 
3β,7α-dihydroxypregn-5-en-20-one (42) and 3β,7α,11α-trihydroxypregn-5-en-
20-one (43) [51], where 43 (46.4%) was also a bioconversion product of 41 using 
Mucor circinelloides var. lusitanicus [52]. Two metabolites of pregnenolone (41) 
obtained from biotransformation of B. cinereae were characterized as 3β,11α,16β-
trihydroxypregn-5-en-20-one (44, 39%) and 11α,16β-dihydroxypregn-4-en-3,20-
dione (45, 6%). The formation of the hydroxylation products in C-11 and C-16 by 
B. cinereae can be determined by the presence of the acetyl group in C-20 [53]. The 
biotransformation of 41 using different microorganisms (Cunninghamella elegans, 
R. stolonifer, and G. fujikuroi) was reported by Choudhary et al. [54]. Incubation of 
41 with C. elegans produced 3β,7β,11α-trihydroxypregn-5-en-20-one (46, 28%), 
3β,6α,11α,12β,15β-pentahydroxypregn-4-en-20-one (47, 4%), and 3β,6β,11α-
trihydroxypregn-4-en-20-one (48, 2%), while incubation with G. fujikuroi, two 
products 3β,7β-dihydroxypregn-5-en-20-one (49, 3%) and 6β,15β-dihydroxypregn-
4-en-3,20-dione (50, 2%) were obtained. In the microbiological transformation of 
41 using different Bacillus strains, 42, 49, and 7-oxo-pregnenolone (51) were the 
major products obtained [55], while by using Fusarium oxysporum var. cubense, 42 
was the only product obtained [56]. The biotransformation of pregnenolone acetate 
(52) using C. elegans generated 41, 22, 6β,15β-dihydroxyandrosta-4-en-3,17-dione 
(53), and 11α,15β-dihydroxypregn-4-en-3,20-dione (54), while by using R. stoloni-
fer, 11α-hydroxypregn-4-en-3,20-dione (55) and 53 were obtained (Figure5) [54].

The microbiological transformation of the racemic mixture of 13-ethyl-17β-
hydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one (56) was tested with different fungi 
Rhizopus nigricans, R. arrhizus, Aspergillus niger, A. ochraceus, and Curvularia lunata. 
The bioconversion of the racemic mixture of 53 by R. arrhizus produced only one major 
product, (±)-13-ethyl-10β,17β-dihydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one 

Figure 3. 
Biotransformation products of 16-dehydroprogesterone (31).
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(57, 28.4%), whereas R. nigricans, A. niger, and C. lunata biotransformed 56 to 57 more 
slowly and inefficiently [57].

The racemic mixture (±)-13-ethyl-7β,17β-dihydroxy-18,19-dinor-17α-pregn-
4-en-20-yn-3-one (58, 4.3%) was obtained as product of incubating mixture 
56 with A. ochraceus; none of the fungi tested were able to differentiate the two 
enantiomers of 56 in the course of the hydroxylation reaction; in addition, the 
absence of the hydroxylated derivative in C-11 is due to the presence of the ethyl 
group in C-13 or the ethynyl group in C-17 [57]. The microbiological transforma-
tion of the racemic mixture and the dextro enantiomer of compound 56 has been 
described using different species of Cunninghamella [58]. For example, the trans-
formation of the racemic mixture of 56 by C. blakesleeana (AS 3.910) produced 
57 (5.3%), 13-ethyl-6β,17β-dihydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one 
(59, 3.6%), 13-ethyl-15α,17β-dihydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one 
(60, 3.0%), and 13-ethyl-6β,10β,17β-trihydroxy-18,19-dinor-17α-pregn-4-en-
20-yn-3-one (61, 3.6%), while by using C. echinulata (AS 3.1990), 61 (3.2%), 57 
(1.2%), and enantiomer dextro of 58 (2.9%) were obtained. The transformation of 
the enantiomer dextro of 56 using C. blakesleeana produced 57 (1.2%), 58 (2.9%), 
and 61 (3.2%), by using C. echinulata, the same compounds were obtained but in 
lower yield. Therefore, the microbial transformation of the racemic mixture and the 
d-enantiomer of 56 using different Cunninghamella species gave poor yields and poor 
resolutions, which were obtained for the hydroxylation reaction (Figure 6) [58].

Figure 4. 
Biotransformation products of 17α-hydroxyprogesterone (36).

Figure 5. 
Biotransformation products of pregnenolone (41) and acetyl derivate (52).
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The biotransformation of danazol (17β-hydroxy-17α-pregna-2,4-dien-20-
yno-[2,3-d]-isoxazole, 62), a heterocyclic steroid drug in which an isoxazole 
ring is fused with ring-A of a steroid nucleus, using Fusarium lini, A. niger and 
Cephalosporium aphidicola yielded 17β-hydroxy-2-(hydroxymethyl)-17α-pregn-4-
en-20-yn-3-one (63) and 17β-hydroxy-2-(hydroxymethyl)-17α-pregn-1,4-dien-20-
yn-3-one (64); while Bacillus cereus afforded 64, as the only product [59]. Microbial 
transformation of danazol (62) using C. blakesleeana yielded four compounds: 
14β,17β-dihydroxy-2-(hydroxymethyl)-17α-pregn-4-en-20-yn-3-one (65, 1.2%), 
1α,17β-dihydroxy-17α-pregna-2,4-dien-20-yno-[2,3-d]-isoxazole (66, 1.2%), and 
6β,7β-dihydroxy-17α-pregna-2,4-dien-20-yno-[2,3-d]-isoxazole (67, 0.8%) and 64 
(1.2%). This involves hydroxilations al C-1, C-6 and C-15, whereas oxidation at C-3, 
and N-O bond cleavage has also occurred (Figure 7) [60].

Norethisterone (17α-ethynyl-19-nortesterone, 68) is a potent progestin used as 
a contraceptive agent; its biotransformation with Cephalosporium aphidicola (IMI 
68689) produced the aromatization of ring A that yielded 17α-ethynylestradiol 
(69), whereas 69 was biotransformed by Cunninghamella elegans (NRRL 
1392) producing the compounds 19-nor-17α-pregna-1,3,5(10)-trien-20-yn-
3,4,17β-triol (70), 19-nor-17α-pregna-1,3,5(10)-trien-20-yn-3,7α,17β-triol (71), 
19-nor-17α-pregna-1,3,5(10)-trien-20-yn-3,11α,17β-triol (72), 19-nor-17α-
pregna-1,3,5(10)-trien-20-yn-3,6β,17β-triol (73), and 19-nor-17α-pregna-1,3,5(10)-
trien-20-yn-3,17β-diol-6β-methoxy (74) (Figure 8) [61].

Mestranol (75) and 17β-methoxymestranol (76) are the mono- and dialkylated 
derivatives of 69, respectively. In incubating 75 with C. elegans, two hydroxyl-
ated compounds were obtained: 6β-hydroxymestranol (77, 2.8%) and 6β,12β-
dihydroxymestranol (78, 3.6%), inferring that the presence of the methoxyl group 
in C-3 reduces the number of biotransformation products and introduces hydroxyl 
groups in C-6 and C-12 with β orientation, while 76 was not biotransformed due to 
the presence of the methoxyl group in C-17 (Figure 9) [62].

Microbial transformation of 6-dehydroprogesterone (79) using A. niger yielded 
five metabolites: 6β-chloro-7α,11α-dihydroxypregna-4-en-3,20-dione (80, 1.0%), 
7α-chloro-6β,11α-dihydroxypregna-4-en-3,20-dione (81, 1.33%), 6α,7α,-epoxy-11α-
hydroxypregna-4-en-3,20-dione (82, 1.33%), 6α,7α,-epoxy-pregna-4-en-3,20-dione 
(83, 2.0%), and 11α-hydroxypregna-4,6-dien-3,20-dione (84, 2.33%). Compound 
11α-hydroxyandrosta-4,6-dien-3-one (85, 15.4%) was obtained through whole cell 
biotransformation of 79 by G. fujikuroi (ATCC 10704). The formation of 80 and 81 
is an interesting finding. This route provides an efficient method for the obtention 
of chlorohydrins from alkene functionality [63]. The compound 84 was obtained 
through the microbial transformation of 79 using R. nigricans [64], Nigrospora 
sphaerica, Mucor racemosus, and Botryosphaeria obtusa. 6-dehydroprogesterone (79) 

Figure 6. 
Biotransformation products of (+)-13-ethyl-17β-hydroxy-18, 19-dinor-17α-pregn-4-en-20-yn-3-ona (56).
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(57, 28.4%), whereas R. nigricans, A. niger, and C. lunata biotransformed 56 to 57 more 
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Figure 4. 
Biotransformation products of 17α-hydroxyprogesterone (36).

Figure 5. 
Biotransformation products of pregnenolone (41) and acetyl derivate (52).
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is a synthetic derivate of progesterone. Botryodiplodia theobromae was used for the 
synthesis of 6-DPH from progesterone (Figure 10) [65].

Incubation of melengestrol acetate (86) with C. blakesleeana, which provides 
an route for the monohydroxylation of the (86) at C-11, yielded a 17α-acetoxy-11β-
hydroxy-6-methylenepregna-4,6-diene-3,20-dione (87) (Figure 11) [66].

Biotransformation of 3β-hydroxy-17β-carboxyethyl-5β-
androstenol (88) using T. pyriformis resulted in the mixture of 

Figure 9. 
Biotransformation of products of mestranol (75).

Figure 7. 
Biotransformation products of danzol (62)

Figure 8. 
Biotransformation products of norethisterone (68) and 17α-ethinylestradiol (69).
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Figure 10. 
Biotransformation products of 6-dehydroprogesterone (79).

Figure 11. 
Biotransformation products of melengestrol acetate (86).
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3β,14α-dihydroxy-17β-carboxyethyl-5β-androstenol (89, 9%) with 9α,14α-
dihydroxy derivative (90, 12%) and two minor products 14α,15α-dihydroxy (91) 
and 15β-hydroxy (92). Compound 92 was identified as a product of biotransforma-
tion using A. elegans, M. griseocyamus, and Zygodesmus sp. (Figure 12) [38].

Androst-4-en-3,17-dione (11), which plays an important role in the metabolism 
of drugs, among many other functions, was biotransformed using M. piriformis to 
give one main product, 6β-hydroxyandrost-4-en-3,17-dione (93, 13%), and four 
minor products, 14α-hydroxyandrost-4-en-3,17-dione (94, 2%), 7α-hydroxyandrost-
4-en-3,17-dione (95, 2%), testosterone (12, 3%), and 6β-hydroxytestosterone (96, 
1%). In the biotransformation of 11 using M. griseocyamus 94 (9%), 95 (4%) and 
14α-hydroxytestosterone (97, 9%) were the major products obtained; likewise, 11 
and 93 were identified in the mixture of biotransformation products [67]. From 
the incubation of 11 with M. piriformis, 94–97 and 7α,14α-dihydroxytestosterone 
(98) were obtained [38]. Hydroxylated steroids in C-9 are important intermediaries 
in the synthesis of highly effective anti-inflammatory drugs. The microbiological 
transformation of 11 to 9α-hydroxyandrost-4-en-3,17-dione (99) was studied using 
Rhodococcus sp. in a low-nutrient culture medium at a fixed pH (Figure 13) [68]. 
When 11 was incubated with Bacillus strain HA-V6–3, the metabolites 12, 93–97, 

Figure 13. 
Biotransformation products of androst-4-en-3, 17-diona (11).

Figure 12. 
Biotransformation products of 3β-17β-carboxyethyl-5β-androsteno (88).
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6β,14α-dihydroxyandrost-4-en-3,17-dione (100), 11α-hydroxyandrost-4-en-3,17-
dione (101), androst-4-en-3,6,17-trione (102), and 5α-androst-3,6,17-trione (103) 
were produced as described by Schaaaf and Dettner [69].

In the bioconversion of 11 using C. aphidicola, 93 and 94 were obtained 
[70], while in the fermentation of 11 using Curvularia lunata, the products 101 
(4%), 17β-hydroxyandrost-1,4-dien-3-one (104, 4.4%), androsta-1,4-dien-
3,17-dione (105, 3%), 11α,17β-dihydroxyandrost-4-en-3-one (106, 4%), and 107 
(15α-hydroxyandrost-1,4-dien-3,17-dione, 2.8%) were obtained (Figure 13) [71]. 
Biotransformation of 11 using Beauveria bassiana was studied in times and with cul-
ture media at different pH (pH 6 and 7) [72]. At pH 6, two products were obtained: 
106 and 6β,11α-dihydroxyandrost-4-en-3,17-dione (108), where the stereoselective 
hydroxylation was observed at C-11α and C-6β; while at pH 7, the compounds 12, 
106, 3α,11α,17β-trihydroxy-5α-androstane (109), and 6β,11α,17β-trihydroxy-
androst-4-en-3-one (110) were obtained. Products 93 (14%) and 94 (75%) were 
isolated from the biotransformation of 11 using Chaetomium sp. (Figure 13) [73].

Obtaining hydroxylated derivatives in a specific position is one of the objectives 
of the steroid industry; for example, 14α-hydroxysteroids are shown to have anti-
inflammatory, contraceptive, and antitumor activities. With the biotransformation 
of 11 and 105 using different strains of the fungus, C. lunata allowed in the case of 
11, the production of a major product, 94; while with 105, 14α-hydroxyandrost-1,4-
dien-3,17-dione (111, 70%) was obtained (Figure 13) [74].

Androsta-1,4-dien-3,17-dione (105) is a useful precursor in the chemical or 
microbiological preparation of other steroid hormones and pharmaceutical. 
Transformation of 105 by Colletotrichum lini (As3.486) produced the hydroxyl-
ated compounds at C-11α and C-15α: 15α-hydroxyandrost-1,4-dien-3,17-dione 
(107), 11α,15α-dihydroxyandrost-1,4-dien-3,17-dione (112), and 15α,17β-
dihydroxyandrost-1,4-dien-3-one (113) (Figure 14) [75].

Testosterone (12) was metabolized by M. griseocyamus and T. piriforme. In 
the biotransformation of 12 using M. griseocyamus, 97 (35%) and other products 
were obtained, where 94 was identified as the major product. Conversely, the 
microbiological transformation of 12 using T. piriforme produced 97 (10%), as the 
main product at 24 h; after 72 h of biotransformation, four products were obtained: 
93 (13%), 96 (7%), 97 (13%), and 111 (5%). It was discovered that T. piriforme 
produced smaller quantity of 14α-hydroxy derivatives (Figure 15) [38].

In the biotransformation of 12 using Nectria haematococca, four substances were 
isolated, whose performance was dependent on the incubation time; majority of 
the products were produced at 72 h. The hydroxylated derivatives in C-11 with α 

Figure 14. 
Biotransformation products of androsta-1,4-dien-3, 17-dione (105).
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orientation and dehydrogenation in C1-C2 resulted in the following compounds: 
11α-hydroxyandrost-1,4-dien-3,17-dione (114, 8.0%), 11α,17β-dihydroxyandrost-
1,4-dien-3-one (115, 4.3%), 101 (1.9%), and 104 (2.3%) [76]. Incubation of 12 with 
Fusarium culmorum produced 93 (10%) and 96 (32%) with hydroxylated derivatives 
at C-6β, including the products, 15α,17β-dihydroxyandrost-4-en-3-one (116, 22%) 
and 15α-hydroxyandrost-4-en-3,17-dione (117). Selective hydroxylation of 103 at C-6 
with a β orientation and allylic position at the unsaturated 3-keto-system is favored 
by the system π and the presence of the hydroxyl group at C-17, while hydroxylation 
at C-15 is a very frequent process carried out by fungi of the genus Fusarium [42]. 
Metabolites 11, 85, 105, and 115 were obtained as oxidation and hydroxylation 
products of 12 using the fungus F. oxysporum var. cubense [56]. The fungus, 
Cephalosporium aphidicola, was hydroxylated with 12 to give the products 96 (47%) 
and 97 (3%), with hydroxylated derivatives in C-6β and C-14α, respectively [70]. 
Incubation of 12 with C. lunata and Pleurotus ostreatus yielded compounds 11 (17%) 
and 115 (13%), respectively [77]. The phytopathogenic fungus, Botrytis cinerea, 
produced 7β,17β-dihydroxyandrost-3-one (118, 73%), as the only biotransformation 
product of 12. It seems that the presence of the hydroxyl group in C-17 in the andro-
stane skeleton directed the hydroxylation at C-7 with a β orientation (Figure 15) [53].

In the biotransformation of 12 using Bacillus stearothermophilus, thermophilic 
bacterium, the major product obtained was 11 (90.2%); it was generated by the 
oxidation of C-17, and the hydroxylated derivatives of 11 in C-6 (93, C-6β, 1.1%) and 
(119, C-6α, 0.9%) include two monohydroxy derivatives of 12, 96 (C-6β, 3.9%) and 
120 (C-6α, 3.9%). This indicates that hydroxylation with α orientation in C-6 may be 
a common action of some thermophilic bacteria [78]. Biotransformation of 11 using 
B. stearothermophilus in the presence of hydrolase inducers—salicylic acid, chlor-
amphenicol, cyclodextrin, dexamethasone, riboflavin, and rifampicin—resulted in 
obtaining a higher concentration of the compounds: 9,10-seco-4-androst-3,9,17-tri-
one (121), 5α-androst-3,6,17-trione (103), 17β-hydroxy-5α-androst-3,6-dione (122), 
3β,17β-dihydroxyandrost-4-en-6-one (123), and 17β-hydroxyandrost-4,6-dien-3-one 

Figure 15. 
Biotransformation products of testosterone (12).
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(124). For example, the presence of glucose and cycloheximide favored the obtaining 
of 123, while the production of 124 was achieved in the presence of rifampicin [79]. 
The products isolated from the biotransformation of 12 using Chaetomium sp. were 
93 (21%), 94 (39%), and 99 (19%); after 24 h of incubation, the presence of 11 was 
detected. Janeczko et al. [73] concluded that the steric factors associated with the 
substrate determine the location and orientation of the hydroxyl group. For example, 
the carbonyl group in C-17 at 11 directs the entry of the hydroxyl group at C-14 
with α orientation, while the hydroxylation in C-6β is favored by the presence of the 
hydroxyl group in C-17, as in 12. In the case of progesterone (1), which has an acyl 
group, dihydroxylated derivatives were observed in C-6 and C-14 (Figure 15) [73].

Incubation of 11 and 12 with C. lini ST-1 displayed different catalytic character-
istics. Biotransformation of 11 afforded two products: 15α-hydroxyandrost-4-en-
3,17-dione (117, 5%) and 11α,15α-dihydroxyandrost-4-en-3,17-dione (125, 64%), 
while 12 yielded 15α-hydroxyandrost-4-en-3,17-dione (117, 60%). Incubation of 1 
resulted in the isolation of 14. Wu et al. [80] concluded that the different hydroxyl-
ation sites between 11 and 12 suggested that the hydroxyl group or carbonyl group 
on the substrate at C-17 had influence on the location of introduced hydroxyl groups 
(Figure 15).

Dehydroepiandrosterone (3β-hydroxyandrost-5-en-17-one, 126) endogenous 
prohormone secreted by the adrenal glands is a precursor of androgens and 
estrogens. Incubation with M. piriformis allowed the isolation of five compounds: 
3β,17β-dihydroxyandrost-5-ene (127), 3β,7α-dihydroxyandrost-5-en-17-one (128), 
3β-hydroxyandrost-5-en-7,17-dione (129), 3β,17β-dihydroxyandrost-5-en-7-one 
(130), and 3β,7α,17β-trihydroxyandrost-5-ene (131). The action of the fungus was 
the stereospecific hydroxylated products at C-7α (128 and 131) and the reduction 
of the carbonyl group at C-17 [51]. From the microbiological transformation of 
126 using Rhizopus stolonifer, six poducts  were isolated: 127 (20%), 128 (12%), 
129 (20%), 3β,17β-dihydroxyandrost-4-ene (132, 12%), 17β-hydroxyandrost-4-
en-3-one (133, 34%), and 3β,11β-dihydroxyandrost-4-en-17-one (134, 15%) [81]. 
Fusarium oxysporum biotransformed to 126 in a mixture of four hydroxylated 
derivatives (127–129 and 130), which were characterized as their acetylated deriva-
tives; the hydroxylation was favorably in C-7 stereospecifically (α orientation) in 
the 3β-hydroxy-Δ5-steroids, while Colletotrichum musae biotransformed to 126–127 
by reducing the carbonyl group in C-17 (Figure 16) [56].

Figure 16. 
Biotransformation products of dehydroepiandrosterone (126).



Chemistry and Biological Activity of Steroids

16

orientation and dehydrogenation in C1-C2 resulted in the following compounds: 
11α-hydroxyandrost-1,4-dien-3,17-dione (114, 8.0%), 11α,17β-dihydroxyandrost-
1,4-dien-3-one (115, 4.3%), 101 (1.9%), and 104 (2.3%) [76]. Incubation of 12 with 
Fusarium culmorum produced 93 (10%) and 96 (32%) with hydroxylated derivatives 
at C-6β, including the products, 15α,17β-dihydroxyandrost-4-en-3-one (116, 22%) 
and 15α-hydroxyandrost-4-en-3,17-dione (117). Selective hydroxylation of 103 at C-6 
with a β orientation and allylic position at the unsaturated 3-keto-system is favored 
by the system π and the presence of the hydroxyl group at C-17, while hydroxylation 
at C-15 is a very frequent process carried out by fungi of the genus Fusarium [42]. 
Metabolites 11, 85, 105, and 115 were obtained as oxidation and hydroxylation 
products of 12 using the fungus F. oxysporum var. cubense [56]. The fungus, 
Cephalosporium aphidicola, was hydroxylated with 12 to give the products 96 (47%) 
and 97 (3%), with hydroxylated derivatives in C-6β and C-14α, respectively [70]. 
Incubation of 12 with C. lunata and Pleurotus ostreatus yielded compounds 11 (17%) 
and 115 (13%), respectively [77]. The phytopathogenic fungus, Botrytis cinerea, 
produced 7β,17β-dihydroxyandrost-3-one (118, 73%), as the only biotransformation 
product of 12. It seems that the presence of the hydroxyl group in C-17 in the andro-
stane skeleton directed the hydroxylation at C-7 with a β orientation (Figure 15) [53].

In the biotransformation of 12 using Bacillus stearothermophilus, thermophilic 
bacterium, the major product obtained was 11 (90.2%); it was generated by the 
oxidation of C-17, and the hydroxylated derivatives of 11 in C-6 (93, C-6β, 1.1%) and 
(119, C-6α, 0.9%) include two monohydroxy derivatives of 12, 96 (C-6β, 3.9%) and 
120 (C-6α, 3.9%). This indicates that hydroxylation with α orientation in C-6 may be 
a common action of some thermophilic bacteria [78]. Biotransformation of 11 using 
B. stearothermophilus in the presence of hydrolase inducers—salicylic acid, chlor-
amphenicol, cyclodextrin, dexamethasone, riboflavin, and rifampicin—resulted in 
obtaining a higher concentration of the compounds: 9,10-seco-4-androst-3,9,17-tri-
one (121), 5α-androst-3,6,17-trione (103), 17β-hydroxy-5α-androst-3,6-dione (122), 
3β,17β-dihydroxyandrost-4-en-6-one (123), and 17β-hydroxyandrost-4,6-dien-3-one 

Figure 15. 
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while 12 yielded 15α-hydroxyandrost-4-en-3,17-dione (117, 60%). Incubation of 1 
resulted in the isolation of 14. Wu et al. [80] concluded that the different hydroxyl-
ation sites between 11 and 12 suggested that the hydroxyl group or carbonyl group 
on the substrate at C-17 had influence on the location of introduced hydroxyl groups 
(Figure 15).

Dehydroepiandrosterone (3β-hydroxyandrost-5-en-17-one, 126) endogenous 
prohormone secreted by the adrenal glands is a precursor of androgens and 
estrogens. Incubation with M. piriformis allowed the isolation of five compounds: 
3β,17β-dihydroxyandrost-5-ene (127), 3β,7α-dihydroxyandrost-5-en-17-one (128), 
3β-hydroxyandrost-5-en-7,17-dione (129), 3β,17β-dihydroxyandrost-5-en-7-one 
(130), and 3β,7α,17β-trihydroxyandrost-5-ene (131). The action of the fungus was 
the stereospecific hydroxylated products at C-7α (128 and 131) and the reduction 
of the carbonyl group at C-17 [51]. From the microbiological transformation of 
126 using Rhizopus stolonifer, six poducts  were isolated: 127 (20%), 128 (12%), 
129 (20%), 3β,17β-dihydroxyandrost-4-ene (132, 12%), 17β-hydroxyandrost-4-
en-3-one (133, 34%), and 3β,11β-dihydroxyandrost-4-en-17-one (134, 15%) [81]. 
Fusarium oxysporum biotransformed to 126 in a mixture of four hydroxylated 
derivatives (127–129 and 130), which were characterized as their acetylated deriva-
tives; the hydroxylation was favorably in C-7 stereospecifically (α orientation) in 
the 3β-hydroxy-Δ5-steroids, while Colletotrichum musae biotransformed to 126–127 
by reducing the carbonyl group in C-17 (Figure 16) [56].

