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The world’s population is predicted to hit 
9 Billion by 2050, and with it food demand 
is predicted to increase substantially. The 
World Bank estimates that cereal and meat 
production needs to increase by 50% and 
85% respectively between 2000 and 2030 
to meet demand, putting serious pressure 
on the global agricultural industry. Critical 
to meeting this demand for food are 
mechanisms to reduce the incidence of 
animal disease. With in excess of 1.3 billion 
cattle globally, the total cost of infectious 
diseases is difficult to estimate. However in 
North America alone, the cost is predicted 
to be $18 billion annually. Non-infectious 
diseases also account for another major 
impediment to the production capacity and 
welfare of animals as well as the economic 
sustainability of farming. However animal 
diseases have implications that spread far 
beyond the farm gate. Infectious agents 
can also contaminate the food chain, and 
potentially affect human health. 

Controlling diseases, through better 
preventative and treatment methods requires 

a detailed understanding of the immune response in livestock species. Multiple studies have 
identified associations between variation in immune genes and disease susceptibility, which 
potentially opens up new avenues to select animals with superior disease resistance. Detailed 
understanding of immunity in cattle is leading to the design of more effective vaccines. 
Furthermore, appreciation of the significant differences between rodent and human immune 
responses has also led to bovine models being developed for some human diseases. 
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The publication of the bovine genome and the advent of next-generation sequencing 
technologies have facilitated a massive expansion in our knowledge of the immune response 
in cattle. As a result there has been an explosion of exciting research findings including in 
metagenomics and epigenetics. Recently, there has been a welcome move to integrate our 
emerging understanding of the immune response with detailed studies of other important 
physiological processes including nutrition and reproduction. The interactions between the 
reproductive system, nutrition and the immune system are of particular interest, since each 
places significant demands on the animal at various stages through the production cycle. 
The interplay between these morphologically diffuse systems involves widely distributed 
chemical signals in response to environmental input, and each system must interact for the 
normal functioning of the other. A comprehensive “systems” approach is improving our 
understanding of normal physiological interactions between these systems and furthermore, 
how dysregulation can lead to disease. 

The successful translation of bovine immunological research into improved treatments for 
animal disease requires tight interaction between diverse scientific and clinical disciplines 
including immunology, microbiology, endocrinology, physiology, nutrition, reproduction 
and clinical veterinary medicine. With so much recent progress in the field, we believe that it 
is valuable and well-timed to review the broad variety of the relevant studies that attempt to 
increase our understanding through comprehensive collaboration between these disciplines. 

We are looking forward to a wide and vivid discussion of developments in bovine 
immunology and related issues, and we expect that our readers profoundly benefit from new 
exciting insights and fruitful collaborations.
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The United Nations predicts that the current world population
of 7.2 billion is projected to reach 9.6 billion by 2050, which can
only mean one thing for global agriculture, and that is increased
pressure on production. One step to increase food supply is the
abolition of the milk quota restrictions in the EU in 2015. It is
inevitable with expansion and intensification of production that
risks associated with disease will be exacerbated. This will have
critical consequences for the sustainability of farming systems, for
the safety of the food chain, and for human health. In this context,
it is appropriate that we redouble every effort to understand the
immune response, particularly to recalcitrant infectious diseases
in cattle.

The publication of the bovine genome in 2009 and the advent
of new high-throughput technologies have facilitated a massive
expansion in our knowledge of the immune response in cat-
tle. Genomic selection means we can now identify animals with
superior genetics at birth and use them as parents of the next gen-
eration, thereby rapidly increasing the rate of genetic gain. While
these methods are currently in use to breed cattle with superior
genetics for production traits, they are not yet available to improve
disease resistance. Mycobacterial and mammary gland (Mastitis)
infections represent two diseases that severely impact global cat-
tle production, with an annual estimated cost of $3 billion for
TB globally (1) and multiples of this value for mastitis, especially
when the costs associated with subclinical infection are included
(2, 3). Both these diseases, as well as complementary analyses on
the regulation of bovine immunity, are addressed by cutting edge
papers in this edition of Frontiers.

Mycobacterium tuberculosis causes TB in human beings and
over one-third of the world’s population are infected with this
disease. Similarly, in cattle, related mycobacterial species cause
potentially zoonotic infections, which are endemic in many parts
of the world, despite stringent global surveillance and control
programs. The advent of Next-Generation Sequencing (NGS)
technologies holds significant promise to overcome limitations in
current generation test sensitivity and specificity and as discussed
by McLoughlin et al., transcript biomarker signatures have been
identified, which discriminate between TB patients with active and
latent disease. Indeed, McLoughlin et al. used multi-dimensional
scaling to unambiguously classify peripheral blood leukocyte tran-
scriptomic profiles from Mycobacterium bovis infected and healthy
cattle, thereby uncovering potential biomarkers for M. bovis infec-
tion (4). This technology is a powerful tool for unraveling the

complexities of host immune response and provides new layers of
information, which deepens our understanding of host–pathogen
interactions that underlie Mycobacterial disease pathogenesis. The
macrophage is recognized as the key effector cell driving anti-
mycobacterial immunity but which can be hijacked by mycobac-
teria, thereby contributing to suboptimal bacterial clearance and
disease chronicity. Using the macrophage as a model, RNA-seq
was performed after challenge with Mycobacterium avium sub-
species paratuberculosis (MAP), which has uncovered novel genes
that have not previously been associated with the host response
to MAP infection (5). One of the key challenges with NGS tech-
nologies is the bioinformatic analysis to extract meaningful and
biologically relevant findings from the wealth of data generated.
Sophisticated system-biology tools have been employed by Killick
et al. to generate biological interaction networks that usefully iden-
tify key hub and bottleneck genes that are central to the immune
response and thereby potential targets for immunomodulation –
either naturally by pathogens in their eternal quest for survival, or
therapeutically with the development of new intervention strate-
gies (6). Furthermore, a comparative analysis of the macrophage
response to various strains of mycobacteria has been reviewed;
M. bovis induced a distinct transcriptional profile in monocyte-
derived macrophages compared to the more similar profiles of
both M. bovis BCG and MAP (7). The authors describe how dif-
ferential expression of type-I interferon genes were specific to the
virulent M. bovis strain supporting a role for these genes in the
establishment of active tuberculosis in cattle.

The identification of the genes and pathways involved in orches-
tration of the immune response is not merely of fundamental
importance but differentiating between the immune responses to
closely related bacterial species can have very real implications
for the success of current generation diagnostics. The study by
Kennedy et al., examines the effects of annual mandatory test-
ing for M. bovis infection on the ELISA performance routinely
used for the diagnosis of MAP (8). In one herd, prior to testing
for bovine tuberculosis (BTB), 7.9% of cattle serum samples and
5.8% of milk samples were positive for MAP antibodies. Shortly
after the BTB test, the MAP ELISA positive rate increased to 39%
in both sample types, clearly showing BTB test interference in
MAP ELISA performance. Exploiting differences in host immunity
induced in response to these closely related strains of mycobacteria
could yield significant dividends in terms of increased specificity
of diagnostics.
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Meade Developments in bovine immunology

An optimal and effective host immune response must overcome
pathogen-mediated efforts to subvert it while minimizing tissue
damage and, therefore, the regulation of the immune response
is critical. Furthermore, shedding light on the differential dialog
between the host and pathogenic or comensal bacterial strains
is a very exciting area of research. It is of interest, therefore,
that Villena et al. review how immunobiotics can dampen TLR-
mediated inflammation in an intestinal cell line, and postulate how
immunoregulatory feeds could be developed in the future (9).
Inflammation is a feature of most diseases, and detailed knowl-
edge on the pathways regulating it is critical toward developing
effective immunoregulatory approaches in cattle. MiRNAs have
also been shown to be powerful regulators of immunity and as
reviewed by Lawless et al., 793 miRNAs have been identified to
date in the bovine genome (10). Their rapid induction in response
to challenge and the tissue-specific expression pattern of some
has led to speculation on their potential use as diagnostics. Work
by the same group has identified miRNA signatures of infection
in mammary epithelial cells in response to a common mastitis-
causing pathogen. The review highlights relevant studies on how
miRNAs regulate the production of IFN-y and TNF, key cytokines
in the immune response to TB.

In a comprehensive review, Thompson-Crispi et al. integrates
multiple studies on the genetic regulation of the bovine immune
response, particularly in relation to mastitis (11). Interestingly, the
review discusses earlier work by the same group in which their
High Immune Response (HIR) technology was used to identify
Immunity+ sires, daughters of which showed a 44% reduction
in mastitis as well as reduced susceptibility to other diseases. The
potential consequences of selection for a specific immune phe-
notype are discussed, and the review signposts how integration
of complementary genetic, genomic, and epigenetic data – sup-
plemented with accurate disease and health phenotype informa-
tion – will enhance our ability to breed cattle with superior disease
resistance in the future.

Early fetal mortality is a major contributory factor to poor
reproductive outcomes and increased costs, especially in high
producing dairy cows. In that regard, the review by Fair is a
relevant one. Although immunological analyses in the cow dur-
ing pregnancy are growing, attempts to evaluate the interaction
between the cow and the developing fetus are few. While com-
parative immunology can shed some light, Fair argues that basic
understanding in the bovine are required to more comprehen-
sively understand the complex regulation of local and systemic
immunity in the pregnant cow and thereby yield novel solutions
to fertility problems (12). Understanding the immune shifts that
occur during pregnancy is also critical to understanding the win-
dows of susceptibility that may exist through which susceptibility
to infectious diseases could be increased.

Multi-factorial challenges, for example achieving and sustain-
ing excellent animal health, require multifaceted solutions that
can only be achieved through intensive integration of knowledge
and expertise from a diverse spectrum of research efforts (13). As
the physicist Richard J. Feynman once wrote “In order to make
progress, one must leave the door to the unknown ajar.” There is a
lot yet to learn in relation to bovine immunity and, therefore, this
e-book is a timely integration of the most current research and

scientific thinking on these critical issues and will contribute to
the direction of future research in these areas. When dealing with
infectious diseases, the old truism is perfectly apt – ipsa scientia
potestas est. New knowledge also prepares us for the unforeseen
challenges of the future.
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Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic
disease affecting cattle populations worldwide, despite the implementation of strin-
gent surveillance and control programs in many countries. The development of high-
throughput functional genomics technologies, including gene expression microarrays and
RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M.
bovis infection, particularly at the macrophage and peripheral blood level. In the present
study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight
natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-
Friesian animals using RNA-seq. In addition, we compared gene expression profiles gen-
erated using RNA-seq with those previously generated using the high-density Affymetrix®

GeneChip® Bovine Genome Array platform from the same PBL-extracted RNA. A total
of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-
infected samples relative to the controls (adjusted P -value ≤0.05), with the number of
genes displaying decreased relative expression (1,671) exceeding those with increased
relative expression (1,579). Ingenuity® Systems Pathway Analysis (IPA) of all DE genes
revealed enrichment for genes with immune function. Notably, transcriptional suppression
was observed among several of the top-ranking canonical pathways including Leuko-
cyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq
detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398),
of which 917 genes were common to both technologies and displayed the same direction
of expression. Finally, we show that RNA-seq had an increased dynamic range compared
to the microarray for estimating differential gene expression.

Keywords: Mycobacterium bovis, tuberculosis, RNA-seq, biomarker, cattle, microarray, peripheral blood

INTRODUCTION
Bovine tuberculosis (BTB) is caused by infection with Mycobac-
terium bovis, a member of the Mycobacterium tuberculosis complex
(MTC). The mycobacterial species and strains that constitute the
MTC can cause tuberculosis in a wide range of mammals and
display 99.9% similarity at the nucleotide level (1). Econometric
analyses incorporating agricultural production and human health
indices have placed BTB as the fourth most important disease of
cattle, costing an estimated $3 billion on a global scale annually (2).
Furthermore, as a zoonotic agent, M. bovis infection has important
implications for human health (3, 4).

Mycobacterium bovis is normally transmitted via the inhalation
of infectious bacilli, whereby infection is established in the lung.
Evasion of host immune defenses enables the pathogen to survive
and replicate within phagocytic macrophages, the primary innate

immune cell that mediates the response to infection, and can
result in dissemination of infection via the lymph system leading
to disease progression and pathology (5). Subsequent transmis-
sion of the pathogen to susceptible hosts maintains the cycle of
infection. The immune response to BTB is complex and is largely
characterized by macrophage-mediated development of protective
TH1-type responses following initial exposure to the pathogen. It
has been reported that the development of disease involves a tran-
sition from TH1 to non-protective TH2-type responses (6). The
progression of infection may also be due to the modulation and
suppression of specific immune mechanisms by the pathogen (5).

In many developed countries, control and eradication pro-
grams have been put in place to facilitate early detection and
removal of infected animals. In Ireland, the test and slaughter pol-
icy was introduced in the early 1950s as part of the national BTB

www.frontiersin.org August 2014 | Volume 5 | Article 396 | 7

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00396/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00396/abstract
http://www.frontiersin.org/people/u/139463
http://www.frontiersin.org/people/u/132796
http://community.frontiersin.org/people/u/179428
http://www.frontiersin.org/people/u/25243
http://www.frontiersin.org/people/u/153201
http://www.frontiersin.org/people/u/174205
http://community.frontiersin.org/people/u/171228
http://www.frontiersin.org/people/u/36539
http://community.frontiersin.org/people/u/179464
http://community.frontiersin.org/people/u/179427
http://www.frontiersin.org/people/u/23873
mailto:david.machugh@ucd.ie
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


McLoughlin et al. RNA-seq analysis of bovine tuberculosis

eradication scheme (7). This policy includes mandatory screening
of animals in the national herd using the single intradermal com-
parative tuberculin test (SICTT), alone or in combination with
in vitro ELISA-based interferon-gamma (IFN-γ) release assays in
infected herds, to increase the sensitivity of diagnosis (8). However,
due to limitations in both of these tests and also the presence of
wildlife reservoirs (including the Eurasian badger, Meles meles) M.
bovis has remained recalcitrant to eradication (6). Consequently,
there is a pressing need to develop novel diagnostics for early and
reliable detection of M. bovis infection in cattle herds.

The availability of a well-annotated bovine genome sequence
with concomitant advances in high-throughput genomics tech-
nologies offers novel approaches to interrogate and better under-
stand the immune response to M. bovis infection. Many tran-
scriptomics studies of the host response to M. bovis have involved
the analysis of blood-derived RNA from naturally or experimen-
tally infected animals, as previous work has shown that for BTB,
host immune responses occurring in peripheral blood reflect
those at the primary site of disease (9). Microarray analysis of
peripheral blood-derived RNA has shown that transcriptional pro-
filing can unambiguously differentiate animals by disease status
and can identify immunomodulatory mechanisms associated with
pathology (10–13).

The advent of high-throughput sequencing technologies has
given rise to new methods for gene expression analysis based on
RNA-sequencing (RNA-seq). This RNA-seq approach has a num-
ber of important advantages compared to microarray analysis,
including unbiased whole-transcriptome profiling; the character-
ization and analysis of both sense and antisense transcription and
novel transcripts; the identification of mRNA isoforms; increased
precision and sensitivity for the quantification of lowly expressed
transcripts; and the detection of expressed coding and regulatory
DNA sequence variants that can influence phenotype [e.g., disease
resistance and susceptibility] (14–16).

To gain a deeper knowledge of the host transcriptional response
to M. bovis infection, we have used RNA-seq to compare the
peripheral blood leukocyte (PBL) transcriptomes of eight animals
naturally infected with M. bovis and eight non-infected control
animals. Differentially expressed (DE) genes identified from this
analysis were further investigated using the Ingenuity® Systems
Pathway Analysis (IPA) Knowledgebase to detect overrepresented
cellular pathways in response to M. bovis infection. We also com-
pared the gene expression profiles generated from RNA-seq with
data from the Affymetrix® GeneChip® Bovine Genome Array
using the same PBL-extracted RNA samples (12).

MATERIALS AND METHODS
ANIMALS
The 16 age-matched female Holstein-Friesian animals used in this
study have been previously described (12). The eight M. bovis-
infected cattle were selected from a panel of naturally infected
animals identified during routine disease surveillance by the Irish
Department of Agriculture, Food and the Marine. These animals
had a positive result for both SICTT and whole blood IFN-γ-
based BOVIGAM® assay tests (Prionics AG, Zurich, Switzerland).
In addition, M. bovis infection was confirmed following detailed
post-mortem pathological examination and culture. Non-infected

control animals were selected from a herd with no recent history
of M. bovis infection and were shown to be negative for both the
SICTT and IFN-γ tests. All animal procedures detailed were per-
formed according to the provisions of the Cruelty to Animals Act
(licenses issued by the Irish Department of Health and Children)
and ethics approval for the study was obtained from the UCD
Animal Ethics Committee.

BLOOD COLLECTION AND RNA EXTRACTION
The materials and methods used to isolate and purify PBL-derived
RNA from all 16 animals have been described by us previously.
Briefly, whole blood was collected from each animal in 8 ml
heparin vacutainers® (Becton-Dickinson Ltd., Dublin, Ireland)
and RNA extraction was performed within 2 h of blood collection.
The complete methods used for blood collection, PBL isolation,
and total RNA extraction and purification have been described by
us previously (12). RNA quantity and quality checking was per-
formed using the NanoDrop™ 1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and the Agilent 2100 Bioan-
alyzer using an RNA 6000 Nano LabChip kit (Agilent Technologies,
Cork, Ireland). All samples displayed a 260/280 ratio >1.8 and RNA
integrity numbers (RIN) >8.0.

RNA-seq LIBRARY PREPARATION
The laboratory method used to generate RNA-seq libraries was
adapted from a protocol previously described by our group (17).
In total, 16 strand-specific RNA-seq Illumina® libraries were pre-
pared (i.e., eight libraries each for the infected and control groups)
using 1.2 µg of total RNA. Total RNA was heated at 65°C for 5 min
to disrupt any secondary structure and purification of poly(A)
RNA was performed using a Dynabeads® mRNA DIRECT® Micro
Kit according to the manufacturer’s instructions (Invitrogen™).
Purified poly(A) RNA was then fragmented using 1× RNA Frag-
mentation Reagent (Ambion®/Life Technologies Ltd.,Warrington,
UK) for 5 min at 70°C and precipitated using 68 mM sodium
acetate pH 5.2 (Ambion®), 227 ng/µl glycogen (Ambion®), and
30 µl of 100% ethanol (Sigma-Aldrich Ltd., Dublin, Ireland).
Pellets were washed with 80% ethanol, air-dried for 10 min at
room temperature, and re-suspended in 10.5 µl DNase- and
RNase-free water.

Synthesis of first strand cDNA was performed by incubat-
ing fragmented RNA with 261 mM Random Hexamer Primers
(Invitrogen™), 1× first strand buffer (Invitrogen™); 10 mM DTT
(Invitrogen™); 0.5 mM dNTPs; 20 U RNaseOUT™ recombi-
nant ribonuclease inhibitor; and 200 U SuperScript® II Reverse
Transcriptase (Invitrogen™) at 25°C for 10 min, at 42°C for
50 min, and 70°C for 15 min. First strand synthesis reaction
mixtures were purified using MicroSpin G-50 columns accord-
ing to the manufacturer’s instructions (GE Healthcare UK Ltd.,
Buckinghamshire, UK).

Second strand cDNA synthesis, involving the incorporation of
uracil, was performed by adding the first strand cDNA synthesis
reaction to a second strand reaction mix consisting of 0.065× first
strand buffer (Invitrogen™); 1× second strand buffer (Invitro-
gen™); a dNTP mix consisting of a final concentration of 0.3 mM
dATP, dCTP, dGTP (Sigma-Aldrich) and 0.3 mM dUTP (Bioline
Reagents Ltd.,London,UK); 1 mM DTT (Invitrogen™); 2 U RNase
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H (Invitrogen™) and 50 U E. coli DNA Polymerase I (Invitro-
gen™). Reactions were incubated at 16°C for 2.5 h. The dou-
ble stranded cDNA was subsequently purified using a QIAquick
PCR Purification kit (Qiagen) according to the manufacturer’s
instructions and eluted in 30 µl of the provided elution buffer.

Blunt-end repair of cDNA was performed in a 100 µl reac-
tion containing 1× T4 DNA ligase buffer with 10 mM dATP
(New England Biolabs® Inc., Ipswich, MA, USA), 0.4 mM of each
dNTP (Invitrogen™), 15 U T4 DNA polymerase (New England
Biolabs®), 5 U DNA Polymerase I Large [Klenow] Fragment (New
England Biolabs®), and 50 U T4 polynucleotide kinase (New Eng-
land Biolabs®). Reactions were incubated at 20°C for 30 min and
the cDNA was then purified using a QIAquick PCR Purification Kit
(Qiagen) according to the manufacturer’s instructions and eluted
in 32 µl of the provided elution buffer.

To facilitate Illumina® GA adaptor ligation, a single “A” base
was added to the 3′ ends of the blunt-end-repaired cDNA sam-
ples. Thirty-two microliters of purified phosphorylated blunt-
end-repaired cDNA was included in a final 50 µl reaction mixture
containing 1× Klenow fragment buffer (New England Biolabs®);
0.2 mM dATP (Invitrogen™), and 15 U Klenow fragment with 3′-
to-5′ exonuclease activity (New England Biolabs®). Reactions were
incubated at 37°C for 30 min, after which cDNA was purified using
a QIAquick MinElute Kit (Qiagen) according to the manufac-
turer’s instructions and eluted in 21 µl of the provided elution
buffer.

Illumina® RNA-seq adaptor ligation reactions (50 µl volumes)
involved incubation of 21 µl of phosphorylated blunt-ended
cDNA containing a 3′-dATP overhang with 1×Quick DNA ligase
buffer (New England Biolabs®); 30 nM custom indexed single-
read adaptors (see Table S1 in Supplementary Material for barcode
index sequences); and 15 U T4 DNA ligase (Invitrogen™). Reac-
tion mixes were incubated at room temperature for 15 min and
purified using a QIAquick MinElute Kit according to the manu-
facturer’s instructions (Qiagen) and eluted in 10 µl of the provided
elution buffer. Adaptor-ligated cDNA was gel-purified using 2.5%
agarose gels stained with 1× SYBR® Safe DNA gel stain (Invitro-
gen™). Gels were electrophoresed at 100 V using 1× TAE buffer
(Invitrogen™) for 75 min at room temperature. Size fractionated
bands corresponding to 200 bp (+50 bp) were excised from each
sample and purified using a QIAquick Gel Extraction kit (Qiagen)
according to the manufacturer’s instructions and eluted in 30 µl of
elution buffer. To generate strand-specific RNA-seq libraries, the
second strand of the gel-purified adapter-ligated cDNA containing
uracil was digested enzymatically in 30 µl reaction volumes con-
taining 1× Uracil-DNA Glycosylase buffer and 1 U Uracil-DNA
Glycosylase (Bioline). Reactions were incubated at 37°C for 15 min
followed by 94°C for 10 min.

PCR enrichment amplifications (25 µl) were performed and
contained 9 µl of second strand-digested, adaptor-ligated cDNA;
1× Phusion® High-Fidelity DNA polymerase buffer (New Eng-
land Biolabs®); 334 nM each Illumina® PCR primer (Illumina®
Inc., San Diego, CA, USA); 0.4 mM each of dATP, dCTP, DGTP,
and dTTP (Invitrogen™) and 1 U Phusion® High-Fidelity DNA
polymerase (New England Biolabs®). PCR amplification reactions
consisted of an initial denaturation step of 98°C for 30 s, 18 cycles
of 98°C for 10 s, 65°C for 30 s, and 72°C for 30 s, followed by a final

extension step of 72°C for 5 min. PCR products were visualized
following electrophoresis on a 2% agarose gel stained with 0.25×
SYBR® Safe DNA gel stain (Invitrogen™) and purified to remove
PCR-generated adaptor-dimer using an Agencourt AMPure XP
kit (Beckman Coulter Genomics, Danvers, MA, USA) according
to the manufacturer’s instructions with final elution in 30 µl of
1× TE buffer.

All RNA-seq libraries were quantified using a Qubit® Fluorom-
eter (Invitrogen™). RNA-seq library quality was assessed using an
Agilent Bioanalyzer and Agilent High sensitivity DNA chip (Agi-
lent) and confirmed that library insert sizes were ~200–250 bp for
all individual libraries. Individual RNA-seq libraries were stan-
dardized and pooled in equimolar quantities (10 µM for each
individual library). The quantity and quality of the final pooled
library was assessed as described above prior to sequencing.

The libraries were subsequently validated using conventional
Sanger sequencing of individual library clones. Library frag-
ments from two libraries were cloned using the Zero Blunt®
TOPO® PCR Cloning system according to the manufacturer’s
instructions (Invitrogen™). Conventional Sanger sequencing of
10 plasmid inserts from each of the 2 libraries confirmed that
the RNA-seq libraries contained inserts derived from bovine
mRNA. Plasmid sequencing was outsourced (Source Bioscience
Ltd., Dublin, Ireland) and sequences generated were validated
using BLAST-searching of the DNA sequence database (18).

Cluster generation and sequencing of the pooled RNA-seq
library was performed on an Illumina® Cluster Station and
Genome Analyzer IIx sequencer according to the manufacturer’s
instructions. The pooled library was sequenced as single-end read
84-mers using Illumina® version 4.0 sequencing kits and the stan-
dard Illumina® Genome Analyzer IIx pipeline. The Illumina®
Sequencing Control Software version 2.9 and Real-Time Analysis
version 1.9 software packages were used for real-time tracking of
the sequencing run, real-time image processing, the generation of
base intensity values, and base calling. These RNA-seq data have
been deposited in the NCBI Gene Expression Omnibus (GEO)
database with experiment series accession number GSE60265.

BIOINFORMATICS AND STATISTICAL ANALYSIS OF RNA-SEQ AND
MICROARRAY DATA
All the bioinformatics pipeline bash, Perl, and R scripts used for
computational analyses were deposited in a GitHub repository
at https://github.com/kmcloughlin1 and these analyses were per-
formed on a 32-node Compute Server running Linux Ubuntu
(version 12.04.2).

An initial quality check was performed on each of the raw
read data files using the FastQC software (version 0.10.1)1 to
determine the best sequence read quality filtering strategy. Sub-
sequently, a custom perl script was used to: (1), deconvolute the
pooled libraries into individual libraries of sample sequence reads
based on the unique index barcode (allowing up to one mismatch
as long as the barcode sequence can be associated to a single unique
index barcode); (2) filter out single-end reads containing adap-
tor sequence (allowing up to three mismatches); and (3) remove

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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single-end reads of poor quality (i.e., reads containing 25% of
bases with a Phred quality score below 20). Filtered individual
libraries file were checked again with the FastQC software pack-
age to confirm sequence read quality. Single-end reads, from each
filtered individual sample library, were aligned to the Bos tau-
rus reference genome [UMD3.1.73; (19)] using the STAR aligner
software package [version 2.3.0] (20).

For each library, raw counts for each annotated gene were
obtained using the featureCounts software from the Subread pack-
age [version 1.3.5-p4] (21). The featureCounts parameters were
set to unambiguously assign uniquely aligned single-end reads in
a stranded manner to the exons of genes within the B. taurus
reference genome annotation (UMD3.1.73 genome annotation).

Differential gene expression analysis was performed using the
gene raw counts, obtained from featureCounts, within the Bio-
conductor edgeR package (22). The differential gene expression
pipeline within the edgeR package was customized to (1) filter out
all bovine rRNA genes; (2) filter out genes displaying expression
levels below the minimally set threshold of one count per mil-
lion (CPM) in at least eight individual libraries (i.e., equivalent
to one group of biological replicates); (3) calculate normaliza-
tion factors for each library using the trimmed mean of M -values
method (14); (4) generate the density of counts per gene and
multidimensional scaling (MDS) plots based on data from each
individually barcoded library (using the Euclidean distance met-
ric); (5) estimate the dispersion parameter for each library using
the Cox-Reid method; (6) identify DE genes between infected ver-
sus non-infected control samples (i.e., unpaired-sample statistical
model) using a negative binomial generalized linear model; and
(7) adjust the P-value for multiple testing using the Benjamini–
Hochberg correction (23) with a false discovery rate (FDR)≤0.05.
Mean fold-changes in gene expression are reported in the main
body text as geometric mean values in the M. bovis-infected group
relative to the control group; for genes displaying reduced relative
expression, the negative reciprocal geometric mean fold-changes
are given.

The IPA® Knowledgebase2 was used to identify cellular path-
ways and gene ontology categories that were overrepresented based
on the list of DE genes (P-value ≤0.05).

The raw microarray data generated from the same 16 PBL-
extracted RNA samples were retrieved from the NCBI GEO
repository (24) with the accession number GSE33359 (12). The
Affymetrix® GeneChip® Bovine Genome Array used to gener-
ate these data contains 24,072 probe sets representing more than
23,000 gene transcripts. To compare gene expression profiles
from these samples using RNA-seq and the microarray, we first
re-analyzed the microarray data using a series of Bioconductor
packages (25) and the most recent build of the bovine genome
[UMD3.1.73; (19)]. Normalization of raw data was performed
using the Factor Analysis for Robust Microarray Summarization
(FARMS) algorithm (26). The FARMS algorithm uses only per-
fect match (PM) probes and a quantile normalization procedure,
providing both P-values and signal intensities. Normalized data
were then further subjected to filtering for informative probes

2http://www.ingenuity.com

sets using the informative/non-informative (I/NI) calls unsuper-
vised feature selection criterion implemented in FARMS (27).
This defines a probe set as being informative when many of its
probes reflect the same change in mRNA concentration across
arrays. To compare and contrast the two gene expression tech-
nologies, microarray probe sets were first annotated with the
corresponding Ensembl ID using the Bioconductor biomaRt pack-
age (28). Genes displaying differential expression between control
and infected groups were identified using the linear models for
microarray data (LIMMA) bioconductor package (29). Following
this, a Benjamini–Hochberg multiple-testing correction of ≤0.05
was applied to all DE genes (23) and the Euclidean distance was
used as the distance metric for MDS plotting.

RESULTS
SUMMARY STATISTICS FOR THE RNA-seq DATA
All 16 RNA-seq libraries were sequenced across one full Illumi-
na® GAIIX flow cell. Deconvolution and filtering of sequence
reads to remove adaptor-dimer contamination yielded a mean
of 13.2 million reads per individual barcoded RNA-seq sample
library. Alignment of the filtered reads to the B. taurus UMD3.1.73
genome build yielded a mean of 11.8 million reads (90%) that
aligned to unique locations in the bovine genome for each RNA-
seq library; a mean of 906,679 reads (7%) for each library that
aligned to multiple locations in the genome; and a mean of 381,991
reads (3%) for each library that did not align to any genome loca-
tion (Table S1 in Supplementary Material). Further analysis of
the mean 11.8 million reads mapping to unique genome loca-
tions demonstrated that 52% of these mean reads were assigned to
annotated regions of the genome, which were used to calculate raw
counts for each sense gene and subsequently used for downstream
bioinformatics and systems analyses; while 48% were not assigned
to any annotated genome location or were assigned to overlapping
(therefore ambiguous) annotated genomic regions.

GENE EXPRESSION AND IPA ANALYSIS OF SENSE STRAND
TRANSCRIPTION
Analysis of the gene coverage based exclusively on sense strand
sequence information, revealed that of the 24,616 annotated B.
taurus genes in Ensembl (release 73), 17,792 genes (72.3%) had
at least one sequence read count (i.e., one mapped read) in at
least 1 of the 16 individual sample RNA-seq libraries. The 17,792
detectable genes were further filtered by removing lowly expressed
genes, whereby only genes displaying more than 1 CPM reads in
8 or more individual libraries were used for subsequent analyses.
This yielded 12,294 genes (49.9% of annotated B. taurus genes)
that were suitable for downstream analyses.

Prior to differential gene expression analysis, the 12,294 fil-
tered genes were used to generate an MDS plot to visualize gene
expression and infection status for the 16 animal PBL samples
(Figure 1A). This plot shows that samples were clearly differ-
entiated according to infection status along dimension 1 and
dimension 2 highlights one M. bovis-infected sample as a possible
outlier (Infected 34 – animal ID).

Statistical analysis of all 12,294 genes that passed the filtering
process identified a total of 3,250 DE genes (FDR≤0.05), of which
1,579 and 1,671 displayed increased and decreased expression,
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FIGURE 1 | Multidimensional scaling plot of M. bovis-infected and
control samples based on RNA-seq sense data and microarray data.
(A) MDS plot of 8 M. bovis-infected and 8 control PBL samples generated
from 12,294 genes that passed all data filtering prior to differential gene
expression (based on RNA-seq sense data only). (B) MDS plot using data
from 5,082 informative microarray probe sets in 8 M. bovis-infected and 8
control PBL samples.

respectively, in the M. bovis-infected samples relative to the non-
infected control samples (Table S2 in Supplementary Material).
Among the DE genes showing the greatest mean fold-change
increase in expression were CXCL6 (+6.77), IL8 (+5.39), and
CTLA4 (+3.61), while CXCL10 (−3.27), DEFB10 (−7.21), and
IL12 (−4.35) showed the greatest mean fold-change decrease
in expression; all of these genes have been previously shown to
be involved in the host response to mycobacterial infection (12,
30–33).

Functional categorization of the DE genes using IPA revealed an
overrepresentation of genes with roles in inflammatory response,
immunological disease and infectious disease. Of the 3,250 genes
found to be DE, 2,785 mapped to the IPA Knowledgebase. IPA
analysis identified 201 statistically significant (P-value ≤0.05)
enriched pathways, many of which were associated with immune

function (Table S3 in Supplementary Material). Based on the
well-documented role of the T-cell response to mycobacterial
infection, the top-ranking IPA canonical pathway (T-cell recep-
tor signaling ) was overlaid with the RNA-seq gene expression
data, which indicated activation of this pathway (Figure 2). Fur-
ther inspection of the IPA results showed Leukocyte extravasation
signaling to be the second-ranked canonical pathway. Transcrip-
tional suppression was observed for this pathway with several
genes required for migration of leukocytes to the site of infec-
tion displaying reduced relative expression (Figure 3). These
include genes encoding leukocyte ligands required for endothe-
lial adhesion such as ITGB2 (−1.29-fold), ITGAL (−1.23-fold),
and SPN (also known as CD43; −1.42-fold). Reduced relative
expression of the gene encoding the LFA-1 protein was also indi-
rectly observed in these BTB-infected animals. LFA-1 is a com-
plex formed from an α-chain encoded by ITGAL and a β-chain
encoded by ITGB2; both ITGAL and ITGB2 exhibited decreased
relative expression as discussed above. Decreased relative expres-
sion of PECAM1 (−1.69-fold), which encodes a protein involved
in the transmigration of leukocytes through or between endothe-
lial layers into tissues during extravasation, was also detected
in the present study (34). Furthermore, a reduction in rela-
tive expression was also observed for MMP9 (−1.79), which
degrades the extracellular matrix facilitating the transmigration
of leukocytes (35, 36).

COMPARISON OF THE NUMBER OF DIFFERENTIALLY EXPRESSED
GENES IDENTIFIED FROM RNA-seq AND MICROARRAY PLATFORMS
The RNA extracted from these animals has previously been ana-
lyzed using the Affymetrix® Bovine Genome Array (12). To directly
compare gene expression profiles generated by the two platforms,
we re-analyzed all microarray data and of the 24,072 probe sets
represented on the microarray, 5,082 of these passed the filter-
ing process and were designated as informative. An MDS plot
generated from these 5,082 informative probe sets shows samples
clustered according to their infection status (Figure 1B); this pat-
tern was also observed for these samples by Killick and colleagues
using hierarchical clustering (12).

Analysis of all informative microarray probe sets identified
2,808 DE transcripts (FDR ≤0.05) and mapping of these tran-
scripts to the B. taurus UMD3.1.73 genome build yielded 1,398
DE genes with Ensembl IDs (Table S4 in Supplementary Mater-
ial). This is substantially lower than the 2,757 DE genes previously
reported by us for the same RNA samples (12). This discrep-
ancy may be explained by differences in the versions of the B.
taurus reference genome used to annotate the microarray probe
sets: for the previous study, we used the Btau4.0 genome assem-
bly, while in the current study the UMD3.1.73 genome assembly
was used. Discrepancies between the two genome annotations
as detailed by Zimin et al. (37) most readily account for the
reduced number of DE genes with Ensembl IDs observed for the
present study.

Of the 1,398 DE genes obtained from re-analysis of the
Affymetrix® Bovine Genome Array in infected animals relative
to the control animals, 630 and 768 exhibited increased and
decreased expression, respectively. Consequently, it is notewor-
thy that the number of Ensembl-annotated DE genes obtained
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FIGURE 2 |The top-ranked enriched canonical pathway identified
using IPA, theT-cell receptor signaling pathway. Red shading
indicates increased expression in M. bovis-infected animals relative to

the non-infected control group. Green shading indicates decreased
expression in M. bovis-infected animals relative to the non-infected
control group.

with the RNA-seq analysis (3,250 DE genes; 1,579 increased rel-
ative expression and 1,671 decreased relative expression) was
markedly higher than the number of DE genes detected using
the microarray. Further examination of the results showed that
917 DE Ensembl genes had the same direction of expression (i.e.,
increased or decreased relative expression) on both platforms;
2,331 DE Ensembl genes were unique to the RNA-seq results (i.e.,
DE using RNA-seq but not DE on the microarray platform); and
479 DE Ensembl genes were unique to the microarray (i.e., DE
on the microarray platform but not DE on the RNA-seq plat-
form). Finally, two of the genes were found to have conflicting
patterns of expression, i.e., genes that displayed increased relative
expression on one platform and decreased relative expression on
the other platform. CHTOP showed decreased relative expression
on the RNA-seq platform but increased relative expression on the

microarray platform and GPR89 showed increased relative expres-
sion on the RNA-seq platform but decreased relative expression
on the microarray platform (Figure 4).

Finally, analysis and comparison of the number of IPA-
identified statistically significant canonical pathways (P-value
≤0.05) for the DE genes from both platforms revealed 101 path-
ways that were common to both, 100 that were unique to RNA-seq,
and 36 that were unique to the microarray. The larger number
of IPA-identified canonical pathways from the RNA-seq results
reflects the greater number of DE genes detected using this plat-
form. Despite this, however, there was a notable level of overlap in
the number of pathways identified using both platforms. The per-
centage of overlapping pathways between the two platforms was
estimated as 50.2% for RNA-seq and 73.7% for the microarray
(Tables S3 and S5 in Supplementary Material).
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FIGURE 3 |The second-ranked enriched canonical pathway
identified using IPA, the Leukocyte extravasation pathway. Red
shading indicates increased expression in M. bovis-infected animals

relative to the non-infected control group. Green shading indicates
decreased expression in M. bovis-infected animals relative to the
non-infected control group.

FIGURE 4 | Venn diagram showing comparison of differentially
expressed genes identified from sense RNA-seq data and the
microarray. Sets of upregulated genes are represented in red and sets of
downregulated genes are in green.

CORRELATION OF THE LOG FOLD-CHANGE IN GENE EXPRESSION
BETWEEN THE TWO PLATFORMS USING ALL GENES THAT PASSED
FILTERING
We analyzed the correlation between the log2 fold-changes
(infected versus control) on both gene expression platforms. We
hypothesized that genes with high differential fold-changes in

expression based on RNA-seq analysis should also show high
differential fold-changes based on the microarray data. Accord-
ingly, these data would be expected to yield a significant, positive
correlation. For this, all 12,294 genes and 5,082 probe sets that
passed the filtering criteria across both sample groups for both
RNA-seq and microarray analysis, respectively, were considered.
Next, we identified all the genes, irrespective of significance, that
were common to both data sets based on Ensembl gene ID, this
involved matching the Ensembl IDs of the filtered genes in the
RNA-seq data set with the Ensembl IDs of the filtered microarray
probe sets. In total, 2,265 Ensembl IDs were identified in com-
mon between the two platforms. The log2 fold-change values for
these 2,265 genes (infected versus control) for both the RNA-seq
and microarray data, irrespective of the significance of differential
expression generated a Spearman correlation coefficient of 0.88
(P ≥ 0.001), which underlines the reproducibility and robustness
of both platforms for investigations of differential gene expression.

COMPARISON OF THE FOLD-CHANGE AND DIFFERENCE IN
EXPRESSION VALUES FOR RNA-seq AND MICROARRAY DATA
We next investigated the correlation between fold-change in
expression and gene expression levels. This enabled us to deter-
mine if the highest fold-changes in gene expression were observed
for genes with low levels of expression. For this, we compared
the log2 expression fold-changes with the log2 differences in CPM
between infected and control groups for the RNA-seq platform.
We also compared the log2 expression fold-changes with the log2
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differences in hybridization intensity between infected and con-
trol groups for the microarray platform. We hypothesized that if
transcripts with the lowest expression levels gave the highest fold-
change values, a negative correlation would be observed between
log2 expression fold-changes and log2 differences for genes dis-
playing increased relative expression in the infected group relative
to the control group. Reciprocally, a positive correlation would
be expected between log2 expression fold-changes and log2 dif-
ferences for genes displaying decreased relative expression for the
same group contrast.

