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ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Işil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Ábrahám
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).



The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
brücken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara König
(Duisburg), Gerald Lüttgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan-Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Křetínský (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Roșu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schröder
(Erlangen), Ilya Sergey (Singapore), Mariëlle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

February 2021 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword



Preface

This volume contains the papers accepted for the 24th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS). The
conference series is dedicated to foundational research with a clear significance for
software science. It brings together research on theories and methods to support the
analysis, integration, synthesis, transformation, and verification of programs and
software systems.

This volume contains 28 contributed papers selected from 88 paper submissions.
Each submission was reviewed by at least three Program Committee members, with the
help of external reviewers, and the final decisions took into account the feedback from
a rebuttal phase. The conference submissions were managed using the EasyChair
conference system, which was also used to assist with the compilation of these
proceedings.

We wish to thank all the authors who submitted papers to FoSSaCS 2021, the
Program Committee members, the Steering Committee members, the external
reviewers, and the ETAPS 2021 organizers. Due to the Covid-19 pandemic, ETAPS
2021 was held online.

July 2021 Stefan Kiefer
Christine Tasson
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Constructing a universe for the setoid model

Thorsten Altenkirch1 ∗ �, Simon Boulier2†, Ambrus Kaposi3 ‡, Christian
Sattler4§, and Filippo Sestini1

1 School of Computer Science, University of Nottingham, Nottingham, UK
{psztxa,psxfs5}@nottingham.ac.uk

2 Inria, Nantes, France simon.boulier@inria.fr
3 Eötvös Loránd University, Budapest, Hungary akaposi@inf.elte.hu

4 Chalmers University of Technology, Gothenburg, Sweden sattler@chalmers.se

Abstract. The setoid model is a model of intensional type theory that
validates certain extensionality principles, like function extensionality
and propositional extensionality, the latter being a limited form of uni-
valence that equates logically equivalent propositions. The appeal of this
model construction is that it can be constructed in a small, intensional,
type theoretic metatheory, therefore giving a method to boostrap ex-
tensionality. The setoid model has been recently adapted into a formal
system, namely Setoid Type Theory (SeTT). SeTT is an extension of
intensional Martin-Löf type theory with constructs that give full access
to the extensionality principles that hold in the setoid model.

Although already a rich theory as currently defined, SeTT currently lacks
a way to internalize the notion of type beyond propositions, hence we
want to extend SeTT with a universe of setoids. To this aim, we present
the construction of a (non-univalent) universe of setoids within the setoid
model, first as an inductive-recursive definition, which is then translated
to an inductive-inductive definition and finally to an inductive family.
These translations from more powerful definition schemas to simpler ones
ensure that our construction can still be defined in a relatively small
metatheory which includes a proof-irrelevant identity type with a strong
transport rule.

Keywords: type theory · function extensionality · univalence · setoid
model · induction-recursion · induction-induction
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2 T. Altenkirch et al.

1 Introduction

Intuitionistic type theory is a formal system designed by Per Martin-Löf to be
a full-fledged foundation in which to develop constructive mathematics [23,24].
A central aspect of type theory is the coexistence of two notions of equality. On
the one hand definitional equality, the computational equality that is built into
the formalism. On the other hand “propositional” equality, the internal notion
of equality that is actually used to state and prove equational theorems within
the system. The precise balance between these two notions is at the center of
type theory research; however, it is generally understood that to properly sup-
port formalization of mathematics, one should aim for a notion of propositional
equality that is as extensional as possible.

Two extensionality principles seem particularly desirable, since they arguably
constitute the bare minimum for type theory to be comparable to set theory as a
foundational system for set-level mathematics, in terms of power and ergonomics.
One is function extensionality (or funext), according to which functions are equal
if point-wise equal. Another is propositional extensionality (or propext), that
equates all propositions that are logically equivalent.

Type theory with equality reflection, also known as extensional type theory
(ETT) does support extensional reasoning to some degree, but unfortunately
equality reflection makes the problem of type-checking ETT terms computa-
tionally unfeasible: it is undecidable.

On the other hand, intensional type theory (ITT) has nice computational
properties like decidable type checking that can make it more suitable for com-
puter implementation, but as usually defined (for example, in [23]) it severely
lacks extensionality. It is known from model constructions that extensional prin-
ciples like funext are consistent with ITT. Moreover, ITT extended with the
principle of uniqueness of identity proofs (UIP) and funext is known to be as
powerful as ETT [19]. We could recover the expressive power of ETT by adding
these principles to ITT as axioms, however destroying some computational prop-
erties like canonicity.

What we would like instead is a formulation of ITT that supports exten-
sionality, while retaining its convenient computational behaviour. Unfortunately,
canonicity for Martin-Löf’s inductively defined identity type says that if two
terms are propositionally equal in the empty context, then they are also defi-
nitionally equal. This rules out function extensionality. The first step towards
a solution is to give up the idea of propositional equality as a single inductive
definition given generically for arbitrary types. Instead, equality should be spe-
cific to each type former in the type theory, or in other words, every type former
should be introduced alongside an explanation of what counts as equality for its
elements.

This idea of pairing types together with their own equality relation goes
back to the notion of setoid or Bishop set. Setoids provide a quite natural and
useful semantic domain in which to interpret type theory. The first setoid model
was constructed to justify function extensionality without relying on funext in
the metatheory [18]. Moreover, it was shown by Altenkirch [4] that if the model
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construction is carried out in a type theoretic metatheory with a universe of strict
(definitionally proof-irrelevant) propositions, it is possible to define a univalent
universe of propositions satisfying propositional extensionality. The setoid model
thus satisfies all the extensionality principles that we would like to have in a set-
level type theory 5 . The question is whether there exists a version of intensional
type theory that supports setoid reasoning, and hence the forms of extensionality
enabled by it.

This question was revisited and answered in Altenkirch et al. [5]. In this
paper, the authors define Setoid Type Theory (SeTT), an extension of inten-
sional Martin-Löf type theory with constructs for setoid reasoning, where funext
and propext hold by definition. SeTT is based on the strict setoid model of
Altenkirch6, which makes it possible to show consistency via a syntactic trans-
lation. This is in contrast with other type theories based on the setoid model,
like Observational Type Theory [9] and XTT [28], which instead rely on ETT
for their justification. A major property of SeTT is thus to illustrate how to
bootstrap extensionality, by translation into a small intensional core.

SeTT as defined in [5] is already a rich theory, but its introspection capabili-
ties are currently lacking, as its universes are limited to propositions. We would
like to internalise the notion of type in SeTT, thus extending the theory with a
universe of setoids. This goal brings up several questions, one of which has to do
with the notion of equality with which the universe should come equipped: the
universe of setoids is itself a setoid (as any type is) so it certainly cannot be uni-
valent, since setoids lack the necessary structure. Another issue is the way such
universe can be justified by the setoid model, and in particular what principles
are needed in the metatheory to do so.

Contributions This paper documents our work towards the construction of a
universe of setoids inside the setoid model, and tries to answer these and other
questions related to the design and implementation of this construction. Our
main contribution is the construction of the universe in the model; this is given
in steps, first as an inductive-recursive definition, which is then translated to
an inductive-inductive definition, and subsequently to an inductive type. As a
consequence, we show that we only need to assume indexed W-types and proof-
irrelevant identity types in the metatheory (along with some obligatory basic
tools like Σ and Π types) to construct the universe.

The universe constructions presented in this paper are, to our knowledge, the
first examples of two kinds of data type reductions in an intensional metatheory:
the first involving an inductive-recursive type which includes strict propositions,
and the second involving an infinitary inductive-inductive type.

Finally, the mathematical contents of this paper have been formalized in the
proof-assistant Agda (see [10]).

Structure of the paper We begin by describing the metatheory that we will use
throughout the paper, in Section 2. In Section 3, after briefly recalling cate-

5 In the sense of HoTT we mean a type theory limited to h-sets.
6 A strict model is one where every equation holds definitionally.
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gories with families as an abstract notion of models of type theory, we outline
Altenkirch’s setoid model as given in [5]. We then briefly discuss the rules of
Setoid Type Theory in Section 3.2.

In Section 4 we discuss the setoid model and various design choices related to
it. We then recall inductive-recursive universes, and the way they can be equiv-
alently defined as a plain inductive definition, in Section 4.1. We then provide,
in Section 4.2, a first complete definition of the setoid universe using a special
form of induction-recursion. This form of induction-recursion is not known to
be reducible to plain inductive types. Then we describe an alternative definition
of the universe in Section 4.3, that does not rely on induction-recursion but in-
stead on infinitary induction-induction. This inductive-inductive encoding of the
universe is obtained from the inductive-recursive one, inspired by the method of
Section 4.1. We end the series of universe constructions with Section 4.4, where
we outline a purely inductive definition of the setoid universe, obtained from the
inductive-inductive one.

1.1 Related work

The setoid model was first described in [18] in order to add extensionality princi-
ples to Type Theory such as function extensionality and propositional extension-
ality. A strict variant of the setoid model was given in [4] using a definitionally
proof-irrelevant universe of propositions. Recently, support for such a universe
was added to the proof-assistants Agda and Coq [17], allowing a full formal-
ization of Altenkirch’s setoid model. Setoid Type Theory (SeTT) is a recently
developed formal system derived from this model construction [5]. Observational
Type Theory (OTT) [9] is a syntax for the setoid model differing from SeTT
in the use of a different notion of heterogeneous equality. Moreover, the consis-
tency proof for OTT relies on Extensional Type Theory, whereas for SeTT it
is obtained via a syntactic translation. XTT [28] is a cubical variant of OTT
where the equality type is defined using an interval pretype 7 . XTT’s universes
support universe induction, whereas it is left open whether the construction
presented here supports this principle. Palmgren and Wilander [27] construct a
setoid universe using a translation into constructive set theory. Palmgren [26]
constructs an encoding of ETT in ITT through Aczel’s encoding of set theory
in type theory [3]. He uses type theory as a language for his formalisation but
his construction is set-theoretic in nature. Setoids are utilized to encode sets as
arbitrarily branching well-founded trees quotiented by bisimulation. His notion
of family of setoids does not use strict propositions and it has a weaker form of
proof irrelevance which seems to be not enough to obtain a model of SeTT.

The principle of propositional extensionality in the setoid model is an in-
stance of Voevodsky’s univalence axiom [29]. The cubical set model is a con-
structive model justifying this axiom [11]. A type theory extracted from this
model is Cubical Type Theory [13]. The relationship between the cubical set

7 To quote one of the referees: the fact that the interval is a pretype is but the easiest
part of the story.
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model and cubical type theory is similar to that between the setoid model and
SeTT. Compared to cubical type theories, SeTT has the advantage that the
equality type satisfies more definitional equalities. For instance, whereas in cu-
bical type theory equality of functions is isomorphic to pointwise equality, in
SeTT the isomorphism is replaced by a definitional equality. SeTT is also a syn-
tactically straightforward extension of Martin-Löf Type Theory, that does not
require exotic objects like the interval pretype. In turn, the obvious advantage
of cubical type theory is that it is not limited to setoids.

An exceptional aspect of the metatheory used in this paper is the presence
of a proof-irrelevant identity type with a strong transport rule allowing to elim-
inate into arbitrary types. In [1], Abel gives a proof of normalization for the
Logical Framework extended with a similar proof-irrelevant equality type. Abel
and Coquand show in [2] that the combination of impredicativity with a strong
transport rule results in terms that fail to normalize but this is irrelevant in our
setting.

2 MLTTProp

This section describes MLTTProp, our ambient metatheory. We employ Agda
notation to write down MLTTProp terms throughout the paper.

One of the main appeals of Altenkirch’s setoid model is that it can justify
several useful extensionality principles while being defined in a small intensional
metatheory. We tried to stay true to this idea when figuring out the necessary
metatheoretical tools for the universe construction in this paper. In particular,
we wanted to avoid having to assume strong definition schemas that go beyond
inductive families. MLTTProp is thus an intensional type theory in the style of
Martin-Löf type theory.

We have sorts Typei of types and Propi of strict propositions for i ∈ {0, 1}.
Here, i = 0 means “small” (and we will omit the subscript) and i = 1 means
“large”. We have implicit lifting from i = 0 to i = 1, but do not assume type
formers are preserved. Type1 has universes for Type and Prop. We do not
distinguish notationally between universes and sorts. We continue to describe
only the case i = 0; everything introduced has an analogue at level i = 1.
Propositions lift to types via Lift : Prop → Type, with constructor lift : {P :
Prop} → P → Lift P and destructor unlift : {P : Prop} → Lift P → P .

We have standard type formers Π,Σ,Bool,0,1 in Type. Σ-types are defined
negatively by pairing – , – and projections π1, π2. We have definitional η-rules
for Π-, Σ-, 1-types. We also require indexed W-types, both in Type and Prop:
W� : (S : I → Type) → ((i : I) → S i → I → Type) → I → � where
� ∈ {Type,Prop}. The elimination principle of WProp only allows defining
functions into elements of Prop. From WProp we can define propositional trun-
cation ‖–‖ : Type → Prop, with constructor |– | : {A : Type} → A → ‖A‖
and eliminator elim‖–‖ : {P : Prop} → (A→ P )→ ‖A‖ → P .

In addition to type formers in Type, we will need the propositional versions
of 0, 1, Π, and Σ. The latter three can be defined from their Type counterparts
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via truncation. That is, given P : Prop and Q : P → Prop:

1Prop :≡ ‖1‖
ΠProp P Q :≡ ‖Π (Lift P ) (Lift ◦Q ◦ unlift)‖
ΣProp P Q :≡ ‖Σ (Lift P ) (Lift ◦Q ◦ unlift)‖

We assume that we have 0Prop : Prop together with exfalsoProp : {A : Type} →
0Prop → A.

Finally, we will assume an identity type in the style of Martin-Löf’s inductive
identity type. The main difference is that our identity type is a Prop-valued
relation. We have a transport combinator transp from which J is derivable.

Id : {A : Type} → A→ A→ Prop

refl : {A : Type}(a : A)→ Id a a

transp : {A : Type}(C : A→ Type){a0 a1 : A} → Id a0 a1 → C a0 → C a1

with transp C {x} {x} e u ≡ u. The transp combinator provides a strong elim-
ination principle allowing to eliminate a strict proposition (the identity type)
into arbitrary types. We only use this identity type in Section 4.4. For the rest
of our constructions, the traditional Martin-Löf’s identity type suffices.

2.1 Formalization

A universe of strict propositions has been recently added to the Agda proof assis-
tant [17], making most of MLTTProp a subset of Agda, with the exception of the
proof-irrelevant identity type. Most of the universe constructions presented here
have been formalized and proof-checked using Agda, with the proof-irrelevant
identity type and the strong transport rule added via postulates and rewriting.
The formalization can be found in [10].

For convenience, we slightly deviate from MLTTProp both in the paper and
in the formalization, for instance by relying on pattern matching instead of elim-
inators, and using primitive versions of Prop-valued Π and Σ types instead of
deriving them from truncation. We operate under the assumption that every-
thing can be equivalently carried out in MLTTProp, although we have not fully
checked all the necessary details.

3 Setoid model

By setoid model we mean a class of models of type theory where contexts/closed
types are interpreted as setoids, i.e. sets with an equivalence relation, and de-
pendent types are interpreted as dependent/indexed setoids. A setoid model was
first given for intensional type theory by M. Hofmann [18], in order to provide
a semantics for extensionality principles such as function and propositional ex-
tensionality.
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Here we consider a similar model construction due to Altenkirch [4]. The
peculiarity of this model is that it is presented in a type theoretic and intensional
metatheory which includes a strict universe of propositions.

The setoid model thus defined validates function extensionality, a universe of
propositions with propositional extensionality, and quotient types. Therefore, it
provides a way to bootstrap and “explain” extensionality, since the model con-
struction effectively gives an implementation of various extensionality principles
in terms of a small, completely intensional theory.

3.1 Setoid model as a CwF

The setoid model can be framed categorically as a category with families (CwF,
[14]) with extra structure for the various type and term formers. The core struc-
ture of a CwF can be given as the following signature:

Con : Type

Ty : (Γ : Con) → Type

Sub : (Γ Δ : Con) → Type

Tm : (Γ : Con) → Ty Γ → Type

In our presentation of the setoid model, contexts are given by setoids, that is,
types together with an equivalence relation. A key point of the model is that the
equivalence relation is valued in Prop and is thus definitionally proof irrelevant.

Γ : Con

|Γ | : Type

Γ∼ : |Γ | → |Γ | → Prop

refl Γ : (γ : |Γ |) → Γ∼ γ γ

sym Γ : ∀{γ0 γ1} → Γ∼ γ0 γ1 → Γ∼ γ1 γ0

trans Γ : ∀{γ0 γ1 γ2} → Γ∼ γ0 γ1 → Γ∼ γ1 γ2 → Γ∼ γ0 γ2

Types in a context Γ are given by displayed setoids over Γ with a fibra-
tion condition given by coe, coh. In the following, we sometimes omit implicit
quantifications such as the ∀{γ0 γ1} in the type of symΓ .

A : Ty Γ

|A| : |Γ | → Type

A∼ : {γ0 γ1 : |Γ |} → Γ∼ γ0 γ1 → |A|γ0 → |A|γ1 → Prop

refl* : {γ : |Γ |}(a : |A|γ) → A∼ (refl Γ γ) a a

sym* : ∀{γ0 γ1 a0 a1}{p : Γ∼ γ0 γ1} → A∼ p a0 a1 → A∼ (sym Γ p) a1 a0

trans* : A∼ p0 a0 a1 → A∼ p1 a1 a2 → A∼ (transΓ p0 p1) a0 a2

coe : Γ∼ γ0 γ1 → |A|γ0 → |A|γ1
coh : (p : Γ∼ γ0 γ1)(a : |A|γ0) → A∼ p a (coeApa)

This definition of types in the setoid model is different from the one in [4],
but it is equivalent to it [12, Section 1.6.1]. The main difference here is in the
use of a heterogeneous equivalence relation A∼ in the definition of types.
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Substitutions are interpreted as functors between the corresponding setoids,
whereas terms of type A in context Γ are sections of the type seen as a se-
toid fibration Γ.A → Γ . Note that we only need to include components for the
functorial action on objects and morphisms, since the functor laws follow from
proof-irrelevance in the metatheory, and thus hold definitionally.

σ : Sub Γ Δ

|σ| : |Γ | → |Δ|
σ∼ : Γ∼ ρ0 ρ1 → Δ∼ (|σ|ρ0) (|σ|ρ1)

t : Tm Γ A

|t| : (γ : |Γ |) → |A| γ
t∼ : (p : Γ∼ γ0 γ1) → A∼ p (|t|γ0) (|t|γ1)

We can show that the setoid model validates the usual basic type formers
(Π,Σ, etc.), function extensionality and a universe of strict propositions with
propositional extensionality [4]. Note that we do not need identity types or in-
ductive types (W-types) for this.

3.2 Setoid Type Theory

The setoid model presented in the previous section is strict, that is, every equa-
tion of a CwF holds by definition in the semantics. One advantage of strict
models is that they can be turned into syntactic translations, in which syntactic
objects of the source theory are interpreted as their counterparts in another tar-
get theory. In the case of the setoid model, this gives rise to a setoid translation,
where source contexts are interpreted as target contexts together with a target
type representing the equivalence relation, and so on.8

A setoid translation is used in [5] to justify Setoid Type Theory (SeTT), an
extension of Martin-Löf type theory (+ Prop) with equality types for contexts
and dependent types that reflect the setoid equality of the model.

We recall the rules of SeTT that extend regular MLTT below, but with
a variation: whereas the equality types in [5] are stated as elements of SeTT’s
internal universe of propositions, here we state the context equalities as elements
of the external, metatheoretic universe Prop. This generalises the notion of
model of SeTT thus making it easier to construct models. Equality on types is
defined as before in [5].

We have a universe of propositions Prop defined as follows:

Γ : Con
Prop : Ty Γ

P : Tm Γ Prop

P : Ty Γ

u : Tm Γ P v : Tm Γ P

u ≡ v

Equality type constructors for contexts and dependent types internalize the
idea that every context and type comes equipped with a setoid equivalence rela-
tion. Note that Prop is the universe of the metatheory while Prop is the internal

8 Semantically, this translation corresponds to a model construction, in particular a
functor from the category of models of the target theory to the category of models
of what will be Setoid Type Theory. Since the setoid translation is structural in the
context component, we can work with models in the style of categories with families
rather than contextual categories.
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one. As in the model, equality for dependent types is indexed over context equal-
ity.

Γ : Con ρ0, ρ1 : Sub Δ Γ

Γ∼ ρ0 ρ1 : Prop

A : Ty Γ ρ01 : Γ∼ ρ0 ρ1
a0 : Tm Δ A[ρ0] a1 : Tm Δ A[ρ1]

A∼ ρ01 a0 a1 : Tm Δ Prop

We have rules witnessing that these are indeed equivalence relations. We only
recall reflexivity:

ρ : Sub Δ Γ

R ρ : Γ∼ ρ ρ

A : Ty Γ ρ : Sub Δ Γ a : Tm Δ A[ρ]

R a : Tm Γ A∼ (R ρ) a a

In addition, we also have rules representing the fact that every construction in
SeTT respects setoid equality, so that we can transport along any such equality:

A : Ty Γ ρ0, ρ1 : Sub Δ Γ p : Γ∼ ρ0 ρ1 a : Tm Δ A[ρ0]

coeA p a : Tm Δ A[ρ1]
cohA p a : Tm Δ A∼ p a (coeA p a)

Notably, equality types in SeTT compute definitionally on concrete type
formers. In particular, they compute to their obvious intended meaning, so that
an equality of pairs is a pair of equalities, an equality of functions is a map
of equalities, and so on. From this, we get definitional versions of function and
propositional extensionality.

We can easily recover the usual Martin-Löf identity type from setoid equality,
with transport implemented via coercion.

A : Ty Γ a0, a1 : Tm Γ A

IdA a0 a1 :≡ A∼ (R Γ ) a0 a1 : Tm Γ Prop

P : Ty (Γ.A) p : Tm Γ (Id A a0 a1) t : Tm Γ P [a0]

transp P p t :≡ coe P (R id, p) t : Tm Γ P [a1]

We can also derive Martin-Löf’s J eliminator for this homogeneous identity
type. The only caveat is that transp and the J eliminator do not compute defi-
nitionally on reflexivity.

4 Universe of setoids

As pointed out in the introduction, SeTT is seriously limited by the lack of a
universes internalizing the notion of setoid. Our goal is to extend SeTT with
a universe of setoids; since SeTT is a direct syntactic reflection of the setoid
model, this essentially amounts to showing that a universe of setoids with the
necessary structure and equations can be constructed within the setoid model.
This opens several questions and possible design choices.

A first fundamental consideration has to do with the very definition of the
setoid universe: as any type in the setoid model, this universe must be a setoid
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and thus come equipped with an equivalence relation. However, unlike the uni-
verse of propositions, a universe of setoids cannot be univalent, since this would
force it to be a groupoid. The obvious choice is therefore to have a non-univalent
universe, and instead define the universe’s relation so that it reflects a simple
syntactic equality of codes rather than setoid equivalence.

Another question has to do with the metatheoretic tools required to carry
out the construction of the universe. In fact, one of the main aspects of the setoid
model construction recalled in Section 3 and shown originally in [4] is that it
can be carried out in a very small type theoretic metatheory, thus providing a
way to reduce extensionality to a small intensional core. We would like to stay
faithful to this ideal when constructing this setoid universe.

A known and established method for defining universes in type theory relies
on induction-recursion (IR), a definition schema developed by Dybjer [15,16].
Inductive-recursive definitions can be found throughout the literature, from the
already mentioned type theoretic universes, including the original formulation
à la Tarski by Martin-Löf [24], to metamathematical tools like computability
predicates.

Although universe constructions in type theory—including our own setoid
universe—are naturally presented as inductive-recursive definitions, they may
not necessarily require a metatheory with induction-recursion. In fact, it is pos-
sible to reduce some instances of induction-recursion to plain induction (more
specifically, inductive families), including some universe definitions. We recall
this reduction in Section 4.1.

Other design choices on the setoid universe are less essential, but still require
careful consideration. For instance, one question is whether the setoid universe
should support universe induction, thus exposing the inductive structure of the
codes. Such an elimination principle is known to be inconsistent with univalence,
although this is not an issue in our case; nevertheless it is not immediately clear
if the elimination principle can be justified by the semantics, that is, if our encod-
ing of the setoid universe in the model allows to define such a universe eliminator.
The question arises because our final encoding of the setoid universe only sup-
ports a weak form of elimination, for reasons that are explained in Section 4.4.
Although not currently needed, a stronger eliminator might be necessary to jus-
tify universe induction. This problem should not arise in the other encodings of
the setoid universe (as given in Section 4.2 and Section 4.3).

Another design choice has to do with how the setoid universe relates to
the other universes. One could provide a code for Prop in the setoid universe.
Moreover, the setoid universes could form a hierarchy, possibly cumulative.

Yet another choice is whether to have two separate sorts, one for propositions
and one for sets (with propositions convertible to sets) or a single sort of types
(sets), with propositions given by elements of a universe of propositions, which
is a (large) type. We have chosen to present the second option to fit with the
standard notion of (unisorted) CwF. However, this has downsides: to even talk
about propositions, we need to have a notion of large types. The first option is
more symmetric: we can have parallel hierarchies for propositions and sets.
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4.1 Inductive-recursive universes

An inductive-recursive universe is given by a type of codes U : Type, and a
family El : U → Type that assigns, to each code corresponding to some type,
the meta-theoretic type of its elements. The resulting definition is inductive-
recursive because the inductive type of codes is defined simultaneously with the
recursive function El.

An example is the following definition of a small universe with bool and Π.

data U : Type

bool : U

pi : (A : U) → (El A → U) → U

El : U → Type

El bool :≡
El (pi A B) :≡ (a : El A) → El (B a)

Induction-recursion is arguably a nice and natural way to define internal
universes in type theory, however it is not always strictly required. We can
translate basic instances of induction-recursion into inductive families using the
equivalence of I-indexed families of types and types over I (that is, A : Type
with A→ I) [22].

In our case, we can encode U as an inductive type inU that carves out all
types in Type that are in the image of El. In other words, inU is a predicate
that holds for any type that would have been obtained via El in the inductive-
recursive definition. As El is indexed by the type of codes, the definition of inU
quite expectedly reflects the inductive structure of codes.

data inU : Type → Type1

inBool : in-U

inPi : inU A → ((a : A) → inU (B a)) → inU ((a : A) → (B a))

U and El can be given by U :≡ Σ (A : Type) (in-U A) and El :≡ π1.
Note that this construction gives rise to a universe in Type1, rather than

Type, since the definition of U quantifies over all possible types in Type. Hence
this kind of construction requires a metatheory with at least one universe.

4.2 Inductive-recursive setoid universe

In this section we give a first definition of the setoid universe, as a direct general-
ization of the simple inductive-recursive definition just shown. We only consider
a very small universe with bool type and Π for simplicity; a more realistic uni-
verse that includes more type formers can be found in the Agda formalization.

To construct the universe of setoids in the setoid model, we first of all need
to define a type U : Ty Γ for every Γ : Con, and for every A : Tm Γ U a
type El A : Ty Γ . Recalling Section 3, these are essentially record types made
of several components. Since U is a closed type, it requires the same data of
a setoid; in particular, we need a type of codes together with an equivalence
relation reflecting equality of codes, in addition to proofs that these are indeed
equivalence relations:

data U : Type1

– ∼U – : U → U → Prop1

reflU : (A : U) → A ∼U A

symU : A ∼U B → B ∼U A

transU : A ∼U B → B ∼U C → A ∼U C
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El is given by a family of setoids indexed over the universe, that is, a way to
assign to each code in the universe a carrier set and an equivalence relation.

El : U → Type

– � – ∼El – : {a a′ : U} → a ∼U a′ → El a → El a′ → Prop

Note that – � – ∼El – is indexed over equality on the universe, because El is
a displayed setoid over U , hence in particular it must respect the setoid equality
of U . We also require data and proofs that make sure we get setoids out of El:

reflEl : (A : U)(x : El A) → reflU A � x ∼El x

symEl : p � x ∼El x
′ → symU p � x′ ∼El x

transEl : p � x ∼El x
′ → q � x′ ∼El x

′′ → transU p q � x ∼El x
′′

coeEl : A ∼U B → El A → El B

cohEl : (p : A ∼U A′) (x : El A) → p � x ∼El coeEl p x

We give an inductive definition of U , mutually with a recursive definition of
the 4 functions – ∼U –, reflU , El and – � – ∼El –. The other functions are then
recursively defined: reflEl alone, symU and symEl mutually, transU , transEl, coeEl
and cohEl mutually. The whole construction is quite long, below we only show
the more interesting definitions of U and El:

data U : Type1

bool : U
pi : (A : U)(B : El A → U)

→ ({x x′ : El A} → reflU A � x ∼El x
′

→ B x ∼U B x′) → U

El bool :≡
El (pi A B h) :≡

Σ (f : (a : El A) → El (B a))

(∀{x x′}(p : reflU A � x ∼El x
′)

→ h p � f x ∼El f x′)

Note that in the definition of U we require that the family B : El A→ U be a
setoid morphism, respecting the setoid equalities involved. This choice is crucial
for the definition of El to go through, in particular since we eliminate the code
for Π types into the setoid of functions that map equal elements to equal results.
To state this mapping property we need to compare elements in different types,
coming from applying f to different arguments x and x′. We know that x and x′

are equal, but to conclude B x ∼U B x′ we need to know that B respects setoid
equality. This is exactly what we get from our definition of U .

We can now give a full definition of the setoid universe, and of El A for any
A : Tm Γ U:

|U| :≡ λ γ.U
U

∼ :≡ λ p x y. x ∼U y

refl U :≡ reflU
. . .

coe U :≡ λ p a. a

coh U :≡ λ p. reflU

|El A| :≡ λ γ.El (|A| γ)
(El A)∼ :≡ λ p x y.A∼ p � x ∼El y

refl (El A) :≡ reflEl

. . .

coe (El A) :≡ λ p. coeEl (A
∼ p)

coh (El A) :≡ λ p. cohEl (A
∼ p)
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We can show that U is closed under Π types and booleans, and satisfies
El (piAB) ≡ Π (El A) (El B) and El bool = Bool. The universe can be closed
under more constructions if more codes are added to U . This gives a complete
definition of a universe of setoids, which is, however, inductive-recursive. More-
over, the kind of recursion involved in this definition is particularly complex,
and not obviously reducible to well-understood notions of induction-recursion
like the one described in [16]. In any case, we would like to avoid extending the
metatheory with any form of induction-recursion in order to keep the metatheory
as small and essential as possible.

In the next section we transform our current inductive-recursive definition to
one that does not use induction-recursion. The way this is done is inspired by
the well-known trick to eliminate induction-recursion described in Section 4.1,
but modified in a novel way to account for the presence of Prop-valued types.
To our knowledge, this is the first time this reduction method is applied to an
inductive-recursive type of this kind.

4.3 Inductive-inductive setoid universe

We will follow the method outlined in Section 4.1. In addition to inU for defining
U, we also introduce a family inU∼ of binary relations between types in the
universe, from which we then define – ∼U –.

data inU : Type → Type1

bool : inU

π : inU∼ a a A∼ → (∀{x0 x1}(x01 : A∼ x0 x1) → inU∼ (b x0) (b x1) (B∼ x01))

→ inU (Σ (f : (x : A) → B x)

((x0 x1 : A)(x01 : A∼ x0 x1) → B∼ x01 (f x0) (f x1)))

data inU∼ : {A A′ : Type} → inU A → inU A′ → (A → A′ → Prop) → Type1

bool∼ : inU∼ bool bool (λx0 x1 . x0
?
= x1)

π∼ : {b0 : (x0 : A0) → inU (B0 x0)}{b1 : (x1 : A1) → inU (B1 x1)}
{a0∼ : inU∼ a0 a0 A0∼}{a1∼ : inU∼ a1 a1 A1∼}
{b0∼ : ∀{x0 x1}(x01 : A0∼ x0 x1) → inU∼ (b0 x0) (b0 x1) (B0∼ x01)}
{b1∼ : ∀{x0 x1}(x01 : A1∼ x0 x1) → inU∼ (b1 x0) (b1 x1) (B1∼ x01)}

→ inU∼ a0 a1 A01∼
→ (∀{x0 x1}(x01 : A01∼ x0 x1) → inU∼ (b0 x0) (b1 x1) (B01∼ x01))

→ inU∼ (π a0 a0∼ b0 b0∼) (π a1 a1∼ b1 b1∼)

(λf0 f1 . ∀(x0 x1) → A01∼ x0 x1 → B01∼ x01 (π1 f0 x0) (π1 f1 x1))

Just as the role of inU is, as before, to classify all types that are image of El,
in the same way inU∼ a a′ classifies all relations of type A → A′ → Prop that
are image of – � – ∼El –, given proofs a : inU A, a′ : inU A′. In particular, this
definition of inU∼ states that the appropriate equivalence for boolean elements

is the obvious syntactic equality –
?
= –, whereas functions are to be compared
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pointwise. Note that inU appears in the sort of inU∼. Since these types are
mutually defined, they form an instance of induction-induction, a schema that
allows the definition of a type mutually with other types that contain the first
one in their signature [25].9

As in the universe example in Section 4.1, we now define U as a Σ type, and
El as the corresponding first projection.

U : Type1 El : U → Type

U :≡ Σ (X : Type) (inU X) El :≡ π1

What is left now is to define the setoid equality relation on the universe, as
well as the setoid equality relation on El A for any A in U . Two codes A,B in
the universe U are equal when there exists a setoid equivalence relation on their
respective sets El A and El B. Intuitively, since elements of a setoid are only ever
compared to elements of the same setoid, this should only be possible if A and B
are codes for the same setoid, that is, if A ∼U B. Existence and well-formedness
of such relations is expressed via the type inU∼ just defined, hence we would
expect A ∼U B to be defined as follows:

(A, a) ∼U (B, b) :≡ Σ (R : A→ B → Prop) (inU∼ a b R)

Unfortunately this definition only manages to capture the idea, but does
not actually typecheck. In fact, – ∼U – should be a Prop1-valued relation, so
A ∼U B should be a proposition. However, the Σ type shown above clearly is
not, since it quantifies over a type of relations, which is not a proposition. One
possible solution is actually quite simple, and it just involves truncating the Σ
type above to force it to be in Prop1.

– ∼U – : U → U → Prop1

(A, a) ∼U (B, b) :≡ ‖Σ (R : A → B → Prop) (inU∼ a b R)‖

We are now left to define the indexed equivalence relation on El:

– � – ∼El – : {A B : U} → A ∼U B → El A → El B → Prop

p � x ∼El y :≡ ?

In the definition above, p has type ‖Σ (R : ElA → ElB → Prop) (. . .)‖.
If the type was not propositionally truncated, we could define p � x ∼El y by
extracting the relation out of the first component of p, and apply it to x, y.
That is, p � x ∼El y :≡ π1 p x y. This would make the definition of – ∼U – and
– � – ∼El – in line with how we defined U and El.

However, this does not work in our case, since the type of p is propositionally
truncated, hence it cannot be eliminated to construct a proof-relevant object.
Fortunately, we can work around this limitation by defining p � x ∼El y by
induction on the codes A B : U , in a way that ends up being logically equivalent
to the proposition we would have obtained by π1 p x y if there were no truncation.

9 The main example of induction-induction is the intrinsic definition of a dependent
type theory in type theory [6].
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More precisely, we need to construct proofs that for any concrete R and inR, the
types |(R, inR)| � x ∼El y and R x y are logically equivalent. These in turn need
to be defined mutually with – � – ∼El –. We direct the interested reader to
the Agda formalization for the full details of these definitions, as they are quite
involved.

The full definition of the universe is concluded with the remaining definitions,
like reflU , reflEl, etc., which can be adapted from their IR counterparts more or
less straightforwardly. The final result does not use induction-recursion, but it is
nevertheless an instance of infinitary induction-induction. The ability to define
arbitrary, infinitary inductive-inductive types clashes, again, with our objective
of keeping the metatheory as small and simple as possible. The next step is
therefore to reduce this inductive-inductive universe to one that does not require
(infinitary) induction-induction.

4.4 Inductive setoid universe

This section encodes the inductive-inductive universe of setoids from the pre-
vious section without assuming arbitrary inductive-inductive definitions in the
metatheory.

Before turning our attention to the setoid universe, we recall the known, sys-
tematic method to reduce finitary inductive-inductive types to inductive families.

Reducing finitary induction-induction It is known that finitary inductive-
inductive definitions can be reduced to inductive families [8,7,21]. To illustrate
the idea, let us consider a well-known example of a finitary inductive-inductive
type, the intrinsic encoding of type theory in type theory itself. Actually, we
only consider the type of contexts Con : Type and the type of types Ty : Con→
Type; since the latter is indexed over the former, this is already an example of
induction-induction.

Contexts in Con are formed out of empty contexts • and context extension
– , –. Types in Ty are either the base type ι or Π types.

• : Con ι : (Γ : Con) → Ty Γ

– , – : (Γ : Con) → Ty Γ → Con Π : {Γ : Con}(A : Ty Γ ) → Ty (Γ,A) → Ty Γ

The general method to eliminate induction-induction is to split the original
inductive-inductive types into a type of codes and associated well-formedness
predicates. In our Con/Ty example, these would be respectively given by codes
Con0,Ty0 : Type and predicates Con1 : Con0 → Type,Ty1 : Con0 → Ty0 →
Type.

The definition of the codes and predicate types follows that of the original
inductive-inductive type, and can be derived systematically from it. More im-
portantly, they can be defined without induction-induction, since although Con0
and Ty0 are defined mutually, their sorts are not indexed.
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•0 : Con0

– ,0 – : Con0 → Ty0 → Con0

ι0 : Con0 → Ty0

Π0 : Con0 → Ty0 → Ty0 → Ty0

•1 : Con1 •0
– ,1 – : ∀{Γ0 A0} → Con1 Γ0 → Ty1 Γ0 A0

→ Con1 (Γ0 ,0 A0)

ι1 : ∀{Γ0} → Con1 Γ0 → Ty1 Γ0 (ι0 Γ0)

Π1 : ∀{Γ0 A0 B0} → Con1 Γ0

→ Ty1 Γ0 A0 → Ty1 (Γ0 ,0 A0) B0

→ Ty1 Γ0 (Π0 Γ0 A0 B0)

We can recover the original inductive-inductive type as Con :≡ Σ (Γ0 :
Con0) (Con1 Γ0) and Ty Γ :≡ Σ (A0 : Ty0) (Ty1 (π1 Γ ) A0). Recovering the
constructors is straightforward:

• :≡ (•0, •1)
(Γ0, Γ1), (A0, A1) :≡ ((Γ0 ,0 A0), (Γ1,1 A1))

ι (Γ0, Γ1) :≡ (ι0 Γ0, ι1 Γ1)

Π {Γ0, Γ1}(A0, A1)(B0, B1) :≡ (Π0 Γ0 A0 B0, Π1 Γ1 A1 B1)

Finally, we can define eliminators/induction principles for Con and Ty as just
defined, by induction on the well-typing predicates.

Following [25], we distinguish two versions of the eliminator: the simple and
the general one. Note that this is orthogonal to the distinction between non-
dependent and dependent eliminators, from which we only consider the latter.
The motives for the simple eliminator are C ′ : Con → Type, T ′ : (Γ : Con)(A :
TyΓ )→ Type and the eliminators themselves have the following signatures:

elim′
Con : (Γ : Con)→ C ′ Γ elim′

Ty : ∀{Γ}(A : Ty Γ )→ T ′ Γ A

In the case of the general eliminator, the motive for Ty depends on the motive
for Con, making the two eliminators recursive-recursive functions. For motives
C : Con→ Type and T : (Γ : Con)→ Ty Γ → C Γ → Type the signatures are:

elimCon : (Γ : Con)→ C Γ elimTy : ∀{Γ}(A : Ty Γ )→ T Γ A (elimCon Γ )

The general eliminators can be derived from our encoding of Con and Ty via
untyped codes and well-typing predicates. The way to do it is to first define the
graph of the eliminators in the form of inductively-generated relations:

data R-Con : (Γ : Con) → C Γ → Type

data R-Ty : {Γ : Con}(A : Ty Γ )(γ : C Γ ) → T Γ A γ → Type

The next step is to prove that these relations are functional, by induction on
the untyped codes Con0 and Ty0 [21]. From this result, defining the eliminators
is immediate.

Reducing the setoid universe The reduction described in the previous sec-
tion works generically for an arbitrary finitary inductive-inductive type, thus



Constructing a universe for the setoid model 17

giving a systematic way to reduce finitary inductive-inductive definitions to in-
ductive families. However, it is not clear whether this method extends to in-
finitary induction-induction, of which the setoid universe defined in Section 4.3
is an instance. Of course, the absence of a general reduction method does not
mean that we cannot reduce particular concrete instances of infinitary induction-
induction, which is exactly what we hope for our universe construction.

The obvious challenge in successfully completing this reduction is to avoid
the need for extensionality in the metatheory. In fact, consider the simple in-
finitary inductive-inductive type obtained from the previous Con/Ty example by
replacing the finitary constructor Π with an infinitary one: Π : {Γ : Con} →
(N → Ty Γ ) → Ty Γ . Already with this simple example, we run into prob-
lems as soon as we try to define the eliminator. One issue is that the definition
of the eliminator relies on a proof that the well-typing predicates inU1, inU∼1

are propositional, that is, any two of their elements are equal. Without further
assumptions this proof can only be done by induction, and requires function
extensionality since these predicates include higher-order constructors.

One way to get around this is to define the well-typing predicates as Prop-
valued families, rather than in Type:

data inU0 : Type → Type1

data inU∼0 : {A A′ : Type} → (A → A′ → Prop) → Type1

data inU1 : (A : Type) → inU0 A → Prop1

data inU∼1 : {A A′ : Type} → (R : A → A′ → Prop) → inU∼0 R → Prop1

Using Prop avoids the issue of proving propositionality altogether, since the
predicates are now propositional by definition. However, it introduces a different
issue: inU1 and inU∼1 give rise to equational constraints on their indices, in the
form of proofs of the Prop-valued identity type. The definition of the eliminators
for inU and inU∼ relies on the ability to transport along these proofs, hence the
need to extend our metatheory with a primitive, strong form of transport for
Id.10

Having Prop and a strong transport principle does help to some extent.
However, we would still need extensionality to derive the general eliminators for
inU and inU∼. In fact, as explained in the previous section, to derive the general
recursive-recursive eliminators we need to prove that the corresponding graph
relations are functional, which cannot be done without funext.

Luckily, the simple elimination principle is sufficient for our purposes: all
functions described in Section 4.3 can be defined just using the simple elimina-
tor without recursion-recursion. The simple eliminator itself can be defined by
pattern matching on the untyped codes, and does not require extensionality or
any extra principles beyond strong transport.

Once the inductive encoding of the inductive-inductive universe is done, the
setoid universe can be defined just as in Section 4.3.

10 Note that this issue cannot be solved by expressing the equational constraints with
an identity type in Type, since the well-typing predicates force it to necessarily be
in Prop.
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5 Conclusions and further work

We have described the construction of a universe of setoids in the setoid model
of type theory; this is given in several steps, first as an inductive-recursive defini-
tion, then as an inductive-inductive definition, and finally as an inductive type.
Every encoding is obtained from the previous by adapting known data type
transformation methods in a novel way that accounts for the peculiarities of our
construction. In [5] we present rules for SetTT, clearly these rules need to be
extended by the rules for a universe reflecting the semantics presented here.

It is known that finitary IITs can be reduced to inductive types in an exten-
sional setting [21]. In our paper we reduce an infinitary IIT to inductive types
in an intensional setting. In the future, we would like to investigate whether this
reduction can be generalised to arbitrary infinitary IITs.

In contrast to the inductive-recursive and inductive-inductive versions of the
universe, the inductive definition relies on a metatheory with a strong transport
rule. As future work, we would like to prove normalization for this metatheory
since previous work in this respect [2] seems to suggest that is represents a
non-trivial addition.

Another question regards the relationship between SeTT [5] and XTT [28].
Both systems are syntactic representations of the setoid model with similar de-
sign choices, like definitional proof-irrelevance. We would like to know whether
their respective notions of models are equivalent, that is, if we can obtain an
XTT model from a SeTT model, and vice versa. Since XTT universes support
universe induction, for one direction we would need to extend our own universe
with the same principle (see discussion in Section 3 and the previous paragraph).
Thus a related question is whether our encodings of the setoid universe can sup-
port universe induction. A further question is whether this mapping of models
is functorial.

Groupoids can be regarded as generalized setoids. In the future we would
like to design a type theory internalizing the groupoid model of type theory [20],
in the same way that SeTT represents a syntax for the setoid model. A further
question is whether such “groupoid type theory” can be justified, similarly to
SeTT, via a syntactic translation, perhaps with SeTT itself as the target theory.
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ducing inductive-inductive types to indexed inductive types. In José Esṕırito Santo
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21. Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-
induction, induction is enough. In Marc Bezem and Assia Mahboubi, editors,
25th International Conference on Types for Proofs and Programs (TYPES 2019),
volume 175 of Leibniz International Proceedings in Informatics (LIPIcs), pages
6:1–6:30, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/13070, doi:10.

4230/LIPIcs.TYPES.2019.6.
22. Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock, and Conor

McBride. Small induction recursion, indexed containers and dependent polynomi-
als are equivalent, 2013. TLCA 2013.
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Abstract. We define nominal equational problems of the form ∃W ∀Y : P ,
where P consists of conjunctions and disjunctions of equations s ≈α t,
freshness constraints a#t and their negations: s �≈α t and a #t, where a is
an atom and s, t nominal terms. We give a general definition of solution
and a set of simplification rules to compute solutions in the nominal
ground term algebra. For the latter, we define notions of solved form from
which solutions can be easily extracted and show that the simplification
rules are sound, preserving, and complete. With a particular strategy for
rule application, the simplification process terminates and thus specifies an
algorithm to solve nominal equational problems. These results generalise
previous results obtained by Comon and Lescanne for first-order languages
to languages with binding operators. In particular, we show that the
problem of deciding the validity of a first-order equational formula in
a language with binding operators (i.e., validity modulo α-equality) is
decidable.
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1 Introduction

Nominal unification [23] is the problem of solving equations modulo α-equivalence.
A solution consists of a substitution and a freshness context ∇, i.e., a set of
primitive constraints of the form a#X (read: “a is fresh for X”), which intuitively
means that a cannot occur free in the instances of X. Nominal unification is
decidable and unitary [23], and efficient algorithms exist [5,17], which can be
used to solve problems of the form ∃X (

∧
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Similarly, nominal disunification is the problem of solving disequations i.e.,
negated equations of the form s �≈α t. An algorithm to solve nominal constraint
problems of the form

P := ∃X
((∧

Δi � si ≈α ti

)
∧

(∧
∇j � pj �≈α qj

))
is available [1], which finds solutions in the nominal term algebra T (Σ,A,X) by
constructing suitable representation of the witnesses for the variables in P.

Comon and Lescanne [10] investigated a more general version of this problem,
called equational problem, in their words: “an equational problem is any first-
order formula whose only predicate symbol is =”, that is, it has the form
∃w1, . . . , wn∀y1, . . . , ym : P where P is a system, i.e., an equation s = t, or a
disequation s �= t, or a disjunction of systems

∨
Pi, or a conjunction of systems∧

Pi, or a failure ⊥, or success 
. The study of such problems was motivated by
applications in pattern-matching for functional languages, sufficient completeness
for term rewriting systems, negation in logic programming languages, etc.

In order to extend these applications to languages that offer support for
binders and α-equivalence following the nominal approach, such as αProlog [6],
αKanren [4], αLeanTAP [20], to nominal rewriting [14] and nominal (universal)
algebra [15], in this paper we consider nominal equational problems.

Based on Comon and Lescanne’s work, the nominal extension of a first-order
equational problem is a formula P ::= ∃W1 . . . Wn∀Y1 . . . Ym : P where P is a
nominal system, i.e., a formula consisting of conjunctions and disjunctions of
freshness, equality constraints, and their negations.

Contributions. This paper introduces nominal equational problems (NEPs) and
presents simplification rules to find solutions in the ground nominal algebra. The
simplification rules are shown to be terminating (by using a measure that strictly
decreases with each rule application), and also sound and solution-preserving.
The simplification process for NEPs is more challenging than in the syntactic
case because it deals with two predicates (≈α and #) and needs to consider
the interaction between freshness and α-equality constraints, and quantifiers.
The elimination of universal quantifiers requires careful analysis since universal
variables may occur in freshness constraints and in their negations. To make the
process more manageable, we define a set of rules together with a strategy of
application (specified by rule conditions) that simplifies the termination proof.

Finally, we show that the irreducible forms are either ⊥ or problems from
which a solution can be easily extracted. In particular, if the NEP consists only of
existentially quantified conjunctions of freshness and α-equality constraints, we
obtain solved forms consisting of a substitution and a freshness context, as in
the standard nominal unification algorithm [23].

Related Work. Comon and Lescanne [10] introduced first-order equational prob-
lems and studied their solutions in the algebra of rational trees, the initial term
algebra, and the ground term algebra. A restricted version of equational prob-
lems, called disunification problems, which do not contain quantified variables,
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has been extensively studied in the first-order framework [8,3,11,2,22]. More
recently, a nominal approach to disunification problems was proposed by Ayala
et.al [1], including only conjunctions of equations and disequations and freshness
constraints, without quantified variables. Here we generalise this previous work
to deal with general formulas including disjunction, conjunction and negation of
equations and freshness constraints, as well as existential and universal quantifica-
tion over variables. To deal with negation of freshness, disjunctive formulas, and
quantification we extend the semantic interpretation and design a different set of
simplification rules as well as a more elaborated strategy for rule application.

Extensions of first-order equational problems modulo equational theories have
also been considered. Although the problem of solving disequations modulo an
equational theory is not even semi-decidable in general (as shown by Comon [7]),
there are useful decidable and semi-decidable cases. For example, solvability of
complement problems (a sub-class of equational problems) is decidable modulo
theories with permutative operators (which include commutative theories) [9,13],
and for linear complement problems solvability modulo associativity and commu-
tativity is also decidable [16,19,12]. Buntine and Bürckert [3] solve systems of
equations and disequations in equational theories with a finitary unification type.
Fernández [11] shows that E-disunification is semi-decidable when the theory
E is presented by a ground convergent rewrite system, and gives a sound and
complete E-disunification procedure based on narrowing. Baader and Schulz [2]
show that solvability of disunification problems in the free algebra of the combined
theory E1 ∪ . . . ∪ En is decidable if solvability of disunification problems with
linear constant restrictions in the free algebras of the theories Ei(1 ≤ i ≤ n)
is decidable. Lugiez [18] introduces higher-order disunification problems and
gives some decidable cases for which equational problems can be extended to
higher-order systems.

Organisation. Section 2 recalls the main concepts of nominal syntax and semantics.
Section 3 introduces nominal equational problems and a notion of solution for
such problems. Section 4 presents a rule-based procedure for solving NEPs, as
well as soundness, preservation of solutions, and termination results. Section 5
shows that the simplification rules reach solved forms from which solutions can
be easily extracted. Section 6 concludes and discusses future work.

2 Background

We assume the reader is familiar with nominal techniques and recall some concepts
and notations that shall be used in the paper; for more details, see [14,21,23].

Nominal Terms. We fix countable infinite pairwise disjoint sets of atoms A =
{a, b, c, . . .} and variables X = {X, Y, Z, . . .}. Atoms follow the permutative con-
vention: names a, b range permutatively over A. Therefore, they represent different
objects. Let Σ be a finite set of term-formers disjoint from A and X such that
for each f ∈ Σ, a unique non-negative integer n (the arity of f , written as f : n)
is assigned. We assume there is at least one f : n such that n > 0.
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A permutation π is a bijection A → A with finite domain, i.e., the set
dom(π) := {a ∈ A | π(a) �= a} is finite. We shall represent permutations as
lists of swappings π = (a1 b1)(a2 b2) . . . (an bn). The identity permutation is
denoted by id and π ◦ π′ the composition of π and π′. The set P of all such
permutations together with the composition operation form a group (P, ◦) and
it will be denoted simply by P. The difference set of π and γ is defined by
ds(π, γ) = {a ∈ A | π(a) �= γ(a)}.

Definition 1 (Nominal Terms). The set T (Σ,A,X) of Nominal Terms, or
just terms for short, is inductively defined by the following grammar:

s, t, u ::= a | π ·X | [a]t | f(t1, . . . , tn),

where a is an atom, π ·X is a moderated variable, [a]t is the abstraction of a in
the term t, and f(t1, . . . , tn) is a function application with f ∈ Σ and f : n. A
term is ground if it does not contain variables.

In an abstraction [a]t, t is the scope of the binder [·] and it binds all free
occurrences of a in t. An occurrence of an atom in a term is free if it is not
under the scope of a binder. Notice that syntactical equality is not modulo
α-equivalence; for example, [a]a �≡ [b]b. We may denote s ≡ t by s = t with the
same intended meaning and t̃ abbreviates an ordered sequence t1, . . . , tn of terms.

Example 1. Let Σλ := {lam : 1, app : 2} be a signature for the λ-calculus. Using
atoms to represent variables, λ-expressions are generated by the grammar:

e ::= a | lam([a]e) | app(e, e)

As usual, we sugar app(s, t) to s t and lam([a]s) to λ[a]s. The following are
examples of nominal terms: (λ[a]a) X and (λ[a](λ[b]b a) c) d.

We inductively extend the action of a permutation π to a term t, denoted as
π · t, by setting: π · a = π(a), π · (π′ ·X) = (π ◦ π′) ·X, π · ([a]t) = [π(a)](π · t),
and π · f(t̃) = f(π · t̃).

Substitutions, ranging over σ, γ, τ . . ., are maps (with finite domain) from
variables to terms. The action of a substitution σ on a term t, denoted tσ,
is inductively defined by: aσ = a, (π · X)σ = π · (Xσ), ([a]t)σ = [a](tσ) and
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Notice that t(σγ) = (tσ)γ.

Definition 2 (Positions and subterms). Let s be a nominal term. The set
Pos(s) of positions in s is a set of strings over positive integers defined inductively
below. Additionally, s|p denotes the subterm of s at position p and s(p) denotes
the symbol at position p.

– If s = a or s = π ·X, then Pos(s) = {ε} and s|ε = s;
– if s = [a]t then Pos(s) = {ε} ∪ {1 · p | p ∈ Pos(t)}, s|ε = s and s|1·p = t|p;
– if s = f(s1, . . . , sn) then Pos(s) = {ε}∪

⋃n
i=1{i · p | p ∈ Pos(si)}, s|ε = s and

s|i·p = si|p.
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Freshness and α-equality. A nominal equation is the symbol 
 or an expression
s ≈α t where s and t are nominal terms. A trivial equation is either s ≈α s or

. Freshness constraints have the form a#t where a is an atom and t a term.
A freshness context is a finite set of primitive freshness constraints of the form
a#X, we use Δ,∇, and Γ to denote them. We extend the notation to sets of
atoms: A#X denotes that a#X for every a ∈ A.

α-derivability is given by the deduction rules in Figure 1, which define an
equational theory called CORE.

(#-ax)∇ � a#b
π−1(a)#X ∈ ∇

(#-var)∇ � a#π · X

(#-abs-a)∇ � a#[a]t

∇ � a#t
(#-abs-b)∇ � a#[b]t

∇ � a#t1 · · · ∇ � a#tn (#-f)∇ � a#f(t1, . . . tn)

(ax)∇ � a ≈α a
ds(π, π′)#X ∈ ∇

(var)∇ � π · X ≈α π′ · X

∇ � t ≈α t′
(abs-a)∇ � [a]t ≈α [a]t′

∇ � t ≈α (a a′) · t′ ∇ � a#t′
(abs-b)∇ � [a]t ≈α [a′]t′

∇ � t1 ≈α t′
1 · · · ∇ � tn ≈α t′

n (f)∇ � f(t1, . . . tn) ≈α f(t′
1, . . . , t′

n)

Fig. 1. CORE freshness and α-equality rules.

– Write ∇ � a#t when there exists a derivation of ∇ � a#t.
The judgement∇ � a#t intuitively means that using freshness constraints
from ∇ as assumptions a does not occur free in t.

– Write ∇ � s ≈α t when there exists a derivation of ∇ � s ≈α t.
The judgement ∇ � s ≈α t intuitively means that using freshness con-
straints from ∇ as assumptions s is α-equivalent to t.

Semantic Notions. Nominal equational theory has a natural semantic denotation
in nominal sets since we can easily interpret freshness and abstraction.

A P-set X is an ordinary set equipped with an action in P×X → X (written
as π · x) such that id · x = x and π · (π′ · x) = (π ◦ π′) · x. A set of atoms A ⊂ A
supports x ∈ X iff for all permutations π ∈ P fixing every element of A · acts
trivially on x via π, i.e., if π(a) = a for all a ∈ A then π · x = x. Semantic
freshness is defined in terms of support as follows: an atom a is fresh for x ∈ X
iff a /∈ supp(x). We denote this by writing a#semx. A nominal set is a P-set such
that every element is finitely supported.

To build an algebraic ground term-model of CORE, we fix the set G consisting
of equivalence classes of provable α-equivalent ground terms. More precisely, given
a ground term g, the class g is the set of ground terms g′ for which there exist a
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derivation � g ≈α g′. Note that G is a nominal set by defining the natural action:
π ·g = π · g. Each function symbol f ∈ Σ is interpreted by an equivariant function
fI mapping (t1, . . . , tn) �→ f(t1, . . . , tn) and abstractions [a]t are interpreted by
an equivariant function [ ] in A×G → G such that a#sem[a]g always.

Signature interpretation is homomorphically extended to the set of terms
as follows: Fix a valuation function ς that assigns to every variable X ∈ X an
element of G. The interpretation of a term t under ς, �t�ς , is defined as:

�a�ς = a �π ·X�ς = π · ς(X) �[a]t�ς = [a]�t�ς

�f(t1, . . . , tn)�ς =fI(�t1�ς , . . . , �tn�ς)

Definition 3 (Validity under ς). Let A be any infinite subalgebra of CORE
with domain A and ς a valuation function assigning for every variable X ∈ X an
element of A. We say that:

1. �a#t�ς (resp. �t ≈α u�ς) is valid if a#sem �t�ς (resp. �t�ς = �u�ς).
2. �∇�ς is valid when a#semς(X) for each a#X ∈ ∇.
3. �∇ � a#t�ς is valid when the validity of �∇�ς implies a#sem �t�ς , and
4. �∇ � t ≈α u�ς is valid when the validity of �∇�ς implies �t�ς = �u�ς .

Write ∇ |= s ≈α t (resp. ∇ |= a#t) when �∇ � s ≈α t�ς (resp. �∇ � a#t�ς) is
valid for any valuation ς.

A model of a nominal theory is an interpretation that validates all of its
axiomatic judgements ∇ � s ≈α t. It is easy to see that the interpretation we
define above is a model of CORE. For the rest of the paper, we slightly abuse
notation by calling CORE both the theory and its model making distinctions
when necessary.

Remark 1. It is worth noticing the syntactic character of CORE: by interpreting
atoms as themselves and since there are no equational axioms, we easily connect
∇ |= a#t and ∇ � a#t. This behaviour is not the rule if equational axioms are
considered. For instance, consider the theory LAM that axiomatises β-equality in
the λ-calculus. It is a fact that a#sem(λ[a]b)a in LAM but there is no syntactic
derivation for a#(λ[a]b)a. Furthermore, by completeness for equality derivation,
we establish a connection between ∇ |= s ≈α t and ∇ � s ≈α t.

There are alternative definitions of nominal terms where the syntax is many-
sorted. We chose to work with an unsorted syntax for simplicity; all the results
below can be extended to the many-sorted case, indeed they are proved for any
infinite subalgebra of the ground nominal algebra.

3 Nominal Equational Problems

In this section, we introduce nominal equational problems (NEPs) as our main
object of study. A NEP is a fist-order formula built only with the predicates ≈α
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and #. Their negations, denoted �≈α and #, are used to build disequations and
non-freshness constraints. A trivial disequation is either s �≈α s or ⊥.

Intuitively, a non-freshness constraint a #t — read a is not fresh for t — states
that there exists at least one instance of t where a occurs free. Similarly, for
disequations: s �≈α t states that s and t are not α-equivalent.

Definition 4. A nominal system is a formula defined by the following grammar:

P, P ′ ::= 
 | ⊥ | s ≈α t | s �≈α t | a#t | a #t | P ∧ P ′ | P ∨ P ′

In the next definition, we make a distinction between the set of variables
occurring in a NEP: the mutually disjoint sets W = {W1, . . . , Wn} and Y =
{Y1, . . . , Ym} denote existentially and universally quantified variables, respectively.
The former we call auxiliary variables and the latter parameters.

Definition 5 (NEP). A NEP is a formula of the form below, where P is a nominal
system.

P ::= ∃W1 . . . Wn∀Y1 . . . Ym : P

The set Fv(P) contains the free variables occurring in P. For the rest of the
paper, we use the following implicit naming scheme for variables: W denotes an
auxiliary variable, Y a parameter, X a free variable, and Z an arbitrary variable.

Example 2. Nominal disunification constraints [1] are pairs of the form P :=
∃W 〈E || D〉, where E is a finite set of nominal equations-in-context, i.e., E =

n⋃
i=0
{Δi � si ≈α ti} and D is a finite set of nominal disequations-in-context,

D =
m⋃

j=0
{∇j � uj �≈α vj}. This problem is a particular NEP: taking the judgement

Δ � s ≈α t as Δ ⇒ s ≈α t, or yet as ¬Δ ∨ s ≈α t4, we obtain the formula:

P := (
n∧

i=0
(¬[Δi] ∨ si ≈α ti)) ∧ (

m∧
j=0

(¬[∇j ] ∨ uj �≈α vj)),

where [Δi], [∇j ] are conjunctions of freshness constraints in Δi, ∇j , respectively.

Sufficient completeness, that is, deciding whether a set of pattern (rules)
covers all possible cases, is a well-known problem in functional programming. In
the next example, we show how to naturally represent such problems as NEPs.

Example 3. Consider the function map which applies a function [a]F to every
element of any list L. It may be defined by the rules below:

Rmap =
{

� map([a]F, nil) → nil
� map([a]F, cons(X, L)) → cons(F{a �→ X}, map([a]F, L)),

4 Similarly, for disequations.
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where {a �→ } is a binary term-former representing (explicit) substitutions;
see [14, Example 43] for more details. Since we are not imposing a type disci-
pline on nominal terms it is possible to construct ill-typed terms, for instance
map(a, [a]t). In what follows we ignore those expressions by noticing that a type
discipline will not allow such constructions. Then sufficient completeness can be
checked using the following NEP:

∀Y1Y2Y3L′ : map([a]F, L) �≈α map([b]Y1, nil)∧
map([a]F, L) �≈α map([b]Y2, cons(Y3, L′)),

If the problem has a solution then Rmap is not complete, and the solution
indicates the missing pattern cases in the definition.

Solutions of Nominal Equational Problems. We are interested in solutions for NEPs
in the ground nominal algebra. From now on, A denotes an infinite subalgebra of
CORE with domain A. Below we define solutions using idempotent substitutions,
which can be seen as a representation for valuations that map variables to
elements of the ground term algebra.

We first extend the interpretation function under a valuation ς �·�ς (see
Section 2) to the negated form of freshness and α-equality constraints.

Definition 6. Let ς be a (fixed but arbitrarily given) valuation. A negative
constraint a #t (resp. s �≈α t) is valid under ς when:

– it is not the case that a#sem �t�ς , this is written �a #t�ς ; and, respectively,
– it is not the case that �s�ς = �t�ς , this is written �s �≈α t�ς .

In standard unification algorithms, idempotent substitutions are used as a
compact representation of a set of valuations in the ground term algebra. Similarly,
given a valuation in the ground term algebra, one can build a ground substitution
representing it. In the case of the ground nominal algebra, where elements are
α-equivalence classes of terms, the representative is generally not unique, but
any representative can be used.

Definition 7. Given a substitution σ = [X1/t1, . . . , Xn/tn], for any valuation
ς, we denote by ςσ the valuation such that ςσ(X) = ς(X) if X �∈ dom(σ), and
ςσ(X) = �Xσ�ς otherwise.

Given a valuation ς = [Xi �→ gi | Xi ∈ X, gi ∈ A], and a finite set X of
variables, we denote by σς

X any ground substitution such that for each Xi ∈ X ,
σ(Xi) = ti, if gi = �ti�ς . We say that σς

X is a grounding substitution for X .

The next lemma states that under mild conditions we can extend substitutions
to valuations preserving semantic equality.

Lemma 1. Given an idempotent substitution σ = [X1/t1, . . . , Xn/tn] and a
valuation ς we have: �sσ�ς = �s�ςσ .

The next definition allows us to use idempotent substitutions to represent
solutions of constraints.
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Definition 8 (Constraint A-validation). Let σ be an idempotent substitution
whose domain includes all the variables occurring in a constraint C. Then σ
A-validates C iff �C�ςσ is valid in A for any valuation ς.

We now extend semantic validity to the syntax of systems. The interpretation
for the logical connectives is defined as expected.

Definition 9 (A-validation). For an idempotent substitution σ whose domain
includes all variables occurring in a system P , we say that σ A-validates P iff

1. P = 
; or
2. P = C and σ A-validates C; or
3. P = P1 ∧ . . . ∧ Pn and σ A-validates each Pi, 1 ≤ i ≤ n; or
4. P = P1 ∨ . . . ∨ Pm and σ A-validates at least one Pi, 1 ≤ i ≤ m.

Solutions of equational problems instantiate free variables and satisfy existen-
tial and universal requirements for auxiliary variables and parameters, respectively.
To define this notion, we extend the domain of the substitution to include also
existential and universally quantified variables as follows.

Definition 10 (A-Solution). Let P = ∃W∀Y : P be a NEP. Let σ be an
idempotent substitution such that dom(σ) = Fv(P). Then σ is an A-solution of P
iff there is a ground substitution δ, where dom(δ) = W , such that for all ground
substitution λ, where dom(λ) = Y , σδλ A-validates P . The set of A-solutions of
P is denoted SA(P), or simply S(P) if A is clear from the context.

Example 4. Consider the signature Σnat := {zero : 0, suc : 1} for natural numbers,
and the nominal initial algebra Anat with zero and suc interpreted as expected.
The problem P := ∃W∀Y : W �≈α suc(Y ) has id as solution. Indeed, taking for
example δ = [W/zero] or δ = [W/a] and any choice of λ (dom(λ) = {Y }), the
composition idδλ A-validates W �≈α suc(Y ).

In Definition 10, δ is the substitution that instantiates auxiliary variables, so
there can be many (possibly infinite) number of such δ’s.

Lemma 2 (Equivariance of Solutions). If σ is an A-solution of the NEP
P then for any permutation π, π · σ (defined by [Xi/π · ti], as expected) is an
A-solution of π ·P. In particular, if an A-solution contains an atom not occurring
in P, that atom can be swapped for any other atom not occurring in P.

Lemma 2 is a direct consequence of the fact that interpretations are equiv-
ariant, and shows that solutions are closed by permutation. It allows us to use
permutations to represent infinite choices for atoms in solutions.

Example 5. Consider the problem ∀Y : X �≈α λ[a]Y , built over the signature of
Example 1. The set of solutions contains σ = [X/a] as well as (a b) · [X/a] = [X/b];
for any other atom b.
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Lemma 3 (Closure by Instantiation). If σ is an A-solution of the NEP
P = ∃W∀Y : P then any idempotent substitution σ′ obtained as an instance of
σ such that dom(σ′) = dom(σ) is also an A-solution of P. In particular, for any
such ground instance σ′ of σ there is a ground substitution δ, where dom(δ) = W ,
such that for all ground substitution λ, where dom(λ) = Y , σ′δλ A-validates P .
Proof. By definition of A-solution, to show that σ′ is an A-solution of P we need
to consider all the valuations of the form ςσ′δλ as indicated in Definitions 8, 9,
10. The result follows from the fact that for any valuation ςσ′δλ there exists an
equivalent valuation ς ′σδλ by Lemma 1.

4 A rule-based procedure

In this section we present a set of simplification rules to solve NEPs. A simplification
step, denoted P =⇒ P ′, transforms P into an equivalent problem P ′ from which
solutions are easier to extract.

4.1 Simplification Rules
Rules may have application conditions (rule controls) that define a strategy of
simplification. Our strategy gives priority to rules according to their role. We
split the rules into groups Ri as shown in Figures 2, 3 and 4: R1 eliminates
trivial constraints, R2 deals with clash and occurs check, R3 eliminates unneeded
quantifiers, R4 and R5 decompose positive and negative constraints, respectively,
R6 eliminates parameters and R7 instantiates variables. The Explosion and
Elimination of Disjunction rules in R8 search for solutions as explained below.
Finally, R9 eliminates the remaining universal quantifiers. A rule R ∈ Ri can
only be applied if no rules from Rj , where j < i, can be applied.

Since we are dealing with formulas that contain disjunction and conjunction
connectives, we need to take into account the standard Boolean axioms. To
simplify, instead of working modulo the Boolean axioms we apply a Boolean
normalisation step before a rule is applied. Following Comon and Lescanne [10],
we choose to take conjunctive normal form: Before the application of each rule
P is reduced to a conjunction of disjunctions.

The explosion rule creates new branches by instantiating variables considering
all possible ways of constructing terms (i.e., each f ∈ Σ, abstractions and atoms).
Note that Σ ∪ Atoms(P ) ∪ {a′} is a finite set (we can represent all possible
constructions with a finite number of cases), so the rule is finitely branching.

The rule Elimination of Disjunctions also builds a finite number of branches.
Therefore, our procedure builds a finitely branching tree of problems to be solved.

Rules R1-R8 are not sufficient to eliminate all parameters from a NEP (see
Example 6) in contrast with the syntactic case [7], where similar rules produce
parameterless normal forms. This is because we are dealing with both freshness
and α-equality. Indeed, normal forms for rules R1-R8 may contain parameters,
but only in disjunctions involving both freshness and equality constraints for the
same parameter as the following lemma states. The rules in R9 (Figure 4) are
introduced to deal with this problem.
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R1 : Trivial Rules
(T1) t ≈α t =⇒ � (T2) t �≈α t =⇒ ⊥ (T3) a ≈α b =⇒ ⊥
(T4) a#b =⇒ � (T5) a#a =⇒ ⊥ (T6) a #a =⇒ �
(T7) a #b =⇒ ⊥ (T8) a#t ∧ a #t =⇒ ⊥ (T9) a#t ∨ a #t =⇒ �
R2: Clash and Occurrence Check Rules
(CL1) s �≈α t =⇒ � (CL2) s ≈α t =⇒ ⊥
Conditions for (CL1) and (CL2): s(ε) �= t(ε) and neither is a moderated variable.
(O1) π · Z ≈α t =⇒ ⊥ (O2) π · Z �≈α t =⇒ �
Conditions for (O1) and (O2): Z ∈ vars(t) and t �≡ π′ · Z

R3: Elimination of parameters and auxiliary unknowns.

(C1) ∀Y , Y : P =⇒ ∀Y : P, Y /∈ vars(P )
(C2) ∃W , W : P =⇒ ∃W : P, W /∈ vars(P )
(C3) ∃W , W : π · W ≈α t ∧ P =⇒ ∃W : P, W /∈ vars(P, t)

R4: Equality and freshness simplification

(E1) π · X ≈α γ · X =⇒ ∧ ds(π, γ)#X
(E2) [a]t ≈α [a]u =⇒ t ≈α u
(E3) [a]t ≈α [b]u =⇒ (b a) · t ≈α u ∧ b#t
(E4) f(t̃) ≈α f(ũ) =⇒ ∧i ti ≈α ui

(F1) a#π · X =⇒ π−1(a)#X, π �= id
(F2) a#[a]t =⇒ �
(F3) a#[b]t =⇒ a#t
(F4) a#f(t1, . . . , tn) =⇒ ∧ia#ti

R5: Disunification
(DC) f(t̃) �≈α f(ũ) =⇒ ∨i ti �≈α ui

(D1) π · X �≈α γ · X =⇒ ∨i ds(π, γ) #X
(D2) [a]t �≈α [a]u =⇒ t �≈α u
(D3) [a]t �≈α [b]u =⇒ (b a) · t �≈α u ∨ b #t

(NF1) a #π · X =⇒ π−1(a) #X, π �= id
(NF2) a #[a]t =⇒ ⊥
(NF3) a #[b]t =⇒ a #t
(NF4) a #f(t̃) =⇒ ∨ia #ti

R6: Simplification of Parameters

(U1) ∀Y , Y : P ∧ π · Y �≈α t =⇒ ⊥ if Y �∈ vars(t)
(U2) ∀Y : P ∧ (π · Y �≈α t ∨ Q) =⇒ ∀Y : P ∧ Q[Y/π−1 · t], if Y /∈ vars(t), Y ∈ Y

(U3) ∀Y , Y : P ∧ π · Y ≈α t =⇒ ⊥, if π · Y �≡ t

(U4) ∀Y : P ∧ (π1 · Z1 ≈α t1 ∨ · · · ∨ πn · Zn ≈α tn ∨ Q) =⇒ ∀Y : P ∧ Q

(U5) ∀Y , Y : P ∧ a#Y =⇒ ⊥
(U6) ∀Y , Y : P ∧ a #Y =⇒ ⊥
Conditions for (U4):

– Each equation in the disjunction contains at least one occurrence of a parameter
and πi · Zi �≡ ti for each i = 1, . . . , n.

– Q does not contain any parameter.

R7: Instantiation Rules
(I1) π · Z ≈α t ∧ P =⇒ Z ≈α π−1 · t ∧ P [Z/π−1 · t]

– If π = id then Z is not a parameter and Z occurs in P and if t is a variable then
t occurs in P .

– If π �= id, then t is not of the form id · Z′.

(I2) π · Z �≈α t ∨ P =⇒ Z �≈α π−1 · t ∨ P [Z/π−1 · t]

– If π = id then Z occurs in P and if t is a variable then t occurs in P .
– If π �= id then t is not of the form id · Z′.

Fig. 2. Preserving Rules
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R8: Explosion and Elimination of Disjunction

(ED1)∀Y : P ∧ (P1 ∨ P2) =⇒ ∀Y : P ∧ P1, if vars(P1) ∩ Y = ∅ or vars(P2) ∩ Y = ∅.

(ED2) ∀Y1, Y2 : P ∧ (P1 ∨ P2) =⇒ ∀Y1, Y2 : P ∧ P1, if vars(P1) ∩ Y2 = ∅ and
vars(P2) ∩ Y1 = ∅

(Exp) ∃W ∀Y : P =⇒ ∃W ′∃W ∀Y : P ∧ X ≈α t, for t = f(W ′) or t = [a]W ′ or t = a

Conditions for (Exp):

1. X is a free or existential variable occurring in P , W ′ are newly chosen auxiliary
variables not occurring anywhere in the problem;

2. f ∈ Σ and a ∈ Atoms(P ) ∪ {a′}, where a′ is a new atom;
3. there exists an equation X ≈α u (or disequation X �≈α u) in P such that u is not a

variable and contains at least one parameter; and
4. no other rule can be applied.

Fig. 3. Globally Preserving Rules

Example 6. Both P = a#Y1 ∨ Y ≈α f(Y1) and P = a#Y1 ∨ a #Y ∨ Y1 ≈α f(Y )
are irreducible: neither (U4) nor (ED1) apply since all the disjuncts contain
parameters; (ED2) does not apply since each constraint has a parameter that
occurs in another constraint; (Exp) does not apply because there is no equation
or disequation with a free or existentially quantified variable in one side.

The following lemma characterises the irreducible disjunctions with respect
to rules R1-R8 where parameters may remain.

Lemma 4. Let P be a disjunction of constraints irreducible w.r.t. R1-R8. For
each parameter Y such that P = a#Y ∨Q (resp. P = a #Y ∨Q), for some atom
a, the following holds:

1. a #Y (resp. a#Y ) cannot occur in Q;
2. Y has to occur in Q;
3. if Q contains an equational constraint then it has the form Y ≈α t, where

Y /∈ vars(t), or Y ′ ≈α t, with Y ∈ vars(t);
4. Q does not contain disequations or primitive freshness constraints for free or

existentially quantified variables.

Proof. In an irreducible disjunction of constraints at least one of the sides
of equations (or disequations) is a variable, otherwise we could simplify the
equation/disequation.

Condition 1. It holds, otherwise we could apply (T9). Condition 2. It holds,
otherwise we could apply (ED2).

Condition 3. If Q had an equation of the form X ≈α t, for some free or
existentially quantified variable, then t could not contain a parameter, otherwise
we could apply rule (Exp). Therefore, t = t[Z1, . . . , Zn], for n ≥ 0 where each Zi
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R9: Simplification of parameters in freshness constraints

(U7) ∀Y , Y : P ∧ (a#Y ∨ Q) =⇒ ⊥
if R1-R8 do not apply (so Q does not contain a #Y ) and Y ∈ vars(Q).

(U8) ∀Y , Y : P ∧ (a #Y ∨ Q) =⇒ ⊥
if R1-R8 do not apply (so Q does not contain a#Y ) and Y ∈ vars(Q).

Fig. 4. Preserving Rules for (non)freshness constraints with parameters.

is either a free or existentially quantified variable, and one could apply rule ED1.
Thus, if an equation exists, one of the sides has to be a parameter, say Y ≈α t,
and Y cannot occur in t otherwise rule O2 applies.

Condition 4. If Q were to contain a disequation, say X �≈α t then t could
not contain a parameter, otherwise we could apply (Exp) as above, but then we
could apply rule (ED1). Therefore, if Q were to contain a disequation, it would
be of the form Y �≈α t, then it would either reduce with (O2) or with (U2). Thus,
Q does not contain disequations. Similary, if Q contained a primitive freshness
constraint for a free or existentially quantified variable then (ED1) would apply.

The remaining disjunctions with parameters can be simplified using the rules
in R9, since they will not produce solutions (as shown in Theorem 1).

We end this section with an example of application of the simplification rules.

Example 7. Let P be a NEP, using the signature from Example 1, as follows:

P = ∀Y : λ[a]X �≈α λ[a]λ[a]Y DC=⇒ ∀Y : [a]X �≈α [a]λ[a]Y D2=⇒ ∀Y : X �≈α λ[a]Y

Rules in R1-R7 cannot be applied and the explosion rule produces six problems:
P1 = ∃W1∀Y : X �≈α λ[a]Y ∧ X ≈α λW1
P2 = ∃W1, W2∀Y : X �≈α [a]Y ∧ X = W1W2
P3 = ∃W ∀Y : X �≈α [a]Y ∧ X = [a]W

P4 = ∃W ∀Y : X �≈α [a]Y ∧ X = [b]W
P5 = ∃W ∀Y : X �≈α [a]Y ∧ X = a
P6 = ∀Y : X �≈α [a]Y ∧ X = b

Reducing the first problem we get:

P1
I1=⇒ ∃W1∀Y : λW1 �≈α λ[a]Y ∧ X ≈α λW1

DC=⇒ ∃W1∀Y : W1 �≈α [a]Y ∧ X ≈α λW1

Exp=⇒ ∃W1W2∀Y : W1 �≈α [a]Y ∧ X ≈α λW1 ∧ W1 ≈α λW2

I1=⇒ ∃W1W2∀Y : λW2 �≈α [a]Y ∧ X ≈α λW1 ∧ W1 ≈α λW2

CL1=⇒ ∃W1W2∀Y : X ≈α λW1 ∧ W1 ≈α λW2

I1=⇒ ∃W1W2 : X ≈α λλW2 ∧ W1 ≈α λW2.

At this point P1 has reached a normal form without any parameter. Solutions of P1 can
be easily obtained by taking any instance of X of the form λλt. It is easy to check that
this choice indeed generates solutions of P. Similar reductions apply to Pi, 2 ≤ i ≤ 6.

As we will see in the next section, application of such simplification rules is
well-behaved in the sense that we do not loose any solution along the way.
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4.2 Soundness and Preservation of Solutions

The next step is to ensure that the application of rules does not change the set
of solutions of an equational problem.

Definition 11 (Soundness and preservation of solution). Let A be any
infinite subalgebra of CORE.

1. A rule R is A-sound if, P =⇒R P ′ implies S(P ′) ⊆ S(P).
2. A rule R is A-preserving if, P =⇒R P ′ implies S(P) ⊆ S(P ′).
3. A rule R is A-globally preserving if given any problem P,

S(P) ⊆
⋃

P →R π · Pi

supp(π) ∩ Atoms(P) = ∅

S(Pi).

All our rules, except those in R8, are sound and preserving (Theorem 1).
The rules in R8 create branches in the derivation tree; they are sound and only
globally preserving (Theorem 2).

Theorem 1. The rules in R1 to R7 and the rules in R9 are A-sound and
A-preserving for any infinite subalgebra A of CORE.

Proof. Rules in R1, R2, and R3 : soundness and preservation of solutions are
easy to deduce. For instance, for clash rules, (CL1) and (CL2), it follows by
inspection of deduction rules that the judgement � sγ ≈α tγ is not derivable
for any valuation ς and corresponding grounding substitution γ = σς

vars(s,t) (see
Definition 7) if the root constructors of s and t are different (hence every γ is
a solution for the disequation). For (C3) observe that we can take [W/t] as a
witness for W on a validation for ∃W : P , if W /∈ vars(P, t).
Rules in R4 and R5. It follows from soundness and preservation of simplification
rules in [14]. We use the fact that nominal equality and freshness rules from Fig.
1 are reversible; for instance, let γ be a grounding substitution, a judgement
� f(s̃)γ ≈α f(ũ)γ fails, which makes f(s̃)γ �≈α f(ũ)γ valid, iff one of the premises
� siγ ≈α uiγ does not hold.
Rules in R6: The result is straightforward for rules U1 and U3.

U2. To prove soundness for U2 notice that the solution set of a conjunction
is the intersection of the solution set of each of its members. We have to show
that every solution of Q[Y/π−1 · t] is a solution of (π · Y �≈α t ∨Q). Let γ be a
solution of Q[Y/π−1 · t] and take any substitution λ satisfying the conditions of
Definition 10. So (Q[Y/π−1 · t])γλ is valid and we need to show the validity of

(π · Y �≈α t)γλ ∨Qγλ. (1)

For each such λ there are two possible cases: First, � π · Y λ ≈α tγλ (note
that λ is a ground substitution so both sides of this equation are ground); then
we have that γλ = γλ′[Y/π−1 · tγλ]. By hypothesis, γλ validates Q[Y/π−1 · t]
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so γλ′[Y/π−1 · tγλ] validates Q. Second; �� π · Y λ ≈α tγλ, then γλ validates
π · Y �≈α t. Hence γ a solution of (1).

To prove preservation for U2, take γ a solution of ∀Y , Y : π · Y �≈α t ∨Q, we
need to show that γ is also a solution of ∀Y , Y : Q[Y/π−1 · t]. Notice that γ is a
solution of ∀Y , Y : π · Y �≈α t or ∀Y , Y : Q but it clearly cannot solve the first
problem. Hence, γ solves ∀Y , Y : Q. By Definition 10, for all substitutions λ with
domain Y ∪ {Y } we have that λγ validates Q. In particular, the substitution
[Y/π−1 · tγ]λγ which is equivalent to [Y/π−1 · t]λγ (since γ is away from λ) must
also validate Q. Consequently, λγ validates (Q[Y/π−1 · t]).

U4. Soundness for this rule follows trivially. For preservation of solutions, we
show that any solution of ∀Y :

∨
i Zi ≈α ti∨Q is a solution of ∀Y : Q. The shape

of the first problem induces a requirement that the disjunction
∨

i Zi ≈α ti does
not have a solution. To show this we prove that the negated form

∧
i Zi �≈α ti

has at least one solution. Notice that such a solution is a witness for the failure
of

∨
i Zi ≈α ti, since all of those equations have at least one parameter. Lemma 5

shows that this is true.
U5 and U6. We need to show that every solution of ∀Y , Y : P ∧ a#Y is also

a solution of ⊥, i.e., no such solution exists for the lhs of the rule. In fact, the
existence of such γ would imply that (taking λ = [Y/a]) a#a which is impossible.
For U6 we do the same reasoning with λ = [Y/[a]a].
Rules in R7. Soundness and preservation of (I1) has been proved in previous
works, since rule (I1) is used in standard nominal unification algorithms [23]. Rule
(I2) is a direct adaptation of the rule used in the standard (syntactic) case, proved
sound and preserving in [10]. Indeed, γ ∈ S(π · Z �≈α t ∨ P ) if, and only if, for
any grounding instance γ′ of γ, γ′ ∈ S(Z �≈α π−1 · t) or γ′ ∈ S(P ) (by Lemma 3).
Finally, notice that γ ∈ S(P ) \ S(Z �≈α π−1 · t) if and only if γ ∈ S(P [Z/π−1 · t]).
Rules in R9. Soundness follows trivially, since ⊥ has no solution. We show
below that U7 is A-preserving; the proof is analogous for rule (U8).

Let P = ∃W∀Y , Y : P ∧ (a#Y ∨ Q) where Q is fully reduced by R1-R8,
Y ∈ vars(Q) and Q does not contain a #Y . We prove that P does not have
solutions by induction on the number of freshness constraints in a#Y ∨Q.

Base case: Q contains just equational constraints, each containing at least one
occurrence of the parameter Y , as specified in Lemma 4. Suppose by contradiction
that there exists an A-solution γ. Thus, γ is away from Y ∪ {Y }, dom(γ) = X =
Fv(P), there is a ground substitution δ with dom(δ) = W and for all λ away
from X, W , with dom(λ) = Y ∪ {Y }, γδλ A-validates P ∧ (a#Y ∨Q). Then, it
A-validates both P and (a#Y ∨Q). The latter implies that γδλ A-validates Q
for every λ (but then Q has a solution, which is impossible due to the form of
the equational constraints) or Q implies a #Y (since there is at least one f ∈ Σ
such that f : n and n > 0, and therefore a#Y is false for an infinite number of
ground terms Y λ). The latter is impossible since a#Y is defined as a �∈ supp(Y ),
which is defined as (a a′) · Y = Y for a new a′, and reduced problems cannot
contain fixed point equations or their negations (these are simplified using rules
(E1) and (D1), respectively).
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The inductive step is proved similarly, using Lemma 4 as in the base case to
deduce that the constraints in Q cannot entail a #Y .

Theorem 2. Let A be any infinite subalgebra of CORE.

1. Rule (Exp) is A-sound and A-globally preserving.
2. Rules (ED1) and (ED2) are A-sound and A-globally preserving.

Lemma 5 guarantees the existence of a solution for a conjunction of non-trivial
disequations as long as the algebra considered has sufficient ground terms.

Lemma 5. Let P be a conjunction of non-trivial disequations. Let A be any
infinite subalgebra of CORE. Then P has at least one solution in A.

Proof. The proof proceeds by induction on the number of distinct variables
occurring in P. For the base case P has no variables. Then every substitution
solves P, since by hypothesis P does not contain any trivial disequation t �≈α t.

Assume the result holds for problems with m − 1 variables. Let P be a
conjunction of non-trivial disequations such that |vars(P )| = m and X ∈
vars(P ). For each disequation s �≈α t ∈ P, the equation s ≈α t has at most one
solution (modulo α-renaming) when the variables distinct from X are considered
as constants. Let S the set of such solutions for all these equations. Since A (the
domain of A) is infinite, there exists a ∈ A such that [X/a] /∈ S. Therefore, [X/a]
is a solution for P. Now, consider the problem P ′ = P[X/a] which has m − 1
variables. The result follows by induction hypothesis.

4.3 Termination

To prove termination we define a measure function for NEPs that strictly decreases
with each application of a rule. The measure uses the following auxiliary functions:

Definition 12 (Auxiliary Functions). The function sizePar(t) denotes the
sum of the sizes of the parameter positions in t:

sizePar(t) :=
∑

pj∈PosPar(t)

|pj |

where PosPar(t) = {pj | t|pj
= Yi for some parameter Yi}.

Given a disjunction of equations, disequations, freshness, and negated freshness
constraints d = C1 ∨ . . . ∨ Cn we define auxiliary functions φ1 and φ2 over d.

1. φ1(d) is the number of distinct parameters in d.
2. φ2(d) is the multiset {MSP(C1), . . . , MSP(Cn)} where MSP(C) is defined by:

(a) MSP(C) = 0 if C is an equation or disequation and a member of C is a
solved parameter (a parameter Y is solved in d if there exists a disequation
Y �≈α u in d and Y occurs only once in d); or if C is a primitive freshness
or a primitive negated freshness constraint;



38 M. Ayala-Rincón et al.

(b) otherwise, MSP(s ≈α t) = MSP(s �≈α t) = max(sizePar(s), sizePar(t))
and MSP(a#t) = MSP(a #t) = sizePar(t).

Definition 13 (Measure). Let P = ∃W∀Y d1∧. . .∧dn be a nominal equational
problem in conjunctive normal form. P is measured using the tuple:

Φ(P) = (Nu, Nd, ψ1(P), M, ψ2(P)), where

1. Nu is the number of free variables that are unsolved in P. A variable X is
solved if there is an equation X ≈α t and X occurs only once in P.

2. Nd is a multiset that contains for each disjunction di in P the number of
variables that are not d-solved in di.
A variable X is d-solved in di if di = X �≈α t∨Q and X does not occur in Q.

3. Ψ1(P) is the multiset {(φ1(d1), φ2(d1)), . . . , (φ1(dn), φ2(dn))}
4. M is the multiset {M(d1), . . . , M(dn)} where M(d) is the multiset of sizes of

the constraints in d. The size of a constraint is the size of its largest member,
or 0 if it has a solved variable or it is a primitive (negated) freshness.

5. Ψ2(P) is the total size of P (that is, the number of function symbols, atoms,
variables, quantifiers, conjunctions, disjunctions, 
, ⊥ in P.

Using this measure we can prove the termination of the simplification process.

Theorem 3. The procedure defined in Section 4 for application of rules, ex-
pressed as R := R1R2 . . .R9, terminates.

5 Nominal Equational Solved Forms

We have shown that the simplification process terminates and each application
of the transformation rules preserves solutions. We now characterise the normal
forms, called solved forms. Intuitively, solved forms are simple enough that one
can easily extract solutions from it. A first example of well-known solved form
is that of unification solved form: a conjunction of equations Xi = ti such that
each Xi occurs only once. It directly represents a solution mapping Xi �→ ti.

We show in Theorem 4 existence of solutions for certain solved forms, and in
Theorem 5 we prove that our procedure is complete with respect to solved forms.

Definition 14 (Solved Forms).

1. A NEP P is in parameterless solved form if it contains no universal quantifiers.
2. A NEP is a definition with constraints if it is 
,⊥ or a conjunction of the

form

P = ∃W :

(
n∧

i=1

Zi ≈α ti

)
∧

(
m∧

j=1

Z′
j �≈α vj

)
∧

(
p∧

l=1

Cl

)
,

such that:
– each Zi occurs only once in P;
– each Z ′

j is syntactically different from vj; and
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– each Cl is either a positive, a#X, or negative, a #X, freshness constraint
such that each pair a, X occurs at most once in P.

3. A NEP is in unification solved form if it is a definition with constraints which
does not contain negative constraints.
Theorem 4 below shows that a problem reduced to definition with constraints

solved form has at least one solution.

Theorem 4. Let A be any infinite subalgebra of CORE. If P �≡ ⊥ is in definition
with constraints solved form, then it has at least one solution.

Proof. First assume P is in unification solved form (see Definition 14). Let ∇
be the context containing all constraints Cl occurring in P. Furthermore, define
the substitution σ that assigns to each free variable Xi the term ti, and the
substitution δ mapping each existential variable Wk to tk. Then �∇σδ�ς , which
is equivalent to �∇�ςσδ by Lemma 1, is valid in A. Consequently,

�∇ � Xiσ ≈α tiσδ�ς and �∇ � Wkδ ≈α tkδ�ς

are valid judgements. So, σ is an A-solution of P with existential witnesses given
by δ. In the general case, when P is in definition with constraints solved form
containing also negative constraints, the construction is similar. We can guarantee
a solution for the disunification part of the problem,

m∧
j=1

Z ′
j �≈α vj , by Lemma 5.

Definition 15. A set R of rules for solving nominal equational problems is
complete w.r.t. a kind of solved forms S if for each P there exists a family of
NEPs Qi in S-solved form such that P ∗=⇒ R Qi and S(P) =

⋃
i S(Qi).

The next result states that a NEP’s normal form with respect to the simpli-
fication rules given in the previous section is a definition with constraints. In
particular, all parameters are removed from the problem. The proof is by case
analysis, considering all possible occurrences of parameters in a problem.

Theorem 5 (Completeness). Let A be any infinite subalgebra of CORE. Then
the rules in Figures 2, 3, and 4 are complete for parameterless solved forms and
definition with constraints solved forms.

6 Conclusion

In this paper, we introduced nominal equational problems (NEPs) as an extension
of standard first-order equational problems to nominal terms which, besides
equations and disequations, includes freshness and non-freshness constraints. We
proposed a sound and preserving rule-based algorithm to solve NEPs in the nominal
ground algebra CORE, and showed that this algorithm is complete for two main
types of solved forms: parameterless and definition with constraints. As future
work, we aim to investigate the purely equational approach to nominal syntax
via the formulation of freshness constraints using fixed-point equations with the

N-quantifier [21], as well as the solvability of nominal equational problems in
more complex algebras.
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Abstract. In rendez-vous protocols an arbitrarily large number of indis-
tinguishable finite-state agents interact in pairs. The cut-off problem asks
if there exists a number B such that all initial configurations of the proto-
col with at least B agents in a given initial state can reach a final config-
uration with all agents in a given final state. In a recent paper [17], Horn
and Sangnier prove that the cut-off problem is equivalent to the Petri net
reachability problem for protocols with a leader, and in EXPSPACE for
leaderless protocols. Further, for the special class of symmetric protocols
they reduce these bounds to PSPACE and NP, respectively. The problem
of lowering these upper bounds or finding matching lower bounds is left
open. We show that the cut-off problem is P-complete for leaderless pro-
tocols, NP-complete for symmetric protocols with a leader, and in NC
for leaderless symmetric protocols, thereby solving all the problems left
open in [17].

Keywords: rendez-vous protocols · cut-off problem · Petri nets

1 Introduction

Distributed systems are often designed for an unbounded number of participant
agents. Therefore, they are not just one system, but an infinite family of systems,
one for each number of agents. Parameterized verification addresses the problem
of checking that all systems in the family satisfy a given specification.

In many application areas, agents are indistinguishable. This is the case in
computational biology, where cells or molecules have no identities; in some se-
curity applications, where the agents’ identities should stay private; or in ap-
plications where the identities can be abstracted away, like certain classes of
multithreaded programs [15,2,31,3,18,25]. Following [3,18], we use the term repli-
cated systems for distributed systems with indistinguishable agents. Replicated
systems include population protocols, broadcast protocols, threshold automata,
and many other models [15,2,11,7,16]. They also arise after applying a counter
abstraction [28,3]. In finite-state replicated systems the global state of the sys-
tem is determined by the function (usually called a configuration) that assigns
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to each state the number of agents that currently occupy it. This feature makes
many verification problems decidable [4,10].

Surprisingly, there is no a priori relation between the complexity of a param-
eterized verification question (i.e., whether a given property holds for all initial
configurations, or, equivalently, whether its negation holds for some configura-
tion), and the complexity of its corresponding single-instance question (whether
the property holds for a fixed initial configuration). Consider replicated systems
where agents interact in pairs [15,17,2]. The complexity of single-instance ques-
tions is very robust. Indeed, checking most properties, including all properties
expressible in LTL and CTL, is PSPACE-complete [9]. On the contrary, the com-
plexity of parameterized questions is very fragile, as exemplified by the following
example. While the existence of a reachable configuration that populates a given
state with at least one agent is in P, and so well below PSPACE, the existence
of a reachable configuration that populates a given state with exactly one agent
is as hard as the reachability problem for Petri nets, and so non-elementary [6].
This fragility makes the analysis of parameterized questions very interesting, but
also much harder.

Work on parameterized verification has concentrated on whether every ini-
tial configuration satisfies a given property (see e.g. [15,11,3,18,7]). However,
applications often lead to questions of the form “do all initial configurations
in a given set satisfy the property?”, “do infinitely many initial configurations
satisfy the property?”, or “do all but finitely many initial configurations satisfy
the property?”. An example of the first kind is proving correctness of popula-
tion protocols, where the specification requires that for a given partition I0, I1
of the set of initial configurations, and a partition Q0, Q1 of the set of states,
runs starting from I0 eventually trap all agents within Q0, and similarly for I1
and Q1 [12]. An example of the third kind is the existence of cut-offs ; cut-off
properties state the existence of an initial configuration such that for all larger
initial configurations some given property holds [8,4]. A systematic study of the
complexity of these questions is still out of reach, but first results are appearing.
In particular, Horn and Sangnier have recently studied the complexity of the
cut-off problem for parameterized rendez-vous networks [17]. The problem takes
as input a network with one single initial state init and one single final state fin,
and asks whether there exists a cut-off B such that for every number of agents
n ≥ B, the final configuration in which all agents are in state fin is reachable
from the initial configuration in which all agents are in state init .

Horn and Sangnier study two versions of the cut-off problem, for leaderless
networks and networks with a leader. Intuitively, a leader is a distinguished agent
with its own set of states. They show that in the presence of a leader the cut-off
problem and the reachability problem for Petri nets problems are inter-reducible,
which shows that the cut-off problem is in the Ackermannian complexity class
Fω [22], and non-elementary [6]. For the leaderless case, they show that the prob-
lem is in EXPSPACE. Further, they also consider the special case of symmetric
networks, for which they obtain better upper bounds: PSPACE for the case of a
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Horn and Sangnier Asymmetric rendez-vous Symmetric rendez-vous
Presence of a leader Decidable, non-elementary PSPACE
Absence of a leader EXPSPACE NP

This paper Asymmetric rendez-vous Symmetric rendez-vous
Presence of a leader Decidable, non-elementary NP-complete
Absence of a leader P-complete NC

Table 1. Summary of the results by Horn and Sangnier and the results of this paper.

leader, and NP in the leaderless case. These results are summarized at the top
of Table 1.

In [17] the question of improving the upper bounds or finding matching lower
bounds is left open. In this paper we close it with a surprising answer: All
elementary upper bounds of [17] can be dramatically improved. In particular,
our main result shows that the EXPSPACE bound for the leaderless case can be
brought down to P. Further, the PSPACE and NP bounds of the symmetric case
can be lowered to NP and NC, respectively, as shown at the bottom of Table 1.
We also obtain matching lower bounds. Finally, we provide almost tight upper
bounds for the size of the cut-off B; more precisely, we show that if B exists,

then B ∈ 2n
O(1)

for a protocol of size n.

Our results follow from two lemmas, called the Scaling and Insertion Lemmas,
that connect the continuous semantics for Petri nets to their standard semantics.
In the continuous semantics of Petri nets transition firings can be scaled by a
positive rational factor; for example, a transition can fire with factor 1/3, taking
“1/3 of a token” from its input places. The continuous semantics is a relaxation
of the standard one, and its associated reachability problem is much simpler
(polynomial instead of non-elementary [14,6,5]). The Scaling Lemma1 states that
given two markings M,M ′ of a Petri net, if M ′ is reachable from M in the
continuous semantics, then nM ′ is reachable from nM in the standard semantics

for some n ∈ 2m
O(1)

, where m is the total size of the net and the markings. The
Insertion Lemma states that, given four markings M,M ′, L, L′, ifM ′ is reachable
from M in the continuous semantics and the marking equation L′ = L+Ax has
a solution x ∈ ZT (observe that x can have negative components), then nM ′+L′

is reachable from nM + L in the standard semantics for some n ∈ 2m
O(1)

. We
think that these lemmas can be of independent interest.

The paper is organized as follows. Section 2 contains preliminaries; in par-
ticular, it defines the cut-off problem for rendez-vous networks and reduces it to
the cut-off problem for Petri nets. Section 3 gives a polynomial time algorithm
for the leaderless cut-off problem for acyclic Petri nets. Section 4 introduces
the Scaling and Insertion Lemmas, and Section 5 presents the novel polynomial

1 Heavily based on previous results by Fraca and Haddad [14].
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time algorithm for the cut-off problem. Sections 6 and 7 present the results for
symmetric networks, for the cases with and without leaders, respectively.

Due to lack of space, full proofs of some of the lemmas can be found in the
appendix.

2 Preliminaries

Multisets Let E be a finite set. For a semi-ring S, a vector from E to S is a
function v : E → S. The set of all vectors from E to S will be denoted by SE . In
this paper, the semi-rings we will be concerned with are the natural numbers N,
the integers Z and the non-negative rationals Q≥0 (under the usual addition and
multiplication operators). The support of a vector v is the set �v� := {e : v(e) �=
0} and its size is the number ‖v‖ =

∑
e∈�v� abs(v(e)) where abs(x) denotes the

absolute value of x. Vectors from E to N are also called discrete multisets (or
just multisets) and vectors from E to Q≥0 are called continuous multisets.

Given a multiset M and a number α we let α ·M be the multiset given by
(α ·M)(e) = M(e) · α for all e ∈ E. Given two multisets M and M ′ we say that
M ≤ M ′ if M(e) ≤ M ′(e) for all e ∈ E and we let M + M ′ be the multiset
given by (M +M ′)(e) = M(e) +M ′(e) and if M ′ ≤ M , we let M −M ′ be the
multiset given by (M −M ′)(e) = M(e)−M ′(e). The empty multiset is denoted
by 0. We sometimes denote multisets using a set-like notation, e.g. �a, 2 · b, c�
denotes the multiset given by M(a) = 1,M(b) = 2,M(c) = 1 and M(e) = 0 for
all e /∈ {a, b, c}.

Given an I × J matrix A with I and J sets of indices, I ′ ⊆ I and J ′ ⊆ J ,
we let AI′×J ′ denote the restriction of M to rows indexed by I ′ and columns
indexed by J ′.

Rendez-vous protocols and the cut-off problem. Let Σ be a fixed finite
set which we will call the communication alphabet and we let RV (Σ) = {!a, ?a :
a ∈ Σ}. The symbol !a denotes that the message a is sent and ?a denotes that
the message a is received.

Definition 1. A rendez-vous protocol P is a tuple (Q,Σ, init ,fin, R) where Q
is a finite set of states, Σ is the communication alphabet, init ,fin ∈ Q are the
initial and final states respectively and R ⊆ Q×RV (Σ)×Q is the set of rules.

The size |P| of a protocol is defined as the number of bits needed to encode
P in {0, 1}∗ using some standard encoding. A configuration C of P is a multiset
of states, where C(q) should be interpreted as the number of agents in state
q. We use C(P) to denote the set of all configurations of P. An initial (final)
configuration C is a configuration such that C(q) = 0 if q �= init (resp. C(q) = 0
if q �= fin). We use Cn

init (Cn
fin) to denote the initial (resp. final) configuration

such that Cn
init(init) = n (resp. Cn

fin(fin) = n).
The operational semantics of a rendez-vous protocol P is given by means

of a transition system between the configurations of P. We say that there is
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a transition between C and C ′, denoted by C ⇒ C ′ iff there exists a ∈ Σ,
p, q, p′, q′ ∈ Q such that (p, !a, p′), (q, ?a, q′) ∈ R, C ≥ �p, q� and C ′ = C −
�p, q� + �p′, q′�. As usual,

∗
=⇒ denotes the reflexive and transitive closure of ⇒.

The cut-off problem for rendez-vous protocols, as defined in [17], is:

Given: A rendez-vous protocol P
Decide: Is there B ∈ N such that Cn

init
∗
=⇒ Cn

fin for every n ≥ B ?

If such a B exists then we say that P admits a cut-off and that B is a cut-off
for P.

Petri nets. Rendez-vous protocols can be seen as a special class of Petri nets.

Definition 2. A Petri net is a tuple N = (P, T,Pre,Post) where P is a finite
set of places, T is a finite set of transitions, Pre and Post are matrices whose
rows and columns are indexed by P and T respectively and whose entries belong
to N. The incidence matrix A of N is defined to be the P × T matrix given by
A = Post −Pre. Further by the weight of N , we mean the largest absolute value
appearing in the matrices Pre and Post.

The size |N | of N is defined as the number of bits needed to encode N in
{0, 1}∗ using some suitable encoding. For a transition t ∈ T we let

•
t = {p :

Pre[p, t] > 0} and t
•
= {p : Post [p, t] > 0}. We extend this notation to set of

transitions in the obvious way. Given a Petri net N , we can associate with it a
graph where the vertices are P ∪ T and the edges are {(p, t) : p ∈ •

t} ∪ {(t, p) :
p ∈ t

•}. A Petri net N is called acyclic if its associated graph is acyclic.
A marking of a Petri net is a multiset M ∈ NP , which intuitively denotes

the number of tokens that are present in every place of the net. For t ∈ T and
markings M and M ′, we say that M ′ is reached from M by firing t, denoted

M
t−→M ′, if for every place p, M(p) ≥ Pre[p, t] and M ′(p) = M(p) +A[p, t].
A firing sequence is any sequence of transitions σ = t1, t2, . . . , tk ∈ T ∗. The

support of σ, denoted by �σ�, is the set of all transitions which appear in σ. We
let σσ′ denote the concatenation of two sequences σ, σ′.

Given a firing sequence σ = t1, t2, . . . , tk ∈ T ∗, we let M
σ−→ M ′ denote that

there exist M1, . . . ,Mk−1 such that M
t1−→M1

t2−→M2 . . .Mk−1
tk−→M ′. Further,

M → M ′ denotes that there exists t ∈ T such that M
t−→ M ′, and M

∗−→ M ′

denotes that there exists σ ∈ T ∗ such that M
σ−→M ′.

Marking equation of a Petri net system. In the following, a Petri net system is
a triple (N ,M,M ′) where N is a Petri net and M �= M ′ are markings. The
marking equation for (N ,M,M ′) is the equation

M ′ = M +Av

over the variables v. It is well known that M
σ−→ M ′ implies M ′ = M + A−→σ ,

where −→σ ∈ NT is the the Parikh image of σ, defined as the vector whose com-
ponent −→σ [t] for transition t is equal to the number of times t appears in σ.

Therefore, if M
σ−→M ′ then −→σ is a nonnegative integer solution of the marking

equation. The converse does not hold.
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From rendez-vous protocols to Petri nets. Let P = (Q,Σ, init ,fin, R) be
a rendez-vous protocol. Create a Petri net NP = (P, T,Pre,Post) as follows.
The set of places is Q. For each letter a ∈ Σ and for each pair of rules r =
(q, !a, s), r′ = (q′, ?a, s′) ∈ R, add a transition tr,r′ to NP and set

– Pre[p, t] = 0 for every p /∈ {q, q′}, Post [p, t] = 0 for every p /∈ {s, s′}
– If q = q′ then Pre[q, t] = −2, otherwise Pre[q, t] = Pre[q′, t] = −1
– If s = s′ then Post [s, t] = 2, otherwise Post [s, t] = Post [s′, t] = 1.

It is clear that any configuration of a protocol P is also a marking of NP ,
and vice versa. Further, the following proposition is obvious.

Proposition 1. For any two configurations C and C ′ we have that C
∗
=⇒ C ′

over the protocol P iff C
∗−→ C ′ over the Petri net NP .

Consequently, the cut-off problem for Petri nets, defined by

Given : A Petri net system (N ,M,M ′)

Decide: Is there B ∈ N such that n ·M ∗−→ n ·M ′ for every n ≥ B ?

generalizes the problem for rendez-vous protocols.

3 The cut-off problem for acyclic Petri nets

We show that the cut-off problem for acyclic Petri nets can be solved in polyno-
mial time. The reason for considering this special case first is that it illustrates
one of the main ideas of the general case in a very pure form.

Let us fix a Petri net system (N ,M,M ′) for the rest of this section, where
N = (P, T, Pre, Post) is acyclic and A is its incidence matrix. It is well-known
that in acyclic Petri nets the reachability relation is characterized by the marking
equation (see e.g. [24]):

Proposition 2 ([24]). Let (N ,M,M ′) be an acyclic Petri net system. For

every sequence σ ∈ T ∗, we have M
σ−→ M ′ iff −→σ is a solution of the marking

equation. Consequently, M
∗−→ M ′ iff the marking equation has a nonnegative

integer solution.

This proposition shows that the reachability problem for acyclic Petri nets
reduces to the feasibilty problem (i.e., existence of solutions) of systems of linear
diophantine equations over the nonnegative integers. So the reachability problem
for acyclic Petri nets is in NP, and in fact both the reachability and the feasibility
problems are NP-complete [13].

There are two ways to relax the conditions on the solution so as to make the
feasibility problem polynomial. Feasibility over the nonnegative rationals and
feasibility over all integers are both in P. The first is due to the polynomiality
of linear programming. For the second, feasibility can be decided in polynomial
time after computing the Smith or Hermite normal forms (see e.g. [29]), which
can themselves be computed in polynomial time [19]. We show that the cut-off
problem can be reduced to these two relaxed problems.
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3.1 Characterizing acyclic systems with cut-offs

Horn and Sangnier proved in [17] a very useful charaterization of the rendez-
vous protocols with a cut-off: A rendez-vous protocol P admits a cut-off iff there
exists n ∈ N such that Cn

init
∗
=⇒ Cn

fin and Cn+1
init

∗
=⇒ Cn+1

fin . The proof immediately
generalizes to the case of Petri nets:

Lemma 1 ([17]). A Petri net system (N ,M,M ′) (acyclic or not) admits a cut-

off iff there exists n ∈ N such that n ·M ∗−→ n ·M ′ and (n+1) ·M ∗−→ (n+1) ·M ′.

Moreover if n ·M ∗−→ n ·M ′ and (n+ 1) ·M ∗−→ (n+ 1) ·M ′, then n2 is a cut-off
for the system.

Using this lemma, we characterize those acyclic Petri net systems which
admit a cut-off.

Theorem 1. An acyclic Petri net system (N ,M,M ′) admits a cut-off iff the
marking equation has solutions x ∈ QT

≥0 and y ∈ ZT such that �y� ⊆ �x�.

Proof. (⇒): Suppose (N ,M,M ′) admits a cut-off. Hence there exists b ∈ N
such that for all n ≥ b we have nM

∗−→ nM ′. Let bM
σ′
−→ bM ′ and (b+ 1)M

τ ′
−→

(b+1)M ′. Then, notice that (2b+1)M
σ′τ ′
−−−→ (2b+1)M ′ and (2b+2)M

τ ′τ ′
−−→ (2b+

2)M ′. Hence, if we let n = 2b+ 1, σ = σ′τ ′ and τ = τ ′τ ′ we have, nM
σ−→ nM ′,

(n+1)M
τ−→ (n+1)M ′ and �τ� ⊆ �σ�. By Proposition 2, there exist x′,y′ ∈ NT

such that �y′� ⊆ �x′�, nM ′ = nM + Ax′ and (n + 1)M ′ = (n + 1)M + Ay′.
Letting x = x′/n and y = y′ − x′, we get our required vectors.

(⇐): Suppose x ∈ QT
≥0 and y ∈ ZT are solutions of the marking equation such

that �y� ⊆ �x�. Let μ be the least common multiple of the denominators of
the components of x, and let α be the largest absolute value of the numbers in
the vector y. By definition of μ we have α(μx) ∈ NT . Also, since �y� ⊆ �x� it
follows by definition of α that α(μx) + y ≥ 0 and hence α(μx) + y ∈ NT . Since
M ′ = M +Ax and M ′ = M +Ay we get

αμM ′ = αμM +A(αμx) and (αμ+ 1)M ′ = (αμ+ 1)M +A(αμx+ y)

Taking αμ = n, by Proposition 2 we get that nM
∗−→ nM ′ and (n + 1)M

∗−→
(n+ 1)M ′. By Lemma 1, (N ,M,M ′) admits a cut-off.

Intuitively, the existence of the rational solution x ∈ QT
≥0 guarantees nM

∗−→
nM ′ for infinitely many n, and the existence of the integer solution y ∈ ZT

guarantees that for one of those n we have (n+ 1)M
∗−→ (n+ 1)M ′ as well.

Example 1. The net system given by the net on Figure 1 along with the markings
M = �i� and M ′ = �f� admits a cut-off. The conditions of the theorem are
satisfied by x = ( 15 ,

1
5 ,

1
5 ,

1
5 ) and y = (−1, 1, 1, 1).
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Fig. 1. A net with cut-off 2.

3.2 Polynomial time algorithm

We derive a polynomial time algorithm for the cut-off problem from the char-
acterization of Theorem 1. The first step is the following lemma. A very similar
lemma is proved in [14], but since the proof is short we give it for the sake of
completeness:

Lemma 2. If the marking equation is feasible over Q≥0, then it has a solution
with maximum support. Moreover, such a solution can be found in polynomial
time.

Proof. If y, z ∈ QT
≥0 are solutions of the marking equation, then we have M ′ =

M + A((y + z)/2) and �y� ∪ �z� ⊆ �(y + z)/2�. Hence if the marking equation
if feasible over Q≥0, then it has a solution with maximum support.