Figure 16. 
Biotransformation products of dehydroepiandrosterone (126).



Chemistry and Biological Activity of Steroids

18

In the biotransformation of 126 using Penicillium griseopurpureum and  
P. glabrum, the following was produced; hydroxylated derivatives in C-7α (95), 
C-14α (94) and C-15α (117), with 11 being the main product. In addition, P. griseo-
purpureum generated products for the Baeyer Villiger oxidation to give the lactone 
D ring (testolactone, 13) and its hydroxylated derivative at C-15α (15α-hydroxy-
17α-oxa-d-homo-androst-4-en-3,17-dione, 135); while P. glabrum generated 
the compounds, 3β-hydroxy-17α-oxa-D-homo-androst-5-en-17-one (136) and 
3β-hydroxy-17α-oxa-D-homo-5α-androstan-17-one (137) (Figure 16) [82].

The biotransformation of 17α-ethynyl-17β-hydroxyandrost-4-en-3-one (ethis-
terone, 138) and 17α-ethyl-17β-hydroxyandrost-4-en-3-one (139) was described 
using the fungi Cephalosporium aphidicola and Cunninghamella elegans. The 
bioconversion of 138 using C. aphidicola yielded 17α-ethynyl-17β-hydroxyandrost-
1,4-dien-3-one (140, 5.5%), while by using C. elegans, 17α-ethynyl-11α,17β-
dihydroxyandrost-4-en-3-one (141, 3.4%) was obtained. The biotransformation of 
138 using C. aphidicola generated 17α-ethyl-17β-hydroxyandrost-1,4-dien-3-one 
(142, 2.2%). In contrast, when incubating 139 with C. elegans, two new products 
were obtained: 17α-ethyl-11α,17β-dihydroxyandrost-4-en-3-one (143, 2.8%) and 
17α-ethyl-6α,17β-dihydroxy-5α-androstan-3-one (144, 1.6%) (Figure 17) [83].

Adrenosterone (145) is an inhibitor of the enzyme estrogen synthetase responsible 
for the formation of estrogen, and it has a great clinical application. Biotransformation 
of 145 using C. aphidicola produced androst-1,4-dien-3,11,17-trione (146, 3%), 
17β-hydroxyandrost-4-en-3,11-dione (147, 2%), and 17β-hydroxyandrost-1,4-dien-
3,11-dione (148, 17%). 145 (11.2%) and 12 (8.1%) were obtained from the biotrans-
formation of 145 using Fusarium lini, while 147 (36.8%) was obtained from the 
biotransformation of 145 using Trichothecium roseum (Figure 18) [84].

The biotransformation of mesterolone (1α-methyl-17β-hydroxy-5α-androst-3-
one, 149), a synthetic androgenic steroid, was performed using different fungi as 
described by Choudhary et al. [85]. From the biotransformation of 149 using C. 
aphidicola, the compounds 1α-methyl-5α-androst-3,17-dione (150), 1α-methyl-5α-
androst-3,17-diol (151), and 1α-methyl-15α-hydroxy-5α-androst-3,17-dione (152) 
were obtained. Incubation of 149 with Fusarium lini produced the compounds 
152, 1-methyl-5α-androst-1-en-3,17-dione (153), 1α-methyl-6α,17β-dihydroxy-5α-
androst-3-one (154), 1α-methyl-15α,17β-dihydroxy-5α-androst-3-one (155), and 
1-methyl-15α,17β-dihydroxy-5α-androst-1-en-3-one (156). The products obtained 
from the biotransformation of 149 using R. stolonifer were 150, 154, 156, 1α-methyl-
7α,17β-dihydroxy-5α-androst-3-one (157), and 1α-methyl-11α,17β-dihydroxy-5α-
androst-3-one (158) [85]. Bioconversion of 149 using C. blakesleeana produced 

Figure 17. 
Biotransformation products of 17α-ethynyl-17β-hydroxyandrost-4-en-3-one (138) and 17α-ethyl-17β-
hydroxyandrost-4-en-3-one (139).
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seven biotransformation products, such as 154, 157, 158, in addition to 1α-methyl-
1β,11β,17β-trihydroxy-5α-androst-3-one (159), 1α-methyl-7α,11β,17β-trihydroxy-
5α-androst-3-one (160), 1α-methyl-1β,6α,17β-trihydroxy-5α-androst-3-one (161), 
and 1α-methyl-1β,11α,17β-trihydroxy-5α-androst-3-ona (162). Macrophomina pha-
seolina biotransformed 149 to obtain 1α-methyl-17β-hydroxy-5α-androst-3,6-dione 
(155) [86]. Additionally, the biotransformation of 141 using C. blakesleeana (ATCC 
8688A) yielded three metabolites: 1α-methyl-11β,14α,17β-trihydroxy-5α-androstan-
3-one (163, 0.4%), 1α-methyl-7β,17β-dihydroxy-5α-androstan-3-one (164, 0.47%), 
and 1α-methyl-17β-hydroxy-5α-androstan-3,7-dione (165, 0.67%). C. blakesleeana 
catalyzed the β-hydroxylation in C-11, and dihydroxylation and oxidations at vari-
ous positions of steroid skeleton (Figure 19) [87].

In the microbiological transformation of 3-hydroxyestra-1,3,5-(10)-trien-
17-one (166) using Fusarium oxysporum var. cubense, the compounds, reduced 
in C-17 (3,17-dihydroxyestra-1,3,5-(10)-triene, 167) and hydroxylated in C-15 
(3,15α-dihydroxiestra-1,3,5-(10)-triene, 168), were isolated (Figure 20) [56].

Prednisone (169) is a synthetic corticosteroid (prodrug) used for the treat-
ment of autoimmune, inflammatory and kidney diseases, among others. 

Figure 18. 
Biotransformation products of andresterone (145).

Figure 19. 
Biotransformation products of mesterelone (149).
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Biotransformation of 169 using C. elegans occurred by hydrogenation of the Δ4(5) 
and reduction of C-20, to produce the compounds 17α,21-dihydroxy-5α-pregn-
1-en-3,11,20-trione (170, 15.6%) and 17α,(20S),21-trihydroxy-5α-pregn-1-en-
3,11-dione (171, 6.5%); whereas as the only biotransformation product, 169 using 
F. lini (5.2%), R. stolonifer (5.5%) and C. lunata (6.2%), was 1,4-pregnadien-
17α,(20S),21-trihydroxy-3,11-dione (172) (Figure 21) [88].

The main chemical transformation carried out by different Acremonium spe-
cies in various steroid compounds have been oxidations, reductions, hydroxyl-
ations in different positions, isomerizations, and hydrolysis of the chain in C-17. 
Hydrocortisone (173) is an important anabolic, used clinically as anti-inflammatory 
and antiallergic drug, besides being a raw material for the synthesis of many 
steroid hormones. Biotransformation of 173 using Acremonium strictum generated 
the products 11β,17β-dihydroxyandrost-4-en-3-one (174, 8%), 11β,17α,20β,21-
tetrahydropregn-4-en-3-one (175, 11.2%), and 21-acetoxy-17β,17α,20-
trihydroxypregn-4-en-3-one (176, 7.6%); it was observed that the actions of the 
said species were as the reduction, acetylation and degradation of the chain in C-17, 
without modification of the unsaturated ketone-α,β [89]. Biotransformation of 173 
using Gibberella fujikuroi yielded 11β-hydroxyandrost-4-en-3,17-dione (177, 41%), 
while B. subtilis and R. stolonifer yielded 175 (15%). The products 173 (45%) and 
3β,11β,17α,21-tetrahydroxy-5α-pregnan-20-one (178, 31%) were obtained from the 
bioconversion of 173 using Bacillus cereus (Figure 22) [90].

Figure 20. 
Biotransformation products of 3-hydroxy-1,3,5-(10)-trien-17-one (166).

Figure 21. 
Biotransformation products of prednisone (169).
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Incubation of 17β-methoxy-5α-androst-3-one (179) with Cephalosporium 
aphidicola produced 17β-methoxy-5α-androst-3β-ol (180) and 6β,11α-
dihydroxy-17β-methoxy-5α-androst-3-one (181); while the biotransformation 
of 17β-methoxyestra-4-en-3-one (182) using C. aphidicola produced a major 
metabolite 6β-hydroxy-17β-methoxyestra-4-en-3-one (183). Similarly, the micro-
biological transformation of 3β-methoxyandrost-5-en-17-one (184) gave a mixture 
of products: 7α-hydroxy-3β-methoxyandrost-5-en-17-one (185) and 7β-hydroxy-3β-
methoxyandrost-5-en-17-one (186) (Figure 23) [91].

In the literature, several species of fungi belonging to the genera Aspergillus, 
Fusarium, Mortierella, and Penicillium and capable of hydroxylating various steroids 
in C-15 have been described. For example, Jekkel et al. [92] described that more 
than 3000 fungi hydroxylate 13β-ethyl-4-gonene-3,17-dione (187) in C-15 posi-
tion, the genus being Fusarium, particularly F. nivale; the fungus preferentially 
hydroxylated 187 with an α orientation in C-15 (15α-hydroxy-13β-ethyl-4-gonene-
3,17-dione, 188, 77%) and C-7β (7β,15α-dihydroxy-13β-ethyl-4-gonene-3,17-
diona, 189). On the other hand, the biotransformation of 187 using Mortierella 
pusilla produced 188, 190 (10β-hydroxy-13β-ethyl-4-gonene-3,17-dione) and 191 
(6β-hydroxy-13β-ethyl-4-gonene-3,17-dione) (Figure 24).

The ethynodiol diacetate (192) is a synthetic derivative 1, used as an oral contra-
ceptive because it inhibits the ovulation process. The microbiological transforma-
tion of 192 using Cunninghamella elegans produced four hydroxylated compounds 

Figure 22. 
Biotransformation products of hydrocortisone (173).

Figure 23. 
Biotransformation products of 17β-methoxy-5α-androst-3-one (179).
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The ethynodiol diacetate (192) is a synthetic derivative 1, used as an oral contra-
ceptive because it inhibits the ovulation process. The microbiological transforma-
tion of 192 using Cunninghamella elegans produced four hydroxylated compounds 

Figure 22. 
Biotransformation products of hydrocortisone (173).

Figure 23. 
Biotransformation products of 17β-methoxy-5α-androst-3-one (179).
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characterized as: 17α-ethynylestr-4-en-3β,17β-diacetoxy-6α-ol (193, 0.5%), 
17α-etynylestr-4-en-3β,17β-diacetoxy-6β-ol (194, 1.0%), 17α-etynylestr-4-en-
3β,17β-diacetoxy-10β-ol (195, 0.5%), and 17α-ethynyl-17β-acetoxiestr-4-en-3-one 
(196, 1.4%) (Figure 25) [93].

Desogestrel (13-ethyl-17-methylene-18,19-dinor-17α-pregn-4-en-20-yn-17-ol, 
197) is an orally active third-generation contraceptive steroid drug. Conversion 
of 197 by C. blackesleeana (ATCC 8688 A) yielded four metabolites: 13-ethyl-
11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-6β,15β,17β-triol (198), 
13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-3β,6β,17β-triol (199), 
13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-3α,5α,6β,17β-tetraol 
(200), and 13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-6β,17β-
dihydroxy-3-one (201). Compounds 197 and 198 showed a potent growth inhibi-
tion against drug-resistant strains of S. aureus (Figure 26) [94].

The drugs mexrenone (202) and canrenone (203) are steroids with a spi-
ronolactone in C-17 and are potent antagonists of mineralocorticoids [95]. The 
biotransformation of 202 and 203 using a wide variety of microorganisms resulted 
in the production of monohydroxylated products in different positions, where 
Beauveria bassiana generated 11α-hydroxymexrenone (204, 67%) as the major 
product, while 12β-hydroxymexrenone (205, 50%) and 6β-hydroxymexrenone 
(206, 33%) were obtained using Mortierella isabellina. The dehydrogenation 
product (Δ1(2)-mexrenone, 207, 15%) was favored with Bacterium cyclooxidants 
as well as Rhodococcus equi, Nocardia aurentia, and Comamonas testosteroni. From 
the biotransformation of 203 using Corynespora cassiicola, 9α-hydroxycanrenone 

Figure 25. 
Biotransformation products of ethynodiol diacetate (192).

Figure 24. 
Biotransformation products of 13β-ethyl-4-gonene-3, 17-dione (187).
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(208, 30%) was obtained, [96]. Conversion of canrenone (203) by Colletotrichum 
lini ST-1 gave two hydroxyl compounds, 15α-hydroxy-canrenone (209, 22%) and 
11α,15α-dihydroxy-canrenone (210, 47%) (Figure 27) [80].

One of the steroids used in the treatment of breast cancer is exemestane 
(211), an inhibitor of steroidal aromatase. From the transformation of 211 using 
Macrophomina phaseolina, 16β,17β-dihydroxy-6-methylene-androsta-1,4-diene-
3-one (212), 17β-hydroxy-6-methylene-androsta-1,4-diene-3,16-dione (213), and 
17β-hydroxy-6-methylene-androsta-1,4-diene-3-one (214) were obtained, while 
by using Fusarium lini, the only product obtained was 11α-hydroxy-6-methylene-
androsta-1,4-diene-3,17-dione (215) (Figure 28) [97].

4-Hydroxyandrost-4-ene-3,17-dione (formestane, 216) is an irreversible 
aromatase inhibitor and therapeutically used in breast cancer treatment in post-
menopausal women. Bioconversion of 216 using Rhizopus oryzae (ATCC 1145) 
resulted in the production of 4β,5α-dihydroxyandrost-3,17-dione (217, 8.6%) and 
3,5α-dihydroxyandrost-2-ene-4,17-dione (218) [98], while the biotransformation 
of 217 using Beauveria bassiana produced 4,17β-dihydroxyandrost-4-en-3-one 
(219, 5.3%), 3α,17β-dihydroxy-5β-androstan-4-one (220, 0.9%), and 4,11α,17β-
trihydroxyandrost-4-en-3-one (221, 2.4%) (Figure 29) [99].

Methyltestosterone (222), an anabolic steroid, was transformed 
by Mucor racemosus in 5 days to produce two monohydroxylated 

Figure 26. 
Biotransformation products of desogestrel (197).

Figure 27. 
Biotransformation products of mexrenone (202) and canrenone (203).
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products in the C-7 (7α-hydroxymethyltestosterone, 223, 35%) and C-15 
(15α-hydroxymethyltestosterone, 224, 21%) positions, plus a dihydroxylated product 
(12,15α-dihydroxymethyltestosterone, 225, 22%) [100]. Recently, three additional 
products were identified: 11α-hydroxy-17α-methyltestosterone (226), 6β-hydroxy-
17α-methyltestosterone (227), and 6β,11α-dihydroxy-17α-methyltestosterone (228). 
Isolation of hydroxylation products have been reported in different carbons from 222 
with different orientations, C-6β, C-7β, C-9α, C-11α, C-12β, and C-15α (Figure 30).

Dianabol (methandrostenolone, 17α-methyl-17β-hydroxyl-androst-1,4-dien-
3-on, 229) is an oral anabolic steroid that promotes the synthesis of proteins (increas-
ing the muscle tissue). From the biotransformation of 229 using Cunninghamella 
elegans, five bioconversion products were obtained: 6β-hydroxydianabol (230), 
15α-hydroxydianabol (231), 11α-hydroxydianabol (232), 6β,12β-dihydroxydianabol 
(233), and 6β,15α-dihydroxydianabol (234). The products 17β-hydroxy-17α-
methyl-5α-androst-1,4-dien-3,6-dione (235), 7β-hydroxydianabol (236), 
15β-hydroxydianabol (237), 17β-hydroxy-17α-methyl-5α-androst-1,4-dien-3,11-dione 

Figure 29. 
Biotransformation products of formestane (216).

Figure 28. 
Biotransformation products of exemestane (211).
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(238), and 11β-hydroxydianabol (239) were obtained from the biotransforma-
tion of 229 using Macrophomina phaseolina [101]. Biotransformation of 229 using 
several microorganisms has been reported, for example, Penicillium notatum [102] 
transformed 229 into 230 and 231, while Trichoderma hamatum produced 232 [103]. 

Figure 30. 
Biotransformation products of methyltestosterone (222).

Figure 31. 
Biotransformation products of dianabol (229).

Figure 32. 
Biotransformation products of masthasterone (241).



Chemistry and Biological Activity of Steroids

24

products in the C-7 (7α-hydroxymethyltestosterone, 223, 35%) and C-15 
(15α-hydroxymethyltestosterone, 224, 21%) positions, plus a dihydroxylated product 
(12,15α-dihydroxymethyltestosterone, 225, 22%) [100]. Recently, three additional 
products were identified: 11α-hydroxy-17α-methyltestosterone (226), 6β-hydroxy-
17α-methyltestosterone (227), and 6β,11α-dihydroxy-17α-methyltestosterone (228). 
Isolation of hydroxylation products have been reported in different carbons from 222 
with different orientations, C-6β, C-7β, C-9α, C-11α, C-12β, and C-15α (Figure 30).

Dianabol (methandrostenolone, 17α-methyl-17β-hydroxyl-androst-1,4-dien-
3-on, 229) is an oral anabolic steroid that promotes the synthesis of proteins (increas-
ing the muscle tissue). From the biotransformation of 229 using Cunninghamella 
elegans, five bioconversion products were obtained: 6β-hydroxydianabol (230), 
15α-hydroxydianabol (231), 11α-hydroxydianabol (232), 6β,12β-dihydroxydianabol 
(233), and 6β,15α-dihydroxydianabol (234). The products 17β-hydroxy-17α-
methyl-5α-androst-1,4-dien-3,6-dione (235), 7β-hydroxydianabol (236), 
15β-hydroxydianabol (237), 17β-hydroxy-17α-methyl-5α-androst-1,4-dien-3,11-dione 

Figure 29. 
Biotransformation products of formestane (216).

Figure 28. 
Biotransformation products of exemestane (211).

25

Biotransformation of Steroids Using Different Microorganisms
DOI: http://dx.doi.org/10.5772/intechopen.85849

(238), and 11β-hydroxydianabol (239) were obtained from the biotransforma-
tion of 229 using Macrophomina phaseolina [101]. Biotransformation of 229 using 
several microorganisms has been reported, for example, Penicillium notatum [102] 
transformed 229 into 230 and 231, while Trichoderma hamatum produced 232 [103]. 

Figure 30. 
Biotransformation products of methyltestosterone (222).

Figure 31. 
Biotransformation products of dianabol (229).

Figure 32. 
Biotransformation products of masthasterone (241).



Chemistry and Biological Activity of Steroids

26

Similarly, B. bassiana, A. ochraceus, Colletotrichum lagenarium, and Sporotrichum 
sulfurreducens gave a biotransformed product 232 [104]. Absidia glauca metabolized 
229 in compounds 230, and 236–237 [105]. In contrast, the biotransformation of 229 
using A. coerula yielded 239 along with 7α-hydroxydianabol (240) [106], while by 
using B cinerea, 237 was obtained as the only product (Figure 31) [107].

Methasterone (241) is a synthetic anabolic steroid, known to gain muscle 
mass. Microbial transformation of 241 using M phaseolina yielded 17β-hydroxy-
17α(hydroxymethyl)-2α-methyl-5α-androstane-3,6-dione (242), while by using C. 
blakesleeana, 7α-hydroxymethasterone (243, 2.0%), 7α,16β-dihydroxymethasterone 
(244, 0.7%), 5α,12β-dihydroxymethasterone (245, 1.0%), 7α,12β-
dihydroxymethasterone (246, 1.5%), and 7α,9α-dihydroxy-methasterone (247, 0.5%) 
were obtained. Incubation of 241 with Fusarium lini yielded different metabolites with 
dehydrogenation in ring A and D: 6β,17β-dihydroxy-2,17α-dimethyl-5α-androst-1,4-
diene-3-one (248, 1.0%), 15α,17β-dihydroxy-2α,17α-dimethyl-5α-androst-1,4-diene-
3-one (249, 0.6%), 6β,17β-dihydroxy-2,17α-dimethylandrost-1,4-diene-3-one (250, 
0.4%), 14α,15α-dihydroxy-2,17-dimethyl-5α-androst-1,4,16-trien-3-one (251, 0.3%), 
17β-hydroxy-2,17α-dimethyl-5α-androst-5α-1,4-dien-3,6-dione (252, 0.3%), and 
17β-hydroxy-2,17α-dimethyl-5α-androst-1,4-dien-3-one (253, 1.0%) (Figure 32) [108].

3. Conclusions

The biotransformation processes of different steroid compounds described in 
this review, although not exhaustive, aim to highlight the importance of biotrans-
formation through different microorganisms, as a useful chemical-biological tool 
for obtaining novel derivatives for research purpose and as industrial applica-
tions. An example includes obtaining steroid compounds for the pharmaceutical 
industry.

Biotransformation of steroids has been implemented in an important way in the 
partial synthesis of new steroids, for their evaluation as hormones and drugs. Currently, 
there is a wide variety of steroids used as diuretics, anabolic, anti-inflammatory, 
antiandrogenic, anticontraceptive, antitumor, among other applications. Chemical 
functionalization in different carbon atoms of the sternum skeleton is related to the 
biological activity of the molecule. This is why microbiological transformations play 
an important role in obtaining these compounds through chemical transformations, 
such as the oxidation of hydroxyl group at C-3 and C-17, isomerization of the double 
bond Δ5(6) to Δ4(5), hydrogenation of double bonds Δ1(2) and Δ4(5), and reduction of the 
carbonyl group at C-17 and C-20 with β orientation. Biohydroxylations performed in 
different positions of the steroid skeleton—C-11α, C-11β, C-15β, and C-16α—using dif-
ferent species of fungi of the genera Rhizopus, Aspergillus, Curvularia, Cunninghamella, 
and Streptomyces with high yields are an important chemical transformation in many 
synthesis schemes of new steroids with a determined biological activity.

Hydroxylation of steroids—progesterone, testosterone, 17α-methyltestosterone, 
and 4-androsten-3,17-dione—presenting the 4-en-3-one system, proceeds with a 
high stereo- and regioselectivity in the C-6 and C-11 positions, with a β orienta-
tion in C-6 and α orientation in C-11. The presence of the methyl group in C-10 
is necessary for the hydroxylation in C-11, as can be seen in the derivatives of 
19-nortesterone.

The interest in the biotransformation of steroid compounds has been increasing 
in recent years, due to the obtaining of new and useful pharmacologically active 
compounds. In addition to the development of new genetically modified strains, 
there is an increase in the availability of immobilized enzymes and the manipula-
tion of culture media.
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Chapter 3

Estrone Sulfatase Inhibitors as 
New Anticancer Agents
Svetlana N. Morozkina and Alexander G. Shavva

Abstract

Enzyme steroid sulfatase (STS) is considered as a promising therapeutic target 
for the treatment of hormone-dependent oncological diseases such as breast, 
endometrial, prostate cancers, and endometriosis. The discovery of potent and 
irreversible STS inhibitors stimulated huge efforts of preclinical and clinical 
work. Various STS inhibitors such as steroid sulfamate, steroid nonsulfamate, 
nonsteroidal sulfamate, and nonsteroidal nonsulfamate-based inhibitors have been 
developed. In the review known STS inhibitors from the point of view of their 
safety, side-effects and perspectives for clinical application are considered. Among 
STS inhibitors several dual (multitargeted) compounds have huge potential being 
nonestrogenic and acting in nanomolar levels on the targets. The dual aromatase-
sulfatase inhibitors (DASI) approach has a great potential when a synergy between 
STS and aromatase inhibition is expected and, thus it could address acquired resis-
tance mechanisms. Among STS inhibitors based on steroid skeleton 17α-benzyl-, 
17β-arylsulfonamides, 17-diisopropylcarbamoyl-3-O-sulfamates exhibit the best 
properties, especially as dual anticancer potential drugs. The same modifications 
result in the increased activity against STS in 2-OMe-3-O-sulfamates as well as 
2-OMe-3, 17β-bissulfamates, which are also active against triple negative breast 
cancer. 8α-Steroid estrogen analogs without estrogenic properties also possess 
high STS-inhibitory activity and block breast cancer cells growth with the activity 
comparable to tamoxifen.

Keywords: steroid sulfatase (STS), inhibitors, breast cancer, hormone-dependent 
diseases

1. Introduction

Breast cancer (BC) is the most common malignant tumor in women (12%) world-
wide and is the second leading cause of cancer mortality after lung cancer (26%) [1].

Approximately 95–97% of tumors are estrogen-dependent in the early stages of 
their development [2, 3] and more than 70% express very high levels of estrogen 
receptor alpha (ERα) [4]. The fundamental difference of extragonadal estrogen syn-
thesis is its autocrine nature—that an organ producing estrogens is a target organ at 
the same time. Thus, local concentration of estrogens in such organs may be mark-
edly elevated. Peripheral estrogens formation is increased after menopause, and 
compensates estrogens deficiency in different organs and tissues [5]. Extragonadal 
estrogens’ production may rise with the aging. Moreover, it was continually empha-
sized in the literature that the increased level of estrogens in the body is considered 
as a risk of the BC development [6, 7].
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Biologically active hormones, in particular the most active estrogen estradiol 
(E2), play a critical role in the initiation and development of hormone-dependent 
breast cancer (HDBC). In premenopausal women, estrogens are mainly (75%) 
synthesized in the ovaries, and thus, a luteinizing hormone-releasing hormone 
(LH-RH) agonist [8, 9] is useful to suppress the function of pituitary hormone. In 
postmenopausal women estrogens are produced in peripheral tissues such as adipose 
tissues, skin, and mammary glands [10, 11].