For the RNA-seq platform, all 12,294 genes that passed filter-
ing were used. Of these, 6,243 displayed an increase in relative
expression and 6,051 displayed a decrease in relative expression,
irrespective of significance. Spearman rank correlation coefficients
of 0.35 and −0.43 were observed for genes displaying increased
and decreased relative expression, respectively (P ≤ 0.001). For
the microarray platform, we used all 5,082 probe sets that passed
filtering of which 2,551 displayed an increase in expression and
2,531 displayed a decrease in expression, irrespective of signifi-
cance. Spearman rank correlation coefficients of 0.61 and −0.64
were observed for genes displaying increased and decreased rel-
ative expression, respectively (P ≤ 0.001). The correlation coeffi-
cients for both the RNA-seq and microarray platforms for genes
with increased and decreased relative expression do not support
the hypothesis detailed above; therefore, we conclude that there
is no obvious relationship between gene expression level and
fold-change in expression.

DYNAMIC RANGE OF RNA-seq AND MICROARRAY DATA
To investigate the dynamic range of the RNA-seq and microarray
platforms, the log2 reads per kilobase per million (RPKM) from
the RNA-seq data and the log2 intensities from the microarray data
were used; only genes and probe sets that passed the filtering crite-
ria (12,294 and 5,082, respectively) were considered for this analy-
sis. The lowest expression value was subtracted from the highest
expression value for each platform. For the RNA-seq platform,
the gene displaying the lowest expression level was MUC5B (log2

RPKM of −6.49), while the gene with the highest value was COX1
(log2 RPKM of 13.46); this yielded a log2 dynamic range of 19.96.
It is important to note that as RPKM values are proportions, val-
ues <1.0 will yield a negative result when log-transformed. For the
microarray platform, the probe set with the lowest log2 intensity
was Bt.29403.1.s1_at (4.89) and the probeset with the highest log2

intensity was AFFX-Crex-5_at (13.90), yielding a log2 dynamic
range of 9.01. Therefore, the dynamic range of RNA-seq for the
current study is almost 2,000-fold greater than the microarray.

DISCUSSION
Whole-genome transcriptional profiling has been successfully
used to study human and BTB and has facilitated high-resolution
analysis of the host genes and cellular pathways that are activated
and perturbed in response to mycobacterial pathogens (11–13,
17, 38–42). The target tissue for studies of the host response has
generally been peripheral blood collected from infected and non-
infected individuals or animals; peripheral blood provides an easily
accessible biological sample that reflects the host immunological
and pathological changes induced at the site of infection (9). For

example, Berry and colleagues identified a microarray-derived 393
transcript biomarker signature, characterized by type 1 interferon-
inducible genes, which discriminated active human TB patients
from latently infected and healthy control individuals (38). Fur-
thermore, microarray-based comparative analysis of the periph-
eral blood transcriptome of active human tuberculosis cases and
sarcoidosis patients (an analogous granulomatous disease of the
respiratory tract of unknown etiology) also revealed a transcrip-
tional signature that differentiated these two pathologically similar
diseases (39). Similarly for BTB, pan-genomic and immuno-
specific microarray analysis of peripheral blood has demonstrated
that M. bovis-infected and non-infected animals can be unam-
biguously differentiated by disease status. Moreover, downstream
analysis of the DE genes provided functional genomics evidence
that active BTB is associated with the suppression of host innate
immune responses and impairment of T-cell signaling (10, 12).

Notwithstanding the remarkable progress in functional
genomics studies of the immunobiology and host–pathogen inter-
actions, microarray studies of the host response to mycobacterial
infections are not without limitations. For example, microarrays
are limited to analysis of genes/transcripts for which probes can be
generated from functionally annotated genome resources. In addi-
tion, quantification of gene expression indirectly from hybridiza-
tion signal intensities constrains the dynamic range for lowly
and highly expressed gene transcripts. Also, the measurement of
gene expression can be hampered by probes that differ in their
hybridization affinities with the target mRNA and by background
non-specific hybridization, particularly for lowly expressed genes
(15, 43, 44).

In contrast, RNA-seq technologies, which are based on high-
throughput sequencing and subsequent counting of all expressed
RNA transcripts present in a biological sample, have several
advantages for quantifying RNA abundance and unraveling the
complexity of the host transcriptome following mycobacterial
infection. These include unbiased global gene expression analy-
sis (the entire transcriptome is normally surveyed), detection of
allele-specific expression, and cataloging of novel transcripts, RNA
classes (e.g., long non-coding RNA transcripts), and splice variants
that are rarely quantifiable using microarray technologies (15, 44).
Also, RNA-seq analysis is based on digital counts of reads that map
to annotated genes within a reference genome, thus offering a more
precise and sensitive method to identify and quantify DE genes
than analog microarray hybridization intensities. Consequently,
for the present study we have compared the peripheral blood tran-
scriptomes of non-infected control animals and animals naturally
infected with M. bovis (eight samples per group) using RNA-seq
and compared these results to parallel data obtained using the
pan-genomic Affymetrix® Bovine Genome Array.

FUNCTIONAL BIOLOGY OF RNA-seq RESULTS
A mean of 13.2 million 78-mer reads per individually barcoded
RNA-seq library was obtained and this yielded a mean of 1.03 Gb
of sequence data per library. A mean of 11.8 million reads (89%
of the mean number of library reads) per library mapped to
unique locations in the bovine UMD3.1 reference genome. This
is higher than previously reported comparable studies: Nalpas
and colleagues observed that 63.6% of reads mapped to unique
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UMD3.1 regions and Churbanov and colleagues observed that
71.2% of reads mapping to the Btau 4.0 reference genome (17,
45). Analysis of the gene coverage from these uniquely mapped
reads revealed that 17,792 genes from a total of 24,616 annotated
bovine genes gave at least 1 sequence read in at least 1 of the 16
individual libraries. As accurate quantification of gene expression
is reliant on sequencing depth, whereby low sequencing cover-
age can lead to the generation of false-positive DE genes (type I
errors) (46, 47), we have used a stringent sequencing-depth fil-
tering criterion to remove lowly expressed genes. This filtering
involved the retention of genes displaying more than one CPM in
eight or more individual libraries; 12,294 genes (49.9% of anno-
tated B. taurus genes) were retained for downstream differential
expression analyses. The number of biological replicates (n= 8)
and mean sequencing depth per library achieved in the present
study is sufficient for the accurate quantification and analysis of
DE genes with a corresponding reduction in the number of type I
errors due to lowly expressed genes (46–48).

Previous work by our group and others has demonstrated that
a functional genomics approach can highlight novel aspects of
the complex etiology of M. bovis infection in cattle. These studies
have confirmed the role of TH1-type cytokines and chemokines
and innate immune receptors (e.g., TLR genes) in mediating the
response to M. bovis infection. Moreover, these investigations sup-
port the hypothesis that the immunoevasive mechanisms used by
the pathogen during infection are reflected in the host transcrip-
tome at the peripheral blood level; in particular, the suppression
of innate immune signaling, which leads to an inferior adaptive
immune response (10, 12).

In the current study, RNA-seq was used to identify a total of
3,250 DE genes in the infected group relative to the control group;
of these, 1,579 genes displayed increased relative expression and
1,671 genes showed reduced relative expression. The number of
DE genes identified here through RNA-seq analysis exceeds the
number of DE gene previously reported by Killick et al. (12) for the
same RNA samples (2,757 DE genes; 1,281 and 1,476 genes display-
ing increased and decreased relative expression, respectively). This
finding emphasizes the increased sensitivity of RNA-seq compared
to microarrays for studies of differential gene expression (17, 49).

Gene ontology analysis revealed enrichment for genes
involved in inflammation and immunity. TH1-type cytokines and
chemokines, such as CXCL6 and IL8, were among the top-ranking
DE genes based on fold-change in expression; additional innate
immune genes, such as CCL4, CXCR4, CXCR7, IL1A, IL8, IL10,
and TLR4 also shown increased expression in the M. bovis-infected
group relative to the controls. Several innate immune genes also
displayed reduced relative expression including CXCL10, DEFB10,
IL12, IL18, and IL27. These results suggest that although innate
immune genes play a role in mediating the host response to
M. bovis infection, these genes may also serve as targets for
immunomodulation by the pathogen to facilitate survival in the
host. For example, IL12, IL18, and IL27 encode cytokines that
have all been shown to play key roles in initiating and control-
ling the adaptive immune response to mycobacterial infection
(31, 50); suppression of these genes may result in the devel-
opment of an inferior cellular response to infection leading to
disease progression. The increased relative expression of the IL10

gene, which encodes an immunosuppressive cytokine, may also
result in the suppression of host innate immune responses to
infection resulting in mycobacterial persistence within the host
(51). Collectively, these findings support our previous work, which
hypothesized that the suppression of innate immune expression
and signaling limits the initiation and maintenance of an appro-
priate adaptive immune response, contributing to the progression
of BTB disease (10, 12).

Further analysis of the DE genes using the IPA Knowledge-
base identified additional cellular mechanisms within several of
the top-ranking canonical pathways, which may be subject to
immunomodulation by the pathogen, including the Leukocyte
Extravasation Signaling and Tec Kinase Signaling pathways. The
Leukocyte Extravasation Signaling pathway exhibited a decrease
in expression for many genes encoding positive modulators of
this pathway, including SPN (also known as CD43), ITGAL,
ITGB2, and PECAM1 (52–55). Leukocyte extravasation refers to
the transendothelial migration of activated leukocytes from the
blood into infected tissue and is vital for immune surveillance
and defense (56). This process, which requires the adherence of
leukocytes to the endothelial surface of blood vessels followed by
transmigration through the endothelial blood vessel cell layer into
the infected tissue, is mediated by chemokines and several cell
surface proteins and adhesion molecules including selectins and
integrins (57). Within the IPA-identified Leukocyte Extravasation
Signaling pathway, transcriptional suppression was observed for
several leukocyte ligands required for endothelial adhesion dur-
ing extravasation. SPN, ITGAL, and ITGB2 encode the CD43 and
the CD11b and CD18 leukocyte cell surface ligands, respectively
[the latter of which can complex with different protein partners
to form different integrins such as LFA-1 and MAC1 (58)], which
are required for leukocyte adhesion to the endothelial cells and
subsequent transmigration of the leukocytes into infected tissue
(54, 59, 60). PECAM1 encodes a selectin protein found at intercel-
lular endothelial junctions and is also required for transmigration
across these barriers (52, 61). Lower expression of these ligands
may result in reduced leukocyte recruitment to the site of infec-
tion, leading to an impaired adaptive immune response to contain
or eradicate M. bovis infection in the host, ultimately leading to
disease progression. In addition, these findings lend further sup-
port to the hypothesis that the immunoevasion mechanisms used
by the pathogen are reflected in the host transcriptome.

Hematological analysis of blood samples taken from the ani-
mals analyzed in the current study showed a significant increase
in the mean number of lymphocytes (P = 0.001) and a significant
decrease in the mean number of monocytes (P = 0.002) for the
infected animals relative to the control group (12). Conversely, no
significant differences were observed in the mean number of neu-
trophils between the two sample groups (P ≥ 0.05). It is therefore
likely that many of the gene expression changes observed in the
current study reflect differences in white blood cell populations
between the sample groups.

WHOLE-GENOME EXPRESSION PROFILING: RNA-seq VERSUS
MICROARRAYS
The PBL-extracted RNA analyzed in the present study using RNA-
seq had also been previously analyzed by us using the Affymetrix®
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GeneChip® Bovine Genome Array (12); this enabled a direct tech-
nical comparison between the two platforms. RNA-seq analysis
detected 2.3-fold (3,250/1,398) more DE genes with Ensembl IDs
compared to the microarray platform. The percentage of over-
lapping DE genes with Ensembl IDs between the two platforms
was estimated at 28.2% for RNA-seq (917/3,250) and 65.6%
(917/1,398) for the microarray. Similarly, the concordance rate
based on IPA-identified canonical pathways for the two platforms
was estimated at 73.7% for the microarray and 50.2% for RNA-seq.
These results demonstrate that the majority of DE genes detected
using the microarray are also detected by RNA-seq. This finding
also highlights the greater number of DE genes uniquely identified
by RNA-seq compared to microarrays as previously reported by
us and others (17, 62, 63).

In the current study, the greater number of DE genes detected
using RNA-seq can be largely attributed to the greater dynamic
range of RNA-seq, which enables sensitive detection of lowly,
but DE genes between the infected and control groups (46, 47).
Notably, the concordance rate for the microarray (65.6%) is higher
than that previously reported by our group for monocyte-derived
macrophages (MDM) infected in vitro with M. bovis (17) and
by (64), who examined the transcriptome of anti-CD3- and anti-
CD28-stimulated human CD4+ T cells. The increased microarray
concordance rate (based on the number of DE genes) observed for
the current study compared to these previous studies is likely due
to increased sequencing depth and a greater number of biological
replicates (46–48).

Interestingly, two DE genes (0.06% of all RNA-seq DE genes
and 0.14% of all microarray DE genes) displayed opposite direc-
tions of expression on the two platforms. These discordance rates
are lower than that previously reported for RNA-seq and microar-
ray analysis of human cancer cell transcriptomes (65) and may
be explained by several technical factors including random error,
differences in the transcript isoforms detected by both platforms,
and the susceptibility of microarray probes to cross-hybridize with
non-specific gene transcripts (66, 67).

WHOLE-GENOME TRANSCRIPTOMICS: BIOMARKER DEVELOPMENT
FOR M. BOVIS INFECTION
Multidimensional scaling analysis using all RNA-seq genes that
passed the filtering criteria unambiguously differentiated animals
on the basis of their disease status (Figure 1A). This result is also
supported by the microarray data generated (12) and re-analyzed
here. These findings suggest that genome-wide expression profil-
ing of peripheral blood from M. bovis-infected animals can be
used to identify transcriptional biomarkers for the detection of
infected animals within herds and thereby augment surveillance
strategies in countries where BTB control programs have been
implemented. In addition, recent work has demonstrated that
circulating serum or plasma microRNAs may serve as a comple-
mentary source of robust biomarkers for tuberculosis and other
infectious diseases (68–72). Notwithstanding this, further work
using large PBL sample panels from additional animals infected
with M. bovis and other microbial pathogens will be required
to identify and validate robust M. bovis-specific transcriptional
signatures of infection.
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Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis,
(MAP), is a chronic intestinal disease of ruminants with serious economic consequences
for cattle production in the United States and elsewhere. During infection, MAP bacilli
are phagocytosed and subvert host macrophage processes, resulting in subclinical infec-
tions that can lead to immunopathology and dissemination of disease. Analysis of the host
macrophage transcriptome during infection can therefore shed light on the molecular mech-
anisms and host-pathogen interplay associated with Johne’s disease. Here, we describe
results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcrip-
tome response during MAP infection using RNA-seq. MDM were obtained from seven age-
and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection
time course with non-infected controls. We observed 245 and 574 differentially expressed
(DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05)
at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including
biological pathway enrichment, highlighted potential functional roles for genes that have
not been previously described in the host response to infection with MAP bacilli. In addi-
tion, differential expression of pro- and anti-inflammatory cytokine genes, such as those
associated with the IL-10 signaling pathway, and other immune-related genes that encode
proteins involved in the bovine macrophage response to MAP infection emphasize the bal-
ance between protective host immunity and bacilli survival and proliferation. Systematic
comparisons of RNA-seq gene expression results with Affymetrix® microarray data gen-
erated from the same experimental samples also demonstrated that RNA-seq represents
a superior technology for studying host transcriptional responses to intracellular infection.

Keywords: cattle, immune response, Johne’s disease, macrophage, microarray, Mycobacterium avium subspecies
paratuberculosis, RNA-sequencing, transcriptome

INTRODUCTION
Johne’s disease, caused by infection with Mycobacterium avium
subsp. paratuberculosis (MAP) is a chronic granulomatous enteri-
tis of ruminants, both domestic and wild, including cattle, sheep,
deer,and other mammalian species (1). Furthermore, there is some
evidence, albeit contentious, suggesting that infection with MAP
may be associated with Crohn’s disease in humans (2–4). While
prevalence figures of Johne’s disease in cattle are difficult to deter-
mine – due, in part, to limited sensitivity and specificity of MAP
diagnostic tests – current estimates in European countries vary
from 31 to 71% (5–8). In the United States, Johne’s disease is esti-
mated to cost the economy between $200 million and $1.5 billion

annually, with that figure rising concurrently with herd-level MAP
prevalence (9, 10).

The primary route of MAP transmission is believed to be
fecal-oral or through ingestion of infected colostrum (11, 12).
Once internalized, infectious bacilli cross the intestinal mucosa
by penetrating specialized microfold cells (M cells) or entero-
cytes, which are located in the epithelium lining of the dome
areas of Peyer’s patches (13–15). The bacilli then traverse the M
cells by transcytosis and migrate to the basolateral side of the
cell where they are recognized and phagocytosed by intestinal
macrophages. Macrophage recognition of MAP bacilli is medi-
ated by host pathogen recognition receptors (PRRs), including
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cell-surface Toll-like receptors (TLRs) and intracellular NOD-
like receptors (NLRs) (16, 17); indeed, it has been demonstrated
that TLR2, TLR4, and NOD2 can independently recognize MAP
cellular components (18). Infected macrophages secrete pro-
inflammatory cytokines, such as IL-1B and TNF, which activate
an early protective TH1 response characterized by the release of
IFN-γ from T-cells. IFN-γ activates the antimicrobial mechanisms
of the macrophage that destroys the internalized pathogen and
also induces the development of granulomas that actively contain
infection in the majority of animals such that clinical signs do not
usually manifest (19–21).

The outcome of MAP infection is dependent on the interaction
between infected macrophages and T-cells; progression to clinical
infection is thought to develop in animals that fail to eradicate the
pathogen with a concomitant shift in the immune system from a
protective cellular response to a non-protective humoral response.
Consequently, both humoral and cellular immune responses can
exist simultaneously in infected individuals and it is possible
for MAP bacilli to latently infect animals by persisting in host
macrophages for prolonged periods and later become reactivated
if, for example, the animal subsequently becomes immunosup-
pressed (22). MAP has the capacity to survive and subvert the
macrophage response to ensure its survival and replication (20,
21, 23, 24). In general, the interactions between the macrophage
and MAP upon infection are comparable to those observed for
other pathogenic mycobacteria such as M. tuberculosis and M.
bovis (22). In this context, MAP prevents phagosome matura-
tion, thus facilitating bacterial survival in phagosomes, which
in turn provide a niche for further bacterial growth (25). The
mechanisms used by MAP to do this are complex but primarily
involve the modulation of various cell signaling pathways through
interaction with cell membrane receptors, inhibiting phagosome
acidification and phagolysosome fusion, and reducing antigen pre-
sentation to the immune system (26). MAP, in common with
other mycobacterial pathogens also subverts cell death processes,
particularly apoptosis to inhibit antigen presentation and the sub-
sequent development of an effective immune response (25). It
has also been suggested that inhibition of apoptosis may con-
tribute to the large numbers of infected macrophages that persist
in affected tissues (10, 25). Persistence of MAP in macrophages
underlies the progression to clinical disease, which is characterized
by immunopathology, proliferation of the pathogen, dissemina-
tion infection through the host, and ultimately fecal shedding of
the pathogen from the host, thus maintaining the cycle of infection
(11, 12, 27).

Through modulation and subversion of the bovine host
macrophage, MAP promotes its short- and long-term survival.
Therefore, analysis of the macrophage transcriptome in response
to MAP infection can shed light on the cellular processes underly-
ing pathogen–macrophage interactions and how the perturbation
of these pathways is associated with the pathogenesis of Johne’s
disease. In recent years, RNA sequencing (RNA-seq) has provided
unprecedented opportunities for gene expression analysis of host
response to infection, including unbiased whole-transcriptome
profiling, sense and antisense transcription analysis, the charac-
terization of new classes of RNA, and the identification of novel
mRNA splice variants (28, 29).

Previously, we used the Affymetrix® GeneChip® Bovine
Genome Array to study host gene expression in RNA extracted
from MAP-infected and non-infected control bovine monocyte-
derived macrophages (MDM) across a 24 h time course (30). Our
analysis revealed a marked reduction in the number of differen-
tially expressed (DE) genes at the 24 h time point compared to
the two earlier infection time points; indeed, these results indi-
cated that majority of transcriptional changes induced by infection
occur within the first 6 h of infection, with differential gene expres-
sion having largely abated 24 h post-infection (hpi). Consequently,
for the present study, we describe analysis of the same RNA sam-
ples from the 2 and 6 hpi time points using RNA-seq to enhance
detection of host macrophage mRNA transcripts and molecular
pathways perturbed and modulated by MAP infection.

MATERIALS AND METHODS
ETHICS STATEMENT
All animal procedures were carried out according to the provi-
sions of the Cruelty to Animals Act (Irish Department of Health
and Children license number B100/3939) and ethical approval for
the study was obtained from the UCD Animal Ethics Committee
(protocol number AREC-P-07-25-MacHugh).

ANIMALS
Seven age-matched (4-year old) Holstein-Friesian females were
used for this study and have previously been described by our
group. These animals had been maintained under uniform hous-
ing conditions and nutritional regimens at the UCD Lyons
Research Farm (Newcastle, County Kildare, Ireland). The animals
did not have a recent history of Johne’s disease and were also
negative for infection with M. bovis (30).

MDM PREPARATION AND INFECTION AND RNA PURIFICATION
The methods used to isolate, purify, and infect bovine MDM
with MAP have been previously described by our group (29–32).
MDM from seven age-matched, female Holstein-Friesian cattle
were infected in vitro with a clinical isolate of MAP [multiplicity
of infection (MOI) of 2 bacilli:1 MDM] and parallel non-infected
control MDM samples were also generated.

Total RNA was extracted from each individual sample and puri-
fied individually at 0, 2, and 6 hpi and used to prepare pooled
strand-specific RNA-seq libraries as previously described by us
(29, 33). RNA was extracted using an RNeasy kit incorporating
an on-column DNase treatment step (Qiagen Ltd., Crawley, UK)
according to the manufacturer’s instructions. The quantity and
quality of the RNA was assessed using a NanoDrop™ 1000 spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
and an Agilent 2100 Bioanalyzer with an RNA 6000 Nano LabChip
kit (Agilent Technologies Ltd., Cork, Ireland). A260/280 ratios
>2.0 and RNA integrity numbers (RINs) >8.5 were obtained for
all total RNA samples purified across the infection time course.

STRAND-SPECIFIC RNA-seq LIBRARY PREPARATION
The protocol used for RNA-seq library preparation was adapted
from a protocol previously published by our group (29). Thirty-
five strand-specific Illumina® RNA-seq libraries were generated
(seven libraries for the MAP-infected and control groups at the 2
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and 6 hpi time points and seven 0 h time point control samples)
using 150–200 ng of total RNA. Samples were heated at 65°C
for 5 min to disrupt RNA secondary structure and purification
of poly(A)+ RNA was performed using the Dynabeads® mRNA
DIRECT™ Micro Kit according to the manufacturer’s instruc-
tions (Invitrogen™/Life Technologies Ltd., Paisley, UK). Purified
poly(A)+ RNA was then fragmented using 1×RNA Fragmenta-
tion Reagent (Ambion®/Life Technologies Ltd., Warrington, UK)
for 5 min at 70°C and precipitated using 68 mM sodium acetate
pH 5.2 (Ambion®), 227 ng/µl glycogen (Ambion®) and 30 µl of
100% ethanol (Sigma-Aldrich Ltd., Dublin, Ireland). The RNA
pellets obtained were then washed with 80% ethanol, air-dried for
10 min at room temperature and then re-suspended in 10.5 µl of
DNase- and RNase-free molecular biology-grade H2O.

Synthesis of first strand cDNA was performed by incubat-
ing fragmented RNA with 261 mM Random Hexamer Primers
(Invitrogen™), 1× first strand buffer (Invitrogen™); 10 mM DTT
(Invitrogen™); 0.5 mM dNTPs; 20 U RNaseOUT™ Recombinant
Ribonuclease Inhibitor; and 200 U SuperScript® II Reverse Tran-
scriptase (Invitrogen™) using the following temperature profile:
25°C for 10 min, 42°C for 50 min, and 70°C for 15 min. First strand
synthesis reaction mixtures were then purified using MicroSpin™
G-50 columns according to the manufacturer’s instructions (GE
Healthcare UK Ltd., Buckinghamshire, UK).

Second strand cDNA synthesis, involving the incorporation of
uracil, was performed by adding the first strand cDNA synthe-
sis reaction to a second strand reaction mix consisting of 0.065×
first strand buffer (Invitrogen™); 1× second strand buffer (Invit-
rogen™); a dNTP solution consisting of a final concentration of
0.3 mM dATP, dCTP, dGTP (Sigma-Aldrich), and 0.3 mM dUTP
(Bioline Reagents Ltd., London, UK); 1 mM DTT (Invitrogen™);
2 U RNase H (Invitrogen™); and 50 U E. coli DNA Polymerase
I (Invitrogen™). Reactions were incubated at 16°C for 2.5 h.
The double stranded cDNA was subsequently purified using a
QIAquick PCR Purification kit (Qiagen) according to the manu-
facturer’s instructions and eluted in 30 µl of the provided elution
buffer.

Blunt-end repair of cDNA samples was performed in 100 µl
reaction volumes containing 1×T4 DNA ligase buffer with 10 mM
dATP (New England Biolabs® Inc., Ipswich, MA, USA), 0.4 mM of
each dNTP (Invitrogen™), 15 U T4 DNA polymerase (New Eng-
land Biolabs®), 5 U DNA Polymerase I Large (Klenow) Fragment
(New England Biolabs®), and 50 U T4 polynucleotide kinase (New
England Biolabs®). Reactions were incubated at 20°C for 30 min
and the cDNA was then purified using a QIAquick PCR Purifi-
cation Kit (Qiagen) according to the manufacturer’s instructions
and eluted in 32 µl of the provided elution buffer.

Illumina® RNA-seq adaptor ligation reactions (50 µl vol-
umes) were performed using 21 µl of each of the phosphorylated
blunt-ended cDNA (with 3′-dATP overhangs) samples and 1×
Quick DNA ligase buffer (New England Biolabs®); 30 nM custom
indexed single-read adaptors (Table S1 in Supplementary Mater-
ial) and 15 U T4 DNA ligase (Invitrogen™). Reaction mixes were
incubated at room temperature for 15 min and purified using a
QIAquick MinElute Kit according to the manufacturer’s instruc-
tions (Qiagen) and eluted in 10 µl of the provided elution buffer.
Adaptor-ligated cDNA was gel-purified using 2.5% agarose gels

stained with 1 µg/ml ethidium bromide (Invitrogen™). Gels were
electrophoresed at 100 V using 1× TAE buffer (Invitrogen™) for
75 min at room temperature. Size-fractionated bands correspond-
ing to 200 bp (+50 bp) were excised from each sample and purified
using a QIAquick Gel Extraction kit (Qiagen) according to the
manufacturer’s instructions and eluted in 30 µl of elution buffer.
For generation of strand-specific RNA-seq libraries, the second
strand of the gel-purified adapter-ligated cDNA containing uracil
was enzymatically digested in 30 µl reaction volumes containing
1× Uracil-DNA Glycosylase buffer and 1 U Uracil-DNA Glycosy-
lase (Bioline). These reactions were incubated at 37°C for 15 min
followed by 94°C for 10 min.

PCR enrichment amplifications (25 µl) containing 9 µl of sec-
ond strand-digested, adaptor-ligated cDNA; 1× Phusion® High-
Fidelity DNA polymerase buffer (New England Biolabs); 334 nM
each Illumina® PCR primer (Illumina® Inc., San Diego, CA, USA);
0.4 mM each of dATP, dCTP, DGTP, and dTTP (Invitrogen™);
and 1 U Phusion® High-Fidelity DNA polymerase (New England
Biolabs®). PCR amplification reactions were performed with the
following temperature cycling profile: 98°C initial denaturation for
30 s; 18 cycles of 98°C for 10 s, 65°C for 30 s, and 72°C for 30 s; and
72°C final extension step for 5 min. PCR products were visualized
following electrophoresis on a 2% agarose gel stained with ethid-
ium bromide (0.6 µg/ml; Invitrogen™) and purified to remove
PCR-generated adaptor-dimers using an Agencourt AMPure XP
kit (Beckman Colter Genomics, Danvers, MA, USA) according to
the manufacturer’s instructions with final elution in 30 µl of 1×
TE buffer.

All RNA-seq libraries were quantified using a Qubit® Fluorom-
eter (Invitrogen™). RNA-seq library quality was assessed using
an Agilent Bioanalyzer and Agilent High sensitivity DNA chip
(Agilent) and confirmed that insert sizes were 200–250 bp for
all individual libraries. Individual RNA-seq libraries were stan-
dardized and pooled in equimolar quantities (10 µM for each
individual library). The quantity and quality of the final pooled
library was assessed as described above prior to sequencing.

Cluster generation and sequencing of the pooled RNA-seq
libraries was performed on an Illumina® HiSeq 2000 sequencer
according to the manufacturer’s instructions. These RNA-seq data
have been deposited in the NCBI Gene Expression Omnibus
(GEO) database with experiment series accession number
GSE62048.

BIOINFORMATICS AND STATISTICAL ANALYSIS OF RNA-seq DATA
All of the bioinformatics pipeline information and associated
scripts used for computational analyses are available in a GitHub
repository at https://github.com/mauracasey/RNA-sequencing.
These analyses were performed on a 32-node Compute Server
running Linux Ubuntu (version 12.04.2) with 256 GB of RAM
and 24 TB of hard disk drive storage.

Initial quality checks were performed on each of the raw reads
data files using the FastQC software (version 0.10.1)1 to determine
the most appropriate read quality filtering methodology. Conse-
quently, a custom perl script was used to deconvolute sequence

1www.bioinformatics.babraham.ac.uk/projects/fastqc
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reads obtained from the flow cell into 35 individual libraries using
the indexed barcoded adapters (the script was optimized to work
with single-end reads and a six nucleotide barcode at the 5′-end
of each read).

For initial sequence adapter removal and quality filtering,
appropriate parameters were used with the custom perl script to
filter out reads containing adapter sequence (allowing up to three
mismatches) and reads below a sequence quality threshold (dis-
card reads with more than 25% bases with a phred score <20); all
reads were also trimmed of 20 nucleotides at the 3′-ends.

The FastQC package was used to further assess the filtered indi-
vidual fastq files, revealing that no further filtering steps were
required. The STAR RNA-seq aligner software package (version
2.3.0) (34) was used to align filtered sequence reads to the most
recent version of the Bos taurus reference genome [UMD3.1.73;
(35)]. Aligned sequence reads in individual SAM files were then
used for a final FastQC quality check step to detect quality score
biases in the aligned reads and all samples successfully passed.

The featureCounts tool, which is part of Subread software pack-
age (36, 37), was used to perform count summarization of sense
genes. Reads were assigned to a gene if they were not multi-hit
reads and if the mapped location was associated with a unique
gene on the sense strand. Differential gene expression analysis was
performed using the Bioconductor edgeR package (38) with the
gene raw counts obtained from featureCounts. The BioMart tool
was used first for gene annotation with Ensembl gene IDs (39).
Ribosomal RNA genes were filtered out and lowly expressed genes
were also removed with a minimally set threshold of one count per
million (CPM) in at least seven individual libraries (the choice of
seven libraries is based on the sample size of each treatment group)
(38). For each library, a normalization factor was calculated based
on RNA composition among libraries (computed using trimmed
mean of M -values). For the present study, at this stage the seven
0 h control samples were removed from the data set and not used
for any subsequent bioinformatics, differential gene expression, or
downstream data analyses.

Using the edgeR package (38), DE genes between MAP-infected
versus non-infected control MDM samples for each time point
post-infection (2 and 6 hpi) were obtained using paired-sample
statistics by fitting a negative binomial generalized linear model
to each gene. Multiple-testing correction was performed using
the Benjamini–Hochberg method (40) with a false discovery rate
(FDR)-adjusted threshold of ≤0.05.

FUNCTIONAL ANALYSES OF DE GENES OBTAINED USING RNA-seq
The RNA-seq DE gene lists obtained for each time point post-
infection were used for downstream systems analysis to identify
important cellular pathways with the Ingenuity® Systems Path-
way Analysis Knowledgebase (IPA2;Summer Release, June 2014).
This approach was used to identify canonical pathways that were
overrepresented based on the list of DE genes at each of the two
time points post-infection using Fisher’s exact test (FDR-adjusted
P value threshold ≤0.05).

The GOseq Bioconductor package (41) was used to deter-
mine gene ontology (GO) biological process functions that were

2http://www.ingenuity.com

enriched based on the RNA-seq DE gene lists obtained for
each time point post-infection (Bonferroni-adjusted P value
threshold ≤0.05).

COMPARATIVE ANALYSIS OF MICROARRAY DATA
The raw microarray data generated from the 35 total RNA samples
used for the RNA-seq DE gene and downstream analyses (MDM
from seven animals at 0 h, 2, and 6 hpi with the corresponding
control samples) were retrieved from the NCBI GEO repository
(42) with the accession number GSE35185 (30). The Affymetrix®
GeneChip® Bovine Genome Array used to generate these data
contains 24,072 probe sets representing more than 23,000 gene
transcripts. The retrieved microarray data were then analyzed
with a number of different Bioconductor packages (43) using the
UMD3.1.73 build of the bovine genome (35). The Factor Analysis
for Robust Microarray Summarization (FARMS) algorithm was
used to normalize the microarray data (44) and these normal-
ized data were then filtered for informative probes sets using the
FARMS informative/non-informative (I/NI) calls unsupervised
feature selection method (45).

To compare data generated using the two different gene expres-
sion technologies, microarray probe sets were annotated with
bovine Ensembl gene IDs from the B. taurus reference genome
build used to annotate the RNA-seq data [UMD3.1.75; (35)]
using the Bioconductor biomaRt package (39). DE genes were
detected between experimental groups using the Linear Mod-
els for Microarray Data (LIMMA) Bioconductor package (46). A
Benjamini–Hochberg multiple-testing correction of P ≤ 0.05 was
used for all DE genes (40) and the Euclidean distance was used as
the distance metric for MDS plotting.

RESULTS
PRELIMINARY ANALYSIS AND SUMMARY STATISTICS FOR RNA-seq
DATA
The 35 RNA-seq libraries used for the present study were
sequenced across six lanes of an Illumina® HiSeq 2000 sequencing
apparatus and generated mean values per library of 26.72 million
raw reads, of which 20.02 million reads (74.94%) remained after
adapter sequence and poor quality reads filtering (Figure S1A in
Supplementary Material). Alignment of the filtered RNA-seq reads
to the B. taurus reference genome (UMD3.1.73) yielded mean val-
ues per library of 16.19 million reads (80.85%) mapping to unique
locations in the bovine genome, 1.66 million reads (8.31%) map-
ping to multiple locations in the genome, and 2.17 million reads
(10.84%) not mapping to any genome location (Figure S1B in Sup-
plementary Material). Further analysis, focusing on the uniquely
mapping reads demonstrated that a mean of 11.91 million reads
(73.60%) per library were assigned to annotated sense regions of
the genome. Only these sequence reads were then used to calculate
raw counts per sense gene and for downstream differential gene
expression and systems biology analyses. In addition, a mean value
per library of 4.27 million reads (26.40%) could not be assigned to
annotated genome locations or were assigned to overlapping anno-
tated genomic regions (Figure S1C in Supplementary Material).
The detailed number of reads per individual RNA-seq library at
each stage of the analysis is provided in Table S1 in Supplementary
Material.

Frontiers in Immunology | Molecular Innate Immunity February 2015 | Volume 6 | Article 23 | 22

http://www.ingenuity.com
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Casey et al. RNA-seq analysis of MAP-infected bovine MDM

Analysis of the gene coverage based solely on sense sequence
information, demonstrated that of the 24,616 B. taurus genes
annotated in Ensembl (release 73), 17,571 of these genes (71.4%)
had at least one sequence read count (i.e., one mapped read) in
at least one of the 35 individual RNA-seq libraries. These 17,571
genes were further filtered by removing lowly expressed genes,
yielding 11,813 sense-strand genes (48% of annotated B. taurus
genes) that were considered for downstream analyses.

ANALYSIS OF DIFFERENTIAL GENE EXPRESSION FROM RNA-seq DATA
Following preliminary RNA-seq analysis, the sequence reads that
mapped to unique locations in the B. taurus reference genome
were used to generate lists of DE genes between the MAP-infected
and control MDM groups at 2 and 6 hpi (the 0 h control MDM
samples were not used for this phase of the analysis). Using an
FDR threshold of ≤0.05, at 2 hpi 209 genes were significantly
upregulated and 36 genes were significantly downregulated (Table
S2 in Supplementary Material). It is important to note that the
number of DE genes observed between MAP-infected and con-
trol MDM samples at 2 hpi was markedly higher for upregulated
genes (209) compared to the downregulated genes (36). Inspection
of the list of DE genes in Table S2 in Supplementary Mater-
ial at the 2 hpi time point reveals that many of the top-ranked
DE genes by FDR-adjusted P value have immune-related func-
tions; for example, the v-maf avian musculoaponeurotic fibrosar-
coma oncogene homolog F gene (MAFF); the nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibitor,
delta gene (NFKBID), the chemokine (C–C motif) ligand 3 gene
(CCL3), and the chemokine (C–C motif) ligand 4 gene (CCL4).

Table 1 shows the top 10 upregulated and top 10 downregu-
lated DE genes between MAP-infected and control MDM samples
at 2 hpi ranked by fold-change and with FDR-adjusted P values
≤0.05.

Notably, the difference between the numbers of upregulated
and downregulated DE genes (FDR≤ 0.05) was not as marked at
the 6 hpi time point (342 upregulated versus 232 downregulated
genes). These results are in broad agreement with the previous
microarray analysis (590 upregulated genes and 384 downregu-
lated genes with an FDR-adjusted P value≤0.10) (30). Top ranking
genes by FDR-adjusted P value for 6 hpi (Table S2 in Supple-
mentary Material) included the mucosal vascular address in cell
adhesion molecule 1 gene (MADCAM1), the family with sequence
similarity 129, member A gene (FAM129A), the CD40 molecule,
TNF receptor superfamily member 5 gene (CD40), and the phos-
pholipid transfer protein gene (PLTP). Table 2 shows the top 10
upregulated and top 10 downregulated DE genes between MAP-
infected and control MDM samples at 6 hpi ranked by fold-change
and with FDR-adjusted P values ≤0.05.

The DE genes were compared according to direction of expres-
sion between 2 and 6 hpi. As shown in Figure 1, 59 genes (54
upregulated and 5 downregulated) were DE at both time points
while also displaying the same direction of expression. By compar-
ison, 186 genes (155 upregulated and 31 downregulated) and 515
genes (288 upregulated and 227 downregulated) were observed to
be uniquely DE at 2 and 6 hpi, respectively. The relatively low over-
lap of DE genes between the two time points most likely represents
evolution of the MDM transcriptional response to MAP infection
over the time course.

Table 1 |The top 10 upregulated and downregulated DE genes (FDR ≤ 0.05) for MAP-infected versus control MDM samples at 2 hpi as ranked by

fold-change.

Gene symbol Ensembl ID Gene name Log2 fold-change P value FDR-adjusted

P value

CSF3 ENSBTAG00000021462 Colony stimulating factor 3 (granulocyte) +8.05 0.000000 0.000002

CXCL3 ENSBTAG00000037778 Chemokine (C–X–C motif) ligand 3 +6.24 0.000000 0.000000

TNFAIP6 ENSBTAG00000007239 Tumor necrosis factor, alpha-induced protein 6 +6.07 0.000001 0.000144

CCL20 ENSBTAG00000021326 Chemokine (C–C motif) ligand 20 +5.95 0.000001 0.000133

IL1B ENSBTAG00000001321 Interleukin 1, beta +5.64 0.000000 0.000000

TNFSF9 ENSBTAG00000046266 Tumor necrosis factor (ligand) superfamily, member 9 +5.53 0.000000 0.000000

RND1 ENSBTAG00000018773 Rho family GTPase 1 +5.50 0.000000 0.000000

PTX3 ENSBTAG00000009012 Pentraxin 3, long +5.35 0.000000 0.000000

CXCL2 ENSBTAG00000027513 Chemokine (C–X–C motif) ligand 3 +5.11 0.000000 0.000059

TNF ENSBTAG00000025471 Tumor necrosis factor +5.03 0.000000 0.000000

– ENSBTAG00000048135 Uncharacterized −3.86 0.000881 0.043735

RAB3A ENSBTAG00000010635 RAB3A, member RAS oncogene family −2.10 0.000699 0.036718

OSM ENSBTAG00000016163 Oncostatin M −1.91 0.000037 0.003243

FOS ENSBTAG00000004322 FBJ murine osteosarcoma viral oncogene homolog −1.89 0.000000 0.000034

POU3F1 ENSBTAG00000012061 POU class 3 homeobox 1 −1.88 0.000987 0.048195

ANKRD63 ENSBTAG00000046052 Ankyrin repeat domain 63 −1.38 0.000114 0.008605

SMAD6 ENSBTAG00000000625 SMAD family member 6 −1.36 0.000001 0.000131

PIK3IP1 ENSBTAG00000010667 Phosphoinositide-3-kinase interacting protein 1 −1.31 0.000000 0.000013

PDK4 ENSBTAG00000014069 Pyruvate dehydrogenase kinase, isozyme 4 −1.19 0.000167 0.011389

DUSP7 ENSBTAG00000021912 Dual specificity phosphatase 7 −1.11 0.000059 0.004862
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Table 2 |The top 10 upregulated and downregulated DE genes (FDR ≤ 0.05) for MAP-infected versus control MDM samples at 6 hpi as ranked by

fold-change.