To find such a solution in polynomial time we proceed as follows. For every
transition t we solve the linear program M ′ = M +Av,v ≥ 0,v(t) > 0. (Recall
that solving linear programs over the rationals can be done in polynomial time).
Let {t1, . . . , tn} be the set of transitions whose associated linear programs are
feasible over QT

≥0, and let {u1, . . . ,un} be solutions to these programs. Then

1/n ·
∑n

i=1 ui is a solution of the marking equation with maximum support.

We now have all the ingredients to give a polynomial time algorithm.

Theorem 2. The cut-off problem for acyclic net systems can be solved in poly-
nomial time.

Proof. First, we check that the marking equation has a solution over the non-
negative rationals. If such a solution does not exist, by Theorem 1 the given net
system does not admit a cut-off.

Suppose such a solution exists. By Lemma 2 we can find a non-negative
rational solution x with maximum support in polynomial time. Let U contain
all the transitions t such that xt = 0. We now check in polynomial time if the
marking equation has a solution y over ZT such that yt = 0 for every t ∈ U . By
Theorem 1 such a solution exists iff the net system admits a cut-off.
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The rendez-vous protocol given in Figure 2, which was stated in [17], is an
example of a protocol where the smallest cut-off is exponential in the size of
the protocol. In the next sections, we will actually prove that if a net system N
(acyclic or not) admits a cut-off, then there is one with a polynomial number of
bits in |N |.

init q1 q2 q3 . . . qn fin
!1 !2 !3 !n !a

!a

?1

?2

?3

?n
?a

Fig. 2. Example of a protocol with an exponential cut-off

4 The Scaling and Insertion lemmas

Similar to the case of acyclic net systems, we would like to provide a character-
ization of net systems admitting a cut-off and then use this characterization to
derive a polynomial time algorithm. Unfortunately, in general net systems there
is no characterization of reachability akin to Proposition 2 for acyclic systems.
To this end, we prove two intermediate lemmas to help us come up with a char-
acterization for cut-off admissible net systems in the general case. We believe
that these two lemmas could be of independent interest in their own right. Fur-
ther, the proofs of both lemmas are provided so that it will enable us later on
to derive a bound on the cut-off for net systems.

4.1 The Scaling Lemma

The Scaling Lemma shows that, given a Petri net system (N ,M,M ′), whether

nM
∗−→ nM ′ holds for some n ≥ 1 can be decided in polynomial time; more-

over, if nM
∗−→ nM ′ holds for some n, then it holds for some n with at most

(|N |(log ‖M‖ + log ‖M ′‖))O(1) bits. The name of the lemma is due to the fact
that the firing sequence leading from nM to nM ′ is obtained by scaling up a
continuous firing sequence from M to M ′; the existence of such a continuous
sequence can be decided in polynomial time [14].

In the rest of the section we first recall continuous Petri nets and the chara-
terization of [14], and then present the Scaling Lemma2.

2 The lemma is implicitly proved in [14], but the bound on the size of n is hidden in
the details of the proof, and we make it explicit.



Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy 51

Reachability in continuous Petri nets. Petri nets can be given a continuous
semantics (see e.g. [1,30,14]), in which markings are continuous multisets; we call
them continuous markings. A continuous marking M enables a transition t with
factor λ ∈ Q≥0 if M(p) ≥ λ · Pre[p, t] for every place p; we also say that M
enables λt. If M enables λt, then λt can fire or occur, leading to a new marking
M ′ given by M ′(p) = M(p) + λ · A[p, t] for every p ∈ P . We denote this by

M
λt−→
Q

M ′, and say that M ′ is reached from M by firing λt. A continuous firing
sequence is any sequence of transitions σ = λ1t1, λ2t2, . . . , λktk ∈ (Q≥0 × T )∗.

We let M
σ−→
Q

M ′ denote that there exist continuous markings M1, . . . ,Mk−1

such that M
λ1t1−−−→

Q
M1

λ2t2−−−→
Q

M2 · · ·Mk−1
λktk−−−→

Q
M ′. Further, M

∗−→
Q

M ′ denotes

that M
σ−→
Q

M ′ holds for some continuous firing sequence σ.
The Parikh image of σ = λ1t1, λ2t2, . . . , λktk ∈ (Q≥0 × T )∗ is the vector

−→σ ∈ QT
≥0 where −→σ [t] =

∑k
i=1 δi,tλi, where δi,t = 1 if ti = t and 0 otherwise.

The support of σ is the support of its Parikh image −→σ . If M
σ−→Q M ′ then

−→σ is a solution of the marking equation over QT
≥0, but the converse does not

hold. In [14], Fraca and Haddad strengthen this necessary condition to make
it also sufficient, and use the resulting characterization to derive a polynomial
algorithm.

Theorem 3 ([14]). Let (N ,M,M ′) be a Petri net system.

– M
σ−→Q M ′ iff −→σ is a solution of the marking equation over QT

≥0, and there
exist continuous firing sequences τ , τ ′ and continuous markings L and L′

such that �τ� = �σ� = �τ ′�, M τ−→
Q

L, and L′ τ ′
−→

Q
M ′.

– It can be decided in polynomial time if M
∗−→Q M ′ holds.

Scaling. It follows easily from the definitions that nM
∗−→ nM ′ holds for some

n ≥ 1 iff M
∗−→
Q

M ′. Indeed, if M
σ−→
Q

M ′ for some σ = λ1t1, λ2t2, . . . , λktk ∈
(Q≥0 × T )∗, then we can scale this continuous firing sequence to a discrete se-

quence nM
nσ−−→
Q

nM ′ where n is the smallest number such that nλ1, . . . , nλk ∈ N,
and nσ = tnλ1

1 tnλ2
2 . . . tnλk

k . So Theorem 3 immediately implies that the existence

of n ≥ 1 such that nM
∗−→ nM ′ can be decided in polynomial time. The following

lemma also gives a bound on n.

Lemma 3. Let (N ,M,M ′) be a Petri net system with weight w such that M
σ−→
Q

M ′ for some continuous firing sequence σ ∈ (Q≥0×T )∗. Let m be the number of
transitions in �σ� and let � be ‖−→σ ‖. Let k be the smallest natural number such
that k−→σ ∈ NT . Then, there exists a firing sequence τ ∈ T ∗ such that �τ� = �σ�
and (

16w(w + 1)2mk� ·M
) τ−→

(
16w(w + 1)2mk� ·M ′)

Lemma 4. (Scaling Lemma). Let (N ,M,M ′) be a Petri net system such

that M
σ−→
Q

M ′. There exists a number n with a polynomial number of bits in

|N |(log ‖M‖+ log ‖M ′‖) such that nM
τ−→ nM ′ for some τ with �τ� = �σ�.
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4.2 The Insertion Lemma

In the acyclic case, the existence of a cut-off is characterized by the existence of
solutions to the marking equation QT

≥0 and ZT . Intuitively, in the general case

we replace the existence of solutions over QT
≥0 by the conditions of the Scaling

Lemma, and the existence of solutions over ZT by the Insertion Lemma:

Lemma 5 (Insertion Lemma). Let M,M ′, L, L′ be markings of N satisfying

M
σ−→ M ′ for some σ ∈ T ∗ and L′ = L + Ay for some y ∈ ZT such that

�y� ⊆ �σ�. Then μM + L
∗−→ μM ′ + L′ for μ = ‖y‖(‖−→σ ‖nw + nw + 1) , where

w is the weight of N , and n is the number of places in
•�σ�.

The idea of the proof is a follows: In a first stage, we asynchronously execute
multiple “copies” of the firing sequence σ from multiple “copies” of the marking
M , until we reach a marking at which all places of

•�σ� contain a sufficiently
large number of tokens. At this point we temporarily interrupt the executions
of the copies of σ to insert a firing sequence with Parikh mapping ‖y‖−→σ + y.
The net effect of this sequence is to transfer some copies of M to M ′, leaving
the other copies untouched, and exactly one copy of L to L′. In the third stage,
we resume the interrupted executions of the copies of σ, which completes the
transfer of the remaining copies of M to M ′ .

Proof. Let x be the Parikh image of σ, i.e., x = −→σ . Since M
σ−→ M ′, by the

marking equation we have M ′ = M +Ax

First stage: Let λx = ‖x‖, λy = ‖y‖ and μ = λy(λxnw + nw + 1). Let σ :=

r1, r2, . . . , rk and let M =: M0
r1−→ M1

r2−→ M2 . . .Mk−1
rk−→ Mk := M . Notice

that for each place p ∈ •�σ�, there exists a marking Mip ∈ {M0, . . . ,Mk−1} such
that Mip(p) > 0.

Since each of the markings in {Mip}p∈•�σ� can be obtained from M by firing
a (suitable) prefix of σ, it is easy to see that from the marking μM + L =
λyM +L+(λxλynw +λynw)M we can reach the marking First := λyM +L+∑

p∈•�σ�(λxλyw + λyw)Mip . This completes our first stage.

Second stage - Insert: Since �y� ⊆ �σ�, if y(t) �= 0 then x(t) �= 0. Since
x(t) ≥ 0 for every transition, it now follows that (λyx + y)(t) ≥ 0 for every
transition t and (λyx+ y)(t) > 0 precisely for those transitions in �σ�.

Let ξ be any firing sequence such that
−→
ξ = λyx + y. Notice that for every

place p ∈ •�σ�, First(p) ≥ λxλyw+λyw ≥ ‖(λyx+y)‖·w . By an easy induction

on ‖ξ‖, it follows that that First ξ−→ Second for some marking Second. By the
marking equation, it follows that Second = λyM

′ + L′ +
∑

p∈•�σ�(λxλyw +

λyw)Mip . This completes our second stage.

Third stage: Notice that for each place p ∈ •�σ�, by construction of Mip , there
is a firing sequence which takes the marking Mip to the marking M ′. It then
follows that there is a firing sequence which takes the marking Second to the
marking λyM

′ + L′ +
∑

p∈•�σ�(λxλyw + λyw)M ′ = μM ′ + L′. This completes
our third stage and also completes the desired firing sequence from μM + L to
μM ′ + L′.
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5 Polynomial time algorithm for the general case

Let (N ,M,M ′) be a net system with N = (P, T, Pre, Post), such that A is its
incidence matrix. As in Section 3, we first characterize the Petri net systems
that admit a cut-off, and then provide a polynomial time algorithm.

5.1 Characterizing systems with cut-offs

We generalize the characterization of Theorem 1 for acyclic Petri net systems to
general systems.

Theorem 4. A Petri net system (N ,M,M ′) admits a cut-off iff there exists

some rational firing sequence σ such that M
σ−→
Q

M ′ and the marking equation

has a solution y ∈ ZT such that �y� ⊆ �σ�.

Proof. (⇒): Assume (N ,M,M ′) admits a cut-off. Hence there exists B ∈ N such

that for all n ≥ B we have nM
∗−→ nM ′. Similar to the proof of theorem 1, we

can show that there exist n ∈ N and firing sequences τ, τ ′ such that nM
τ−→ nM ′,

(n+ 1)M
τ ′
−→ (n+ 1)M ′ and �τ ′� ⊆ �τ�.

Let τ = t1t2 · · · tk. Construct the rational firing sequence σ := t1/n t2/n · · ·
tk/n. From the fact that nM

τ−→ nM ′, we can easily conclude by induction on k

thatM
σ−→Q M ′. Further, by the marking equation we have nM ′ = nM+A−→τ and

(n+1)M ′ = (n+1)M +A
−→
τ ′ . Let y =

−→
τ ′ −−→τ . Then y ∈ ZT and M ′ = M +Ay.

Further, since �τ ′� ⊆ �τ� = �σ�, we have �y� ⊆ �σ�.

(⇐): Assume there exists a rational firing sequence σ and a vector y ∈ ZT such

that �y� ⊆ �σ�, M σ−→
Q

M ′ and M ′ = M+Ay. Let s = |N |(log ‖M‖+log ‖M ′‖).
It is well known that if a system of linear equations over the integers is feasible,
then there is a solution which can be described using a number of bits which is
polynomial in the size of the input (see e.g. [20]). Hence, we can assume that
‖y‖ can be described using sO(1) bits.

By Lemma 4 there exists n (which can be described using sO(1) bits) and a

firing sequence τ with �τ� = �σ� such that nM
τ−→ nM ′. Hence knM

∗−→ knM ′ is
also possible for any k ∈ N. By Lemma 5, there exists μ (which can once again

be described using sO(1) bits) such that μnM + M
∗−→ μnM ′ + M ′ is possible.

By Lemma 1 the system (N ,M,M ′) admits a cut-off with a polynomial number
of bits in s.

Notice that we have actually proved that if a net system admits a cut-off
then it admits a cut-off with a polynomial number of bits in its size. Since the
cut-off problem for a rendez-vous protocol P can be reduced to a cut-off problem
for the Petri net system (NP , �init�, �fin�), it follows that,

Corollary 1. If the system (N ,M,M ′) admits a cut-off then it admits a cut-
off with a polynomial number of bits in |N |(log ‖M‖ + log ‖M ′‖). Hence, if a
rendez-vous protocol P admits a cut-off then it admits a cut-off with a polynomial
number of bits in |P|.
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5.2 Polynomial time algorithm

We use the characterization given in the previous section to provide a polynomial
time algorithm for the cut-off problem. The following lemma, which was proved
in [14] and whose proof is given in the appendix, enables us to find a firing
sequence between two markings with maximum support.

Lemma 6. [14] Among all the rational firing sequences σ such that M
σ−→
Q

M ′, there is one with maximum support. Moreover, the support of such a firing
sequence can be found in polynomial time.

We now have all the ingredients to prove the existence of a polynomial time
algorithm.

Theorem 5. The cut-off problem for net systems can be solved in polynomial
time.

Proof. First, we check that there is a rational firing sequence σ with M
σ−→
Q

M ′, which can be done in polynomial time by ([14], Proposition 27). If such a
sequence does not exist, by Theorem 4 the given net system does not admit a
cut-off.

Suppose such a sequence exists. By Lemma 6 we can find in polynomial time,
the maximum support S of all the firing sequences τ such that M

τ−→
Q

M ′. We

now check in polynomial time if the marking equation has a solution y over ZT

such that y(t) = 0 for every t /∈ S. By Theorem 4 such a solution exists iff the
net system admits a cut-off.

This immediately proves that the cut-off problem for rendez-vous protocols
is also in polynomial time. By an easy logspace reduction from the Circuit Value
Problem [21], we prove that

Lemma 7. The cut-off problem for rendez-vous protocols is P-hard.

Clearly, this also proves that the cut-off problem for Petri nets is P-hard.

6 Symmetric rendez-vous protocols

In [17] Horn and Sangnier introduce symmetric rendez-vous protocols, where
sending and receiving a message at each state has the same effect, and show
that the cut-off problem is in NP. We improve on their result and shown that it
is in NC.

Recall that NC is the set of problems in P that can be solved in polyloga-
rithmic parallel time, i.e., problems which can be solved by a uniform family of
circuits with polylogarithmic depth and polynomial number of gates. Two well-
known problems which lie in NC are graph reachability and feasibility of linear
equations over the finite field F2 of size 2 [27,23]. We proceed to formally define
symmetric protocols and state our results.
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Definition 3. A rendez-vous protocol P = (Q,Σ, init ,fin, R) is symmetric, iff
its set of rules is symmetric under swapping !a and ?a for each a ∈ Σ, i.e., for
each a ∈ Σ, we have (q, !a, q′) ∈ R iff (q, ?a, q′) ∈ R.

Horn and Sangnier show that, because of their symmetric nature, there is a
very easy characterization for cut-off admitting symmetric protocols.

Proposition 3. ([17], Lemma 18) A symmetric protocol P admits a cut-off iff

there exists an even number e and an odd number o such that Ce
init

∗−→ Ce
fin and

Co
init

∗−→ Co
fin .

From a symmetric protocol P, we can derive a graph G(P) where the vertices
are the states and there is an edge between q and q′ iff there exists a ∈ Σ such
that (q, a, q′) ∈ R. The following proposition is immediate from the definition of
symmetric protocols:

Proposition 4. Let P be a symmetric protocol. There exists an even number
e such that Ce

init
∗−→ Ce

fin iff there is a path from init to fin in the graph G(P).

Proof. The left to right implication is obvious. For the other side, suppose there
is a path init , q1, q2, . . . , qm−1,fin in the graphG(P). Then notice that �2·init� →
�2 · q1� → �2 · q2� · · · → �2 · qm−1� → �2 · qf� is a valid run of the protocol.

Since graph reachability is in NC , this takes care of the “even” case from
Proposition 3. Hence, we only need to take care of the “odd” case from Propo-
sition 3.

Fix a symmetric protocol P for the rest of the section. As a first step, for
each state q ∈ Q, we compute if there is a path from init to q and if there is
a path from q to fin in the graph G(P). Since graph reachability is in NC this
computation can be carried out in NC by parallely running graph reachability
for each q ∈ Q. If such paths exist for a state q then we call q a good state,
and otherwise a bad state. The following proposition easily follows from the
symmetric nature of P:

Proposition 5. If q ∈ Q is a good state, then �2 · init� ∗−→ �2 · q� and �2 · q� ∗−→
�2 · fin�.

Similar to the general case of rendez-vous protocols, given a symmetric pro-
tocol P we can construct a Petri net NP whose places are the states of P and
which faithfully represents the reachability relation of configurations of P. Ob-
serve that this construction can be carried out in parallel over all the states in
Q and over all pairs of rules in R. Let N = (P, T, Pre, Post) be the Petri net
that we construct out of the symmetric protocol P and let A be its incidence
matrix. We now write the marking equation for N as follows: We introduce a
variable v[t] for each transition t ∈ T and we construct an equation system Eq
enforcing the following three conditions:

– v[t] = 0 for every t ∈ T such that
•
t ∪ t

•
contains a bad state.

By definition of a bad state, such transitions will never be fired on any run
from an initial to a final configuration and so our requirement is safe.
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–
∑

t∈T A[q, t] · v[t] = 0 for each q /∈ {init ,fin}.
Notice that the net-effect of any run from an initial to a final configuration
on any state not in {init ,fin} is 0 and hence this condition is valid as well.

–
∑

t∈T A[init , t] · v[t] = −1 and
∑

t∈T A[fin, t] · v[t] = 1.

It is clear that the construction of Eq can be carried out in parallel over each
q ∈ Q and each t ∈ T . Finally, we solve Eq over arithmetic modulo 2, i.e., we
solve Eq over the field F2 which as mentioned before can be done in NC. We
have:

Lemma 8. There exists an odd number o such that Co
init

∗−→ Co
fin iff the equation

system Eq has a solution over F2.

Proof. (Sketch.) The left to right implication is true because of taking modulo 2
on both sides of the marking equation. For the other side, we use an idea similar
to Lemma 5. Let x be a solution to Eq over F2. Using Proposition 5 we first
populate all the good states of Q with enough processes such that all the good
states except init have an even number of processes. Then, we fire exactly once,
all the transitions t such that x[t] = 1. Since x satisfies Eq, we can now argue
that in the resulting configuration, the number of processes at each bad state is
0 and the number of processes in each good state except fin is even. Hence, we
can once again use Proposition 5 to conclude that we can move all the processes
which are not at fin to the final state fin.

Theorem 6. The problem of deciding whether a symmetric protocol admits a
cut-off is in NC.

Proof. By Proposition 3 it suffices to find an even number e and an odd number
o such that Ce

init
∗−→ Ce

fin and Co
init

∗−→ Co
fin . By Proposition 4 the former can be

done in NC. By Lemma 8 and by the fact that the equation system Eq can be
constructed and solved in NC, it follows that the latter can also be done in NC.

7 Symmetric protocols with leaders

In this section, we extend symmetric rendez-vous protocols by adding a special
process called leader. We state the cut-off problem for such protocols and prove
that it is NP-complete.

Definition 4. A symmetric leader protocol is a pair of symmetric protocols P =
(PL,PF ) where PL = (QL, Σ, initL,finL, RL) is the leader protocol and PF =
(QF , Σ, initF ,finF , RF ) is the follower protocol where QL ∩QF = ∅.

A configuration of a symmetric leader protocol P is a multiset over QL ∪QF

such that
∑

q∈QL C(q) = 1. This corresponds to the intuition that exactly one
process can execute the leader protocol. For each n ∈ N, let Cn

init (resp. Cn
fin)

denote the initial (resp. final) configuration of P given by Cn
init(init

L) = 1 (resp.
Cn

fin(fin
L) = 1) and Cn

init(init
F ) = n (resp. Cn

fin(fin
F ) = n). We say that C =⇒ C ′
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if there exists (p, !a, p′), (q, ?a, q′) ∈ RL ∪ RF , C ≥ �p, q� and C ′ = C − �p, q� +
�p′, q′�. Since we allow at most one process to execute the leader protocol, given
a configuration C, we can let lead(C) denote the unique state q ∈ QL such that
C(q) > 0.

Definition 5. The cut-off problem for symmetric leader protocols is the follow-
ing.

Input: A symmetric leader protocol P = (PL,PF ).

Output: Is there B ∈ N such that for all n ≥ B, Cn
init

∗
=⇒ Cn

fin .

We know the following fact regarding symmetric leader protocols.

Proposition 6. ([17], Lemma 18) A symmetric leader protocol admits a cut-off

iff there exists an even number e and an odd number o such that Ce
init

∗
=⇒ Ce

fin

and Co
init

∗
=⇒ Co

fin .

The main theorem of this section is

Theorem 7. The cut-off problem for symmetric leader protocols is NP-complete

7.1 A non-deterministic polynomial time algorithm

Let P = (PL,PF ) be a symmetric leader protocol with PL = (QL, Σ, initL,finL,
RL) and PF = (QF , Σ, initF ,finF , RF ). Similar to the previous section, from
PF we can construct a graph G(PF ) where the vertices are given by the states
QF and the edges are given by the rules in RF . In G(PF ), we can clearly remove
all vertices which are not reachable from the state initF and which do not have
a path to finF . In the sequel, we will assume that such vertices do not exist in
G(PF ).

Similar to the general case, we will construct a Petri net NP from the given
symmetric leader protocol P. However, the construction is made slightly com-
plicated due to the presence of a leader.

From P = (PL,PF ), we construct a Petri net N = (P, T, Pre, Post) as
follows: Let P be QL ∪ QF . For each a ∈ Σ and r = (q, !a, s), r′ = (q′, ?a, s′) ∈
RL∪RF such that at most one of r and r′ belongs to RL, we will have a transition
tr,r′ ∈ T in N such that

– Pre[p, t] = 0 for every p /∈ {q, q′}, Post[p, t] = 0 for every p /∈ {s, s′}
– If q = q′ then Pre[q, t] = −2, otherwise Pre[q, t] = Pre[q′, t] = −1
– If s = s′ then Post[s, t] = 2, otherwise Post[s, t] = Post[s′, t] = 1.

Transitions tr,r′ in which exactly one of r, r′ is in RL will be called leader
transitions and transitions in which both of r, r′ are in RF will be called follower-
only transitions. Notice that if t is a leader transition, then there is a unique place
p ∈ •

t ∩ QL and a unique place p ∈ t
• ∩ QL. These places will be denoted by

t.from and t.to respectively.
As usual, we let A denote the incidence matrix of the constructed net N .

The following proposition is obvious from the construction of the net N
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Proposition 7. For two configurations C and C ′, we have that C
∗
=⇒ C ′ in the

protocol P iff C
∗−→ C in the net N .

Because P is symmetric we have the following fact, which is easy to verify.

Proposition 8. If q ∈ QF , then �2 · initF � ∗−→ �2 · q� ∗−→ �2 · finF �

For any vector x ∈ NT , we define lead(x) to be the set of all leader transitions
such that x[t] > 0. The graph of the vector x, denoted by G(x) is defined as
follows: The set of vertices is the set {t.from : t ∈ lead(x)}∪{t.to : t ∈ lead(x)}.
The set of edges is the set {(t.from, t.to) : t ∈ lead(x)}. Further, for any two
vectors x,y ∈ NT and a transition t ∈ T , we say that x = y[t--] iff x[t] = y[t]−1
and x[t′] = y[t′] for all t′ �= t.

Definition 6. Let C be a configuration and let x ∈ NT . We say that the pair
(C,x) is compatible if C + Ax ≥ 0 and every vertex in G(x) is reachable from
lead(C).

The following lemma states that as long as there are enough followers in
every state, it is possible for the leader to come up with a firing sequence from
a compatible pair.

Lemma 9. Suppose (C,x) is a compatible pair such that C(q) ≥ 2‖x‖ for
every q ∈ QF . Then there is a configuration D and a firing sequence ξ such that

C
ξ−→ D and

−→
ξ = x.

Proof. (Sketch.) We prove by induction on ‖x‖. If x[t] > 0 for some follower-only

transition, then it is easy to verify that if we let C ′ be such that C
t−→ C ′ and x′

be x[t--], then (C ′,x′) is compatible and C(q) ≥ 2‖x′‖ for every q ∈ QF .

Suppose x[t] > 0 for some leader transition. Let p = lead(C). If p belongs
to some cycle S = p, r1, p1, r2, p2, . . . , pk, rk+1, p in the graph G(x), then we let

C
r1−→ C ′ and x′ = x[t--]. It is easy to verify that C ′ +Ax′ ≥ 0, C ′(q) ≥ 2‖x′‖

for every q ∈ QF and lead(C ′) = p1. Any path P in G(x) from p to some vertex
s either goes through p1 or we can use the cycle S to traverse from p1 to p first
and then use P to reach s. This gives a path from p1 to every vertex s in G(x′).

If p does not belong to any cycle in G(x), then using the fact that C+Ax ≥ 0,
we can show that there is exactly one out-going edge t from p in G(x). We then

let C
t−→ C ′ and x′ = x[t--]. Since any path in G(x) from p has to necessarily

use this edge t, it follows that in G(x′) there is a path from t.to = lead(C ′) to
every vertex.

Lemma 10. Let par ∈ {0, 1}. There exists k ∈ N such that Ck
init

∗−→ Ck
fin and

k ≡ par (mod 2) iff there exists n ∈ N, x ∈ NT such that n ≡ par (mod 2),
(Cn

init ,x) is compatible and Cn
fin = Cn

init +Ax.
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Proof. (Sketch.) The left to right implication is easy and follows from the mark-
ing equation along with induction on the number of leader transitions in the
run. For the other side, we use an idea similar to Lemma 5. Let (Cn

init ,x) be the
given compatible pair. We first use Proposition 8 to populate all the states of
QF with enough processes such that all the states of QF except initF have an
even number of processes. Then we use Lemma 9 to construct a firing sequence

ξ which can be fired from Cn
init and such that

−→
ξ = x. By means of the marking

equation, we then argue that in the resulting configuration, the leader is in the
final state, n followers are in the state finF and every other follower state has
an even number of followers. Once again, using Proposition 8 we can now move
all the processes which are not at finF to the final state finF .

Lemma 11. Given a symmetric leader protocol, checking whether a cut-off ex-
ists can be done in NP.

Proof. By Proposition 6 it suffices to find an even number e and an odd number
o such that Ce

init
∗−→ Ce

fin and Co
init

∗−→ Co
fin . Suppose we want to check that there

exists 2k ∈ N such that C2k
init

∗−→ C2k
fin . We first non-deterministically guess a set

of leader transitions S = {t1, . . . , tk} and check that for each t ∈ S, we can reach
t.from and t.to from initL using only the transitions in S.

Once we have guessed all this, we write a polynomially sized integer linear
program as follows: We let v denote |T | variables, one for each transition in T
and we let n be another variable, with all these variables ranging over N. We then
enforce the following conditions: C2n

fin = C2n
init + Av and v[t] = 0 ⇐⇒ t /∈ S

and solve the resulting linear program, which we can do in non-deterministic
polynomial time [26]. If there exists a solution, then we accept. Otherwise, we
reject.

By Lemma 10 and by the definition of compatibility, it follows that at least
one of our guesses gets accepted iff there exists 2k ∈ N such that C2k

init
∗−→ C2k

fin .

Similarly we can check if exists 2l + 1 ∈ N such that C2l+1
init

∗−→ C2l+1
fin .

By a reduction from 3-SAT, we prove that

Lemma 12. The cut-off problem for symmetric leader protocols is NP-hard.
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Abstract. Knaster-Tarski’s theorem, characterising the greatest fix-
point of a monotone function over a complete lattice as the largest post-
fixpoint, naturally leads to the so-called coinduction proof principle for
showing that some element is below the greatest fixpoint (e.g., for provid-
ing bisimilarity witnesses). The dual principle, used for showing that an
element is above the least fixpoint, is related to inductive invariants. In
this paper we provide proof rules which are similar in spirit but for show-
ing that an element is above the greatest fixpoint or, dually, below the
least fixpoint. The theory is developed for non-expansive monotone func-
tions on suitable lattices of the form MY , where Y is a finite set and M
an MV-algebra, and it is based on the construction of (finitary) approx-
imations of the original functions. We show that our theory applies to a
wide range of examples, including termination probabilities, behavioural
distances for probabilistic automata and bisimilarity. Moreover it allows
us to determine original algorithms for solving simple stochastic games.

1 Introduction

Fixpoints are ubiquitous in computer science as they allow to provide a meaning
to inductive and coinductive definitions (see, e.g., [26,23]). A monotone function
f : L → L over a complete lattice (L,�), by Knaster-Tarski’s theorem [28],
admits a least fixpoint μf and greatest fixpoint νf which are characterised as the
least pre-fixpoint and the greatest post-fixpoint, respectively. This immediately
gives well-known proof principles for showing that a lattice element l ∈ L is
below νf or above μf

l � f(l)

l � νf

f(l) � l

μf � l

On the other hand, showing that a given element l is above νf or below μf
is more difficult. One can think of using the characterisation of least and largest
fixpoints via Kleene’s iteration. E.g., the largest fixpoint is the least element
of the (possibly transfinite) descending chain obtained by iterating f from �.
Then showing that f i(�) � l for some i, one concludes that νf � l. This proof
principle is related to the notion of ranking functions. However, this is a less
satisfying notion of witness since f has to be applied i times, and this can be
inefficient or unfeasible when i is an infinite ordinal.
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The aim of this paper is to present an alternative proof rule for this purpose
for functions over lattices of the form L = MY where Y is a finite set and M
is an MV-chain, i.e., a totally ordered complete lattice endowed with suitable
operations of sum and complement. This allows us to capture several exam-
ples, ranging from ordinary relations, for dealing with bisimilarity, behavioural
metrics, termination probabilities and simple stochastic games.

Assume f : MY → MY monotone and consider the question of proving that
some fixpoint a : Y → M is the largest fixpoint νf . The idea is to show that
there is no “slack” or “wiggle room” in the fixpoint a that would allow us to
further increase it. This is done by associating with every a : Y →M a function
f#
a on 2Y whose greatest fixpoint gives us the elements of Y where we have
a potential for increasing a by adding a constant. If no such potential exists,
i.e. νf#

a is empty, we conclude that a is νf . A similar function fa
# (specifying

decrease instead of increase) exists for the case of least fixpoints. Note that the
premise is νfa

# = ∅, i.e. the witness remains coinductive. The proof rules are:

f(a) = a νf#
a = ∅

νf = a

f(a) = a νfa
# = ∅

μf = a

For applying the rule we compute a greatest fixpoint on 2Y , which is finite,
instead of working on the potentially infinite MY . The rule does not work for
all monotone functions f : MY → MY , but we show that whenever f is non-
expansive the rule is valid. Actually, it is not only sound, but also reversible, i.e.,
if a = νf then νf#

a = ∅, providing an if-and-only-if characterisation.
Quite interestingly, under the same assumptions on f , using a restricted

function f∗
a , the rule can be used, more generally, when a is just a pre-fixpoint

(f(a) � a) and it allows to conclude that νf � a. A dual result holds for post-
fixpoints in the case of least fixpoints.

f(a) � a νf∗
a = ∅

νf � a

a � f(a) νfa
∗ = ∅

a � μf

As already mentioned, the theory above applies to many interesting scenarios:
witnesses for non-bisimilarity, algorithms for simple stochastic games [11] and
lower bounds for termination probabilities and behavioural metrics in the setting
of probabilistic systems [1] and probabilistic automata [2]. In particular we were
inspired by, and generalise, the self-closed relations of Fu [16], also used in [2].

Motivating Example. Consider a Markov chain (S, T, η) with a finite set of states
S, where T ⊆ S are the terminal states and every state s ∈ S\T is associated
with a probability distribution η(s) ∈ D(S).3 Intuitively, η(s)(s′) denotes the
probability of state s choosing s′ as its successor. Assume that, given a fixed
state s ∈ S, we want to determine the termination probability of s, i.e. the
probability of reaching any terminal state from s. As a concrete example, take
the Markov chain given in Fig. 1, where u is the only terminal state.

3 D(S) is the set of all maps p : S → [0, 1] such that
∑

s∈S p(s) = 1.
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T : [0, 1]S → [0, 1]S

T (t)(s) =

{
1 if v ∈ T∑
s′∈S

η(s)(s′) · t(s′) otherwise x

1
2
/1

u

1/1

y

0/1

z

0/1

1
3

1
3

1
3

1

1

Fig. 1: Function T (left) and a Markov chain with two fixpoints of T (right)

The termination probability arises as the least fixpoint of a function T defined
as in Fig. 1. The values of μT are indicated in green (left value).

Now consider the function t assigning to each state the termination probabil-
ity written in red (right value). It is not difficult to see that t is another fixpoint
of T , in which states y and z convince each other incorrectly that they terminate
with probability 1, resulting in a vicious cycle that gives “wrong” results. We
want to show that μT �= t without knowing μT . Our idea is to compute the set
of states that still has some “wiggle room”, i.e., those states which could reduce
their termination probability by δ if all their successors did the same. This def-
inition has a coinductive flavour and it can be computed as a greatest fixpoint
on the finite powerset 2S of states, instead of on the infinite lattice S[0,1].

We hence consider a function T t
# : 2[S]t → 2[S]t , dependent on t, defined as

follows. Let [S]t be the set of all states s where t(s) > 0, i.e., a reduction is in
principle possible. Then a state s ∈ [S]t is in T t

#(S
′) iff s �∈ T and for all s′ for

which η(s)(s′) > 0 it holds that s′ ∈ S′, i.e. all successors of s are in S′.
The greatest fixpoint of T t

# is {y, z}. The fact that it is not empty means that
there is some “wiggle room”, i.e., the value of t can be reduced on the elements
{y, z} and thus t cannot be the least fixpoint of f . Moreover, the intuition that
t can be improved on {y, z} can be made precise, leading to the possibility of
performing the improvement and search for the least fixpoint from there.

Contributions. In the paper we formalise the theory outlined above, showing
that the proof rules work for non-expansive monotone functions f on lattices of
the form MY , where Y is a finite set and M an MV-algebra (§3 and §4). Addi-
tionally, given a decomposition of f we show how to obtain the corresponding
approximation compositionally (§5). Then, in order to show that our approach
covers a wide range of examples and allows us to derive original algorithms, we
discuss various applications: termination probability, behavioural distances for
probabilistic automata and bisimilarity (§6) and simple stochastic games (§7).

Proofs and further material can be found in the full version of the paper [5].

2 Lattices and MV-Algebras

In this section, we review some basic notions used in the paper.
A preordered or partially ordered set (P,�) is often denoted simply as P ,

omitting the order relation. Given x, y ∈ P , with x � y, we denote by [x, y] the
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interval {z ∈ P | x � z � y}. The join and the meet of a subset X ⊆ P (if they
exist) are denoted

⊔
X and

�
X, respectively.

A complete lattice is a partially ordered set (L,�) such that each subset
X ⊆ L admits a join

⊔
X and a meet

�
X. A complete lattice (L,�) always has

a least element ⊥ =
⊔
∅ and a greatest element � =

�
∅.

A function f : L → L is monotone if for all l, l′ ∈ L, if l � l′ then f(l) �
f(l′). By Knaster-Tarski’s theorem [28, Thm. 1], any monotone function on a
complete lattice has a least and a greatest fixpoint, denoted respectively μf
and νf , characterised as the meet of all pre-fixpoints respectively the join of all
post-fixpoints: μf =

�
{l | f(l) � l} and νf =

⊔
{l | l � f(l)}.

Let (C,�), (A,≤) be complete lattices. A Galois connection is a pair of
monotone functions 〈α, γ〉 such that α : C → A, γ : A → C and for all a ∈ A
and c ∈ C: α(c) ≤ a ⇐⇒ c � γ(a). Equivalently, for all a ∈ A and c ∈ C,
(i) c � γ(α(c)) and (ii) α(γ(a)) ≤ a. In this case we will write 〈α, γ〉 : C → A.
For a Galois connection 〈α, γ〉 : C → A, the function α is called the left (or
lower) adjoint and γ the right (or upper) adjoint.

Galois connections are at the heart of abstract interpretation [13,14]. In par-
ticular, when 〈α, γ〉 is a Galois connection, given fC : C → C and fA : A→ A,
monotone functions, if fC ◦ γ � γ ◦ fA, then νfC � γ(νfA). If equality holds,
i.e., fC ◦ γ = γ ◦ fA, then greatest fixpoints are preserved along the connection,
i.e., νfC = γ(νfA).

Given a set Y and a complete lattice L, the set of functions LY = {f | f :
Y → L}, endowed with pointwise order, i.e., for a, b ∈ LY , a � b if a(y) � b(y)
for all y ∈ Y , is a complete lattice.

In the paper we will mostly work with lattices of the kind MY where M is a
special kind of lattice with a rich algebraic structure, i.e. an MV-algebra [21].

Definition 1 (MV-algebra). An MV-algebra is a tuple M = (M,⊕, 0, (·))
where (M,⊕, 0) is a commutative monoid and (·) : M →M maps each element to
its complement, such that for all x, y ∈M (1) x = x; (2) x⊕0 = 0; (3) (x⊕ y)⊕
y = (y ⊕ x)⊕ x.

We denote 1 = 0, multiplication x⊗y = x⊕ y and subtraction x�y = x⊗y.

Definition 2 (natural order). Let M = (M,⊕, 0, (·)) be an MV-algebra. The
natural order on M is defined, for x, y ∈ M , by x � y if x ⊕ z = y for some
z ∈M . When � is total M is called an MV-chain.

The natural order gives an MV-algebra a lattice structure where ⊥ = 0,
� = 1, x � y = (x � y) ⊕ y and x � y = x � y = x ⊗ (x ⊕ y). We call the
MV-algebra complete, if it is a complete lattice, which is not true in general,
e.g., ([0, 1] ∩Q,≤).

Example 3. A prototypical example of an MV-algebra is ([0, 1],⊕, 0, (·)) where
x ⊕ y = min{x + y, 1} and x = 1 − x for x, y ∈ [0, 1]. This means that x ⊗ y =
max{x + y − 1, 0} and x � y = max{0, x − y} (truncated subtraction). The
operators ⊕ and ⊗ are also known as strong disjunction and conjunction in
�Lukasiewicz logic [22]. The natural order is ≤ (less or equal) on the reals.
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Another example is ({0, . . . , k},⊕, 0, (·)) where n⊕m = min{n+m, k} and
n = k−n for n,m ∈ {0, . . . , k}. Both MV-algebras are complete and MV-chains.

Boolean algebras (with disjunction and complement) also form MV-algebras
that are complete, but in general not MV-chains.

MV-algebras are the algebraic semantics of �Lukasiewicz logic. They can be
shown to correspond to intervals of the kind [0, u] in suitable groups, i.e., abelian
lattice-ordered groups with a strong unit u [21].

3 Non-expansive Functions and Their Approximations

As mentioned in the introduction, our interest is for fixpoints of monotone func-
tions f : MY → MY , where M is an MV-chain and Y is a finite set. We will
see that for non-expansive functions we can over-approximate the sets of points
in which a given a ∈ MY can be increased in a way that is preserved by the
application of f . This will be the core of the proof rules outlined earlier.

Non-expansive Functions on MV-Algebras. For defining non-expansiveness it is
convenient to introduce a norm.

Definition 4 (norm). Let M be an MV-chain and let Y be a finite set. Given
a ∈MY we define its norm as ||a|| = max{a(y) | y ∈ Y }.

Given a finite set Y we extend ⊕ and ⊗ to MY pointwise. Given Y ′ ⊆ Y and
δ ∈M, we write δY ′ for the function defined by δY ′(y) = δ if y ∈ Y ′ and δY ′(y) =
0, otherwise. Whenever this does not generate confusion, we write δ instead of
δY . It can be seen that ||·|| has the properties of a norm, i.e., for all a, b ∈ MY

and δ ∈ M, it holds that (1) ||a⊕ b|| � ||a|| ⊕ ||b||, (2) ||δ ⊗ a|| = δ ⊗ ||a|| and and
||a|| = 0 implies that a is the constant 0. Moreover, it is clearly monotonic, i.e.,
if a � b then ||a|| � ||b||.

We next introduce non-expansiveness. Despite the fact that we will finally be
interested in endo-functions f : MY →MY , in order to allow for a compositional
reasoning we work with functions where domain and codomain can be different.

Definition 5 (non-expansiveness). Let f : MY → MZ be a function, where
M is an MV-chain and Y, Z are finite sets. We say that it is non-expansive if
for all a, b ∈MY it holds ||f(b)� f(a)|| � ||b� a||.

Note that (a, b) �→ ||a� b|| is the supremum lifting of a directed version of
Chang’s distance [21]. It is easy to see that all non-expansive functions on MV-
chains are monotone.

Approximating the Propagation of Increases. Let f : MY →MZ be a monotone
function and take a, b ∈ MY with a � b. We are interested in the difference
b(y) � a(y) for some y ∈ Y and on how the application of f “propagates” this
increase. The reason is that, understanding that no increase can be propagated
will be crucial to establish when a fixpoint of a non-expansive function f is
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actually the largest one, and, more generally, when a (pre-)fixpoint of f is above
the largest fixpoint.

In order to formalise the above intuition, we rely on tools from abstract inter-
pretation. In particular, the following pair of functions, which, under a suitable
condition, form a Galois connection, will play a major role. The left adjoint αa,δ

takes as input a set Y ′ and, for y ∈ Y ′, it increases the values a(y) by δ, while
the right adjoint γa,δ takes as input a function b ∈MY , b ∈ [a, a⊕ δ] and checks
for which parameters y ∈ Y the value b(y) exceeds a(y) by δ.

We also define [Y ]a, the subset of elements in Y where a(y) is not 1 and thus
there is a potential to increase, and δa, which gives us the minimal such increase.

Definition 6 (functions to sets, and vice versa). Let M be an MV-algebra
and let Y be a finite set. Define the set [Y ]a = {y ∈ Y | a(y) �= 1} and δa =
min{a(y) | y ∈ [Y ]a} with min ∅ = 1.

For 0 � δ ∈ M we consider the functions αa,δ : 2[Y ]a → [a, a⊕ δ] and
γa,δ : [a, a⊕ δ]→ 2[Y ]a , defined, for Y ′ ∈ 2[Y ]a and b ∈ [a, a⊕ δ], by

αa,δ(Y
′) = a⊕ δY ′ γa,δ(b) = {y ∈ [Y ]a | b(y)� a(y) � δ}.

When δ is sufficiently small, the pair 〈αa,δ, γa,δ〉 is a Galois connection.

2[Y ]a [a, a⊕ δ]

αa,δ

γa,δ

Lemma 7 (Galois connection). Let M be an
MV-algebra and Y be a finite set. For 0 �= δ � δa,
the pair 〈αa,δ, γa,δ〉 : 2[Y ]a → [a, a⊕ δ] is a Galois
connection.

Whenever f is non-expansive, it is easy to see that it restricts to a function
f : [a, a⊕ δ]→ [f(a), f(a)⊕ δ] for all δ ∈M.

As mentioned before, a crucial result shows that for all non-expansive func-
tions, under the assumption that Y, Z are finite and the order on M is total,
we can suitably approximate the propagation of increases. In order to state this
result, a useful tool is a notion of approximation of a function.

Definition 8 ((δ, a)-approximation). Let M be an MV-chain, let Y , Z be
finite sets and let f : MY → MZ be a non-expansive function. For a ∈ MY and
any δ ∈M we define f#

a,δ : 2[Y ]a → 2[Z]f(a) as f#
a,δ = γf(a),δ ◦ f ◦ αa,δ.

Given Y ′ ⊆ [Y ]a, its image f#
a,δ(Y

′) ⊆ [Z]f(a) is the set of points z ∈ [Z]f(a)
such that δ � f(a⊕ δY ′)(z)� f(a)(z), i.e., the points to which f propagates an
increase of the function a with value δ on the subset Y ′.

We first show that f#
a,δ is antitone in the parameter δ, a non-trivial result.

Lemma 9 (anti-monotonicity). Let M be an MV-chain, let Y , Z be finite
sets, let f : MY → MZ be a non-expansive function and let a ∈ MY . For
θ, δ ∈M, if θ � δ then f#

a,δ ⊆ f#
a,θ.

Since f#
a,δ increases when δ decreases and there are finitely many such func-

tions, there must be a value ιfa such that all functions f#
a,δ for 0 � δ � ιfa are

equal. This function is denoted by f#
a and is called the a-approximation of f .
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We next show that indeed, for all non-expansive functions, the a-approxima-
tion properly approximates the propagation of increases.

Theorem 10 (approximation of non-expansive functions). Let M be a
complete MV-chain, let Y,Z be finite sets and let f : MY → MZ be a non-
expansive function. Then there exists ιfa ∈M, the largest value below or equal to

δa such that f#
a,δ = f#

a,δ′ for all 0 � δ, δ′ � ιfa.

We denote this function by f#
a and call it the

a-approximation of f . Then for all 0 � δ ∈M:

a. γf(a),δ ◦ f ⊆ f#
a ◦ γa,δ

b. for δ � δa: δ � ιfa iff γf(a),δ ◦ f = f#
a ◦ γa,δ

[a, a⊕ δ]

f
��

γa,δ ��

	

2[Y ]a

f#
a��

[f(a), f(a)⊕ δ]
γf(a),δ

�� 2[Z]f(a)

Note that if Y = Z and a is a fixpoint of f , i.e., a = f(a), condition (a) above
corresponds exactly to soundness in the sense of abstract interpretation [13],
while condition (b) corresponds to (γ-)completeness (see also §2).

4 Proof Rules

In this section we formalise the proof technique outlined in the introduction for
showing that a fixpoint is the largest and, more generally, for checking over-
approximations of greatest fixpoints of non-expansive functions.

Consider a monotone function f : MY → MY for some finite set Y . We
first focus on the problem of establishing whether some given fixpoint a of f
coincides with νf (without explicitly knowing νf), and, in case it does not,
finding an “improvement”, i.e., a post-fixpoint of f , larger than a. Observe that
when a is a fixpoint, [Y ]a = [Y ]f(a) and thus the a-approximation of f (Thm. 10)

is an endofunction f#
a : [Y ]a → [Y ]a. We have the following result, which relies

on the fact that due to Thm. 10 γa,δ preserves fixpoints (of f and f#
a ).

Theorem 11 (soundness and completeness for fixpoints). Let M be a
complete MV-chain, Y a finite set and f : MY → MY be a non-expansive func-
tion. Let a ∈MY be a fixpoint of f . Then νf#

a = ∅ if and only if a = νf .

Whenever a is a fixpoint, but not yet the largest fixpoint of f , we can increase
it and obtain a post-fixpoint.

Lemma 12. Let M be a complete MV-chain, f : MY → MY a non-expansive
function, a ∈M a fixpoint of f , and let f#

a be the corresponding a-approximation
and ιfa as in Thm. 10. Then αa,ιfa

(νf#
a ) = a⊕ (ιfa)νf#

a
is a post-fixpoint of f .

Using these results one can perform an alternative fixpoint iteration where we
iterate to the largest fixpoint from below: start with a post-fixpoint a0 � f(a0)
(which is clearly below νf) and obtain, by (possibly transfinite) iteration, an
ascending chain that converges to a, the least fixpoint above a0. Now check
with Thm. 11 whether Y ′ = νf#

a = ∅. If yes, we have reached νf = a. If not,
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αa,ιfa
(Y ′) = a⊕ (ιfa)Y ′ is again a post-fixpoint (cf. Lem. 12) and we continue this

procedure until – for some ordinal – we reach the largest fixpoint νf , for which
we have νf#

νf = ∅.
Interestingly, the soundness result in Thm. 11 can be generalised to the case

in which a is a pre-fixpoint instead of a fixpoint. In this case, the a-approximation
for a function f : MY →MY is a function f#

a : [Y ]a → [Y ]f(a) where domain and
codomain are different, hence it would not be meaningful to look for fixpoints.
However, as explained below, it can be restricted to an endofunction.

Theorem 13 (soundness for pre-fixpoints). Let M be a complete MV-chain,
Y a finite set and f : MY → MY be a non-expansive function. Given a pre-
fixpoint a ∈ MY of f , let [Y ]a=f(a) = {y ∈ [Y ]a | a(y) = f(a)(y)}. Let us define

f∗
a : [Y ]a=f(a) → [Y ]a=f(a) as f∗

a (Y
′) = f#

a (Y ′) ∩ [Y ]a=f(a), where f#
a : 2[Y ]a →

2[Y ]f(a) is the a-approximation of f . If νf∗
a = ∅ then νf � a.

Roughly, the intuition for the above result is the following: the value of f(a)
on some y might or might not depend “circularly” on the value of a on y itself.
In a purely inductive setting, without such circular dependencies, μf = νf and
hence a being a pre-fixpoint means that we over-approximate νf . However, we
might have vicious cycles, as explained in the introduction, that destroy the
over-approximation since the values are too low. Now, since we restrict to non-
expansive functions, it must be the case that there is a cycle, such that all
elements on this cycle are points where a and f(a) coincide. It is hence sufficient
to check whether a given pre-fixpoint could be increased on its subpart which
corresponds to a fixpoint, i.e., the idea is to restrict to [Y ]a=f(a). We detect such
situations by looking for “wiggle room” as for fixpoints.

Completeness does not generalise to pre-fixpoints, i.e., it is not true that if
a is a pre-fixpoint of f and νf � a then νf∗

a = ∅. A pre-fixpoint might contain
slack even though it is above the greatest fixpoint. A counterexample is in Ex. 25.

The Dual View for Least Fixpoints. The theory developed so far can be easily
dualised to check under-approximations of least fixpoints. Given a complete MV-
algebra M = (M,⊕, 0, (·)) and a monotone function f : MY → MY , in order to
show that a post-fixpoint a ∈ MY satisfies a � μf , we can in fact simply work
in the dual MV-algebra, Mop = (M,�,⊗, (·), 1). It is convenient to formulate
the conditions using � and the original order.

2[Y ]a [a� θ, a]

αa,θ

γa,θ

We next outline the dualised setting. The notation
for the dual case is obtained from that of the original
(primal) case, exchanging subscripts and superscripts.

Given a ∈ MY , define [Y ]a = {y ∈ Y | a(y) �= 0}
and δa = min{a(y) | y ∈ [Y ]a}. For θ ∈ M, we consider
the pair of functions 〈αa,θ, γa,θ〉 : 2[Y ]a → [a� θ, a]
where, for Y ′ ∈ 2[Y ]a , we let αa,θ(Y ′) = a� θY ′ and, for b ∈ [a� θ, a], γa,θ(b) =
{y ∈ Y | a(y)� b(y) � θ}.

A function f : MY → MZ is non-expansive in the dual MV-algebra when it
is in the primal one. Its approximation in the sense of Thm. 10 is denoted fa

#.
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Table 1: Basic functions f : MY → MZ (constant, reindexing, minimum, maxi-
mum, average), function composition, disjoint union and the corresponding ap-

proximations f#
a : 2[Y ]a → 2[Z]f(a) , fa

# : 2[Y ]a → 2[Z]f(a)

.

Notation: R−1(z) = {y ∈ Y | yRz}, supp(p) = {y ∈ Y | p(y) > 0} for p ∈ D(Y ),
Mina = {y ∈ Y | a(y) minimal}, Maxa = {y ∈ Y | a(y) maximal}, a : Y → M

function f definition of f f#
a (Y ′) (above), fa

#(Y ′) (below)

ck f(a) = k ∅
(k ∈ MZ) ∅
u∗ f(a) = a ◦ u u−1(Y ′)
(u : Z → Y ) u−1(Y ′)
minR f(a)(z) = min

yRz
a(y) {z ∈ [Z]f(a) | Mina|R−1(z)

⊆ Y ′}
(R ⊆ Y × Z) {z ∈ [Z]f(a) | Mina|R−1(z)

∩ Y ′ = ∅}
maxR f(a)(z) = max

yRz
a(y) {z ∈ [Z]f(a) | Maxa|R−1(z)

∩ Y ′ = ∅}
(R ⊆ Y × Z) {z ∈ [Z]f(a) | Maxa|R−1(z)

⊆ Y ′}

avD (M = [0, 1], f(a)(p) =
∑
y∈Y

p(y) · a(y) {p ∈ [D]f(a) | supp(p) ⊆ Y ′}
Z = D ⊆ D(Y )) {p ∈ [D]f(a) | supp(p) ⊆ Y ′}
h ◦ g f(a) = h(g(a)) h#

g(a) ◦ g#a (Y ′)

(g : MY → MW , h
g(a)
# ◦ ga#(Y ′)

h : MW → MZ)⊎
i∈I

fi I finite f(a)(z) = fi(a|Yi)(z)
⊎

i∈I(fi)
#
a|Yi

(Y ′ ∩ Yi)

(fi : MYi → MZi , (z ∈ Zi)
⊎

i∈I(fi)
a|Yi
# (Y ′ ∩ Yi)

Y =
⋃
i∈I

Yi, Z =
⊎
i∈I

Zi)

Then the dualisations of Thm. 11 and 13 hold, i.e., if a is a fixpoint of f , then
νfa

# = ∅ iff μf = a, and whenever a is a post-fixpoint, νfa
∗ = ∅ implies a � μf .

5 (De)Composing Functions and Approximations

Given a non-expansive function f and a (pre/post-)fixpoint a, it is often non-
trivial to determine the corresponding approximations. However, non-expansive
functions enjoy good closure properties (closure under composition, and closure
under disjoint union) and we will see that the same holds for the corresponding
approximations. Furthermore it turns out that the functions needed in the ap-
plications can be obtained from just a few templates. This gives us a toolbox for
assembling approximations with relative ease.

Theorem 14. All basic functions listed in Table 1 are non-expansive. Further-
more non-expansive functions are closed under composition and disjoint union.
The approximations are the ones listed in the third column of the table.
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6 Applications

6.1 Termination Probability

We start by making the example from the introduction (§1) more formal. Con-
sider a Markov chain (S, T, η), as defined in the introduction (Fig. 1), where we
restrict the codomain of η : S\T → D(S) to D ⊆ D(S), where D is finite (to
ensure that all involved sets are finite). Furthermore let T : [0, 1]S → [0, 1]S be
the function from the introduction whose least fixpoint μT assigns to each state
its termination probability.

Lemma 15. The function T can be written as T = (η∗◦avD)�ck where k : T →
[0, 1] is the constant function 1 defined only on terminal states.

From this representation and Thm. 14 it is obvious that T is non-expansive.

Lemma 16. Let t : S → [0, 1]. The approximation for T in the dual sense is

T t
# : 2[S]t → 2[S]T (t)

with

T t
#(S

′) = {s ∈ [S]T (t) | s /∈ T ∧ supp(η(s)) ⊆ S′}.

It is well-known that the function T can be tweaked in such a way that it has
a unique fixpoint, coinciding with μT , by determining all states which cannot
reach a terminal state and setting their value to zero [3]. Hence fixpoint iteration
from above does not bring us any added value here. It does however make sense
to use the proof rule in order to guarantee lower bounds via post-fixpoints.

Furthermore, termination probability is a special case of the considerably
more complex stochastic games that will be studied in §7, where the trick of
modifying the function is not applicable.

6.2 Behavioural Metrics for Probabilistic Automata

Before we start discussing probabilistic automata, we first consider the Hausdorff
and the Kantorovich lifting and the corresponding approximations.

Hausdorff Lifting. Given a metric on a set X, the Hausdorff metric is obtained
by lifting the original metric to 2X . Here we define this for general distance
functions on M, not restricting to metrics. In particular the Hausdorff lifting is

given by a function H : MX×X →M2X×2X

where

H(d)(X1, X2) = max{ max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)}.

An alternative characterisation due to Mémoli [20], also in [4], is more convenient
for our purposes. If we let u : 2X×X → 2X × 2X with u(C) = (π1[C], π2[C]),
where π1, π2 are the projections πi : X ×X → X and πi[C] = {πi(c) | c ∈ C}.
Then H(d)(X1, X2) = min{max(x1,x2)∈C d(x1, x2) | C ⊆ X × X ∧ u(C) =
(X1, X2)}. Relying on this, we can obtain the result below, from which we deduce
that H is non-expansive and construct its approximation as the composition of
the corresponding functions from Table 1.
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Lemma 17. H = minu ◦max∈ where max∈ : MX×X →M2X×X

(∈ ⊆ (X×X)×
2X×X is the “is-element-of”-relation on X ×X), minu : M2X×X →M2X×2X

.

Kantorovich Lifting. The Kantorovich (also known as Wasserstein) lifting con-
verts a metric on X to a metric on probability distributions over X. As for the
Hausdorff lifting, we lift distance functions that are not necessarily metrics.

Furthermore, in order to ensure finiteness of all the sets involved, we re-
strict to D ⊆ D(X), some finite set of probability distributions over X. A
coupling of p, q ∈ D is a probability distribution c ∈ D(X × X) whose left
and right marginals are p, q, i.e., p(x1) = mL

c (x1) :=
∑

x2∈X c(x1, x2) and

q(x2) = mR
c (x2) :=

∑
x1∈X c(x1, x2). The set of all couplings of p, q, denoted

by Ω(p, q), forms a polytope with finitely many vertices [24]. The set of all poly-
tope vertices that are obtained by coupling any p, q ∈ D is also finite and is
denoted by VPD ⊆ D(X ×X).

The Kantorovich lifting is given by K : [0, 1]X×X → [0, 1]D×D where

K(d)(p, q) = min
c∈Ω(p,q)

∑
(x1,x2)∈X×X

c(x1, x2) · d(x1, x2).

The coupling c can be interpreted as the optimal transport plan to move goods
from suppliers to customers [30]. Again there is an alternative characterisation,
which shows non-expansiveness of K:
Lemma 18. Let u : VPD → D×D, u(c) = (mL

c ,m
R
c ). Then K = minu ◦avVPD

,
where avVPD

: [0, 1]X×X → [0, 1]VPD , minu : [0, 1]
VPD → [0, 1]D×D.

Probabilistic Automata. We now compare our approach with [2], which describes
the first method for computing behavioural distances for probabilistic automata.
Although the behavioural distance arises as a least fixpoint, it is in fact better,
even the only known method, to iterate from above, in order to reach this least
fixpoint. This is done by guessing and improving couplings, similar to strategy
iteration discussed later in §7. A major complication, faced in [2], is that the
procedure can get stuck at a fixpoint which is not the least and one has to
determine that this is the case and decrease the current candidate. In fact this
paper was our inspiration to generalise this technique to a more general setting.

A probabilistic automaton is a tuple A = (S,L, η, �), where S is a non-empty
finite set of states, L is a finite set of labels, η : S → 2D(S) assigns finite sets of
probability distributions to states and � : S → L is a labelling function. (In the
following we again replace D(S) by a finite subset D.)

The probabilistic bisimilarity pseudometrics is the least fixpoint of the func-
tion M : [0, 1]S×S → [0, 1]S×S where for d : S × S → [0, 1], s, t ∈ S:

M(d)(s, t) =

{
1 if �(s) �= �(t)

H(K(d))(η(s), η(t)) otherwise

where H is the Hausdorff lifting (for M = [0, 1]) and K is the Kantorovich lifting
defined earlier. Now assume that d is a fixpoint of M, i.e., d = M(d). In order
to check whether d = μf , [2] adapts the notion of a self-closed relation from [16].
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Definition 19 ([2]). A relation M ⊆ S × S is self-closed wrt. d = M(d) if,
whenever sM t, then

– �(s) = �(t) and d(s, t) > 0,
– if p ∈ η(s) and d(s, t) = minq′∈η(t)K(d)(p, q′), then there exists q ∈ η(t) and

c ∈ Ω(p, q) such that d(s, t) =
∑

u,v∈S d(u, v) · c(u, v) and supp(c) ⊆M ,
– if q ∈ η(t) and d(s, t) = minp′∈η(s)K(d)(p′, q), then there exists p ∈ η(s) and

c ∈ Ω(p, q) such that d(s, t) =
∑

u,v∈S d(u, v) · c(u, v) and supp(c) ⊆M .

The largest self-closed relation, denoted by ≈d is empty if and only if d =
μf [2]. We now investigate the relation between self-closed relations and post-
fixpoints of approximations. For this we will first show that M can be composed
from non-expansive functions, which proves that it is indeed non-expansive. Fur-
thermore, this decomposition will help in the comparison.

Lemma 20. The fixpoint function M characterizing probabilistic bisimilarity
pseudometrics can be written as:

M = maxρ ◦(((η × η)∗ ◦ H ◦ K) � cl)

where ρ : (S × S) � (S × S) → (S × S) with ρ((s, t), i) = (s, t).4 Furthermore
l : S×S → [0, 1] is defined as l(s, t) = 0 if �(s) = �(t) and l(s, t) = 1 if �(s) �= �(t).

HenceM is a composition of non-expansive functions and thus non-expansive
itself. We do not spell out Md

# explicitly, but instead show how it is related to
self-closed relations.

Proposition 21. Let d : S×S → [0, 1] where d =M(d). Then Md
# : 2[S×S]d →

2[S×S]d , where [S × S]d = {(s, t) ∈ S × S | d(s, t) > 0}.
Then M is a self-closed relation wrt. d if and only if M ⊆ [S × S]d and M

is a post-fixpoint of Md
#.

6.3 Bisimilarity

In order to define standard bisimilarity we use a variant G of the Hausdorff lifting
H from §6.2 where max and min are swapped and which we denote by G.

Now we can define the fixpoint function for bisimilarity and its corresponding
approximation. For simplicity we consider unlabelled transition systems, but it
would be straightforward to handle labelled transitions.

Let X be a finite set of states and η : X → 2X a function that assigns a set
of successors η(x) to a state x ∈ X. For the fixpoint function for bisimilarity
B : {0, 1}X×X → {0, 1}X×X we use the Hausdorff lifting G with M = {0, 1}.

Lemma 22. Bisimilarity on η is the greatest fixpoint of B = (η × η)∗ ◦ G.
4 Here we use i ∈ {0, 1} as indices to distinguish the elements in the disjoint union.
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Since we are interested in the greatest fixpoint, we are working in the primal
sense. Bisimulation relations are represented by their characteristic functions
d : X×X → {0, 1}, in fact the corresponding relation can be obtained by taking
the complement of [X ×X]d = {(x1, x2) ∈ X1 ×X2 | d(x1, x2) = 0}.

Lemma 23. Let d : X × X → {0, 1}. The approximation for the bisimilarity

function B in the primal sense is B#
d : 2[X×X]d → 2[X×X]B(d) with

B#
d (R) = {(x1, x2) ∈ [X ×X]B(d) |

∀y1 ∈ η(x1)∃y2 ∈ η(x2)
(
(y1, y2) �∈ [X ×X]d ∨ (y1, y2) ∈ R)

)
∧∀y2 ∈ η(x2)∃y1 ∈ η(x1)

(
(y1, y2) �∈ [X ×X]d ∨ (y1, y2) ∈ R)

}
We conclude this section by discussing how this view on bisimilarity can

be useful: first, it again opens up the possibility to compute bisimilarity – a
greatest fixpoint – by iterating from below, through smaller fixpoints. This could
potentially be useful if it is easy to compute the least fixpoint of B inductively
and continue from there.

Furthermore, we obtain a technique for witnessing non-bisimilarity of states.
While this can also be done by exhibiting a distinguishing modal formula [17,9]
or by a winning strategy for the spoiler in the bisimulation game [27], to our
knowledge there is no known method that does this directly, based on the defi-
nition of bisimilarity.

With our technique however, we can witness non-bisimilarity of two states
x1, x2 ∈ X by presenting a pre-fixpoint d (i.e., B(d) ≤ d) such that d(x1, x2) = 0

(equivalent to (x1, x2) ∈ [X ×X]d) and νB#
d = ∅, since this implies νB(x1, x2) ≤

d(x1, x2) = 0 by our proof rule.
There are two issues to discuss: first, how can we characterise a pre-fixpoint

of B (which is quite unusual, since bisimulations are post-fixpoints)? In fact, the
condition B(d) ≤ d can be rewritten to: for all (x1, x2) ∈ [X ×X]d there exists
y1 ∈ η(x1) such that for all y2 ∈ η(x2) we have (y1, y2) ∈ [X ×X]d (or vice
versa). Second, at first sight it does not seem as if we gained anything since we
still have to do a fixpoint computation on relations. However, the carrier set is
[X ×X]d, i.e., a set of non-bisimilarity witnesses and this set can be small even
though X might be large.

Example 24. We consider the transition system depicted below.

Our aim is to construct a witness showing that
x, u are not bisimilar. This witness is a function
d : X × X → {0, 1} with d(x, u) = 0 = d(y, u)
and for all other pairs the value is 1.

x y u

Hence [X ×X]d=B(d) = [X ×X]d = {(x, u), (y, u)} and it is easy to check
that d is a pre-fixpoint of B and that νB∗

d = ∅: we iterate over {(x, u), (y, u)}
and first remove (y, u) (since y has no successors) and then (x, u). This implies
that νB ≤ d and hence νB(x, u) = 0, which means that x, u are not bisimilar.
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Example 25. We modify Ex. 24 and consider a function d where d(x, u) = 0
and all other values are 1. Again d is a pre-fixpoint of B and νB ≤ d (since
only reflexive pairs are in the bisimilarity). However νB∗

d �= ∅, since {(x, u)} is a
post-fixpoint. This is a counterexample to completeness discussed after Thm. 13.

Intuively speaking, the states y, u over-approximate and claim that they are
bisimilar, although they are not. (This is permissible for a pre-fixpoint.) This
tricks x, u into thinking that there is some wiggle room and that one can increase
the value of (x, u). This is true, but only because of the limited, local view, since
the “true” value of (y, u) is 0.

7 Simple Stochastic Games

Introduction to Simple Stochastic Games. In this section we show how our tech-
niques can be applied to simple stochastic games [11,10]. A simple stochastic
game is a state-based two-player game where the two players, Min and Max,
each own a subset of states they control, for which they can choose the succes-
sor. The system also contains sink states with an assigned payoff and averaging
states which randomly choose their successor based on a given probability dis-
tribution. The goal of Min is to minimise and the goal of Max to maximise the
payoff.

Simple stochastic games are an important type of games that subsume parity
games and the computation of behavioural distances for probabilistic automata
(cf. §6.2, [2]). The associated decision problem is known to lie in NP∩ coNP, but
it is an open question whether it is contained in P. There are known randomised
subexponential algorithms [7].

It has been shown that it is sufficient to consider positional strategies, i.e.,
strategies where the choice of the player is only dependent on the current state.
The expected payoffs for each state form a so-called value vector and can be
obtained as the least solution of a fixpoint equation (see below).

A simple stochastic game is given by a finite set V of nodes, partitioned into
MIN ,MAX , AV (average) and SINK , and the following data: ηmin : MIN → 2V ,
ηmax : MAX → 2V (successor functions for Min and Max nodes), ηav : AV → D
(probability distributions, where D ⊆ D(V ) finite) and w : SINK → [0, 1]
(weights of sink nodes).

The fixpoint function V : [0, 1]V → [0, 1]V is defined below for a : V → [0, 1]
and v ∈ V :

V(a)(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minv′∈ηmin(v) a(v

′) v ∈ MIN

maxv′∈ηmax(v) a(v
′) v ∈ MAX∑

v′∈V ηav(v)(v
′) · a(v′) v ∈ AV

w(v) v ∈ SINK

The least fixpoint of V specifies the average payoff for all nodes when Min and
Max play optimally. In an infinite game the payoff is 0. In order to avoid infinite
games and guarantee uniqueness of the fixpoint, many authors [18,10,29] restrict
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to stopping games, which are guaranteed to terminate for every pair of Min/Max-
strategies. Here we deal with general games where more than one fixpoint may
exist. Such a scenario has been studied in [19], which considers value iteration
to under- and over-approximate the value vector. The over-approximation faces
challenges with cyclic dependencies, similar to the vicious cycles described ear-
lier. Here we focus on strategy iteration, which is usually less efficient than value
iteration, but yields a precise result instead of approximating it.

Example 26. We consider the game depicted below. Here min is a Min node with
ηmin(min) = {1, av}, max is a Max node with ηmax(max) = {ε, av}, 1 is a sink
node with payoff 1, ε is a sink node with some small payoff ε ∈ (0, 1) and av is
an average node which transitions to both min and max with probability 1

2 .
Min should choose av as successor since a payoff of 1 is bad for Min. Given

this choice of Min, Max should not declare av as successor since this would create
an infinite play and hence the payoff is 0. Therefore Max has to choose ε and be
content with a payoff of ε, which is achieved from all nodes different from 1.

1 min av εmax

1
2

1
2

In order to be able to determine the approximation of V and to apply our
techniques, we consider the following equivalent definition.

Lemma 27. V = (η∗min ◦min∈) � (η∗max ◦max∈) � (η∗av ◦ avD) � cw, where ∈ ⊆
V × 2V is the “is-element-of”-relation on V .

As a composition of non-expansive functions, V is non-expansive as well. Since
we are interested in the least fixpoint we work in the dual sense and obtain the
following approximation, which intuitively says: we can decrease a value at node
v by a constant only if, in the case of a Min node, we decrease the value of one
successor where the minimum is reached, in the case of a Max node, we decrease
the values of all successors where the maximum is reached, and in the case of an
average node, we decrease the values of all successors.

Lemma 28. Let a : V → [0, 1]. The approximation for the value iteration func-

tion V in the dual sense is Va
# : 2[V ]a → 2[V ]V(a)

with

Va
#(V

′) = {v ∈ [V ]V(a) |
(
v ∈ MIN ∧Mina|ηmin(v)

∩ V ′ �= ∅
)
∨(

v ∈ MAX ∧Maxa|ηmax(v)
⊆ V ′) ∨ (

v ∈ AV ∧ supp(ηav(v)) ⊆ V ′)}
Strategy Iteration from Above and Below. We describe two algorithms based on
strategy iteration, first introduced by Hoffman and Karp in [18], that are novel,
as far as we know. The first iterates to the least fixpoint from above and uses
the techniques described in §4. The second iterates from below: the role of our
results is not directly visible in the code of the algorithm, but its non-trivial
correctness proof is based on the proof rule introduced earlier.
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Determine μV (from above)

1. Guess a Min-strategy τ (0), i := 0
2. a(i) := μVτ(i)

3. τ (i+1) := swmin(τ
(i), a(i))

4. If τ (i+1) = τ (i) i := i+ 1 then goto 2.
5. Compute V ′ = νVa

#, where a = a(i).

6. If V ′ = ∅ then stop and return a(i).
Otherwise set a(i+1) := a − (ιaV)V ′ ,
τ (i+2) := swmin(τ

(i), a(i+1)), i := i+2,
goto 2.

(a) Strategy iteration from above

Determine μV
(from below)

1. Guess a Max-strategy σ(0),
i := 0

2. a(i) := μVσ(i)

3. σ(i+1) := swmax(σ
(i), a(i))

4. If σ(i+1) = σ(i) set i := i+1
and goto 2. Otherwise stop
and return a(i).

(b) Strategy iteration from below

Fig. 2: Strategy iteration from above and below

We first recap the underlying notions: a Min-strategy is a mapping τ : MIN →
V such that τ(v) ∈ ηmin(v) for every v ∈ MIN . With such a strategy, Min
decides to always leave a node v via τ(v). Analogously σ : MAX → V fixes
a Max-strategy. Fixing a strategy for either player induces a modified value
function. If τ is a Min-strategy, we obtain Vτ which is defined exactly as V but
for v ∈ MIN where we set Vτ (a)(v) = a(τ(v)). Analogously, for σ a Max-strategy,
Vσ is obtained by setting Vσ(a)(v) = a(σ(v)) when v ∈ MAX . If both players
fix their strategies, the game reduces to a Markov chain.

In order to describe our algorithms we also need the notion of a switch.
Assume that τ is a Min-strategy and let a be a (pre-)fixpoint of Vτ . Min can now
potentially improve her strategy for nodes v ∈ MIN where minv′∈ηmin(v) a(v

′) <
a(τ(v)), called switch nodes. This results in a Min-strategy τ ′ = swmin(τ, a),
where5 τ ′(v) = argminv′∈ηmin(v) a

(i)(v′) for a switch node v and τ ′, τ agree
otherwise. Also, swmax(σ, a) is defined analogously for Max strategies.

Now strategy iteration from above works as described in Figure 2a. The
computation of μVτ (i) in the second step intuitively means that Max chooses
his best answering strategy and we compute the least fixpoint based on this
answering strategy. At some point no further switches are possible and we have
reached a fixpoint a, which need not yet be the least fixpoint. Hence we use
the techniques from §4 to decrease a and obtain a new pre-fixpoint a(i+1), from
which we can continue. The correctness of this procedure partially follows from
Thm. 11 and Lem. 12, however we also need to show the following: first, we
can compute a(i) = μVτ (i) efficiently by solving a linear program (cf. Lem. 29)
by adapting [11]. Second, the chain of the a(i) decreases, which means that the
algorithm will eventually terminate (cf. Thm. 30).

5 If the minimum is achieved in several nodes, Min simply chooses one of them. How-
ever, she will only switch if this strictly improves the value.
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Strategy iteration from below is given in Figure 2b. At first sight, the algo-
rithm looks simpler than strategy iteration from above, since we do not have
to check whether we have already reached νV, reduce and continue from there.
However, in this case the computation of μVσ(i) via a linear program is more
involved (cf. Lem. 29), since we have to pre-compute (via greatest fixpoint it-
eration over 2V ) the nodes where Min can force a cycle based on the current
strategy of Max, thus obtaining payoff 0.

This algorithm does not directly use our technique but we can use our proof
rules to prove the correctness of the algorithm (Thm. 30). In particular, the
proof that the sequence a(i) increases is quite involved: we have to show that
a(i) = μVσ(i) ≤ μVσ(i+1) = a(i+1). We prove this, using our proof rules, by
showing that a(i) is below the least fixpoint of Vσ(i+1) .

The algorithm generalises strategy iteration by Hoffman and Karp [18]. Note
that we cannot simply adapt their proof, since we do not assume that the game
is stopping, which is a crucial ingredient.

Lemma 29. The least fixpoints of Vτ and Vσ can be determined by solving linear
programs.

Theorem 30. Strategy iteration from above and below both terminate and com-
pute the least fixpoint of V.

Example 31. Ex. 26 is well suited to explain our two algorithms.
Starting with strategy iteration from above, we may guess τ (0)(min) = 1.

In this case, Max would choose av as successor and we would reach a fixpoint,
where each node except for ε is associated with a payoff of 1. Next, our algorithm
would detect the vicious cycle formed by min, av and max. We can reduce the
values in this vicious cycle and reach the correct payoff values for each node.

For strategy iteration from below assume that σ(0)(max) = av. Given this
strategy of Max, Min can force the play to stay in a cycle formed by min, av and
max. Thus, the payoff achieved by the Max strategy σ(0) and an optimal play by
Min would be 0 for each of these nodes. In the next iteration Max switches and
chooses ε as successor, i.e. σ(1)(max) = ε, which results in the correct values.

We implemented strategy iteration from above and below and classical Kleene
iteration in MATLAB. In Kleene iteration we terminate with a tolerance of
10−14, i.e., we stop if the change from one iteration to the next is below this
bound. We tested the algorithms on random stochastic games and found that
Kleene iteration is always the fastest, but only converges and it is known that
the rate of convergence can be exponentially slow [10]. Strategy iteration from
below is usually slightly faster than strategy iteration from above. More details
can be found in the full version [5].

8 Conclusion

It is well-known that several computations in the context of system verification
can be performed by various forms of fixpoint iteration and it is worthwhile to
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study such methods at a high level of abstraction, typically in the setting of
complete lattices and monotone functions. Going beyond the classical results
by Tarski [28], combination of fixpoint iteration with approximations [14,6] and
with up-to techniques [25] has proven to be successful. Here we treated a more
specific setting, where the carrier set consists of functions from a finite set into an
MV-chain and the fixpoint functions are non-expansive (and hence monotone),
and introduced a novel technique to obtain upper bounds for greatest and lower
bounds for least fixpoints, including associated algorithms. Such techniques are
widely applicable to a wide range of examples and so far they have been studied
only in quite specific scenarios, such as in [2,16,19].

In the future we plan to lift some of the restrictions of our approach. First, an
extension to an infinite domain Y would of course be desirable, but since several
of our results currently depend on finiteness, such a generalisation does not seem
to be easy. Another restriction, to total orders, seems easier to lift: in particular,
if the partially ordered MV-algebra M̄ is of the form MI where I is a finite
index set and M an MV-chain. (E.g., finite Boolean algebras are of this type.)
Then our function space is M̄Y =

(
MI

)
Y ∼= MY×I and we have reduced to the

setting presented in this paper. This will allow us to handle featured transition
systems [12] where transitions are equipped with boolean formulas. We also plan
to determine the largest possible increase that can be added to a fixpoint that
is not yet the greatest fixpoint in order to maximally speed up fixpoint iteration
from below (this might be larger than ιfa).

There are several other application examples that did not fit into this paper,
but that can also be handled by our approach: for instance behavioural distances
for metric transition systems [15] and other types of systems [4]. We also plan
to investigate other types of games, such as energy games [8]. While here we in-
troduced strategy iteration techniques for simple stochastic games, we also want
to check whether we can provide an improvement to value iteration techniques,
combining our approach with [19].

We also plan to study whether some examples can be handled with other
types of Galois connections: here we used an additive variant, but looking at
multiplicative variants (multiplication by a constant factor) might also be fruit-
ful.

Acknowledgements: We are grateful to Ichiro Hasuo for making us aware of
stochastic games as application domain. Furthermore we would like to thank
Matthias Kuntz and Timo Matt for their help with experiments.
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24. Peyré, G., Cuturi, M.: Computational optimal transport (2020), https://arxiv.
org/abs/2009.14817, arXiv:1803.00567

25. Pous, D.: Complete lattices and up-to techniques. In: Proc. of APLAS ’07. pp.
351–366. Springer (2007), LNCS 4807

26. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press (2011)

27. Stirling, C.: Bisimulation, model checking and other games. Notes for Mathfit
instructional meeting on games and computation, Edinburgh (June 1997), http:
//homepages.inf.ed.ac.uk/cps/mathfit.pdf

28. Tarski, A.: A lattice-theoretical theorem and its applications. Pacific Journal of
Mathematics 5, 285–309 (1955)

29. Tripathi, R., Valkanova, E., Kumar, V.A.: On strategy improvement algorithms
for simple stochastic games. Journal of Discrete Algorithms 9, 263–278 (2011)

30. Villani, C.: Optimal Transport – Old and New, A Series of Comprehensive Studies
in Mathematics, vol. 338. Springer (2009)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2009.14817
https://arxiv.org/abs/2009.14817
http://homepages.inf.ed.ac.uk/cps/mathfit.pdf
http://homepages.inf.ed.ac.uk/cps/mathfit.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


“Most of” leads to undecidability: Failure of
adding frequencies to LTL

Bartosz Bednarczyk�1,2 and Jakub Michaliszyn2

1 Computational Logic Group, Technische Universität Dresden, Dresden, Germany
2 Institute of Computer Science, University of Wrocław, Wrocław, Poland

{bartosz.bednarczyk, jakub.michaliszyn}@cs.uni.wroc.pl

Abstract. Linear Temporal Logic (LTL) interpreted on finite traces is
a robust specification framework popular in formal verification. However,
despite the high interest in the logic in recent years, the topic of their
quantitative extensions is not yet fully explored. The main goal of this
work is to study the effect of adding weak forms of percentage constraints
(e.g. that most of the positions in the past satisfy a given condition, or
that σ is the most-frequent letter occurring in the past) to fragments of
LTL. Such extensions could potentially be used for the verification of
influence networks or statistical reasoning. Unfortunately, as we prove in
the paper, it turns out that percentage extensions of even tiny fragments
of LTL have undecidable satisfiability and model-checking problems. Our
undecidability proofs not only sharpen most of the undecidability results
on logics with arithmetics interpreted on words known from the literature,
but also are fairly simple. We also show that the undecidability can be
avoided by restricting the allowed usage of the negation, and discuss how
the undecidability results transfer to first-order logic on words.

1 Introduction
Linear Temporal Logic [29] (LTL) interpreted on finite traces is a robust logical
framework used in formal verification [1,18,19]. However, LTL is not perfect:
it can express whether some event happens or not, but it cannot provide any
insight on how frequently such an event occurs or for how long such an event took
place. In many practical applications, such quantitative information is important:
think of optimising a server based on how frequently it receives messages or
optimising energy consumption knowing for how long a system is usually used
in rush hours. Nevertheless, there is a solution: one can achieve such goals by
adding quantitative features to LTL.

It is known that adding quantitative operators to LTL often leads to un-
decidability. The proofs, however, typically involve operators such as “next” or
“until”, and are often quite complicated (see the discussion on the related work
below). In this work, we study the logic LTLF, a fragment of LTL where the
only allowed temporal operator is “sometimes in the future” F . We extend its
language with two types of operators, sharing a similar “percentage” flavour: with
the Past-Majority PM ϕ operator (stating that most of the past positions satisfy
© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 82–101, 2021.
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a formula ϕ), and with the Most-Frequent-Letter MFL σ predicates (meaning
that the letter σ is among the most frequent letters appearing in the past). These
operators can be used to express a number of interesting properties, such as if
a process failed to enter the critical section, then the other process was in the
critical section the majority of time. Of course, for practical applications, we could
also consider richer languages, such as parametrised versions of these operators,
e.g. stating that at least a fraction p of positions in the past satisfies a formula.
However, we show, as our main result, that even these very simple percentage
operators raise undecidability when combined with F .

To make the undecidability proof for both operators similar, we define an
intermediate operator, Half , which is satisfied when exactly half of the past
positions satisfy a given formula. The Half operator can be expressed easily
with PM , but not with MFL — we show, however, that we can simulate it to an
extent enough to show the undecidability. Our proof method relies on enforcing
a model to be in the language ({wht}{shdw})+, for some letters wht and shdw,
which a priori seems to be impossible without the “next” operator. Then, thanks
to the specific shape of the models, we show that one can “transfer” the truth of
certain formulae from positions into their successors, hence the “next” operator
can be partially expressed. With a combination of these two ideas, we show that
it is possible to write equicardinality statements in the logic. Finally, we perform
a reduction from the reachability problem of Two-counter Machines [26]. In the
reduction, the equicardinality statements will be responsible for handling zero-
tests. The idea of transferring predicates from each position into its successor
will be used for switching the machine into its next configuration.

The presented undecidability proof of LTL with percentage operators can
be adjusted to extensions of fragments of first-order logic on finite words. We
show that FO2

M[<], i.e. the two-variable fragment of first-order logic admitting
the majority quantifier M and linear order predicate < has an undecidable sat-
isfiability problem. Here the meaning of a formula Mx.ϕ(x, y) is that at least
a half of possible interpretations of x satisfies ϕ(x, y). Our result sharpens an
existing undecidability proof for (full) FO with Majority from [23] (since in our
case the number of variables is limited) but also FO2[<, succ] with arithmetics
from [25] (since our counting mechanism is weaker and the successor relation
succ is disallowed). On the positive side, we show that the undecidability heavily
depends on the presence of the negation in front of the percentage operators.
To do so, we introduce a logic, extending the full LTL, in which the usage of
percentage operators is possible, but suitably restricted. For this logic, we show
that the satisfiability problem is decidable.

All the above-mentioned results can be easily extended to the model checking
problem, where the question is whether a given Kripke structure satisfies a given
formula. The full version of the paper is available on arXiv [4].

1.1 Related work

The first paper studying the addition of quantitative features to logic was [21],
where the authors proved undecidability of Weak MSO with Cardinalities. They
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also developed a model of so-called Parikh Automaton, a finite automaton im-
posing a semi-linear constraint on the set of its final configurations. Such an
automaton was successfully used to decide logics with counting as well as logics
on data words [27,17]. Its expressiveness was studied in [11].

Another idea in the realm of quantitative features is availability languages [20],
which extend regular expressions by numerical occurrence constraints on the let-
ters. However, their high expressivity leads to undecidable emptiness problems.
Weak forms of arithmetics have also attracted interest from researchers working
on temporal logics. Several extensions of LTL were studied, including extensions
with counting [24], periodicity constraints [14], accumulative values [7], discount-
ing [2], averaging [9] and frequency constraints [8]. A lot of work was done to
understand LTL with timed constraints, e.g. a metric LTL was considered in [28].
However, its complexity is high and its extensions are undecidable [3].

Arithmetical constraints can also be added to the First-Order logic (FO)
on words via so-called counting quantifiers. It is known that weak MSO on
words is decidable with threshold counting and modulo-counting (thanks to the
famous Büchi theorem [10]), while even FO on words with percentage quantifiers
becomes undecidable [23]. Extensions of fragments of FO on words are often
decidable, e.g. the two-variable fragment FO2 with counting [12] or FO2 with
modulo-counting [25]. The investigation of decidable extensions of FO2 is limited
by the undecidability of FO2 on words with Presburger constraints [25].

Among the above-mentioned logics, the formalisms of this paper are most
similar to Frequency LTL [8]. The satisfiability problem for Frequency LTL was
claimed to be undecidable, but the undecidability proof as presented in [8] is
bugged (see [9, Sec. 8] for discussion). It was mentioned in [9] that the unde-
cidability proof from [8] can be patched, but no correction was published so far.
Our paper not only provides a valid proof but also sharpens the result, as we
use a way less expressive language (e.g. we are allowed to use neither the “until”
operator nor the “next” operator). We also believe that our proof is simpler.
The second-closest formalism to ours is average-LTL [9]. The main difference is
that the averages of average-LTL are computed based on the future, while in
our paper, the averages are based on the past. The second difference, as in the
previous case, is that their undecidability proof uses more expressive operators,
such as the “until” operator.

2 Preliminaries
We recall definitions concerning logics on words and temporal logics (cf. [15]).

Words and logics. Let AP be a countably-infinite set of atomic propositions,
called here also letters. A finite word w ∈ (2AP)∗ is a non-empty finite sequence
of positions labelled with sets of letters from AP. A set of words is called a
language. Given a word w, we denote its i-th position with wi (where the first
position is w0) and its prefix up to the i-th position with w≤i. We usually use
the letters p, q, i, j to denote positions. With |w| we denote the length of w.

The syntax of LTLF, a fragment of LTL with only the finally operator F , is
defined with the grammar: ϕ, ϕ′ ::= a (with a ∈ AP) | ¬ϕ | ϕ ∧ ϕ′ | F ϕ.
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The satisfaction relation |= is defined for words as follows:

w, i |= a if a ∈ wi

w, i |= ¬ϕ if not w, i |= ϕ
w, i |= ϕ1 ∧ ϕ2 if w, i |= ϕ1 and w, i |= ϕ2
w, i |= F ϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ.

We write w |= ϕ if w, 0 |= ϕ. The usual Boolean connectives: 
,⊥,∨,→,↔
can be defined, hence we will use them as abbreviations. Additionally, we use
the globally operator G ϕ := ¬F¬ϕ to speak about events happening globally in
the future.

Percentage extension. In our investigation, percentage operators PM, MFL and
Half are added to LTLF.

The operator PM ϕ (read as: majority in the past) is satisfied if at least half
of the positions in the past satisfy ϕ:

w, i |= PM ϕ if |{j < i : w, j |= ϕ}| ≥ i
2

For example, the formula G (r ↔ ¬g) ∧ G PM r ∧ G F (g ∧PM g) is true
over words where each request r is eventually fulfilled by a grant g, and where
each grant corresponds to at least one request. This can be also seen as the
language of balanced parentheses, showing that with the operator PM one can
define properties that are not regular.

The operator MFL σ (read as: most-frequent letter in the past), for σ ∈ AP,
is satisfied if σ is among the letters with the highest number of appearances in
the past, i.e.

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

For example, the formula G¬(r ∧ g) ∧G MFL r ∧G F (g ∧MFL g) again
defines words where each request is eventually fulfilled, but this time the formula
allows for states where nothing happens (i.e. when both r and g are false).

The last operator, Half is used to simplify the forthcoming undecidability
proofs. This operator can be satisfied only at even positions, and its intended
meaning is exactly half of the past positions satisfy a given formula.

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

It is not difficult to see that the operator Half ϕ can be defined in terms of the
past-majority operator as PM (ϕ) ∧PM (¬ϕ) and that Half ϕ can be satisfied
only at even positions.

In the next sections, we distinguish different logics by enumerating the allowed
operators in the subscripts, e.g. LTLF,PM or LTLF,MFL.

Computational problems Kripke structures are commonly used in verification to
formalise abstract models. A Kripke structure is composed of a finite set S of
states, a set of initial states I ⊆ S, a total transition relation R ⊆ S × S, and a
finite labelling function � : S → 2AP. A trace of a Kripke structure is a finite word
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�(s0), �(s1), . . . , �(sk) for any s0, s1, . . . , sk satisfying s0 ∈ I and (si, si+1) ∈ R
for all i < k.

The model-checking problem amounts to checking whether some trace of a
given Kripke structure satisfies a given formula ϕ. In the satisfiability problem,
or simply in SAT, we check whether an input formula ϕ has a model, i.e. a finite
word w witnessing w |= ϕ.

3 Playing with Half Operator
Before we jump into the encoding of Minsky machines, we present some exercises
to help the reader understand the expressive power of the logic LTLF,Half . The
tools established in the exercises play a vital role in the undecidability proofs
provided in the following section.

We start from the definition of shadowy words.

Definition 1. Let wht and shdw be fixed distinct atomic propositions from AP.
A word w is shadowy if its length is even, all even positions of w are labelled
with wht, all odd positions of w are labelled with shdw, and no position is labelled
with both letters.

wht shdw wht shdw wht shdw

We will call the positions satisfying wht simply white and their successors satis-
fying shdw simply their shadows.

The following exercise is simple in LTL, but becomes much more challenging
without the X operator.

Exercise 1. There is an LTLF,Half formula ψshadowy defining shadowy words.

Solution. We start with the “base” formula ϕex1
init := wht ∧G (wht ↔ ¬shdw) ∧

G (wht → F shdw), which states that the position 0 is labelled with wht, each
position is labelled with exactly one letter among wht, shdw and that every white
eventually sees a shadow in the future. What remains to be done is to ensure
that only odd positions are shadows and that only even positions are white.

In order to do that, we employ the formula ϕex1
odd := G ((Half wht) ↔ wht).

Since Half is never satisfied at odd positions, the formula ϕex1
odd stipulates that

odd positions are labelled with shdw. An inductive argument shows that all the
even positions are labelled with wht: for the position 0, it follows from ϕex1

init. For
an even position p > 0, assuming (inductively) that all even positions are labelled
with wht, the formula ϕex1

odd ensures that p is labelled with wht.
Putting it all together, the formula ψshadowy := ϕex1

init∧ϕex1
odd is as required. ��

In the next exercise, we show that it is possible to transfer the presence of
certain letters from white positions into their shadows. It justifies the usage of
“shadows” in the paper.

We introduce the so-called counting terms. For a formula ϕ, word w and a
position p, by #<

ϕ (w, p) we denote the total number of positions among 0, . . . , p−1
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satisfying ϕ, i.e. the size of {p′ < p | w, p′ |= ϕ}. We omit w in counting terms if
it is known from the context.

Exercise 2. Let σ and σ̃ be distinct letters from AP \ {wht, shdw}. There is an
LTLF,Half formula ϕtrans

σ�σ̃ , such that w |= ϕtrans
σ�σ̃ iff:

1. w is shadowy,
2. only white (resp., shadow) positions of w can be labelled σ (resp., σ̃) and
3. for any even position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

wht shdw wht shdw wht shdw
σ σ̃ ¬σ ¬σ̃ ¬σ ¬σ̃

Solution. Note that the first two conditions can be expressed with the conjunction
of ψshadowy, G (σ → wht) and G (σ̃ → shdw). The last condition is more involving.
Assuming that the words under consideration satisfy conditions 1–2, it is easy to
see that the third condition is equivalent to expressing that all white positions p
satisfy the equation (♥):

(♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

supplemented with the condition (♦), ensuring that the last white position sat-
isfies the condition 3, i.e.

(♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

The proof of the following lemma can be found in the appendix.

Lemma 1. Let w be a word satisfying the conditions 1–2. Then w satisfies the
condition 3 iff w satisfies (♦) and for all white positions p the equation (♥) holds.

Going back to Exercise 2, we show how to define (♥) and (♦) in LTLF,Half ,
taking advantage of shadowness of the intended models. Take an arbitrary white
position p of w. The equation (♥) for p is clearly equivalent to:

(♥′) : #<
wht∧σ(w, p) +

(p

2 −#<
shdw∧σ̃(w, p)

)
= p

2

Since p is even, we infer that p
2 ∈ N. From the shadowness of w, we know that

there are exactly p
2 shadows in the past of p. Moreover, each shadow satisfies either

σ̃ or ¬σ̃. Hence, the expression p
2−#<

shdw∧σ̃(w, p) from (♥′), can be replaced with
#<

shdw∧¬σ̃(w, p). Finally, since wht and shdw label disjoint positions, the property
that every white position p satisfies (♥) can be written as an LTLF,Half formula
ϕ(♥) := G (wht → Half ([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])). Its correctness follows from
the correctness of each arithmetic transformation and the semantics of LTLF,Half .

For the property (♦), we first need to define formulae detecting the last and
the second to last positions of the model. Detecting the last position is easy:
since the last position of w is shadow, it is sufficient to express that it sees only
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shadows in its future, i.e. ϕex2
last := G (shdw). Similarly, a position is second to

last if it is white and it sees only white or last positions in the future, which
results in a formula ϕex2

stl := wht ∧G (wht ∨ ϕex2
last). Note that the correctness of

ϕex2
last and ϕex2

stl follows immediately from shadowness. Hence, we can define the
formula ϕ(♦) as F (ϕex2

stl ∧ σ) ↔ F (ϕex2
last ∧ σ̃). The conjunction of ϕ(♥) and ϕ(♦)

formulae gives us to ϕtrans
σ�σ̃ . ��

We consider a generalisation of shadowy models, where each shadow mimics
all letters from a finite set Σ ⊆ AP rather than just a single letter σ. Such a
generalisation is described below. In what follows, we always assume that for
each σ ∈ Σ there is a unique σ̃, which is different from σ, and σ̃ �∈ Σ. Moreover,
we always assume that σ1 �= σ2 implies σ̃1 �= σ̃2.

Definition 2. Let Σ ⊆ AP \ {wht, shdw} be a finite set. A shadowy word w is
called truly Σ-shadowy, if for every letter σ ∈ Σ only the white (resp. shadow)
positions of w can be labelled with σ (resp. σ̃) and every white position p of w
satisfies w, p |= σ ⇔ w, p+1 |= σ̃.

wht shdw wht shdw wht shdw
α, β α̃, β̃ ¬α, β ¬α̃, β̃ α, ¬β α̃, ¬β̃

Knowing the solution for the previous exercise, it is easy to come up with a
formula ψtruly−Σ

shadowy defining truly Σ-shadowy models: just take the conjunction of
ψshadowy and ϕtrans

σ�σ̃ over all letters σ ∈ Σ. The correctness follows immediately
from from Exercise 2.

Corollary 1. The formula ψtruly−Σ
shadowy defines the language of truly Σ-shadowy

words.

The next exercise shows how to compare cardinalities in LTLF,Half over
truly Σ-shadowy models. We are not going to introduce any novel techniques
here, but the exercise is of great importance: it is used in the next section to
encode zero tests of Minsky machines.

Exercise 3. Let Σ be a finite subset of AP \ {wht, shdw} and let α �=β ∈ Σ.
There exists an LTLF,Half formula ψ#α=#β such that for any truly Σ-shadowy
word w and any of its white positions p: the equivalence w, p |= ψ#α=#β ⇔
#<

wht∧α(w, p) = #<
wht∧β(w, p) holds.

wht shdw wht shdw

ψ#α=#β

α, ¬β α̃, ¬β̃ ¬α, β ¬α̃, β̃

#α = #β
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The solution is in the appendix, here we briefly discuss the main idea. Follow
the previous exercise. The main difficulty is to express the equality of counting
terms, written as LHS = RHS. Note that it is clearly equivalent to LHS + ( p

2 −
RHS) = p

2 . Unfold p
2 on the left hand side, i.e. replace it with the total number

of shadows in the past. Use the fact that w satisfies ϕtrans
σ�σ̃ , which implies the

equality #<
wht∧β(w, p) = #<

shdw∧β̃
(w, p). Finally, get rid of subtraction and write

an LTLF,Half formula by employing Half . The presented exercises show that
the expressive power of LTLF,Half is so high that, under a mild assumption of
truly-shadowness, it allows us to perform cardinality comparison. We are now
only a step away from showing undecidability of the logic, which is tackled next.

4 Undecidability of LTL extensions
This section is dedicated to the main technical contribution of the paper, namely
that LTLF,Half , LTLF,PM and LTLF,MFL have undecidable satisfiability and
model checking problems. We start from LTLF,Half . Then, the undecidability of
LTLF,PM will follow immediately from the fact that Half is definable by PM.
Finally, we will show how the undecidability proof can be adjusted to LTLF,MFL.

We start by recalling the basics on Minsky Machines.

Minsky machines A deterministic Minsky machine is, roughly speaking, a finite
transition system equipped with two unbounded-size natural counters, where
each counter can be incremented, decremented (only in the case it is positive),
and tested for being zero. Formally, a Minsky machine A is composed of a finite
set of states Q with a distinguished initial state q0 and a transition function δ :
(Q×{0, +}2) → ({−1, 0, 1}2×(Q\{q0}) satisfying three additional requirements:
whenever δ(q, f, s) = (f̄ , s̄, q′) holds, f̄ = −1 implies f = +, s̄ = −1 implies s = +
(i.e. it means that only the positive counters can be decremented) and q �= q′

(the machine cannot enter the same state two times in a row). Intuitively, the
first coordinate of δ describes the current state of the machine, the second and
the third coordinates tell us whether the current value of the i-th counter is zero
or positive, the next two coordinates denote the update on the counters and the
last coordinate denotes the target state.

We define a run of a Minsky machine A as a sequence of consecutive transi-
tions of A. Formally, a run of A is a finite word w ∈ (Q×{0, +}2 ×{−1, 0, 1}2 ×
Q \ {q0})+ such that, when denoting wi as (qi, f i, si, f̄ i, s̄i, qi

N ), all the following
conditions are satisfied:

1. q0 = q0 and f0 = s0 = 0,
2. for each i we have δ(qi, f i, si) = (f̄ i, s̄i, qi

N ),
3. for each i < |w| we have qi

N = qi+1,
4. for each i, f i equals 0 iff f̄ 0 + · · ·+ f̄ i−1 = 0, and + otherwise; similarly si is

0 if s̄0 + · · ·+ s̄i−1 = 0 and + otherwise.

It is not hard to see that this definition is equivalent to the classical one [26]. We
say that a Minsky machine reaches a state q ∈ Q if there is a run with a letter
containing q on its last coordinate. It is well known that the problem of checking
whether a given Minsky machine reaches a given state is undecidable [26].
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4.1 “Half of” meets the halting problem

We start from presenting the overview of the claimed reduction. Until the end
of Section 4, let us fix a Minsky machine A = (Q, q0, δ) and its state q ∈ Q.
Our ultimate goal is to define an LTLF,Half formula ψq

A such that ψq
A has a

model iff A reaches q. To do so, we define a formula ψA such that there is a
one-to-one correspondence between the models of ψA and runs of A. Expressing
the reachability of q, and thus ψq

A, based on ψA is easy.
Intuitively, the formula ψA describes a shadowy word w encoding on its white

positions the consecutive letters of a run of A. In order to express it, we introduce
a set ΣA, composed of the following distinguished atomic propositions:

– fromq and toq for all states q ∈ Q,
– fValc and sValc for counter values c ∈ {0, +}, and
– fOPop and sOPop for all operations op ∈ {−1, 0, 1}.

We formalise the one-to-one correspondence as the function run, which takes
an appropriately defined shadowy model and returns a corresponding run of A.
More precisely, the function run(w) returns a run whose ith configuration is
(q, f, s, f̄ , s̄, qN ) if and only if the ith white configuration of w is labelled with
fromq, fValf , sVals, fOP f̄ , sOP s̄ and toqN

.
The formula ψA ensures that its models are truly ΣA-shadowy words repre-

senting a run satisfying properties P1–P4. To construct it, we start from ψtruly−ΣA
shadowy

and extending it with four conjuncts. The first two of them represent properties
P1–P2 of runs. They can be written in LTLF in an obvious way.

To ensure the satisfaction of the property P3, we observe that in some sense
the letters fromq and toq are paired in a model, i.e. always after reaching a state
in A you need to get out of it (the initial state is an exception here, but we
assumed that there are no transitions to the initial state). Thus, to identify for
which q we should set the fromq letter on the position p, it is sufficient to see
for which state we do not have a corresponding pair, i.e. for which state q the
number of white fromq to the left of p is not equal to the number of white toq to
the left of p. We achieve this in the spirit of Exercise 3.

Finally, the satisfaction of the property P4 can be achieved by checking for
each position p whether the number of white fOP+1 to the left of p is the same as
the number of white fOP−1 to the left of p, and similarly for the second counter.
This reduces to checking an equicardinality of certain sets, which can be done
by employing shadows and Exercise 3.

The reduction Now we are ready to present the claimed reduction.
We first restrict the class of models under consideration to truly ΣA-shadowy
words (for the feasibility of equicardinality encoding) with a formula ψtruly−ΣA

shadowy .
Then, we express that the models satisfy properties P1 and P2. The first property
can be expressed with ψP 1 := fromq0

∧ fVal0 ∧ sVal0.
The property P2 will be a conjunction of two formulae. The first one, namely
ψ1

P 2, is an immediate implementation of P2. The second one, i.e. ψ2
P 2, is not

necessary, but simplifies the proof; we require that no position is labelled by more
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than six letters from ΣA.

ψ1
P 2 := G (wht →

∨
δ(q,f,s)=(f̄ ,s̄,qN )

fromq ∧ fValf ∧ sVals ∧ fOP f̄ ∧ sOP s̄ ∧ toqN
),

ψ2
P 2 := G

∧
p1,...,p7∈ΣA

p1,...,p7 are pairwise different

¬(p1 ∧ p2 ∧ · · · ∧ p7).

We put ψP 2 := ψ1
P 2 ∧ ψ2

P 2 and ψenc-basics := ψtruly−ΣA
shadowy ∧ ψP 1 ∧ ψP 2.

We now formalise the correspondence between intended models and runs. Let
run be the function which takes a word w satisfying ψenc-basics and returns the
word wA such that |wA| = |w|/2 and for each position i we have:

(�) : wA
i = (q, f, s, f̄ , s̄, qN ) iff

w2i ⊇ {wht, fromq, fValf , sVals, fOP f̄ , sOP s̄, toqN
} .

The definition of ψenc-basics makes the function run correctly defined and
unambiguous, and that the results of run satisfy properties P1 and P2.

Fact 5 The function run is uniquely defined and returns words satisfying P1
and P2.

What remains to be done is to ensure properties P3 and P4. Both formulas
rely on the tools established in Exercise 3 and are defined as follows:

ψP 3 := G (wht →
∧

q∈Q\{q0}
(fromq ∨ ψ#fromq=#toq

)).

ψP 4 := G (fVal0 → ψ#fOP+1=#fOP−1)
∧G (sVal0 → ψ#sOP+1=#sOP−1)
∧G (wht → (fVal0↔¬fVal+)) ∧G (wht → (sVal0↔¬sVal+))

Lemma 2. If w satisfies ψenc-basics ∧ ψP 3, then run(w) satisfies P1–P3.

Proof. The satisfaction of the properties P1 and P2 by run(w) follows from Fact 5.
Ad absurdum, assume that run(w) does not satisfy P3. It implies the existence of
a white position p in w such that w, p |= toq but w, p+2 |= fromq′ for some q �= q′.
By our definition of Minsky machines, we conclude that w, p |= fromq′′ for some
q′′ �= q. Thus, w, p �|= fromq.

From the satisfaction of ψP 3 by w we know that w, p |= ψ#fromq=#toq
. Let

k be the total number of positions labelled with fromq before p. Since w, p |=
ψ#fromq=#toq

holds, by Exercise 3 we infer that the number of positions satisfying
toq before p is also equal to k. Since w, p+2 �|= fromq and from the satisfaction of
ψP 3 by w we once more conclude w, p+2 |= ψ#fromq=#toq . But such a situation
clearly cannot happen due to the fact that the number of toq in the past is equal
to k + 1, while the number of fromq in the past is k. ��
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Finally, let us define ψA as ψenc-basics ∧ ψP 3 ∧ ψP 4. The use of ↔ in ψP 4
guarantees that fVal0 labels exactly the white positions having the counter empty
(and similarly for the second counter). The counters are never decreased from 0,
thus the white positions not satisfying fVal0 are exactly those having the first
counter positive.

The proof of the forthcoming fact relies on the correctness of Exercise 3 and
is quite similar to the proof of Lemma 2, and is presented in the appendix.

Lemma 3. If w satisfies ψA, then run(w) is a run of A.

Lastly, to show that the encoding is correct, we need to show that each run
has a corresponding model. It is again easy: it can be shown by constructing
an appropriate w; the white positions are defined according to (�), and the
shadows can be constructed accordingly.

Fact 6 If wA is a run of A, then there is a word w |= ψA s.t. run(w) = wA.

Let ψq
A := ψA ∧ F (toq). Observe that the formula ψq

A is satisfiable if and
only if A reaches q. The “if” part follows from Lemma 3 and the satisfaction
of the conjunct F (toq) from ψA. The “only if” part follows from Fact 6. Hence,
from undecidability of the reachability problem Minsky machines we infer our
main theorem:

Theorem 1. The satisfiability problem for LTLF,Half is undecidable.

6.1 Undecidability of model-checking

For a given alphabet Σ, we can define a Kripke structure KΣ whose set of traces
is the language (2Σ)+: the set of states S of KΣ is composed of all subsets of Σ,
all states are initial (i.e. I = S), the transition relation is the maximal relation
(R = S×S) and �(X)=X for any subset X ⊆ Σ. It follows that a formula ϕ
over an alphabet Σ is satisfiable if and only if there is a trace of KΣ satisfying
ϕ. From the undecidability of the satisfiability problem for LTLF,Half we get:

Theorem 2. Model-checking of LTLF,Half formulae over Kripke structures is
undecidable.

The decidability can be regained if additional constraints on the shape of Kripke
structures are imposed: model-checking of LTLF,Half formulae over flat structures
is decidable [13].

As discussed earlier, the Half operator can be expressed in terms of the PM
operator. Hence, we conclude:

Corollary 2. Model-checking and satisfiability problems for LTLF,PM are un-
decidable.
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6.2 Most-Frequent Letter and Undecidability
We next turn our attention to the MFL operator, which turns out to be a little
bit problematic. Typically, formulae depend only on the atomic propositions that
they explicitly mentioned. Here, it is not the case. Consider a formula ϕ = MFL a
and words w1 = {a}{}{a} and w2 = {a, b}{b}{a, b}. Clearly, w1, 2 |= ϕ whereas
w2, 2 �|= ϕ. This can be fixed in many ways – for example, by parametrising
MFL with a domain, so that it expresses that “a is the most frequent letter
among b1, . . . , bn”. We show, however, that even this very basic version of MFL
is undecidable. The proof is an adaptation of our previous proofs with a little
twist inside.

First, we adjust the definition of shadowy words. A word w is strongly shadowy
if w is shadowy and for each even position of w we have that wht and shdw are the
most frequent letters among the other labelling w while for odd positions wht is
the most frequent. Note that the words constructed in the previous sections were
strongly shadowy because each letter σ appeared only at whites or at shadows.

Exercise 4. There exists an LTLF,MFL formula ψMFL
shadowy defining strongly shad-

owy words.

Proof. It suffices to revisit Exercise 1 and to modify the formula ϕex1
odd stipulating

that odd positions are exactly those labelled with shdw (since it is the only
formulae employing Half ). We claim that ϕex1

odd can be expressed with

ϕMFL
odd := G [MFL (wht) ∧ (wht ↔ MFL (shdw))]

Indeed, take any word w |= ϕex1
init ∧ ϕMFL

odd . Of course we have w, 0 |= wht (due to
ϕex1

init). Moreover, w, 1 |= shdw holds: otherwise we would get contradiction with
shdw not being the most frequent letter in the past of 1. Now assume p > 1 and
assume that the word w0, . . . ,wp−1 is strongly shadowy. Consider two cases. If p
is odd, then both wht and shdw are the most frequent letters in the past of p−1
and p−1 is labelled by wht. Then, shdw is not the most frequent letter in the past
of p and thus p is labelled by shdw and wht is the most frequent letter in the past
of p. If p is even, p−2 is labelled by wht and the most frequent letters in the past
of p−2 are wht and shdw, and p−1 is labelled by shdw. Thus both wht and shdw
are the most frequent letters in the past of p and therefore wht is labelled by wht.
Thus, w0, . . . ,wp is strongly shadowy. By induction, w is strongly shadowy. It
can be readily checked that every strongly shadowy word satisfies ψMFL

shadowy. ��
We argue that over the strongly shadowy models, the formulae Half σ and

MFL σ are equivalent.

Lemma 4. For all strongly shadowy words w |= ψMFL
shadowy, all even positions 2i

and all letters σ we have the equivalence w, 2i |= Half σ iff w, 2i |= MFL σ.

Proof. If w, 2i |= MFL σ, then w, 2i |= MFL wht due to the strongly shadowness
of w. Hence #<

σ (w, 2i) = #<
wht(w, 2i) = 2i

2 , implying w, 2i |= Half σ.
Now, assume that w, 2i |= Half σ holds, so σ appears i times in the past. Since

w is strongly shadowy we know that wht is the most frequent letter. Moreover,
wht appears 2i

2 = i times in the past. Hence, w, 2i |= MFL σ. ��
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We say that a letter σ is importunate in a word w if σ labels more than half
of the positions in some even prefix of w. Notice that strongly shadowy words
cannot have importunate letters.

With the above lemma, it is tempting to finish the proof as follows: replace
each Half (ϕ) in the formulae from Section 4.1 with MFL (pϕ) for some fresh
atomic proposition pϕ and require that G (ϕ ↔ pϕ) holds. A formula obtained
from ϕ in this way will be called a dehalfication of ϕ and will be denoted with
dehalf(ϕ). The next lemma shows that dehalf(·) preserves satisfaction of certain
LTLF,Half formulae.

Lemma 5. Let ϕ be an LTLF,Half formula without nested Half operators and
without F modality, Λ be the set of all formulae λ such that Half λ appears in
ϕ and let w be a word such that w |= ψMFL

shadowy ∧
∧

λ∈Λ G (pλ ↔ λ). Then for
all even positions 2p of w we have that w, 2p |= dehalf(ϕ) implies w, 2p |= ϕ.
Moreover, w |= G (wht → dehalf(ϕ)) implies w |= G (wht → ϕ).

Proof. The proof goes via structural induction over LTLF,Half formulae without
nested Half operators and without F operators. The only interesting case is
when ϕ = Half λ, which follows from Lemma 4. ��

Note, however, that the above lemma works only one way: it fails when the
formula ϕ is satisfied in more than half of the positions of some prefix, as that
would make pϕ importunate leading to unsatisfiablity of ψMFL

shadowy.

6.3 Most-Frequent Letter: the reduction

The next step is to construct a formula defining truly ΣA-shadowy words, which
are the crucial part of ψMFL

enc-basics. To do it, we first need to rewrite a formula ϕtrans
σ�σ̃ ,

transferring the truth of a letter σ from whites into their shadows. The main ingre-
dient of ϕtrans

σ�σ̃ is the formula ϕ(♥) := G (wht → Half ([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])),
which we replace with dehalf(ϕ(♥)). We call the obtained formula (ϕtrans

σ�σ̃)MFL

and show its correctness below.
First, by Lemma 5 we know that every model of (ϕtrans

σ�σ̃)MFL is also a model
of ϕtrans

σ�σ̃ . Then, the models of ϕtrans
σ�σ̃ can be made strongly shadowy, so dehalfi-

cation of ϕtrans
σ�σ̃ is satisfiability-preserving.

Lemma 6. Let pϕ be a fresh letter for ϕ := [wht ∧ σ] ∨ [shdw ∧ ¬σ̃]. Take w,
a strongly shadowy word satisfying w |= ϕtrans

σ�σ̃ without any occurrences of pϕ.
Then w′, the word obtained by labelling with pϕ all the positions of w satisfying
ϕ, is strongly shadowy.