Adrenal dehydroepiandrosterone sulfate (DHEAS), dehydroepiandrosterone 
(DHEA), and adrenal or ovarian androstenedione are also sources of E2 in periph-
eral tissues. In postmenopausal women, concentrations of DHEAS, DHEA, and 
androstenedione in plasma are relatively high; approximately 1.8, 6.6, and 1.9 nM, 
respectively. In contrast, plasma concentrations of estrone (E1) and (E2) are 
several-fold lower (70 and 30 pM, respectively) [12].

Another important steroid precursor for estrogen formation is E1-sulfate (E1S). It 
is the most important estrogen in the peripheral blood, with relatively high (0.6 nM) 
concentrations in postmenopausal women. E1S levels are associated with high body-
mass index, which suggest that E1S originates from adipose tissue. Concentrations of 
E1S in plasma are 10–20 times higher than those of E1 and E2, as well as its half-life in 
the plasma is longer than the half-life of unconjugated estrogens.

Enzyme steroid sulfatase (STS) converts E1S to E1, followed by the reduction 
to the biologically active estrogen, E2, by 17β-hydroxysteroid dehydrogenase type 1 
(17β-HSD1), which is overexpressed in many breast tumors.

In BC tissues estrogens can be locally produced de novo by estrogen synthesis 
enzymes to promote tumor growth.

The level of estrogens in BC tissues of postmenopausal women can be 10–40 
folds higher than in blood circulation and 5–10 times higher than in noncancerous 
breast tissues [13]. Furthermore, the intratumoral E2/E1 ratio is significantly higher 
in postmenopausal BC than in premenopausal BC. High concentrations of estrogen 
in breast tissue increase the risk of BC development [14, 15].

Thus, inhibition of enzymatic synthesis of estrogens is an effective therapeutic 
strategy for postmenopausal women with estrogen receptor-positive (ER+) tumors 
[16, 17]. In situ transformations of inactive steroids require activity of a series of 
enzymes that were found in hormone-sensitive cancers.

The scheme of estrogens formation in human body includes: (a) formation of 
E1 from androstenedione under the action of cytochrome P450 aromatase, (b) 
reduction of E1 by 17β-HSD1 leads to more active E2. Importantly, almost insoluble 
in aqueous media E1 is converted into water-soluble E1S under the action of 

Figure 1. 
Estrogens formation in human body.
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sulfotransferase (STS). E1S does not possess hormonal activity, however it may be 
transported into various targets (Figure 1) [18, 19]. Several reviews focus on aspects 
of human steroidogenesis [18, 20–29].

Free hormones are formed from sulfates of estrogen and androgens under 
action of steroid sulfatase. At high concentrations, androgens compete for binding 
with ERs. The activation of ERα under the action of androstenediol and DHEA in 
BC cells has been detected. It is confirmed by the inhibition of cell growth in the 
presence of antiestrogens. The evaluation of E1S level during diagnostic of various 
oncological diseases (for example, prostate cancer) is of high importance [30].

2. Approaches for the manipulation of estrogen level in tumors

2.1 Endocrine therapy

Hormonal (endocrine) therapy is effectively used for the treatment of 
HDBC. Most types of BCs are estrogen-dependent, with approximately 55% in 
premenopausal women and 75% in postmenopausal women [31–34].

Selective estrogen receptor modulators (SERMs) or down-regulators (SERD), 
such as tamoxifen, raloxifene, ospemifine, and fulvestrant are compounds that 
are currently used in clinical practice to treat BC [9, 35]. In breast tissues, SERMs 
effectively block the activation of ER(α) by endogenous ligands, preventing the 
transcription of genes mediated by estrogen response elements [36, 37]. SERMs 
have tissue-specific effects on ERα that results in antagonist activity in breast and 
uterus tissues as well as agonist activity in bone. Although tamoxifen and raloxifene 
possess the desired SERM activity, they also increase the risk of venous thrombo-
embolism [38] and exhibit toxicity [22]. Given that resistance (de novo or acquired 
resistance) is a major limiting factor in the use of endocrine therapy, additional 
endocrine therapies with other mechanisms of action are needed [39, 40].

2.2 Inhibitors of enzymes responsible for the estrogen formation in tumors

The aromatase enzyme is responsible for the conversion of testosterone and 
androstenedione to E2 and E1, respectively. Thus, inhibition of the aromatase enzyme 
is one of the approaches for the development of new drugs to treat BC [41–43].

Nonsteroidal third-generation aromatase inhibitors (AIs), such as anastrozole 
(Arimidex), letrozole (Femara), and exemestane (Aromasin), are often used for 
postmenopausal hormone-dependent BC treatment in clinical practice. Despite the 
success of AIs in the clinic, numerous BC patients still progress after AI therapy due 
to the development of resistance to AIs and side-effects such as osteoporosis caused 
by whole-body deprivation of estrogen [44, 45]. Mechanisms of AI resistance 
include ligand-independent activation of the ER and signaling via other growth 
factor receptors; new insights about resistance are published recently [45].

The overall response rates for AIs (40–50%) suggest the presence of alternative 
sources of estrogens. The production of E1, DHEA and androstenediol is an impor-
tant mechanism of resistance to AI treatment [46].

It was demonstrated that AIs used sequentially with tamoxifen had higher effi-
cacy compared to tamoxifen alone, with an improvement in overall survival [47].

There are other factors involved in tumor growth [48]. The enzymes STS and 
17β-HSD1 have been identified as essential parts in E2 production and subsequent 
promotion of cancer growth. Recently it was shown that 17β-HSD7 also plays a key 
role in increasing the E2/E1 ratio in BC tumors [49]. Very recently, some evaluations 
of the “sulfatase pathways” in tumor stroma have been carried out [50].
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The STS is also responsible for the hydrolysis of DHEAS to DHEA, which is an 
immediate precursor of androstenediol, a potent estrogenic steroid [51], whose 
formation is not influenced by AIs. DHEAS stimulates proliferation of MCF-7 cells 
from BC, which could be blocked by an antiestrogen or STS inhibitor but by an 
AI. E1S and DHEAS are particularly abundant in blood circulation and could act 
as a reservoir of steroid precursors, specifically in BC [29, 52]. The formation of 
DHEA through the STS pathway accounts for the production of 90% of the andro-
gen androstenediol [52], which possesses estrogenic properties, that are 100-times 
weaker than estradiol [13, 53]. Androstenediol is present at 100-fold higher concen-
trations than estradiol in the circulation, and may have estrogenic properties that 
are equal to estradiol [54]. Thus, inhibition of STS has the dual property of reduc-
ing local androstenediol biosynthesis [55, 56].

2.3 Steroid sulfatase enzyme (STS)

The STS enzyme (EC 3.1.6.2, aryl sulfatase C, steryl-sulfatase) is widely 
distributed throughout the body and plays critical role in steroidogenesis [54]. 
Publications in recent years indicate the role of STS activity in gynecological dis-
eases [57], mentioning diminished endometriosis in vivo under the action of STS 
inhibitors [58, 59]. However, a phase II trial with STS inhibitors in endometrium 
cancer patients with advanced disease revealed no superior effects as compared to 
progestin megestrol acetate, and further studies are ongoing [60]. STS inhibitors 
are also useful for the treatment of ovary cancers and prostate cancer [16, 61].

According to the in vitro studies, STS is the main enzyme responsible for 
estrogen production in hormone-dependent breast tumors, and has several hun-
dred times higher activity in liver and normal/malignant breast tissues than aro-
matase [13, 53, 62]. STS mRNA expression (74%) in ERα-positive breast tumors 
is an independent prognostic indicator in predicting relapse-free survival, with 
higher levels of expression being associated with a poor prognosis [63]. Like 
aromatase inhibitors, sulfatase inhibition can only be used in postmenopausal 
women. Probably, the greatest benefit with sulfatase inhibition is in those cases 
where DHEAS levels are high. To date, STS inhibitors are still in an early stage of 
development [53, 64, 65].

The human STS is a protein, integrated in microsomal membrane. Its three-
dimensional structure has been determined (PDBcode 1P49) [66]. However, knowl-
edge about regulation of its expression as well as activity is limited. The topology of 
the active site of the steroid sulfatase and the arylsulfatases A and B is similar [66].

Most of the STS inhibitors discovered to date, act as irreversible active-site-
directed inhibitors. An aryl sulfamate group (ArOSO2NH2) is considered as the 
pharmacophore for irreversible inhibition of the enzyme. One of the first time-, pH-, 
and concentration-dependent irreversible active-site directed-steroidal inhibitor is 
estrone-3-O-sulfamate (EMATE), which inhibit STS in MCF-7 cells from BC by 99% 
at 0.1 μM and has an IC50 value of 65 pM (IC50 = 80 nM in placental microsomes). 
EMATE was evaluated in clinical trials [67]. The highest effectiveness of EMATE has 
been demonstrated in rats (subcutaneous and oral administration). STS activity was 
also inhibited when EMATE was administered to humans in dose 0.5 mg/kg [68].
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Despite the exceptional potency of the EMATE [67, 68], it is not used in clinical 
practice to treat hormone-dependent BC because metabolic conversion of EMATE 
by STS releases estrone, which act via estrogen receptors, and can directly promote 
tumor growth [69]. Nevertheless, EMATE is now the prototypical inhibitor, and 
used as standard during evaluation of other potential STS inhibitors [19].

2.4 Mechanisms of inactivation of steroid sulfatase

Several research groups made attempts to establish the mechanism(s) of sulfa-
tase inactivation. However, the precise mechanism of inhibition is still uncertain. 
In 2010, Spillane and Malaubier have established that the hydrolysis of EMATE 
occurs by two different mechanisms: an SN2 mechanism below pH 9.5 and E1cB 
mechanisms involving N-sulfonylamines at higher pHs [70]. Detailed presumable 
mechanisms have been discussed in recent reviews [71–73].

Based on the mechanisms, the result of the hydrolysis is free estrone. Moreover, 
under per os administration, the activity of EMATE is several times higher than 
the activity of estrone, due slow metabolism of EMATE in liver [68]. EMATE is 
not subjected to metabolic inactivation in red blood cells. Thus, consideration of 
hormonal activity and side-effects of steroids with free phenolic group is important 
in the modeling of sulfatase inhibitors for therapeutic use [54, 74, 75].

The knowledge of the crystal structure opens the rational drug design of mol-
ecules for the inactivation of steroid sulfatase.

2.5 Nonsteroidal STS inhibitors

Many investigations have been carried out to develop nonsteroidal STS inhibi-
tors, because nonsteroidal drugs and their metabolites may have less undesirable 
effects.

4-Methylcoumarin-7-O-sulfamate (1, Coumate) was the first time- and concen-
tration-dependent STS inhibitor (IC50 = 380 nM) in oral dose 10 mg/kg/day, and 
in vivo has no estrogenic activity. 3,4-Dimethylcoumarin-7-O-sulfamate (2) was a 
more potent inhibitor (IC50 = 30 nM) [76].

A search of an orally active, nonestrogenic, nonsteroidal STS inhibitors among 
tricyclic compounds based around the coumarin core resulted in the discovery of 
Irosustat (667-coumate, STX64, BN83495) [77], which is the first-in-class irrevers-
ible time- and concentration-dependent STS inhibitor for the treatment of hor-
mone-dependent BC in postmenopausal women that has been clinically evaluated 
in breast, endometrial, and prostate cancers [77] and there is potential for innova-
tive dual-targeting approaches [78, 79], with an IC50 value of 8 nM in placental 
microsomes. The inhibitor (2) does not possess any estrogenic activity in in vitro 
and in vivo assays [80].

The optimum dose of 40 mg/day was estimated in phase I/II trials [81]. 
Efficiency of Irosustat has also been demonstrated in a phase II study in (ER+) endo-
metrial cancer in women with advanced or recurrent disease [82]. The high bioavail-
ability of Irosustat is explained by the prevention of degradation by sequestration 
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The STS is also responsible for the hydrolysis of DHEAS to DHEA, which is an 
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inside red blood cells where it, similarly to EMATE, binds to (and inhibits) carbonic 
anhydrase II (IC50 = 22 nM) [83]. The inactivation mechanism suggests that a 
sulfamate group is transferred to the gem-diol form of formylglycine 75 of steroid 
sulfatase due to a facile E1cB elimination of sulfamate anion to give the correspond-
ing coumarin, which has a long half-life in blood [84]. However, the further devel-
opment of Irosustat in monotherapy was stopped in the phase I/II clinical studies, 
because Irosustat does not possess superior properties to the current standard of care 
megesterol acetate, and its relative bioavailability decreases with increasing dose. 
The study of its combination with other hormonal therapies (for example, with the 
aromatase inhibitor anastrozole) is underway [85]. Metabolism of Irosustat has been 
investigated [86]. Irosustat also inhibits skin and liver STS [86].

2.5.1 Dual selective estrogen receptor modulators/STS inhibitors

One of the first examples of the dual SERM/STS inhibitor was published by 
Duquesne University [87]. 4-Hydroxytamoxifen is a metabolite of main drug 
tamoxifen used as endocrine therapy in (ER+) BCs [88]. This metabolite is a SERM 
and has antiestrogen effects in breast tissues, however, acts as an estrogen agonist in 
other tissues such as bone marrow. The sulfamate derivative 3 of 4-hydroxytamoxi-
fen was shown to be an STS inhibitor with Ki = 35.9 μM.

Surprisingly, among silicon-containing derivatives compound 4 exhibits strong 
STS-inhibitory activity (IC50 = 0.17 μM). Furthermore, its metabolite 5 possesses 
potent ERα-antagonistic activity (IC50 = 29.7 nM) [89].

Poirier with colleagues, among tetrahydroisoquinoline-N-substituted derivatives 
[90], found second-generation dual-action compounds that inhibit STS and act as a 
SERM. These compounds are devoid of estrogenic activity and toxicity. Their 
sulfamate derivatives possess high inhibitory activity toward STS (IC50 of 3.9, 8.9, 
and 16.6 nM). Both phenolic and their sulfamate derivatives show no estrogenic 
activity and moderate antiestrogenic properties. All compounds significantly 
stimulate osteoblast-like Saos-2 cell proliferation, thus suggesting a SERM activity. 
The results of molecular docking experiments suggest that the most active com-
pounds 6 and 7 bind in a competitive manner with E2 [91].

2.5.2 Dual aromatase/STS inhibitors

Another approach for the treatment of hormone-dependent BC is the develop-
ment of DASIs, which may have an additive or synergistic antitumor effect. The 
potential advantages of a single chemical agent with the ability to interact with 
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multiple biological targets were highlighted previously [92]. In the case of DASIs, 
this goal is being pursued by the introduction of the critical sulfamate unit in 
structures with known aromatase-inhibiting properties [93, 94]. All DASIs are still 
in preclinical investigations [95].

One of the best dual inhibitors is compound 8 with nonestrogenic properties. 
2′,4′-Di-cyanobiphenyl-4-O-sulfamate (TZS8478) (9) also shows the best STS 
inhibition [96].

One of the most potent dual inhibitor is compound 10 with 98 and 85% inhibi-
tion of STS and aromatase, respectively, at 10 μM [97]. A series of DASIs have been 
investigated [98, 99]. Compound 11 (STX681, IC50 = 0.82 nM for aromatase and 
IC50 = 39 nM for STS) and similar analog 12 also exhibit an excellent profile against 
aromatase (IC50 = 0.13 nM) and STS (IC50 = 3.5 nM) and are not estrogenic [100]. 
Bissulfamate 13 at a single oral dose of 10 mg/kg inhibits aromatase and rat liver 
STS by 60 and 88%, respectively. The anastrazole inspired compound 12 is also 
potent dual inhibitor in vivo [101, 102].

Among compounds on letrozole and vorozole templates, the most potent 
inhibitors were compounds 15 (aromatase IC50 = 0.5 nM and STS IC50 = 5.5 nM) 
and 16 (IC50 = 0.0001 μM) [103]. When orally dosed, compound 15 reduces plasma 
estradiol levels and inhibits liver STS activity [103].

Potter with coauthors published the successful realization of the strategy when 
the core components of the two leading DASIs resulted in the hybrid structures 
that exhibit a very high level of dual inhibition against aromatase and STS in vitro 
(IC50 = 0.015–0.75 nM). Most active compound is analog 17 (IC50 for aroma-
tase = 0.0002 μM, for STS = 0.0025 μM) [104].

The latest achievements in the field of nonsteroidal AIs are presented in recent 
reviews [105, 106].

2.6 Steroidal STS inhibitors

2.6.1 Steroid-based STS inhibitors without sulfamate group

Nonsulfamated STS inhibitors based on estrogens are weaker than EMATE. Most 
active STS inhibitors without sulfamate group with highest activity are represented 
by compounds 18, 19, and 20 (IC50 = 12, 21, and 9, respectively) [107–109].
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Estradiol dimer 21 also exhibits STS inhibitory activity in nanomolar range 
[110]. STS inhibitors are exemplified by tetrazole derivative 22 and boronic deriva-
tive 23 [111–113].

In the series of 4-substituted 17β-arylsulfonamides of 17β-aminoestra-1,3,5(10)-
trien-3-ol, compounds 24 and 25 are tight-binding inhibitors with Ki app values of 
1 and 2.5 nM [114].

2.6.2 Steroid-based STS inhibitors with sulfamate group

The estrogenicity of EMATE and estradiol-3-O-sulfamate (26, E2MATE, 
PGL2001, J995) is the serious restriction for their development as anticancer agents. 
E2MATE effectively inhibits STS activity in endometrial tissue in vitro and in vivo 
(in doses 1.0 and 0.5 mg/kg) without affecting systemic E2 levels [58, 59, 115, 116], 
and is introduced into Phase IIa of clinical trials [117]. E2MATE has been also 
clinically investigated as a pro-drug for hormone-replacement therapy and some 
limited clinical data are available. EMATE and E2MATE are bound to carbonic 
anhydrase (for EMATE IC50 = 23 nM) within red blood cells, being dual inhibitors 
of carbonic anhydrases and STS [118].

The sulfamate 27 (NOMATE) was evaluated as an STS inhibitor. This steroid 
without the 17-carbonyl group possesses ablated estrogenicity as well as reduced 

45

Estrone Sulfatase Inhibitors as New Anticancer Agents
DOI: http://dx.doi.org/10.5772/intechopen.85850

STS activity compared to EMATE. NOMATE was shown to exhibit antitumor activ-
ity against a range of tumor cell lines [119].

D-ring lactone 28 has been developed as an orally available STS inhibitor 
[114]. The latest together with related lactam 29 were independently developed by 
Imperial College and University of Bath [120]. These compounds are potent STS 
inhibitors (98 and 91% inhibition of STS activity in MCF-7 cells at 0.1 μM, respec-
tively; oral dose of 2 mg/kg/day) without estrogenic effects.

Simple modifications of the D-ring have led to dramatic variations in estrogenic-
ity. Thus, the conversion of EMATE to the oxime results in a super-estrogen. From the 
other hand, D-ring heterocyclic derivatives exhibit reduced estrogenicity [121, 122].

The replacement of ring D with N-substituted piperidinedione moiety results in 
the loss of estrogenic properties and greater STS inhibitory activity in vivo com-
pared to STX64, as it was shown by the compounds STX213 (31) [123] and STX1938 
(30) [124]. The STX1938 (30) and STX213 (31) inhibit STS with IC50 of 1 nM and 
35 pM correspondingly (90- and 18-fold more potent than EMATE, respectively) 
[125]. STX213 and STX1938 possess superior properties in comparison with STX64 
in vivo models with once weekly oral dose 1 mg/kg [125, 126]. The docking studies 
explained the greater potency of STX1938 in comparison with STX213 by the 
increased lipophility of CF3 group and the ability of the fluorine atoms to partici-
pate in C-F---H-O and C-F --- H-N interactions in the STS binding site. STX213 
(31) demonstrates a greater effect on tumor growth than Irosustat (oral dose 10 mg/
kg/day) [21]. Most active among 17-modified EMATE derivatives as STS inhibitors 
was steroid 32 (IC50 = 11 pM) [126]. The saturated analog 33 possesses similar 
potency (IC50 = 34 pM), and is not estrogenic [126].

Among various 2- and 4-substituted and 2,4-disubstituted EMATE derivatives, 
most active compounds are 2-(2-prop-2-enyl)-EMATE (34, IC50 = 37 nM in MCF-7 
cells) [126]; and 4-nitro-EMATE (35, IC50 = 0.01 nM in MCF-7 cells) (EMATE; 
IC50 = 0.83 nM in MCF-7 cells), and steroid 34 is nonestrogenic [127].

Cyclic sulfamate 36 is an effective STS inhibitor (IC50 = 9.3 nM) in vivo with dose 
regime 1 mg/mouse/day for 5 weeks [128]. The derivatives of oxathiazine 36 are 
claimed as estrogen-ablative agents; however, no data on their activity have been 
published [129]. Cyclic sulfamates with six-membered ring are time-dependent 
inactivators [130]. Acyclic mono-alkylated sulfamates are not time-dependent 
inactivators of sulfatases. Probably, imino compound 36 hydrolyzes to the ortho-
formyl sulfamate in situ [53]. The five-membered ring compounds such as 37 are not 
time-dependent inactivators of STS [131].

2.6.3 Dual 17β-HSD1/STS inhibitors

17βHSD converts E1 to E2 and DHEA to androstanediol [132]. Several inhibitors 
based on steroidal skeleton have been successfully developed [133, 134]. Few dual 
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inhibitors of 17β-HSD and STS for the treatment of steroid hormone-dependent 
diseases are patented [135]. The example of such inhibitors is represented by the 
compound 38.

A-ring-modified steroidal sulfamates, for example, series of 2-OMe-estradiol 
sulfamates and analogs have been investigated as nonestrogenic STS inhibitors 
[136, 137]. 2-MeO-EMATE 39 demonstrates the excellent inhibitory properties in 
the relation to STS in vitro (IC50 = 30 nM) and in vivo and is not estrogenic [138]. It 
strongly shows the antiproliferative effects toward BC cells by inducing apoptosis 
and cell cycle arresting in the G2/M phase [139].

2-Ethyl-EMATE 40 was identified as a promising multitargeted anticancer agent 
with strong ability to arrest the cell cycle, inhibit angiogenesis, as well as inhibit 
tumor growth in a xenograft model [140]. It was found that 2-ethylestrone (desul-
famoylated compound 40) belongs to series of potent superoxide dismutase 
inhibitors [141].

It is known that 2-methoxyestradiol, a metabolite of E2, possesses antiangio-
genic properties and prevents tumor growth through disrupting tubulin polymer-
ization by binding at the colchicine-binding site [142, 143]. 2-Methoxyestradiol is 
considered as the perspective compound for the treatment of endometriosis [144].

The anticancer effects of the 2-substituted sulfamate estrogen derivatives arise 
from disruption of tubulin polymerization, and the compounds also binding at 
the colchicine site [145]. 3,17β-Bissulfamates of estrogens are other representatives 
of multitargeted antitumor agents, acting as STS inhibitors with antiproliferative 
activity (IC50 = 18–250 nM) [146]. Such bissulfamates compete with colchicine 
for tubulin binding and disrupt microtubules resulting into cell cycle arrest just 
by apoptosis in vitro and in vivo [147, 148] and inhibit angiogenesis in vitro and in 
vivo [149]. The STS inhibitory activity of bissulfamate 41 is comparable to EMATE 
activity [150]. Bissulfamoylated derivatives with 2-MeO (42, STX140) and 2-Et 
(44, STX243) substituents in steroidal skeleton exhibit high STS inhibitory activity 
(IC50 = 39 and 1000 nM, respectively) [151].

STX140 (42) and STX243 (44) possess in vivo activity also against the 
MDA-MB-435 cell line (at 20 mg/kg oral) [152]. STX140 in vivo inhibits 
MDA-MB-231 breast tumors [152–154].

Coordination of the 17-sulfamate residue to the zinc in active site of the complex 
of STX140 with human carbonic anhydrase II is revealed [155].

STX140 depolarizes mitochondrial bioenergetics, activates caspase 3/7 caus-
ing apoptosis through the intrinsic mitochondrial pathway, and downregulates 
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the expression of caspase inhibitors [156]. The activity of such compounds is also 
explained by their ability to disrupt the tubulin-microtubule equilibrium in cells 
as being central to their antitumor activity. STX140 and STX243 bind with the col-
chicines binding site of tubulin. 2-(11C)Methoxy-3,17β-OO-bis(sulfamoyl)estradiol 
has been proposed as a new potential PET agent for imaging of steroid sulfatase in 
cancers [157].

One more example of 2-MeO-derivatives as effective STS inhibitors is illustrated 
by compound 45 containing cyano group at position C-17 [158].

2-Difluoromethyl-E1-3-O-sulfamate (46) is 91-fold more potent inhibitor 
compared to EMATE (IC50 = 0.1 and 9.1 nM, respectively) [159].