Gene

symbol

Ensembl ID Gene name Log2

fold-change

P value FDR-adjusted

P value

– ENSBTAG00000046848 Uncharacterized +7.50 0.000145 0.006032

LOXL4 ENSBTAG00000020895 Lysyl oxidase-like 4 +5.42 0.000000 0.000005

GJB2 ENSBTAG00000017425 Gap junction protein, beta 2, 26 kDa +4.83 0.000001 0.000097

FFAR4 ENSBTAG00000000437 Free fatty acid receptor 4 +4.58 0.000275 0.009924

– ENSBTAG00000013711 Uncharacterized +4.50 0.000012 0.000839

STOML3 ENSBTAG00000018232 Stomatin-like protein 3 +4.46 0.000003 0.000258

SAA3 ENSBTAG00000022396 Serum amyloid A 3 +4.31 0.000000 0.000000

AQPEP ENSBTAG00000016644 Laeverin +4.19 0.000028 0.001678

CD38 ENSBTAG00000013569 CD38 molecule +4.16 0.000002 0.000168

M-SAA3.2 ENSBTAG00000010433 mammary serum amyloid A3.2 +4.04 0.000000 0.000011

OPRD1 ENSBTAG00000003202 Opioid receptor, delta 1 −3.21 0.001890 0.041982

TPBGL ENSBTAG00000019622 Trophoblast glycoprotein-like −3.16 0.000080 0.003833

CCDC30 ENSBTAG00000004585 Coiled-coil domain containing 30 −2.70 0.000111 0.005004

TNFSF18 ENSBTAG00000047412 Tumor necrosis factor (ligand) superfamily, member 18 −2.35 0.000063 0.003196

KIT ENSBTAG00000002699 v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog −2.21 0.000305 0.010742

SLC7A8 ENSBTAG00000007415 Solute carrier family 7, member 8 −2.19 0.000001 0.000083

STON2 ENSBTAG00000025308 Stonin 2 −2.08 0.000500 0.016302

ARHGAP26 ENSBTAG00000027151 Rho GTPase activating protein 26 −1.91 0.000000 0.000000

SLCO2B1 ENSBTAG00000015596 Solute carrier organic anion transporter family, member 2B1 −1.85 0.000002 0.000171

– ENSBTAG00000001476 Uncharacterized −1.81 0.000431 0.014268

FIGURE 1 | A Venn diagram showing the numbers of DE genes
identified at 2 and 6 hpi. Overlap comparison of DE genes detected in
MAP-infected MDM versus control non-infected MDM between 2 and 6 hpi
using the RNA-seq dataset. Sets of upregulated genes are represented in
red and sets of downregulated genes are shown in green.

FUNCTIONAL CATEGORIZATION OF DE GENES DETECTED WITH
RNA-seq
Functional categorization of DE genes was performed using the
Bioconductor GOseq package (41) at 2 and 6 hpi time points to
identify enriched Biological Process GO functions. At 2 hpi, we
identified 149 significantly overrepresented Biological Processes

(Bonferroni-adjusted P value ≤0.05) (Table S3 in Supplementary
Material). Among the top ranked (based on Bonferroni-adjusted
P values) Biological Processes were inflammatory response, defense
response, response to stimulus, response to stress, immune system
process, signaling, and signal transduction (Figure 2A). In addition,
at 6 hpi, there were 40 significantly over-represented Biological
Processes (Bonferroni-adjusted P value ≤0.05) (Table S4 in Sup-
plementary Material), including immune system process, regulation
of signaling, regulation of cell communication, immune response, cell
communication, regulation of response to stimulus, signaling, and
defense response (Figure 2B). The significantly overrepresented
Biological Processes are relatively similar between the two post-
infection time points and are, for the most part, associated with
immunobiology.

IPA was used to identify the canonical pathways that were
enriched for DE genes at both post-infection time points. In the
current study, we identified 155 and 177 canonical pathways that
were significantly enriched (FDR-adjusted P value ≤0.05) at 2
and 6 hpi, respectively. It is notable that all of the top 10 rank-
ing canonical pathways identified at 2 hpi have immunobiological
functions (Table S5 in Supplementary Material). These canon-
ical pathways include IL-10 signaling, the first ranked pathway,
which is shown overlaid with gene expression results in Figure 3
and CD40 signaling, the fourth ranking pathway, which is pre-
sented in Figure 4. The top ranking canonical pathways at 6 hpi
(Table S6 in Supplementary Material) included Interferon sig-
naling (second ranked pathway), IL-15 signaling (third ranked
pathway), and P13K signaling in B lymphocytes (fourth ranked
pathway).
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Casey et al. RNA-seq analysis of MAP-infected bovine MDM

FIGURE 2 |The 15 top-ranked overrepresented biological process GO
functions identified using the GOseq package. (A) Pie chart of the
enriched biological processes generated from DE genes at 2 hpi using
the RNA-seq dataset. (B) Pie chart of the enriched biological processes

generated from DE genes at 6 hpi using the RNA-seq dataset. The values
below each function represent the ratio of DE genes versus the total
gene set for each functional category and the Bonferroni-adjusted
P value.

COMPARATIVE ANALYSES OF DE GENES DETECTED USING RNA-seq
AND MICROARRAY TECHNOLOGIES
Total RNA samples purified from the MAP-infected and con-
trol non-infected MDM were analyzed previously by us using
the Affymetrix® Bovine Genome Array (30). To directly compare
the gene expression results between the RNA-seq and microarray
platforms, we re-analyzed the microarray data for the 0 h, 2, and
6 hpi time points (35 samples).

Of the 24,072 probe sets represented on the array, 11,259 probe
sets were informative that represented 5,542 unique genes with
Ensembl bovine gene ID. Prior to differential gene expression
analysis, the data from the 11,259 informative probes was used
to generate multi-dimensional scaling (MDS) plots at 2 and 6 hpi.
Using the same procedure, MDS plots were also produced from the
equivalent RNA-seq data at 2 and 6 hpi using all detectable genes
(11,813 genes) (Figure S2 in Supplementary Material). Inspection
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FIGURE 3 |The top-ranked enriched canonical pathway identified using
IPA at 2 hpi – the IL-10 signaling pathway. Red shading indicates increased
expression in MAP-infected MDM relative to the non-infected control MDM.

Green shading indicates decreased expression in MAP-infected MDM relative
to the non-infected control MDM. White and gray shading indicates
non-expression and non-differential expression, respectively.

of these MDS plots shows relatively small separation of individual
samples according to their infection status by MDS dimension axis
at either time point post-infection for the two technologies. This
feature of both gene expression data sets may be due to the signal
from DE genes being obscured by the background gene expression
noise of the majority of detectable genes.

Further analysis of the microarray data showed that 315 genes
(201 upregulated and 114 downregulated) were significantly DE at
2 hpi (FDR-adjusted P value ≤0.05). Comparison of overlapping
DE genes between the microarray and RNA-seq data sets revealed
134 DE genes that displayed the same direction of expression with
both technologies and 292 genes that were only DE on a single plat-
form (181 DE genes unique to the microarray and 111 DE genes
unique to RNA-seq) (Figure S3A in Supplementary Material).

At 6 hpi, 466 genes (307 upregulated and 159 downregulated)
were DE in the MAP-infected relative to the control MDM based
on the microarray data (FDR-adjusted P value ≤0.05). Compar-
ison of common DE genes across the microarray and RNA-seq
platforms revealed 189 DE genes displaying the same direction of
expression for the two technologies. The remaining 662 genes were
detected as DE using a single platform (277 DE genes unique to
the microarray and 385 DE genes unique to RNA-seq) (Figure S3B
in Supplementary Material).

Detailed information for all DE genes detected using the
Affymetrix® microarray in MAP-infected versus control non-
infected MDM samples at 2 and 6 hpi is provided in Table S7
in Supplementary Material.

ESTIMATION OF DYNAMIC RANGE FROM RNA-seq AND MICROARRAY
DATA
To estimate the dynamic range of the RNA-seq and microarray
platforms, the log2 reads per kilobase per million mapped reads
(RPKM) from the RNA-seq data and the log2 intensities from
the microarray data were analyzed as described by Nalpas et al.
(29). The lowest gene expression value was subtracted from the
highest gene expression value for each platform. For the RNA-seq
platform, a log2 dynamic range of 25.31 was estimated based on
the FAT3 gene (ENSBTAG00000004081, log2 RPKM=−9.15) and
the FTH1 gene (ENSBTAG00000011184, log2 RPKM= 16.16).
For the microarray platform, this calculation yielded an esti-
mated log2 dynamic range of 13.56 based on the ZCCHC8 gene
(ENSBTAG00000006114, log2 intensity= 2.03) and the B2M gene
(ENSBTAG00000012330, log2 intensity= 15.59). These observa-
tions demonstrate for the present study that the dynamic range of
the RNA-seq technology was 3,444-fold greater than that of the
microarray platform.
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FIGURE 4 |The fourth-ranked enriched canonical pathway identified
using IPA at 2 hpi – the CD40 signaling pathway. Red shading indicates
increased expression in MAP-infected MDM relative to the non-infected

control MDM. Green shading indicates decreased expression in MAP-infected
MDM relative to the non-infected control MDM. White and gray shading
indicates non-expression and non-differential expression, respectively.

CORRELATION OF OBSERVED log2 EXPRESSION VALUES AND log2

FOLD-CHANGES BETWEEN THE RNA-seq AND MICROARRAY
PLATFORMS
We next examined the correlation between the log2 expression
values generated using the RNA-seq (log2 RPKM values) and
microarray (log2 intensity values) platforms for all genes that
passed the filtering criteria and for which a definite gene length
could be determined (RPKM values cannot be computed for
genes with splicing events). Spearman rank correlation coeffi-
cient (ρ) values for the 4,844 filtered genes (common to both
platforms) were then calculated separately for the MAP-infected
and control groups at each post-infection time point. At 2 hpi,

highly significant ρ values of 0.68 (P < 1.0× 10−15) and 0.67
(P < 1.0× 10−15) were observed for the MAP-infected and control
sample groups, respectively. Similarly, at 6 hpi, highly significant
ρ values were also observed: 0.68 (P < 1.0× 10−15) for the MAP-
infected sample group and 0.66 (P < 1.0× 10−15) for the control
sample group.

Following this, log2 expression fold-changes were examined
directly for the 5,419 genes that overlapped the RNA-seq and
the microarray platform at both post-infection time points
(this included the 4,844 gene transcripts detailed above, plus
the 575 additional overlapping genes that exhibited alternative
transcripts). Again, highly significant ρ values were observed
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for the correlation between log2 expression fold-change values
for RNA-seq and the microarray platform at both 2 hpi (0.46;
P < 1.0× 10−15) and 6 hpi (0.52; P < 1.0× 10−15).

The results of these analyses, using both log2 expression val-
ues and log2 expression fold-changes from the two post-infection
time points, support the reproducibility and robustness of gene
expression studies on the same samples using RNA-seq and the
Affymetrix® microarray platform.

DISCUSSION
In recent years, high-throughput functional genomics and systems
analysis of the mammalian host response to a range of mycobac-
terial pathogens has greatly enriched scientific understanding of
the immunobiology of these infections (47–51). In particular,
transcriptomics and downstream systems biology analyses of the
in vitro macrophage response to mycobacteria have been par-
ticularly informative regarding host–pathogen interactions that
underlie pathogenesis and which are reflected in perturbation of
host genes and cellular pathways (25, 29, 30, 32, 52–57).

Most of this research work has been performed using vari-
ous types of microarray platform, which until recently, has been
the technology of choice for transcriptomics studies of the host
response to infection. However, during the last 6 years, RNA-seq
has emerged as the most powerful tool for high-resolution inter-
rogation of the eukaryotic transcriptome in response to external
stimuli such as invasive pathogens (58–61). RNA-seq has sig-
nificant advantages over microarrays for surveying the complex
transcriptional landscape of multicellular organisms. For exam-
ple, microarray construction and implementation requires pre-
existing genome sequence information for probe design, while
pre-selection of the genes and transcripts to be interrogated by the
microarray may result in a biased representation of the transcrip-
tome. In contrast, RNA-seq offers unbiased, genome-wide tran-
scriptome profiling of host gene expression without the require-
ment of pre-existing genome sequence information prior to the
initiation of experiments. In addition, compared to microarrays,
which have a dynamic range constrained by technical factors (for
example, probe saturation for highly expressed genes, or lack of
detectable probe hybridization signal for lowly expressed genes),
the dynamic range of RNA-seq is normally limited only by the
depth of sequencing used for a particular experimental compar-
ison, thereby leading to higher sensitivity for detection of lowly
expressed transcripts. Also, where appropriate, RNA-seq data can
be used to quantify alternatively spliced gene variants; identify
novel transcribed genes; and study antisense transcription (28, 29,
62, 63). Consequently, for the present study, an RNA-seq approach
was used to study the bovine host macrophage response to MAP
infection in vitro across an experimental time course consisting of
2 and 6 hpi time points.

DIFFERENTIAL GENE EXPRESSION AND FUNCTIONAL BIOLOGY OF
RNA-seq RESULTS
RNA-seq analysis demonstrated that of the 245 significantly DE
genes detected at 2 hpi, 85.3% of these were upregulated in MAP-
infected MDM compared to non-infected control MDM. Also at
6 hpi, 59.6% of the DE genes were upregulated in infected MDM
relative to the controls (Table S2 in Supplementary Material).

This pattern of a general increase in gene expression in bovine
macrophages within the first 6 h of MAP infection in vitro has also
been observed by our group and other workers (30, 64, 65). It is
also noteworthy that the mean absolute log2 fold-change in expres-
sion for upregulated genes in MAP-infected MDM was markedly
higher than for downregulated genes at both 2 hpi (1.95 versus
1.07, respectively) and 6 hpi (1.50 versus 0.92, respectively). This
is consistent with results obtained by Magee and colleagues using
bovine MDM infected with M. bovis (32).

The most upregulated DE gene (ranked by fold-change)
observed at 2 hpi from RNA-seq was the CSF3 gene (log2 fold-
change=+8.05, Table 1), which encodes a cytokine that controls
the production, differentiation, and function of granulocytes and
which has also been shown to be highly upregulated in MAP-
infected MDM isolated from red deer (Cervus elaphus) (66). It
is interesting to note that Marfell and colleagues also observed
that upregulation of this gene was higher in susceptible ani-
mals compared to resistant animals. The most downregulated
annotated gene at 2 hpi using RNA-seq was the RAB3A gene
(log2 fold-change=−2.10, Table 1), which plays an important
role in intracellular vesicle and membrane trafficking (67). While
this gene has not previously been shown to be associated with
macrophage–mycobacteria interactions, its downregulation could
reflect an aspect of the disruption of phagosome–lysosome fusion
mediated by MAP to promote its survival (68).

The most upregulated DE gene (ranked by fold-change)
detected at 6 hpi using RNA-seq was the LOXL4 gene (log2 fold-
change=+5.42, Table 2), which has not previously been asso-
ciated with a functional role in macrophage–mycobacteria inter-
actions, but has a primary role in connective tissue biogenesis
(69). However, recent findings have suggested that the LOX family
of proteins may also have an ancillary transcriptional regulatory
function (70). The most downregulated gene at 6 hpi detected
using RNA-seq was the OPRD1 gene (log2 fold-change=−3.21,
Table 2), which encodes an opioid receptor also not previously
reported to be involved in the macrophage response to intracellu-
lar pathogens. However, it has been demonstrated that TNF-α and
IL-1β can downregulate the expression of opioid receptors at the
mRNA level (71).

The identification of DE genes that hitherto had no docu-
mented role in macrophage–mycobacterial interactions highlights
the potential of RNA-seq for revealing novel layers of information
regarding host cellular processes induced following MAP infec-
tion and the roles that these genes may play in the host immune
responses to MAP infection.

Several pro-inflammatory cytokine and chemokine genes,
including CCL20, CXCL2, CXCL3, IL1B, and TNF, were DE
at the 2 hpi time point; previous studies have highlighted the
important role played by the products of these genes in regu-
lating the innate immune response to mycobacterial infection
(15, 20, 23, 24). The pro-inflammatory response to infection
is further supported by the perturbation of several immuno-
logical signaling pathways including CD40 signaling (Figure 4),
which is required for activation of antigen-presenting cells such
as the macrophage (72, 73); IL-15 signaling, which regulates pro-
inflammatory cytokine production in the macrophage (74); and
interferon signaling (75, 76).
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Furthermore, IL-1 pro-inflammatory cytokine expression in
the MAP-infected host is critical not only to protective immu-
nity but also to MAP survival. IL-1 cytokines are key effector
cytokines produced by macrophages in response to infection with
MAP. Indeed, IL-1 cytokine expression was detected as early as
10 min after infection with MAP under experimental infection
conditions and interestingly, co-culture systems have shown that
the macrophages recruited as a result of epithelial cell-induced
IL-1 cytokines can be exploited by MAP to enhance their survival
within the host (77). It is noteworthy that in the present study, both
IL1A and IL1B are significantly DE in MAP-infected MDM at 2 hpi
(IL1A log2 fold-change=+4.9; IL1B log2 fold-change=+5.6).

In order to produce the mature forms of IL-1 cytokines, the
inflammasome is required. This pro-inflammatory protein com-
plex occurs in myeloid cells upon infection to coordinate the
activation of effective anti-bacterial innate immunity (78). The
exact composition of the inflammasome varies depending on the
activator (e.g., bacterial toxin, bacterial components, flagellin, and
dsDNA); however, it has not been well defined in bovine studies
(79). Both NLRP3 (log2 fold-change at 2 hpi=+2.7) and IRAK2
(log2 fold-change at 2 hpi=+2.2) are important components of
the NLRP3-inflammasome complex. Indeed, Nlrp3−/− knockout
mice do not produce IL-1 cytokines (80).

Other genes encoding proteins associated with induction and
activation of the inflammasome include SAA3 (2 and 6 hpi) (81) –
which encodes an important acute phase protein of macrophages –
and CASP4 (6 hpi) (82) – which encodes a protease with a well-
characterized role in programed cell death. In contrast, CASP8,
which also exhibited increased expression at 6 hpi, encodes caspase
8, which has an inflammasome-blocking function (83). There-
fore, CASP8 upregulation may reflect host-directed control of
inflammasome activation or, possibly, immunoevasive modula-
tion by mycobacterial factors. Previous work has demonstrated
that mycobacteria, such as M. tuberculosis, can block inflamma-
some activation as a novel immune evasion strategy (79, 84). In
addition, lung infection with M. tuberculosis generates increased
NO expression levels, which negatively regulates the NLRP3-
inflammasome, thereby decreasing IL-1β production (85). There-
fore, the results for MAP infection of bovine MDM may be a useful
avenue for future studies regarding the interplay between bovine
macrophages and MAP.

The genes encoding IL-1RN, and the anti-inflammatory
cytokine IL-10 – two important regulators of IL-1 cytokine family
activity – are both DE [IL1RN log2 fold-change=+1.1 (2 hpi),
+1.9 (6 hpi); IL10 log2 fold-change=+2.01 (2 hpi)]. Notably,
IL-10 signaling is also the top ranked canonical pathway iden-
tified by IPA at 2 hpi (Figure 3). IL10 encodes an immunosup-
pressive cytokine that regulates the antimicrobial activity of the
macrophage, thus limiting the level of cytokine-induced tissue
damage. Upregulation of IL-10 expression induced by mycobac-
teria has been proposed to inhibit host innate immune responses
during infection resulting in enhanced pathogen survival (86–88).

Our findings support the hypothesis that the immunomod-
ulatory mechanisms employed by MAP are reflected in the
host macrophage transcriptome. Ultimately, protection against
mycobacterial infection is a balance between protection and
pathology (89). While there is significant activation of a pro-

inflammatory immune response in MDM at 2 hpi, it is clear
that this response is quickly regulated as the pro-inflammatory
mediators are no longer DE at 6 hpi. In this regard, the out-
come of infection is decided by the balance between pro- and
anti-inflammatory mediators (24, 90–92).

TECHNICAL COMPARISON OF RNA-seq AND MICROARRAY
TECHNOLOGIES FOR GENE EXPRESSION ANALYSIS
Previously, the MDM-extracted RNA samples analyzed for the
present study were examined with the pan-genomic Affymetrix®
GeneChip® Bovine Genome Array microarray platform. Here, we
have used new RNA-seq data and a re-analyzed microarray data
set to perform a direct technical comparison of gene expression
estimation between the two platforms. The number of DE genes
identified 2 hpi was higher in the microarray compared to RNA-
seq (315 versus 245), while conversely, the number of DE genes
6 hpi detected via RNA-seq analysis exceeded those detected by
the microarray (574 versus 466). In total, across the two infec-
tion time points the number of DE genes was higher based on the
RNA-seq data compared to the microarray data (819 versus 781;
an increase of 5%). Although this increase in the number of RNA-
seq-identified DE genes relative to microarray-identified DE genes
is lower than that previously reported by us in a technical compar-
ison of RNA extracted from M. bovis-infected and non-infected
MDM, this finding is consistent with other studies demonstrating
greater numbers of DE genes identified by RNA-seq compared to
microarray analysis of the same samples (29, 93, 94).

The increased number of DE genes detected by RNA-seq may
be attributed to the increased dynamic range of RNA-seq relative
to the microarray, which permits the detection of lowly expressed
DE genes between MAP-infected and non-infected control MDM
(29, 94–96). Furthermore, the concordance between the two plat-
forms, as estimated by the percentage of DE genes common to
both platforms across both infection time points, was 41.36%
(323/781 genes) for the microarray and 39.44% (323/819 genes)
for RNA-seq. These estimates are in agreement with the concor-
dance previously determined for a comparison of bovine MDM
infected with M. bovis and control non-infected MDM (29). The
differences observed in gene expression estimation between the
two platforms may be explained by several technical and analytical
factors including: (1) systematic differences in dynamic range; (2)
differences in the statistical models used to analyze digital/count
gene expression data such as that generated using RNA-seq and
the analog/continuous data obtained from microarrays; and (3)
differences in the mRNA transcripts analyzed by both platforms
(for example, the probes on Affymetrix GeneChip arrays are pre-
dominantly based on sequences at the 3′ end of genes and are
therefore 3′ biased, while RNA-seq read data are expected to be
more equally distributed across gene transcripts) (38, 46, 97–101).

In summary, the present study describes a transcriptomics sur-
vey of the host macrophage response to MAP infection using
bovine MDM as an experimental model. We have used RNA-
seq data generated from MDM infected with a clinical strain of
MAP across a 6 h infection time course and compared the results
of the RNA-seq analysis to a comparable re-analysis of microar-
ray data obtained using the same experimental samples. The
results of this work provide new insights into macrophage-MAP
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interplay, highlighting potential functional roles for genes that pre-
viously have not been implicated in the host response to infection
with MAP bacilli. Furthermore, the pro- and anti-inflammatory
cytokines involved in the bovine MDM response to MAP infec-
tion, such as those associated with the IL-10 signaling pathway,
emphasize the balance between protective host immunity and
bacilli survival and proliferation. Finally, by directly comparing the
performance of two transcriptomics platforms, we demonstrate
that RNA-seq represents a superior technology to microarrays for
in vitro analyses of gene expression using mammalian cells infected
with intracellular bacterial pathogens.
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Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Follow-
ing infection, the pathogen resides and persists inside host macrophages by subverting
host immune responses via a diverse range of mechanisms. Here, a high-density bovine
microarray platform was used to examine the bovine monocyte-derived macrophage tran-
scriptome response to M. bovis infection relative to infection with the attenuated vaccine
strain, M. bovis Bacille Calmette–Guérin. Differentially expressed genes were identified
(adjusted P -value ≤0.01) and interaction networks generated across an infection time
course of 2, 6, and 24 h. The largest number of biological interactions was observed in
the 24-h network, which exhibited scale-free network properties. The 24-h network fea-
tured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1,
and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis
strains, possibly via the modulation of host cell death mechanisms. These hub and bottle-
neck genes represent possible targets for immuno-modulation of host macrophages by
virulent mycobacterial species that enable their survival within a hostile environment.

Keywords: Mycobacterium bovis, tuberculosis, BCG, cattle, macrophage, network, gene interaction network

INTRODUCTION
Mycobacterium bovis, the causative agent of bovine tuberculosis
(BTB) is a facultative pathogen that has a genome sequence 99.95%
identical to that of M. tuberculosis, the etiological agent respon-
sible for human tuberculosis (TB) (1). The pathogenesis of BTB
is broadly similar to that of human TB and many of the charac-
teristics of M. tuberculosis infection are thought to apply to M.
bovis infection in cattle (2, 3). Both pathogens enter the host prin-
cipally via inhalation of infected aerosol droplets, where they are
phagocytosed by alveolar macrophages and dendritic cells. Path-
ogenic mycobacteria have evolved mechanisms for subverting the
host immune response, including prevention of phagosome mat-
uration and subsequent lysosomal delivery (4), enabling survival
and replication within the host macrophage following phagocyto-
sis (5). Infected alveolar macrophages can then remain within the
central core of granulomas during latent infection or disseminate
to draining lymph nodes and to other host organs during active
infection (6, 7).

Mycobacterium bovis Bacille Calmette–Guérin (BCG) is an
attenuated strain of M. bovis that has been used as a live vaccine for
TB control for almost a century. It is estimated that over 100 mil-
lion people are immunized with BCG annually, making it the most
widely used vaccine in human populations (8). All BCG strains
available today are derived from a virulent M. bovis strain that was
isolated at the turn of the twentieth century from the milk of an
infected cow with tubercular mastitis (9). This strain, named “lait
Nocard,” was transferred to the Institut Pasteur in Lille in 1901,
where it was cultured on glycerol-soaked potato slices supple-
mented with ox bile by Albert Calmette and Camille Guérin as part
of their studies of TB pathogenesis. Serial passage of the lait Nocard
strain on this culture medium resulted in the isolation of a strain,
in 1908, that displayed reduced virulence in guinea pigs and calves
(9). Over the next 13 years, Calmette and Guérin performed 230
in vitro serial passages of this partially attenuated M. bovis strain,
eventually leading to the first successful vaccination of a human
infant with a fully attenuated BCG isolate in July 1921 (10, 11).
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All currently existing BCG substrains originate from the initial
attenuated strain developed by Calmette and Guérin during this
13-year period. It was during this time that BCG underwent the
first of two attenuation phases. Early studies identified a region of
difference 1 (RD1) that is deleted from all BCG strains (12, 13)
and was likely lost during the initial attenuation phase between
1908 and 1921. RD1 encodes, among other genes, the early secre-
tory antigen target (ESAT-6) protein secretion system (ESX-1),
which is present in virulent strains of M. bovis and M. tuberculo-
sis (14, 15). A second attenuation phase occurred after 1924 due
to dissemination of the BCG vaccine from the Institut Pasteur to
other countries (13). During this time further genomic deletions
occurred, including the RD2 deletion (8, 9).

Virulent M. bovis and attenuated BCG differ in their ability to
generate disease. Infection with M. bovis can lead to subversion
of the host immune response and formation of tuberculous gran-
ulomas with characteristic BTB pathology (16). In contrast, the
BCG vaccine strain does not generally cause progressive infection
in immune-competent hosts, but can induce a protective pro-
inflammatory TH1 response via activation of interferon-gamma
(IFN-γ) secreting CD4+ T-cells (17); however, the precise mech-
anisms of how protection is afforded against virulent challenge
remain unclear.

Despite decades of research, the host innate immune mecha-
nisms elicited following infection with virulent M. bovis relative to
attenuated BCG remain largely unknown. To our knowledge, a sys-
tems biology approach to understanding innate immune responses
to virulent M. bovis and attenuated BCG has not previously been
described. Systems analysis of transcriptomics data generated from
host macrophages infected with the two strains enables recon-
struction of dynamic molecular interaction networks that capture
the differential innate immune responses to virulent M. bovis and
attenuated BCG (18). Network features such as hub and bottle-
neck genes – a consequence of scale-free behavior – can also be
defined, cataloged, and further explored to identify novel bio-
logical attributes relevant to the pathogenesis of mycobacterial
infections.

Previous studies have demonstrated that the bovine monocyte-
derived macrophage (MDM) is a useful model cell type for
understanding the early host immunogenetic response to M. bovis
and M. bovis-derived antigens (19–22). In the present study,
the Affymetrix® GeneChip® Bovine Genome Array was used to
examine the transcriptome of MDM from seven age-matched
Holstein-Friesian female cattle infected in vitro with M. bovis and
BCG across an infection time course of 2, 6, and 24 h. Differ-
entially expressed (DE) genes were identified using established
methods and a list of interactions were generated using the Innat-
eDB resource (23) and visualized as interaction networks with the
Cytoscape software package (24).

MATERIALS AND METHODS
ETHICS STATEMENT
All animal procedures were carried out according to the provi-
sions of the Cruelty to Animals Act (Irish Department of Health
and Children license number B100/3939) and ethical approval for
the study was obtained from the UCD Animal Ethics Committee
(protocol number AREC-P-07-25-MacHugh).

ANIMALS
Seven age-matched (3-year-old) unrelated Holstein-Friesian
females were used in this study. All animals were maintained
under uniform housing conditions and nutritional regimens at the
UCD Lyons Research Farm (Newcastle, County Kildare, Ireland).
The animals were selected from an experimental herd without a
recent history of BTB infection and all animals tested negative for
the single intradermal tuberculin test (SICTT). These cattle were
also negative for infection with Brucella abortus, M. avium subsp.
paratuberculosis, Salmonella Typhimurium, bovine herpesvirus 1
(BHV-1), and bovine viral diarrhea (BVD) virus.

MONOCYTE EXTRACTION AND CULTURE OF MDM
Monocyte extraction and culture of bovine MDM was performed
as described by us previously (20). Briefly, for monocyte isola-
tion, 300 ml of whole blood was collected in acid citrate dextrose
buffer (Sigma-Aldrich Ireland Ltd., Dublin, Ireland) in sterile
bottles. Blood was layered onto Accuspin™ tubes containing
Histopaque® 1077 (Sigma-Aldrich Ireland Ltd., Dublin, Ireland),
and following density gradient centrifugation (500 g for 20 min)
performed at room temperature, peripheral blood mononuclear
cells (PBMC) were collected. Contaminating red blood cells (RBC)
were removed following resuspension and subsequent incubation
of the PBMC in RBC lysis buffer (10 mM KHCO3, 150 mM NH4Cl,
0.1 mM EDTA pH 8.0) for 5 min at room temperature. After incu-
bation, PBMC were washed twice with sterile phosphate-buffered
saline (PBS; Invitrogen™, Life Technologies Corporation, Pais-
ley, UK) before resuspending cells in PBS containing 1% bovine
serum albumin (BSA; Sigma-Aldrich Ireland Ltd., Dublin, Ire-
land). Monocytes were then isolated using the MACS® protocol
and MACSH MicroBeads conjugated to mouse anti-human CD14
antibodies (Miltenyi Biotec Ltd., Surrey, UK), which has been
shown to be cross-reactive with bovine monocytes (25). The
MACS® protocol was performed according to the manufacturer’s
instructions.

The identity and purity of monocytes was confirmed by flow
cytometry using an anti-CD14 fluorescein-labeled antibody (data
not shown). This method has been previously shown by us to
yield a purity of CD14+ cells ≥99% (19). Purified monocytes
were seeded at 1× 106 per well on 24-well tissue culture plates
in RPMI 1640 medium (Invitrogen™, Life Technologies Corpo-
ration, Paisley, UK) containing 15% heat inactivated fetal calf
serum (FCS; Sigma-Aldrich Ireland Ltd., Dublin, Ireland), 1%
non-essential amino acids (NEAA; Sigma-Aldrich Ireland Ltd.,
Dublin, Ireland), gentamicin (5 mg/ml; Sigma-Aldrich Ireland
Ltd., Dublin, Ireland), and incubated at 37°C, 5% CO2. Following
24 h incubation (day one), the media was replaced with 1 ml fresh
antibiotic-containing media to remove any non-adhered cells. On
day three, media was replaced with 1 ml antibiotic-free culture
media (RPMI 1640 medium containing 15% heat inactivated FCS
and 1% NEAA only). To ensure that the same number of MDM
were subjected to mycobacterial challenge, cells were dissociated
on day five using 1× non-enzymatic cell dissociation solution
(Sigma-Aldrich Ireland Ltd., Dublin, Ireland), counted, and then
re-seeded at 2× 105 cells per well in 24-well tissue culture plates
(Sarstedt Ltd., County Wexford, Ireland) using antibiotic-free cul-
ture media. By day eight, 80–100% confluent monolayers of MDM
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were generated that displayed the characteristic macrophage mor-
phology as confirmed by Giemsa staining (data not shown). On
day eight, MDM were used for the in vitro challenge experiments
with M. bovis and M. bovis BCG.

CULTURE OF M. BOVIS AND BCG AND INFECTION OF BOVINE MDM
The culturing of M. bovis (strain M2137; spoligotype SB0142)
has been described by us previously (20). Culturing of BCG (Pas-
teur strain) was performed in a Biosafety Containment Level 3
(CL3) laboratory and conformed to the national guidelines on
the use of Hazard Group 3 infectious organisms. BCG stocks
for the in vitro MDM infection experiments were cultured in
Middlebrook 7H9 medium (Difco™, Becton, Dickinson Ltd.,
Oxford, UK) containing 10% (vol/vol) BBL™ Middlebrook
OADC Enrichment (Difco™, Becton, Dickinson Ltd., Oxford,
UK), 0.05% Tween 80 (Sigma-Aldrich, Dublin, Ireland), and
0.50% (weight/vol) glycerol (Sigma-Aldrich Ltd., Dublin, Ire-
land) at 37°C. Bacterial cultures were grown to mid-logarithmic
phase as determined by spectrophotometric analysis prior to the
challenge experiments using the purified bovine MDM. Colony-
forming unit (cfu) counting was performed using Middlebrook
7H11 medium (Difco™, Becton-Dickinson Ltd., Dublin, Ireland)
containing 10% (vol/vol) Middlebrook (ADC) enrichment (Dif-
co™, Becton-Dickinson Ltd., Dublin, Ireland) and 0.50% (vol/vol)
glycerol (Sigma-Aldrich, Dublin, Ireland).

Monocyte-derived macrophage infections with BCG were per-
formed as previously described for MDM infections with M. bovis
(20). In brief, MDM (seeded at 2× 105 cells per well) were chal-
lenged with BCG (4× 105 cells per well) prepared in antibiotic-free
culture media (RPMI 1640 medium containing 15% heat inacti-
vated FCS and 1% NEAA only). BCG cell counts were performed
using a Petroff Hausser chamber (Fisher Scientific Ltd., Dublin,
Ireland) following sterile filtering to prevent clumping using a
5 µm filter (Millipore Ireland Ltd., County Cork, Ireland). BCG
cell numbers were then adjusted and 4× 105 bacilli were added to
the appropriate wells giving a multiplicity of infection (MOI) of
2:1. Subsequent cfu for BCG counting also yielded a mean MOI
of 2:1. Once challenged, MDM were incubated at 37°C, 5% CO2

for 2, 6, and 24 h.

RNA EXTRACTION AND MICROARRAY ANALYSIS
RNA extraction and microarray analysis has been described by
us previously (20). Briefly, global gene expression was analyzed
using the pan-genomic high-density Affymetrix® GeneChip®
Bovine Genome Array (Affymetrix UK Ltd., High Wycombe,
UK1). This array contains 24,072 probe sets representing over
23,000 gene transcripts and includes approximately 19,000 Uni-
Gene clusters. cDNA labeling, hybridization, and scanning for the
microarray experiments were performed by Almac Diagnostics
Ltd. (Craigavon, Co. Armagh, Northern Ireland) using a one-cycle
amplification/labeling protocol.

STATISTICAL ANALYSIS OF MICROARRAY DATA
Affymetrix® GeneChip® Bovine Genome Array data were ana-
lyzed using BioConductor (26)2 contained within the R statistical

1www.affymetrix.com
2www.bioconductor.org

package3. All raw data were normalized using the factor analy-
sis for robust microarray summarization (FARMS) package. The
FARMS package uses only perfect match (PM) probes and a quan-
tile normalization procedure, providing both P-values and signal
intensities (27). Normalized data were then further subjected to
filtering for informative probes sets using the I/NI-calls package
in R (28). This defines a probe set as being informative when
many of its probes reflect the same change in mRNA concentra-
tion across arrays. DE genes for a paired comparison between M.
bovis versus BCG infections at each time point were extracted
using a moderated paired t -test within the Linear Models for
Microarray Data (LIMMA) R package (29)4. Genes displaying dif-
ferential expression were annotated using the Affymetrix® bovine
gene annotation. The Benjamini–Hochberg multiple-testing cor-
rection method (30) was applied to all DE genes to minimize the
false discovery rate (FDR) and adjusted P-values for all DE genes
were calculated. Only DE genes with an adjusted P-value of ≤0.01
were used for subsequent network reconstruction and analysis. All
data are MIAME compliant and have been submitted to the NCBI
gene expression omnibus (GEO) database with experiment series
accession number GSE59774.

GENERATION OF InnateDB INTERACTION LISTS
Affymetrix® probe IDs for the DE gene lists at each time point
were mapped to human Ensembl IDs, using the BioMart search
tool on the Ensembl genome database5. Each of the three DE gene
lists were uploaded separately to the InnateDB6 curated, inter-
action database (23), where a list of interactions between the
uploaded molecules were generated. At the time of this analy-
sis, the InnateDB resource contained over 195,000 experimentally
determined interactions, of which more than 18,000 have been
manually curated, allowing for a detailed systems-level analysis of
the innate immune response. The interactions, for each time point,
were then viewed as a reconstructed network using the Cytoscape
software (24)7. Small clusters of nodes that did not connect to the
main network were removed from the analysis.

24 h INTERACTION NETWORK ANALYSIS
The 24-h interaction network was analyzed as an undirected,
Markov, network. Statistical analysis of the network was per-
formed using the NetworkAnalyzer plugin of Cytoscape (31). Hub
nodes were identified by calculating the degree of connectivity
(DOC) for each node in the network using the Degree Sorted Circle
Layout in Cytoscape. DOC is a measure of the number of inter-
actions a node has within the network. Nodes with the highest
DOC are classed as hub nodes. Bottleneck nodes were identified
by calculating the betweenness centrality index (BCI) for each
node in the network, also using the NetworkAnalyzer plugin. BCI
is a measure of how often a node appears on the shortest path
between nodes in the network and is a reflection of the amount of
control a node exerts over the interactions of other nodes in the

3www.r-project.org
4www.bioconductor.org/packages/release/bioc/html/limma.html
5www.ensembl.org/biomart/martview
6www.innatedb.com
7www.cytoscape.org
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network (32). A Spearman rank correlation between the DOC and
log2 fold-change in gene expression (M. bovis-infected MDM rel-
ative to BCG-infected MDM) was performed in the SPSS statistics
version 20 package (IBM, New York, NY, USA).

Combination of interactions and differentially expressed gene lists
Several Perl scripts were implemented to combine gene lists and
interactions in various ways. One was used to calculate the num-
bers of genes that are DE and linked to a set of hub genes by
a certain distance of edges/interactions, another one to extract
expression values for interactors with bottleneck genes at all
time points. All scripts are available through GitHub at: https:
//github.com/kkillick/Systems-biology-paper.git.

Gene ontology of 24 h network
Ingenuity® systems pathway analysis (IPA) was used to identify
gene ontology (GO) functional categories over-represented within
the DE genes found in the 24-h interaction network. The Inge-
nuity® knowledge base contains the largest database of manually
curated and experimentally validated physical, transcriptional, and
enzymatic molecular interactions. Furthermore, each interaction
in the Ingenuity® knowledge base is supported by previously pub-
lished information. For IPA GO analysis, the Ingenuity® knowl-
edge base was used as a reference set and only genes within the
24-h interaction network were uploaded. IPA then performed an
over-representation analysis that categorized the DE genes within
the uploaded list into functional GO categories. Each GO category
in IPA is ranked based on the number of DE genes falling into
each functional group. Right-tailed Fisher’s exact tests were used
to calculate an overlap P-value for each of the biological functions
assigned to the list of DE genes.

Expression analysis of the interactors of the top hub and bottleneck
genes
The top hub and bottleneck genes (IKBKE, MYC, NFKB1, and
EGR1) were specified in InnateDB to generate lists of all human
interactions. DE genes for a paired comparison of M. bovis versus
BCG infections at each time point, using an adjusted P-value of
≤0.01, were extracted from the complete interaction lists and visu-
alized using the Circos software package8 (33). Interaction nodes
colored in red indicate that the gene was up-regulated within the
dataset, while green indicate that the gene was down-regulated.

Identification of scale-free and small-world properties within the
24-h network
If a network has a node degree distribution that can be fitted
with a power law distribution, it can be a sign that the network
has a scale-free architecture. Node degree distribution of the 24-
h network was calculated using the NetworkAnalyzer plugin of
cytoscape and a power law distribution was fitted using Microsoft
Excel.

To determine whether a network displays small-world proper-
ties it must show L>̃Lrandom but C � Crandom. Where L is the
characteristic path length, defined as the number of edges in the

8http://circos.ca

shortest path between two nodes, averaged over all pairs of nodes,
and C, the clustering coefficient, is defined as follows: node n has
kn max number of edges. Cn denotes the fraction of these edges
that actually exist, while C is defined at the average of Cn over
all n (34).