Hence, we obtain the correctness of (ϕtrans
σ�σ̃)MFL. By applying the same strategy

to other conjuncts of ψenc-basics and Fact 5, we obtain ψMFL
enc-basics satisfying:

Corollary 3. The function run (taking as input the words satisfying ψMFL
enc-basics)

is uniquely defined and returns words satisfying P1 and P2. Moreover the formulae
ψMFL

enc-basics and ψenc-basics are equi-satisfiable.
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Towards completing the undecidability proof we need to prepare the rewritings
of the formulae ψP 3 and ψP 4. For ψP 3 we proceed similarly to the previous case.
We know that the models of ψMFL

enc-basics∧dehalf(ψP 3) satisfy P3 (due to Lemma 5
they satisfy ψP 3 and hence, by Lemma 2, also P3). To observe the existence
of such models, we show again that the satisfiability of ψP 3 is preserved by
dehalfication.

Lemma 7. Let pq be a fresh letter for ϕq := [wht∧ fromq]∨ [shdw∧¬t̃oq] indexed
over q ∈ Q\{q0}. Take w, a strongly shadowy word satisfying w |= ψMFL

enc-basics∧ψP 3
without any occurrences of pq. Then w′, the word obtained by labelling with pq

all the positions of w satisfying ϕq, is strongly shadowy.

From Lemma 2, Lemma 7 and Lemma 5 we immediately conclude:

Corollary 4. If w satisfies ψMFL
enc-basics ∧ dehalf(ψP 3), then run(w) satisfies P1–

P3. Moreover the formulae ψMFL
enc-basics ∧ dehalf(ψP 3) and ψenc-basics ∧ ψP 3 are

equi-satisfiable.

The last formula to rewrite is ψP 4. We focus only on its first part, speaking
about the first counter, i.e.
G (fVal0 → Half ([wht ∧ fOP+1] ∨ [shdw ∧ ¬˜fOP−1]) ∧G (wht → (fVal0 ↔ ¬fVal+))
Note that this time we cannot simply dehalfise this formula: the letter re-
sponsible for the inner part of Half would necessarily be importunate – con-
sider an initial fragment of a run of A in which A increments its first counter
without decrementing it. Fortunately, we cannot say the same when the ma-
chine decrements the counter and hence, it suffices to express the equivalent
(due to even length of shadowy models) statement ψ′

P 4 as follows: G (fVal0 →
Half ¬([wht ∧ fOP+1] ∨ [shdw ∧ ¬˜fOP−1]) ∧G (wht → (fVal0 ↔ ¬fVal+)).

As we did before, we show that dehalfication of ψ′
P 4 preserves satisfiability:

Lemma 8. Let pϕ be a fresh letter for ϕ := ¬([wht ∧ fOP+1]∨[shdw ∧¬˜fOP−1]).
Take w, a strongly shadowy word satisfying w |= ψMFL

enc-basics ∧ dehalf(ψP 3) ∧ ψ′
P 4

without any occurrences of pϕ. Then w′, the word obtained by labelling with pϕ

all the positions of w satisfying ϕ, is strongly shadowy.

Finally, let (ψq
A)MFL := ψMFL

enc-basics ∧ dehalf(ψP 3) ∧ dehalf(ψP 4) ∧ F toq. From
Lemma 3, Lemma 8 and Lemma 5 we immediately conclude:

Corollary 5. If w satisfies (ψq
A)MFL then it satisfies P1–P4. Moreover the for-

mulae (ψq
A)MFL and ψq

A are equi-satisfiable.

Thus, by Theorem 1 and the above corollary, we obtain the undecidability
of LTLF,MFL. Undecidability of the model-checking problem is concluded by
virtually the same argument as in Section 6.1. Hence:

Theorem 3. The model-checking and the satisfiability problems for LTLF,MFL
are undecidable.
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7 Decidable variants
We have shown that LTLF with frequency operators lead to undecidability. With-
out the operators that can express F (e.g. F, G or U ), the decision problems
become NP-complete. Below we assume the standard semantics of LTL operator
X , i.e. w, i |= X ϕ iff i+1 < |w| and w, i+1 |= ϕ.

Theorem 4. Model-checking and satisfiability problems for LTLX,MFL,PM are
NP -complete.

The complexity of LTLX,MFL,PM is so low because the truth of the formula
depends only on some initial fragment of a trace. This is a big restriction of the
expressive power. Thus, we consider a different approach motivated by [7].

In the new setting, we allow to use arbitrary LTL formulae as well as per-
centage operators as long as the they are not mixed with G . We introduce a
logic LTL%, which extends the classical LTL [29] with the percentage operators
of the form P�k%ϕ for any �� ∈ {≤, <, =, >,≥}, k ∈ N and ϕ ∈ LTL. By way
of example, the formula P<20%(a) is true at a position p if less then 20% of
positions before p satisfy a. The past majority operator is a special case of the
percentage operator: PM ≡ P ≥50%. Formally:

w, i |= P �k%ϕ if |{j < i : w, j |= ϕ}| �� k
100 i

To avoid undecidability, the percentage operators cannot appear under nega-
tion or be nested. Therefore, the syntax of LTL% is defined with the grammar
ϕ, ϕ′ ::= ψLTL | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | F (ψLTL ∧P�k%ψ′

LTL), where ψLTL, ψ′
LTL

are (full) LTL formulae.
The main tool used in the decidability proof is the Parikh Automata [21].

A Parikh automaton P = (A, E) over the alphabet Σ is composed of a finite-
state automaton A accepting words from Σ∗ and a semi-linear set E given as a
system of linear inequalities with integer coefficients, where the variables are xa

for a ∈ Σ. We say that P accepts a word w if A accepts w and the mapping
assigning to each variable xa from E the total number of positions of w carrying
the letter a, is a solution to E . Checking non-emptiness of the language of P can
be done in NP [17]. Our main decidability results is obtained by constructing an
appropriate Parikh automaton recognising the models of an input LTL% formula.

Theorem 5. Model-checking and satisfiability problems for LTL% are decidable.

Proof. Let ϕ ∈ LTL%. By turning ϕ into a DNF, we can focus on checking
satisfiability of some of its conjuncts. Hence, w.l.o.g. we assume that ϕ = ϕ0 ∧∧n

i=1 ϕi, where ϕ0 is in LTL and all ϕi have the form F (ψi,1
LTL ∧P�ki%ψi,2

LTL) for
some LTL formulae ψi,1

LTL and ψi,2
LTL. Observe that a word w is a model of ϕ iff it

satisfies ϕ0 and for each conjunct ϕi we can pick a witness position pi from w such
that w, pi |= ψi,1

LTL ∧ P�ki%ψi,2
LTL. Moreover, the percentage constraints inside

such formulae speak only about the prefix w<pi
. Thus, knowing the position pi

and the number of positions before pi satisfying ψi,2
LTL, the percentage constraint

inside ϕi can be imposed globally rather than locally. It suggests the use of Parikh



“Most of” leads to undecidability: Failure of adding frequencies to LTL 97

automata: the LTL part of ϕ can be checked by the appropriate automaton A
(due to the correspondence that for an LTL formula over finite words one can
build a finite-state automaton recognising the models of such a formula [19]) and
the global constraints, speaking about the satisfaction of percentage operators,
can be ensured with a set of linear inequalities E .

Our plan is as follows: we decorate the intended models w with additional
information on witnesses, such that the witness position pi for ϕi will be labelled
by wi (and there will be a unique such position in a model), all positions before
pi will be labelled by bi and, among them, we distinguish with a letter si some
special positions, i.e. those satisfying ψi,2

LTL. More formally, for each ϕi we produce
an LTL formula ϕ′

i according to the following rules:

– there is a unique position pi such that w, pi |= wi (selecting a witness for ϕi),
– for all j < pi we have w, j |= bi (the positions before pi are labelled with bi),
– w |= G (si → [bi ∧ ψi,2

LTL]) (distribution of the special positions among bi) and
– w, pi |= ψi,1

LTL (a precondition for ϕi).

Let ϕ′ := ϕ0 ∧
∧n

i=1 ϕ′
i ∧

∧n
i=1 F (pi ∧ P�ki%si). Note that w |= ϕ′ implies

w |= ϕ. Moreover, any model w |= ϕ can be labelled with letters bi, si, wi such
that the decorated word satisfies ϕ′. Let ϕ′′ := ϕ0 ∧

∧n
i=1 ϕ′

i and let E be the
system of n inequalities with Ei = 100 · xbi �� ki · xsi . Now observe that any
model of ϕ′ satisfies E (i.e. the value assigned to xa is the total number of
positions labelled with a), due to the satisfaction of counting operators, and vice
versa: every word w |= ϕ′′ satisfying E is a model of ϕ′′. It gives us a sufficient
characterisation of models of ϕ. Let A be a finite automaton recognising the
models of ϕ′′, then a Parikh automaton P = (A, E), as we already discussed, is
non-empty if and only if ϕ has a model. Since checking non-emptiness of P is
decidable, we can conclude that LTL% is decidable. ��

A rough complexity analysis yields an NExpTime upper bound on the prob-
lem: the automaton P that we constructed is exponential in ϕ (translating ϕ
to DNF does not increase the complexity since we only guess one conjunct,
which is of polynomial size in ϕ). Moreover, checking non-emptiness can be
done non-deterministically in time polynomial in the size of the automaton.
The NExpTime bound is not optimal: we conjuncture that the problem is
PSpace-complete. We believe that by employing techniques similar to [7], one
can construct P and check its non-emptiness on the fly, which should result in
the PSpace upper bound.

For the model-checking problem, we observe that determining whether some
trace of a Kripke structure K = (S, I, R, l) satisfies ϕ is equivalent to checking the
satisfiability of formula ϕK∧ϕ, where ϕK is a formula describing all the traces of
K. Such a formula can be constructed in a standard manner. For simplicity, we
treat S as a set of auxiliary letters, and consider the conjunction of (1)

∨
s∈I s, (2)

G (X
 →
∨

(s,s′)∈R(s ∧X s′)) and (3)
∧

s∈S G (s →
∧

p∈�(s) p), expressing that
the trace starts with an initial state, consecutive positions describe consecutive
states and that the trace is labelled by the appropriate letters. Thus, the model-
checking problem can be reduced in polynomial time to the satisfiability problem.
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8 Two-Variable First-Order Logic with Majority
The Two-Variable First-Order Logic on words (FO2[<]) is a robust fragment
of First-Order Logic FO interpreted on finite words. It involves quantification
over variables x and y (ranging over the words’ positions) and it admits a linear
order predicate < (interpreted as a natural order on positions) and the equality
predicate =. Henceforth we assume the usual semantics of FO2[<] (cf. [16]).

In this section, we investigate the logic FO2
M[<], namely the extension of

FO2[<] with the so-called Majority quantifier M. Such quantifier was intensively
studied due to its close connection with circuit complexity and algebra, see
e.g. [22,5,6]. Intuitively, the formula Mx.ϕ specifies that at least half of all the
positions in a model, after substituting x with them, satisfy ϕ. Formally w |=
Mx.ϕ holds, if and only if |w|

2 ≤ |{p | w, p |= ϕ[x/p]}|. We stress that the
formula Mx.ϕ may contain free occurrences of the variable y.

Note that the Majority quantifier shares similarities to the PM operator, but
in contrast to PM, the M quantifier counts globally. We take advantage of such
similarities and by reusing the technique developed in the previous sections, we
show that the satisfiability problem for FO2

M[<] is also undecidable. We stress
that our result significantly sharpens an existing undecidability result for FO with
Majority from [23] (since in our case the number of variables is limited) as well
as for FO2[<, succ] with Presburger Arithmetics from [25] (since our counting
mechanism is limited and the successor relation succ is disallowed).

Proof plan There are three possible approaches to proving the undecidability
of FO2

M[<]. The first one is to reproduce all the results for LTLF,PM, which
is rather uninspiring. The second one is to define a translation from LTLF,PM
to FO2

M[<] that produces an equisatisfiable formula. But because of models of
odd length, this involves a lot of case study. Here we present a third approach,
which, we believe, gives the best insight: we show a translation from LTLF,PM to
FO2

M[<] that works for LTLF,PM formulae whose all models are shadowy. Since
we only use such models in the undecidability proof of LTLF,PM, this shows the
undecidability of FO2

M[<].

Shadowy models We first focus on defining shadowy words in FO2
M[<]. Before

we start, let us introduce a bunch of useful macros in order to simplify the
forthcoming formulae. Their names coincide with their intuitive meaning and
their semantics.

– Halfx.ϕ := Mx.ϕ ∧Mx.¬ϕ,
– first(x) := ¬∃y y < x, second(x) := ∃y y < x ∧ ∀y y < x → first(y),
– last(x) := ¬∃y y > x, sectolast(x) := ∃y y > x ∧ ∀y y > x → last(y)

Lemma 9. There is an FO2
M[<] formula ψFO

shadowy defining shadowy words.

Proof. Let ϕlem9
base be a formula defining the language of all (non-empty) words,

where the letters wht and shdw label disjoint positions in the way that the first
position satisfies wht and the total number of shdw and wht coincide. It can be
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written, e.g. with ∀x(wht(x) ↔ ¬shdw(x))∧∃x(first(x)∧wht(x))∧Halfx.wht(x)∧
Halfx.shdw(x). To define shadowy words, it would be sufficient to specify that
no neighbouring positions carry the same letter among {wht, shdw }. This can
be done with, rather complicated at the first glance, formulae:

ϕforbid
wht·wht(x) := wht(x) → Halfy. ([y < x ∧ wht(y)] ∨ [x < y ∧ shdw(y)]) ,

ϕforbid
shdw·shdw(x) := shdw(x)→Halfy. ([(y<x ∨ x=y) ∧ shdw(y)]∨[x<y ∧ wht(y)]) .

Finally, let ψFO
shadowy := ϕlem9

base ∧ ∀x.
(

ϕforbid
wht·wht(x) ∧ ϕforbid

shdw·shdw(x)
)

.
Showing that shadowness implies the satisfaction of ψFO

shadowy can be done by
routine induction. For the opposite direction, take w |= ψFO

shadowy. Since w |= ϕlem9
base

the only possibility for w to not be shadowy is to have two consecutive positions
p, p+1 carrying the same letter. W.l.o.g assume they are both white. Let w be
the number of white positions to the left of p and let s be the number of shadows
to the right of p. By applying ϕforbid

wht·wht to p we infer that w + s = 1
2 |w|. On the

other hand, by applying ϕforbid
wht·wht to p+1 it follows that (w+1)+s = 1

2 |w|, which
contradicts the previous equation. Hence, w is shadowy. ��

Translation It is a classical result from [16] that FO2[<] can express LTLF.
We define a translation trv(ϕ) from LTLF,PM to FO2

M[<], parametrised by a
variable v (where v is either x or y and v̄ denotes the different variable from
v), inductively. We write v ≤ v̄ rather than v < v̄ ∨ v = v̄ for simplicity. For
LTLF cases, we follow [16]: trv(a) := a(v), for a fresh unary predicate a for
each a ∈ AP, trv(¬ϕ) := ¬trv(ϕ), trv(ϕ ∧ ϕ′) := trv(ϕ) ∧ trv(ϕ′), trv(F ϕ) :=
∃v̄ (v ≤ v̄) ∧ trv̄(ϕ). For PM , we propose trv(PM ϕ) := Mv̄((v̄ < v ∧ trv̄(ϕ)) ∨
(v̄ ≥ v ∧ wht(v̄))). Finally, for a given LTLF,PM formula ϕ, let tr(ϕ) stand for
ψFO

shadowy ∧ ∃x.(first(x) ∧ trx(ϕ)).
The following lemma shows the correctness of the presented translation.

Lemma 10. An LTLF,PM formula ϕ has a shadowy model iff tr(ϕ) has a model.
Since the formulae used in our undecidability proof for LTLF,PM have only
shadowy models, by Lemma 10 we conclude that FO2

M[<] is also undecidable.
Theorem 6. The satisfiability problem for FO2

M[<] is undecidable.

9 Conclusions
We have provided a simple proof showing that adding different percentage op-
erators to LTLF yields undecidability. We showed that our technique can be
applied to an extension of first-order logic on words, and we hope that our work
will turn useful in showing undecidability for other extensions of temporal logics.
Decidability results for logics with percentage operators in restricted contexts
were also provided.
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Abstract. We describe the canonical weak distributive law δ : SP →
PS of the powerset monad P over the S-left-semimodule monad S, for
a class of semirings S. We show that the composition of P with S by
means of such δ yields almost the monad of convex subsets previously in-
troduced by Jacobs: the only difference consists in the absence in Jacobs’s
monad of the empty convex set. We provide a handy characterisation of
the canonical weak lifting of P to EM(S) as well as an algebraic the-
ory for the resulting composed monad. Finally, we restrict the composed
monad to finitely generated convex subsets and we show that it is pre-
sented by an algebraic theory combining semimodules and semilattices
with bottom, which are the algebras for the finite powerset monad Pf .

Keywords: algebraic theories · monads · weak distributive laws.

1 Introduction

Monads play a fundamental role in different areas of computer science since they
embody notions of computations [32], like nondeterminism, side effects and ex-
ceptions. Consider for instance automata theory: deterministic automata can be
conveniently regarded as certain kind of coalgebras on Set [33], nondeterminis-
tic automata as the same kind of coalgebras but on EM(Pf ) [35], and weighted
automata on EM(S) [4]. Here, Pf is the finite powerset monad, modelling nonde-
terministic computations, while S is the monad of semimodules over a semiring
S, modelling various sorts of quantitative aspects when varying the underlying
semiring S. It is worth mentioning two facts: first, rather than taking coalgebras
over EM(T ), the category of algebras for the monad T , one can also consider
coalgebras over Kl(T ), the Kleisli category induced by T [20]; second, these two
approaches based on monads have lead not only to a deeper understanding of the
subject, but also to effective proof techniques [6,7,14], algorithms [1,8,22,36,39]
and logics [19,21,27].

Since compositionality is often the key to master complex structures, com-
puter scientists devoted quite some efforts to compose monads [40] or the equiva-
lent notion of algebraic theories [24]. Indeed, the standard approach of composing
monads by means of distributive laws [3] turned out to be somehow unsatisfac-
tory. On the one hand, distributive laws do not exist in many relevant cases:
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see [28,41] for some no-go theorems; on the other hand, proving their existence
is error-prone: see [28] for a list of results that were mistakenly assuming the
existence of a distributive law of the powerset monad over itself.

Nevertheless, some sort of weakening of the notion of distributive law–e.g.,
distributive laws of functors over monads [26]–proved to be ubiquitous in com-
puter science: they are GSOS specifications [38], they are sound coinductive
up-to techniques [7] and complete abstract domains [5]. In this paper we will
exploit weak distributive laws in the sense of [15] that have been recently shown
successful in composing the monads for nondeterminism and probability [17].

The goal of this paper is to somehow combine the monads Pf and S men-
tioned above. Our interest in S relies on the wide expressiveness provided by the
possibility of varying S: for instance by taking S to be the Boolean semiring,
one obtains the monad Pf ; by fixing S to be the field of reals, coalgebras over
EM(S) turn out be linear dynamical systems [34].

We proceed as follows. Rather than composing Pf , we found it convenient to
compose the full, not necessarily finite, powerset monad P with S. In this way we
can reuse several results in [12] that provide necessary and sufficient conditions
on the semiring S for the existence of a canonical weak [15] distributive law
δ : SP → PS. Our first contribution (Theorem 21) consists in showing that
such δ has a convenient alternative characterisation, whenever the underlying
semiring is a positive semifield, a condition that is met, e.g., by the semirings of
Booleans and non-negative reals.

Such characterisation allows us to give a handy definition of the canoni-
cal weak lifting of P over EM(S) (Theorem 24) and to observe that such lift-
ing is almost the same as the monad C : EM(S) → EM(S) defined by Jacobs
in [25] (Remark 25): the only difference is the absence in C of the empty subset.
Such difference becomes crucial when considering the composed monads, named
CM : Set→ Set in [25] and PcS : Set→ Set in this paper: the latter maps a set
X into the set of convex subsets of SX, while the former additionally requires the
subsets to be non-empty. It turns out that while Kl(CM) is not CPPO-enriched,
a necessary condition for the coalgebraic framework in [20], Kl(PcS) indeed is
(Theorem 30).

Composing monads by means of weak distributive laws is rewarding in many
respects: here we exploit the fact that algebras for the composed monad PcS
coincide with δ-algebras, namely algebras for both P and S satisfying a certain
pentagonal law. One can extract from this law some distributivity axioms that,
together with the axioms for semimodules (algebras for the monad S) and those
for complete semilattices (algebras for the monad P), provide an algebraic theory
presenting the monad PcS (Theorem 32).

We conclude by coming back to the finite powerset monad Pf . By replac-
ing, in the above theory, complete semilattices with semilattices with bottom
(algebras for the monad Pf ) one obtains a theory presenting the monad PfcS of
finitely generated convex subsets (Theorem 35), which is formally defined as a
restriction of the canonical PcS. The theory, displayed in Table 1, consists of the
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Table 1. The sets of axioms ESL for semilattices (left), ELSM for S-semimodules
(right) and ED′ for their distributivity (bottom).

(x � y) � z = x � (y � z) (x+ y) + z = x+ (y + z) (λ+S μ) · x = λ · x+ μ · x
x � y = y � x x+ y = y + x 0S · x = 0
x � ⊥ = x x+ 0 = x (λμ) · x = λ · (μ · x)
x � x = x λ · (x+ y) = λ · x+ λ · y

λ · 0 = 0

λ · ⊥ = ⊥ for λ = 0S λ · (x � y) = (λ · x) � (λ · y)
x+⊥ = ⊥ x+ (y � z) = (x+ y) � (x+ z)

theory presenting the monad Pf and the theory presenting the monad S with
four distributivity axioms.

To save space we had to omit most of the proofs of the results in this article:
the interested reader can find them in [9].

Notation. We assume the reader to be familiar with monads and their maps.
Given a monad (M,ηM , μM ) on C, EM(M) and Kl(M) denote, respectively, the
Eilenberg-Moore category and the Kleisli category of M . The latter is defined
as the category whose objects are the same as C and a morphism f : X → Y
in Kl(M) is a morphism f : X →M(Y ) in C. We write UM : EM(M) → C and
UM : Kl(M) → C for the canonical forgetful functors, and FM : C → EM(M),
FM : C → Kl(M) for their respective left adjoints. Recall, in particular, that
FM (X) = (X,μM

X ) and, for f : X → Y , FM (f) = M(f). Given n a natural
number, we denote by n the set {1, . . . , n}.

2 (Weak) Distributive laws

Given two monads S and T on a category C, is there a way to compose them
to form a new monad ST on C? This question was answered by Beck [3] and
his theory of distributive laws, which are natural transformations δ : TS → ST
satisfying four axioms and that provide a canonical way to endow the composite
functor ST with a monad structure. We begin by recalling the classic definition.
In the following, let (T, ηT , μT ) and (S, ηS , μS) be two monads on a category C.

Definition 1. A distributive law of the monad S over the monad T is a natural
transformation δ : TS → ST such that the following diagrams commute.

TSS STS SST TTS TST STT

TS ST TS ST

T S

TS ST TS ST

δS

TμS

Sδ

μST

Tδ

μTS

δT

SμT

δ δ

TηS ηST ηTS SηT

δ δ

(1)
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One important result of Beck’s theory is the bijective correspondence between
distributive laws, liftings to Eilenberg-Moore algebras and extensions to Kleisli
categories, in the following sense.

Definition 2. A lifting of the monad S to EM(T ) is a monad (S̃, ηS̃ , μS̃) where

EM(T ) EM(T )

C C

S̃

S

FT FT commutes, UT ηS̃ = ηSUT , UTμS̃ = μSUT .

An extension of the monad T to Kl(S) is a monad (T̃ , ηT̃ , μT̃ ) such that

C C

Kl(S) Kl(S)

T

FS FS

T̃

commutes, ηT̃FS = FSη
T , μT̃FS = FSμ

T .

Böhm [11] and Street [37] have studied various weaker notions of distributive
law; here we shall use the one that consists in dropping the axiom involving ηT

in Definition 1, following the approach of Garner [15].

Definition 3. A weak distributive law of S over T is a natural transformation
δ : TS → ST such that the diagrams in (1) regarding μS, μT and ηS commute.

There are suitable weaker notions of liftings and extensions which also bijec-
tively correspond to weak distributive laws as proved in [11,15].

Definition 4. A weak lifting of S to EM(T ) consists of a monad (S̃, ηS̃ , μS̃) on
EM(T ) and two natural transformations

UT S̃ SUT UT S̃ι π

such that πι = idUT S̃ and such that the following diagrams commute:

UT S̃S̃ SUT S̃ SSUT

UT S̃ SUT

ιS̃

UTμS̃

Sι

μSUT

ι

UT

UT S̃ SUT

UT ηS̃ ηSUT

ι

(2)

SSUT SUT S̃ UT S̃S̃

SUT UT S̃

Sπ

μSUT

πS̃

UTμS̃

π

UT

SUT UT S̃

ηSUT UT ηS̃

π

(3)

A weak extension of T to Kl(S) is a functor T̃ : Kl(S)→ Kl(S) together with a
natural transformation μT̃ : T̃ T̃ → T̃ such that FST = T̃FS and μT̃FS = FSμ

T .

Theorem 5 ([3,11,15]). There is a bijective correspondence between (weak)
distributive laws TS → ST , (weak) liftings of S to EM(T ) and (weak) extensions
of T to Kl(S).
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3 The Powerset and Semimodule Monads

The Monad P. Let us now consider, as S, the powerset monad (P, ηP , μP),
where ηPX(x) = {x} and μP

X(U) =
⋃

U∈U U . Its algebras are precisely the com-
plete semilattices and we have that Kl(P) is isomorphic to the category Rel of
sets and relations. Hence, giving a distributive law TP → PT is the same as
giving an extension of T to Rel: for this to happen the notion of weak cartesian
functor and natural transformation is crucial.

Definition 6. A functor T : Set→ Set is said to be weakly cartesian if and only
if it preserves weak pullbacks. A natural transformation ϕ : F → G is said to be
weakly cartesian if and only if its naturality squares are weak pullbacks.

Kurz and Velebil [29] proved, using an original argument of Barr [2], that an
endofunctor T on Set has at most one extension to Rel and this happens precisely
when it is weakly cartesian; similarly a natural transformation ϕ : F → G, with
F and G weakly cartesian, has at most one extension ϕ̃ : F̃ → G̃, precisely when
it is weakly cartesian. The following result is therefore immediate.

Proposition 7 ([15, Corollary 16]). For any monad (T, ηT , μT ) on Set:

1. There exists a unique distributive law of P over T if and only if T , ηT and
μT are weakly Cartesian.

2. There exists a unique weak distributive law of P over T if and only if T and
μT are weakly Cartesian.

The Monad S. Recall that a semiring is a tuple (S,+, ·, 0, 1) such that (S,+, 0)
is a commutative monoid, (S, ·, 1) is a monoid, · distributes over + and 0 is an
annihilating element for ·. In other words, a semiring is a ring where not every
element has an additive inverse. Natural numbers N with the usual operations
of addition and multiplication form a semiring. Similarly, integers, rationals and
reals form semirings. Also the Booleans Bool = {0, 1} with ∨ and ∧ acting as +
and ·, respectively, form a semiring.

Every semiring S generates a semimodule monad S on Set as follows. Given a
set X, S(X) = {ϕ : X → S | supp ϕ finite}, where supp ϕ = {x ∈ X | ϕ(x) �= 0}.
For f : X → Y , define for all ϕ ∈ S(X)

S(f)(ϕ) =
(
y �→

∑
x∈f−1{y}

ϕ(x)
)
: Y → S.

This makes S a functor. The unit ηSX : X → S(X) is given by ηSX(x) = Δx, where
Δx is the Dirac function centred in x, while the multiplication μS

X : S2(X) →
S(X) is defined for all Ψ ∈ S2(X) as

μS
X(Ψ) =

(
x �→

∑
ϕ∈supp Ψ

Ψ(ϕ) · ϕ(x)
)
: X → S.
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Table 2. Definition of some properties of a semiring S. Here a, b, c, d ∈ S.

Positive a+ b = 0 =⇒ a = 0 = b

Semifield a = 0 =⇒ ∃x. a · x = x · a = 1

Refinable a+ b = c+ d =⇒ ∃x, y, z, t. x+ y = a, z+ t = b, x+ z = c, y+ t = d

(A) a+ b = 1 =⇒ a = 0 or b = 0

(B) a · b = 0 =⇒ a = 0 or b = 0

(C) a+ c = b+ c =⇒ a = b

(D) ∀a, b. ∃x. a+ x = b or b+ x = a

(E) a+ b = c · d =⇒ ∃t : {(x, y) ∈ S2 | x+ y = d} → S such that∑
x+y=d

t(x, y)x = a,
∑

x+y=d

t(x, y)y = b,
∑

x+y=d

t(x, y) = c.

An algebra for S is precisely a left-S-semimodule, namely a set X equipped with
a binary operation +, an element 0 and a unary operation λ· for each λ ∈ S,
satisfying the equations in Table 1. Indeed, if X carries a semimodule structure
then one can define a map a : SX → X as, for ϕ ∈ SX,

a(ϕ) =
∑
x∈X

ϕ(x) · x (4)

where the above sum is finite because so is supp ϕ. Vice versa, if (X, a) is an
S-algebra, then the corresponding left-semimodule structure on X is obtained
by defining for all λ ∈ S and x, y ∈ X

x+a y = a(x �→ 1, y �→ 1), 0a = a(ε), λ ·a x = a(x �→ λ). (5)

Above and in the remainder of the paper, we write the list (x1 �→ s1, . . . , xn �→
sn) for the only function ϕ : X → S with support {x1, . . . , xn} mapping xi to si
and we write the empty list ε for the function constant to 0. For instance, for
a = μS

X : SSX → SX, the left-semimodule structure is defined for all ϕ1, ϕ2 ∈
SX and x ∈ X as

(ϕ1 +
μS

ϕ2)(x) = ϕ1(x) + ϕ2(x), 0μ
S
(x) = 0, (λ ·μS

ϕ1)(x) = λ · ϕ1(x).

Proposition 7 tells us exactly when a (weak) distributive law of the form
TP → PT exists for an arbitrary monad T on Set. Take then T = S: when are
the functor S and the natural transformations ηS and μS weakly cartesian? The
answer has been given in [12] (see also [18]), where a complete characterisation in
purely algebraic properties for S is provided. In Table 2 we recall such properties.

Theorem 8 ([12]). Let S be a semiring.

1. The functor S is weakly cartesian if and only if S is positive and refinable.
2. ηS is weakly cartesian if and only if S enjoys (A) in Table 2.
3. If S is weakly cartesian, then μS is weakly cartesian if and only if S enjoys

(B) and (E) in Table 2.
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Remark 9. In [12, Proposition 9.1] it is proved that if S enjoys (C) and (D), then
S is refinable; if S is a positive semifield, then it enjoys (B) and (E). In the next
Proposition we prove that if S is a positive semifield then it is also refinable,
hence S and μS are weakly cartesian.

Proposition 10. If S is a positive semifield, then it is refinable.

Proof. Let a, b, c and d in S be such that a+ b = c+ d. If a+ b = 0, then take
x = y = z = t = 0, otherwise take

x =
ac

c+ d
, y =

ad

c+ d
, z =

bc

c+ d
, t =

bd

c+ d
.

Then x+ y = a, z + t = b, x+ z = c, y + t = d. ��

Example 11. It is known that, for S = N, a distributive law δ : SP → PS exists.
Indeed one can check that all conditions of Theorem 8 are satisfied, therefore we
can apply Proposition 7.1. In this case, the monad SX is naturally isomorphic
to the commutative monoid monad, which given a set X returns the collection
of all multisets of elements of X. The law δ is well known (see e.g. [15,23]): given
a multiset 〈A1, . . . , An〉 of subsets of X in SPX, where the Ai’s need not be
distinct, it returns the set of multisets {〈a1, . . . , an〉 | ai ∈ Ai}.

Convex Subsets of Left-semimodules. Theorem 8 together with Propo-
sition 7.1 tell us that whenever the element 1 of S can be decomposed as a
non-trivial sum there is no distributive law δ : SP → PS. Semirings with this
property abound, for example Q, R, R+ with the usual operations of sum an
multiplication, as well as Bool (since 1 ∨ 1 = 1). Such semirings are precisely
those for which the notion of convex subset of their left-semimodules is non-
trivial. For the existence of a weak distributive law, however, this condition on
1S is not required: convexity will indeed play a crucial role in the definition of
the weak distributive law.

Definition 12. Let S be a semiring, X an S-left-semimodule and A ⊆ X. The
convex closure of A is the set

A =

{
n∑

i=1

λi · ai | n ∈ N, ai ∈ A,
n∑

i=1

λi = 1

}
⊆ X.

The set A is said to be convex if and only if A = A.

Recalling that the category of S-left-semimodules is isomorphic to EM(S),
we can use (4) to translate Definition 12 of convex subset of a semimodule into
the following notion of convex subset of a S-algebra a : SX → X.

Definition 13. Let S be a semiring, (X, a) ∈ EM(S), A ⊆ X. The convex
closure of A in (X, a) is the set

A
a
=

{
a(ϕ) | ϕ ∈ SX, supp ϕ ⊆ A,

∑
x∈X

ϕ(x) = 1

}
.
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A is said to be convex in (X, a) if and only if A = A
a
. We denote by Pa

cX the
set of convex subsets of X with respect to a.

Remark 14. Observe that ∅ is convex, because ∅a = ∅, since there is no ϕ ∈ SX
with empty support such that

∑
x∈X ϕ(x) = 1.

Example 15. Suppose S is such that ηS is weakly cartesian (equivalently (A)
holds: x + y = 1 =⇒ x = 0 or y = 0), for example S = N, and let (X, a) ∈
EM(S). A ϕ ∈ SX such that

∑
x∈X ϕ(x) = 1 and supp ϕ ⊆ A is a function that

assigns 1 to exactly one element of A and 0 to all the other elements of X. These
functions are precisely all the Δx for those elements x ∈ A. Since a : SX → X
is a structure map for an S-algebra, it maps the function Δx into x. Therefore
A

a
= {a(Δx) | x ∈ A} = {x | x ∈ A} = A. Thus all A ∈ PSX are convex.

Example 16. When S = Bool, we have that S is naturally isomorphic to Pf , the
finite powerset monad, whose algebras are idempotent commutative monoids
or equivalently semilattices with a bottom element. So, for (X, a) ∈ EM(S), a
ϕ ∈ SX such that

∑
x∈X ϕ(x) = 1 and supp ϕ ⊆ A is any finitely supported

function from X to Bool that assigns 1 to at least one element of A. Intuitively,
such a ϕ selects a non-empty finite subset of A, then a(ϕ) takes the join of all
the selected elements. Thus, A

a
adds to A all the possible joins of non-empty

finite subsets of A: A is convex if and only if it is closed under binary joins.

4 The Weak Distributive Law δ : SP → PS
Weak extensions of S to Kl(P) = Rel only consist of extensions of the functor
S and of the multiplication μS , for which necessary and sufficient conditions
are listed in Theorem 8. Hence for semirings S satisfying those criteria a weak
distributive law δ : SP → PS does exist, and it is unique because there is only
one extension of the functor S to Rel.

Theorem 17. Let S be a positive, refinable semiring satisfying (B) and (E) in
Table 2. Then there exists a unique weak distributive law δ : SP → PS defined
for all sets X and Φ ∈ SPX as:

δX(Φ) =

{
ϕ ∈ SX | ∃ψ ∈ S($X).

⎧⎪⎨⎪⎩
∀A ∈ PX.Φ(A) =

∑
x∈A

ψ(A, x) (a)

∀x ∈ X.ϕ(x) =
∑
A
x

ψ(A, x) (b)

}
(6)

where $X is the set {(A, x) ∈ PX ×X | x ∈ A}.

The above δ, which is obtained by following the standard recipe of Proposition 7,
is illustrated by the following example.

Example 18. Take S = R+ with the usual operations of sum and multiplication.
Consider X = {x, y, z, a, b}, A1 = {x, y}, A2 = {y, z} and A3 = {a, b}. Let
Φ ∈ S(PX) be defined as

Φ = (A1 �→ 5, A2 �→ 9, A3 �→ 13)
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and Φ(A) = 0 for all other sets A ⊆ X, so supp Φ = {A1, A2, A3}. In order to
find an element ϕ ∈ δX(Φ), we can first take a ψ ∈ S($X) satisfying condition
(a) in (6) and then compute the ϕ ∈ SX using condition (b).

Among the ψ ∈ S($X), consider for instance the following:

ψ =

(
(A1, x) �→ 2 (A2, y) �→ 4 (A3, a) �→ 6
(A1, y) �→ 3 (A2, z) �→ 5 (A3, b) �→ 7

)
.

Since Φ(A1) = ψ(A1, x) + ψ(A1, y), Φ(A2) = ψ(A2, y) + ψ(A2, z) and Φ(A3) =
ψ(A3, a) + ψ(A3, b), we have that ψ satisfies condition (a) in (6). Condition (b)
forces ϕ to be the following:

ϕ = (x �→ 2, y �→ 3 + 4, z �→ 5, a �→ 6, b �→ 7).

Remark 19. If S enjoys (A) in Table 2, then the transformation δ given in (6)
is actually a distributive law, and for S = N we recover the well-known δ of
Example 11. Example 18 can be repeated with S = N: then Φ is the multiset
where the set A1 occurs five times, A2 nine times and A3 thirteen times. The
elements of δX(Φ) are all those multisets containing one element per copy of A1,
A2 and A3 in supp Φ. The ϕ provided indeed contains five elements of A1 (two
copies of x and three of y), nine elements of A2 (four copies of y and five of z),
thirteen elements of A3 (six copies of a and seven of b).

As Example 18 shows, each element ϕ of δX(Φ) is determined by a function
ψ choosing for each set A ∈ supp Φ a finite number of elements xA

1 , . . . , x
A
m in A

and sA1 , . . . , s
A
m in S in such a way that

∑m
j=1 s

A
j = Φ(A). The function ϕ maps

each xA
j to sAj if the sets in supp Φ are disjoint ; if however there are xA

j and xB
k

such that xA
j = xB

k (like y in Example 18), then xA
j is mapped to sAj + sBk .

Among those ψ’s, there are some special, minimal ones as it were, that choose
for each A in supp Φ exactly one element of A, and assign to it Φ(A). The induced
ϕ in δX(Φ) can be described as

∑
A∈u−1{x} Φ(A) (equivalently S(u)(Φ)1) where

u : supp Φ→ X is a function selecting an element of A for each A ∈ supp Φ (that
is u(A) ∈ A). We denote the set of such ϕ’s by c(Φ).

c(Φ) = {S(u)(Φ) | u : supp Φ→ X such that ∀A ∈ supp Φ. u(A) ∈ A} (7)

Example 20. Take X, A1 and A2 as in Example 18, but a different, smaller,
Φ ∈ S(PX) defined as Φ = (A1 �→ 1, A2 �→ 2). There are only four functions
u : supp Φ→ X such that u(A) ∈ A and thus only four functions ϕ in c(Φ):

u1 = (A1 �→ x, A2 �→ y) ϕ1 = (x �→ 1, y �→ 2)
u2 = (A1 �→ x, A2 �→ z) ϕ2 = (x �→ 1, z �→ 2)
u3 = (A1 �→ y, A2 �→ y) ϕ3 = (y �→ 3)
u4 = (A1 �→ y, A2 �→ z) ϕ4 = (y �→ 1, z �→ 2)

Observe that the function ϕ = (x �→ 1, y �→ 1, z �→ 1) belongs to δX(Φ) but not
to c(Φ). Nevertheless ϕ can be retrieved as the convex combination 1

2 ·ϕ1+
1
2 ·ϕ2.

1 More precisely, we should write S(u)(Φ′) where Φ′ is the restriction of Φ to supp Φ.
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Our key result states that every ϕ ∈ δX(Φ) can be written as a convex
combination (performed in the S-algebra (SX,μS

X)) of functions in c(Φ), at least
when S is a positive semifield, which by Remark 9 and Proposition 10 satisfies
all the conditions that make (6) a weak distributive law. The proof is laborious
and omitted here: we only remark that divisions in S play a crucial role in it.

Theorem 21. Let S be a positive semifield. Then for all sets X and Φ ∈ SPX

δX(Φ) =

⎧⎨⎩μS
X(Ψ) | Ψ ∈ S2X.

∑
ϕ∈SX

Ψ(ϕ) = 1, supp Ψ ⊆ c(Φ)

⎫⎬⎭ = c(Φ)
μS
X
. (8)

Remark 22. If we drop the hypothesis of semifield and only have the minimal
assumptions of Theorem 17, then (8) does not hold any more: S = N is a
counterexample. Indeed, in this case every subset of SX is convex with respect
to μS

X (see Example 15), therefore we would have δX(Φ) = c(Φ), which is false:
the function ϕ of Example 18 is an example of an element in δX(Φ) \ c(Φ).

Remark 23. When S = Bool (which is a positive semifield), the monad S coin-
cides with the monad Pf . The function c(·) in (7) can then be described as

c(A) = {Pf (u)(A) | u : A → X such that ∀A ∈ A. u(A) ∈ A}

for all A ∈ PfPX. It is worth remarking that this is the transformation χ
appearing in Example 9 of [27] (which is in turn equivalent to the one in Example
2.4.7 of [31]). This transformation was erroneously supposed to be a distributive
law, as it fails to be natural (see [28]). However, by taking its convex closure, as
displayed in (8), one can turn it into a weak distributive law.

5 The Weak Lifting of P to EM(S)

By exploiting the characterisation of the weak distributive law δ (Theorem 21),
we can now describe the weak lifting of P to EM(S) generated by δ.

Recall from Definition 13 that Pa
cX is the set of convex subsets of X with

respect to the S-algebra a : SX → X. The functions ι(X,a) : Pa
cX → PX and

π(X,a) : PX → Pa
cX are defined for all A ∈ Pa

cX and B ∈ PX as

ι(X,a)(A) = A and π(X,a)(B) = B
a
, (9)

that is ι(X,a) is just the obvious set inclusion and π(X,a) performs the convex
closure in a. The function αa : SPa

cX → Pa
cX is defined for all Φ ∈ SPa

cX as

αa(Φ) = {a(ϕ) | ϕ ∈ c(Φ)}. (10)

To be completely formal, above we should have written c(S(ι)(Φ)) in place
of c(Φ), but it is immediate to see that the two sets coincide. Proving that
αa : SPa

cX → Pa
cX is well defined (namely, αa(Φ) is a convex set) and forms an

S-algebra requires some ingenuity and will be shown later in Section 5.1. The
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assignment (X, a) �→ (Pa
cX,αa) gives rise to a functor P̃ : EM(S) → EM(S)

defined on morphisms f : (X, a)→ (X ′, a′) as

P̃(f)(A) = Pf(A) (11)

for all A ∈ Pa
cX. For all (X, a) in EM(S), ηP̃(X,a) : (X, a) → P̃(X, a) and

μP̃
(X,a) : P̃P̃(X, a)→ P̃(X, a) are defined for x ∈ X and A ∈ Pαa

c (Pa
cX) as

ηP̃(X,a)(x) = {x} and μP̃
(X,a)(A) =

⋃
A∈A

A. (12)

Theorem 24. Let S be a positive semifield. Then the canonical weak lifting
of the powerset monad P to EM(S), determined by (8), consists of the monad
(P̃, ηP̃ , μP̃) on EM(S) defined as in (10), (11), (12) and the natural transfor-
mations ι : USP̃ → PUS and π : PUS → USP̃ defined as in (9).

It is worth spelling out the left-semimodule structure on Pa
cX corresponding

to the S-algebra αa : SPa
cX → Pa

cX. Let us start with λ·αaA for some A ∈ Pa
cX.

By (5), λ ·αa A = αa(Φ) where Φ = (A �→ λ). By (10), αa(Φ) = {a(ϕ) |
ϕ ∈ c(Φ)}. Following the definition of c(Φ) given in (7), one has to consider
functions u : supp Φ → X such that u(B) ∈ B for all B ∈ supp Φ: if λ �= 0,
then supp Φ = {A} and thus, for each x ∈ A, there is exactly one function
ux : supp Φ → X mapping A into x. It is immediate to see that S(ux)(Φ) is
exactly the function (x �→ λ) and thus a(S(ux)(Φ)) is, by (5), λ·ax. Now if λ = 0,
then supp Φ = ∅, so there is exactly one function u : supp Φ → X and S(u)(Φ)
is the function mapping all x ∈ X into 0 and thus, by (5), a(S(u)(Φ)) = 0a.
Summarising,

λ ·αa A =

{
{λ ·a x | x ∈ A} if λ �= 0

{0a} if λ = 0
(13)

Following similar lines of thoughts, one can check that

A+αa B = {x+a y | x ∈ A, y ∈ B} and 0αa = {0a}. (14)

Remark 25. By comparing (14) and (13) with (4) and (5) in [25], it is immediate
to see that our monad P̃ coincides with a slight variation of Jacobs’s convex
powerset monad C, the only difference being that we do allow for ∅ to be in
Pa
cX. Jacobs insisted on the necessity of C(X) to be the set of non-empty convex

subsets of X, because otherwise he was not able to define a semimodule structure
on C(X) such that 0 · ∅ = {0a}. However, we do manage to do so, since by (13),
0 ·A = 0a for all A and in particular for A = ∅. At first sight, this may look like
an ad-hoc solution, but this is not the case: it is intrinsic in the definition of the
unique weak lifting of P to EM(S), as stated by Theorem 24 and shown next.

5.1 Proof of Theorem 24

By Theorem 5, the weak distributive law (6) corresponds to a weak lifting P̃ of
P to EM(S), which we are going to show coincides with the data of (9)-(12). The
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image along P̃ of a S-algebra (X, a) will be a set Y together with a structure
map αa that makes it a S-algebra in turn. Garner [15, Proposition 13] gives
us the recipe to build Y and αa appropriately. Y is obtained by splitting the
following idempotent in Set:

e(X,a) = PX S(PX) P(SX) PXηS
PX δX Pa (15)

as a composite e(X,a) = ι(X,a) ◦ π(X,a), where π(X,a) is the corestriction of e(X,a)

to its image and ι(X,a) is the set-inclusion of the image of e(X,a) into PX. In
other words, Y is the set of fixed points of e(X,a). αa is obtained as the composite

αa = SY SPX PSX PX Y.
Sι(X,a) δX Pa π(X,a)

Let us, then, fix an S-algebra (X, a). Given A ∈ PX, we have ηSPX(A) =
ΔA : PX → S, the Dirac-function centred in A. The set δX(ηSPX(A)) has a
simple description, shown in the next Lemma.

Lemma 26. For all A ∈ PX

δX(ηSPX(A)) =

{
ϕ ∈ SX | supp ϕ ⊆ A,

∑
x∈X

ϕ(x) = 1

}
.

The image along A of the idempotent e is therefore

e(A) = Pa(δX(ηSPX(A))) =

{
a(ϕ) | ϕ ∈ SX, supp ϕ ⊆ A,

∑
x∈X

ϕ(x) = 1

}
= A

a
.

Hence the idempotent e computes the convex closure of elements of PX and
its fixed points are precisely the convex subsets of X with respect to the struc-
ture map a. Therefore, the carrier set of P̃(X, a) is precisely Pa

cX, the natural
transformations π and ι are, respectively, the convex closure operator and the
set-inclusion of Pa

cX into PX as in (9).
Pa
cX is then equipped with a structure map αa : SPa

cX → Pa
cX given by

αa = SPa
cX SPX PSX PX Pa

cX.
Sι(X,a) δX Pa π(X,a)

Let us try to calculate αa: given Φ : Pa
cX → S with finite support, we have that

S(ι(X,a))(Φ) is just the extension of Φ to PX which assigns 0 to each non-convex
subset of X. If we write ι instead of ι(X,a) for short, we have

αa(Φ) = Pa(δX(S(ι)(Φ)))a. (16)

Next, we can use the following technical result.

Proposition 27. Let (X, a) be a S-algebra. If A is a convex subset of (SX,μS
X),

then Pa(A) is convex in (X, a).
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Since δX(Φ′) is the convex closure of c(Φ′) in (SX,μS
X) for every Φ′ ∈ SPX,

by Proposition 27 we can avoid to perform the a-convex closure in (16). Therefore

αa(Φ) = Pa(δX(S(ι)(Φ))) = Pa
(
c(S(ι)(Φ))μ

S
X
)
.

In the next Proposition we show that also the μS
X -convex closure is superfluous,

due to the fact that Φ ∈ SPa
cX (and not simply SPX), thus obtaining (10).

Proposition 28. Let S be a positive semifield, (X, a) a S-algebra, Φ ∈ SPa
cX.

Then Pa(δX(S(ι)(Φ))) = Pa(c(S(ι)(Φ))).
Proof. In this proof we shall simply write Φ instead of the more verbose S(ι)(Φ).
We want to prove that

Pa
(
δX(Φ)

)
={

a(ψ) | ψ ∈ SX. ∃u : supp Φ→ X.u(A)∈A, ∀x ∈ X.ψ(x) =
∑

A∈supp Φ
u(A)=x

Φ(A)
}

(17)

where we have, by Theorem 21, that

Pa
(
δX(Φ)

)
= {a(μS

X(Ψ)) | Ψ ∈ S2X,
∑

ϕ∈SX

Ψ(ϕ) = 1, supp Ψ ⊆ c(Φ)}.

First of all, ∅ is not a S-algebra, because there is no map S(∅) → ∅ given that
S(∅) = {∅ : ∅ → S}, hence X �= ∅. Next, if Φ = ε : PX → S, namely the function
constant to 0, then c(Φ) = {ε : X → S} therefore one can easily see that the
left-hand side of (17) is equal to {a(ε : X → S)}. For the same reason, the right-
hand side is also equal to {a(ε : X → S)}. Moreover, if Φ(∅) �= 0, then there is
no u : supp Φ → X such that u(∅) ∈ ∅, so c(Φ) = ∅ and so is the left-hand side
of (17); for the same reason, also the right-hand side is empty.

Suppose then, for the rest of the proof, that Φ �= 0 and that Φ(∅) = 0.
For the right-to-left inclusion in (17): given ψ ∈ c(Φ), consider Ψ = ηSSX(ψ) =

Δψ ∈ S2X. Then Ψ clearly satisfies all the required properties and μS
X(Ψ) = ψ.

The left-to-right inclusion is more laborious. Let Ψ ∈ S2X be such that∑
χ∈SX Ψ(χ) = 1 and such that supp Ψ ⊆ c(Φ), that is, for all ϕ ∈ supp Ψ

there is uϕ : supp Φ → X such that uϕ(A) ∈ A for all A ∈ supp Φ and ϕ =
S(uϕ)(Φ). We have to show that a(μ(Ψ)) = a(ψ) for some ψ ∈ SX of the form∑

A∈supp Φ Φ(A) ·u(A) for some choice function u : supp Φ→ X. Notice that the
given Ψ is a convex linear combination of functions ϕ’s in SX like the one we have
to produce: the trick will be to exploit the fact that each A ∈ supp Φ is convex.
Here we shall only give a sketch of the proof. Suppose supp Φ = {A1, . . . , An}
and supp Ψ = {ϕ1, . . . , ϕm}. Call uj the choice function that generates ϕj . Then
Ψ is of this form:

Ψ =

(⎛⎜⎝u1(A1) �→ Φ(A1)
...
u1(An) �→ Φ(An)

⎞⎟⎠
︸ ︷︷ ︸

ϕ1

�→ Ψ(ϕ1), . . . ,

⎛⎜⎝um(A1) �→ Φ(A1)
...
um(An) �→ Φ(An)

⎞⎟⎠
︸ ︷︷ ︸

ϕm

�→ Ψ(ϕm)

)
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Define the following element of S2X:

Ψ ′ =

(⎛⎜⎝u1(A1) �→ Ψ(ϕ1)
...
um(A1) �→ Ψ(ϕm)

⎞⎟⎠
︸ ︷︷ ︸

χ1

�→ Φ(A1), . . . ,

⎛⎜⎝u1(An) �→ Ψ(ϕ1)
...
um(An) �→ Ψ(ϕm)

⎞⎟⎠
︸ ︷︷ ︸

χn

�→ Φ(An)

)

Observe that u1(Ai), . . . , u
m(Ai) ∈ Ai by definition, and Ai is convex by assump-

tion: since
∑m

j=1 Ψ(ϕ
j) = 1, we have that a(χi) ∈ Ai. Set then u(Ai) = a(χi)

and define ψ = S(a)(Ψ ′): we have ψ ∈ c(Φ) with u as the generating choice
function. It is not difficult to see that μS

X(Ψ) = μS
X(Ψ ′), therefore we have

a(ψ) = a
(
S(a)(Ψ ′)

)
= a

(
μS
X(Ψ ′)

)
= a

(
μS
X(Ψ)

)
as desired. ��

The rest of the proof of Theorem 24, concerning the action of P̃ on morphisms
and the unit and multiplication of the monad P̃, consists in following the recipe
provided by Garner [15].

6 The Composite Monad: an Algebraic Presentation

We can now compose the two monads P and S by considering the monad arising
from the composition of the following two adjunctions:

Set EM(S) EM(P̃)
FS

US

F P̃

U P̃

⊥ ⊥

Direct calculations show that the resulting endofunctor on Set, which we call
PcS, maps a set X and a function f : X → Y into, respectively,

PcSX = PμS
X

c (SX) and PcS(f)(A) = {S(f)(Φ) | Φ ∈ A} (18)

for all A ∈ PcSX. For all sets X, ηPcS
X : X → PcSX and μPcS

X : PcSPcSX →
PcSX are defined as

ηPcS
X (x) = {Δx} and μPcS

X (A ) =
⋃

Ω∈A

αμS
X
(Ω) (19)

for all x ∈ X and A ∈ PcSPcSX.

Theorem 29. Let S be a positive semifield. Then the canonical weak distribu-
tive law δ : SP → PS given in Theorem 21 induces a monad PcS on Set with
endofunctor, unit and multiplication defined as in (18) and (19).
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Recall from Remark 25 that the monad C : EM(S)→ EM(S) from [25] coin-
cides with our lifting P̃ modulo the absence of the empty set. The same happens
for the composite monad, which is named CM in [25]. The absence of ∅ in CM
turns out to be rather problematic for Jacobs. Indeed, in order to use the stan-
dard framework of coalgebraic trace semantics [20], one would need the Kleisli
category Kl(CM) to be enriched over CPPO, the category of ω-complete partial
orders with bottom and continuous functions. Kl(CM) is not CPPO-enriched
since there is no bottom element in CM(X). Instead, in PcSX the bottom is
exactly the empty set; moreover, Kl(PcS) enjoys the properties required by [20].

Theorem 30. The category Kl(PcS) is enriched over CPPO and satisfies the
left-strictness condition: for all f : X → PcSY and Z set, ⊥Y,Z ◦ f = ⊥X,Z .

It is immediate that every homset in Kl(PcS) carries a complete partial order.
Showing that composition of arrows in Kl(PcS) preserves joins (of ω-chains)
requires more work: the proof, omitted here, crucially relies on the algebraic
theory presenting the monad PcS, illustrated next.

An Algebraic Presentation. Recall that an algebraic theory is a pair T =
(Σ,E) where Σ is a signature, whose elements are called operations, to each of
which is assigned a cardinal number called its arity, while E is a class of formal
equations between Σ-terms. An algebra for the theory T is a set A together with,
for each operation o of arity κ in Σ, a function oA : Aκ → A satisfying the equa-
tions of E. A homomorphism of algebras is a function f : A→ B respecting the
operations of Σ in their realisations in A and B. Algebras and homomorphisms
of an algebraic theory T form a category Alg(T ).

Definition 31. Let M be a monad on Set, and T an algebraic theory. We say
that T presents M if and only if EM(M) and Alg(T ) are isomorphic.

Left S-semimodules are algebras for the theory LSM = (ΣLSM, ELSM)
where ΣSLSM = {+, 0} ∪ {λ · | λ ∈ S} and ELSM is the set of axioms in
Table 1. As already mentioned in Section 3, left S-semimodules are exactly S-
algebras and morphisms of S-semimodules coincide with those of S-algebras.
Thus, the theory LSM presents the monad S.

Similarly, semilattices are algebras for the theory SL = (ΣSL, ESL) where
ΣSL = {�,⊥} and ESL is the set of axioms in Table 1. It is well known that
semilattices are algebras for the finite powerset monad. Actually, this monad is
presented by SL. In order to present the full powerset monad P we need to take
joins of arbitrary arity. A complete semilattice is a set X equipped with joins⊔

x∈A x for all–not necessarily finite–A ⊆ X. Formally the (infinitary) theory
of complete semilattices is given as CSL = (ΣCSL, ECSL) where ΣCSL = {

⊔
I |

I set} and ECSL is the set of axioms displayed in Table 3 (for a detailed treatment
of infinitary algebraic theories see, for example, [30]).

We can now illustrate the theory (Σ,E) presenting the composed monad
PcS: the operations in Σ are exactly those of complete semilattices and S-
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Table 3. The sets of axioms ECSL for complete semilattices: the second axiom gen-
eralises the usual idempotency and commutativity properties of finitary �, while the
third one generalises associativity and neutrality of

⊔
∅ = ⊥.

⊔
i∈{0} xi = x0⊔
j∈J xj =

⊔
i∈I xf(i) for all f : I → J surjective⊔

i∈I xi =
⊔

j∈J

⊔
i∈f−1{j} xi for all f : I → J

semimodules, while the axioms are those of complete semilattices and S-semi-
modules together with the set ED of distributivity axioms illustrated below.

λ ·
⊔
i∈I

xi =
⊔
i∈I

λ · xi for λ �= 0,
⊔
i∈I

xi +
⊔
j∈J

yj =
⊔

(i,j)∈I×J

xi + yj (20)

In short, Σ = ΣCSL ∪ΣLSM and E = ECSL ∪ ELSM ∪ ED.

Theorem 32. The monad PcS is presented by the algebraic theory (Σ,E).

The presentation crucially relies on the fact that PcS is obtained by com-
posing P and S via δ. Indeed, we know from general results in [11,15] that PcS-
algebras are in one to one correspondence with δ-algebras [3], namely triples
(X, a, b) such that a : SX → X is a S-algebra, b : PX → X is a P-algebra and
the following diagram commutes.

SPX PSX

SX PX

X

δX

Sb Pa

a b

(21)

The S-algebra a corresponds to a S-semimodule (X,+, 0, λ·), the P-algebra b
to a complete lattice (X,

⊔
I) and the commutativity of diagram (21) expresses

exactly the distributivity axioms in (20).

Example 33. Let S be R+ and let [a, b] with a, b ∈ R+ denote the set {x ∈ R+ |
a ≤ x ≤ b} and [a,∞) the set {x ∈ R+ | a ≤ x}. For 1 = {x}, PcS(1) = {∅} ∪
{[a, b] | a, b ∈ R+} ∪ {[a,+∞) | a ∈ R+}. The PcS-algebra μPcS

1 : PcSPcS1 →
PcS1 induces a δ-algebra where the structure of complete lattice is given as2

⊔
i∈I

Ai =

{
[infi∈I , ai, supi∈I bi] if, for all i ∈ I, Ai = [ai, bi] ∧ supi∈I bi ∈ R+

[infi∈I ai,∞) otherwise

The R+-semimodule is as expected, e.g., [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2].
2 For the sake of brevity, we are ignoring the case where some Ai = ∅.
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Finite Joins and Finitely Generated Convex Sets. We now consider the
algebraic theory (Σ′, E′) obtained by restricting (Σ,E) to finitary joins. More
precisely, we fix

Σ′ = ΣSL ∪ΣLSM E′ = ESL ∪ ELSM ∪ ED′

where (ΣSL, ESL) is the algebraic theory for semilatices, (ΣLSM, ELSM) is the
one for S-semimodules, and ED′ is the set of distributivity axioms illustrated
in Table 1. Thanks to the characterisation provided by Theorem 32, we easily
obtain a function translating Σ′-terms into convex subsets.

Proposition 34. Let TΣ′,E′(X) be the set of Σ′-terms with variables in X quo-
tiented by E′. Let [[·]]X : TΣ′,E′(X)→ PcS(X) be the function defined as

[[x]] = {Δx} for x ∈ X

[[0]] = {0μS}
[[⊥]] = ∅

[[λ · t]] =
{
{λ ·μS

f | f ∈ [[t]]} if λ �= 0

{0μS} otherwise
[[t1 + t2]] = {f1 +μS

f2 | f1 ∈ [[t1]], f2 ∈ [[t2]]}
[[t1 � t2]] = [[t1]] ∪ [[t2]]

μS

Let [[·]] : TΣ′,E′ → PcS be the family {[[·]]X}X∈|Set|. Then [[·]] : TΣ′,E′ → PcS is a
map of monads and, moreover, each [[·]]X : TΣ′,E′(X)→ PcS(X) is injective.

We say that a set A ∈ PcS(X) is finitely generated if there exists a finite set
B ⊆ S(X) such that B = A. We write PfcS(X) for the set of all A ∈ PcS(X)
that are finitely generated. The assignment X �→ PfcS(X) gives rise to a monad
PfcS : Set→ Set where the action on functions, the unit and the multiplication
are defined as for PcS.

Theorem 35. The monads TΣ′,E′ and PfcS are isomorphic. Therefore (Σ′, E′)
is a presentation for the monad PfcS.

Example 36. Recall PcS(1) for S = R+ from Example 33. By restricting to
the finitely generated convex sets, one obtains PfcS(1) = {∅} ∪ {[a, b] | a, b ∈
R+}, that is the sets of the form [a,∞) are not finitely generated. Table 4
illustrates the isomorphism [[·]] : TΣ′,E′(1) → PcS(1). It is worth observing that
every closed interval [a, b] is denoted by a term in TΣ′,E′(1) for 1 = {x}: indeed,
[[(a · x)� (b · x)]] = [a, b]. For 2 = {x, y}, PfcS(2) is the set containing all convex
polygons: for instance the term (r1 · x+ s1 · y) � (r2 · x+ s2 · y) � (r3 · x+ s3 · y)
denote a triangle with vertexes (ri, si). For n = {x0, . . . xn−1}, it is easy to see
that PfcS(n) contains all convex n-polytopes.

7 Conclusions: Related and Future Work

Our work was inspired by [17] where Goy and Petrisan compose the monads of
powerset and probability distributions by means of a weak distributive law in
the sense of Garner [15]. Our results also heavily rely on the work of Clementino
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Table 4. The inductive definition of the function [[·]]1 : TΣ′,E′(1) → PcS(1) for 1 = {x}.

[[x]] = [1, 1]
[[0]] = [0, 0]
[[⊥]] = ∅

[[λ · t]] =

⎧⎪⎨
⎪⎩
[λ · a, λ · b] if λ = 0, [[t]] = [a, b]

∅ if λ = 0, [[t]] = ∅
[0, 0] otherwise

[[t1 + t2]] =

{
[a1 + a2, b1 + b2] if [[ti]] = [ai, bi]

∅ otherwise

[[t1 � t2]] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[min ai, max bi] if [[ti]] = [ai, bi]

[a1, b1] if [[t1]] = [a1, b1], [[t2]] = ∅
[a2, b2] if [[t2]] = [a2, b2], [[t1]] = ∅
∅ otherwise

et al. [12] that illustrates necessary and sufficient conditions on a semiring S
for the existence of a weak distributive law δ : SP → PS. However, to the best
of our knowledge, the alternative characterisation of δ provided by Theorem 21
was never shown.

Such characterisation is essential for giving a handy description of the lifting
P̃ : EM(S)→ EM(S) (Theorem 24) as well as to observe the strong relationships
with the work of Jacobs (Remark 25) and the one of Klin and Rot (Remark 23).
The weak distributive law δ also plays a key role in providing the algebraic
theories presenting the composed monad PcS (Theorem 24) and its finitary
restriction PfcS (Theorem 35). These two theories resemble those appearing in,
respectively, [17] and [10] where the monad of probability distributions plays the
role of the monad S in our work.

Theorem 30 allows to reuse the framework of coalgebraic trace semantics [20]
for modelling over Kl(PcS) systems with both nondeterminism and quantitative
features. The alternative framework based on coalgebras over EM(PcS) directly
leads to nondeterministic weighted automata. A proper comparison with those
in [13] is left as future work. Thanks to the abstract results in [7], language
equivalence for such coalgebras could be checked by means of coinductive up-
to techniques. It is worth remarking that, since δ is a weak distributive law,
then thanks to the work in [16], up-to techniques are also sound for “convex-
bisimilarity” (in coalgebraic terms, behavioural equivalence for the lifted functor
P̃ : EM(S)→ EM(S)).

We conclude by recalling that we have two main examples of positive semi-
fields: Bool and R+. Booleans could lead to a coalgebraic modal logic and trace
semantics for alternating automata in the style of [27]. For R+, we hope that
exploiting the ideas in [34] our monad could shed some lights on the behaviour
of linear dynamical systems featuring some sort of nondeterminism.
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Abstract. The origin semantics for transducers was proposed in 2014,
and it led to various characterizations and decidability results that are
in contrast with the classical semantics. In this paper we add a further
decidability result for characterizing transducers that are close to one-
way transducers in the origin semantics. We show that it is decidable
whether a non-deterministic two-way word transducer can be resynchro-
nized by a bounded, regular resynchronizer into an origin-equivalent one-
way transducer. The result is in contrast with the usual semantics, where
it is undecidable to know if a non-deterministic two-way transducer is
equivalent to some one-way transducer.

Keywords: String transducers · Resynchronizers · One-way transducers

1 Introduction

Regular word-to-word functions form a robust and expressive class of transforma-
tions, as they correspond to deterministic two-way transducers, to deterministic
streaming string transducers [1], and to monadic second-order logical transduc-
tions [11]. However, the transition from word languages to functions over words
is often quite tricky. One of the challenges is to come up with effective charac-
terizations of restricted transformations. A first example is the characterization
of functions computed by one-way transducers (known as rational functions).
It turns out that it is decidable whether a regular function is rational [14],
but the algorithm is quite involved [3]. In addition, non-determinism makes the
problem intractable: it is undecidable whether the relation computed by a non-
deterministic two-way transducer can be also computed by a one-way transducer,
[2]. A second example is the problem of knowing whether a regular word func-
tion can be described by a first-order logical transduction. This question is still
open in general [16], and it is only known how to decide if a rational function is
definable in first-order logic [13].

Word transducers with origin semantics were introduced by Bojańczyk [4]
and shown to provide a machine-independent characterization of regular word-
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b a c a

a b a c

input:

output:

origins:

b a c a

a b a c

input:

output:

resynchronized
origins:

Fig. 1: On the left, an input-output pair for a transducer T that reads wd and
outputs dw, d ∈ Σ, w ∈ Σ∗, the arrows denoting origins. On the right, the same
input-output pair, but with origins modified by a resynchronizer R. The resyn-
chronized relation R(T ) is order-preserving, and T is one-way resynchronizable.

to-word functions. The origin semantics, as the name suggests, means tagging
the output by the positions of the input that generated that output.

A nice phenomenon is that origins can restore decidability for some inter-
esting problems. For example, the equivalence of word relations computed by
one-way transducers, which is undecidable in the classical semantics [18,19], is
PSPACE-complete for two-way non-deterministic transducers in the origin se-
mantics [7]. Another, deeper, observation is that the origin semantics provides
an algebraic approach that can be used to decide fragments. For example, [4]
provides an effective characterization of first-order definable word functions un-
der the origin semantics. As for the problem of knowing whether a regular word
function is rational, it becomes almost trivial in the origin semantics.

A possible objection against the origin semantics is that the comparison of
two transducers in the origin semantics is too strict. Resynchronizations were
proposed in order to overcome this issue. A resynchronization is a binary relation
between input-output pairs with origins, that preserves the input and the out-
put, changing only the origins. Resynchronizations were introduced for one-way
transducers [15], and later for two-way transducers [7]. For one-way transduc-
ers rational resynchronizations are transducers acting on the synchronization
languages, whereas for two-way transducers, regular resynchronizations are de-
scribed by regular properties over the input that restrict the change of origins.
The class of bounded4 regular resynchronizations was shown to behave very
nicely, preserving the class of transductions defined by non-deterministic, two-
way transducers: for any bounded regular resynchronization R and any two-way
transducer T , the resynchronized relation R(T ) can be computed by another
two-way transducer [7]. In particular, non-deterministic, two-way transducers
can be effectively compared modulo bounded regular resynchronizations.

As mentioned above, it is easy to know if a two-way transducer is equiv-
alent under the origin semantics to some one-way transducer [4], since this is
equivalent to being order-preserving. But what happens if this is not the case?
Still, the given transducer T can be “close” to some order-preserving transducer.
What we mean here by “close” is that there exists some bounded regular resyn-

4 “Bounded” refers here to the number of source positions that are mapped to the
same target position. It rules out resynchronizations such as the universal one.
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chronizer R such that R(T ) is order-preserving and all input-output pairs with
origins produced by T are in the domain of R. We call such transducers one-way
resynchronizable. Figure 1 gives an example.

In this paper we show that it is decidable if a two-way transducer is one-way
resynchronizable. We first solve the problem for bounded-visit two-way transduc-
ers. A bounded-visit transducer is one for which there is a uniform bound for the
number of visits of any input position. Then, we use the previous result to show
that one-way resynchronizability is decidable for arbitrary two-way transducers,
so without the bounded-visit restriction. This is done by constructing, if possible,
a bounded, regular resynchronization from the given transducer to a bounded-
visit transducer with regular language outputs. Finally, we show that bounded
regular resynchronizations are closed under composition, and this allows to com-
bine the previous construction with our decidability result for bounded-visit
transducers.

Related work and paper overview. The synthesis problem for resynchronizers asks
to compute a resynchronizer from one transducer to another one, when the two
transducers are given as input. The problem was studied in [6] and shown to
be decidable for unambiguous two-way transducers (it is open for unrestricted
transducers). The paper [21] shows that the containment version of the above
problem is undecidable for unrestricted one-way transducers.

The origin semantics for streaming string transducers (SST) [1] has been
studied in [5], providing a machine-independent characterization of the sets of
origin graphs generated by SSTs. An open problem here is to characterize origin
graphs generated by aperiodic streaming string transducers [10,16]. Going be-
yond words, [17] investigates decision problems of tree transducers with origin,
and regains the decidability of the equivalence problem for non-deterministic
top-down and MSO transducers by considering the origin semantics. An open
problem for tree transducers with origin is that of synthesizing resynchronizers
as in the word case.

We will recall regular resynchronizations in Section 3. Section 4 provides the
proof ingredients for the bounded-visit case, and the proof of decidability of
one-way resynchronizability in the bounded-visit case can be found in Section 5.
Finally, in Section 6 we sketch the proof in the general case. A full version of
the paper is available at https://arxiv.org/abs/2101.08011.

2 Preliminaries

Let Σ be a finite input alphabet. Given a word w ∈ Σ∗ of length |w| = n, a
position is an element of its domain dom(w) = {1, . . . , n}. For every position
i, w(i) denotes the letter at that position. A cut of w is any number from 1
to |w| + 1, so a cut identifies a position between two consecutive letters of the
input. The cut i = 1 represents the position just before the first input letter,
and i = |w|+ 1 the position just after the last letter of w.

https://arxiv.org/abs/2101.08011
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Two-way transducers. We use two-way transducers as defined in [3,6], with a
slightly different presentation than in classical papers such as [22]. As usual for
two-way machines, for any input w ∈ Σ∗, w(0) = � and w(|w| + 1) = &, where
�,& /∈ Σ are special markers used as delimiters.

A two-way transducer (or just transducer from now on) is a tuple T =
(Q,Σ, Γ,Δ, I, F ), where Σ,Γ are respectively the input and output alphabets,
Q = Q≺ � Q is the set of states, partitioned into left-reading states from Q≺
and right-reading states from Q, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of final states, and Δ ⊆ Q× (Σ �{�,&})×Γ ∗×Q is the finite transition
relation. Left-reading states read the letter to the left, whereas right-reading
states read the letter to the right. This partitioning will also determine the head
movement during a transition, as explained below.

As usual, to define runs of transducers we first define configurations. Given
a transducer T and a word w ∈ Σ∗, a configuration of T on w is a state-cut pair
(q, i), with q ∈ Q and 1 ≤ i ≤ |w| + 1. A configuration (q, i), 1 ≤ i ≤ |w| + 1
means that the automaton is in state q and its head is between the (i − 1)-th
and the i-th letter of w. The transitions that depart from a configuration (q, i)

and read a are denoted (q, i)
a−→ (q′, i′), and must satisfy one of the following:

(1) q ∈ Q, q
′ ∈ Q, a = w(i), (q, a, v, q′) ∈ Δ, and i′ = i+ 1,

(2) q ∈ Q, q
′ ∈ Q≺, a = w(i), (q, a, v, q′) ∈ Δ, and i′ = i,

(3) q ∈ Q≺, q
′ ∈ Q, a = w(i− 1), (q, a, v, q′) ∈ Δ, and i′ = i,

(4) q ∈ Q≺, q
′ ∈ Q≺, a = w(i − 1), (q, a, v, q′) ∈ Δ, and i′ = i − 1. When T

has only right-reading states (i.e. Q≺ = ∅), its head can only move rightward.
In this case we call T a one-way transducer.

A run of T on w is a sequence ρ = (q1, i1)
aj1 |v1−→ (q2, i2)

aj2 |v2−→ · · · ajm |vm−→
(qm+1, im+1) of configurations connected by transitions. Note that the positions
j1, j2, . . . , jm of letters do not need to be ordered from smaller to bigger, and
can differ slightly (by +1 or −1) from the cuts i1, i2, . . . , im+1, since cuts take
values in between consecutive letters.

A configuration (q, i) on w is initial (resp. final) if q ∈ I and i = 1 (resp. q ∈ F
and i = |w|+1). A run is successful if it starts with an initial configuration and
ends with a final configuration. The output associated with a successful run
ρ as above is the word v1v2 · · · vm ∈ Γ ∗. A transducer T defines a relation
[[T ]] ⊆ Σ∗×Γ ∗ consisting of all the pairs (u, v) such that v is the output of some
successful run ρ of T on u.

Origin semantics. In the origin semantics for transducers [4] the output is tagged
with information about the position of the input where it was produced. If
reading the i-th letter of the input we output v, then all letters of v are tagged
with i, and we say they have origin i. We use the notation (v, i) for v ∈ Γ ∗

to denote that all positions in the output word v have origin i, and we view
(v, i) as word over the alphabet Γ ×N. The outputs associated with a successful

run ρ = (q1, i1)
b1|v1−→ (q2, i2)

b2|v2−→ (q3, i3) · · ·
bm|vm−→ (qm+1, im+1) in the origin

semantics are the words of the form ν = (v1, j1)(v2, j2) · · · (vm, jm) over Γ × N
where, for all 1 ≤ k ≤ m, jk = ik if qk ∈ Q, and jk = ik − 1 if qk ∈ Q≺. Under
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the origin semantics, the relation defined by T , denoted [[T ]]o, is the set of pairs
σ = (u, ν) —called synchronized pairs— such that u ∈ Σ∗ and ν ∈ (Γ × N)∗ is
the output of some successful run on u.

Equivalently, a synchronized pair (u, ν) can be described as a triple (u, v, orig),
where v is the projection of ν on Γ , and orig : dom(v)→ dom(u) associates with
each position of v its origin in u. So for ν = (v1, j1)(v2, j2) · · · (vm, jm) as above,
v = v1 . . . vm, and, for all positions i s.t. |v1 . . . vk−1| < i ≤ |v1 . . . vk|, we have
orig(i) = jk. Given two transducers T1, T2, we say they are origin-equivalent if
[[T1]]o = [[T2]]o. Note that two transducers T1, T2 can be equivalent in the clas-
sical semantics, [[T1]] = [[T2]], while they can have different origin semantics, so
[[T1]]o �= [[T2]]o.

Bounded-visit transducers. Let k > 0 be some integer, and ρ some run of a
two-way transducer T . We say that ρ is k-visit if for every i ≥ 0, it has at most
k occurrences of configurations from Q × {i}. We call a transducer T k-visit if
for every σ ∈ [[T ]]o there is some successful, k-visit run ρ of T with output σ
(actually we should call the transducer k-visit in the origin semantics, but for
simplicity we omit this). For example, the relation {(w,w) | w ∈ Σ∗}, where w
denotes the reverse of w, can be computed by a 3-visit transducer. A transducer
is called bounded-visit if it is k-visit for some k.

Common guess. It is often useful to work with a variant of two-way transducers
that can guess beforehand some annotation on the input and inspect it consis-
tently when visiting portions of the input multiple times. This feature is called
common guess [5], and strictly increases the expressive power of two-way trans-
ducers, including bounded-visit ones.

3 One-way resynchronizability

3.1 Regular resynchronizers

Resynchronizations are used to compare transductions in the origin semantics.
A resynchronization is a binary relation R ⊆ (Σ∗×(Γ×N)∗)2 over synchronized
pairs such that (σ, σ′) ∈ R implies that σ = (u, v, orig) and σ′ = (u, v, orig ′)
for some origin mappings orig , orig ′ : dom(v) → dom(u). In other words, a
resynchronization will only change the origin mapping, but neither the input, nor
the output. Given a relation S ⊆ Σ∗× (Γ ×N)∗ with origins, the resynchronized
relation R(S) is defined as R(S) = {σ′ | (σ, σ′) ∈ R, σ ∈ S}. For a transducer
T we abbreviate R([[T ]]o) by R(T ). The typical use of a resynchronization R is
to ask, given two transducers T, T ′, whether R(T ) and T ′ are origin-equivalent.

Regular resynchronizers (originally called MSO resynchronizers) were intro-
duced in [7] as a resynchronization mechanism that preserves definability by
two-way transducers. They were inspired by MSO (monadic second-order) trans-
ductions [9,12] and they are formally defined as follows. A regular resynchronizer
is a tuple R = (I, O, ipar, opar, (moveτ )τ , (nextτ,τ ′)τ,τ ′) consisting of
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– some monadic parameters (colors) I = (I1, . . . , Im) and O = (O1, . . . , On),

– MSO sentences ipar, opar, defining languages over expanded input and output
alphabets, i.e. over Σ′ = Σ × 2{1,...,m} and Γ ′ = Γ × 2{1,...,n}, respectively,

– MSO formulas moveτ (y, z), nextτ,τ ′(z, z′) with two free first-order variables
and parametrized by expanded output letters τ, τ ′ (called types, see below).

To apply a regular resynchronizer as above, one first guesses the valuation of all
the predicates Ij , Ok, and uses it to interpret the parameters I and O. Based
on the chosen valuation of the parameters O, each position x of the output v
gets an associated type τx = (v(x), b1, . . . , bn) ∈ Γ × {0, 1}n, where bj is 1 or
0 depending on whether x ∈ Oj or not. We refer to the output word together
with the valuation of the output parameters as annotated output, so a word
over Γ × {0, 1}n. Similarly, the annotated input is a word over Σ × {0, 1}m.
The annotated input and output word must satisfy the formulas ipar and opar,
respectively.

The origins of output positions are constrained using the formulas moveτ
and nextτ,τ ′ , which are parametrized by output types and evaluated over the an-
notated input. Intuitively, the formula moveτ (y, z) states how the origin of every
output position of type τ changes from y to z. We refer to y and z as source
and target origin, respectively. The formula nextτ,τ ′(z, z′) instead constrains the
target origins z, z′ of any two consecutive output positions with types τ and τ ′,
respectively.

Formally, R = (I, O, ipar, opar, (moveτ ), (nextτ,τ ′)) defines the resynchroniza-
tion consisting of all pairs (σ, σ′), with σ = (u, v, orig), σ′ = (u, v, orig ′), u ∈ Σ∗,
and v ∈ Γ ∗, for which there exist u′ ∈ Σ′∗ and v′ ∈ Γ ′∗ such that

– πΣ(u
′) = u and πΓ (v

′) = v

– u′ satisfies ipar and v′ satisfies opar,
– (u′, orig(x), orig ′(x)) satisfies moveτ for all τ -labeled output positions x ∈

dom(v′), and
– (u′, orig ′(x), orig ′(x+1)) satisfies nextτ,τ ′ for all x, x+1 ∈ dom(v′) such that

x and x+ 1 have label τ and τ ′, respectively.

Example 1. Consider the following resynchronization R. A pair (σ, σ′) belongs
to R if σ = (uv, uwv, orig), σ′ = (uv, uwv, orig ′), with u, v, w ∈ Σ+. The origins
orig and orig ′ are both the identity over u and v. The origin of every position
of w in σ (hence a source origin) is either the first or the last position of v. The
origin of every position of w in σ′ (a target origin) is the first position of v.

This resynchronization is described by a regular resynchronizer that uses two
input parameters I1, I2 to mark the last and the first positions of v in the input,
and one output parameter O to mark the factor w in the output. The formula
moveτ (y, z) is either (I1(y)∨ I2(y))∧ I2(z) or (y = z), depending on whether the
type τ describes a position inside w or a position outside w.

We now turn to describing some important restrictions on (regular) resyn-
chronizers. Let R = (I,O, ipar, opar, (moveτ ), (nextτ,τ ′)) be a resynchronizer.
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– R is k-bounded (or just bounded) if for every annotated input u′ ∈ Σ′∗, every
output type τ ∈ Γ ′, and every position z, there are at most k positions y
such that (u′, y, z) satisfies moveτ . Recall that y, z are input positions.

– R is T -preserving for a given transducer T , if every σ ∈ [[T ]]o belongs to the
domain of R.

– R is partially bijective if each moveτ formula defines a partial, bijective func-
tion from source origins to target origins. Observe that this property implies
that R is 1-bounded.

The boundedness restriction rules out resynchronizations such as the univer-
sal one, that imposes no restriction on the change of origins. It is a decidable
restriction [7], and it guarantees that definability by two-way transducers is effec-
tively preserved under regular resynchronizations, modulo common guess. More
precisely, Theorem 16 in [7] shows that, given a bounded regular resynchronizer
R and a transducer T , one can construct a transducer T ′ with common guess
that is origin-equivalent to R(T ).

Example 1 (continued). Consider again the regular resynchronizer R described
in the previous example. Note that R is 2-bounded, since at most two source
origins are redirected to the same target origin. If we used an additional output
parameter to distinguish, among the positions of w, those that have source origin
in the first position of v and those that have source origin in the last position of
v, we would get a 1-bounded, regular resynchronizer.

We state below two crucial properties of regular resynchronizers (the second
lemma is reminiscent of Lemma 11 from [21], which proves closure of bounded
resynchronizers with vacuous nextτ,τ ′ relations).

Lemma 1. Every bounded, regular resynchronizer is effectively equivalent to
some 1-bounded, regular resynchronizer.

Lemma 2. The class of bounded, regular resynchronizers is effectively closed
under composition.

3.2 Main result

Given a two-way transducer T one can ask if it is origin-equivalent to some
one-way transducer. It was observed in [4] that this property holds if and only
if all synchronized pairs defined by T are order-preserving, namely, for all σ =
(u, v, orig) ∈ [[T ]]o and all y, y′ ∈ dom(v), with y < y′, we have orig(y) ≤ orig(y′).
The decidability of the above question should be contrasted to the analogous
question in the classical semantics: “is a given two-way transducer classically
equivalent to some one-way transducer?” The latter problem turns out to be
decidable for functional transducers [14,3], but is undecidable for arbitrary two-
way transducers [2].

Here we are interested in a different, more relaxed notion:
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Definition 1. A transducer T is called one-way resynchronizable if there exists
a bounded, regular resynchronizer R that is T -preserving and such that R(T ) is
order-preserving.

Note that if T ′ is an order-preserving transducer, then one can construct
rather easily a one-way transducer T ′′ such that T ′ =o T ′′, by eliminating non-
productive U-turns from accepting runs.

Moreover, note that without the condition of being T -preserving every trans-
ducer T would be one-way resynchronizable, using the empty resynchronization.

Example 2. Consider the transducer T1 that moves the last letter of the input wa
to the front by a first left-to-right pass that outputs the last letter a, followed by a
right-to-left pass without output, and finally by a left-to-right pass that produces
the remaining w. Let R be the bounded regular resynchronizer that redirects the
origin of the last a to the first position. Assuming an output parameter O with
an interpretation constrained by opar that marks the last position of the output,
the formula move(a,1)(y, z) says that target origin z (source origin y, resp.) of
the last a is the first (last, resp.) position of the input. It is easy to see that
R(T1) is origin-equivalent to the one-way transducer that on input wa, guesses
a and outputs aw. Thus, T1 is one-way resynchronizable. See also Figure 1.

Example 3. Consider the transducer T2 that reads inputs of the form u#v and
outputs vu in the obvious way, by a first left-to-right pass that outputs v, followed
by a right-to-left pass, and a finally a left-to-right pass that outputs u. Using
the characterization with the notion of cross-width that we introduce below, it
can be shown that T2 is not one-way resynchronizable.

In order to give a flavor of our results, we anticipate here the two main theo-
rems, before introducing the key technical concepts of cross-width and inversion
(these will be defined further below).

Theorem 1. For every bounded-visit transducer T , the following are equivalent:

(1) T is one-way resynchronizable,
(2) the cross-width of T is finite,
(3) no successful run of T has inversions,
(4) there is a partially bijective, regular resynchronizer R that is T -preserving

and such that R(T ) is order-preserving.

Moreover, condition (3) is decidable.

We will use Theorem 1 to show that one-way resynchronizability is decidable
for arbitrary two-way transducers (not just bounded-visit ones).

Theorem 2. It is decidable whether a given two-way transducer T is one-way
resynchronizable.

Let us now introduce the first key concept, that of cross-width:
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Definition 2 (cross-width). Let σ =
(u, v, orig) be a synchronized pair
and let X1, X2 ⊆ dom(v) be sets of
output positions such that, for all
x1 ∈ X1 and x2 ∈ X2, x1 < x2 and
orig(x1) > orig(x2). We call such a pair
(X1, X2) a cross and define its width as

input

output

cross

cross-width

X1 X2

min(|orig(X1)|, |orig(X2)|), where orig(X) = {orig(x) | x ∈ X} is the set of
origins corresponding to a set X of output positions. The cross-width of a syn-
chronized pair σ is the maximal width of the crosses in σ. A transducer has
bounded cross-width if for some integer k, all synchronized pairs associated with
successful runs of T have cross-width at most k.

For instance, the transducer T2 in Example 3 has unbounded cross-width. In
contrast, the transducer T1 in Example 2 has cross-width one.

The other key notion of inversion will be introduced formally in the next
section (page 135), as it requires a few technical definitions. The notion however
is very similar in spirit to that of cross, with the difference that a single inversion
is sufficient for witnessing a family of crosses with arbitrarily large cross-width.

4 Proof overview for Theorem 1

This section provides an overview of the proof of Theorem 1, and introduces the
main ingredients.

We will use flows (a concept inspired from crossing sequences [22,3] and
revised in Section 4.1) in order to derive the key notion of inversion. Roughly
speaking, an inversion in a run involves two loops that produce outputs in an
order that is reversed compared to the order on origins. Inversions were also used
in the characterization of one-way definability of two-way transducers under the
classical semantics [3]. There, they were used for deriving some combinatorial
properties of outputs. Here we are only interested in detecting inversions, and
this is a simple task.

Flows will also be used to associate factorization trees with runs (the exis-
tence of factorization trees of bounded height was established by the celebrated
Simon’s factorization theorem [23]). We will use a structural induction on these
factorization trees and the assumption that there is no inversion in every run to
construct a regular resynchronization witnessing one-way resynchronizability of
the transducer at hand.

Another important ingredient underlying the main characterization is given
by the notion of dominant output interval (Section 4.2), which is used to for-
malize the invariant of our inductive construction.

4.1 Flows and inversions

Intervals. An interval of a word is a set of consecutive positions in it. An interval
is often denoted by I = [i, i′), with i = min(I) and i′ = max(I) + 1. Given two
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intervals I = [i, i′) and J = [j, j′), we write I < J if i′ ≤ j, and we say that I, J
are adjacent if i′ = j. The union of two adjacent intervals I = [i, i′), J = [j, j′),
denoted I ·J , is the interval [i, j′) (if I, J are not adjacent, then I ·J is undefined).

Subruns. Given a run ρ of a transducer, a subrun is a factor of ρ. Note that a
subrun of a two-way transducer may visit a position of the input several times.
For an input interval I = [i, j) and a run ρ, we say that a subrun ρ′ of ρ spans
over I if i (resp. j) is the smallest (resp. greatest) input position labeling some
transition of ρ′. The left hand-side of the figure at page 134 gives an example of
an interval I of an input word together with the subruns α1, α2, α3, β1, β2, β3, γ1
that span over it. Subruns spanning over an interval can be left-to-right, left-to-
left, right-to-left, or right-to-right depending on where the starting and ending
positions are w.r.t. the endpoints of the interval.

Flows. Flows are used to summarize subruns of a two-way transducer that span
over a given interval. The definition below is essentially taken from [3], except for
replacing “functional” by “K-visit”. Formally, a flow of a transducer T is a graph
with vertices divided into two groups, L-vertices and R-vertices, labeled by states
of T , and with directed edges also divided into two groups, productive and non-
productive edges. The graph satisfies the following requirements. Edge sources
are either an L-vertex labeled by a right-reading state, or an R-vertex labeled by
a left-reading state, and symmetrically for edge destinations; moreover, edges are
of one of the following types: LL, LR, RL, RR. Second, each node is the endpoint
of exactly one edge. Finally, L (R, resp.) vertices are totally ordered, in such
a way that for every LL (RR, resp.) edge (v, v′), we have v < v′. We will only
consider flows of K-visiting transducers, so flows with at most 2K vertices. For
example, the flow in the left-hand side of the figure at page 134 has six L-vertices
on the left, and six R-vertices on the right. The edges α1, α2, α3 are LL, LR, and
RR, respectively.

Given a run ρ of T and an interval I = [i, i′) on the input, the flow of ρ on
I, denoted flowρ(I), is obtained by identifying every configuration at position i
(resp. i′) with an L (resp. R) vertex, labeled by the state of the configuration, and
every subrun spanning over I with an edge connecting the appropriate vertices
(this subrun is called the witnessing subrun of the edge of the flow). An edge is
said to be productive if its witnessing subrun produces non-empty output.

Flow monoid. The composition of two flows F and G is defined when the R-
vertices of F induce the same sequence of labels as the L-vertices of G. In this
case, the composition results in the flow F ·G that has as vertices the L-vertices of
F and the R-vertices of G, and for edges the directed paths in the graph obtained
by glueing the R-vertices of F with the L-vertices of G so that states are matched.
Productiveness of edges is inherited by paths, implying that an edge of F · G
is productive if and only if the corresponding path contains at least one edge
(from F or G) that is productive. When the composition is undefined, we simply
write F · G = ⊥. The above definitions naturally give rise to a flow monoid
associated with the transducer T , where elements are the flows of T , extended
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with a dummy element ⊥, and the product operation is given by the composition
of flows, with the convention that ⊥ is absorbing. It is easy to verify that for
any two adjacent intervals I < J of a run ρ, flowρ(I) · flowρ(J) = flowρ(I · J).
We denote by MT the flow monoid of a K-visiting transducer T .

Let us estimate the size of MT . If Q is the set of states of T , there are at most
|Q|2K possible sequences of L and R-vertices; and the number of edges (marked
as productive or not) is bounded by

(
2K
K

)
·(2K)K ·2K ≤ (2K+1)2K . Including the

dummy element ⊥ in the flow monoid, we get |MT | ≤ (|Q|·(2K+1))2K+1 =: M.

Loops. A loop of a run ρ over input w is an interval I = [i, j) with a flow F =
flowρ(I) such that F · F =
F (call F idempotent). The
run ρ can be pumped on a
loop I = [i, j) as expected:
given n > 0, we let pumpn

I (ρ)
be the run obtained from ρ
by glueing the subruns that
span over the intervals [1, i)
and [j, |w|+1) with n copies
of the subruns spanning over
I (see figure to the right).
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The lemma below shows that the occurrence order relative to subruns wit-
nessing LR or RL edges of a loop (called straight edges, for short) is preserved
when pumping the loop. This seemingly straightforward lemma is needed for
detecting inversions and its proof is surprisingly non-trivial. For example, the
external edge connecting the two L-vertices 1, 2 in the figure above appears before
edge α2, and also before every copy of α2 in the run where loop I is pumped.

Lemma 3. Let ρ be a run of T on u, let J < I < K be a partition of the domain
of u into intervals, with I loop of ρ, and let F = flowρ(J), E = flowρ(I), and
G = flowρ(K) be the corresponding flows. Consider an arbitrary edge f of either
F or G, and a straight edge e of the idempotent flow E. Let ρf and ρe be the
witnessing subruns of f and e, respectively. Then the occurrence order of ρf and
ρe in ρ is the same as the occurrence order of ρf and any copy of ρe in pumpn

I (ρ).

We can now recall the key notion of inversion:
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Definition 3 (inversion). An inversion of ρ is a tuple (I, e, I ′, e′) such that

– I, I ′ are loops of ρ and I < I ′,
– e, e′ are productive straight

edges in flowρ(I) and flowρ(I
′)

respectively,
– the subrun witnessing e′ pre-

cedes the subrun witnessing e in
the run order

(see the figure to the right).
I I ′

e′e′e′

eee

4.2 Dominant output intervals

In this section we identify some particular intervals of the output that play an
important role in the inductive construction of the resynchronizer for a one-way
resynchronizable transducer.

Given n ∈ N, we say that a set B of output positions is n-large if |orig(B)| >
n; otherwise, we say that B is n-small. Recall that here we work with a K-
visiting transducer T , for some constant K, and that M = (|Q| · (2K+1))2K +1
is an upper bound to the size of the flow monoid MT . We will extensively use
the derived constant C = M2K to distinguish between large and small sets of
output positions. The intuition behind this constant is that any set of output
positions that is C-large must traverse a loop of ρ. This is captured by the lemma
below. The proof uses algebraic properties of the flow monoid MT [20] (see also
Theorem 7.2 in [3], which proves a similar result, but with a larger constant
derived from Simon’s factorization theorem):

Lemma 4. Let I be an input interval and B a set of output positions with
origins inside I. If B is C-large, then there is a loop J ⊆ I of ρ such that
flowρ(J) contains a productive straight edge witnessed by a subrun that intersects
B (in particular, out (J) ∩B �= ∅).

We need some more notations for outputs. Given an input interval I we
denote by outρ(I) the set of output positions whose origins belong to I (note
that this might not be an output interval). An output block of I is a maximal
interval contained in outρ(I).

The dominant output interval of I, denoted bigoutρ(I), is the smallest output
interval that contains all C-large output blocks of I. In particular, bigoutρ(I)
either is empty or begins with the first C-large output block of I and ends with
the last C-large outblock block of I. We will often omit the subscript ρ from the
notations flowρ(I), outρ(I), bigoutρ(I), etc., when no confusion arises.

We now fix a successful run ρ of the K-visiting transducer T . The rest of
the section presents some technical lemmas that will be used in the inductive
constructions for the proof of the main theorem. In the lemmas below, we assume
that all successful runs of T (in particular, ρ) avoid inversions.
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Lemma 5. Let I1 < I2 be two input intervals and B1, B2 output blocks of I1,
I2, respectively. If both B1, B2 are C-large, then B1 < B2.

Proof (sketch). If the claim would not hold, then Lemma 4 would provide some
loops J1 ⊆ I1 and J2 ⊆ I2, together with some productive edges in them,
witnessing an inversion. ��

Lemma 6. Let I = I1 · I2, B = bigout (I), and Bi = bigout (Ii) for i = 1, 2.
Then B \ (B1 ∪B2) is 4KC-small.

Proof (sketch). By Lemma 5, B1 < B2. Moreover, all C-large output blocks
of I1 or I2 are also C-large output blocks of I, so B contains both B1 and B2.
Suppose, by way of contradiction, that B \ (B1 ∪B2) is 4KC-large. This means
that there is a 2KC-large set S ⊆ B\(B1∪B2) with origins entirely to the left of
I2, or entirely to the right of I1. Suppose, w.l.o.g., that the former case holds, and
decompose S as a union of maximal output blocks B′

1, B
′
2, . . . , B

′
n with origins

either entirely inside I1, or entirely outside. Since S ∩ B1 = ∅, every block B′
i

with origins inside I1 is C-small. Similarly, one can prove that every block B′
i

with origins outside I1 is C-small too. Moreover, since ρ is K-visiting, we get
n ≤ 2K. Altogether, this contradicts the assumption that S is 2KC-large. ��

Lemma 7. Let I = I1 · I2 · · · In, such that I is a loop and flow (I) = flow (Ik)
for all k. Then bigout (I) can be decomposed as B1 · J1 · B2 · J2 · . . . · Jn−1 · Bn,
where

1. for all 1 ≤ k ≤ n, Bk = bigout (Ik) (with Bk possibly empty);
2. for all 1 ≤ k < n, the positions in Jk have origins inside Ik ∪ Ik+1 and Jk is

2KC-small.

Proof (sketch). The proof idea is similar to the previous lemma. First, using
properties of idempotent flows, one shows that all output positions strictly be-
tween Bk and Bk+1, for any k = 1, . . . , n−1, have origin in Ik ∪ Ik+1. Then, one
observes that every output block of Ik disjoint from Bk is C-small, and since
T is K-visiting there are at most K such
blocks. This shows that every output inter-
val Jk between Bk and Bk+1 is 2KC-small.
For an illustration see the figure to the right.
The C-large blocks in I1 are shown in red;
in blue those for I2, in purple those for I3.
So bigout (I1) is the entire output between
the two red dots, bigout (I2) between the two
blue dots, and bigout (I3) between the pur-
ple dots. All three blocks are non-empty, and
bigout (I1 · I2 · I3) goes from the first red to
the second purple dot. Black non-dashed ar-
rows stand for C-small blocks. �� I1 I2 I3
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5 Proof of Theorem 1

This section is devoted to proving the characterization of one-way resynchro-
nizability in the bounded-visit case. We will use the notion of bounded-traversal
from [21], that was shown to characterize the class of bounded regular resynchro-
nizers, in as much as bounded-delay characterizes rational resynchronizers [15].

Definition 4 (traversal [21]). Let σ = (u, v, orig) and σ′ = (u, v, orig ′) be
two synchronized pairs with the same input and output words.

Given two input positions y, y′ ∈ dom(u), we say that y traverses y′ if there is
a pair (y, z) of source and target origins associated with the same output position
such that y′ is between y and z, with y′ �= z and possibly y′ = y. More precisely:

– (y, y′) is a left-to-right traversal if y ≤ y′ and for some output position x,
orig(x) = y and z = orig ′(x) > y′;

– (y, y′) is a right-to-left traversal if y ≥ y′ and for some output position x,
orig(x) = y and z = orig ′(x) < y′.

A pair (σ, σ′) of synchronized pairs with input u and output v is said to have
k-bounded traversal, with k ∈ N, if every y′ ∈ dom(u) is traversed by at most k
distinct positions of dom(u).

A resynchronizer R has bounded traversal if there is some k ∈ N such that
every (σ, σ′) ∈ R has k-bounded traversal.

Lemma 8 ([21]). A regular resynchronizer is bounded if and only if it has
bounded traversal.

Proof (of Theorem 1). First of all, observe that the implication 4 → 1 is straight-
forward. To prove the implication 1 → 2, assume that there is a k-bounded,
regular resynchronizer R that is T -preserving and such that R(T ) is order-
preserving. Lemma 8 implies that R has t-bounded traversal, for some constant
t. We head towards proving that T has cross-width bounded by t+ k. Consider
two synchronized pairs σ = (u, v, orig) and σ′ = (u, v, orig ′) such that σ ∈ [[T ]]o
and (σ, σ′) ∈ R, and consider a cross (X1, X2) of σ. We claim that |orig(X1)|
or |orig(X2)| is at most t + k. Let x1 = min(orig(X1)), x

′
1 = max(orig ′(X1)),

x2 = max(orig(X1)), and x′
2 = min(orig ′(X2)). Since (X1, X2) is a cross, we

have x1 > x2, and since σ′ is order-preserving, we have x′
1 ≤ x′

2. Now, if
x′
1 > x2, then at least |orig(X2)| − k input positions from X2 traverse x′

1 to
the right (the −k term is due to the fact that at most k input positions can be
resynchronized to x′

1). Symmetrically, if x′
1 ≤ x2, then at least |orig(X1)| − k

input positions from X1 traverse x2 to the left (the −k term accounts for the
case where some positions are resynchronized to x′

1 and x′
1 = x2). This implies

min(|orig(X1)|, |orig(X2)|) ≤ t+ k, as claimed.
The remaining implications rely on the assumption that T is bounded-visit.
The implication 2→ 3 is shown by contraposition: one considers a successful

run ρ with an inversion, and shows that crosses of arbitrary width emerge after
pumping the loops of the inversion (here Lemma 3 is crucial).
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The proof of 3 → 4 is more involved, we only sketch it here. Assuming
that no successful run of T has inversions we build a partially bijective, regular
resynchronizer R that is T -preserving and R(T ) is order-preserving. The resyn-
chronizer R uses some parameters to guess a successful run ρ of T on u and a
factorization tree of bounded height for ρ. Formally, a factorization tree for a
sequence α of monoid elements (e.g. the flows flowρ([y, y]) for all input positions
y) is an ordered, unranked tree whose yield is the sequence α. The leaves of
the factorization tree are labeled with the elements of α. All other nodes have
at least two children and are labeled by the monoid product of the child labels
(in our case by the flows of ρ induced by the covered factors in the input). In
addition, if a node has more than two children, then all its children must have
the same label, representing an idempotent element of the monoid. By Simon’s
factorization theorem [23], every sequence of monoid elements has some factor-
ization tree of height at most linear in the size of the monoid (in our case, at
most 3|MT |, see e.g. [8]).

Parameters. We use input parameters to encode the successful run ρ and a
factorization tree for ρ of height at most H = 3|MT |. These parameters specify,
for each input interval corresponding to a subtree, the start and end positions of
the interval and the label of the root of the subtree. Correctness of these anno-
tations can be enforced by an MSO sentence ipar. The run and the factorization
tree also need to be encoded over the output, using output parameters. More
precisely, given a level in the tree and an output position, we need to be able to
determine the flow and the productive edge that generated that position. We
omit the technical details for checking correctness of the output annotation using
the formulas opar, moveτ and nextτ,τ ′ .

Moving origins. For each level � of the factorization tree, a partial resyn-
chronization relation R� is defined. The relation is partial in the sense that some
output positions may not have a source-target origin pair defined at a given level.
But once a source-target pair is defined for some output position at a given level,
it remains defined for all higher levels.

In the following we write bigout (p) for the dominant output interval associ-
ated with the input interval I(p) corresponding to a node p in the tree. For every
level � of the factorization tree, the resynchronizer R� will be a partial function
from source origins to target origins, and will satisfy the following:

– the set of output positions for which R� defines target origins is the union
of the intervals bigout (p) for all nodes p at level �;

– R� only moves origins within the same interval at level �, that is, R� defines
only pairs (y, z) of source-target origins such that y, z ∈ I(p) for some node
p at level �;

– the target origins defined by R� are order-preserving within every interval
at level �, that is, for all output positions x < x′, if R� defines the target
origins of x, x′ to be z, z′, respectively, and if z, z′ ∈ I(p) for some node p at
level �, then z ≤ z′;

– R� is � · 4KC-bounded, namely, there are at most � · 4KC distinct source
origins that are moved by R� to the same target origin.
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The construction of R� is by induction on �. For a binary node p at level
� with children p1, p2, the resynchronizer R� inherits the source-origin pairs
from level � − 1 for output positions that belong to bigout (p1) ∪ bigout (p2).
Note that bigout (p1) < bigout (p2) by Lemma 5, so R� is order-preserving in-
side bigout (p1) ∪ bigout (p2). Output positions inside bigout (p) \ (bigout (p1) ∪
bigout (p2)) are moved in an order-preserving manner to one of the extremities
of I(p), or to the last position of I(p1). Boundedness of R� is guaranteed by
Lemma 6.

The case where p is an idempotent node at level � with children p1, p2, . . . , pn
follows a similar approach. For brevity, let Ii = I(pi) and Bi = bigout (pi),
and observe that, by Lemma 5, B1 < B2 < · · · < Bn. Lemma 7 provides a
decomposition of bigout (p) as B1 ·J1 ·B2 ·J2 · . . . ·Jn−1 ·Bn, for some 2KC-small
output intervals Jk with origins inside Ik ∪ Ik+1, for k = 1, . . . , n− 1. As before,
the resynchronizer R� behaves exactly as R�−1 for the output positions inside
the Bk’s. For any other output position, say x ∈ Jk, the resynchronizer R� will
move the origin either to the last position of Ik or to the first position of Ik+1,
depending on whether the source origin of x belongs to Ik or Ik+1. ��

6 Proof overview of Theorem 2

The main obstacle towards dropping the bounded-visit restriction from Theo-
rem 1, while maintaining the effectiveness of the characterization, is the lack of a
bound on the number of flows. Indeed, for a transducer T that is not necessarily
bounded-visit, there is no bound on the number of flows that encode successful
runs of T , and thus the proofs of the implications 2 → 3→ 4 are not applicable
anymore. However, the proofs of the implications 1 → 2 and 4→ 1 remain valid,
even for a transducer T that is not bounded-visit.

The idea for proving Theorem 2 is to transform T into an equivalent bounded-
visit transducer low(T ), so that the property of one-way resynchronizability is
preserved. More precisely, given a two-way transducer T , we construct:

1. a bounded-visit transducer low(T ) that is classically equivalent to T ,
2. a 1-bounded, regular resynchronizer R that is T -preserving and such that
R(T ) =o low(T ).

We can apply our characterization of one-way resynchronizability in the
bounded-visit case to the transducer low(T ). If low(T ) is one-way resynchroniz-
able, then by Theorem 1 we obtain another partially bijective, regular resynchro-
nizerR′ that is low(T )-preserving and such thatR′(low(T ))) is order-preserving.
Thanks to Lemma 2, the resynchronizers R and R′ can be composed, so we con-
clude that the original transducer T is one-way resynchronizable. Otherwise,
if low(T ) is not one-way resynchronizable, we show that neither is T . This is
precisely shown in the lemma below.

Lemma 9. For all transducers T, T ′, with T ′ bounded-visit, and for every par-
tially bijective, regular resynchronizer R that is T -preserving and such that
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R(T ) =o T ′, T is one-way resynchronizable if and only if T ′ is one-way resyn-
chronizable.

There are however some challenges in the approach described above. First, as
T may output arbitrarily many symbols with origin in the same input position,
and low(T ) is bounded-visit, we need low(T ) to be able to produce arbitrarily
long outputs within a single transition. For this reason, we allow low(T ) to be
a transducer with regular outputs. The transition relation of such a transducer
consists of finitely many tuples of the form (q, a, L, q′), with q, q′ ∈ Q, a ∈ Σ,
and L ⊆ Γ ∗ a regular language over the output alphabet. The semantics of a
transition rule (q, a, L, q′) is that, upon reading a, the transducer can switch from
state q to state q′, and move its head accordingly, while outputting any word
from L. We also need to use transducers with common guess. Both extensions,
regular outputs and common guess, already appeared in prior works (cf. [5,7]),
and the proof of Theorem 1 in the bounded-visit case can be easily adapted to
these features.

There is still another problem: we cannot always expect that there exists a
bounded-visit transducer low(T ) classically equivalent to T . Consider, for in-
stance, the transducer that performs several passes on the input, and on each
left-to-right pass, at an arbitrary input position, it copies as output the letter
under its head. It is easy to see that the Parikh image of the output is an exact
multiple of the Parikh image of the input, and standard pumping arguments
show that no bounded-visit transducer can realize such a relation.

A solution to this second problem is as follows. Before trying to construct
low(T ), we test whether T satisfies the following condition on vertical loops
(these are runs starting and ending at the same position and at the same state).
There should exist some K such that T is K-sparse, meaning that the number of
different origins of outputs generated inside some vertical loop is at most K. If
this condition is not met, then we show that T has unbounded cross-width, and
hence, by the implication 1→ 2 of Theorem 1, T is not one-way resynchronizable.
Otherwise, if the condition holds, then we show that a bounded-visit transducer
low(T ) equivalent to T can indeed be constructed.

7 Complexity

We discuss the effectiveness and complexity of our characterization. For a k-
visit transducer T , the effectiveness of the characterization relies on detecting
inversions in successful runs of T . It is not difficult to see that this can be decided
in space that is polynomial in the size of T and the bound k. We can also show
that one-way resynchronizability is Pspace-hard. For this we recall that the
emptiness problem for two-way finite automata is Pspace-complete. Let A be a
two-way automaton accepting some language L, and let Σ be a binary alphabet
disjoint from that of L. The function {(w ·a1 . . . an, an . . . a1) | w ∈ L, a1 . . . an ∈
Σ∗, n ≥ 0} can be realized by a two-way transducer T of size polynomial in |A|,
and T is one-way resynchronizable if and only if L is empty.
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In the unrestricted case, we showed that one-way resynchronizability is decid-
able (Theorem 2). We briefly outline the complexity of the decision procedure:

1. First one checks that T is K-sparse for some K. To do this, we construct
from T the regular language L of all inputs with some positions marked
that correspond to origins produced within the same vertical loop. Bounded
sparsity is equivalent to having a uniform bound on the number of marked
positions in every input from L. Standard techniques for two-way automata
allow to decide this in space that is polynomial in the size of T . Moreover,
this also gives us a computable exponential bound to the largest constant K
for which T can be K-sparse.

2. Next, we construct from the K-sparse transducer T a bounded-visit trans-
ducer T ′ that is classically equivalent to T and has exponential size.

3. Finally, we decide one-way resynchronizability of T ′ by detecting inversions
in successful runs of T ′ (Theorem 1).

Summing up, one can decide one-way resynchronizability of unrestricted two-
way transducers in exponential space. It is open if this bound is optimal. We
also do not have any interesting bound on the size of the resynchronizer that
witnesses one-way resynchronizability, both in the bounded-visit case and in the
unrestricted case. Similarly, we lack upper and lower bounds on the size of the
resynchronized one-way transducers, when these exist.

8 Conclusions

As the main contribution of this paper, we provided a characterization for the
subclass of two-way transducers that are one-way resynchronizable, namely, that
can be transformed by some bounded, regular resynchronizer, into an origin-
equivalent one-way transducer.

There are similar definability problems that emerge in the origin semantics.
For instance, one could ask whether a given two-way transducer can be resyn-
chronized, through some bounded, regular resynchronization, to a relation that is
origin-equivalent to a first-order transduction. This can be seen as a relaxation of
the first-order definability problem in the origin semantics, namely, the problem
of telling whether a two-way transducer is origin-equivalent to some first-order
transduction, shown decidable in [4]. It is worth contrasting the latter problem
with the challenging open problem whether a given transduction is equivalent
to a first-order transduction in the classical setting.
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Abstract. Session types are widely used as abstractions of asynchronous
message passing systems. Refinement for such abstractions is crucial as
it allows improvements of a given component without compromising its
compatibility with the rest of the system. In the context of session types,
the most general notion of refinement is the asynchronous session subtyp-
ing, which allows to anticipate message emissions but only under certain
conditions. In particular, asynchronous session subtyping rules out can-
didates subtypes that occur naturally in communication protocols where,
e.g., two parties simultaneously send each other a finite but unspecified
amount of messages before removing them from their respective buffers.
To address this shortcoming, we study fair compliance over asynchronous
session types and fair refinement as the relation that preserves it. This
allows us to propose a novel variant of session subtyping that leverages
the notion of controllability from service contract theory and that is a
sound characterisation of fair refinement. In addition, we show that both
fair refinement and our novel subtyping are undecidable. We also present
a sound algorithm, and its implementation, which deals with examples
that feature potentially unbounded buffering.

Keywords: Session types · Asynchronous communication · Subtyping.

1 Introduction

The coordination of software components via message-passing techniques is be-
coming increasingly popular in modern programming languages and development
methodologies based on actors and microservices, e.g., Rust, Go, and the Twelve-
Factor App methodology [1]. Often the communication between two concurrent
or distributed components takes place over point-to-point fifo channels.

Abstract models such as communicating finite-state machines [5] and asyn-
chronous session types [21] are essential to reason about the correctness of such
systems in a rigorous way. In particular these models are important to rea-
son about mathematically grounded techniques to improve concurrent and dis-
tributed systems in a compositional way. The key question is whether a com-
ponent can be refined independently of the others, without compromising the
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correctness of the whole system. In the theory of session types, the most general
notion of refinement is the asynchronous session subtyping [14, 15, 26], which
leverages asynchrony by allowing the refined component to anticipate message
emissions, but only under certain conditions. Notably asynchronous session sub-
typing rules out candidate subtypes that occur naturally in communication pro-
tocols where, e.g., two parties simultaneously send each other a finite but un-
specified amount of messages before removing them from their buffers.

We illustrate this key limitation of asynchronous session subtyping with Fig-
ure 1, which depicts possible communication protocols between a spacecraft and
a ground station. For convenience, the protocols are represented as session types
(bottom) and equivalent communicating finite-state machines (top). Consider
TS and TG first. Session type TS is the abstraction of the spacecraft. It may
send a finite but unspecified number of telemetries (tm), followed by a message
over — this phase of the protocol typically models a for loop and its exit. In the
second phase, the spacecraft receives a number of telecommands (tc), followed
by a message done. Session type TG is the abstraction of the ground station. It is
the dual of TS , written TS , as required in standard binary session types without
subtyping. Since TG and TS are dual of each other, the theory of session types
guarantees that they form a correct composition, namely both parties terminate
successfully, with empty queues.