The level of STS inhibition for 17β-(N-alkylcarbamoyl)-estra-1,3,5(10)-trien-
3-O-sulfamates (47) and 17β-(N-alkanoyl)-estra-1,3,5(10)-trien-3-O-sulfamates 
(48) is similar to or exceeded that of EMATE. Some of these compounds are 
nonestrogenic. 17-(N-alkylcarbamoyl)-estra-1,3,5(10)-triene-3-O-sulfamates and 
the inverse amides have been patented as good STS inhibitors [129].

Among a series of C17-ketone and amide-modified estrone-derived sulfamates, 
compound KW-2581 (49, 17-diisopropylcarbamoyl-1,3,5(10),16-estratetraen-3-yl-
sulfamate) is the most promising, not estrogenic, orally active anticancer agent for 
the treatment of hormone-dependent BC and endometrial cancer [160]. KW-2581 
as STS inhibitor is five times more potent compared to STX-64 (IC50 = 4 nM) [161]. 
It was also demonstrated that the compound inhibits the ability of androstanediol-S 
to stimulate the in vivo growth of MCF-7 cells from BC overexpressing STS. 
However, KW-2581 is practically insoluble in water (approx. 0.1 ng/mL). The 
attempts to increase its oral bioavailability showed that the milled powder exhibited 
poorer properties than the intact sample, including a lower level of crystallinity, 
higher water content, and increased decomposition rate [162].

Diverse 17α-alkylated estradiol sulfamates as STS inhibitors have been patented 
[163] and 17α-benzyl-derivatives have been investigated [164].

Compound EM-1913 (50) is nonestrogenic steroidal STS inhibitor with 
IC50 = 0.05 nM [165], which also inhibits dehydroepiandosterone sulfate action in 
androgen-sensitive tissues, being therefore considered as a potential drug for the 
treatment of prostate cancer [166].

17α-Benzyl substituent yields reversible STS inhibitors in the absence of a 
sulfamate group, and incorporation of an aryl sulfamate onto the A-ring results in a 
potent time-dependent irreversible inhibitor. The IC50 of the tert-butylbenzyl deriv-
ative 51 is low (8.3 nM); however, steroid 51 is estrogenic. A-ring substitution leads 
to the reduced estrogenicity. 2-Methoxyderivative 52 has an IC50 = 0.04 nM. The 
compound without the tert-butyl group is nonestrogenic and effective STS inhibi-
tor in vivo [167].
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In the series of A-ring thioether-modified sulfamates, the steroid 53 is 50-fold 
more potent inhibitor of STS than steroid 52; however, it possesses weak inhibitory 
activity against MCF-7 cells proliferation (IC50 = 10 μM) [168].

2.6.4 Dual STS/SERM inhibitors

Maximum estrogen blockade in the treatment of (ER+) BC may be achieved 
using dual ERα antagonists and STS inhibitors, which might cause osteoporosis as a 
side effect [169]. In this case, the compound possessing SERM properties is needed.

Thus, a novel orally available irreversible dual STS/SERM inhibitor SR16157 
(NSC 732011) (60) (IC50 = 0.1 μM) has been developed as a very promising inhibi-
tor with excellent pharmacokinetics and acceptable toxicological profile [170].

Desulfamoylation of SR16157 (54) results in SR16137 (55), which is a tissue-
selective antiestrogen with beneficial effects on bone and cardiovascular system 
[171]. SR16157 is 10 times more potent as a growth inhibitor of MCF-7 cells than 
either the antiestrogens tamoxifen or SR1613. Additionally, SR16137 has a 10-fold 
higher affinity for ERα as compared to tamoxifen. SR16157 was shown to possess 
minimal genotoxic activity [172]. SR16157 has been recommended in initial phase I 
of clinical trials with the starting dose of 1.3 mg/kg/day administered as a single 
dose in humans.

We demonstrated that 8-alpha-analogs of steroid estrogens effectively inhibit 
the growth of BC cells, including triple negative BC [173, 174].

3. Conclusions

Manipulation of hormone biosynthesis in tumors by enzymes inhibitors is a very 
attractive approach for the treatment of hormone-dependent tumors such as breast, 
prostate cancer, and endometriosis.

The importance of STS in human body has been underlined by many investiga-
tions. Thus, STS-catalyzed hydrolysis of pregnolone-3-sulfate and dehydroepian-
dro-sterone-3-sulfate in the brain regulates neurosteroid synthesis and influences 
memory. STS inhibition for the potentiation of memory in sufferers of neurological 
diseases such as Alzheimer’s disease and dementia has been postulated [175]. The 
role of STS inhibitors as agents to reveal beneficial endogenous glucocorticoid 
effects was also claimed. The use of STS inhibitors in combination with the immu-
nosuppressive ascomycin for the treatment of acne, seborrhoea, androgenetic 
alopecia, and hirsutism is patented. The administration of an estrogen (including 
norgestimate and norelgestromin), in combination with a progestogen in hormone-
replacement therapy act by inhibiting STS, thus reduce estrogen production and 
protect the endometrium and breast from hormone-dependent cancers [176]. STS 
inhibitors prevent ovarian cycle disturbance, prolonged unopposed secretion of 
estrogens, and ovarian follicular cyst formation in premenopausal women, as well 
as prevent premature uterine contractions, particularly for preterm labor [177].

The importance of STS inhibition in endometriosis, prostate cancer, as well as 
latest discussions about mechanism of inhibition is well considered in the review 
of Prof. Potter [178]. The significance of steroid sulfatase and sulfotransferases in 
gynecological diseases are summarized in the review [57].
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As far as estrogenic compounds may stimulate tumor cells growth, the main 
requirement for STS inhibitors and their metabolites is the absence of estrogenicity. 
Among nonsteroidal STS inhibitors only one nonestrogenic compound-Irosustate 
was evaluated in clinical trials with excellent properties, however its further 
development was stopped. Currently, the action of Irosustate in the combination 
with AIs is investigated.

The discovery of dual (multitargeted) inhibitors is the most promising nowa-
days. For example, several DASIs based on anastrazole, letrozole, and vorozole 
templates inhibit both STS and aromatase in nanomolar concentrations, being 
nonestrogenic; and have a chance to be introduced in clinical trials.

Among STS inhibitors based on steroid skeleton 17α-benzyl-derivatives, 
17β-arylsulfonamides, and 17-diisopro-pylcarbomoyl-3-O-sulfamates exhibit the 
best properties, especially as multitargeted (dual) anticancer potential drugs. 
The same modifications result in the increased activity against STS in the case of 
2-OMe-3-O-sulfamates as well as 2-OMe-3,17β-bissulfamates. The latter also possess 
activity against most aggressive form—triple negative BC.

Additionally, 8α-steroid estrogen analogs without estrogenic properties possess 
high STS activity and block BC cells growth with the activity comparable to stan-
dard of care for BC treatment tamoxifen.
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Abstract

Sex steroids have important physiological actions, which are not limited to repro-
ductive organs, in both females and males. They exert important physiological roles, 
including the regulation of somatotropic-liver axis, intermediate metabolism, or gender 
dimorphism. This is in part because the liver is a sex steroid-responsive organ where 
sex steroid- and growth hormone (GH)-dependent signaling pathways connect to 
regulate complex gene expression networks. Sex steroids can impact liver gene expres-
sion by a direct, through hepatic estrogen receptor (ER)α and androgen receptor (AR), 
or indirect mechanisms, by modulation of pituitary GH secretion and/or interaction 
with the GHR-STAT5b signaling pathway. Therefore, deficiency of sex steroid- and 
GH-dependent signaling pathways might cause a dramatic impact on mammalian liver 
physiology. In this chapter, we will focus our attention on main concepts and paradigms 
involved in the role and interplay between sex steroid- and GH-dependent signaling to 
regulate gene expression networks in the mammalian liver. A better understanding of 
how sex steroids and interactions with GH-STAT5b signaling pathway influence physi-
ological and pathological states in the liver will contribute to improve clinical manage-
ment of patients with disorders in body growth, development, and metabolism.

Keywords: estrogens, androgens, GH, liver, gene expression

1. Introduction

The liver is as sex steroid-responsive organ [1–13]. The natural estrogen, 
17β-estradiol (E2), and androgens, testosterone (T)/dihydrotestosterone (DHT) have 
physiological actions, which are not limited to reproductive organs, in both females 
and males. The nonreproductive actions of sex steroids have relevance in liver physio-
pathology [1–7, 14–18]. The effects of E2 and T/DHT on liver gene expression can be 
direct, through their hepatic receptors, or indirect, by modulating growth hormone 
(GH) actions centrally [1, 2], regulating pituitary GH secretion, and, peripherally 
[5, 7, 19, 20], by modulating growth hormone receptor (GHR)-dependent signaling 
which can be exemplified by (1) E2 modulating GH actions in the liver through induc-
tion of suppressor of cytokine signaling (SOCS) 2 which in turn negatively regulates 
GHR signal transducer and activator of transcription (STAT)5b signaling pathway 
and (2) the positive interplay between T/DHT and GH to enhance somatic growth 
and liver composition in men. Accordingly, deficiency of E2-ERα [4, 18, 19, 21, 22], 
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and liver composition in men. Accordingly, deficiency of E2-ERα [4, 18, 19, 21, 22], 
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androgen/AR [6, 7, 21–25] or GH-GHR [26–32] signaling pathways in adults causes 
a similar metabolic-like syndrome (i.e., fatty liver, adiposity, insulin resistance), a 
phenotype that might be ameliorated by E2/T or GH replacement. Therefore, the 
interplay between sex steroids and GH is clinically relevant because of its importance 
in the regulation of endocrine, metabolic, and gender-differentiated actions on 
the mammalian liver [33]. A better understanding of this complex sex steroid-GH 
interplay in physiological and pathological states will contribute to prevent health 
damage and improve clinical management of patients with growth, developmental, 
and metabolic disorders. In this review, we will summarize the role of sex steroid- and 
GH-dependent signaling pathways on liver gene expression.

2. The liver is as sex steroid-responsive organ

Sex steroids can regulate liver gene transcription through direct and indirect 
mechanisms.

2.1 Direct regulation of liver gene expression by sex steroids

The liver is a direct target of sex steroids through several receptors and tissue-
specific mechanisms [34–36]. The direct interaction between E2 and the transcription 
factors ERα and ERβ mediates the classical estrogen signaling, which is responsible for 
most estrogenic effects [35]. ER dimers directly bind DNA, specifically to estrogen-
responsive elements located in the ER target gene-regulatory regions, followed by 
transcription activation. Furthermore, E2 can regulate the expression of its target 
genes by the interaction between ERs and other transcription factors, such as STAT5. 
Non-genomic mechanisms, via membrane ERs that activate downstream kinase 
pathways, have also been described to trigger E2-dependent effects. For instance, 
the orphan membrane G protein-coupled receptor (GPR)-30 was shown to mediate 
a rapid estrogen signaling, although conflicting results on this receptor have been 
reported [37]. Lastly, estrogenic effects are closely related to ER tissue expression. ERα 
expression has been reported in the bone, reproductive tissues, white adipose tissue, 
liver, and kidney, whereas the ovary, gastrointestinal tract, lung, bladder, prostate, 
hematopoietic tissue, and central nervous system are the main ERβ-expressing tissues. 
This indicates that selective ERα agonists might be used for treating ERα-related liver 
diseases [38]. Similarly to classical E2 signaling, most of the known androgenic effects 
are mediated via direct interaction of T/DHT with the DNA-binding transcription 
factor AR which plays an important role in regulating androgen-dependent gene 
expression [34, 36]. AR regulates the transcription of a variety of target genes through 
the interaction with different positive regulators (co-regulators) that provide tissue 
specificity of androgen actions. In addition, androgen/AR can signal by non-genomic 
mechanisms. Palmitoylation of AR determines its localization to the membrane, where 
it can be found in lipid raft membrane [39, 40]. Interestingly, membrane-localized 
AR can modulate both rapid androgen-mediated G-protein signaling and rapid EGF 
receptor activation followed by Akt and MAPK signaling pathways and subsequent 
nuclear AR-mediated effects. T conversion into E2 by aromatase may also play a 
relevant role to regulate the effects of androgens on body growth and composition.

2.2 Indirect regulation of liver gene expression by sex steroids

Indirect mechanisms, related to the influence of sex steroids on pituitary GH secre-
tory pattern [1, 2] and/or interaction with the GHR-STAT5b signaling pathway in target 
tissues [5, 7, 19, 20], play a relevant role to regulate the effects of sex steroids on the liver.
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2.2.1 Sex steroids regulate the pattern of pituitary GH secretion

Regulation of pituitary GH release depends of two hypothalamic peptides: a 
positive regulator, GHRH, and the inhibitory hormone somatostatin (SS) [41, 42]. 
The balance of these peptides is in turn, indirectly, affected by many physiological 
inhibitors (i.e., GH, IGF-1, glucocorticoids) and stimulators (i.e., sleep, nutrients, 
exercise, thyroid hormones, sex hormones) of pituitary GH secretion. The final 
integration of these signals occurs in the hypothalamus. Not only hypothalamic 
and endocrine factors but also other peripheral elements, mostly metabolic, 
affect pituitary GH production. These include glucose, fatty acids, amino acids, 
insulin, leptin, neuropeptide Y, and ghrelin, among others, and are dependent 
on the metabolic condition of the organism. This is consistent with the GH role 
in the regulation of somatic growth and composition. A good example to explain 
the close relationship between GH and the metabolic status is the feedback loop 
among pituitary and adipose tissues. Adiposity is a powerful negative regulator 
of pituitary GH secretion. In contrast, GH induces fatty acid mobilization from 
adipose tissue to reduce adiposity, and circulating fatty acids inhibit pituitary GH 
secretion. On the contrary, other metabolites such as leptin (also produced in the 
adipose tissue) [43] and ghrelin (from the stomach) [44] stimulate pituitary GH 
secretion. Furthermore, sex steroids can also regulate pituitary GH secretion. It has 
been described that neonatal and postpubertal sex steroids regulate the hypothala-
mus on its generation of the gender dimorphism of the pituitary GH secretion seen 
in adulthood. This could explain the gender dimorphism seen in liver physiology 
[1, 13]. In rodents, gender dimorphism is thought to be controlled by E2 secretion 
in adult females, whereas it is mediated by T secretion in neonatal and adult males. 
T neonatal exposure determines adult neuroendocrine control of the pulsatile 
pituitary GH secretion, which is first seen at puberty, when the GH secretion 
pattern is perceptible and continues throughout adulthood. In postpubertal rats, 
the male pituitary GH secretion pattern has been shown to be episodic with peaks 
every 3–4 hours and no measurable trough levels. As consequence, activation of 
GHR-STAT5b pathway is episodic as well, and phases with low levels of circulating 
GH are required to achieve maximal activation of STAT5b-mediated transcription. 
Conversely, female rat GH secretion is continuous, with higher basal levels and 
smaller intermittent peaks, and they show reduced STAT5b activation compared 
with males. Interestingly, depletion of liver-derived IGF-1 (LID mice) [45] or 
SOCS2 deletion [46] in male mice or exposition of adult male rats to E2 [47] causes 
liver feminization of some of the GH-regulated biomarkers of gender dimorphism. 
Therefore, maximal GHR-STAT5b activation occurs at puberty, and suppression 
occurs during aging or in mutants with defects in GHR signaling. Additionally, 
xenobiotics (i.e., chemicals, endocrine disruptors) can perturb the hypothalamo-
pituitary-liver GH axis and disrupt GHR-dependent activation (masculinization) 
or suppression (feminization) of STAT5b function in the liver [48, 49]. Other 
factors that can affect liver STAT5b function include fasting, caloric restriction, 
and infections. Exposure to DHT and thyroid hormones can cause liver masculin-
ization, whereas glucocorticoids, FGF15, and angiotensin II cause liver feminiza-
tion [47, 49]. Interestingly, liver feminization has been consistently observed in 
mouse models of obesity and diabetes. Finally, feminization of the male liver has 
been also associated with activation of constitutive androstane receptor (CAR) or 
peroxisome proliferator-activated receptor (PPAR)α, two xenobiotic-responsive 
receptors, or increased expression of PPARγ but not other lipogenic transcription 
factors linked to the fatty liver [47–49]. Relevant, GH-activated STAT5b in the liver 
is also commonly altered by diverse xenobiotics and provides a linkage between 
chemical exposure and hepatotoxicity.
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2.2.2 Sex steroids interact with GHR-STAT5b signaling pathway

E2(ERα)- and T(DHT)/AR-dependent signaling might modulate liver gene 
expression by interacting with GHR-STAT5b signaling pathway. The level of cell 
surface GHRs can be influenced by transcriptional, translational, and posttrans-
lational factors (e.g., nutritional status, endocrine context, IGF-1, developmental 
stage, sex steroids) which, thereby, regulate cell sensitivity to GH actions. In 
addition, E2 can inhibit GHR-JAK2-STAT5 signaling pathway through induction 
of SOCS2 and SOCS3 expression which in turn negatively regulates GHR signaling 
pathway in the liver [19]. Recently, we have shown that subcutaneous administra-
tion of nearly physiological doses of E2 to hypothyroid male rats dramatically 
influenced the hepatic transcriptional program (e.g., genes related to endocrine, 
metabolic, and gender-differentiated functions) in response to pulsatile (male 
pattern) GH administration [54]. The effects were associated with increased mRNA 
expression of several negative regulators of GHR-JAK2-STAT5b signaling pathway 
(e.g., SOCS2) [54]. It is thought that other negative regulators of JAK/STAT signal-
ing may also contribute to the interaction between E2 and GH in the liver. Indeed, 
ERα has been shown to stimulate protein inhibitor of activated STAT3 (PIAS3) 
expression which in turn inhibits STAT3 DNA binding. Intriguingly, as mentioned 
above, a direct ER-STAT5 interaction might directly control STAT5-dependent 
transcriptional activity in the liver [50].

Androgen-mediated signaling has shown to be a critical determinant of body 
composition in adult men, promoting growth of lean mass and suppressing fat deposi-
tion [7, 51], a phenotype that is also induced after GH replacement. Interestingly, the 
GH-IGF-1 axis has been reported to be positively involved in the growth-promoting 
and metabolic effects mediated by T [5]. Hence, linear growth in children with GH 
deficiency receiving GH therapy is further stimulated by androgen treatment, and GH 
is required for reaching whole androgen growth-promoting effect. T increases growth 
of boys with hypogonadism and those with hypopituitarism under GH prescription. 
However, T effects on somatic growth are poor in boys with hypopituitarism without 
concomitant GH replacement. Therefore, it is evident that T-GH interactions are pivotal 
on body composition, which is clearly exemplified by adult men with GH deficiency, 
whose lean body mass remains below average even after adequate androgen replace-
ment. Adults with hypopituitarism that are not being treated with GH therapy do not 
show any effect of T on circulating IGF-1, since both hormones are required to exert an 
optimal effect on circulating IGF-1. Furthermore, the fact that the effects of GH treat-
ment are more marked in men than in women confirms that T amplifies the anabolic 
effects of GH in vivo. Although the study is limited to prostate cancer, there are also 
evidences that T (DHT)/AR signaling interacts with the GHR-STAT5b signaling path-
way [20]. In prostate cancer cells, SOCS2 expression was induced by androgens through 
a mechanism that required STAT5- and AR-dependent transcription. Consequently, 
SOCS2 inhibited GH activation of JAK2, Src, and STAT5 as well as both cell invasion 
and cell proliferation in vitro [20]. Thus, in addition of sex steroid regulation of puber-
tal growth and gender pattern of pituitary GH secretion, induction of negative regula-
tors of JAK2-STAT5b signaling pathway in vivo is a very relevant mechanism that could 
explain, in part, how sex steroids modulate hepatic transcriptional program. However, 
further studies are still needed to better understand molecular interactions between sex 
steroids and GHR-STAT5b-dependent transcription in the liver.

2.3 The GHR-STAT5b signaling pathway

STAT5 proteins are expressed in many tissues and play critical roles in body 
growth, immune function, cellular differentiation, adipogenesis, oncogenesis, and, 
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as mentioned above, gender dimorphism [26–32]. Regarding STAT5 tissue distribu-
tion, STAT5a is more prevalent in mammary tissue, while STAT5b expression is 
more enriched in the muscle and liver.

2.3.1 Positive regulation of GHR-STAT5b signaling pathway

GH activates STAT5b via GHR [52–54]. When GH interacts with a preformed 
dimmer of identical GHR pairs, a conformational change of GHR and the associated 
tyrosine kinase JAK2 molecules is displayed, exposing the catalytic domain of JAK2 
[53]. Thus, through its pseudokinase domain, JAK2 adjacent molecules are activated 
by transphosphorylation. Activated JAK2 proteins phosphorylate tyrosine residues on 
the cytoplasmic domain of GHR, activating downstream JAK2-dependent and JAK2-
independent intracellular signaling, including, among others, STAT5b-dependent 
gene transcription. STAT5b phosphorylation by JAK2 results in their dissociation from 
the receptor, dimerization, and translocation to the nucleus where they modulate a 
transcriptional network of genes such as IGF-1, SOCS2, CYP2C12, or HNF6 [54–58]. 
In addition to tyrosine phosphorylation by JAK2, STAT5 activity is also regulated 
by the Ras/MAPK and the PI3K/Akt pathways. STAT5 proteins have been shown to 
be regulated by serine phosphorylation which appears to modulate DNA-binding 
affinity and contributes to STAT5 transcriptional activity in a promoter-dependent 
manner [59, 60]. STAT5 can physically interact with p85, the regulatory subunit of 
PI3K and Gab2, which is also involved in the PI3K/Akt pathway [61]. Centrosomal 
P4.1-associated protein (CPAP) is a cytosolic protein that is normally associated with 
centrosomes, and it has been shown to physically interact with the unphosphorylated 
and phosphorylated forms of STAT5A/B [62]. Fyn, a non-receptor tyrosine kinase, and 
phosphoinositide 3-kinase enhancer A (PIKE-A) also physically interact with STAT5A, 
and these interactions might be relevant in adipogenesis [63]. It has been shown the 
adaptor protein [64], CT10 regulator of kinase-like proto-oncogene (CrKL), can form 
a complex with STAT5 after stimulation with some cytokines (e.g., GH, GM-CSF, 
EPO) and this complex can translocate to the nucleus and bind DNA to regulate gene 
expression [65, 66]. Although less known than GHR, there exist several proteins that 
have been shown to directly associate with STAT5 to enhance its transcriptional activ-
ity. Similar to other transcription factors, STAT5 interacts with proteins in the general 
transcription factor machinery. This is exemplified by CREB-binding protein (CBP) 
and p300 which are nuclear coactivators that exhibit histone acetyltransferase activity 
and have been shown to play a positive role in the transcriptional activation of STAT5. 
There is evidence that p300/CBP binds to the carboxy-terminal transactivation domain 
of STAT5 and that p300 is responsible for enhancing STAT5 transcriptional activity. 
The nuclear receptor coactivator 1 (NcoA-1), also known as steroid receptor coactiva-
tor 1 (SRC-1) is a nuclear coactivator known to coactivate various nuclear transcription 
factors such as STAT3, STAT6, progesterone receptor (PR), glucocorticoid receptor 
(GR), ERα, thyroid hormone receptor (TR), retinoid X receptor (RXR), hepatocyte 
nuclear factor α (HNFα), and PPARγ. Interestingly, chromatin immunoprecipitation 
assays have shown that STAT5A/NcoA-1 complex binds to a STAT5 site in the CIS, a 
negative regulator of cytokine signaling promoter [67].

2.3.2 Negative regulation of GHR-STAT5b signaling

The equilibrium between positive and negative regulators of GHR-dependent 
activity is of special concern because even slight imbalance may disrupt the GH 
activity causing serious diseases. Under physiological conditions, activation of 
GH-induced JAK2-STAT5b is temporary, with a peak of activation achieved within 
the first 30 min after GH stimulation, followed by an inactivation step [68].  
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2.2.2 Sex steroids interact with GHR-STAT5b signaling pathway
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steroids and GHR-STAT5b-dependent transcription in the liver.
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STAT5 proteins are expressed in many tissues and play critical roles in body 
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This inactivation period is characterized by an inability of GH to promote maximal 
JAK2-STAT5 activity in the following 3–4 hours, unless GH is removed from the 
media. The main post-receptor inhibitors of GHR-JAK2-STAT5 pathway are: the 
SOCS family, protein phosphatases (PTPs), signal regulatory protein (SIRP)-α1, 
sirtuin 1 (SIRT1), and protein inhibitors of activated STAT (PIAS). In addition, 
GH-induced STAT5A phosphorylation and STAT5A-dependent transcription might 
be negatively regulated by transforming growth factor-β (TGFβ) [69], a cytokine 
that regulates cell growth, proliferation, differentiation, and death. Furthermore, 
several proteins that have been shown to directly associate with STAT5 can repress 
its transcriptional activity. This is exemplified by silencing mediator for retinoic acid 
receptor and thyroid hormone receptor (SMRT) which is a corepressor for various 
members of the nuclear receptor family. Although STATs are not member of the 
nuclear receptor superfamily, SMRT was found to interact with STAT5 and repress 
STAT5-dependent transcriptional activity [70]. Sac3 domain-containing protein 
(SHD1) is a protein that has been shown to have a role in mitotic progression and 
interacts with STAT5, and SHD1 can be induced by various cytokines and hormones, 
suggesting a potential role in modulating STAT5 transcriptional activity [71].