The R package igraph9 was used to generate 1,000 random
networks, each with 716 nodes and 1,785 edges. The mean char-
acteristic path length and the mean clustering coefficient were
calculated across the 1,000 networks also using the average path
length and transitivity functions of the igraph R package. All R
code used here is available through GitHub at: https://github.com/
kkillick/Systems-biology-paper.git.

REAL TIME QUANTITATIVE REVERSE TRANSCRIPTION (qRT)-PCR
VALIDATION OF MICROARRAY RESULTS
A panel of 12 genes that were DE across all three time points
based on the microarray data was selected for microarray val-
idation using real time quantitative reverse transcription PCR
(qRT-PCR) analysis. The laboratory and statistical methods used
to perform this analysis are described in Section “Real Time
Quantitative Reverse Transcription (qRT)-PCR Validation of
Microarray Results” in Supplementary Material, and Table S1 in
Supplementary Material details the qRT-PCR primers used in
this study.

RESULTS
INCREASING DIFFERENTIAL GENE EXPRESSION BETWEEN M. BOVIS -
VERSUS BCG-INFECTED MDM OVER TIME
Comparison of gene expression profiles between paired M. bovis
versus BCG in vitro infections revealed 702 DE genes at 2 h and
1,000 and 2,674 DE genes at 6 and 24 h post-infection, respec-
tively (adjusted P-value≤0.01). Of the 702 DE genes found at the
2-h time point, 334 genes displayed increased expression in M.
bovis infections relative to BCG infections (hereafter referred to
as up-regulated), while 368 genes showed decreased expression in
M. bovis infections relative to BCG infections (hereafter referred
to as down-regulated). At the 6-h time point, 569 genes were up-
regulated, with 431 genes displaying down-regulation, while at
the 24-h time point 1,152 and 1,522 genes were up- and down-
regulated, respectively. Tables S2–S4 in Supplementary Material
contain DE gene results for the 2, 6, and 24 h post-infection time
points, respectively. Figure 1 depicts the number of DE genes and
the relative change in expression across the infection time course.

InnateDB INTERACTION ANALYSES
InnateDB is an open-source database containing experimentally
verified gene and protein-interactions involved in the human,
mouse, and bovine innate immune response (23). As a larger
number of curated interactions are available for human data, the
DE genes detected here were mapped to corresponding human
Ensembl gene IDs prior to analysis with InnateDB. In total, 362
DE genes at 2 h, 554 DE genes at 6 h, and 1,503 DE genes at
24 h mapped to human Ensembl gene IDs. These gene lists were
examined separately using InnateDB to generate a catalog of inter-
actions for each infection time point. At 2 h post-infection, 205

9http://igraph.sourceforge.net/doc/R/igraph.pdf
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FIGURE 1 | Number of DE genes found for a paired comparison of
virulent M. bovis versus attenuated BCG infections of bovine MDM
(n=7) across a time course of 2, 6, and 24 h post-infection. DE gene
numbers are reported here after filtering using an adjusted P -value of ≤0.01.

Red bars indicate the number of genes displaying increased relative
expression in M. bovis compared to BCG (up-regulated) and green bars
indicate the number of genes displaying decreased relative expression in
M. bovis compared to BCG (down-regulated).

interactions were identified, while 413 and 1,785 interactions were
detected for 6 and 24 h, respectively. As the 24-h time point gen-
erated the largest interaction network, it was chosen for detailed
downstream analyses.

24 h INTERACTION NETWORK RECONSTRUCTION AND ANALYSIS
Removal of small groups of nodes not linked to the main clus-
ter left 615 nodes for analysis in the 24-h interaction network.
These were connected via 1,670 edges. Two hundred eight of these
nodes had self-interaction loops. The network diameter was 10
and the average shortest path length was 4.315. The IKBKE, MYC,
NFKB1, HDAC5, and TRAF2 genes were identified as the top hub
nodes within the network. A degree of connectivity (DOC) of
57 was found for IKBKE, 57 for MYC, 55 for NFKB1, 52 for
HDAC5, and 50 for TRAF2. The DOC for these five nodes was
markedly higher than the mean number of connections found for
nodes within the network of 3.857, suggesting that they are hub
genes within the 24-h network. Also, for the 24-h interaction net-
work, IKBKE, MYC, and EGR1 displayed the highest betweenness
centrality index (BCI) of 0.1661, 0.1360, and 0.1297, respectively
(Figure S1 in Supplementary Material). This finding suggests that
IKBKE, MYC, and EGR1 are also key bottleneck nodes within the
24-h interaction network.

No significant correlation between the DOC and the log2 fold-
change in gene expression for nodes was found, indicating that
nodes with the greatest changes in expression between groups
may not have the biggest influence on other nodes within the net-
work (Spearman rho value 0.066, P = 0.108) (Figure 2). Figures S2
and S3 in Supplementary Material show the biological interaction
networks for the 2 and 6-h infection time points, respectively.

SCALE-FREE AND SMALL-WORLD PROPERTIES OF THE M. BOVIS
VERSUS BCG 24 h INTERACTION NETWORK
A power law distribution was fitted to the node degree distribution
of the 24-h network, generating an R2 value of 0.867 (Figure S4 in
Supplementary Material). This result suggests that the 24-h inter-
action network has a scale-free architecture, whereby many nodes
have a small number of connections yet a small number of hub
nodes have many connections. Scale-free networks tend to exhibit
the small-world network property of high clustering and short
average path lengths, L>̃ Lrandom but C�Crandom, (where L is the
characteristic path length and C is the clustering coefficient) (34).
This was tested on the 24-h interaction network by comparing it
to 1,000 random networks generated with the igraph R package
using the same number of nodes and edges. The random net-
works yielded a mean C = 0.007, with a maximum C = 0.012 and
L= 4.251. Conversely, for the observed 24 h interaction network,
the C and L values were 0.112 and 4.315, respectively. With a C
value 15.9-fold higher than the mean C value for the 1,000 ran-
dom networks, and the L value only marginally higher, the 24-h
interaction network exhibits small-world properties.

Highlighting the gene neighborhoods at increasing distances
from a main hub node (MYC) in the 24-h interaction network
demonstrates the scale-free architecture of the network. Figure 3
shows that almost all other nodes in the network (587 out of 615)
are connected to MYC through less than five edges. The com-
bined effect of the three main hub gene nodes (IKBKE, MYC,
and NFKB1) is presented in Figure 4A. It shows that nearly all
DE genes in the network (96%) are linked through a maximum
of four edges to one of the three key hub genes. This is signifi-
cantly higher than expected by chance (P-value < 0.01), based on
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FIGURE 2 |Top 30 gene nodes in the 24-h interaction network that displayed the highest DOC (red line). The log2 fold-change values for these genes are
also shown (blue line).

100,000 permutation tests. In addition, the intersection between
the linked genes from all hubs rises quickly from less than 10% at
a distance of two edges to nearly 90% at a distance of four edges
(Figure 4B), indicating complex intertwinement and a capacity
for rapid dissemination of signals throughout the network.

GENE ONTOLOGY OF THE M. BOVIS VERSUS BCG 24 h INTERACTION
NETWORK
The total number of DE genes that could be mapped to mole-
cules in the Ingenuity® Knowledge Base was 507, out of the 615
genes in the uploaded dataset. GO analysis facilitates discovery
of molecular functions that are enriched within a dataset. IPA
GO analysis of molecules within the 24-h interaction network
revealed Cell death to be a major over-represented functional cat-
egory. Two hundred thirty-seven of the molecules within the 24-h
network were involved in Cell death and an adjusted P-value of
4.18× 10−25 was obtained for this category. Further inspection
showed that the top 15 hub nodes and the top 15 bottleneck nodes
were also involved in the Cell death GO category.

EXPRESSION ANALYSIS OF THE INTERACTORS OF THE TOP HUB AND
BOTTLENECK GENES
Expression changes of the interactors with the top hub and bot-
tleneck genes IKBKE, NFKB1, MYC, and EGR1 were examined at
each of the three time points. Using an adjusted P-value of ≤0.01,
it was observed that the majority of the interactors were DE at
24 h for a paired comparison of M. bovis versus BCG infections.
This is in contrast to the earlier time points where only small
numbers of interactors exhibited significant expression changes
(adjusted P-value ≤0.01). For example, the number of DE genes
that interact with IKBKE increased from 6 to 12 between time
points 2 and 6 h, but expanded to 68 at 24 h. These results suggest
that differential regulatory activity at the IKBKE hub gene and its
interactors increases over time in MDM infected with M. bovis
relative to BCG. A similar outcome was observed for the NFKB1

and MYC hub genes and the EGR1 hub/bottleneck gene, where the
equivalent numbers of DE genes for the 2, 6, and 24-h time points
were 19, 27, and 42; 15, 22, and 72; and 23, 26 and 54, respectively
(Figure 5).

REAL TIME QUANTITATIVE REVERSE TRANSCRIPTION PCR (qRT-PCR)
VALIDATION OF MICROARRAY RESULTS
The results from real time qRT-PCR validation of the microarray
results are provided in Table S5 in Supplementary Material.

DISCUSSION
The ability of pathogenic mycobacteria to cause disease has been
largely attributed to their capacity to survive and replicate in
macrophages via a diverse range of mechanisms that subvert the
host innate immune response (35). It is believed that mycobac-
terial virulence is, in part, governed by several secreted virulence
factors, such as members of the ESAT-6 protein family encoded
by the RD1 genome region. Notably, the RD1 region is present
in all virulent M. tuberculosis and M. bovis strains and is one
of several regions of difference deleted from the genome of all
strains of attenuated BCG (36). The presence or absence of these
virulence factors are thought to result in differential host innate
immune responses to virulent and attenuated mycobacteria that
can be identified through the analysis of host gene expression data
(37–39). In the present study, we have analyzed the global differ-
ential bovine macrophage transcriptional response to virulent M.
bovis and attenuated BCG across an in vitro infection time course
of 2, 6, and 24 h. Furthermore, we have applied a systems biol-
ogy approach to reconstruct the complex molecular interactions
and networks that illustrate the differential macrophage responses
to these mycobacterial strains. Further work will be necessary to
provide insights into whether key genes identified in this study
represent aspects of attenuation regulated by the RD1 region.

Comparison of the MDM response to infection with M. bovis
relative to BCG revealed the largest number of DE genes at
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FIGURE 3 |The 24-h interaction network demonstrating scale-free
network properties. The main hub gene node, MYC, is shown in black.
Gene nodes that are one edge/interaction from MYC are colored purple;
gene nodes that are two edges/interactions from MYC are colored red;

gene nodes that are three edges/interactions from MYC are colored
orange; and gene nodes that are four edges/interactions from MYC are
colored yellow. Gene nodes colored gray are greater than four
edges/interactions from MYC.

24 h post-infection (2,674 DE genes), which was 3.8- and 2.7-
fold higher than the number of DE genes at the observed at 2 h
(702 DE genes) and 6 h time points (1,000 DE genes), respec-
tively (Figure 1). Notably, comparison between M. bovis- and
BCG-infected MDM at the 2-h time point did not reveal signifi-
cant differences in the expression profiles of key immune-related

genes known to be important during mycobacterial infection.
For example, mRNA transcripts were detected for genes encod-
ing macrophage pattern recognition receptors (PRRs) such as
TLR2 and TLR4, which are involved in the recognition of
evolutionarily conserved pathogen-associated molecular patterns
(PAMPs), and inflammatory cytokines including IL1B, IL6, and
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FIGURE 4 | Numbers of DE genes linked to at least one of the three key
hub genes (IKBKE, MYC, and NFKB1) up to a certain distance in terms of
edges/interactions. (A) Union of genes linked to the hubs and median

average of 100,000 permutations, including 95% of the distribution.
(B) Intersection of genes linked to the hubs and median average of 100,000
permutations, including 95% of the distribution.

IL10 following infection; however, these were not DE between
treatments (adjusted P-value of 0.01).

Systems analysis of the DE genes identified at the 24-h time
point generated a biological interaction network that displayed
both scale-free and small-world properties (Figure 3). In a scale-
free network, nodes are highly clustered and can be connected to
each other by relatively few steps due, in part, to the presence of a
small number of highly connected hub nodes (34, 40). Hub nodes,
identified as those nodes that have the highest DOC within a net-
work, enable scale-free networks to be highly robust. The majority
of nodes in the network are non-hub nodes with only a small

number of connections; therefore, scale-free networks can with-
stand the removal of non-hub nodes and still retain the capacity
to transmit information across the whole network. As such, these
networks are said to be “error tolerant.” There are many examples
of both small-world and scale-free networks, including metabolic
networks (41–43), neural networks in the brain (44, 45), and the
Internet (46). However, scale-free networks are vulnerable: should
key hub nodes be removed, the network will be seriously compro-
mised. Therefore, although scale-free and small-world networks
are highly robust against random removal of non-hub nodes, they
are vulnerable to targeted attacks on key hub nodes (47).
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FIGURE 5 | All interactions within InnateDB for the IKBKE, MYC, and
NFKB1 hub genes plus the top bottleneck gene node (EGR1) that show
significantly differential expression in at least one of the three time

points using an adjusted P -value of ≤0.01. Color intensity indicates the
degree of up-regulation (red) or down-regulation (green) in the M. bovis-
versus the BCG-infected bovine MDM (n=7) at each time point.

In the current study, IKBKE, MYC, and NFKB1 were the top
three ranking hub genes within the 24-h network (Figure 2).
The importance of these genes is highlighted by the effect they

have on the network based on the number of DE genes that are
close neighbors (up to four edges away, Figure 4). There is not
enough information available from the interaction databases to
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infer directionality for all interactions in the network, but the type
of products associated with these hubs (inhibitors and activators,
see below) suggest that most of their interactors lie downstream
within a signaling cascade. The fact that nearly all of the DE genes
in the network are linked by a maximum of four edges to one of the
three main hub genes emphasizes the rapid and extensive response
that can be initiated by change of expression in a very small num-
ber of genes. Furthermore, although the first- and second-degree
DE neighbors of the hubs are mostly separate sub-groups, these
sets of genes merge quickly into one large group after the next two
extensions of the network. In other words, the overall number of
DE genes (but not necessarily the type of expression change) could
potentially be derived from changes at any one of the hubs, which
points toward a single response captured by the network, com-
pared to a group of separate responses. This correlates well with the
detection of one common category (Cell death) found to be signif-
icantly over-represented in the GO analysis; however, observable
differences in macrophage viability or morphology between BCG
and M. bovis infections were not examined. The identification of
three hubs instead of just one could be indicative of (i) redundancy,
which has evolved for more robustness in the response to infec-
tions; or (ii) fine-tuning derived from interplay between different
regulators, which could provide greater control of the response.

The products of the IKBKE and NFKB1 genes are central
to the NF-κB signaling pathway that regulates the expression of
many immune-related genes following infection. IKBKE encodes
a subunit of the inhibitor of κB (IκB) kinase (IKK) complex,
which phosphorylates the NF-κB inhibitors (IKBs), resulting in
the release of the NF-κB transcription factor complex, a subunit
of which is encoded by the NFKB1 gene (48). Notably, at the 24-
h time point, both IKBKE and NFKB1 were up-regulated in the
M. bovis-infected MDM relative to BCG-infected MDM, suggest-
ing that there is increased activation of NF-κB signaling following
infection with the virulent mycobacterial strain. This is further
supported by the increased relative expression of several NF-κB-
inducible genes known to play a role in the host response to M.
bovis, such as IL1A, IL1B, IL6, and TNF (49–51).

The up-regulation of the IKBKE and NFKB1 hub genes indi-
cates that activation of NF-κB and consequent downstream sig-
naling and interactors of these hub genes (Figure 5) are crucial for
the differential success of virulent and attenuated M. bovis strains
within the host macrophage. Indeed, several pathogens, including
Helicobacter pylori and Chlamydia pneumoniae, have been shown
to manipulate the host NF-κB signaling pathway to ensure their
survival (52). Evidence of the modulation of monocyte NF-κB
signaling following mycobacterial infection has also been demon-
strated. Dhiman et al. (53) showed that human monocytes infected
with virulent M. tuberculosis exhibited increased NF-κB activity
that resulted in up-regulation of NF-κB-inducible anti-apoptotic
genes and increased survival relative to monocytes infected with
avirulent M. tuberculosis. In the current study, we also observed
increased expression of several NF-κB-inducible anti-apoptotic
genes including BIRC3, CFLAR, and TRAF2, which were among
the downstream interactors of the IKBKE and NFKB1 hub genes
(Figure 5). Furthermore, GO analysis of all nodes in the 24-h net-
work revealed enrichment for genes involved in apoptosis, which
is increasingly regarded as a host innate immune mechanism that

contains and limits mycobacterial growth following infection (54–
56). However, the induction of anti-apoptotic genes may represent
an immuno-modulation strategy employed by the pathogen that
inhibits apoptosis, enabling survival, and replication within the
macrophage (55). Therefore, it is possible that virulent M. bovis
targets key members of the NF-kB pathway causing the induction
of anti-apoptotic mechanisms that result in prolonged viability
within the bovine macrophage.

MYC, another highly connected hub gene identified within the
24-h network, displayed the same DOC as IKBKE. MYC encodes a
multi-functional transcription factor that serves as a key regulator
of cell proliferation and apoptosis and has been shown to suppress
or activate the expression of its target genes (57, 58). A recent study
has shown that MYC expression was induced in primary human
blood-derived macrophages following in vitro infection with path-
ogenic and non-pathogenic mycobacterial species. Moreover, it
was demonstrated that the MYC transcription factor mediated the
suppression of intra-macrophage mycobacterial growth via the
activation of cytokines including TNF and IL-6 (59). In the cur-
rent study, MYC was down-regulated in M. bovis-infected MDM
relative to BCG-infected MDM within the 24-h network. Further-
more, 51 of 73 (69.8%) of the downstream MYC interactors at
the 24-h time point were also down-regulated (Figure 5). Previ-
ous work by our group using the same M. bovis-infected MDM
described here demonstrated that MYC was down-regulated rel-
ative to non-infected MDM from the same animals (20, 22). It is
also important to note that MYC was not DE in the BCG-infected
MDM analyzed here relative to the same control MDM (unpub-
lished results). Collectively, these results suggest that suppression
of MYC following M. bovis infection results in the suppression of
host pro-inflammatory responses leading to intracellular micro-
bial survival and growth. Hence, MYC may serve as a key target
for mycobacterial modulation of innate immune mechanisms,
facilitating persistence within host macrophages.

Bottleneck nodes in the 24-h network were identified as nodes
with a high BCI (Figure S1 in Supplementary Material). BCI has
been shown to be associated with constrained evolutionary rates
for gene or protein nodes in biological networks; studies involving
eukaryote protein-interaction networks have demonstrated that
bottleneck nodes evolve more slowly than non-bottleneck nodes
(60, 61). Analyses of protein-interaction networks have also shown
that bottleneck nodes are more likely to be essential for organismal
survival than non-bottleneck nodes (62, 63).

In the current study, EGR1, together with IKBKE and MYC, was
identified as a top bottleneck node within the 24-h interaction net-
work (Figure S1 in Supplementary Material), with the majority of
significantly DE genes interacting with EGR1 showing changes at
this time point (55 out of 85, Figure 5). EGR1 encodes a zinc-finger
transcription factor that regulates the expression of a large num-
ber of genes involved in cellular differentiation and mitogenesis.
In addition, EGR-1 has also been shown to regulate the transcrip-
tion of pro-inflammatory cytokines in murine macrophages in
response to stimulation with bacterial antigens, including TNF
and IL-6 (64, 65). To our knowledge, only one publication exists
associating EGR1 with mycobacteria–macrophage interactions
(66), although it has recently been identified as part of a con-
served macrophage core transcriptional response module that is
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DE in response to intracellular bacterial pathogens (67). Here,
identification of EGR1 as a key bottleneck gene suggests that this
gene is a component of a differential bovine macrophage response
module to virulent and attenuated mycobacterial strains.

It has been shown that many of the species and subspecies in
the M. tuberculosis complex exhibit specific host association (68).
It is believed that this host specificity is an evolutionary conse-
quence of reciprocal adaptive genetic changes that have occurred
due to strong selection pressures between the interacting path-
ogenic mycobacteria and their hosts (69, 70). Several examples
of reciprocal traits involved in host-mycobacterial pathogen co-
evolution have been described, including the ability of the host
immune system to clear infection versus the ability of virulent
pathogens to subvert and evade host immune responses (71). It is
likely that the small-world properties of the 24-h network reflect
host–pathogen co-evolution. Small-world networks are character-
ized by the presence of hub and bottleneck genes that interact with
all other nodes within the network via a small number of steps.
This model predicts that the expression and products of these hub
and bottleneck genes enable the host to regulate an appropriate and
efficient immune response to virulent or attenuated mycobacterial
strains. Alternatively, key hub and bottleneck genes may serve as
targets for the subversion of host immune responses by virulent
pathogens that underlie successful infection, such as the suppres-
sion of apoptosis-related mechanisms by host transcription factors
as demonstrated by Dyer et al. (72).

At the individual gene level, from the results presented here, it is
not possible to determine whether host macrophage gene expres-
sion changes are due to regulation of host gene networks by the
pathogen, the host, or a combination of both. In this regard, previ-
ous studies have demonstrated that pathogen-encoded protein vir-
ulence factors and, more recently, pathogen-encoded small regu-
latory RNA molecules manipulate and modulate host macrophage
responses to facilitate intracellular survival and dissemination of
pathogenic mycobacteria (73–79). Consequently, to fully under-
stand the complex transcriptional regulatory interplay underlying
host–mycobacterium interactions, it will be necessary to per-
form parallel high-throughput transcriptional profiling of mRNA
and microRNA in both host and microbial cells (80, 81) and
complement these with experimental detection of host–pathogen
molecular interactions (82, 83).
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Mycobacterial infections are major causes of morbidity and mortality in cattle and are also
potential zoonotic agents with implications for human health. Despite the implementa-
tion of comprehensive animal surveillance programs, many mycobacterial diseases have
remained recalcitrant to eradication in several industrialized countries.Two major mycobac-
terial pathogens of cattle are Mycobacterium bovis and Mycobacterium avium subspecies
paratuberculosis (MAP), the causative agents of bovine tuberculosis (BTB) and Johne’s
disease (JD), respectively. BTB is a chronic, granulomatous disease of the respiratory tract
that is spread via aerosol transmission, while JD is a chronic granulomatous disease of
the intestines that is transmitted via the fecal-oral route. Although these diseases exhibit
differential tissue tropism and distinct complex etiologies, both M. bovis and MAP infect,
reside, and replicate in host macrophages – the key host innate immune cell that encoun-
ters mycobacterial pathogens after initial exposure and mediates the subsequent immune
response.The persistence of M. bovis and MAP in macrophages relies on a diverse series
of immunomodulatory mechanisms, including the inhibition of phagosome maturation and
apoptosis, generation of cytokine-induced necrosis enabling dissemination of infection
through the host, local pathology, and ultimately shedding of the pathogen. Here, we
review the bovine macrophage response to infection with M. bovis and MAP. In particu-
lar, we describe how recent advances in functional genomics are shedding light on the
host macrophage–pathogen interactions that underlie different mycobacterial diseases.
To illustrate this, we present new analyses of previously published bovine macrophage
transcriptomics data following in vitro infection with virulent M. bovis, the attenuated vac-
cine strain M. bovis BCG, and MAP, and discuss our findings with respect to the differing
etiologies of BTB and JD.

Keywords: cattle, BCG, gene expression, Johne’s disease, macrophage, Mycobacterium avium subspecies paratu-
berculosis, Mycobacterium bovis, tuberculosis

INTRODUCTION
Mycobacterium is a Gram-positive genus of Actinobacteria that
includes more than 120 species (1, 2). Although the majority of
species in this genus are non-pathogenic environmental bacteria, a
few species are highly successful intracellular pathogens of human
beings and other mammals including Mycobacterium tuberculosis
and Mycobacterium bovis – the causative agents of human being
and bovine tuberculosis (BTB), respectively – and Mycobacterium
avium subspecies paratuberculosis (MAP), the causative agent of
Johne’s disease (JD) in cattle (3, 4). The success of these patho-
genic mycobacteria is partly due to their ability to infect, reside,
and proliferate inside host macrophages, despite the antimicrobial
properties of these cells. Macrophages serve as key effector innate
immune cells that mediate the initial host response to infection
via the activity of inflammatory cytokines and chemokines; this
initial interaction leads to either the eradication of intracellular

bacilli or the formation of organized collections of immune cells,
termed granulomas, which contain infection (5).

Infections with pathogenic mycobacteria can manifest as acute
or chronic disease or involve lengthy subclinical phases of infection
with the potential to reactivate later. It is also understood that the
establishment of successful infection is underpinned by subver-
sion and modulation of host macrophage antimicrobial mech-
anisms, including the prevention of macrophage phagosome–
lysosome fusion, inhibition of macrophage apoptosis, and sup-
pression of antigen presentation and signaling mechanisms within
the macrophage (6–8). Furthermore, it has been proposed that
virulent mycobacteria exploit host defense mechanisms, such
as the induction of cytokine-induced necrosis, which results in
immunopathology, the dissemination of infection through the
host and ultimately pathology that leads to shedding of the
pathogen from the host, thereby maintaining the cycle of infection
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(9). Consequently, investigating the complex interplay between
mycobacterial pathogens and the host macrophage is critical to
our understanding of the immuno-pathogenesis of mycobacterial
diseases.

THE Mycobacterium tuberculosis COMPLEX
The genus Mycobacterium contains the Mycobacterium tuberculo-
sis complex (MTBC) that includes seven major pathogenic species
and subspecies that cause tuberculosis in a range of mammalian
hosts, the most well-studied member of which is M. tuberculo-
sis – the causative agent of human tuberculosis. Typically, the
members of the MTBC display greater than 99.95% nucleotide
sequence identity at the genome level, with little or no evidence
for the exchange of genetic material between species and strains
(10). Despite this high level of genome similarity, the members
of the MTBC differ with respect to host range and pathogenicity:
M. tuberculosis and Mycobacterium africanum are almost exclu-
sively human pathogens; Mycobacterium microti causes disease in
rodents including voles; Mycobacterium pinnipedii causes tuber-
culosis in marine mammals including seals and sea lions; and
Mycobacterium caprae is very closely related to M. bovis and infects
both goats and deer. The species with the largest host range is
M. bovis, which is mainly isolated from cattle, but can also be

responsible for outbreaks in wild animals. Furthermore, M. bovis
can cause disease in human beings yet rarely transmits between
immunocompetent hosts. A closely related mycobacterial species,
Mycobacterium canettii, causes pathology in human beings, but
differs from the other members of the MTBC in that it displays
smooth colony morphology rather than the characteristic rough
morphology of the other MTBC members (11, 12).

Phylogenetic analyses using insertion/deletion DNA sequence
polymorphisms (indels), such as the variable regions of difference
(RD – see below) and whole gene and genome sequences have
revealed that the evolutionary history of the MTBC represents
a pattern of genome downsizing characterized by chromosomal
DNA sequence deletions and the inability of these species to repair
deletions through recombinogenic processes (10, 13). These stud-
ies support a distinct phylogenetic position of M. canettii from
all other MTBC members: M. canettii strains possess intact RD
sequences that are absent from the other MTBC species together
with one species-specific deletion (RDcan). M. canettii strains
also have 26 additional spacer sequences that are not found in
other MTBC species [Figure 1] (10). Indeed, it has been recently
proposed that M. canettii and other smooth tubercle bacilli (STB)
lineages diverged from the common ancestor of all tubercle bacilli
prior to the clonal radiation of non-smooth MTBC lineages

FIGURE 1 | Neighbor-joining phylogeny of selected mycobacteria
species and strains based on partial 16S rRNA sequences.
Bootstrap supports are based on 1,000 pseudoreplicates. Species and

strains belonging to the Mycobacterium tuberculosis complex are
shaded in red; members of the Mycobacterium avium complex are
shaded in green.
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and that non-smooth MTBC lineages evolved from an STB-like
mycobacterial ancestor, sometimes referred to as Mycobacterium
prototuberculosis (14).

Genomic comparisons across the MTBC revealed a number of
“regions of difference” (RD loci), with the presence or absence
of these loci capable of differentiating the constituent strains of
the MTBC. Notably, deletion of chromosomal region RD9 dis-
tinguishes M. tuberculosis strains from animal-adapted lineages,
including M. bovis, while RD1 [which encodes, among other genes,
the ESX-1 secretion system plus key secreted effectors including
early secretory antigen target 6 (ESAT-6) and culture filtrate pro-
tein 10 (CFP-10)] is deleted in M. bovis Bacille Calmette–Guérin
(M. bovis BCG) vaccine strains. The use of deletions to differen-
tiate mycobacterial strains led to the proposal of an evolutionary
scenario positing M. tuberculosis as being closer to the common
ancestor of the MTBC and rejection of the hypothesis that M.
tuberculosis infection in human populations arose from an animal
pathogen such as M. bovis in parallel with cattle domestication
and husbandry (15, 16).

THE Mycobacterium avium COMPLEX
A second major evolutionarily distinct cluster of mycobacte-
rial species is represented by the Mycobacterium avium com-
plex [MAC] (Figure 1). This complex shares an estimated 40%
nucleotide sequence similarity with members of the MTBC based
on proteome-derived DNA sequences (17). The MAC com-
prises several closely related, slow-growing, pathogenic, and non-
pathogenic species. Among the pathogenic species within the MAC
are M. avium and its subspecies (MAP; M. avium subsp. avium;
M. avium subsp. silvaticum; and M. avium subsp. hominissuis) and
Mycobacterium intracellulare. Phylogenetic analyses based on par-
tial gene, whole gene, and complete genome DNA sequences have
revealed that subspecies of M. avium typically share over ≥95%
nucleotide sequence identity, while nucleotide identity between
M. avium subspecies and M. intracellulare was estimated between
80 and 94% (18–21).

Despite their genetic similarity, members of the MAC show dif-
ferential host and tissue tropisms. For example, M. avium subsp.
avium is the classical causative agent of tuberculosis in birds, while
M. avium subsp. silvaticum has been shown to cause tubercu-
lous lesions in wood pigeons. In this regard, M. avium subsp.
avium and M. avium subsp. silvaticum together represent a dis-
tinct lineage of avian pathogens. M. avium subsp. hominissuis and
M. intracellulare are opportunistic pathogens widely distributed
in the environment and can cause disseminated tuberculosis and
pulmonary disease in a range of mammalian hosts, including pigs,
cattle, and human beings (22). From a human perspective, M.
avium subsp. hominissuis is considered to be most clinically rele-
vant member of the MAC member, where it has been previously
shown to have caused disseminated infections among immuno-
compromised patients (23). MAP, in contrast, is an obligate intra-
cellular pathogen of ruminants that causes JD characterized by
chronic enteritis, with severe economic losses for the dairy indus-
try in many countries (3). MAP can be differentiated from the
other subspecies of M. avium by its very slow growth rate in vitro
(between 8 and 24 weeks growth is required for visible colony
formation). In addition, MAP is dependent on the siderophore

mycobactin J, an iron-chelating cell wall component, for growth
in primary cultures (24).

Mycobacterium bovis INFECTION AND BOVINE
TUBERCULOSIS
Bovine tuberculosis is caused by infection with M. bovis, which
continues to pose a threat to livestock worldwide. Furthermore,
as a zoonotic pathogen, M. bovis also has serious implications
for human health (25). It has been estimated that BTB con-
tributes losses of $3 billion to global agriculture annually (26, 27),
while comprehensive econometric analyses place BTB as the fourth
most important livestock disease worldwide (28). The impacts of
BTB infection are manifold, including significant economic and
social effects due to the slaughter of infected animals, compen-
satory payments to producers, continual surveillance programs,
and disruption to agricultural trade and productivity (29).

Bovine tuberculosis is predominantly a pulmonary disease,
characterized largely by the formation of tuberculous lesions in
the upper respiratory lymph nodes of the lung and thorax. In
some cases, tuberculous lesions have also been detected in the cra-
nial lymph nodes (30). The etiology and host immune response to
M. bovis is similar to M. tuberculosis infections in human beings
(31). Infection is normally caused by the inhalation of aerosolized
respiratory secretions containing infectious bacilli, with the nat-
ural site of infection being the respiratory tract, presumably on
the alveolar surface of the lung. Following inhalation, the bacilli
are rapidly encountered by host alveolar macrophages and other
phagocytic innate immune cells (such as dendritic cells), which
serve as key innate immune effector cells that provide the first
line of defense against the pathogen. At this stage, bacilli can be
destroyed by the antimicrobial actions of the macrophage; how-
ever, bacilli that evade intracellular destruction can persist and
multiply within infected macrophages. This results in the migra-
tion of infected macrophages to regional lymph nodes, where
protective TH1 cell immunity is induced through the recruitment
and interaction of additional innate and adaptive immune cells,
culminating in the formation of granulomas – organized com-
plexes of immune cells composed of lymphocytes, non-infected
macrophages, and neutrophils that contain infected macrophages
and prevent the dissemination of bacilli (5, 31, 32). However, in
most cases, the pathogen is not eliminated by the host; rather,
the pathogen persists in a dormant stage within the granuloma
for prolonged periods of time, becoming metabolically and repro-
ductively active following the breakdown of the granuloma and
dysregulation of protective T-cell immunity. This results in the
development of active tuberculosis, causing immunopathology in
the host and enabling the transmission of infection (31).

MAP INFECTION AND JOHNE’S DISEASE
Johne’s disease, caused by infection with MAP, is a chronic inflam-
matory disease that affects the gastrointestinal tract of cattle and
other ruminants. Specifically, JD presents as a granulomatous
inflammation of the intestinal tissue and regional lymph nodes due
to a massive influx of monocytes and macrophages. This inflam-
mation effectively prevents absorption of nutrients, and, therefore,
during the later stages of disease cattle manifest significant weight
loss and diarrhea, resulting in progressive physiological wasting
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and death. Disease progression is generally classified into four
stages: silent infection, subclinical, clinical, and advanced clini-
cal disease; in particular, the subclinical phase can be extremely
lengthy (between 2 and 5 years), with pathology largely restricted
to the ileum, rendering diagnosis difficult (24).

Exposure to MAP in ruminants generally occurs within the first
months of life, through either a fecal–oral route or by ingestion
of contaminated colostrum or milk, although evidence suggests
that some infections can occur in utero (33). Following ingestion,
the bacilli colonize the mucosa-associated lymphoid tissues of the
upper gastrointestinal tract and are subsequently endocytosed by
the microfold cells (M-cells) that cover the ileal Peyer’s patches.
The bacilli are subsequently phagocytosed by subepithelial and
intraepithelial intestinal macrophages, where they reside and mul-
tiply (34). The subsequent host cellular immune response leads to
the development of granulomas involving adjacent lymph nodes.
After years of latent infection, bacilli are assumed to reactivate and
trigger a state of active cellular proliferation, leading to the corru-
gated intestinal epithelia and clinical manifestations with shedding
of bacilli into the environment and grassland completing the infec-
tion cycle. The disease finally presents as a malnutrition syndrome
that culminates in the death of the animal (3, 35, 36).

Johne’s disease has major implications for domestic animal
health worldwide causing significant economic loss in affected
herds, which is largely due to decreased milk yields, reduced
slaughter weight, premature culling of infected animals, and losses
due to continued spread of infection (37). In cattle, JD results in
estimated losses of $250 million to the US dairy industry annu-
ally, while dairy herd prevalence of JD is estimated to be greater
than 50% in certain US states and European countries (35, 38, 39).
Furthermore, it has been hypothesized that MAP infection may
trigger or exacerbate Crohn’s disease, an inflammatory disease of
the intestines in human beings with similar granulomatous pathol-
ogy at the ileocecal valve; however, this proposed link between
MAP infection and Crohn’s disease remains contentious (40).

THE ROLE OF THE MACROPHAGE DURING MYCOBACTERIAL
INFECTION
Although BTB and JD exhibit distinct complex etiologies, the
causative agents of these diseases display a propensity to infect,
reside, and replicate in host macrophages – the key host innate
immune cell that mediates the immune response following infec-
tion. Macrophage recognition of mycobacteria occurs through
the interaction of mycobacterial pathogen-associated molecu-
lar patterns (PAMPs) – such as lipopolysaccharide, and various
lipoproteins and glycolipids (e.g., lipoarabinomannan) – with host
pathogen recognition receptors (PRRs) proteins, such as Toll-like
receptors (TLRs), which are expressed on the macrophage cell
surface (41). Macrophage PRR activation induces signaling path-
ways resulting in the production of endogenous NF-κB-inducible
cytokines and chemokines that promote a TH1 immune response
characterized by the release of proinflammatory IFN-γ, primar-
ily from CD4+ T-cells, and the lysing of infected macrophages
by cytotoxic CD8+ T-cells. IFN-γ induces microbicidal activity
in infected macrophages and enhances the expression of major
histocompatibility complex (MHC) class I and II molecules nec-
essary for the presentation of mycobacterial antigens on the

macrophage cell surface to CD8+ and CD4+ T-cells, respectively.
These mechanisms can lead to either the immediate killing of the
pathogen and clearing of infection,or the containment of infection
through the formation of granulomas (42–45).

Pathogenic mycobacteria have evolved a diverse range of
immunoevasive mechanisms that facilitate survival and replica-
tion within the host macrophage. These immunoevasive mecha-
nisms include inhibition of phagosome maturation necessary for
destruction of the pathogen and antigen presentation (46, 47);
evasion of macrophage apoptosis and activation of macrophage
necrosis, which facilitates release of bacilli from the macrophage
and encourages dissemination of infection to other cells (7, 48);
and the subversion of innate cell signaling, which is critical to the
establishment of infection and progression to active disease (49,
50). It has also been recently demonstrated that virulent M. tuber-
culosis strains preferentially infect permissive macrophages and
evade microbicidal macrophages through the masking of PAMPs
with cell surface associated lipids (51).

Failure or subversion of an appropriate innate immune
response is critical to the establishment of infection and progres-
sion to disease; central to this process is the macrophage response
to infection (31). Consequently, analysis of the bovine macrophage
response to in vitro infections with M. bovis and MAP may provide
insights into the cellular mechanisms that underlie and govern the
divergent immunopathology of BTB and JD (36, 52).

FUNCTIONAL GENOMICS ANALYSIS OF THE BOVINE
MACROPHAGE RESPONSE TO MYCOBACTERIA
Early investigations of the bovine macrophage response to
mycobacterial infection focused on the analysis of the expres-
sion of single or small numbers of immunological parameters.
For example, the quantification of gene or protein expression
using reverse transcription quantitative real-time PCR (RT-qPCR)
and ELISA technologies; however, focused studies such as these,
are unable to provide a high-resolution overview of the global
macrophage response to infection. Pathogen-induced activation
of host macrophages is characterized by large-scale changes in the
expression profile of genes critical for the control and eradication
of the pathogen, while modulation of host gene expression critical
for pathogen survival is also expected to be reflected in the tran-
scriptome of the macrophage (53, 54). Consequently, genomics
technologies that assay pan-genomic changes in gene expression
have been widely used to discern patterns of host-gene regula-
tion during infection. In particular, the development of high-
throughput gene expression technologies, such as microarrays and
RNA-sequencing (RNA-seq), over the past decade, coupled with
dramatic improvements in mammalian genome resources and
increasingly sophisticated computational tools for the analysis of
large-scale gene expression datasets are providing new opportu-
nities for detection, cataloging, and analysis of the large numbers
of host macrophage genes expressed in response to mycobacterial
infection in cattle (55–64).

A primary goal of our research group is to use high-
throughput functional genomics technologies to analyze the
bovine macrophage transcriptome following infection with M.
bovis and M. paratuberculosis to improve our understanding of
host–pathogen interactions that characterize and underlie BTB
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and JD. Previously, we used a 24-h time course infection model
to investigate the transcriptome response of bovine monocyte-
derived macrophages (MDM) infected with M. bovis and MAP
using data generated from the Affymetrix® GeneChip® Bovine
Genome microarray platform (61, 62). These analyses revealed a
large number of differentially expressed (DE) genes following M.
bovis infection relative to non-infected control MDM such that the
number of DE genes also increased across the time course, with
the highest number observed 24 h post-infection [hpi] (62). This
contrasted with results from MAP-infected MDM relative to the
same control macrophages, which showed the highest number of
DE genes at the 2 hpi time point with a decrease in the number of
DE genes at the later time points post-infection (i.e., 6 and 24 hpi)
(61). These findings suggest that M. bovis and MAP have differ-
ential survival strategies once internalized by macrophages, which
in turn, may underlie the divergent immunopathology associated
with BTB and JD.

THE MONOCYTE-DERIVED MACROPHAGE INFECTION
MODEL AND GENE EXPRESSION DATASETS USED FOR
COMPARATIVE FUNCTIONAL ANALYSIS
To further investigate the similarities and differences of the
bovine MDM response to virulent and attenuated mycobacterial

species/strains, we have reanalyzed and directly compared the
Affymetrix® GeneChip® Bovine Genome microarray data from
our earlier work (i.e., the non-infected control MDM and the
M. bovis- and MAP-infected bovine MDM) together with cor-
responding microarray data from MDM infected with M. bovis
BCG (65). All infected and control MDM used to generate these
data were derived from the same seven age-matched Holstein-
Friesian females, while a multiplicity of infection (MOI) of 2:1 (i.e.,
2 bacilli:1 MDM) was used for all MDM infections (61, 62). Gene
expression omnibus (GEO) data series accession numbers used for
these re-analyses were GSE33309, GSE35185, and GSE59774 (66).