However, it is clear that this protocol is not efficient: the communication is
half-duplex, i.e., it is never the case that more than one party is sending at any
given time. Using full-duplex communication is crucial in distributed systems
with intermittent connectivity, e.g., in this case ground stations are not always
visible from low orbit satellites.

The abstraction of a more efficient ground station is given by type T ′
G, which

sends telecommands before receiving telemetries. It is clear that T ′
G and TS

forms a correct composition. Unfortunately T ′
G is not an asynchronous subtype

of TG according to earlier definitions of session subtyping [14,15,26]. Hence they
cannot formally guarantee that T ′

G is a safe replacement for TG. Concretely, these
subtyping relations allow for anticipation of emissions (output) only when they
are preceded by a bounded number of receptions (input), but this does not hold
between T ′

G and TG because the latter starts with a loop of inputs. Note that
the composition of T ′

G and TS is not existentially bounded, hence it cannot be
verified by related communicating finite-state machines techniques [4,19,20,24].

In this paper we address this limitation of previous asynchronous session
subtyping relations. To do this, we move to an alternative notion of correct com-
position. In [14] the authors show that their subtyping relation is fully abstract
w.r.t. the notion of orphan-message-free composition. More precisely, it captures
exactly a notion of refinement that preserves the possibility for all sent messages
to be consumed along all possible computations of the receiver. In the spacecraft
example, given the initial loop of outputs in T ′

G, there is an extreme case in which
it performs infinitely many outputs without consuming any incoming messages.
Nevertheless, this limit case cannot occur under the natural assumption that
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0 1 2

!tc

!done

?tm

?over
0 1 2

?tm

?over

!tc

!done
0 1 2

!tm

!over

?tc

?done

T ′
G TG = TS TS

T ′
G = μt.⊕ {tc : t, done : μt′. &{tm : t′, over : end}}

TG = μt. &{tm : t, over : μt′.⊕ {tc : t′, done : end}}
TS = μt.⊕ {tm : t, over : μt′. &{tc : t′, done : end}}

Fig. 1. Satellite protocols. T ′
G is the refined session type of the ground station, TG is

the session type of ground station, and TS is the session type of the spacecraft.

the loop of outputs eventually terminates, i.e., only a finite (but unspecified)
amount of messages can be emitted.

The notion of correct composition that we use is based on fair compliance,
which requires each component to always be able to eventually reach a success-
ful final state. This is a liveness property, holding under full fairness [32], used
also in the theory of should testing [30] where “every reachable state is required
to be on a path to success”. This is a natural constraint since even programs
that conceptually run indefinitely must account for graceful termination (e.g., to
release acquired resources). Previously, fair compliance has been considered to
reason formally about component/service composition with synchronous session
types [29] and synchronous behavioural contracts [11]. A preliminary formali-
sation of fair compliance for asynchronous behavioural contracts was presented
in [10], but considering an operational model very different from session types.

Given a notion of fair compliance defined on an operational model for asyn-
chronous session types, we define fair refinement as the relation that preserves it.
Then, we propose a novel variant of session subtyping called fair asynchronous
session subtyping, that leverages the notion of controllability from service con-
tract theory, and which is a sound characterisation of fair refinement. We show
that both fair refinement and fair asynchronous session subtyping are undecid-
able, but give a sound algorithm for the latter. Our algorithm covers session
types that exhibit complex behaviours (including the spacecraft example and
variants). Our algorithm has been implemented in a tool available online [31].

Structure of the paper The rest of this paper is structured as follows. In § 2
we recall syntax and semantics of asynchronous session types, we define fair
compliance and the corresponding fair refinement. In § 3 we introduce fair asyn-
chronous subtyping, the first relation of its kind to deal with examples such as
those in Figure 1. In § 4 we propose a sound algorithm for subtyping that sup-
ports examples with unbounded accumulations, including the ones discussed in
this paper. In § 5 we discuss the implementation of this algorithm. Finally, in
§ 6 we discuss related works and future work. We give proofs for all our results
and examples of output from our tool in [9].
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2 Refinement for Asynchronous Session Types

In this section we first recall the syntax of two-party session types, their reduction
semantics, and a notion of compliance centred on the successful termination of
interactions. We define our notion of refinement based on this compliance and
show that it is generally undecidable whether a type is a refinement of another.

2.1 Preliminaries: Asynchronous Session Types

Syntax The formal syntax of two-party session types is given below. We follow
the simplified notation used in, e.g., [7,8], without dedicated constructs for send-
ing an output/receiving an input. Additionally we abstract away from message
payloads since they are orthogonal to the results of this paper.

Definition 1 (Session Types). Given a set of labels L, ranged over by l, the
syntax of two-party session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | μt.T | t | end

Output selection ⊕{li : Ti}i∈I represents a guarded internal choice, specify-
ing that a label li is sent over a channel, then continuation Ti is executed. Input
branching &{li : Ti}i∈I represents a guarded external choice, specifying a proto-
col that waits for messages. If message li is received, continuation Ti takes place.
In selections and branchings each branch is tagged by a label li, taken from a
global set of labels L. In each selection/branching, these labels are assumed to
be pairwise distinct. In the sequel, we leave implicit the index set i ∈ I in input
branchings and output selections when it is clear from the context. Types μt.T
and t denote standard recursion constructs. We assume recursion to be guarded
in session types, i.e., in μt.T , the recursion variable t occurs within the scope
of a selection or branching. Session types are closed, i.e., all recursion variables
t occur under the scope of a corresponding binder μt.T . Terms of the session
syntax that are not closed are dubbed (session) terms. Type end denotes the
end of the interactions.

The dual of session type T , written T , is inductively defined as follows:
⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li : T i}i∈I , end = end, t = t,
and μt.T = μt.T .

Operational characterisation Hereafter, we let ω range over words in L∗, write ε
for the empty word, and write ω1 ·ω2 for the concatenation of words ω1 and ω2,
where each word may contain zero or more labels. Also, we write T{T ′

/t} for T
where every free occurrence of t is replaced by T ′.

We give an asynchronous semantics of session types via transition systems
whose states are configurations of the form: [T1, ω1]|[T2, ω2] where T1 and T2

are session types equipped with two sequences ω1 and ω2 of incoming messages
(representing unbounded buffers). We use s, s′, etc. to range over configurations.

In this paper, we use explicit unfoldings of session types, as defined below.
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Definition 2 (Unfolding). Given session type T , we define unfold(T ):

unfold(T ) =

{

unfold(T ′{T/t}) if T = μt.T ′

T otherwise

Definition 2 is standard, e.g., an equivalent function is used in the first session
subtyping [18]. Notice that unfold(T ) unfolds all the recursive definitions in front
of T , and it is well defined for session types with guarded recursion.

Definition 3 (Transition Relation). The transition relation → over configu-
rations is the minimal relation satisfying the rules below (plus symmetric ones):

1. if j ∈ I then [⊕{li : Ti}i∈I , ω1]|[T2, ω2] → [Tj , ω1]|[T2, ω2 ·lj ];
2. if j ∈ I then [&{li : Ti}i∈I , lj ·ω1]|[T2, ω2] → [Tj , ω1]|[T2, ω2];
3. if [unfold(T1), ω1]|[T2, ω2] → s then [T1, ω1]|[T2, ω2] → s.

We write →∗ for the reflexive and transitive closure of the → relation.

Intuitively a configuration s reduces to configuration s′ when either (1) a
type outputs a message lj , which is added at the end of its partner’s queue; (2)
a type consumes an expected message lj from the head of its queue; or (3) the
unfolding of a type can execute one of the transitions above.

Next, we define successful configurations as those configurations where both
types have terminated (reaching end) and both queues are empty. We use this
to give our definition of compliance which holds when it is possible to reach a
successful configuration from all reachable configurations.

Definition 4 (Successful Configuration). The notion of successful configu-
ration is formalised by a predicate s

√
defined as follows:

[T, ωT ]|[S, ωS ]
√

iff unfold(T )=unfold(S)=end and ωT =ωS=ε

Definition 5 (Compliance). Given a configuration s we say that it is a cor-
rect composition if, whenever s →∗ s′, there exists a configuration s′′ such that
s′ →∗ s′′ and s′′

√
.

Two session types T and S are compliant if [T, ε]|[S, ε] is a correct composition.

Observe that our definition of compliance is stronger than what is generally
considered in the literature on session types, e.g., [16, 23, 24], where two types
are deemed compliant if all messages that are sent are eventually received, and
each non-terminated type can always eventually make a move. Compliance is
analogous to the notion of correct session in [29] but in an asynchronous setting.

A consequence of Definition 5 is that it is generally not the case that a session
type T is compliant with its dual T , as we show in the example below.

Example 1. The session type T = &{l1 : end, l2 : μt. ⊕ {l3 : t}} and its dual
T = ⊕{l1 : end, l2 : μt.&{l3 : t}} are not compliant. Indeed, when T sends
label l2, the configuration [end, ε]|[end, ε] is no longer reachable.
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2.2 Fair Refinement for Asynchronous Session Types

We introduce a notion of refinement that preserves compliance. This follows
previous work done in the context of behavioural contracts [11] and synchronous
multi-party session types [29]. The key difference with these works is that we are
considering asynchronous communication based on (unbounded) fifo queues.
Asynchrony makes fair refinement undecidable, as we show below.

Definition 6 (Refinement). A session type T refines S, written T � S, if for
every S′ s.t. S and S′ are compliant then T and S′ are also compliant.

In contrast to traditional (synchronous and asynchronous) subtyping for ses-
sion types [14, 18, 26], this refinement is not covariant on outputs, i.e., it does
not always allow a refined type to have output selections with less labels.3

Example 2. Let T = μt. ⊕ {l1 : t} and S = μt. ⊕ {l1 : t, l2 : end}. We have
that T is a synchronous (and asynchronous) subtype of S. However T is not a
refinement of S. In particular, the type S = μt. &{l1 : t, l2 : end} is compliant
with S but not with T , since T does not terminate.

Next, we show that the refinement relation � is generally undecidable. The
proof of undecidability exploits results from the tradition of computability the-
ory, i.e., Turing completeness of queue machines. The crux of the proof is to
reduce the problem of checking the reachability of a given state in a queue ma-
chine to the problem of checking the refinement between two session types.

Preliminaries Below we consider only state reachability in queue machines, and
not the typical notion of the language recognised by a queue machine (see, e.g., [7]
for a formalisation of queue machines). Hence, we use a simplified formalisation,
where no input string is considered.

Definition 7 (Queue Machine). A queue machine M is defined by a six-tuple
(Q,Σ, Γ, $, s, δ) where:

– Q is a finite set of states;
– Σ ⊂ Γ is a finite set denoting the input alphabet;
– Γ is a finite set denoting the queue alphabet (ranged over by A,B,C,X);
– $ ∈ Γ −Σ is the initial queue symbol;
– s ∈ Q is the start state;
– δ : Q× Γ → Q× Γ ∗ is the transition function (Γ ∗ is the set of sequences of

symbols in Γ ).

Considering a queue machine M = (Q,Σ, Γ, $, s, δ), a configuration of M is
an ordered pair (q, γ) where q ∈ Q is its current state and γ ∈ Γ ∗ is the queue.
The starting configuration is (s, $), composed of the start state s and the initial
queue symbol $.

Next, we define the transition relation (→M ), leading a configuration to
another, and the related notion of state reachability.

3 The synchronous subtyping in [18] follows a channel-oriented approach; hence it has
the opposite direction and is contravariant on outputs.
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Definition 8 (State Reachability). Given a machine M=(Q,Σ, Γ, $, s, δ),
the transition relation →M over configurations Q × Γ ∗ is defined as follows.
For p, q ∈ Q, A ∈ Γ , and α, γ ∈ Γ ∗, we have (p,Aα) →M (q, αγ) whenever
δ(p,A) = (q, γ). Let →∗

M be the reflexive and transitive closure of →M .
A target state qf ∈ Q is reachable in M if there is γ ∈ Γ ∗ s.t. (s, $) →∗

M (qf , γ).

Since queue machines can deterministically encode Turing machines (see,
e.g., [7]), checking state reachability for queue machines is undecidable.

Theorem 1. Given a queue machine M and a target state qf it is possible to
reduce the problem of checking the reachability of qf in M to the problem of
checking refinement between two session types.

In the light of the undecidability of reachability in queue machines, we can
conclude that refinement (Definition 6) is also undecidable.

2.3 Controllability for Asynchronous Session Types

Given a notion of compliance, controllability amounts to checking the existence
of a compliant partner (see, e.g., [12, 25, 33]). In our setting, a session type is
controllable if there exists another session type with which it is compliant.

Checking for controllability algorithmically is not trivial as it requires to con-
sider infinitely many potential partners. For the synchronous case, an algorithmic
characterisation was studied in [29]. In the asynchronous case, the problem is
even harder because each of the infinitely many potential partners may generate
an infinite state computation (due to unbounded buffers). The main contribution
of this subsection is to give an algorithmic characterisation of controllability in
the asynchronous setting. Doing this is important because controllability is an
essential ingredient for defining fair asynchronous subtyping, see Section 3.

Definition 9 (Characterisation of Controllability, T ctrl). Given a session
type T , we define the judgement T ok inductively as follows:

end ok

end ∈ T T{end/t} ok
μt.T ok

T ok

&{l : T} ok
∀i ∈ I. Ti ok

⊕{li : Ti}i∈I ok

where end ∈ T holds if end occurs in T .
We write T ctrl if there exists T ′ such that (i) T ′ is obtained from T by

syntactically replacing every input prefix &{li : Ti}i∈I occurring in T with a
term &{lj : Tj} (with j ∈ I) and (ii) T ′ ok holds.

Notice that a type T such that T ctrl is indeed controllable, in that T ′, the
dual of type T ′ considered above, is compliant with T (the predicate end∈T in
the premise of the rule for recursion guarantees that a successful configuration is
always reachable while looping). Moreover the above definition naturally yields
a simple algorithm that decides whether or not T ctrl holds for a type T , i.e.,
we first pick a single branch for each input prefix syntactically occurring in T
(there are finitely many of them) and then we inductively check if T ′ ok holds.

The following theorem shows that the judgement T ctrl, as defined above,
precisely characterises controllability (i.e., the existence of a compliant type).
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Theorem 2. T ctrl holds if and only if there exists a session type S such that
T and S are compliant.

Example 3. Consider the session type T = μt. &{l1 : &{l2 : ⊕{l4 : end, l5 :
μt′. ⊕ {l6 : t′}}, l3 : t}}. T ctrl does not hold because it is not possible to
construct a T ′ as specified in Definition 9 for which T ′ ok holds. By Theorem 2,
there is no session type S that is compliant with T . Hence T is not controllable.

3 Fair Asynchronous Session Subtyping

In this section, we present our novel variant of asynchronous subtyping which
we dub fair asynchronous subtyping.

We need to define a distinctive notion of unfolding. Function selUnfold(T )
unfolds type T by replacing recursion variables with their corresponding defi-
nitions only if they are guarded by an output selection. In the definition, we
use the predicate ⊕g(t, T ) which holds if all instances of variable t are output
selection guarded, i.e., t occurs free in T only inside subterms ⊕{li : Ti}i∈I .

Definition 10 (Selective Unfolding). Given a term T , define selUnfold(T ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕{li : Ti}i∈I if T = ⊕{li : Ti}i∈I

&{li : selUnfold(Ti)}i∈I if T = &{li : Ti}i∈I

T ′{μt.T ′
/t} if T = μt.T ′, ⊕g(t, T ′)

μt.selUnfold(selRepl(t, t̂, T ′){μt.T ′
/̂t}) with t̂ fresh if T = μt.T ′, ¬⊕ g(t, T ′)

t if T = t

end if T = end

where, selRepl(t, t̂, T ′) is obtained from T ′ by replacing the free occurrences of t
that are inside a subterm ⊕{li : Si}i∈I of T ′ by t̂.

Example 4. Consider the type T = μt.&{l1 : t, l2 : ⊕{l3 : t}}, then we have

selUnfold(T ) = μt.&{l1 : t, l2 : ⊕{l3 : μt. &{l1 : t, l2 : ⊕{l3 : t}}}}

i.e., the type is only unfolded within output selection sub-terms. Note that t̂ is
used to identify where unfolding must take place, e.g.,
selRepl(t, t̂,&{l1 : t, l2 : ⊕{l3 : t}}) = &{l1 : t, l2 : ⊕{l3 : t̂}}.

The last auxiliary notation required to define our notion of subtyping is that
of input contexts, which are used to record inputs that may be delayed in a
candidate super-type.

Definition 11 (Input Context). An input context A is a session type with
several holes defined by the syntax:

A ::= [ ]k | &{li : Ai}i∈I | μt.A | t
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where the holes [ ]k, with k ∈ K, of an input context A are assumed to be pairwise
distinct. We assume that recursion is guarded, i.e., in an input context μt.A,
the recursion variable t must occur within a subterm &{li : Ai}i∈I .

We write holes(A) for the set of hole indices in A. Given a type Tk for each
k ∈ K, we write A[Tk]

k∈K for the type obtained by filling each hole k in A with
the corresponding Tk.

In contrast to previous work [6,7,13–15,26], these input contexts may contain
recursive constructs. This is crucial to deal with examples such as Figure 1.

We are now ready to define the fair asynchronous subtyping relation, written
≤. The rationale behind asynchronous session subtyping is that under asyn-
chronous communication it is unobservable whether or not an output is antici-
pated before an input, as long as this output is executed along all branches of
the candidate super-type. Besides the usage of our new recursive input contexts
the definition of fair asynchronous subtyping differs from those in [6,7,13–15,26]
in that controllability plays a fundamental role: the subtype is not required to
mimic supertype inputs leading to uncontrollable behaviours.

Definition 12 (Fair Asynchronous Subtyping, ≤).
A relation R on session types is a controllable subtyping relation whenever
(T, S) ∈ R implies:

1. if T = end then unfold(S) = end;
2. if T = μt.T ′ then (T ′{T/t}, S) ∈ R;
3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and ∀k ∈

K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};
4. if T = ⊕{li : Ti}i∈I then selUnfold(S) = A[⊕{li : Ski}i∈I ]

k∈K and ∀i ∈
I. (Ti,A[Ski]

k∈K) ∈ R.

T is a controllable subtype of S if there is a controllable subtyping relation R s.t.
(T, S) ∈ R.
T is a fair asynchronous subtype of S, written T ≤ S, whenever: S controllable
implies that T is a controllable subtype of S.

Notice that the top-level check for controllability in the above definition is
consistent with the inner controllability checks performed in Case (3).

Subtyping simulation game Session type T is a fair asynchronous subtype of S
if S is not controllable or if T is a controllable subtype of S. Intuitively, the
above co-inductive definition says that it is possible to play a simulation game
between a subtype T and its supertype S as follows. Case (1) says that if T is
the end type, then S must also be end. Case (2) says that if T is a recursive
definition, then it simply unfolds this definition while S does not need to reply.
Case (3) says that if T is an input branching, then the sub-terms in S that are
controllable can reply by inputting at most some of the labels li in the branching
(contravariance of inputs), and the simulation game continues (see Example 5).
Case (4) says that if T is an output selection, then S can reply by outputting all
the labels li in the selection, possibly after executing some inputs, after which the
simulation game continues. We comment further on Case (4) with Example 6.
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Example 5. Consider T = &{l1 : end, l2 : end} and S = &{l1 : end, l3 :
μt.⊕{l4 : t}}. We have T ≤S. Once branch l3, that is uncontrollable, is removed
from S, we can apply contravariance for input branching. We have I = {1, 2} ⊇
{1} = K in Definition 12.

Example 6. Consider TG and T ′
G from Figure 1. For the pair (T ′

G, TG), we apply
Case (4) of Definition 12 for which we compute

selUnfold(TG) = A[⊕{tc : μt′.⊕ {tc : t′, done : end}, done : end}]

with A = μt.&{tm : t, over : [ ]1}. Observe that A contains a recursive sub-term,
such contexts are not allowed in previous works [14, 15, 26].

The use of selective unfolding makes it possible to express TG in terms of a
recursive input context A with holes filled by types (i.e., closed terms) that start
with an output prefix. Indeed selective unfolding does not unfold the recursion
variable t (not guarded by an output selection), which becomes part of the input
context A. Instead it unfolds the recursion variable t′ (which is guarded by an
output selection) so that the term that fills the hole, which is required to start
with an output prefix, is a closed term.

Case (4) of Definition 12 requires us to check that the following pairs are
in the relation: (i) (T ′

G,A[μt′. ⊕ {tc : t′, done : end}]) and (ii) (μt′. &{tm :
t′, over : end},A[end]). Observe that TG = A[μt′. ⊕ {tc : t′, done : end}].
Hence, we have T ′

G ≤ TG with

R={(T ′
G, TG), (end,end), (μt

′.&{tm : t′, over : end}, μt.&{tm : t, over : end})}

and R is a controllable subtyping relation.

We show that fair asynchronous subtyping is sound w.r.t. fair refinement. In
fact, fair asynchronous subtyping can be seen as a sound coinductive characteri-
sation of fair refinement. Namely this result gives an operational justification to
the syntactical definition of fair asynchronous session subtyping. Note that ≤ is
not complete w.r.t. �, see Example 7.

Theorem 3. Given two session types T and S, if T ≤S then T � S.

Example 7. Let T = ⊕{l1 : &{l3 : end}} and S = &{l3 :⊕{l1 : end, l2 : end}}.
We have T � S, but T is not a fair asynchronous subtype of S since {l1} �=
{l1, l2}, i.e., covariance of outputs is not allowed.

Unfortunately, fair asynchronous session subtyping is also undecidable. The
proof is similar to the one of undecidability of fair refinement, in particular we
proceed by reduction from the termination problem in queue machines.

Theorem 4. Given two session types T and S, it is in general undecidable to
check whether T ≤S.
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4 A Sound Algorithm for Fair Asynchronous Subtyping

We propose an algorithm which soundly verifies whether a session type is a
fair asynchronous subtype of another. The algorithm relies on building a tree
whose nodes are labelled by configurations of the simulation game induced by
Definition 12. The algorithm analyses the tree to identify witness subtrees which
contain input contexts that are growing following a recognisable pattern.

Example 8. Recall the satellite communication example (Figure 1). The space-
craft with protocol TS may be a replacement for an older generation of spacecraft
which follows the more complicated protocol T ′

S , see Figure 2. Type T ′
S notably

allows the reception of telecommands to be interleaved with the emission of
telemetries. The new spacecraft may safely replace the old one because TS ≤T ′

S .
However, checking TS ≤T ′

S leads to an infinite accumulation of input con-
texts, hence it requires to consider infinitely many pairs of session types. E.g.,
after TS selects the output label tm twice, the subtyping simulation game con-
siders the pair (TS , T

′′
S ), where also T ′′

S is in Figure 2. The pairs generated for
this example illustrate a common recognisable pattern where some branches
grow infinitely (the tc-branch), while others stay stable throughout the deriva-
tion (the done-branch). The crux of our algorithm is to use a finite parametric
characterisation of the infinitely many pairs occurring in the check of TS ≤T ′

S .

The simulation tree for T ≤S, written simtree(T, S), is the labelled tree rep-
resenting the simulation game for T ≤S, i.e., simtree(T, S) is a tuple (N, n0,�
, λ) where N is its set of nodes, n0 ∈ N is its root, � is its transition function,
and λ is its labelling function, such that λ(n0) = (S, T ). We omit the formal def-
inition of �, as it is straightforward from Definition 12 following the subtyping
simulation game discussed after that definition. We give an example below.

Notice that the simulation tree simtree(T, S) is defined only when S is con-
trollable, since T ≤S holds without needing to play the subtyping simulation
game if S is not controllable. We say that a branch of simtree(T, S) is successful
if it is infinite or if it finishes in a leaf labelled by (end, end). All other branches
are unsuccessful. Under the assumption that S is controllable, we have that all
branches of simtree(T, S) are successful if and only if T ≤S. As a consequence
checking whether all branches of simtree(T, S) are successful is generally unde-
cidable. It is possible to identify a branch as successful if it visits finitely many
pairs (or node labels), see Example 6; but in general a branch may generate
infinitely many pairs, see Examples 8 and 12.

In order to support types that generate unbounded accumulation, we charac-
terise finite subtrees — called witness subtrees, see Definition 13 — such that all
the branches that traverse these finite subtrees are guaranteed to be successful.

Notation We give a few auxiliary definitions and notations. Hereafter A and A′

range over extended input contexts, i.e., input contexts that may contain distinct
holes with the same index. These are needed to deal with unfoldings of input
contexts, see Example 9.
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0123 4 5

?tc
?done

!tm
!over

?tc

?done

!tm

!over

T ′
S = μt .&

{
tc : ⊕{tm : t, over : μt′. &{tc : t′, done : end}},
done : μt′′.⊕ {tm : t′′, over : end}}

T ′′
S = &

{
tc : &{ tc : T ′

S ,
done : μt′′.⊕ {tm : t′′, over : end} },

done : μt′′.⊕ {tm : t′′, over : end} }

Fig. 2. T ′
S is an alternative session type for TS , see Example 8.

The set of reductions of an input contextA is the minimal set S s.t. (i)A ∈ S;
(ii) if &{li : Ai}i∈I ∈ S then ∀i ∈ I.Ai ∈ S and (iii) if μt.A′ ∈ S then
A′{μt.A′

/t} ∈ S. Notice that due to unfolding (item (iii)), the reductions of an
input context may contain extended input contexts. Moreover, given a reduction
A′ of A, we have that holes(A′) ⊆ holes(A).

Example 9. Consider the following extended input contexts:

A1 = μt. &{l1 : [ ]1, l2 : &{l3 : t}} A2 = &{l3 : μt. &{l1 : [ ]1, l2 : &{l3 : t}}}

unfold(A1) = &{l1 : [ ]1, l2 : &{l3 : μt. &{l1 : [ ]1, l2 : &{l3 : t}}}}

Context A2 is a reduction of A1, i.e., one can reach A2 from A1, by unfolding
A1 and executing the input l2. Context unfold(A1) is also a reduction of A1.
Observe that unfold(A1) contains two distinct holes indexed by 1.

Given an extended context A and a set of hole indices K such that K ⊆
holes(A), we use the following shorthands. Given a type Tk for each k ∈ K,
we write A*Tk+k∈K for the extended context obtained by replacing each hole
k ∈ K in A by Tk. Also, given an extended context A′ we write A〈A′〉K for
the extended context obtained by replacing each hole k ∈ K in A by A′. When
K = {k}, we often omit K and write, e.g., A〈A′〉k and A*Tk+k.

Example 10. Using the above notation and posing A = &{tc : [ ]1, done : [ ]2},
we can rewrite T ′′

S (Figure 2) as A〈A*T ′
S+1〉1*μt′′.⊕ {tm : t′′, over : end}+2.

Example 11. Consider the session type below

S = &{l1 : &{l1 : T1, l2 : T2, l3 : T3}, l2 : &{l1 : T1, l2 : T2, l3 : T3}, l3 : T3}.

Posing A = &{l1 : [ ]1, l2 : [ ]2, l3 : [ ]3} we have holes(A) = {1, 2, 3}. Assuming
J = {1, 2} and K = {3}, we can rewrite S as A〈A*Tj+j∈J〉J*Tk+k∈K .

Example 12. Figure 3 shows the partial simulation tree for TS ≤ T ′
S , from Fig-

ures 1 and 2 (ignore the dashed edges for now). Notice how the branch leading
to the top part of the tree visits only finitely many node labels (see dotted box),
however the bottom part of the tree generates infinitely many labels, see the
path along the !tm transitions in the dashed box.
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Fig. 3. Simulation tree for TS ≤ T ′
S (Figures 1 and 2), the root of the tree is in bold.

Witness subtrees Next, we define witness trees which are finite subtrees of a
simulation tree which we prove to be successful. The role of the witness subtree
is to identify branches that satisfy a certain accumulation pattern. It detects an
input context A whose holes fall in two categories: (i) growing holes (indexed
by indices in J below) which lead to an infinite growth and (ii) constant holes
(indexed by indices in K below) which stay stable throughout the simulation
game. The definition of witness trees relies on the notion of ancestor of a node
n, which is a node n′ (different from n) on the path from the root n0 to n. We
illustrate witness trees with Figure 3 and Example 13.

Definition 13 (Witness Tree). A tree (N, n0,�, λ) is a witness tree for A,
such that holes(A) = I, with ∅ ⊆ K ⊂ I and J = I \ K, if all the following
conditions are satisfied:

1. for all n ∈ N either λ(n) = (T,A′〈A*Sj+j∈J〉J*Sk+k∈K) or
λ(n) = (T,A′〈A〈A*Sj+j∈J〉J〉J*Sk+k∈K), where A′ is a reduction of A, and
it holds that
– holes(A′) ⊆ K implies that n is a leaf and
– if λ(n) = (T,A[Si]

i∈I) and n is not a leaf then unfold(T ) starts with an
output selection;

2. each leaf n of the tree satisfies one of the following conditions:
(a) λ(n) = (T, S) and n has an ancestor n′ s.t. λ(n′) = (T, S)

(TS , A�T ′
S , T

′
1�{1,2})

(μt′.&{tc : t′, done : end}, A〈A�T ′′
1 �1〉1�end�2)

(μt′.&{tc : t′, done : end}, A�T ′′
1 �1�end�2) (end, end)

(TS , A〈A�T ′
S�1〉1�T ′

1�2)

!over

?tc
?done

!tm

(TS , T
′
S)

!tm

(μt′.&{tc : t′, done : end}, A�T ′′
1 �1�end�2)

(end, end) (μt′.&{tc : t′, done : end}, T ′′
1 )

(end, end) (μt′.&{tc : t′, done : end}, T ′′
1 )

!over

?done
?tc

?done
?tc

=

A = &{tc : [ ]1, done : [ ]2}
T ′
1 = μt′′.⊕ {tm : t′′, over : end}

T ′′
1 = μt′. &{tc : t′, done : end}
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(b) λ(n) = (T,A〈A*Sj+j∈J〉J*Sk+k∈K) and n has an ancestor n′ s.t. λ(n′) =
(T,A[Si]

i∈I)
(c) λ(n) = (T,A[Si]

i∈I) and
n has an ancestor n′ s.t. λ(n′) = (T,A〈A*Sj+j∈J〉J*Sk+k∈K)

(d) λ(n) = (T,A′[Sk]
k∈K′

) where K ′ ⊆ K

and for all leaves (T, S) of type (2c) or (2d) T ≤S holds.

Intuitively Condition (1) says that a witness subtree consists of nodes that
are labelled by pairs (T, S) where S contains a fixed context A (or a reduc-
tion/repetition thereof) whose holes are partitioned in growing holes (J) and
constant holes (K). Whenever all growing holes have been removed from a pair
(by reduction of the context) then this means that the pair is labelling a leaf of
the tree. In addition, if the initial input is limited to only one instance of A, the
l.h.s. type starts with an output selection so that this input cannot be consumed
in the subtyping simulation game.

Condition 2 says that all leaves of the tree must validate certain conditions
from which we can infer that their continuations in the full simulation tree
lead to successful branches. Leaves satisfying Condition (2a) straightforwardly
lead to successful branches as the subtyping simulation game, starting from the
corresponding pair, has been already checked starting from its ancestor having
the same label. Leaves satisfying Condition (2b) lead to an infinite but regular
“increase” of the types in J-indexed holes — following the same pattern of
accumulation from their ancestor. The next two kinds of leaves must additionally
satisfy the subtyping relation — using witness trees inductively or based on the
fact they generate finitely many labels. Leaves satisfying Condition (2c) lead
to regular “decrease” of the types in J-indexed holes — following the same
pattern of reduction from their ancestor. Leaves satisfying Condition (2d) use
only constant K-indexed holes because, by reduction of the context A′, the
growing holes containing the accumulation A have been removed.

Remark 1. Definition 13 is parameterised by an input contextA. We explain how
such contexts can be identified while building a simulation tree in Section 5.

Example 13. In the tree of Figure 3 we highlight two subtrees. The subtree in the
dotted box is not a witness subtree because it does not validate Condition (1) of
Definition 13, i.e., there is an intermediary node with a label in which the r.h.s
type does not contain A.

The subtree in the dashed box is a witness subtree with 3 leaves, where the
dashed edges represent the ancestor relation, A = &{tc : [ ]1, done : [ ]2}, J = {1}
and K = {2}. We comment on the leaves clockwise, starting from (end, end),
which satisfies Condition (2d). The next leaf satisfies condition (2c), while the
final leaf satisfies Condition (2b).

Algorithm Given two session types T and S we first check whether S is uncon-
trollable. If this is the case we immediately conclude that T ≤S. Otherwise, we
proceed in four steps.
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S1 We compute a finite fragment of simtree(T, S), stopping whenever (i) we
encounter a leaf (successful or not), (ii) we encounter a node that has an ancestor
as defined in Definition 13 (Conditions (2a), (2b), and (2c)), (iii) or the length
of the path from the root of simtree(T, S) to the current node exceeds a bound
set to two times the depth of the AST of S. This bound allows the algorithm to
explore paths that will traverse the super-type at least twice. We have empirically
confirmed that it is sufficient for all examples mentioned in Section 5.
S2 We remove subtrees from the tree produced in S1 corresponding to successful
branches of the simulation game which contain finitely many labels. Concretely,
we remove each subtree whose each leaf n is either successful or has an ancestor
n′ such that n′ is in the same subtree and λ(n) = λ(n′).
S3 We extract subtrees from the tree produced in S2 that are potential can-
didates to be subsequently checked. The extraction of these finite candidate
subtrees is done by identifying the forest of subtrees rooted in ancestor nodes
which do not have ancestors themselves.
S4 We check that each of the candidate subtrees from S3 is a witness tree.

If an unsuccessful leaf is found in S1, then the considered session types are not
related. In S1, if the generation of the subtree reached the bound before reaching
an ancestor or a leaf, then the algorithm is unable to give a decisive verdict, i.e.,
the result is unknown. Otherwise, if all checks in S4 succeed then the session
types are in the fair asynchronous subtyping relation. In all other cases, the
result is unknown because a candidate subtree is not a witness.

Example 14. We illustrate the algorithm above with the tree in Figure 3. Af-
ter S1, we obtain the whole tree in the figure (11 nodes). After S2, all nodes in
the dotted boxed are removed. After S3 we obtain the (unique) candidate sub-
tree contained in the dashed box. This subtree is identified as a witness subtree
in S4, hence we have TS ≤T ′

S .

We state the main theorem that establishes the soundness of our algorithm,
where �∗ is the reflexive and transitive closure of �.

Theorem 5. Let T and S be session types s.t. simtree(T, S) = (N, n0,�, λ). If
simtree(T, S) contains a witness subtree with root n then for every node n′ ∈ N
s.t. n �∗ n′, either n′ is a successful leaf, or there exists n′′ s.t. n′ � n′′.

We can conclude that if the candidate subtrees of simtree(T, S) identified
with the strategy explained above are also witness subtrees, then we have T ≤S.

5 Implementation

To evaluate our algorithm, we have produced a Haskell implementation of it,
which is available on GitHub [31]. Our tool takes two session types T and S
as input then applies Steps S1 to S4 to check whether T ≤S. A user-provided
bound can be given as an optional argument. We have run our tool on a dozen
of examples handcrafted to test the limits of our algorithm (inc. the examples
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discussed in this paper), as well as on the 174 tests taken from [6]. All of these
tests terminate under a second.

For debugging and illustration purposes, the tool can optionally generate
graphical representations of the simulation and witness trees, and check whether
the given types are controllable. We give examples of these in [9].

Our tool internally uses automata to represent session types and uses strong
bisimilarity instead of syntactic equality between session types. Using automata
internally helps us identify candidate input contexts as we can keep track of
states that correspond to the input context computed when applying Case (4)
of Definition 12. In particular, we augment each local state in the automata
representation of the candidate supertype with two counters: the c-counter keeps
track of how many times a state has been used in an input context; the h-
counter keeps track of how many times a state has occurred within a hole of an
input context. We illustrate this with Figure 4 which illustrates the internal data
structures our tool manipulates when checking TS ≤ T ′

S from Figures 1 and 2.
The state indices of the automata in Figure 4 correspond to the ones in Figure 1
(2nd column) and Figure 2 (3rd column).

The first row of Figure 4 represents the root of the simulation tree, where
both session types are in their respective initial state and no transition has been
executed. We use state labels of the form nc,h where n is the original identity
of the state, c is the value of the c-counter, and h is the value of the h-counter.
The second row depicts the configuration after firing transition !tm, via Case (4)
of Definition 12. While the candidate subtype remains in state 0 (due to a self-
loop) the candidate supertype is unfolded with selUnfold(T ′

S) (Definition 10).
The resulting automaton contains an additional state and two transitions. All
previously existing states have their h-counter incremented, while the new state
has its c-counter incremented. The third row of the figure shows the configuration
after firing transition !over , using Case (4) of Definition 12 again. In this step,
another copy of state 0 is added. Its c-counter is set to 2 since this state has been
used in a context twice; and the h-counters of all other states are incremented.

Using this representation, we construct a candidate input context by building
a tree whose root is a state qc,h such that c > 1. The nodes of the tree are
taken from the states reachable from qc,h, stopping when a state q′c′,h′ such that
c′ < c is found. A leaf q′c′,h′ becomes a hole of the input context. The hole
is a constant (K) hole when h′ = c, and growing (J) otherwise. Given this
strategy and the configurations in Figure 4, we successfully identify the context
A = &{tc : [ ]1, done : [ ]2} with J = {1} and K = {2}.

6 Related and Future Work

Related work We first compare with previous work on refinement for asyn-
chronous communication by some of the authors of this paper. The work in [10]
also considers fair compliance, however here we consider binary (instead of mul-
tiparty) communication and we use a unique input queue for all incoming mes-
sages instead of distinct named input channels. Moreover, here we provide a
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Last transition State of TS Representation of T ′
S

ε 0
00,010,020,030,0 40,0 50,0

?tc

?done

!tm

!over

?tc

?done

!tm

!over

!tm 0
00,110,120,130,1 40,1 50,1

01,0

?tc
?done

?tc

?done

!tm

!over

?tc

?done

!tm

!over

!over 1

00,210,220,230,2 40,2 50,2

01,1

02,0

?tc

?done

?tc

?done

?tc

?done

Fig. 4. Internal representation of the simulation tree for TS ≤ T ′
S (fragment).

sound characterisation of fair refinement using coinductive subtyping and pro-
vide a sound algorithm and its implementation. In [13] the asynchronous sub-
typing of [7, 14, 15, 26] is used to characterise refinement for a notion of correct
composition based on the impossibility to reach a deadlock, instead of the possi-
bility to reach a final successful configuration as done in the present paper. The
refinement from [13] does not support examples such as those in Figure 1.

Concerning previous notions of synchronous subtyping, Gay and Hole [17,18]
first introduced the notion of subtyping for synchronous session types, which is
decidable in quadratic time [22]. This subtyping only supports covariance of out-
puts and contravariance of inputs, but does not address anticipation of outputs.
Padovani studied a notion of fair subtyping for synchronous multi-party session
types in [29]. This work notably considers the notion of viability which corre-
sponds, in the synchronous multiparty setting, to our notion of controllability.
We use the term controllability instead of viability following the tradition of
service contract theories like those based on Petri nets [25, 33] or process cal-
culi [12]. In contrast to [29], asynchronous communication makes it much more
involved to characterise controllability in a decidable way, as we do in this pa-
per. Fair refinement in [29] is characterised by defining a coinductive relation
on normal form of types, obtained by removing inputs leading to uncontrollable
continuations. Instead of using normal forms, we remove these inputs during
the asynchronous subtyping check. A limited form of variance on output is also
admitted in [29]. Covariance between the outputs of a subtype and those of
a supertype is possible when the additional branches in the supertype are not
needed to have compliance with potential partners. In [29] this check is made
possible by exploiting a difference operation [29, Definition 3.15] on types, which
synthesises a new type representing branches of one type that are absent in the
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other. We observe that the same approach cannot work to introduce variance
on outputs in an asynchronous setting. Indeed the interplay between output an-
ticipation and recursion could generate differences in the branches of a subtype
and a supertype that cannot be statically represented by a (finite) session type.

Padovani also studied an alternative notion of fair synchronous subtyping
in [28]. Although the contribution of that paper refers to session types, the for-
mal framework therein seems to deviate from the usual session type approach.
In particular, it considers shared channel communication instead of binary chan-
nels: when a partner emits a message, it is possible to have a race among several
potential receivers for consuming it. As a consequence of this alternative seman-
tics, the subtyping in [28] does not admit variance on input. Another difference
with respect to session type literature is the notion of success among interacting
sessions: a composition of session is successful if at least one participant reaches
an internal successful state. This approach has commonalities with testing [27],
where only the test composed with the system under test is expected to succeed,
but differs from the typical notion of success considered for session types. In [2,3]
(resp. [14]) it was proved that the Gay-Hole synchronous session subtyping (resp.
orphan message free asynchronous subtyping) coincides with refinement induced
by a successful termination notion requiring interacting processes to be both in
the end state (with empty buffers, in the asynchronous case).

Several variants of asynchronous session subtyping have been proposed in [14,
15, 26] and further studied in our earlier work [6, 7, 13]. All these variants have
been shown to be undecidable [7, 8, 23]. Moreover, all these subtyping relations
are (implicitly) based on an unfair notion of compliance. Concretely, the defi-
nition of asynchronous subtyping introduced in this paper differs from the one
in [14,15] since no additional constraint guaranteeing absence of orphan-messages
is considered. Such a constraint requires the subtype not to have output loops
whenever an output anticipation is performed, thus guaranteeing that at least
one input is performed in all possible paths. In this paper, absence of orphan
messages is guaranteed by enforcing types to (fairly) reach a successful termi-
nation. Moreover, our novel subtyping differs from those in [14, 15, 26] since we
use recursive input contexts (and not just finite ones) for the first time — this
is necessary to obtain T ′

G ≤TG and TS ≤T ′
S (see Figures 1 and 2). Notice that

not imposing the above mentioned orphan-message-free constraint of [14, 15] is
consistent with recursive input contexts that allows for input loops in the super-
type whenever an output anticipation is performed. In [6], we proposed a sound
algorithm for the asynchronous subtyping in [14]. The sound algorithm that we
present in this paper substantially differs from that of [6]. Here we use witness
trees that take under consideration both increasing and decreasing of accumu-
lated input. In [6], instead, only regular growing accumulation is considered.

Future work In future work, we will investigate how to support output variance
in fair asynchronous subtyping. We also plan to study fairness in the context
of asynchronous multiparty session types, as fair compliance and refinement
extend naturally to several partners. Finally, we will investigate a more refined
termination condition for our algorithm using ideas from [6, Definition 11].
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32. R. van Glabbeek and P. Höfner. Progress, justness, and fairness. ACM Comput.

Surv., 52(4):69:1–69:38, 2019.
33. D. Weinberg. Efficient controllability analysis of open nets. In WS-FM, volume

5387 of Lecture Notes in Computer Science, pages 224–239. Springer, 2008.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/julien-lange/fair-asynchronous-subtyping
https://creativecommons.org/licenses/by/4.0/


Running Time Analysis of Broadcast Consensus
Protocols� ��

Philipp Czerner1 [�] and Stefan Jaax1

Fakultät für Informatik, Technische Universität München, Garching bei München,
Germany

{czerner,jaax}@in.tum.de

Abstract. Broadcast consensus protocols (BCPs) are a model of com-
putation, in which anonymous, identical, finite-state agents compute by
sending/receiving global broadcasts. BCPs are known to compute all
number predicates in NL = NSPACE(log n) where n is the number of
agents. They can be considered an extension of the well-established
model of population protocols. This paper investigates execution time
characteristics of BCPs. We show that every predicate computable by
population protocols is computable by a BCP with expected O(n log n)
interactions, which is asymptotically optimal. We further show that every
log-space, randomized Turing machine can be simulated by a BCP with
O(n log n·T ) interactions in expectation, where T is the expected runtime
of the Turing machine. This allows us to characterise polynomial-time
BCPs as computing exactly the number predicates in ZPL, i.e. predicates
decidable by log-space, randomised Turing machine with zero-error in ex-
pected polynomial time where the input is encoded as unary.

Keywords: broadcast protocols · complexity theory · distributed com-
puting

1 Introduction

In recent years, models of distributed computation following the computation-by-
consensus paradigm attracted considerable interest in research (see for example
[9,25,26,8,13]). In such models, network agents compute number predicates, i.e.
Boolean-valued functions of the type Nk → {0, 1}, by reaching a stable consen-
sus whose value determines the outcome of the computation. Perhaps the most
prominent model following this paradigm are population protocols [5,6], a model
in which anonymous, identical, finite-state agents interact randomly in pairwise
rendezvous to agree on a common Boolean output.

Due to anonymity and locality of interactions, it is an inherent property of
population protocols that agents are generally unable to detect with absolute
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certainty when the computation has stabilized. This makes sequential composi-
tion of protocols difficult, and further complicates the implementation of control
structures such as loops or branching statements. To overcome this drawback,
two kinds of approaches have been suggested in the literature: 1.) Let agents
guess when the computation has stabilized, leading to composable, but merely
approximately correct protocols [7,24], or 2.) extend population protocols by
global communication primitives that enable agents to query global properties
of the agent population [13,8,26].

Approaches of the first kind are for the most part based on simulations of
global broadcasts by means of epidemics. In epidemics-based approaches the
spread of the broadcast signal is simulated by random pairwise rendezvous,
akin to the spread of a viral epidemic in a population. When the broadcasting
agent meets a certain fraction of “infected” agents, it may decide with reasonable
certainty that the broadcast has propagated throughout the entire population,
which then leads to the initiation of the next computation phase. Of course, the
decision to start the next phase may be premature, in which case the rest of
the execution may be faulty. However, epidemics can also be used to implement
phase clocks that help keep the failure probability low (see e.g. [7]).

In [13], Blondin, Esparza, and one of the authors of this paper introduced
broadcast consensus protocols (BCPs), an extension of population protocols by
reliable, global, and atomic broadcasts. BCPs find their precursor in the broad-
cast protocol model introduced by Emerson and Namjoshi in [17] to describe
bus-based hardware protocols. This model has been investigated intensely in
the literature, see e.g. [18,19,15,28]. Broadcasts also arise naturally in biological
systems. For example, Uhlendorf et al. analyse applications of broadcasts in the
form of an external, global light source for controlling a population of yeasts [12].

The authors of [13] show that BCPs compute precisely the predicates in
NL = NSPACE(log n), where n is the number of agents. For comparison, it is
known that population protocols compute precisely the Presburger predicates,
which are the predicates definable in the first-order theory of the integers with
addition and the usual order; a class much less expressive than the former.

An epidemics-based approach was used in [7] to show that population pro-
tocols can simulate with high probability a step of a virtual register machine
with expected O(n log5(n)) interactions, where n is the number of agents. This
result stimulated further research into time bounds for classical problems such
as leader election (see e.g. [21,1,16,29,11]) and majority (see e.g. [4,2]). In their
seminal paper [5], Angluin et al. already showed that population protocols can
stably compute Presburger predicates with O(n2 log n) interactions in expecta-
tion. Belleville et al. further showed that leaderless protocols require a quadratic
number of interactions in expectation to stabilize to the correct output for a
wide class of predicates [10]. The aforementioned bounds apply to stabilisation
time: the time it takes to go from an initial configuration to a stable consensus
that cannot be destroyed by future interactions. In [24], Kosowski and Uznanski
considered the weaker notion of convergence time: the time it takes on average
to ultimately transition to the correct consensus (although this consensus could
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in principle be destroyed by future interactions), and they show that sublinear
convergence time is achievable.

By contrast, to the best of our knowledge, time characteristics of BCPs have
not been discussed in the literature. The NL-powerful result presented in [13] does
not establish any time bounds. In fact, [13] only considers a non-probabilistic
variant of BCPs with a global fairness assumption instead of probabilistic choices.
Contributions of the paper. This paper initiates the runtime analysis of
BCPs in terms of expected number of interactions to reach a stable consensus.
To simplify the definition of probabilistic execution semantics, we introduce a
restricted, deterministic variant of BCPs without rendezvous transitions. In Sec-
tion 2, we define probabilistic execution semantics for the restricted version of
BCPs, and we provide an introductory example for a fast protocol computing
majority in Section 3.

In Section 4, we show that these restrictions of our BCP model are incon-
sequential in terms of expected number of interactions: both rendezvous and
nondeterministic choices can be simulated with a constant runtime overhead.

In Section 5, we show that every Presburger predicate can be computed by
BCPs with O(n log n) interactions and with constant space, where n denotes the
number of agents in the population. This result is asymptotically optimal.

In more generality, in Section 6, we use BCPs to simulate Turing machines
(TMs). In particular, we show that any randomised, logarithmically space-bound,
polynomial-time TM can be simulated by a BCP with an overhead of O(n log n)
interactions per step. Conversely, any polynomial-time BCP can be simulated by
such a TM. This result can be considered an improvement of the NL bound from
[13], now in a probabilistic setting. We also give a corresponding upper bound,
which yields the following succinct characterisation: polynomial-time BCPs com-
pute exactly the number predicates in ZPL, which are the languages decidable
by randomised log-space polynomial-time TMs with zero-error (the log-space
analogue to ZPP).

Bounding the time requires a careful analysis of each step in the simulation
of the Turing machine. Thus, our proof diverges in significant ways from the
proof establishing the NL lower bound in [13]. Most notably, we now make use
of epidemics in order to implement clocks that help reduce failure rates.

2 Preliminaries

Complexity classes. As is usual, we define NL as the class of languages decid-
able by a nondeterministic log-space TM. Additionally, by ZPL we denote the
set of languages decided by a randomised log-space TM A, s.t. A only terminates
with the correct result (zero-error) and that it terminates within O(poly n) steps
in expectation, as defined by Nisan in [27].
Multisets. A multiset over a finite set E is a mapping M : E → N. The set
of all multisets over E is denoted NE . For every e ∈ E, M(e) denotes the
number of occurrences of e in M . We sometimes denote multisets using a set-
like notation, e.g. �f, g, g� is the multiset M such that M(f) = 1, M(g) = 2 and
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M(e) = 0 for every e ∈ E\{f, g}. Addition, comparison and scalar multiplication
are extended to multisets componentwise, i.e. (M + M ′)(e)

def
= M(e) + M ′(e),

(λM)(e)
def
= λM(e) and M ≤ M ′ def⇐⇒ M(e) ≤ M ′(e) for every M,M ′ ∈ NQ,

e ∈ E, and λ ∈ N. For M ′ ≤ M we also define componentwise subtraction, i.e.
(M−M ′)(e)

def
= M(e)−M ′(e) for every e ∈ E. For every e ∈ E, we write e def

= �e�.
We lift functions f : E → E′ to multisets by defining f(M)(e′)

def
=

∑
f(e)=e′ M(e)

for e′ ∈ E′. Finally, we define the support and size of M ∈ NE respectively as
�M� def

= {e ∈ E : M(e) > 0} and |M | def
=

∑
e∈E M(e).

Broadcast Consensus Protocols. A broadcast consensus protocol [13] (BCP)
is a tuple P = (Q,Σ, δ, I, O) where

– Q is a non-empty, finite set of states,
– Σ is a non-empty, finite input alphabet,
– δ is the transition function (defined below),
– I : Σ → Q is the input mapping, and
– O ⊆ Q is a set of accepting states.

The function δ maps every state q ∈ Q to a pair (r, f) consisting of the
successor state r ∈ Q and the response function f : Q −→ Q.
Configurations. A configuration is a multiset C ∈ NQ. Intuitively, a configu-
ration C describes a collection of identical finite-state agents with Q as set of
states, containing C(q) agents in state q for every q ∈ Q. We say that C ∈ NQ

is a 1-consensus if �C� ⊆ O, and a 0-consensus if �C� ⊆ Q \O.
Step relation. A broadcast δ(q) = (r, f) is executed in three steps: (1) an agent
at state q broadcasts a signal and leaves q; (2) all other agents receive the signal
and move to the states indicated by the function f , i.e. an agent in state s moves
to f(s); and (3) the broadcasting agent enters state r.

Formally, for two configurations C,C ′ we write C −→ C ′, whenever there
exists a state q ∈ Q s.t. C(q) ≥ 1, δ(q) = (r, f), and C ′ = f(C − q) + r is the
configuration computed from C by the above three steps. By ∗−→ we denote the
reflexive-transitive closure of −→.

For example, consider a configuration C
def
= �a, a, b� and a broadcast transition

a �→ b, {a �→ c, b �→ d}. To execute this transition, we move an agent from state
a to state b and apply the transition function to all other agents, so we end up
in C ′ def

= �b� + �c, d�.
Broadcast transitions. We write broadcast transitions as q �→ r, S with S
a set of expressions q′ �→ r′. This refers to δ(q) = (r, f), with f(q′) = r′ for
(q′ �→ r′) ∈ S. We usually omit identity mappings q′ �→ q′ when specifying S.

For graphic representations of broadcast protocols we use a different notation,
which separates sending and receiving broadcasts. There we identify a transition
δ(q) = (r, f) with a name α and specify it by writing q !α−→ r and q′ ?α−→ r′ for
f(q′) = r′. Intuitively, q′ ?α−→ r′ can be understood as an agent transitioning
from q′ to r′ upon receiving the signal α, and q !α−→ r means that an agent in
state q may transmit the signal α and simultaneously transition to state r.
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As defined, δ is a total function, so each state is associated with a unique
broadcast. If we do not specify a transition δ(q) = (r, f) explicitly, we assume
that it simply maps each state to itself, i.e. q �→ q, {r �→ r : r ∈ Q}. We refer to
those transitions as silent.

Executions. An execution is an infinite sequence π = C0C1C2... of config-
urations with Ci −→ Ci+1 for every i. It has some fixed number of agents
n

def
= |C0| = |C1| = ... . Given a BCP and an initial configuration C0 ∈ NQ,

we generate a random execution with the following Markov chain: to perform
a step at configuration Ci, a state q ∈ Q is picked at random with probability
distribution p(q) = Ci(q)/|Ci|, and the (uniquely defined) transition δ(q) is exe-
cuted, giving the successor configuration Ci+1. We refer to the random variable
corresponding to the trace of this Markov chain as random execution.

Stable Computation. Let π denote an execution and inf(π) the configurations
occurring infinitely often in π. If inf(π) contains only b-consensuses, we say that
π stabilises to b. For a predicate ϕ : NΣ → {0, 1} we say that P (stably) computes
ϕ, if for all inputs X ∈ NΣ , the random execution of P with initial configuration
C0 = I(X) stabilises to ϕ(X) with probability 1.

Finally, for an execution π = C0C1C2... we let Tπ denote the smallest i s.t. all
configurations in CiCi+1... are ϕ(X)-consensuses, or ∞ if no such i exists. We say
that a BCP P computes ϕ within f(n) interactions, if for all initial configurations
C0 with n agents the random execution π starting at C0 has E(Tπ) ≤ f(n) <∞,
i.e. P stabilises within f(n) steps in expectation. If f ∈ O(poly(n)), then we call
P a polynomial-time BCP.

Global States. Often, it is convenient to have a shared global state between all
agents. If, for a BCP P = (Q,Σ, δ, I, O) we have Q = S×G, I(Σ) ⊆ Q×{j} for
some j ∈ G, and f((s, j)) ∈ Q× {j′} for each δ((q, j)) = ((r, j′), f), then we say
that P has global states G. A configuration C has global state j, if �C� ⊆ Q×{j}
for j ∈ G. Note that, starting from a configuration with global state j, P can
only reach configurations with a global state. Hence for P we will generally only
consider configurations with a global state. To make our notation more concise,
when specifying a transition δ(q) = (r, f) for P, we will write f as a mapping
from S to S, as q, r already determine the mapping of global states.

Population Protocols. A population protocol [5] replaces broadcasts by local
rendezvous. It can be specified as a tuple (Q,Σ, δ, I, O) where Q, Σ, I, O are
defined as in BCPs, and δ : Q2 → Q2 defines rendezvous transitions. A step
of the protocol at C is made by picking two agents uniformly at random, and
applying δ to their states: first q1 ∈ Q is picked with probability C(q1)/|C|,
then q2 ∈ Q is picked with probability C ′(q2)/|C ′|, where C ′ def

= C − �q1�. The
successor configuration then is C − �q1, q2� + �r1, r2� where δ(q1, q2) = (r1, r2).

Broadcast Protocols. Later on we will construct BCPs out of smaller building
blocks which we call broadcast protocols (BPs). A BP is a pair (Q, δ), where Q
and δ are defined as for BCPs. We extend the applicable definitions from above
to BPs, in particular the notions of configurations, executions, and global states.
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3 Example: Majority

x, 0

x, 1

�, 1 �, 0

y, 0

!α

?α

?β
?α

?β !β

?β

?α

y, 1
initial states

accepting states

Fig. 1. A fast broadcast consensus protocol computing the majority predicate.

As an introductory example, we construct a broadcast consensus protocol for
the majority predicate ϕ(x, y) = x > y. Figure 1 depicts the protocol graphically.
We have the set of states {x, y, ,} × {0, 1}, with global states {0, 1}, where the
states O

def
= {(x, 1), (y, 1), (,, 1)} are accepting, and I(x) = (x, 0) and I(y) =

(y, 0). The transitions are

(x, 0) �→ (,, 1), ∅ (α)
(y, 1) �→ (,, 0), ∅ (β)

Note that we use the more compact notation for transitions in the presence
of global states, written in long form (α) would be

(x, 0) �→ (,, 1), {(x, 0) �→ (x, 1), (y, 0) �→ (y, 1), (,, 0) �→ (,, 1)} (α)

To make the presentation of the following sample execution more readable,
we shorten the state (i, j) to ij . For input x = 3 and y = 2, an execution could
look like this:

�x0, x0, x0, y0, y0� α−→ �,1, x1, x1, y1, y1� β−→ �,0, x0, x0, ,0, y0�
α−→ �,1, ,1, x1, ,1, y1� β−→ �,0, ,0, x0, ,0, ,0� α−→ �,1, ,1, ,1, ,1, ,1�

Intuitively, there is a preliminary global consensus, which is stored in the
global state. Initially, it is rejecting, as x > y is false in the case x = y = 0.
However, any x agent is enough to tip the balance, moving to an accepting global
state. Now any y agent could speak up, flipping the consensus again.

The two factions initially belonging to x and y, respectively, alternate in this
manner by sending signals α and β. Strict alternation is ensured as an agent will
not broadcast to confirm the global consensus, only to change it.

After emitting the signal, the agent from the corresponding faction goes
into state ,, where it can no longer influence the computation. In the end, the
majority faction remains and determines the final consensus.

Considering these alternations with shrinking factions, the expected number
of steps of the protocol until stabilization can be bounded by 2

∑n
k=1 n/k =
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O(n log n). To see that this holds, we consider the factions separately: let n0

denote the number of agents the first faction starts with (i.e. agents initially in
state (x, 0)), and n1 the number at the end. When we are waiting for the first
transition of this faction all n0 agents are enabled, so we wait n/n0 steps in
expectation until one of them executes a broadcast. For the next one, we wait
n/(n0 − 1) steps. In total, this yields

∑n0

k=n1+1 n/k ≤
∑n

k=1 n/k steps for the
first faction, and via the same analysis for the second as well.

In contrast to the O(n log n) interactions this protocol takes, constant-state
population protocols require n2 interactions in expectation for the computation
of majority [4]. However, these numbers are not directly comparable: broadcasts
may not be parallelizable, while it is uncontroversial to assume that n rendez-
vous occur in parallel time 1.

4 Comparison with other Models

To facilitate the definition of an execution model, we only consider deterministic
BCPs, in the sense that for each state there is a unique transition to execute.
Blondin, Esparza and Jaax [14] analysed a more general model, i.e. they al-
low multiple transitions for a single state, picking one of them uniformly at
random when an agent in that state sends a broadcast. Additionally, as they
consider BCPs as an extension of population protocols, they include rendez-
vous transitions. We now show that we can simulate both extensions within a
constant-factor overhead.

4.1 Non-Deterministic Broadcast Protocols

The following construction allows for two broadcast transitions to be executed
uniformly at random from a single state. This can easily be extended to any
constant number of transitions using the usual construction of a binary tree
with rejection sampling.

Now assume that we are given a BCP (Q,Σ, δ0, I, F ) with another set of
broadcast transitions δ1 and we want each agent to pick one transition uniformly
at random from δ0 or δ1 whenever it executes a broadcast.

We implement this using a synthetic coin, i.e. we are utilising randomness
provided by the scheduler to enable individual agents to make random choices.
This idea has also been used for population protocols [1,3]. Compared to these
implementations, broadcasts allow for a simpler approach.

The idea is that we partition the agents into types, so that half of the agents
have type 0 and the other half have type 1. Additionally, there is a global coin
shared across all agents. To flip the coin, a random agent announces its type
(the coin is set to heads if the agent is type 0, tails if it is type 1) and a second
random agent executes a broadcast transition from either δ0 or δ1, depending on
the state of the global coin that has just been set. These two steps repeat, the
former flipping the coin fairly and the latter then executing the actual transitions.
Figure 2 sketches this procedure.
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q?∗

q−∗ qj1

qj∗
qj0q+∗ q0∗

q11q1∗

q00!seek

?seek

?find

?find

!flip 0

!flip 1

?flip 0

?flip 1

!exec 0

!exec 1!find

Fig. 2. Transition diagram for implementing multiple broadcasts per state, for q ∈
Q, with (q, i, j) written as qij . Dashed nodes represent multiple states, with j ∈ T .
Transitions resulting from executing the broadcasts in δ0, δ1 are not shown.

Intuitively, we start with no agents having either type 0 or 1. When such
a typeless agent is picked by the scheduler to announce its type (to flip the
global coin) it instead broadcasts that it is searching for a partner. Once this
has happened twice, these two agents are matched, one is assigned type 0 and
the other type 1. Thus we ensure that there is the exact same number of type
0 and type 1 agents at all times, meaning that we get a perfectly fair coin.
Additionally we make progress regardless of whether an agent with or without
a type is chosen.

To describe the construction formally, we introduce a set of types T
def
=

{?,+,−, 0, 1}, and choose the set of states Q′ def
= Q × T × {∗, 0, 1}, with global

states {∗, 0, 1} used to represent the state of the synthetic coin. We use (q, ?) as
initial state instead of q ∈ I, and start with global state ∗. To pick types, we
need transitions

(q, ?, ∗) �→ (q,+, ∗), {(r, ?) �→ (r,−) : r ∈ Q} for q ∈ Q (seek)

(q,−, ∗) �→ (q, 1, ∗), {(r,−) �→ (r, ?) : r ∈ Q}
∪ {(r,+) �→ (r, 0) : r ∈ Q}

for q ∈ Q (find)

So an agent of type ? announces that it seeks a partner, moving itself to type
+ and the others to type −. Then any type − agent may broadcast that a match
has been found, moving itself to type 1 and the type + agent to type 0. The
other type − agents revert to type ?. This ensures that the number of type 0
and 1 agents is always equal. Note that there may be an odd number of agents,
in which case one agent of type + remains.

The following transitions effectively flip the global coin, by having an agent
of type 0 or 1 announce that we now execute a broadcast transition from respec-
tively δ0 or δ1. Here, we have q ∈ Q, ◦ ∈ {0, 1}.

(q, ◦, ∗) �→ (q, ◦, ◦), ∅ (flip ◦)
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Then we actually execute the transition δ◦(q) = (r, f), for each (q, i) ∈ Q× T .

(q, i, ◦) �→ (r, i, ∗), {(s, j) �→ (f(s), j) : (s, j) ∈ Q× T} (exec ◦)

As the number of type 0 and 1 agents is equal, we select transitions from
δ0 and δ1 uniformly at random. It remains to show that the overhead of this
scheme is bounded.

Executing transition (exec 0) or (exec 1) is the goal. Transitions (flip 0) and
(flip 1) ensure that the former are executed in the very next step, so they cause at
most a constant-factor slowdown. Transitions (seek) and (find) can be executed
at most n times, as they decrease the number of agent of type ?. All that remains
is the implicit silent transition of states (q,+, j), which occurs with probability
at most 1/n in each step.

Hence, to execute m ≥ n steps of the simulated protocol our construction
takes at most (2m+ 2n) · n/(n− 1) ≤ 8m steps in expectation.

4.2 Population Protocols

Another extension to BCPs is the addition of rendez-vous transitions. Here we
are given a map R : Q2 → Q2. At each step, we flip a coin and either execute a
broadcast transition as usual, or pick two distinct agents uniformly at random,
in state q and r, respectively. These interact and move to the two states R(q, r).

Again, we can simulate this extension with only a constant-factor increase
in the expected number of steps. Given a BCP (Q,Σ,B, I, F ), the idea is to
add states {q̃ : q ∈ Q} ∪ {rq : r, q ∈ Q} and insert “activating” transitions
q �→ q̃, {r �→ rq : r ∈ Q} for q ∈ Q and “deactivating” transitions rq �→ s, {q̃ �→
t} ∪ {uq �→ u : u ∈ Q} for each R(q, r) = (s, t). So a state q first signals that it
wants to start a rendez-vous transition. Then, any other state r answers, both
executing the transition and signalling to all other states that it has occurred.

Each state in Q has exactly 2 broadcast transitions, so (using the scheme de-
scribed above) the probability of executing any “activating” transition is exactly
1
2 , the same as doing one of the original broadcast transitions in B. After doing
an activating transition we may do nothing for a few steps by executing the
broadcast transition on q̃, but eventually we execute a “deactivating” transition
and go back. The probability of executing a broadcast on q̃ is 1/n, so simulating
a single rendez-vous transition takes 1 + n/(n− 1) ≤ 3 steps in expectation.

5 Protocols for Presburger Arithmetic

While Blondin, Esparza and Jaax [14] show that BCPs are more expressive than
population protocols, they leave the question open whether BCPs provide a run-
time speed-up for the class of Presburger predicates computable by population
protocols. We already saw that Majority can be computed within O(n log n)
interactions in BCPs. This also holds in general for Presburger predicates:

Theorem 1. Every Presburger predicate is computable by a BCP within at most
O(n log n) interactions.



Running Time Analysis of Broadcast Consensus Protocols 173

We remark that the O(n log n) bound is asymptotically optimal: e.g. the
stable consensus for the parity predicate (x = 1 mod 2) must alternate with
configuration size, which clearly requires every agent to perform at least one
broadcast in the computation, and thus yields a lower bound of

∑n
k=1

n
k =

Ω(n log n) steps like in the coupon collector’s problem [20].
It is known [22] that every Presburger predicate can be expressed as Boolean

combination of linear inequalities and linear congruence equations over the in-
tegers, i.e. as Boolean combination of predicates of the form

∑
i αixi < c, and∑

i αixi = c mod m, where the αi, c and m are integer constants. In Section 5.1
we construct BCPs that compute arbitrary linear inequalities, before we sketch
the construction for congruences and Boolean combinations in Section 5.2.

5.1 Linear Inequalities

Proposition 1. Let α1, . . . , αk, c ∈ Z and let ϕ(x1, . . . , xk)
def⇐⇒

∑k
i=1 αixi <

c denote a linear inequality. There exists a broadcast consensus protocol that
computes ϕ within O(n log n) interactions in expectation.

Proof. We assume wlog that αi �= 0 for i = 1, ..., k and that α1, ..., αk are
pairwise distinct. Let A

def
= max{|α1|, |α2| . . . , |αk|, |c|}. We define a BCP P =

(Q×G,Σ, δ, I, O) with global states G, where

Q
def
= {0, α1, ..., αk} Σ

def
= {x1, . . . , xk}

G
def
= [−2A, 2A] O

def
= {(q, v) : v < c}

As inputs we get I(xi)
def
= (αi, 0) for each i = 1, ..., k. The transitions δ are

constructed as follows. For every v ∈ [−2A, 2A] and every αi satisfying v+αi ∈
[−2A, 2A], we add the following transition to T :

(αi, v) �→ (0, v + αi), ∅ (αi)

Intuitively, in the first component of its state an agent stores its contribution
to

∑
i αixi, the left-hand side of the inequality. The global state is used to store a

counter value, initially set to 0. Each agent adds its contribution to the counter,
as long as it does not overflow. The counter goes from −2A to 2A, which allows
it to store the threshold plus any single contribution. The final counter value
then determines the outcome of the computation.
Correctness. Let ctr(C) denote the global state (and thus current counter
value) of configuration C. Further, let

sum(C)
def
=

∑
(α,v)∈Q

C(α, v) · α+ ctr(C)

denote the sum of all agents’ contributions and the current value of the counter.
Every initial configuration C0 has ctr(C) = 0 and thus sum(C) =

∑
i αxi. Each
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transition α increases the counter by α but sets the agent’s contribution to 0
(from α), so sum(C) is constant throughout the execution.

Recall that our output mapping depends only on the value of the counter, so
our agents always form a consensus (though not necessarily a stable one). If this
consensus and ϕ(C0) disagree, then, we claim, a non-silent transition is enabled.

To see this, note that the current consensus depends on whether ctr(C) < c.
If that is the case, but ϕ(C0) = 0, then sum(C) ≥ c and some agent with positive
contribution α > 0 exists. Due to ctr(C) < c, transition α is enabled. Conversely,
if ctr(C) ≥ c and ϕ(C0) = 1, some transition α with α < 0 will be enabled.

Finally, note that each non-silent transition increases the number of agents
with contribution 0 by one, so at most n can be executed in total. So the exe-
cution converges and reaches, by the above argument, a correct consensus.
Convergence time. Each agent executes at most one non-silent transition. To
estimate the total number of steps, we partition the agents by their current
contribution: for a configuration C let C+ def

= C � {(q, v) ∈ Q : q > 0} denote
the agents with positive contribution, and define C− analogously. We have that
either ctr(C) < 0 and all transitions of agents in C+ would be enabled, or
ctr(C) ≥ 0 and the transitions of C− could be executed.

If C+ is enabled, then we have to wait at most n/|C+| steps in expectation
until a transition is executed, which reduces |C+| by one. In total we get n/|C+

0 |+
n/(|C+

0 |−1)+ ...+n/1 ∈ O(n log n). The same holds for C−, yielding our overall
bound of O(n log n).

5.2 Modulo Predicates and Boolean Combinations

Proposition 2. Let ϕ(x1, ..., xk)
def⇐⇒

∑k
i=1 αixi ≡ c (mod l) < c denote a

linear inequality, with α1, . . . , αk, c, l ∈ Z, l ≥ 2. There exists a broadcast con-
sensus protocol that computes ϕ within O(n log n) interactions in expectation.

Proof (sketch). The idea is the same as for Proposition 1, but instead of taking
care not to overflow the counter we simply perform the additions modulo l.

Proposition 3 (Boolean combination of predicates). Let ϕ be a Boolean
combination of predicates ϕ1, ..., ϕk, which are computed by BCPs P1, ...,Pk,
respectively, within O(n log n) interactions. Then there is a protocol computing
ϕ within O(n log n) interactions.

Proof (sketch). We do a simple parallel composition of the k BCPs, which is the
same construction as used for ordinary population protocols (see for example [5,
Lemma 6]). A detailed proof can be found in the full version of this paper.

6 Protocols for all Predicates in ZPL

BCPs compute precisely the predicates in NL with input encoded in unary,
which corresponds to NSPACE(n) when encoded in binary. The proof of the NL
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lower bound by Blondin, Esparza and Jaax [14] goes through multiple stages of
reduction and thus does not reveal which predicates can be computed efficiently.
We will now take a more direct approach, using a construction similar to the one
by Angluin, Aspnes and Eisenstat [7]. A step of a randomised Turing machine
(RTM) can be simulated using variants of the protocols for Presburger predicates
from Section 5, which we combine with a clock to determine whether the step
has finished, with high probability.

Instead of simulating RTMs directly, it is more convenient to first reduce
them to counter machines. Here, we will use counter machines that are both
randomised and capable of multiplying and dividing by two, with the latter
also determining the remainder. This ensures that the reduction is performed
efficiently, i.e. with overhead of O(n log n) interactions per step.

We first show the other direction: simulating BCPs with RTMs.

Lemma 1. Polynomial-time BCPs compute at most the predicates in ZPL with
input encoded in unary.

Proof. An RTM can store the number of agents in each state as binary counters.
Picking an agent uniformly at random can be done in O(log n) time by picking a
random number between 1 and n and comparing it to the agents in the different
states. Simulating a transition can also be done with logarithmic overhead. It can
further be shown that stabilization of the execution is decidable in time O(log n)
(see the full version of this paper for details). As the BCP uses only O(poly n)
interactions (in expectation) the RTM is also O(poly n) time-bounded.

Theorem 2. Polynomial-time BCPs compute exactly the predicates in ZPL with
input encoded in unary.

The proof of Theorem 2 will take up the remainder of this section.

Counter machines. Let Cmd
def
= {mul2, inc, divmod2, iszero} denote a set of

commands, and Ret
def
= {done0, done1} a set of completion statuses. A multi-

plicative counter machine with k counters (k-CM) A = (S, T1, T2) consists of a
finite set of states S with init, 0, 1 ∈ S and two transition functions T1, T2 map-
ping a state q ∈ S to a tuple (i, j, q′0, q

′
1) where i ∈ {1, ..., k} refers to a counter,

j ∈ Cmd is a command, and q′0, q
′
1 ∈ S are successor states (q′1 is not used for

mul2 and inc operations). Additionally, we require that T1, T2 map q ∈ {0, 1} to
(1, iszero, q, q), effectively executing no operation from those states.

The idea is that A, starting in state init, picks transitions uniformly at random
from either T1 or T2. Apart from this randomness, the transitions are determinis-
tic. Eventually, A ends up in either state 0 or 1, at which point it cannot perform
further actions, thereby indicating whether the input is accepted or rejected.
Step-execution function. A CM-configuration is a tuple K = (q, x1, ..., xk) ∈
Q× Nk. We define the step-execution function step as follows, with x ∈ N:

– step(mul2, x)
def
= (done0, 2x),

– step(inc, x)
def
= (done0, x+ 1),
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– step(divmod, 2x+ b)
def
= (doneb, x), for b ∈ {0, 1}, and

– step(iszero, x)
def
= (doneb, x), where b is 1 if x > 0 and 0 else.

For two CM-configurations K = (q, x1, ..., xk) and K ′ = (q′, x′
1, ..., x

′
k) where

T◦(q) = (i, j, q′0, q
′
1) for ◦ ∈ {1, 2} we write K ◦−→ K ′ if step(j, xi) = (doneb, x

′
i),

q′ = q′b for some b ∈ {0, 1}, and xr = x′
r for r �= i. Note that for each K and ◦

there is exactly one K ′ with K ◦−→ K ′.
The reasoning for introducing the step-execution function is that we want to

construct a broadcast protocol (BP) which simulates just one step of the CM.
Later on we can use this BP as a building block in a more general protocol.
Computation. Let ϕ : Nl → {0, 1} denote a predicate, for l ≤ k, and C ∈
Nl an input to ϕ. We sample a random (CM-)execution π = K0K1K2... for
input C, where K0, ... are CM-configurations, via a Markov chain. For the initial
configuration we have K0

def
= (init, C(1), ..., C(l), 0, ..., 0), and Ki is determined as

the unique configuration with Ki−1
◦−→ Ki, where ◦ ∈ {1, 2} is chosen uniformly

at random. (So π is the random variable defined as trace of the Markov Chain.)
We say that A computes ϕ within f(n) steps if for each C ∈ Nl with |C| = n

the random execution for input C reaches a configuration in {ϕ(C)}×Nk after at
most f(n) steps in expectation. Finally, A is n-bounded if the random executions
for inputs C with |C| = n can only reach configurations in Q× Nk

≤n.

Theorem 3. Let ϕ be a predicate decidable by a log-space bounded RTM within
O(f(n)) steps in expectation with unary input encoding. There exists an n-
bounded CM that accepts ϕ within O(f(n) log(n)) steps in expectation.

Proof (sketch). This can be shown by first representing the Turing machine by
a stack machine with two stacks that contain the tape content to the left/right of
the current machine head position. In this representation, head movements and
tape updates amount to performing pop/push operations on the stack. Moreover,
we can simulate an c · n-bounded stack by c many n-bounded stacks. An n-
bounded stack, in turn, can be represented in a counter machine with a constant
number of 2n-bounded counters. The stack content is represented as the base-2
number corresponding to the binary sequence stored in the stack. Popping then
amounts to a divmod2 operation, and pushing amounts to doubling the counter
value, followed by adding 1 or 0, respectively.

A detailed proof can be found in the full version of this paper.

We formally define two types of BPs, ones that simulate a step of the CM,
and ones behaving like a clock.

Definition 1. Let BP P = (Q × G, δ) denote a BP with global states G where
0, 1,⊥∈ Q and Cmd,Ret ⊆ G. We define the injection ϕ : G×N≤n → NQ×G as
ϕ(j, x)

def
= x · �(1, j)� + (n − x) · �(0, j)�. The configurations in ϕ(Cmd × N) are

called initial, the ones in ϕ(Ret× N) final. We call a configuration C failing, if
C(⊥, i) > 0 for some i ∈ G.

We say that P is CM-simulating if the sets of final and failing configurations
are closed under reachability, and from every initial configuration ϕ(j, w) the
only reachable final configuration is ϕ(step(j, w)), if both are well-defined.
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Definition 2. Let P = (Q, δ) denote a BP with 0, 1 ∈ Q and Time(P) the
number of steps until P, starting in configuration �0, ..., 0�, reaches �1, ..., 1�, or
∞ if it does not. If Time(P) is almost surely finite and no agent is in state 1
before Time(P), then we call P a clock-BP.

Now we begin by constructing a CM-simulating BP. The value of a given
counter is scattered across the population: each agent stores its contribution to
this counter value in its state. The counter value is the sum of all contributions.
Usually, an agent’s contribution is either 1 or 0, thus n agents can maximally
store a counter value equal to n, which is not problematic, since the counter ma-
chine is assumed to be n-bounded. The difficult part is multiplying and dividing
the counter by two. Besides contributions 0 and 1, we will also allow interme-
diate contributions 1

2 and 2. By executing a single broadcast, we can multiply
(or divide) all the individual contributions by 2, by setting all contributions of
value 1 to 1

2 , or 2, respectively. Then, over time, we “normalise” the agents to all
have contribution 0 or 1 again in a manner which is specified below. This process
takes some time, and we cannot determine with perfect reliability whether it is
finished, so we only bound the time with high probability. Here and in the follow-
ing, we say that some event (dependent on the population size n) happens with
high probability, if for all k > 0 the event happens with probability 1−O(n−k).

In this and subsequent lemmata we use G(p), for 0 < p < 1, to denote
the geometric distribution, that is the number of trials until a coin flip with
probability p succeeds, which has expectation 1/p. We start with a statement
about the tail distributions of sums of geometric variables.

Lemma 2. Let n ≥ 3 and X1, ..., Xn denote independent random variables with
sum X and Xi ∼ G(i/n). Then for any k ≥ 1 there is an l s.t.

P(X ≥ l · n lnn) ≤ n−k

Proof. See the full version of this paper.

Lemma 3. There is a CM-simulating BP s.t. starting from an initial configura-
tion it reaches a final configuration within O(n log n) steps with high probability.

Proof. Let P = (Q × G, δ) denote our BP, with Q
def
= {0, 1

2 , 1, 2, ∗} and G
def
=

Cmd ∪ Ret ∪ {high}. The following transitions initialise the computation, with
b ∈ {0, 1}:

(b,mul2) �→ (2b, done0), {1 �→ 2, 0 �→ 0} (α1)

(b, divmod2) �→ ( b2 , done0), {1 �→
1
2 , 0 �→ 0} (α2)

(b, inc) �→ (b, high), ∅ (α3)

Additionally, we need transitions that move agents back into states 0 and 1.

(0, high) �→ (1, done0), ∅ (β1)
(2, done0) �→ (1, high), ∅ (β2)

( 12 , done0) �→ (0, done1), ∅ (β3)

( 12 , done1) �→ (1, done0), ∅ (β4)
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This requires some explanation. Basically, we have the invariant that for a con-
figuration C the current value of the counter is b+

∑
i∈Q,j∈G i ·C((i, j)), where

b is 1 if the global state is high and 0 else. There is a “canonical” representation
of each counter value, where b = 0 and the individual contributions i ∈ Q are
only 0 and 1. The transitions (α1-α3) update the represented counter value in
a single step, but cause a “noncanonical” representation. The transitions (β1-
β4) preserve the value of the counter and cause the representation to eventually
become canonical.

This corresponds to final configurations from Definition 1: as long as the
representation is noncanonical, i.e. an agent with value 1

2 , 2 or ∗ exists, the
configuration is not final. Conversely, once we reach a final configuration our
representation is canonical, and, as the value of the counter is preserved, we
reach the correct final configuration.

(1, iszero) �→ (1, done1), ∅ (α4)
(0, iszero) �→ (0, done0), {1 �→ ∗} (α5)
(∗, done0) �→ (1, done1), {∗ �→ 1} (β5)

For iszero we do something similar, but the value of the counter does not change.
If the initial transition is executed by an agent with value 1, we can go to the
global state done1 directly. Otherwise, we replace 1 by ∗ and go to done0, so if no
agents with value 1 exist, we are finished. Else some agent with value ∗ executes
(β5) and we move to the correct final configuration.

Final configurations can only contain states {0, 1} × Ret. As we have no
outgoing transitions from those states, they are indeed closed under reachability.

It remains to be shown that starting from a configuration C0 we reach a final
configuration within O(n log n) steps with high probability. Note that transitions
(α1-α5) are executed at most once. Moreover, these are the only transitions
enabled at C0, so let C1 denote the successor configuration after executing (α1-
α5), i.e. C0 → C1. From now on, we consider only transitions (β1-β5).

Let M
def
= { 1

2 , 2, ∗} × G denote the set of “noncanonical” states, and, for a
configuration C, let Φ(C)

def
= 2

∑
q∈M C(q) + b denote a potential function, with

b being 1 if the global state of C is high and 0 else. Now we can observe that
executing a (β1-β5) transition strictly decreases Φ, and that 0 ≤ Φ(C) ≤ 2n for
any configuration C. So after at most 2n non-silent transitions, we have reached
a final configuration.

Fix some transition (βj), let q ∈ Q × G denote the state initiating (βj),
and let C,C ′, C ′′ denote configurations with C βj−→ C ′ ∗−→ C ′′, meaning that
C ′′ is a configuration reachable from C after executing (βj). Then, we claim,
C(q) > C ′′(q).

To see that this holds for transitions (β2-β5), note that for i ∈ { 1
2 , 2, ∗} the

number of agents with value i can only decrease when executing transitions (β1-
β5). For (β1) this is slightly more complicated, as (β3) increases the number of
agents with value 0. However, (β1) is reachable only after (α1) or (α3) has been
executed, while (β3) requires (α2). Thus, our claim follows.
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Fig. 3. State diagram of the clock implementation. Nodes with i agents in state c3 are
labelled i or i+, the latter denoting that the other agents are in states c+1 and c+2 . The
final state ∗ has all agents in state 1. Arcs are labelled with transition probabilities.

Let Xk denote the number of silent transitions before executing (βj) for the
k-th time, k = 1, ..., l, and let rk denote the number of agents in state q at that
time. Then n ≥ r1 > r2 > ... > rl ≥ 1 and Xk is distributed according to
G(rk/n). So we can use Lemma 2 to show that the sum of Xk is O(n log n) with
high probability. There are only 5 transitions (βj), so the same holds for the
total number of steps until reaching a final state.

Our next construction is the clock-BP, which indicates that some amount
of time has passed (with high probability). Angluin, Aspnes and Eisenstat used
epidemics for this purpose [7], as do we. The idea is that one agent initiates an
epidemic and waits until it sees an infected agent. Similar to standard analysis
of the coupon collector’s problem, this is likely to take Θ(n log n) time.

Lemma 4. There is a clock-BP P = (Q, δ) s.t. E(Time(P)) ∈ O(n log n) and
Time(P) ∈ Ω(n log n) with probability 1−O(n−1/2).

Proof (sketch). For a clock we use states {0, 1, c1, c2, c3, c+1 , c+2 } and transitions

0 �→ c+1 , {0 �→ c+2 } (α)

c+2 �→ c3, {c+2 �→ c2, c
+
1 �→ c1} (β)

c3 �→ c3, {c2 �→ c+2 , c1 �→ c+1 } (γ)

c+1 �→ 1, {c+2 �→ 1, c3 �→ 1} (ω)

State 0 is the initial state, 1 the final state. States c1 and c2 denote “unin-
fected” agents, state c3 “infected” ones. The former can become activated (moving
to c+1 and c+2 ), causing one of them to become infected. Transition (α) marks a
leader c1, once they are infected the clock ends (via (ω)). In (β), a single acti-
vated agent becomes infected, deactivating the other agents. They get activated
again via transition (γ). The state diagram is shown in Figure 3.

It remains to show that this protocol fulfils the stated time bounds. We prove
E(Time(P)) ∈ O(n log n) by using that, in expectation, the protocol spends at
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most n/j steps in state j and at most n/(n− j) in state j+. For the lower bound
we make a case distinction: either state 

√
n� is not visited (i.e. the leader is one

of the first
√
n agents to be infected), or the total number of steps is at least

X1+ ...+X�
√
n�, where Xj is the number of steps the protocol spends in state i.

As Xj is geometrically distributed with mean n/j, we apply a tail bound from
Janson [23] to get the desired result.

A detailed proof can be found in the full version of the paper.

While the above clock measures some interval of time with some reliability,
we want a clock that measures an “arbitrarily long” interval with “arbitrarily
high” reliability. Constructions for population protocols use phase clocks for this
purpose, but broadcasts allow us to synchronise the agents, so we can directly
execute the clock multiple times in sequence instead.

Lemma 5. Let k ∈ N denote some constant. Then there is a clock-BP P s.t.
E(Time(P)) ∈ O(n log n), and Time(P) < kn log n with probability O(n−k).

Proof (sketch). The idea is that we run 28k2 clocks in sequence, in groups of
2k. Then it is likely that at least one clock in each group works, yielding the
overall minimum running time. A detailed proof can be found in the full version
of this paper.

As mentioned earlier, we combine the clock with the construction in Lemma 3.
While we cannot reliably determine whether the operation has finished, we can
use a clock to measure an interval of time long enough for the protocol to termi-
nate with high probability. The next construction does just that. In particular,
in contrast to Lemma 3, it uses its global state to indicate that it is done.

Lemma 6. There is a CM-simulating BP s.t. starting from an initial configura-
tion it reaches either a final or a failing configuration C almost surely and within
O(n log n) steps in expectation, and C is final with high probability. Additionally,
all reachable configurations with global state in Ret are final or failing.

Proof. Fix some k ∈ N and let P = (Q × G, δ) denote the BP we want to
construct. Further, let P1 = (Q1 × G1, δ1) denote the BP from Lemma 3 and
choose some c s.t. P1 reaches a final configuration after at most cn log n steps
with probability at least 1− n−k.

Now we use Lemma 5 to get a clock P2 = (Q2, δ2) that runs for at least
cn log n steps with probability at least 1− n−k.

We do a parallel composition of P1 and P2 to get P. In particular, Q
def
=

Q1 × Q2, G
def
= {j◦ : j ∈ G1} ∪ Ret, where for Q we identify (i, 0) with i for

i ∈ {0, 1 ⊥}, and for G we identify j with j◦ for j ∈ Cmd.
Intuitively, we use ◦ to rename the global states of P1, meaning that the

global state j ∈ G1 of P1 is now called j◦ in our protocol. We want P1 to start
with the same initial state we have, which is why we identified j with j◦ for
j ∈ Cmd. However, we only want to enter a final configurations once the clock
has run out, so the completion statuses of P1 are renamed into j◦ for j ∈ Ret
and we enter a final configuration by setting to global state to a j ∈ Ret.
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For each (q1, j) ∈ Q1 × G1 and q2 ∈ Q2 with δ1(q1, j) = ((r1, j
′), f1) and

δ2(q2) = (r2, f2) we get the transition

(q1, q2, j◦) �→ (r1, r2, j
′
◦), {(t1, t2) �→ (f1(t1), f(t2)) : t1 ∈ Q1, t2 ∈ Q2} (α)

These transitions, together with the way we identified states, ensure that P1

and P2 run normally, with the input being passed through to P1 transparently.
However, note that the final configurations of P1 are not final for P, meaning
that the protocol never ends. Hence, for q1 ∈ Q1, j ∈ Ret we add the transition

(q1, 1, j◦) �→ (q1, 0, j), {(b, 1) �→ (b, 0) : b ∈ {0, 1}}
∪ {(i, 1) �→ (⊥, 0) : i ∈ Q1 \ {0, 1}}

(β)

This terminates the protocol once the clock has run out. If P1 was in a final
state, we will now enter a final state as well, else we move into a failing state.

Finally, we use the above BP to simulate the full l-CM.

Lemma 7. Fix some predicate ϕ : Nk → {0, 1} computable by an n-bounded
l-CM within O(f(n)) ⊆ O(poly n) steps. Then there is a BCP computing ϕ in
O(f(n)n log n) steps.

Proof (sketch). For each counter we need n agents, so ln in total, but we can
simply have each agent simulate a constant number of agents. To execute a step
of the CM, we use the BP from Lemma 6. It succeeds only with high probability,
but in the case of failure at least one agent will have local state ⊥, from which
that agent initiates a restart of the whole computation.

As the CM takes only a polynomial number of steps, we can fix a k s.t. a
computation of our BCP without failures (i.e. one that succeeds on the first try)
takes O(nk) steps. A single step succeeds with high probability, so we can require
it to fail with probability at most O(n−k−1). In total, the restarts increase the
running time by a factor of 1/(1−O(n−1)), which is only a constant overhead.

A detailed proof can be found in the full version of this paper.

This completes the proof of Theorem 2. By Theorem 3, each predicate in
ZPL (with input encoded in unary) is computable by a bounded l-CM. Lemma 7
then yields a polynomial-time BCP for that predicate.

We remark that our reductions also enable us to construct efficient BPPs for
specific predicates. The predicate PowerOfTwo for example, as described in
[14, Proposition 3], can trivially be decided by an O(log n)-time bounded RTM
with input encoded as binary, so there is also a BCP computing that predicate
within O(n log2 n) interactions.
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Abstract. Finitary Idealized Concurrent Algol (FICA) is a prototypical
programming language combining functional, imperative, and concurrent
computation. There exists a fully abstract game model of FICA, which in
principle can be used to prove equivalence and safety of FICA programs.
Unfortunately, the problems are undecidable for the whole language, and
only very rudimentary decidable sub-languages are known.

We propose leafy automata as a dedicated automata-theoretic formalism
for representing the game semantics of FICA. The automata use an infi-
nite alphabet with a tree structure. We show that the game semantics of
any FICA term can be represented by traces of a leafy automaton. Con-
versely, the traces of any leafy automaton can be represented by a FICA
term. Because of the close match with FICA, we view leafy automata as
a promising starting point for finding decidable subclasses of the lan-
guage and, more generally, to provide a new perspective on models of
higher-order concurrent computation.

Moreover, we identify a fragment of FICA that is amenable to verification
by translation into a particular class of leafy automata. Using a locality
property of the latter class, where communication between levels is re-
stricted and every other level is bounded, we show that their emptiness
problem is decidable by reduction to Petri net reachability.

Keywords: Finitary Idealized Concurrent Algol, Higher-Order Concur-
rency, Automata over Infinite Alphabets, Game Semantics

1 Introduction

Game semantics is a versatile paradigm for giving semantics to a wide spectrum
of programming languages [3,35]. It is well-suited for studying the observational
equivalence of programs and, more generally, the behaviour of a program in an
arbitrary context. About 20 years ago, it was discovered that the game semantics
of a program can sometimes be expressed by a finite automaton or another simple
computational model [20]. This led to algorithmic uses of game semantics for
program analysis and verification [1,15,21,5,27,26,28,34,16,17]. Thus far, these
advances concerned mostly languages without concurrency.
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In this work, we consider Finitary Idealized Concurrent Algol (FICA) and its
fully abstract game semantics [22]. It is a call-by-name language with higher-
order features, side-effects, and concurrency implemented by a parallel composi-
tion operator and semaphores. It is finitary since, as it is common in this context,
base types are restricted to finite domains. Quite surprisingly, the game seman-
tics of this language is arguably simpler than that for the language without
concurrency. The challenge comes from algorithmic considerations.

Following the successful approach from the sequential case [20,37,33,36,11],
the first step is to find an automaton model abstracting the phenomena ap-
pearing in the semantics. The second step is to obtain program fragments from
structural restrictions on the automaton model. In this paper we take both steps.

We propose leafy automata: an automaton model working on nested data.
Data are used to represent pointers in plays, while the nesting of data reflects
structural dependencies in the use of pointers. Interestingly, the structural de-
pendencies in plays boil down to imposing a tree structure on the data. We show
a close correspondence between the automaton model and the game semantics of
FICA. For every program, there is a leafy automaton whose traces (data words)
represent precisely the plays in the semantics of the program (Theorem 3). Con-
versely, for every leafy automaton, there is a program whose semantics consists
of plays representing the traces of the automaton (Theorem 5). (The latter result
holds modulo a saturation condition we explain later.) This equivalence shows
that leafy automata are a suitable model for studying decidability questions for
FICA.

Not surprisingly, due to their close connection to FICA, leafy automata turn
out to have an undecidable emptiness problem. We use the undecidability ar-
gument to identify the source, namely communication across several unbounded
levels, i.e., levels in which nodes can produce an unbounded number of children
during the lifetime of the automaton. To eliminate the problem, we introduce
a restricted variant of leafy automata, called local, in which every other level
is bounded and communication is allowed to cross only one unbounded node.
Emptiness for such automata can be decided via reduction to a number of in-
stances of Petri net reachability problem.

We also identify a fragment of FICA, dubbed local FICA (LFICA), which
maps onto local leafy automata. It is based on restricting the distance between
semaphore and variable declarations and their uses inside the term. This is a
first non-rudimentary fragment of FICA for which some verification tasks are
decidable. Overall, this makes it possible to use local leafy automata to analyse
LFICA terms and decide associated verification tasks.

Related work Concurrency, even with only first-order recursion, leads to unde-
cidability [39]. Intuitively, one can encode the intersection of languages of two
pushdown automata. From the automata side, much research on decidable cases
has concentrated on bounding interactions between stacks representing different
threads of the program [38,30,4]. From the game semantics side, the only known
decidable fragment of FICA is Syntactic Control of Concurrency (SCC) [23],
which imposes bounds on the number of threads in which arguments can be used.
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This restriction makes it possible to represent the game semantics of programs
by finite automata. In our work, we propose automata models that correspond
to unbounded interactions with arbitrary FICA contexts, and importantly that
remains true also when we restrict the terms to LFICA. Leafy automata are a
model of computation over an infinite alphabet. This area has been explored ex-
tensively, partly motivated by applications to database theory, notably XML [41].
In this context, nested data first appeared in [7], where the authors considered
shuffle expressions as the defining formalism. Later on, data automata [9] and
class memory automata [8] have been adapted to nested data in [14,12]. They are
similar to leafy automata in that the automaton is allowed to access states re-
lated to previous uses of data values at various depths. What distinguishes leafy
automata is that the lifetime of a data value is precisely defined and follows a
question and answer discipline in correspondence with game semantics. Leafy
automata also feature run-time “zero-tests”, activated when reading answers.

For most models over nested data, the emptiness problem is undecidable. To
achieve decidability, the authors in [14,12] relax the acceptance conditions so
that the emptiness problem can eventually be recast as a coverability problem
for a well-structured transition system. In [10], this result was used to show
decidability of equivalence for a first-order (sequential) fragment of Reduced
ML. On the other hand, in [7] the authors relax the order of letters in words,
which leads to an analysis based on semi-linear sets. Both of these restrictions
are too strong to permit the semantics of FICA, because of the game-semantic
WAIT condition, which corresponds to waiting until all sub-processes terminate.

Another orthogonal strand of work on concurrent higher-order programs is
based on higher-order recursion schemes [24,29]. Unlike FICA, they feature re-
cursion but the computation is purely functional over a single atomic type o.

Structure of the paper: In the next two sections we recall FICA and its game
semantics from [22]. The following sections introduce leafy automata (LA) and
their local variant (LLA), where we also analyse the associated decision problems
and, in particular, show that the non-emptiness problem for LLA is decidable.
Subsequently, we give a translation from FICA to LA (and back) and define a
fragment LFICA of FICA which can be translated into LLA. We will occasionally
refer the reader to the full paper [18] which includes appendices with proof details
and worked examples.

2 Finitary Idealized Concurrent Algol (FICA)

Idealized Concurrent Algol [22] is a paradigmatic language combining higher-
order with imperative computation in the style of Reynolds [40], extended to
concurrency with parallel composition (||) and binary semaphores. We consider
its finitary variant FICA over the finite datatype {0, . . . ,max} (max ≥ 0) with
loops but no recursion. Its types θ are generated by the grammar

θ ::= β | θ → θ β ::= com | exp | var | sem
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Γ � skip : com Γ � divθ : θ Γ � i : exp

Γ � M : exp

Γ � op(M) : exp

Γ � M : com Γ � N : β

Γ � M ;N : β

Γ � M : com Γ � N : com
Γ � M ||N : com

Γ � M : exp Γ � N1, N2 : β

Γ � if M thenN1 elseN2 : β

Γ � M : exp Γ � N : com

Γ � whileM doN : com

Γ, x : θ � x : θ

Γ, x : θ � M : θ′

Γ � λx.M : θ → θ′
Γ � M : θ → θ′ Γ � N : θ

Γ � MN : θ′

Γ � M : var Γ � N : exp

Γ � M :=N : com

Γ � M : var
Γ �!M : exp

Γ � M : sem
Γ � release(M) : com

Γ � M : sem
Γ � grab(M) : com

Γ, x : var � M : com, exp

Γ � newvarx := i inM : com, exp

Γ, x : sem � M : com, exp

Γ � newsemx := i inM : com, exp

Fig. 1: FICA typing rules

where com is the type of commands; exp that of {0, . . . ,max}-valued expres-
sions; var that of assignable variables; and sem that of semaphores. The typing
judgments are displayed in Figure 1. skip and divθ are constants representing
termination and divergence respectively, i ranges over {0, · · · , max}, and op
represents unary arithmetic operations, such as successor or predecessor (since
we work over a finite datatype, operations of bigger arity can be defined using
conditionals). Variables and semaphores can be declared locally via newvar and
newsem. Variables are dereferenced using !M , and semaphores are manipulated
using two (blocking) primitives, grab(s) and release(s), which grab and release
the semaphore respectively. The small-step operational semantics of FICA is re-
produced in the full paper [18, Appendix A]. We shall write div for divcom.

We are interested in contextual equivalence of terms. Two terms are contex-
tually equivalent if there is no context that can distinguish them with respect to
may-termination. More formally, a term � M : com is said to terminate, writ-
ten M ⇓, if there exists a terminating evaluation sequence from M to skip. Then
contextual (may-)equivalence (Γ � M1

∼= M2) is defined by: for all contexts C
such that � C[M ] : com, C[M1]⇓ if and only if C[M2]⇓. The force of this notion
is quantification over all contexts.

Since contextual equivalence becomes undecidable for FICA very quickly [23],
we will look at the special case of testing equivalence with terms that always
diverge, e.g. given Γ � M : θ, is it the case that Γ � M ∼= divθ? Intuitively,
equivalence with an always-divergent term means that C[M ] will never converge
(must diverge) if C uses M . At the level of automata, this will turn out to
correspond to the emptiness problem.



188 A. Dixon et al.

In verification tasks, with the above equivalence test, we can check whether
uses of M can ever lead to undesirable states. For example, for a given term
x : var � M : θ, the term

f : θ → com � newvarx := 0 in (f(M) || if !x = 13 then skip else div)

will be equivalent to div only when x is never set to 13 during a terminating
execution. Note that, because of quantification over all contexts, f may use M
an arbitrary number of times, also concurrently or in nested fashion, which is a
very expressive form of quantification.

3 Game semantics

Game semantics for programming languages involves two players, called Oppo-
nent (O) and Proponent (P), and the sequences of moves made by them can be
viewed as interactions between a program (P) and a surrounding context (O). In
this section, we briefly present the fully abstract game model for FICA from [22],
which we rely on in the paper. The games are defined using an auxiliary concept
of an arena.

Definition 1. An arena A is a triple 〈MA, λA,�A〉 where:

– MA is a set of moves;
– λA : MA → {O,P} × {Q,A} is a function determining for each m ∈ MA

whether it is an Opponent or a Proponent move, and a question or an
answer; we write λOP

A , λQA
A for the composite of λA with respectively the first

and second projections;
– �A is a binary relation on MA, called enabling, satisfying: if m �A n for no

m then λA(n) = (O,Q), if m �A n then λOP
A (m) 
= λOP

A (n), and if m �A n

then λQA
A (m) = Q.

We shall write IA for the set of all moves of A which have no enabler; such moves
are called initial. Note that an initial move must be an Opponent question.
In arenas used to interpret base types all questions are initial and P-moves
answering them are detailed in the table below, where i ∈ {0, · · · ,max}.

Arena O-question P-answers Arena O-question P-answers
�com� run done �exp� q i

�var� read i �sem� grb ok
write(i) ok rls ok

More complicated types are interpreted inductively using the product (A × B)
and arrow (A ⇒ B) constructions, given below.

MA×B = MA +MB

λA×B = [λA, λB]
�A×B = �A + �B

MA⇒B = MA +MB

λA⇒B = [〈λPO
A , λQA

A 〉, λB ]
�A⇒B = �A + �B +{ (b, a) | b ∈ IB and a ∈ IA}
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where λPO
A (m) = O iff λOP

A (m) = P . We write �θ� for the arena corresponding to
type θ. Below we draw (the enabling relations of) A1 = �com → com → com�
and A2 = �(var → com) → com� respectively, using superscripts to distinguish
copies of the same move (the use of superscripts is consistent with our future
use of tags in Definition 9).

O run
������

����
��

P run2 run1 done

O done2 done1

O run
���

P run1
���

����
����

����
done

O read11 write(i)11 done1

P i11 ok11

Given an arena A, we specify next what it means to be a legal play in A. For
a start, the moves that players exchange will have to form a justified sequence,
which is a finite sequence of moves of A equipped with pointers. Its first move
is always initial and has no pointer, but each subsequent move n must have a
unique pointer to an earlier occurrence of a move m such that m �A n. We say
that n is (explicitly) justified by m or, when n is an answer, that n answers m.
If a question does not have an answer in a justified sequence, we say that it is
pending in that sequence. Below we give two justified sequences from A1 and A2

respectively.

run run1 run2 done1 done2 done run run1 read11 011 write(1)11 ok11 read11 111

Not all justified sequences are valid. In order to constitute a legal play, a justi-
fied sequence must satisfy a well-formedness condition that reflects the “static”
style of concurrency of our programming language: any started sub-processes
must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively,
while m denotes arbitrary moves.

Definition 2. The set PA of plays over A consists of the justified sequences s
over A that satisfy the two conditions below.

FORK : In any prefix s′ = · · · q · · ·m of s, the question q must be pending when
m is played.

WAIT : In any prefix s′ = · · · q · · ·a of s, all questions justified by q must be
answered.

It is easy to check that the justified sequences given above are plays. A subset σ
of PA is O-complete if s ∈ σ and so ∈ PA imply so ∈ σ, when o is an O-move.

Definition 3. A strategy on A, written σ : A, is a prefix-closed O-complete
subset of PA.

Suppose Γ = {x1 : θ1, · · · , xl : θl} and Γ � M : θ is a FICA-term. Let us
write �Γ � θ� for the arena �θ1� × · · · × �θl� ⇒ �θ�. In [22] it is shown how to
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assign a strategy on �Γ � θ� to any FICA-term Γ � M : θ. We write �Γ � M�
to refer to that strategy. For example, �Γ � div� = {ε, run} and �Γ � skip� =
{ε, run, run done}. Given a strategy σ, we denote by comp(σ) the set of non-
empty complete plays of σ, i.e. those in which all questions have been answered.
The game-semantic interpretation �· · ·� turns out to provide a fully abstract
model in the following sense.

Theorem 1 ([22]). Γ � M1
∼= M2 iff comp(�Γ � M1�) = comp(�Γ � M2�).

In particular, since we have comp(�Γ � divθ�) = ∅, Γ � M : θ is equivalent to
divθ iff comp(�Γ � M�) = ∅.

4 Leafy automata

Wewould like to be able to represent the game semantics of FICA using automata.
To that end, we introduce leafy automata (LA). They are a variant of automata
over nested data, i.e. a type of automata that read finite sequences of letters of
the form (t, d0d1 · · · dj) (j ∈ N), where t is a tag from a finite set Σ and each di
(0 ≤ i ≤ j) is a data value from an infinite set D.

In our case, D will have the structure of a countably infinite forest and
the sequences d0 · · · dj will correspond to branches of a tree. Thus, instead of
d0 · · · dj , we can simply write dj , because dj uniquely determines its ancestors:
d0, . . . , dj−1. The following definition captures the technical assumptions on D.

Definition 4. D is a countably infinite set equipped with a function pred : D →
D ∪ {⊥} (the parent function) such that the following conditions hold.

– Infinite branching: pred−1({d⊥}) is infinite for any d⊥ ∈ D ∪ {⊥}.
– Well-foundedness: for any d ∈ D, there exists i ∈ N, called the level of d,

such that pred i+1(d) = ⊥. Level-0 data values will be called roots.

In order to define configurations of leafy automata, we will rely on finite subtrees
of D, whose nodes will be labelled with states. We say that T ⊆ D is a subtree of
D iff T is closed (∀x ∈ T : pred(x) ∈ T∪{⊥}) and rooted (∃!x ∈ T : pred(x) = ⊥).

Next we give the formal definition of a level-k leafy automaton. Its set of
states Q will be divided into layers, written Q(i) (0 ≤ i ≤ k), which will be used
to label level-i nodes. We will write Q(i1,··· ,ik) to abbreviate Q(i1) × · · · ×Q(ik),
excluding any components Q(ij) where ij < 0. We distinguish Q(0,−1) = {†}.

Definition 5. A level-k leafy automaton (k-LA) is a tuple A = 〈Σ, k,Q, δ〉,
where

– Σ = ΣQ +ΣA is a finite alphabet, partitioned into questions and answers;
– k ≥ 0 is the level parameter;
– Q =

∑k
i=0 Q

(i) is a finite set of states, partitioned into sets Q(i) of level-i
states;

– δ = δQ + δA is a finite transition function, partitioned into question- and
answer-related transitions;
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– δQ =
∑k

i=0 δ
(i)
Q , where δ

(i)
Q ⊆ Q(0,1,··· ,i−1) ×ΣQ ×Q(0,1,··· ,i) for 0 ≤ i ≤ k;

– δA =
∑k

i=0 δ
(i)
A , where δ

(i)
A ⊆ Q(0,1,··· ,i) ×ΣA ×Q(0,1,··· ,i−1) for 0 ≤ i ≤ k.

Configurations of LA are of the form (D,E, f), where D is a finite subset of D
(consisting of data values that have been encountered so far), E is a finite subtree
of D, and f : E → Q is a level-preserving function, i.e. if d is a level-i data
value then f(d) ∈ Q(i). A leafy automaton starts from the empty configuration
κ0 = (∅, ∅, ∅) and proceeds according to δ, making two kinds of transitions. Each
kind manipulates a single leaf: for questions one new leaf is added, for answers
one leaf is removed. Let the current configuration be κ = (D,E, f).

– On reading a letter (t, d) with t ∈ ΣQ and d 
∈ D a fresh level-i data, the
automaton adds a new leaf d in a configuration and updates the states on
the branch to d. So it changes its configuration to κ′ = (D∪{d}, E∪{d}, f ′)
provided that pred(d) ∈ E and f ′ satisfies:

(f(pred i(d)), · · · , f(pred(d)), t, f ′(pred i(d)), · · · , f ′(pred(d)), f ′(d)) ∈ δ
(i)
Q ,

dom(f ′) = dom(f)∪{d}, and f ′(x) = f(x) for all x 
∈ {pred(d), · · ·, pred i(d)}.
– On reading a letter (t, d) with t ∈ ΣA and d ∈ E a level-i data which is a

leaf, the automaton deletes d and updates the states on the branch to d. So
it changes its configuration to κ′ = (D,E \ {d}, f ′) where f ′ satisfies:

(f(pred i(d)), · · · , f(pred(d)), f(d), t, f ′(pred i(d)), · · · , f ′(pred(d))) ∈ δ
(i)
A ,

dom(f ′) = dom(f)\{d} and f ′(x) = f(x) for all x 
∈ {pred(d), · · · , pred i(d)}.
– Initially D,E, and f are empty; we proceed to κ′ = ({d}, {d}, {d �→ q(0)}) if

(t, d) is read where †
t

−−→q(0) ∈ δ
(0)
Q . The last move is treated symmetrically.

In all cases, we write κ
(t,d)
−−−→κ′. Note that a single transition can only change

states on the branch ending in d. Other parts of the tree remain unchanged.

Example 1. Below we illustrate the effect of LA transitions. Let D1 = {d0, d1, d′1}
and d2 
∈ D1. Let κ1 = (D1, E1, f1), κ2 = (D1 ∪ {d2}, E2, f2), κ3 = (D1 ∪
{d2}, E1, f1), where the trees E1, E2 are displayed below and node annotations
of the form (q) correspond to values of f1, f2, e.g. f1(d0) = q(0).

d0(q
(0))

��
� ���

E1, f1 : d′1(q) d1(q
(1))

d0(r
(0))

��
�� 		

		

E2, f2 : d′1(q) d1(r
(1))

d2(r
(2))

For κ1 to evolve into κ2 (on (t, d2)), we need (q(0), q(1), t, r(0), r(1), r(2)) ∈ δ
(2)
Q .

On the other hand, to go from κ2 to κ3 (on (t, d2)), we want (r(0), r(1), r(2), t,

q(0), q(1)) ∈ δ
(2)
A .
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Definition 6. A trace of a leafy automaton A is a sequence w = l1 · · · lh ∈

(Σ ×D)∗ such that κ0
l1−−→κ1 . . . κh−1

lh−−→κh where κ0 = (∅, ∅, ∅). A configuration
κ = (D,E, f) is accepting if E and f are empty. A trace w is accepted by A if
there is a non-empty sequence of transitions as above with κh accepting. The set
of traces (resp. accepted traces) of A is denoted by Tr(A) (resp. L(A)).

Remark 1. When writing states, we will often use superscripts (i) to indicate the

intended level. So (q(0), · · · , q(i−1))
t

−−→(r(0), · · · , r(i)) refers to (q(0), · · · , q(i−1), t,

r(0), · · · , r(i)) ∈ δ
(i)
Q ; similarly for δ

(i)
A transitions. For i = 0, this degenerates to

†
t

−−→r(0) and r(0)
t

−−→†.

Example 2. Consider the 1-LA over ΣQ = {start, inc}, ΣA = {dec, end}. Let

Q(0) = {0}, Q(1) = {0} and define δ by: †
start
−−−→0, 0

inc
−−→(0, 0), (0, 0)

dec
−−→0,

0
end
−−→†. The accepted traces of this 1-LA have the form (start, d0) (||ni=0(inc, d

i
1)

(dec, di1)) (end, d0), i.e. they are valid histories of a single non-negative counter
(histories such that the counter starts and ends at 0). In this case, all traces are
simply prefixes of such words.

Remark 2. Note that, whenever a leafy automaton reads (t, d) (t ∈ ΣQ) and the
level of d is greater than 0, then it must have read a unique question (t′, pred(d))
earlier. Also, observe that an LA trace contains at most two occurrences of the
same data value, such that the first is paired with a question and the second
is paired with an answer. Because the question and the answer share the same
data value, we can think of the answer as answering the question, like in game
semantics. Indeed, justification pointers from answers to questions will be rep-
resented in this way in Theorem 3. Finally, we note that LA traces are invariant
under tree automorphisms of D.

Lemma 1. The emptiness problem for 2-LA is undecidable. For 1-LA, it is re-
ducible to the reachability problem for VASS in polynomial time and there is a re-
verse reduction in exponential time, so it is decidable in Ackermannian time [32]
but not elementary [13].

Proof. For 2-LA we reduce from the halting problem on two-counter-machines.
Two counters can be simulated using configurations of the form

q









��
��

�

c1
�� 

c2
�� 

��
��

�

� � � � � � �

where there are two level-1 nodes, one for each counter. The number of children
at level 2 encodes the counter value. Zero tests can be implemented by removing
the corresponding level-1 node and creating a new one. This is possible only
when the node is a leaf, i.e., it does not have children at level 2. The state of the
2-counter machine can be maintained at level 0, the states at level 1 indicate the
name of the counter, and the level-2 states are irrelevant.
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The translation from 1-LA to VASS is straightforward and based on repre-
senting 1-LA configurations by the state at level 0 and, for each state at level 1,
the count of its occurrences. The reverse translation is based on the same idea
and extends the encoding of a non-negative counter in Example 2, where the
exponential blow up is simply due to the fact that vector updates in VASS are
given in binary whereas 1-LA transitions operate on single branches. ��

Lemma 2. 1-LA equivalence is undecidable.