2.4 The SOCS family

The SOCS protein family is characterized by a specific protein structure as all of 
them have a SH2 domain and SOCS box domain [72, 73]. From a biological point of 
view, the SOCS box is an ubiquitination-related domain associated with complexes 
of elongins C and B, cullin-5, RING-box, and ligase E2, so SOCS proteins may act 
as ubiquitin E3 ligands that degrade proteins by direct interaction with them. An 
early step in GH-dependent signaling consists of GHR removal through endocytosis 
and ubiquitination mechanisms [74–78]. In line with this, SOCS2 has been reported 
to be essential in GHR-JAK2-STAT5b signaling negative regulation [79]. Regularly, 
SOCS2 protein levels are constitutively low, but GH rapidly induces its expression, 
with the subsequent SOCS2 binding to GHR complex, which promotes its ubiquitina-
tion and proteasomal degradation. Clinically relevant, SOCS2 negatively regulates 
GH-dependent control of body growth [26] and glucose and lipid homeostasis 
[46]. In addition, diverse cytokines, sex hormones (E2 and T), growth factors (e.g., 
insulin), and xenobiotics (e.g., dioxin, statins), can promote SOCS2 expression, 
generating a cross-talk mechanism through which multiple endo- and xenobiotics can 
regulate GHR-dependent activities. SOCS2 is responsible, among others, for regula-
tion of the IGF-1 expression in the liver which is mediated by STAT5b [56, 80–83]. 
Experiments in mice with SOCS2 disruption also support that STAT5b is critical for 
GH regulation of somatic growth [72, 82]. In the SOCS2-deleted mice, the difference 
in body weight after weaning was associated with significant increase in bone length 
and increase in weight of most organs [80]. This phenotype was also associated with 
increased levels of IGF-1 mRNA expression in several organs [74, 80]. SOCS proteins 
can bind directly to tyrosine kinases to deactivate them but can also block docking on 
cytokine receptors to inhibit the activation of STAT in the JAK/STAT pathway [79]. It 
has been shown that SOCS7 also interacts directly with STAT5 and inhibits prolactin-, 
leptin-, and GH-dependent activation of STAT5 [84]. Interestingly, the oncogene 
PIM-1, a serine-threonine-protein kinase 1, might participate in the mechanism of the 
negative regulation of STAT5 activity by interacting with SOCS1 and SOCS3 [85].

2.5 Protein phosphatases and signal regulatory proteins (SIRPs)

As expected, tyrosine phosphatases such as PTP-1B and PTP-H1 [86] are nega-
tive regulators of the GHR-JAK2-STAT5b pathway. The absence (or inhibition) of 
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these PTPs produces prolonged activation of STAT5 and STAT3, by GH. Relevant 
in wild-type fasted mice, the GH resistance state develops, which is manifested 
by disorders in somatotropic axis at the GHR level, whereas in fasted PTP-1B KO 
mice, despite starvation, GH resistance state does not develop. PTP-1B KO mice are 
characterized by increased STAT5b tyrosine phosphorylation and augmented level 
of IGF-1 [87, 88]. The PTP known as Src homology 2 (SH2) containing protein tyro-
sine phosphatase (SHP-1) was initially described in the hematopoietic system [89]. 
GH can activate SHP-1 and induce its translocation into the nucleus, where SHP-1 
binds to STAT5b and, subsequently, participates in the termination of GH signaling 
in the male rat liver [90]. The SHP-2 also plays a critical role in the regulation of 
GHR-dependent signaling [91]. The absence of SHP-2 binding to GHR results in an 
increased activation of STAT5b-dependent transcription [92]. The clinical role of 
the SHP-2 in the regulation of the GH signal transduction is confirmed by Noonan 
[93] and Leopard [94] syndromes. In addition, dual-specificity phosphatases 
(DUSPs), a family of type-I cysteine-based protein tyrosine phosphatases that act 
on both tyrosine and serine/theronine residues on a substrate, are also of interest 
for its ability to interact with STAT5b [95]. However, further studies are required to 
understand the mechanism of this interaction. Finally, low molecular weight PTPs 
(LMW-PTPs) are phosphatases that play a role in controlling cell proliferation via 
the dephosphorylation of tyrosine kinase receptors and docking proteins. These 
PTPs are also of interest for their interactions with STAT5 and oncogenesis [96, 
97]. Finally, SIRPs are glycoproteins which can bind to the SH2 domains of SHP-2 
protein [98]. Particularly, SIRPα-1 decreases GH-induced phosphorylation and 
activities of STAT5, STAT3, and ERK1/2 and, therefore, acts as a negative regulator 
of GH-dependent signaling.

2.6 Sirtuins

Human sirtuins are a family (from SIRT1 to SIRT7) of nicotinamide adenine 
dinucleotide (NAD+)-dependent enzymes that regulate a varied metabolic pathway 
[99]. SIRT1 plays a critical role in the organization and stabilization of the genome, 
response to stress, glucose homeostasis or cell differentiation, cell survival, inflam-
mation, mitochondrial biogenesis, and oxidative damage. Interestingly, SIRT1 
inhibits GH-induced IGF-1 mRNA expression in the liver, decreases lysine acetyla-
tion on STAT5, and inhibits the GH-induced tyrosine phosphorylation [100]. SIRT1 
might be involved in GH resistance state. In fasted mice, SIRT1 protein level was 
increased, and SIRT1 inhibition restored lysine acetylation of STAT5 and STAT5 
phosphorylation to basal levels, which reversed the GH resistance state [100]. The 
inhibitory effect of SIRT1 has been also observed on STAT3 protein activity in the 
liver. Resveratrol, an estrogenic/antiestrogenic stilbene and stimulator of SIRT1, 
also caused inhibition of STAT5 and STAT3 activities [101–104].

2.7 Protein inhibitors of activated STAT (PIAS)

PIAS proteins play an important role in the modulation of multiples signaling 
pathways which include to the AR-mediated transcription [105, 106]. STAT protein 
may be modulated by PIAS proteins in varied ways: (1) the interaction of PIASs with 
STATs may be type-dependent (e.g., PIAS1-STAT1, PIAS3-STAT3); (2) the PIASs 
can inhibit STAT-induced gene expression by DNA-binding inhibition (e.g., PIAS1-
STAT1) or without DNA-binding inhibition (e.g., PIAS4-STAT1); and (3) PIAS pro-
teins are expressed in different tissues. Relevant, intranuclear prolactin/cyclophilin 
B complex might act as a transcriptional inducer by interacting directly with STAT5, 
resulting in the removal of the PIAS3, thereby enhancing STAT5 DNA-binding 
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activity and prolactin-induced STAT5-dependent gene expression [107]. However, the 
role of PIAS proteins in somatotropic-liver axis has not been thoroughly investigated.

2.8 STAT5 interacts with Oct-1 to regulate cell cycle

Cyclin D1 is involved in regulation of the cell cycle and is a STAT5 target gene 
[108]. Octamer-binding protein 1 (Oct-1) is a transcription factor ubiquitously 
expressed in the nucleus that contains POU (pituitary-specific, octomer tran-
scription factor, Unc-86) domain, a DNA-binding domain that recognizes the 
octamer motif. Oct-1 physically interacts with STAT5A in the nucleus, and this 
interaction is necessary for activating the cyclin D1 promoter and regulating D1 
expression.

2.9 STAT5 associates with steroid receptors

PR and GR physically interact with STAT5. PR interacts with STAT5A in the 
cell nucleus, and STAT5A functions as a coactivator in the regulation of several PR 
target genes (i.e., RANKL, Wnt4, Areg) [109]. The GR has been shown to physically 
interact with both STAT5A and STAT5B in a variety of cell types including mam-
mary gland, adipocytes, and hepatocytes. GR acts as a coactivator of STAT5 during 
mammary gland and somatotropic-liver axis development [110, 111]. Interestingly, 
GR acts as a positive regulator (coactivator) for STAT5b transcriptional activity in 
the promotion of body growth and sexual maturation. In fact, mice with inactive 
GR, specifically in the liver, have impaired body growth, suggesting the importance 
of GR in hepatocytes for GH-dependent postnatal growth. In addition, genes 
whose expression was similarly altered by GR and STAT5 deletions in mice included 
male-predominant genes, GH-responsive genes, steroid dehydrogenases, ribosomal 
protein genes, or IGF-1 and ASL, two genes which are involved in promoting body 
growth and gender dimorphism. In addition to GR acting as a positive activator of 
STAT5 transcriptional regulation, STAT5 has a role in repressing GR-mediated gene 
transcription [112, 113].

2.10  Epigenetic modulation of STAT5 transcriptional activity: a cross  
talk with xenobiotics

Finally, STAT5-dependent gene expression might also be regulated by epigen-
etic mechanisms [114–116]. Lysine-specific demethylase 1 (LSD1) and histone 
deacetylase 3 (HDAC3) are epigenetic modifiers that are typically associated with 
the modulation of histone activity. Nevertheless, the biological impact of the LSD1/
HDAC3/STAT5A interaction network remains unclear, and further studies are 
required in order to elucidate the function of these interactions [117]. Enhancer of 
zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme involved 
in the methylation of DNA, and studies in different tissues have shown that EZH2 
can also modulate several activities of STAT5 [118].

3. STAT5b in liver physiology

Target disruption or mutation of the GHR-JAK2-STAT5b signaling pathway 
together with clinical studies of GH-resistant mutants has shown that this pathway 
is a key in GH regulation of target genes associated with postnatal body growth, 
lipid and glucose metabolism, gender dimorphism, and liver pathophysiology  
(e.g., fatty liver, insulin resistance, fibrosis, hepatocellular carcinoma) [26–32].
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3.1 Postnatal body growth

GH modulates postnatal growth [42]. The liver is the main source of circulat-
ing IGF-1, and STAT5b directly controls GH-dependent transcription of IGF-1 
[26]. How GH treatment is administrated determines GH actions on the liver. In 
rodents, it has been reported that intermittent (male pattern) GH administration 
more potently stimulates body growth rate, IGF-1 expression, and STAT5b activ-
ity in the liver than continuous (female pattern) GH administration. However, 
GH is more efficient than IGF-1 since GH triggers additional growth indepen-
dent of IGF-1. As pointed above, not only STAT5b but also other transcription 
factors that interact with STAT5b can influence body growth, including GR, a 
critical coactivator of STAT5b in the liver [119], or ER, which interacts with E2 
and STAT5 [50]. Besides endocrine actions, paracrine effects of STAT5 in GH 
activity on muscle have been described, since a reduction of IGF-1 transcripts 
in the muscle and a loss of mass in muscle-specific deletion of STAT5a/b were 
reported [120].

3.2 Lipid and glucose metabolism

Energy/fuel metabolism, and particularly lipid metabolism, is the main 
metabolic process affected by GH status [26, 47, 121, 122]. GH promotes protein 
synthesis and inhibits protein degradation in muscle, bone, and other large tissues, 
thereby blocking glucose and amino acid catabolism and placing lipids as the main 
source of energy. GH exerts these actions by inhibiting insulin actions and leading 
fatty acid mobilization from adipose tissue and liver [26, 27]. In adipose tissue, GH 
poses lipolytic effects and reduces fat mass. This is especially evident in individuals 
that show an excess of fat accumulated during periods of GH deficiency [26–28]. 
Furthermore, GH displays triglyceride synthesis and secretion in the liver, and, 
besides increasing lipogenesis (e.g., SREBP1), GH inhibits PPARα expression and 
reduces lipid oxidation [47, 123]. In the skeletal muscle, GH drives triglyceride 
uptake and lipid oxidation, effects that can be reverted by external factors such 
as nutrition, exercise, or sex steroid hormones. In adulthood, GH can unleash a 
metabolic syndrome (i.e., increased visceral adiposity, fatty liver, decreased muscle 
mass, metabolic disturbances) that can be ameliorated by GH replacement therapy. 
In rodents and humans with fatty liver and adiposity, an ineffective GHR-JAK2-
STAT5 signaling has been reported, which is attributed to increased lipogenesis 
and reduced triglyceride secretion, as well as lowered lipolysis [28, 29, 124]. In fact, 
it has been shown that STAT5b-deleted male mice become obese in later life [125] 
and that deletion of STAT5b in a mature human is associated with obesity [126]. 
In contrast, ablation of SOCS2, with subsequent increased STAT5 signaling, was 
shown to protect mice from high-fat diet-induced liver steatosis [46]. These evi-
dences highlight two physiological aspects of GHR-STAT5b signaling: (a) STAT5b is 
essential in the regulation of key enzymes or genes otherwise involved in lipid and 
energy balance. Clinically relevant is that GH anti-obesity actions increase with the 
male pattern of pituitary GH secretion because of pulsatile STAT5 signaling and 
(b) absent GHR signaling, and therefore reduced STAT5 activation, provokes the 
fatty liver even with normal plasma levels of free fatty acids and minimal adipos-
ity. Interestingly, agonists of liver X receptor (LXR), which cause hepatic steatosis 
[127], can inhibit GH-STAT5 activation through the induction of sterol regulatory 
element binding protein 1 (SREBP1) [128]. SREBP1, a LXR target gene, downregu-
lates STAT5b gene transcription and stimulates STAT5b protein degradation. These 
findings highlight the molecular interactions of LXR with GH-STAT5 signaling in 
the liver.
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activity and prolactin-induced STAT5-dependent gene expression [107]. However, the 
role of PIAS proteins in somatotropic-liver axis has not been thoroughly investigated.

2.8 STAT5 interacts with Oct-1 to regulate cell cycle

Cyclin D1 is involved in regulation of the cell cycle and is a STAT5 target gene 
[108]. Octamer-binding protein 1 (Oct-1) is a transcription factor ubiquitously 
expressed in the nucleus that contains POU (pituitary-specific, octomer tran-
scription factor, Unc-86) domain, a DNA-binding domain that recognizes the 
octamer motif. Oct-1 physically interacts with STAT5A in the nucleus, and this 
interaction is necessary for activating the cyclin D1 promoter and regulating D1 
expression.

2.9 STAT5 associates with steroid receptors

PR and GR physically interact with STAT5. PR interacts with STAT5A in the 
cell nucleus, and STAT5A functions as a coactivator in the regulation of several PR 
target genes (i.e., RANKL, Wnt4, Areg) [109]. The GR has been shown to physically 
interact with both STAT5A and STAT5B in a variety of cell types including mam-
mary gland, adipocytes, and hepatocytes. GR acts as a coactivator of STAT5 during 
mammary gland and somatotropic-liver axis development [110, 111]. Interestingly, 
GR acts as a positive regulator (coactivator) for STAT5b transcriptional activity in 
the promotion of body growth and sexual maturation. In fact, mice with inactive 
GR, specifically in the liver, have impaired body growth, suggesting the importance 
of GR in hepatocytes for GH-dependent postnatal growth. In addition, genes 
whose expression was similarly altered by GR and STAT5 deletions in mice included 
male-predominant genes, GH-responsive genes, steroid dehydrogenases, ribosomal 
protein genes, or IGF-1 and ASL, two genes which are involved in promoting body 
growth and gender dimorphism. In addition to GR acting as a positive activator of 
STAT5 transcriptional regulation, STAT5 has a role in repressing GR-mediated gene 
transcription [112, 113].

2.10  Epigenetic modulation of STAT5 transcriptional activity: a cross  
talk with xenobiotics

Finally, STAT5-dependent gene expression might also be regulated by epigen-
etic mechanisms [114–116]. Lysine-specific demethylase 1 (LSD1) and histone 
deacetylase 3 (HDAC3) are epigenetic modifiers that are typically associated with 
the modulation of histone activity. Nevertheless, the biological impact of the LSD1/
HDAC3/STAT5A interaction network remains unclear, and further studies are 
required in order to elucidate the function of these interactions [117]. Enhancer of 
zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme involved 
in the methylation of DNA, and studies in different tissues have shown that EZH2 
can also modulate several activities of STAT5 [118].

3. STAT5b in liver physiology

Target disruption or mutation of the GHR-JAK2-STAT5b signaling pathway 
together with clinical studies of GH-resistant mutants has shown that this pathway 
is a key in GH regulation of target genes associated with postnatal body growth, 
lipid and glucose metabolism, gender dimorphism, and liver pathophysiology  
(e.g., fatty liver, insulin resistance, fibrosis, hepatocellular carcinoma) [26–32].
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GH activates the production of glucose in the liver by promoting glycogenoly-
sis; however, GH can exert either a stimulatory or no effect on gluconeogenesis, 
due to GH antagonism of insulin action that triggers hepatic/systemic insulin 
resistance [27]. Furthermore, IGF-1 has an important role on carbohydrate metab-
olism and may increase insulin sensitivity by suppressing GH release. Therefore, 
activation of IGF-1 signaling increases the degree of complexity in understanding 
the molecular mechanisms involved in GH-induced insulin resistance in vivo. 
GHRKO and GH-deficient mice show improved insulin sensitivity and upregulated 
hepatic insulin signaling, thereby suggesting that GH locally antagonizes insulin 
signaling in the liver [129]. However, human GH gene overexpression has been 
shown to increase basal hepatic glucose uptake and glycogen burden in rats [130]. 
GH-induced insulin resistance may emerge from the increased mobilization of 
free fatty acids from peripheral adipose tissue. This can be affecting liver insulin 
sensitivity, leading to insulin resistance and upregulation of gluconeogenic genes 
(e.g., glucose-6-phosphatase, phosphoenolpyruvate carboxykinase), essential to 
glucose homeostasis in the liver. Intriguingly, LID mice have been shown to present 
a 75% reduction in circulating IGF-1 levels, three- to fourfold increase in circulat-
ing GH levels, and insulin resistance, without significant enhanced circulating free 
fatty acid levels. This suggested a possible local cross talk between GH and insulin 
signaling systems within the hepatocyte. Additionally, crossbreeding between 
LID mice and GH transgenic mice resulted in significantly increased serum free 
fatty acid levels and improved insulin sensitivity due to higher glucose uptake in 
hepatic, skeletal muscle, and adipose tissues [131]. Besides free fatty acids, the 
SOCS family of proteins, whose expression is induced by both GH and insulin 
in the liver, has also been suggested to contribute to insulin resistance [79, 128]. 
Recently, we have reported that SOCS2 deletion protected mice against the fatty 
liver, but, paradoxically, worsened insulin resistance was observed in high-fat diet-
fed mice [46]. In contrast, SOCS2 deletion was shown to protect adult male mice 
against streptozotocin-induced type I diabetes [132].

3.3 STAT5b is a master regulator for “liver sexuality”

Gender dimorphism in the mammalian liver contributes to gender differences 
in body growth, intermediate metabolism, and steroid and xenobiotic compound 
metabolism. Many sex-dependent liver genes are regulated by sex differences in 
pituitary GH secretion, with STAT5b, proposed to mediate signaling by the pulsatile, 
male plasma GH profile. Most of the gender dimorphism in the liver can be explained 
by the female-specific pattern of pituitary gh secretion, through the induction and 
suppression of female- and male-predominant transcripts, respectively. The 20–30% 
of rodent hepatic genes have a sex-specific expression pattern. Genome-wide screens 
of gene expression have shown that several families of hepatic genes involved in endo- 
and xenobiotic metabolism and metabolic functions (e.g., lipid metabolism) are 
dependent on GH- and sex-dependent regulation. Moreover, other hepatic transcripts 
that encode plasma proteins, enzymes, transcription factors, and receptors and are 
involved in the metabolism of proteins, carbohydrates, or lipids have been found to 
be up- and/or downregulated by the different patterns of GH or sex steroid activity 
[47, 55]. A consensus exists that the response to sex-different pattern of pituitary 
GH secretion is the major cause of gender dimorphism in the liver. Large-scale gene 
expression study has been conducted using male and female mice, wild type and 
STAT5b inactivated, to characterize sex differences in liver gene expression and 
their dependence on STAT5B [26, 55, 133, 134]. Total disruption of STAT5b trig-
gers loss of sexually dimorphic body growth in mice, as evidenced in affected male 
mice with reduced size (comparable with female size) and female mice unaffected. 
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Furthermore, a 30–50% reduction in circulating IGF-1 was found in affected male, 
but not in female mice. Nevertheless, the combined interruption of STAT5a and 
STAT5b significantly reduced body weight gain in female mice and repressed body 
growth in male mice more significantly than in male STAT5b null mice, which resem-
ble both GH- or GHR-deficient mice. These findings confirmed the importance of 
STAT5b in male-specific body growth while exhibiting that STAT5a equally regulates 
body growth in both sexes. STAT5b is crucial for sex-dependent liver gene expression, 
a characteristic of approximately 4% of the genome. In male mice, male-predominant 
liver gene expressions are positively regulated by STAT5b or STAT5b-dependent fac-
tors, whereas female-predominant liver genes are repressed in a STAT5b-dependent 
manner. Remarkably, a number of the STAT5b-dependent male genes encode 
transcriptional repressors; these may include direct STAT5b target genes that repress 
female-predominant genes in the male liver. Several female-predominant repressors 
show enhanced expression in STAT5b-deficient male mice; these may contribute to 
the major loss of male gene expression found in the absence of STAT5b. Thus, STAT5b 
is a key player in this scenario, and it is responsible for the masculinization of the male 
liver [55, 125]. Conversely, other transcription factors (e.g., HNF6, HNF3β) are more 
efficiently activated in the female liver or by the continuous GH administration [135, 
136]. In addition, SREBP1c induction, as well as hepatic triglyceride synthesis and 
VLDL secretion, and PPARα inhibition can be observed in the liver after continuous 
GH administration [47, 123]. However, it is likely that other factors are behind some 
sex differences in the liver. Potential mechanisms that could contribute to this “liver 
sexuality” are the pituitary-independent effects of sex steroids through interaction 
with GH-JAK2-STAT5 signaling pathway in the liver.

4. Sex steroids in liver physiology

The transcriptional program regulated by E2/ERα- and T(DHT)/AR-dependent 
signaling is linked to body growth and composition, drug-induced hepatotoxicity, 
liver growth, hepatic carcinogenesis, or even control of fertility [3, 4, 6, 7, 14–17, 23]. 
However, the specific roles of altered androgen/AR signaling dysfunctions, as well as 
its influence on GHR-dependent signaling, in the pathophysiology of metabolic phe-
notypes in the liver remain, in comparison with E2/ERα signaling, largely unknown. 
Conversely, the influence of JAK2 on ERα/AR-dependent transcription might also play 
a central role in the regulation of liver physiology and suggests a more complex level of 
cross talk between E2/ERα- or T/AR-dependent signaling and GHR in the liver [137].

4.1 Body growth and composition

The impact of sex steroids on body growth and composition is complex [4, 5, 19, 
138]. Increased pubertal growth velocity associated with enhanced GH secretion 
has generally been attributed to T secretion in boys and to E2 or adrenal androgen 
secretion in girls. However, recent evidences support that E2 may be the main 
hormone promoting pubertal growth spurt in both sexes [139, 140]. Intriguingly, 
the lack of E2/ERα-dependent signaling, but not of ERβ, mediates key effects of 
estrogens in the skeleton of male mice during growth and maturation. A similar 
phenotype to ERα null mice can be found in aromatase-deficient (ArKO) male rats, 
where T cannot produce estrogens. Remarkably, E2 can retrieve skeletal growth 
rates in the absence of GHR (i.e., GHRKO mice), which is associated with an 
elevated hepatic and serum levels of IGF-1. This provides a novel mechanism of 
hepatic IGF-1 production, independent of GHR [139]. In addition, E2 can induce 
IGF-1 gene expression in the hypothyroid male rat liver, accompanied by low or 
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GH activates the production of glucose in the liver by promoting glycogenoly-
sis; however, GH can exert either a stimulatory or no effect on gluconeogenesis, 
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undetectable levels of circulating GH [47]. Gender-related differences in body 
composition during pubertal growth are thought to be partially mediated by sex 
steroids through GH-IGF-1 axis modulation. Oral E2 administration to postmeno-
pausal women was shown to decrease circulating IGF-1 levels and increase GH 
expression, whereas transdermal E2 application was reported to elevate both GH 
secretion and IGF-1 concentrations [141]. Likewise, oral administration of phar-
macological doses of estrogen to hypopituitary patients suppressed GH-regulated 
endocrine and metabolic effects (i.e., circulating IGF-1 levels, lipid oxidation, and 
protein synthesis). These effects on metabolism and body composition are attenu-
ated by transdermal administration which suggests that these route-dependent 
effects are consequence of hepatic first pass effect of oral estrogen leading to direct 
inhibition of GHR-JAK2-STAT5-IGF-1 signaling pathway. This inhibition might be 
explained by E2 induction of SOCS2 and SOCS3 which are negative regulators of 
GHR-JAK2-STAT5b signaling in the liver [19]. E2 modulation of GH signaling is also 
exemplified by GH treatment inducing a greater increase in lean mass and decrease 
in fat mass or a greater increase in indices of bone turnover and in bone mass, in 
GH-deficient male than female patients [142, 143].