For this new comparative analysis, gene expression data from
M. bovis-, MAP-, and M. bovis BCG-infected MDM together with
data from the non-infected control MDM at time points 2, 6, and
24 hpi were used. Prior to differential gene expression analysis, all
microarray data were quality checked using the arrayQualityMet-
rics package in Bioconductor (67). Raw data from two microarrays
(one MAP- and one M. bovis BCG infected MDM sample) did not
pass the QC thresholds set in the arrayQualityMetrics package
and were removed from all further downstream analyses. Further-
more, all arrays generated from these two animals were excluded
to ensure a balanced experimental design for comparative gene
expression analysis (Figure 2). Next, all raw gene expression data

FIGURE 2 |The experimental design used for the comparative
functional genomics analysis described in the current study.
Previously, MDM from seven age-matched females were infected with
M. bovis and MAP (MOI 2:1); control MDM received culture media only
(61, 62). We also infected, in parallel, MDM from the same animals with
M. bovis BCG (MOI 2:1). Infections were performed across duplicate
tissue culture plate wells (shaded circles); total RNA from duplicate

treatment wells was harvested and pooled at 2, 6, and 24 hpi.
Pan-genomic gene expression data for each RNA sample was generated
using the Affymetrix® GeneChip® Bovine Genome microarray platform
(61, 62). For the comparative functional genomics analysis, microarray
data from only five of these animals were used to ensure a balanced
experimental design following quality control assessment (see main
body text for details).
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were normalized and filtered for non-informative probe sets using
the I/NI algorithm implemented in the FARMS Bioconductor soft-
ware package (version 1.14.0) (68); this analysis yielded 11,842
informative probe sets for use in downstream analysis.

The 11,842 informative probe sets identified post-filtering were
then used to generate a multi-dimensional scaling (MDS) plot
summarizing the transcriptomic relationship between samples
(Figure 3). Notably, samples clustered according to time on the
first dimension, while the second dimension clustered samples
according to animal ID. However, there was a noticeable clus-
tering of RNA samples from M. bovis BCG- and MAP-infected
samples within each group of samples corresponding to a partic-
ular animal at a given time. Investigation of the expressed genes
with the greatest animal effect revealed that loci within the bovine
MHC displayed the greatest differences in expression among ani-
mals with relatively small gene expression differences within each
animal across time and treatment (Figure S1 in Supplementary
Material). The magnitude of the expression differences among
animals for these genes presumably contributes to the separation
of the samples by animal on the second dimension in the MDS
plot (Figure 3).

We propose two hypotheses to explain the observed expres-
sion differences among animals. First, expressed MHC loci, which
are among the most polymorphic loci in mammals, generate
mRNA transcripts that display considerable nucleotide differ-
ences between individuals from the same species (69–71). mRNA
transcripts that vary appreciably from the reference transcript
sequences used to produce the microarray probe sets may, there-
fore, have a reduced hybridization efficiency compared to mRNA
transcripts that are identical to or differ only slightly from the

reference transcript sequences. In turn, this may result in Type
1 errors for differential gene expression estimates between sam-
ples or sample groups (72–74). Consequently, the animal effect
observed in these data may be due, in part, to the technical limita-
tions of the microarray platform used. Second, it is possible that
the observed inter-animal differential gene expression is due, in
part, to real differences in mRNA abundance generated by geno-
typic differences at loci that regulate gene expression (71, 74, 75);
indeed, genotypic differences at loci that regulate gene expression
in response to mycobacterial infection may contribute to pheno-
typic differences in the ability of an animal to clear or succumb to
infection. In addition, a combination of both these technical and
biological factors could also explain the observed animal effect.

COMPARATIVE FUNCTIONAL GENOMICS ANALYSIS
REVEALS SIMILARITIES AND DIFFERENCES IN THE
MACROPHAGE TRANSCRIPTOME RESPONSE TO M. bovis,
MAP, AND M. bovis BCG
Figure 4 shows the results of differential gene expression analysis
for the infected MDM (i.e., M. bovis, MAP, and M. bovis BCG) rela-
tive to the non-infected control MDM [false-discovery rate (FDR)
adjusted P value≤0.05]. Notably, for each infected MDM/control,
MDM contrast the number of DE genes varied with respect to
time. M. bovis-infected MDM exhibited the greatest number of
DE genes, with the number of DE genes increasing across the 24-h
time course. Furthermore, for M. bovis, the number of downreg-
ulated genes exceeded the number of upregulated genes at each of
the time points post-infection.

In contrast, the number of DE genes observed for both
the MAP- and M. bovis BCG-infected MDM (relative to the

FIGURE 3 | Multi-dimensional scaling (MDS) plot of the infected MDM at each time point post-infection. Manhattan distances (calculated from 11,842
informative probe sets) were used to generate the MDS plot.
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FIGURE 4 |The number of DE genes found for paired comparisons of
infected MDM (i.e., MDM infected with M. bovis/MAP/M. bovis BCG)
relative to the control MDM for each time point post-infection
(FDR ≤ 0.05). Bars above the horizontal line (i.e., y =0) indicate the number
of genes displaying upregulation in the infected MDM relative to the control
MDM; bars below the horizontal line indicate the number of genes
displaying downregulation in the infected MDM relative to the control
MDM.

non-infected controls) was highest at the 6 hpi time point for both
sample groups (Figure 4). These results indicate that for MAP
and M. bovis BCG infection, MDM differential gene expression
had largely abated at the 24 hpi time point and that the MDM
transcriptome reverted to a transcriptional state similar to that
of the control MDM. These observations support previous work
that showed that differential gene expression changes in MAP-
infected bovine MDM are transient and are largely undetected
24 hpi relative to non-infected control MDM (76, 77).

A comparison of the lists of DE genes obtained for all mycobac-
teria/control contrasts at each time point (Figure 5) identified
a core set of DE genes at the 2 and 6 hpi time points com-
mon to all three mycobacterial treatments consisting of 170 and
236 DE genes, respectively. Among the DE genes common to
all three mycobacterial infections were IL1A, IL1B, TNF, NFKB1,
and NFKB2; all of these genes were upregulated at one or more
time points in all types of infected MDM, suggesting a robust
inflammatory reaction to all of the mycobacteria used in this
study. Ingenuity® Systems Pathway Analysis (IPA; Ingenuity Sys-
tems, Redwood City, CA, USA; www.ingenuity.com) was used to
identify canonical pathways within the list of DE genes that were
common to all three mycobacterial treatments relative to the con-
trol group. The top ranking canonical cellular pathways (based on
the lowest adjusted P-values; FDR≤ 0.05) enriched for the 170
and 236 common DE genes identified at 2 and 6 hpi included
IL-10 signaling (2 hpi); dendritic cell maturation (2 and 6 hpi);
IL-6 signaling (2 hpi); TNFR2 signaling (2 hpi), TWEAK signaling

FIGURE 5 |The number of shared and unique DE genes among the three infected MDM groups based on gene expression data relative to the control
MDM (FDR ≤ 0.05). Red shading denotes M. bovis-infected MDM; green shading denotes MAP-infected MDM; blue shading denotes M. bovis BCG
(BCG)-infected MDM.
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(2 hpi); communication between innate and adaptive immune cells
(6 hpi), NF-κB signaling (6 hpi); and TREM1 signaling (2 and
6 hpi; FDR≤ 0.0001) (see Tables S1 and S2 in Supplementary
Material).

We also observed large numbers of DE genes that were specific
to M. bovis-infected MDM, which increased over time from 1,013
significant genes at 2 hpi to 2,167 at 24 hpi (Figure 5). The percent-
ages of DE genes unique to M. bovis infection relative to the total
number of DE genes detected following M. bovis infection were
80.3% (2 hpi), 78.8% (6 hpi), and 96.6% (24 hpi). IPA analysis
of the DE genes unique to M. bovis-infected macrophages across
all three time points (Tables S3–S5 in Supplementary Material)
revealed enrichment for genes involved in cell signaling, includ-
ing IL-6 signaling and mitogen-activated protein kinase (MAPK)
signaling, the latter of which regulates the expression of several
transcription factors, such as those encoded by FOS and JUN that
are critical for the activation of immune cells (78). In contrast, the
number of DE genes specific to MAP and M. bovis BCG infec-
tion across the time course was markedly lower; for example, no
gene was specific to either MAP or M. bovis BCG infection 24 hpi.
Indeed, for each post-infection time point, more than 98.3% of the
DE genes induced by MAP and M. bovis BCG relative to the con-
trols were among the list of DE genes induced by M. bovis relative
to the controls.

We next analyzed differential gene expression directly between
each pair of mycobacteria-infected sample groups (Figure 6).
Large and increasing numbers of DE genes were found across the
time course in M. bovis-infected MDM relative both MAP- and
BCG-infected MDM, confirming the divergence between the two
types of MDM transcriptional responses. Notably, no DE genes
were detected between MAP- and BCG-infected MDM at 2 and
6 hpi, while only two DE genes were identified at 24 hpi; this con-
trasts with the larger numbers of DE genes identified through
the indirect comparison of MAP- and BCG-infected MDM using
the controls as a common reference (Figure 5). This discrep-
ancy is most readily explained by differences in variances of gene
expression within each sample group as illustrated in Figure S2 in
Supplementary Material.

The overlap in DE genes across all three treatment groups
(relative to the control groups) at the 2 and 6 hpi time points sug-
gest that a “core” MDM transcriptional response is induced by all
three mycobacterial species/strains during the early stages of infec-
tion. This core transcriptome is characterized by genes involved in
innate cytokine signaling and production, which encode proteins
that activate the adaptive immune response following mycobac-
terial infection. However, the large and increasing number of DE
genes specific to M. bovis across the infection time course demon-
strates that M. bovis is a more potent inducer of proinflammatory
genes than M. bovis BCG or MAP and highlights the distinct MDM
gene expression profile elicited in response to this pathogen. In
addition, the enrichment of M. bovis-specific DE genes for roles
in macrophage cell signaling, such as IL-6 and MAPK signaling,
suggests that additional cellular pathways are triggered by this
pathogen relative to M. bovis BCG or MAP.

Although proinflammatory cytokines and chemokines play a
pivotal role in mediating the host immune response to con-
trol mycobacterial infection, several lines of evidence suggest

FIGURE 6 |The number of DE genes found for pairwise comparisons
among infected MDM groups (FDR ≤ 0.05). Bars above the horizontal line
(i.e., y =0) indicate the number of genes displaying upregulation; bars
below the horizontal line indicate the number of genes displaying
downregulation.

that these molecules and their associated pathways can be
exploited by virulent mycobacterial pathogens to promote gran-
uloma formation, which recruit new macrophages to the site of
infection enabling persistence within the host (79). For exam-
ple, non-regulated production of proinflammatory cytokines
and chemokines can result in immunopathology, including
destructive inflammation and necrosis, allowing dissemination
of the pathogen from infected cells (9, 80, 81). Therefore, the
immunopathology of BTB may be associated with the increased
induction of innate immune genes following infection with M.
bovis. Furthermore, the divergent transcriptomic profile observed
in MDM infected with virulent M. bovis relative to M. bovis BCG-
infected MDM is presumably governed, in part, by the presence
of several secreted virulence factors, such as those encoded by the
RD1 locus (57, 82, 83). This locus is present in all virulent strains
of M. bovis (and M. tuberculosis) but is absent in attenuated strains
of M. bovis BCG (84).

Conversely, the reduced number of DE genes detected between
the MAP-infected and the non-infected control and M. bovis BCG-
infected MDM across the time course suggests that MAP infection
does not result in a major perturbation of the MDM transcrip-
tome; rather, bovine MDM sense and respond to MAP in a similar
manner to attenuated M. bovis BCG despite their markedly dis-
tinct evolutionary histories and different pathogenicities. These
results support the hypothesis that MAP infection of host MDM
is achieved via a capacity to appear “benign,” which enables it to
reside and replicate within the macrophage for prolonged periods
of time, and may underlie the lengthy subclinical phase of infection
characteristic of JD (85). Our results also suggest that the immu-
noevasive mechanisms used by MAP involve the suppression of
the proinflammatory response, such that the transcriptome of an
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infected macrophage resembles that of a non-infected cell. In sup-
port of this, in vivo MAP infection models demonstrate that cattle
initially develop an early proinflammatory and TH1-type response
to infection, which gradually declines in animals that progress to
active disease, favoring a TH2-type response that does not control
infection (3, 86–88). Notably, the immunosuppression observed
in vivo may originate at a cellular level, whereby MAP-infected
macrophages fail to properly respond to host-derived immune
activators such as CD40L and IFN-γ (89, 90).

TRANSCRIPTIONAL EVIDENCE FOR TYPE I
INTERFERON-MEDIATED REGULATION OF INTERLEUKIN I
PRODUCTION IN M. bovis-INFECTED MDM: TOWARD A
MECHANISM OF PATHOLOGY
Examination of the lists of DE genes for each mycobacterial
infection/control contrast shows that type I interferon-inducible
genes such as IFIT1, IFIT2, MX1, MX2, and IL27 and interferon-
dependent CXCL10 were not DE following MAP and M. bovis
BCG infection at any of the post-infection time points. However,
all of these genes were DE for at least one time point following
M. bovis infection (Table 1). Similarly, the gene encoding type II
interferon (i.e., IFNG) was also upregulated at 6 and 24 hpi fol-
lowing M. bovis infection, but was not DE at any post-infection
time point following infection with MAP and M. bovis BCG. We
further observed that, in general, the fold-change of upregulation
of the type I and type II interferon-inducible genes increased over

the time course of infection in the M. bovis-infected MDM, with
an accompanying decrease in the fold-change of upregulation of
the interleukin-1 genes (IL1A and IL1B).

IL-1 and type I IFN-signaling pathways have been shown to play
important, yet opposing, roles in determining the host response to
infection with virulent members of the MTBC. Mice deficient in
IL-1B display increased susceptibility to virulent M. tuberculosis,
indicating that IL-1 signaling is required for the host control of
infection (91, 92). Conversely, mice deficient in type I IFN signal-
ing show reduced bacterial loads following infection, suggesting
that type I IFN plays a contributory role in tuberculosis disease
progression (93, 94). Studies have also shown that virulent M.
tuberculosis and attenuated M. bovis BCG use distinct signaling
pathways for regulating IL-1B production in human MDM. M.
tuberculosis induced the expression of IFN-related genes, while
induction of type I IFN-signaling inhibited IL-1B secretion (95,
96). Notably, infection of human MDM with M. bovis BCG did
not induce significant differential expression of IFN-related genes
or IL-1B secretion. These results suggest that type I IFN-mediated
suppression of IL-1B production is a key mechanism for the intra-
cellular survival of M. tuberculosis (95, 96). Comparable in vivo
and in vitro studies of bovine ileal tissue and MDM have demon-
strated increased transcript and protein levels of IL-1A and IL-1B
(in vitro only) in response to MAP infections, with a concomi-
tant increase in downstream expression of TRAF1 (97, 98). This
increase in TRAF1 has been proposed to enhance survival of MAP

Table 1 | Log2 fold-change values of manually curated genes for several immune-related pathways.

M. bovis vs CN M. bovis BCG vs CN MAP vs CN M. bovis vs

M. bovis BCG

M. bovis vs MAP

2 hpi 6 hpi 24 hpi 2 hpi 6 hpi 24 hpi 2 hpi 6 hpi 24 hpi 2 hpi 6 hpi 24 hpi 2 hpi 6 hpi 24 hpi

IL-1 signaling genes

IL1B 5.68 4.04 2.85 4.14 3.77 1.54 2.80 1.80 1.91 2.71 2.18

IL1A 5.37 2.42 2.50 4.21 3.88 1.16 1.91 1.64 1.49 1.85 2.16

Type 1 interferon-related genes

IFNB1 0.76 0.79 0.66

IFNAC 0.17 0.18 0.18

CXCL10 2.04 2.89 3.00 2.10 1.92

IFIT2 2.27 1.94 1.70

MX1 1.18 1.07 0.85

MX2 1.99 1.43 1.41

IFNAR1 0.33

IFNAR2 0.20 0.24 0.25 0.20 0.21 0.19 0.17 0.20 0.25

Type 2 interferon-related genes

IFNG 2.06 1.88 1.49 1.78 2.02

IFNGR2

IFNGR2 0.15

NF-κB-related genes

NFKB1 1.47 1.19 0.61 0.98 0.89 1.00 0.58 0.50 0.43 0.48 0.61 0.53

NFKB2 2.59 3.07 1.84 1.74 2.30 1.69 1.87 0.85 0.77 1.14 0.89 1.20 1.38

TNF 5.11 3.98 2.30 4.11 1.39 3.55 1.47 2.59 1.52 1.57 2.51 2.04

IL6 4.49 2.15 3.12 2.86 2.40 1.63 1.67 2.20 2.09 1.57 2.73

Cells containing values are statistically different for the contrasts listed in the column headings (FDR≤0.05); empty cells are not statistically different (FDR≥0.05).

The intensity of the shading is related to relative increased fold-changes in gene expression.

Frontiers in Immunology | Molecular Innate Immunity November 2014 | Volume 5 | Article 536 | 54

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rue-Albrecht et al. Bovine macrophages and mycobacterial infections

in macrophages due to the anti-apoptotic properties of TRAF1
and its capacity to interfere with normal macrophage activation,
particularly via CD40/CD40L (98, 99).

The increase in type I IFN gene expression and the concomitant
decrease in IL1 induction that we observed in M. bovis-infected
MDM over the 24-h infection time course suggests that the
intracellular survival strategy of virulent M. bovis may also involve
type I IFN-mediated suppression of IL1 production. In contrast
to this, these results suggest that the same immunoevasive mech-
anism is not used by virulent MAP or the attenuated M. bovis
BCG in bovine MDM. These results indicate that differential acti-
vation of macrophage immunoregulatory pathways is central to
the differential intracellular survival mechanisms of these related,
yet distinct, bovine mycobacterial pathogens. A proposed model
of the differential response of bovine MDM to the mycobacteria
examined in this comparative study is shown in Figure 7.

DIFFERENTIAL MYCOBACTERIAL VIRULENCE FACTORS AND
THEIR IMPACT ON MACROPHAGE PATHOGEN RECOGNITION
The region of difference 1 (RD1) locus,which is present in M. bovis,
is a major genetic difference between this species and MAP and
M. bovis BCG, which both lack RD1 (100). Moreover, RD1 (which
is also present in virulent M. tuberculosis strains) has attracted
increasing interest over the last two decades, because it contains the
ESX-1 type VII secretion system, responsible for the secretion of
virulence factors, such as the dimer ESAT-6/CFP-10 (101). ESAT-6,
which is proposed to facilitate escape from macrophage phagolyso-
somal degradation, binds to TLR2 receptors, and activates TLR
signaling cascades within the macrophage that culminate in
cytokine production (102–104). It has been recently reported that
TLR2 receptors mediate enhanced interferon production through

reprograming of murine macrophages following infection with
viral ligands (105). In support of these observations, our results
showed that differential expression of both type I and type II inter-
feron genes is unique to M. bovis-infected MDM, which is not
present in MDM infected with MAP and M. bovis BCG. Conse-
quently, we hypothesize that the virulence factors encoded in the
RD1 region and secreted by M. bovis – but not MAP or M. bovis
BCG – trigger an additional cascade of signaling events, such as
those mediated by TLRs and MAPKs (as revealed through IPA
analyses of unique M. bovis-induced genes), relative to attenuated
M. bovis BCG and the lengthy subclinical MAP. In turn, the com-
bined activation of additional immune pathways and canonical
PRR-dependent pathways may lead to a sustained (i.e., chronic)
inflammatory response in infected macrophages, as opposed to
a more transient inflammation following M. bovis BCG or MAP
infections.

CONCLUDING REMARKS
In the present study, we highlight markedly different transcrip-
tional response of bovine MDM infected with M. bovis over a
24-h time course compared to the closely related but attenuated
M. bovis BCG strain and to virulent MAP. We hypothesize that
RD1-encoded virulence factors provide a mechanistic basis for
this differential response, as RD1 was lost during the derivation
of the M. bovis BCG vaccine strain from M. bovis and is absent
from the MAP genome. We also identified a common MDM tran-
scriptional response to both attenuated M. bovis BCG and MAP.
We propose that the respective attenuated and lengthy subclini-
cal phenotypes of M. bovis BCG and MAP may induce similar
responses in infected macrophages, at least during the early stages
of infection. Finally, we identified type I interferon-dependent

FIGURE 7 | A proposed model for the differential responses of bovine MDM to M. bovis, M. bovis BCG, and M. avium subsp. paratuberculosis
infection in vitro. Differential integration of common and specific signals induced by the three mycobacterial types is shown.
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genes among the DE genes specific to virulent M. bovis-infected
MDM, adding further evidence supporting a key role for type I
interferon in the establishment of active tuberculosis in cattle as
has previously reported for human tuberculosis (106).

While the comparative functional genomics analysis presented
here is based on data generated from microarrays, the changing
landscape of transcriptomics, as represented by the advent of high-
throughput RNA-seq, offers unprecedented opportunities to study
the host macrophage response to mycobacterial infection at the
nucleotide level, including investigation of the effect of genotype
on gene expression levels. High-throughput sequencing technolo-
gies are providing novel insights into the cellular mechanisms
governing mycobacteria–macrophage interactions, enabling fur-
ther understanding of how modulation of these pathways can
result in pathology. In addition, identification of transcriptional
biomarkers of infection may lead to the development of novel
diagnostics for BTB and JD, providing new molecular tools for
disease control and eradication.
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Enzyme-linked immunosorbent assays (ELISA) of milk and serum samples are a routinely
used method of screening herds for Mycobacterium avium subspecies paratuberculosis
(MAP). Infection with MAP causes granulomatous enteritis of ruminants known as Johne’s
disease (JD). The sensitivity (Se) and specificity (Sp) of MAP ELISAs leads to difficulties in
the identification of both infected and infectious animals. Interference with MAP ELISA Se
and Sp has been reported in MAP seronegative cows following administration of purified
protein derivative (PPD) as part of intradermal testing for bovine tuberculosis (bTB). The
aim of this study is to examine the impact of the single intradermal cervical comparative
test (SICCT) for bTB, on both serum and milk MAP ELISA tests, in a herd containing both
seropositive and seronegative cows pre-SICCT. A secondary objective is to provide appro-
priate timing of JD ELISA tests in relation to the SICCT. A herd of 139 cows were serum and
milk sampled pre- and post-SICCT administration. Prior to SICCT, 6% of the herd tested
seropositive for MAP using milk ELISA, with 8% positive on serum. ID Screen Paratu-
berculosis Indirect Screening Test (ID Vet) was used to screen the herd. Within 14 days
of PPD administration, a significant increase in the prevalence of seropositive cows was
recorded. Identical prevalence’s were recorded with both test matrices (39%). ELISA val-
ues remained significantly higher until day 43 post-SICCT in milk (P =0.850), and day 71 in
serum (P =0.602). If the “new” positives detected post-bTB testing are deemed false pos-
itives due to generation of cross-reacting antibodies by administration of PPD, milk would
appear a more suitable sample for JD ELISA testing within 2 months of SICCT. In summary,
sampling for JD utilizing milk ELISA should be avoided in the 43-day period following PPD
administration, with serum ELISA sampling avoided for an additional 28 days.

Keywords: Mycobacteriacea, Johne’s disease,TB test, ELISA, PPD

INTRODUCTION
Mycobacterium avium subspecies paratuberculosis (MAP), a mem-
ber of the Mycobacteriacea family, causes chronic granulomatous
enteritis known as Johne’s disease (JD) (1). Clinical JD is character-
ized by diarrhea and progressive cachexia, which ultimately results
in death (2). Uncertainty exists regarding a potential causal link
between MAP and Crohn’s disease in humans (3, 4). The potential
damage to the global dairy industry, should a link between Crohn’s
and MAP be fully substantiated (5), combined with impacts on
animal health, has prompted the establishment of JD control
programs in a number of countries (6–8).

Use of enzyme-linked immunosorbent assays (ELISA) to iden-
tify animals at risk of being infected with MAP is common in
control programs internationally (8, 9), including Ireland (10).
ELISA is favored as a screening test due to its relatively low cost
compared to fecal culture or polymerase chain reaction (PCR)
(11). ELISAs also provide timely results compared to culture meth-
ods (11). The sensitivity (Se) and specificity (Sp) of MAP ELISAs,
however, leads to difficulties in the identification of both infected
and infectious individuals (12).

Mycobacterium bovis, the causative agent of bovine tubercu-
losis (bTB), is an additional pathogenic and definitively zoonotic
(13) member of the Mycobacteriaceae. To reduce the zoonotic risk
posed by bTB, address public/animal health concerns, and limit
trade restrictions, a compulsory national eradication program for
bTB was established in Ireland in 1962 (14). This eradication
program involves ante-mortem testing of all registered bovines
annually using the single intradermal cervical comparative test
(SICCT) and post-mortem carcass inspection. All SICCT positive
animals (reactors) are slaughtered, the herd of origin is restricted,
and additional bTB testing is applied to the herd. The comprehen-
sive nature of the testing program can lead to some animals being
tested up to five times in a single year (15).

The SICCT utilizes intradermal introduction of M. bovis and
M. avium subsp. avium purified protein derivatives (bPPD and
aPPD) at two different sites on the neck to elicit a delayed hypersen-
sitivity response mediated by T cells (16). Comparative measure-
ments at both injection sites, taken 72 h post-PPD administration,
are used to assess infection status (16). Additional ante-mortem
testing methods used internationally for detection of bTB include
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the single intradermal test and the caudal fold test,both less specific
than SICCT (17).

Members of the Mycobacteriaceae family share several anti-
gens, which can lead to diagnostic difficulties due to antibody
cross reaction (18). MAP infection can interfere with specificity
of bTB diagnostics (19), and likewise M. bovis infection can affect
MAP serological tests (20). Varges et al. (21), has also shown inter-
ference by both single and comparative intradermal bTB tests on
MAP sero diagnostics in bTB negative animals. The primary pur-
pose of this current study was to investigate the impact of SICCT
on the prevalence of ELISA positive results (serum and milk) in an
Irish herd containing both MAP ELISA seropositive and seroneg-
ative animals over a period of 6 months. Secondary objectives
included comparing milk and serum ELISA readings and inves-
tigating whether serum samples could be taken at the 72 h bTB
visit without interference from PPD administration.

MATERIALS AND METHODS
STUDY HERD
A 139-cow spring-calving dairy herd (mean-calving date February
19th) was recruited. This herd was depopulated in 1997 following a
confirmed case of bovine spongiform encephalopathy (BSE). The
experimental herd, therefore, consisted of descendants of cows
used to repopulate the farm in 1998 (22). Annual statutory bTB
test results were sourced from 1998 to provide a bTB history for
the herd. Veterinary records were obtained in order to record a JD
history for the herd post-repopulation. Approximately 60% of the
cows were Holstein Friesian (HF), the remaining 40% purebred
Jersey (Je) or Je cross-breeds. The study was licensed by the Irish
Department of Health and Children.

SAMPLE COLLECTION
Milk and serum samples were collected 10 and 13 days prior to
administration of the compulsory annual SICCT herd test in May
2012 (pre-SICCT). The SICCT was administered by the Depart-
ment of Agriculture, Food and the Marine (DAFM) approved
private veterinary practitioner (PVP) responsible for the care of
animals on this farm as is standard practice for the Irish national
bTB eradication scheme. Milk and serum samples were collected
every 14 days (approximately) for 2 months post-SICCT and on a
monthly basis thereafter until the composition of the herd changed
materially due to end of lactation culling (longitudinal data). Sam-
pling dates for serum and milk samples are outlined in Table 1.
A limit of a 7-day interval between serum and milk sampling was
applied in order to consider samples as “matched.” Milk samples
were not available for all cows at every sampling time point which
is reflected as small variations in sample sizes. Additionally, milk
samples were not collected in September 2012 due to an un-related
health issue on farm. Fecal samples were collected on a weekly basis
from consistently ELISA positive cows from 90 days post-SICCT.
These cows were also subjected to a veterinary clinical exam.

Serum and milk samples were tested using a commercial
ISO17025 accredited laboratory (designated laboratory for Irish
voluntary JD control program) using the ID Screen Paratuber-
culosis Indirect Screening Test (ID Vet, Montpellier, France).
The test is an M. phlei absorbed ELISA detecting anti-MAP
IgG. Status of the sample was evaluated by examining the

Table 1 |Timetable of serum and milk samples and dates of SICCT.

Serum

sampling

date

Milk

sampling

date

Days post-PPD

administration

Pre SICCT May 29 May 31

SICCT test day 1 PPD

administration

June 11 0

SICCT day 2 June 14 3

SICCT day 2 – serum

sample only

June 14 3

Post SICCT Match 1 June 20 9

June 25 14

Post SICCT Match 2 July 11 July 11 30

Post SICCT Match 3 July 24 July 24 43

Post SICCT Match 4 August 8 August 8 58

Post SICCT Match 5 August 21 August 21 71

September 5 No sample 99

Post SICCT Match 6 October 1 October 1 112

Post SICCT Match 7 November 1 November 1 143

sample to positive ratio (S/P ratio) calculated using the formula
S/P Ratio= [(ODSample−ODPositive control)÷ (ODPositive control−

ODNegative control)× 100]. Fecal samples were tested by microbial
culture and real-time PCR (rtRT-PCR) using “in-house” method-
ologies developed by Cork Institute of Technology as outlined by
Douarre et al. (23). The target gene was IS900. Primer sequences
for the amplification were 5’-GAAGGGTGTTCGGGGCCGTCG
CTTAGG-3’ and 5’-GGCGTTGAGGTCGATCGCCC ACGTGAC-
3’ (reverse primer).

DATA ANALYSIS
Descriptive analysis, dataset construction, and graphical represen-
tations were completed in Excel (MS Office 2010). Normality of
datasets was examined visually using ladders of power histograms
in Stata (version 12). Additional statistical analyses including chi-
squared test, t -test, box plot construction, Spearman rank correla-
tion, and generalized estimating equations (GEE) were completed
using Stata (version 12).

For the purposes of reporting within-herd MAP prevalence,
ELISA S/P ratio results were interpreted according to manufac-
ture instructions, i.e.,≥70 S/P (serum) and ≥15 S/P (milk) were
categorized as positive, with a single exception. Cows recording
S/P ratios of 60≥ SP < 70 (normally classified as inconclusive),
were also categorized as negative. The prevalence of positive cows
within the herd was plotted vs. trial day. Box plots were constructed
to highlight trends in ELISA S/P % readings pre- and post-SICCT

Longitudinal milk and serum ELISA results were used to create
datasets for statistical analysis. ELISA results were recorded as both
a categorical variable (positive, negative) and a continuous variable
(ELISA S/P readings). Multivariable GEE was used to investigate
differences between pre- and post-SICCT categorical and con-
tinuous variables (dependent variables). Independent variables
included in the models were sampling time point (pre-SICCT,
post-SICCT), breed (Friesian, Jersey), parity (parities 1, 2, 3,≥4),
and date of calving (January, February, March, April). Second level
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interactions between independent variables were examined and
included in the model at P≤ 0.05. For categorical variable analy-
sis, a binomial distribution was assumed and a logit link function
used. For continuous variable analysis, a Gaussian distribution
and an identity link function was used. An exchangeable correla-
tion was applied to both analyses. To investigate the correlation
between milk and serum ELISA results, Spearman correlation (rs)
was performed on categorical data sets.

RESULTS
Results of statutory bTB testing for this farm over the past 8 years
indicate minimal issues with bTB in this herd. Similarly, no bTB
positive reactor was identified following SICCT in 2012. From herd
repopulation in 1998 to commencement of this study, no clinical
case of JD had been diagnosed on the study farm.

Prior to administration of the SICCT, a total of 11 of 139 cows
(7.9%) tested MAP ELISA positive in serum, with 8 of 137 (5.8%)
milk samples testing positive. Following administration of SICCT,
a significant increase in the prevalence of ELISA positives was
recorded on both test matrices (serum P < 0.001; milk P < 0.001).
The highest recorded prevalence of positive results for both serum
and milk samples was 39% (Figure 1). No statistically significant
difference (P = 0.668) was recorded in the prevalence of serum
positive results, pre- and 72 h post-SICCT. Similarly no statisti-
cally significant difference (P = 0. 197) was recorded in S/P ratios
of serum ELISA results pre- and 72 h post-SICCT. Both box plots
and GEE analysis highlight an increase in both serum and milk S/P
ratio readings subsequent to the 72 h sampling (Figures 2 and 3;
Tables 2 and 3, respectively).

Statistically significant differences between pre- and post-
SICCT milk ELISAs were recorded until 43 days post-
administration of PPD, examined as both a continuous and cate-
gorical variable (Table 2). The prevalence of ELISA serum positive
samples was not statistically different from pre-SICCT levels by
day 58, while serum ELISA S/P ratios remained significantly ele-
vated for 71 days post-SICCT (Table 3). It should be noted that
a significant elevation in S/P ratios post-SICCT was again noted

in November (trial day 143) for both milk and serum samples
(Tables 2 and 3). No significant second level interactions were
identified between independent variables.

Spearman correlation analysis of matched serum and milk sam-
ples generated pre SICCT values of rs 0.73. Post SICCT values
ranged from rs 0.55 to 0.79 with the highest levels recorded at post
SICCT test 1 (rs 0.77) and post SICCT test 6 (rs 0.79).

Weekly fecal culture of consistently ELISA positive cows yielded
negative results. A total of 10 animals yielded PCR positive results,
2 of which recorded positive results at each sampling time point.
Veterinary examination did not yield any clinical signs of JD in
these animals.

DISCUSSION
The Irish cattle population is subjected to a comprehensive and
compulsory bTB eradication program, involving administration
of the SICCT on at least an annual basis (15). The purpose of the
current study was to investigate the impact of SICCT (i.e., admin-
istration of bPPD and aPPD) on both the within-herd prevalence
of positive cows and ELISA S/P ratios in an Irish dairy herd. The
results of the current study can provide useful guidance to farmers
and veterinarians on the optimum period to conduct MAP ELISA
testing in regions engaging in comprehensive testing for bTB using
SICCT.

Two international studies, one conducted in Brazil (21), and the
second in the UK (24), have previously shown that tests for bTB
interfere with MAP ELISA diagnostics. Varges et al. (21) reported
ELISA interference occurring between 30 and 90 days post-PPD
administration in bTB and MAP negative cattle. Of the 63 animals
included in that study, 5 were classified as MAP ELISA positive
post-PPD administration using both SICCT and single intrader-
mal tuberculin test. Although the current study highlights a similar
trend, the timescale over which interference is recorded differs.
The increase in the number of animals detected ELISA positive
post-SICCT and subsequent decrease to pre-SICCT prevalence
occurred approximately 2 weeks earlier than the period of inter-
ference outlined by Varges et al. (21). The herd included in the

FIGURE 1 | Percentage (%) of the herd testing positive on Johne’s disease ELISAs (milk and serum) at different trial days, both pre and post the
administration of theTB test. An increased number of positives are identified post TB test administration.
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Kennedy et al. TB testing and Johne’s diagnostics

FIGURE 2 | Box plot identifying differences in serum ELISA S/P ratios at different sampling points, both pre and post the administration of theTB
test. To improve visualization of interquartile ranges, only S/P values <250 are shown.

FIGURE 3 | Box plot identifying differences in milk ELISA S/P ratios at different sampling points, both pre and post the administration of theTB test.
To improve visualization of interquartile ranges, only S/P values <150 shown.
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Table 2 | Multivariable GEE analysis of milk ELISA as a continuous (S/P % ELISA readings) and categorical (milk ELISA MAP positive/negative)

dependent variable and independent variables.

Continuous variable Categorical variable

(S/P % ELISA readings) (Milk ELISA MAP positive/negative)

Dependent variable Coefficient P Value significant: 95% C.I. Odds ratio P value 95% C.I. Model

Milk ELISA P < 0.05 (P value <0.001)

Independent variable

Time point

June 20 vs. Maya 17.2 <0.001 14.3, 20.2 11.1 <0.001 5.8, 21.0

July 11 vs. May 5.43 <0.001 2.5, 8.4 2.7 0.004 1.4, 5.1

July 24 vs. May 0.29 0.850 −2.7, 3.3 1.1 0.819 0.5, 2.3

August 8 vs. May 0.94 0.537 −2.1, 3.9 1.1 0.831 0.5, 2.3 Sampling time point

August 21 vs. May 0.42 0.784 −2.6, 3.4 1.1 0.829 0.5, 2.3 Parity

Oct vs. May 1.51 0.322 −1.5, 4.5 1.8 0.105 0.9, 3.5 Breed

Nov vs. May 5.65 <0.001 2.6, 8.7 2.5 0.007 1.3, 4.9 Calving date

Parity

1b vs. 2 −11.2 <0.001 −5.4, −17.0 0.3 0.004 1.6, 10.3

2 vs. 3 11.2 0.001 17.5, 4.7 3.3 0.025 0.1, 0.9

2 vs. 4 8.3 0.002 13.5, 3.1 2.5 0.014 0.2, 0.8

aMay is the ELISA sample taken pre SICCT. bParity 1: 1st lactation. No significant interactions identified with other independent variables. C.I., confidence interval.

Coefficient, difference across the sample population. Statistically significant P values highlighted in bold.

Table 3 | Multivariable GEE analysis of serum ELISA as a continuous (S/P % ELISA readings) and categorical (serum ELISA MAP

positive/negative) dependent variable and independent variables.

Continuous variable Categorical variable

(S/P % ELISA readings) (Serum ELISA MAP positive/negative)

Dependent variable Coefficient P value significant: 95% C.I. Odds ratio P value 95% C.I. Model

Serum ELISA P < 0.05 (P value <0.001)

Independent variable

Time point

June 14 vs. Maya 4.4 0.197 −2.3, 11.0 1.1 0.668 0.6, 2.1

June 25 vs. May 33.8 <0.001 27.2, 40.5 10.7 <0.001 6.1, 18.8

July 11 vs. May 37.9 <0.001 31.3, 44.6 6.4 <0.001 3.7, 11.1

July 24 vs. May 17.0 <0.001 10.3, 23.7 2.3 0.004 1.3, 3.9

August 8 vs. May 8.7 0.010 2.1, 15.4 1.3 0.392 0.7, 2.3

August 21 vs. May 1.8 0.602 −4.9, 8.4 1.1 0.659 0.5, 1.8

September 5 vs. May 4.0 0.241 −2.7, 10.6 1.0 0.998 0.5, 1.8

October 1 vs. May 6.0 0.080 −0.7, 12.6 0.9 0.641 0.5, 1.6 Sampling time point

November 1 vs. May 11.1 0.001 4.5, 17.7 1.3 0.392 0.7, 2.3 Parity

Parity Breed

1b vs. 2 −29.4 0.006 −50.4, −8.4 0.4 0.053 0.2, 1.0 Calving date

3 vs. 2 −27.6 0.015 −50.0, −5.3 0.3 0.018 0.1, 0.8

4 vs.2 −10.0 0.296 −28.8, 8.8 0.5 0.047 0.2, 1.0

Calving Date

February vs. January −4.0 0.677 −22.9, 14.9 0.3 0.003 0.1, 0.6

March vs. January −24.0 0.066 −49.7, 1.6 0.2 0.002 0.1, 0.5

April vs. January −15.9 0.304 −46.3, 14.5 0.4 0.145 0.1, 1.4

February vs. March 21.7 0.036 1.4, 41.9 1.7 0.241 0.7, 4.4

aMay is the ELISA sample taken pre SICCT test.
bParity 1 – 1st lactation. No significant interactions identified between independent variables. C.I., confidence Interval. Coefficient, difference across the sample

population. Statistically significant P values highlighted in bold.
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current study had a history of recording serum MAP ELISA pos-
itive individuals (within-herd prevalence of 8%). This contrasts
with the Brazilian study where cattle were confirmed MAP fecal
culture negative prior to inclusion in the trial. It is possible, there-
fore, that cows used in the current study had been pre-sensitized
to MAP or additional mycobacterial-related antigens. This being
the case, it would be expected that a more rapid immune response
would result, i.e., a secondary humoral memory response (25).
The longer duration taken to record an IgG response and the lower
proportion of ELISA positive cows identified post-PPD adminis-
tration by Varges et al. (21) may be indicative of a slower primary
immune response (Figure 4). As mentioned previously, Irish cattle
are tested annually using SICCT from the age of 6-weeks, which
may also account for the suggested memory response in Irish cattle
in contrast to their Brazilian counterparts. Additionally, the stud-
ies differed in the ELISA kits used for MAP antibody detection
and used limited sample populations. More extensive studies are,
therefore, required to compare the performance of all commer-
cially available MAP ELISA kits with regard to administration of
both aPPD and bPPD and the need for development of more spe-
cific antigens to improve the specificity and sensitivity of currently
available MAP ELISAs has been clearly highlighted. The inclusion
of a greater number, and diversity, of animals and herds would
also strengthen findings, as would continuation of a study over a
number of years incorporating multiple TB tests.