Proof. We provide a direct reduction from the halting problem for 2-counter
machines, where both counters are required to be zero initially as well as finally.
The main obstacle is that implementing zero tests as in the proof of the first
part of Lemma 1 is not available because we are restricted to leafy automata
with levels 0 and 1 only. To overcome it, we exploit the power of the equivalence
problem where one of the 1-LA will have the task not of correctly simulating
zero tests but recognising zero tests that are incorrect. The complete argument
can be found in the full paper [18, Appendix B]. ��

5 Local leafy automata (LLA)

Here we identify a restricted variant of LA for which the emptiness problem is
decidable. We start with a technical definition.

Definition 7. A k-LA is bounded at level i (0 ≤ i ≤ k) if there is a bound b
such that each node at level i can create at most b children during a run. We
refer to b as the branching bound.

Note that we are defining a “global” bound on the number of children that a
node at level i may create across a whole run, rather than a “local” bound on
the number of children a node may have in a given configuration.

To motivate the design of LLA, we observe that the undecidability argument
(for the emptiness problem) for 2-LA used two consecutive levels (0 and 1) that
are not bounded. For the node at level 0, this corresponded to the number of zero
tests, while an unbounded counter is simulated at level 1. In the following we will
eliminate consecutive unbounded levels by introducing an alternating pattern
of bounded and unbounded levels. Even-numbered layers (i = 0, 2, ...) will be
bounded, while odd-numbered layers will be unbounded. Observe in particular
that the root (layer 0) is bounded. As we will see later, this alternation reflects the
term/context distinction in game semantics: the levels corresponding to terms
are bounded, and the levels coresponding to contexts are unbounded.

With this restriction alone, it is possible to reconstruct the undecidability
argument for 4-LA, as two unbounded levels may still communicate. Thus we
introduce a restriction on how many levels a transition can read and modify.

– when adding or removing a leaf at an odd level 2i + 1, the automaton will
be able to access levels 2i, 2i− 1 and 2i− 2; while
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– when adding or removing a leaf at an even level 2i, the automaton will be
able to access levels 2i− 1 and 2i− 2.

In particular, when an odd level produces a leaf, it will not be able to see the
previous odd level. The above constraints mean that the transition functions

δ
(i)
Q , δ

(i)
Q can be presented in a more concise form, given below.

δ
(i)
Q ⊆

{

Q(i−2,i−1) ×ΣQ ×Q(i−2,i−1,i) if i is even

Q(i−3,i−2,i−1) ×ΣQ ×Q(i−3,i−2,i−1,i) if i is odd

δ
(i)
A ⊆

{

Q(i−2,i−1,i) ×ΣA ×Q(i−2,i−1) if i is even

Q(i−3,i−2,i−1,i) ×ΣA ×Q(i−3,i−2,i−1) if i is odd

In terms of the previous notation used for LA, (q(i−2), q(i−1), x, r(i−2), r(i−1),

r(i)) ∈ δ
(i)
Q denotes all tuples of the form (�q, q(i−2), q(i−1), x, �q, r(i−2), r(i−1), r(i)),

where �q ranges over Q(0,··· ,i−3).

Definition 8. A level-k local leafy automaton (k-LLA) is a k-LA whose transi-
tion function admits the above-mentioned presentation and which is bounded at
all even levels.

Theorem 2. The emptiness problem for LLA is decidable.

Proof (Sketch). Let b be a bound on the number of children created by each
even node during a run.

The critical observation is that, once a node d at even level 2i has been
created, all subsequent actions of descendants of d access (read and/or write)
the states at levels 2i−1 and 2i−2 at most 2b times. The shape of the transition
function dictates that this can happen only when child nodes at level 2i+ 1 are
added or removed. In addition, the locality property ensures that the automaton
will never access levels < 2i− 2 at the same time as node d or its descendants.

We will make use of these facts to construct summaries for nodes on even
levels which completely describe such a node’s lifetime, from its creation as a
leaf until its removal, and in between performing at most 2b reads-writes of the
parent and grandparent states. A summary is a sequence quadruples of states:
two pairs of states of levels 2i − 2 and 2i − 1. The first pair are the states we
expect to find on these levels, while the second are the states to which we update
these levels. Hence a summary at level 2i is a complete record of a valid sequence
of read-writes and stateful changes during the lifetime of a node on level 2i.

We proceed by induction and show how to calculate the complete set of
summaries at level 2i given the complete set of summaries at level 2i + 2. We
construct a program for deciding whether a given sequence is a summary at level
2i. This program can be evaluated via Vector Addition Systems with States
(VASS). Since we can finitely enumerate all candidate summaries at level 2i,
this gives us a way to compute summaries at level 2i. Proceeding this way, we
finally calculate summaries at level 2. At this stage, we can reduce the emptiness
problem for the given LLA to a reachability test on a VASS.

The complete argument is given in the full paper [18, Appendix C]. ��
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Let us remark also that the problem becomes undecidable if we remove either
boundedness restriction, or allow transitions to look one level further.

6 From FICA to LA

Recall from Section 3 that, to interpret base types, game semantics uses moves
from the set

M = M�com� ∪M�exp� ∪M�var� ∪M�sem�

= { run, done, q, read, grb, rls, ok } ∪ { i, write(i) | 0 ≤ i ≤ max }.

The game semantic interpretation of a term-in-context Γ � M : θ is a strategy
over the arena �Γ � θ�, which is obtained through product and arrow construc-
tions, starting from arenas corresponding to base types. As both constructions
rely on the disjoint sum, the moves from �Γ � θ� are derived from the base types
present in types inside Γ and θ. To indicate the exact occurrence of a base type
from which each move originates, we will annotate elements of M with a spe-
cially crafted scheme of superscripts. Suppose Γ = {x1 : θ1, · · · , xl : θl}. The
superscripts will have one of the two forms, where �i ∈ N∗ and ρ ∈ N:

– (�i, ρ) will be used to represent moves from θ;
– (xv

�i, ρ) will be used to represent moves from θv (1 ≤ v ≤ l).

The annotated moves will be written as m(�i,ρ) or m(xv
�i,ρ), where m ∈ M. We

will sometimes omit ρ on the understanding that this represents ρ = 0. Similarly,
when �i is omitted, the intended value is ε. Thus, m stands for m(ε,0).

The next definition explains how the �i superscripts are linked to moves from

�θ�. Given X ⊆ {m(�i,ρ) |�i ∈ N∗, ρ ∈ N} and y ∈ N ∪ {x1, · · · , xl}, we let

yX = {m(y�i,ρ) |m(�i,ρ) ∈ X}.

Definition 9. Given a type θ, the corresponding alphabet Tθ is defined as follows

Tβ = {m(ε,ρ) |m ∈ M�β�, ρ ∈ N } β = com, exp,var, sem

Tθh→...→θ1→β =
⋃h

u=1(uTθu) ∪ Tβ

For Γ = {x1 : θ1, · · · , xl : θl}, the alphabet TΓ�θ is defined to be TΓ�θ =
⋃l

v=1(xvTθv) ∪ Tθ.

Example 3. The alphabet Tf :com→com,x:com�com is {run(f1,ρ), done(f1,ρ),

run(f,ρ), done(f,ρ), run(x,ρ), done(x,ρ), run(ε,ρ), done(ε,ρ) | ρ ∈ N}.

To represent the game semantics of terms-in-context, of the form Γ � M : θ,
we are going to use finite subsets of TΓ�θ as alphabets in leafy automata. The
subsets will be finite, because ρ will be bounded. Note that Tθ admits a natural
partitioning into questions and answers, depending on whether the underlying
move is a question or answer.

We will represent plays using data words in which the underpinning sequence
of tags will come from an alphabet as defined above. Superscripts and data are
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used to represent justification pointers. Intuitively, we represent occurrences of
questions with data values. Pointers from answers to questions just refer to these
values. Pointers from questions use bounded indexing with the help of ρ.

Initial question-moves do not have a pointer and to represent such questions
we simply use ρ = 0. For non-initial questions, we rely on the tree structure
of D and use ρ to indicate the ancestor of the currently read data value that
we mean to point at. Consider a trace w(ti, di) ending in a non-initial question,
where di is a level-i data value and i > 0. In our case, we will have ti ∈ TΓ�θ ,
i.e. ti = m(··· ,ρ). By Remark 2, trace w contains unique occurrences of questions
(t0, d0), · · · , (ti−1, di−1) such that pred(dj) = dj−1 for j = 1, · · · , i. The pointer
from (ti, di) goes to one of these questions, and we use ρ to represent the scenario
in which the pointer goes to (ti−(1+ρ), di−(1+ρ)).

Pointers from answer-moves to question-moves are represented simply by
using the same data value in both moves (in this case we use ρ = 0).

We will also use ε-tags εQ (question) and εA (answer), which do not contribute
moves to the represented play. Each εQ will always be answered with εA. Note
that the use of ρ, εQ, εA means that several data words may represent the same
play (see Examples 4, 6).

Example 4. Suppose d0 = pred(d1), d1 = pred(d2) = pred(d′2), d2 = pred(d3),
and d′2 = pred(d′3). Then the data word (run, d0) (run

f , d1) (run
f1, d2) (run

f1, d′2)
(run(x,2), d3) (run

(x,2), d′3) (done
x, d3), which is short for (run(ε,0), d0) (run

(f,0), d1)

(run(f1,0), d2) (run(f1,0), d′2) (run(x,2), d3) (run(x,2), d′3) (done(x,0), d3), represents
the play

run runf runf1 runf1 runx runx donex

O P O O P P O.

Example 5. Consider the LAA = 〈Q, 3, Σ, δ〉, whereQ(0) = {0, 1, 2},Q(1) = {0},
Q(2) = {0, 1, 2}, Q(3) = {0}, ΣQ = {run, runf , runf1, run(x,2)}, ΣA = {done,
donef , donef1, donex}, and δ is given by

†
run
−−→0 0

runf
−−−→(1, 0) (1, 0)

donef
−−−−→2 2

done
−−−→ † (1, 0)

runf1

−−−→(1, 0, 0)

(1, 0, 0)
run(x,2)

−−−−−→(1, 0, 1, 0) (1, 0, 1, 0)
done(x,0)

−−−−−−→(1, 0, 2) (1, 0, 2)
donef1

−−−−→(1, 0)

Then traces from Tr(A) represent all plays from σ = �f : com → com, x :
com � fx�, including the play from Example 4, and L(A) represents comp(σ).

Example 6. One might wish to represent plays of σ from the previous Exam-
ple using data values d0, d1, d

′
1, d

′′
1 , d2, d

′
2 such that d0 = pred(d1) = pred(d′1) =

pred(d′′1 ), d1 = pred(d2) = pred(d′2), so that the play from Example 4 is rep-
resented by (run(ε,0), d0) (run(f,0), d1) (run(f1,0), d2) (run(f1,0), d′2) (run(x,0), d′1)

(run(x,0), d′′1) (done(x,0), d′1). Unfortunately, it is impossible to construct a 2-LA
that would accept all representations of such plays. To achieve this, the automa-
ton would have to make sure that the number of runf1s is the same as that of
runxs. Because the former are labelled with level-2 values and the latter with in-
comparable level-1 values, the only point of communication (that could be used
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for comparison) is the root. However, the root cannot accommodate unbounded
information, while plays of σ can feature an unbounded number of runf1s, which
could well be consecutive.

Before we state the main result linking FICA with leafy automata, we note
some structural properties of the automata. Questions will create a leaf, and
answers will remove a leaf. P-moves add leaves at odd levels (questions) and
remove leaves at even levels (answers), while O-moves have the opposite effect
at each level. Finally, when removing nodes at even levels we will not need to
check if a node is a leaf. We call the last property even-readiness.

Even-readiness is a consequence of the WAIT condition in the game seman-
tics. The condition captures well-nestedness of concurrent interactions – a term
can terminate only after subterms terminate. In the leafy automata setting, this
is captured by the requirement that only leaf nodes can be removed, i.e. a node
can be removed only if all of its children have been removed beforehand. It turns
out that, for P-answers only, this property will come for free. Formally, whenever
the automaton arrives at a configuration κ = (D,E, f), where d ∈ E and there
is a transition

(f(pred (2i)(d)), · · · , f(pred(d)), f(d), t, f ′(pred (2i)(d)), · · · , f ′(pred(d))) ∈ δ
(2i)
A ,

then d is a leaf. In contrast, our automata will not satisfy the same property
for O-answers (the environment) and for such transitions it is crucial that the
automaton actually checks that only leaves can be removed.

Theorem 3. For any FICA-term Γ � M : θ, there exists an even-ready leafy au-
tomaton AM over a finite subset of TΓ�θ+{εQ, εA} such that the set of plays rep-
resented by data words from Tr (AM ) is exactly �Γ � M : θ�. Moreover, L(AM )
represents comp(�Γ � M : θ�) in the same sense.

Proof (Sketch). Because every FICA-term can be converted to βη-normal form,
we use induction on the structure of such normal forms. The base cases are:
Γ � skip : com (Q(0) = {0}; †

run
−−→0, 0

done
−−−→†), Γ � div : com (Q(0) = {0};

†
run
−−→0), and Γ � i : exp (Q(0) = {0}; †

q
−−→0, 0

i
−−→†).

The remaining cases are inductive. When referring to the inductive hypoth-
esis for a subterm Mi, we shall use subscripts i to refer to the automata com-

ponents, e.g. Q
(j)
i ,

m
−−→i etc. In contrast, Q(j),

m
−−→ will refer to the automaton

that is being constructed. Inference lines will indicate that the transitions
listed under the line should be added to the new automaton provided the tran-
sitions listed above the line are present in the automaton obtained via induction
hypothesis. We discuss a selection of technical cases below.

Γ � M1||M2 In this case we need to run the automata for M1 and M2 concur-

rently. To this end, their level-0 states will be combined (Q(0) = Q
(0)
1 ×Q

(0)
2 ), but

not deeper states (Q(j) = Q
(j)
1 +Q

(j)
2 , 1 ≤ j ≤ k). The first group of transitions

activate and terminate the two components respectively:
†

run
−−→1q

(0)
1 †

run
−−→2q

(0)
2

†
run−−→(q

(0)
1 ,q

(0)
2 )

,
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q
(0)
1

done−−−→1† q
(0)
2

done−−−→2†

(q
(0)
1 ,q

(0)
2 )

done−−−→†
. The remaining transitions advance each component:

(q
(0)
1 ,··· ,q

(j)
1 )

m−−→1(r
(0)
1 ,··· ,r

(j′)
1 ) q

(0)
2 ∈Q

(0)
2

((q
(0)
1 ,q

(0)
2 ),··· ,q

(j)
1 )

m−−→((r
(0)
1 ,q

(0)
2 ),··· ,r

(j′)
1 )

q
(0)
1 ∈Q

(0)
1 (q

(0)
2 ,··· ,q

(j)
2 )

m−−→2(r
(0)
2 ,··· ,r

(j′)
2 )

((q
(0)
1 ,q

(0)
2 ),··· ,q

(j)
2 )

m−−→((q
(0)
1 ,r

(0)
2 ),··· ,r

(j′)
2 )

where m 
= run, done.

Γ � newvar x := i inM1 By [22], the semantics of this term is obtained from
the semantics of �Γ, x � M1� by

1. restricting to plays in which the moves readx, write(n)x are followed imme-
diately by answers,

2. selecting those plays in which each answer to a readx-move is consistent with
the preceding write(n)x-move (or equal to i, if no write(n)x was made),

3. erasing all moves related to x, e.g. those of the form m(x,ρ).

To implement 1., we will lock the automaton after each readx- or write(n)x-move,
so that only an answer to that move can be played next. Technically, this will be
done by adding an extra bit (lock) to the level-0 state. To deal with 2., we keep
track of the current value of x, also at level 0. This makes it possible to ensure
that answers to readx are consistent with the stored value and that write(n)x

transitions cause the right change. Erasing from condition 3 is implemented by
replacing all moves with the x subscript with εQ, εA-tags.

Accordingly, we have Q(0) = (Q
(0)
1 + (Q

(0)
1 × {lock})) × {0, · · · ,max} and

Q(j) = Q
(j)
1 (1 ≤ j ≤ k). As an example of a transition, we give the transition

related to writing:
(q

(0)
1 ,··· ,q

(j)
1 )

write(z)(x,ρ)

−−−−−−−−→1(r
(0)
1 ,··· ,r

(j′)
1 ) 0≤n,z≤max

((q
(0)
1 ,n),··· ,q

(j)
1 )

εQ−−→((r
(0)
1 ,lock,z),··· ,r

(j′)
1 )

.

Γ � fMh · · ·M1 : com with (f : θh → · · · → θ1 → com) Here we will need

Q(0) = {0, 1, 2}, Q(1) = {0}, Q(j+2) =
∑h

u=1 Q
(j)
u (0 ≤ j ≤ k). The first group of

transitions corresponding to calling and returning from f : †
run
−−→0, 0

runf
−−−→(1, 0),

(1, 0)
donef
−−−−→2, 2

done
−−−→†. Additionally, in state (1, 0) we want to enable the en-

vironment to spawn an unbounded number of copies of each of Γ � Mu : θu
(1 ≤ u ≤ h). This is done through rules that embed the actions of the automata
for Mu while (possibly) relabelling the moves in line with our convention for rep-
resenting moves from game semantics. Such transitions have the general form

(q(0)u ,··· ,q(j)u )
m(t,ρ)

−−−−→u(q
(0)
u ,··· ,q(j

′)
u )

(1,0,q
(0)
u ,··· ,q

(j)
u )

m(t′ ,ρ′)

−−−−−→(1,0,q
(0)
u ,··· ,q

(j′)
u )

. Note that this case also covers f : com

(h = 0).

More details and the remaining cases are covered in the full paper [18, Ap-
pendix D], along with an example of a term and the corresponding LA. ��
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7 Local FICA

In this section we identify a family of FICA terms that can be translated into
LLA rather than LA. To achieve boundedness at even levels, we remove while5.
To achieve restricted communication, we will constrain the distance between a
variable declaration and its use. Note that in the translation, the application of
function-type variables increases LA depth. So in LFICA we will allow the link
between the binder newvar/newsemx and each use of x to “cross” at most
one occurrence of a free variable. For example, the following terms

– newvarx := 0 inx := 1 || f(x := 2),
– newvarx := 0 in f(newvar y in f(y := 1) ||x :=!y)

will be allowed, but not newvarx := 0 in f(f(x := 1)).
To define the fragment formally, given a term Q in βη-normal form, we use

a notion of the applicative depth of a variable x : β (β = var, sem) inside Q,
written adx(Q) and defined inductively by the table below. The applicative depth
is increased whenever a functional identifier is applied to a term containing x.

shape of Q adx(Q)
x 1
y (y 
= x), skip, div, i 0
op(M), !M, release(M), grab(M) adx(M)
M ;N, M ||N, M :=N, whileM doN max(adx(M), adx(N))
if M thenN1 elseN2 max(adx(M), adx(N1), adx(N2))
λy.M,newvar/newsem y := i inM adx(M [z/y]),where z is fresh
fM1 · · ·Mk 1 + max(adx(M1), · · · , adx(Mk))

Note that in our examples above, in the first two cases the applicative depth
of x is 2; and in the third case it is 3.

Definition 10 (Local FICA). A FICA-term Γ � M : θ is local if its βη-normal
form does not contain any occurrences of while and, for every subterm of the
normal form of the shape newvar /newsemx := i inN , we have adx(N) ≤ 2.
We write LFICA for the set of local FICA terms.

Theorem 4. For any LFICA-term Γ � M : θ, the automaton AM obtained from
the translation in Theorem 3 can be presented as a LLA.

Proof (Sketch). We argue by induction that the constructions from Theorem 3
preserve presentability as a LLA.

The case of parallel composition involves running copies of M1 and M2 in
parallel without communication, with their root states stored as a pair at level 0.
Note, though, that each of the automata transitions independently of the state
of the other automaton. In consequence, if the automata M1 and M2 are LLA, so

5 The automaton for whileM doN may repeatedly visit the automata for M and N ,
generating an unbounded number of children at level 0 in the process.
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will be the automaton for M1||M2. The branching bound after the construction
is the sum of the two bounds for M1 and M2.

For Γ � newvarx := i inM , because the term is in LFICA, so is Γ, x : var �
M and we have adx(M) ≤ 2. Then we observe that in the translation of Theo-
rem 3 (Γ, x : var � M : θ) the questions related to x, (namely write(i)(x,ρ) and

read(x,ρ)) correspond to creating leaves at levels 1 or 3, while the corresponding

answers (ok(x,ρ) and i(x,ρ) respectively) correspond to removing such leaves. In
the construction for Γ � newvarx inM , such transitions need access to the root
(to read/update the current state) and the root is indeed within the allowable
range: in an LLA transitions creating/destroying leaves at level 3 can read/write
at level 0. All other transitions (not labelled by x) proceed as in M and need
not consult the root for additional information about the current state, as it
is propagated. Consequently, if M is represented by a LLA then the interpreta-
tion of newvarx := i inM is also a LLA. The construction does not affect the
branching bound, because the resultant runs can be viewed as a subset of runs
of the automaton for M , i.e. those in which reads and writes are related.

For fMh · · ·M1, we observe that the construction first creates two nodes at
levels 0 and 1, and the node at level 1 is used to run an unbounded number of
copies of (the automaton for) Mi. The copies do not need access to the states
stored at levels 0 and 1, because they are never modified when the copies are
running. Consequently, if each Mi can be translated into a LLA, the outcome
of the construction in Theorem 3 is also a LLA. The new branching bound is
the maximum over bounds from M1, · · · ,Mh, because at even levels children are
produced as in Mi and level 0 produces only 1 child. ��

Corollary 1. For any LFICA-term Γ � M : θ, the problem of determining
whether comp(�Γ � M�) is empty is decidable.

Theorems 1 and 2 imply the above. Thanks to Theorem 1, it is decidable if
a LFICA term is equivalent to a term that always diverges (cf. example on
page 187). In case of inequivalence, our results could also be applied to ex-
tract the distinguishing context, first by extracting the witnessing trace from
the argument underpinning Theorem 2 and then feeding it to the Definabil-
ity Theorem (Theorem 41 [22]). This is a valuable property given that in the
concurrent setting bugs are difficult to replicate.

8 From LA to FICA

In this section, we show how to represent leafy automata in FICA. Let A =
〈Σ, k,Q, δ〉 be a leafy automaton. We shall assume that Σ,Q ⊆ {0, · · · ,max} so
that we can encode the alphabet and states using type exp. We will represent
a trace w generated by A by a play play(w), which simulates each transition
with two moves, by O and P respectively. The child-parent links in D will be
represented by justification pointers. We refer the reader to [18, Appendix F] for
details. Below we just state the lemma that identifies the types that correspond
to our encoding, where we write θmax+1 → β for θ → · · · → θ

︸ ︷︷ ︸

max+1

→ β.
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Lemma 3. Let A be a k-LA and w ∈ Tr(A). Then play(w) is a play in �θk�,
where θ0 = commax+1 → exp and θi+1 = (θi → com)max+1 → exp (i ≥ 0).

Before we state the main result, we recall from [22] that strategies corresponding
to FICA terms satisfy a closure condition known as saturation: swapping two
adjacent moves in a play belonging to such a strategy yields another play from
the same strategy, as long as the swap yields a play and it is not the case that
the first move is by O and the second one by P. Thus, saturated strategies
express causal dependencies of P-moves on O-moves. Consequently, one cannot
expect to find a FICA-term such that the corresponding strategy is the smallest
strategy containing { play(w) |w ∈ Tr(A) }. Instead, the best one can aim for is
the following result.

Theorem 5. Given a k-LA A, there exists a FICA term � MA : θk such that
� � MA : θk� is the smallest saturated strategy containing { play(w) |w ∈ Tr(A) }.

Proof (Sketch). Our assumption Q ⊆ {0, · · · ,max} allows us to maintain A-
states in the memory of FICA-terms. To achieve k-fold nesting, we use the higher-
order structure of the term: λf (0).f (0)(λf (1).f (1)(λf (2).f (2)(· · ·λf (k).f (k)))). In

fact, instead of the single variables f (i), we shall use sequences f
(i)
0 · · · f

(i)
max , so

that a question t
(i)
Q read by A at level i can be simulated by using variable

f
(i)

t
(i)
Q

(using our assumption Σ ⊆ {0, · · · ,max}). Additionally, the term contains

state-manipulating code that enables moves only if they are consistent with the
transition function of A. ��

9 Conclusion and further work

We have introduced leafy automata, LA, and shown that they correspond to the
game semantics of Finitary Idealized Concurrent Algol (FICA). The automata
formulation makes combinatorial challenges posed by the equivalence problem
explicit. This is exemplified by a very transparent undecidability proof of the
emptiness problem for LA. Our hope is that LA will allow to discover interesting
fragments of FICA for which some variant of the equivalence problem is decid-
able. We have identified one such instance, namely local leafy automata (LLA),
and a fragment of FICA that can be translated to them. The decidability of the
emptiness problem for LLA implies decidability of a simple instance of the equiv-
alence problem. This in turn allows to decide some verification questions as in
the example on page 187. Since these types of questions involve quantification
over all contexts, the use of a fully-abstract semantics appears essential to solve
them.

The obvious line of future work is to find some other subclasses of LA with
decidable emptiness problem. Another interesting target is to find an automaton
model for the call-by-value setting, where answers enable questions [2,25]. It
would also be worth comparing our results with abstract machines [19], the
Geometry of Interaction [31], and the π-calculus [6].
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Abstract. In each variant of the λ-calculus, factorization and normal-
ization are two key properties that show how results are computed.
Instead of proving factorization/normalization for the call-by-name (CbN)
and call-by-value (CbV) variants separately, we prove them only once,
for the bang calculus (an extension of the λ-calculus inspired by linear
logic and subsuming CbN and CbV), and then we transfer the result via
translations, obtaining factorization/normalization for CbN and CbV.
The approach is robust: it still holds when extending the calculi with op-
erators and extra rules to model some additional computational features.

1 Introduction

The λ-calculus is the model of computation underlying functional programming
languages and proof assistants. Actually there are many λ-calculi, depending on
the evaluation mechanism (for instance, call-by-name and call-by-value—CbN
and CbV for short) and computational features that the calculus aims to model.

In λ-calculi, a rewriting relation formalizes computational steps in program
execution, and normal forms are the results of computations. In each calculus,
a key question is to define a normalizing strategy : How to compute a result? Is
there a reduction strategy which is guaranteed to output a result, if any exists?

Proving that a calculus admits a normalizing strategy is complex, and many
techniques have been developed. A well-known method first proves factorization
[4,32,19,2]. Given a calculus with a rewriting relation −→, a strategy →

l
⊆−→

factorizes if −→∗⊆→
l

∗ · →¬l
∗ (→¬l

is the dual of →
l
), i.e. any reduction sequence can

be rearranged so as to perform→
l
-steps first and then the other steps. If, moreover,

the strategy satisfies some “good properties”, we can conclude that the strategy
is normalizing. Factorization is important also because it is commonly used as
a building block in the proof of other properties of the how-to-compute kind.
For instance, standardization, which generalizes factorization: every reduction
sequences can be rearranged according to a predefined order between redexes.

Two for One. CbN and CbV λ-calculi are two distinct rewriting systems. Quoting
from Levy [20]: the existence of two separate paradigms (CbN and CbV) is trou-
bling because to prove a certain property—such as factorization or normalization—
for both systems we always need to do it twice.
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The first aim of our paper is to develop a technique for deriving factorization
for both the CbN [4] and CbV [27] λ-calculi as corollaries of a single factorization
theorem, and similarly for normalization. A key tool in our study is the bang
calculus [11,15], a calculus inspired by linear logic in which CbN and CbV embed.

The Bang Calculus. The bang calculus is a variant of the λ-calculus where an
operator ! plays the role of a marker for non-linear management: duplicability and
discardability of resources. The bang calculus is nothing but Simpson’s linear λ-
calculus [31] without linear abstraction, or the untyped version of the implicative
fragment of Levy’s Call-by-Push-Value [20], as first observed by Ehrhard [10].

The motivation to study the bang calculus is to have a general framework
where both CbN and CbV λ-calculi can be simulated, via two distinct translations
inspired by Girard’s embeddings [14] of the intuitionistic arrow into linear logic.
So, a certain property can be studied in the bang calculus and then automatically
transferred to the CbN and CbV settings by translating back.

This approach has so far mainly be exploited semantically [21,10,11,15,9,7],
but can be used it also to study operational properties [15,30,13]. In this paper,
we push forward this operational direction.

The Least-Level Strategy. We study a strategy from the literature of linear logic
[8], namely least-level reduction →

l
, which fires a redex at minimal level—the

level of a redex is the number of ! under which the redex occurs.

We prove that the least-level reduction factorizes and normalizes in the bang
calculus, and then we transfer the same results to CbN and CbV λ-calculi (for
suitable definitions of least-level in CbN and CbV), by exploiting properties of
their translations into the bang calculus. A single proof suffices. It is two-for-one!
Or even better, three-for-one.

The rewriting study of the least level strategy in the bang calculus is based
on simple techniques for factorization and normalization we developed recently
with Accattoli [2], which simplify and generalize Takahashi’s method [32].

Subtleties of the Embeddings. Transferring factorization and normalization results
via translation is highly non-trivial, e.g. in CPS translations [27]. This applies
also to transferring least-level factorization from the bang calculus to the CbN
and CbV λ-calculi. To transfer the property smoothly, the translations should
preserve levels and normal forms, which is delicate, in particular for CbV. For
instance, the embedding of CbV into the bang calculus defined in [15,30] does not
preserve levels and normal forms. As a consequence, the CbV translation studied
in [15,30] cannot be used to derive least-level factorization or any normalization
result in a CbV setting from the corresponding result in the bang calculus.

Here we adopt the refined CbV embedding of Bucciarelli et al. [7], which
does preserve levels and normal forms. While the preservation of normal forms is
already stressed in [7], the preservation of levels is proved here for the first time,
and it is based on non-trivial properties of the embedding.
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Beyond pure. Our second aim is to show that the developed technique for the
joined factorization and normalization of CbN and CbV via the bang calculus
is robust. We do so, by studying extensions of all three calculi with operators
(or, in general, with extra rules) which model some additional computational
features, such as non-deterministic or probabilistic choice. We then show that
the technique scales up smoothly, under mild assumptions on the extension.

A Motivating Example. Let us illustrate our approach on a simple case, which we
will use as a running example. De’ Liguoro and Piperno’s CbN non-deterministic
λ-calculus Λcbn

⊕ [23] extends the CbN λ-calculus with an operator ⊕ whose
reduction →⊕ models non-deterministic choice: t ⊕ s rewrites to either t or
s. It admits a standardization result, from which it follows that the leftmost-
outermost reduction strategy (noted →

loβ⊕) is complete: if t has a normal form u

then t →
loβ⊕

∗ u. In [22], de’ Liguoro considers also a CbV variant Λcbv
⊕ , extending

Plotkin CbV λ-calculus [27] with an operator ⊕. One may prove standardization
and completeness—again—from scratch, even though the proofs are similar.

The approach we propose here is to work in the bang calculus enriched with
the operator ⊕. We show that the calculus satisfies least-level factorization, from
which it follows that the least-level strategy (noted →

l β!⊕) is complete, i.e. if

t has a normal form u, then t →
l β!⊕

∗ u. The translation then guarantees that

analogous results hold also in Λcbn
⊕ and Λcbv

⊕ , without proving them again.

The Importance of Being Modular. The bang calculus with operators is actually a
general formalism for several calculi, one calculus for each kind of computational
feature modeled by operators. Concretely, the reduction → consists of −→β!

(which
subsumes CbN −→β and CbV −→βv ) and other reduction rules −→ρ.

We decompose the proof of factorization of → in modules, by using the
modular approach we recently introduced together with Accattoli [3].

The key module is the least-level factorization of →β!
, because it is where the

higher-order comes into play—this is done, once and for all. Then, we consider
a generic reduction rule −→ρ to add to −→β!

. Our general result is that if −→ρ has
“good properties” and interacts well with −→β!

(which amounts to an easy test,
combinatorial in nature), then we have least-level factorization for −→β!

∪ −→ρ.
Putting all together, when −→ρ is instantiated to a concrete reduction (such

as →⊕), the user of our method only has to verify a simple test (namely Proposi-
tion 34), to conclude that −→β!

∪ −→ρ has least-level factorization. In particular,
factorization for −→β!

is a ready-to-use black box the user need not to worry
about—our proof is robust enough to hold whatever the other rules are. Finally,
the embeddings automatically give least-level factorization for the corresponding
CbV and CbN calculi. Section 7 illustrates our method in the case −→ρ =→⊕.

Subtleties of the Modular Extensions. To adopt the modular approach for factor-
ization presented in [3], we have to face an important difficulty that arises when
dealing with normalizing strategies, and which is not studied in [3].
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A normalizing strategy cannot overlook redexes and it usually selects the
redex r to fire through a property that r minimizes with respect to the redexes in
the whole term, such as being a least level redex or being the leftmost-outermost
(shortened to LO) redex—normalizing strategies are positional. The problem is
that, in general, if →=→β ∪ →ρ, then →lo reduction is not the union of →

loβ
and

→
loρ

: the normalizing strategy of the compound system is not obtained putting

together the normalizing strategies of the components. Let us explain the issue on
our running example →β⊕, in the familiar case of leftmost-outermost reduction.

Example 1. Consider head reductions for →β and for →β⊕ =→β ∪ →⊕, noted
→
h β and→

h β⊕, respectively. In the term s = (II)(x⊕y) where I = λx.x, the subterm

II (a β-redex) is in head position for both the reduction →β and its extension
→β⊕. So, s →h β I(x⊕ y) and s →

h β⊕ I(x⊕ y). And in the term t = (x⊕ y)(II), the

head position is occupied by x⊕ y, which is a ⊕-redex. Therefore, II is not the
head redex in t, neither for β nor for β⊕. In general, →

h β⊕ =→
h β ∪ →h ⊕.

In contrast, for leftmost-outermost reduction →
loβ⊕, which reduces the lo-

redex, we have →
loβ⊕ �=→loβ ∪ →lo⊕. Consider again the term t = (x⊕ y)(II). Since

x⊕ y is not a β-redex, II is the lo-redex for →β . Instead, II is not the lo-redex
for →β⊕ (here the lo-redex is x⊕ y). So, t →

loβ
(x⊕ y)I but t �→

loβ⊕ (x⊕ y)I.

The least-level factorization for →β!
, →β , and →βv

we prove here is robust
enough to make it ready to be used as a module in a larger proof, where it may
combine with operators and other rules. The key point is to define the least-level
reduction from the very beginning as a reduction firing a redex at minimal level
with respect to a general set of redexes (including β!, β or βv, respectively), so
that it is “ready” to be extended with other reduction rules (see Section 4).

Proofs. All proofs are available in [12], the long version of this paper.

2 Background in Abstract Rewriting

An (abstract) rewriting system, [33, Ch. 1] is a pair (A,−→) consisting of a set
A and a binary relation −→⊆ A×A (called reduction) whose pairs are written
t −→ s and called steps. A −→-sequence from t is a sequence of −→-steps. As usual,
→∗ (resp. →=) denotes the transitive-reflexive (resp. reflexive) closure of →. We
say that u is →-normal (or a →-normal form) if there is no t such that u → t.

In general, a term may or may not reduce to a normal form. If it does, not
all reduction sequences necessarily lead to normal form. A term is weakly or
strongly normalizing, depending on if it may or must reduce to normal form. More
precisely, a term t is strongly →-normalizing if every maximal →-sequence from t
ends in a −→-normal form: any choice of →-steps will eventually lead to a normal
form. A term t is weakly →-normalizing if t −→∗ u for some u →-normal. If t is
weakly but not strongly normalizing, how do we compute a normal form? This
is the problem tackled by normalization: by repeatedly performing only specific
steps, a normal form is eventually reached, provided that t can −→-reduce to any.
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Definition 2 (Normalizing and complete strategy). A reduction →e ⊆→
is a strategy for → if it has the same normal forms as →. A strategy →e for → is:

– complete if t →e ∗ u whenever t −→∗ u with u →-normal;

– normalizing if every weakly −→-normalizing term is strongly →e -normalizing.

Note that if the strategy →e is complete and deterministic (i.e. for every t ∈ A,

t →e s for at most one s ∈ A), then →e is a normalizing strategy for →.

Informally, a strategy for −→ is a way to control the fact that in a term there
are different possible choices of a −→-step. A normalizing strategy for → is a
strategy that is guaranteed to reach a →-normal form, if it exists, from any term.
This provides a useful tool to show that a term is not weakly →-normalizing.

Proving Normalization. Factorization means that any →-sequence from a
term to another can be rearranged by performing a certain kind of steps first. It
provides a simple technique to establish that a strategy is normalizing.

Definition 3 (Factorization). Let (A,−→) be a rewriting system with →=→e
∪ →

i
. The relation → satisfies e-factorization, written Fact(→e ,→

i
), if

Fact(→e ,→
i
) : (→e ∪ →

i
)∗ ⊆ →e

∗ · →
i

∗ (Factorization)

Lemma 4 (Normalization [2]). Let→=→e ∪ →¬e , and→e be a strategy for →.

The strategy →e is complete for → if the following conditions hold:

1. (persistence) if t →¬e t′ then t′ is not −→-normal;

2. ( factorization) t −→∗ u implies t →e ∗ · →¬e
∗ u.

The strategy →e is normalizing for → if it is complete and the following holds:

3. (uniformity) every weakly →e -normalizing term is strongly →e -normalizing.

A sufficient condition for uniformity (and confluence) is the quasi-diamond.

Property 5 (Newman [25]) If a reduction → is quasi-diamond (i.e. s← t→r
implies s = r or s → u ← r for some u), then → is uniform and confluent (i.e.
s ∗← r →∗ t implies s →∗ u ∗← t for some u).

Proving Factorization. Hindley [17] first noted that a local property implies
factorization. Let →=→e ∪ →

i
. We say that →

i
strongly postpones after →e if

SP(→e ,→
i
) : →

i
· →e ⊆ →e

∗ · →
i

= (Strong Postponement)

Lemma 6 (Hindley [17]). SP(→e ,→
i
) implies Fact(→e ,→

i
).



210 C. Faggian and G. Guerrieri

Strong postponement can rarely be used directly, because several interesting
reductions—including β-reduction—do not satisfy it. However, it is at the heart
of Takahashi’s method [32] to prove head factorization of −→β , via the following
immediate property that can also be used to prove other factorizations (see [2]).

Property 7 (Characterization of factorization) We have Fact(→e ,→
i
) if

and only if there is a reduction ◦→
i
such that ◦→

i
∗ =→

i
∗ and SP(→e , ◦→

i
).

The core of Takahashi’s method [32] to prove head factorization in the λ-
calculus is to introduce a relation ⇒

i
, called internal parallel reduction, which

verifies the conditions of Property 7. We will follow a similar path in Section 6.1,
to prove least-level factorization in the bang calculus.

Compound systems: proving factorization in a modular way. In this pa-
per, we will consider compound rewriting systems that are obtained by extending
the λ-calculus with extra rules to model advanced computational features.

In an abstract setting, let us consider a rewrite system (A,→) where →=→ξ

∪ →ρ. Under which condition → admits factorization, assuming that both →ξ

and →ρ do? To deal with this question, a technique for proving factorization for
compound systems in a modular way has been introduced in [3]. The approach can
be seen as an analogous for factorization of the classical technique for confluence
based on Hindley-Rosen lemma [4]: if →ξ,→ρ are e-factorizing reductions, their
union →ξ ∪ →ρ also is, provided that two local conditions of commutation hold.

Lemma 8 (Modular factorization [3]). Let →ξ =→e ξ ∪ →
i ξ

and →ρ =→e ρ

∪ →
i ρ

be e-factorizing relations. Let →e :=→e ξ ∪ →e ρ and →
i
:=→

i ξ
∪ →

i ρ
. The

reduction →ξ ∪ →ρ fulfills factorization Fact(→e ,→
i
) if the following swaps hold:

→
i ξ
· →e ρ ⊆ →e ρ · →∗

ξ and →
i ρ
· →e ξ ⊆ →e ξ · →∗

ρ (Linear Swaps)

The subtlety here is to set→e ξ and→e ρ so that→e =→e ξ∪→e ρ. As already shown

in Example 1, when dealing with normalizing strategies one needs extra care.

3 λ-calculi: CbN, CbV, and bang

We present here a generic syntax for λ-calculi, possibly containing operators. All
the variants of the λ-calculus we shall study use this language. We assume some
familiarity with the λ-calculus, and refer to [4,18] for details.

Given a countable set Var of variables, denoted by x, y, z, . . . , terms and values
(whose sets are denoted by ΛO and Val, respectively) are defined as follows:

t, s, r ::= v | ts | o(t1, . . . , tk) Terms : ΛO v ::= x | λx.t Values : Val

where o ranges over a set O of function symbols called operators, each one with
its own arity k ∈ N. If the operators are o1, . . . ,on, the set of terms is indicated
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as Λo1...on
. When the set O of operators is empty, the calculus is called pure, and

the sets of terms is denoted by Λ; otherwise, the calculus is applied.
Terms are identified up to renaming of bound variables, where abstraction is

the only binder. We denote by t{s/x} the capture-avoiding substitution of s for
the free occurrences of x in t. Contexts (with exactly one hole 〈·〉) are generated
by the grammar below, and c〈t〉 stands for the term obtained from the context c
by replacing the hole with the term t (possibly capturing free variables).

c ::= 〈·〉 | tc | ct | λx.c | o(t1, . . . , c, . . . , tk) Contexts: C

A rule ρ is a binary relation on ΛO; we also call it ρ-rule and denote it by
→ρ, writing t →ρ t′ rather than (t, t′) ∈ ρ. The ρ-reduction −→ρ is the contextual
closure of ρ. Explicitly, t −→ρ t′ holds if t = c〈r〉 and t′ = c〈r′〉 for some context c
with r →ρ r′; the term r is called a ρ-redex. The set of ρ-redexes is denoted by Rρ.

Given a set of rules Rules, the relation → =
⋃

ρ−→ρ (for ρ ∈ Rules) can
equivalently be defined as the contextual closure of → =

⋃
ρ →ρ.

3.1 Call-by-Name and Call-by-Value λ-calculi

Pure CbN and Pure CbV λ-calculi. The pure call-by-name (CbN for short) λ-
calculus [4,18] is (Λ,→β), the set of terms Λ together with the β-reduction →β ,
defined as the contextual closure of the usual β-rule, which we recall in (1) below.

The pure call-by-value (CbV for short) λ-calculus [27] is the set Λ endowed
with the reduction −→βv

, defined as the contextual closure of the βv-rule in (2).

CbN: (λx.t)s →β t{s/x} (1) CbV: (λx.t)v →βv t{v/x} with v∈Val (2)

CbN and CbV λ-calculi. A CbN (resp. CbV ) λ-calculus is the set of terms
endowed with a reduction −→ which extends →β (resp. →βv ).

In particular, the applied setting with operators (when O �= ∅) models in the
λ-calculus richer computational features, allowing o-reductions as the contextual
closure of o-rules of the form o(t1, . . . , tk) →o s.

Example 9 (Non-deterministic λ-calculi). Let O = {⊕} where ⊕ is a binary
operator; let →⊕ be the contextual closure of the (non-deterministic) rule below:

⊕(t1, t2) →⊕ t1 and ⊕ (t1, t2) →⊕ t2.

The non-deterministic CbN λ-calculus Λcbn
⊕ = (Λ⊕,→β⊕) is the set Λ⊕

with the reduction →β⊕ = −→β ∪ →⊕. The non-deterministic CbV λ-calculus
Λcbv
⊕ = (Λ⊕,→βv⊕) is the set Λ⊕ with the reduction →βv⊕ = −→βv

∪ →⊕.

3.2 Bang calculi

The bang calculus [11,15] is a variant of the λ-calculus inspired by linear logic.
An operator ! plays the role of a marker for duplicability and discardability. Here
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we allow also the presence of operators other than !, ranging over a set O. So,
terms and contexts of the bang calculus (denoted by capital letters) are:

T, S,R ::= x | λx.T | TS | !T | o(T1, . . . , Tk) Terms: Λ!O

C ::= 〈·〉 | λx.C | TC | CT | !C | o(T1, . . . ,C, . . . , Tk) Contexts: C!
Terms of the form !T are called boxes and their set is denoted by !Λ!O. When
there are no operators other than ! (i.e. O = ∅), the set of terms and the set of
boxes are denoted by Λ! and !Λ!, respectively. This syntax can be expressed in
the one at the beginning of Section 3, where ! is an unary operator called bang.

The pure bang calculus. The pure bang calculus (Λ!,→β!
) is the set of terms Λ!

endowed with reduction −→β!
, the closure under contexts in C! of the β!-rule:

(λx.T ) !S →β!
T{S/x} (3)

Intuitively, in the bang calculus the bang-operator ! marks the only terms
that can be erased and duplicated. Indeed, a β-like redex (λx.T )S can be fired
by →β!

only when its argument S is a box, i.e. S = !R: if it is so, the content R
of the box S (and not S itself) replaces any free occurrence of x in T .3

A proof of confluence of β!-reduction −→β!
is in [15].

Notation 10 We use the following notations to denote some notable terms.

ι := λx.x δ := λx.xx I := λx.!x Δ := λx.x !x.

Remark 11 (Notable terms). The term I = λx.!x plays the role of the identity
in the bang calculus: I !T −→β!

!(x{T/x}) = !T for any term T . Instead, the term
ι = λx.x, when applied to a box !T , opens the box, i.e. returns its content T :
ι !T −→β!

x{T/x} = T . Finally, Δ !Δ −→β!
Δ !Δ −→β!

. . . is a diverging term.

A bang calculus. A bang calculus (Λ!O,−→) is the set Λ!O of terms endowed with
a reduction −→ which extends −→β!

. In this paper we shall consider calculi where
−→ contains −→β!

and o-reductions −→o (o ∈ O) defined from o-rules of the form
o(T1, . . . , Tk) →o S, and possibly other rules. So, →=

⋃
ρ−→ρ (for ρ ∈ Rules),

with Rules ⊇ {!β,o | o ∈ O}. We set →O =
⋃

o∈O→o.

3.3 CbN and CbV translations into the bang calculus

Our motivation to study the bang calculus is to have a general framework
where both CbN [4] and CbV [27] λ-calculi can be embedded, via two distinct
translations. Here we show how these translations work. We extend the simulation
results in [15,30,7] for the pure case to the case with operators (Proposition 13).

Following [7], the CbV translation defined here differs from [15,30] in the
application case. Section 5 will show why this optimization is crucial.

CbN and CbV translations are two maps (·)n : ΛO −→ Λ!O and (·)v : ΛO −→ Λ!O,
respectively, translating terms of the λ-calculus into terms of the bang calculus:

3 Syntax and reduction rule of the bang calculus follow [15], which is slightly different
from [11]. Unlike [15] (but akin to [30,16]), here we do not use ι (aka der) as a
primitive, since ι and its associated rule �→d can be simulated, see Remark 11 and (4).
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xn = x (λx .t)n = λx .tn (o(t1, . . . , tk))
n = o(tn1, . . . , t

n
k) (ts)n = tn !sn ;

xv = !x (λx .t)v = !(λx.tv) (o(t1, . . . , tk))
v = o(tv1, . . . , t

v
k) (ts)v =

{
T sv if tv = !T

(ι tv)sv otherwise.

Example 12. Consider the λ-term ω := δδ: then, δn = Δ, δv = !Δ and ωn =
Δ !Δ = ωv (δ and Δ are defined in Notation 10). The λ-term ω is diverging in
CbN and CbV λ-calculi, and so is ωn = ωv in the bang calculus, see Remark 11.

For any term t ∈ ΛO, tn and tv are just different decorations of t by means of
the bang-operator ! (recall that ι = λx.x). The translation (·)n puts the argument
of any application into a box: in CbN any term is duplicable or discardable. On
the other hand, only values (i.e. abstractions and variables) are translated by
(·)v into boxes, as they are the only terms duplicable or discardable in CbV.

As in [15,30], we prove that the CbN translation (·)n (resp. CbV translation
(·)v) from the pure CbN (resp. CbV) λ-calculus into the bang calculus is sound
and complete: it maps β-reductions (resp. βv-reductions) of the λ-calculus into β!-
reductions of the bang calculus, and conversely β!-reductions—when restricted to
the image of the translation— into β-reductions (resp. βv-reductions). The same
holds if we consider any o-reduction for operators, where we assume that the o-rule
commutes with the translations: if o(t1, . . . , tk) →o s then o(tn1, . . . , t

n
k) →o sn,

and if o(tn1, . . . , t
n
k) →o S then o(t1, . . . , tk) →o s with sn = S; similarly for (·)v.

In the simulation, −→d denotes the contextual closure of the rule:

ι !T →d T (this is nothing but (λx.x)!T →β!
T ) (4)

Clearly, −→d⊆−→β!
(Remark 11). We write T �d S if T −→∗

d S and S is d-normal.

Proposition 13 (Simulation of CbN and CbV). Let t ∈ ΛO and o ∈ O.

1. CbN soundness: If t −→β t′ then tn −→β!
t′
n
. If t −→o t′ then tn −→o t′

n
.

CbN completeness: If tn −→β!
S then S = t′

n
and t −→β t′, for some t′ ∈ ΛO.

If tn −→o S then S = t′
n
and t −→o t′, for some t′ ∈ ΛO.

2. CbV soundness: If t −→βv
t′ then tv −→β!

−→=
d t′

v
with t′

v
d-normal. If t −→o t′

then tv −→o−→=
d t′

v
with t′

v
d-normal.

CbV completeness: If tv −→β!
�d S then tv −→β!

−→=
d S with S = t′

v
and

t −→βv t′, for some t′ ∈ ΛO. If tv −→o�d S then tv −→o−→=
d S with S = t′

v
and

t −→o t′, for some t′ ∈ ΛO.

Example 14. Let t = (λz.z)x y and t′= xy. So t −→β t′ with tn= (λz.z)!x !y −→β!

x !y = t′
n
; and t −→βv

t′ with tv = (ι((λz.!z)!x))!y −→β!
(ι !x)!y −→d x !y = t′

v
.

4 The least-level strategy

The bang calculus Λ! has a natural normalizing strategy, derived from linear logic
[8], namely the least-level reduction. It reduces only redexes at least level, where
the level of a redex R in a term T is the number of bangs ! in which R is nested.
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Least-level reduction is easily extended to a general bang calculus (Λ!O,−→).
The level of a redex R is then the number of bangs ! and operators o in which R
is nested; intuitively, least-level reduction fires a redex which is minimally nested.

Below, we formalize the reduction in a way that is independent of the specific
shape of the redexes, and even of specific definition of level one chooses. The
interest of least-level reduction is in the properties it satisfies. All our developments
will rely on such properties, rather than the specific definition of least level.

In this section, →=
⋃

ρ−→ρ for ρ ∈ Rules (for a generic set of rules Rules). We
write R =

⋃
ρRρ (again, with ρ ∈ Rules) for the set of all redexes.

4.1 Least-level reduction in bang calculi

The level of a redex occurrence R in a term T is a measure of its depth. Formally,
we indicate the occurrence of a subterm R in T with the context C such that
C〈R〉 = T . Its level is then the level 
(C) ∈ N of the hole in C. The definition of
level for contexts in a bang calculus Λ!O is formalized as follows.


(〈·〉) = 0 
(λx.C) = 
(C) 
(CT ) = 
(C) 
(TC) = 
(C)


(!C) = 
(C) + 1 
(o(. . . ,C, . . . )) = 
(C) + 1
(5)

Note that the level increases by 1 in the scope of !, and of any operator o ∈ O.
A reduction step T −→ρ S is at level k if it fires a ρ-redex at level k ∈ N; it is

least-level if it reduces a redex whose level is minimal.
The least level 

(T ) of a term T expresses the minimal level of any redex

occurrences in T ; if no redex is in T , we set 

(T ) =∞. Formally:

Definition 15 (Least-level reduction). Let →=
⋃

ρ→ρ (for ρ ∈ Rules) and
R =

⋃
ρRρ the set of redexes. Given a function 
(·) from contexts to N:

– The least level of a term T is defined as4



(T ) := inf{
(C) | T = C〈R〉 for some R ∈ R} ∈ (N ∪ {∞}). (6)

– A ρ-reduction step T −→ρ S is:
1. at level k, noted T −→ρ:k S, if T = C〈R〉, S = C〈R′〉, R →ρ R′, 
(C) = k;
2. least-level, noted T →

l ρ S, if T −→ρ:k S and k = 

(T );

3. internal, noted T →¬l ρ S, if T −→ρ:k S and k > 

(T ).

– Least-level reduction is →
l

=
⋃

ρ→l ρ (for ρ ∈ Rules).

– Internal reduction is →¬l
=

⋃
ρ →¬l ρ (for ρ ∈ Rules).

Note that → = →
l
∪ →¬l

and that our definitions solve the issue of Example 1.

Indeed, the definition of least level 

(T ) of a term, and hence the definition of
→
l ρ, depend on the whole set R =

⋃
ρRρ of redexes associated with →.5

4 Recall that inf ∅ = ∞, when ∅ is seen as the empty subset of N with the usual order.
5 We should write ��R(T ), lR and →lRρ, but we avoid it for the sake of readability.
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Normal Forms. It is immediate that →
l

�→ is a strategy for →. Indeed, →
l

and

→ have the same normal forms because →
l
⊆→ and if a term has a →-redex, it

has a redex at least-level, i.e. it has a →
l
-redex.

Remark 16 (Least level of normal forms). Note that 

(T ) =∞ if and only if T
is →-normal, because 
(C) ∈ N for all contexts C.

A good least-level reduction. The beauty of least-level reduction for the bang
calculus, is that it satisfies some elegant properties, which allow for neat proofs,
in particular monotonicity and internal invariance (in Definition 17). The devel-
opments in the rest of the paper rely on such properties, and in fact will apply
to any calculus whose reduction → has the properties described below.

Definition 17 (Good least-level). A reduction → has a good least-level if:

1. (monotonicity) T → S implies 

(T ) ≤ 

(S); and
2. ( internal invariance) T →¬l

S implies 

(T ) = 

(S).

Point 1 states that no step can decrease the least level of a term. Point 2 says
that internal steps cannot change the least level of a term. Therefore, only least-
level steps may increase the least level. Together, they imply persistence: only
least-level steps can approach normal forms.

Property 18 (Persistence) If → has a good least-level, then T →¬l
S implies

that S is not →-normal.

Reduction →β!
in the pure bang calculus (Λ!,→β!

) has a good least-level.
More in general, the same holds when extending the reduction with operators.

Proposition 19 (Good least-level of bang calculi). Given Λ!O, let →=
→β!

∪ →O, where each o ∈ O has a redex of shape o(P1, . . . , Pk). The reduction
→ has a good least-level.

4.2 Least-level for a bang calculus: examples.

Let us see more closely the least-level reduction for a bang calculus (Λ!O,−→).
For concreteness, we consider Rules = {β!,o | o ∈ O}, hence the set of redexes is
R = Rβ!

∪RO, where RO is the set of terms o(T1, . . . , Tk) for any o ∈ O.
We observe that the least level 

(T ) of a term T ∈ Λ!O can be easily defined

in a direct way, by induction on T :

– 

(T ) = 0 if T ∈ R = Rβ!
∪RO,

– otherwise, 

(x) =∞ and



(λx.T ) = 

(T ) 

(!T ) = 

(T ) + 1 

(TS) = min{

(T ), 

(S)}.

Example 20 (Least level of a term). Let R ∈ Rβ!
. If T0 := R !R, then 

(T0) = 0.

If T1 := x !R then 

(T1) = 1. If T2 := o(x, y)!R then 

(T2) = 0, as o(x, y) ∈ RO.
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Intuitively, least-level reduction fires a redex that is minimally nested, where
a redex is any subterm whose form is in R = Rβ!

∪ RO. Note that least-level
reduction can choose to fire one among possibly several redexes at minimal level.

Example 21. Let us revisit Example 20 with R = ι !z ∈ Rβ!
(so R →β!

z, see
Remark 11). Then T1 := x !R →

l β!
x !z but T0 := R !R �→

l β!
R !z and T2 :=

o(x, y) !R �→
l β!

o(x, y)!z. Also, o(x,R) �→
l β!

o(x, z) although o(x,R)→β!
o(x, z).

Let S = ι !(z !z) (so S →β!
z !z). In (λz.S)!S, two least-level steps are possible

(the fired β!-redex is underlined): (λz.S)!S →
l β!

ι !(S !S), and (λz.S)!S →
l β!

(λz.z !z)!S. But (λz.S)!S �→
l β!

(λz.S)!(z !z) although (λz.S)!S →β!
(λz.S)!(z !z).

4.3 Least-level for CbN and CbV λ-calculi

The definition of least-level reduction in Section 4.1 is independent of the specific
notion of level chosen, and of the specific calculus. The idea is that the reduction
strategy persistently fires a redex at minimal level, once such a notion is set.

Least-level reduction can indeed be defined also for the CbN and CbV λ-
calculi, given an opportune definition of level. In CbN, we count the number of
nested arguments and operators containing the redex occurrence. In CbV, we
count the number of nested operators and unapplied abstractions containing the
redex occurrence, where an abstraction is unapplied if it is not the right-hand
side of an application. Formally, a redex occurrence is identified by a context (as
explained in Section 4.1), and we define the level 
CbN(c) ∈ N and 
CbV(c) ∈ N
of a context c in CbN and CbV λ-calculi, respectively, as follows.

�CbN(〈·〉) = 0 �CbV(〈·〉) = 0

�CbN(λx.c) = �CbN(c) �CbV(λx.c) = �CbV(c) + 1

�CbN(ct) = �CbN(c) �CbV(ct) =

{
�CbV(c′) if c = λx.c′

�CbV(c) otherwise

�CbN(tc) = �CbN(c) + 1 �CbV(tc) = �CbV(c)

�CbN(o(. . . , c, . . . )) = �CbN(c) + 1 �CbV(o(. . . , c, . . . )) = �CbV(c) + 1.

In both CbN and CbV λ-calculi, the least level of a term (denoted by 

CbN(·)
and 

CbV(·)) and least-level and internal reductions are given by Definition 15
(replace 
(·) with 
CbN(·) for CbN, and with 
CbV(·) for CbV).

In Section 5 we will see that the definitions of CbN and CbV least level are not
arbitrary, but induced by the CbN and CbV translations defined in Section 3.3.

5 Embedding of CbN and CbV by level

Here we refine the analysis of the CbN and CbV translations given in Section 3.3,
by showing two new results: translations preserve normal forms (Proposition 22)
and least-level (Proposition 25), back and forth. This way, to obtain least-level
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factorization or least-level normalization results, it suffices to prove them in
the bang calculus. The translation transfers the results into the CbN and CbV
λ-calculi (Theorem 26). We use here the expression “translate” in a strong sense:
the results for CbN and CbV λ-calculi are obtained from the corresponding
results in the bang calculus almost for free, just via CbN and CbV translations.

Preservation of normal forms. The targets of the CbN translation (·)n and CbV
translation (·)v into the bang calculus can be characterized syntactically. A fine
analysis of these fragments of the bang calculus (see [12] for details) proves that
both CbN and CbV translations preserve normal forms, back and forth.

Proposition 22 (Preservation of normal forms). Let t, s ∈ ΛO and o ∈ O.

1. CbN: t is β-normal iff tn is β!-normal; t is o-normal iff tn is o-normal.
2. CbV: t is βv-normal iff tv is β!-normal; t is o-normal iff tv is o-normal.

By Remark 16, Proposition 22 can be seen as the fact that CbN and CbV
translations preserve the least-level of a term, back and forth, when the least-level
is infinite. Actually, this holds more in general for any value of the least-level.

Preservation of levels. We aim to show that least-level steps in CbN and CbV
λ-calculi correspond to least-level steps in the bang calculus—back and forth—via
CbN and CbV translations, respectively (Proposition 25). This result is subtle,
one of the main technical contributions of this paper.

First, we extend the definition of translations to contexts. The CbN and
CbV translations for contexts are two functions (·)n : C −→ C! and (·)v : C −→ C!,
respectively, mapping contexts of the λ-calculus into contexts of the bang calculus:

〈·〉n = 〈·〉 〈·〉v = 〈·〉
(λx.c)n = λx.cn (λx.c)v = !(λx.cv)

(o(t1, ..., c, ..., tk))
n = o(tn1, ..., c

n, ..., tnk) (o(t1, ..., c, ..., tk))
v = o(tv1, ..., c

v, ..., tvk)

(ct)n = cn !(tn) (ct)v =

{
C tv if cv = !C

(ι cv)tv otherwise

(tc)n = tn !(cn) ; (tc)v =

{
T cv if tv = !T

(ι tv)cv otherwise.

Note that CbN (resp. CbV) level of a context defined in Section 4.3 increases
by 1 whenever the CbN (resp. CbV) translation for contexts adds a !. Thus,
CbN and CbV translations preserve, back and forth, the level of a redex and the
least-level of a term. Said differently, the level for CbN and CbV is defined in
Section 4.3 so as to enable the preservation of level via CbN and CbV translations.

Lemma 23 (Preservation of level via CbN translation).

1. For contexts: For any context c ∈ C, one has 
CbN(c) = 
(cn).
2. For reduction: For any term t ∈ ΛO: t −→β:k s if and only if tn −→β!:k sn; and

t −→o:k s if and only if tn −→o:k sn, for any o ∈ O.
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3. For least-level of a term: For any term t ∈ ΛO, one has 

CbN(t) = 

(tn).

Lemma 24 (Preservation of level via CbV translation).

1. For contexts: For any context c ∈ C, one has 
CbV(c) = 
(cv).
2. For reduction: For any term t ∈ ΛO: t −→βv :k s if and only if tv −→β!:k−→=

d:k sv;
and t −→o:k s if and only if tv −→o:k−→=

d:k sv, for any o ∈ O.
3. For least-level of a term: For any term t ∈ ΛO, one has 

CbV(t) = 

(tv).

From the two lemmas above it follows that CbN and CbV translations preserve
least-level and internal reductions, back and forth.

Proposition 25 (Preservation of least-level and internal reductions).
Let t ∈ ΛO and o ∈ O.

1. CbN least-level: t →
l β s iff tn →

l β!
sn; and t →

l o s iff tn →
l o sn.

2. CbN internal: t →¬l β s iff tn →¬l β!
sn; and t →¬l o s iff tn →¬l o sn.

3. CbV least-level: t →
l βv

s iff tv →
l β!

→
l d

= sv; and t →
l o s iff tv →

l o→l d
= sv.

4. CbV internal: t →
l βv s iff tv →¬l β!

→¬l d
= sv; and t →

l o s iff tv →¬l o→¬l d
= sv.

As a consequence, least-level reduction induces factorization in CbN and CbV
λ-calculi as soon as it does in the bang calculus. And, by Proposition 22, it is a
normalizing strategy in CbN and CbV as soon as it is so in the bang calculus.

Theorem 26 (Factorization and normalization by translation). Let
Λcbn
O = (ΛO,→β ∪ →O) and Λcbv

O = (ΛO, →βv ∪ →O).

1. If Λ!O admits least-level factorization Fact(→
l
, →¬l

), then so do Λcbn
O and Λcbv

O .

2. If Λ!O admits least-level normalization, then so do Λcbn
O and Λcbv

O .

A similar result will hold also when extending the pure calculi with a rule →ρ

other than →o, as long as the translation preserves ρ-redexes, back and forth.

Remark 27 (Preservation of least-level and of normal forms). Preservation of
normal form and least-level is delicate. For instance, it does not hold with the
definition CbV translation (·)v in [15,30]. There, the translation t = rs ∈ Λ would
be tv = (ι !(rv))sv and then Proposition 22 and Proposition 25 would not hold:
ι !(rv) is a β!-redex in tv (see Remark 11) and hence tv would not be normal even
though so is t, and 

(tv) = 0 even though 

CbV(t) �= 0. This is why we defined
two distinct case when defining (·)v for applications, akin to Bucciarelli et al. [7].

6 Least-level factorization via bang calculus

We have shown that least-level factorization in a bang calculus Λ!O implies least-
level factorization in the corresponding CbN and CbV calculi, via forth-and-back
translation. The central question now is how to prove least-level factorization for
a bang calculus: this section is devoted to that, in the pure and applied cases.
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Overview. Let us overview our approach by considering O = {o}, and →=
→β!

∪ →o. Since by definition →
l

=→
l β!

∪ →
l o (and →¬l

=→¬l β!
∪ →¬l o), Lemma 8

states that we can decompose least-level factorization of → in three modules:

1. prove least-level factorization of →β!
, i.e. →∗

β!
⊆ →

l β!
∗ · →¬l β!

;

2. prove least-level factorization of →o, i.e. →o
∗ ⊆ →

l o
∗ · →¬l o;

3. prove the two linear swaps of Lemma 8.

Note that, for each of →
l β!

and →
l o, the least level is defined with respect to the

set of all redexes R = Rβ!
∪ Ro, so as to have →

l
=→

l β!
∪ →

l o. This approach

solves the issue we mentioned in Example 1.
Clearly, Points 2 and 3 depend on the specific rule →o. However, the beauty

of a modular approach is that Point 1 can be established in general: we do not
need to know →o, only the shape of its redexes given by Ro. In Section 6.1 we
provide a general result of least-level factorization for →β!

(Theorem 28). In fact,
we shall show a bit more: the way of decomposing the study of factorization
that we have sketched, can be applied to study least-level factorization of any
reduction →=→β!

∪ →ρ, as long as → has a good least-level.
Once (1) is established (once and for all), to prove factorization of a reduction

→β!
∪ →o we are only left with (2) and (3). In Section 6.3 we show that the proof

of the two linear swaps can be reduced to a single, simple test, involving only
the →o step (Proposition 34). In Section 7, we will illustrate how all elements
play together on a concrete case, applying them to non-deterministic λ-calculi.

6.1 Factorization of →β! in a bang calculus

We show that →β!
factorizes via least-level reduction (Theorem 28). This holds

for a definition of →
l β!

(as in Section 4) where the set of redexes R contains

Rβ!
∪ RO—this generalization has essentially no cost, and allows us to use

Theorem 28 as a module in the factorization of larger reductions containing →β!
.

We prove factorization via Takahashi’s parallel reduction method [32]. We
define a reflexive reduction⇒¬lβ!

(called parallel internal β!-reduction) which fulfills

the conditions of Property 7, i.e. ⇒¬lβ!
∗ =→¬l β!

∗ and ⇒¬lβ!
·→
l β!

⊆→
l β!

∗ ·⇒¬lβ!
.

The tricky point is to prove that ⇒¬lβ!
·→
l β!

⊆→
l β!

∗ ·⇒¬lβ!
We adapt the proof

technique in [2]. All details are in [12]. Here we just give the definition of ⇒¬lβ!
.

We first introduce ⇒β!:n with n ∈ N ∪ {∞} (the parallel version of −→β!:n),
which fires simultaneously a number of β!-redexes at level at least n ∈ N, and
⇒β!:∞ does not reduce any β!-redex: T ⇒β!:∞ S implies T = S.

x ⇒β!:∞ x
T ⇒β!:n T ′

λx.T ⇒β!:n λx.T ′
T ⇒β!:m T ′ S ⇒β!:n S′

TS ⇒β!:min{m,n} T ′S′
T ⇒β!:n T ′

!T ⇒β!:n+1 !T ′

T ⇒β!:n T ′ S ⇒β!:m S′

(λx.T )!S ⇒β!:0 T ′{S′/x}
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The parallel internal β!-reduction ⇒¬lβ!
is the parallel version of →¬l β!

, which

fires simultaneously a number of β!-redexes that are not at minimal level. Formally,

T ⇒¬lβ! S if T ⇒β!:n S with n = ∞ or n > ��(T ).

Theorem 28 (Least-level factorization of →β!
). Let →ρ be the contextual

closure of a rule →ρ, and assume that →=→β!
∪ →ρ has good least-level in Λ!O.

Then, T −→∗
β!

S implies T →
l β!

∗ · →¬l β!
∗ S.

In particular, as −→β!
has a good least-level (Proposition 19) in Λ!, we have:

Corollary 29 (Least-level factorization in the pure bang calculus). In
the pure bang calculus (Λ!,−→β!

), if T −→∗
β!

S then T →
l β!

∗ · →¬l β!
∗ S.

Surface Digression. According to Definition 15, β!-reduction −→β!:0 at level 0
(called surface reduction in Simpson [31]) can only fire redexes at level 0, i.e.,
redexes that are not inside boxes or other operators. It can be equivalently defined
as the closure of →β!

under contexts S defined by S ::= 〈·〉 | λx.S | ST | TS.
Since −→β!:0⊆→l β!

, from least-level factorization (Corollary 29) and monotonicity

(Proposition 19), a new proof of a result already proven by Simpson [31] follows.

Corollary 30 (Surface factorization in the pure bang calculus). In the
pure bang calculus (Λ!,−→β!

), if T −→∗
β!

S then T −→∗
β!:0

·−→∗
β!:k

S with k > 0.

6.2 Pure calculi and least-level normalization

Least-level factorization of →β!
implies in particular least-level factorization for

→β and →βv
. As a consequence, least-level reduction is a normalizing strategy

for all three pure calculi: the bang calculus, the CbN, and the CbV λ-calculi.

The pure bang calculus. The least-level reduction →
l β!

is a normalizing strategy

for →β!
. Indeed, it satisfies all ingredients in Lemma 4. Since we have least-level

factorization (Corollary 29), same normal forms, and persistence (Proposition 19),
→
l β!

is a complete strategy for→β!
: if T →∗

β!
S and S is β!-normal, then T →

l β!
∗ S.

We already observed (Example 21) that the least-level reduction →
l β!

is

non-deterministic, because several redexes at least level may be available. Such
non-determinism is however harmless and inessential, because →

l β!
is uniform.

Lemma 31 (Quasi-Diamond). In the pure bang calculus (Λ!,−→β!
), the re-

duction →
l β!

is quasi-diamond (Property 5), and therefore uniform.

Putting all the ingredients together, we have (by Lemma 4):

Theorem 32 (Least-level normalization). In the pure bang calculus (Λ!,
−→β!

), the least-level reduction →
l β!

is a normalizing strategy for →β!
.

Theorem 32 means not only that if T is weakly β!-normalizing then T can
reach its normal form by just performing least-level steps, but also that performing
whatever least-level steps eventually leads to the normal form, if any.
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Pure CbV and CbN λ-calculi. By forth-and-back translation (Theorem 26) the
least-level factorization and normalization results for the pure bang calculus
immediately transfers to the (pure) CbN and CbV settings.

Theorem 33 (CbV and CbN least-level normalization).

– CbN: In (Λ,→β), →l β is a normalizing strategy for →β.

– CbV: In (Λ,→βv ), →l βv is a normalizing strategy for →βv .

6.3 Least-level Factorization, Modularly

Least-level factorization of →β!
(Theorem 28) can be used to prove factorization

for a more complex calculus. Indeed, a simple and modular test establishes
least-level factorization of a reduction →β!

∪ →ρ (→ρ is a reduction added to
→β!

), by adapting a similar result in [3]. The test relies on the fact that we have
already proved Theorem 28, and it simplifies Lemma 8: the proof of the two
linear swaps of Lemma 8 is reduced to a single, easier check, which only involves
the rule →ρ. As usual, the least level in →

l β!
and →

l ρ is defined with respect to

the set R = Rβ!
∪Rρ of redexes. An example of the use of this test is in Section 7.

Proposition 34 (Modular test for least-level factorization). Let →ρ be
the contextual closure of a rule →ρ, and assume that →=→β!

∪ →ρ has a good
least-level in Λ!O. Then → factorizes via →

l
=→

l β!
∪ →

l ρ if the following hold:

1. ( least-level factorization of →ρ) →∗
ρ ⊆ →

l ρ
∗ · →¬l ρ

∗;

2. ( substitutivity of →ρ) R →ρ R′ implies R{T/x} →ρ R′{T/x};
3. ( root linear swap) →¬l β!

· →ρ ⊆ →ρ · →∗
β!
.

7 Case study: non-deterministic λ-calculi

To show how to use our framework, we apply the tools we have developed on our
running example (see Examples 1 and 9). We extend the bang calculus with a non-
deterministic binary operator ⊕, that is, (Λ!⊕,→β!⊕) where →β!⊕ =→β!

∪ →⊕,
and →⊕ is the contextual closure of the (non-deterministic) rules:

⊕(T, S) →⊕ T ⊕(T, S) →⊕ S.

First step: non-deterministic bang calculus. We analyze Λ!⊕. We use our modular
test to prove least-level factorization for Λ!⊕: if T →∗

β!⊕ U then T →
l β!⊕

∗ · →¬l β!⊕
∗

U . By Lemma 4, an immediate consequence of the factorization result is that the
least-level strategy is complete: if U is normal, T →∗

β!⊕ U implies T →
l β⊕

∗ U .

Second step: CbN and CbV non-deterministic calculi. By translation, we have for
free, that the analogous results hold in Λcbn

⊕ and Λcbv
⊕ , as defined in Example 9.

So, least-level factorization holds for both calculi, and moreover

– CbN completeness : in Λcbn
⊕ , if u is normal, t →∗

β⊕ u implies t →
l β⊕

∗ u.

– CbV completeness : in Λcbv
⊕ , if u is normal, t →∗

βv⊕ u implies t →
l βv⊕

∗ u.
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What do we really need to prove? The only result we need to prove is least-
level factorization of →β!⊕. Completeness then follows by Lemma 4 and the
translations will automatically take care of transferring the results.

To prove factorization of →β!⊕, most of the work is done, since least-level
factorization of →β!

is already established; we then use our test (Proposition 34)
to extend →β!

with →⊕. The only ingredients we need are substitutivity of →⊕
(which is an obvious property), and the following easy lemma.

Lemma 35 (Roots). Let ρ ∈ {β!,⊕}. If T →¬l ρ R →⊕ S then T →⊕ · →=
ρ S.

Theorem 36 (Least-level factorization in non-deterministic calculi).

1. In (Λ!⊕,−→), Fact(→
l
, →¬l

) holds for →=→⊕ ∪ →β!
.

2. Least-level factorization holds in (Λcbn
⊕ ,→⊕ ∪ →β), and in (Λcbv

⊕ ,→⊕ ∪ →βv ).

Proof. 1. It is enough to verify the hypotheses of Proposition 34, via Lemma 35.
2. It follows from Theorem 26 and Theorem 36.1. ��

Completeness is the best that can be achieved in these calculi, because of the
true non-determinism of →⊕ and hence of least-level reduction and of any other
complete strategy for −→. For instance, in Λcbn

⊕ there is no normalizing strategy
for ⊕(x, δδ) in the sense of Definition 2, since x ←

l ⊕ ⊕(x, δδ)→
l ⊕ δδ →

l β . . . .

8 Conclusions and Related Work

Combining translations (Theorem 26), least-level factorization for →β!
(Theo-

rem 28), and modularity (Proposition 34), gives us a powerful method to analyze
factorization in various λ-calculi that extend the pure CbN and CbV calculi. The
main novelty is transferring the results from a calculus to another via translations.

Related Work. Many calculi inspired by linear logic subsume CbN and CbV, such
as [5,6,29,24] (other than the ones already cited). We chose the bang calculus for
its simplicity, which eases the analysis of the CbN and CbV translations.

To study CbN and CbV in a uniform way, an approach orthogonal to ours
is given by Ronchi della Rocca and Paolini’s parametric λ-calculus [28]. It is a
meta-calculus, where the reduction rule is parametric with respect to a subset
of terms (called values) with suitable properties. Different choices for the set
of values define different calculi—that is, different reductions. This allows for a
uniform presentation of proof arguments, such as the proof of standardization,
which is actually a meta-proof that can be instantiated in both CbN and CbV.

Least-level reduction is studied for calculi based on linear-logic in [34,1] and
for linear logic proof-nets in [8,26]. It is studied for pure CbN λ-calculus in [2].

Acknowledgments. The authors thank Beniamino Accattoli for insightful com-
ments and discussions. This work was partially supported by EPSRC Project
EP/R029121/1 Typed Lambda-Calculi with Sharing and Unsharing.



Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 223

References

1. Accattoli, B.: An Abstract Factorization Theorem for Explicit Substitutions. In:
23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 15, pp. 6–21. Schloss
Dagstuhl (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.6

2. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essentially.
In: Programming Languages and Systems - 17th Asian Symposium, APLAS 2019.
Lecture Notes in Computer Science, vol. 11893, pp. 159–180. Springer (2019).
https://doi.org/10.1007/978-3-030-34175-6 9

3. Accattoli, B., Faggian, C., Guerrieri, G.: Factorize factorization. In: 29th EACSL
Annual Conference on Computer Science Logic, CSL 2021. LIPIcs, vol. 183, pp.
6:1–6:25. Schloss-Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.6

4. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Studies in
Logic and the Foundations of Mathematics, vol. 103. North Holland (1984)

5. Benton, P.N., Bierman, G.M., de Paiva, V., Hyland, M.: A term calculus for
intuitionistic linear logic. In: International Conference on Typed Lambda Calculi
and Applications, TLCA ’93. Lecture Notes in Computer Science, vol. 664, pp.
75–90. Springer (1993). https://doi.org/10.1007/BFb0037099

6. Benton, P.N., Wadler, P.: Linear logic, monads and the lambda calcu-
lus. In: Proceedings, 11th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 1996. pp. 420–431. IEEE Computer Society (1996).
https://doi.org/10.1109/LICS.1996.561458

7. Bucciarelli, A., Kesner, D., Rı́os, A., Viso, A.: The bang calculus revisited. In:
Functional and Logic Programming - 15th International Symposium, FLOPS
2020. Lecture Notes in Computer Science, vol. 12073, pp. 13–32. Springer (2020).
https://doi.org/10.1007/978-3-030-59025-3 2

8. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

9. Chouquet, J., Tasson, C.: Taylor expansion for Call-By-Push-Value. In: 28th EACSL
Annual Conference on Computer Science Logic (CSL 2020). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 152, pp. 16:1–16:16. Schloss Dagstuhl
(2020). https://doi.org/10.4230/LIPIcs.CSL.2020.16

10. Ehrhard, T.: Call-by-push-value from a linear logic point of view. In: Program-
ming Languages and Systems - 25th European Symposium on Programming
(ESOP 2016). Lecture Notes in Computer Science, vol. 9632, pp. 202–228 (2016).
https://doi.org/10.1007/978-3-662-49498-1 9

11. Ehrhard, T., Guerrieri, G.: The bang calculus: an untyped lambda-calculus gener-
alizing call-by-name and call-by-value. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2016).
pp. 174–187. ACM (2016). https://doi.org/10.1145/2967973.2968608

12. Faggian, C., Guerrieri, G.: Factorization in call-by-name and call-by-value calculi
via linear logic (long version). CoRR abs/2101.08364 (2021), https://arxiv.org/
abs/2101.08364

13. Faggian, C., Ronchi Della Rocca, S.: Lambda calculus and probabilistic computation.
In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019.
pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785699

14. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.4230/LIPIcs.CSL.2021.6
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1145/2967973.2968608
https://arxiv.org/abs/2101.08364
https://arxiv.org/abs/2101.08364
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1016/0304-3975(87)90045-4


224 C. Faggian and G. Guerrieri

15. Guerrieri, G., Manzonetto, G.: The bang calculus and the two Girard’s translations.
In: Proceedings Joint International Workshop on Linearity & Trends in Linear
Logic and Applications (Linearity-TLLA 2018). EPTCS, vol. 292, pp. 15–30 (2019).
https://doi.org/10.4204/EPTCS.292.2

16. Guerrieri, G., Olimpieri, F.: Categorifying non-idempotent intersection
types. In: 29th EACSL Annual Conference on Computer Science Logic,
CSL 2021. LIPIcs, vol. 183, pp. 25:1–25:24. Schloss Dagstuhl (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.25

17. Hindley, J.R.: The Church-Rosser Property and a Result in Combinatory Logic.
Ph.D. thesis, University of Newcastle-upon-Tyne (1964)

18. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and Lambda-Calculus.
Cambridge University Press (1986)

19. Hirokawa, N., Middeldorp, A., Moser, G.: Leftmost Outermost Revisited. In: 26th
International Conference on Rewriting Techniques and Applications (RTA 2015).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 36, pp. 209–222.
Schloss Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.209

20. Levy, P.B.: Call-by-push-value: A subsuming paradigm. In: Typed Lambda Cal-
culi and Applications, 4th International Conference (TLCA’99). Lecture Notes in
Computer Science, vol. 1581, pp. 228–242 (1999). https://doi.org/10.1007/3-540-
48959-2 17

21. Levy, P.B.: Call-by-push-value: Decomposing call-by-value and call-by-name. High.
Order Symb. Comput. 19(4), 377–414 (2006). https://doi.org/10.1007/s10990-006-
0480-6

22. de’ Liguoro, U.: Non-deterministic untyped λ-calculus. A study about explicit non
determinism in higher-order functional calculi. Ph.D. thesis, Università di Roma
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Abstract. We introduce a generalization of Girard et al.’s BLL called
GBLL (and its affine variant GBAL). It is designed to capture the core
mechanism of dependency in BLL, while it is also able to separate com-
plexity aspects of BLL. The main feature of GBLL is to adopt a multi-
object pseudo-semiring as a grading system of the !-modality. We analyze
the complexity of cut-elimination in GBLL, and give a translation from
BLL with constraints to GBAL with positivity axiom. We then introduce
indexed linear exponential comonads (ILEC for short) as a categorical
structure for interpreting the !-modality of GBLL. We give an elemen-
tary example of ILEC using folding product, and a technique to modify
ILECs with symmetric monoidal comonads. We then consider a seman-
tics of BLL using the folding product on the category of assemblies of
a BCI-algebra, and relate the semantics with the realizability category
studied by Hofmann, Scott and Dal Lago.

Keywords: Linear Logic · Categorical Semantics · Linear Exponential
Comonad · Graded Comonad

1 Introduction

Girard’s linear logic is a refinement of propositional logic by restricting weakening
and contraction in proofs [15]. Linear logic also has an of-course modality !, which
restores these structural rules to formulas of the form !A.

Later, Girard et al. extended the !-modality with quantitative information so
that usage of !-modal formulas in proofs can be quantitatively controlled [16].
This extension, called bounded linear logic (BLL for short), is successfully applied
to a logical characterization of P-time computations.

Their extension takes two steps. First, the !-modality is extended to the form
!rA, where the index r is an element of a semiring [16, Section 2.4]. The index r is
called grade in modern terminology [11,13]. This extension and its variants have
been employed in various logics and programming languages [7,30,14,26,28]. The
categorical structure corresponding to !rA is identified as graded linear exponen-
tial comonad [7,13,22].

Second, the !r-modality is further extended to the form !x<pA, where p is a
polynomial (called resource polynomial) giving the upper bound of x [16, Sec-
tion 3]. The formula !x<pA also binds free occurrences of the resource variable
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x in resource polynomials in A. Therefore, in BLL, both formulas and resource
polynomials depend on the values stored in free resource variables. This depen-
dency mechanism significantly increases the expressiveness of BLL, leading to a
characterization of P-time complexity.

This characterization result was later revisited through a realizability seman-
tics of BLL [16,19,10]. Inside this semantics, however, mechanisms for controlling
complexity of program execution are hard-coded, and it is not very clear which
semantics structure realizes the dependency mechanism of BLL. This leads us
to seek a logical and categorical understanding of BLL’s dependency mechanism
hidden underneath the complexity-related features, such as resource polynomials
and computability constraints.

As a result of the quest, we propose a generalization of BLL called GBLL,
and study its categorical semantics. The central idea of the generalization is to
replace the grading semiring of the !r-modality with a particular multi-object
pseudo-semiring realized as a 2-category. Let us see how this replacement works.
In GBLL, each formula is formed by deriving a judgment of the form Δ � A,
where Δ is a set (called index set) and A is a raw formula. We may think that
such a well-formed formula Δ � A denotes a Δ-indexed family {�A�i}i∈Δ of
denotations. The formation rule for !-modal formula in GBLL is the following:

Δ′ � A f ∈ Set(Δ, (Δ′)∗)

Δ � !fA
(( )∗: Kleene closure)

where the function f abstractly represents dependency. This modality is enough
to express the !x<p-modality of BLL: we express the bindig x < p under a resource
variable context �y as the function fp(�y) = (�y, 0) · · · (�y, p(�y)− 1) that returns the
list of environments extended with values less than p(�y). Then the denotation of
the !fA-modality is given by a variable-arity operator D. For each index i ∈ Δ,
the denotation is given by applying D to the denotations obtained by mapping
A to list f(i):

�!fA�i = D(�A�j1 , · · · , �A�jn) where j1 · · · jn = f(i).

A simple example of a variable-arity modal operator is the folding product
D(X1, · · · , Xn) = X1 ⊗ · · · ⊗Xn.

The pseudo-semiring structure on the class of functions of the form Δ →
(Δ′)∗ is given as follows. For the multiplication g • f , we adopt the Kleisli com-
position of the free monoid monad ( )∗, while for the addition f+g, the pointwise
concatenation (f + g)(x) = f(x)g(x). However, these operations fail to satisfy
one of the semiring axioms: (f + g) • h = f • h+ g • h. To fix this, we introduce
(pointwise) list permutations as 2-cells between functions of type Δ → (Δ′)∗.
These data form a 2-category Idx, which may be seen as a multi-object pseudo-
semiring. Weakening, contraction, digging and dereliction in GBLL interact with
these operations, much like the !r-modality in [7].

We first study syntactic properties of GBLL. We introduce cut-elimination to
GBLL and study its complexity property. It turns out that the proof technique
used in BLL naturally extends to GBLL — as done in [16], we classify cuts
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into reducible and irreducible ones, introduce proof weight, and show that the
reduction steps of reducible cuts will terminate in cubic time of proof weights.
We also examine the expressive power of GBLL by giving a translation from an
extension of BLL with constraints that are seen in Dal Lago et al.’s QBAL [10].

We next give a categorical semantics of GBLL. We introduce the concept of
indexed linear exponential comonad (ILEC ); it is an Idx-graded linear exponen-
tial comonad satisfying a commutativity condition with respect to an underlying
indexed SMCCs. Then, we present a construction of ILEC from a symmetric
monoidal closed category C with a symmetric monoidal comonad on it. We ap-
ply this construction to the case where C is the category of assemblies over a
BCI algebra [2,20], and relate the semantics of GBLL with the constructed ILEC
and the realizability category studied in [19,10].

Acknowledgment The first author was supported by JST ERATO HASUOMeta-
mathematics for Systems Design Project (No. JPMJER1603). The authors are
grateful to anonymous reviewers for comments, and Masahito Hasegawa, Nao-
hiko Hoshino, Clovis Eberhart and Jérémy Dubut for fruitful discussions.

Preliminaries For a set Δ, by Δ∗ we mean the set of finite sequences of Δ.
The empty sequence is denoted by (). Juxtaposition of Δ∗-elements denotes the
concatenation of sequences. For x ∈ Δ∗, by |x| we mean the length of x. We
identify a natural number n and the set {0, · · · , n−1}; note that 0 = ∅. We also
identify a sequence x ∈ Δ∗ and the function “λi ∈ |x| . the i-th element of x”.

2 Generalized Bounded Linear Logic

2.1 Indexing 2-Category

We first introduce a 2-category Idx (and its variant Idxa), which may be seen
as a multi-object pseudo-semiring. It consists of the following data3: 0-cells are
sets (called index sets), and the hom-category Idx(Δ,Δ′), which is actually a
groupoid, is defined by:

– An object (1-cell) is a function f : Δ → (Δ′)∗.
– A morphism (2-cell) from f to g in Idx(Δ,Δ′) is a Δ-indexed family of

bijections {σx : |g(x)| → |f(x)|}x∈Δ such that f(x)(σx(i)) = g(x)(i).

The identity 1-cell and the composition of 1-cells in Idx are denoted by iΔ and

(•), respectively. The composition is defined by (g•f)(x) def
= g(y1) · · · g(yn) where

y1 · · · yn = f(x). The hom-category Idx(Δ,Δ′) has a symmetric strict monoidal
structure:

– the monoidal unit is the constant empty-sequence function 0(x) = (),

3 This is a full sub-2-category of the Kleisli 2-category CATS , where S is the 2-monad
of symmetric strict monoidal category [21].
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– the tensor product of f, g, denoted by f + g, is defined by the index-wise

concatenation (f + g)(x)
def
= f(x)g(x).

We write J : Set→ Idx for the inclusion, namely JΔ = Δ and (Jf)(x) = f(x)
(the singleton sequence).

Proposition 2.1. The composition • is symmetric strong monoidal in each ar-
gument. Especially, we have

f • 0 = 0 0 • f = 0 f • (g + h) = f • g + f • h (f + g) • h ∼= f • h+ g • h.

We also define Idxa by replacing “bijection” in the definition of 2-cell of Idx
with “injection”. The hom-category Idxa(Δ,Δ′) has the 1-cell 0 as the terminal
object, hence is a symmetric affine monoidal category.

2.2 Formulas and Proofs

Definition of GBLL Formulas We first fix a set-indexed sets {A(Δ)}Δ∈Set

of atomic propositions. Formulas are defined by the following BNF:

A ::= a  r | A⊗A | A � A | !fA

where a ∈ A(Δ) for some set Δ, r is a function (called reindexing function) and
f is a 1-cell in Idx. Formula formation rules are introduced to derive the pair
Δ � A of an index set Δ and a formula A. They are defined as follows:

a ∈ A(Δ′) r ∈ Set(Δ,Δ′)

Δ � a  r

Δ � A Δ � B
Δ � A⊗B

Δ � A Δ � B
Δ � A � B

Δ′ � A f ∈ Idx(Δ,Δ′)

Δ � !fA

The formula ar represents the atomic formula a precomposed with a reindexing
function r. We write Fml(Δ) = {A | Δ � A}.

We next introduce the reindexing operation on formulas.

Definition 2.1. For a reindexing function r ∈ Set(Δ,Δ′), we define the rein-
dexing operator ( )|r : Fml(Δ′)→ Fml(Δ) along r by

a  r|r′ def
= a  (r ◦ r′), (A⊗B)|r def

= A|r ⊗B|r,

(A � B)|r def
= A|r � B|r, (!fA)|r def

= !f•JrA.

We routinely extend reindexing operators to sequences of formulas well-formed
under a common index set.

We quotient the set of well-formed formulas by the least congruent equiva-
lence relation generated from the following binary relation:

{(!Jr•fA, !f (A|r)) | r ∈ Set(Δ′, Δ′′), f ∈ Idx(Δ,Δ′), Δ′′ � A} (2.1)

We see some formations of formulas in GBLL.
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Example 2.1. Let us illustrate how a formula !y<x2 !z<x+yA in BLL is represented
in GBLL; here we assume that x, y, z are the only resource variables used in this
formula. We first introduce a notation. Let E be a mathematical expression using
variables x1 · · ·xn. Then by [E]n : Nn → (Nn+1)∗ we mean the function

[E]n(�x) = (�x, 0)(�x, 1) · · · (�x,E[x1/x1, · · · , xn/xn]− 1) (�x � (x1, · · · , xn) ∈ Nn)

For instance, [x2
1]1(x) = (x, 0), · · · , (x, x2− 1). Then from a well-formed formula

N3 � A, we obtain N � ![x2
1]1

![x1+x2]2A. Generalizing this, a BLL formula !x<EA
containing resource variables x1, · · · ,xn corresponds to the GBLL formula ![E]nA.

Example 2.2. We look at how we express the substitution of a resource polyno-
mial A[x := p(x1, ..., xn)]. We define a function 〈p〉n : Nn → Nn+1 by

〈p〉n(x1, ..., xn)
def
= (x1, ..., xn, p(x1, ..., xn)).

Then the reindexed formula Nn � A|〈p〉n corresponds to A[x := p(x1, · · · , xn)].

Example 2.3. We illustrate the equality between well-formed formulas. Consider
a formula N � A and a function r ∈ Set(N3,N). Then we equate formulas
N2 � ![x1+x2]2(A|r) and N2 � !hA, where h ∈ Idx(N2,N) is given by

h
def
= Jr • [x1 + x2]2(x, y) = r(x, y, 0), · · · , r(x, y, x+ y − 1).

Definition of GBLL Proofs A judgment of GBLL is the form Δ | Γ � A,
where Δ is an index set, Γ is a sequence of formulas well-formed under Δ, and
A is a well-formed formula under Δ, respectively. The inference rules of GBLL
are presented in Fig. 1. Similarly, we define GBAL to be the system obtained by
replacing Idx in Fig. 1 with Idxa.

Example 2.4. We mimic a special case of the contraction rule in BLL

Γ, !x<xiA, !y<xjA{xi+y/x} � B

Γ, !x<xi+xjA � B

See also (!C)-rule of CBLL in Section 3.2. We use the shift function sn,i ∈
Set(Nn+1,Nn+1) defined by sn,i(x1, · · · , xn, y)

def
= (x1, · · · , xn, xi + y). Then

we easily see [xi]n + Jsn,i • [xj ]n = [xi + xj ]n. By contraction rule of GBLL, we
obtain the following derivation for well-formed formulas Nn+1 � A and Nn � B,
mimicking the contraction of BLL:

![xi]nA, ![xj ]n(A|sn,i) � B

![xi+xj ]nA = ![xi]n+Jsn,i•[xj ]nA � B

Here, we use the formula equality !Jsn,i•[xj ]nA = ![xj ]n(A|sn,j).



Generalized Bounded Linear Logic and its Categorical Semantics 231

Δ 	 A (Ax) Axiom
Δ | A 	 A

Δ | Γ,X, Y, Γ ′ 	 A
(Exch)Exchange

Δ | Γ, Y,X, Γ ′ 	 A

Δ | Γ1 	 A Δ | Γ2, A 	 B
(Cut)

Δ | Γ1, Γ2 	 B

Δ | Γ,X, Y 	 A
(⊗L)

Δ | Γ,X ⊗ Y 	 A

Δ | Γ1 	 X Δ | Γ2 	 Y
(⊗R)

Δ | Γ1, Γ2 	 X ⊗ Y

Δ | Γ1 	 X Δ | Γ2, Y 	 B
(�L)

Δ | Γ1, Γ2, X � Y 	 B

Δ | Γ,X 	 Y
(�R)

Δ | Γ 	 X � Y

Δ | Γ 	 B
(!W) Weakening

Δ | Γ, !0A 	 B

Δ | Γ,A 	 B
(!D)Dereliction

Δ | Γ, !idA 	 B

Δ | Γ, !gA 	 B σ ∈ Idx(Δ,Δ′)(f, g)
(!F) !-Functor

Δ | Γ, !fA 	 B

Δ | Γ, !f1A, !f2A 	 B
(!C)Contraction

Δ | Γ, !f1+f2A 	 B

Δ′ | !g1A1, · · · , !gkAk 	 B f ∈ Idx(Δ,Δ′)
(P!) Composition

Δ | !g1•fA1, · · · , !gk•fAk 	 !fB

Fig. 1. GBLL Proof Rules

Example 2.5. The reindexing operator can be extended to proofs. Let r be a
reindexing function in Set(Δ,Δ′). Reindexing of the axiom rule Δ′ | A � A,
by r is the axiom rule Δ | A|r � A|r. Reindexing of other rules except (P!)
can be easily defined—the judgment Δ′ | Γ � A in each rule is replaced with
Δ | Γ |r � A|r by reindexing. For (P!) rule, reindexing by r is given as follows:

Δ′′ | !g1A1, · · · , !gkAk � B f • Jr ∈ Idx(Δ,Δ′′)

Δ | (!g1•fA1)|r, · · · , (!gk•fAk)|r � (!fB)|r

Remark 2.1. In this paper, indexing 2-category is either Idx or Idxa. Allowing
more general indexing 2-categories in GBLL is a future work. In his PhD thesis,
Breuvart designed a linear logic similar to GBLL upon an abstract indexing mech-
anism called dependent semirings [5, Definition 3.2.4.5]. It consists of categories
(S,U) such that 1) each hom-set in S carries a (not necessarily commutative)
ordered monoid structure (0,+) and the composition of S distributes over 0,+,
and 2) U acts on S from both sides. Roughly speaking, S and U corresponds to
our Idxop and Setop, respectively. We expect that a unification of dependent
semirings and 2-categories Idx, Idxa would yield a suitable generalization of
indexing categories for GBLL. This generalization will subsume the non-graded
linear logic, and allow us to compare GBLLs over different idexing categories.
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2.3 Complexity of Cut-Elimination in GBLL

By a similar discussion to BLL [16], instances of Cut inference are divided in two
classes: reducible cuts and irreducible cuts. We define the weight of proof |π| for
each proof π � Δ | Γ � A and reduction steps of proofs, such that every reduction
steps will terminate, for each index δ ∈ Δ, in polynomial steps of |π|(δ).

Definition 2.2. [16, Appedix A] In GBLL (resp. GBAL) proofs, an instance of
the Cut inference is irreducible if there are at least one Composition rule below
it or if its left premise is obtained by a Composition rule with nonempty context
and the other premise is obtained by a Weakening, !-Functor, Dereliction, Con-
traction or Composition inference. A reducible cut is Cut inferences that is not
irreducible.

The definition of (ir)reducibility and weight is diverted from Girard’s paper.
Therefore, our system inherits from BLL the conditions under which cuts can be
reduced. See also Section 2.4 in [16].

Definition 2.3. A GBLL or GBAL proof is irreducible if it contains only irre-
ducible cut inferences.

Following [16], we introduce the concept of weight of a proof. It is a function
|π| : Δ → N assigning a weight number |π|(δ) to a proof π at an index δ ∈ Δ.
The weight number never increases at any reduction step of Cut in π. In the
original BLL, weights are expressed by resource polynomials, while here, they
are generalized to arbitrary functions. We remark that weights of the proofs
involving Composition rules, which introduce !f modality, use the length of the
lists constructed by f .

Definition 2.4. For a given proof π �Δ | Γ � A of GBLL or GBAL, the weight
of π is a function |π| : Δ → N inductively defined as follows. A) When Δ = ∅,
|π| is the evident function. B) When Δ �= ∅, |π| is defined by the following rules:

1. For an Axiom rule π � Δ | A � A, |π|(δ) def
= 1.

2. If π is obtained from π′ by a unary rule except Contraction and Composition,

|π|(δ) def
= |π′|(δ) + 1.

3. If π is obtained from π1 and π2 by a binary rule except Cut, |π|(δ) def
= |π1|(δ)+

|π2|(δ) + 1.

4. If π is obtained from π1 and π2 by a Cut rule, |π|(δ) def
= |π1|(δ) + |π2|(δ).

5. If π is obtained from π′ by a Contraction rule, |π|(δ) def
= |π′|(δ) + 2

6. If π is obtained from π′ by a Composition rule, such as

...π′

Δ′ | !α1
A1, · · · , !αk

Ak � B
π�

Δ | !α1•fA1, · · · , !αk•fAk � !fB
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then |π|(δ) def
=

∑
γ∈f(δ) (|π′|(γ) + 2k + 1) + k + 1. Note that the summation∑

γ∈f(δ) scans all elements in the list f(δ), hence the weight depends on the

length of f(δ).

Theorem 2.1. For every proof π � Δ | Γ � A and every δ ∈ Δ, reduction steps
of reducible cuts will terminate in at most (|π|(δ))3 steps.

Proof (sketch). The proof is almost the same as Section 2.2 and Appendix A of
[16], except for the definition of the weight. Suppose that π one-step reduces into
π′. From the definition of the weight, either 1) for all index δ ∈ Δ, the weight
decreases (that is, |π|(δ) > |π′|(δ)), or 2) for all index δ ∈ Δ, the weight keeps
(that is, |π|(δ) = |π′|(δ)). The reduction of the former type is called symmetric
or axiom reduction [16, Section 2.2.1 and 2.2.2], while the latter commutative
reduction [16, Section 2.2.3].

In the case where the weight keeps, we introduce another measure called the
cut size ‖π‖ : Δ → N of a proof π. Its definition is the same as the definition of
weight except for Cut rule. For a proof π obtained by Cut rule from π1 and π2,
the cut size ‖π‖(δ) is defined to be ‖π1‖(δ) + ‖π2‖(δ) + |π1|(δ) + |π2|(δ).

In each commutative reduction from π to π′ the cut size decrease at all index
(that is, for all δ ∈ Δ, ||π||(δ) > ||π′||(δ)), and the cut size is at most the square
of the weight (that is, for all δ ∈ Δ, ||π||(δ) ≤ (|π|(δ))2). Therefore, the total
number of steps is at most the cube of the weight.

The number of reduction steps of a proof π and its weight depend on the
length of lists computed by the Idx-morphisms occurring in π. However, to
discuss the actual time complexity of cut-elimination, we further need to take
into account the time complexity of the computation of Idx-morphisms. This
would be achieved by looking at a subcategory of Idx computable within a
certain time complexity. We leave this argument of analyzing the actual time
complexity of cut-elimination as a future work.

3 Translation from Constrained BLL

We show that GBLL can express BLL via a translation. This translation is actu-
ally given to variants of these calculi, namely from BLL with constraints (called
CBLL) to GBAL with positivity axioms (called GBAL+).

CBLL is an extension of BLL with constraints, which are one of the features
of Dal Lago and Hofmann’s QBAL [10]. Constraints explicitly specify conditions
imposed on resource variables, and it is natural to explicitly maintain these
conditions throughout proofs. We also remark that in CBLL, weakening of !-
formulas !x<p+qA �!x<pA is allowed, and atomic formulas are assumed to satisfy
the positivity property (3.1).

GBAL+ is designed for a sound translation from CBLL. Recall that GBAL is
an extension of GBLL with weakening !f+gA �!fA on !-formulas. Then GBAL+

is a further extension of GBAL with the following positivity axioms of atomic
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formulas: for every n-ary atomic formula a ∈ A in CBLL, we introduce an atomic
formula [a] ∈ A(Nn) to GBAL together with the axiom:

VC (F ) | Ø � [a]  〈p1, · · · , pn〉� [a]  〈q1, · · · , qn〉 (∀i.pi �C qi).

Here the definition of each notation is given in Section 3.1 and 3.3. Positivity
axiom induces proofs VC (F ) | A′ � A for every two formulas A,A′ such that
A′ �C A (the relation �C for formulas is defined in Section 3.2).

3.1 Resource Polynomials and Constraints

We introduce basic concepts around CBLL, referring to its super-logic QBAL [10].
We put a reference in the beginning of each paragraph when the contents come
from QBAL in [10].

[10, Definition 2.1] Given a countably infinite set RV of resource variables, a
resource monomial over RV is a finite product of binomial coefficients

∏m
i=1

(
xi

ni

)
,

where the resource variables x1, · · · , xm are distinct and n1, · · · , nm ∈ N are
natural numbers. A resource polynomial over RV is a finite sum of resource
monomials. We write 1 as

(
x
0

)
and x as

(
x
1

)
for short. Each positive natural

number n denotes a resource polynomial 1 + 1 + · · · + 1. Resource polynomials
are closed under sum, product, bounded sum and composition [10, Lemma 2.2].

[10, Definition 2.3] A constraint is an inequality p ≤ q, where p and q are
resource polynomials. We abbreviate p+1 ≤ q as p < q. A constraint p ≤ q holds
(written 	 p ≤ q) if it is true in the standard model. A constraint set (denoted
with C , D) is a finite set of constraints. A constraint p ≤ q is a consequence
of a constraint set C (written C 	 p ≤ q) if p ≤ q is a logical consequence of
C . For every constraint sets C and D , we write C 	 D iff C 	 p ≤ q for every
constraint p ≤ q in D . For each constraint set C , we define an order �C on
resource polynomials by p�C q iff C 	 p ≤ q.

[10, Definition 2.3] We define the polarity of occurrences of free resource
variables. For a constraint p ≤ q, we say that an occurrence of a resource variable
x in p is called negative, while the one in q is called positive.

3.2 Formulas and Inference Rules of CBLL

Let A be a set of atomic formulas and assume that each atomic formula a ∈ A
is associated with an arity ar(a). Formulas of CBLL are defined by:

A,B ::= a(p1, · · · , par(a)) | A⊗B | A � B | !x<pA

where p in the formula !x<pA satisifes x /∈ FV(p).
[10, Definition 2.6] Each occurrence of a free resource variable in a formula

is classified into positive or negative. Below we inductively define a positive oc-
currence of a resource variable. An occurrence of x in:

– a(p1, · · · , par(a)) is always positive.
– A⊗B is positive iff it is in A and positive, or so in B.
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A�CB
(Ax)

A	CB

Γ 	C A D 	 C
(Str)

Γ 	D A

Γ 	C B
(!W)

Γ, !x<0A 	C B

A{0/x}, Γ 	C B
(!D)

!x<1A,Γ 	C B

Γ, !x<pA, !y<qA{p+y/x} 	C B
(!C)

Γ, !x<p+qA 	C B

A1, · · · , An 	C∪{x<p} B x /∈ FV(C )
(!P)

!x<pA1, · · · , !x<pAn 	C !x<pB

!y<p!z<q{y/w}A
{
(z+

∑
w<y q(w))/x

}
, Γ 	C B

(!N)
!x<

∑
w<p q(w)A,Γ 	C B

Fig. 2. Inference Rules for CBLL (⊗ and � are omitted)

– A � B is positive iff it is in A and negative, or it is in B and positive.
– !x′<pA is positive iff it is in A and positive. We remark that an occurrence

of a free resource variable in p is counted as negative in !x′<pA.

[10, Definition 2.8] We extend the order �C on resource polynomials to the
one on CBLL formulas.

a(p1, · · · , par(a))�C a(q1, · · · , qar(a)) iff ∀i.pi �C qi

A⊗B �C C ⊗D iff (A�C C) ∧ (B �C D)

A � B �C C � D iff (C �C A) ∧ (B �C D)

!x<pA�C !x<qB iff (q �C p) ∧ (x /∈ FV(C )) ∧ (A�C∪{x<q} B)

(3.1)

[10, Section 2.3] A CBLL judgment is an expression Γ �C A, where C is
a constraint set, Γ is a multiset of formulas and A is a formula. A judgment
Γ �C A means that A is a consequence of Γ under the constraints C .

Inference rules (Fig. 2) are almost the same as those of QBAL; we omit the
rules for ⊗,� and Cut. Note that weakening is restricted to !-formulas. Every
BLL proof of Γ � A can be translated to a CBLL proof of Γ �Ø A.

3.3 Translation into GBAL+

As mentioned at the beginning of Section 3, we will give a translation from CBLL
to GBAL+. When translating a CBLL proof Γ �C A, we also need to supply a set
F of free resource variables satisfying F ⊇ FV(Γ ) ∪ FV(A) ∪ FV(C ). Then the
translation of the proof of Γ �C A yields a proof of VC (F ) | [Γ ](F ;C ) � [A](F ;C )

in GBAL+.

For Constraints We define an environment over a finite set F of resource
variables to be a function from F to N; by V (F ) we mean the set of environments
over F . Given an environment ρ ∈ V (F ) and a resource variable x �∈ F and
n ∈ N, by ρ{x → n} we mean the environment over F ∪ {x} that extends ρ
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with a mapping x → n. Given a resource polynomial p such that FV (p) ⊆ F , by
�p� : V (F ) → N we mean the function that evaluates the resource polynomial
p under a given environment. For resource polynomials p1, · · · , pn such that
FV(pi) ⊆ F , we give a function 〈p1, · · · , pn〉 : (V (F )) → Nn by 〈p1, · · · , pn〉ρ =
(�p1�ρ, · · · , �pn�ρ).

Let ρ 	 p ≤ q denote �p�ρ ≤ �q�ρ for a constraint p ≤ q with a set F of
free resource variables (such that FV(p) ∪ FV(q) ⊆ F ) and for an environment
ρ ∈ V (F ). For a subset S ⊂ V (F ) and for a constraint set C , S 	 C is also
defined similarly: for every ρ ∈ S and for every p ≤ q ∈ C , ρ 	 p ≤ q. Given a
constraint set C and a set F of resource variables such that FV(C ) ⊆ F , let a
set VC (F ) and a function ιF,C : VC (F )→ V (F ) be given by:

VC (F )
def
= {ρ ∈ V (F ) | ρ 	 C } , ιF,C (ρ)

def
= ρ.

For a resource polynomial p, a free resource variable x such that x /∈ FV(p), a
constraint set C and a set F of resource variables such that FV(p)∪FV(C ) ⊆ F ,
we introduce a map [x < p](F,C ) : VC (F )→ VC∪{x<p}(F ∪ {x})∗ by

[x < p](F,C )ρ
def
= ρ{x → 0}, ρ{x → 1}, · · · , ρ{x → (�p�ρ− 1)}

For Formulas Given a CBLL formula A, a constraint set C and a set of resource
variables F such that F ⊇ FV(A) ∪ FV(C ), the translation [A](F ;C ) of a well-
formed formula VC (F ) � A is defined inductively as follows:

[a(p1, ..., pn)]
(F ;C ) def

= [a]  (〈p1, ..., pn〉 ◦ ιF,C )

[A⊗B](F ;C ) def
= [A](F ;C ) ⊗ [B](F ;C )

[A � B](F ;C ) def
= [A](F ;C ) � [B](F ;C )

[!x<pA](F ;C ) def
= ![x<p](F,C)

[A](F∪{x};C∪{x<p})

For Proofs To give a translation of proofs, we define another notation. For a
resource polynomial p, q, a set F of resource variables and a constraint set C
such that FV(p) ∪ FV(C ) ⊆ F , a set [p, q)(F,C ) of environments is defined by

[p, q)(F,C ) = {ρ ∈ V (F ∪ {t}) | ρ 	 C , �p�(ρ) ≤ ρ(t) < �p+ q�ρ}

here t is a “fresh” resource variable such that t /∈ F .
Given a proof π �Γ �C A, a translation [π](F ;C ) �VC (F ) | [Γ ](F ;C ) � [A](F ;C )

is defined inductively on the structure of the proof:

– For Axiom rule, we can prove VC (F ) | [A](F ;C ) � [B](F ;C ) for formulas A,B
such that A�C B.

– For rules (Cut), (⊗L), (⊗R), (�L), (�R) and (!W), the translation is simple
replacement of each formula A with [A](F ;C ).
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– For (Str) rule, we have a map r ∈ Set(VD(F ), VC (F )). Then the transla-
tion is given as reindexed proof [π′](F ;C )|r of the translation [π′](F ;C ) of the
premise.

– For (!D) rule, the premise is translated to VC (F ) | A′, [Γ ](F ;C ) � [B](F ;C ),
where A′ = [A](F∪{x};C∪{x<1})|r and r is a map such that Jr = [x < 1](F,C ).

– For (!C) rule, we define a morphism s
(F ;C )
p,q in Idxa and functions r

(F ;C )
p,q ,

i
(p,q;F ;C )
1 , i

(p,q;F ;C )
2 (s, r, i1 and i2 for short) by

s(F ;C )
p,q : VC (F )→ [p, q)(F,C )

ρ → ρ{t → �p�ρ}, · · · , ρ{t → (�p+ q�ρ− 1)}
r(F ;C )
p,q : [p, q)(F,C ) ∼−→ VC∪{y<q}(F ∪ {y})

ρ{t → (�p�ρ+ k)} → ρ{y → k}

i
(p,q;F ;C )
1 : VC∪{x<p}(F ∪ {x})→ VC∪{x<p+q}(F ∪ {x})

ρ{x → k} → ρ{x → k}

i
(p,q;F ;C )
2 : [p, q)(F,C ) → VC∪{x<p+q}(F ∪ {x})

ρ{t → (�p�ρ+ k)} → ρ{x → �p�ρ+ k}

They satisfy ![x<p][A](F∪{x};C∪{x<p}) =![x<p]([A](F∪{x};C∪{x<p+q})|i1) and

![y<q][A{p+y/x}](F∪{y};C∪{y<q}) =!Jr•s([A](F∪{x};C∪{x<p+q})|i2◦r−1).
Then the conclusion of (!C) is obtained:

VC (F ) | [Γ ](F ;C ), !(Jii•[x<p])+(Ji2•s)[A](F∪{x};C∪{x<p+q}) � [B](F ;C ).

– For (!P) rule, let F ′ = F ∪ {x} and C ′ = C ∪ {x < p}. We can prove the
translated conclusion from the translated premise by the following proof:

VC ′(F ′) | [A1]
(F ′;C ′), · · · , [An]

(F ′;C ′)� [B](F
′;C ′)

n times (!D)’s
...

VC ′(F ′) | !id[A1]
(F ′;C ′), · · · , !id[An]

(F ′;C ′)� [B](F
′;C ′)

VC (F ) | ![x<p][A1]
(F ′;C ′) · · · ![x<p][An]

(F ′;C ′)� ![x<p][B](F
′;C ′)

– For (!N) rule, we define index sets Δ0, Δ1, Δ2 and constraints C0,C1,C2 by

C0 = C ∪ {y < p} Δ0 = VC0(F ∪ {y})
C1 = C ∪ {y < p, z < q{y/w}} Δ1 = VC1(F ∪ {y, z})

C2 = C ∪ {x <
∑
w<p

q(w)} Δ2 = VC2
(F ∪ {x})

There is an isomorphism r ∈ Set(Δ1, Δ2), and it holds an equation [z <
q{y/w}](F∪{y},C0) • [y < p](F,C ) = Jr−1 • [x <

∑
w<p q(w)](F,C ). Therefore,

(!N) rule can be translated to the following provable judgment:

VC (F )|![x<∑
w<p q][A](F∪{x};C2) � ![y<p]![z<q{y/w}][A{z+

∑
w<y q/x}](F∪{y,z};C1)

Since every BLL proof Γ � A can be translated to a CBLL proof Γ �Ø A, it
can further be translated to a GBAL+ proof VØ(F ) | [Γ ](F ;Ø) � [A](F ;Ø).
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4 Categorical Semantics for GBLL

We give a categorical semantics of GBLL. First, notice that each index set Δ de-
termines a multiplicative linear logic under Δ. We model this situation by a set-
indexed symmetric monoidal closed categories, given by a functor C : Setop →
SMCCstrict. That is, for each Δ ∈ Set, a symmetric monoidal closed category
CΔ is given, and any function f : Δ → Δ′ induces a strict symmetric monoidal
closed functor Cf : CΔ′ → CΔ, performing renaming of indexes.