4.2 Lipid and glucose metabolism

Gender dimorphism also affects lipid and glucose metabolism [21, 22, 24]. In 
human and rodents, E2 physiologically mediates lipid and glucose metabolism. In 
fact, deficiency of E2/ERα signaling can trigger a metabolic syndrome-like pheno-
type (i.e., fatty liver, adiposity, insulin resistance) [18, 21, 144]. It has been shown 
that postmenopausal women are more prone to develop metabolic syndrome than 
premenopausal women. ERα deficiency or reduced levels of aromatase activity have 
been reported to promote the development of visceral adiposity, insulin resistance, 
and hyperinsulinemia both in male humans and mice. In ERαKO and ArKO mice, 
this metabolic syndrome-like phenotype can be reverted by E2 treatment. The 
favorable effect of E2 in lipid and glucose homeostasis stabilization is also found in 
ob/ob and high-fat diet-fed mice, models of obesity and type 2 diabetes. Treatment 
of ob/ob mice with PPT has been shown to improve glucose tolerance and insulin 
sensitivity, thus confirming the key role that ERα plays in the control of glucose 
homeostasis. Estrogenic signaling via GPR-30 has also been connected with glucose 
homeostasis and insulin production. ERα mainly controls antilipogenesis, reduction 
of adiposity, and improvement of insulin sensitivity, whereas ERβ may be detri-
mental for the maintenance of normal glucose and lipid homeostasis. In ERαKO 
mice, insulin resistance, accompanied by increased lipid content and hepatic glu-
cose production, is mainly localized to the liver. Surprisingly, when hepatic ERα was 
selectively ablated (LERKO mice), mice did not restore the observed ERαKO mice 
phenotype (i.e., adiposity, glucose intolerance, insulin resistance), even when chal-
lenged with a high-fat diet. This suggests that unidentified compensatory mecha-
nisms may be arising or that hepatic insulin resistance occurs as a secondary effect 
upon ablation of E2 signaling in other cell types. Intriguingly, selective ablations 
of ERα in the hypothalamic brain region or in hematopoietic/myeloid cells evoke 
increased body weight and reduced glucose tolerance. The antilipogenic effects of 
E2 in the liver are partially a result of the activation of PPARα- and the inhibition 
of LXRα-dependent signaling pathways, with subsequent increased fatty acid 
oxidation and inhibition of lipogenic genes (e.g., SREPB1c, Apo E) [47]. Activation 
of LXRα-dependent signaling enhances triglyceride accumulation in the liver. 
In contrast, E2/ ERα signaling suppresses lipogenic pathway expression and the 
fatty liver induced by LXR activation [38]. Similar to E2/ERα deficiency, reduced 
androgen/AR signaling is associated with a metabolic syndrome-like phenotype 
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(i.e., truncal adiposity, fatty liver, increased triglycerides/cholesterol, reduced 
HDL, insulin resistance type 2 diabetes), and this is improved after T replacement 
therapy [6, 25]. Nevertheless, the specific role of the androgen/AR signaling in liver 
metabolism regulation is still largely understood. Tissue-specific AR signaling has 
been shown to be involved in the regulation of lipid metabolism (i.e., inhibits lipo-
genesis, prevents liver steatosis) and promote anabolic growth in peripheral tissues 
[25]. Deletion of AR (ARKO) causes late-onset obesity in male mice, whereas the 
liver-specific ARKO (LARKO) exhibits increased insulin resistance and steatosis, 
with decreased β-oxidation, upon high-fat diet. Clinically relevant, high insulin 
resistance and impaired glucose tolerance have also been revealed in men with T 
deficiency [6]. Furthermore, some AR polymorphisms with reduced AR activity 
are connected to an excess of body fat and fat distribution pattern in both sexes 
[36]. Remarkably, T treatment diminishes visceral fat and improves nonalcoholic 
fatty liver disease in mice and human males [6, 23–25]. However, most E2/ERα 
actions that regulate body weight and lipid/glucose metabolism equally affect both 
female and male, thus suggesting that T aromatization in E2, via ERα, might also 
contribute to energy homeostasis in males. In summary, reduced E2/ERα or T/AR 
signaling is associated with metabolic disorders, including metabolic syndrome-
like phenotype with adiposity and hepatic steatosis, which resembles deficiency 
of GHR-JAK2-STAT5 signaling. Notably, these metabolic disorders can be partially 
prevented or ameliorated, by E2/T and/or GH replacement therapies, thus suggest-
ing that these hormones control overlapping cellular networks related with physi-
ological control of lipid and glucose homeostasis.

5. Conclusions

Estrogen/ERα-dependent signaling and androgen/AR-dependent signaling are 
essential components in liver physiology and pathology in both male and female. 
Both direct and indirect actions of sex steroids in the liver are physiologically and 
therapeutically relevant. Particularly relevant are sex hormone interactions with 
GH-regulated endocrine (e.g., IGF-1), metabolic (e.g., lipid and glucose metabo-
lism), and gender dimorphism (e.g., endo- and xenobiotic metabolism) functions 
in the liver. Therefore, the pituitary (GH)-gonadal (E2 and T)-liver axis is relevant 
in physiology and pathophysiology in mammals. Additionally, the endocrine and 
metabolic consequences of long-term exposition to compounds derived from 
sex hormones and their influence on the pituitary-liver axis need to be further 
understood. Thus, going in-depth in the study of this complex interaction in both 
physiological and pathological states may contribute to prevent health damage and 
ameliorate clinical outcome of patients with growth, developmental, and metabolic 
disorders.
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undetectable levels of circulating GH [47]. Gender-related differences in body 
composition during pubertal growth are thought to be partially mediated by sex 
steroids through GH-IGF-1 axis modulation. Oral E2 administration to postmeno-
pausal women was shown to decrease circulating IGF-1 levels and increase GH 
expression, whereas transdermal E2 application was reported to elevate both GH 
secretion and IGF-1 concentrations [141]. Likewise, oral administration of phar-
macological doses of estrogen to hypopituitary patients suppressed GH-regulated 
endocrine and metabolic effects (i.e., circulating IGF-1 levels, lipid oxidation, and 
protein synthesis). These effects on metabolism and body composition are attenu-
ated by transdermal administration which suggests that these route-dependent 
effects are consequence of hepatic first pass effect of oral estrogen leading to direct 
inhibition of GHR-JAK2-STAT5-IGF-1 signaling pathway. This inhibition might be 
explained by E2 induction of SOCS2 and SOCS3 which are negative regulators of 
GHR-JAK2-STAT5b signaling in the liver [19]. E2 modulation of GH signaling is also 
exemplified by GH treatment inducing a greater increase in lean mass and decrease 
in fat mass or a greater increase in indices of bone turnover and in bone mass, in 
GH-deficient male than female patients [142, 143].

4.2 Lipid and glucose metabolism

Gender dimorphism also affects lipid and glucose metabolism [21, 22, 24]. In 
human and rodents, E2 physiologically mediates lipid and glucose metabolism. In 
fact, deficiency of E2/ERα signaling can trigger a metabolic syndrome-like pheno-
type (i.e., fatty liver, adiposity, insulin resistance) [18, 21, 144]. It has been shown 
that postmenopausal women are more prone to develop metabolic syndrome than 
premenopausal women. ERα deficiency or reduced levels of aromatase activity have 
been reported to promote the development of visceral adiposity, insulin resistance, 
and hyperinsulinemia both in male humans and mice. In ERαKO and ArKO mice, 
this metabolic syndrome-like phenotype can be reverted by E2 treatment. The 
favorable effect of E2 in lipid and glucose homeostasis stabilization is also found in 
ob/ob and high-fat diet-fed mice, models of obesity and type 2 diabetes. Treatment 
of ob/ob mice with PPT has been shown to improve glucose tolerance and insulin 
sensitivity, thus confirming the key role that ERα plays in the control of glucose 
homeostasis. Estrogenic signaling via GPR-30 has also been connected with glucose 
homeostasis and insulin production. ERα mainly controls antilipogenesis, reduction 
of adiposity, and improvement of insulin sensitivity, whereas ERβ may be detri-
mental for the maintenance of normal glucose and lipid homeostasis. In ERαKO 
mice, insulin resistance, accompanied by increased lipid content and hepatic glu-
cose production, is mainly localized to the liver. Surprisingly, when hepatic ERα was 
selectively ablated (LERKO mice), mice did not restore the observed ERαKO mice 
phenotype (i.e., adiposity, glucose intolerance, insulin resistance), even when chal-
lenged with a high-fat diet. This suggests that unidentified compensatory mecha-
nisms may be arising or that hepatic insulin resistance occurs as a secondary effect 
upon ablation of E2 signaling in other cell types. Intriguingly, selective ablations 
of ERα in the hypothalamic brain region or in hematopoietic/myeloid cells evoke 
increased body weight and reduced glucose tolerance. The antilipogenic effects of 
E2 in the liver are partially a result of the activation of PPARα- and the inhibition 
of LXRα-dependent signaling pathways, with subsequent increased fatty acid 
oxidation and inhibition of lipogenic genes (e.g., SREPB1c, Apo E) [47]. Activation 
of LXRα-dependent signaling enhances triglyceride accumulation in the liver. 
In contrast, E2/ ERα signaling suppresses lipogenic pathway expression and the 
fatty liver induced by LXR activation [38]. Similar to E2/ERα deficiency, reduced 
androgen/AR signaling is associated with a metabolic syndrome-like phenotype 
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(i.e., truncal adiposity, fatty liver, increased triglycerides/cholesterol, reduced 
HDL, insulin resistance type 2 diabetes), and this is improved after T replacement 
therapy [6, 25]. Nevertheless, the specific role of the androgen/AR signaling in liver 
metabolism regulation is still largely understood. Tissue-specific AR signaling has 
been shown to be involved in the regulation of lipid metabolism (i.e., inhibits lipo-
genesis, prevents liver steatosis) and promote anabolic growth in peripheral tissues 
[25]. Deletion of AR (ARKO) causes late-onset obesity in male mice, whereas the 
liver-specific ARKO (LARKO) exhibits increased insulin resistance and steatosis, 
with decreased β-oxidation, upon high-fat diet. Clinically relevant, high insulin 
resistance and impaired glucose tolerance have also been revealed in men with T 
deficiency [6]. Furthermore, some AR polymorphisms with reduced AR activity 
are connected to an excess of body fat and fat distribution pattern in both sexes 
[36]. Remarkably, T treatment diminishes visceral fat and improves nonalcoholic 
fatty liver disease in mice and human males [6, 23–25]. However, most E2/ERα 
actions that regulate body weight and lipid/glucose metabolism equally affect both 
female and male, thus suggesting that T aromatization in E2, via ERα, might also 
contribute to energy homeostasis in males. In summary, reduced E2/ERα or T/AR 
signaling is associated with metabolic disorders, including metabolic syndrome-
like phenotype with adiposity and hepatic steatosis, which resembles deficiency 
of GHR-JAK2-STAT5 signaling. Notably, these metabolic disorders can be partially 
prevented or ameliorated, by E2/T and/or GH replacement therapies, thus suggest-
ing that these hormones control overlapping cellular networks related with physi-
ological control of lipid and glucose homeostasis.

5. Conclusions

Estrogen/ERα-dependent signaling and androgen/AR-dependent signaling are 
essential components in liver physiology and pathology in both male and female. 
Both direct and indirect actions of sex steroids in the liver are physiologically and 
therapeutically relevant. Particularly relevant are sex hormone interactions with 
GH-regulated endocrine (e.g., IGF-1), metabolic (e.g., lipid and glucose metabo-
lism), and gender dimorphism (e.g., endo- and xenobiotic metabolism) functions 
in the liver. Therefore, the pituitary (GH)-gonadal (E2 and T)-liver axis is relevant 
in physiology and pathophysiology in mammals. Additionally, the endocrine and 
metabolic consequences of long-term exposition to compounds derived from 
sex hormones and their influence on the pituitary-liver axis need to be further 
understood. Thus, going in-depth in the study of this complex interaction in both 
physiological and pathological states may contribute to prevent health damage and 
ameliorate clinical outcome of patients with growth, developmental, and metabolic 
disorders.
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Chapter 5

Role of Androgens in
Cardiovascular Diseases in Men:
A Comprehensive Review
Dilip Mukherjee, Koushik Sen, Shreyasi Gupta,
Piyali Chowdhury, Suravi Majumder and Payel Guha

Abstract

The present knowledge on the androgens role in cardiovascular physiology is not
fully completed. It remains unclear whether low serum testosterone concentrations
in men are an independent risk factor for cardiovascular diseases (CVDs) or a
marker of the presence of CVD. However, we demonstrated that endogenous tes-
tosterone levels may be implicated in CVDs. Androgens role in modulating cardio-
vascular function is one of the highest importances, given that its deficiency is
strongly associated with hypertension, atherosclerosis, diabetes, obesity, and car-
diac hypertrophy. Although significant and independent association between tes-
tosterone levels and cardiovascular events in elderly men have not been confirmed
in large prospective studies, cross-sectional studies, however, suggested that low
testosterone levels in elderly men are associated with CVDs. The results of androgen
therapy are not also conclusive. Perhaps, the effects of testosterone treatment of
cardiovascular mortality and morbidity have not been extensively examined in
control studies. Data on male animal experimentation of the effect of testosterone
replacement therapy are either neutral or beneficial on the development of athero-
sclerosis. Since circulatory androgen levels modulation is expected to cause many
other side effects, it seems to be essential to develop a strategy to target androgen
receptor for better treating the CVDs.

Keywords: testosterone, miocardial infarction, men, lipid profile, ROS

1. Introduction

Cardiovascular diseases (CVDs) refers to a class of diseases that involve the
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Abstract

The present knowledge on the androgens role in cardiovascular physiology is not
fully completed. It remains unclear whether low serum testosterone concentrations
in men are an independent risk factor for cardiovascular diseases (CVDs) or a
marker of the presence of CVD. However, we demonstrated that endogenous tes-
tosterone levels may be implicated in CVDs. Androgens role in modulating cardio-
vascular function is one of the highest importances, given that its deficiency is
strongly associated with hypertension, atherosclerosis, diabetes, obesity, and car-
diac hypertrophy. Although significant and independent association between tes-
tosterone levels and cardiovascular events in elderly men have not been confirmed
in large prospective studies, cross-sectional studies, however, suggested that low
testosterone levels in elderly men are associated with CVDs. The results of androgen
therapy are not also conclusive. Perhaps, the effects of testosterone treatment of
cardiovascular mortality and morbidity have not been extensively examined in
control studies. Data on male animal experimentation of the effect of testosterone
replacement therapy are either neutral or beneficial on the development of athero-
sclerosis. Since circulatory androgen levels modulation is expected to cause many
other side effects, it seems to be essential to develop a strategy to target androgen
receptor for better treating the CVDs.
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testosterone, may also play in cardiovascular morbidity and mortality by modulat-
ing the risk factors of atherosclerosis and vascular functions, lesions to cerebral
and peripheral arterial vessel and myocardial infarction leading to heart failure in
male [4].

A recent perspective study reveals that testosterone levels in men decline
gradually with increasing age and this caused a dramatic increase in the incidence
of CVDs [5, 6], but the mechanism of age-related cardiovascular performance
remains to be completely understood. However, a protective role of androgen for
CVDs in men has been reported and its deficiency may increase the significant risk
factor for CVDs. Moreover, controversy also exists whether this age-associated
decline in testosterone level is a natural physiologic processes or combination of
co-morbidities and life-style choices [7]. With the prospects of much wider thera-
peutic approaches of testosterone on CVDs, it has become increasingly important to
address whether testosterone treatment might increase the risk of severity of CVDs.
Considering the importance of therapeutic use of testosterone as have been
reflected in several recent studies, it is important to address the issue in a more
critical way.

2. Cardiovascular diseases: types and risk factors

CVDs refer to any dysfunctional condition of the heart or the blood vessels
(arteries, veins, and capillaries). Coronary heart disease (CHD) and stroke are two
fundamental components of CVDs [8]. CVDs can be classified in eight major
groups. These are: stroke-disruption of the blood supply to the brain either from
blockage or from rupture of blood vessels; CHD-disease of blood vessels,
transporting blood to the heart muscle; rheumatic heart disease-caused due to
rheumatic fever by streptococcal bacteria when heart muscles and valves are
damaged; congenital heart disease-structural malformation of heart; aortic
aneurysm-dilation and rupture of aorta; peripheral arterial disease-disease of the
arteries that supply blood to arms and legs; deep venous thrombosis and pulmo-
nary embolism-blood clot in leg veins, which can dislodge and move to heart and
brain; and other CVDs- tumors of the heart, vascular tumor of the brain, disorder
of the heart muscle lining etc.

Risk factors can be categorized as modifiable and non-modifiable risk factors.
Modifiable risk factors include; high blood pressure, abnormal blood lipids,
tobacco use, physical inactivity, obesity, unhealthy diets, and diabetes mellitus.
Non-modifiable risk factors are advancing age, hereditary or family history, gender,
and race.

3. Testosterone and its function

Testosterone, a C19 androgen, is the most vital circulating androgens both in
male and female. In men, it is mainly synthesized in the testes and a small amount
is also derived from adrenal cortex. Testosterone is essential for male sexual
differentiation, development and normal function of male reproductive organs,
and maintenance of secondary sexual characters. In addition, testosterone
promotes many other physiological processes like bone formation, growth of mus-
cle, hair growth, body composition, and erythropoiesis and decreased the risk of
osteoporosis [9]. In normal adult men, testosterone concentration ranges between
241 and 827 ng/dl [10]. Secretion of testosterone varies with circadian rhythm.
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Circulating testosterone is mainly bound to sex hormone binding globulin (SHBG)
and albumin and only 1–2% remains as unbound form.

In target cells, testosterone binds to the intracellular androgen receptors (ARs)
or is converted to dihydrotestosterone (DHT) catalyzed by 5α-reductase, which
then binds to AR. In some target tissues, testosterone is converted to estrogens by
cytochrome P450 aromatase enzyme and estrogens then bind to estrogen receptors.
Both androgen and estrogen receptors act as transcription factors and mediate
genomic effects [11]. In addition, various in vitro and in vivo studies have shown
that testosterone and its derivatives can affect cellular processes in a non-genomic
fashion [12]. Testosterone has been shown to regulate cell to cell ion exchange via
gap junction in Sertoli cells and cardiac cells in young rats [13]. Testosterone also
promotes vasoconstriction [14, 15] and rapid rise of Ca2+ in cultured
cardiomyocytes by PLC/IP3-dependent mechanism [16].

4. Circulatory levels of testosterone and CVDs

Association of blood testosterone levels and incidence of CVDs in men with
increasing age is based mainly on observational studies and the main disadvantages
of such type of studies are the extremely variable endpoints of CVDs, heteroge-
neous study groups, and diverse selection criteria. A continuous study for months to
several years on a particular study group of CVD patient is very difficult for various
reasons. Importantly, patients in these study groups are mostly in medications or
modified their life style. Moreover, selection of poorly-matched controls and timing
of blood sampling are not always standardized for diurnal variation of hormone
levels. All these factors have a serious impact to draw a definite conclusion. How-
ever, taking all these into consideration, recently, we investigated the relationship
between serum total testosterone levels and lipid profiles as well as fasting blood
glucose (FBG) levels in elderly men with angiographically confirmed CVDs from
two thickly populated and socio-economically backward districts; Nadia and
Murshidabad of West Bengal, India. We observed that relationship between sex
hormones, lipid profiles and FBG levels of CVD patients is strikingly different from
men with no CVDs of similar age group [17]. Considering the previous observa-
tional studies along with our study, we presented a comprehensive idea on the
relationship between serum testosterone levels and CVDs globally.

In normal men of developed countries, the overall incidence of testosterone
deficiency increases with age and approximately one half a million new cases of
testosterone deficiency are expected in men aged 40–90 years old (Figure 1) [18].
An independent effect of age on serum testosterone in a study of 890 men has also
been demonstrated [19]. Prevalence of testosterone deficiency in men aged >45
years is approximately 38.7% based on total testosterone (T) levels and about 36.3%
based on bio-available or free T [20]. They have documented that major risk factors
such as obesity, diabetes, hypertension, hyperlipidaemia, prostate disease, and
asthma or chronic obstructive pulmonary disease are responsible for low testoster-
one levels in men compared without such conditions. A schematic representation
of the association of testosterone and cardiovascular risk factors is depicted in
Figure 2. It has been reported that low testosterone levels are associated with
increased death from CVDs [21]. Whereas, for a long time prospective studies failed
to find significant association between testosterone levels and risk of cardiovascular
events in middle aged men [22, 23]. However, a study of osteoporotic fractures in
elderly men of Sweden reported that high serum testosterone level is associated
with reduced risk of cardiovascular events [24]. This is consistent with the influ-
ence of testosterone levels on multiple risk factors such as obesity, diabetes, blood
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pressure, and carotid atherosclerosis [25, 26]. A recent meta-analysis showed that
low testosterone levels predicted risk for CVDs in elderly men but not middle-aged
men [27]. Interestingly, using data from the French Three-City prospective cohort
study (3650 men aged >65 years) after adjustment for cardiovascular risk factors, a
J-shaped association between plasma total testosterone and incidence of ischemic
arterial disease (IAD) in elderly men has been reported [28]. They have suggested
that both high and low plasma testosterone levels are associated with an increased
risk of arterial ischemic events in elderly men and an optimal range of testosterone
levels may confer protection against cardiovascular events. In a recent study, Kelly
and Jones [29] observed that testosterone replacement in men diagnosed with
hypogonadism shown to be a beneficial effect on several cardiovascular risk factors,
cardiac ischemia, functional exercise capacity, and mortality.

Figure 1.
Testosterone levels in men at different ages of life.

Figure 2.
Association of testosterone deficiency and cardiovascular risk factors.
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5. Association of various risk factors with CVD

5.1 Role of lipids in CVD

It has long been established that lipids play a central role in the initiation and
progression of CVDs [30–32]. Dyslipidemia comprises the abnormalities of lipid
profiles characterized by high levels of total cholesterol (TC), triglyceride (TG), low
density lipoprotein (LDL), and very low density lipoprotein (VLDL) along with low
levels of high density lipoprotein (HDL) that contributes to the development of
atherosclerosis [33]. In older men, reduced testosterone levels are associated with
adverse profiles of lipids. Low testosterone level is associated with high TC, high
LDL [34, 35], and high TG [36, 37]. Hypo-gonadal men exhibit abdominal or central
adiposity [38, 39]. This finding has led to conclude that all parameters of lipid
profile except HDLmight be more strongly associated with CVD risk, whereas some
investigators reported a negative correlation between HDL and CVD [40, 41]. A
strong inverse correlation between body fat and testosterone level is also observed
[42]. Higher mass of visceral adipose tissue is inversely correlated with bio-available
testosterone [43]. In an epidemiological study from our laboratory, we studied the
relationship between serum total testosterone levels and lipid profiles in male
patients ranging the age group between 40 and 70 years with angiographically
proven CVDs from Nadia and Murshidabad district of West Bengal, India and
compared the data with normal men with no CVD history. We observed a signifi-
cantly low serum total testosterone levels in CVD patient group compared to nor-
mal group and further demonstrated a significant negative association between
serum total testosterone and TC, TG, LDL, and VLDL among CVDs patients. How-
ever, a significant positive correlation between serum total testosterone and HDL
was observed [17]. Thus, in these two districts of West Bengal, low levels of serum
total testosterone in elderly men are associated with CVD that appear together with
an atherogenic lipid milieu that may be involved in pathogenesis of CVD. The
molecular mechanism of sex hormone-induced changes in the serum lipid profile is
incompletely understood [33]. However, there are evidence from animals, cell, and
clinical studies that testosterone controls the expression of important regulatory
protein involved in lipid and cholesterol metabolism namely, apolipoprotein A-1

Figure 3.
Changes in lipid profile due to androgen deficiency, leading to atherosclerosis.
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(apoA1) [44, 45], and scavenger receptor class B type 1 (SRB1) [46–48]. The major
component of HDL is apoA1, which is secreted by the liver in lipid free or minimally
lipidated form [44]. The interaction between apoA1 and lipid transfer ABCA1
present in the peripheral tissues results in the formation of minimally lipidated
apoA1, which through a series of steps is converted to discoid shaped pre-HDL. This
does not possess atheroprotective properties [45]. In addition to apoA1 and SRB1,
lipoprotein modifying enzymes are also critical in maintenance of serum lipid
homeostasis. One of the most important lipoprotein modifying enzymes is lipopro-
tein lipase (LPL), present on the endothelial cell surface [49]. Other enzymes are
lecithin-cholesterol-acyl-transferase (LCAT) which esterifies the free cholesterol of
HDL and cholesterol ester transferase protein (CETP), which mediates the
exchange of cholesterol ester between HDL and LDL [44]. Testosterone might
promote the expression of SRB1 receptor and facilitate the selective uptake of HDL,
thereby exerting an antiatherogenic role [50]. A schematic association of testoster-
one deficiency and atherogenic lipid profile is depicted in Figure 3.