Varges et al. (21) examined both the single intradermal and
comparative bTB test. Interestingly, cross-reacting antibodies
were detected using both SICCT and single intradermal test,

while administration of aPPD alone did not elicit cross-reacting
antibodies. This would suggest that bPPD may be responsible for
generation of cross-reacting antibodies in the MAP ELISA kits
examined in both studies. This is supported by a study by Olsen
et al. (18), which highlighted reduced MAP ELISA specificity in
animals experimentally infected with bTB. Interestingly, animals
with natural bTB infection did not elicit cross-reacting antibodies
(18), which may again suggest that the intradermal administration
of bPPD, is indeed, the stimulant for generation of cross-reacting
antibodies. Commercially available MAP ELISA kits incorporate
an M. pheli absorption step to increase the specificity of the assay.
Again, Olsen et al. (18) showed this to be an ineffective method of
improving MAP ELISA specificity with regard to bTB. It may be
that while pre-absorption with M. pheli is somewhat successful in
reducing binding of M. avium antibodies, repeated administration
of bPPD negates its effect in preventing non-specific binding. The
potential for a cumulative effect of PPD administration (either
avian or bovine) from multiple bTB tests over a number of years,
therefore, requires thorough investigation to fully characterize the
impact of SICCT on MAP ELISA testing.

In Ireland, herds restricted due to a positive bTB diagnosis
(Directive 64/432/EEC), undergo two repeat tests at a 60-day inter-
val. For herds operating under these restrictions, the results of the
current study highlight that milk samples may be a more suitable
test matrix than serum ELISA to avoid test interference. Similar
to the results obtained by Lombard et al. (26), there was mod-
erate agreement between serum and milk samples. Milk samples,
however, took a shorter interval to return to pre-SICCT levels

FIGURE 4 | Variation in period of influence of SICCT in present study
compared to Varges et al. (21) is shown. V1–V3; Approximate S/P results of
positive cows identified using “in- house” ELISA by Varges et al. (21). Current;

mean ELISA S/P results from entire herd in the present study. Insert; a
schematic of primary and secondary/memory immune response [adapted
from Tizard (25)].
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than serum in the current study. This may reflect the difference
in IgG sub-classes between serum and milk and a lower milk IgG
response (26). The post-SICCT period of elevated milk S/P ratios,
however, may reflect a period of increased IgG production or
IgG secretion from plasma to the mammary gland post-SICCT.
This manifests as increased test sensitivity, stronger correlations
highlighted between milk and serum results post-PPD adminis-
tration. May et al. (24) also recorded significantly higher milk
ELISA readings 4.5 weeks post-PPD administration in a UK herd.
The limited statistical analysis completed by May et al. (24) and use
of only a single testing timepoint post-SICCT presents difficulties
in allowing direct comparisons between both datasets. Addition-
ally, a number of regions in the UK administer the SICCT on one
occasion every 4 years (27), a much longer testing interval than
experienced by Irish herds. The differences highlighted between
Varges et al., (21), May et al., (24) and the current study highlight
the usefulness of examining the impact of SICCT on MAP ELISA
results in multiple jurisdictions in order to more fully elucidate
the impact of bTB testing on MAP diagnosis by ELISA.

It has previously been reported that exposure to environmental
mycobacteria may yield low level protection against M. tuberculo-
sis (28, 29). Hope et al. (30) also reported protection against M.
bovis following exposure to M. avium, and that pre-exposure to
M. avium results in an imprinting of memory against avian anti-
gens onto T-lymphocytes. An amnestic response to environmental
mycobacterial infection combined with continuous boosting of T
cells in response to administration of PPD may, therefore, have the
potential to assist in control of MAP at the animal level. In that
regard, Ireland records a relatively low prevalence of MAP com-
pared to additional milk exporting nations (31). For example, a
total of 232 clinical cases of JD were reported in Ireland from 1995
to 2002 (32), yielding an average annual rate of approximately
0.0005%, given a cattle population of six million cattle (33). Addi-
tionally, Good et al. (34) reported that 20% of Irish herds contain
at least one ELISA positive animal, again a relatively low prevalence
(31). Given that environmental conditions in Ireland are con-
ducive to the growth of mycobacteria (35), and that Irish farmers
engage in high risk management practices with regard to spread of
JD, e.g., widespread pooling of colostrum and milk for calf-feeding
(36) (Kennedy et al. unpublished data), a higher prevalence of clin-
ical cases and MAP ELISA positives might be expected. Another
Irish study (37) recorded no significant associations between MAP
seropositivity and milk production parameters, again contrast-
ing with international studies (38, 39). It is our hypothesis that
repeated annual administration of aPPD and bPPD in Ireland
may induce a protective effect against MAP thereby lessening the
clinical manifestations of MAP infection and resultant production
losses. To more thoroughly investigate this hypothesis, it is neces-
sary to complete in depth investigations as to whether the increase
in antibody levels recorded post-PPD administration in the cur-
rent study equates to an increased T-cell response, which would be
required to achieve such a protective effect (40).

An advantage of the current study was the use of a compact
spring-calving herd. This ensures that all cows examined were at
a similar stage of lactation and physiological status. This allowed
trends in MAP S/P % ratios over the latter half of lactation in
a homogenous population to be examined. In agreement with a

previous study (26), cows in late lactation were more likely to
yield a MAP ELISA positive result using milk samples. The declin-
ing milk yields in late lactation result in a lessening of the dilution
effect on antibody levels thereby increasing antibody concentra-
tions (41). Interestingly, an increase in the prevalence of serum
ELISA positives was also recorded in late lactation. This finding
is in agreement with a Danish study (42). The increase in preva-
lence of serum ELISA positives in the current study corresponds
with housing, which may increase the likelihood of exposure to
mycobacterial antigens by increasing the potential for fecal con-
tact. Nielsen et al. (42) also showed parity 2 and greater to be more
likely to test ELISA positive relative to parity 1 cows, which is also
highlighted in the current study. Parity 3 and 4 animals, however,
were in general less likely to test positive than parity 2. The major-
ity of Irish farmers target compact calving seasons (43) and strict
culling practices are often in place (33). These culling practices
may lead to less ELISA positive animals remaining in the system
post second lactation. Results from this study indicate that age of
animal at sampling and timing of JD ELISA tests relative to stage
of lactation and time of bTB testing are important considerations
when interpreting ELISA results.

CONCLUSION
Administration of PPD as part of the bTB test corresponds to an
increased prevalence of ELISA positives for JD. Diagnostic sam-
pling for JD utilizing milk ELISA should be avoided in the 43-day
period following the bTB test, with serum ELISA sampling not
recommended for an additional 28 days. Based on the increase in
antibody titers in MAP ELISA recorded post-PPD administration,
it is our hypothesis that repeated annual administration of aPPD
and bPPD may induce a protective effect helping to curtail the
clinical manifestations of MAP infection.
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Intestinal epithelial cells (IECs) detect bacterial and viral associated molecular patterns via
germline-encoded pattern-recognition receptors (PRRs) and are responsible for maintain-
ing immune tolerance to the communities of resident commensal bacteria while being
also capable to mount immune responses against pathogens.Toll-like receptors (TLRs) are
a major class of PRRs expressed on IECs and immune cells, which are involved in the
induction of both tolerance and inflammation. In the last decade, experimental and clinical
evidence was generated to support the application of probiotics with immunoregulatory
capacities (immunobiotics) for the prevention and treatment of several gastrointestinal
inflammatory disorders in whichTLRs exert a significant role.The majority of these studies
were performed in mouse and human cell lines, and despite the growing interest in the
bovine immune system due to the economic importance of cattle as livestock, only few
studies have been conducted on cattle. In this regard, our group has established a bovine
intestinal epithelial (BIE) cell line originally derived from fetal bovine intestinal epitheliocytes
and used this cell line to evaluate the impact of immunobiotics in TLR-mediated inflam-
mation. This review aims to summarize the current knowledge of the beneficial effects of
immunobiotics in the regulation of intestinal inflammation/infection in cattle. Especially, we
discuss the role of TLRs and their negative regulators in both the inflammatory response
and the beneficial effects of immunobiotics in bovine IECs.This review article emphasizes
the cellular and molecular interactions of immunobiotics with BIE cells through TLRs and
gives the scientific basis for the development of immunomodulatory feed for bovine healthy
development.

Keywords: immunobiotics,TLR4, intestinal immunity, inflammation, bovine intestinal epitheliocytes,TLR negative
regulators, lactobacilli, bifidobacteria

INTRODUCTION
Intestinal epithelial cells (IECs) are structurally and functionally
polarized. These cells have an apical surface facing the intestinal
lumen and a basolateral surface facing the underlying basement
membrane and the lamina propria. IECs provide a physical bar-
rier that separates commensal bacteria in the lumen from the
underlying lamina propria and deeper intestinal layers (1). In
addition, IECs are a central component of the immune sys-
tem of the gut. Over the last decades, great progress has been
achieved in understanding IECs immunobiology (2). It was amply
demonstrated that the cross-talk between the epithelium with gut
microbes significantly influences the activities of immune cells in
the mucosa (2). The detection of commensal bacteria, pathogens,
or probiotics by IECs is achieved through the families of germline-
encoded pattern-recognition receptors (PRRs) that recognize con-
served molecular structures known as microbe-associated molec-
ular patterns (MAMPs). MAMPs and PRRs interaction and the
subsequent signaling in IECs is involved in several important

mechanisms that are crucial for maintaining a healthy epithelial
barrier including maintenance of tight junctions strength, epithe-
lial cell proliferation and renewal, expression of antimicrobial
peptides, and modulation of mucosal immune responses (3).

In recent years, worldwide interest has rapidly and significantly
increased in the therapeutic and preventive effects of “friendly
bacteria.” These microorganisms, recognized as probiotics, are
generally selected from Lactobacilli or Bifidobacteria strains (4).
Several studies in animal models as well as clinical trials support a
unique role for probiotics by beneficially modulating the mucosal
immune system. Thus, a new term was required to identify pro-
biotic bacteria that promote health by regulating the mucosal
immune system. Clancy suggested the new term “immunobiotics”
as appropriate for fulfilling this need (5). The quest for a bet-
ter understanding of how immunobiotics works have led to an
enormous interest in the molecular processes underlying host–
microbe interactions. As reviewed by Lebeer et al. (6), the final
conclusion of works that have studied the molecular mechanism
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of probiotic immunomodulatory activities is that: “their effect
depends on the combination of distinct MAMPs that interact with
various PRRs and the associated co-receptors that fine tune signaling,
as well as on the quantity and quality of these MAMPs. Therefore,
host-immunobiotic interactions are not univocal but involve complex
interactions among various microbial molecules, host receptors, and
adaptor molecules” (6).

This expanding knowledge about the cellular and molecular
effects of beneficial bacteria in innate mucosal immune system
has raised the possibility of new treatments for improving health
not only in humans but also in animals. In this review, we
describe the recent advances in the impact of immunobiotics on
bovine intestinal epithelial (BIE) cells and possible novel thera-
peutic approaches to beneficially modulate bovine epithelial cell
immunobiology. Especially, we discuss the role of toll-like recep-
tors (TLRs), their signaling pathways, and their negative regula-
tors in both the inflammatory-intestinal injury and the beneficial
effects of immunobiotics. This article emphasizes the cellular and
molecular interactions of immunobiotics with bovine epithelial
cells through TLRs and gives the scientific basis for the future
development of immunomodulatory feed for improving bovine
health.

BOVINE INTESTINAL EPITHELIAL CELLS
The development of bovine intestinal cell cultures and their char-
acterization with regard to their permissiveness for bacterial adhe-
sion and invasion, and the ability to sense PAMPs through PRRs
represents an important step forward toward the establishment
of in vitro systems to study molecular interactions of patho-
genic, commensal, and probiotic microorganisms with the bovine
host (7).

For cattle, primary cultures of ileum or colon epithelial cells
have been used for toxicological assays, the study of microbial
virulence factors, the efficacy of antimicrobial compounds, and
the evaluation of innate immune responses through PRRs signal-
ing (7–12). A combination of the enzymatic digestion (dispase
and collagenase) together with soft mechanical agitation proved
to be a successful method for releasing intact, viable bovine colonic
crypts from underlying mesenchymal tissue. However, a series
of purification steps was required to eliminate the majority of
contaminating non-epithelial cells (mostly fibroblasts) from the
crypt suspension (10). Similarly, cultures of bovine colonocytes
and jejunocytes were obtained by Rusu et al. (11), using a combi-
nation of enzymatic and mechanical disruption of the intestinal
epithelium. The study showed that primary cultures of bovine
enterocytes isolated from colon and jejunum presented charac-
teristics of epithelial cells, such as a typical pavement-like aspect,
the formation of domes and apical tight junctions, and microvilli
in confluent cultures. Moreover, these bovine colonocytes and
jejunocytes expressed epithelial cell markers such as brush border
enzymes and the epithelium typical cytoskeleton proteins, such as
cytokeratins.

Dibb-Fuller et al. (8) developed primary bovine cell lines
from ileum, colon, and rectum and those bovine primary
gastrointestinal epithelial-derived cells were successfully used
to assess adherence and invasion of several intestinal path-
ogenic bacteria including enterohemorrhagic Escherichia coli

(EHEC) and Salmonella enterica serotype typhimurium. In addi-
tion, bovine colonic crypts cells isolated and purified from
the mucosa, proved to be useful in vitro tools to study vir-
ulence factors of EHEC, verotoxins, in particular (10). The
work showed the expression of globotriaosylceramide Gb3 by
bovine colonocytes, which directly contrasts with the absence
of this receptor on human intestinal epithelium. This fact rep-
resents a fundamental difference that could have major signifi-
cance in the different pathogenicity of EHEC in these hosts, and
make bovine colonocytes an invaluable tool for studying EHEC
infection (10).

Bridger et al. (7) showed that epithelioid cells from bovine
colonic crypts formed a confluent monolayer on the surface
of collagen-coated culture flasks. Those bovine colonocytes
expressed epithelial cell-specific cytokeratin and cell membrane-
associated tight junctional ZO-1 in the contact area between
neighboring cells. Semi-quantitative RT-PCR demonstrated vari-
able amounts of gene transcripts for different TLR genes. Notably,
primary bovine colonocytes expressed TLR4 mRNA while tran-
scripts for TLR1, TLR3, and TLR6 were also detectable in some
cultures. Moreover, the study showed that colonocytes significantly
up-regulated the expression of IL-8, MCP-1, and RANTES when
challenged with pathogenic E. coli or lipopolysaccharide (LPS)
(7). Therefore, short-term bovine colonocytes cultures proved to
be suitable in vitro models to study pathogens-specific responses
of the bovine colonic mucosa.

Those studies clearly demonstrated that bovine primary IEC
cultures represent valuable tools to assess the molecular mecha-
nisms involved in pathologies caused by infectious agents. How-
ever, the cellular and molecular interactions of commensal or
probiotic bacteria with BIE cells have been less explored.

There is an increasing research in the use of immunobiotics
to beneficially modulate the mucosal immune system in ani-
mals. Immunobiotic bacteria could be used for improving resis-
tance against pathogens and decreasing intestinal inflammatory-
mediated tissue damage (13–17). In this regard, our laboratories
and others’ have conducted in vitro and in vivo studies utiliz-
ing different lactobacilli and bifidobacteria strains to evaluate the
effect of immunobiotics against infections and inflammation in
animals, however, the majority of these studies were performed in
swine and only few in the cattle (13).

We hypothesized that a cell line of BIE cells could be a useful
in vitro model for the evaluation of the molecular interactions
between IECs and bovine pathogens. In addition, such system
would allow the selection of immunobiotic microorganisms and
the study of the mechanisms by which probiotic lactic acid bacteria
(LAB) functionally modulate bovine IECs. Therefore, in order to:
(a) understand the functional role of IECs in bovine mucosal host
defense and (b) select potential immunobiotic LAB strains that
may be used to beneficially modulate the inflammatory response
in bovine IECs; we have recently established an immortalized BIE
cell line (18). Monolayer cobblestone and epithelial-like morphol-
ogy is assumed by BIE cells when cultured, with close contact
between the cells. Moreover, scanning electron microscopy exam-
ination of BIE cell reveled that 3-days old cells have irregular
and slender microvilli-like structures on their surface and that
this structures increase in complexity as the cells grow (18). BIE
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cells undergoes over at least 40 passages with no detectable loss of
epithelial properties.

Expression of TLRs mRNA in BIE cells was evaluated by RT-
qPCR and it was demonstrated that all TLRs genes were expressed
in BIE cells (19). TLR1, 3, 4, and 6 were strongly expressed,
followed by TLR5, 8, 9, 10, 2, and 7. We were particularly inter-
ested in expression of TLR2 and TLR4 in BIE cells as the main
receptors detecting Gram(+) probiotic bacteria and Gram(−)
pathogens, respectively. Therefore, to confirm real-time PCR find-
ings, we further examined the expression of TLR2 and 4 proteins
in BIE cells using anti-TLRs antibodies that are able to cross-react
with bovine TLRs (19). Visualization of the immunofluorescence
staining confirmed the protein expression of TLR2 and 4 in BIE
cells (Figure 1A).

FIGURE 1 |Toll-like receptor 4 (TLR4) expression in bovine intestinal
epithelial epitheliocytes (BIE cells) (A). Upon recognition of
lipopolysaccharide (LPS), TLR4 dimerizes and initiates a signaling cascades
that include phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein
kinase (MAPK), and nuclear factor κB (NF-κB) pathways; and culminates in
the production of inflammatory mediators by BIE cells (B).

The inflammatory response triggered by BIE cells in the face of a
challenge with heat-stable enterotoxigenic E. coli (ETEC) MAMPs
was also evaluated. Upon pathogen binding to TLR4 complex, this
receptor recruits, through its short intracellular toll-interleukin-
1 receptor (TIR) domain, adaptor molecules, and kinases, thus
initiating a downstream signaling cascade that culminates in the
production and secretion of inflammatory mediators such as TNF-
α, IL-1β, IL-6, and IL-8 (Figure 1B). The ETEC 987P strain used
in our experiments does not express the TLR5-ligand flagellin,
and we demonstrated that the main molecule responsible for the
inflammatory response triggered by this bacterium is the LPS (15,
16). Stimulation of BIE cells with heat-stable ETEC MAMPs from
strain 987P enhanced the production of the pro-inflammatory
cytokines IL-6, IL-8, IL-1β, and MCP-1 by activating mitogen-
activated protein kinase (MAPK) and nuclear factor κB (NF-κB)
pathways (19). These findings are in line with our previous reports
demonstrating that the heat-killed ETEC 987P strain triggers
a TLR4-mediated inflammatory response in porcine intestinal
epithelial (PIE) cells through NF-κB and MAPK pathways (20).
In addition, our results in BIE cells correlate with studies of the
immune response against ETEC in IECs of different hosts’ species.
It was shown that both NF-κB and MAPK pathways are important
mediators of ETEC and LPS activation in human (HT-29 and T84)
and mouse (CMT93) IECs (15, 21).

Available lines of evidence indicate that bovine epithelial
cells, including intestinal, mammary, bronchial, and nasopharynx
epithelial cells respond to bacterial LPS and other microbial prod-
ucts by producing pro-inflammatory cytokines required to combat
invading pathogens. Therefore, the pro-inflammatory mediators
produced by BIE cells in response to ETEC may have an impor-
tant protective role during the course of intestinal infections. The
chemokine IL-8 stimulates a strong infiltration of neutrophils in
the gut lamina propria, a fact that is consistently observed upon
ETEC infection. After IL-8 induced recruitment of neutrophils,
increase of IL-6 production is able to induce degranulation of
these cells, thereby enhancing the inflammatory response (22).
In addition, IECs are able to produce MCP-1 in response to
ETEC challenge. This chemokine has potent monocyte-activating
and attracting properties and plays a major role during intestinal
inflammation (23). Therefore, BIE cells respond to the presences
of ETEC and LPS by activating the TLR4-signaling pathway, which
is necessary to initiate a robust defensive action against intruders.

Our studies indicate then that the BIE cell line could be a useful
cell line for evaluating inflammatory responses via TLR4 in vitro.
Furthermore, considering that inflammatory responses induced
by intestinal pathogens can lead to dysregulation of IECs signal-
ing, disruption of membrane barrier integrity, enhancement of
pathogen translocation and disease (24), BIE cells could be also
used to evaluate therapies designed for preventing inflammatory
damage caused by bovine intestinal pathogens or their associated
PAMPs or virulence factors.

PROBIOTICS FOR THE BOVINE HOST
Several studies on the pathogenesis of intestinal inflamma-
tion/infection both in man and experimental animals continue to
show the importance of commensal bacteria in the gastrointestinal
tract in stimulating and directing the immune system. Moreover,
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the ability of immunobiotic bacteria to beneficially modulate
the response against intestinal pathogens in animals through the
improvement of resistance and the reduction of inflammatory-
mediated tissue damage has been described by several reports
(25–27). Before weaning, dairy calves are highly susceptible to
several pathogens. For several years, antibiotics have been used to
overcome these problems also to obtain economic benefits in terms
of improved calves performance and reduced medication costs.
However, the use of antibiotics in animal husbandry is in question
because of antibiotic resistance of microorganisms. In an effort
to replace antibiotics from bovine feeds, many additives have been
proposed including the use of probiotics (28, 29). In fact, some few
studies have shown that probiotic bacteria can be used as growth
promoters in calves instead of antibiotics to counteract the nega-
tive effects of their widespread use (30). Early studies of Abe et al.
(31) showed that oral administration of Bifidobacterium pseudo-
longum or Lactobacillus acidophilus to calves improved body weigh
gain and decreased the frequency of diarrhea occurrence. Simi-
larly, Mokhber-Dezfouli et al. (32) demonstrated that probiotic
treatments have the ability to beneficially modulate body weight
gain, body height, and general health condition of calves. Addi-
tionally, oral treatment with probiotic E. coli significantly reduced
the pathogenicity and fecal shedding of EHEC in calves (33, 34).
It was also reported that a mixture composed of Lactobacillus casei
DSPV 318T, Lactobacillus salivarius DSPV 315T, and Pediococcus
acidilactici DSPV 006T protected calves against Salmonella Dublin
infection (35). These studies clearly show the potential of probi-
otic bacteria to beneficially modulate gastrointestinal hemostasis
in the bovine host. However, the cellular and molecular mecha-
nisms involved in the probiotic activities in cattle have not been
studied in depth.

REGULATION OF INFLAMMATION IN BIE CELLS BY
IMMUNOBIOTIC LACTOBACILLI
The first contact of immunobiotic bacteria with the intestinal
mucosa is mediated by the single cell layer of IECs. As men-
tioned before, these IECs are of paramount importance in host–
immunobiotic cross-talk. Then, we thus sought to determine
whether an immunobiotic Lactobacillus strain could regulate the
inflammatory response induced by heat-stable ETEC MAMPs in
BIE cells. Our previous studies with the strain Lactobacillus jensenii
TL2937 showed that this bacterium has remarkable immunomod-
ulatory effects in porcine IECs and immune cells [for a review
see Ref. (3)]. The TL2937 strain is able to functionally mod-
ulate porcine IECs by inhibiting excessive MAPK- and NF-κB-
induced pro-inflammatory cytokine production (IL-6 and IL-8) in
response to TLR4 activation (3, 15). Consequently, we first focused
on L. jensenii TL2937 to evaluate its anti-inflammatory effect in
BIE cells. Preincubation of BIE cells with L. jensenii TL2937 sig-
nificantly decreased IL-6 and IL-8 expressions in 20 and 25% with
respect to the control, respectively, after heat-stable ETEC MAMPs
challenge (19). However, this effect was lower when compared with
the anti-inflammatory activity of this strain in PIE cells (15). In
porcine, IECs previously treated with the TL2937 strain, stimula-
tion with heat-stable ETEC MAMPs reduced IL-6 and IL-8 expres-
sions by 35 and 30% when compared to control cells, respectively
(15). Although the effect of the L. jensenii TL2937 in BIE cells was

lower than the one previously reported for porcine IECs, our first
studies in BIE cells indicated that probiotic lactobacilli could be
beneficial for attenuating inflammatory damage caused by TLR4
activation in bovine epithelial cells (19). Thus, we next aimed
to screen and select the most effective immunoregulatory lacto-
bacilli strains able to modulate TLR4-mediated pro-inflammatory
response in BIE cells. Several lactobacilli strains were evaluated
in our bovine IECs line and we found that some of these bacte-
ria were capable to downregulate the expression of inflammatory
cytokines. Among these strains, L. casei OLL2768 showed the most
pronounced effect (19). Notably, the anti-inflammatory activity of
the OLL2768 strain was more pronounced than that observed for
L. jensenii TL2937 in BIE cells, while the effect of OLL2768 strain
was lower in PIE cells (15). It is well known that probiotic activi-
ties are strain specific. In addition, our findings clearly indicated
that is necessary to carefully evaluate different strains according
to the specific host, because the effect of the same Lactobacillus
may be different according to the host that consumes it. Then, our
in vitro bovine system could be of great value to find potential
immunobiotic strains suitable for the improvement of the bovine
host health.

We also aimed to define the molecular mechanisms by which
L. casei OLL2768 attenuated heat-stable ETEC MAMPs-induced
pro-inflammatory response in BIE cells. Our data showed that the
immunoregulatory effect was related to the capacity of OLL2768
strain to inhibit NF-κB and MAPK p38 signaling pathways in
bovine IECs after TLR4 activation.

Nuclear factor κB is composed of several protein subunits reg-
ulating DNA transcription. Under non-stimulatory conditions, it
is bound to the inhibitor molecule IkB in the cytoplasm. After
TLR activation IkB is phosphorylated by IKK and once freed from
IkB, NF-κB subunit p65 (RelA) migrates into the nucleus, where
it binds to target promoters and activates transcription of effector
genes including TNF-α, IL-8, and others (36, 37). Among many
up-stream signaling proteins involved in NF-κB activation, TLR4
plays a critical role and it is well-documented that TLR4/NF-κB
pathway has a pivotal role in the pathogenesis of several intesti-
nal inflammatory diseases and infection-induced tissue damage
(38). Some studies have reported the ability of probiotic lacto-
bacilli to modulate TLR4/NF-κB pathway in the gut (39, 40). It
was showed that Lactobacillus suntoryeus, a gut commensal, blocks
inflammatory mediators (Cox2, TNF-α, IL-1, and IL-6) through
suppression of TLR4-linked NF-κB activation in mice with 2,4,6-
trinitrobenzene sulfonic acid-induced colitis (41). Liu et al. (42)
reported that Lactobacillus reuteri strains DSM 17938 and ATC-
CPTA4659 led to decrease intestinal protein levels of TLR4 and
decreased pro-inflammatory cytokine levels in parallel with inhi-
bition of TLR4-signaling via the NF-κB pathway in newborn rats
with necrotizing enterocolitis. In addition, it was reported that
some probiotics strains are able to suppress TNF- or Salmonella
typhimurium-induced IL-8 gene expression and secretion by IECs
in a NF-κB-dependent manner (39, 40). Our experiments also
demonstrated that L. casei OLL2768 is able to inhibit TLR4/p38
signaling pathway since we demonstrated that in lactobacilli-
treated BIE cells the phosphorylation of p38 was reduced after
challenge in heat-stable ETEC MAMPs (19). Regulation of MAPK
p38 pathway by probiotics has been described before. L. rhamnosus

www.frontiersin.org September 2014 | Volume 5 | Article 421 | 71

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Villena et al. Immunobiotics and bovine intestinal epitheliocytes

GG was found to significantly down-regulate expression of p38 in
human monocyte-derived DCs after the challenge with LPS (43).
It was also showed that Lactobacillus bulgaricus LBG, inhibited the
activation of the TLR4-signaling pathway and IL-8 production
induced by Helicobacter pylori LPS in human gastric adenocarci-
noma cells through blocking MAPK p38 (44). Then, our findings
in BIE cells are reminiscent of other studies showing that probi-
otic L. casei OLL2768 is capable of modulating TLR4/NF-κB- and
TLR4/p38-induced inflammation.

The JNK and p38 MAPK pathways share several up-stream
regulators, and accordingly there are multiple stimuli that simul-
taneously activate both pathways. In this regard, it was showed that
the conditioned media from probiotic L. rhamnosus GG induced
the expression of cellular heat shock protein (Hsp72) in IECs in
a p38- and JNK-dependent manner (45). The work showed that
L. rhamnosus GG conditioned media treatment resulted in a clear
activation of both p38 and JNK pathways in IECs. Moreover, expo-
sure of IECs to inhibitors against p38 and JNK before conditioned
media treatment resulted in blockade of Hsp72 expression, thus,
confirming a likely role for both MAPK signaling pathways in the
probiotic effect (45). Then, we expected that L. casei OLL2768
had an inhibitory effect on JNK pathway in BIE cells as observed
for the p38 MAPK pathway. However, increased levels of p-JNK
were detected in BIE cells stimulated with the OLL2768 strain. It
was also reported that JNK and p38 MAPK pathways may induce
opposite effects. In fact, there is evidence indicating that the p38
MAPK pathway can negatively regulate JNK activity in several
contexts (46, 47). The first evidence of the interaction of these
two pathways was the observation that inhibition of p38 strongly
increased the activation of JNK (46). The work analyzed the effect
of specific p38 MAPK inhibitors, SB202190 or SB203580, on JNK
phosphorylation in A549 human lung alveolar epithelial cells, and
found that inhibition of p38 MAPK could induce JNK activa-
tion due to a compensatory mechanism (46). In addition, it was
showed that the p38 inhibitor SB203580 enhances the activation
of JNK isoforms after the challenge of IECs with IL-1β or by LPS in
macrophages (46). In line with those studies, the kinetic analysis
of p38 and JNK phosphorylation in BIE cells showed an early up-
regulation of p–p38 between 5 and 10 min after heat-stable ETEC
MAMPs challenge that was followed by a down-regulation of p-
JNK between 10 and 20 min (19). Therefore, we can speculate that
L. casei OLL2768 has a direct influence in p38 pathway while its
effect in JNK is the result of the inhibition of p38 phosphorylation.
Further research is needed to clarify completely the influence of L.
casei OLL2768 in MAPK pathways in BIE cells.

Following TLR activation, there must be a checkpoint where
TLR signaling is abolished and the system is returned to a normal
physiological state to avoid a harmful response toward the host
immune system. Regulatory factors able to modulate the duration
and intensity of TLRs signals are therefore key components for
the protection of the hosts (48). Several regulatory mechanisms
have been described for TLRs including soluble and decoy factors,
membrane-associated protein regulators, negative regulators of
the adaptor complex, and microRNA (3). To assess the expression
of these negative regulators of TLRs, we first cloned cDNAs corre-
sponding to these proteins in the bovine (19). We demonstrated
the expression of A20-binding inhibitor of nuclear factor kappa B

activation 3 (ABIN-3); B-cell lymphoma 3-encoded protein (Bcl-
3); interleukin-1 receptor-associated kinase M (IRAK-M); single
immunoglobulin IL-1-related receptor (SIGIRR); toll interacting
protein (Tollip); and mitogen-activated protein kinase 1 (MKP-1)
in BIE cells (19). Consequently, the effect of L. casei OLL2768 on
the expression of these negative regulators of the TLRs signaling
was next evaluated. L. casei OLL2768 is able to up-regulate Tol-
lip and Bcl-3 in BIE cells, and in this way to negatively regulate
TLR4 signaling (19). Tollip is able to suppress the activity of IL-
1 receptor-associated kinase (IRAK), and inhibit TLR4-triggered
NF-κB and MAPK signaling pathways (49, 50). It was showed that
stimulation of IECs with a TLR ligand, such as LPS, induces a state
of hyporesponsiveness through up-regulation of Tollip that lim-
its pro-inflammatory responses triggered by a second challenge
with the same or another TLR ligand (50). The expression of Tol-
lip was reported in bovine mammary epithelial cells (51). The
work showed that expression of Tollip was increased in response
to LPS, suggesting that the bovine mammary epithelium possesses
the necessary immune repertoires required to regulate TLR4 acti-
vation. Recently, it was demonstrated by Fu et al. (52) that Tollip is
significantly up-regulated in bovine endometrial epithelial cells
after the stimulation with LPS, and that this up-regulation of
Tollip was necessary for the regulation of the overexpression of
NF-κB and the protection against the inflammatory damage. On
the other hand, the Bcl-3 is a nuclear protein and member of the
NF-κB family. Bcl-3 is able to stabilize repressive NF-κB homod-
imers in a DNA-bound state, and in this way prevents the binding
of transcriptionally active dimers. Therefore, Bcl-3 functions as
an inhibitor of NF-κB activity. In recent years, a role of Bcl-3 has
been revealed in LPS tolerance via its ability to stabilize the p50
homodimer, and thus, has been identified as a negative regulator
of TLR4 signaling (53). Furthermore, by selectively affecting chro-
matin remodeling, Bcl-3 mediates repression of pro-inflammatory
genes, and also facilitates the expression of the anti-inflammatory
gene IL-10 (54). Therefore, the induction of Bcl-3 and Tollip by L.
casei OLL2768 in BIE cells is important in establishing tolerance
against heat-stable ETEC MAMPs.

It is not possible to give a precise molecular mechanism for
the anti-inflammatory action of L. casei OLL2768 on BIE cells
at present. However, it could be hypothesized that interaction
of L. casei OLL2768 with BIE cells through one or more PRRs
induces the up-regulation of the negative regulators Bcl-3 and
Tollip, which reduce the production of inflammatory mediators
in response to heat-stable ETEC MAMPs (Figure 2). One of the
possible PRR involved in L. casei OLL2768 immunoregulatory
capacities could be TLR2. Studies with the TLR2 ligand Pam3CSK4
in BIE cells demonstrated that the treatment with the TLR2 ago-
nist up-regulate the expression of Tollip and reduce activation of
NF-κB and p38 MAPK pathways (19). However, further research
is needed to resolve which PRR is activated by L. casei OLL2768
for the induction of negative regulators.

REGULATION OF INFLAMMATION IN BIE CELLS BY
IMMUNOBIOTIC BIFIDOBACTERIA
Members of the genus Bifidobacterium are considered to be impor-
tant constituents of the microbiota of animals, from insects to
mammals. They are gut commensals extensively used by the
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FIGURE 2 | Modulation of toll-like receptor 4 (TLR4) signaling pathway
by Lactobacillus casei OLL2768, Bifidobacterium adolescentis MCC-75,
and Bifidobacterium adolescentis ATCC15705 in bovine intestinal
epithelial epitheliocytes (BIE cells). Anti-inflammatory immunobiotic strains

up-regulate the expression of TLR negative regulators, reduce the activation
phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase
(MAPK), and nuclear factor κB (NF-κB) pathways; and diminish the production
of inflammatory mediators by BIE cells.

food industry as probiotic microorganisms, since some strains
have been shown to have specific beneficial effects. Bifidobacte-
ria are able to prevent or alleviate infectious diarrhea through
their effects on the immune system and resistance to colo-
nization by pathogens. In addition, some bifidobacteria strains
have potent anti-inflammatory capacities that could be used to
reduce inflammatory-intestinal damage. Bifidobacterium animalis
strain AHC7 decrease NF-κB activation in mice infected with
S. typhimurium. B. animalis AHC7 consumption in this mouse
model was associated with protection against inflammatory dam-
age through modulation of secreted IL-10 and IL-12p70 and
enhancement of Foxp3 expression in naïve T cells (55). In line with
these results, it was showed that Bifidobacterium bifidum W23 was
able to induce a suppression of IL-8 synthesis by Caco-2 cells chal-
lenged with S. enterica serovar enteritidis, and that the protective
role of this probiotic strain was mediated, at least in part, via Hsp70
expression (56). Moreover, it was recently reported that Bifidobac-
terium adolescentis FRP 61, Bifidobacterium longum FRP 68 and
FRP 69, and Bifidobacterium breve FRP 334 significantly reduced
IL-8 production by HT-29 cells challenged with S. typhimurium
(57). Others studies evaluating the effect of bifidobacteria in
intestinal Caco-2 cells showed that B. animalis MB5 avoid cytokine
deregulation upon ETEC challenge by inducing upregulation of
IL-1β and TNF-α, and the down-regulation of TGF-β expression
(58, 59). Additionally, we demonstrated in porcine IECs cells that
treatment with B. breve MCC-117 significantly reduced the expres-
sion of inflammatory cytokines in response to heat-stable ETEC

MAMPs. Moreover, studies with porcine immune cells showed
that B. breve MCC-117 was able to reduce the levels of IFN-
γ in CD4+ and CD8+ lymphocytes and improved IL-10 levels
in CD4+CD25highFoxp3+ lymphocytes (14). These are among
several other studies that clearly showed that bifidobacteria are
highly effective in regulating pathogenic inflammation in the gut.
Therefore, we next aimed to select potential immunomodula-
tory bifidobacteria able to beneficially modulate the inflammatory
response in BIE cells.

The potential use of bifidobacteria as probiotic for cattle is
supported by some new reports indicating the presence of these
bacteria in young calf intestines and the fact that their presence
in high numbers is associated with good health status of the host
(60). Therefore, some bifidobacteria strains, previously selected in
our porcine systems, were used to evaluate their anti-inflammatory
capacities in heat-stable ETEC MAMPs-challenged-BIE cells (61).
Similarly to the effect of L. casei OLL2768, some bifidobacteria
were able to reduce the production of inflammatory mediators
triggered by TLR4 activation in BIE cells. Considering their abil-
ity to reduce the expression of IL-6 and MCP-1, bifidobacteria
strains were divided in the following two groups: (1) strains able
to reduce both IL-6 and MCP-1 (B. adolescentis MCC-75 and
B. breve MCC-117) and (2) strains able to reduce only IL-6 (B.
longum BB536, B. adolescentis ATCC15705 and Bifidobacterium
infantis MCC-1021) (61).

As described for the immunoregulatory L. casei OLL2768
strain, we also aimed to evaluate signaling pathways and TLR
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negative regulators expression in BIE cells after the treatment with
bifidobacteria belonging to the two functional groups defined by
our studies. Then, we selected B. adolescentis MCC-75, B. breve
MCC-117 (strains with high anti-inflammatory capacities), and B.
adolescentis ATCC15705 (strain with moderate anti-inflammatory
capacity) for further experiments. Activation of MAPK, NF-κB,
and phosphatidylinositol 3-kinase (PI3K) pathways, and changes
in the expression of TLR negative regulators in MCC-75-, MCC-
117- and ATCC15705-treated BIE cells were then studied. We
found that each bifidobacteria strain induces unique changes in
TLR4 signaling in bovine IECs (61) (Figure 2).

As mentioned before, several negative regulatory mecha-
nisms control TLRs-mediated inflammatory responses and restore
immune system balance in the gut. Although the NF-κB-
dependent gene expression is critical to the induction of an effi-
cient immune response, excessive, or prolonged NF-κB signaling
can contribute to the development of several inflammatory dis-
eases. Therefore, this signaling transduction pathway has to be
tightly regulated by several intracellular proteins. The ubiquitin-
editing enzyme A20 is key regulator of the TLRs signaling. It was
showed that A20 deficiency in IECs renders mice sensitive to TNF-
α-induced lethal inflammation (62, 63). Moreover, it was reported
that A20 is an early response negative regulator of TLR4 and TLR5
signaling in IECs that functions during intestinal inflammation
to control the innate immune system (64). In addition, the A20-
binding inhibitor of NF-κB activation (ABIN) is LPS-inducible
proteins that negatively regulate NF-κB activation in response to
TNF-α and LPS (65). ABINs have been described as three differ-
ent proteins (ABIN-1, -2, and -3) that bind A20. Overexpression
of ABINs inhibits NF-κB activation by TNF-α and several other
stimuli. Similar to A20, ABIN-3 expression is NF-κB dependent,
implicating a potential role for the A20/ABIN complex in the neg-
ative feedback regulation of NF-κB activation (66). Therefore, the
induction of A20/ABIN complex by bifidobacteria in BIE cells
is important in establishing tolerance against heat-stable ETEC
MAMPs. This is in line with our previous reports in porcine IECs.
In our works in the porcine systems, we showed that the bifi-
dobacteria strains with the highest capacity to downregulate the
expression of inflammatory cytokines in response to heat-stable
ETEC PAMPs were also able to up-regulate A20. In fact, the most
potent anti-inflammatory bacteria evaluated in our laboratory,
bifidobacteria strains BB536 and M-16V and L. jensenii TL2937,
strongly up-regulated the ubiquitin-editing enzyme A20 [for a
review see Ref. (3)].

Bcl-3 protein functions as an inhibitor of NF-κB activity as
mentioned before. In addition, SIGIRR, Tollip, and IRAK-M are
also known to be expressed at high levels in IECs, and to thereby
contribute to the hyporesponsiveness of IECs to commensals (64,
67, 68). Therefore, induction of these five negative regulators by
bifidobacteria in BIE cells may be important for establishing tol-
erance against heat-stable ETEC MAMPs (Figure 2). Moreover,
the fold expression increase of the negative regulators of the TLRs
signaling should be also important since the levels of ABIN-3,
IRAK-M, and Bcl-3 were significantly higher in B. breve MCC-
117- and B. adolescentis MCC-75-treated BIE cells when compared
with BIE cells treated with the moderate anti-inflammatory strain
B. adolescentis ATCC15705 (61).