Upon this indexed symmetric monoidal closed categories, we introduce a cat-
egorical structure that models the !f modality. We call it indexed linear exponen-
tial comonad. This is a generalization of the semiring-graded linear exponential
comonad studied in [13,22]. Our generalization replaces the semiring with Idx,
which may be regarded as a many-object pseudo-semiring (Proposition 2.1).

We write [C,D]l for the category of symmetric lax monoidal functors from C
to D and monoidal natural transformations between them. We equip it with the
pointwise symmetric monoidal structure (İ , ⊗̇) given by İX = I and (F ⊗̇G)X =
FX ⊗GX for X ∈ C.

Definition 4.1. An indexed linear exponential comonad (ILEC for short) over
a set-indexed SMCC C consists of:

– A collection of symmetric colax monoidal functors

(D,wΔ,Δ′
, cΔ,Δ′

) : Idx(Δ,Δ′)→ [CΔ′, CΔ]l (Δ,Δ′ ∈ Set).

The symmetric lax monoidal structure of Df is denoted by mf : I → DfI
and mf,A,B : DfA⊗DfB → Df(A⊗B).

– Monoidal natural transformations εΔ : D(iΔ)→ IdDΔ and δg,f : D(g • f)→
Df ◦Dg satisfying axioms in Figure 3.

– Cr′ ◦Df ◦ Cr = D(Jr • f • Jr′) holds for any morphism f in Idx and r, r′

in Set of appropriate type.

The last axiom has two purposes: the equality Cr′(DfA) = D(f • Jr′)A
is to allow reindexing functions to act from outside, and the other equality
Df(CrA) = D(Cr • f)A is to make D invariant under internal reindexing of
formulas. These equalities are tied up with the formula equivalence in (2.1) and
the definition of reindexing at !fA in Definition 2.1, respectively. We postpone
a concrete example of ILEC to Section 4.2.

4.1 Semantics of GBLL

We interpret a well-formed formula Δ � A as an object �Δ � A� ∈ CΔ. This is
done by induction on the structure of the formula. We assume that each atomic
formula a ∈ A(Δ) comes with its interpretation as an object [a] ∈ CΔ.

�Δ � a  r� def
= Cr[a] �Δ �!fA� def

= Df�Δ′ � A�

�Δ � A⊗B� def
= �Δ � A�⊗ �Δ � B� �Δ � A � B� def

= �Δ � A� � �Δ � B�
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D(f • h+ g • h)A
��

D((f + g) • h)A
��

D(f • h)A⊗D(g • h)A
��

Dh(D(f + g)A)

��
Dh(DfA)⊗Dh(DgA) �� Dh(DfA⊗DgA)

D0A

��

D(0 • h)A
��

Dh(D0A)

��
I �� DhI

D(h • f + h • g)A D∼=A ��

��

D(h • (f + g))A

��
D(h • f)A⊗D(h • f)A

��

D(f + g)(DhA)

��
Df(DhA)⊗Dg(DhA) (Df ⊗Dg)(DhA)

D0A

��

D(h • 0)A
��

D0(DhA)

��
I I

DfA ��

��

D(iΔ)(DfA)

��

D(h • g • f)A ��

��

D(g • f)(DhA)

��
Df(D(iΔ)A) �� DfA Df(D(h • g)A) �� Df(Dg(DhA))

Fig. 3. Axioms of Indexed Linear Exponential Comonad

Proposition 4.1. For any r ∈ Set(Δ,Δ′) and well-formed formula Δ′ � A, we
have �Δ � A|r� = Cr�Δ′ � A�.

Proposition 4.2. �Δ � !Jr•fA� = �Δ′ � !f (A|r)�.

Each proof π �Δ | Γ � A of GBLL is interpreted as a morphism �Δ | Γ � A� :
�Δ � Γ � → �Δ � A� in CΔ. Here, for a sequence Γ = C1, · · · , Cm of formulas,
�Δ � Γ � denotes �Δ � C1� ⊗ · · · ⊗ �Δ � Cm�. We write out the interpretation
only for the cases of modalities, because the other rules, Axiom, Exchange, Cut,
⊗(L, R) and �(L, R) are interpreted similarly to the semantics of multiplicative
intuitionistic linear logic. Fig. 4 shows the interpretation of rules related to !f .

Theorem 4.1. For a proof π � Δ | Γ � A, if π has a reducible cut and reduces
into π′ by a reduction step, then �π� = �π′� in CΔ.

4.2 Construction of an Indexed Linear Exponential Comonad

We present a construction of an indexed SMCCs C : Setop → SMCCstrict and
an ILEC D : Idx(Δ,Δ′) → [CΔ′, CΔ]l over C from a SMCC 〈C,⊗, I,�〉, and
a symmetric lax monoidal comonad 〈V,mV ,mV

X,Y , ε, δ〉 on C.

Construction of Indexed SMCCs First, for each index set Δ, we define
the category Δ 
 C to be the product of Δ-many copies of C. We represent
objects and morphisms of this category by maps X : Δ → Obj(C) and maps
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�
π′ 	 Δ | Γ 	 B

Δ | Γ, !0Δ,Δ′A 	 B

�

= �Γ, !0Δ,Δ′A�
id⊗w

Δ,Δ′
�A�−−−−−−−→ �Γ � ⊗ I

�π′�◦∼=−−−−→ �B�
�

π′ 	 Δ | Γ,A 	 B

Δ | Γ, !idA 	 B

�
= �Γ, !iΔA�

id⊗εΔ�A�−−−−−→ �Γ � ⊗ �A�
�π′�−−−→ �B�

�
π′ 	 Δ | Γ, !gA 	 B σ : f ⇒ g

Δ | Γ, !fA 	 B

�
=

�Γ, !fA�
id⊗(Dσ)�A�−−−−−−−−→ �Γ, !gA�
�π′�−−−→ �B�

�
π′ 	 Δ | Γ, !fA, !gA 	 B

Δ | Γ, !f+gA 	 B

�
=

�Γ, !f+gA�
id⊗cf,g−−−−−→ �Γ � ⊗ (�!fA� ⊗ �!gA�)
�π′�◦∼=−−−−→ �B�

�
π′ 	 Δ, g | !g1A1, · · · , !gkAk 	 B

Δ | !g1•fA1, · · · , !gk•fAk 	 !fB

�

=

⊗
i�!gi•fAi�

⊗
i δgi,f,�Ai�−−−−−−−−−→ ⊗

i Df(�!giAi�)
mf,···�!giAi�···−−−−−−−−−−→ Df

(⊗
i�!giAi�

)
Df(�π′�)−−−−−−→ �!fB�

Here, 1) �A� denotes �Δ 	 A� for each well-formed formula Δ 	 A. 2) π′ denotes the
proof of the premise of each rule.

Fig. 4. Interpretations of Modal Rules.

f : Δ → Mor(C), respectively. Since SMCCs are closed under products, Δ
C is
a SMCC by the component-wise tensor product and internal hom:

I(d)
def
= I, X ⊗̇ Y(d)

def
= X(d)⊗ Y(d), X�̇Y(d)

def
= X(d) � Y(d)

We then define the indexed SMCCs C by CΔ
def
= Δ 
 C.

Folding Product We next introduce the folding product functor T; we later
compose it with the symmetric lax monoidal comonad V so that we can derive
various ILECs over C. Note that T itself is also an ILEC; set V = Id. The type
of T is Δ∗ × (Δ 
 C) −→ C, and is defined by

T(i1i2 · · · in,A) def
= A(i1)⊗ A(i2)⊗ · · · ⊗ A(in), T((),A)

def
= I

On morphisms, T maps a list permutation in the first argument to the symmetry
morphism in C. T is symmetric strong monoidal in each argument. Moreover,
each strong monoidal structure interacts well with each other, concluding that
it becomes a multi-symmetric strong monoidal functor in the sense of [21].

Proposition 4.3. For f ∈ Idx(Δ,Δ′) and l = i1 · · · ik ∈ Δ∗, let f(l) denote
f(i1) · · · f(ik). Then it holds T(f(l),A) � T(l,T(f( ),A)) and this isomorphism
is natural for A.
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Remark 4.1. Usually the !-modal formula !A in linear logic is interpreted by the
object consisting of many copies of the same data (referred as uniformity of !A
[8]). We leave the development of uniform folding product as a future work.

Construction of ILEC We now compose the folding product functor with
the symmetric lax monoidal comonad V , to derive another ILEC. Let Δ,Δ′

be index sets. We define a symmetric strong (hence colax) monoidal functor
D : Idx(Δ,Δ′) −→ [CΔ′, CΔ]l by

DfA(i)
def
= T(f(i), V ◦A) Dfp(i)

def
= T(f(i), V p) DαA

def
= T(α,V ◦ A). (4.1)

Here, A ∈ Δ′ 
 C, and p and α are morphisms in Δ′ 
 C and Idx(Δ,Δ′),
respectively. We also define a helper morphism γl

A : T(l, V ◦ A) → V T(l,A) for
(l1 · · · lk) ∈ Δ∗ and A ∈ Δ 
 C. It is the multiple composite of mA,B :

V A(l1)⊗ · · · ⊗ V A(lk)→ V (A(l1)⊗ · · · ⊗ A(lk)) .

It is routine to verify that this morphism is monoidal natural on l and A.
Two monoidal natural transformations ε : DiΔ → IdΔ�C and δg,f : D(g•f)→

Df ◦Dg are defined by:

εA,i :T(i, V ◦ A) = V A(i) (4.2)

δg,f ;A;i :T((g • f)(i), V ◦ A) ∼−→ T(f,T(g( ), V ◦ A))
T(f,T(g( ),δA))−−−−−−−−−−→ T(f,T(g( ), V ◦ V ◦ A))

T(f,γ
g( )
A )

−−−−−−−→ Df(DgA)(i).
(4.3)

Theorem 4.2. The symmetric colax monoidal functor D (4.1) and monoidal
natural transformations ε, δ (4.2,4.3) determine an ILEC over C.

4.3 GBLL Semantics by Realizability Category

Hofmann et al., and also Dal Lago et al. employ a realizability semantics to
show that the complexity of BLL proof reductions belongs to P-time [19,10].
In this section we compare their semantics and the simple semantics of GBLL
constructed in the previous section.

We instantiate C in the previous section with the realizability category over a
BCI algebra (A, ·), which is a combinatory algebra based on B,C, I-combinators;
see e.g. [2,20]. We then form the realizability category Ass(A) by the following
data: an object is a function f into P+A, where P+ is the nonempty powerset
construction, and a morphism from f to g is a function h : dom f → dom g
with the following property: there exists an element e ∈ A such that for any
x ∈ dom f and a ∈ f(x), we have e · a ∈ g(h(x)). The category Ass(A) is
symmetric monoidal closed; see e.g. [20, Proposition 4]. The tensor product of f
and g is given by (f ⊗ g)(x, y) = {u� v | u ∈ f(x), v ∈ g(y)}, where u� v is the
BCI-algebra element corresponding to λx.xuv [20, Section 2].
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Next, let Δ be a set and consider the power category Δ
Ass(A). Under the
axiom of choice, Δ 
Ass(A) is equivalently described as follows: an object is a
family of functions {fi}i∈Δ into P+A, and a morphism from {fi}i∈Δ to {gi}i∈Δ

is a family of functions {hi : dom fi → dom gi}i∈Δ with the following property:
there exists a function e : Δ → A such that for any i ∈ Δ, x ∈ dom fi and
a ∈ fi(x), we have e(i) · a ∈ gi(hi(x)).

This power category is quite close to the realizability category introduced
in [19, Section 4] and [10, Section 4]. A membership statement a ∈ fi(x) for
an object {fi}i∈Δ ∈ Δ 
Ass(A) corresponds to a realizability statement i, a �
x in the realizability category (see [19]). The major difference between these
categories is twofold: 1) In the realizability category, a computability constraint
is imposed on e : Δ → A to achieve the characterization of P-time complexity. 2)
Objects in the realizability category are limited to Δ
Ass(A)-objects such that
all fi share the common domain. This is to synchronize with the set-theoretic
semantics ignoring resource polynomials [19, Section 3] [10, Section 3].

We compute the bounded !-modality using the folding product ILEC T with
respect to the indexed SMCC ( ) 
Ass(A). Let F be a finite set of variables,
x �∈ F be a resource variable, p be a resource polynomial and C be a constraint
set under F . For any object X in VC∪{v≤p}(F∪{v})
Ass(A), the folding product
T([v ≤ p](F,C ),X) is an object in VC (F ) 
Ass(A) satisfying

T([v < p](F,C ),X)(i)

= λ(x0, · · · , x�p�i−1) . {a0 ⊗ · · · ⊗ a�p�i−1 | aj ∈ X(i{v → j})(xj)} (4.4)

This is different from the modality over the realizability category introduced in
[19, Definition 16] and [10, Definition 4.6]:

(!v<pX)(i) = λx . {a0 ⊗ · · · ⊗ a�p�i−1 | aj ∈ X(i{v → j})(x)};

it only takes a single argument. This is again because their realizability se-
mantics is designed to synchronize with the set-theoretic semantics ignoring
resource polynomials — especially it interprets �!x≤pA� = �A�. On the other
hand, the bounded quantification computed in (4.4) does not ignore resource
polynomials and indexing, as the domain of (4.4) is the index-dependent prod-
uct

∏
j dom(X(i{v → j})). From this, we conjecture that the semantics of BLL

using the ILEC T over ( ) 
 Ass(A) realizes an index-dependent set-theoretic
semantics of BLL — we leave this semantics as a future work.

5 Conclusion and Related Work

We introduced GBLL, a generalization of Girard et al.’s BLL. We analyzed the
complexity of cut-elimination in GBLL, and gave a translation from CBLL, an
extension of BLL with constraints to GBAL+. We then introduced ILEC as a
categorical structure for interpreting the !-modality of GBLL. The ILEC is a
Idx-graded linear exponential comonad interacting well with a specified indexed
SMCCs. We gave an elementary construction of ILEC using the folding product,
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and a technique to derive its variants by inserting symmetric monoidal comonads.
We gave the semantics of BLL using the folding product on the category of
assemblies of a BCI-algebra, and related with the realizability category studied
in [19,10].

Girard’s BLL has a great influence on the subsequent development of indexed
modalities and implicit complexity theory [16]. Hofmann and Scott introduced
the realizability technique to BLL and semantically proved that BLL characterizes
P-time complexity [19]. Their work was further enriched and studied by Dal Lago
and Hofmann [10]. Gaboardi combined the !-modality involving variable binding
with PCF and showed that the combined system is relatively complete [24].

Bucciarelli and Ehrhard’s indexed linear logic with exponential [9] is one of
the closest systems to GBLL. However, the type of the !-modality is different:
their system derives Δ � !fA from Δ′ � A and an almost injective function
f : Δ′ → Δ; it is a function where each f−1(i) is finite. To relate their system
and GBLL, let us use the finite powerset construction Pfin and convert f into
its inverse f−1 : Δ → Pfin(Δ

′). This exhibits the similarity with GBLL: GBLL
relaxes Pfin to ( )∗, and takes the inverse as the parameter for the !-modality.
The novelty of this work to [9] is that a categorical axiomatization for the !f
modality is identified as an extension of the graded linear exponential comonads
[7,22]. Another novelty is to show that GBLL is enough to encode BLL.

As described in Section 1, the simple form of !-modality !rA is also widely
used in various type systems and programming languages. Examples include:
INTML [30], coeffect calculus [28,7] and its combination with effect systems
[13], Granule language [26], bounded linear type system [14,26], type systems
for the analysis of higher-order model-checking [18,17], a generic BLL-like logic
BSLL over semirings [6], Fuzz type system for function sensitivity and differential
privacy [29,12,3], and many more. A combination of !rA with dependent type
theory called QTT is also introduced in [25] and [4]. Among these systems, each
of [12,26,1] supports 1) full universal and existential, 2) full universal and 3)
partial universal quantification over grades, respectively.

The categorical structure corresponding to the simple form of !-modality ap-
pears in [7,13,22] and is identified as semiring-graded linear exponential comonad.
Breuvart constructed various examples of semiring-graded linear exponential
comonads on relational models of linear logic [6] using his slicing technique. In
this work we replaced semirings to Idx, which may be seen as a multi-object
pseudo-semiring. In the study of graded monad, Orchard et al. generalize the
grading structure from ordered monoids to 2-categories [27]. The main difference
from this work is that their generalized graded monad is defined over a single
category, while an ILEC is defined over an indexed SMCCs.
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Abstract. The logic of Bunched Implications (BI) freely combines ad-
ditive and multiplicative connectives, including implications; however,
despite its well-studied proof theory, proof-search in BI has always been
a difficult problem. The focusing principle is a restriction of the proof-
search space that can capture various goal-directed proof-search proce-
dures. In this paper we show that focused proof-search is complete for BI
by first reformulating the traditional bunched sequent calculus using the
simpler data-structure of nested sequents, following with a polarised and
focused variant that we show is sound and complete via a cut-elimination
argument. This establishes an operational semantics for focused proof-
search in the logic of Bunched Implications.

Keywords: Logic · Proof-search · Focusing · Bunched Implications.

1 Introduction

The Logic of Bunched Implications (BI) [31] is well-known for its applications
in systems modelling [32], especially a particular theory (of a variant of BI)
called Separation Logic [37,23] which has found industrial use in program ver-
ification. In this work, we study an aspect of proof search in BI, relying on its
well-developed and well-studied proof theory [33]. We show that a goal-directed
proof-search procedure known as focused proof-search is complete; that is, if there
is a proof then there is a focused one. Focused proofs are both interesting in the
abstract, giving insight into the proof theory of the logic, and have (for other log-
ics) been a useful modelling technology in applied settings. For example, focused
proof-search forms an operational semantics of the DPLL SAT-solvers [14], logic
programming [29,1,13,7], automated theorem provers [28], and has been success-
ful in providing a meta-theoretic framework in intuitionistic, substructural, and
modal logics [27,30,25].

Syntactically BI combines additive and multiplicative connectives, but un-
like related logics such as Linear Logic (LL) [22], BI takes all the connectives as
primitive. Indeed, it arose from a proof-theoretic investigation on the relation-
ship between conjunction and implication. As a result, sequents in BI have a
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more complicated structure: each implication comes with an associated context-
former. Therefore, in BI contexts are not lists, nor multisets, but instead are
bunches : binary trees whose leaves are formulas and internal nodes context-
formers. Additive composition (Γ ;Δ) admits the structural rules of weakening
and contraction, whereas multiplicative composition (Γ,Δ) denies them. The
principal technical challenges when studying proof-search in BI arise from the in-
teraction between the additive and multiplicative fragments. We overcome these
challenges by restricting the application of structural rules in the sequent calcu-
lus LBI as well as working with a representation of bunches as nested multisets.

Throughout we use the term sequent calculus in a strict sense; that is, mean-
ing a label-free internal sequent calculus, formed in the case of BI by a context
(a bunch) and a consequent (a formula). The term proof-search is consistently
understood to be read as backward reduction within such a system. Although
there is an extensive body of research on systems and procedures for semantics-
based calculi in BI [19,20,16,17,18], there has been comparatively little formal
study on proof-search in the strict sense. One exception is the completeness
result for (unit-simple) uniform proofs [2] which is partially subsumed by the
results herein.

The focusing principle was introduced for Linear Logic [1] and is charac-
terised by alternating focused and unfocused phases of goal-directed proof-search.
The unfocused phase comprises rules which are safe to apply (i.e. rules where
provability is invariant); conversely, the focused phase contains the reduction of
a formula and its sub-formulas where potentially invalid sequents may arise, and
backtracking may be required. During focused proof-search the unfocused phases
are performed eagerly, followed by controlled goal-directed focused phases, until
safe reductions are available again. We say that the focusing principle holds when
every provable sequent has a focused proof. This alternation can be enforced by
a mechanism based on a partition of the set of formulas into two classes, positive
and negative, which correspond to safe behaviour on the left and right respec-
tively; that is, for negative formulas provability is invariant with respect to the
application of a right rule, and for positive formulas, of a left rule, but in the
other cases the application may result in invalid sequents.

The original proof of the focusing principle in Linear Logic was via long
and tedious permutations of rules [1]. In this paper, we use for BI a different
methodology, originally presented in [24], which has since been implemented in a
variety of logics [25,5,6] and proof systems [13]. The method is as follows: given a
sequent calculus, first one polarises the syntax according to the positive/negative
behaviours; second, one gives a focused variation of the sequent calculus where
the control flow of proof-search is managed by polarisation; third, one shows
that this system admits cut (the only non-analytic rule); and, finally, one shows
that in the presence of cut the original sequent calculus may be simulated in
the focused one. When the polarised system is complete, the focusing principle
holds.

In LBI certain rules (the structural rules) have no natural placement in ei-
ther the focused or the unfocused phases of proof-search. Thus, a design choice
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must be made: to eliminate/constrain these rules, or to permit them without
restriction. The first gives a stricter control proof-search regime, but the latter
typically achieves a more well-behaved proof theoretic meta-theory. In this pa-
per, we choose the former as our motivation is to study computational behaviour
of proof-search in BI, the latter being recovered by familiar admissibility results.
The only case where confinement is not possible is the exchange rule. In standard
sequent calculi the exchange rule is made implicit by working with a more con-
venient data-structure such as multisets as opposed to lists; however, the specific
structure of bunches in BI means that a more complex alternative is required.
The solution presented is to use nested multisets of two types (additive and
multiplicative) corresponding to the two different context-formers/conjunctions.

In Section 2 we present the logic of Bunched Implications; in particular,
Section 2.1 and Section 2.2 contain the background on BI (the syntax and sequent
calculus respectfully); meanwhile, Section 2.3 gives representation of bunches as
nested multisets. Section 3 contains the focused system: first, in Section 3.1 we
introduce the polarised syntax; second, in Section 3.2 we introduce the focused
sequents calculus and some metatheory, most importantly the cut-admissibility
result; finally, in Section 3.3 we give the completeness theorem, from which the
validity of the focusing principle follows as a corollary. We conclude in Section 4
with some further discussion and future directions.

2 Re-presentations of BI

2.1 Traditional Syntax

The logic BI has a well-studied metatheory admitting familiar categorical, alge-
braic, and truth-functional semantics which have the expected dualities
[34,17,33,11,32]. In practice, it is the free combination (or, more precisely, the
fibration [15,33]) of intuitionistic logic (IL) and the multiplicative fragment of
intuitionistic linear logic (MILL), which imposes the presence of two distinct
context-formers in its sequent presentation. That is to say, the two conjunctions
∧ and ∗ are represented at the meta-level by context-formers ; and , in place of
the usual commas for IL and MILL respectively.

Definition 1 (Formula). Let P be a denumerable set of propositional letters.
The formulas of BI, denoted by small Greek letters (ϕ,ψ, χ, . . .), are defined by
the following grammar, where A ∈ P,

ϕ ::= � | ⊥ | �∗ | A | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) | (ϕ ∗ ϕ) | (ϕ −∗ ϕ)

If ◦ ∈ {∧,∨,→,�} then it is an additive connective and if ◦ ∈ {∗,−∗,�∗} then
it is a multiplicative connective. The set of all formulas is denoted F.

Definition 2 (Bunch). A bunch is constructed from the following grammar,
where ϕ ∈ F,

Δ ::= ϕ | ∅+ | ∅× | (Δ;Δ) | (Δ,Δ)
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The symbols ∅+ and ∅× are the additive and multiplicative units respectively,
and the symbols ; and , are the additive and multiplicative context-formers re-
spectively. A bunch is basic if it is a formula, ∅+, or ∅× and complex otherwise.
The set of all bunches is denoted B, the set of complex bunches with additive root
context-former by B+, and the set of complex bunches with multiplicative root
context-former by B×.

For two bunches Δ,Δ′ ∈ B if Δ′ is a sub-tree of Δ, it is called a sub-bunch. We
may use the standard notation Δ(Δ′) (despite its slight inpracticality) to denote
that Δ′ is a sub-bunch of Δ, in which case Δ(Δ′′) is the result of replacing the
occurrence of Δ′ by Δ′′. If δ is a sub-bunch of Δ, then the context-former ◦ is
said to be its principal context-former in Δ(Δ′ ◦ δ) (and Δ(δ ◦Δ′)).

Example 3. Let ϕ, ψ and χ be formulas, and let Δ = (ϕ, (χ;∅+)); (ψ; (ψ;∅×)).
The bunch may be written for example as Δ(ϕ, (χ;∅+)) which means that we
can have Δ(ϕ;ϕ) = (ϕ;ϕ); (ψ; (ψ;∅×)).

Definition 4 (Bunched Sequent). A bunched sequent is a pair of a bunch Δ,
called the context, and a formula ϕ, denoted Δ ⇒ ϕ.

Bunches are intended to be considered up-to coherent equivalence (≡). It is the
least relation satisfying:

– Commutative monoid equations for ; with unit ∅+,
– Commutative monoid equations for , with unit ∅×,
– Congruence: if Δ′ ≡ Δ′′ then Δ(Δ′) ≡ Δ(Δ′′).

It will be useful to have a measure on sub-bunches which can identify their
distance from the root node.

Definition 5 (Rank). If Δ′ is a sub-bunch of Δ, then ρ(Δ′) is the number of
alternations of additive and multiplicative context-formers between the principal
context-former of Δ′, and the root context-former of Δ.

Let Δ be a complex bunch, we use Δ′ ∈ Δ to denote that Δ′ is a (proper)
top-most sub-bunch; that is, Δ is a sub-bunch satisfying Δ �= Δ′ but ρ(Δ′) = 0.

Example 6. Let Δ be as in Example 3, then ρ(∅+) = 2 whereas ρ(∅×) = 0;
hence, ψ, ∅× and (ϕ, (χ,∅×)) ∈ Δ. Consider the parse-tree of Δ:

;

, ;

ϕ ; ψ ;

χ ∅+ ψ ∅×

Reading upward from ∅+ one encounters first ; which changes into , and then
back to ; so the rank is 2; whereas counting up from ∅× one only encounters ;
so the rank is 0.
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A ⇒ A
Ax

Δ(⊥) ⇒ ϕ
⊥L ∅× ⇒ �∗ �∗

R ∅+ ⇒ � �R

Δ′ ⇒ ϕ Δ(Δ′′, ψ) ⇒ χ

Δ(Δ′,Δ′′, ϕ −∗ ψ) ⇒ χ
−∗L Δ,ϕ ⇒ ψ

Δ ⇒ ϕ −∗ ψ
−∗R

Δ(ϕ,ψ) ⇒ χ

Δ(ϕ ∗ ψ) ⇒ χ
∗L Δ ⇒ ϕ Δ′ ⇒ ψ

Δ,Δ′ ⇒ ϕ ∗ ψ ∗R Δ(∅×) ⇒ χ

Δ(�∗) ⇒ χ
�∗

L

Δ(ϕ;ψ) ⇒ χ

Δ(ϕ ∧ ψ) ⇒ χ
∧L

Δ ⇒ ϕ Δ′ ⇒ ψ

Δ;Δ′ ⇒ ϕ ∧ ψ
∧R

Δ(∅+) ⇒ χ

Δ(�) ⇒ χ
�L

Δ(ϕ) ⇒ χ Δ(ψ) ⇒ χ

Δ(ϕ ∨ ψ) ⇒ χ
∨L

Δ ⇒ ϕ

Δ ⇒ ϕ ∨ ψ
∨R1

Δ ⇒ ψ

Δ ⇒ ϕ ∨ ψ
∨R2

Δ′ ⇒ ϕ Δ(Δ′′;ψ) ⇒ χ

Δ(Δ′;Δ′′;ϕ → ψ) ⇒ χ
→L

Δ;ϕ ⇒ ψ

Δ ⇒ ϕ → ψ
→R

Δ(Δ′;Δ′) ⇒ χ

Δ(Δ′) ⇒ χ
C

Δ(Δ′) ⇒ χ

Δ(Δ′;Δ′′) ⇒ χ
W

Δ ⇒ χ

Δ′ ⇒ χ
E(Δ≡Δ′)

Δ′ ⇒ ϕ Δ(ϕ) ⇒ χ

Δ(Δ′) ⇒ χ
cut

Fig. 1. Sequent Calculus LBI

2.2 Sequent Calculus

The proof theory of BI is well-developed including familiar Hilbert, natural de-
duction, sequent calculi, tableaux systems, and display calculi [33,17,3]. In the
foregoing we restrict attention to the sequent calculus as it more amenable to
studying proof-search as computation, having local correctness while enjoying
the completeness of analytic proofs.

Definition 7 (System LBI). The bunched sequent calculus LBI is composed of
the rules in Figure 1.

The classification of ∧ as additive may seem dubious upon reading the ∧R rule,
but the designation arises from the use of the structural rules; that is, the ∧R

and →R rules may be replaced by additive variants without loss of generality.
The presentation in Figure 1 is as in [33] and simply highlights the nature of
the additive and multiplicative context-formers. Nonetheless, the choice of rule
does affect proof-search behaviours, and the consequences are discussed in more
detailed in Section 3.1.

Lemma 8 (Cut-elimination). If ϕ has a LBI-proof, then it has a cut-free LBI-
proof, i.e., a proof with no occurence of the cut rule.

Throughout, unless specified otherwise, we take proof to mean cut-free proof.
Moreover, if L is a sequent calculus we use �L Δ ⇒ ϕ to denote that there is an
L-proof of Δ ⇒ ϕ. Further, if R is a rule, then we may denote L+ R to denote
the sequent calculus combining the rules of L with R.

The following result, that a generalised version of the axiom is derivable in
LBI, will allow for such sequents to be used in proof-construction later on.
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Lemma 9. For any formula ϕ, �LBI ϕ ⇒ ϕ.

Proof. Follows from induction on size of ϕ. ��

The remainder of this section is the meta-theory required to control the
structural rules, which pose the main issue to the study of proof-search in BI.

Lemma 10. The following rules are derivable in LBI, and replacing W with
them does not affect the completeness of the system.

Δ;A ⇒ A
Ax′

Δ;∅× ⇒ �∗ �∗′
R Δ;∅+ ⇒ � �′

R

Δ ⇒ ϕ Δ′ ⇒ ψ

(Δ,Δ′);Δ′′ ⇒ ϕ ∗ ψ
∗′R

Δ′ ⇒ ϕ Δ(Δ′′, ψ)⇒ χ

Δ(Δ′, Δ′′, (Δ′′′;ϕ −∗ ψ))⇒ χ
−∗′L

Proof. We can construct in LBI derivations with the same premisses and con-
clusion as these rules by use of the structural rules. Let LBI′ be LBI without
W but with these new rules (retaining also ∗R,−∗L,�∗

R,�R, and Ax), then W is
admissible in LBI′ using standard permutation argument. ��

One may regard the above modification to LBI as forming a new calculus, but
since all the new rules are derivable it is really a restriction of the calculus, in the
sense that all proofs in the new system have equivalent proofs in LBI differing
only by explicitly including instances of weakening.

2.3 Nested Calculus

Originally, sequents in the calculi for classical and intuitionistic logics (LK and LJ,
respectively) were introduced as lists, and a formal exchange rule was required to
permute elements when needed for a logical rule to be applied [21]. However, in
practice, the exchange rule is often suppressed, and contexts are simply presented
as multisets of formulas. This reduces the number of steps/choices being made
during proof-search without increasing the complexity of the underlying data
structure. Bunches have considerably more structure than lists, but a quotient
with respect to coherent equivalence can be made resulting in two-sorted nested
multisets; this was first suggested in [12], though never formally realised.

Definition 11 (Two-sorted Nest). Nests (Γ ) are formulas or multisets, as-
cribed either additive (Σ), or multiplicative (Π) kind, containing nests of the
opposite kind:

Γ := Σ | Π Σ := ϕ | {Π1, ...,Πn}+ Π := ϕ | {Σ1, ..., Σn}×

The constructors are multiset constructors which may be empty in which case
the nests are denoted ∅+ and ∅× respectively. No multiset is a singleton; and
the set of all nests is denoted B/≡.
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Given nests Λ and Γ , we write Λ ∈ Γ to denote either that Λ = Γ , if Γ is a
formula, or that Λ is an element of the multiset Γ otherwise. Furthermore, we
write Λ ⊆ Γ to denote ∀γ ∈ B/≡ if γ ∈ Λ then γ ∈ Γ .

We will depart from the standard, yet impractical subbunch notation, and
adopt a context notation for nests instead. We write Γ{·}+ (resp. Γ{·}×) for a
nest with a hole within one of its additive (resp. multiplicative) multisets.The
notation Γ{Λ}+ (resp. Γ{Λ}×), denotes that Λ is a sub-nest of Γ of additive
(resp. multiplicative) kind; we may use Γ{Λ} when the kind is not specified.
In either case Γ{Λ′} denotes the substitution of Λ for Λ′. A promotion in the
syntax tree may be required after a substitution either to handle a singleton or
an improper alternation of constructor types.

Example 12. The following inclusions are valid,

{ϕ , χ }× ∈
{
{ϕ , χ }×, ψ

}
+
⊆

{
{ϕ , χ }×, ψ , ψ ,∅×

}
+
= Γ{{ϕ , χ }×}+

It follow that Γ{{ϕ ,ϕ}+}+ = {ϕ ,ϕ , ψ , ψ ,∅× }+. Note the absence of the
{·}+ constructor after substitution, this is due to a promotion in the syntax
tree to avoid having two nested additive constructors. Similarly, since ∅× de-
notes the empty multiset of multiplicative kind, substituting χ with it gives
{ϕ,ψ , ψ ,∅× }+; that is, first the improper {ϕ,∅×}× becomes {ϕ}×; then, the
resulting singleton {ϕ}× is promoted to ϕ.

Typically we will only be interested in fragments of sub-nests so we have the
following abuse of notation, where ◦ ∈ {+,×}:

Γ{{Π1, ...,Πi}◦, Πi+1, ..,Πn}◦ := Γ{Π1, ...,Πn}◦

The notion of rank has a natural analogue in this setting.

Definition 13 (Depth, Rank). Let ◦ ∈ {+ ,×} be a nest, we define the depth
on B as follows:

δ(ϕ) := 0 δ({Γ1, ..., Γn}◦) := max{δ(Γ1), ..., δ(Γn)}+ 1

The equivalence of the two presentations, bunches and nests, follows from a
moral (in the sense that bunches are intended to be considered modulo congru-
ence) inverse between a nestifying function η and a bunching function β. The
transformation β is simply going from a tree with arbitrary branching to a binary
one, and η is the reverse.

Definition 14 (Canonical Translation). The canonical translation η : B →
B/≡ is defined recursively as follows,

η(Δ) :=

⎧⎪⎨⎪⎩
Δ if Δ ∈ F ∪ {∅+,∅×}
{η(Δ′) ∈ B/≡ | ρ(Δ′) = 1 and Δ′ ∈ B×}+ if Δ ∈ B+

{η(Δ′) ∈ B/≡ | ρ(Δ′) = 1 and Δ′ ∈ B+}× if Δ ∈ B×
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The canonical translation β : B/≡ → B is defined recursively as follows,

β(Γ ) :=

⎧⎪⎨⎪⎩
Γ if Γ ∈ F ∪ {∅+,∅×}
β(Π1); (β(Π2); ...) if Γ = {Π1, Π2, ...}+
β(Σ1), (β(Σ2), ...) if Γ = {Σ1, Σ2, ...}×

Example 15. Applying η to the bunch in Example 3 gives the nest in Example 12:

+

× ψ ψ ∅×

ψ χ

Lemma 16. The translations are inverses up-to congruence; that is,

1. if Δ ∈ B then (β ◦ η)(Δ) ≡ Δ;
2. if Γ ∈ B/≡ then (η ◦ β)(Γ ) ≡ Γ ;
3. let Δ,Δ′ ∈ B, then Δ ≡ Δ′ if and only if η(Δ) = η(Δ′).

Proof. The first two statements follow by induction on the depth (either for
bunches or nests), where one must take care to consider the case of a context
consisting entirely of units. The third statement employs the first in the forward
direction, and proceeds by induction on depth in the reverse direction. ��

Definition 17 (System ηLBI). The nested sequent calculus ηLBI is composed
of the rules in Figure 2, where the metavariables denote possibly empty nests.

Observe the use of metavariable Γ ′ instead of Π (resp. Σ) as sub-contexts in
Figure 2. This allows classes of inferences such as

{Σ0, ..., Σi}× ⇒ ϕ {Σi+1, ..., Σn}× ⇒ ϕ

{Σ0, ..., Σn}× ⇒ ϕ ∗ ψ
∗R

to be captured by a single figure. In practice it implements the abuse of notation
given above:

{{Σ0, ..., Σi}×, {Σi+1, ..., Σn}×}× ⇒ ϕ ∗ ψ

This system is a new and very convenient presentation of LBI, not per se a
development of the proof theory for the logic.

Lemma 18 (Soundness and Completeness of ηLBI). Systems LBI and ηLBI
are equivalent:

Soundness: If �ηLBI Γ ⇒ ϕ then �LBI β(Γ )⇒ ϕ;
Completeness: If �LBI Δ ⇒ ϕ then �ηLBI η(Δ)⇒ ϕ.

Proof. Each claim follows by induction on the context, appealing to Lemma
16 to organise the data structure for the induction hypothesis, without loss of
generality.
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{Γ,A}+ ⇒ A
Ax

Γ{⊥} ⇒ χ
⊥L ∅× ⇒ �∗ �∗

R Γ ⇒ � �R

Γ ′ ⇒ ϕ Γ{Γ ′′, ψ}× ⇒ χ

Γ{Γ ′, Γ ′′, {Γ ′′′, ϕ −∗ ψ}+}× ⇒ χ
−∗L {Γ, ϕ}× ⇒ ψ

Γ ⇒ ϕ −∗ ψ
−∗R

Γ{{ϕ,ψ}×} ⇒ χ

Γ{ϕ ∗ ψ} ⇒ χ
∗L Γ ⇒ ϕ Γ ′ ⇒ ψ

{{Γ, Γ ′}× , Γ ′′}+ ⇒ ϕ ∗ ψ ∗R Γ{∅×} ⇒ χ

Γ{�∗} ⇒ χ
�∗

L

Γ{{ϕ,ψ}+} ⇒ χ

Γ{ϕ ∧ ψ} ⇒ χ
∧L

Γ ⇒ ϕ Γ ⇒ ψ

Γ ⇒ ϕ ∧ ψ
∧R

Γ{∅+} ⇒ χ

Γ{�} ⇒ χ
�L

Γ{ϕ} ⇒ χ Γ{ψ} ⇒ χ

Γ{ϕ ∨ ψ} ⇒ χ
∨L

Γ ⇒ ϕ

Γ ⇒ ϕ ∨ ψ
∨R1

Γ ⇒ ψ

Γ ⇒ ϕ ∨ ψ
∨R2

Γ ′ ⇒ ϕ Γ{Γ ′, ψ}+ ⇒ χ

Γ{Γ ′, ϕ → ψ}+ ⇒ χ
→L

{Γ, ϕ}+ ⇒ ψ

Γ ⇒ ϕ → ψ
→R

Γ{Γ ′, Γ ′}+ ⇒ χ

Γ{Γ ′}+ ⇒ χ
C

Fig. 2. Sequent Calculus ηLBI

Example 19. The following is a proof in ηLBI.

A ⇒ A
Ax {B,C}+ ⇒ B

Ax

{A, {B,C}+}× ⇒ A ∗B
∗R

{A, (B ∧ C)}× ⇒ A ∗B
∧L

A ⇒ A
Ax

{B,C}+ ⇒ C
Ax

B ∧ C ⇒ C
∧L

{A, (B ∧ C)}× ⇒ A ∗ C
∗R

{A, (B ∧ C)}× ⇒ (A ∗B) ∧ (A ∗ C)
∧R

A ∗ (B ∧ C)⇒ (A ∗B) ∧ (A ∗ C)
∗L

∅× ⇒ (A ∗ (B ∧ C)) −∗ ((A ∗B) ∧ (A ∗ C))
−∗R

We expect no obvious difficulty in studying focused proof-search with bunches
instead of nested multisets; the design choice is simply to reduce the complexity
of the argument by pushing all uses of exchange (E) to Lemma 18, rather than
tackle it at the same time as focusing itself. In particular, working without
the nested system would mean working with a weaker notion of focusing since
the exchange rule must then be permissible during both focused and unfocused
phases of reduction.

3 A Focused System

At no point in this section will we refer to bunches, thus the variable Δ, so far
reserved for elements of B, is re-appropriated as an alternative to Γ .

3.1 Polarisation

Polarity in the focusing principle is determined by the invariance of provability
under application of a rule, that is, by the proof rules themselves. One way the
distinction between positive and negative connectives is apparent is when their
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rule behave either synchronously or asynchronously. For example, the ∗R and −∗L
highlight the synchronous behaviour of the multiplicative connectives since the
structure of the context affects the applicability of the rule. Displaying such a
synchronous behaviour on the left makes −∗ a negative connective, while having
it on the right makes ∗ a positive connective.

Another way to characterise the polarity of a connective is the study of
the inveribility properties of the corresponding rules. For example, consider the
inverses of the ∨L rule,

Γ{ϕ ∨ ψ} ⇒ χ

Γ{ϕ} ⇒ χ
∨inv
L1

Γ{ϕ ∨ ψ} ⇒ χ

Γ{ψ} ⇒ χ
∨inv
L2

They are derivable in LBI with cut (below – the left branch being closed using
Lemma 9) and therefore admissible in LBI without cut (by Lemma 8).

ϕ ⇒ ϕ

ϕ ⇒ ϕ ∨ ψ
∨R

Γ{ϕ ∨ ψ} ⇒ χ

Γ{ϕ} ⇒ χ
cut

ψ ⇒ ψ

ψ ⇒ ϕ ∨ ψ
∨R

Γ{ϕ ∨ ψ} ⇒ χ

Γ{ψ} ⇒ χ
cut

This means that provability is invariant in general upon application of ∨L since
it can always be reverted if needed, as follows

Γ{ϕ ∨ ψ} ⇒ χ

Γ{ϕ} ⇒ χ
∨inv
L1

Γ{ϕ ∨ ψ} ⇒ χ

Γ{ψ} ⇒ χ
∨inv
L2

Γ{ϕ ∨ ψ} ⇒ χ
∨L

Note however that dual connectives do not necessarily have dual behaviours
in terms of provability invariance, on the left and on the right. For example,
consider all the possible rules for ∧, of which some qualify as positive and others
as positive.

Γ{ϕ} ⇒ χ

Γ{ϕ ∧ ψ} ⇒ χ
∧−
L1

Γ{ψ} ⇒ χ

Γ{ϕ ∧ ψ} ⇒ χ
∧−
L2

Γ ⇒ ϕ Γ ⇒ ψ

Γ ⇒ ϕ ∧ ψ
∧−
R

Γ{{ϕ,ψ}+} ⇒ χ

Γ{ϕ ∧ ψ} ⇒ χ
∧+
L

Γ ⇒ ϕ Γ{{ϕ ∧ ψ}+} ⇒ χ

{Γ,Δ}+ ⇒ ϕ ∧ ψ
∧+
R

All of these rules are sound, and replacing the conjunction rules in LBI with
any pair of a left and right rule will result in a sound and complete system.
Indeed, the rules are inter-derivable when the structural rules are present, but
otherwise they can be paired to form two sets of rules which have essentially
different proof-search behaviours. That is, the rules in the top-row make ∧ neg-
ative while the bottom row make ∧ positive. Each conjunction also comes with
an associated unit, that is, �− for negative conjunctio and �+ for positive con-
junction. We choose to add all of them to our system in order to have access to
those different proof search behaviours at will.

Finally, the polarity of the propositional letters can be assigned arbitrarily
as long as only once for each.
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Definition 20 (Polarised Syntax). Let P+ � P− be a partition of P, and let
A+ ∈ P+ and A− ∈ P−, then the polarised formulas are defined by the following
grammar,

P,Q ::= L | P ∨Q | P ∗Q | P ∧+ Q | �+ | �∗ | ⊥ L ::= ↓N | A+

N,M ::= R | P → N | P −∗ N | N ∧− M | �− R ::= ↑P | A−

The set of positive formulas P is denoted F+; the set of negative formulas N
is denoted F−; and the set of all polarised formulas is denoted F±. The sub-
classifications L and R are left-neutral and right-neutral formulas respectfully.

The shift operators have no logical meaning; they simply mediate the exchange
of polarity, and thus the shifting into a new phase of proof-search. Consequently,
to reduces cases in subsequent proofs, we will consider formulas of the form ↑↓N
and ↓↑P , but not ↓↑↓N , ↓↑↓↑P , etc.

Definition 21 (Depolarisation). Let ◦ ∈ {∨ , ∗ ,→ ,−∗}, and let A+ ∈ P+ and
A− ∈ P−, then the depolarisation function $·% : F± → F is defined as follows:

$�+% := $�−% := � $⊥% := ⊥ $�∗% := �∗

$A+% := $A−% := A $↑ϕ% := $↓ϕ% := $ϕ%
$ϕ ◦ ψ% := $ϕ% ◦ $ψ% $ϕ ∧+ ψ% := $ϕ ∧− ψ% := $ϕ% ∧ $ψ%

Since proof-search is controlled by polarity, the construction of sequents in the
focused system must be handled carefully to avoid ambiguity.

Definition 22 (Polarised Sequents). Positive and neutral nests, denoted by

Γ and
−→
Γ resp., are defined according to the following grammars

Γ := Σ | Π Σ := P | {Π1, ...,Πn}+ Π := P | {Σ1, ..., Σn}×−→
Γ :=

−→
Σ | −→Π −→

Σ := L | {−→Π 1, ...,
−→
Πn}+

−→
Π := L | {−→Σ 1, ...,

−→
Σn}×

A pair of a polarised nest and a polarised formula is a polarised sequent if it
falls into one of the following cases

Γ ⇒ N | −→
Γ ⇒ 〈P 〉 | −→

Γ {〈N〉} ⇒ R

The decoration 〈ϕ〉 indicates that the formula is in focus; that is, it is a positive
formula on the right, or a negative formula on the left. Of the three possible
cases for well-formed polarised sequents, the first may be called unfocused, with

the particular case of being neutral when of the form
−→
Γ ⇒ R; and the latter

two may be called focused.

Definition 23 (Depolarised Nest). The depolarisation map extends to po-
larised nests $·% : B/≡± → B/≡ as follows:

${Π1, ...,Πn}+% = {$Π1%, ..., $Πn%}+ ${Σ1, ..., Σn}×% = {$Σ1%, ..., $Σn%}×
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Focused

{Γ,A+}+ ⇒ 〈A+〉 Ax+ {Γ, 〈A−〉}+ ⇒ A−
Ax− −→

Γ ⇒ 〈�+〉
�+

R

{−→Γ , ↓↑P}+ ⇒ 〈P 〉
P

{−→Γ , 〈N〉}+ ⇒ ↑↓N
N

{−→Γ ,∅×}+ ⇒ 〈�∗〉
�∗

R

−→
Γ {〈Ni〉}+ ⇒ R

−→
Γ {〈N1 ∧− N2〉}+ ⇒ R

∧−
Li

−→
Γ ⇒ 〈Pi〉

−→
Γ ⇒ 〈P1 ∨ P2〉

∨Ri

−→
Γ {∅+} ⇒ R

−→
Γ {〈�−〉} ⇒ R

�−
L

−→
Γ ⇒ 〈P 〉 −→

Γ ′ ⇒ 〈Q〉
{−→Γ ,

−→
Γ ′}+ ⇒ 〈P ∧+ Q〉

∧+
R

−→
Δ ⇒ 〈P 〉 −→

Γ {−→Δ, 〈N〉}+ ⇒ R
−→
Γ {−→Δ, 〈P → N〉}+ ⇒ R

→L

−→
Γ ⇒ 〈P 〉 −→

Γ ′ ⇒ 〈Q〉
{{−→Γ ,

−→
Γ ′}×,−→Γ ′′}+ ⇒ 〈P ∗Q〉

∗R
−→
Δ ⇒ 〈P 〉 −→

Γ {−→Δ ′, 〈N〉}× ⇒ R
−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′, 〈P −∗ N〉}+}× ⇒ R

−∗L

Neutral
−→
Γ ⇒ 〈P 〉
−→
Γ ⇒ ↑P

↑R
−→
Γ {P} ⇒ R

−→
Γ {〈↑P 〉} ⇒ R

↑L
−→
Γ ⇒ N−→

Γ ⇒ 〈↓N〉
↓R

−→
Γ {〈N〉} ⇒ R
−→
Γ {↓N} ⇒ R

↓L
−→
Γ {{−→Δ,

−→
Δ}+} ⇒ R

−→
Γ {−→Δ} ⇒ R

C

Unfocused

Γ ⇒ �− �−
R Γ{⊥} ⇒ N

⊥L

Γ ⇒ N Γ ⇒ M

Γ ⇒ N ∧− M
∧−

R

Γ{P} ⇒ N Γ{Q} ⇒ N

Γ{P ∨Q} ⇒ N
∨L

Γ{{P,Q}+} ⇒ N

Γ{P ∧+ Q} ⇒ N
∧+

L

{Γ, P}+ ⇒ N

Γ ⇒ P → N
→R

Γ{∅+} ⇒ N

Γ{�+} ⇒ N
�+

L

Γ{{P,Q}×} ⇒ N

Γ{P ∗Q} ⇒ N
∗L {Γ, P}× ⇒ N

Γ ⇒ P −∗ N
−∗R

Γ{∅×} ⇒ N

Γ{�∗} ⇒ N
�∗

L

Fig. 3. System fBI

3.2 Focused Calculus

We may now give the focused system. That is, the operational semantics for
focused proof-search in LBI. All the rules, with the exception of P and N, are
polarised versions of the rules from ηLBI.

Definition 24 (System fBI). The focused system fBI is composed of the rules
on Figure 3.

Note the absence of a cut-rule, this is because the above system is intended
to encapsulate precisely focused proof-search. Below we show that a cut-rule is
indeed admissible, but proofs in fBI+cut are not necessarily focused themselves.
Here the distinction between the methodologies for establishing the focusing
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principle becomes present since one may show completeness without leaving fBI
by a permutation argument instead of a cut-elimination one.

The P and N rules will allow us to move a formula from one side to another
during the proof of the completeness of fBI + cut (Lemma 34).The depolarised
version are not directly present in LBI, but are derivable in LBI (Lemma 9).
However, the way they are focused renders them not provable in fBI because it
forces one to begin with a potentially bad choice; for example, A ∨ B ⇒ A ∨ B
has no proof beginning with ∨R. In practice, they are a feature rather than a
bug since they allow one to terminate proof-search early, without unnecessary
further expansion of the axiom. In related works, such as [6,5], the analogous
rules are eliminated by initially working with a weaker notion of focused proof-
search, and it is reasonable to suppose that the same may be true for BI. We
leave this to future investigation.

Note also that, although it is perhaps proof-theoretically displeasing to in-
corporate weakening into the operational rules as in −∗′L and ∗′R, it has good com-
putational behaviour during focused proof-search since the reduction of ϕ −∗ ψ
can only arise out of an explicit choice made earlier in the computation.

Soundness follows immediately from the depolarisation map; that is, the
interpretation of polarised sequents as nested sequents, and hence proofs in fBI
actually are focused proofs in ηLBI.

Theorem 25 (Soundness of fBI). Let Γ be a polarised nest and N a negative
formula. If �fBI Γ ⇒ N then �ηLBI $Γ % ⇒ $N%

Proof. Every rule in fBI except the shift rules, as well as the P and N axioms,
become a rule in ηBI when the antecedent(s) and consequent are depolarised.
Instance of the shift rule can be ignored since the depolarised versions of the
consequent and antecedents are the same. Finally, the depolarised versions of P
and N follow from Lemma 9 with the use of some weakening. ��

Example 26. Consider the following proof in fBI, we suppose here that proposi-
tional letters A and C are negative, but B is positive.

〈A〉 ⇒ A
Ax−

↓A ⇒ A
↓L

↓A ⇒ 〈↓A〉
↓R B ⇒ 〈B〉 Ax+

{↓A,B}× ⇒ 〈↓A ∗B〉
∗R

{↓A, B}× ⇒ ↑(↓A ∗B)
↑R

{↓A, 〈↑B〉}× ⇒ ↑(↓A ∗B)
↑L

{↓A, 〈↑B ∧− C〉}× ⇒ ↑(↓A ∗B)
∧−
L1

{↓A, ↓(↑B ∧− C)}× ⇒ ↑(↓A ∗B)
↑L (1)

〈A〉 ⇒ A
Ax−

↓A ⇒ A
↓L

↓A ⇒ 〈↓A〉
↓R

〈C〉 ⇒ C
Ax−

〈↑B ∧− C〉 ⇒ C
∧−
L2

↓(↑B ∧− C)⇒ C
↓L

↓(↑B ∧− C)}× ⇒ 〈↓C〉
↓R

{↓A, ↓(↑B ∧− C)}× ⇒ 〈↓A ∗ ↓C〉
∗R

{↓A, ↓(↑B ∧− C)}× ⇒ ↑(↓A ∗ ↓C)
↑R (2)

{↓A, ↓(↑B ∧− C)}× ⇒ ↑(↓A ∗B) ∧− ↑(↓A ∗ ↓C)
∧−
R

↓A ∗ ↓(↑B ∧− C)⇒ ↑(↓A ∗B) ∧− ↑(↓A ∗ ↓C)
∗L

∅× ⇒ (↓A ∗ ↓(↑B ∧− C)) −∗ (↑(↓A ∗B) ∧− ↑(↓A ∗ ↓C))
−∗R

It is a focused version of the proof given in Example 19. Observe that the only
non-deterministic choices are which formula to focus on, such as in steps (1) and
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(2), where different choices have been made for the sake of demonstration. The
point of focusing is that only at such points do choices that affect termination
occur. The assignment of polarity to the propositional letters is what forced
the shape of the proof; for example, if B had been negative the above would
not have been well-formed. This phenomenon is standarly observed in focused
systems (e.g. [7]).

We now introduce the tool which will allow us to show that if there is a proof
of a sequent (a priori unstructured), then there is necessarily a focused one.

Definition 27. All instances of the following rule where the sequents are well-
formed are instances of cut, where −→ϕ denotes that ϕ is possibly prenexed with
an additional shift

Δ ⇒ ϕ Γ{−→ϕ } ⇒ χ

Γ{Δ} ⇒ χ
cut

Admissibility follows from the usual argument, but within the focused system;
that is, through the upward permutation of cuts until they are eliminated in the
axioms or are reduced in some other measure.

Definition 28 (Good and Bad Cuts). Let D be a fBI+ cut proof, a cut is a
quadruple 〈L,R, C, ϕ〉 where L and R are the premises to a cut rule, concluding
C in D, and ϕ is the cut-formula. They are classified as follows:

Good - If ϕ is principal in both L and R.
Bad - If ϕ is not principal in one of L and R.

Type 1: If ϕ is not principal in L.
Type 2: If ϕ is not principal in R.

Definition 29 (Cut Ordering). The cut-rank of a cut 〈L,R, C, ϕ〉 in a proof
is the triple 〈cut-complexity, cut-duplicity, cut-level〉, where the cut-complexity is
the size of ϕ, the cut-duplicity is the number of contraction instances above the
cut, the cut-level is the sum of the heights of the sub-proofs concluding L and R.

Let D and D′ be two fBI + cut proofs, let σ and σ′ denote their multiset of
cuts respectively. Proofs are ordered by D ≺ D′ ⇐⇒ σ < σ′, where < is the
multiset ordering derived from the lexicographic ordering on cut-rank.

It follows from a result in [10] that the ordering on proofs is a well-order, since
the ordering on cuts is a well-order.

Lemma 30 (Good Cuts Elimination). Let D be a fBI+cut proof of S; there
is a fBI+ cut proof D′ of S containing no good cuts such that D′ ( D.

Proof. Let D be as in hypothesis, if it contains no good cuts then D = D′ gives
the desired proof. Otherwise, there is at least one good cut 〈L,R, C, ϕ〉. Let ∂ be
the sub-proof in D concluding C, then there is a transformation ∂ → ∂′ where
∂′ is a fBI + cut proof of S with ∂′ ≺ ∂ such that the multiset of good cuts in
∂′ is smaller (with respect to ≺) than the multiset of good cuts in ∂. Since ≺
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is a well-order indefinitely replacing ∂ with ∂′ in D for various cuts yields the
desired D′.

The key step is that a cut of a certain cut-complexity is replaced by cuts of
lower cut-complexity, possibly increasing the cut-duplicity or cut-level of other
cuts in the proof, but not modifying their complexity.

{−→Γ ′, A+}+ ⇒ 〈A+〉
Ax+ −→

Γ {A+} ⇒ 〈A+〉
−→
Γ {{−→Γ ′, A+}+} ⇒ 〈A+〉

cut
→

−→
Γ {A+} ⇒ 〈A+〉

−→
Γ {{−→Γ ′, A+}+} ⇒ 〈A+〉

W

{−→Δ ′′′, P}× ⇒ N
−→
Δ ′′′ ⇒ P −∗ N

−∗R
−→
Δ ⇒ 〈P 〉 Γ{−→Δ ′, 〈N〉}× ⇒ R

−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′, 〈P −∗ N〉}+}× ⇒ R

−∗L

−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′,

−→
Δ ′′′}+}× ⇒ R

cut

→

−→
Δ ⇒ 〈P 〉

{−→Δ ′′, P}× ⇒ N
−→
Γ {−→Δ ′, 〈N〉}× ⇒ R

−→
Γ {−→Δ,

−→
Δ ′′, P}× ⇒ R

cut

−→
Γ {−→Δ,

−→
Δ ′,

−→
Δ ′′}× ⇒ R

cut

−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′,

−→
Δ ′′′}+}× ⇒ R

W

We denote by a double-line the fact that we do not actually use a weakening,
but only the fact that it is admissible in fBI by construction (Lemma 10). ��

Lemma 31 (Bad Cuts Elimination). Let D be a fBI + cut proof of S that
contains only one cut which is bad, then there is a fBI+ cut proof D′ of S such
that D′ ≺ D.

Proof. Without loss of generality suppose the cut is the last inference in the
proof, then it may be replaced by other cuts whose cut-level or cut-duplicity is
smaller, but with same cut-complexity.

First we consider bad cuts when L and R are both axioms. There are no
Type 1 bad cuts on axioms as the formula is always principal, meanwhile the
Type 2 bad cuts can trivially be permuted upwards or ignored; for example,

{−→Δ ′′′, A+}+ ⇒ 〈A+〉
Ax+

−→
Δ ⇒ 〈P 〉 −→

Γ {−→Δ ′, 〈N〉}× ⇒ R
−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′, A+, 〈P −∗ N〉}+}× ⇒ R

−∗L

−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′,

−→
Δ ′′′, A+, 〈P −∗ N〉}+}× ⇒ R

cut

→

−→
Δ ⇒ 〈P 〉 −→

Γ {−→Δ ′, 〈N〉}× ⇒ R
−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′, A+, 〈P −∗ N〉}+}× ⇒ R

−∗L

−→
Γ {−→Δ,

−→
Δ ′, {−→Δ ′′,

−→
Δ ′′′, A+, 〈P −∗ N〉}+}× ⇒ R

W

Here again we are using an appropriate version of Lemma 10.
For the remaining cases the cuts are commutative in the sense that they may

be permuted upward thereby reducing the cut-level. An example is given below.

−→
Δ{〈N1〉} ⇒ M

−→
Δ{〈N1 ∧− N2〉} ⇒ M

∧−
L1 −→

Γ {M} ⇒ R
−→
Γ {−→Δ{〈N1 ∧− N2〉}} ⇒ R

cut
→

Δ{〈N1〉} ⇒ M Γ{M} ⇒ R

Γ{Δ{〈N1〉}} ⇒ R
cut

Γ{Δ{〈N1 ∧− N2〉}} ⇒ R
∧−
L1
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The exceptional case is the interaction with contraction where the cut is re-
placed by cuts of possibly equal cut-level, but cut-duplicity decreases.

−→
Δ ′ ⇒ 〈L〉

−→
Γ {{−→Δ{L},−→Δ{L}}+} ⇒ R

−→
Γ {−→Δ{L}} ⇒ R

C

−→
Γ {−→Δ{−→Δ ′}} ⇒ R

cut

→

−→
Δ ′ ⇒ 〈L〉

−→
Δ ′ ⇒ 〈L〉 −→

Γ {{−→Δ{L},−→Δ{L}}+} ⇒ R
−→
Γ {{−→Δ{−→Δ ′},−→Δ{L}}+} ⇒ R

cut

−→
Γ {{−→Δ{−→Δ ′},−→Δ{−→Δ ′}}+} ⇒ R

cut

−→
Γ {−→Δ{−→Δ ′}} ⇒ R

C

��

Theorem 32 (Cut-elimination in fBI). Let Γ be a positive nest and N a
negative formula. Then, �fBI Γ ⇒ N if and only if �fBI+cut Γ ⇒ N .

Proof. (⇒) Trivial as any fBI-proof is a fBI + cut-proof. (⇐) Let D be a fBI +
cut-proof of Γ ⇒ N , if it has no cuts then it is a fBI-proof so we are done.
Otherwise, there is at least one cut, and we proceed by well-founded induction
on the ordering of proofs and sub-proofs of D with respect to ≺.

Base Case. Assume D is minimal with respect to ≺ with at least one cut;
without loss of generality, by Lemma 30, assume the cut is bad. It follows from
Lemma 31 that there is a proof strictly smaller in ≺-ordering, but this proof
must be cut-free as D is minimal.

Inductive Step. Let D be as in the hypothesis, then by Lemma 30 there
is a proof ∂ of Γ ⇒ N containing no good cuts such that D′ ( D. Either D′

is cut-free and we are done, or it contains bad cuts. Consider the topmost cut,
and denote the sub-proof by ∂, it follows from Lemma 31 that there is a proof
∂′ of the same sequent such that ∂′ ≺ ∂. Hence, by inductive hypothesis, there
is a cut-free proof the sequent and replacing ∂ by this proof in D gives a proof
of Γ ⇒ ϕ strictly smaller in ≺-ordering, thus by inductive hypothesis there is a
cut-free proof as required. ��

3.3 Completeness of fBI

The completeness theorem of the focused system, the operational semantics, is
with respect to an interpretation (i.e. a polarisation). Indeed, any polarisation
may be considered; for example, both (↓A−∗B+)∧+↓A− and ↓(A+∗↓B−)∧+A+

are correct polarised versions of the formulas (A ∗ B) ∧ A. Taking arbitrary ϕ
the process is as follows: first, fix a polarised syntax (i.e. a partition of the
propositional letters into positive and negative sets), then assign a polarity to ϕ
with the following steps:

– If ϕ is a propositional atom, it must be polarised by default;
– If ϕ = �, then choose polarisation �+ or �−;
– If ϕ = ψ1∧ψ2, first polarise ψ1 and ψ2, then choose an additive conjunction

and combine accordingly, using shifts to ensure the formula is well-formed;
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– If ϕ = ψ1 ◦ψ2 where ◦ ∈ {∗,−∗,→,∨}, then polarise ψ1 and ψ2 and combine
with ◦ accordingly, using shifts where necessary.

Example 33. Suppose A is negative and B is positive, then (A ∗ B) ∧ A may
be polarised by choosing the additive conjunction to be positive resulting in
(↓A ∗B)∧+ ↓A (when ↓(A ∗ ↓B)∧+ A) would not be well-formed). Choosing to
shift one can ascribe a negative polarisation ↑((↓A ∗B) ∧+ ↓A).

The above generates the set of all such polarised formulas when all possible
choices are explored. The free assignment of polarity to formulas means several
distinct focusing procedures are captured by the completeness theorem.

Lemma 34 (Completeness of fBI+ cut). For any unfocused sequent Γ ⇒ N ,
if �ηLBI $Γ ⇒ N% then �fBI+cut Γ ⇒ N .

Proof. We show that every rule in ηLBI is derivable in fBI + cut, consequently
every proof in ηLBI may be simulated; hence, every provable sequent has a
focused proof. For unfocused rules →R,−∗R,∧−

R ,∧+
L ,∨L, ∗L,⊥L,�−

R ,�+
L ,�∗

L, this
is immediate; as well as for Ax and C. Below we give an example on how to
simulate a focused rule.

Where it does not matter (e.g. in the case of inactive nests), we do not dis-
tinguish the polarised and unpolarised versions; each of the simulations can be
closed thanks to the presence of the P and N rules in fBI.

Γ ⇒ ϕ Δ ⇒ ψ

{{Γ,Δ}×, Δ′}+ ⇒ ϕ ∗ ψ
∗R

in ηLBI is simulated in fBI+ cut by

Γ ⇒ ↑ϕ+

Γ ⇒ 〈↓↑ϕ+〉
↓R

Δ ⇒ ↑ψ+

Δ ⇒ 〈↓↑ψ+〉
↓R

{Γ,Δ}× ⇒ 〈↓↑ϕ+ ∗ ↓↑ψ+〉
∗R

↓↑ϕ+ ⇒ 〈ϕ+〉 P ↓↑ψ+ ⇒ 〈ψ+〉 P

{{↓↑ϕ+, ↓↑ψ+}×, Δ′}+ ⇒ 〈ϕ+ ∗ ψ+〉
∗R

{{↓↑ϕ+, ↓↑ψ+}×, Δ′}+ ⇒ ↑(ϕ+ ∗ ψ+)
↑R

{↓↑ϕ+ ∗ ↓↑ψ+, Δ′}+ ⇒ ↑(ϕ+ ∗ ψ+)
∗L

{{Γ,Δ}×, Δ′}+ ⇒ ↑(ϕ+ ∗ ψ+)
cut

��

Theorem 35 (Completeness of fBI). For any unfocused Γ ⇒ N , if �ηLBI

$Γ ⇒ N% then �fBI Γ ⇒ N .

Proof. It follows from Lemma 34 that there is a proof of Γ ⇒ N in fBI + cut,
and then it follows from Lemma 32 that there is a proof of Γ ⇒ N in fBI. ��

Given an arbitrary sequent the above theorem guarantees the existence of a
focused proof, thus the focusing principle holds for ηLBI and therefore for LBI.

4 Conclusion

By proving the completeness of a focused sequent calculus for the logic of
Bunched Implications, we have demonstrated that it satisfies the focusing prin-
ciple; that is, any polarisation of a BI-provable sequent can be proved following a
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focused search procedure. This required a careful analysis of how to restrict the
usage of structural rules. In particular, we had to fully develop the congruence-
invariant representation of bunches as nested multisets (originally proposed in
[12]) to treat the exchange rule within bunched structures.

Proof-theoretically the completeness of the focused systems suggests a syn-
tactic orderliness of LBI, though the P and N rules leave something to be desired.
Computationally, these axioms are unproblematic as during search it makes sense
to terminate a branch as soon as possible; however, unless they may be elim-
inated it means that the focusing principle holds in BI only up to a point. In
related works (c.f. [6]) the analogous problem is overcome by first considering a
weak focused system; that is, one where the structural rules are not controlled
and unfocused rules may be performed inside focused phases if desired. Com-
pleteness of (strong) focusing is achieved by appealing to a synthetic system. It
seems reasonable to suppose the same can be done for BI, resulting in a more
proof-theoretically satisfactory focused calculus, exploring this possibility is a
natural extension of the work on fBI.

The methodology employed for proving the focusing principle can be in-
terpreted as soundness and completeness of an operational semantics for goal-
directed search. The robustness of this technique is demonstrated by its efficacy
in modal [6,5] and substructural logics [26], including now bunched ones. Al-
though BI may be the most employed bunched logic, there are a number of
others, such as the family of relevant logics [36], and the family of bunched log-
ics [11], for which the focusing principle should be studied. However, without the
presence of a cut-free sequent calculus goal-directed search becomes unclear, and
currently such calculi do not exist for the two main variants of BI: Boolean BI
[33] and Classical BI [4]. On the other hand, large families of bunched and sub-
structural logics have been given hypersequent calculi [8,9]. Effective proof-search
procedures have been established for the hypersequent calculi in the substruc-
tural case [35], but not the bunched one, and focused proof-search for neither.
There is a technical challenge in focusing these systems as one must not only
decide which formula to reduce, but also which sequent.

In the future it will be especially interesting to see how focused search, when
combined with the expressiveness of BI, increases its modelling capabilities. In-
deed, the dynamics of proof-search can be used to represent models of compu-
tation within (propositional) logics; for example, the undecidability of Linear
Logic involves simulating two-counter machines [26]. One particularly interest-
ing direction is to see how focused proof-search in BI may prove valuable within
the context of Separation Logic. Focused systems in particular have been used to
emulate proofs for other logics [27]; and to give structural operational semantics
for systems used in industry, such as algorithms for solving constraint satisfac-
tion problems [14]. A more immediate possibility though is the formulation of
a theorem prover; we leave providing specific implementation or benchmarks to
future research.
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Abstract. In this paper, the theory of McCarthy’s extensional arrays
enriched with a maxdiff operation (this operation returns the biggest
index where two given arrays differ) is proposed. It is known from the
literature that a diff operation is required for the theory of arrays in
order to enjoy the Craig interpolation property at the quantifier-free
level. However, the diff operation introduced in the literature is merely
instrumental to this purpose and has only a purely formal meaning (it
is obtained from the Skolemization of the extensionality axiom). Our
maxdiff operation significantly increases the level of expressivity; how-
ever, obtaining interpolation results for the resulting theory becomes a
surprisingly hard task. We obtain such results via a thorough semantic
analysis of the models of the theory and of their amalgamation proper-
ties. The results are modular with respect to the index theory and it is
shown how to convert them into concrete interpolation algorithms via a
hierarchical approach.

Keywords: Interpolation · Arrays · Amalgamation · SMT

1 Introduction

Since McMillan’s seminal papers [31,32], interpolation has been successfully ap-
plied in software model checking, also in combination with orthogonal techniques
like PDR [38] or k-induction [29]. The reason why interpolation techniques are so
attractive is because they allow to discover in a completely automatic way new
atoms (improperly often called ‘predicates’) that might contribute to the con-
struction of invariants. In fact, software model-checking problems are typically
infinite state, so invariant synthesis may require introducing formulae whose
search is not finitely bounded. One way to discover them is to analyze spurious
error traces; for instance, if the system under examination (described by a tran-
sition formula Tr(x, x′)) cannot reach in n-step an error configuration in U(x)
starting from an initial configuration in In(x), this means that the formula

In(x0) ∧ Tr(x0, x1) ∧ · · · ∧ Tr(xn−1, xn) ∧ U(xn)
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is inconsistent (modulo a suitable theory T ). From the inconsistency proof, by
computing an interpolant, say at the i-th iteration, one can produce a formula
φ(x) such that, modulo T , we have

In(x0)∧
i∧

j=0

Tr(xj−1, xj) |= φ(xi) and φ(xi)∧
n∧

j=i+1

Tr(xj−1, xj)∧U(xn) |= ⊥.

(1)
This formula (and the atoms it contains) can contribute to the refinement of the
current candidate loop invariant guaranteeing safey. This fact can be exploited in
very different ways during invariant search, depending on the various techniques
employed. It should be noticed however that interpolants are not unique and that
different interpolation algorithms may return interpolants of different quality: all
interpolants restrict search, but not all of them might be conclusive.

This new application of interpolation is different from the role of interpolants
for analyzing proof theories of various logics starting with the pioneering works
of [15,24,34]. It should be said however that Craig interpolation theorem in first
order logic does not give by itself any information on the shape the interpolant
can have when a specific theory is involved. Nevertheless, this is crucial for the
applications: when we extract an interpolant from a trace like (1), we are typ-
ically handling a theory which might be undecidable, but whose quantifier-free
fragment is decidable for satisfiability (usually within a somewhat ‘reasonable’
computational complexity). Thus, it is desirable (although not always possible)
that the interpolant is quantifier-free, a fact which is not guaranteed in the gen-
eral case. This is why a lot of effort has been made in analyzing quantifier-free
interpolation, also exploiting its connection to semantic properties like amalga-
mation and strong amalgamation (see [9] for comprehensive results in the area).

The specific theories we want to analyze in this paper are variants of Mc-
Carthy’s theory of arrays [30] with extensionality (see Section 3 below for a de-
tailed description). The main operations considered in this theory are the write
operation (i.e. the array update) and the read operation (i.e., the access to the
content of an array cell). As such, this theory is suitable to formalize programs
over arrays, like standard copying, comparing, searching, sorting, etc. functions;
verification problems of this kind are collected in the SV-COMP benchmarks cat-
egory “ReachSafety-Arrays”4, where safety verification tasks involving arrays of
finite but unknown length are considered.

By itself, the theory of arrays with extensionality does not have quantifier
free interpolation [28]5; however, in [8] it was shown that quantifier-free interpo-
lation is restored if one enriches the language with a binary function skolemizing
the extensionality axiom (the result was confirmed - via different interpolation
algorithms - in [23,37]). Such a Skolem function, applied to two array variables

4 https://sv-comp.sosy-lab.org/2020/benchmarks.php
5 This is the counterexample (due to R. Jhala): the formula x = wr(y, i, e) is incon-
sistent with the formula rd(x, j) �= rd(y, j) ∧ rd(x, k) �= rd(y, k) ∧ j �= k, but all
possible interpolants require quantifiers to be written (with diff symbols, instead, it
is possible to write down an interpolant without quantifiers, as shown in [8]).

https://sv-comp.sosy-lab.org/2020/benchmarks.php
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a, b, returns an index diff(a, b) where a, b differ (it returns an arbitrary value
if a is equal to b). This semantics for the diff operation is very undetermined
and does not have a significant interpretation in concrete programs. That is why
we propose to modify it in order to give it a defined and natural meaning: we
ask for diff(a, b) to return the biggest index where a, b differ (in case a = b
we ask for diff(a, b) to be the minimum index 0). Since it is natural to view
arrays as functions defined on initial intervals of the nonnegative integers, this
choice has a clear semantic motivation. The expressive power of the theory of
arrays so enriched becomes bigger: for instance, if we also add to the language a
constant symbol ε for the undefined array constantly equal to some ‘undefined’
value ⊥ (where ⊥ is meant to be different from the values a[i] actually in use),
then we can define |a| as diff(a, ε). In this way we can model the fact that a
is undefined outside the interval [ 0, |a| ] - this is useful to formalize the above
mentioned SV-COMP benchmarks.

The effectiveness of quantifier-free interpolation in the theory of arrays with
maxdiff is exemplified in the simple example of Figure 1: the invariant certifying
the assert in line 7 of the Strcpy algorithm can be obtained taking a suitable
quantifier-free interpolant out of the spurious trace (1) already for n = 2. In
more realistic examples, as witnessed by current research [2,3,4,5,16,22,25,13], it
is quite clear that useful invariants require universal quantifiers to be expressed
and if undecidable fragments are invaded, incomplete solvers must be used. How-
ever, even in such circumstances, quantifier-free interpolation does not lose its
interest: for instance, the tool Booster [5]6 synthesizes universally quantified
invariants out of quantifer-free interpolants (quantifier-free interpolation prob-
lems are generated by negating and skolemizing universally quantified formulae
arising during invariants search, see [4] for details).

1 int a[N];
2 int b[N];
3 int I = 0;
4 while I < N do
5 b[I] = a[I];
6 I++;

7 assert(a = b);

– In(a, b, I) ≡ I = 0∧|a| = N−1∧|b| = N−1∧N > 0
– Tr(a, b, I, a′, b′, I ′) ≡ I < N ∧ I ′ = I + 1 ∧ a′ =

a ∧ b′ = wr(b, I, rd(a, I))
– U(a, b) ≡ a �= b ∧ I = N

Fig. 1. Strcpy function: code and associated transition system (with program counter
missed in the latter for simplicity).
Loop invariant: a = b ∨ (N > diff(a, b) ∧ diff(a, b) ≥ I).

Proving that the theory of arrays with the above ‘maxdiff’ operation en-
joys quantifier-free interpolation revealed to be a surprisingly difficult task. In

6 Booster is no longer maintained, however it is still referred to in current experi-
mental evaluations [16,13].
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the end, the interpolation algorithm we obtain resembles the interpolation al-
gorithms generated via the hierarchic locality techniques introduced in [35,36]
and employed also in [37]; however, its correctness, completeness and termi-
nation proofs require a large détour going through non-trivial model-theoretic
arguments (these arguments do not substantially simplify adopting the complex
framework of ‘amalgamation closures’ and ‘W -separability’ of [37], and that is
the reason why we preferred to supply direct proofs).

This paper concentrates on theoretical and methodological results, rather
than on experimental aspects. It is almost completely dedicated to the correct-
ness and completeness poof of our interpolation algorithm: in Subsection 3.1 we
summarize our proof plan and supply basic intuitions. The paper is structured
as follows: in Section 2 we recall some background, in Section 3 we introduce
our theory of arrays with maxdiff; Sections 4 and 5 supply the semantic proof
of the amalgamation theorem; Sections 6 and 7 are dedicated to the algorith-
mic aspects, whereas Section 8 analyzes complexity for the restricted case where
indexes are constrained by the theory of total orders. In the final Section 9,
we mention some still open problems. The main results in the paper are Theo-
rems 2,4,5: for space reasons, all proofs of these theorems will be only sketched,
full details are nevertheless supplied in the online available extended version [21].
This extended version contains additional material on complexity analysis and
implementation. It contains also a proof about nonexistence of uniform inter-
polants (see [26,27,20,10,11,12] for the definition and more information on uni-
form interpolants).

2 Formal Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal,
formula, and sentence) and semantic (e.g., structure, sub-structure, truth, sat-
isfiability, and validity) notions of (possibly many-sorted) first-order logic. The
equality symbol “=” is included in all signatures considered below. Notations
like E(x) mean that the expression (term, literal, formula, etc.) E contains free
variables only from the tuple x. A ‘tuple of variables’ is a list of variables without
repetitions and a ‘tuple of terms’ is a list of terms (possibly with repetitions). Fi-
nally, whenever we use a notation like E(x, y) we implicitly assume not only that
both the x and the y are pairwise distinct, but also that x and y are disjoint. A
constraint is a conjunction of literals. A formula is universal (existential) iff it is
obtained from a quantifier-free formula by prefixing it with a string of universal
(existential, resp.) quantifiers.

Theories and satisfiability modulo theory. A theory T is a pair (Σ,AxT ), where
Σ is a signature and AxT is a set of Σ-sentences, called the axioms of T (we shall
sometimes write directly T for AxT ). The models of T are those Σ-structures
in which all the sentences in AxT are true. A Σ-formula φ is T -satisfiable (or
T -consistent) if there exists a model M of T such that φ is true in M under
a suitable assignment a to the free variables of φ (in symbols, (M, a) |= φ); it
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is T -valid (in symbols, T � ϕ) if its negation is T -unsatisfiable or, equivalently,
ϕ is provable from the axioms of T in a complete calculus for first-order logic.
A theory T = (Σ,AxT ) is universal iff all sentences in AxT are universal. A
formula ϕ1 T -entails a formula ϕ2 if ϕ1 → ϕ2 is T -valid (in symbols, ϕ1 �T ϕ2 or
simply ϕ1 � ϕ2 when T is clear from the context). If Γ is a set of formulæ and φ a
formula, Γ �T φ means that there are γ1, . . . , γn ∈ Γ such that γ1∧· · ·∧γn �T φ.
The satisfiability modulo the theory T (SMT(T )) problem amounts to establishing
the T -satisfiability of quantifier-free Σ-formulæ (equivalently, the T -satisfiability
of Σ-constraints). A theory T admits quantifier-elimination iff for every formula
φ(x) there is a quantifier-free formula φ′(x) such that T � φ ↔ φ′.

Some theories have special names, which are becoming standard in SMT-
literature; for instance, EUF(Σ) is the pure equality theory in the signature Σ
(this is commonly abbreviated as EUF if there is no need to specify the signature
Σ). More standard theory names will be recalled during the paper.

Embeddings and sub-structures The support of a structure M is denoted with
|M|. For a (sort, function, relation) symbol σ, we denote as σM the interpre-
tation of σ in M. An embedding is a homomorphism that preserves and re-
flects relations and operations (see, e.g., [14]). Formally, a Σ-embedding (or,
simply, an embedding) between two Σ-structures M and N is any mapping
μ : |M| −→ |N | satisfying the following three conditions: (a) it is a (sort-
preserving) injective function; (b) it is an algebraic homomorphism, that is
for every n-ary function symbol f and for every a1, . . . , an ∈ |M|, we have
fN (μ(a1), . . . , μ(an)) = μ(fM(a1, . . . , an)); (c) it preserves and reflects predi-
cates, i.e. for every n-ary predicate symbol P , we have (a1, . . . , an) ∈ PM iff
(μ(a1), . . . , μ(an)) ∈ PN . If |M| ⊆ |N | and the embedding μ : M −→ N is
just the identity inclusion |M| ⊆ |N |, we say that M is a substructure of N or
that N is a superstructure of M. As it is known, the truth of a universal (resp.
existential) sentence is preserved through substructures (resp. superstructures).

Combinations of theories. A theory T is stably infinite iff every T -satisfiable
quantifier-free formula (from the signature of T ) is satisfiable in an infinite model
of T . By compactness, it is possible to show that T is stably infinite iff every
model of T embeds into an infinite one (see, e.g., [17]). A theory T is convex iff
for every conjunction of literals δ, if δ �T

∨n
i=1 xi = yi then δ �T xi = yi holds

for some i ∈ {1, ..., n}. Let Ti be a stably-infinite theory over the signature Σi

such that the SMT (Ti) problem is decidable for i = 1, 2 and such that Σ1 and Σ2

are disjoint (i.e. the only shared symbol is equality). Under these assumptions,
the Nelson-Oppen combination result [33] says that the SMT problem for the
combination T1 ∪ T2 of the theories T1 and T2 is decidable.

Interpolation properties. Craig’s interpolation theorem [14] roughly states that
if a formula φ implies a formula ψ then there is a third formula θ, called an
interpolant, such that φ implies θ, θ implies ψ, and every non-logical symbol
in θ occurs both in φ and ψ. Our interest is to specialize this result to the
computation of quantifier-free interpolants modulo (combinations of) theories.



Interpolation and Amalgamation for Arrays with MaxDiff 273

Definition 1. [Plain quantifier-free interpolation] A theory T admits (plain)
quantifier-free interpolation (or, equivalently, has quantifier-free interpolants) iff
for every pair of quantifier-free formulae φ, ψ such that ψ ∧ φ is T -unsatisfiable,
there exists a quantifier-free formula θ, called an interpolant, such that: (i) ψ
T -entails θ, (ii) θ∧φ is T -unsatisfiable, and (iii) only the variables occurring in
both ψ and φ occur in θ.

In verification, the following extension of Definition 1 is considered more useful.

Definition 2. [General quantifier-free interpolation] Let T be a theory in a sig-
nature Σ; we say that T has the general quantifier-free interpolation property
iff for every signature Σ′ (disjoint from Σ) and for every pair of ground Σ∪Σ′-
formulæ φ, ψ such that φ∧ψ is T -unsatisfiable7, there is a ground formula θ such
that: (i) φ T -entails θ; (ii) θ ∧ ψ is T -unsatisfiable; (iv) all relations, constants
and function symbols from Σ′ occurring in θ also occur in φ and ψ.

By replacing free variables with free constants, it should be clear that general
quantifier-free interpolation (Definition 2) implies plain quantifier-free interpo-
lation (Definition 1); however, the converse implication does not hold.

Amalgamation and strong amalgamation. Interpolation can be characterized se-
mantically via amalgamation.

Definition 3. A universal theory T has the amalgamation property iff given
models M1 and M2 of T and a common submodel A of them, there exists a
further modelM of T (called T -amalgam) endowed with embeddings μ1 :M1 −→
M and μ2 :M2 −→M whose restrictions to |A| coincide.

A universal theory T has the strong amalgamation property if the above em-
beddings μ1, μ2 and the above model M can be chosen so to satisfy the following
additional condition: if, for some m1 ∈ |M1|,m2 ∈ |M2|, μ1(m1) = μ2(m2)
holds, then there exists an element a in |A| such that m1 = a = m2.

The first statement of the following theorem is an old result due to [6]; the
second statement is proved in [9] (where it is also suitably reformulated for
theories which are not universal):

Theorem 1. Let T be a universal theory. Then
(i) T has the amalgamation property iff it admits quantifier-free interpolants;
(ii) T has the strong amalgamation property iff it has the general quantifier-free

interpolation property.

We underline that, in presence of stable infiniteness, strong amalgamation is
a modular property (in the sense that it transfers to signature-disjoint unions of
theories), whereas amalgamation is not (see again [9] for details).

7 By this (and similar notions) we mean that φ∧ψ is unsatisfiable in all Σ′-structures
whose Σ-reduct is a model of T .
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3 Arrays with MaxDiff

The McCarthy theory of arrays [30] has three sorts ARRAY, ELEM, INDEX (called
“array”, “element”, and “index” sort, respectively) and two function symbols rd
(“read”) and wr (“write”) of appropriate arities; its axioms are:

∀y, i, e. rd(wr(y, i, e), i) = e

∀y, i, j, e. i �= j → rd(wr(y, i, e), j) = rd(y, j).

The McCarthy theory of arrays with extensionality has the further axiom

∀x, y.x �= y → (∃i. rd(x, i) �= rd(y, i)), (2)

called the ‘extensionality’ axiom. The theory of arrays with extensionality is
not universal and quantifier-free interpolation fails for it [28]. In [8] a variant
of the McCarthy theory of arrays with extensionality, obtained by Skolemizing
the axioms of extensionality, is introduced. This variant of the theory turns out
to be universal and to enjoy quantifier-free interpolation. However, the Skolem
function introduced in [8] is generic, here we want to make it more informative,
so as to return the biggest index where two different arrays differ. To locate our
contribution in the general context, we need the notion of an index theory.

Definition 4. An index theory TI is a mono-sorted theory (let INDEX be its
sort) satisfying the following conditions:
- TI is universal, stably infinite and has the general quantifier-free interpola-
tion property (i.e. it is strongly amalgamable, see Theorem 1);

- SMT (TI) is decidable;
- TI extends the theory TO of linear orderings with a distinguished element 0.

We recall that TO is the theory whose only proper symbols (beside equality) are
a binary predicate ≤ and a constant 0 subject to the axioms saying that ≤ is
reflexive, transitive, antisymmetric and total (the latter means that i ≤ j∨ j ≤ i
holds for all i, j). Thus, the signature of an index theory TI contains at least
the binary relation symbol ≤ and the constant 0. In the paper, by a TI -term,
TI -atom, TI -formula, etc. we mean a term, atom, formula in the signature of
TI . Below, we use the abbreviation i < j for i ≤ j ∧ i �= j. The constant 0 is
meant to separate ‘formally positive’ indexes - those satisfying 0 ≤ i - from the
remaining ‘formally negative’ ones.

Examples of index theories are TO itself, integer difference logic IDL, integer
linear arithmetic LIA, and real linear arithmetics LRA. In order to match the
requirements of Definition 4, one must however make a careful choice of the
language, see [9] for details: the most important detail is that integer (resp. real)
division by all positive integers should be added to the language of LIA (resp.
LRA). For most applications, IDL (namely the theory of integer numbers with
0, ordering, successor and predecessor) 8 suffices as in this theory one can model
counters for scanning arrays.

8 The name ’integer difference logic’ comes from the fact that atoms in this theory
are equivalent to formulæ of the kind Sn(i) � j (where �∈ {≤,≥,=}), thus they
represent difference bound constraints of the kind j − i � n for n ≥ 0.
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Given an index theory TI , we now introduce our array theory with maxd-
iff ARD(TI) (parameterized by TI) as follows. We still have three sorts
ARRAY, ELEM, INDEX; the language includes the symbols of TI , the read and write
operations rd, wr, a binary function diff of type ARRAY × ARRAY → INDEX, as
well as constants ε and ⊥ of sorts ARRAY and ELEM, respectively. The constant ⊥
models an undetermined (e.g. undefined, not-in-use, not coming from appropri-
ate initialization, etc.) value and ε models the totally undefined array; the term
diff(x, y) returns the maximum index where x and y differ and returns 0 if x
and y are equal. 9 Formally, the axioms of ARD(TI) include, besides the axioms
of TI , the following ones:

∀y, i, e. i ≥ 0→ rd(wr(y, i, e), i) = e (3)

∀y, i, j, e. i �= j → rd(wr(y, i, e), j) = rd(y, j) (4)

∀x, y. x �= y → rd(x, diff(x, y)) �= rd(y, diff(x, y)) (5)

∀x, y, i. i > diff(x, y)→ rd(x, i) = rd(y, i) (6)

∀x. diff(x, x) = 0 (7)

∀x.i i < 0→ rd(x, i) = ⊥ (8)

∀i. rd(ε, i) = ⊥ (9)

In the read-over-write axiom (3), we put the proviso i ≥ 0 because we want all
our arrays to be undefined on negative indexes (negative updates makes no sense
and have no effect: by axiom (8), reading a negative index always produces ⊥).

We call ARext(TI) (the ‘theory of arrays with extensionality parameterized
by TI ’) the theory obtained from ARD(TI) by removing the symbol diff and
by replacing the axioms (5)-(7) by the extensionality axiom (2). Since the exten-
sionality axioms follows from axiom (5), ARD(TI) is an extension of ARext(TI).

As an effect of the above axioms, we have that an array x is undefined
outside the interval [0, |x|], where |x| is defined as |x| := diff(x, ε). Typically,
this interval is finite and in fact our proof of Theorem 3 below shows that any
satisfiable constraint is satisfiable in a model where all such intervals (relatively
to the variables involved in the constraint) are finite.

The next lemma is immediate from the axiomatization of ARD(TI):

Lemma 1. An atom of the form a = b is equivalent (modulo ARD(TI)) to

diff(a, b) = 0 ∧ rd(a, 0) = rd(b, 0) . (10)

An atom of the form a = wr(b, i, e) is equivalent (modulo ARD) to

(i ≥ 0→ rd(a, i) = e) ∧ ∀h (h �= i → rd(a, h) = rd(b, h)) . (11)

An atom of the form diff(a, b) = i is equivalent (modulo ARD(TI)) to

i ≥ 0 ∧ ∀h (h > i → rd(a, h) = rd(b, h)) ∧ (i > 0→ rd(a, i) �= rd(b, i)) . (12)

9 Notice that it might well be the case that diff(x, y) = 0 for different x, y, but in
that case 0 is the only index where x, y differ.
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For our interpolation algorithm in Section 7, we need to introduce iterated
diff operations, similarly to [37]. As we know diff(a, b) returns the biggest
index where a and b differ (it returns 0 if a = b). Now we want an operator
that returns the last-but-one index where a, b differ (0 if a, b differ in at most
one index), an operator that returns the last-but-two index where a, b differ
(0 is they differ in at most two indexes), etc. Our language is already enough
expressive for that, so we can introduce such operators explicitly as follows.
Given array variables a, b, we define by mutual recursion the sequence of array
terms b1, b2, . . . and of index terms diff1(a, b), diff2(a, b), . . . :

b1 := b; diff1(a, b) := diff(a, b1);

bk+1 := wr(bk, diffk(a, b), rd(a, diffk(a, b))); diffk+1(a, b) := diff(a, bk+1)

Intuitively, bk+1 is the same as b except for all k-last indexes on which a and b
differ, in correspondence of which bk+1 has the same value as a. A useful fact is
that conjunctions of formulae of the kind

∧
j<l diffj(a, b) = kj can be eliminated

in favor of universal clauses in a language whose only symbol for array variables
is rd. In detail:

Lemma 2. A formula like

diff1(a, b) = k1 ∧ · · · · · · ∧ diffl(a, b) = kl (13)

is equivalent modulo ARD to the conjunction of the following five formulae:

k1 ≥ k2 ∧ · · · ∧ kl−1 ≥ kl ∧ kl ≥ 0 (14)∧
j<l(kj > kj+1 → rd(a, kj) �= rd(b, kj)) (15)∧

j<l(kj = kj+1 → kj = 0) (16)∧
j≤l(rd(a, kj) = rd(b, kj)→ kj = 0) (17)

∀h (h > kl → rd(a, h) = rd(b, h) ∨ h = k1 ∨ · · · ∨ h = kl−1) (18)

3.1 Our roadmap

The main result of the paper is that, for every index theory TI , the array the-
ory with maxdiff ARD(TI) indexed by TI enjoys quantifier-free interpolation
and that interpolants can be computed hierarchically by relying on a black-box
quantifier-free interpolation algorithm for the weaker theory TI∪EUF (the latter
theory has quantifier free interpolation because TI is strongly amalgamable and
because of Theorem 1). In this subsection, we supply intuitions and we give a
qualitative high-level view to our proofs: more technical details and full proofs
can be found in [21].

The algorithm.

By general easy transformations (recalled in Section 7 below), it is sufficient
to be able to extract a quantifier-free interpolant out of a pair of quantifier-free
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formulae A,B such that (i) A∧B is ARD(TI)-inconsistent; (ii) both A and B are
conjunctions of flat literals, i.e. of literals which are equalities between variables,
disequalities between variables or literals of the form R(x),¬R(x), f(x) = y
(where x, y are variables, R is a predicate symbol and f a function symbol).

Let us call common the variables occurring in both A and B. The fact that a
quantifier-free interpolant exists intuitively means that there are two reasoners
(an A-reasoner operating on formulae involving only the variables occurring in A
and a B-reasoner operating on formulae involving only the variables occurring in
B) that are able to discover the inconsistency of A∧B by exchanging information
on the common language, i.e. by communicating each other only the entailed
quantifier-free formulae involving the common variables.

A problem that can be addressed when designing an interpolation algorithm,
is that there are infinitely many common terms that can be built up out of
finitely many common variables and it may happen that some uncommon terms
can be recognized to be equal to some common terms during the deductions
performed by the A-reasoner and the B-reasoner.

As an example, suppose that A contains the literals c1 = wr(c2, i, e), c1 �=
c2, a = wr(c3, i, e), where only c1, c2, c3 are common (i.e. only these variables
occur in B). Then using diff operations, we can deduce i = diff(c1, c2), e =
rd(c1, i) so that in the end we can conclude that a is also ‘common’, being
definable in term of common variables. Thus, the A-reasoner must communicate
(via a defining common term or in some other indirect way) to the B-reasoner
any fact it discovers about a, although a was not listed among the common
variables since the very beginning. In more sophisticated examples, iterated diff
operations are needed to discover ‘hidden’ common facts.

To cope with the above problem, our algorithm gives names ik =
diffk(c1, c2) to all the iterated diffs of common array variables c1, c2 (the newly
introduced names ik are considered common and can be replaced back with their
defining terms when the interpolants are computed at the end of the algorithm).

The second component of our algorithm is instantiation. Both the A- and
the B-reasoner use the content of Lemmas 1 and 2 in order to handle atoms
of the kind a = b, a1 = wr(a2, i, e), i = diffk(a1, a2). Whenever they come
across such atoms, the equivalent formulæ supplied by these lemmas are taken
into consideration; in fact, whenever the lemmas produce universally quantified
clauses of the kind ∀hC, they replace in C the universally quantified index
variable h by all possible instantiations with their own index terms (these are
the terms built up from index variables occurring in A for the A-reasoner and
occurring in B for the B-reasoner respectively). Such instantiations can be read
as clauses in the language of TI ∪ EUF if we replace every array variable a by a
fresh unary function symbol fa and read terms like rd(a, i) as fa(i).

Of course both the production of names for iterated diff-terms and the instan-
tiation with owned index terms need to be repeated (possibly, infinitely many
times); we prove however (this is the content of our main Theorem 4 below)
that if A ∧ B is ARD(TI)-inconsistent, then sooner or later the union of the
sets of the clauses deduced by the A-reasoner and the B-reasoner in the restricted
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signature of TI ∪ EUF is TI ∪ EUF-inconsistent, i.e., the instantiation process
terminates. This means that an interpolant can be extracted, using a black-box
quantifier-free interpolation algorithm for the weaker theory TI ∪ EUF . In the
simple case where TI is just the theory TO of total orders, we shall prove in Sec-
tion 8 that a quadratic number of instantiations always suffices. In the general
case, however, the situation is similar to the statement of Herbrand theorem:
finitely many instantiations suffice to get an inconsistency proof in the weaker
logical formalism, but a bound cannot be given.

The proof.

Theorem 4 is proved in a contrapositive way: we show that if a TI ∪ EUF-
inconsistency never arises, then A∧B is ARD(TI)-consistent. This is proved in
two steps: if TI ∪ EUF -inconsistency does not arise, we produce two ARD(TI)-
models A and B, where A satisfies A and B satisfies B. Moreover, A and B
are built up in such a way that they share the same ARD(TI)-substructure. In
the second step, we prove the amalgamation theorem for ARD(TI), so that the
amalgamated model will produce the desired model of A ∧ B. In fact, the two
steps are inverted in our exposition: we first prove the amalgamation theorem in
Section 5 (Theorem 2) and then our main theorem in Section 7 (Theorem 4).

4 Embeddings

We preliminarily discuss the class of models of ARD(TI) and we make important
clarifications about embeddings between such models. A model M of ARext(TI)
or of ARD(TI) is functional when the following conditions are satisfied:
(i) ARRAYM is a subset of the set of all positive-support functions from INDEXM

to ELEMM (a function a is positive-support iff a(i) = ⊥ for every i < 0);
(ii) rd is function application;
(iii) wr is the point-wise update operation (i.e., for i ≥ 0, the function wr(a, i, e)

returns the same values as the function a, except at the index i where it
returns the element e).

Because of the extensionality axiom, it can be shown that every model is iso-
morphic to a functional one. For an array a ∈ INDEXM in a functional model M
and for i ∈ INDEXM, since a is a function, we interchangeably use the notations
a(i) and rd(a, i). A functional model M is said to be full iff ARRAYM consists of
all the positive-support functions from INDEXM to ELEMM.

Let a, b be elements of ARRAYM in a model M. We say that a and b are
cardinality dependent (in symbols, M |= ‖a − b‖ < ω) iff {i ∈ INDEXM | M |=
rd(a, i) �= rd(b, i)} is finite. Cardinality dependency in M is obviously an equiv-
alence relation, that we sometimes denote as ∼M.

Passing to ARD(TI), a further remark is in order: in a functional model
M of ARD(TI), the index diff(a, b) (if it exists) is uniquely determined: it
must be the maximum index where a, b differ (it is 0 if a = b). We say that
diff(a, b) is defined iff there is a maximum index where a, b differ (or if a = b).
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An embedding μ : M −→ N between ARext(TI)-models is said to be diff-
faithful iff whenever diff(a, b) is defined so is diff(μ(a), μ(b)) and it is equal
to μ(diff(a, b)). Since there might not be a maximum index where a, b differ, in
principle it is not always possible to expand a functional model of ARext(TI) to
a functional model of ARD(TI), keeping the set of indexes unchanged. Indeed,
in order to do that in a diff-faithful way, one needs to explicitly add to INDEXM

new indexes including at least indexes representing the missing maximum indexes
where two given array differ. This idea is used in the following lemma (proved
in the online available extended version [21]):

Lemma 3. For every index theory TI , every model of ARext(TI) has a diff-
faithful embedding into a model of ARD(TI).

5 Amalgamation

We now sketch the proof of the amalgamation property for ARD(TI). We recall
that strong amalgamation holds for models of TI (see Definition 4).

Theorem 2. ARD(TI) enjoys the amalgamation property.

Proof. Take two embeddings μ1 : N −→M1 and μ2 : N −→M2. As we know,
we can suppose—w.l.o.g.—that N ,M1,M2 are functional models; in addition,
via suitable renamings, we can freely suppose that μ1, μ2 restricts to inclusions
for the sorts INDEX and ELEM, and that (ELEMM1\ELEMN )∩(ELEMM2\ELEMN ) = ∅,
(INDEXM1\INDEXN )∩(INDEXM2\INDEXN ) = ∅. To build the amalgamated model
of ARD(TI), we first build a full model M of ARext(TI) with diff-faithful
embeddings ν1 : M1 −→ M and ν2 : M2 −→ M such that ν1 ◦ μ1 = ν2 ◦ μ2.
If we succeed, the claim follows by Lemma 3: indeed, thanks to that lemma, we
can embed in a diff-faithful wayM (which is a model of ARext(TI)) to a model
M′ of ARD(TI), which is the required ARD(TI)-amalgam.

We take the TI -reduct of M to be a model supplied by the strong amal-
gamation property of TI (again, we can freely assume that the TI -reducts of
M1,M2 identically include in it); we let ELEMM to be ELEMM1 ∪ ELEMM2 . We
need to define νi :Mi −→M (i = 1, 2) in such a way that νi is diff-faithful and
ν1◦μ1 = ν2◦μ2. We take the INDEX and the ELEM-components of ν1, ν2 to be just
identical inclusions. The only relevant point is the action of νi on ARRAYMi : since
we have strong amalgamation for indexes, in order to define it, it is sufficient to
extend any a ∈ ARRAYMi to all the indexes k ∈ (INDEXM \ INDEXMi). For in-
dexes k ∈ (INDEXM \ (INDEXM1 ∪ INDEXM2)) we can just put νi(a)(k) = ⊥.
If k ∈ (INDEXM \ INDEXMi) and k ∈ (INDEXM1 ∪ INDEXM2), then k ∈
(INDEXM3−i \ INDEXN ); the definition for such k is as follows:
(*) we let νi(a)(k) be equal to μ3−i(c)(k), where c is any array c ∈ ARRAYN for

which there is a′ ∈ ARRAYMi such that a ∼Mi
a′ and such that the relation

k > diffMi(a′, μi(c)) holds in INDEXM;10 if such c does not exist, then we
put νi(a)(k) = ⊥.

10 This should be properly written as k > νi(diff
Mi(a′, μi(c))), however recall that the

INDEX-component of νi is identity, so the simplified notation is nevertheless correct.
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Definition (*) is forced by some constraints that νi(a)(k) must satisfy. Of course,
definition (*) itself needs to be justified: besides showing that it enjoys the re-
quired properties, we must also prove that it is well-given (i.e. that it does not
depend on the selected c and a′). It is easy to see that, if the definition is correct,
then we have ν1 ◦ μ1 = ν2 ◦ μ2; also, it is clear that νi preserves read and write
operations (hence, it is a homomorphism) and is injective. For (i) justifying the
definition of νi and (ii) showing that it is also diff-faithful, we need to show
the following two claims (the proof is not easy, see the extended version [21] for
details) for arrays a1, a2 ∈ ARRAYM1 , for an index k ∈ (INDEXM2 \ INDEXN ) and
for arrays c1, c2 ∈ ARRAYN (checking the same facts in M2 is symmetrical):
(i) if a1 ∼M1 a2 and k > diffM1(a1, μ1(c1)), k > diffM1(a2, μ1(c2)), then

μ2(c1)(k) = μ2(c2)(k).
(ii) if k > diffM1(a1, a2), then ν1(a1)(k) = ν1(a2)(k). -

6 Satisfiability

The key step of the interpolation algorithm that will be proposed in Sec-
tion 7 depends upon the problem of checking satisfiability (modulo ARD(TI))
of quantifier-free formulæ; this will be solved in the present section by adapting
instantiation techniques, like those from [7].

We define the complexity c(t) of a term t as the number of function symbols
occurring in t (thus variables and constants have complexity 0). A flat literal L
is a formula of the kind x1 = t or x1 �= x2 or R(x1, . . . , xn) or ¬R(x1, . . . , xn),
where the xi are variables, R is a relation symbol, and t is a term of complexity
less or equal to 1. If I is a set of TI -terms, an I-instance of a universal formula
of the kind ∀i φ is a formula of the kind φ(t/i) for some t ∈ I.

A pair of sets of quantifier-free formulae Φ = (Φ1, Φ2) is a separated pair iff
(1) Φ1 contains equalities of the form diffk(a, b) = i and a = wr(b, i, e); more-

over if it contains the equality diffk(a, b) = i, it must also contain an
equality of the form diffl(a, b) = j for every l < k;

(2) Φ2 contains Boolean combinations of TI -atoms and of atoms of the forms:

rd(a, i) = rd(b, j), rd(a, i) = e, e1 = e2, (19)

where a, b, i, j, e, e1, e2 are variables or constants of the appropriate sorts.
The separated pair is said to be finite iff Φ1 and Φ2 are both finite.

In practice, in a separated pair Φ = (Φ1, Φ2), reading rd(a, i) as a func-
tional application, it turns out that the formulæ from Φ2 can be translated
into quantifier-free formulæ of the combined theory TI ∪ EUF (the array vari-
ables occurring in Φ2 are converted into free unary function symbols). TI ∪EUF
enjoys the decidability of the quantifier-free fragment and has quantifier-free in-
terpolation because TI is an index theory (see Nelson-Oppen results [33] and
Theorem 1): we adopt a hierarchical approach (similar to [35,36]) and we rely
on satisfiability and interpolation algorithms for such a theory as black boxes.

Let I be a set of TI -terms and let Φ = (Φ1, Φ2) be a separated pair; we let
Φ(I) = (Φ1(I), Φ2(I)) be the smallest separated pair satisfying the following
conditions:
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- Φ1(I) is equal to Φ1 and Φ2(I) contains Φ2;
- Φ2(I) contains all I-instances of the two formulæ

∀i rd(ε, i) = ⊥, ∀i (i < 0→ rd(a, i) = ⊥),

where a is any array variable occurring in Φ1 or Φ2;
- if Φ1 contains the atom a = wr(b, i, e) then Φ2(I) contains all the I-instances
of the formulae (11);

- if Φ1 contains the conjunction
∧l

i=1 diffi(a, b) = ki, then Φ2(I) contains the
formulae (14), (15), (16), (17) as well as all I-instances of the formula (18).

For M ∈ N ∪ {∞}, the M -instantiation of Φ = (Φ1, Φ2) is the separated pair
Φ(IM

Φ ) = (Φ1(IM
Φ ), Φ2(IM

Φ )), where IM
Φ is the set of TI -terms of complexity

at most M built up from the index variables occurring in Φ1, Φ2. The full in-
stantiation of Φ = (Φ1, Φ2) is the separated pair Φ(I∞

Φ ) = (Φ1(I∞
Φ ), Φ2(I∞

Φ ))
(which is usually not finite). A separated pair Φ = (Φ1, Φ2) is M -instantiated iff
Φ = Φ(IM

Φ ); it is ARD(TI)-satisfiable iff so it is the formula
∧

Φ1 ∧
∧

Φ2
11

Example 1. Let Φ1 contain the four atoms

{ diff(a, c1) = i1, diff(b, c2) = i1, a = wr(a1, i3, e3), a1 = wr(b, i1, e1) }

and let Φ2 be empty. Then (Φ1, Φ2) is a separated pair; 0-instantiating it adds
to Φ2 the following formulae (we delete those which are redundant)

i1 ≥ 0

rd(a, i1) = rd(c1, i1)→ i1 = 0 rd(b, i1) = rd(c2, i1)→ i1 = 0

i3 > i1 → rd(a, i3) = rd(c1, i3) i3 > i1 → rd(b, i3) = rd(c2, i3)

i3 ≥ 0→ rd(a, i3) = e3 i1 ≥ 0→ rd(a1, i1) = e1

i1 �= i3 → rd(a, i1) = rd(a1, i1) i1 �= i3 → rd(a1, i3) = rd(b, i3)

The following results are proved in the extended version [21]:

Lemma 4. Let φ be a quantifier-free formula; then it is possible to compute
finitely many finite separation pairs Φ1 = (Φ1

1, Φ
1
2), . . . , Φ

n = (Φn
1 , Φ

n
2 ) such that

φ is ARD(TI)-satisfiable iff so is one of the Φi.

Lemma 5. The following conditions are equivalent for a finite separation pair
Φ = (Φ1, Φ2):
(i) Φ is ARD(TI)-satisfiable;
(ii)

∧
Φ2(I0

Φ) is TI ∪ EUF-satisfiable.

Theorem 3. The SMT (ARD(TI)) problem is decidable for every index theory
TI (i.e. for every theory satisfying Definition 4).

11 This might be an infinitary formula if Φ is not finite. In such a case, satisfiability
obviously means that there is a model M where we can assign values to all variables
occurring in the formulæ from Φ1 ∪ Φ2 in such a way that such formulæ become
simultaneously true.
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Concerning the complexity of the above procedure, notice that the satisfia-
bility of the quantifier-free fragment of common index theories (like IDL, LIA,
LRA) is decidable in NP; as a consequence, from the above proof we get (for such
index theories) also an NP bound for our SMT (ARD(TI)))-problems because
0-instantiation is clearly finite and polynomial. The fact that 0-instantiation
suffices is a common feature of the above satisfiability procedure and of the
satisfiability procedures from [7]. Unfortunately, when coming to interpolation
algorithms in the next section, there is no evidence that 0-instantiation suffices.

7 An interpolation algorithm

Since amalgamation is equivalent to quantifier-free interpolation for universal
theories like ARD(TI) (see Theorem 1), Theorem 2 ensures that ARD(TI) has
the quantifier-free interpolation property. However, the proof of Theorem 2 is not
constructive, so in order to compute an interpolant for an ARD(TI)-unsatisfiable
conjunction like ψ(x, y) ∧ φ(y, z), one should enumerate all quantifier-free for-
mulæ θ(y) which are logical consequences of φ and are inconsistent with ψ (mod-
ulo ARD(TI)). Since the quantifier-free fragment of ARD(TI) is decidable by
Theorem 3, this is an effective procedure and, since interpolants of jointly un-
satisfiable pairs of formulæ exist, it also terminates. However, such kind of an
algorithm is not practical.

In this section, we improve the situation by supplying a better algorithm
based on instantiation (à-la-Herbrand). In the next section, using the results of
the present section, for the special case where TI is just the theory of linear
orders, we identify a complexity bound for this algorithm.

Our problem is the following: given two quantifier-free formulae A and B
such that A ∧B is not satisfiable (modulo ARD(TI)), to compute a quantifier-
free formula C such that ARD(TI) |= A → C, ARD(TI) |= C ∧ B → ⊥ and
such that C contains only the variables (of sort INDEX, ARRAY, ELEM) which occur
both in A and in B.

We call the variables occurring in both A and B common variables, whereas
the variables occurring in A (resp. in B) are called A-variables (resp. B-
variables). The same terminology applies to terms, atoms and formulae: e.g.,
a term t is an A-term (B-term, common term) iff it is built up from A-variables
(B-variables, common variables, resp.).

The following operations can be freely performed (see [9] or [8] for details):
(i) pick an A-term t and a fresh variable a (of appropriate sort) and conjoin A

to a = t (a will be considered an A-variable from now on);
(ii) pick a B-term t and a fresh variable b (of appropriate sort) and conjoin B

to b = t (b will be considered a B-variable from now on);
(iii) pick a common term t and a fresh variable c (of appropriate sort) and

conjoin both A and B to c = t (c will be considered a common variable from
now on);

(iv) conjoin A with some quantifier-free A-formula which is implied (modulo
ARD(TI)) by A;
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(v) conjoin B with some quantifier-free B-formula which is implied (modulo
ARD(TI)) by B.

Operations (i)-(v) either add logical consequences or explicit definitions that
can be eliminated (if desired) after the final computation of the interpolant. In
addition, notice that if A is the form A′ ∨ A′′ (resp. B is of the form B′ ∨ B′′)
then from interpolants of A′ ∧ B and A′′ ∧ B (resp. of A ∧ B′ and A ∧ B′′), we
can recover an interpolant of A ∧B by taking disjunction (resp. conjunction).

Because of the above remarks, using the procedure in the proof of Lemma 4,
both A and B are assumed to be given in the form of finite separated pairs.
Thus A is of the form

∧
A1 ∧

∧
A2, B is of the form

∧
B1 ∧

∧
B2, for separated

pairs (A1, A2) and (B1, B2). Also, by (iv)-(v) above, A and B are assumed to
be both 0-instantiated. We call A (resp. B) the separated pair (A1, A2) (resp.
(B1, B2)). We also use the letters A1, A2, B1, B2 both for sets of formulae and
for the corresponding conjunctions; similarly, A represent both the pair (A1, A2)
and the conjunction

∧
A1 ∧

∧
A2 (and similarly for B).

The formulæ from A2 and B2 are formulæ from the signature of TI ∪ EUF
(after rewriting terms of the kind rd(a, i) to fa(i), where the fa are free function
symbols). Of course, if A2∧B2 is TI∪EUF -inconsistent, we can get our quantifier-
free interpolant by using our black box algorithm for interpolation in the weaker
theory TI∪EUF : recall that TI∪EUF has quantifier-free interpolation because TI

is an index theory and for Theorem 1. The remarkable fact is that A2∧B2 always
becomes TI ∪EUF -inconsistent if sufficiently many diffs among common array
variables are introduced and sufficiently many instantiations are performed.