6. Relationship between low testosterone levels and cardiovascular
risk factors

6.1 Role of androgens in hypertension

Hypertension is one of the major risk factors for developing CVDs leading to
atherosclerosis and sudden cardiac death. Studies with human reveal that hyperten-
sion is more prevalent and occurs earlier in men than in women [51, 52]. Sexual
dimorphism in blood pressure develops and is maintained until the age of 60 years
[53–55]. Epidemiological data further indicate that women older than 60 years, show
gradual increase in systolic blood pressure over a period of 5–20 years, until hyper-
tension is highly prevalent in women as in men [55–57]. In hypertensive patients,
treatment with antihypertensive drugs can reduce sexual activity and blood concen-
trations of testosterone [58, 59]. However, treatment of androgen to such patients
found to exacerbate hypertension and increase the risk of CVDs [60–62]. There is also
higher incidence of hypertension in individual with reduced free testosterone [63].

In animal studies, all major mouse and rat models (noncastrated, castrated, and
anti-androgen treated) potential role for androgen in the pathogenesis of hyperten-
sion have been documented [55, 64]. In mice, castration and subsequent treatment
with testosterone at high dose produce the onset of hypertension and further
observed that this effect is mediated by androgen receptor [65]. Long back, it was
found that tfm X chromosome (including a mutated non-functional AR) rats and
castrated rats have lower blood pressure than intact control rats, suggesting that
androgen/AR signaling pathway might be involved in hypertension [66]. Thus,
androgen-AR signaling pathway appears to be involved in the regulation of hyper-
tension in men and as androgen level reduce with increasing age this might have a
deleterious effect on the development of hypertension. Antiandrogen treatment
might be able to suppress hypertension. Moreover, some recent studies using AR
knockout mice in selective cells suggest that AR in individual cell types may have
independent role in the development of hypertension [67, 68].

6.2 Testosterone association in type 2 diabetes and insulin resistance,
a risk factor of CVD

Low level of testosterone is associated with type 2 diabetes mellitus (T2DM)
irrespective of age, race, and obesity [69–72]. High plasma testosterone level is
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associated with reduced risk of developing T2DM [73]. Insulin resistance is the most
common hyperglycemic condition and hallmark of T2DM [74]. It is a state where
target cells are not responding to normal levels of circulating insulin leading to
development of T2DM [75, 76]. An inverse relationship between total testosterone
concentration and insulin resistance has also been reported in men [77, 78]. Clinical
trials have demonstrated that testosterone administration improved insulin sensi-
tivity, reduced glycaemia, and heart failure progression in men [79].

Cohort studies from Farmingham, Heart Study, EMAS, and Osteoporotic
Fractures in Men study [80] and Western Australian Health in Men Study [81]
reported that men with T2DM have lower testosterone levels compared with
men without T2DM. In fact, different earlier studies showed that men with T2DM
have 30–40% lower circulatory testosterone levels than that of healthy men
[82–84]. In a study of 3156 men from various ethnic backgrounds, aged 45–84
years and after adjusting for age, ethnicity, BMI, it has been shown that T2DM
and FBG levels are inversely associated with total testosterone concentration [70].
In a recent study with elderly male patients (40–70 years of age) of two district
of West Bengal, we observed a highly significant negative correlation between
serum total testosterone and FBG levels in CVD patients compared with non-CVD
patients of same locality [17]. Our results further indicate that low levels of
serum total testosterone might have role in the development of hyperglycemia as
evidenced from high FBG levels in elderly men. Moreover, a recent study demon-
strated that insulin resistance, hyperinsulinemia, and associated hyperglycemia
can promote the development of specific form of cardio-morphopathy, which is
independent of coronary artery disease and hypertension and a major cause of
morbidity and mortality in developed countries [85]. It is characterized by
myocardial insulin signaling, mitochondrial dysfunction, activation of sympa-
thetic nervous system, activation of renin-angiotensin-aldosterone system, and
male adaptive immune responses [86]. These patho-physiological changes result
in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction, and
eventually systemic heart failure [87].

Association of testosterone deficiency with hyperglycemia has also been
observed in animal model [88]. It has been demonstrated that castration-induced
testosterone deficiency not only enhanced the hepatic gluconeogenesis but also
decreased extra-hepatic insulin sensitivity in aged male rats [89]. Unpublished
data from our laboratory also demonstrate that castration in adult male mice is
followed by an increase in FBG level compared to sham operated control
group and this increase in serum FBG levels was reversed after treatment with
testosterone.

The mechanism linking androgen with T2DM and insulin receptor is not fully
understood. Testosterone administration up-regulate the expression of GLUT-4,
insulin receptor substrate-1 (IRS-1) in cultured adipocytes, and skeletal muscle cells
[90]. Another study showed that testosterone promotes AKT and PKC phosphory-
lation, the major mediator of insulin receptor signaling, which regulate GLUT-4
translocation (Figure 4) [91]. The beneficial effects of testosterone on diabetes
through increasing the metabolic rate in muscle promoting gain of energy from
adipose tissue resulting decreased fat mass concentration has also been reported
[92]. In vitro study of murine model also demonstrated that testosterone adminis-
tration reduces β cell apoptosis [93], whereas, testosterone deficiency promote
elevation of the expression of RBP4, which increases insulin resistance [94]. On the
contrary, several studies demonstrate a non-positive correlation between testoster-
one supplementation and heart failure. Several clinical trials led to propose that
testosterone supplementation at physiological doses could be a treatment for men
with metabolic syndrome and heart failure [95].
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associated with reduced risk of developing T2DM [73]. Insulin resistance is the most
common hyperglycemic condition and hallmark of T2DM [74]. It is a state where
target cells are not responding to normal levels of circulating insulin leading to
development of T2DM [75, 76]. An inverse relationship between total testosterone
concentration and insulin resistance has also been reported in men [77, 78]. Clinical
trials have demonstrated that testosterone administration improved insulin sensi-
tivity, reduced glycaemia, and heart failure progression in men [79].
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Fractures in Men study [80] and Western Australian Health in Men Study [81]
reported that men with T2DM have lower testosterone levels compared with
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[82–84]. In a study of 3156 men from various ethnic backgrounds, aged 45–84
years and after adjusting for age, ethnicity, BMI, it has been shown that T2DM
and FBG levels are inversely associated with total testosterone concentration [70].
In a recent study with elderly male patients (40–70 years of age) of two district
of West Bengal, we observed a highly significant negative correlation between
serum total testosterone and FBG levels in CVD patients compared with non-CVD
patients of same locality [17]. Our results further indicate that low levels of
serum total testosterone might have role in the development of hyperglycemia as
evidenced from high FBG levels in elderly men. Moreover, a recent study demon-
strated that insulin resistance, hyperinsulinemia, and associated hyperglycemia
can promote the development of specific form of cardio-morphopathy, which is
independent of coronary artery disease and hypertension and a major cause of
morbidity and mortality in developed countries [85]. It is characterized by
myocardial insulin signaling, mitochondrial dysfunction, activation of sympa-
thetic nervous system, activation of renin-angiotensin-aldosterone system, and
male adaptive immune responses [86]. These patho-physiological changes result
in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction, and
eventually systemic heart failure [87].

Association of testosterone deficiency with hyperglycemia has also been
observed in animal model [88]. It has been demonstrated that castration-induced
testosterone deficiency not only enhanced the hepatic gluconeogenesis but also
decreased extra-hepatic insulin sensitivity in aged male rats [89]. Unpublished
data from our laboratory also demonstrate that castration in adult male mice is
followed by an increase in FBG level compared to sham operated control
group and this increase in serum FBG levels was reversed after treatment with
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The mechanism linking androgen with T2DM and insulin receptor is not fully
understood. Testosterone administration up-regulate the expression of GLUT-4,
insulin receptor substrate-1 (IRS-1) in cultured adipocytes, and skeletal muscle cells
[90]. Another study showed that testosterone promotes AKT and PKC phosphory-
lation, the major mediator of insulin receptor signaling, which regulate GLUT-4
translocation (Figure 4) [91]. The beneficial effects of testosterone on diabetes
through increasing the metabolic rate in muscle promoting gain of energy from
adipose tissue resulting decreased fat mass concentration has also been reported
[92]. In vitro study of murine model also demonstrated that testosterone adminis-
tration reduces β cell apoptosis [93], whereas, testosterone deficiency promote
elevation of the expression of RBP4, which increases insulin resistance [94]. On the
contrary, several studies demonstrate a non-positive correlation between testoster-
one supplementation and heart failure. Several clinical trials led to propose that
testosterone supplementation at physiological doses could be a treatment for men
with metabolic syndrome and heart failure [95].
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6.3 Testosterone and vascular inflammation

It is now well accepted that atherosclerosis is a chronic inflammatory disease.
Individuals with hyperlipidaemia and signs of systemic inflammation develop ath-
erosclerosis, with specific defects in lipid processing and immune activity conse-
quentially occurring at the vessel wall. It is known that the activation of endothelial
cells promotes the adhesion of leukocytes to the blood vessel wall as an early
atherogenic event leading to increased vascular permeability for not only the
inflammatory leukocytes, but also the circulating lipid components, such as LDL
[96]. It has been suggested from observational studies that many pro-inflammatory
cytokines like interleukin 1β (IL-1β), IL 6, TNF-α, C-reactive protein (CRP), and
serum testosterone levels are inversely related in patients with CVDs and T2DM
[97–99]. These inflammatory cytokines are known to modulate lipid metabolism,
endothelial functions, and atherosclerosis [100]. Testosterone has been reported to
reduce the levels of TNF-α and elevated circulating anti-inflammatory IL-10
[101, 102] and circulating CRP [102] in hypogonadal men with CVDs. In vitro
studies also support the protective effect of testosterone supplementation on ath-
erosclerosis, but the mechanism is not fully known [103, 104].

7. Testosterone deficiency and vascular functions

A negative correlation between testosterone and hypertension has already been
discussed. In a subpopulation study of 206 aged males, it was shown that serum
testosterone level is an independent negative predictor for developing arterial

Figure 4.
Proposed mechanism of action of testosterone on cellular IRS activation leading to glucose homeostasis.
Testosterone increases GLUT4 expression and membrane translocation which increases cellular uptake and
utilization of glucose. Abbreviations: GLUT4, glucose transporter 4; G6P, glucose-6-phosphate; HK2,
hexokinase 2; IRS, insulin receptor substrate; T +ve indicates targets or activity increased by testosterone PKC
and AKT.
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stiffness and this association remained after adjusting for the other risk factors
[105]. Carotid-intima media thickness (IMT) is a marker for CVDs [106]. The
relationship among the progression of carotid-IMT, atherosclerotic plaque forma-
tion, and total testosterone was investigated and an inverse relationship between
this hormone and atherosclerotic plaque formation was observed. This study also
reported for a positive co-relation between carotid-IMT and atherosclerosis [107].
Men with low serum testosterone level exhibit higher IMT compared to normal
control [108–110]. Long term testosterone administration reduced carotid-IMT in
men with CVDs [111, 112]. Animal models also demonstrated that castration or
hypogonadism in mice or rabbits fed a pro-artherogenic diet results in increased
atherosclerosis and testosterone supplementation inhibits plaque formation [113].
The cellular and molecular mechanism by which testosterone induced IMT is little
understood. Other studies, however, have shown that testosterone may reduce IMT
by down regulating the inflammatory response or acting as a regulator of apoptosis
or increasing vascular smooth muscle cell stability [7].

Endothelial cells play an important role in atherosclerosis, regulation of vascular
tone and forming a barrier that regulates the uptake of cells and macromolecules
into the vessel wall [114]. Clinical evidence suggests a link between testosterone
deficiency and endothelial dysfunction [115–117]. Flow-mediated dilation (FMD),
which represents endothelial dysfunction is decreased in men with testosterone
deficiency and increased after exogenous administration of the steroid [118, 119].
Testosterone can exert direct effects on various cells of vascular wall by activation
of androgen receptor or by non-genomic effects on plasma-membrane receptors
and channels [114]. Testosterone can modulate calcium flux by mechanism that is
independent of androgen and estrogen receptors in macrophages and endothelial
cells [120]. Androgen receptors are expressed in endothelial cells, smooth muscle
cells, and cardiomyocytes and all of these are relevant to atherosclerosis and heart
failure [121]. It has also been demonstrated that testosterone may improve endo-
thelial function through modulation of nitric oxide (NO) release. Endothelium-
produced NO plays a variety of roles in vascular function maintenance like vasodi-
latation, inhibition of cell death, and platelet aggregation [96, 122].

8. Role of androgens in cardiac hypertrophy

Cardiac growth can be divided into two categories: normal growth in the devel-
opmental process and cardiac hypertrophy induced by hemodynamic overload.
Since cardiomyocytes are terminally differentiated and lost their ability to multiply
soon after birth, they respond to increased workload by an increase in cell size
(hypertrophy), not by an increase in cell number (hyperplasia). Cardiac hypertro-
phy is prevalent in men with hypertension and recognized as an independent risk
factor for congestive heart failure and sudden cardiac death [123]. The most
impressive evidence of the effect of androgens on heart is the case of highly condi-
tioned athletes, who died by sudden cardiac death. Examination of such death
indicated anatomical abnormalities in heart, known as hypertrophy-cardiac myop-
athy [124]. Since, the net weight of heart is increased as a result of individual
cardio-myocyte, the cardiac hypertrophy is assessed as heart weight to body weight
ratio and left ventricular hypertrophy (LVH). LVH is the most potent predictor of
adverse cardiovascular outcomes in hypertensive populations and is independent
risk factors for coronary heart disease, sudden death, heart failure, and stroke.
Clinically LVH is diagnosed by evaluating ventricular functions, such as left ven-
tricular ejection fraction, left ventricular shortening fraction, end-systolic, and end-
diastolic volume by electro physiological studies. Although directly related to
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by down regulating the inflammatory response or acting as a regulator of apoptosis
or increasing vascular smooth muscle cell stability [7].
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soon after birth, they respond to increased workload by an increase in cell size
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phy is prevalent in men with hypertension and recognized as an independent risk
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diastolic volume by electro physiological studies. Although directly related to
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systolic blood pressure, other factors including age, sex, race, body mass index, and
stimulation of renin-angiotensin-aldosterone system and sympathetic nervous sys-
tem play an important role of pathogenesis of LVH. LVH is associated both with
hypertension and increased cardiovascular morbidity and mortality [125], and it has
been suggested that testosterone could be influential in modulating left ventricular
mass [126]. Low level of testosterone in male is associated with high blood pressure
and left ventricular mass [127]. Interestingly, this association is mediated through
obesity. Very recently, it has also been suggested that testosterone can induce
hypertrophy in rat heart, which is independent of exposure duration [128].

A central link for the development of skeletal muscle hypertrophy is the activa-
tion of mammalian target of rapamycin (mTOR) [129, 130], which also have been
reported in testosterone-induced cardiomyocyte hypertrophy [131]. Both type I and
type II skeletal muscle fibers have shown to respond in testosterone treatment
increasing muscle mass, cross-sectional areas (CSA), and satellite cell number after
hormone administration [132]. Testosterone and its synthetic cognates have been
used both clinically and illicitly to increase muscle mass [133]. However, the cellular
mechanism explaining these effects is not completely understood. Different cellular
and molecular mechanisms are shown to be involved in skeletal muscle hypertrophy
induced by testosterone, including promotion of nuclear accretion, entry of satellite
cells into cell cycle [132–134], and activation of intracellular androgen receptor
[135]. Besides regulating gene expression via AR, testosterone also produces fast,
non-transcriptional responses involving membrane-linked signal transduction
pathways [12]. A rapid non-genomic action exerted via G-protein coupled receptor,
intracellular calcium increases, and extracellular signal regulated kinase ½ (ERK
1/2) activation has been described for the action of testosterone in skeletal
myotubes [136]. Recently, a cellular lineage of myoblast, which lack the classical AR
(L6 myoblast), testosterone has shown to promote the proliferation and differenti-
ation of L6 cell via G-protein coupled receptor [137]. Altogether, these data suggest
that in men testosterone, increased cardiac hypertrophy and aside from classical
mechanism of action of testosterone, non-classical actions are also implicated in
development of cardiac hypertrophy.

9. Testosterone replacement therapy in CVD patients

Testosterone replacement therapy (TRT) is increasingly promoted and suggested
to be a possible curative way for the adverse effect of low testosterone on CVDs in
elderly men.Whereas, the effectiveness of TRT in hypogonadal men has been shown
to be effective in alleviating the symptoms of fatigue, sexual dysfunction, depression,
decreased bone density, decreased muscle mass, among others [138–141], uncer-
tainties remain with respect to cardiovascular safety for its use. In 2004, a committee
on assessing the need for clinical trial of testosterone replacement therapy by Insti-
tute of Medicine (IOM) in a review concluded largely based on placebo control trials
and show that there is no clear evidence on benefit of the heath outcome examined.
In fact, no positive effect of TRT on cardiovascular events was observed [142–144].
Observational studies evaluating the cardiovascular safety of TRT in men have also
generated inconsistent results [145, 146]. An independent review conducted by
European Medicines Agency (EMA) also found a lack of consistent evidence for TRT
increasing cardiovascular risks (European Medicines Agency (EMA)), 2015 [147].
Very recently, in systematically review and meta-analysis by various authors did not
find any significant association between exogeneous testosterone treatment and
myocardial infarction, stroke or morbidity of randomized control trials [148, 149].
But, a recent study demonstrated that testosterone treatment in men with low
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endogenous testosterone shows improved survival rate in CVD patients [150]. Phys-
iological replacement of testosterone has been shown to decrease cholesterol level
and LDL concentration in men [101, 151]. Studies on the effect of TRT on HDL
concentration yielded conflicting result with either a decrease [152] or no changes
[102, 153]. Other investigators observed an increase in concentration of HDL level
after testosterone administration [154]. In a recent study on the effects of TRT on
lipid metabolism in hypogonadal men with T2DM, it has been hypothesized that
because the relationship between lipid metabolism and artherosclerosis are unequiv-
ocal, TRT, which ameliorates lipid metabolism, may decrease the morbidity and
mortality of CVD in hypogonadal men with T2DM by preventing atherogenesis
[155]. Data from randomized placebo-controlled trials (RCTs) suggest that treatment
with testosterone is not effective in reducing CV risk; however, when TRT is cor-
rectly applied, it is not associated with an increase in CV risk and it may have
beneficial effects in sub-population [156]. On the contrary, available reports indi-
cated that TRT is positively correlated with increased cardiovascular risk [157]. It has
been reported that those who are under TRT showed increased risk of CVDs
[158, 159]. A systemic review and meta-analysis of the effect of testosterone therapy
on cardiovascular events showed that testosterone increases cardiovascular related
events among men. The risk of TRT was particularly marked in trials [160].

10. Effects of testosterone on myocardial infarction

The myocardial cells undergo a dynamic repair process after myocardial infarc-
tion (MI), which is also regulated by hormonal factors and characterized by removal
of necrotic tissue and chamber dilatation for so-called “cardiac remodeling” [161].
Recent cohort studies and meta-analyses of randomized clinical trials reported that
testosterone therapy is associated with an increased risk of MI, ischemic stroke, and
overall mortality [157, 159]. Supplemental testosterone treatment dramatically
increased cardiac rupture and mortality in female mice with or without ovariec-
tomy, whereas castration significantly decreased both the events in males [160].
This indicates role of testosterone is sex specific and even hypotesteronemic condi-
tion is good for MI associated cardiac remodeling. Findings suggest that testosterone
may adversely affect myocardial healing and early remodeling during the acute
phase of MI, causing the observed “gender difference.” However, this is highly
controversial and association between testosterone therapies and cardiovascular
disease is complex and need more dose-specific and time-specific statistical analyses
and molecular studies to conclude that whether TRT is beneficial or not.

11. Conclusion

For last two decades, androgens have attracted significant interest in explaining
the gender difference in CVDs. Although, strong evidences show that testosterone
is associated with prevalence of CVDs and affects several key cardiovascular risk
factors and increase the risk of cardiovascular mortality, significant independent
association between androgen levels and cardiovascular events in men have not
been confirmed in large prospective studies. Effects of testosterone therapy on
cardiovascular mortality have not also been definitely confirmed in prospective
controlled studies. Testosterone administration in men and animal induces both
beneficial and deleterious effects on cardiovascular risk factors. Further research in
this field is necessary to know the real cardiovascular effects of androgen and to
understand the role of androgen in therapeutic applications in CVDs.
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Chapter 6

Steroid-Based Supramolecular 
Systems and their Biomedical 
Applications: Biomolecular 
Recognition and Transportation
Ruilong Sheng

Abstract

In this chapter, the biomedical application of steroid-based compounds at 
“beyond the molecule”—supramolecular level—is reviewed. The renewable and 
economic natural steroid compounds could be employed as building blocks in the 
design and construction of steroid-based supramolecular systems. The specific 
physicochemical features (size, shape, topology, hydrophobicity, chemical modifi-
ability, etc.) and biological properties (biocompatibility, biodegradability, bioaffin-
ity, etc.) could be integrated into functional supramolecular systems by chemical 
synthesis, modification and intermolecular interactions (such as hydrogen bonding, 
π-π stacking, van der Waals forces, inclusion interactions, chiral interactions, 
electrostatic interactions, and so on). The steroid-based (supra)molecules could be 
employed for molecular recognition and/or be self-assembled into various func-
tional supramolecular assemblies for biomedical applications. The specific physico-
chemical and biological properties, good biocompatibility, and biological activity 
endow the steroid-based supramolecular systems good feasibility to be employed 
in biomolecular recognition/sensing and biomolecular transportation (gene/drug 
delivery). The examples in this chapter are exemplificative of the transformation 
of natural steroid-based compounds into functional steroid-based supramolecular 
systems through molecular and supramolecular engineering technology, moreover, 
which may inspire the systematic study of natural product-based supramolecular 
(nano)materials toward future pharmaceutical and biomedical industry.

Keywords: steroid, supramolecular, biomolecular recognition, biomolecular 
transportation, gene delivery, drug delivery

1. Introduction

Transformation of renewable and biocompatible natural products [1] into a 
variety of molecular building blocks to construct functional molecular systems 
and then following the molecular assembly processes to create new functional 
materials has been highly focused for nurturing the sustainable development. 
Steroids, a large natural lipid family known as “keys of life,” played vital roles 
including membrane formation, hormone metabolism, and cell signal transduction 
in organelles. Some steroidal compounds possess special physicochemical features 
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materials has been highly focused for nurturing the sustainable development. 
Steroids, a large natural lipid family known as “keys of life,” played vital roles 
including membrane formation, hormone metabolism, and cell signal transduction 
in organelles. Some steroidal compounds possess special physicochemical features 



Chemistry and Biological Activity of Steroids

112

such as hydrophobicity, rigidity, mesogenic behaviors, and so on, which made them 
the functional building blocks for the construction of supramolecular architectures 
[2] and soft nanomatters toward biomaterial application [3].

In general, the functions of supramolecules mainly cover molecular recognition, 
molecular transportation, and molecular catalysis [4]. Molecular recognition is a 
fundamental process that integrates molecular information (size, shape, charge, 
etc.) by interacting (host) molecules with certain (guest) molecular species [5]. 
Molecular transportation is the use of supramolecules to translocate bounded/
loaded molecular species (such as anions [6]) through membranes (especially 
cell membranes [7]), which could be coupled with chemical potentials [8]. 
Biomolecular recognition (detecting/sensing of certain biomolecules) and bio-
molecular transportation (administration/delivery of bioactive molecules into the 
cells/organs) have been regarded as two important fields in biomedical-orientated 
supramolecular (medicinal) chemistry [9]. The steroid-based supramolecular 
systems could be divided into two groups according to their function: (1) steroid-
based supramolecular system for biomolecular recognition and (2) steroid-based 
supramolecular system for biomolecular transportation (Figure 1).

2. Steroid-based supramolecular system for biomolecular recognition

Recognition/sensing of biomedically important substances such as specific ions 
(cations/anions), nucleic acids, peptides, proteins/enzymes, volatile bioorganic 
molecules, biometabolites, as well as tumor biomarkers is very essential for the 
deep understanding of biochemical mechanisms. Earlier analytical tools, including 
chemiluminescence, amperometry, electrochemistry, spectrophotometry, high-
performance liquid chromatography, etc., have been developed for the detection 
of biomedically important substances. However, these traditional methods have 
some drawbacks such as requirement of expensive instruments and complicated 
pre-treatment processes, which largely restricted their practical application. Rapid 
development of artificial molecular receptors or molecular sensors may provide 
powerful tools for the recognition/sensing of chemical species/analytes, which can 
be attributed to their advantages of easy-to-manipulate, high-sensitivity, fast-
response, high-temporal, and spatial resolution [5].

Figure 1. 
Steroid-based supramolecular systems for biomolecular recognition and biomolecular transportation.
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2.1 Steroid-based macrocyclic molecular receptors

Artificial/synthetic macrocyclic molecular receptors are important supramo-
lecular architectures, which can be used as a host molecule to recognition-specific 
guest molecules [10]. They can also be used to mimic complex biological host-
guest systems, e.g., cell surface receptors, nuclear receptors, as well as enzymes 
for substrate recognition. Typical macrocyclic molecular receptors bind guest 
molecules inside their designated cavity. During the past decades, many steroids 
were developed to construct molecular receptors. Among them, bile acids, a family 
of molecules with facial amphiphilicity, specific molecular chirality, and multiple 
reactive sites (hydroxyl and carboxylic acid groups), are often employed as molecu-
lar skeletons/scaffolds in the construction of supramolecular architectures for 
molecular recognition [11, 12].