On the other hand, the MAPK pathway is involved in the upreg-
ulation of several inflammatory genes, and MKP-1 plays a role in
the inhibition of pro-inflammatory mRNA expression, because it
can inactivate MAPK pathway (69). Therefore, we expected that
bifidobacteria with high anti-inflammatory activity significantly
up-regulate MKP-1 expression and reduce MAPK activation as
we have observed with other anti-inflammatory immunobiotic
strains (3). However, when ERK, p38, and JNK MAPK activation
and MKP-1 expression were studied in BIE cells treated with bifi-
dobacteria, we found that B. adolescentis MCC-75 and B. breve
MCC-117 activated ERK MAPK pathway and only moderately
up-regulated MKP-1. On the contrary, B. adolescentis ATCC15705
strongly increased expression of MKP-1 and inhibit p38 and JNK
pathways (61). It is known that the ERK pathway play key reg-
ulatory functions in a diverse spectrum of biological processes
such as cell proliferation, differentiation, survival, and motility
(70). It was also reported that TGF-β induces ERK activity in
IECs and this TGF-β/ERK interaction regulates genes that are
crucial for cell growth, migration, and survival of IECs (71, 72).
In fact, treatment with TGF-β prevents mucosal-injury, enhances
p-ERK and β-catenin, induces enterocyte proliferation, inhibits
enterocyte apoptosis, and improves intestinal recovery following
methotrexate-induced intestinal-mucositis in rats (73). More-
over, TGF-β increases protein levels, collagen I, TGF-β of type-1
inhibitor of plasminogen activator, and the TGF-β-converting
enzyme furin in various IEC lines via ERK (74) indicating an
important immunoregulatory role of the ERK pathway in main-
taining homeostasis in IECs. Therefore, the activation of the ERK
pathway by B. adolescentis MCC-75 and B. breve MCC-117 during
ETEC MAMPs-mediated inflammation could have an important
protective role against inflammatory damage (61).

Our studies also demonstrated that both B. adolescentis MCC-
75 and B. breve MCC-117 were able to inhibit PI3K pathway in
heat-stable ETEC MAMPs-challenged-BIE cells. It is known that
PI3K regulates TLR signaling in both positive and negative ways.
By mutating specific tyrosine residues in the cytosolic domain of
TLR2, it was showed that there is a loss in the capacity of p85 to
associate with this receptor and in the ability of TLR2 to activate
NF-κB pathway. Furthermore, inhibition of PI3K during TLR2
stimulation has been shown to reduce NF-κB activation (75).
On the contrary, studies in PI3K or p85a deficient mice showed
that PI3K negatively regulates TLR signaling (76, 77). Then, it
is well established that PI3K could affect TLRs signaling path-
ways in different ways and that it effect depends on cell type and
readout. In our studies, we showed that stimulation of BIE cells
with heat-stable ETEC MAMPs activated PI3K pathway, indicat-
ing that PI3K is positively involved in TLR4 signaling in BIE cells
(Figure 1B). Moreover, we demonstrated that bifidobacteria able
to reduce activation PI3K pathway were the strains with the highest
anti-inflammatory activity (61) (Figure 2).

As mentioned before, our works evaluating the immunoregu-
latory activity of immunobiotics demonstrated that the upreg-
ulation of some regulatory cytokines and down-regulation of
inflammatory mediators is dependent of TLR2 activation (15,
16). Therefore, we also investigated the role of TLR2 in the
immunoregulatory effects of B. adolescentis MCC-75, B. breve
MCC-117, and B. adolescentis ATCC15705 by using anti-TLR2
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blocking antibodies (61). It was showed that the reduction of IL-6
induced by bifidobacteria in ETEC MAMPs-challenged-BIE cells
was abolished when anti-TLR2 antibodies were used. This is in line
with other reports conferring a key role to TLR2 in the recognition
of bifidobacteria, which possess anti-inflammatory activities (78–
80). It is known that stimulation of TLR2 is able to induce tolerance
against a subsequent LPS challenge (81). Therefore, it is possible
that bifidobacteria could induce this type of cross-tolerance in
BIE cells through their interaction with TLR2. In addition, we
showed that the reduction of MCP-1 levels after challenge of BIE
cells was not abolished when anti-TLR2 antibodies were used.
This finding indicates that additional PRRs may be involved in the
anti-inflammatory effects of B. adolescentis MCC-75, and B. breve
MCC-117 in BIE cells.

CONCLUSION
The knowledge of the cellular and molecular interactions of
human IECs with commensal and probiotic bacteria is rapidly
progressing. An exciting possibility is that similar systems devel-
oped for the bovine host could serve as a platform for medicine and
research. However, to achieve this goal, bovine IECs cultures must
be enhanced and improved to allow that functional assays can be
performed. Our research work has demonstrated that the BIE cell
line is a useful in vitro tool for the study of TLR4-induced inflam-
matory responses in the bovine intestinal epithelium. We have also
demonstrated that BIE cells could be used for a rapid screening
and selection of potential immunobiotic bacteria as well as for
studying the molecular mechanisms involved in their beneficial
protective activity.

Despite the unique effect of each lactobacilli or bifidobacteria
strain, some general conclusions can be made when compar-
ing the effect of the two different immunoregulatory groups:
high anti-inflammatory activity (L. casei OLL2768, B. adoles-
centis MCC-75, and B. breve MCC-117) and moderate anti-
inflammatory activity (B. adolescentis ATCC15705) (Figure 2):
(1) anti-inflammatory capacity in BIE cells is strain dependent,
as demonstrated by the differential effect induced by each strain,
even those of the same specie (B. adolescentis MCC-75 and B.
adolescentis ATCC15705). (2) The upregulation of TLR negative
regulators and the intensity of that upregulation would be related
to the different immunomodulatory capacity of each immunobi-
otic strain. Notably, upregulation of Tollip and Bcl-3 seems to be
related to a high anti-inflammatory capacity. (3) The inhibition
of PI3K pathway would be related to the high anti-inflammatory
effect of immunobiotics in BIE cells. (4) The balance between
MAPK activation and MKP-1 upregulation would be related to
the anti-inflammatory effect of bifidobacteria in BIE cells. (5) The
anti-inflammatory effect of immunobiotics in BIE cells is partially
dependent on TLR2. Further research is needed to resolve which
other PRR is involved in the immunoregulatory effects. In addi-
tion, one general conclusion can be made when comparing the
effect of the two different immunoregulatory groups of bifidobac-
teria (Figure 2). (6) The upregulation of IRAK-M and ABIN-3 and
the intensity of that upregulation would be related to the different
immunomodulatory capacity of each bifidobacteria strain.

We believe that studies in BIE cell would provide useful infor-
mation that may help in the near future to develop new functional

feeds able to beneficially modulate the mucosal immune system in
the bovine host. In line with this, we showed in our studies that the
immunoregulatory strains L. casei OLL2768, B. adolescentis MCC-
75, and B. breve MCC-117 are able to functionally modulate BIE
cells by attenuating TLR4-induced NF-κB, MAPK, and IP3K acti-
vation and inflammatory cytokines production. Then, OLL2768,
MCC-75, and MCC-117 strains would be good candidates for
in vivo evaluation of the protective effect of immunobiotics against
inflammatory damage induced by bovine intestinal pathogens or
their associated PAMPs. We also believe that the immunobiotic
application in cattle could contribute to produce safety animal
foods via improving bovine health.
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MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are recognized as critical
regulators of immune gene expression during infection. Many immunologically significant
human miRNAs have been found to be conserved in agriculturally important species, includ-
ing cattle. Discovering how bovine miRNAs mediate the immune defense during infection
is critical to understanding the etiology of the most prevalent bovine diseases. Here, we
review current knowledge of miRNAs in the bovine genome, and discuss the advances
in understanding of miRNAs as regulators of immune cell function, and bovine immune
response activation, regulation, and resolution. Finally, we consider the future perspectives
on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy.

Keywords: bovine, Bos taurus, microRNA, miRNA, immune system

INTRODUCTION
MicroRNAs (miRNAs) are short, non-coding RNAs, which post-
transcriptionally regulate gene expression (1). Since their initial
discovery in 1993 (2), studies have convincingly demonstrated crit-
ical roles for miRNAs in the regulation of many cellular processes,
such as differentiation and proliferation (3). There is also substan-
tial evidence, primarily from human and mouse studies, which
miRNAs regulate innate and adaptive immune mechanisms (4,
5). However, the regulatory potential of miRNAs in agriculturally
important species, such as cattle, is poorly explored. Here, we aim
to review the role of miRNAs in bovine immune and inflammatory
systems.

MicroRNA BIOGENESIS
MicroRNAs are transcribed by RNA Polymerase II or III as
primary miRNAs (pri-miRNAs) in the nucleus, and are then
processed into pre-miRNAs by the Microprocessor multiprotein
complex, and the co-factor DiGeorge Syndrome Critical Region
8 (DGCR8/Pasha) (6). Following export to the cytoplasm by
exportin 5 (XPO5), a mature 22 nucleotide long duplex is formed
by an RNAse type III enzyme, called Dicer (7). The duplex,
together with Trans-Activation Responsive RNA-Binding Protein
2 (TARBP2) and Argonaute (AGO) family proteins, form a com-
plex, which triggers the assembly of the RNA-Induced Silencing
Complex (RISC). One miRNA strand is removed, and the other
strand guides RISC to its target mRNA via base-pairing (6). The
recognition of the target binding site, which can be found in the
coding or the untranslated regions (UTR) of the mRNA, mostly
depends on a part called the seed sequence (nucleotides 2–7 at the

5′ end) of the miRNA (7). Although both strands of the duplex
can be functional, usually only one strand is used (8).

MicroRNAs are evolutionarily conserved and have been found
in all eukaryotes from unicellular species to mammals (9). To date,
2588 have been identified in the human genome, 1915 in mouse,
and 793 in bovine (miRBase version 21, http://www.mirbase.org)
(10). Originally, miRNAs were thought to mainly regulate gene
expression by inhibiting translation, however, transcriptional reg-
ulation has been shown recently to be the primary mechanism used
by miRNAs to influence gene expression in mammals (11). Several
important factors determine how miRNAs function, including the
location and number of target sites within mRNA 3′ UTRs (or
other gene regions), RNA-binding proteins (RBPs), which inter-
fere with RISC binding, RISC co-factors, and the modification of
RISC-components (12). Transcripts with target sites for a common
miRNA compete for recognition. These competing endogenous
RNAs (ceRNA), such as other mRNAs, long non-coding RNAs
(lncRNA), pseudogene transcripts, and independently transcribed
UTRs, can reduce the effect of specific miRNAs in vivo. Binding to
target sites also protects miRNAs from degradation, in a process
called target mediated miRNA protection (TMMP) (12). Indi-
vidual miRNAs can have many targets, explaining how relatively
small numbers of alternatively expressed miRNAs can have a large
impact on gene regulation and control several diverse biological
processes.

MicroRNAs IN IMMUNITY AND INFECTION
Cell-type specific expression of miRNAs has been demonstrated in
innate and adaptive immune cells (13, 14) and there is a growing
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body of evidence that miRNAs regulate the differentiation, devel-
opment, and function of these cells (15–17). Hematopoietic stem
cell differentiation into myeloid and lymphoid lineages, for exam-
ple, has been shown to be under the influence of several miRNAs,
including miR-125b, miR-126, and miR-196b (4, 18). Addition-
ally, the deletion of the dicer1 gene, which is critical for proper
miRNA processing, results in impaired T cell development (19),
while miR-17–92, miR-150, and miR-155 have been demonstrated
to be critical for B cell development. Other roles for miRNAs in
regulating adaptive immunity have also been shown, including the
regulation of B and T lymphocyte functions, including antibody
production, by miR-155 (20–22). Activation of the innate immune
system is also regulated by miRNAs (23). The human miRNA,
miR-146a, for example, has been shown to target tumor necro-
sis factor receptor-associated factor 6 (TRAF6) and interleukin-1
(IL1) receptor-associated kinase (IRAK1), key regulatory nodes,
which control innate immune signaling in response to lipopolysac-
charide (LPS) (24). Similarly, miR-19a has been shown to regu-
late expression of SOCS 3, an important suppressor of cytokine
signaling (25).

MicroRNAs have also been clearly demonstrated to have impor-
tant roles in regulating responses to infection (26). In particular,
several miRNAs have been identified to have important functions
in regulating immune responses to mycobacterial infection (27).
Tumor necrosis factor (TNF) biosynthesis, for example, is inhib-
ited by Mycobacterium tuberculosis – an intracellular mycobacterial
pathogen that infects alveolar macrophages – by altering levels of
human macrophage miRNAs, including miR-125b and miR-155,
for its own benefit (28). Similarly, miR-29 and miR-99b regulate
the production of multiple cytokines, including IFN-γ and TNF-α,
which control M. tuberculosis growth (29, 30). miRNAs are fre-
quently evolutionarily conserved and many of these miRNAs have
orthologs in cattle, therefore data from human and mouse studies
can provide a roadmap for revealing miRNAs likely to have impor-
tant roles in bovine infectious diseases. Many miRNAs, however,
exhibit pathogen or stimulus-specific response profiles and cer-
tain families of miRNAs are expanded or contracted in the bovine
genome.

MicroRNAs IN THE BOVINE GENOME
The first studies demonstrating miRNA expression in bovine tis-
sues were undertaken in 2007 (31, 32). Since then, 793 mature
miRNAs, encoded on all 30 chromosomes, have been identified
in the Bos taurus genome. These miRNAs account for approx-
imately a quarter of all the 3825 non-coding RNAs predicted
in the genome by Ensembl (v75) (33). Typically, miRNAs have
been grouped into families based on shared sequence similar-
ity of the miRNA seed region (2–8 nt), the mature sequence,
or the precursor miRNA sequence (34). Often, miRNA fami-
lies can be found clustered with target genes in specific genomic
regions (35). Many human miRNAs, including some of the most
extensively studied immune-related miRNAs, share significant
functional and sequence similarities to their bovine counterparts
indicating evolutionary conservation and, putatively, conserva-
tion of function. The human miRNA, hsa-miR-155, for example,
is a perfect homolog to its bovine counterpart bta-miR-155. In
humans, this miRNA acts as an anti-inflammatory agent targeting

the Toll-like receptor/Interleukin-1 receptor (TLR/IL1R) inflam-
matory pathway (36). Another miRNA with a conserved bovine
ortholog, hsa-miR-146a-5p, is known to negatively regulate the
retinoic acid-inducible gene 1 (RIG-I) pathway in humans by
suppressing TRAF6 and IRAK1 during viral infection (37). There
is also an exact seed sequence match between hsa-miR-146a-5p,
bta-miR-146a, and mmu-miR-146a-5p.

While there is significant conservation of miRNAs between
species, there are also notable differences that very likely have
functional consequences. There are numerous cases, for exam-
ple, of miRNAs found in the human genome that are apparently
absent in bovine. Some of these differences may be due to bet-
ter annotation of the human microRNAome but clearly there are
real differences too. The human miRNA, hsa-miR-198, for exam-
ple, has a role in human immunity and has no apparent homolog
in the bovine genome. This miRNA targets the Cyclin T1 gene
(CCNT1), which acts as a co-factor for HIV-1 (38).

In addition to single miRNA differences in the repertoire of
human and bovine miRNAs, there are also several cases where
entire families or clusters of miRNAs that are present in human
have yet to be discovered or do not exist in the bovine genome.
These include the majority of miRNAs numbered from miR-550 to
miR-640; some 200 miRNAs, which include the hsa-miR-515 clus-
ter (11 miRNAs), and interestingly, the miR-548 family. The miR-
548 family comprises of over 70 miRNAs whose expression to date
has only been described in simians. Members of this miRNA fam-
ily have been shown to target interferon-λ1 (IFN-λ1), modulating
the primate interferon response to viral infections (39).

There are also several miRNA families in the bovine genome
that are apparently species-specific, at least when compared to
available genomes. The bta-miR-2284 and bta-miR-2285 families,
for example, encode more than 100 mature miRNAs in the bovine
genome but do not appear to have homologs in either human or
mouse. These miRNA families have been shown to be expressed
in a number of bovine immune-relevant tissues including CD14+

monocytes, mammary epithelial cells, and alveolar macrophages
(40–42), however, the genes targeted by the miRNAs in this family
are currently unknown.

ROLE OF THE miRNAs IN THE BOVINE IMMUNE SYSTEM
The roles that miRNAs play in regulating immune activation
and resolution in response to infection is less well understood
in cattle, compared to human and mouse. Investigations in cattle
have primarily focused on characterizing miRNA expression in
immune-related tissues and investigating whether miRNA expres-
sion is perturbed during bacterial/viral infections – but detailed
mechanistic studies are, to date, largely lacking. One of the first
studies to profile immune-relevant miRNA expression in cattle,
characterized the expression of more than 100 bovine orthologs
of known human miRNAs, as well as novel bovine miRNAs, in
several immune-relevant tissues and provided an early bovine
miRNA expression atlas for many later studies (31). More recently,
Vegh et al. utilized a next generation sequencing (NGS) strategy
to profile miRNA expression on a genome-wide scale in bovine
alveolar macrophages, the primary host cell for M. bovis, an
economically important pathogen (41). NGS has several advan-
tages over classical sequencing technologies, which include the
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ability to accurately measure expression of all miRNAs simultane-
ously, with high reliability, single-nucleotide resolution and across
the broad dynamic range of expression (43). miRNA expression
has now been demonstrated in 10 immune-related bovine tis-
sues (bovine embryo, thymus, small intestine, mesenteric lymph
node, abomasum lymph node, CD14+ blood isolated monocytes,
CD14+ milk-isolated monocytes (MIMs), mammary epithelial
cells, alveolar macrophages, mammary tissue, and in the MDBK
cell line) and tissue-specific expression of miRNAs in these tissues
is readily apparent (Figure 1) (31, 40–42, 44–47).

Several studies have also examined whether miRNA expres-
sion is altered in response to Gram-positive or Gram-negative
infections associated with bovine mastitis, a disease of the bovine
mammary gland with significant economic consequences to the
dairy industry. Naeem et al. examined a panel of 14 miR-
NAs from mammary tissue biopsied during an in vivo intra-
mammary Streptococcus uberis infection (46). Four of the four-
teen miRNAs were found to undergo differential expression
(Table 1). Another study compared transcriptional changes of five
inflammation-associated miRNAs, including ones with extensively
studied human orthologs: bta-miR-155, bta-miR-146a, and bta-
miR-223, in bovine CD14+ monocytes stimulated with either LPS
or Staphylococcus aureus enterotoxin B (SEB) (45). Four miRNAs
were differentially expressed, and LPS was found to have a greater
effect than SEB at inducing miRNA differential expression.

More recent studies have employed high-throughput sequenc-
ing approaches to temporally profile genome-wide changes in
miRNA expression in different cell-types in response to challenge
with bovine mastitis-causing pathogens such as Escherichia coli, S.
aureus, and S. uberis. Lawless et al. identified 21 miRNAs that were
differentially expressed in bovine mammary epithelial (BMEs)
cells challenged in vitro with live S. uberis, a Gram-positive bac-
terium (40). Strikingly, the 21 miRNAs differentially expressed in
response to this Gram-positive bacterium was substantially differ-
ent to LPS-responsive miRNAs. Furthermore, the predicted target
genes of miRNAs that were down-regulated in BMEs following
S. uberis infection (but not the targets of up-regulated miRNAs),

were statistically enriched for roles in innate immunity, suggest-
ing that the repression of these miRNAs transcriptionally releases
the innate immune response to this infection. Subsequently, Jin
et al. also reported notable differences in miRNA expression pro-
files in MAC-T cells challenged with either heat-killed E. coli
or S. aureus (47). This was the first bovine study to directly

FIGURE 1 | Multidimensional scaling (MDS) plot of miRNA profiles
shows that miRNA expression is cell-type specific. Similar cell-types
have similar profiles, as evidenced by milk (+) and blood CD14+ cells (o),
and by bovine mammary epithelial cells [primary (*) and cell line (M)], which
group together. Data are from four recent RNA-seq publications. +, Blood
CD14+ monocytes; o, milk CD14+ monocytes; ×, bovine alveolar
macrophage; *, primary bovine mammary epithelial cells (BME); M, bovine
mammary epithelial cell line (MAC-T).

Table 1 | Summary of bovine miRNA literature.

Reference miRNA Tissue Source Condition

(31) Genome-wide embryo, thymus, lymph node, and

small intestine

Holstein–Friesian None

(44) Genome-wide Bos taurus kidney cells (MDBK) Cell line Bovine herpesvirus 1

(46) miR-10a, -15b, 16a, -17, -21, 31, -145, 146a,

146b, 155, -181a, -205, -221, and -223

Mammary tissue Holstein–Friesian Mastitis

(48) miR-223 Venous blood Holstein–Friesian Mastitis

(45) miR-9, -125b, -155, -146a, and -223 CD14 monocytes ex vivo Holstein–Friesian LPS and SEB

(49) miR-296, -2430, -671, and -2318 Mammary tissue Holstein–Friesian Mastitis

(39) miR-17-5p, -20b, and -93 Mammary tissue Holstein–Friesian Mastitis

(40) Genome-wide Mammary epithelial cells ex vivo Holstein–Friesian Mastitis

(41) Genome-wide Alveolar macrophages Holstein–Friesian None

(39) Genome-wide Peripheral blood Holstein–Friesian Mastitis

(42) Genome-wide CD14 monocytes Holstein–Friesian Mastitis

(47) Genome-wide MAC-T cells Cell line Heat-inactivated E. coli or

S. aureus
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compare global miRNA expression of two pathogens in the same
cell-type.

In the first NGS-based study to temporally profile infection-
induced miRNA responses in vivo, Lawless et al. simultaneously
profiled genome-wide mRNA and miRNA expression at multi-
ple time-points in both milk and blood FACS-isolated CD14+

monocytes from cattle infected with S. uberis (42). Twenty-six
miRNAs and more than 3500 genes were identified as being
significantly differentially expressed over the 48 h time-course.
In MIMs, up-regulated protein-coding genes were significantly
enriched for inflammatory and innate immune pathways, while
down-regulated genes were enriched for non-glycolytic metabolic
pathways. Monocyte transcriptional changes in the blood were
more subtle. Pathway analysis revealed that predicted targets of
MIM down-regulated miRNAs were highly enriched for roles in
innate immunity, while up-regulated miRNAs preferentially tar-
geted genes involved in metabolism; suggesting that during S.
uberis infection miRNAs are key amplifiers of monocyte inflam-
matory response networks and repressors of several metabolic
pathways.

To date, only one study has examined whether bovine miR-
NAs are transcriptionally perturbed during viral infection. In this
study, an adult bovine kidney cell line was challenged with bovine
herpes virus 1. Sequencing 3 miRNA libraries, more than 300 miR-
NAs were found to expressed, but none were described as being
differentially expressed (44).

VALIDATED BOVINE miRNA TARGET GENES
Two approaches are commonly used to validate miRNA targets.
One involves transfection of miRNA mimics (or inhibitors) into
cells and confirmation that the expression of predicted target
genes is altered as expected (50). This approach provides evi-
dence that a given miRNA can alter the expression of a target gene
but does not prove direct regulation (51). The miRNA could, for
example, regulate a transcription factor, which subsequently reg-
ulates the putative target gene. A more direct approach is to use a
reporter assay, where the 3′ UTR of the predicted target gene (or at
least the portion containing the predicted miRNA binding site) is
cloned upstream of a luciferase or green fluorescent protein (GFP)
reporter gene. If binding of the transfected miRNA mimic to the
3′ UTR reduces the level of reporter protein this demonstrates a
direct silencing effect of the miRNA on the gene (52).

To date, very few studies have functionally validated bovine
miRNA targets. One example where miRNA regulation has been
validated is bovine High Mobility Group Box 1 (HMGB1), a
nuclear protein, which transcriptionally regulates inflammation
(48). Bovine HMGB1 has been shown to be targeted by bta-miR-
223, a miRNA that is up-regulated during S. aureus infection (48).
Similarly, using reporter assays, bta-miR-124 has been shown to
regulate expression of Monocyte Chemotactic Protein 1 (MCP1)
and Polypyrimidine Tract Binding Protein 1 (PTBP1) in bovine
fibroblasts (53).

OTHER AREAS OF BOVINE miRNA IMMUNE BIOLOGY
In addition to their role as intracellular transcriptional modu-
lators of gene expression miRNAs are also stably expressed in a
host of extracellular body fluids including milk, saliva, semen, and

plasma (54–57). Extracellular miRNAs can be transferred to dis-
tant recipient cells via exosome-mediated transfer and have been
demonstrated, in mouse dendritic cells, to modulate recipient cell
transcription (58). Exosome packaged miRNAs have been shown
to be highly stable and are resistant to degradation by RNases,
freeze-thaw, and low pH (56, 59). Exosome miRNAs – includ-
ing a number of immune-relevant ones, such as bta-miR-223 and
bta-miR-125b – have been found in both human breast milk and
bovine milk (54–56). MicroRNA expression levels in milk have also
been observed to vary during different lactation periods and are
present in milk products as well as in raw milk (54). Interestingly,
they are particularly abundant in colostrum. Further investiga-
tion of the role of exosome packaged miRNAs play in regulating
mammalian immunity is urgently needed.

FUTURE RESEARCH DIRECTIONS IN BOVINE miRNAs AND
THEIR EFFECT ON IMMUNOLOGY, INFLAMMATION, AND
INFECTION
It is clear that miRNAs play a key role in regulating human and
mouse immune responses. In cattle, studies to date have been
mainly limited to demonstrating differential expression of miR-
NAs in immune-relevant tissues or cells challenged in vitro with
specific pathogens. Importantly, annotated miRNAs are much
fewer in the bovine genome than in murine or human genomes,
and a bovine miRNA expression atlas across bovine tissues and
cells is needed to bridge this gap. Among its many uses, better
annotation of non-coding RNAs would aid in the interpretation of
bovine genome-wide association study (GWAS) data. A previously
unannotated small non-coding RNA, for example, was recently
identified as the only gene in a novel genome-wide significant
QTL for somatic cell score, a mastitis indicator trait (60).

Aside from understanding the important basic biology of how
miRNAs regulate bovine gene expression, miRNAs could also
potentially be of significant utility as biomarkers of specific dis-
eases in cattle. Indeed, miRNAs exhibit many properties that have
made them of significant interest as non-invasive biomarkers in
human clinical studies. miRNAs are abundantly expressed, in a
stable form, in a range of extracellular fluids, are easily measured,
and in many cases exhibit temporal and spatial specificity (54–
57). They also have high information content – small numbers
of miRNAs can serve as accurate biomarkers. Several studies have
investigated miRNA expression profiles associated with different
mastitis-causing pathogens (Table 1), however, many of these
studies were carried out in vitro, and the potential of miRNAs
as biomarkers of bovine disease is currently limited by a lack
of studies of in vivo comparison of miRNA profiles associated
with multiple different pathogens in the same challenge model.
Such in vivo studies are needed to identify sensitive and specific
biomarkers for particular infections. This could be used for identi-
fying infections, such as tuberculosis, using a simple miRNA-based
biomarker, or for distinguishing between different infections, for
example between E. coli and S. uberis driven mastitis, helping
veterinarians to select more specific therapeutic strategies.

A further limitation is the fact that research investigating the
role of miRNAs in regulating bovine immunity has, to date,
focused almost exclusively on bacterial infections and little is
known about the role miRNAs play during bovine viral infections.
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Some of the most economically important and high profile bovine
infectious diseases are of viral origin including Foot and Mouth
Disease Virus (FMDV) (61), Bovine Viral Diarrheal Virus (BVDV)
(62), and the recently described Schmallenberg virus (63). In other
species, it is clear that host miRNAs have a direct role in modu-
lating the host immune response to pathogenic viral infections
(38). Additionally, some viruses encode their own repertoire of
miRNAs to subvert the host immune response. Nearly 200 viral
miRNAs have been described (64). Describing their precise effect
on the immune response could further our understanding of both
bovine miRNA immune biology and virology.

Aside from their utility as biomarkers, miRNAs also have sig-
nificant potential as therapeutic targets or agents. MicroRNA
function can be augmented either by over-expression approaches,
using miRNA mimics or vector based over-expression, or by inhi-
bition,using miRNA sponges or anti-miR oligonucleotides (65). In
humans, several miRNAs are currently in preclinical and clinical
trials as novel therapeutics in cancer, viral infections, and car-
diovascular disease (65). Human miR-122, for example, is being
investigated for its therapeutic potential to modulate cholesterol
metabolism (66). Additionally, targeting miR-122 using the anti-
miR miravirsen induces antiviral activity against hepatitis C virus
(HCV) (67). The potential clinical utility of miR-122 is being
investigated in Phase II clinical trials. Similarly, human miR-208
has been shown to have an important role in modulating cardiac
function and remodeling (68), and is currently in preclinical trials.
Interestingly from a bovine perspective, this miRNA also has a big
impact on metabolism. Treatment with anti-miR-208 prevented
weight gain in aging mice, which was due to a reduction in fat
weight (69).

All of the miRNAs mentioned above with therapeutic potential
have orthologs in cattle and these examples clearly suggest that
there is a potential for the application of miRNA-based therapeu-
tic strategies to combat disease and regulate metabolism in cattle
in order to influence important economic traits, such as growth,
feed efficiency, or milk production. Although the cost of miRNA
therapy and the large size of animals may prevent agricultural use,
bovine research models still could be valuable, as the conserved
nature of miRNAs facilitates translation of research to human
application (65).

A current limitation to the translational potential of miRNA
biology in cattle is the lack of validated targets for known miRNAs,
as only a handful of studies to date have functionally validated
predicted miRNA targets (40, 41). Computationally, hundreds
if not thousands of putative miRNA targets can be predicted
and experimental validation is a costly and labor-intensive pro-
cedure. Methods which integrate and correlate miRNA expression
with mRNA expression in the same sample can refine computa-
tional predictions and increase the validation hit rate. Other more
recent technological advancements such as crosslinking immune-
precipitation sequencing (CLIP-Seq) can directly identify miRNA
targets on a genome-wide scale (70), but such approaches have yet
to be implemented in cattle.

In conclusion, miRNAs undoubtedly play a key role in reg-
ulating bovine immunity and disease. Future studies are poised
to reveal their true potential as novel biomarkers or therapeutic
agents in a range of bovine diseases as well as providing further

insight into the fundamental biology of how they regulate bovine
immune gene expression, insight which is essential before their
translational potential can be realized fully.
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Immune cells play an integral role in affecting successful reproductive function. Indeed,
disturbed or aberrant immune function has been identified as primary mechanisms behind
infertility. In contrast to the extensive body of literature that exists for human and mouse,
studies detailing the immunological interaction between the embryo and the maternal
endometrium are quite few in cattle. Nevertheless, by reviewing the existing studies
and extrapolating from sheep, pig, mouse, and human data, we can draw a reasonably
comprehensive picture. Key contributions of immune cell populations include granulocyte
involvement in follicle differentiation and gamete transfer, monocyte invasion of the peri-
ovulatory follicle and their subsequent role in corpus luteum formation and the pivotal roles
of maternal macrophage and dendritic cells in key steps of the establishment of preg-
nancy, particularly, the maternal immune response to the embryo.These contributions are
reviewed in detail below and key findings are discussed.

Keywords: cow, fertility, macrophage, cytokine, immune function

BACKGROUND
It is estimated that fetal viability is only achieved in about
55% of fertilizations in non-compromised cattle, indicating an
embryonic/fetal mortality of about 35%. It is estimated that 70–
80% of the total embryonic loss occurs between days 8 and 16
after insemination [day 16 corresponding to the day of mater-
nal recognition of pregnancy; reviewed by Diskin and Mor-
ris (1)]. There are many reasons, related to both the mother
and the embryo, why implantation fails but there is increas-
ing interest in the role of the maternal immune system. Dis-
turbed or aberrant immune function has been identified as
primary mechanisms behind infertility. In contrast to the exten-
sive body of literature that exists for human and mouse, stud-
ies detailing the immunological interaction between the embryo
and the maternal endometrium in cattle have primarily focused
on the role of the maternal recognition factor, the type I
antiviral cytokine, interferon tau (2, 3) in corpus luteum (CL)
maintenance, and progesterone priming of the endometrium.
Nevertheless, by reviewing the existing studies and extrapolat-
ing from sheep, pig, mouse, and human data, we can draw
a reasonably comprehensive picture of immune cell involve-
ment from follicle development, ovulation, gamete transfer,
maternal recognition of pregnancy, implantation, and placen-
tation. These events are reviewed below and key findings are
discussed.

OVARIAN FUNCTION
The presence and temporal regulation of neutrophils, eosinophils,
macrophages (MΦ), granulocytes, and T-lymphocytes in ovar-
ian tissues has been characterized extensively during the men-
strual cycle in women; a smaller body of data exists for several
farm animal species, including cows, sheep, pigs, buffaloes, and
horses (4).

FOLLICLE DIFFERENTIATION
Taken together, pre-ovulatory follicle differentiation and luteiniza-
tion appear to be characterized by three phases of immune cell
infiltration, which are illustrated in Figure 1: histological analysis
of bovine dominant follicles shows that mast cell infiltration of the
theca layer constitutes the first phase (5) (Figure 1A), luteinizing
hormone (LH) triggered degranulation of the mast cells stimu-
lates the second phase through the direct and indirect actions of
TNF-alpha (TNFA), a constituent of the granules (Figure 1B).
The second phase has been characterized in sheep and pigs as
an influx of eosinophilic and neutrophilic granulocytes and T-
lymphocytes (6, 7). The last phase of leukocyte migration consists
of phagocytic monocytes (Mo); MΦ’s increase in the sow and
ewe follicles at the time of ovulation (6, 7) (Figure 1C), possibly
in response to peak estradiol concentrations (8). The temporal
changes in the influx of leukocytes appear to occur in response to
various chemoattractant cues produced by the developing follicle
(9), indeed leukocyte chemoattractant activity has been demon-
strated in bovine, ovine, and human follicular fluid of ovulatory
follicles (10–12). Immunohistochemical characterization of the
immune cell repertoire of the bovine ovary has largely focused on
the formation and regression of the CL, which will be discussed
later. In contrast, there are many reports detailing the transcrip-
tomic profile of ovarian follicle development in cattle: (13–19).
In particular, the deep sequencing analysis of bovine follicular
theca and granulosa tissue during pre-ovulatory follicle develop-
ment, revealed a profound effect of ovarian follicle stage on the
expression of many genes within immune-related pathways in
these tissues: during follicle differentiation, bovine thecal tissue
was characterized by the expression of immune factors associ-
ated with vascularization, angiogenesis, and cellular proliferation
(15, 20), processes which are carried out by MΦ’s in the theca
layer during this time (21, 22). The bovine transcriptomic data
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Fair The role of the immune system in bovine reproduction

FIGURE 1 | Schematic diagram of dominant follicle differentiation and
corpus luteum formation: follicle differentiation and luteinization
appear to be characterized by three waves of immune cell infiltration.
(A) Mast cell infiltration of the thecal cell layer (TC) triggered by increasing
estradiol (E2) concentrations, note the intact basement membrane (BM)
separating the follicle granulosa-cell layer (GC) and follicle contents
[cumulus cell layer (CC), surrounding the oocyte (Oo), and the follicular fluid
FF] from the ovarian stroma. (B) A peak in luteinizing hormone (LH)
pulsatility triggers mast cell degranulation which stimulates the second
wave through the direct and indirect actions of TNF-alpha (TNFA), a
constituent of the granules. (C) The last wave is characterized by
macrophage infiltration, possibly in response to E2 and other

chemoattractants such as monocyte chemoattractant protein 1 (MCP1),
acute phase proteins (APP), and GC derived oxidized low density lipoprotein
(oxLDL). Note the expanded cumulus cells surrounding the metaphase II
stage oocyte, there is a switch from E2 synthesis to progesterone
synthesis as the follicular cells become luteinized. (D) Following ovulation,
granulocytes, neutrophils, and eosinophils constitute the majority of
immune cells within the developing corpus luteum (CL), with further
infiltration of macrophages and endothelial cells as development and
vascularization proceed. Macrophage derived tumor necrosis factor (TNF) is
a potent stimulator of luteal prostaglandins (PG), including PGF2a, PGE2,
and PG112, which in concert with TNF drive CL vascularization. Large luteal
cells derived primarily from the granulosa cells produce the >80% of P4.

also concurred with the histological findings described for sheep
and pigs, as factors with known inflammatory/chemotactic prop-
erties such as AKT2, ARHGEF1, GNAI2, IL-1, IL-6, and IL-8b
(23–25) were upregulated and pathways associated with MΦ and
neutrophil function were overpopulated in differentiating thecal
tissue (15).

FOLLICLE LUTEINIZATION AND OVULATION
Findings from studies using rodent models indicate that the ini-
tiation of the ovulatory process occurs primarily in granulosa
cells (26). Following the pre-ovulatory LH surge, morphological,
endocrinological, and biochemical changes occur in the theca and
granulosa cells, which redirect pre-ovulatory follicle development
from differentiation to luteinization and thus the early stages of CL
development (26). In particular, the post-LH deterioration of the
basement membrane (BM) between the theca and granulosa-cell
layers (GCs) (27), facilitates the movement of leukocytes into the
granulosa tissue at luteinization, reflected by the peri-ovulatory
granulosa-cell expression of factors involved in acute inflamma-
tion and immunosurveillance (15,26,28). It has been hypothesized
that the dramatic increase in the expression of these signals in the
follicle compartment activates the ovarian innate immune system
(29) and that the damaged granulosa cells actively secrete alarmins
or passively release them after death (30). Alarmins include acute

phase proteins (APP), S100 proteins, advanced glycation end-
products (AGE), high mobility group box-1 protein (HMGB1),
defensins, and interleukin (IL)-1α, which are all present in follicle
cells and the follicular fluid of pre-ovulatory follicles (26, 31–34)
and can engage toll-like receptors (TLRs). In the case of ovarian
granulosa cells, oxidized low density lipoprotein (oxLDL), which
engages with TLR4 (34), has been proposed as a key alarmin in the
pre-ovulatory cascade (29). This hypothesis is further supported
by the identification of granulosa-cell exclusive expression of TLR
signaling and NF-κB signaling pathways during luteinization in
the bovine transcriptomic data (15). Furthermore, comparing the
gene expression profiles of follicular tissue from heifers to that of
lactating cows, it would appear that the recruitment of leukocytes
to the differentiating follicle is delayed in cows. This is possibly a
result of the demands of parturition/lactation in dairy cows, result-
ing in a reduced positive feedback loop, whereby lower steroid
levels and chemoattractant signals recruit fewer leukocytes into the
follicle, leading to lower steroid and chemoattractant levels (15).

CORPUS LUTEUM FORMATION
The CL is a transient organ established by cells of the follicle fol-
lowing ovulation; it is composed of a heterogeneous mixture of
cell types that consist of not only steroidogenic luteal cells but
also non-steroidogenic cells including vascular endothelial cells,
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Fair The role of the immune system in bovine reproduction

fibroblasts, and immune cells such as lymphocytes and MΦ’s
(35). Studies in human, rat and sheep indicate that the immune
cells of the developing CL are recruited during ovulation (36–
39) (Figure 1D), they were determined to have originated from
the spleen (38), see Ref. (40), for review. Histological data from
cattle indicate that they are primarily granulocytes, neutrophils,
and eosinophils (35, 41, 42). However, as CL development and
vascularization progresses, MΦ’s and endothelial cells infiltrate
(43), providing a source of TNF and TNFR, the presence of which
have been demonstrated in the bovine CL (44). TNF is a potent
stimulator of luteal prostaglandins (PG) including PGF2a, PGE2,
and PG12 (45), TNF and TNF-induced PGE2 have been pro-
posed as key regulators of CL vascularization (46), recent work
in the mare supports this hypothesis (47). Exposure to seminal
plasma has been shown to enhance CL development and ovar-
ian steroidogenesis: gilts treated with seminal plasma had heavier
CLs, higher plasma progesterone (P4) levels, which peaked ear-
lier, without a concurrent increase in ovulation rate, suggesting
that the number and output of steroidogenic luteal cells is greater
in animals exposed to seminal components (48). Immunohisto-
chemical analysis revealed a greater abundance of predominantly
major histocompatibility complex (MHC) class II positive MΦ’s
and/or DCs in the stromal tissues and thecal cells of pre- and peri-
ovulatory follicles, implying greater leukocyte recruitment at the
time of ovulation in seminal plasma treated animals (49).

Immune function is central to CL regression, which must occur
in the absence of pregnancy in order for new follicular develop-
ment to take place (40). The regressing CL is characterized by
an increase in MΦ and Mo populations, which eventually consti-
tute the major proliferating cell type of the late regressing CL (40).
The number of T-lymphocytes appears to increase just prior to the
onset of luteolysis (35, 50), analysis of the bovine CL T-lymphocyte
population revealed that 25% of T-lymphocytes present in a func-
tional CL were T helper cells (CD4+), 45% were cytotoxic T-cells
(CD8+), and 30% were gamma delta (γδ+) T-cells and that this
profile did not alter during luteolysis (51). However, decreased P4
levels and interruption of growth factor signaling in the CL appear
to promote both MΦ and T-cell activation, leading to increased
TNF and INF production, respectively (52–55). TNF and INF are
likely to be key regulators of apoptosis and ovarian tissue remodel-
ing (56), their receptors are expressed in bovine steroidogenic cells
and luteal cells (57). It is probable that Fas expression is induced in
luteal cells by leukocyte-derived cytokines and that Fas L expressed
on T-lymphocytes transduces apoptotic signals to the luteal cells
[see Ref. (46), for review]. This is likely to be a conserved action
as both Fas and Fas L are expressed in theca cells in multiple
species (58).