Formally, we shall apply the loop below until A2∧B2 becomes inconsistent : the
loop is justified by (i)-(v) above and Theorem 4 guarantees that A2∧B2 eventu-
ally becomes inconsistent modulo TI ∪EUF , if A∧B was originally inconsistent
modulo ARD(TI). When A2∧B2 becomes inconsistent modulo TI∪EUF , we can
get our interpolant using the interpolation algorithm for TI ∪ EUF . [Of course,
in the interpolant returned by TI ∪ EUF , the extra variables introduced by the
explicit definitions from (iii) above need to be eliminated.] We need a counter M
recording how many times the Loop below has been executed (initially M = 0).

Loop (to be repeated until A2 ∧ B2 becomes inconsistent modulo TI ∪ EUF).

Pick two distinct common ARRAY-variables c1, c2 and n ≥ 1 and s.t. no conjunct
of the kind diffn(c1, c2) = k occurs in both A1 and B1 for some n ≥ 1 (but s.t.
for every l < n there is a conjunct of the form diffl(a, b) = k occurring in both
A1 and B1). Pick also a fresh INDEX constant kn; conjoin diffn(c1, c2) = kn to
both A1 and B1; then M -instantiate both A and B. Increase M to M + 1.

Notice that the fresh index constants kn introduced during the loop are con-
sidered common constants (they come from explicit definitions like (iii) above)
and so they are considered in the M -instantiation of both A and B.

Example 2. Let A be the formula
∧

Φ1 from Example 1 and let B be

i1 < i2 ∧ i2 < i3 ∧ rd(c1, i2) �= rd(c2, i2)

B is 0-instantiated; 0-instantiating A produces the formulæ shown in Exam-
ple 1. The loop needs to be executed twice; it adds the literals diff0(c1, c2) =
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k0, diff1(c1, c2) = k1; 0-instantiation produces formulae A2, B2 whose conjunc-
tion is TI∪EUF-inconsistent (inconsistency can be tested via an SMT-solver like
z3 or MathSat, see the ongoing implementation [1]). The related TI ∪ EUF-
interpolant (once k0 and k1 are replaced by diff0(c1, c2) and diff1(c1, c2), re-
spectively) gives our ARD(TI)-interpolant. -

Theorem 4. If A∧B is ARD(TI)-inconsistent, then the above loop terminates.

Proof. Suppose that the loop does not terminate and let A′ = (A′
1, A

′
2) and

B′ = (B′
1, B

′
2) be the separated pairs obtained after infinitely many executions of

the loop (they are the union of the pairs obtained in each step). Notice that both
A′ and B′ are fully instantiated.12 We claim that (A′, B′) is ARD(TI)-consistent
(contradicting the assumption that (A,B) was already ARD(TI)-inconsistent).

Since no contradiction was found, by compactness of first-order logic, A′
2∪B′

2

has a TI ∪ EUF -model M (below we treat index and element variables oc-
curring in A,B as free constants and the array variables occurring in A,B as
free unary function symbols). M is a two-sorted structure (the sorts are INDEX

and ELEM) endowed for every array variable a occurring in A,B of a function
aM : INDEXM −→ ELEMM. In addition, INDEXM is a model of TI . We build three
ARD(TI)-structures A,B, C and two embeddings μ1 : C −→ A, μ2 : C −→ B
such that A |= A′, B |= B′ and such that for every common variable x we have
μ1(x

C) = xA and μ2(x
C) = xB. The consistency of A′ ∪ B′ then follows from

the amalgamation Theorem 2. The two structures A,B are obtained by taking
the full functional model induced by the restriction of M to the interpretation
of A-terms and B-terms (respectively) of sort INDEX, ELEM and then by applying
Lemma 3; the construction of C requires some subtleties, to be detailed in the
extended version [21], where the full proof of the theorem is provided. -

8 When indexes are just a total order

Comparing the results from Sections 7 and 6, a striking difference emerges:
whereas variable and constant instantiations are sufficient for satisfiability check-
ing, our interpolation algorithm requires full instantiation over all common
terms. Such a full instantiation might be quite impractical, especially in in-
dex theories like LIA and LRA (it is less annoying in theories like IDL: here
all terms are of the kind Sn(x) or Pn(x), where x is a variable or 0 and S, P are
the successor and the predecessor functions). The problem disappears in simpler
theories like the theory of linear orders TO, where all terms are variables (or the
constant 0). Still, even in the case of TO, the proof of Theorem 4 does not give
a bound for termination of the interpolation algorithm: we know that sooner or
later an inconsistency will occur, but we do not know how many times we need
to execute the main loop. We now improve the proof of Theorem 4 by supplying
the missing bound. In this section, the index theory is fixed to be TO and we
abbreviate ARD(TO) as ARD. The full proof of the theorem below is in [21].

12 On the other hand, the joined pair (A′
1 ∪B′

1, A
′
2 ∪B′

2) is not even 0-instantiated.



Interpolation and Amalgamation for Arrays with MaxDiff 285

Theorem 5. If A ∧ B is inconsistent modulo ARD, then the above loop ter-

minates in at most (m
2−m
2 ) · (n + 1) steps, where n is the number of the index

variables occurring in A,B and m is the number of the common array variables.

Proof. We sketch a proof of the theorem: the idea is that if after N := (m
2−m
2 ) ·

(n+1) steps no inconsistency occurs, then we can run the algorithm for infinitely
many further steps without finding an inconsistency either. Let AN = (AN

1 , AN
2 )

and BN = (BN
1 , BN

2 ) be obtained after N -executions of the loop and let M be a
TO∪EUF -model of AN

2 ∧BN
2 . Fix a pair of distinct common array variables c1, c2

to be handled in Step N +1; since all pairs of common array variables have been
examined in a fair way, AN

1 and BN
1 contain the atom diffn+1(c1, c2) = kn+1

(in fact N := (m
2−m
2 ) · (n+ 1) and (m

2−m
2 ) is the number of distinct unordered

pairs of common array variables, so the pair (c1, c2) has been examined more
than n times). In M, some index variable kl for l ≤ kn+1, if not assigned to 0,
is assigned to an element x which is different from the elements assigned to the
n variables occurring in A,B. This allows us to enlarge M to a superstructure
which is a model of AN+1

2 ∧ BN+1
2 by ’duplicating’ x. Continuing in this way,

we produce a chain of TO ∪ EUF -models witnessing that we can run infinitely
many steps of the algorithm without finding an inconsistency. -

9 Conclusions and further work

We studied an extension of McCarthy theory of arrays with a maxdiff symbol.
This symbol produces a much more expressive theory than the theory of plain
diff symbol already considered in the literature [8,37].

We have also considered another strong enrichment, namely the combina-
tion with arithmetic theories like IDL,LIA,LRA, . . . (all such theories are
encompassed by the general notion of an ‘index theory’). Such a combination
is non trivial because it is a non disjoint combination (the ordering relation is
in the shared signature) and does not fulfill the T0-compatibility requirements
of [17,19,18] needed in order to modularly import satisfiability and interpolation
algorithms from the component theories.

The above enrichments come with a substantial cost: although decidability
of satisfiability of quantifier-free formulae is not difficult to obtain, quantifier-
free interpolation becomes challenging. In this paper, we proved that quantifier-
free interpolants indeed do exist: the interpolation algorithm is indeed rather
simple, but its justification comes via a complicated détour involving semantic
investigations on amalgamation properties.

The interpolation algorithm is based on hierarchic reduction to general
quantifier-free interpolation in the index theory. The reduction requires the in-
troduction of iterated diff terms and a finite number of instantiations of the
universal clauses associated to write and diff-atoms. For the simple case where
the index theory is just the theory of total orders, we were able to polynomially
bound the depth of the iterated diff terms to be introduced as well as the num-
ber of instantiations needed. The main open problem we leave for future is the
determination of analogous bounds for richer index theories.
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Abstract. Most interaction with a computer is via graphical user in-
terfaces. These are traditionally implemented imperatively, using shared
mutable state and callbacks. This is efficient, but is also difficult to rea-
son about and error prone. Functional Reactive Programming (FRP)
provides an elegant alternative which allows GUIs to be designed in a
declarative fashion. However, most FRP languages are synchronous and
continually check for new data. This means that an FRP-style GUI will
“wake up” on each program cycle. This is problematic for applications
like text editors and browsers, where often nothing happens for extended
periods of time, and we want the implementation to sleep until new data
arrives. In this paper, we present an asynchronous FRP language for de-
signing GUIs called λWidget. Our language provides a novel semantics for
widgets, the building block of GUIs, which offers both a natural Curry–
Howard logical interpretation and an efficient implementation strategy.

Keywords: Linear Types · FRP · Asynchrony · GUIs

Introduction

Many programs, like compilers, can be thought of as functions – they take a single
input (a source file) and then produce an output (such as a type error message).
Other programs, like embedded controllers, video games, and integrated devel-
opment environments (IDEs), engage in a dialogue with their environment: they
receive an input, produce an output, and then wait for a new input that depends
on the prior input, and produce a new output which is in turn potentially based
on the whole history of prior inputs.

The usual techniques for programming interactive applications are often con-
fusing, since different parts of the program are not written to interact via struc-
tured control flow (e.g., by passing and return values from functions). Instead,
they communicate indirectly, via state-manipulating callbacks which are implic-
itly invoked by an event loop. This makes program reasoning very challenging,
since each of aliased mutable state, higher-order functions, and concurrency is
tricky on its own, and interactive programs rely upon their combination.

This challenge has led to a great deal of work on better abstractions for
programming reactive systems. Two of the main lines of work on this problem
are synchronous dataflow and functional reactive programming. The synchronous
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dataflow languages, like Esterel [5], Lustre [9], and Lucid Synchrone [28], fea-
ture a programming model inspired by Kahn networks. Programs are networks
of stream-processing nodes which communicate with each other, each node con-
suming and producing a fixed number of primitive values at each clock tick. The
first-order nature of these languages makes them strongly analysable, which lets
them offer powerful guarantees on space and time usage. This means they see
substantial use in embedded and safety-critical contexts.

Functional reactive programming, introduced by Elliott and Hudak [13], also
uses time-indexed values, dubbed signals, rather than mutable state as its ba-
sic primitive. However, FRP differs from synchronous dataflow by sacrificing
static analysability in favour of a much richer programming model. Signals are
true first-class values, and can be used freely, including in higher-order functions
and signal-valued signals. This permits writing programs with a dynamically-
varying dataflow network, which simplifies writing programs (such as GUIs) in
which the available signals can change as the program executes. Over the past
decade, a long line of work has refined FRP via the Curry–Howard correspon-
dence [21,18,17,19,20,10,1]. This approach views functional reactive programs as
the programming counterpart for proofs of formulas in linear temporal logic [27],
and has enabled the design of calculi which can rule out spacetime leaks [20] or
can enforce temporal safety and liveness properties [10].

However, both synchronous dataflow and FRP (in both original and modal
flavours) have a synchronous (or “pull”) model of time – time passes in ticks,
and the program wakes up on every tick to do a little bit more computation. This
is suitable for applications in which something new happens at every time step
(e.g., video games), but many GUI programs like text editors and spreadsheets
spend most of their time doing nothing. That is, even at each event, most of the
program will continue doing nothing, and we only want to wake up a component
when an event directly relevant to it occurs. This is important both from a
performance point of view, as well as for saving energy (and extending battery
life). Because of this need, most GUI programs continue to be written in the
traditional callbacks-on-mutable-state style.

In this paper, we give a reactive programming language whose type system
both has a very straightforward logical reading, and which can give natural types
to stateful widgets and the event-based programming model they encourage.
We also derive a denotational semantics of the language, by first working out a
semantics of widgets in terms of the operations that can be performed upon them
and the behaviour they should exhibit. Then, we find the categorical setting in
which the widget semantics should live, and by studying the structure this setup
has, we are able to interpret all of the other types of the programming language.

Contributions The contributions of this paper are:

– We give a descriptive semantics for widgets in GUI programming, and show
that this semantics correctly models a variety of expected behaviours. For
example, our semantics shows that a widget which is periodically re-set to
the colour red is different from a widget that was only persistently set to
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the colour red at the first timestep. Our semantic model can show that as
long as neither one is updated, they look the same, but that they differ if
they are ever set to blue – the first will return to red at reset time, and the
second will remain blue.

– From this semantics, we find a categorical model within which the widget
semantics naturally fits. This model is a Kripke–Joyal presheaf semantics,
which is morally a “proof-relevant” Kripke model of temporal logic.

– We give a concrete calculus for event-based reactive programming, which
can be implemented in terms of the standard primitives for modern GUI
programming, scene graphs (or DOM) which are updated via callbacks in-
voked upon events. We then show that our model can soundly interpret the
types of our calculus in an entirely standard way, showing that the types of
our reactive programming language can be interpreted as time-varying sets.

– Furthermore, this calculus has an entirely standard logical reading in terms of
the Curry–Howard correspondence. It is a “linear temporal linear logic”, with
the linear part of the language corresponding to the Benton–Wadler [3] LNL
calculus for linear logic, and the temporal part of the language corresponding
to S4.3 linear temporal logic. We also give a proof term for the St4.3 axiom
enforcing the linearity of time, and show that it corresponds to the select

primitive of concurrent programming.

The Language

We now present λWidget through the API of the Widget type. This API mirrors
how one would work with a GUI at the browser level. An important feature of a
well-designed GUI is that it should not do anything when not in use. In particu-
lar, it should not check for new inputs in each program cycle (pull -based reactive
programming), but rather sleep until new data arrives (push-based reactive pro-
gramming). Many FRP languages are synchronous languages and have some
internal notion of a timestep. These languages are mostly pull-based, whereas
more traditional imperative reactive languages are push-based. The former have
clear semantics and are easy to reason about, the latter have efficient implemen-
tations. In λWidget we would like to combine these aspects and get a language
that is easy to reason about with an efficient implementation.

In general, we think of a widget as a state through time, i.e., at each timestep,
the widget is in some state which is presented to the user. The widget is mod-
ified by commands, which can update the state. To program with widgets, the
programmer applies commands at various times.

The proper type system for a language of widgets should thus be a system
with both state and time. If we consider what a logic for widgets should be, there
are two obvious choices. A logic for state is linear logic [14], and a logic for time
is linear temporal logic [27]. The combination of these two is the correct setting
for a language of widgets, and, going through Curry–Howard, the corresponding
type theory is a linear, linear temporal type theory.
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Widget API To work with widgets, we define a API which mirrors how one
would work with a browser level GUI:

newWidget : I � ∃ (i : Id),Widget i
dropWidget : ∀ (i : Id),Widget i � I

setColor : ∀ (i : Id),F Color ⊗ Widget i � Widget i
onClick : ∀ (i : Id),Widget i � Widget i ⊗ � I
onKeypress : ∀ (i : Id),Widget i � Widget i ⊗ � (F Char)

out : � A � ∃ (n : Time),A@n
into : ∃ (n : Time),A@n � � A

split : ∀ (i : Id) (t : Time),Widget i � Prefix i t ⊗ (Widget i)@ t
join : ∀ (i : Id) (t : Time),Prefix i t ⊗ (Widget i)@ t � Widget i

The first two commands creates and deletes widgets, respectively. The � should
be understood as state passing. We read the type of newWidget as “consuming
no state, produce a new identifier index and a widget with that identifier index”.
The identifier indices are used to ensure the correct behavior when using the split
and join commands explained below. The existential quantification describes the
non-deterministic creation of an identifier index. The use of non-determinism is
crucial in our language and will be explaining in further detail in section 1. Since
λWidget has a linear type system, we need an explicit construction to delete state.
For widgets, this is dropWidget. The type is read as “for any identifier index,
consume a widget with that identifier index and produce nothing”.

The first command that modifies the state of a widget is setColor. Here we see
the adjoint nature of the calculus with F Color. A color is itself not a linear thing,
and as such, to use it in the linear setting, we apply F, which moves from the
non-linear (Cartesian) fragment and into the linear fragment. The second new
thing is the linear product ⊗. This differs from the regular non-linear product
in that we do not have projection maps. Again, because of the linearity of our
language, we cannot just discard state. We can now read the type of setColor
as “Given a color and a identified widget, consume both and produce a new
widget”. The produced widget is the same as the consumed widget, but with
the color attribute updated.

The next two commands, onClick and onKeypress, are roughly similar. Both
register a handle on the widget, for a mouse click and a key press, respectively.
Here we see the first use of the � modality, which represents an event. The type
�A represents that at some point in the future we will receive something of
type A. Importantly, because of the asynchronous nature of λWidget, we do not
know when it happens. We can then read the type of onClick as “Consuming
an identified widget, produce an updated widget together with a mouse click
event”. The same holds for onKeypress except a key press event is produced.

The two commands out and into allows us to work with events in a more
precise way. Given an event, we can use out to “unfold” it into an existential.
The @ connective describes a type that is only available at a certain timestep,
i.e., A@n means “at the timestep n, a term of type A will be available”. The
into commands is the reverse of out and turns an existential and an @ into an
event.
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Note the besides the above ways of constructing events, we can also turn any
value into an event using the evt construction which is part of the core calculus.
Given some element a : A, we get evt a : �A which represents the event that
returns immediately.

So far, we have only applied commands to a widget in the current timestep,
but to program appropriately with widgets, we should be able to react to events
and apply commands “in the future”. This is exactly what the split and join
commands allows us to do. The type of split is read as “Given any time step
and any identified widget, split the widget into all the states before that time
and the widget at that time”. We denote the collection of states before a given
time a prefix and give it the type Prefix. Given the state of the widget at a given
timestep, we can now apply commands at that timestep. Note that both the
prefix and the widget is indexed by the same identifier index. This is to ensure
that when we use join, we combined the correct prefix and future.

Widget Programming To see the API in action, we now proceed with several
examples of widget programming. For each example, we will add a comment
on each line with the type of variables, and then explain the example in text
afterwards.

One of the simplest things we can do with a widget is to perform some action
when the widget is clicked. In the following example, we register a handler for
mouse clicks, and then we use the click event to change the color of the widget
to red at the time of the click. To do this, we use the out map to get the time
of the event, then we split the widget and apply setColor at that point in the
future.

1 turnRedOnClick : ∀ (i : Id),Widget i � Widget i
2 turnRedOnClick i w0 =
3 let (w1, c0) = onClick i w0 in -- w1 : Widget i, c0 : �I
4 let unpack (x , c1) = out c0 in -- x : Time, c1 : I@x
5 let c2 @ x = c1 in -- c2 : I at x
6 let 〈〉@ x = c2 in
7 let (p, w2) = split i x w1 in -- p : Prefix i x, w2 : Widget i@x
8 let w3 @ x = w2 in -- w3 : Widget i at time x
9 let w4 = -- w4 : Widget i@x

10 (setColor (F Red) w3)@ x in
11 join i x (p, w4)

To see why this type checks, we go through the example line by line. In line
3, we register a handle for a mouse click on the widget. In line 4, we turn the
click event into an existential. In line 5, we get c2 which is a binding that is
only available at the timestep x. Since we only need the time of the click, we
discharge the click itself in line 6. In line 7 and 8, we split the widget using the
timestep x and bind w3 to the state of the widget at that timestep. In line 9-10,
we change the color of the widget to red at x and in line 11 we recompose the
widget.
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In general, we will allow pattern matching in eliminations and since widget
identity indices can always be inferred, we will omit them. In this style, the
above example become:

1 turnRedOnClick : ∀ (i : Id),Widget i � Widget i
2 turnRedOnClick w0 =
3 let (w1, c0) = onClick w1 in -- w1 : Widget i, c0 : �I
4 let unpack (x , 〈〉@ x ) = out c0 in -- x : Time
5 let (p, w2 @ x ) = split x w1 in -- p : Prefix i x, w2 : Widget i at time x
6 join x (p, (setColor (F Red) w2)@ x )

We will use the same sugared style throughout the rest of the examples.
The above example turns a widget red exactly at the time of the mouse

click, but will not do anything with successive clicks. To also handle further
mouse clicks, we must register an event handler recursively. This is a simple
modification of the previous code:

1 keepTurningRed : ∀ (i : Id),Widget i � Widget i
2 keepTurningRed w0 =
3 let (w1, c0) = onClick w1 in -- w1 : Widget i, c0 : �I
4 let unpack (x , 〈〉@ x ) = out c0 in -- x : Time
5 let (p, w2 @ x ) = split x w1 in -- p : Prefix i x, w2 : Widget i at time x
6 join (p, (setColor (F Red) (keepTurningRed w2)@ x ))

By calling itself recursively, this function will make sure a widget will always
turn red on a mouse click.

To understand the difference between two above examples, consider the code
turnBlueOnClick(keepTurningRed w), where w is some widget. On the first click,
the widget will turn blue, on the second click it will turn red and on any subse-
quent click, it will keep turning red, i.e., stay red unless further modified.

When working with widgets, we will often register multiple handlers on a
single widget. For example, a widget should have one behavior for a click and
another behavior for a key press. To choose between two events, we use the select
construction. This construction is central to our language and how to think about
a push-based reactive language.

Given two events, t1 : �A, t2 : �B, there are three possible behaviors: Either
t1 returns first, and we wait for t2 or t2 returns first and we wait for t1 or they
return at the same time. In general, we want to select between n events, but if
we need to handle all possible cases, this will give 2n cases, so to keep the syntax
linear in size, we will omit the last case. In the case events actually return at
the same time, we do a non-deterministic choice between them. The syntax for
select is

select (t1 as x �→ t′1 | t2 as y �→ t′2)

where x : A, y : B, t′1 : A � �B � �C and t′2 : B � �A � �C. The second
important thing to understand when working with select is that given we are
working with events, we do not actually know at which timestep the events will
trigger, and hence, we do not know what the (linear) context contains. Thus,
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when using select, we will only know either a : A, t2 : �B or t1 : �A, b : B. We
can think of the select rule a case-expression that must respect time.

In the following example, we register two handlers, one for clicks and one for
key presses, and change the color of the widget based on which returns first. We
will only annotate the new parts.

1 widgetSelect : ∀ (i : Id),Widget i � Widget i
2 widgetSelect w0 =
3 let (w1, c) = onClick w0 in -- c : �I.
4 let (w2, k) = onKeypress w1 in -- k : �(F char).
5 let col = -- col : �(F Color)
6 select
7 ( c as x → let 〈〉 = x in -- x : I, k : �(F Color).
8 let unpack (t , 〈〉@ t)
9 = out (mapE (fun F ( ) → 〈〉) k) in

10 evt (F Red)

11 | k as y → let F k ′ = y in -- y : F char, c : �I
12 let unpack (t , 〈〉@ t) = c in
13 evt (F Blue))
14 let unpack (x , col ′ @ x ) = out col in -- col′ : F Color at time x.
15 let (p, w3 @ x ) = split x w2 in
16 join (p, (setColor col ′ w3)@ x )

In line 3 and 4, we register the two handlers. In line 5-13, we use the select
construction. In the first case, the click happens first and we return the color
red. In the second case, the key press happens first and we return the color blue.
In both cases, because of the linear nature of the language, we need to discharge
the unit and char, respectively, and the event that does not return first. In line
14, we turn the color event into an existential. In line 15, we use the timestep
of the color event to split the widget, and in line 16, we change the color of the
widget at that time and recompose it.

To see how λWidget differs from more traditional synchronous FRP languages,
we will examine how to encode a kind of streams. Since our language is asyn-
chronous, the stream type must be encoded as

Str A := να.�(A⊗ α)

This asynchronous stream will at some point in the future give a head and a
tail. We do not know when the first element of the stream will arrive, and after
each element of the stream is produced, we will wait an indeterminate amount
of time for the next element. The reason why the stream type in λWidget must be
like this is essentially that we want a push-based language, i.e., we do not want
to wake up and check for new data in each program cycle. Instead, the program
should sleep until new data arrives.

To show the difference between the asynchronous stream and the more tra-
ditional synchronous stream, we will look at some examples. With a traditional
stream, a standard operation is zipping two streams: that is, given Str A and
Str B, we can produce Str A × B, which should be the element-wise pairing of
the two streams. It should be clear that this is not possible for our asynchronous
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streams. Given two streams, we can wait until the first stream produces an ele-
ment, but the second stream may only produce an element after a long period of
time. Hence, we would need to buffer the first element, which is not supported
in general. Remember, when using select, we can not use any already defined
linear variables, since we do not know if they will be available in the future.

Rather than zipping stream, we can instead do a kind of interleaving as
shown below. We use fold and unfold to denote the folding and unfolding of the
fixpoint.

1 interleave : Str A � Str B � Str (A ⊕ B)
2 interleave xs ys = fold (
3 select
4 ( unfold xs as xs ′ →
5 let (x , xs ′′) = xs ′ in -- xs′ : A⊗ Str A, x : A, xs′′ : Str A
6 evt (inl x , interleave xs ′′ ys)
7 | unfold ys as ys ′ →
8 let (y , ys ′′) = ys ′ in -- ys′ : B ⊗ Str B, y : B, ys′′ : Str A
9 evt (inr y , interleave xs ys ′′)))

Here, we use select to choose between which stream returns first, and then we
let that element be the first element of the new stream.

On the other hand, some of the traditional FRP functions on streams can be
translated. For instance, we can map of function over a stream, given that it is
available at each step in time:

1 map : F (G (A � B)) � Str A � Str B
2 map f0 xs =
3 let F f1 = f0 in -- f1 : G(A � B)
4 let (y , (x , xs ′)@ y) = -- y : Time, x : A, xs′ : �Str A at time y
5 out (unfold xs) in
6 fold (evt ((runG f1) x ,map f0 xs ′))

The type F(G(A � B)) is read as a linear function with no free variables that
can be used in a non-linear fashion, i.e., duplicated. This restriction to such
“globally available functions” is reminiscent of the “box” modality in Bahr et
al. [1] and Krishnaswami [20], and the F and G construction can be understood
as decomposing the box modality into two separate steps. This relationship will
be made precise in the logical interpretation of λWidget in section 1

As a final example, we will show how to dynamically update the GUI, i.e.,
how to add new widgets on the fly. Before we can give the example, we need to
extend our widget API, to allow composition of widgets. To that end, we add
the vAttach command to our API.

vAttach : ∀(i, j : Id),Widget i � Widget j � Widget i

This command should be understood as an abstract version the div tag in
HTML. In the following example, we think of the widget as a simple button
that when clicked, will create a new button. When any of the buttons gets
clicked, a new button gets attached.
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1 buttonStack : ∀ i ,Widget i � Widget i
2 buttonStack w0 =
3 let (w1, c) = onClick w0 in
4 let (x , 〈〉@ x ) = out e in
5 let (p, w2 @ x ) = split x w1 in
6 let w3 = (let (y ,w) = newWidget 〈〉 in
7 vAttach w2 (buttonStack w))@ x in
8 join (p, w3)

The important step here is in line 6 and 7. Here the new button is attached at
the time of the mouse click, and buttonStack is called recursively on the newly
created button.

Formal Calculus

This sections gives the rules, meta-theory and logical interpretation of λWidget.
Briefly, the language is a mixed linear-non-linear adjoint calculus in the style
of Benton–Wadler [4,3]. The non-linear fragment, also called Cartesian in the
following, is a minimal simply typed lambda calculus whereas the linear fragment
contains several non-standard judgments used for widget programming.

Contexts and Typing Judgments We have three typing judgments: one for
indices, one for Cartesian (non-linear) terms, and one for linear terms. These are
distinguished by a subscript on the turnstile, i for indices, c for Cartesian terms
and l for linear terms. These depend on different contexts. The index judgment
depends only on a index context, whereas the Cartesian and linear judgments
depends on both an index and a linear and/or a Cartesian context. The rules for
context formation is given in Figure 1. These are mostly standard except for the
dependence on a previously defined context and the fact that the linear context
contains variables of the form a :τ A, i.e., temporal variables. The judgment
a :τ A is read as “a has the type A at the timestep τ”. In the linear setting we
will write a : A instead of a :0 A, i.e., a judgment in the current timestep.

Indices: 	i ·
	i Θ s �∈ dom(Θ) σ ∈ {Id,Time}

	i Θ, s : σ

Cartesian: · 	c

Θ 	c Γ x �∈ dom(Γ ) Θ 	c X

Θ 	c Γ, x : X

Linear: · 	l

Θ 	l Δ x �∈ dom(Δ) Θ 	l A Θ 	i τ : Time

Θ 	l Δ, a :τ A

Fig. 1. Context Formation

The index judgment describes how to introduce indices. The typing rules are
given in Figure 2. The judgment Θ �i τ : σ contains a single context, Θ, for
index variables. There are only two sorts of indices, identifiers and timesteps.
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Index Judgments:

τ ∈ Time

Θ 	i τ : Time
Time

ι ∈ Id

Θ 	i ι : Id
Id

i : σ ∈ Θ

Θ 	i i : σ
Var

Fig. 2. Index Typing rules

The Cartesian judgment describes the Cartesian, or non-linear, fragment.
This is a minimal simply typed lambda calculus with the addition of the G
type, used for moving between the linear and Cartesian fragment, and explained
further below. The judgment Θ;Γ �c t : A has two contexts; Θ for indices and
Γ for Cartesian variables.

The linear fragment is most of the language, and a selection of typing rules
is given in Figure 3. The judgment is done w.r.t three contexts, Θ for index
variables, Γ for Cartesian variables and Δ for linear variables. Many of the
rules are standard for a linear calculus, except for the presence of the additional
contexts. We will not describe the standard rules any further.

The first non-standard rule is for �. The introduction and elimination rules
follow from the fact that � is a non-strong monad. More interesting is the select
rule. Here we see the formal rule corresponding to the informal explanation in
section 1. The important thing here is that we can not use any previously defined
linear variable when typing t′1 and t′2, since we do not actually know when the
typing happens. Note, we can see the select rule as a binary version of the �
let-binding. This could be extended to an n-ary version, but we do not do this in
our core calculus. The rules for A@ τ shows how to move between the judgment
t : A@ τ and t :τ A. That is, moving from knowing in the current timestep that
t will have the type A at time τ and knowing at time τ that t has type A. The
(F -I), (F -E), (G -I) and (G -E) rules show the adjoint structure of the language.
The (G -I) rule takes a closed linear term of type A and gives it the Cartesian
type G A. Note, because it has no free linear variables, it is safe to duplicate. The
(G -E) rule lets us get an A without needing any linear resources. Conversely, the
(F -I) rule embeds a intuitionistic term into the linear fragment and the (F -E)
rule binds an intuitionistic variable to let us freely use the value. The (Delay)
rule shows what happens when we actually know the timestep. The important
part is Δ′ = Δ ↓τ which means two things. One, all the variables in Δ are on
the form a :τ A, i.e., judgments at time τ and two, we shift Δ into the future
such that all the variables of Δ′ is of the form a : A. The way to understand this
is, if all the variables in Δ are typed at time τ and the conclusion is at time τ ,
it is enough to “move to” time τ and then type w.r.t that timestep. Finally, we
have (Iτ -E) and (⊗τ -E). These allow us to work with linear unit and products
at time τ . These are added explicitly since they can not be derived by the other
rules, and are needed for typing certain kinds of programs.

Unfolding Events to Exists The type system as given above contains both
�A and A@ k, as two distinct ways to handle time. The former means that
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Θ 	i τ : Time Θ;Γ ;Δ 	l t :τ A

Θ;Γ ;Δ 	l t@ τ : A@ τ
(@-I)

Θ 	i t : Time Θ;Γ ;Δ1 	l t1 : A@ τ Θ;Γ ;Δ2, a :τ A 	l t2 : B

Θ;Γ ;Δ1,Δ2 	l let a@ τ = t1 in t2 : B
(@-E)

Θ;Γ 	c e : G A

Θ;Γ ; · 	l runG e : A
(G-E)

Θ;Γ 	c e : X

Θ;Γ ; · 	l F e : F x
(F-I)

Θ;Γ ;Δ1 	l t1 : F X Θ;Γ, x : X;Δ2 	l t2 : B

Θ;Γ ;Δ1,Δ2 	l let F x = t1 in t2 : B
(F-E)

Θ, i : σ;Γ ;Δ 	l t : A

Θ;Γ ;Δ 	l Λ(i : σ).t : ∀(i : σ).A
(∀-I) Θ 	i s : σ Θ;Γ ;Δ 	l t : ∀(i : σ).A

Θ;Γ ;Δ 	l ts : {s/i}A (∀-E)

Θ 	i s : σ Θ;Γ ;Δ 	l t : {s/i}A
Θ;Γ ;Δ 	l {s, t} : ∃(i : σ).A (∃-I)

Θ;Γ ;Δ1 	l t1 : ∃(i : σ).A Θ, s : σ;Γ ;Δ2, a : {s/i}A 	l t2 : B

Θ;Γ ;Δ1,Δ2 	l let unpack {s, a} = t1 in t2 : B
(∃-E)

Θ;Γ ;Δ1 	l t1 : �A Θ;Γ ;Δ2 	l t2 : �B
Θ;Γ ; a : A, t2 : �B 	l t

′
1 : �C Θ;Γ ; b : B, t1 : �A 	l t

′
2 : �C

Θ;Γ ;Δ1,Δ2 	l select (t1 as a �→ t′1 | t2 as b �→ t′2) : �C
(select)

Θ 	i τ : Time Δ′ = Δ ↓τ Θ;Γ ;Δ′ 	l t : A

Θ;Γ ;Δ 	l t :τ A
(delay)

Θ 	i τ : Time Θ;Γ ;Δ1 	l t1 :τ I Θ;Γ ;Δ2 	l t2 : B

Θ;Γ ;Δ1,Δ2 	l let 〈〉@ τ = t1 in t2 : B
(Iτ -E)

Θ 	i τ : Time
Θ;Γ ;Δ1 	l t1 :τ A⊗B Θ;Γ ;Δ2, a :τ A, b :τ B 	l t2 : C

Θ;Γ ;Δ1,Δ2 	l let (a, b)@ τ = t1 in t2 : C
(⊗τ -E)

Fig. 3. Selected Linear Typing rules
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something of type A will arrive at some point in the future, whereas the latter
means an A arrives at a specific point in the future. The strength of � is that
is gives easy and concise typing rules, whereas the strength of A@ k is that
it allows for a more precise usage of time. To connect these two, we add the
linear isomorphism �A ∼= ∃k.A@ k to our language, which is witnessed by out
and into, as part of the widget API. This isomorphism is true semantically, but
can not be derived in the type system. In particular, this isomorphism allows
the select rule to be given with �, while still allowing the use timesteps when
working with the resulting event. If we were to give the equivalent definition using
timesteps, one would need to have some sort of constraint system for deciding
which events happens first. Avoiding such constraints also allows for a simpler
implementation, as everything is our type system can be inferred.

Meta-theory of Substitution The meta-theory of λWidget is given in the form
of a series of substitution lemmas. Since we have three different contexts, we will
end up with six different substitutions into terms. The Cartesian to Cartesian,
Cartesian to linear and linear to linear are the usual notion of mutual recursive
substitution. More interesting is the substitution of indices into Cartesian and
linear terms and types. We prove the following lemma, showing that typing is
preserved under index substitution:

Lemma 1 (Preservation of Typing under Index Substitution).

ζ : Θ′ → Θ Θ;Γ 	c e : X

Θ′; ζ(Γ ) 	c ζ(e) : ζ(X)

ζ : Θ′ → Θ Θ;Γ ;Δ 	l t :τ A

Θ′; ζ(Γ ); ζ(Δ) 	l ζ(t) :τ ζ(A)

Both are these (and all other cases for substitution) are proved by a lengthy
but standard induction over the typing tree. See the technical appendix for full
proofs of all six substitution lemmas.

Logical Interpretation Our language has a straightforward logical interpre-
tation. The logic corresponding to the Cartesian fragment is a propositional
intuitionistic logic, following the usual Curry–Howard interpretation. The logic
corresponding to the substructural part of the language is a linear, linear tempo-
ral logic. The single-use condition on variables means that the syntax and typing
rules correspond to the rules of intuitionistic linear logic (i.e., the first occurrence
of linear in “linear, linear temporal”). However, we do not have a comonadic ex-
ponential modality !A as a primitive. Instead, we follow the Benton–Wadler
approach [4,3] and decompose the exponential into the composition of a pair of
adjoint functors mediating between the Cartesian and linear logic.

In addition to the Benton–Wadler rules, we have a temporal modality �A,
which corresponds to the eventually modality of linear temporal logic (i.e., the
second occurrence of “linear” in “linear, linear temporal logic”). This connective
is usually written F A in temporal logic, but that collides with the F modality
of the Benton–Wadler calculus. Therefore we write it as �A to reflect its nature
as a possibility modality (or monad). In our calculus, the axioms of S4.3 are
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derivable:

(T ) : A � �A

(4) : ��A � �A

(.3) : �(A⊗B) � �((�A⊗B)⊕ �(A⊗ �B)⊕ �(A⊗B))

Since the ambient logic is linear, intuitionistic implication X → Y is replaced
with the linear implication A � B, and intuitionistic conjunction X ∧ Y is
replaced with the linear tensor product A⊗B. It is easy to see that the first two
axiom corresponds to the monadic structure of �, and the .3 axiom corresponds
to the select rule (with our syntax for select corresponding to immediately waiting
for and then pattern-matching on the sum type). In the literature, the .3 axiom
is often written in terms of the box modality �A [8], but we present it here in
a (classically) equivalent formulation mentioning the eventually modality �A.
We do not need to an explicit box modality �A, since the decomposition of the
exponential F(GA) from the linear-non-linear calculus serves that role.

In our system, we do not offer the next-step operator �A. Since we model
asynchronous programs, we do not let programmers write programs which wake
up in a specified amount of time. We only offer an iterated version of this con-
nective, A@n, which can be interpreted as �nA, and our term syntax has no
numeric constants which can be used to demand a specific delay.

Finally, the universal and existential quantifiers (in both the intuitionistic
and linear fragments) are the usual quantifier rules for first-order logic.

Semantics

In this section we give a denotational model for λWidget. It is a linear-non-linear
(LNL) hyperdoctrine [24,16] with the non-linear part being Set and the linear
part being the category of internal relations over a suitable “reactive” category.
The hyperdoctrine structure is used to interpret the quantification over indices.
This model is nearly entirely standard: the most interesting thing is the reactive
base category and the interpretation of widgets. It is well known that any sym-
metric monoidal closed category (SMCC) models multiplicative intuitionistic
linear logic (MILL), and it is similarly well known that the category of relations
over Set can be give the structure of a SMCC by using the Cartesian product
as both the monoidal product and monoidal exponential. This construction lift
directly to any category of internal relations over a category that is suitably
“Set-like”, i.e., a topos. Our base category is a simple presheaf category, and
hence, we use this construction to model the linear fragment of λWidget.

The Base Reactive Category The base reactive category is where the notion
of time will arise and is it this notion that will be lifted all the way up to the LNL
hyperdoctrine. The simplest model of “time” is SetN, which can be understood
as “sets through time” [23]. This can indeed by used as a model for a reactive
setting, but for our purposes it is too simple, and further, depending on which
ordering is considered for N, may have undesirable properties for the reactive
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setting. Instead, we use the only slightly more complicated SetN+1, henceforth
denoted R, where the ordering on N + 1 is the discrete ordering on N and 1 is
related to everything else. Adding this “point at infinity” allows global reasoning
about objects, an intuition that is further supported by the definition of the sub-
object classifier below. Further, this model is known to be able to differentiate
between least and greatest fixpoints [15], and even though we do not use this for
λWidget, we consider it a useful property for further work (see section 1). Objects
in R can be visualized as

A =

A∞

A0 A1 · · ·

π1 π2

We can think of A∞ as the global view of the object and An as the local view
of the object at each timestep. Morphisms are natural transformations between
such diagrams and the naturality condition means that having a map from A∞
to B∞ must also come with coherent maps at each timestep.

In R we define two endofunctors, which can be seen as describing the passage
of time:

Definition 1. We define the later and previous endofunctors on R, denoted �
and �, respectively:

(�A)n :=

⎧⎪⎨
⎪⎩
1 n = 0

An′ n = n′ + 1

A∞ n = ∞
(�A)n :=

{
An+1 n �= ∞
A∞ n = ∞

Note that when we apply the later functor, the global view does not change, but
the local views are shifted forward in time.

Theorem 1. The later and previous endofunctors form an adjunction.

Definition 2. The sub-object classifier, denoted Ω, in R is the object

Ω∞ = P(N) + 1 Ωn = {0, 1}
For each n ∈ N, Ωn denotes whether a given proposition is true at the nth
timestep. Ω∞ gives the “global truth” of a given proposition. The left injection
is some subset of N that denotes at which points in time something is true. The
right injection denotes that something is true “at the limit”, and in particular,
also at all timesteps. Note, a proposition can be true at all timesteps but not at
the limit. This extra point at infinity is precisely what allows us the differentiate
between least and greatest fixpoints.

The Category of Internal Relations To interpret the linear fragment of
the language, we will use the category of internal relations on R. Given two
objects A and B in R, an internal relation is a sub-object of the product A×B.
This can equivalently by understood as a map A × B → Ω. The category of
internal relations in the category where the objects are the objects of R and
the morphisms A → B are internal relations A × B → Ω in R. We denote the
category of internal relations as RelR.
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Theorem 2. Using A⊗B = A×B and A � B = A×B as monoidal product
and exponential, respectively, RelR is a symmetric monoidal closed category.

Theorem 3. There is an adjunction � � � in RelR where � and � are the
lifting of the previous and later functors from R to RelR.

Definition 3. We define the iterated later modality or the “at” connective as
a successive application of the later modality.

�0A = A

�(k+1)A = �(�kA)

and we will alternatively write A@ k to mean �kA.

Definition 4. We define the event functor on RelR as an iterated later.

�A : RelR → RelR
(�A)∞ = A∞

(�A)n = Σ(k : N).(�k A)n

The event functor additionally carries a monadic structure (see [29] and the
technical appendix).

Theorem 4. We have the isomorphism �A ∼= Σ(n : N).A@n for any A

Theorem 5. We have the following adjunctions between Set, R and RelR:

Set ⊥ R ⊥ RelR

Δ I

lim P

where Δ is the constant functor, lim is the limit functor, I is the inclusion
functor and P is the image functor. This induces an adjunction between Set and
RelR.

The Widget Object One of the most important objects in RelR is the widget
object. This object is used to interpret widgets and prefixes. The widget object
will be defined with respect to an ambient notion of identifiers, which we will
denote Id. These will be part of the hyperdoctrine structure define below, and
for now, we will just assume such an object to exists. We will also use a notion of
timesteps internal to the widget object. Note that this timestep is different from
the abstract timestep used for defining RelR, but are related as defined below.
We denote the abstract timesteps with Time.

Before we can define the widget object, we need to define an appropriate ob-
ject of commands. In our minimal Widget API, the only semantic commands will
be setColor, onClick and onKeypress. The rest of the API is defined as morphisms
on the widget object itself. To work with the semantics commands, we addition-
ally need a compatibility relation. This relation describes what commands can
be applied at the same time. In our setting this relation is minimal, but can in
principle be used to encode whatever restrictions is needed for a given API.
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Definition 5. We define the command object as

Cmd = {(setColor, color), onClick, onKeypress}
where color is an element of a “color” object. The compatibility relations are:

(op, arg) 	� (op′, arg ′) iff (op = op′ ⇒ arg = arg ′)

The only non-compatible combination of commands is two application of the
setColor command, the idea being that you can not set the color twice in the
same timestep.

We can now define the widget and prefix objects

Definition 6. The widget object, denoted Widget, is indexed by i ∈ Id and is
defined as

Widget∞ i =
{
(w, i) | w ∈ P(Time× Cmd), (t, c) ∈ w ∧ (t, c′) ∈ w → c 	� c′

}
Widgetn i = {(w, i) ⊂ Widget∞ i | ∀(t, c) ∈ w, t  n}

The prefix object, denoted Prefix, is indexed by i ∈ Id and t ∈ Time and is:

Prefix∞ i t =
{
(P, i) ⊂ Widget∞ i | ∀(t′, c) ∈ P, t′  t

}
Prefixn i t =

{
{(P, i) ⊂ Prefix∞ i t | ∀(t′, c) ∈ P, t′  n} n < t

I otherwise

The widget object is a collection of times and commands keeping track of what
has happened to it at various times – imagine a logbook with entries for each time
step. At the point at infinity, the “global” behavior of the widget is defined, i.e.,
the full logbook of the widget. For each n, Widgetn is simply what has happened
to the widget so far, i.e., a truncated logbook. The prefix object is a widget
object that is only defined up to some timestep, and is the unit after that. This
yields a semantic difference between the widget where the color is set only once,
and the widget where the color is set at every timestep. This reflects a real
difference in actual widget behavior: if turnRedOnClick w later set to be blue,
it will remain blue, but keepTurningRed w will turn back to being red.

To manipulate widgets we define two “restriction” maps.

Definition 7. We define the following on widgets and prefixes

shift t : Widget i →RelR Widget i

(shift t W )n =
{
(t′ − t, c) | (t′, c) ∈ W ∧ t  t′

}

prefix t i : Widget i →RelR Prefix i t

(prefix t i W )n =

{
{(t′, c) ∈ W | t′ < t} n < t

I n � t

The intuition behind these is that prefix t i “cuts off” the widget after t, giving
a prefix, whereas shift t shifts forward all entries in the widget by t.

Using the above, we can now define the split and join morphisms. These are
again given w.r.t ambient Id and Time objects, which will be part of the full
hyperdoctrine structure:



Adjoint Reactive GUI Programming 305

Definition 8. We define the following morphisms on the widget object

split i t : Widget i →RelR Prefix i t⊗Widget i@ t

(split i t w)n = (prefix t i w, shift t w)n

join i t : Prefix i t⊗Widget i@ t →RelR Widget i

(join i t (p, w))n =

{
pn n < t

wn−t n � t

Linear-non-linear Hyperdoctrine So far we have not explained in details
how to model the quantifiers in our system. To do this, we use the notion of
a hyperdoctrine [22]. For first-order logic, this is a functor from a category of
contexts and substitutions to the category of Cartesian closed categories, with
the idea that we have one CCC for each valuation of the free first-order variables.

As our category of contexts, we use a Cartesian category to interpret our
index objects, Time and Id. The former is interpreted as N+ 1 and the latter as
N. In our case, both Set and RelR are themselves hyperdoctrines w.r.t to this
category of contexts, the former a first-order hyperdoctrine and the latter a mul-
tiplicative intuitionistic linear logic (MILL) hyperdoctrine. Together these form
a linear-non-linear hyperdoctrine through the adjunction given in Theorem 5.

Definition 9. A linear-non-linear hyperdoctrine is a MILL hyperdoctrine L to-
gether with a first-order hyperdoctrine C and a fiber-wise monoidal adjunction
F : L � C : G.

Theorem 6. The categories Set and RelR form a linear-non-linear hyperdoc-
trine w.r.t the interpretation of the indices objects, with the adjunction given as
in Theorem 5.

We refer the reader to the accompanying technical appendix for the full details.

Denotational Semantics We the above, we have enough structure to give
an interpretation of λWidget. Again, most of this interpretation is standard in
the use of the hyperdoctrine structure, and we interpret � in the obvious way
using the linear hyperdoctrine structure on RelR. As an example, we sketch the
interpretation of the widget object and the setColor command below.

Definition 10. We interpret the Widget i and Prefix i types using the widget
and prefix objects:

�Θ 	 Widget i� = Widget �Θ 	s i : Id�
�Θ 	 Prefix i t� = Prefix �Θ 	s i : Id� �Θ 	s t : Time�

and we interpret the setColor commands as:

�setColor : ∀(i : Id),Widget i⊗ F Color � Widget i� =
{w ∪W {(0, (setColor, col))} | w ∈ �Widget i�, col ∈ �Color�}

where ∪W is a “widget union”, which is a union of sets such that identifiers
indices and compatibility of commands are respected
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This interpretation shows that a widget is indeed a logbook of events. Using
the setColor command simply adds an entry to the logbook of the widget. Note
we only set the color in the current timestep. To set the color in the future, we
combine the above with appropriate uses of splits and joins. The interpretation of
split and join are done using their semantic counterparts, and the interpretation
of onClick and onKeypress are done, using our non-deterministic semantics, by
associating a widget with all possible occurrences of the corresponds event.

Soundness of Substitution Finally, we prove that semantic substitution is
sound w.r.t syntactic substitution. As with the proofs of type preservation for
syntactic substitution, there are several cases for the different kinds of substitu-
tion, but the main results is again concerned with substitution of indices:

Theorem 7. Given ζ : Θ′ → Θ, Θ;Γ �c e : X and Θ;Γ ;Δ �l t : A then

�ζ� �Θ;Γ 	c e : X� = �Θ′; ζ(Γ ) 	c ζ(e) : ζ(X)�
�ζ� �Θ;Γ ;Δ 	l t : A� = �Θ′; ζ(Γ ); ζ(Δ) 	l ζ(t) : ζ(A)�

Proofs for all six substitutions lemmas can be found in the technical appendix.

Related and Future Work

Much work has aimed at a logical perspective on FRP via the Curry–Howard
correspondence [21,18,17,19,20,10,1]. As mentioned earlier, most of this work has
focused on calculi that have a Nakano-style later modality [25], but this has the
consequence that it makes it easy to write programs which wake up on every clock
tick. In this paper, we remove the explicit next-step modality from the calculus,
which opens the door to a more efficient implementation style based on the so-
called “push” (or event/notification-based) implementation style. Elliott [12] also
looked at implementing a push-based model, but viewed it as an optimization
rather than a first-class feature in its own right. In future work, we plan on
implementing a language based upon this calculus, with the idea that we can
compile to Javascript, and represent widgets with DOM nodes, and represent
the �A and A@n temporal connectives using doubly-negated callback types (in
Haskell notation, Event A = (A -> IO ()) -> IO ()). This should let us write
GUI programs in functional style, while generating imperative, callback-based
code in the same style that a handwritten GUI program would use.

Our model, in terms of SetN+1, enriches LTL’s semantics from time-indexed
truth-values to time-indexed sets. The addition of the global view or point at
infinity enables our model to distinguishes between least and greatest fixed
points [15] (i.e., inductive and coinductive types), unlike in models of guarded
recursion where guarded types are bilimit-compact [6]. This lets us encode tem-
poral liveness and safety properties using inductive and coinductive types [10,2].

A recent development for comonadic modalities is the introduction of the
so-called ’Fitch-style’ calculi [7,11] as an alternative to the Pfenning–Davies
pattern-style elimination [26]. These calculi have been used successfully for FRP
[1], and one interesting question is whether they extend to adjoint calculi as well
– i.e., can the F (X) modality support a direct-style eliminator?
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Abstract. We show that the existential fragment of Büchi arithmetic
is strictly less expressive than full Büchi arithmetic of any base, and
moreover establish that its Σ2-fragment is already expressively complete.
Furthermore, we show that regular languages of polynomial growth are
definable in the existential fragment of Büchi arithmetic.

Keywords: logical theories · logical definability · quantifier elimination · auto-
matic structures · regular languages

1 Introduction

This paper studies the expressive power of Büchi arithmetic, an extension of
Presburger arithmetic, the first-order theory of the structure 〈N, 0, 1,+〉. Büchi
arithmetic additionally allows for expressing restricted divisibility properties
while retaining decidability. Given an integer p ≥ 2, Büchi arithmetic of base p is
the first-order theory of the structure 〈N, 0, 1,+, Vp〉, where Vp is a binary pred-
icate such that Vp(a, b) holds if and only if a is the largest power of p dividing b
without remainder, i.e., a = pk, a | b and p · a � b.

Presburger arithmetic admits quantifier-elimination in the extended struc-
ture 〈N, 0, 1,+, {c|·}c>1〉 additionally consisting of unary divisibility predicates
c|· for every c > 1 [10]. It follows that the existential fragment of Presburger
arithmetic is expressively complete, since any predicate c|· can be expressed
using an additional existentially quantified variable. We study the analogous
question for Büchi arithmetic and show, as the main result of this paper, that
its existential fragment is, in any base, strictly less expressive than full Büchi
arithmetic. Notably, this result implies that there does not exist a quantifier-
elimination result à la Presburger for Büchi arithmetic, i.e., any extension of
Büchi arithmetic with additional predicates definable in existential Büchi arith-
metic does not admit quantifier elimination.

A central result about Büchi arithmetic is that it is an automatic structure:
a set M ⊆ Nn is definable in Büchi arithmetic of base p if and only if M is
recognizable by a finite-state automaton under a base p encoding of the natural
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numbers. Equivalently, M is p-regular. This result was first stated by Büchi [4],
albeit in an incorrect form, and later correctly stated and proved by Bruyère [2],
see also [3]. Villemaire showed that the Σ3-fragment of Büchi arithmetic is ex-
pressively complete [13, Cor. 2.4]. He established this result by showing how to
construct a Σ3-formula defining the language of a given finite-state automaton.
We observe that Villemaire’s construction can actually be improved to a Σ2-
formula and thus obtain a full characterization of the expressive power of Büchi
arithmetic in terms of the number of quantifier alternations.

Our approach to separating the expressiveness of existential Büchi arithmetic
from full Büchi arithmetic in base p is based on a counting argument. Given a
set M ⊆ N, define the counting function dM (n) := #(M ∩ {pn−1, . . . , pn − 1})
which counts the numbers of bit-length n in base p in M . If M is definable in
existential Büchi arithmetic of base p, we show that dM is either O(nc) for some
c ≥ 0, or at least c ·pn for some constant c > 0 and infinitely many n ∈ N. Since,
for instance, for Mp ⊆ N defined as the set of numbers with p-ary expansion in
the regular language {10, 01}∗, we have dMp

(n) = Θ(2n/2), and hence Mp is not
definable in existential Büchi arithmetic of base p. However, Mp being p-regular
implies that Mp is definable by a Σ2-formula of Büchi arithmetic of base p.

We also show that existential Büchi arithmetic defines all regular languages
of polynomial density, encoded as sets of integers. Given a language L ⊆ Σ∗,
let the counting function dL : N→ N be such that dL(n) := #(L ∩Σn). Szilard
et al. [11] say that L has polynomial density whenever dL(n) is O(nc) for some
non-negative integer c. If moreover L is regular then Szilard et al. show that L is
represented as a finite union of regular expressions of the form v0w

∗
1v1 · · ·w∗

kvk
such that 0 ≤ k ≤ c+ 1, v0, w1, v1, . . . , vk, wk ∈ Σ∗ [11, Thm. 3]. We show that
existential Büchi arithmetic defines any language represented by a regular ex-
pression v0w

∗
1v1 · · ·w∗

kvk, which implies that existential Büchi arithmetic defines
all regular languages of polynomial density.

2 Preliminaries

Given v = (v1, . . . , vd) ∈ Zd, we denote by ‖v‖∞ the maximum norm of v,
i.e., ‖v‖∞ = max{|v1|, . . . , |vd|}. For a matrix A ∈ Zm×d with entries ai,j ,
1 ≤ i ≤ m, 1 ≤ j ≤ d, we denote by ‖A‖1,∞ the one-infinity norm of A, i.e.,
‖A‖1,∞ = max{|ai,1|+ · · ·+ |ai,d| : 1 ≤ i ≤ m}.

Let Σ be an alphabet and w ∈ Σ∗, we denote by |w| the length of w. Given
a set U ⊆ N, we denote by wU := {wu : u ∈ U}. Thus, for example, w∗ = wN.

For an integer p ≥ 2, let Σp := {0, . . . , p − 1}. We view words over Σp as
numbers encoded in p-ary most-significant bit first encoding. Tuples of num-
bers of dimension n can be encoded as words over the alphabet Σn

p . For w =
vm · · ·v0 ∈ (Σn

p )
m+1, we denote by �w�p ∈ Nn the n-tuple

�w�p :=
m∑
i=0

vi · pi .
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We furthermore define �ε�p := 0. Note that �·�p is not injective since, e.g., 01
and 001 both encode the number one. Given L ⊆ (Σn

p )
∗, we define

�L�p := {�w�p : w ∈ L} ⊆ Nn .

Automata. A deterministic automaton is a tuple A = (Q,Σ, δ, q0, F ), where

– Q is a set of states,
– Σ is a finite alphabet,
– δ : Q×Σ → Q ∪ {⊥}, where ⊥ �∈ Q, is the transition function,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of final states.

For states q, r ∈ Q and u ∈ Σ, we write q
u−→ r if δ(q, u) = r, and extend

−→ inductively to words by stipulating, for w ∈ Σ∗ and u ∈ Σ, that q
w·u−−→ r

if there is s ∈ Q such that q
w−→ s

u−→ r. The language of A is defined as
L(A) = {w ∈ Σ∗ : q0

w−→ qf , qf ∈ F}.
Note that a priori we allow automata to have infinitely many states and

to have partially defined transition functions (due to the presence of ⊥ in the
co-domain of δ). If Q is finite then we call A a deterministic finite automaton
(DFA), and if in addition Σ = Σn

p for some p ≥ 2 and n ≥ 1 then A is called
a p-automaton. Throughout this paper, we assume, without loss of generality,
that all states of a DFA are live, i.e., every state is reachable from the initial
state and can reach an accepting state.

Arithmetic theories. As stated in the introduction, Presburger arithmetic is the
first-order theory of the structure 〈N, 0, 1,+〉, and Büchi arithmetic of base p
the first-order theory of the extended structure 〈N, 0, 1,+, Vp〉. We write atomic
formulas of Presburger arithmetic as a · x = c, where a = (a1, . . . , ad)

ᵀ with
ai ∈ Z, c ∈ Z, and x = (x1, . . . , xd) is a vector of unknowns. In Büchi arithmetic
we additionally have atomic formulas Vp(x, y) for the unknowns x and y. For
technical convenience, we assert that Vp(x, 0) never holds.3 We write Φ(x) or
Φ(x) to indicate that x or a vector of unknowns x occurs free in Φ. If there
are further free variables in Φ, we assume them to be implicitly existentially
quantified.

We may without loss of generality assume that no negation symbol occurs in
a formula of Büchi arithmetic. First, we have ¬(a · x = c) ≡ a · x ≤ c− 1 ∨ a ·
x ≥ c + 1, and the order relation ≤ can easily be expressed by introducing an
additionally existentially quantified variable. Moreover, we have

¬Vp(x, y) ≡ y = 0 ∨ ∃z : Vp(z, y) ∧ ¬(x = z) .

Finally, Pp(x) := Vp(x, x) denotes the macro asserting that x is a power of p.
Given a formula Φ(x) of Büchi arithmetic of base p, we define

�Φ(x)�p :=
{
m ∈ Nd : Φ[m/x] is valid

}
,

3 Other conventions are possible, e.g., asserting that Vp(x, 0) holds if and only if x = 1
as in [3], but this does not change the sets of numbers definable in Büchi arithmetic.
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where, for m = (m1, . . . ,md) and x = (x1, . . . , xd), Φ[m/x] is the formula
obtained from replacing every xi by mi in Φ. The set of sets of numbers definable
in Presburger arithmetic is denoted by

PA := {�Φ(x)� : Φ(x) is a formula of Presburger arithmetic} .

Analogously, we define the sets of numbers definable in fragments of Büchi arith-
metic of base p with a fixed number of quantifier-alternations as

Σi-BAp := {�Φ(x)�p : Φ(x) is a Σi-formula of Büchi arithmetic of base p} .

Finally, BAp :=
⋃

i≥1 Σi-BAp denotes the sets of numbers definable in Büchi
arithmetic of base p.

For separating existential Büchi arithmetic from full Büchi arithmetic, we
employ some tools from enumerative combinatorics. As defined in [15], a formula
of parametric Presburger arithmetic with parameter t is a formula of Presburger
arithmetic Φt in which atomic formulas are of the form a · x = c(t), where c(t)
is a univariate polynomial with indeterminate t and coefficients in Z. For n ∈ N,
we denote by Φn the formula of Presburger arithmetic obtained from replacing
c(t) in every atomic formula of Φt by the value of c(n). We associate to a formula
Φt(x) the counting function #Φt(x) : N→ N ∪ {∞} such that

#Φt(x)(n) := #�Φn(x)�.

Throughout this paper, we constraint ourselves to formulas Φt(x) of parametric
Presburger arithmetic in which c(t) is the identity function and #Φt(x)(n) is
finite for all n ∈ N.

Definition 1. A function f : N → Q is an eventual quasi-polynomial if there
exist a threshold t ∈ N and polynomials p0, . . . , pm−1 ∈ Q[x] such that for all
n > t, f(n) = pi(n) whenever n ≡ i mod m.

Given an eventual quasi-polynomial f with threshold t and n > t, we denote
by fn the polynomial pi such that n ≡ i mod m. We say that the polynomials
p0, . . . , pm−1 constitute the eventual quasi-polynomial f . A result by Woods [15,
Thm. 3.5(b)] shows that the counting functions associated to parametric Pres-
burger formulas as defined above are eventual quasi-polynomial.

Proposition 1 (Woods). Let Φt(x) be a formula of parametric Presburger
arithmetic. Then #Φt(x) is an eventual quasi-polynomial.

Semi-linear sets. A result by Ginsburg and Spanier establishes that the sets of
numbers definable in Presburger arithmetic are semi-linear sets [7]. A linear set
in dimension d is given by a base vector b ∈ Nd and a finite set of period vectors
P = {p1, . . . ,pn} ⊆ Nd and defines the set

L(b, P ) := {b+ λ1 · p1 + · · ·+ λn · pn : λi ∈ N, 1 ≤ i ≤ n} .

A semi-linear set is a finite union of linear sets. For a finite B ⊆ Nd, we write
L(B,P ) for

⋃
b∈B L(b, P ). Semi-linear sets of the form L(B,P ) are called hybrid
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linear sets in [5], and it is known that the set of non-negative integer solutions
of a system of linear Diophantine inequalities S : A · x ≥ c is a hybrid linear
set [5].

Semi-linear sets in dimension one are also known as ultimately periodic sets.
In this paper, we represent an ultimately periodic set as a four-tuple U =
(t, 
, B,R), where t ≥ 0 is a threshold, 
 > 0 is a period, B ⊆ {0, . . . , t − 1}
and R ⊆ {0, . . . , 
− 1}, and U defines the set

�U� := B ∪ {t+ r + 
 · i : r ∈ R, i ≥ 0} .

3 The inexpressiveness of existential Büchi arithmetic

We now establish the main result of this paper and show that the existential
fragment of Büchi arithmetic is strictly less expressive than general Büchi arith-
metic.

Theorem 1. For any base p ≥ 2, Σ1-BAp �= BAp. In particular, there exists
a fixed regular language L ⊆ {0, 1}∗ such that �L�p ∈ BAp \Σ1-BAp for every
base p ≥ 2.

Given a set M ⊆ N, recall that for a fixed base p ≥ 2, dM (n) counts the numbers
of bit-length n in base p in M . As already discussed in the introduction, we prove
Theorem 1 by characterizing the growth of dM for sets M definable in Büchi
arithmetic.

For any formula Φ(x) of existential Büchi arithmetic in prenex normal form,
we can with no loss of generality assume that its matrix is in disjunctive normal
form, i.e., a disjunction of systems of linear Diophantine equations with valuation
constraints, each of the form

A · x = c ∧
∧
i∈I

Vp(xi, yi),

where the xi and yi are unknowns from the vector of unknowns x. For M =
�Φ(x)�p, in order to determine the growth of dM , it suffices to determine the
maximum growth occurring in any of its systems of linear Diophantine equations
with valuation constraints in the matrix of Φ(x), which in turn can be obtained
by analyzing the growth of the number of words accepted by a p-automaton
defining the set of solutions of such a system.

Let S : A · x = c be a system of linear Diophantine equations such that,
throughout this section, A is an m× d integer matrix, and fix a base p ≥ 2. Fol-
lowing Wolper and Boigelot [14], we define an automaton A := (Q,Σd

p , δ, q0, F )
whose language encodes all solutions of S over the alphabet Σp:

– Q := Zm,
– δ(q,u) := p · q +A · u for all q ∈ Q and u ∈ Σd

p ,
– q0 := 0, and
– F := {c}.
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As discussed in [14], see also [8], only states q such that ‖q‖∞ ≤ ‖A‖1,∞ and
‖q‖∞ ≤ ‖c‖∞ can reach the accepting state. Hence, all words w ∈ (Σd

p)
∗ such

that A · �w� = c only visit a finite number of states of A, and to obtain the
p-automaton A(S) defining the sets of solutions of S we subsequently restrict Q
to only such states. The following lemma recalls an algebraic characterization
of the reachability relation of A(S) established in the proof of Proposition 14 in
[8].

Lemma 1. Let q, r ∈ Zm be states of A(S), w ∈ (Σd
p)

n and x = �w�p. Then
q

w−→ r if and only if there is y ∈ N such that

q = r · y +A · x, ‖x‖∞ < y, y = pn.

Let x be a distinguished variable of x. For a word w ∈ (Σd
p)

∗ encoding
solutions of S, denote by πx(w) the word v ∈ Σ∗

p obtained from projecting w
onto the component of w corresponding to x. Let q be a state of a p-automaton
A, define the counting function Cq,x : N→ N as

Cq,x(n) := #
{
πx(w) : q

w−→ q, w ∈ (Σd
p)

n
}
.

We now show that for p-automata arising from systems of linear Diophantine
equations, Cq,x can be obtained from an eventual quasi-polynomial.

Lemma 2. For the p-automaton A(S) associated to S : A · x = c with states
Q and all q ∈ Q, there is an eventual quasi-polynomial f such that Cq,x(n) =
f(pn) for all n ∈ N. Moreover, for all sufficiently large n ∈ N, fpn is a linear
polynomial.

Proof. Let q = q ∈ Zd. By Lemma 1, q
w−→ q for w ∈ (Σd

p)
n if and only if there

is a y ∈ N such that

q = q · y +A · x, ‖x‖∞ < y, y = pn,

where x = �w�p. The set of solutions of S′ : A · x + q · y = q, ‖x‖∞ < y is a
hybrid linear set L(D,R) ⊆ Nd+1. Let L(B,P ) ⊆ N2 be obtained from L(D,R)
by projecting onto the components corresponding to x and y, and assume that
x corresponds to the first and y to the second component of L(B,P ). Let Mt :=
N× {t} and

f(t) := #(L(B,P ) ∩Mt) .

Observe that Cq,x(n) = f(pn) and that f(n) is finite for all n ∈ N due to the
constraint x < y. Let P = {p1, . . . ,pk}, the following formula of parametric
Presburger arithmetic defines L(B,P ) ∩Mt:

Φt(x, y) := ∃z1 · · · ∃zk :
∨
b∈B

(
x
y

)
= b+

k∑
i=1

pi · zi ∧ y = t

Thus, f = #Φt(x, y) and, by application of Proposition 1, f is an eventual
quasi-polynomial.

Since Cq,x(n) ≤ pn−1 for all n ∈ N, we in particular have that all polynomials
fpn constituting f are linear as they would otherwise outgrow Cq,x. ��
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The next step is to lift Lemma 2 to systems of linear Diophantine equations
with valuation constraints. To this end, we define a DFA whose language encodes
the set of all solutions of predicates of the form Vp(x, y). Formally, for S : Vp(x, y)
we define A(S) := (Q,Σd

p , δ, q0, F ) such that

– Q := {0, 1},
– δ(0,u) := 0 for all u ∈ Σd

p such that πx(u) = 0,

– δ(0,u) := 1 for all u ∈ Σd
p such that πx(u) = 1 and πy(u) > 0,

– δ(1,u) := 1 for all u ∈ Σd
p such that πx(u) = πy(u) = 0,

– q0 := 0, and

– F := {1}.

For S : A · x = c ∧
∧

1≤i≤ Vp(xi, yi), we denote by A(S) the DFA that can
be obtained from the standard product construction on all DFA for the atomic
formulas of S. Hence, the set of states of A(S) is a finite subset of Zm×{0, 1}. We
now show that the number of words along a cycle of A(S) can also be obtained
from an eventual quasi-polynomial.

Lemma 3. Let S be a system of linear Diophantine equations with valuation
constraints with the associated DFA A(S) with states Q, and let q ∈ Q. There
is an eventual quasi-polynomial f such that Cq,x(n) = f(pn). Moreover, fpn is
a linear polynomial for all n ∈ N.

Proof. Let S : A · x = c ∧
∧

1≤i≤ Vp(xi, yi), we have Q ⊆ Zm × {0, 1} and

thus q = (q, b1, . . . , b) ∈ Q. Any self-loop q
w−→S q with q = (q, b1, . . . , b) is

a self-loop for the DFA induced by the system of linear Diophantine equations
A · x = c with the additional requirement that πxi

(�w�p) = 0 for all 1 ≤ i ≤ 


and furthermore πyi
(�w�p) = 0 whenever bi = 1. Thus (q,0)

w−→S′ (q,0) where

S′ : A · x = c ∧
∧

1≤i≤

xi = 0 ∧
∧

1≤i≤,bi=1

yi = 0 .

Conversely, (q,0)
w−→S′ (q,0) immediately gives q

w−→S q. The statement is now
an immediate consequence of the application of Lemma 2 to S′. ��

We will from now on implicitly apply Lemma 3. As a first application, we show
that Lemma 3 allows us to classify the DFA associated to a system of linear
Diophantine equations with valuation constraints.

Lemma 4. The DFA A(S) associated to a system of linear Diophantine equa-
tions with valuation constraints S with states Q has either of the following prop-
erties:

(i) there is q ∈ Q such that Cq,x is an eventual quasi-polynomial f and fpn is
a non-constant polynomial for infinitely many n ∈ N; or

(ii) there is a constant d ≥ 0 such that Cq,x(n) ≤ d for all q ∈ Q and n ∈ N.
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Proof. Suppose A(S) has Property (i). For a contradiction, suppose d ≥ 0 exists.
Let f be the eventual quasi-polynomial from Property (i). Every non-constant
polynomial fpn constituting f is of the form a · x + b with a > 0. As there are
infinitely many such n, there is some linear polynomial g(x) = a ·x+ b such that
g = fpn for infinitely many n ∈ N. Hence g(pn) > d for some sufficiently large
n ∈ N.

For the converse, suppose that A(S) does not have Property (i). Then there
are 
,m > 0 such that all fpn are constant polynomials bounded by some
value m ∈ N for all n ≥ 
, q ∈ Q and f = Cq,x. Hence we can choose
d = max({Cq,x(n) : q ∈ Q, 0 < n ≤ 
} ∪ {m}). ��

We are now in a position to prove a dichotomy of the growth of the number
of words accepted by a DFA corresponding to a system of linear Diophantine
equations with valuation constraints.

Lemma 5. Let S be a fixed system of linear Diophantine equations with val-
uation constraints with the associated DFA A(S). Let L = πx(L(A(S))), then
either

(i) dL(n) ≥ c · pn for some fixed constant c > 0 and infinitely many n ∈ N; or
(ii) dL(n) = O(nc) for some fixed constant c ≥ 0.

Proof. Let A(S) have the set of states Q, initial state q0 and final state qf . The
DFA A(S) has one of the two properties stated in Lemma 4.

If A(S) has the Property (i) of Lemma 4 then consider q ∈ Q such that Cq,x

is an eventual quasi-polynomial f such that fpn is non-constant for infinitely
many n ∈ N, and let i1 < i2 < . . . ∈ N be such that all fpij are the same

non-constant polynomial a · x + b. Consider v and w such that q0
v−→ q

w−→ qf .
Then for all sufficiently large j we have

dL(ij + |v|+ |w|) ≥ a · pij + b ≥ c · p(ij+|v|+|w|)

for some fixed constant c > 0.
Otherwise, A(S) has the Property (ii) of Lemma 4, and there is some fixed

d ≥ 0 such that Cq,x(n) ≤ d for all n ∈ N and q ∈ Q. Every w ∈ L such that
|w| = n can uniquely be decomposed as w = v0w1v1w2 · · ·wkvk for some k ≤ |Q|
such that

q0
v0−→ qa1

w1−−→ qa1

v1−→ qa2

w2−−→ qa2

v2−→ qa3
· · · wk−−→ qak

vk−→ qak+1
, (1)

where qak+1
= qf , qai �= qaj for all i �= j and each qai

vi−→ qai+1 corresponds to

a loop-free path in A(S). Since Cq,x ≤ d, there are at most dk ≤ d(#Q) words
u ∈ L of length n that have the same sequence of states in the decomposition of
Eq. (1) at the same position where they occur in w. Moreover, there are at most(
n
2k

)
≤

(
n

2·#Q

)
≤ n(2·#Q) possibilities at which the states qai

can appear in any
u ∈ L of length n for any particular sequence of states in the decomposition of
Eq. (1). Finally, there are at most (#Q)(#Q) such sequences. We thus derive

dL(n) ≤ (#Q)#Q · n(2·#Q) · d(#Q) = O(nc)

for some constant c ≥ 0. ��
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Corollary 1. Let Φ(x) be a fixed formula of existential Büchi arithmetic of base
p ≥ 2. Let M = �Φ(x)�p, then either:

(i) dM (n) ≥ c · pn for some fixed constant c > 0 and infinitely many n ∈ N; or
(ii) dM (n) = O(nc) for some fixed constant c ≥ 0.

Proof. Without loss of generality we may assume that Φ(x) is in disjunctive
normal form such that Φ(x) =

∨
i∈I Φi(x) and each Φi(x) is a system of linear

Diophantine equations with valuation constraints Si. For Mi = �Φi(x)�p, we
obtain dMi

by application of Lemma 5. If there is a constant c ≥ 0 such that
dMi

= O(nc) for all i ∈ I then dM = O(nc). Otherwise, if there is some i ∈ I
such that dMi(n) ≥ c · pn for some constant c > 0 and infinitely many n ∈ N
then dM (n) ≥ c · pn for infinitely many n ∈ N. ��

As an immediate consequence of Corollary 1, we obtain:

Corollary 2. Let p ≥ 2 and M ⊆ N such that f = o(dM ) for any f = O(nc),
c ≥ 0, and dM = o(pn). Then M �∈ Σ1-BAp.

For any p ≥ 2, consider L = {01, 10}∗ ⊆ Σ∗
p and M = �L�p. We have dM (n) =

Θ(2n/2), and thus Corollary 2 yields M �∈ Σ1-BAp. However, since M is p-
regular, we have M ∈ BAp. This concludes the proof of Theorem 1.

4 Expressive completeness of the Σ2-fragment of Büchi
arithmetic

For a regular language L ⊆ (Σd
p)

∗ given by a DFA, Villemaire shows in the
proof of Theorem 2.2 in [13] how to construct a Σ3-formula of Büchi arithmetic
ΦL(x) such that �ΦL(x)�p = �L�p. This construction is modularized and relies
on an existential formula Φp,j(x, y) expressing that “x is a power of p and the
coefficient of this power of p in the representation of y in base p is j”:

Φp,j(x, y) ≡ Pp(x) ∧ ∃t ∃u ∃z :
(
y = z + j · x+ t) ∧ (z < x)∧

∧ ((Vp(u, t) ∧ x < u) ∨ t = 0) .

The only reason why ΦL(x) in [13] is a Σ3-formula is that Φp,j(x, y) appears in an
implication both as antecedent and as consequent inside an existential formula.
Thus, if one could additionally define Φp,j(x, y) by a Π1-formula then ΦL(x)
immediately becomes a Σ2-formula. That is, however, not difficult to achieve by
defining:

Φ̃p,j(x, y) := Pp(x) ∧ ∀s ∀t ∀u ∀z :(
¬(s = z + j · x+ t)∨ (z ≥ x)∨ (¬Vp(u, t)∨ x ≥ u)∧¬(t = 0))

)
→ ¬(s = y) .

Note that the order relation can also be expressed by a universal formula: x ≤ y
if and only if ∀z : (y+z = x)→ (z = 0). Thus, Φ̃p,j(x, y) is indeed a Π1 formula.

Combining Φ̃p,j(x, y) with the results in [13], we obtain that the Σ2-fragment
of Büchi arithmetic is expressively complete.

Theorem 2. For any base p ≥ 2, Σ2-BAp = BAp.
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5 Existential Büchi arithmetic defines regular languages
of polynomial growth

For a language L ⊆ Σ∗, Szilard et al. [11] say that L has polynomial growth if
dL(n) = O(nc) for some constant c ≥ 0 and all n ∈ N. One of the main results
of [11] is that a regular language L has polynomial growth if and only if L can
be represented as a finite union of regular expressions of the form

v0w
∗
1v1 · · · vk−1w

∗
kvk . (2)

Denote by

PREGp :=
{
�L�p : L ⊆ Σ∗

p , L is a regular language of polynomial growth
}

the numerical encoding of all regular languages of polynomial growth in base
p. We show in this section that existential Büchi arithmetic defines any regular
language of the form in Eq. (2). This immediately gives the following theorem.

Theorem 3. For any base p ≥ 2, PREGp ⊆ Σ1-BAp.

We first require a couple of abbreviations. Define

Wp(x, y) := Pp(y) ∧ x < y ≤ p · x,

which expresses that y is the smallest power of p strictly greater than x.
Let 
 > 0, Lohrey and Zetzsche introduce in [9] the predicate S(x, y) which

holds whenever
x = pr and y = pr+·i for some i, r ≥ 0 .

They show that S(x, y) is definable in existential Büchi arithmetic. Since y =
p·i · x if and only if y ≡ x mod (p − 1), one can obtain S as

S(x, y) := Pp(x) ∧ Pp(y) ∧ ∃z : (y − x = (p − 1) · z) ∧ y ≥ x .

We slightly generalize S. Let U ⊆ N, define the predicate SU (x, y) to hold
whenever

x = pr and y = pr+u for some r ≥ 0 and u ∈ U .

Lemma 6. For any ultimately periodic set U ⊆ N, the predicate SU (x, y) is
definable in existential Büchi arithmetic

Proof. Suppose that U is given as (t, 
, B,R), we define

SU (x, y) := Pp(x) ∧ Pp(y) ∧
∨
b∈B

y = pb · x ∨
∨
r∈R

S(p
t+r · x, y) .

��

Towards proving Theorem 3, we now show that we can define �w∗�p for any
w ∈ Σp.
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Lemma 7. For any w ∈ Σ∗
p , �w∗�p is definable by a formula of existential Büchi

arithmetic Φw∗(x).

Proof. Let m = p be the smallest power of p greater than �w�p. Then for any
k > 0,

�wk�p = �w�p ·
k−1∑
i=0

mi = �w�p ·
mk − 1

m− 1
.

It follows that �w∗�p is defined by

Φw∗(x) := x = 0 ∨ ∃y : S(m, y) ∧ (m− 1) · x = �w�p · (y − 1) .

��

Building upon Lemma 7, we now show that, for any w ∈ Σp, we can define �w+�p
shifted to the left by a number of zeros specified by an ultimately periodic set.

Lemma 8. Let w ∈ Σ∗
p and U be an ultimately periodic set. Then �w+0U �p is

definable by a formula of existential Büchi arithmetic ΦU,w+(x).

Proof. The case w ∈ 0∗ is trivial. Thus, let w = w′ ·w0 such that w′ ∈ Σ∗
p · (Σp \

{0}) and w0 ∈ 0∗. Observe that for i < j, �wj�p − �wi�p = �wj−i0i�p. We define

ΦU,w+(x) := ∃y ∃z : y < z ∧ Φw∗(y) ∧ Φw∗(z) ∧
∨

0≤i<|w|
x = pi · (z − y)∧

∧ ∃s ∃t : SU (1, s) ∧ Vp(t, x) ∧ t = p|w0|+1 · s .

The first line defines the set �w+0∗�p, whereas the second line ensures that the
tailing number of zeros is in the set U + |w0|. ��

We have now all the ingredients to prove the following key proposition.

Proposition 2. Let L = v0w
∗
1v1 · · · vk−1w

∗
kvk. Then �L�p is definable in exis-

tential Büchi arithmetic.

Proof. The proposition follows from showing the statement for languages of the
form

L′ = v0w
+
1 v1 · · · vk−1w

+
k vk .

We show the statement by induction on k. The induction base case k = 0 is
trivial. For the induction step, assume that for M = v1w

+
2 v2 · · · vk−1w

+
k vk, �M�p

is defined by a formula Φk(x) of existential Büchi arithmetic, and let v0, w1 ∈ Σ∗
p .

We first show how to define N = w+
1 v1w

+
2 v2 · · · vk−1w

+
k vk. To this end, factor

M = M0 ·M ′, where M0 ⊆ 0∗ and M ⊆ (Σp \ {0}) ·Σ∗
p . Observe that �M ′�p =

�Φk(x)�p, and that both U = {|w| : w ∈ M} and V = {|w| : w ∈ M0} are
ultimately periodic sets, cf. [6,12]. We moreover assume that w1 �∈ 0∗, otherwise
we are done. Factor w1 = w′ · w0 such that w′ ∈ Σ∗

p · (Σp \ {0}) and w0 ∈ 0∗.
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Recall that Wp(x, y) holds if and only if y is the smallest power of p strictly
greater than x, and define

Ψk+1(x) := ∃y ∃z : Φk(y) ∧ ΦU,w+(z) ∧ x = y + z∧
∧ ∃s ∃t : Wp(y, s) ∧ SV (s, t) ∧ Vp(p

|w0|+1 · t, z) .

The first line composes x as the sum of some y ∈ �M�p and z ∈ �w+0U �p.
The second line ensures that the number of zeros between the leading bit of y
and the last non-zero digit of z in their p-ary expansion is in V + |w0|. Thus,
�N�p = �Ψk+1(x)�.

We now show how to define L′ along similar lines. To this end, factor N =
N0 ·N ′ such that N0 ⊆ 0∗ and N ′ ⊆ (Σp \ {0}) · Σ∗

p , and let T = {|w| : w ∈
N0}, which is an ultimately periodic set. We now obtain the desired formula of
existential Büchi arithmetic as

Φk+1(x) := ∃y ∃z : x = y + p · z · �v0�p ∧ Ψk+1(y) ∧ ∃s : Wp(y, s) ∧ ST (s, z) .

��

Since we can define any regular language of the form (2) in existential Büchi
arithmetic via Proposition 2, we can define a finite union of such languages
and thus define all regular languages of polynomial growth in existential Büchi
arithmetic. This completes the proof of Theorem 3.

Note that PREGp �⊆ PA for any base p ≥ 2: since M = �Φ(x)� is ulti-
mately periodic for any formula Φ(x) of Presburger arithmetic, whenever �Φ(x)�
is infinite it follows that dM (n) = Ω(pn), i.e., not of polynomial growth.

6 Conclusion

The main result of this paper is that existential Büchi arithmetic is strictly
less expressive than full Büchi arithmetic of any base. This is in contrast to
Presburger arithmetic, for which it is known that its existential fragment is
expressively complete.

When considered as the first-order theory of the structure 〈N, 0, 1,+〉, Pres-
burger arithmetic does not have a quantifier elimination procedure. The extended
structure 〈N, 0, 1,+, {c|·}c>1〉, however, admits quantifier elimination. Those ad-
ditional divisibility predicates are definable in existential Presburger arithmetic.
Our main result shows that even if we extended the structure underlying Büchi
arithmetic with predicates definable in existential Büchi arithmetic, the resulting
first-order theory would not admit quantifier-elimination. On the positive side,
Benedikt et al. [1, Thm. 3.1] give an extension of Büchi arithmetic which has
quantifier elimination.

We conclude this paper with an interesting yet likely challenging open prob-
lem: Is it decidable whether a set definable in Büchi arithmetic is definable in
existential Büchi arithmetic?
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Abstract. This paper considers parametricity and its resulting free the-
orems for nested data types. Rather than representing nested types via
their Church encodings in a higher-kinded or dependently typed exten-
sion of System F, we adopt a functional programming perspective and
design a Hindley-Milner-style calculus with primitives for constructing
nested types directly as fixpoints. Our calculus can express all nested
types appearing in the literature, including truly nested types. At the
term level, it supports primitive pattern matching, map functions, and
fold combinators for nested types. Our main contribution is the construc-
tion of a parametric model for our calculus. This is both delicate and chal-
lenging: to ensure the existence of semantic fixpoints interpreting nested
types, and thus to establish a suitable Identity Extension Lemma for our
calculus, our type system must explicitly track functoriality of types, and
cocontinuity conditions on the functors interpreting them must be ap-
propriately threaded throughout the model construction. We prove that
our model satisfies an appropriate Abstraction Theorem and verifies all
standard consequences of parametricity for primitive nested types.

1 Introduction

Algebraic data types (ADTs), both built-in and user-defined, have long been at
the core of functional languages such as Haskell, ML, Agda, Epigram, and Idris.
ADTs, such as that of natural numbers, can be unindexed. But they can also be
indexed over other types. For example, the ADT of lists (here coded in Agda)

data List (A : Set) : Set where

nil : List A

cons : A → List A → List A

is indexed over its element type A. The instance of List at index A depends only
on itself, and so is independent of List B for any other index B. That is, List,
like all other ADTs, defines a family of inductive types, one for each index type.

Over time, there has been a notable trend toward data types whose non-
regular indexing can capture invariants and other sophisticated properties that
can be used for program verification and other applications. A simple example
of such a type is given by Bird and Meertens’ [4] prototypical nested type

data PTree (A : Set) : Set where

pleaf : A→ PTree A

pnode : PTree (A× A)→ PTree A

of perfect trees, which can be thought of as constraining lists to have lengths that
are powers of 2. The above code makes clear that perfect trees at index type A

are defined in terms of perfect trees at index type A× A. This is typical of nested
types, one type instance of which can depend on others, so that the entire family
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of types must actually be defined at once. A nested type thus defines not a family
of inductive types, but rather an inductive family of types. Nested types include
simple nested types, like perfect trees, none of whose recursive occurrences occur
below another type constructor; “deep” nested types [18], such as the nested type

data PForest (A : Set) : Set where

fempty : PForest A

fnode : A → PTree (PForest A) → PForest A

of perfect forests, whose recursive occurrences appear below type constructors
for other nested types; and truly nested types, such as the nested type

data Bush (A : Set) : Set where

bnil : Bush A

bcons : A → Bush (Bush A) → Bush A

of bushes, whose recursive occurrences appear below their own type constructors.
Relational parametricity encodes a powerful notion of type-uniformity, or

representation independence, for data types in polymorphic languages. It for-
malizes the intuition that a polymorphic program must act uniformly on all of
its possible type instantiations by requiring that every such program preserves
all relations between pairs of types at which it is instantiated. Parametricity was
originally put forth by Reynolds [24] for System F [11], the calculus at the core of
all polymorphic functional languages. It was later popularized as Wadler’s “the-
orems for free” [27], so called because it can deduce properties of programs in
such languages solely from their types, i.e., with no knowledge whatsoever of the
text of the programs involved. Most of Wadler’s free theorems are consequences
of naturality for polymorphic list-processing functions. However, parametricity
can also derive results that go beyond just naturality, such as correctness for
ADTs of the program optimization known as short cut fusion [10,14].

But what about nested types? Does parametricity still hold if such types
are added to polymorphic calculi? More practically, can we justifiably reason
type-independently about (functions over) nested types in functional languages?

Type-independent reasoning about ADTs in functional languages is usually
justified by first representing ADTs by their Church encodings, and then rea-
soning type-independently about these encodings. This is typically justified by
constructing a parametric model — i.e, a model in which polymorphic func-
tions preserve relations á la Reynolds — for a suitable fragment of System F,
demonstrating that an initial algebra exists for the positive type constructor cor-
responding to the functor underlying an ADT of interest, and showing that each
such initial algebra is suitably isomorphic to its corresponding Church encoding.
In fact, this isomorphism of initial algebras and their Church encodings is one
of the “litmus tests” for the goodness of a parametric model.

This approach works well for ADTs, which are always fixpoints of first-order
functors, and whose Church encodings, which involve quantification over only
type variables, are always expressible in System F. For example, List A is the
fixpoint of the first-order functor F X = 1 + A × X and has Church encoding
∀α. α → (A → α → α) → α. But despite Cardelli’s [7] claim that “virtually
any basic type of interest can be encoded within F2” — i.e., within System
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F — non-ADT nested types cannot. Not even our prototypical nested type of
perfect trees has a Church encoding expressible in System F! Indeed, PTree A
cannot be represented as the fixpoint of any first-order functor. However, it can
be seen as the instance at index A of the fixpoint of the higher-order functor
H F A = (A → F A) → (F (A × A) → F A) → F A. It thus has Church
encoding ∀f. (∀α. α → fα) → (∀α. f(α × α) → fα) → ∀α. fα, which requires
quantification at the higher kind ∗ → ∗ for f . A similar situation obtains for
any (non-ADT) nested type. Unfortunately, higher-kinded quantification is not
available in System F, so if we want to reason type-independently about nested
types in a language based on it we have only two options: i)move to an extension
of System F, such as the higher-kinded calculus Fω or a dependent type theory,
and reason via their Church encodings in a known parametric model for that
extension, or ii) add nested types to System F as primitives — i.e., as primitive
type-level fixpoints — and construct a parametric model for the result.

Since the type systems of Fω and dependent type theories are designed to
extend System F with far more than non-ADT data types, it seems like seri-
ous overkill to pass to their parametric models to reason about nested types in
System F. Indeed, such calculi support fundamentally new features that add
complexity to their models that is entirely unnecessary for reasoning about
nested types. This paper therefore pursues the second option above. We first
design a Hindley-Milner-style calculus supporting primitive nested types, to-
gether with primitive types of natural transformations representing morphisms
between them. Our calculus can express all nested types appearing in the lit-
erature, including truly nested types. At the term-level, it supports primitive
pattern matching, map functions, and fold combinators for nested types.1 Our
main contribution is the construction of a parametric model for our calculus. This
is both delicate and challenging. To ensure the existence of semantic fixpoints
interpreting nested types, and thus to establish a suitable Identity Extension
Lemma, our type system must explicitly track functoriality of types, and co-
continuity conditions on the functors interpreting them must be appropriately
threaded throughout the model construction. Our model validates all standard
consequences of parametricity in the presence of primitive nested types, includ-
ing the isomorphism of primitive ADTs and their Church encodings, and cor-
rectness of short cut fusion for nested types. The relationship between naturality
and parametricity has long been of interest, and our inclusion of a primitive type
of natural transformations allows us to clearly delineate those consequences of
parametricity that follow from naturality, from those, such as short cut fusion
for nested types, that require the full power of parametricity.

1 We leave incorporating general term-level recursion to future work because, as
Pitts [23] reminds us, “it is hard to construct models of both impredicative poly-
morphism and fixpoint recursion”. In fact, as the development in this paper shows,
constructing a parametric model even for our predicative calculus with primitive
nested types — and even without term-level fixpoints — is already rather involved.
On the other hand, our calculus is strongly normalizing, so it perhaps edges us
toward the kind of provably total practical programming language proposed in [27].
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Structure of this Paper We introduce our calculus in Section 2. Its type sys-
tem is based on the level-2-truncation of the higher-kinded grammar from [17],
augmented with a primitive type of natural transformations. (Since [17] contains
no term calculus, the issue of parametricity could not even be raised there.) In
Section 3 we give set and relational interpretations of our types. Set interpre-
tations are possible precisely because our calculus is predicative — as ensured
by our primitive natural transformation types — and [17] guarantees that local
finite presentability of Set makes it suitable for interpreting nested types. As is
standard in categorical models, types are interpreted as functors from environ-
ments interpreting their type variable contexts to sets or relations, as appropri-
ate. To ensure that these functors satisfy the cocontinuity properties needed for
the semantic fixpoints interpreting nested types to exist, set environments must
map k-ary type constructor variables to appropriately cocontinuous k-ary func-
tors on sets, relation environments must map k-ary type constructor variables to
appropriately cocontinuous k-ary relation transformers, and these cocontinuity
conditions must be threaded through our type interpretations in such a way that
an Identity Extension Lemma (Theorem 1) can be proved. Properly propagating
the cocontinuity conditions requires considerable care, and Section 4, where it is
done, is (apart from tracking functoriality in the calculus so that it is actually
possible) where the bulk of the work in constructing our model lies.

In Section 5, we give set and relational interpretations for the terms of our
calculus. As usual in categorical models, terms are interpreted as natural trans-
formations from interpretations of their term contexts to interpretations of their
types, and these must cohere in what is essentially a fibred way. In Section 6.1
we prove a scheme deriving free theorems that are consequences of natural-
ity of polymorphic functions over nested types. This scheme is very general,
and is parameterized over both the data type and the type of the polymorphic
function at hand. It has, for example, analogues for nested types of Wadler’s
map-rearrangement free theorems as instances. In Section 6.2 we prove that our
model satisfies an Abstraction Theorem (Theorem 4), which we use to derive
other parametricity results that go beyond naturality. We conclude in Section 7.

Related Work There is a long line of work on categorical models of parametric-
ity for System F; see, e.g., [3,6,8,9,12,13,20,26]. To our knowledge, all such models
treat ADTs via their Church encodings, verifying in the just-constructed para-
metric model that each ADT is isomorphic to its encoding. This paper draws
on this rich tradition of categorical models of parametricity for System F, but
modifies them to treat nested types (and thus ADTs) as primitive data types.
The only other extensions we know of System F with primitive data types are
those in [19,21,22,23,27]. Wadler [27] treats full System F, and sketches para-
metricity for its extension with lists. Martin and Gibbons [21] outline a semantics
for a grammar of primitive nested types similar to that in [17], but treat only
polynomial nested types. Unfortunately, the model suggested in [21] is not en-
tirely correct (see [17]), and parametricity is nowhere mentioned. Matthes [19]
treats System F with non-polynomial ADTs and nested types, but focuses on
expressivity of generalized Mendler iteration for them. He gives no semantics.
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In [23], Pitts adds list ADTs to full System F with a term-level fixpoint
primitive. Other ADTs are included in [22], but nested types are not express-
ible in either syntax. Pitts constructs parametric models for his calculi based on
operational, rather than categorical, semantics. A benefit of using operational se-
mantics to build parametric models is that it avoids needing to work in a suitable
metatheory to accommodate System F’s impredicativity. It is well-known that
there are no set-based parametric models of System F [25], so parametric models
for it and its extensions are often constructed in a syntactic metatheory such as
the impredicative Calculus of Inductive Constructions (iCIC). By adding primi-
tive nested types to a Hindley-Milner-style calculus and working in a categorical
setting we side-step such metatheoretic distractions. It is important to note that
different consequences of parametricity are available in syntactic and semantic
metatheories. Consequences of parametricity are possible for both closed and
open System F terms in a syntactic metatheory — although not all that can be
formulated can be always proved; see, e.g., the end of Section 7 of [4]. By con-
trast, in a categorical metatheory consequences of parametricity are expressible
only for closed terms. For this reason, validating the standard consequences of
parametricity for closed terms is — going all the way back to Reynolds [24] —
all that is required for a model of parametricity to be considered good.

Atkey [2] treats parametricity for arbitrary higher kinds, constructing a para-
metric model for System Fω within iCIC, rather than in a semantic category.
His construction is in some ways similar to ours, but he represents (now higher-
kinded) data types using Church encodings rather than as primitives. Moreover,
the fmap functions associated to Atkey’s functors must be given, presumably by
the programmer, together with their underlying type constructors. This absolves
him of imposing cocontinuity conditions on his model to ensure that fixpoints of
his functors exist, but, unfortunately, he does not indicate which type construc-
tors support fmap functions. We suspect explicitly spelling out which types can
be interpreted as strictly positive functors would result in a full higher-kinded
extension of a calculus akin to that presented here.

2 The Calculus

2.1 Types

For each k ≥ 0, we assume countable sets Tk of type constructor variables of arity
k (i.e., of kind ∗ → ... → ∗ → ∗, with k arrows and k+1 ∗s in this sequence) and
Fk of functorial variables of arity k, all mutually disjoint. The sets of all type
constructor variables and functorial variables are T =

⋃
k≥0 Tk and F =

⋃
k≥0 Fk,

respectively, and a type variable is any element of T∪F. We use lower case Greek
letters for type variables, writing φk to indicate that φ ∈ Tk ∪ Fk, and omitting
the arity indicator k when convenient. Letters from the beginning of the alphabet
denote type variables of arity 0, i.e., elements of T0 ∪F0. We write φ for either a
set {φ1, ..., φn} of type constructor variables or a set of functorial variables when
the cardinality n of the set is unimportant or clear from context. If V is a set
of type variables we write V, φ for V ∪ φ when V ∩ φ = ∅. We omit the vector
notation for a singleton set, thus writing φ, instead of φ, for {φ}.
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If Γ is a finite subset of T, Φ is a finite subset of F, α is a finite subset of F0

disjoint from Φ, and φk ∈ Fk \Φ, then the set F of well-formed types is given in
Definition 1. The notation there entails that type application φF1...Fk is allowed
only when φ is a type variable of arity k, or φ is a subexpression of the form
μψk.λα1...αk.F

′. Moreover, if φ has arity k then φ must be applied to exactly
k arguments. Accordingly, an overbar indicates a sequence of subexpressions
whose length matches the arity of the type applied to it. Requiring that types
are always in such η-long normal form avoids having to consider β-conversion of
types. In a subexpression NatαF G, the Nat operator binds all occurrences of the
variables in α in F and G; intuitively, NatαF G represents the type of a natural
transformation in α from the functor F to the functor G. In a subexpression
μφk.λα.F , the μ operator binds all occurrences of the variable φ, and the λ
operator binds all occurrences of the variables in α, in the body F .

A type constructor, or non-functorial, context is a finite set Γ of type con-
structor variables, and a functorial context is a finite set Φ of functorial variables.
In Definition 1, a judgment of the form Γ ;Φ � F indicates that the type F is
intended to be functorial in the variables in Φ but not necessarily in those in Γ .

Definition 1. The formation rules for the set F of (well-formed) types are

Γ ;Φ � 0 Γ ;Φ � 1
Γ ;Φ � F Γ ;Φ � G

Γ ;Φ � F +G

Γ ;Φ � F Γ ;Φ � G

Γ ;Φ � F ×G

Γ ;α0 � F Γ ;α0 � G

Γ ; ∅ � Natα
0

F G

φk ∈ Γ ∪ Φ Γ ;Φ � F

Γ ;Φ � φkF

Γ ;α0, φk � F Γ ;Φ � G

Γ ;Φ � (μφk.λα0. F )G

We write � F for ∅; ∅ � F . Definition 1 ensures that the expected weakening
rules for well-formed types hold (but weakening does not change the contexts
in which types can be formed). If Γ ; ∅ � F and Γ ; ∅ � G, then our rules allow

formation of Γ ; ∅ � Nat∅F G, which represents the arrow type Γ � F → G in
our calculus. The type Γ ; ∅ � Natα 1F represents the ∀-type Γ ; ∅ � ∀α.F . Some
System F types, such as ∀α. (α → α)→ α, are not representable in our calculus.

Since the body F of a type (μφ.λα.F )G can only be functorial in φ and the
variables in α, the representation of List α as the ADT μβ. 1+ α× β cannot be
functorial in α. By contrast, if List α is represented as the nested type (μφ.λβ. 1+
β×φβ)α then we can choose α to be a functorial variable or not when forming the
type. This observation holds for other ADTs as well; for example, if Tree αγ =
μβ.α+ β × γ × β, then α, γ; ∅ � Tree αγ is well-formed, but ∅;α, γ � Tree αγ is
not. It also applies to some non-ADT types, such as GRose φα = μβ.1+α×φβ,
in which φ and α must both be non-functorial variables. It is in fact possible
to allow “extra” 0-ary functorial variables in the body of μ-types (functorial
variables of higher arity are the real problem). This would allow the first-order
representations of ADTs to be functorial, but doing so requires some changes to
the formation rule for μ-types, as well as the delicate threading of some additional
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conditions throughout our model construction. But since we can always use an
ADT’s (semantically equivalent) second-order representation when functoriality
is needed, disallowing such “extra” variables does not negatively impact the
expressivity of our calculus. We therefore pursue the simpler syntax here.

Definition 1 allows well-formed types to be functorial in no variables. Functo-
rial variables can also be demoted to non-functorial status: if F [φ :== ψ] is the
textual replacement of φ in F , then Γ, ψk;Φ � F [φk :== ψk] is derivable when-
ever Γ ;Φ, φk � F is. In addition to textual replacement, we also have substitution
for types. If Γ ;Φ � F is a type, if Γ and Φ contain only type variables of arity 0,
and if k = 0 for every occurrence of φk bound by μ in F , then we say that F is
first-order; otherwise we say that F is second-order. Substitution for first-order
types is the usual capture-avoiding textual substitution. We write F [α := σ]
for the result of substituting σ for α in F , and F [α1 := F1, ..., αk := Fk], or
F [α := F ] when convenient, for F [α1 := F1][α2 := F2, ..., αk := Fk]. The opera-
tion (·)[φ :=α F ] of second-order type substitution along α is defined by induction
on types exactly as expected. The only interesting clause is that for type appli-
cation, which defines (ψG)[φ :=α F ] to be F [α := G[φ :=α F ]] if ψ = φ and
G[φ :=α F ] otherwise. Of course, (·)[φ0 :=∅ F ] coincides with first-order substi-
tution. We omit α when convenient, but note that it is not correct to substitute
along non-functorial variables. It is not hard to see that if Γ ;Φ, φk � H and
Γ ;Φ, α � F with |α| = k, then Γ ;Φ � H[φ :=α F ]. Similarly, if Γ, φk;Φ � H, and

if Γ ;ψ, α � F with |α| = k and Φ∩ψ = ∅, then Γ, ψ
′
;Φ � H[φ :=α F [ψ :== ψ′]].

2.2 Terms

Assume an infinite set V of term variables disjoint from T and F. If Γ is a type
constructor context and Φ is a functorial context, then a term context for Γ and
Φ is a finite set of bindings of the form x : F , where x ∈ V and Γ ;Φ � F . We
adopt the above conventions for disjoint unions and vectors in term contexts. If Δ
is a term context for Γ and Φ then the formation rules for the set of well-formed
terms over Δ are given in Figure 1. An expression Lαx.t binds all occurrences of
the type variables in α in the types of x and t, as well as all occurrences of x in t.
In the rule for tKs there is one functorial expression in K for every variable in α.

In the rule for mapF,G
H there is one functorial expression in F and one functorial

expression in G for each variable in φ. Moreover, for each φk in φ the number of
variables in β in the judgments for functorial expresssions in F and G is k. In
the rules for inH and foldFH , the variables in β are fresh with respect to H, and
there is one β for every α. Substitution for terms is the obvious extension of the
usual capture-avoiding textual substitution, and weakening is respected.

The “extra” functorial variables in γ in the rules for mapF,G
H (i.e., those

variables not affected by the substitution of φ) allow us to map polymorphic
functions over nested types. Suppose, for example, that we want to map the
polymorphic function flatten : Natβ(PTree β) (List β) over lists. The map term
for this is typeable as follows:

Γ ;α, γ � List α Γ ; γ � PTree γ Γ ; γ � List γ

Γ ; ∅ | ∅ � mapPTree γ,List γ
List α : Nat∅(Natγ(PTree γ) (List γ)) (Natγ (List (PTree γ)) (List (List γ)))
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Γ ;Φ 	 F

Γ ;Φ |Δ,x : F 	 x : F

Γ ;Φ |Δ 	 t : 0 Γ ;Φ 	 F

Γ ;Φ |Δ 	 ⊥F t : F Γ ;Φ |Δ 	 � : 1

Γ ;Φ |Δ 	 s : F

Γ ;Φ |Δ 	 inL s : F +G

Γ ;Φ |Δ 	 t : G

Γ ;Φ |Δ 	 inR t : F +G

Γ ;Φ 	 F,G Γ ;Φ |Δ 	 t : F +G Γ ;Φ |Δ,x : F 	 l : K Γ ;Φ |Δ, y : G 	 r : K

Γ ;Φ | Δ 	 case t of {x �→ l; y �→ r} : K

Γ ;Φ |Δ 	 s : F Γ ;Φ |Δ 	 t : G

Γ ;Φ |Δ 	 (s, t) : F ×G

Γ ;Φ |Δ 	 t : F ×G

Γ ;Φ |Δ 	 π1t : F

Γ ;Φ |Δ 	 t : F ×G

Γ ;Φ |Δ 	 π2t : G

Γ ;α 	 F Γ ;α 	 G Γ ;α |Δ,x : F 	 t : G

Γ ; ∅ |Δ 	 Lαx.t : Nat
α F G

Γ ;Φ 	 K Γ ; ∅ |Δ 	 t : Natα F G Γ ;Φ |Δ 	 s : F [α := K]

Γ ;Φ |Δ 	 tKs : G[α := K]

Γ ;φ, γ 	 H Γ ;β, γ 	 F Γ ;β, γ 	 G

Γ ; ∅ | ∅ 	 mapF,G
H : Nat∅ (Natβ,γ F G) (Natγ H[φ :=β F ] H[φ :=β G])

Γ ;φ, α 	 H

Γ ; ∅ | ∅ 	 inH : NatβH[φ :=β (μφ.λα.H)β][α := β] (μφ.λα.H)β

Γ ;φ, α 	 H Γ ;β 	 F

Γ ; ∅ | ∅ 	 foldFH : Nat∅ (Natβ H[φ :=β F ][α := β]F ) (Natβ (μφ.λα.H)β F )

Fig. 1. Well-formed terms

However, this derivation would not possible without the “extra” variable γ.

Our calculus is expressive enough to define, e.g., a function reversePTree :
Natα (PTree α)(PTree α) that reverses the order of the leaves in a perfect tree.
It maps the perfect tree ((1, 2), (3, 4)) to ((4, 3), (2, 1)). Unfortunately, we can-
not define recursive functions — such as a concatenation function for perfect
trees or a zip function for bushes — that take as inputs a nested type and an
argument of another type, both of which are parameterized over the same vari-
able. The fundamental issue is that recursion is expressible only via fold, which
produces natural transformations in some variables α from μ-types to other
functors F . The restrictions on Nat-types entail that F cannot itself be a Nat-
type containing α, so, e.g., Natα (PTree α)(Nat∅ (PTree α)(PTree (α×α))) is not
well-typed. Uncurrying gives Natα (PTree α×PTree α)(PTree (α×α)), which is
well-typed, but fold cannot produce a term of this type because PTree α×PTree α
is not a μ-type. Our calculus can, however, express types of recursive functions
that take multiple nested types as arguments, provided they are parameterized
over disjoint sets of type variables and the return type of the function is pa-
rameterized over only the variables occurring in the type of its final argument.
Even for ADTs there is a difference between which folds over them we can type
when they are viewed as ADTs (i.e., as fixpoints of first-order functors) versus
as proper nested types (i.e., as fixpoints of higher-order functors). This is be-
cause, in the return type of fold, the arguments of the μ-type must be variables
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bound by Nat. For ADTs, the μ-type takes no arguments, making it possible
to write recursive functions, such as a concatenation function for lists of type
α; ∅ � Nat∅ (μβ.1+α×β) (Nat∅(μβ.1+α×β) (μβ.1+α×β)). This is not possible
for nested types — even when they are semantically equivalent to ADTs.

Interestingly, even some recursive functions of a single proper nested type —
e.g., a reverse function for bushes that is a true involution — cannot be expressed
as folds because the algebra arguments needed to define them are again recursive
functions with types of the same problematic form as the type of, e.g., a zip
function for perfect trees. Expressivity of folds for nested types has long been
a vexing issue, and this is naturally inherited by our calculus. Adding more
expressive recursion combinators — e.g., generalized folds or Mendler iterators
— could help, but since this is orthogonal to the issue of parametricity in the
presence of primitive nested types we do not consider it further here.

3 Interpreting Types

We denote the category of sets and functions by Set. The category Rel has as
objects triples (A,B,R), where R is a relation between sets A and B. It has
as morphisms from (A,B,R) to (A′, B′, R′) pairs (f : A → A′, g : B → B′)
of morphisms in Set such that (fa, g b) ∈ R′ if (a, b) ∈ R. We may write R :
Rel(A,B) for (A,B,R). If R : Rel(A,B) we write π1R and π2R for the domain A
of R and the codomain B of R, respectively, and assume π1 and π2 are surjective.
We write EqA = (A,A, {(x, x) | x ∈ A}) for the equality relation on the set A.

The key idea underlying Reynolds’ parametricity is to give each type F (α)
with one free variable α a set interpretation F0 taking sets to sets and a re-
lational interpretation F1 taking relations R : Rel(A,B) to relations F1(R) :
Rel(F0(A), F0(B)), and to interpret each term t(α, x) : F (α) with one free term
variable x : G(α) as a map t0 associating to each set A a function t0(A) :
G0(A) → F0(A). These interpretations are given inductively on the structures
of F and t in such a way that they imply two fundamental theorems. The
first is an Identity Extension Lemma, which states that F1(EqA) = EqF0(A),
and is the essential property that makes a model relationally parametric rather
than just induced by a logical relation. The second is an Abstraction Theorem,
which states that, for any R : Rel(A,B), (t0(A), t0(B)) is a morphism in Rel
from (G0(A), G0(B), G1(R)) to (F0(A), F0(B), F1(R)). The Identity Extension
Lemma is similar to the Abstraction Theorem except that it holds for all el-
ements of a type’s interpretation, not just those that interpret terms. Similar
theorems are required for types and terms with any number of free variables.

The key to proving our Identity Extension Lemma is a familiar “cutting
down” of the interpretations of universally quantified types to include only the
“parametric” elements; the relevant types here are Nat types. This requires that
the set interpretations of types (Section 3.1) are defined simultaneously with
their relational interpretations (Section 3.2). While set interpretations are rel-
atively straightforward, relational interpretations are less so because of the co-
continuity conditions needed to know they are well-defined. We develop these
conditions in Sections 3.1 and 3.2. This separates our set and relational interpre-
tations in space, but has no other impact on the mutually inductive definitions.
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�Γ ;Φ 	 0�Setρ = 0

�Γ ;Φ 	 1�Setρ = 1

�Γ ; ∅ 	 Natα F G�Setρ = {η : λA. �Γ ;α 	 F �Setρ[α := A] ⇒ λA. �Γ ;α 	 G�Setρ[α := A]

| ∀A,B : Set.∀R : Rel(A,B).

(ηA, ηB) : �Γ ;α 	 F �RelEqρ[α := R] → �Γ ;α 	 G�RelEqρ[α := R]}
�Γ ;Φ 	 φF �Setρ = (ρφ) �Γ ;Φ 	 F �Setρ

�Γ ;Φ 	 F +G�Setρ = �Γ ;Φ 	 F �Setρ+ �Γ ;Φ 	 G�Setρ

�Γ ;Φ 	 F ×G�Setρ = �Γ ;Φ 	 F �Setρ× �Γ ;Φ 	 G�Setρ

�Γ ;Φ 	 (μφ.λα.H)G�Setρ = (μT Set
H,ρ)�Γ ;Φ 	 G�Setρ

where T Set
H,ρ F = λA.�Γ ;φ, α 	 H�Setρ[φ := F ][α := A]

and T Set
H,ρ η = λA.�Γ ;φ, α 	 H�Setidρ[φ := η][α := idA]

Fig. 2. Set interpretation

3.1 Interpreting Types as Sets

We interpret types in our calculus as ω-cocontinuous functors on locally finitely
presentable categories [1]. Since functor categories of locally finitely presentable
categories are again locally finitely presentable, this ensures that the fixpoints
interpreting μ-types in Set and Rel exist, and thus that both the set and rela-
tional interpretations of all of the types in Definition 1 are well-defined [17]. To
bootstrap this process, we interpret type variables as ω-cocontinuous functors.
If C and D are locally finitely presentable categories, we write [C,D] for the
category of ω-cocontinuous functors from C to D.

A set environment maps each type variable in Tk ∪ Fk to an element of
[Setk, Set]. A morphism f : ρ → ρ′ for set environments ρ and ρ′ with ρ|T = ρ′|T
maps each type constructor variable ψk ∈ T to the identity natural transfor-
mation on ρψk = ρ′ψk and each functorial variable φk ∈ F to a natural trans-
formation from the k-ary functor ρφk on Set to the k-ary functor ρ′φk on Set.
Composition of morphisms on set environments is componentwise, with the iden-
tity morphism mapping each one to itself. This gives a category of set environ-
ments and morphisms between them, denoted SetEnv. We identify a functor in
[Set0, Set] with its value on ∗, and consider a set environment to map a type
variable of arity 0 to a set. If α = {α1, ..., αk} and A = {A1, ..., Ak}, then we
write ρ[α := A] for the set environment ρ′ such that ρ′αi = Ai for i = 1, ..., k
and ρ′α = ρα if α �∈ {α1, ..., αk}. If ρ ∈ SetEnv we write Eqρ for the relation en-
vironment (see Section 3) such that Eqρv = Eqρv for every type variable v. The

set interpretation �·�Set : F → [SetEnv, Set] is defined in Figure 2. The relational
interpretations in the second clause of Figure 2 are given in full in Figure 3.

If ρ ∈ SetEnv and � F we write �� F �Set for �� F �Setρ since the environment
is immaterial. The third clause of Figure 2 does indeed define a set: local finite
presentability of Set and ω-cocontinuity of �Γ ;α � F �Setρ ensure that the set of
natural transformations {η : �Γ ;α � F �Setρ ⇒ �Γ ;α � G�Setρ} (which contains

�Γ ; ∅ � Natα F G�Setρ) is a subset of
{
(�Γ ;α � G�Setρ[α := S])(�Γ ;α�F �Setρ[α:=S])∣∣ S = (S1, ..., S|α|), and Si is a finite set for i = 1, ..., |α|

}
. There are count-
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ably many tuples S, each giving a morphism from �Γ ;α � F �Setρ[α := S] to
�Γ ;α � G�Setρ[α := S], and only Set-many such morphisms since Set is locally
small. In addition, �Γ ; ∅ � NatαF G�Set is ω-cocontinuous since it is constant on
ω-directed sets. Interpretations of Nat types ensure that �Γ � F → G�Set and
�Γ � ∀α.F �Set are as expected in parametric models.