In an early work, Davis et al. synthesized a neutral and lipophilic system from 
the steroid cholic acid (Figure 2). It forms 1:1 complexes with fluoride, chloride, 
and bromide ions and shows good discrimination of Cl− > Br− > I− [13]. In this 
work, the anion recognition process was carried out in organic solvents.

Also for anion recognition, more recently Peng et al. synthesized cholate-based 
cage amphiphilic systems with combination of structural rigidity and flexibility. 
These cage compounds with extending and bridging three polar chains were pre-
pared by click reaction. The connecting chains composed of oligo(ethylene glycol) 
units or chains containing 1,2,3-triazole units to present flexibility, for example, 
a model compound (triazole 21a), could recognize halide anions with a binding 
sequence of Cl− > Br− > I− ~ F−, which makes them potential anions receptors/ 
sensors [14].

Recently, steroid-based macrocyclic molecular receptors with the combination 
of multifunctions (e.g., chiral recognition-optical properties) emerged as a new 
trend of research. In this context, Wu et al. synthesized a deoxycholic acid-based 
macrocycle receptor CDTB, which selectively recognized Hg2+ involving 1,2,3-tri-
azole motifs as binding sites. The as-formed [CDTB·Hg2+] complex could be used 
to perform enantioselective recognition of amino acids (especially cysteine) in 
aqueous solution (Figure 3), leading to difference in fluorescence enhancement of 
the chiral BINOL macrocyclic structure at ~358 nm. This research provided cascade 
recognition of chiral amino acids and bestows the future design of steroid-based 
dual-functional macrocyclic molecular receptor models for chiral natural product 
discrimination/recognition [15].

Although some progresses had been made in this field, the synthesis of steroid-
based macrocyclic molecular receptors is still mainly focused on the mono steroid-
containing macrocyclics and C2-symmetric macrocyclics; the facile and low-cost 

Figure 2. 
Cholic acid-based macrocyclic receptor for halides Cl−, Br−, and I− recognition.
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preparation of macrocyclics need to be developed. Notably, the steroid-based 
macrocyclics with higher-order symmetric elements (such as C3, C4, Dxh, etc.), 
modifiable and derivable sites, various topological diversities [16], as well as chiral/
asymmetric features (giant chiral macrocyclics) are rare. Moreover, for practical 
application, the functionalities (such as optical, radioactive, paramagnetic, etc.) of 
the steroid-based macrocyclic molecular receptors need to be largely expanded.

2.2 Steroid-based molecular clefts/tweezers

Another type of artificial/synthetic molecular receptors is open-structured 
molecular clefts/tweezers, which can recognize guest molecules by forming a 
sandwich-type structure through π-π stacking, hydrogen bonding, and/or ionic 
and electrostatic interactions. For the recognition of aromatic molecules, the 
arms of the molecular clefts/tweezers were generally designated to be aromatic 
and with special geometrical arrangements. Taking the advantages of low cost, 
head-tail-modifiable molecular groups, rigidity, chemically different hydroxyl 
groups, unique amphiphilicity, and natural chiral microenvironment, bile acids 
and their derivatives are mostly employed to construct steroid-based molecular 
clefts/tweezers [17].

For the steroid-based molecular clefts/tweezers toward anion recognition, acidic 
amide groups (such as NH in ureas or thioureas) were always used to achieve higher 
affinities [17]. In this context, Davis et al. constructed anion receptor by placing 
squaramide groups in axial positions at the hydroxyl groups of steroid (cholic acid) 
skeleton, which could fix the NH groups on squaramide at certain locations for 
cooperatively bind anions (Figure 4). By using the steroid-squaramide receptor, 
anions Cl− and AcO− could be transferred from water to organic solvent by liquid-
phase extraction. The binding constants of the steroid-squaramide receptor to Cl− 
and AcO− of tetraethylammonium salts exceeding 1014 M−1 in chloroform solution 
have been measured. The results indicated that these anion receptors might serve 
as transmembrane anion carriers or artificial cell surface receptors for biomedical 
application [18].

The synthesized molecular tweezers for small biomolecule recognition mainly 
have charge-bearing moieties/groups such as carboxylic acids and amine/guanine 
groups. As an example, Rao et al. have designed and synthesized a bile acid-based 
molecular tweezer with two carboxylic acid groups attached to the C-3 and C-12 

Figure 3. 
Cholic acid-BINOL-based fluorescent macrocyclic receptor for chiral amino acid recognition.
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hydroxyl groups, which could complex 9-N-butyladenine and biotin methyl ester 
[19] by π-π and electrostatic interactions along with restricted rotation effects 
(Figure 5). Notably, the sensitivity and selectivity of this kind of receptors are not 
high enough to distinguish biomolecules with similar structures. To design highly 
selective molecular tweezers, a possible strategy is to mimic the microchemical 
environment of protein (or sugar) domains responsible for enzyme-substrate 
recognition or cell receptor-ligand interactions [4].

For chiral amino acid recognition, Davis et al. [20] prepared guanidinium-
bearing steroidal molecular tweezers, which could recognize and extract N-acetyl-
amino acids (Figure 6) from aqueous solution into the organic phase (CHCl3) by 
electrostatic interactions between guanidinium moiety and carboxylic acid groups, 
with enantiomeric excesses (ee%) of about 80% [21]. In general, the association 
constant for these acceptors should be around ~10−4–10−5.

Figure 4. 
Cholic acid-squaramide conjugates as a molecular tweezer for anions Cl− and AcO− recognition.

Figure 5. 
Cholic acid-based molecular tweezer for N-butyladenine and biotin methyl ester recognition.

Figure 6. 
Cholic acid-guanidinium molecular tweezer for N-acetyl-amino acid recognition.
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Bile acid-based receptors containing 2,6-diaminopyridine and the dioctylamide 
of 2,6-diaminopyridine were also used to bind 7,8-dimethyl flavin analogues. The 
association constants increased with increasing electron-donating capacity of the 
substituents at the 7 and 8 positions of the flavin analogues [22].

To our knowledge, up to date, the molecular recognition of the steroid-based 
molecular tweezers mainly focuses on several simple molecules including anions, 
nucleosides, and amino acids. Their recognition properties toward more biomo-
lecular analytes/substrates (such as oligosaccharides, peptides, biometabolites, as 
well as pharmaceuticals) need to be continuously explored. Further improvements 
on the sensitivity and selectivity, possibility to perform quantitative detection/
recognition, increasing signal-noise ratios, as well as developing portable in situ test 
kit/membrane also need to be taken into consideration. Notably, the cell biological 
behaviors such as uptake, metabolism, and pharmacological applications of these 
steroid molecular tweezers are far from being understood. Moreover, the emer-
gence of natural compound such as coumarin [23–25]-based fluorescent molecular 
receptors/sensors may inspire further development of steroid-based multichannel 
molecular receptors [4].

3. Steroid-based supramolecular system for biomolecular transportation

Transportation/delivery technology of biomolecular species (especially thera-
peutic agents) across cell membranes and other biological barriers emerged and 
rapidly developed as a pivotal area in pharmaceutical and clinical biomedicine, 
since many biological barriers prevent the implementation of clinically effective 
therapeutic agents (e.g., genes, antitumor drugs, cell signal inhibitors, neuron 
modulators, etc.). Therefore, developing functional therapeutic (gene/drug) 
transportation/delivery systems with the merit of low cost, facile-to-prepare, high 
storage stability, low cytotoxicity, high gene/drug-loading/delivery capacity, as well 
as controllable releasing/targeting features has attracted much attention in recent 
years [26–32].

3.1 Steroid-based supramolecular system for gene delivery

Using renewable and biocompatible natural-based resources to construct supra-
molecular biomaterials has attracted great attentions in recent years. As a hot spot 
in biomaterial research, developing new cationic lipids as non-viral gene (DNA, 
oligo DNA, SiRNA, etc.) carriers toward gene therapy has been achieved increasing 
attentions in the past few decades [33, 34]. An ideal lipid gene carrier should be 
highly biocompatible [35] and could efficiently load and release therapeutic gene 
substances [36] into target cells. In this context, recent researches revealed that 
the introduction of some steroidal hydrophobic molecules in gene carriers could 
enhance gene loading capacity and delivery efficiency [37], improve estrogen recep-
tor (ER) affinity [38], lower cytotoxicity and membrane disruption [39], and so on, 
making the steroid-based cationic amphiphiles/lipids promising candidates for gene 
delivery/transfection (Figure 7).

Among the steroid compounds, cholesterol was the most commonly used 
steroidal compounds in the construction of functional gene/drug [40] carriers. 
As an example, Bhattacharya and Bajaj developed a series of cholesterol cationic 
lipids [41] and gemini-lipids [42–46] with remarkably high gene transfection 
efficiency and transfected p53-EGFP-C3 plasmid DNA to induce tumor apoptosis 
[47]. In another example, Rana et al. [48] prepared some cholesterol-hybridized 
cationic lipids with enhanced SiRNA delivery efficiencies and lower cytotoxicity. 
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In addition, Zenkova et al. [49–51] disclosed a series of cholesterol cationic lip-
ids modified with heterocyclic (pyridine, methylimidazole, etc.) or polyamine 
headgroups having low cytotoxicity and high transfection efficiency, and some 
cholesterol-based cationic glucosidal lipids also have similar properties [52].

In our earlier work, we prepared a series of bioreduction-responsive cholesterol 
disulfide cationic (CHOSS) lipids [53], which possessed low cytotoxicity, high 
pDNA transfection efficiency, as well as perinucleic localization effect (Figure 8). 
Afterward, we studied the structure-gene transfection relationship of some choles-
terol-based cationic lipids bearing versatile amino acid headgroups and chemical 
linkage bonds [54], and it was found that the physicochemical features and gene 
transfection-related properties of the cholesterol-based lipids relied greatly on the 
cationic headgroups [54].

Besides cholesterol, some other steroidal compounds such as diosgenin (a phy-
tosteroid sapogenin used in the preparation of different steroids, e.g., cortisone), 
bile acids, etc. were employed to construct lipid gene carriers. As an example, Regen 
et al. developed a series of “molecular umbrella” amphiphiles [55] and disulfide-
containing bile acid-SiRNA conjugates [56] for intracellular SiRNA delivery. In 
addition, Yi et al. [57–59] synthesized some diosgenin-based cyclen cationic lipids 
with the merit of low cytotoxicity and high transfection efficiency. In a previous 
work, we also synthesized some cholesterol and lithocholate-derived cationic lipids 
via CuAAC “click” approach and disclosed that their gene transfection efficiency 
relied greatly on the steroid structures [60].

It has been known that the endocytosis mechanism greatly affects the intracellu-
lar gene transfection efficacy and subcellular distribution of gene carriers [61]. For 
the endocytosis pathways of steroid-containing gene carriers, only a few cases were 

Figure 7. 
Steroid-based cationic amphiphiles/lipids for gene delivery/transfection.

Figure 8. 
Bioreduction-responsive cholesterol-based disulfide cationic lipids/pDNA supramolecular payloads as efficient 
gene delivery carriers.
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investigated. In this context, Bae et al. [62] found that clathrin-mediated endocy-
tosis is the dominant pathway for cholesterol-based (CHOL-E) liposomes. On the 
other hand, Pozzi et al. [63] disclosed that macropinocytosis is the only endocytosis 
pathway of a cholesterol cationic lipid (DC-Chol) containing multicomponent 
envelope-type nanoparticle system (MENS). Besides, Jeong et al. [64] disclosed 
that clathrin, caveolae, and pinocytosis pathways are involved in the cellular uptake 
mechanism of hydrophobic 5β-cholanic acid containing glycol chitosan (HGC) 
nanoparticles.

In a recent work, our research team successfully prepared a series of steroid-
based cationic lipids by integrating various hydrophobic steroid skeletons with 
(l-)-arginine headgroups via a facile and efficient synthetic approach. We found 
that the plasmid DNA (pDNA)-binding affinity of the steroid-based cationic 
lipids, average particle sizes, surface potentials, morphologies, as well as stabil-
ity of the steroid-based cationic lipids/pDNA lipoplexes depend largely on the 
steroid skeletons. Cellular evaluation results revealed that cytotoxicity and gene 
transfection efficiency of the steroid-based cationic lipids in H1299 and HeLa cells 
strongly relied on the steroid. Interestingly, the steroid lipids/pDNA lipoplexes 
seemed to enter H1299 cells mainly through caveolae- and lipid-raft-mediated 
endocytosis pathways, and an intracellular trafficking route of “lipid-raft-mediated 
endocytosis→lysosome→cell nucleic localization” was accordingly proposed 
(Figure 9). The study provided possible approach for developing high-performance 
steroid-based lipid gene carriers, in which the cytotoxicity, gene transfection 
capability, endocytosis pathways, as well as intracellular trafficking/localization 
manners could be tuned/controlled by introducing proper steroid skeletons/hydro-
phobes. Noteworthy, among the lipids, Cho-Arg showed remarkably high gene 
transfection efficacy even under high serum concentration (50% FBS), making it an 
efficient gene transfection agent for practical application [65].

Although many remarkable achievements have been made in the steroid-based 
gene delivery systems, the working performance such as biocompatibility, gene trans-
fection efficiency, serum compatibility, cell membrane permeability, as well as the 
in vivo transfection of the most of steroid-based gene carriers were still far from their 
maximum value, especially far below from their natural virus (adenovirus, SV40, 
etc.) counterparts. The correlation between steroid-based molecular structures and 
their transfection efficiency is not well known, and, notably, the correlation between 
molecular structures and endocytosis pathways, endonucleasis gateways, and intra-
cellular trafficking and subcellular targeting/localization for the most of steroid-based 
gene delivery systems still remains unclear. Elucidating these correlations may offer 
new routes to further design steroid-based supramolecular systems with “endocy-
tosis pathway selection” and “subcellular organelle targeting/localization” features. 

Figure 9. 
Steroid-based cationic lipids/pDNA supramolecular payloads as efficient gene delivery carriers and the 
caveolae/lipid-raft-mediated cellular uptake pathway.
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Moreover, to achieve combo-chemotherapy and high theranostic performance, 
remote [66] factors (e.g., near-infrared light, ultrasonic, X-ray, or γ-ray)—induced 
controllable gene releasing and (optical and radioactive) imaging agents—which 
incorporated steroid-based supramolecular gene carriers need to be taken into con-
sideration. For future research, we envisioned that “smart” features such as enzyme-
responsive [67], self-programmable [68], self-replicable, as well as self-evolution 
technology could be implemented on the steroid-based supramolecular gene carriers 
by designing/optimizing the steroid-based molecular structures or supramolecular 
architectures through molecular or supramolecular engineering approaches.

3.2 Steroid-based supramolecular system for small molecule/drug delivery

Similar to gene delivery, controllable delivering of small molecules, including 
drugs and other bioactive compounds by steroid-based supramolecular systems, 
is another important field. Some steroids such as bile acids and diosgenin were 
utilized to prepare drug delivery carriers. In an early study, Regen et al. developed 
some cholic acid-based molecular umbrellas, which were utilized to transport 
small biomolecules such as adenosine 5-triphosphate (ATP) [69], glutathione 
(GSH) [70], as well as an oligonucleotide (S-dT16) [71] across phospholipid bilayer 
membranes prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol.

To improve the hydrophilic, long-retention/stealth effect, and biocompatibility, 
polyethylene glycol (PEG) was often introduced to steroid scaffolds [72]. In fact, 
PEGylated bile acids were synthesized to further prepare self-emulsifying drug 
delivery systems (SEDDSs), which could enhance the solubility and absorption of 
poor water-soluble antitumor agent (doxorubicin [73]) or antibiotics (itraconazole 
[74]), thus providing a significant enhancement of solubility and bioavailability 
of these small molecular drugs. The emulsions consisted of spherical micelles with 
a mean hydrodynamic diameter around 100–220 nm, with good biocompatibility 
(low cytotoxic and hemolytic effect).

Taking advantage of organotropism effect of certain steroid compounds (such as 
cholesterol and cholic acid), steroid-drug conjugates enable enhanced active target-
ing of drug delivery into certain organelles to improve their bioavailability. Some bile 
acid-based prodrugs are prepared by conjugating drugs through degradable bonds, 
either direct or via spacer molecules to the carboxylic group or to the chemically 
different (C-3, C-7, and C-12) hydroxyl groups [75]. Tolle-Sander et al. found that 
cholic acid-acyclovir conjugated prodrugs could target human apical sodium-depen-
dent bile acid transporter (ASBT) to enhance acyclovir bioavailability. In this case, a 
valine linker between cholic acid and acyclovir could be cleaved upon esterase hydro-
lysis and release acyclovir [76]. Later, other bile acid-based prodrugs such as cholic 
acid-cytarabine conjugates [77], cholic acid-5-fluorouracil (FU) conjugates [78], and 
bile acid-tamoxifen conjugates [79] were developed. The bile acid-based prodrug 
transport systems showed improved drug absorption, membrane permeation, as 
well as the “trojan horse” effect [80] that largely increased the bioavailability of the 
antitumor drugs. In 2009, Regen et al. reported molecular umbrella-hydrophobic 
drug conjugates, which exhibit enhanced uptake capability to enter living (such as 
HeLa) cells and increased drug activity, suggesting the conjugates could be used 
as drug carriers [81]. Besides, the organ-specific targeting properties, especially 
the liver and small intestine distribution effect, were making the bile acid-based 
prodrug transport systems efficient candidates for the delivery of low-bioavailability 
molecular pharmaceutics [82]. The bile acid-based prodrugs provide efficient build-
ing blocks for constructing and developing supramolecular prodrug drug delivery 
systems (SPDDS), which also inspired the extensive R&D of other steroid-based 
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investigated. In this context, Bae et al. [62] found that clathrin-mediated endocy-
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transfection efficiency of the steroid-based cationic lipids in H1299 and HeLa cells 
strongly relied on the steroid. Interestingly, the steroid lipids/pDNA lipoplexes 
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responsive [67], self-programmable [68], self-replicable, as well as self-evolution 
technology could be implemented on the steroid-based supramolecular gene carriers 
by designing/optimizing the steroid-based molecular structures or supramolecular 
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[74]), thus providing a significant enhancement of solubility and bioavailability 
of these small molecular drugs. The emulsions consisted of spherical micelles with 
a mean hydrodynamic diameter around 100–220 nm, with good biocompatibility 
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drug conjugates, which exhibit enhanced uptake capability to enter living (such as 
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SPDDS [83]. It could be envisioned that, by choosing certain functional moieties to 
construct steroid-based prodrugs and followed by self-assembly, efficient SPDDS 
toward controllable chemotherapy could be achieved (Figure 10).

Recently Wei et al. designed and prepared a novel diosgenin-PEG (derivative)-
based prodrug nanocarrier for inhibiting thrombosis. The steroid diosgenin was 
conjugated to PEG by means of a pH-sensitive Schiff base bond to prepare the 
prodrug, then which was self-assembled into nanomicelles in aqueous solution. 
Under acidic condition (around thrombosis places), the diosgenin-PEG-containing 
micelles could be cleaved and released and could improve the blood diosgenin con-
centration to efficiently inhibit thrombosis. Moreover, the diosgenin-PEG micelles 
without bleeding risk prevented thrombosis by inhibiting activation and apoptosis 
of platelet. In this study, the observed efficiency of diosgenin-PEG was better than 
that of the nonsteroid antithrombotic agent aspirin [84].

Multicomponent nanotherapeutic (by combining two or more drugs/prodrugs 
into a single system) drug delivery systems (MCNDDS) and related formulations 
have attracted more and more attention. With the merit of easy-to-manipulate, 
good storage stability, high drug-loading capacity, low cytotoxicity, as well as con-
trollable drug-releasing features, R&D on MCNDDS could be expected to serve as 
a promising field in nanopharmaceutics and clinical medicine [85]. As mentioned 
above, cholesterol has been known to play important roles in membrane property 
regulation, cell adhesion, and signal transduction, regulating lipid bilayer interac-
tion and intracellular trafficking of nanoparticles, thus bringing new potential 
applications in biomedical engineering. In one case, cholesterol-based adenosine 
triphosphate has been prepared, which could be efficiently transported across 
bilayer membranes of liposomes [86]. In recent studies, we prepared a series of 
combo-nanotherapeutics by controllable incorporation of cholesterol-based/−con-
jugated doxorubicin prodrug (Chol-LK-Dox) with tocopherol polyethylene glycol 
succinate (TPGS), a helper lipid in the construction of functional liposomes or 
solid lipid nanoparticles, using a thin-film hydration method (Figure 11). Among 
them, we found that a series of Chol-Dox/TPGS assemblies (molar ratios 2:1, 1:1, 
and 1:2) were able to form nanoscaled particles with the average hydrodynamic 
particle diameter of 100–250 nm and remarkable solution stability (in 0.1 M 
PBS, 30 days). Notably, the doxorubicin loading and releasing properties could 
be adjusted by changing the molar ratio of Chol-Dox and TPGS, thus leading to 
controllable tumor cell inhibition properties to breast cancer (MCF-7 and MDA-
231) cells. Likewise, the physicochemical properties and bioactivity of another 
cholesterol-based nanodelivery system (Chol-LK-Dox/TPGS) could also be tuned 
by changing the (bioresponsive) linkers and molar ratio of Chol-LK-Dox and 
TPGS. The cellular biological properties of Chol-LK-Dox/TPGS systems in other 
cancer cell lines and in vivo therapeutic properties in xenograft mice models will be 
deeply investigated (project ongoing in our lab).

Figure 10. 
Self-assembly of steroid-based prodrugs into supramolecular payloads for drug delivery application.
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Nowadays, for the requirement of “precise biomedical treatment,” the steroid-
based supramolecular prodrug systems with smart manners such as stimuli-
sensitive (temperature, ultrasound, light, electric, pH, redox, biomolecules, and 
enzyme) features and targeting (cell membrane, subcellular organelles, and cell 
nuclei) properties need to be further developed.

4. Conclusions

In this chapter, we reviewed the main biomedical application of steroid-based 
compounds “beyond the molecule”—supramolecular level. The renewable, eco-
nomic natural steroid compounds could be employed as building blocks in the 
design and construction of steroid-based supramolecular systems. Based on the 
specific physicochemical features (size, shape, topology, hydrophobicity, chemical 
modifiability, etc.) and biological properties (biocompatibility, biodegradability, 
bioaffinity, etc.), through chemical synthesis, modification, and by means of 
intermolecular weak interactions (such as hydrogen bonding, π-π stacking, van der 
Waals forces, inclusion interactions, chiral interactions, electrostatic interactions, 
and so on), the steroid-based functional molecules could be organized to supra-
molecules for molecular recognition/sensing and/or be self-assembled into various 
functional supramolecular assemblies for biomedical applications. The specific 
physicochemical and biological properties, good biocompatibility, and biological 
activity endow the steroid-based supramolecular systems good feasibility to be 
employed in biomolecular recognition/sensing and biomolecular transportation 
(gene/drug delivery). The examples in this chapter illustrated the transformation 
of natural steroid-based compounds into functional steroid-based supramolecular 
systems through molecular and supramolecular engineering technology, which 
may inspire the systematic study of natural product-based supramolecular (nano)
materials toward the future pharmaceutical and biomedical industry.

Although many natural steroid-based supramolecular/nano-systems have been 
developed and studied, there are still many problems which need to be solved and 
vast spaces that need to be filled in further extensive research: (1) At molecular 
level, apart from the natural steroid-based supramolecular shown above, the ste-
roid-based compounds with unique structures (molecular symmetry, geometry and 
topology, polarity, amphiphilicity, multivalency, etc.), physicochemical (thermal, 
optical, magnetic, acoustic, radioactive, etc.), properties and biofunctions (bio-
recognition, targeting, endocytosis, cell signaling, etc.), as well as green synthesis 

Figure 11. 
Self-assembly of steroid (cholesterol)-doxorubicin prodrug (Chol-LK-Dox) with TPGS to prepare MCNDDS 
for combo-chemotherapy.
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techniques of the building blocks/units that need to be further developed. (2) At 
supramolecular level, the self−/forced assembly properties of many natural steroid-
based supramolecular/nano-systems were still not well studied; especially their 
structure–property relationships need to be further explored, realizing the control/
adjustment of the steroid-based nanoassemblies with specific physicochemical and/
or biological functions. (3) For biomedical application, we need to continue explor-
ing the related biological functions (such as biocompatibility, biometabolic activity, 
biomimicking manners, etc.) of the steroid-based supramolecular systems and 
reveal the relationship between the molecular/supramolecular structure and their 
biological behaviors. Moreover, we anticipated that molecular-level properties of the 
steroid-based molecules/building blocks would be transferred, enhanced, and/or 
magnified into supramolecular-level properties, providing a “bottom-up” method 
to create new renewable resource-derived nanostructures and nanomaterials.

Finally, we need to notice that the steroid-based supramolecular system as afore-
mentioned in this chapter is mostly restricted in low-dimensional 0D and 1D level 
and, therefore, for real practical application toward complexity systems, higher-
ordered steroid-based supramolecular systems (such as 2D and 3D) are needed to be 
further developed; especially, as for the emergence of natural-based tissue engi-
neering materials and rapid development of 3D bioprinting technology, steroid-
based supramolecular system for cell culture and regenerative medicine needs to be 
taken into consideration and systematically developed in the near future.
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