GAMETE TRANSFER
INFLAMMATORY RESPONSE TO INSEMINATION
The site of semen deposition is very much a species-specific loca-
tion (59). In cattle, and also in humans, sperm enters the cervix
canal rapidly after semen deposition. The stimulation of vagi-
nal insemination ensures the migration of neutrophils in to the
cervical and uterine tissues (60, 61) and has been proposed as
the initial point to optimize pregnancy success (62). The early
immune response to insemination appears to contribute to both

the ovulatory process and sperm cell selection; as reports from
several species, including cattle, suggest that neutrophilic granulo-
cytes target dead or capacitated sperm, thus removing non-motile
or damaged spermatozoa (63–65), rather than motile, fertile sperm
(62). In both humans and mice, it has been clearly demonstrated
that the post-mating inflammatory response is mainly caused by
the seminal plasma, with sperm having a negligible part (66). The
cytokine, transforming growth factor-β (TGFβ), is the principal
inflammatory trigger found in seminal plasma; it is primarily
present within the male seminal plasma fluid in latent form, which
is activated in the female reproductive tract by plasmin and other
enzymes after insemination (62, 67). Although TGFβ itself can be
chemotactic for a variety of immune cell types (68), in the murine
uterus it was reported to act indirectly, by inducing cytokine and
chemokine expression (69).

SPERM TRANSPORT
The delivery of seminal fluid to the female reproductive tract at
coitus represents the first exposure of the female immune sys-
tem to paternal alloantigens (62), raising the possibility that the
female activates an immune response to male antigens in semi-
nal fluid that may ultimately confer immunological tolerance to
paternal antigens (70). This theory is supported by data from mice,
which show that chemoattractants, secreted by eosinophils and
neutrophils, attract both Mos and DC’s and shape the inflamma-
tory status of MΦ’s (71, 72). The response is not restricted to
vaginal exposure; intrauterine horn insemination was shown to
induce recruitment of MHC class II positive cells in gilts (73).
Seminal plasma contains estrogen and testosterone, PG, and vari-
ous signaling molecules, including IL-8, TGFβ, and IFNG, as well
as bacterial lipopolysaccharide (LPS) (62). When murine uterine
and cervical cells come into contact with the constituents of
semen, they are stimulated to synthesize and release granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-6, and fur-
ther chemokines (66, 74), which stimulate MΦ’s, DC, and granulo-
cyte infiltration of the uterine and cervical tissues (75). The induc-
tion of IL-6 is required for TGFβ to induce the generation of IL-17
producing, pro-inflammatory TH-17 cells, which in turn favor
the induction of neutrophil-chemotactic IL-8 (76). In conjunc-
tion with IL-8, TGFβ induces the secretion of pro-inflammatory
cytokines such as IL-1B, IL-6, and leukemia inhibitory factor (LIF)
(77). Although, the expression of TGFβ was shown to increase in
the bovine endometrium during the implantation period (78), the
relatively high pregnancy rates achieved in cattle following artifi-
cial insemination or embryo transfer undermines the importance
of maternal exposure to seminal plasma in cattle. The findings of
studies designed to address this point indicate that neither expo-
sure to seminal plasma nor TGFβ is critical for to the establishment
of pregnancy in cattle (79, 80).

IMMUNE TOLERANCE POST-FERTILIZATION
Exposure to paternal antigens occurs in two waves in the repro-
ductive process: initially during transmission of seminal fluid at
coitus, and secondly when placental trophoblast cells come in
contact with maternal tissues during embryo implantation (81).
In sheep and cattle, morula-stage embryos enter the uterus around
day 4–5 and blastocysts are formed by day 6 and 7, respectively,
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hatching occurs within 48–72 h. The hatched blastocyst subse-
quently elongates reaching 10 cm or more in length by day 14 and
25 cm or more in length by day 17 and the conceptus trophec-
toderm and endometrial luminal epithelium (LE) become closely
apposed, see Ref. (82), for review. Implantation is a superficial,pro-
tracted affair in these species, commencing after attachment and
adhesion of the trophectoderm to caruncular and intercaruncular
areas on day 16 in sheep and day 19 in cattle. Again, in contrast to
the volume of data that has been acquired in human and mouse
studies, the number of investigations carried out in farm animal
species on the involvement of the maternal immune system in the
establishment of pregnancy is very limited, particularly, for early
pregnancy. For several decades, human pregnancy was described
as a Th1/Th2 dichotomy with an imbalance toward a Th2 type
immune response (83, 84). However, this paradigm is considered
a simplistic explanation of the molecular events occurring dur-
ing pregnancy, as it does not account for reported endometrial
expression of Th1-type cytokines during implantation (85, 86).
In ruminants, studies investigating maternal immunomodulation
by pregnancy have focused on the actions of the type 1 interferon,
IFNT,which is secreted by the elongating conceptus and is the main
signaling factor in maternal detection/recognition of pregnancy
(87, 88). Initial studies demonstrated that endometrial luminal
epithelial cell estrogen receptor and oxytocin receptor expression
was down regulated in response to IFNT (89, 90). Critically for
the continuation of pregnancy in cattle, this binding eventually
results in the attenuation of endometrial PGF2a secretion, allow-
ing CL production of P4 to be maintained (90). In addition to
its anti-luteolytic properties, IFNT appears to be the key regu-
lator of the maternal immune response in ruminants (91, 92),
acting on the endometrium to induce or enhance the expression
of genes hypothesized to regulate uterine receptivity to implan-
tation and conceptus development (78, 93–95). The expression
of IFNT is limited to the embryonic trophectoderm during the
peri-implantation period (96). Additionally, there is significant
evidence that the bovine conceptus does not endeavor to conceal
itself immunologically, as MHC-I transcripts have been detected
in early cleavage stage bovine embryos (97) and in first and second
trimester and term trophoblast tissues (98). Furthermore, MHC
class I mRNA expression by bovine embryos is both transcript-
and embryo stage-specific (97) and can be regulated by a number
of cytokines including IFNG, IL-4, and LIF (99, 100).

MATERNAL RECOGNITION AND RESPONSE TO PREGNANCY
MONOCYTES, MACROPHAGES, AND DENDRITIC CELLS
Macrophage recruitment to the pregnant endometrium occurs in
a wide range of mammalian species, including the mouse (101),
human (102, 103), cynomolgus and vervet monkeys (104), sheep
(105), and cattle (78, 106, 107). While their role has not been com-
pletely elucidated, functions include clearing of apoptotic cells,
regulation of apoptosis (108), and regulation of placental lacto-
gen concentrations at the fetal–maternal interface (109). Given
the potential antigenicity of the conceptus due to paternal anti-
gen and classical MHC protein expression (97), MΦ’s may also
feature in curtailing the activation of anti-conceptus immune
responses (106). In cattle, the maternal immune response to the
developing embryo is characterized by the expansion of Mo, MΦ’s

(CD14+-cells), and DC (CD172a–CD11c+) populations in the
endometrial stroma as early as day 13 of pregnancy (78). Interest-
ingly, there was a parallel decrease in CD11b+-cells; CD11b is asso-
ciated with Mo movement through the endothelium, which would
imply that the Mo had acquired a stationary phenotype (78).

Dendritic cells have been shown to play an important role in
decidua formation and the induction of immune tolerance in
human and murine pregnancy (110, 111). Employing individ-
ual and combined CD172a and CD11c labeling of the bovine
endometrium, it was determined that there was a high prevalence
of immature cells within the endometrial DC population during
early pregnancy (78). Immature DC’s have been associated with
the initiation and maintenance of peripheral tolerance (112) and
their presence in large numbers in the uterine decidua has been
associated with the establishment of healthy pregnancies in women
(113). It is most likely that in cattle, IFNT induces this initial mater-
nal response to the presence of the elongating embryo, either by
attracting monocytes into endometrium or by modulating their
differentiation into MΦ’s or DC. Indeed, gene expression analysis
of the same endometrial tissue revealed dramatic up-regulation of
mRNA expression of IFN stimulated genes IL12B, MCP1, MCP2,
PTX3, RSAD2, ISG15, and TNFA (78). Furthermore, MCP1 and
MCP2 are members of the cellular chemoattractant chemokine β

subfamily, which have highly potent MΦ recruitment and activa-
tion properties (114), thus increased MCP1 and MCP2 expression
may be associated with the recruitment of Mo/MΦ from the sys-
temic system into the endometrium. The up-regulation of the evo-
lutionary conserved PTX3 is very interesting; gene deletion studies
in mice have shown that it is essential for female fertility, partic-
ipating in the assembly of the cumulus oophorus extra-cellular
matrix (115). Moreover, PTX3 is involved in innate immunity, pro-
posed roles include selected pathogen recognition, opsonization
leading to enhanced phagocytosis, regulation of the inflammatory
response, complement-mediated clearance of apoptotic cells, and
control of autoimmunity (116–118).

T-LYMPHOCYTES
Despite the evidence from studies in humans and mice linking
successful pregnancy with an imbalance toward a Th2 immune
response type, data from cattle indicate that CD4+, CD8+,
γδTCR+, and FoxP3 T-lymphocyte populations are not regu-
lated temporally during estrus or early pregnancy in cattle (119).
However, mRNA expression analysis on the same tissue revealed
that the Th1 immune factors IFNA, LIF, IL1B, IL8, and IL12A
were down regulated during the luteal phase of the estrus cycle,
whereas the Th2 factors LIF and IL10 were upregulated, sug-
gesting that the phenotypes/inflammatory status of Th cells are
tightly modulated during the estrous cycle in anticipation of preg-
nancy. Additionally, LIF and IL-10 have been shown to regulate
MΦ activation (120, 121). Similarly, endometrial TGFβ2 expres-
sion is down regulated during the ovine and bovine implanta-
tion period and is subsequently increased during placentation
(78, 122), which may reflect TGFβ2 involvement in Mo recruit-
ment and regulation of MΦ inflammatory status (123). Fur-
thermore, the study in cattle showed TGFβ localization to the
fetal–maternal interface of the bovine placentome, which may
indicate TGFβ2 involvement in restricting trophoblast invasion
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during the implantation phase, while enhanced expression during
placentation and in vitro cell culture studies, suggest that TGFβ2
may play a mitogenic role during placentation, promoting carun-
cular growth, and coordinating epithelial cell development leading
to placentome formation (123, 124).

Surprisingly, and in contrast to the situation in human and
mouse models, where NK cells can constitute up to 70% of the
endometrial lymphocyte population during the preimplantation
phase of pregnancy (112), when uterine NK (uNK) cells are
believed to play a pivotal role in local vascular remodeling and
regulation of trophoblast invasion [for review see Ref.(125, 126)];
NK cells do not appear to play such a critical role during early
pregnancy in cattle. Indeed, the only published data suggests the
bovine endometrium population of CD335+ NK cell population is
not expanded as an immediate response to maternal recognition of
pregnancy (119). The findings of an in vitro study which demon-
strated anti-proliferative effects of recombinant IFNT exposure
on immune and uterine cells, particularly leukocytes, infers that
the IFNT secretion by the embryo may actively restrict NK cell
expansion in early pregnancy (127), which is in keeping with the
non-invasive nature of implantation in cattle [see review by Bazer
et al. (128)]. However, further studies are required to determine if
the NK cell population expands when IFNT secretion wanes and
to what degree, if any, they are involved in placentation.

CONCLUDING REMARKS
Intensive cattle production systems have been associated with
postpartum immunosuppression and subsequent reduced fertil-
ity; it is vital that basic research in the area of bovine reproductive
immunology is expanded to generate new knowledge by which
these issues can be overcome. However, although the number of
studies investigating the contribution of the maternal immune
system to reproductive function in cattle is a fraction of that
carried out in human and mouse species, it is possible to con-
clude that maternal macrophage and dendritic cells play pivotal
roles in key steps of the establishment of pregnancy, particularly,
development of the CL and maternal immune response to the
embryo.
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Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses
attributable to reduced milk production, discarded milk, early culling, veterinary services,
and labor costs. Typically, mastitis is an inflammation of the mammary gland most often,
but not limited to, bacterial infection, and is characterized by the movement of leukocytes
and serum proteins from the blood to the site of infection. It contributes to compromised
milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not
astutely applied. Despite the implementation of management practises and genetic selec-
tion approaches, bovine mastitis control continues to be inadequate. However, some novel
genetic strategies have recently been demonstrated to reduce mastitis incidence by taking
advantage of a cow’s natural ability to make appropriate immune responses against invading
pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have
a lower occurrence of disease, including mastitis, and they can be identified and selected
for using the high immune response (HIR) technology. Enhanced immune responsiveness
is also associated with improved response to vaccination, increased milk, and colostrum
quality. Since immunity is an important fitness trait, beneficial associations with longevity
and reproduction are also often noted. This review highlights the genetic regulation of the
bovine immune system and its vital contributions to disease resistance. Genetic selec-
tion approaches currently used in the dairy industry to reduce the incidence of disease
are reviewed, including the HIR technology, genomics to improve disease resistance or
immune response, as well as the Immunity+™ sire line. Improving the overall immune
responsiveness of cattle is expected to provide superior disease resistance, increasing
animal welfare and food quality while maintaining favorable production levels to feed a
growing population.

Keywords: disease resistance, genetic selection, genomics, immune response, mastitis

INTRODUCTION
Mastitis, generally defined as the inflammation of the mammary
gland, is a costly and complex disease associated with variable
origin, severity, and outcome depending on the environment,
pathogen, and host (1, 2). Mastitis is caused when pathogenic
bacteria enter the sterile environment of the mammary gland,
often as a result of disruption of physical barriers such as the
teat, requiring prompt and appropriate host defenses to prevent
colonization and subsequent disease pathology (3, 4). Mastitis-
causing pathogens are commonly categorized as environmental or
contagious, although this distinction has recently been disputed
(5). Nonetheless, in general environmental pathogens have been
grouped to include coliforms like Klebsiella or Escherichia coli (E.
coli) and streptococci and are a major cause of clinical mastitis.
On the other hand, those categorized as contagious pathogens can
readily be spread from the infected quarters to other quarters of
the same cow, or other cows and include Staphylococcus aureus
(S. aureus) and Streptococcus agalactiae (6–8). Cow factors includ-
ing age, stage of lactation, and somatic cell score (SCC) history

are known to influence the occurrence of mastitis infection (9,
10). The diverse pathogens that can cause mastitis induce differ-
ent immune responses in the mammary gland, and therefore, the
host requires highly specific pathogen-dependent responses for
protection (11, 12).

Mastitis infections are described as either subclinical or clini-
cal. Subclinical mastitis is the presence of infection without local
inflammation resulting in an absence of visual signs (1). It may
involve transient cases of inflammation and abnormal milk, and if
this persists for longer than 2 months is termed chronic. Clin-
ical mastitis, on the other hand, is an inflammatory response
causing visibly abnormal milk. In the case of mild or moderate
clinical mastitis, changes in the udder may include swelling, heat,
pain, and redness. It is termed severe if the response includes sys-
temic involvement such as fever, anorexia, and shock (13, 14).
The diversity as well as the variation in prevalence and abun-
dance of mastitis-causing organisms as well as the variation in
host responses make mastitis a complex disease that continues to
be a burden for the dairy industry.
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The bovine mammary gland is equipped with a non-immune
anatomical barrier, and a plethora of immune-mediated defense
mechanisms that include innate and adaptive immune responses.
Innate immunity is relatively non-specific with rapid kinetics
while the adaptive immunity offers a highly specific response with
relatively delayed kinetics (15). Innate host-defenses depend on
germline-encoded receptors that recognize conserved structures
expressed by a wide range of microbes, and early induced cellu-
lar and soluble defenses. These natural defenses respond quickly
to microbes during early stages of infection and are tightly inte-
grated with the adaptive immune system. The innate host defenses
of the mammary gland have been reviewed extensively elsewhere
(16–18). The adaptive immune system uses a diverse repertoire
of antigen specific receptors expressed by clonally expanded B
and T-lymphocytes to regulate or eliminate the signal elicited by
recognition events. Additionally, the induced adaptive immune
response has the capacity to establish antigen specific memory for
a rapid and augmented response upon subsequent exposure to the
same antigen (19). For example, these various components of the
immune system work in collaboration both locally and systemi-
cally in an attempt to control specific mastitis pathogens invading
the mammary gland, but the details of the response is contingent
upon the stage of infection and nature of the pathogen, as well as
its interaction with the genetics of the host.

The interaction between mastitis pathogens and the host
immune system is intricate, since both have the ability to co-evolve
to recognize, respond, and adapt to the other. As such, microbial
pathogens have developed various strategies to alter and evade host
defenses in order to survive. Importantly, the host immune sys-
tem is also adaptive and has a large arsenal to control or eliminate
microbial threat. Even so, it is widely accepted that susceptibility
of individuals within a given species differs to the same microbial
pathogen. This variability in host–pathogen interaction is con-
trolled by the inherent genetic make-up of the host, including
innate and adaptive immune responses, particularly the acquired
immunological memory, as well as the nature of the microbial
pathogen (20).

Mastitis causing-bacterial pathogens are often well adapted to
the bovine host resulting in clinical signs and, occasionally, sub-
clinical infection before they lead to chronicity and persistence
in the mammary gland. Persistent intramammary infections are
frequently associated with recurrent clinical episodes and long-
term increases in milk somatic cells counts. Persistent strains
often express sets of genes that relate to their adaptation to the
intramammary milieu and allow for intracellular survival and
subsequent modulation of host-defense mechanisms (6, 21). S.
aureus and E. coli are well-studied mastitis pathogens in the con-
text of host–pathogen interaction and the elucidation of their
genes, along with host immune response genes, is launching new
studies in functional genomics (20). Understanding sequence data
and locating functional SNPs in both the host and pathogen is
expected to reveal relationships between immune function and
the relevant genes that have the potential to advance resistance to
specific pathogens.

Treatment of mastitis is given on the premise that treatment
costs will be outweighed by production gains resulting from

elimination of infection. Most farms have established mastitis
management programs and include strategies such as routine
whole herd antibiotic therapy, culling of chronically affected cows,
post milking teat disinfection, as well as ensuring routine mainte-
nance of milking machines (7, 14). Due to high treatment costs,
lost income due to discarded milk, public health, and animal wel-
fare concerns, it would be advantageous for dairy cattle to resist
or mount effective immune responses to clear the wide variety
of mastitis-causing pathogens. In the case of mastitis, the abil-
ity to control or tolerate the infection without actually clearing
the pathogen, a phenomena known as resilience or tolerance
(22), is not sufficient given that dairy products are consumed
by human beings and are expected to be free of all potentially
harmful pathogens. Antimicrobial treatment has the potential to
increase the risk of antibiotic resistant strains of bacteria emerging
in the environment (23), although it has been suggested that scien-
tific evidence does not support emerging resistance in pathogens
isolated from dairy cows (24). Nonetheless, other non-antibiotic
treatment strategies are clearly warranted. Additionally, decreas-
ing the incidence of mastitis would contribute to increased animal
welfare as severe signs are associated with pain and discomfort for
the cow (25).

Mastitis is a problem that plagues dairy cattle worldwide; how-
ever, this review will focus on the mastitis situation in the most
economically developed countries. We highlight the genetic reg-
ulation of the bovine immune system and its vital contributions
to disease resistance, in particular mastitis. Current genetic selec-
tion approaches used in the dairy industry to reduce the inci-
dence of disease are reviewed, including the HIR technology; the
Immunity+™ sire line, as well as genomics to improve disease
resistance or immune response. While the complex interactions
of the host and pathogen are fully acknowledged, they are only
briefly discussed here.

GENETIC REGULATION OF THE IMMUNE SYSTEM
Robust, appropriate and timely host defense mechanisms are crit-
ical for prompt bacterial clearance and prevention of mastitis and
mammary epithelial damage (14). Bacteria have a large repertoire
of virulence factors that are produced at varying concentrations
depending on the stage of infection (26), and these virulence fac-
tors in part determine differences in the magnitude and duration
of host immune responses. Further, given the diversity of mastitis-
causing pathogens, it is essential for the host to have a broad range
of host-defense mechanisms as part of its immunological arsenal.
Both innate and adaptive host defenses are required to protect the
host from infection. Innate defenses against mastitis pathogens are
rapid and include neutrophil recruitment to the mammary gland
to facilitate bacterial clearance through phagocytosis, production
of reactive oxygen species, antibacterial peptides, such as lacto-
ferrin and β-lactoglobulin, and defensins, resulting in increases
in the somatic cell count (18, 27). Mammary epithelial cells are
known to play a role in early responses through the production of
cytokines like IL-8 and other factors with antimicrobial activities
(28, 29). If the bacteria survive these innate host defenses, adap-
tive immune responses mediated by T and B cells are required
to clear the infection (30). The ideal immune response being one
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that appropriately recognizes epitopes on the invading pathogen
to initiate swift and accurate clearance mechanisms while main-
taining minimal pathological consequences. In some situations,
such as experiments using in vitro or in vivo lipopolysaccaride
challenge to measure bovine inflammatory responses, particularly
IL-8, have noted that cows with lower IL-8 responses had quicker
recovery in terms of somatic cell counts and milk production
than those with high IL-8 production (31). This may relate to
a more moderate inflammatory response generated in these low
IL-8 responders. However, it is important to note that this does
not mean that cows classified as low responders for other immune
response mechanisms, particularly adaptive immune responses are
advantageous. In fact, dairy cows classified as high responders
(robust and balanced responses) for adaptive immune response
traits have been demonstrated to have reduced disease incidence
(32). The other thing worth noting in these experiments was
the observation that the differences between high and low IL-
8 responses seemed to be controlled by epigenetic effects (33).
Epigenetic influences on bovine type 1 (Interferon-γ) and type
2 (IL-4) cytokine production have also been reported in cows
classified as high or low responders based on their antibody and
cell-mediated immune responses (34). Researchers are only begin-
ning to dissect both the genetic and epigenetic mechanisms that
control immunity.

Initiation and regulation of adaptive immune responses are
critical to the resolution of infection. Cells of the innate immune
system recognize conserved pathogen associated molecular pat-
terns from the bacteria by binding pattern recognition receptors on
antigen-presenting cells (APC) such as macrophages and dendritic
cells (35). Such pattern recognition receptors include toll-like
receptors (TLR) that are located on cell and endosomal mem-
branes (27, 36). The association of a TLR with a pathogen asso-
ciated molecular pattern initiates a downstream signaling cascade
leading to the activation of transcription factors, such as NF-κβ,
which enter the nucleus, bind target promoters, and may induce
the production of cytokines and other endogenous mediators. The
10 mammalian TLRs are known to elicit unique responses through
intracellular signaling pathways, which initiate inflammatory and
antimicrobial processes to eliminate the pathogen (36, 37). For
example, the recognition of lipopolysaccharide (LPS) from E. coli
by TLR4, facilitated by additional proteins including CD14, LPS
binding protein, and myeloid differentiation protein, is associated
with production of TNF-α, IL-1β, IL-6, and IL-8. The lipoteichoic
acid of Gram positive bacteria like S. aureus recognized by TLR2
is associated with only transient increases in TNF-α and IL-1β

as well as IgG2 (27). It is well recognized that E. coli induces
a stronger increase in the pro-inflammatory cytokines TNF-α
and IL-1β compared to S. aureus (12, 27, 38), contributing to
the severe clinical signs typically associated with E. coli mastitis
as compared to S. aureus where the majority of cases go unno-
ticed. This draws attention to the fact that although the innate
immune responses provide a first line of defense against invad-
ing microbial pathogens, including those that cause mastitis, and
contours ensuing adaptive immune responses; innate responses
have the potential to generate harmful pathology by driving inap-
propriate or soaring inflammatory cascades (31). These need to

be carefully considered and closely monitored when considering
immunological interventions.

The major histocompatability complex (MHC) plays an essen-
tial role in the induction and regulation of immune responses (39).
The bovine MHC, bovine lymphocyte antigen (BoLA), has been
associated with resistance or susceptibility to mastitis (40–43),
somatic cell count (42, 44, 45), and immune response (40, 41, 46).
Genetic variation, such as single nucleotide polymorphisms (SNP)
in other candidate genes associated with resistance or suscepti-
bility to mastitis have been identified, including TLR4 (47, 48),
TLR2, and caspase-recruitment domain 15 (49); IL-10 (50), osteo-
pontin (51), IL-8 and its receptor CXCR1 (52–54), CCL2 and its
receptor (55), as well as a variety of other genes (56). Other mole-
cules important in host defense against mastitis-causing pathogens
such as β-defensins have been identified and their complex genetic
regulation is beginning to be understood (57). The feasibility of
breeding for resistance based on one SNP or a combination of SNP
depends on the degree of variation each SNP explains in resistance
to mastitis. Since mastitis is a complex genetic trait a combination
of many genes will ultimately be responsible for resistance to mas-
titis; however, certain major genes may contribute more benefit
than others and it is important that these genes be elucidated.

Recent studies are beginning to uncover information about
the epigenetic influences on bovine immune response genes (58).
Some studies are now indicating that epigenetic changes are
involved in the regulation of type I and II immune responses of
mammals (59, 60), including cytokine profiles of dairy cows dur-
ing the peripartum period when the risk of mastitis is the greatest
(34). Epigenetic modifications have also been demonstrated to
play a role in bovine innate immune responses to LPS stimulation
(33, 61). Further, microRNA have been found to be differen-
tially expressed upon challenge with mastitis-causing pathogens,
suggesting a role for microRNA in regulating host responses to
mastitis (62, 63). Indeed, many studies have demonstrated the
bovine immune response to be under genetic and epigenetic con-
trol, and making use of this information in breeding strategies is
anticipated to help improve udder health.

The important question is how to use this information regard-
ing genetic associations with mastitis and the immune system
to actually improve disease resistance. This is not necessarily a
straight forward question given the plethora of genes, including
their additive, dominant, epistatic, and epigenetic interactions. It
is sometimes possible to make genetic gains in livestock health to a
particular disease by selecting for or against a specific gene. Some
examples of this include selection against Mareks Disease of poul-
try based on MHC haplotypes (64), bovine dermatopholosis using
information on BoLA (65), brachyspina in cattle (66) among oth-
ers (67). It is generally straightforward to make genetic gains for
diseases caused by single recessive disorders, whereas information
on single genes or clusters of genes may be less informative when
trying to enhance resistance to complex traits, such as mastitis
resistance, which is caused by a diverse set of pathogens controlled
by a large variety of genes and gene interactions (68).

It is also worth noting that the immune system, which is the
body’s main host defense system, is regulated by thousands of
genes (69). This points to the critical importance and complex
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nature of disease resistance as an overall fitness trait (70, 71). In
fact, recent information from a human systems biology data base
on immunity known as the immunogenetic-related information
source – IRIS provides evidence for 1,535 immune response genes
as of April 20131. This list of genes was curated by IRIS with
the following strict definition of a bona fide immune response
gene, “a complete gene that produces a functional transcript and
demonstrates at least one of the following defense characteristics:
(i) known or putative function in innate or adaptive immunity,
(ii) participates in the development or maturation of immune
system components, (iii) induced by immunomodulators, (iv)
encodes a protein expressed primarily in immune tissues, (v) par-
ticipates in an immune pathway that results in the expression of
defense molecules, (vi) produces a protein that interacts directly
with pathogens or their products”2. When a broader definition
of immune response genes are given that seeks to retrieve all
genes that have some immune system or related functions, such
as that provided by the Immunology Database and Analysis Portal
(ImmPort), the list of genes is in the range of 60003. Although
these databases are based on human genes the newest version
of the innate immunity database, InnateDB, does incorporate a
list of bovine genes, including pathway and molecular interac-
tions4. As pointed out by Karin Breuer and colleagues, as the
experimental data from cattle research validates genetic interac-
tions and immunological pathways this will allow for a deepened
understanding of important bovine diseases, such as mastitis and
tuberculosis (69). At the moment, these immunological databases
rely largely on orthological-based approach to predict pathways.
As of September 2012, the InnateDB contained more than 70,000
bovine interactions based on orthology and pathway analysis could
assign to more than 7000 bovine genes (69). However, since the
bovine immune system does contain some unique genetic features,
such as a novel bovine type 1 interferon family known as IFNX,
it will not always suffice to rely on orthogues from other species.
Nonetheless, it is interesting to speculate about similar genetic
pathways. For example, work in human beings has shown that fol-
lowing exposure to bacterial endotoxin a set of 3,714 unique genes
were differentially expressed. These changes in genes of interest
were confirmed in follow-up microarray experiments (72). Sim-
ilar transcriptional changes might be predicted in cattle exposed
to endotoxin from E. coli following intramammary exposure (73),
as the complex plethora of genes involved in response to mastitis,
such as that caused by E. coli is well known (74–76). The goal of
this type of systems biology research is to provide a portrait of
the entire “interactome between the innate and adaptive immune
system, as well as its interconnection with other body systems in
the hopes to enhance disease prevention and treatment strategies.

GENETIC SELECTION FOR DISEASE RESISTANCE
Current genetic selection approaches to improve mastitis resis-
tance include both direct and indirect methods. With the exception
of Nordic countries that have been selecting for disease resistance

1http://www.innatedb.com/curatedGenes
2http://www.innatedb.com/redirect.do?go=resourcesGeneLists
3http://www.immport.org
4http://www.innatedb.com

for over 35 years (77), most countries breed for mastitis resis-
tance indirectly through SCC (78). More recently, France (79) and
Canada (80) have launched routine national genetic and genomic
evaluations for clinical mastitis. Problems associated with breed-
ing directly for mastitis resistance include low heritability, the need
for accurate health recording, and perhaps most importantly, the
potential to skew the immune system causing individuals to be
susceptible to other harmful pathogens. This skewing is thought
to occur since antibody and cell-mediated immune responses are
independent or slightly negatively correlated traits (81–84). This
means that improvement for one of these traits does not translate
into improvement of the other adaptive immune response trait.
This concept will be discussed in more detail.

The heritability of mastitis resistance is low, with estimates
ranging from about 0.02–0.10 (85, 86). SCS is genetically cor-
related (0.7) with mastitis and has a higher heritability of about
0.17, which is why it is used as an alternative trait to breed for
resistance to mastitis (87–89). Divergent selection experiments
based on SCS in sheep and cattle have been performed with the
goal of creating lines of animals with an ability to resist intra-
mammary infection (90, 91). Although these studies have shown
a decrease in mastitis in the low SCS line, caution must be used
in this approach to improve udder health. SCS tends to monitor
subclinical cases (92) and although decreasing bulk tank counts
has been associated with a decline in subclinical mastitis; clin-
ical mastitis continues to be a problem (93). Further, since the
cells that constitute the SCS are cells of the immune system, too
low a SCS has been associated with an increased risk of clinical
mastitis (94). In Canada, the approach will be to equally weight
clinical mastitis and SCS in the LPI starting in August 2014. Other
immune response traits known to associate with resistance to
various diseases, including mastitis, may be added subsequently,
although sires with improved immune responses are already avail-
able through the Canadian breeding company, the Semex Alliance
since December 2012 (32).

In order to select directly for mastitis resistance,accurate disease
records are essential. Many countries record disease on a volun-
tary basis, as is the current situation in the United States (86,
95) and Canada (85, 96). The use of voluntary producer records
has brought into question the reliability of the estimates for dis-
ease resistance. By applying minimum lactation incidence rates to
producer-recorded data to include only herds with regular record-
ing, it has been found that although the heritability of disease
resistance tends to be low (0.01–0.20) significant genetic variation
exists to select for disease resistance (85, 95–97). Some research
has demonstrated the use of genomics to improve the reliability
of genetic estimates for disease resistance traits (86).

Selection against clinical mastitis has the potential to leave cattle
susceptible to infection with other mastitis pathogens, since bacte-
ria require unique immune responses for host protection (2), and
mastitis pathogens have been demonstrated to change over time
and geographically (7). Further, mastitis-causing pathogens tend
to be extracellular in nature, requiring robust antibody responses
(98). Since antibody- and cell-mediated immune responses tend to
be negatively genetically correlated (83, 84) selection for mastitis
resistance may potentially leave individuals with diminished capa-
bility to respond to intracellular pathogens generally controlled
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by the cell-mediated immune response. Cell-mediated responses
have been demonstrated to be critical in controlling Mycobac-
terium avium spp tuberculosis, the causative pathogen associated
with Johne’s disease in cattle (99). Maintaining balanced immune
responsiveness is an essential consideration in any breeding pro-
gram to improve animal health. The other contributing factor
is that different BoLA alleles have been shown to associate with
antibody versus cell-mediated immune responses, as well as mas-
titis resistance (41). However, these are not the same alleles that
associate with resistance to other viral or parasitic pathogens (100,
101). Therefore, caution must be exercised when selecting for resis-
tance to one specific disease, particularly when it can be caused
by multiple pathogens, as is the case with mastitis. Nonetheless,
mastitis is such a costly disease that it is likely to be included in
selection indices in conjunction with other health traits, such as
SCS, until alternative approaches based on optimizing host defense
mechanisms are more widely available. For example, in Canada
an index for mastitis resistance was developed that includes both
clinical mastitis and SCS traits and will be added to the Lifetime
Profitability Index (LPI) in August 2014 (102, 103).

A combination of approaches is likely necessary to decrease
mastitis occurrence, such as breeding for broad-based disease resis-
tance based on immune response traits. Breeding for enhanced
immune responsiveness is a solution to provide cows with an
overall superior ability to respond to a variety of pathogen types
requiring unique responses to provide broad-based disease resis-
tance. Individuals with greater and optimally balanced antibody
and cell-mediated immune responses breeding values are referred
to as high immune responders (HIR) (Figure 1) and the method
for identifying such individuals is referred to as the HIR technology
(32, 104).

The HIR technology has been used to identify the ability of
cows, calves, and bulls to mount antibody and cell-mediated
adaptive immune responses (106, 107). These adaptive immune
response traits are heritable, on average 0.25–0.35 (83, 84), con-
siderably higher than estimates for specific clinical or subclinical
disease resistance (Table 1). The heritability of immune response
is similar to what has been found for milk production traits,
indicating it would be possible to make significant genetic gain
depending on how heavily health is weighted within the selec-
tion index. Cows with superior adaptive immune responses have
been demonstrated to have substantially lower occurrence of dis-
eases, including mastitis, metritis, displaced abomasums, retained
fetal membranes (108) and are less likely to be seropositive for
Mycobacterium avium spp paratuberculosis (109). It would, there-
fore, be feasible and desirable to breed dairy cows for enhanced
immune responses to decrease the occurrence of diseases like mas-
titis (100, 110). Previously, this approach was shown to improve
disease resistance of pigs (105). It should also be noted that pro-
ducing robust adaptive immune responses requires appropriate
priming via particular innate host defense pathways, such as TLR
signaling (37). Priming the immune system with LPS in the udder
has been shown to reduce bacterial load in experimentally induced
mastitis via the TLR signaling (111, 112).

High immune responding cows have also been found to have
an increased response to commercial E. coli J5 mastitis vaccina-
tion (117), as well as improved colostrum quality as measured by

FIGURE 1 | Overview of immune response adapted from Ref. (105). The
host immune response phenotype is ultimately determined by the
interaction of the immune response genotype with the environment. The
expression of the immune response genotype is also regulated by
epigenetic effects. The innate immune response is relatively fast acting and
non-specific, but is critical to signal appropriate adaptive cell-mediated and
antibody-mediated immune responses. Dairy cattle with enhanced and
balanced cell and antibody-mediated immune responses are known as high
immune responders.

Table 1 | Heritability estimates of immune response, mastitis

resistance, and milk production and in Holstein dairy cattle.

Trait Heritability Reference

Antibody-mediated

immune response

0.16–0.42 Heriazon et al. (84),

Thompson-Crispi et al. (83)

Cell-mediated

immune response

0.19–0.43 Heriazon et al. (84),

Thompson-Crispi et al. (83)

Generalized immunity 0.21 Abdel-Azim et al. (113)

Mastitis 0.02–0.10 Bloemhof et al. (87), Koeck et al.

(85, 114), Parker Gaddis et al.

(86), Pritchard et al. (115)

Somatic cell score 0.11–0.17 Bloemhof et al. (87), Jamrozik

and Schaeffer (88), Koeck et al.

(85, 114), Pritchard et al. (115)

Milk yield (305 days) 0.14–0.30 McCarthy and Veerkamp (116),

Pritchard et al. (115)

specific antibody (117), total immunoglobulin, lactoferrin, and β-
lactoglobulin (118). Differences in leukocyte populations between
high and low immune responders have also been described, such
that cows with superior antibody responses have a higher propor-
tion of B cells in peripheral blood in response to immunization,
whereas cows with high cell-mediated responses have a higher
baseline proportion of gamma delta (γδ) T cells (119). These dif-
ferences in the diverse phenotypes identified using the HIR tech-
nology suggest potential mechanisms that contribute to decreased
disease occurrence among high immune responding individuals.
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Multiple studies over many years have found beneficial asso-
ciations between antibody responses and a lower occurrence
of mastitis. A study that evaluated antibody-mediated immune
responses to a specified test antigen found cows with superior
antibody responses had lower occurrence of mastitis in two out
of three herds tested (117). Subsequently, cows with greater anti-
body responses in a commercial herd in Florida were found to be
1.6–2.5 times less likely to get clinical mastitis compared to other
cows in the herd (108, 120). Most recently, a nation-wide study
in Canada evaluating the incidence rate of clinical mastitis over a
2-year study period found cows with superior antibody responses
to have an incidence rate of 17.1 cases of clinical mastitis/100 cow
years compared to average and low responding cows with 27.9
and 30.7 cases, respectively. The low responding cows were also
found to have more severe mastitis compared to cows with better
immune responses (98). Antibody-mediated immune responses
have also been beneficially genetically correlated with some repro-
ductive traits as well as longevity, suggesting that cows with better
immune responsiveness and therefore, less disease remain in the
herd longer (83).

Conversely, cows with greater cell-mediated immune responses
have been found to be less likely to be seropositive for Mycobacteria
avium paratuberculosis (109). Cell-mediated immune responses
are also critical to provide protection against S. aureus small colony
variants that can cause mastitis and have the ability to survive
within host cells (6, 21). Antibody and cell-mediated immune
responses have been found to be negatively genetically correlated
(83, 84). Consequently, in order to ensure protection to a broad
range of pathogens it is essential to identify and select individ-
uals with the capacity to generate both effective antibody and
cell-mediated immune responses (32).

The Semex Alliance utilizes the HIR Technology to identify
dairy sires with superior immune responsiveness, termed Immu-
nity+™. Daughters of Immunity+™ sires have been found to have
lower disease occurrence and higher profitability compared to
daughters of sires with either an unknown or an average or low
immune response type. Specifically, daughters of Immunity+™
sires in a large herd in the US had a 44% reduction in mastitis,
25% less calf pneumonia, and an 8.5% reduction in all diseases
in first lactation heifers (32). These results highlight the benefit
and potential to improve disease resistance, in particular mastitis
resistance, by improving overall immune responsiveness.

Genomic selection has allowed for the opportunity to include
new phenotypes in breeding objectives, particularly those that
may be relatively expensive to measure (121). Genomic selection
refers to breeding decisions based on genomic estimated breed-
ing values (GEBV), which are calculated using the joint effects
of SNP markers across the entire genome (122–124). Using a
large reference population with accurate phenotype information,
the SNP or haplotype effects for a given trait are estimated. In
subsequent generations, only information on the SNP or haplo-
types are required to calculate the GEBV (123). Genomic selec-
tion has provided many substantial benefits to the dairy indus-
try. Perhaps the most highlighted benefit is in the significant
increase in the rate of genetic gain by decreasing generation
interval, increasing, and selection intensity the accuracy of esti-
mates (122).

The sequencing of the bovine genome and release of SNP arrays
used for genomic selection has led to increases in the genome-wide
association studies (GWAS). Many GWAS have been performed,
which has lead to the identification of quantitative trait loci or
SNP profiles associated with resistance or susceptibility to mas-
titis (125), or SCC as an indicator of mastitis (126–128). Using
the approach, many genes involved in immune response have
been found, including cytokines IL-4 and IL-13 as well as IL-
17 (129). Recently, a series of GWAS have been performed for
general immune responsiveness in dairy cattle and results have
been validated in dairy sires (46). Results of this work have identi-
fied many genes associated with immune responses including the
bovine MHC, the complement systems as well as cytokines includ-
ing IL-17 and TNF in the genetic regulation of bovine immune
system. Results of these GWAS on mastitis resistance and immune
response suggest that it is possible to calculate GEBV for mastitis
or immune response traits increasing the accuracy of estimates
for genetic selection. The next critical steps are to create large ref-
erence populations with genotypes and accurate phenotypes for
disease and immune response traits in order to improve dairy
cattle health.

CONCLUSION
The ideal solutions to improve resistance to mastitis are likely
to be those that focus on a large number of genes, by using
information from GWAS, or selection based on breeding values
of immune responses, which take into account complex genetic
interactions between the innate and adaptive host defense mecha-
nisms without the necessity of knowing all about each individual
gene. Using selection indices also offers the advantage of being
able to easily adjust the weights given to the various traits within
the index as the selection proceeds. These two approaches may
be best suited to help alleviate mastitis, at least until we gain more
knowledge about genetic and epigenetic regulation of host defense
mechanisms.
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