To make sense of the last clause in Figure 2, we need to know that, for each
ρ ∈ SetEnv, T Set

H,ρ is an ω-cocontinuous endofunctor on [Setk, Set], and thus ad-

mits a fixpoint. Since T Set
H,ρ is defined in terms of �Γ ;φ, α � H�Set, interpretations

of types must be such functors, which entails that the actions of set interpre-
tations of types on objects and on morphisms in SetEnv are intertwined. We
know from [17] that, for every Γ ;α � G, �Γ ;α � G�Set is actually in [Setk, Set]
where k = |α|, so that, for each �Γ ;φk, α � H�Set, the corresponding operator
T Set
H can be extended to a functor from SetEnv to [[Setk, Set], [Setk, Set]]. The

action of T Set
H on an object ρ ∈ SetEnv is given by the higher-order functor T Set

H,ρ,

whose actions on objects (functors in [Setk, Set]) and morphisms between them
are given in Figure 2. Its action on a morphism f : ρ → ρ′ is the higher-order
natural transformation T Set

H,f : T Set
H,ρ → T Set

H,ρ′ whose action on F : [Setk, Set] is

the natural transformation T Set
H,f F : T Set

H,ρ F → T Set
H,ρ′ F whose component at A

is (T Set
H,f F )A = �Γ ;φ, α � H�Setf [φ := idF ][α := idA]. The next definition uses

T Set
H to define the functorial action of set interpretation.

Definition 2. The action of �Γ ;Φ � F �Set on f : ρ → ρ′ in SetEnv is given by:

– �Γ ;Φ � 0�Setf = id0

– �Γ ;Φ � 1�Setf = id1

– �Γ ; ∅ � Natα F G�Setf = id �Γ ;∅�Natα F G�Setρ

– �Γ ;Φ � φF �Setf : �Γ ;Φ � φF �Setρ → �Γ ;Φ � φF �Setρ′ = (ρφ)�Γ ;Φ � F �Setρ
→ (ρ′φ)�Γ ;Φ � F �Setρ′ is defined by �Γ ;Φ � φF �Setf = (fφ)

�Γ ;Φ�F �Setρ′ ◦
(ρφ)�Γ ;Φ � F �Setf = (ρ′φ)�Γ ;Φ � F �Setf ◦ (fφ)

�Γ ;Φ�F �Setρ
. This holds since

ρφ and ρ′φ are functors and fφ : ρφ → ρ′φ is a natural transformation.
– �Γ ;Φ � F +G�Setf is defined by �Γ ;Φ � F +G�Setf(inL x) =

inL (�Γ ;Φ � F �Setfx) and �Γ ;Φ � F +G�Setf(inR y) = inR (�Γ ;Φ � G�Setfy)
– �Γ ;Φ � F ×G�Setf = �Γ ;Φ � F �Setf × �Γ ;Φ � G�Setf
– �Γ ;Φ � (μφ.λα.H)G�Setf : �Γ ;Φ � (μφ.λα.H)G�Setρ →

�Γ ;Φ � (μφ.λα.H)G�Setρ′=(μT Set
H,ρ)�Γ ;Φ � G�Setρ → (μT Set

H,ρ′)�Γ ;Φ � G�Setρ′

is defined by (μT Set
H,f )�Γ ;Φ � G�Setρ′ ◦ (μT Set

H,ρ)�Γ ;Φ � G�Setf =

(μT Set
H,ρ′)�Γ ;Φ � G�Setf ◦ (μT Set

H,f )�Γ ;Φ � G�Setρ. This holds since μT Set
H,ρ and

μT Set
H,ρ′ are functors and μT Set

H,f : μT Set
H,ρ → μT Set

H,ρ′ is a natural transformation.

3.2 Interpreting Types as Relations

A k-ary relation transformer F is a triple (F 1, F 2, F ∗), where F 1, F 2 : [Setk, Set]
and F ∗ : [Relk,Rel] are functors, if Ri : Rel(Ai, Bi) for i = 1, ..., k then F ∗R :
Rel(F 1A,F 2B), and if (αi, βi) ∈ HomRel(Ri, Si) for i = 1, ..., k, then F ∗(α, β) =
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(F 1α, F 2β). We define FR to be F ∗R and F (α, β) to be F ∗(α, β). The last clause
above expands to: if (a, b) ∈ R implies (αa, β b) ∈ S then (c, d) ∈ F ∗R implies
(F 1α c, F 2β d) ∈ F ∗S. We identify a 0-ary relation transformer (A,B,R) with
R : Rel(A,B), and write π1F for F 1 and π2F for F 2. Below we extend these
conventions to relation environments in the obvious ways.

The category RTk of k-ary relation transformers is given by the follow-
ing data: an object of RTk is a k-ary relation transformer; a morphism δ :
(G1, G2, G∗)→ (H1, H2, H∗) in RTk is a pair of natural transformations (δ1, δ2)
where δ1 : G1 → H1, δ2 : G2 → H2 such that, for all R : Rel(A,B), if (x, y) ∈
G∗R then (δ1

A
x, δ2

B
y) ∈ H∗R; and identity morphisms and composition are in-

herited from the category of functors on Set. An endofunctor H on RTk is
a triple H = (H1, H2, H∗), where H1 and H2 are functors from [Setk, Set]
to [Setk, Set]; H∗ is a functor from RTk to [Relk,Rel]; for all R : Rel(A,B),
π1((H

∗(δ1, δ2))R) = (H1δ1)A and π2((H
∗(δ1, δ2))R) = (H2δ2)B ; the action of

H on objects is given by H (F 1, F 2, F ∗) = (H1F 1, H2F 2, H∗(F 1, F 2, F ∗)); and
the action of H on morphisms is given by H (δ1, δ2) = (H1δ1, H2δ2) for (δ1, δ2) :
(F 1, F 2, F ∗)→ (G1, G2, G∗). Since applying an endofunctor H to k-ary relation
transformers and morphisms between them must give k-ary relation transform-
ers and morphisms between them, this definition implicitly requires the follow-
ing three conditions to hold: i) H∗(F 1, F 2, F ∗)R : Rel(H1F 1A,H2F 2B) if R1 :
Rel(A1, B1), ..., Rk : Rel(Ak, Bk); ii) H∗(F 1, F 2, F ∗) (α, β) = (H1F 1α,H2F 2β)
if (α1, β1) ∈ HomRel(R1, S1), ..., (αk, βk) ∈ HomRel(Rk, Sk); and iii) if (δ1, δ2) :
(F 1, F 2, F ∗) → (G1, G2, G∗) and R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk), then
((H1δ1)Ax, (H2δ2)By) ∈ H∗(G1, G2, G∗)R if (x, y) ∈ H∗(F 1, F 2, F ∗)R. Note,
however, that this last condition is automatically satisfied because it is implied
by the third condition on functors on relation transformers.

If H and K are endofunctors on RTk, then a natural transformation σ :
H → K is a pair σ = (σ1, σ2), where σ1 : H1 → K1 and σ2 : H2 → K2 are
natural transformations between endofunctors on [Setk, Set] and the component
of σ at F ∈ RTk is given by σF = (σ1

F 1 , σ2
F 2). This definition entails that σi

F i is

natural in F i : [Setk, Set], and, for every F , both (σ1
F 1)A and (σ2

F 2)A are natural

in A. Moreover, since the results of applying σ to k-ary relation transformers
must be morphisms of k-ary relation transformers, it implicitly requires that
(σF )R = ((σ1

F 1)A, (σ2
F 2)B) is a morphism in Rel for any k-tuple of relations

R : Rel(A,B), i.e., that if (x, y) ∈ H∗FR, then ((σ1
F 1)Ax, (σ2

F 2)By) ∈ K∗FR.

Critically, we can compute ω-directed colimits in RTk. Indeed, if D is an
ω-directed set then lim−→d∈D

(F 1
d , F

2
d , F

∗
d ) = (lim−→d∈D

F 1
d , lim−→d∈D

F 2
d , lim−→d∈D

F ∗
d ). We

define an endofunctor T = (T 1, T 2, T ∗) on RTk to be ω-cocontinuous if T 1 and
T 2 are ω-cocontinuous endofunctors on [Setk, Set] and T ∗ is an ω-cocontinuous
functor from RTk to [Relk,Rel], i.e., is in [RTk, [Rel

k,Rel]]. Now, for any k, any
A : Set, and any R : Rel(A,B), let KSet

A be the constantly A-valued functor from

Setk to Set and KRel
R be the constantly R-valued functor from Relk to Rel. Also

let 0 denote the initial object of either Set or Rel, as appropriate. Observing
that, for every k, KSet

0 is initial in [Setk, Set], and KRel
0 is initial in [Relk,Rel],

we have that, for each k, K0 = (KSet
0 ,KSet

0 ,KRel
0 ) is initial in RTk. Thus, if
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T = (T 1, T 2, T ∗) : RTk → RTk is an endofunctor on RTk we can define the
relation transformer μT to be lim−→n∈N

TnK0 = (μT 1, μT 2, lim−→n∈N
(TnK0)

∗). If

T : [RTk, RTk] then μT is a fixpoint for T , i.e., μT ∼= T (μT ). The isomorphism
is given by (in1, in2) : T (μT ) → μT and (in−1

1 , in−1
2 ) : μT → T (μT ) in RTk.

The latter is always a morphism in RTk, but the former need not be if T is not
ω-cocontinuous. Since μT ’s third component is the colimit in [Relk,Rel] of third
components of relation transformers, rather than a fixpoint of an endofunctor on
[Relk,Rel], there is an asymmetry between μT ’s first two and third components.

A relation environment maps each type variable in Tk∪Fk to a k-ary relation
transformer. A morphism f : ρ → ρ′ between relation environments ρ and ρ′ with
ρ|T = ρ′|T maps each ψk ∈ T to the identity morphism on ρψk = ρ′ψk and each
φk ∈ F to a morphism from the k-ary relation transformer ρφ to the k-ary
relation transformer ρ′φ. Composition of morphisms on relation environments is
componentwise, with the identity morphism mapping each to itself; this gives a
category RelEnv of relation environments and their morphisms. We identify a 0-
ary relation transformer with its codomain, and consider a relation environment
to map a type variable of arity 0 to a relation. We write ρ[α := R] for the
relation environment ρ′ such that ρ′αi = Ri for i = 1, ..., k and ρ′α = ρα if
α �∈ {α1, ..., αk}. If ρ ∈ RelEnv we write π1ρ and π2ρ for the set environments
mapping each type variable φ to the functors (ρφ)1 and (ρφ)2, respectively.

For each k, an ω-cocontinuous functor H : [RelEnv, RTk] is a triple H =
(H1, H2, H∗), where H1, H2 : [SetEnv, [Setk, Set]]; H∗ : [RelEnv, [Relk,Rel]]; for
all R : Rel(A,B) and morphisms f in RelEnv, π1(H

∗f R) = H1(π1f)A and
π2(H

∗f R) = H2(π2f)B; the action of H on ρ in RelEnv is given by Hρ =
(H1(π1ρ), H

2(π2ρ), H
∗ρ); and the action of H on morphisms f : ρ → ρ′ in

RelEnv is given by Hf = (H1(π1f), H
2(π2f)). The last two points above give:

i) if Ri : Rel(Ai, Bi), i = 1, ..., k, then H∗ρR : Rel(H1(π1ρ)A,H2(π2ρ)B); ii) if
(αi, βi) ∈ HomRel(Ri, Si), i = 1, ..., k, then H∗ρ (α, β) = (H1(π1ρ)α,H

2(π2ρ)β);
and iii) if f : ρ → ρ′ and Ri : Rel(Ai, Bi), i = 1, ..., k, then if (x, y) ∈ H∗ρR
then (H1(π1f)Ax,H2(π2f)B y) ∈ H∗ρ′ R.

Computation of ω-directed colimits in RTk extends componentwise to colim-
its in RelEnv. Similarly, ω-cocontinuity for endofunctors on RTk extends to func-
tors from RelEnv to RTk. Our relational interpretation �·�Rel : F → [RelEnv,Rel]
is given in Figure 3. It ensures that �Γ � F → G�Rel and �Γ � ∀α.F �Rel are as
expected. As for set interpretations, �Γ ; ∅ � NatαF G�Rel is ω-cocontinuous be-
cause it is constant on ω-directed sets. If ρ ∈ RelEnv we write �� F �Rel for
�� F �Relρ. For the last clause in Figure 3 to be well-defined we need TH,ρ to be
an ω-cocontinuous endofunctor on RT , so that it admits a fixpoint. Since TH,ρ is
defined in terms of �Γ ;φk, α � H�Rel, this means that relational interpretations
of types must be ω-cocontinuous functors from RelEnv to RT0, which in turn
entails that the actions of relational interpretations of types on objects and on
morphisms in RelEnv are intertwined. We know from [17] that, for every Γ ;α � F ,
�Γ ;α � F �Rel is actually in [Relk,Rel] where k = |α|. We first define the actions
of each of these functors on morphisms between relation environments, and then
argue that they are well-defined and have the required properties. To do this, we
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�Γ ;Φ 	 0�Relρ = 0

�Γ ;Φ 	 1�Relρ = 1

�Γ ; ∅ 	 Natα F G�Relρ = {η : λR. �Γ ;α 	 F �Relρ[α := R] ⇒ λR. �Γ ;α 	 G�Relρ[α := R]}
= {(t, t′) ∈ �Γ ; ∅ 	 Natα F G�Set(π1ρ)× �Γ ; ∅ 	 Natα F G�Set(π2ρ) |

∀R1 : Rel(A1, B1) ... Rk : Rel(Ak, Bk).

(tA, t
′
B) ∈ (�Γ ;α 	 G�Relρ[α := R])�Γ ;α�F �Relρ[α:=R]}

�Γ ;Φ 	 φF �Relρ = (ρφ)�Γ ;Φ 	 F �Relρ

�Γ ;Φ 	 F +G�Relρ = �Γ ;Φ 	 F �Relρ+ �Γ ;Φ 	 G�Relρ

�Γ ;Φ 	 F ×G�Relρ = �Γ ;Φ 	 F �Relρ× �Γ ;Φ 	 G�Relρ

�Γ ;Φ 	 (μφ.λα.H)G�Relρ = (μTH,ρ)�Γ ;Φ 	 G�Relρ

where TH,ρ = (T Set
H,π1ρ, T

Set
H,π2ρ, T

Rel
H,ρ)

and T Rel
H,ρ F = λR.�Γ ;φ, α 	 H�Relρ[φ := F ][α := R]

and T Rel
H,ρ δ = λR.�Γ ;φ, α 	 H�Relidρ[φ := δ][α := idR]

Fig. 3. Relational interpretation

extend TH to a functor from RelEnv to [[Relk,Rel], [Relk,Rel]]. Its action on an
object ρ ∈ RelEnv is given by the higher-order functor TH,ρ whose actions on ob-
jects and morphisms are given in Figure 3. Its action on a morphism f : ρ → ρ′

is the higher-order natural transformation TH,f : TH,ρ → TH,ρ′ whose action

on any F : [Relk,Rel] is the natural transformation TH,f F : TH,ρ F → TH,ρ′ F
whose component at R is (TH,f F )R = �Γ ;φ, α � H�Relf [φ := idF ][α := idR].

Using TH , we can define the functorial action of relational interpretation.
The action �Γ ;Φ � F �Relf of �Γ ;Φ � F �Rel on f : ρ → ρ′ in RelEnv is given as
in Definition 2, except that all interpretations are relational interpretations and
all occurrences of T Set

H,f are replaced by TH,f . For this definition and Figure 3 to
be well-defined we need that, for every H, TH,ρ F is a relation transformer, and
TH,f F : TH,ρ F → TH,ρ′ F is a morphism of relation transformers, whenever F
is a relation transformer and f : ρ → ρ′ is in RelEnv. This is immediate from

�Γ ;Φ � F � = (�Γ ;Φ � F �Set, �Γ ;Φ � F �Set, �Γ ;Φ � F �Rel) ∈ [RelEnv, RT0] (1)

The proof is a straightforward induction on the structure of F , using an appro-
priate result from [17] to deduce ω-cocontinuity of �Γ ;Φ � F � in each case.

We can prove by simultaneous induction that set and relational interpreta-
tions of types respect demotion of functorial variables to non-functorial ones and,
for D ∈ {Set,Rel}, �Γ ;Φ � G[α := K]�Dρ = �Γ ;Φ, α � G�Dρ[α := �Γ ;Φ � K�Dρ],
and �Γ ;Φ � G[α := K]�Df = �Γ ;Φ, α � G�Df [α := �Γ ;Φ � K�Df ], and �Γ ;Φ �
F [φ := H]�Dρ = �Γ ;Φ, φ � F �Dρ[φ := λA. �Γ ;Φ, α � H�Dρ[α := A]], and, finally,
�Γ ;Φ � F [φ := H]�Df = �Γ ;Φ, φ � F �Df [φ := λA. �Γ ;Φ, α � H�Df [α := idA]].

4 The Identity Extension Lemma

In most treatments of parametricity, equality relations are taken as given, either
directly as diagonal relations or perhaps via reflexive graphs. By contrast, we
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give a categorical definition of graph relations for natural transformations and
construct equality relations as particular such relations. Our definitions specialize
to the usual ones for morphisms between sets and equality relations on sets.

The standard definition (x, y) ∈ 〈f〉 iff fx = y of the graph 〈f〉 of a morphism
f : A → B in Set naturally generalizes to associate to each natural transforma-
tion between k-ary functors on Set a k-ary relation transformer. Indeed, if F,G :
Setk → Set and α : F → G is a natural transformation, then the functor 〈α〉∗ :
Relk → Rel is defined as follows. Given R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk), let
ιRi

: Ri ↪→ Ai×Bi, for i = 1, ..., k, be the inclusion of Ri as a subset of Ai×Bi,
let hA×B be the unique morphism making the left diagram below commute, and

let hR : FR → FA × GB be hA×B ◦ FιR. Further, let α∧R be the subobject
through which hR is factorized by the mono-epi factorization system in Set, as
in the right diagram below. Then α∧R : Rel(FA,GB) by construction, so the
action of 〈α〉∗ on objects can be given by 〈α〉∗(A,B,R) = (FA,GB, ια∧Rα∧R).

Its action on morphisms is given by 〈α〉∗(β, β′) = (Fβ,Gβ
′
).

FA F (A×B) FB GB

FA×GB

Fπ1 Fπ2

h
A×B

α
B

π1 π2

FR FA×GB

α∧R

h
R

q
α∧R ι

α∧R

Lemma 1. If F,G : [Setk, Set], and if α : F → G is a natural transformation,
then the graph relation transformer for α defined by 〈α〉 = (F,G, 〈α〉∗) is in RTk.

The action of a graph relation transformer on a graph relation can be computed
explicitly: if α : F → G is a morphism in [Setk, Set] and f1 : A1 → B1, ..., fk :
Ak → Bk, then 〈α〉∗〈f〉 = 〈Gf ◦ αA〉 = 〈αB ◦ Ff〉.

To prove the IEL we also need to know that equality relation transformers
preserve equality relations. The equality relation transformer on F : [Setk, Set]
is EqF = 〈idF 〉 = (F, F, 〈idF 〉∗). The above definition then gives that, for all
A : Set, Eq∗FEqA = 〈idF 〉∗〈idA〉 = 〈F idA ◦ (idF )A〉 = 〈idFA ◦ idFA〉 = 〈idFA〉 =
EqFA. In addition, if ρ, ρ′ ∈ SetEnv and f : ρ → ρ′, then the graph relation
environment 〈f〉 is defined pointwise by 〈f〉φ = 〈fφ〉 for every φ. This entails
that π1〈f〉 = ρ and π2〈f〉 = ρ′. The equality relation environment Eqρ is defined
to be 〈idρ〉. Our IEL is thus:

Theorem 1 (IEL). If ρ ∈ SetEnv, then �Γ ;Φ � F �RelEqρ = Eq�Γ ;Φ�F �Setρ.

The IEL’s highly non-trivial proof is by induction on the structure of F . Only
the Nat, application, and fixpoint cases are non-routine. The latter two explic-
itly calculate actions of graph relation transformers as above. The fixpoint case
also uses that, for every n ∈ N, the following intermediate results can be proved
by simultaneous induction with Theorem 1: for any H, ρ, A, and subformula J
of H, both Tn

H,Eqρ
K0 EqA = (Eq(T Set

H,ρ)
nK0

)∗EqA and �Γ ;Φ, φ, α � J�RelEqρ[φ :=

Tn
H,Eqρ

K0][α := EqA] = �Γ ;Φ, φ, α � J�RelEqρ[φ := Eq(T Set
H,ρ)

nK0
][α := EqA] hold.
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�Γ ;Φ |Δ,x : F 	 x : F �Dρ = π|Δ|+1

�Γ ; ∅ |Δ 	 Lαx.t : Nat
α F G�Dρ = curry(�Γ ;α |Δ,x : F 	 t : G�Dρ[α := ])

�Γ ;Φ |Δ 	 tKs : G[α := K]�Dρ = eval ◦ 〈λd. (�Γ ; ∅ |Δ 	 t : Natα F G�Dρ d)�Γ ;Φ�K�Dρ,

�Γ ;Φ |Δ 	 s : F [α := K]�Dρ〉

�Γ ;Φ |Δ 	 ⊥F t : F �Dρ = !0�Γ ;Φ�F �Dρ ◦ �Γ ;Φ | Δ 	 t : 0�Dρ, where

!0�Γ ;Φ�F �Dρ is the unique morphism from 0

to �Γ ;Φ 	 F �Dρ
�Γ ;Φ |Δ 	 � : 1�Dρ = !

�Γ ;Φ�Δ�Dρ
1 , where !

�Γ ;Φ�Δ�Dρ
1

is the unique morphism from �Γ ;Φ 	 Δ�Dρ to 1

�Γ ;Φ |Δ 	 (s, t) : F ×G�Dρ = �Γ ;Φ |Δ 	 s : F �Dρ× �Γ ;Φ |Δ 	 t : G�Dρ
�Γ ;Φ |Δ 	 π1t : F �Dρ = π1 ◦ �Γ ;Φ |Δ 	 t : F ×G�Dρ
�Γ ;Φ |Δ 	 π2t : G�Dρ = π2 ◦ �Γ ;Φ |Δ 	 t : F ×G�Dρ
�Γ ;Φ | Δ 	 case t of {x �→ l; y �→ r} : K�Dρ = eval ◦ 〈curry [�Γ ;Φ |Δ,x : F 	 l : K�Dρ,

�Γ ;Φ |Δ, y : G 	 r : K�Dρ],
�Γ ;Φ |Δ 	 t : F +G�Dρ〉

�Γ ;Φ |Δ 	 inL s : F +G�Dρ = inL ◦ �Γ ;Φ |Δ 	 s : F �Dρ
�Γ ;Φ |Δ 	 inR t : F +G�Dρ = inR ◦ �Γ ;Φ |Δ 	 t : G�Dρ
�Γ ; ∅ | ∅ 	 mapF,G

H : Nat∅(Natβ,γF G) = λd η C. �Γ ;φ, γ 	 H�Didρ[γ:=C][φ := λB.ηB C ]

(Natγ H[φ :=β F ]H[φ :=β G])�Dρ
�Γ ; ∅ | ∅ 	 inH : Natβ H[φ := (μφ.λα.H)β][α := β] = λd. inTX

H,ρ
where X is Set when

(μφ.λα.H)β�Dρ D = Set and not present when D = Rel

�Γ ; ∅ | ∅ 	 foldFH : Nat∅ (Natβ H[φ :=β F ][α := β]F ) = λd. foldTX
H,ρ

(Natβ (μφ.λα.H)β F )�Dρ where X is as above

Fig. 4. Term semantics

The case of the proof when F and J are both μ-types makes clear that if func-
torial variables of arity greater than 0 were allowed to appear in the bodies of
μ-types, then the IEL would fail.

With the IEL in hand we can prove a Graph Lemma for our setting:

Lemma 2. If ρ, ρ′ ∈ SetEnv and f : ρ → ρ′ then

〈�Γ ;Φ � F �Setf〉 = �Γ ;Φ � F �Rel〈f〉

5 Interpreting Terms

If Δ = x1 : F1, ..., xn : Fn is a term context for Γ and Φ, define �Γ ;Φ � Δ�D =
�Γ ;Φ � F1�D × ... × �Γ ;Φ � Fn�D, where D is Set or Rel as appropriate. Then
every well-formed term has a set (resp., relational) interpretation as a natural
transformation from the set (resp., relational) interpretation of its term context
to that of its type. These interpretations, given in Figure 4, respect weakening,
so that �Γ ;Φ |Δ,x : F � t : G�Dρ = (�Γ ;Φ |Δ � t : G�Dρ)◦πΔ, where ρ ∈ SetEnv
or ρ ∈ RelEnv, and πΔ is the projection �Γ ;Φ � Δ,x : F �D → �Γ ;Φ � Δ�D.

The return type for the semantic fold is �Γ ;β � F �Dρ[β := B]. This interpre-
tation gives �Γ ; ∅ |Δ � λx.t : F → G�Dρ = curry(�Γ ; ∅ |Δ,x : F � t : G�Dρ) and
�Γ ; ∅ |Δ � st : G�Dρ = eval ◦ 〈�Γ ; ∅ |Δ � s : F → G�Dρ, �Γ ; ∅ |Δ � t : F �Dρ〉, so
it specializes to the standard interpretations for System F terms. If t is closed,
i.e., if ∅; ∅ | ∅ � t : F , then we write �� t : F �D instead of �∅; ∅ | ∅ � t : F �D.
In addition, term interpretation respects substitution for both functorial and
non-functorial type variables, as well as term substitution. Direct calculation
reveals that interpretations of terms also satisfy �Γ ;Φ | Δ � (Lαx.t)Ks�D =
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�Γ ;Φ | Δ � t[α := K][x := s]�D. Term extensionality for both types and terms —
i.e., �Γ ;Φ � (Lαx.t)α� : F �D = �Γ ;Φ � t : F �D and �Γ ;Φ � (Lαx.t)αx : F �D =
�Γ ;Φ � t : F �D — follow (when both sides of these equations are defined).

6 Free Theorems for Nested Types

6.1 Consequences of Naturality

Define, for Γ ;α � F , the term idF to be Γ ; ∅ | ∅ � Lαx.x : NatαF F and, for terms
Γ ; ∅ |Δ � t : NatαF G and Γ ; ∅ |Δ � s : NatαGH, the composition s◦ t of t and s
to be Γ ; ∅ |Δ � Lαx.sα(tαx) : Nat

αF H. Then �Γ ; ∅ | ∅ � idF : NatαF F �Setρ ∗ =
idλA.�Γ ;α�F �Setρ[α:=A] for any set environment ρ and �Γ ; ∅ |Δ � s◦t : NatαF H�Set

= �Γ ; ∅ |Δ � s : NatαGH�Set◦�Γ ; ∅ |Δ � t : NatαF G�Set. Also, terms of Nat type
behave as natural transformations with respect to their source and target types:

Theorem 2. If Γ ; ∅ |Δ � s : Natα,γF G and Γ ; ∅ |Δ � t : NatγK H, then

�Γ ; ∅ |Δ � ((mapK,H
G )∅ t) ◦ (Lγz.sK,γz) : Nat

γF [α := K]G[α := H]�Set

= �Γ ; ∅ |Δ � (Lγz.sH,γz) ◦ ((mapK,H
F )∅ t) : Nat

γF [α := K]G[α := H]�Set

Theorem 2 gives rise to an entire family of free theorems that are consequences of
naturality, and thus do not require the full power of parametricity. In particular,
we can prove that the interpretation of every mapH is a functor, and that map
is itself a higher-order functor. For example, the former property can be stated

as: if Γ ;α, γ � H, Γ ; ∅ |Δ � g : NatγF G, and Γ ; ∅ |Δ � f : NatγGK, then

�Γ ; ∅ |Δ � (mapF,K
H )∅ (f ◦ g) : NatγH[α := F ]H[α := K]�Set

= �Γ ; ∅ |Δ � (mapG,K
H )∅ f ◦ (mapF,G

H )∅ g : NatγH[α := F ]H[α := K]�Set

We can also prove the expected properties of map, in, and fold, and their inter-
pretations, e.g., uniqueness and the universal property of the interpretation of
fold, and the interpretation of in is an isomorphism.

6.2 The Abstraction Theorem

To get consequences of parametricity that are not merely consequences of nat-
urality, we prove an Abstraction Theorem (Theorem 4). As usual for such the-
orems, we prove a more general result (Theorem 3) for open terms, and recover
our Abstraction Theorem as its special case for closed terms of closed type.

Theorem 3. Every well-formed term Γ ;Φ | Δ � t : F induces a natural trans-
formation from �Γ ;Φ � Δ� to �Γ ;Φ � F �, i.e., a triple of natural transformations
(�Γ ;Φ | Δ � t : F �Set, �Γ ;Φ | Δ � t : F �Set, �Γ ;Φ | Δ � t : F �Rel), where, for D ∈
{Set,Rel}, and for ρ ∈ SetEnv or ρ ∈ RelEnv as appropriate, �Γ ;Φ | Δ � t : F �D :
�Γ ;Φ � Δ�D → �Γ ;Φ � F �D has component �Γ ;Φ | Δ � t : F �Dρ : �Γ ;Φ � Δ�Dρ
→ �Γ ;Φ � F �Dρ at ρ. Moreover, for all ρ ∈ RelEnv, we have �Γ ;Φ | Δ � t : F �Relρ
= (�Γ ;Φ | Δ � t : F �Set(π1ρ), �Γ ;Φ | Δ � t : F �Set(π2ρ)).
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The proof is by induction on t. It requires showing that set and relational inter-
pretations of term judgments are natural transformations, and that all set in-
terpretations of terms of Nat-types satisfy the appropriate equality preservation
conditions from Figure 2. For the interesting cases of abstraction, application,
map, in, and fold terms, propagating the naturality conditions is somewhat in-
volved; the latter two especially require some delicate diagram chasing. That it
is possible provides strong evidence that our development is sensible, natural,
and at an appropriate level of abstraction.

Using Theorem 3 we can prove that our calculus admits no terms with
the type Natα1α of the polymorphic bottom, and every closed term g of type
Natααα denotes the polymorphic identity function. Moreover, an immediate con-
sequence of Theorem 3 is that if ρ ∈ RelEnv, and (a, b) ∈ �Γ ;Φ � Δ�Relρ, then
(�Γ ;Φ |Δ � t : F �Set(π1ρ) a , �Γ ;Φ |Δ � t : F �Set(π2ρ) b) ∈ �Γ ;Φ � F �Relρ. Its in-
stantiation to closed terms of closed type gives

Theorem 4 (Abstraction Theorem). (�� t : F �Set, �� t : F �Set) ∈ �� F �Rel

Using Theorem 4 we can recover free theorems, such as that for the type of
the standard filter function for lists, that go beyond mere naturality, and extend
them to those nested types for which analogous functions can be defined. In
particular, we can extend short cut fusion for lists [10] to nested types, thereby
formally proving correctness of the categorically inspired theorem from [16]. As
shown there, replacing 1 with any type ∅;α � C generalizes Theorem 5 to a free
theorem whose conclusion is foldH B ◦ G μH inH = G �∅;α � K�Set B.

Theorem 5. If ∅;φ, α � F , ∅;α � K, H : [Set, Set] → [Set, Set] is defined by

Hfx = �∅;φ, α � F �Set[φ := f ][α := x], and G = �φ; ∅ | ∅ � g : Nat∅ (Natα F (φα))
(Natα 1 (φα))�Set for some g, then for every B ∈ H�∅;α � K�Set → �∅;α � K�Set
we have foldH B (G μH inH) = G �∅;α � K�Set B.

7 Conclusion and Directions for Future Work
We have constructed a parametric model for a calculus supporting primitive
nested types, and used its Abstraction Theorem to derive free theorems for
these types. This was not possible before [17] because these types were not pre-
viously known to have well-defined interpretations in locally finitely presentable
categories (here, Set and Rel), and, to our knowledge, no term calculus for them
existed either. We naturally hope (some appropriate variant of) the construc-
tion elaborated here will generalize to more advanced data types. For exam-
ple, GADTs can be represented using left Kan extensions, and it was shown
in [17] that adding a Lan construct to a calculus such as ours preserves the
λ-cocontinuity needed for the data types it defines to have well-defined inter-
pretations in locally λ-presentable categories. (Interestingly, λ > ℵ1 is required
to interpret even common GADTs.) This suggests carrying out our model con-
struction in locally λ-presentable cartesian closed categories (lpcccs) C whose
categories of (abstract) relations, obtained by pullback as in [13], are also lpcccs
and are appropriately fibred over C. Adding term-level fixpoints further requires
our semantic categories not just to be locally λ-presentable, but to support some
kind of domain structure as well.
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Abstract. We define and study a term calculus implementing higher-
order node replication. It is used to specify two different (weak) evalua-
tion strategies: call-by-name and fully lazy call-by-need, that are shown
to be observationally equivalent by using type theoretical technical tools.

1 Introduction

Computation in the λ-calculus is based on higher-order substitution, a com-
plex operation being able to erase and copy terms during evaluation. Several
formalisms have been proposed to model higher-order substitution, going from
explicit substitutions (ES) [1] (see a survey in [41]) and labeled systems [15] to
pointer graphs [60] or optimal sharing graphs [49]. The model of copying behind
each of these formalisms is not the same.

Indeed, suppose one wants to substitute all the free occurrences of some
variable x in a term t by some term u. We can imagine at least four ways to
do that. (1) A drastic solution is a one-shot substitution, called non-linear (or
full) substitution, based on simultaneously replacing all the free occurrences of
x in t by the whole term u. This notion is generally defined by induction on the
structure of the term t. (2) A refined method substitutes one free occurrence of
x at a time, the so-called linear (or partial) substitution. This notion is generally
defined by induction on the number of free occurrences of x in the term t. An
orthogonal approach can be taken by replicating one term-constructor of u at a
time, instead of replicating u as a whole, called here node replication. This notion
can be defined by induction on the structure of the term u, and also admits two
versions: (3) non-linear, i.e. by simultaneously replacing all the occurrences of
x in t, or (4) linear. The linear version of the node replication approach can be
formally defined by combining (2) and (3).

It is not surprising that different notions of substitution give rise to different
evaluation strategies. Indeed, linear substitution is the common model in well-
known abstract machines for call-by-name and call-by-value (see e.g. [3]), while
(linear) node replication is used to implement fully lazy sharing [60]. However,
node replication, originally introduced to implement optimal graph reduction in
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a graphical formalism, has only been studied from a Curry-Howard perspective
by means of a term language known as the atomic λ-calculus [33].

The Atomic Lambda-Calculus. The Curry-Howard isomorphism uncovers
a deep connection between logical systems and term calculi. It is then not sur-
prising that different methods to implement substitution correspond to different
ways to normalize logical proofs. Indeed, full substitution (1) can be explained
in terms of natural deduction, while partial substitution (2) corresponds to cut
elimination in Proof-Nets [2]. Replication of nodes (3)-(4) is based on a Curry-
Howard interpretation of deep inference [32,33]. Indeed, the logical aspects of
intuistionistic deep inference are captured by the atomic λ-calculus [33], where
copying of terms proceeds atomically, i.e. node by node, similar to the optimal
graph reduction of Lamping [49].

The atomic λ-calculus is based on explicit control of resources such as era-
sure and duplication. Its operational semantics explicitly handles the struc-
tural constructors of weakening and contraction, as in the calculus of resources
λlxr [43,44]. As a result, comprehension of the meta-properties of the term-
calculus, in a higher-level, and its application to concrete implementations of
reduction strategies in programming languages, turn out to be quite difficult. In
this paper, we take one step back, by studying the paradigm of node replication
based on implicit, rather than explicit, weakening and contraction. This gives
a new concise formulation of node replication which is simple enough to model
different programming languages based on reduction strategies.

Call-by-Name, Call-by-Value, Call-by-Need. Call-by-name is used to im-
plement programming languages in which arguments of functions are first copied,
then evaluated. This is frequently expensive, and may be improved by call-by-
value, in which arguments are evaluated first, then consumed. The difference
can be illustrated by the term t = Δ(II), where Δ = λx.xx and I = λz.z:
call-by-name first duplicates the argument II, so that its evaluation is also du-
plicated, while call-by-value first reduces II to (the value) I, so that duplications
of the argument do not cause any duplicated evaluation. It is not always the best
solution, though, because evaluating erasable arguments is useless.

Call-by-need, instead, takes the best of call-by-name and call-by-value: as
in call-by-name, erasable arguments are not evaluated at all, and as in call-by-
value, reduction of arguments occurs at most once. Furthermore, call-by-need
implements a demand-driven evaluation, in which erasable arguments are never
needed (so they are not evaluated), and non-erasable arguments are evaluated
only if needed. Technically, some sharing mechanism is necessary, for example by
extending the λ-calculus with explicit substitutions/let constructs [7]. Then β-
reduction is decomposed in at least two steps: one creating an explicit (pending)
substitution, and the other ones (linearly) substituting values. Thus for exam-
ple, (λx.xx)(II) reduces to (xx)[x\II], and the substitution argument is thus
evaluated in order to find a value before performing the linear substitution.

Even when adopting this wise evaluation scheme, there are still some un-
necessary copies of redexes: while only values (i.e. abstractions) are duplicated,
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they may contain redexes as subterms, e.g. λz.z(II) whose subterm II is a
redex. Duplication of such values might cause redex duplications in weak (i.e.
when evaluation is forbidden inside abstractions) call-by-need. This happens in
particular in the confluent variant of weak reduction in [52].

Full laziness. Alas, it is not possible to keep all values shared forever, typically
when they potentially contribute to the creation of a future β-reduction step.
The key idea to gain in efficiency is then to keep the subterm II as a shared
redex. Therefore, the (full) value λz.z(II) to be copied is split into two separate
parts. The first one, called skeleton, contains the minimal information preserving
the bound structure of the value, i.e. the linked structure between the binder
and each of its (bound) variables. In our example, this is the term λz.zy, where
y is a fresh variable. The second one is a multiset of maximal free expressions
(MFE), representing all the shareable expressions (here only the term II). Only
the skeleton is then copied, while the problematic redex II remains shared:

(λx.xx)(λz.z(II))→ (xx)[x\λz.z(II)]→ ((λz.zy)x)[x\λz.zy][y\II]

When the subterm II is needed ahead, it is first reduced inside the ES, as it is
usual in (standard) call-by-need, thus avoiding to compute the redex twice. This
optimization is called fully lazy sharing and is due to Wadsworth [60].

In the confluent weak setting evoked earlier [52], the fully lazy optimization
is even optimal in the sense of Lévy [51]. This means that the strategy reaches
the weak normal form in the same number of β-steps as the shortest possible
weak reduction sequence in the usual λ-calculus without sharing. Thus, fully lazy
sharing turns out to be a decidable optimal strategy, in contrast to other weak
evaluation strategies in the λ-calculus without sharing, which are also optimal
but not decidable [11].

Contributions. The first contribution of this paper is a term calculus im-
plementing (full) node replication and internally encoding skeleton extraction
(Sec. 2). We study some of its main operational properties: termination of the
substitution calculus, confluence, and its relation with the λ-calculus.

Our second contribution is the use of the node replication paradigm to give
an alternative specification of two evaluation strategies usually described by
means of full or linear substitution: call-by-name (Sec. 4.1) and weak fully lazy
reduction (Sec. 4.2), based on the key notion of skeleton. The former can be re-
lated to (weak) head reduction, while the latter is a fully lazy version of (weak)
call-by-need. In contrast to other implementations of fully lazy reduction rely-
ing on (external) meta-level definitions, our implementation is based on formal
operations internally defined over the term syntax of the calculus.

Furthermore, while it is known that call-by-name and call-by-need specified
by means of full/linear substitution are observationally equivalent [7], it was
not clear at first whether the same property would hold in our case. Our third
contribution is a proof of this result (Sec. 6) using semantical tools coming from
proof theory –notably intersection types. This proof technique [42] considerably
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simplifies other approaches [7,54] based on syntactical tools. Moreover, the use
of intersection types has another important consequence: standard call-by-name
and call-by-need turn out to be observationally equivalent to call-by-name and
call-by-need with node replication, as well as to the more semantical notion of
neededness (see [45]).

Intersection types provide quantitative information about fully lazy evalu-
ation so that a fourth contribution of this work is a measure based on type
derivations which turns out to be an upper bound to the length of reduction
sequences to normal forms in a fully lazy implementation.

More generally, our work bridges the gap between the Curry-Howard theo-
retical understanding of node replication and concrete implementations of fully
lazy sharing. Related works are presented in the concluding Sec. 7.

2 A Calculus for Node Replication

We now present the syntax and operational semantics of the λR-calculus (R for
Replication), as well as a notion of level playing a key role in the next sections.

Syntax. Given a countably infinite set X of variables x, y, z, ..., we consider the
following grammars.

(Terms) t, u ::= x | λx.t | tu | t[x\u] | t[x\\λy.u]
(Pure Terms) p, q ::= x | λx.p | pq
(Term Contexts) C ::= � | λx.C | Ct | tC | C[x\t] | C[x\\λy.u] | t[x\C] | t[x\\λy.C]
(List Contexts) L ::= � | L[x\u] | L[x\\λy.u]

The set of terms (resp. pure terms) is denoted by ΛR (resp. Λ). We write |t|
for the size of t, i.e. for its number of constructors. We write I for the identity
function λx.x. The construction [x\u] is an explicit substitution (ES), and
[x\\λy.u] an explicit distributor: the first one is used to copy arbitrary terms,
while the second one is used specifically to duplicate abstractions. We write
[x & u] to denote an explicit cut in general, which is either [x\u] or [x\\u] when
u is λy.u′, typically to factorize some definitions and proofs where they behave
similarly in both cases. When using the general notation t[x & u], we define
x(&) = 1 if the term is an ES, and x(&) = 0 otherwise.

We use two notions of contexts. Term contexts C extend those of the λ-
calculus to explicit cuts. List contexts L denote an arbitrary list of explicit cuts.
They will be used to implement reduction at a distance in the operational se-
mantics defined ahead.

Free/bound variables of terms are defined as usual, notably fv(t[x&u]) :=
fv(t)\{x} ∪ fv(u). These notions are extended to contexts as expected, in par-
ticular fv(�) := ∅. The domain of a list context is given by dlc(�) := ∅
and dlc(L[x & u]) := dlc(L) ∪ {x}. α-conversion [13] is extended to λR-terms
as expected and used to avoid capture of free variables. We write t{x\u} for
the meta-level (capture-free) substitution simultaneously replacing all the free
occurrences of the variable x in t by the term u.
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The application of a context C to a term t, written C〈t〉, replaces the hole
� of C by t. For instance, �〈t〉 = t and (λx.�)〈t〉 = λx.t. This operation is not
defined modulo α-conversion, so that capture of variables eventually happens.
Thus, we also consider another kind of application of contexts to terms, denoted
with double brackets, which is only defined if there is no capture of variables.
For instance, (λy.�)〈〈x〉〉 = λy.x while (λx.�)〈〈x〉〉 is undefined.

Operational semantics. ES may block some expected meaningful (i.e. non-
structural) reductions. For instance, β-reduction is blocked in (λx.t)[y\v]u be-
cause an ES lies between the function and its argument. This kind of stuck
redexes do not happen in graphical representations (e.g. [28]), but it is typical
in the sequential structure of term syntaxes.

There are at least two ways to handle this issue. The first one is based on
structural/permutation rules, as in [33], where the substitution is first pushed out-
side the application node, as (λx.t)[y\v]u → ((λx.t)u)[y\v], so that β-reduction
is finally unblocked. The second, less elementary, possibility is given by an oper-
ational semantics at a distance [6,4], where the β-rule can be fired by a rule like
L〈λx.t〉u → L〈t[x\u]〉, L being an arbitrary list context. The distance paradigm is
therefore used to gather meaningful and permutation rules in only one reduction
step. In λR, we combine these two technical tools. First, we consider the following
permutation rules, all of them are constrained by the condition x /∈ fv(t).

λx.u[y & t] →π (λx.u)[y & t] v[x & u]t →π (vt)[x & u]
tv[x & u] →π (tv)[x & u] t[y & v[x & u]] →π t[y & v][x & u]

The reduction relation →π is defined as the closure of the rules →π under all
contexts. It does not hold any computational content, only a structural one that
unblocks redexes by moving explicit cuts out.

In order to highlight the computational content of node replication we com-
bine distance and permutations within the λR-calculus, given by the closure of
the following rules by all the contexts.

L〈λx.t〉u →dB L〈t[x\u]〉
t[x\L〈uv〉] →app L〈t{x\yz}[y\u][z\v]〉 where y and z are fresh
t[x\L〈λy.u〉] →dist L〈t[x\\λy.z[z\u]]〉 where z is fresh
t[x\\λy.u] →abs L〈t{x\λy.p}〉 where u →∗

π L〈p〉 and y /∈ fv(L)
t[x\L〈y〉] →var L〈t{x\y}〉

Notice in the five rules above that the (meta-level) substitution is full (it is
performed simultaneously on all free occurrences of the variable x), and the
list context L is always pushed outside the term t. We will highlight in green
such list contexts in the forthcoming examples to improve readability. Apart
from rule dB used to fire β-reductions, there are four substitution rules used
to copy abstractions, applications and variables, pushing outside all the cuts
surrounding the node to be copied. Rule app copies one application node, while
rule var copies one variable node. The case of abstractions is more involved as
explained below.
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The specificity in copying an abstraction λy.u is due to the (binding) relation
between λy and all the free occurrences of y in its body u. Abstractions are thus
copied in two stages. The first one is implemented by the rule dist, creating a
distributor in which a potentially replaceable abstraction is placed, while moving
its body inside a new ES. There are then two ways to replicate nodes of the body.
Either they can be copied inside the distributor (where the binding relation
between λy and the bound occurrences of y is kept intact), or they can be
pushed outside the distributor, by means of the (non-deterministic) rule abs. In
the second case, however, free occurrences of y cannot be pushed outside the
abstraction (with binder y) to be duplicated, at the risk of breaking consistency:
only shared components without y links can be then pushed outside. These
components are gathered together into a list context L, which is pushed outside
by using permutation rules, before performing the substitution of the pure body
containing all the bound occurrences of y. Specifying this operation using only
distance is hard, thus permutation rules are also used in our rule abs.

The s-substitution relation →s (resp. distant Beta relation→dB) is defined as
the closure of →app ∪ →dist ∪ →abs ∪ →var (resp. →dB) under all contexts, and
the reduction relation →R is the union of →s and →dB.

Example 1. Let t0 = (λx1.x1)(λy.Iy). In what follows, we underline the term
where the reduction is performed:

t0 →dB x1[x1\λy.Iy]→dist x1[x1\\λy.z[z\Iy]]→app x1[x1\\λy.(z1z2)[z1\I][z2\y]]
→dist x1[x1\\λy.(z1z2)[z1\\λx3.z3[z3\x3]][z2\y]]
→var x1[x1\\λy.(z1y) [z1\\λx3.z3[z3\x3]] ]→abs (λy.z1y)[z1\\λx3.z3[z3\x3]]

Let R be any reduction relation. We write →∗
R for the reflexive-transitive

closure of →R. A term t is said to be R-confluent iff t →∗
R u and t →∗

R s
implies there is t′ such that u →∗

R t′ and s →∗
R t′. The relation R is confluent

iff every term is R-confluent. A term t is said to be in R-normal form (written
also R-nf) iff there is no t′ such that t →R t′. A term t is said to be R-
terminating or R-normalizing iff there is no infinite R-sequence starting at
t. The reduction R is said to be terminating iff every term is R-terminating.

Levels. The notion of level plays a key role in this work. Intuitively, the level
of a variable in a term indicates the maximal depth of its free occurrences w.r.t.
ES (and not w.r.t. explicit distributors). However, in order to keep soundness
w.r.t. the permutation rules, levels are computed along linked chains of ES.
For instance, the level of w in both x[x\y[y\w]] and x[x\y][y\w] is 2. Formally,
the level of a variable z in a term t is defined by (structural) induction, while
assuming by α-conversion that z is not a bound variable in t:

lvz(x) := 0 lvz(t1t2) := max(lvz(t1), lvz(t2)) lvz(λy.t) := lvz(t)

lvz(t[x & u]) :=

{
lvz(t) if z /∈ fv(u)

max(lvz(t), lvx(t) + lvz(u) + x(&)) otherwise
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Notice that lvw(t) = 0 whenever w /∈ fv(t) or t is pure. We illustrate the
concept of level by an example. Consider t = x[x\z[y\w]][w\w′], then lvz(t) = 1,
lvw′(t) = 3 and lvy(t) = 0 because y /∈ fv(t). This notion is also extended to
contexts as expected, i.e. lv�(C) = lvz(C〈〈z〉〉), where z is a fresh variable.

Lemma 2. Let t ∈ ΛR. If t0 →π,s t1, then lvw(t0) ≥ lvw(t1) for any w ∈ X .

It is worth noticing that there are two cases when the level of a variable in
a term may decrease: using a permutation rule to push an explicit cut out of
another cut when the first one is a void cut, or using rule →var.

Hence, levels alone are not enough to prove termination of →s. We then
define a decreasing measure for →s in which not only variables are indexed by
a level, but also constructors. For instance, in t[x\λy.yz], we can consider that
the level of all the constructors of λy.yz have level lvx(t). This will ensure that
the level of an abstraction will decrease when applying rule dist, as well as the
level of an application when applying rule app. This is what we do next.

3 Operational Properties

We now prove three key properties of the λR-calculus: termination of the reduc-
tion system →s, relation between λR and the λ-calculus, and confluence of the
reduction system →λR.

Termination of →s. Some (rather informal) arguments are provided in [33] to
justify termination of the substitution subrelation of their whole calculus. We
expand these ideas into an alternative full formal proof adapted to our case,
which is based on a measure being strictly decreasing w.r.t. →s.

We consider a set O of objects of the form a(k, n) or b(k) (k, n ∈ N), which
is equipped with the following ordering >O:

a(k, n) >O a(k′, n) if k > k′, or (k = k′ and n > n′) b(k) >O a(k′, n) if k ≥ k′

a(k, n) >O b(k′) if k > k′ b(k) >O b(k′) if k > k′

Lemma 3. The order >O on the set O is well-founded.

We write >O
MUL for the multiset extension of the order >O on O, which turns

out to be well-founded [8] by Lem. 3. We are now ready to (inductively) define
our cuts level measure C ( ) on terms, where the following operation on multi-
sets is used p ·M := [a(p+ k, n) | a(k, n) ∈ M ] � [b(p+ k) | b(k) ∈ M ], where �
denotes multiset union.

C (x) := [ ] C (λx.t) := C (t) C (tu) := C (t) � C (u)

C (t[x\u]) := C (t) � (lvx(t) + 1) · C (u) � [a(lvx(t) + 1, |u|)]
C (t[x\\u]) := C (t) � lvx(t) · C (u) � [b(lvx(t))]

Intuitively, the integer k in a(k, n) and b(k) counts the level of variables bound
by explicit cuts, while n counts the size of terms to be substituted by an ES.
Remark that for every pure term p we have C (p) = [ ]. Moreover:
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Lemma 4. Let t0 ∈ ΛR. Then t0 →π t1 (resp. t0 →s t1) implies C (t0) ≥O
MUL

C (t1) (resp. C (t0) >
O
MUL C (t1)).

As an example, consider the following reduction sequence:

t0 = (yy)[y\(λz.x)w] →app (y1y2)(y1y2)[y1\λz.x][y2\w] = t1 →var

t2 = (y1w)(y1w)[y1\λz.x]→dist (y1w)(y1w)[y1\\λz.r[r\x]] = t3

We have C (t0) = [a(1, 4)], C (t1) = [a(1, 1), a(1, 2)], C (t2) = [a(1, 2)], C (t3) =
[a(1, 1), b(0)]. So C (ti) >MUL C (ti+1) for i = 0, 1, 2, 3.

Corollary 5. The reduction relation →s is terminating.

Simulations. We show the relation between λR and the λ-calculus, as well as the
atomic λ-calculus. For that, we introduce a projection from λR-terms to λ-terms
implementing the unfolding of all the explicit cuts: x↓ := x, (λx.t)↓ := λx.t↓,
(tu)↓ := t↓u↓, (t[x & u])↓ := t↓{x\u↓}. Thus e.g. x[x\z][y\w][w\w′]↓ = z.

Lemma 6. Let t0 ∈ ΛR. If t0 →R t1, then t↓0 →∗
β t↓1. In particular, if either

t0 →π t1 or t0 →s t1, then t↓0 = t↓1.

The relation →s enjoys full composition on pure terms, namely, for any
p ∈ Λ, t[x\p] →+

s t{x\p}. This property does not hold in general. Indeed,
if t = xx, then (xx)[x\z[z\w]] does not s-reduce to (z[z\w])(z[z\w]), but to
(zz)[z\w]. However, full composition restricted to pure terms is sufficient to
prove simulation of the λ-calculus.

Lemma 7 (Simulation of the λ-calculus). Let p0 ∈ Λ. If p0 →β p1, then
p0 →dB→+

s p1.

The previous results have an important consequence relating the original
atomic λ-calculus and the λR-calculus. Indeed, it can be shown that reduction
in the atomic λ-calculus is captured by λR, and vice-versa. More precisely, the
λR-calculus can be simulated into the atomic λ-calculus by Lem. 6 and [33], while
the converse holds by [33] and Lem. 7.

A more structural correspondence between λR and the atomic λ-calculus
could also be established. Indeed, λR can be first refined into a (non-linear)
calculus without distance, let say λR′, so that permutation rules are integrated
in the intermediate calculus as independent rules. Then a structural relation can
be established between λR and λR′ on one side, and λR′ and the atomic λ-calculus
on the other side (as for example done in [43] for the λ-calculus).

Confluence. By Cor. 5 the reduction relation →s is terminating. It is then
not difficult to conclude confluence of →s by using the unfolding function ↓.
Therefore, by termination of →s any t ∈ ΛR has an s-nf, and by confluence this
s-nf is unique (and computed by the unfolding function). Using the interpretation
method [35] together with Lem. 6, Cor. 5, and Lem. 7, one obtains:

Theorem 8. The reduction relation →R is confluent.
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4 Encoding Evaluation Strategies

In the theory of programming languages [56], the notion of calculus is usually
based on a non-deterministic rewriting relation, providing an equational system
of calculation, while the deterministic notion of strategy is associated to a con-
crete machinery being able to implement a specific evaluation procedure. Typical
evaluation strategies are call-by-name, call-by-value, call-by-need, etc.

Although the atomic λ-calculus was introduced as a technical tool to imple-
ment full laziness, only its (non-deterministic) equational theories was studied. In
this paper we bridge the gap between the theoretical presentation of the atomic
λ-calculus and concrete specifications of evaluation strategies. Indeed, we use
the λR-calculus to investigate two concrete cases: a call-by-name strategy imple-
menting weak head reduction, based on full substitution, and the call-by-need
fully lazy strategy, which uses linear substitution.

In both cases, explicit cuts can in principle be placed anywhere in the dis-
tributors, thus demanding to dive deep in such terms to deal with them. We
then restrict the set of terms to a subset U, which simplifies the formal rea-
soning of explicit cuts inside distributors. Indeed, distributors will all be of the
shape [x\\λy.L〈p〉], where p is a pure term (and L is a commutative list defined
below). We argue that this restriction is natural in a weak implementation of
the λ-calculus: it is true on pure terms and is preserved through evaluation. We
consider the following grammars.

(Linear Cut Values) T ::= λx.LL〈p〉 where y ∈ dlc(LL) =⇒ |p|y = 1
(Commutative Lists) LL ::= � | LL[x\p] | LL[x\\T] where |LL|x = 0
(Values) v ::= λx.p
(Restricted Terms) U ::= x | v | UU | U[x\U] | U[x\\T]

A term t generated by any of the grammars G defined above is written t ∈ G.
Thus e.g. λx.(yz)[y\I][z\I] ∈ T but λx.(yy)[y\I] /∈ T, �[x\yz][x′\I] ∈ LL but
�[x\yz][y\I] /∈ LL, and (yz)[y\\I] ∈ U but (yz)[y\\λx.(yy)[y\I]] /∈ U.

The set T is stable by the relation →s, but U is clearly not stable under the
whole→R relation, where dB-reductions may occur under abstractions. However,
U is stable under both weak strategies to be defined: call-by-name and call-by-
need. We factorize the proofs by proving stability for a more general relation
→R′ , defined as the relation →R with dB-reductions forbidden under abstractions
and inside distributors.

Lemma 9 (Stability of the Grammar by →s/→R′).

1. If t ∈ T and t →s t′, then t′ ∈ T.
2. If t ∈ U and t →R′ t

′, then t′ ∈ U.

4.1 Call-by-name

The call-by-name (CBN) strategy →name (Fig. 1) is defined on the set of terms
U as the union of the following relations →ndb and →ns. The strategy is weak as
there is no reduction under abstractions. It is also worth noticing (as a particular
case of Lem. 9) that t ∈ U and t →name t′ implies t′ ∈ U.
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t �→dB t
′

t →ndb t
′ (dB)

t →ndb t
′

tu →ndb t
′u

(app dB)
t →ndb t

′

t[x � u] →ndb t
′[x � u]

(sub dB)

t �→s t
′

t →ns t
′ (s)

t →ns t
′

tu →ns t
′u

(app s)
t →ns t

′

u[x\\λy.t] →ns u[x\\λy.t′] (sub s)

Fig. 1. Call-by-Name Strategy

Example 10. Let t0 = (λx1.I(x1I))(λy.Iy). Then,

t0 →(dB)
dB (I(x1I))[x1\λy.Iy]→(s)

dist (I(x1I))[x1\\λy.z[z\Iy]]→(sub s)
app

(I(x1I))[x1\\λy.(z1z2)[z1\I][z2\y]]→(sub s)
var (I(x1I))[x1\\λy.(z1y) [z1\I] ]→(s)

abs

(I((λy.z1y)I))[z1\I]→(sub dB)
dB x2[x2\(λy.z1y)I][z1\I]

Although the strategy→name is not deterministic, it enjoys the remarkable di-
amond property, guaranteeing in particular that all reduction sequences starting
from t and ending in a normal form have the same length.

It is worth noticing that simulation lemmas also hold between call-by-name
in the λ-calculus, known as weak head reduction and denoted by →whr, and the
λR-calculus. Indeed, →whr is defined as the β-reduction rule closed by contexts
E ::= � | E t. Then, as a consequence of Lem. 7, we have that p0 →whr p1 implies
p0 →∗

R p1, and as a consequence of Lem. 6, we have that t0 →name t1 implies

t↓0 →∗
β t↓1. More importantly, call-by-name in the λ-calculus and call-by-name in

the λR-calculus are also related. Indeed,

Lemma 11 (Relating Call-by-Name Strategies).

– Let p0 ∈ Λ. If p0 →whr p1 then p0 →+
name p1.

– Let t0 ∈ U. If t0 →name t1 then t↓0 →∗
whr t↓1.

4.2 Call-by-need

We now specify a deterministic strategy flneed implementing demand-driven
computations and only linearly replicating nodes of values (i.e. pure abstrac-
tions). Given a value λx.p, only the piece of structure containing the paths
between the binder λx and all the free occurrences of x in p, named skeleton,
will be copied. All the other components of the abstraction will remain shared,
thus avoiding some future duplications of redexes, as explained in the introduc-
tion. By copying only the smallest possible substructure of the abstraction, the
strategy flneed implements an optimization of call-by-need called fully lazy
sharing [60]. First, we formally define the key notions we are going to use.

A free expression [39,9] of a pure term p is a strict subterm q of p such
that every free occurrence of a variable in q is also a free occurrence of the
variable in p. A free expression of p is maximal if it is not a subterm of
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another free expression of p. From now on, we will consider the multiset of all
maximal free expressions (MFE) of a term. Thus e.g. the MFEs of λy.p, where
p = (Iy)I(λz.zyw), is given by the multiset [I, I, w].

An n-ary context (n ≥ 0) is a term with n holes �. A skeleton is an n-
ary pure context where the maximal free expressions w.r.t. a variable set θ are
replaced with holes. Formally, the θ-skeleton {{p}}θ of a pure term p, where
θ = {x1 . . . xn}, is the n-ary pure context {{p}}θ such that {{p}}θ〈q1, . . . , qn〉 = p,
for [q1, . . . , qn] the maximal free expressions of λx1. . . . λxn.p

4. Thus, for the
same p as before, λy.{{p}}y = λy.(�y)�(λz.zy�).

The Splitting Operation. Splitting a term into a skeleton and a multiset
of MFEs is at the core of full laziness. This can naturally be implemented in
the node replication model, as observed in [33]. Here, we define a (small-step)
strategy →st on the set of terms T to achieve it (Fig. 2), which is indeed a
subset of the reduction relation λR5. The relation →st makes use of four basic
rules which are parameterized by the variable y upon which the skeleton is built,
written →y. There are also two contextual (inductive) rules.

t[x\y] �→y
var t{x\y}

y ∈ fv(p1p2)

t[x\p1p2] �→y
app t{x\x1x2}[x1\p1][x2\p2]

y ∈ fv(λz.p)

t[x\λz.p] �→y
dist t[x\\λz.w[w\p]]

y ∈ fv(λz.LL〈p〉) z /∈ fv(LL)

t[x\\λz.LL〈p〉] �→y
abs LL〈t{x\λz.p}〉

t �→y t′ y ∈ fv(t) y /∈ fv(LL)
ctx1

λy.LL〈t〉 →st λy.LL〈t′〉
t →st t

′ y ∈ fv(t) y /∈ fv(LL)
ctx2

λy.LL〈u[x\\t]〉 →st λy.LL〈u[x\\t′]〉
Fig. 2. Relation →st: Splitting Skeleton and MFEs in Small-Step Semantics

Example 12. Let y, z /∈ fv(t), so that t is the MFE of λy.x[x\λz.(yt)z]. Then,

λy.x[x\λz.(yt)z]→y
dist λy.x[x\\λz.w[w\(yt)z]]→z

app

λy.x[x\\λz.(w1w2)[w1\yt][w2\z]]→z
var λy.x[x\\λz.(w1z) [w1\yt] ]→y

abs

λy.(λz.w1z)[w1\yt]→y
app λy.(λz.(x1x2)z)[x1\y][x2\t]→y

var λy.(λz.(yx2)z)[x2\t]

Notice that the focused variable changes from y to z, then back to y. This is
because →st constructs the innermost skeletons first.

Lemma 13. The reduction relation →st is confluent and terminating.

Thus, from now on, we denote by ⇓st the function relating a term of T to its
unique st-nf.

4 The order of variables in the set θ is indeed irrelevant.
5 Since →st acts only on terms in T, it is handled by linear substitution.
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Lemma 14 (Correctness of →st). Let p ∈ Λ and q1, . . . , qn be the MFEs
of λy.p. Then λy.z[z\p] ⇓st λy.{{p}}{y}〈x1, . . . , xn〉[xi\qi]i≤n where the variables
x1, . . . , xn are fresh and pairwise distinct.

Since the small-step semantics is contained in the λR-calculus, we use it to
build our call-by-need strategy of λR.

The strategy. The call-by-need strategy →flneed (Fig. 3) is defined on the
set of terms U, by using closure under the need contexts, given by the grammar
N ::= � | Nt | N[x & t] | N〈〈x〉〉[x\N], where N〈〈 〉〉 denotes capture-free application
of contexts (Sec. 2). As for call-by-name (Sec. 4.1), the call-by-need strategy is
weak, because no meaningful reduction steps are performed under abstractions.

L〈λx.p〉u �→dB L〈p[x\u]〉
N〈〈x〉〉[x\L〈λy.p〉] �→spl L〈LL〈N〈〈x〉〉[x\\λy.p′]〉〉 if λy.z[z\p] ⇓st λy.LL〈p′〉
N〈〈x〉〉[x\\v] �→sub N〈〈v〉〉[x\\v]

Fig. 3. Call-by-Need Strategy

Rule dB is the same one used to define name. Although rules spl and sub

could have been presented in a unique rule of the form N〈〈x〉〉[x\L〈λy.p〉] →
L〈LL〈N〈〈λy.p′〉〉[x\\λy.p′]〉〉, we prefer to keep them separate since they represent
different stages in the strategy. Indeed, rule spl only uses node replication op-
erations to compute the skeleton of the abstraction, while rule sub implements
one-shot linear substitution.

Notice that as a particular case of Lem. 9, t ∈ U and t →flneed t′ implies
t′ ∈ U. Another interesting property is that t →sub t′ implies lvz(t) ≥ lvz(t

′).
Moreover, →flneed is deterministic.

Example 15. Let t0 = (λx.(I(Ix)))λy.yI. Needed variable occurrences are high-
lighted in orange .

t0 →dB (I(Ix))[x\λy.yI]→dB x1 [x1\Ix][x\λy.yI]
→dB x1[x1\x2[x2\ x ]][x\λy.yI]→spl x1[x1\x2[x2\ x ]][x\\λy.yz1][z1\I]
→sub x1[x1\ x2 [x2\λy.yz1]][x\\λy.yz1][z1\I]
→spl x1[x1\ x2 [x2\\λy.yz2][z2\z1]][x\\λy.yz1][z1\I]
→sub x1 [x1\(λy.yz2) [x2\\λy.yz2][z2\z1] ][x\\λy.yz1][z1\I]
→spl x1 [x1\\λy.yz3][z3\z2][x2\\λy.yz2][z2\z1][x\\λy.yz1][z1\I]
→sub (λy.yz3)[x1\\λy.yz3][z3\z2][x2\\λy.yz2][z2\z1][x\\λy.yz1][z1\I]

5 A Type System for the λR-calculus

This section introduces a quantitative type system V for the λR-calculus. Non-
idempotent intersection [26] has one main advantage over the idempotent model
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[14]: it gives quantitative information about the length of reduction sequences to
normal forms [21]. Indeed, not only typability and normalization can be proved to
be equivalent, but a measure based on type derivations provides an upper bound
to normalizing reduction sequences. This was extensively investigated in different
logical/computational frameworks [5,18,20,25,42,47]. However, no quantitative
result based on types exists in the literature for the node replication model,
including the attempts done for deep inference [30]. The typing rules of our
system are in themselves not surprising (see [46]), but they provide a handy
quantitative characterization of fully lazy normalization (Sec. 6).

Types are built on the following grammar of types and multi-types, where
α ranges over a set of base types and a is a special type constant used to type
terms reducing to normal abstractions.

(Types) σ := a | α | M → σ (Multi-Types)M := [σi]i∈I

We write |M| to denote the size of a multi-type M. Typing contexts,
written Γ , Δ, Σ are functions from variables to multiset types, assigning the
empty multiset to all but a finite set of variables. The domain of Γ is given by
dom(Γ ) := {x | Γ (x) �= [ ]}. The union of contexts, written Γ +Δ, is defined
by (Γ + Δ)(x) := Γ (x) � Δ(x), where � denotes multiset union. An example
is (x : [σ], y : [τ ]) + (x : [σ], z : [τ ]) = (x : [σ, σ], y : [τ ], z : [τ ]). This notion is
extended to several contexts as expected, so that +i∈IΓi denotes a finite union
of contexts, and the empty context when I = ∅. We write Γ ;Δ for Γ +Δ when
dom(Γ ) ∩ dom(Δ) = ∅. Type judgments have the form Γ � t : σ, where Γ is a
typing context, t is a term and σ is a type.

(ax)
x : [σ] 	 x : σ

Γ ;x : M 	 t : σ
(abs)

Γ 	 λx.t : M → σ

Γ 	 t : M → σ Δ 	 u : M
(app)

Γ +Δ 	 t u : σ

(ans)
	 λx.t : a

(Γi 	 t : σi)i∈I

(many)
+i∈IΓi 	 t : [σi]i∈I

Γ ;x : M 	 t : σ Δ 	 u : M
(cut)

Γ +Δ 	 t[x � u] : σ

Fig. 4. Typing System V

A (typing) derivation is a tree obtained by applying the (inductive) typing
rules of system V (Fig. 4), introduced in [46]. The notation Φ� Γ � t : σ means
there is a derivation named Φ of the judgment Γ � t : σ in system V. A term t is
typable in system V, or V-typable, iff there is a context Γ and a type σ such that
Φ � Γ � t : σ. The size of a type derivation sz(Φ) is defined as the number
of its abs, app and ans rules. The typing system is relevant in the sense that
Φ� Γ � t : σ implies dom(Γ ) ⊆ fv(t).

Type derivations can be measured by 3-tuples. We use a + operation on
3-tuples as pointwise addition: (a, b, c) + (e, f, g) = (a+ e, b+ f, c+ g). These 3-
tuples are computed by aweighted derivation level function defined on typing
derivations as D (Φ) := M (Φ, 1), where M (−,−) is inductively defined below. In
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the cases (abs), (app) and (cut), we let Φt (resp. Φu) be the subderivation of
the type of t (resp. Φu) and in (man ) we let Φi

t be the i-th derivation of the type
of t for each i ∈ I.

– For (ax), M (Φx,m) = (0, 0, 1),
– For (abs), M (Φλx.t,m) = M (Φt,m) + (1,m, 0).
– For (ans), M (Φλx.t,m) = (1,m, 0).
– For (app), M (Φtu,m) = M (Φt,m) +M (Φu,m) + (1,m, 0).
– For (cut), M

(
Φt[x�u],m

)
= M (Φt,m) +M (Φu,m+ lvx(t) + x(&)).

– For (man ), M (Φt,m) =
∑

i∈I M
(
Φi
t,m

)
.

Notice that the first and the third components of any 3-tuple M (Φ,m) do not
depend on m. Intuitively, the first (resp. third) component of the 3-tuple counts
the number of application/abstraction (resp. (ax)) rules in the typing derivation.
The second one takes into account the number of application/abstraction rules
as well, but weighted by the level of the constructor. The 3-tuples are ordered
lexicographically.

Example 16. Let σ = [τ ]→ τ . Consider the following type derivation Φ:

x : [τ ] � x : τ
(ax)

y : [σ] � y : σ
(ax)

z : [τ ] � z : τ
(ax)

z : [τ ] � z : [τ ]
(many)

y : [σ], z : [τ ] � yz : τ

y : [σ], z : [τ ] � yz : [τ ]
(many)

(app)

y : [σ], z : [τ ] � x[x\yz] : τ
(cut)

This gives D (Φ) = (1, 2, 3). Moreover, for x[x\yz] →app (x1x2)[x1\y][x2\z] we
have Φ′ � y : [σ], z : [τ ] � (x1x2)[x1\y][x2\z] : τ and D (Φ′) = (1, 1, 4).

6 Observational Equivalence

The type system V characterizes normalization of both name and flneed strate-
gies as follows: every typable term normalizes and every normalisable term is
typable. In this sense, system V can be seen as a (quantitative) model [17] of our
call-by-name and call-by-need strategies. We prove these results by studying the
appropriate lemmas, notably weighted subject reduction and weighted subject
expansion. We then deduce observational equivalence between the name and the
flneed strategies from the fact that their associated normalization properties
are both fully characterized by the same typing system.

Soundness. Soundness of system V w.r.t. both →name and →flneed is investi-
gated in this section. More precisely, we show that typable terms are normalizing
for both strategies. In contrast to reducibility techniques needed to show this
kind of result for simple types [34], soundness is achieved here by relatively sim-
ple combinatorial arguments based again on decreasing measures. We start by
studying the interaction between system V and linear as well as full substitution.



358 D. Kesner et al.

Lemma 17 (Partial Substitution). Let Φ � Γ ;x :M � C〈〈x〉〉 : σ and �
denote multiset inclusion. Then, there exists N � M such that for every Φu �

Δ � u : N we have Ψ � Γ +Δ;x :M\N � C〈〈u〉〉 : σ and, for every m ∈ N,
M (Ψ,m) = M (Φ,m) +M (Φu,m+ lv�(C))− (0, 0, |N |).

Corollary 18 (Substitution). If Φt � Γ ;x :M � t : σ and Φu � Δ � u : M,
then Φ�Γ +Δ � t{x\u} : σ, and for all m ∈ N we have M (Φ,m) ≤ M (Φt,m)+
M (Φu,m+ lvx(t)). Moreover, |M| > 0 iff the inequality is strict.

The key idea to show soundness is that the measure D ( ) decreases w.r.t. the
reduction relations →name and →flneed:

Lemma 19 (Weighted Subject Reduction). Let Φt0 � Γ � t0 : σ.

1. If t0 →π t1, then there exists Φt1 � Γ � t1 : σ such that D (Φt0) = D (Φt1).
2. If t0 →s t1, then there exists Φt1 � Γ � t1 : σ such that D (Φt0) ≥ D (Φt1).
3. If t0 →ndb t1, then there exists Φt1 � Γ � t1 : σ such that D (Φt0) > D (Φt1).
4. If t0 →flneed t1, then there exists Φt1�Γ � t1 : σ such that D (Φt0) > D (Φt1).

Proof. By induction on r ∈ {π, s, ndb, flneed}, using Lem. 17 and Cor. 18.

Theorem 20 (Typability implies name-Normalization). Let Φt�Γ � t : σ.
Then t is name-normalizing.

Proof. Suppose t is not name-normalizing. Since →s is terminating by Cor. 5,
then every infinite →name-reduction sequence starting at t must necessarily have
an infinite number of dB-steps. Moreover, all terms in such an infinite sequence
are typed by Lem 19. Therefore, Lem. 19:3 (resp. Lem. 19:2) guarantees that all
dB (resp. s) reduction steps involved in such →name-reduction sequence strictly
decrease (resp. do not increase) the measure D ( ). This leads to a contradiction
because the order > on 3-tuples D ( ) is well-founded. Then t is necessarily name-
normalizing.

Theorem 21 (Typability implies flneed-Normalization). Let Φt � Γ �
t : σ. Then t is flneed-normalizing. Moreover, D (Φt) is an upper bound to the
length of the flneed-reduction evaluation to flneed-nf.

Proof. The property trivially holds by Lem. 19:4 since the lexicographic order
on 3-tuples is well-founded.

Completeness. We address here completeness of system V with respect to
→name and →flneed. More precisely, we show that normalizing terms in each
strategy are typable. The basic property in showing that consists in guaranteeing
that normal forms are typable.

The following lemma makes use of a notion of needed variable:
nv(x) := {x}, nv(tu) := nv(t), nv(t[x\\u]) := nv(t), nv(λx.t) := ∅, nv(t[y\u]) :=
(nv(t) \ {y}) ∪ nv(u) if y ∈ nv(t) and nv(t[y\u]) := nv(t) otherwise.

Lemma 22 (flneed-nfs are Typable). Let t be in flneed-nf. Then there
exists a derivation Φ� Γ � t : τ such that for any x /∈ nv(t), Γ (x) = [ ].
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Because name-nfs are also flneed-nfs, we infer the following corollary for free.

Corollary 23 (name-nfs are Typable). Let t be in name-nf. Then there is a
derivation Φ� Γ � t : τ .

Now we need lemmas stating the behavior of partial and full (anti-)substitu-
tion w.r.t. typing.

Lemma 24 (Partial Anti-Substitution). Let C〈〈x〉〉, u be terms s.t. x /∈ fv(u)
and Φ � Γ � C〈〈u〉〉 : σ. Then ∃Γ ′, ∃Δ, ∃M, ∃Φ′, ∃Φu s.t. Γ = Γ ′ + Δ, Φ′ �
Γ ′ + x :M � C〈〈x〉〉 : σ and Φu �Δ � u :M.

Corollary 25 (Anti-Substitution). Let u be a term s.t. x /∈ fv(u) and Φ�Γ �
t{x\u} : σ. Then ∃Γ ′, ∃Δ, ∃M, ∃Φ′, ∃Φu s.t. Γ = Γ ′+Δ, Φ′�Γ ′;x :M � t : σ
and Φu �Δ � u :M.

To achieve completeness, we show that typing is preserved by anti-reduction.
We decompose the property as follows:

Lemma 26 (Subject Expansion). Let Φt1 � Γ � t1 : σ. If t0 →r t1, where
r ∈ {π, s, ndb, flneed}, then there exists Φt0 � Γ � t0 : σ.

Proof. The proof is by induction on →r and uses Lem. 24 and Cor. 25.

Theorem 27 (name-Normalization implies Typability). Let t be a term.
If t is name-normalizing, then t is V-typable.
Proof. Let t be name-normalizing. Then t →n

name u and u is a name-nf. We reason
by induction on n. If n = 0, then t = u is typable by Cor. 23. Otherwise, we
have t →name t′ →n−1

name u. By the i.h. t′ is typable and thus by Lem. 26 (because
→ns is included in →s), t turns out to be also typable.

Theorem 28 (flneed-Normalization implies Typability). Let t be a term.
If t is flneed-normalizing, then t is V-typable.
Proof. Similar to the previous proof but using Lem. 22 instead of Cor. 23.

Summing up, Thms. 20, 27, 21 and 28 give:

Theorem 29. Let t be a λR-term. t is name-normalizing iff t is flneed-norma-
lizing iff t is V-typable.

All the technical tools are now available to conclude observational equiv-
alence between our two evaluation strategies based on node replication. Let
R be any reduction notion on ΛR. Then, two terms t, u ∈ ΛR are said to be
R-observationally equivalent, written t ≡ u, if for any context C, C〈t〉 is
R-normalizing iff C〈u〉 is R-normalizing.

Theorem 30. For all terms t, u ∈ ΛR, t and u are name-observationally equiv-
alent iff t and u are flneed-observationally equivalent.

Proof. By Thm. 29, t ≡name u means that C〈t〉 is V-typable iff C〈u〉 is V-typable,
for all C. By the same theorem, this is also equivalent to say that C〈t〉 is flneed-
normalizing iff C〈u〉 is flneed-normalizing for any C, i.e. t ≡flneed u.
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7 Related Works and Conclusion

Several calculi with ES bridge the gap between formal higher-order calculi and
concrete implementations of programming languages (see a survey in [40]). The
first of such calculi, e.g. [1,16], were all based on structural substitution, in the
sense that the ES operator is syntactically propagated step-by-step through the
term structure until a variable is reached, when the substitution finally takes
place. The correspondence between ES and Linear Logic Proof-Nets [24] led to
the more recent notion of calculi at a distance [6,4,2], enlightening a natural and
new application of the Curry-Howard interpretation. These calculi implement
linear/partial substitution at a distance, where the search of variable occurrences
is abstracted out with context-based rewriting rules, and thus no ES propaga-
tion rules are necessary. A third model was introduced by the seminal work of
Gundersen, Heijltjes, and Parigot [33,34], introducing the atomic λ-calculus to
implement node replication.

Inspired by the last approach we introduced the λR-calculus, capturing the
essence of node replication. In contrast to [33], we work with an implicit (struc-
tural) mechanism of weakening and contraction, a design choice which aims at
focusing and highlighting the node replication model, which is the core of our
calculus, so that we obtain a rather simple and natural formalism used in par-
ticular to specify evaluation strategies. Indeed, besides the proof of the main
operational meta-level properties of our calculus (confluence, termination of the
substitution calculus, simulations), we use linear and non-linear versions of λR
to specify evaluation strategies based on node replication, namely call-by-name
and call-by-need evaluation strategies.

The first description of call-by-need was given by Wadsworth [60], where re-
duction is performed on graphs instead of terms. Weak call-by-need on terms
was then introduced by Ariola and Felleisen [7], and by Maraist, Odersky and
Wadler [54,53]. Reformulations were introduced by Accattoli, Barenbaum and
Mazza [3] and by Chang and Felleisen [22]. Our call-by-need strategy is in-
spired by the calculus in [3], which uses the distance paradigm [6] to gather
together meaningful and permutation rules, by clearly separating multiplicative
from exponential rules, in the sense of Linear Logic [27].

Full laziness has been formalized in different ways. Pointer graphs [60,59]
are DAGs allowing for an elegant representation of sharing. Labeled calculi [15]
implement pointer graphs by adding annotations to λ-terms, which makes the
syntax more difficult to handle. Lambda-lifting [38,39] implements full laziness
by resorting to translations from λ-terms to supercombinators. In contrast to all
the previous formalisms, our calculus is defined on standard λ-terms with explicit
cuts, without the use of any complementary syntactical tool. So is Ariola and
Felleisen’s call-by-need [7], however, their notion of full laziness relies on external
(ad-hoc) meta-level operations used to extract the skeleton. Our specification of
call-by-need enjoys fully lazy sharing, where the skeleton extraction operation
is internally encoded in the term calculus operational semantics. Last but not
least, our calculus has strong links with proof-theory, notably deep inference.
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Balabonski [10,9] relates many formalisms of full laziness and shows that
they are equivalent when considering the number of β-steps to a normal form.
It would then be interesting to understand if his unified approach, (abstractly)
stated by means of the theory of residuals [50,51], applies to our own strategy.

We have also studied the calculus from a semantical point of view, by means
of intersection types. Indeed, the type system can be seen as a model of our
implementations of call-by-name and call-by-need, in the sense that typability
and normalization turn out to be equivalent.

Intersection types go back to [23] and have been used to provide char-
acterizations of qualitative [14] as well as quantitative [21] models of the λ-
calculus, where typability and normalization coincide. Quantitative models spec-
ified by means of non-idempotent types [26,48] were first applied to the λ-
calculus (see a survey in [19]) and to several other formalisms ever since, such
as call-by-value [25,20], call-by-need [42,5], call-by-push-value [31,18] and clas-
sical logic [47]. In the present work, we achieve for the first time a quantitative
characterization of fully lazy normalization, which provides upper bounds for
the length of reduction sequences to normal forms.

The characterizations provided by intersection type systems sometimes lead
to observational equivalence results (e.g. [42]). In this work we succeed to prove
observational equivalence related to a fully lazy implementation of weak call-by-
need, a result which would be extremely involved to prove by means of syntactical
tools of rewriting, as done for weak call-by-need in [7]. Moreover, our result im-
plies that our node replication implementation of full laziness is observationally
equivalent to standard call-by-name and to weak call-by-need (see [42]), as well
as to the more semantical notion of neededness (see [45]).

A Curry-Howard interpretation of the logical switch rule of deep inference is
given in [58,57] as an end-of-scope operator, thus introducing the spinal atomic λ-
calculus. The calculus implements a refined optimization of call-by-need, where
only the spine of the abstraction (tighter than the skeleton) is duplicated. It
would be interesting to adapt the λR-calculus to spine duplication by means of an
appropriate end-of-scope operator, such as the one in [37]. Further optimizations
might also be considered.

Finally, this paper only considers weak evaluation strategies, i.e. with re-
ductions forbidden under abstractions, but it would be interesting to extend
our notions to full (strong) evaluations too [29,12]. Extending full laziness to
classical logic would be another interesting research direction, possibly taking
preliminary ideas from [36]. We would also like to investigate (quantitative) tight
types for our fully lazy strategy, as done for weak call-by-need in [5], which does
not seem evident in our node replication framework.
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Abstract. We prove that if a data language and its complement are
both recognized by nondeterministic register automata (without guess-
ing), then they are also recognized by deterministic ones.
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1 Introduction

Register automata are finite-state automata equipped with a finite number of
registers that can store values from an infinite data domain. When processing an
input string, an automaton compares the current input data value to its registers
and, based on this comparison and on the current control state, it chooses its
next control state and possibly stores the input value in one of its registers. In
the original model, introduced over 25 year ago by Francez and Kaminski [15],
data values can only be compared for equality and not for any other property.
Subsequent extensions of the model allow for comparing data values with respect
to some fixed relations such as a total order, or introduce alternation, variations
on the allowed form of nondeterminism, etc.

It appears that register automata lack most of the good properties known
from the classical theory of finite automata. For example, while languages of
nondeterministic register automata are closed under unions and intersections,
they are not closed under complement, and they do not determinize. Moreover,
the expressivity of register automata is very sensitive to natural variants and
extensions. Any of the following relaxations of the model leads to a strict increase
of expressive power (see [15,23,1] for details):

– increasing the number of registers (when this number is bounded),
– extension from one-way to two-way automata,
– extension from deterministic to unambiguous, nondeterministic or alternat-

ing ones,
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– adding the capability to nondeterministically guess data values.

In fact, almost every combination of these extensions leads to a different class
of recognized languages. Furthermore, no satisfactory characterizations of lan-
guages of register automata in terms of regular expressions [17,20] or logic [23,12]
are known. There are a few positive results: a simulation of two-way nondeter-
ministic automata by one-way alternating automata with guessing [1], a
Myhill-Nerode characterization of languages of deterministic automata [16,4,5],
and the well-behaved class of languages definable by orbit-finite monoids [2],
which admits equivalent characterisations in terms of logic [11] and a syntactic
subclass of deterministic automata [7]. Nevertheless, register automata satisfy
almost no semantic equivalences that hold for classical finite automata.

Contribution. Our primary contribution is a collapse result: if a language and its
complement are both recognized by nondeterministic register automata (NRA),
then they are both recognized by deterministic ones (DRA). In symbols, we prove
the following equality of language classes:

NRA ∩ co-NRA = DRA.

This result is shown under the assumption that the data values can be compared
only for equality, and it turns out to be quite fragile. For instance, it fails if the
automata can compare data values using a total order relation. It also fails if
NRA are additionally equipped with the capability of guessing fresh data values,
even when data values can only be compared for equality.

Our secondary contribution is a collapse result for NRA with 1 register only
(1-NRA), but over an arbitrary data domain that admits well quasi-order (wqo),
meaning roughly that finite induced substructures of the data domain, ordered by
embeddings, form a wqo. This includes both equality and ordered data domains.
In short, we prove the following inclusion of language classes:

1-NRA ∩ co-1-NRA ⊆ DRA.

The inclusion is strict, as some DRA languages are not recognizable by 1-NRA.
Our proofs are mostly self-contained, but use basic notions and results about

sets with atoms [1], also known as nominal sets [24]. In particular, automorphisms
of the data domain play a central role in our arguments, and we extensively use
notions such as finite support and orbit-finiteness of sets. In both results, we
prove that for every data language L ∈ NRA ∩ co-NRA the set of derivative
languages w−1L is orbit-finite, i.e., finite up to automorphism of data values. The
collapse then follows from an orbit-finite version of the Myhill-Nerode theorem.

In our primary contribution, orbit-finiteness of the set of derivative languages
is a consequence of a key technical result (Lem. 1), an abstract observation about
orbit-finite families of sets, which we believe may be of independent interest. As
another example application of this lemma, we give a new proof of decidability
of universality for unambiguous register automata (URA).
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Relation to other work. Our primary result partially confirms a conjecture of
Thomas Colcombet [10], according to which every two disjoint languages of NRA
with guessing are separable by a language recognized by an URA. Working in the
special case when the NRA are complementing and have no guessing, we show
more: both languages are then recognized not only by an URA but by a DRA.

NRA do not have good algorithmic properties: while the emptiness problem is
PSpace-complete [14], the universality problem (does a given automaton accept
all data words?) is undecidable [15] (it is decidable only for 1-NRA [14]). Univer-
sality becomes decidable for URA, as shown recently in [22] (2-ExpSpace upper
bound, improved to 2-ExpTime upper bound in [8]), and language containment
and equality for URA reduce polynomially to universality (see [8, Lemma 8]). As
mentioned above, our results allow us to re-prove this decidability result.

Register automata have been intensively investigated, with respect both to
their foundational properties [15,25,17,23] and to their applications to XML
databases and logics [14] (see [26] for a survey). There are several other ways to
extend finite-state machines with a capability to recognize languages over infinite
alphabets. These include, apart from register automata: their abstract version
– nominal automata or automata over atoms [4,5,1]; symbolic automata [13];
pebble automata [21]; and data automata [3,6].

Acknowledgments. We thank Lorenzo Clemente for posing the collapse question
studied in this paper, and Joanna Ochremiak and Radek Piórkowski for valuable
discussions.

2 Data languages and register automata

The model of register automata, as considered in this paper, is parametrized
by an underlying relational structure Atoms over a finite vocabulary Σ. This
structure constitutes a data domain; its elements are called atoms. A register au-
tomaton processes sequences of atoms, possibly coupled with labels from a fixed
finite set. It may store atoms read from the input in its registers, and compare
them with previously stored atoms using relations in Σ (equality included).

Here are some example data domains:

– Equality atoms : natural numbers with equality (N,=). Since equality is the
only available relation, any other countably infinite set could be used instead.

– Dense order atoms : rational numbers with the standard order (Q,). Again,
any countably infinite dense order without endpoints could be used instead.

– Nested equality atoms (universal equivalence relation): (N2,=1,=) where =1

is the equality on the first coordinate: (n1, n2) =1 (m1,m2) if n1 = m1.

In the following we consider input alphabets of the form S ×Atoms, where
S is a finite set of labels. A data word is a finite sequence w ∈ (S × Atoms)∗,
and a data language is a set of data words.

A nondeterministic register automaton (NRA) A consists of:

– an input alphabet of the form S ×Atoms, for some finite set S,
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– a positive integer r ∈ N (the number of registers),
– a finite set of control states (locations) Q,
– subsets I, F ⊆ Q of initial resp. accepting states,
– a finite set Δ of transition rules of the form

(p, s, ϕ, st, q) ∈ Δ, (1)

where p, q ∈ Q, s ∈ S, ϕ(x1, . . . , xr, x) is a quantifier-free Σ-formula with
free variables in {x1, . . . , xr, x}, and st ∈ {1, . . . , r,none}.

Intuitively, ϕ defines a condition which needs to be satisfied by the register
contents (x1, . . . , xr) and by the current atom (x) for a transition to happen,
and st specifies the register in which the input atom is stored after the transition,
st = none meaning that it is not to be stored in any register.

An NRA A is deterministic (DRA) if it has exactly one initial state and if for
every two transition rules

(p, s, ϕ1, st1, q1), (p, s, ϕ2, st2, q2) ∈ Δ,

such that ϕ1 ∧ ϕ2 is satisfiable in Atoms, we have st1 = st2 and q1 = q2. We
write r-NRA, resp. r-DRA, when the number of registers r is fixed.

A configuration q(a) ∈ Q× (Atoms ∪ {⊥})r of A consists of a control state
q ∈ Q and a content of registers a ∈ (Atoms ∪ {⊥})r, where ⊥ means that the
content of a register is undefined (i.e., the register is empty). A rule (1) induces

a transition p(a)
(s,a)−→ q(b) from a configuration p(a) to a configuration q(b) if:

– Atoms, (a, a) |= ϕ (by definition, this fails if ϕ refers to any variable that
has the undefined value ⊥ in a), and

– b is obtained from a by placing a on coordinate st if st �= none, and b = a
otherwise.

A run of A on a data word w = (s1, a1) · · · (sn, an) is a sequence

q0(a0)
(s1,a1)−→ q1(a1)

(s2,a2)−→ . . .
(sn,an)−→ qn(an),

where q0 is an initial state and a0 is a tuple where the content of all registers is
undefined. We then say that the configuration qn(an) is reachable along w. The
finite set of all configurations reachable along w is finite, and it is denoted A(w).

A run is accepting if it ends in a configuration with an accepting state. A
data word w is accepted by A if there is an accepting run of A on w. A NRA is
unambiguous (URA) if every word has at most one accepting run.

The language of A, denoted L(A), is the set of all data words accepted by A.

3 Examples

In all our examples, the finite component S of data alphabets will be a singleton
set. We will therefore omit S when describing automata, so (1) will simplify to

(p, ϕ, st, q) ∈ Δ.
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Graphically, a transition rule like this will be presented as

p
ϕ ↓n

�� q if st = n, and p
ϕ

�� q if st = none.

Furthermore, �� p means that p is initial and q means that q is accepting.

Example 1. For the equality atoms, consider the language L ⊆ Atoms∗ of those
words where the first letter appears at some later position:

L = {a1 . . . an | n > 1, a1 = ai for some i > 1}.

This language is recognized by a DRA with one register and three control states:

�� p
� ↓1

�� q
x=x1

��

x �=x1

�� r
�

��

This automaton stores the first letter in its only register and then remains in
the (non-accepting) state q until the letter is encountered again; then it moves
to the accepting state r and stays there.

Example 2. Still for the equality atoms, consider the reverse of the language
from Example 1, i.e., the language of those words where the last letter appears
at some earlier position. This language is not recognized by any DRA, but it is
recognized by a NRA with one register and three control states:

�� p
� ↓1

��

�
�� q

x=x1
��

x �=x1

�� r

x=x1

��
x �=x1

��

This automaton nondeterministically decides to store a letter in its register and
then checks that the last letter is equal to the stored one.

Example 3. Still for the equality atoms, consider the complement of the language
from Example 2, i.e., the language L of those words where the last letter does
not appear at any earlier position. (In particular, we consider the empty word
and all length-one words to be in this language.)

The language L is not recognized by any NRA. However, it becomes recogniz-
able if automata are additionally equipped with the ability of guessing, that is,
of updating the contents of their registers with arbitrary atoms, possibly differ-
ent from the one that comes with the current input letter. Unlike NRA without
guessing, those with guessing are closed under reversal [18, Def. 3 and Corollary
31], and the reversal of the language L is even recognized by a DRA.

Example 4. Automata from Ex. 1-3 work just as well over the dense order do-
main: the formulas in their transition rules simply do not use the order relation.
However, over densely ordered atoms something more happens: the language
from Ex. 3 is recognizable by a NRA without guessing.

The automaton has two registers. The idea is that, at any moment in an
accepting run where these registers store atoms a1 < a2:
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(a) in the part of the word read so far, no letter is in the open interval (a1, a2),
(b) the last letter of the word will belong to that open interval.

Condition (a) can be ensured easily: upon reading a letter a that belongs to
the open interval (a1, a2), the automaton will (enter an accepting state for the
moment and) put a in one of the two registers. The register is chosen nondeter-
ministically so that condition (b) remains true. If the currently input letter is not
in the interval (a1, a2), the automaton enters a rejecting state for the moment,
with the registers kept unchanged.

Special treatment is needed to deal with situations where the last letter of
the word will be larger than (or smaller than) all the letters encountered so far.
These are taken care of by introducing special control states where one of the
two registers remains undefined.

Example 5. Fix k � 2. Over equality atoms, consider the language Lk of all
words w of length at least k whose kth last letter is equal to the last letter. Then
Lk is recognised by a NRA with one register and k + 1 states, depicted below:

�� 0
� ↓1

��

�
�� 1

� �� . . .
� 		

k − 1
x=x1 ��

k

The complement of Lk is also recognised by an NRA, similar to the one above,
but with x �= x1 in place of x = x1 in the last transition, and with an additional
component for accepting words of length smaller than k. The language Lk is also
recognised by a DRA with k registers, where register number i stores the letter
which appeared on the latest seen position with index congruent to i, mod k. It
has k states, for counting the index of the current position, mod k.

4 Main results

Our primary contribution is:

Theorem 1. Over equality atoms, if a data language and its complement are
both recognizable by nondeterministic register automata, then they are both rec-
ognizable by deterministic register automata.

Note that this result fails if automata with guessing are considered (see Ex. 3).
Indeed, the language from Ex. 2 is recognized by a 1-NRA, and its complement in
Ex. 3 is recognized by a 1-NRA with guessing, but they are not deterministically
recognizable.

Moreover, the result fails (even without guessing) for densely ordered atoms.
The counterexample is the same: the language from Ex. 2 is recognized by a 1-
NRA, and its complement is recognized by a 2-NRA over densely ordered atoms
as explained in Ex. 4, but they are not deterministically recognizable. Here the
use of two registers in NRA is necessary, due to our secondary contribution: for
a wide range of data domains, if a data language and its complement are both
recognized by 1-NRA, then they are recognized by DRA.
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We prove this for any data domain Atoms which admitswqo in the following
sense. A well quasi-order (wqo) is a quasi-order (Z,) such that for every
infinite sequence z1, z2, . . . ∈ Z there are 1  i < j with zi  zj . For a finite
set X, an X-labeled substructure of Atoms is a set B ⊆ Atoms together with
a labelling 
B : B → X. For two X-labeled substructures B and C of Atoms,
we say that B embeds into C (written B ( C) if some automorphism π of
Atoms, restricted to B, yields a label-preserving injection from B to C, so that

B = 
C ◦ π �B. Let ageX(Atoms) be the set of all finite labeled substructures
of Atoms, partially ordered by (. We say that Atoms admits wqo if for every
finite set X, the quasi-order (ageX(Atoms),() is a wqo. All data domains
listed in Section 2 admit wqo [19]. They are also oligomorphic (see Sec. 5 below).

Theorem 2. Over any oligomorphic atoms that admit wqo, if a data language
and its complement are both recognizable by nondeterministic register automataa
with one register, then they are recognizable by deterministic register automata.

The rest of the paper consists of the proofs of Thms. 1 and 2, in Sec. 6 and 8,
respectively, preceded by Sec. 5 that recalls basic definitions of the setting of sets
with atoms which are used in the proofs. Our main technical lemma is proved in
Sec. 6. Besides proving Thm. 1, in Sec. 7 we explain how it implies decidability
of universality for unambiguous register automata.

5 Orbit-finite automata

Our proofs rely on some basic notions and results of the theory of sets with
atoms [1], also known as nominal sets [24]. In this section we recall what is
necessary to follow our arguments; this is part of a uniform abstract approach
to register automata developed in [4,5,1].

Let Aut(Atoms) denote the group of all automorphisms of a relational struc-
ture Atoms. (For the equality atoms (N,=) this means the group of all bijec-
tions; for the densely ordered atoms (Q,), the group of monotone bijections.)
We consider sets equipped with an action of this group, typically, Atomsn for
some n � 0 or Atoms∗ with the componentwise action.

Group actions. A (left) action of a group G on a set X is a mapping · :
G×X → X such that 1 ·x = x and σπ ·x = σ · (π ·x) for all σ, π ∈ G and x ∈ X.
We then say that G acts on X, or that X is a G-set. For x ∈ X, we call the
set {π · x | π ∈ G} the orbit of x; or an orbit in X. The orbits in X partition X
into disjoint sets. We call X orbit-finite if it has finitely many orbits.

Group actions canonically extend along familiar set-theoretic constructions:
if X and Y are G-sets then the cartesian product X×Y , the disjoint union X0Y ,
the set of sequences X∗, the powerset P(X) etc. are all G-sets, in the expected
way. For example, G acts componentwise on X × Y via π · (x, y) = (π · x, π · y).

Oligomorphicity. A structure Atoms is oligomorphic if for every n ∈ N, the
componentwise action of Aut(Atoms) on Atomsn induces finitely many orbits.
All structures considered in this paper are oligomorphic; an example of a non-
oligomorphic structure is the total order of integers.
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Supports. Let Aut(Atoms) act on a setX and let x ∈ X. A support of x is any set
S ⊆ Atoms such that the following implication holds for all π ∈ Aut(Atoms):

if π(s) = s for all s ∈ S then π · x = x.

An element x ∈ X is finitely supported if it has some finite support.
For many structures Atoms, finite supports of a fixed element are always

closed under intersections. Then every finitely supported x has the least support,
denoted sup(x). This happens in particular for the equality atoms (as proved
in [24, Prop. 2.3] or in [5, Cor. 9.4]) and for the dense order atoms (as proved
in [5, Prop. 9.5]). It is easy to prove that taking least supports commutes with
group actions: π · sup(x) = sup(π · x) for every x ∈ X and π ∈ Aut(Atoms).

Equivariance. An element (or a subset, relation, function. . . ) of an Aut(Atoms)-
set is called equivariant if it is supported by the empty set; equivalently, it is
fixed by every automorphism of Atoms. For example:

– a subset Z of an Aut(Atoms)-set X is equivariant if and only if it is a union
of orbits in X (indeed, it is then equivariant as an element of P(X));

– a relation R ⊆ X × Y is equivariant if and only if xRy ↔ (π · x)R(π · y)
for all x ∈ X, y ∈ Y and π ∈ Aut(Atoms). An equivariant function is a
function whose graph is an equivariant relation.

Standard set-theoretic relations such as set membership, or set containment, are
equivariant. Indeed, x ∈ Z ↔ (π · x) ∈ (π · Z), etc.

If ∼ is an equivariant equivalence relation on X then Aut(Atoms) acts on
the set X/∼, by π · C = {π · x | x ∈ C} for each ∼-equivalence class C ⊆ X.

Register automata. Fix a structure Atoms and let R be an NRA with in-
put alphabet S × Atoms, control states Q, and with r registers. The group
Aut(Atoms) acts on all the components of R:

– on the input alphabet A := S ×Atoms, via π · (s, a) = (s, π(a));
– on the set C := Q× (Atoms 0 {⊥})r of all configurations of R, via

π · q(a1, . . . , ar) = q(π(a1), . . . , π(ar)) (where π(⊥) = ⊥);

– the set of initial configurations and the set of accepting configurations are
both equivariant subsets of C;

– the set of transitions of R is an equivariant relation: if p(a)
(s,a)−→ q(a′) is a

transition of R, then so is π · p(a) (s,π(a))−→ π · q(a′).

Furthermore, each of these components is orbit-finite, and each of its elements
has a finite support. Using the terminology of [5], this means that register au-
tomata are a special case of orbit-finite automata.

By equivariance of all the components above, the language L(R) of a register
automaton is an equivariant subset of A∗ = (S ×Atoms)∗, considered with the
componentwise action of Aut(Atoms) on A∗, i.e.

π · ((s1, a1), . . . , (sn, an)) = ((s1, π · a1), . . . , (sn, π · an)).
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Myhill-Nerode theorem. In order to prove that a language is deterministically
recognizable, we use the following Myhill-Nerode characterization.

For an alphabet A = S × Atoms and data language L ⊆ A∗, consider its
Myhill-Nerode equivalence ∼L ⊆ A∗ ×A∗, defined by

u ∼L v if and only if uw ∈ L ↔ vw ∈ L for all w ∈ A∗.

Theorem 3. [5, Thm. 3.8 and Thm. 6.4] Let Atoms be oligomorphic and
L ⊆ (S × Atoms)∗ be an equivariant language. Then L is deterministically
recognizable if and only if (S ×Atoms)∗/∼L

is orbit-finite.

Among other things, this theorem immediately implies that the language from
Ex. 2 is not deterministically recognizable, neither for the equality atoms nor
for the total order atoms. Indeed, two words are Myhill-Nerode equivalent with
respect to that language if and only if they contain the same set of letters. There-
fore, the language cannot be deterministically recognizable, since automorphisms
of Atoms preserve the number of distinct letters in a word.

6 Proof of Theorem 1

In the proof, we will make use of an abstract notion of a split of a family of sets.
For any family F of subsets of a set X, a split of F is a pair (U, V ) of sets

which partition X: X = U 0 V , such that both U and V are finite unions of
elements of F. Obviously, for any splits to exist, X =

⋃
F must hold.

In the following lemma, Atoms is the equality atoms.

Lemma 1. For any Aut(Atoms)-set X with finitely supported elements, and
any equivariant, orbit-finite family F of finitely supported subsets of X, the set
G of splits of F is orbit-finite. Moreover, a bound on the number of orbits of G
and the maximal size of the support of an element in G are computable from the
analogous bounds for F.

As should be clear after reading Sec. 5, the set of splits of F is considered with
the natural action of Aut(Atoms): π · (U, V ) = (π · U, π · V ), where π · W =
{π · x | x ∈ W} for W ⊆ X.

We will prove Lem. 1 in Sec. 6.2. For now, let us show how the lemma implies
Thm. 1.

Let A and B be two NRA over an alphabet A = S ×Atoms such that L(A)
and L(B) partition A∗. We will show that the Myhill-Nerode equivalence of
L = L(A) has orbit-finitely many classes. Together with Thm. 3, this will prove
that L is deterministically recognizable.

Let C be the set of configurations of A 0B (the disjoint union of A and B.)
Hence, C consists of tuples of the form q(a) where q is either a state of A or
a state of B (but not both), and a is a tuple of elements of Atoms 0 {⊥} of
appropriate length. For c ∈ C denote

Lc := {w ∈ A∗ | A 0B accepts w from configuration c} ,
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and let F = {Lc | c ∈ C}. Since C is equivariant and orbit-finite, so is F. More-
over, if c = q(a) then Lc is finitely supported by the atoms in a. Clearly, every
word (s1, a1) · · · (sn, an) ∈ A∗ is supported by {a1, . . . , an}. This means that F

and X = A∗ satisfy the assumptions of Lem. 1, therefore F has only orbit-finitely
many splits.

Every word v ∈ A∗ induces a partition of A∗ into two disjoint sets:

Uv = {w ∈ A∗ | vw ∈ L} and Vv = {w ∈ A∗ | vw /∈ L} .

Moreover, the sets Uv and Vv are finite unions of sets from F, namely

Uv =
⋃

c∈A(v)

Lc and Vv =
⋃

c∈B(v)

Lc.

These unions are finite because automata A and B allow no guessing and so
A(v) and B(v), the sets of configurations reachable in A resp. B by reading the
word v, are finite. Therefore, (Uv, Vv) is a split of F, for any word v.

By definition, u ∼L v if and only if Uu = Uv. Consider any two words
v, w ∈ A∗ such that the splits (Uv, Vv) and (Uw, Vw) are in the same orbit, i.e.,
Uw = π · Uv (and therefore also Vw = π · Vv) for some automorphism π. Since L
is an equivariant language, we have π · Uv = Uπ·v and so w ∼L π · v. Theorem 1
now follows from Thm. 3.

6.1 Examples

Before proving Lem. 1, we give some examples of families of splits, which may
be helpful in developing some intuitions.

The first example shows that the number of orbits of splits may grow as fast
as double-exponentially, relative to the least supports of elements of F.

Example 6. For the equality atoms, fix k � 1 and let X be the set of all k-tuples
of pairwise distinct atoms. For each S ⊆ Atoms with |S| = k, let S(k) = Sk ∩X
and let MS = X \ S(k). Note that S(k) is finite, with k! elements.

The family F ⊆ P(X) of all singletons in X and all sets MS as above is
equivariant and has two orbits. Each set in F has a support of size k.

For any K ⊆ S(k), consider the partition of X into K and X \ K. Then
(K,X \K) is a split of F, as K =

⋃
v∈K {v} and X \K = MS ∪

⋃
v∈S(k)\K {v}.

Moreover, every split (U, V ) of F is of the form (K,X \ K) or (X \ K,K)
for some S and K as above. Indeed, suppose U =

⋃
U and V =

⋃
V for some

finite U,V ⊆ F. As U ∪ V = X is infinite, U ∪ V must contain MS for some set
S of k atoms. Suppose without loss of generality that MS ∈ U. By disjointness
of U and V , the set V ⊆ F may only contain singletons {v}, for v ∈ S(k). Then
(U, V ) = (X \K,K), where K =

⋃
V.

For K,K ′ ⊆ S(k), the splits defined by K and K ′ are in the same orbit only
if there is an automorphism π that fixes S as a set, such that π ·K = K ′. Since

there are only k! bijections on S, the set of splits of F has at least 2k!

k! orbits. ��
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The next example shows the difference between splits and the finite subfam-
ilies of F that define those splits: the set of those families may be orbit-infinite.

Example 7. Let X be the set of all finite sets of equality atoms. For any distinct
atoms a, b, define Ea,b, Da,b ⊆ X by:

Ea,b = {F ∈ X | a ∈ F ↔ b ∈ F} Da,b = X \ Ea,b

And let F contain all sets Ea,b and Da,b. This F has two orbits.
Obviously, (U, V ) = (X, ∅) is a split of F; it is enough to take U = {Da,b, Ea,b}

and V = ∅ for any fixed a, b. However, there are many more minimal families
U and V that achieve the same effect. Indeed, for any number n, and for any
pairwise distinct atoms a1, . . . , an, consider:

U = {Da1,a2
, Da2,a3

, . . . , Dan−1,an
, Ea1,an

} V = ∅

It is easy to check that
⋃
U = X. All such families are minimal (in fact, removing

any element from U would prevent it from being the part of any split of F), and
for each n these families form a separate orbit. ��

The following example shows that the statement of Lem. 1 fails if the atoms
are (Q,). It is obtained from Ex. 4 via the translation given in the proof of
Thm. 1, and a simplification replacing each word by its last letter.

Example 8. The atoms are (Q,). Let X = Q and let F ⊆ P(X) consist of:

– singletons {q} ⊆ X, for q ∈ Q;
– open intervals (p, q) ⊆ X, for p < q in Q ∪ {−∞,+∞}.

Then F has five orbits (here ±∞ are fixed under the action of Aut(Atoms)).
For any finite set K ⊆ X, consider the partition of X into K and X \K. Then
K =

⋃
q∈K {q} whereas X \ K is the union of all intervals (p, q), where p < q

are consecutive elements in K ∪ {−∞,+∞}. Hence, (K,X \K) is a split of F.
In particular, the set of all splits of F has infinitely many orbits, because the set
of finite subsets of X has infinitely many orbits. ��

6.2 Proof of Lemma 1

We prove by induction a stronger statement, where the atoms are assumed to
be an expansion of (N,=) by finitely many constants. In other words, in this
section we will assume that Atoms is a structure over a vocabulary that consists
of (equality and) a finite number of constant symbols; the universe of Atoms is
N, with the constants interpreted as some pairwise distinct numbers. The group
Aut(Atoms) then consists of all bijections of Atoms which fix every constant.

If Atoms is such a structure and T is a finite set of atoms all different
from the constants, then by AtomsT we denote the structure, over an extended
vocabulary, that arises from Atoms by interpreting all the atoms in T as ad-
ditional constants. Obviously, Aut(AtomsT ) is a subgroup of Aut(Atoms), so
every action of Aut(Atoms) on a set X restricts to an action of Aut(AtomsT ).
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This restriction preserves and reflects the existence of finite supports: an element
x ∈ X is supported by some S in the action of Aut(Atoms) if and only if it is
supported by S \ T in the restricted action of Aut(AtomsT ). In particular, if
Atoms is an expansion of (N,=) by finitely many constants, then every finitely
supported element x has a least support sup(x). Note that sup(x) never contains
any constants, since those can always be safely removed from any support.

For a subset U of an orbit-finite equivariant set F, its dimension dim(U) is
the maximum size of the least support of an element of U. This makes sense
even if U is infinite, because F is orbit-finite and sets from the same orbit have
least supports of the same size. In particular, dim(F) is well defined.

The following lemma says that adding constants to atoms preserves orbit-
finiteness. It is a standard result in the theory of sets with atoms, see e.g. [1,
Lem. 3.19] or [24, Lem. 5.22], indeed it is a fundamental property of oligomorphic
structures, but we re-prove it here to extract explicit bounds:

Lemma 2. Fix a finite set T ⊆ Atoms. For any orbit-finite Aut(Atoms)-set F
with l orbits, the corresponding action of Aut(AtomsT ) on F is also orbit-finite,
with at most l · (|T |+ 1)dim(F) orbits.

Proof. Assume first that F has only one orbit in the Aut(Atoms)-action, i.e.,
that l = 1. Let d = dim(F). Let Y denote the set of d-tuples of pairwise distinct
atoms different from the constants in Atoms. This is a single-orbit set under the
componentwise action of Aut(Atoms). Pick any x0 ∈ F. Let y0 = (a1, . . . , ad) ∈
Y be an enumeration of sup(x0). There is a unique equivariant surjection f : Y →
X such that f(π · y0) = π · x0 for all π ∈ Aut(Atoms). (The function f is total
since Y has one orbit; it is well defined because y0 enumerates a support of
x0, and it is surjective since X has one orbit.) Two tuples in Y are in the
same orbit in the action of Aut(AtomsT ) if and only if they contain the same
arrangement of atoms from T at the same positions. There are at most (|T |+1)d

such arrangements, (in fact fewer than this if d > 1, because tuples in Y are
pairwise distinct), so Y has at most (|T |+1)d such orbits. X is an image of the
equivariant function f : Y → X, so the same bound applies to X. For a set F

with l orbits, each of dimension at most d, the bound simply multiplies by l. ��

From now on consider Atoms as described above, and let X and F be as in
the statement of Lem. 1. The following key lemma says that every split of F has
a support of a bounded size.

Lemma 3. Let U 0 V be a split of F and let U,V be finite subfamilies of F

such that
⋃
U = U and

⋃
V = V . Then U and V each have a support of size at

most N , for some bound N computable only from dim(U), dim(V), dim(F) and
the number of orbits in F.

The crux of this lemma is that the number N does not depend on the split
U 0 V . It only depends on the number of orbits in F, its dimension dim(F), and
on dim(U) and dim(V) (which, anyway, are bounded from above by dim(F)).
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Proof (of Lem. 3). We proceed by induction on k = dim(U)+dim(V). Fix k � 0
and assume that the statement of the lemma holds for all smaller values of k.
Without loss of generality, we may assume that ∅ does not belong to U nor V

(as it can be safely removed from each of them).

For a finitely supported set F ⊆ X define

F � := {π · y | π ∈ Aut(Atoms), y ∈ F, sup(y) ∩ sup(F ) = ∅} .

Intuitively, F � arises by taking all elements of F that are “fresh for F”, i.e., ones
whose supports share no atoms with the support of F , and then by applying ar-
bitrary atom automorphisms to those elements. Note that that F � is equivariant
and F � = (π · F )� for any automorphism π.

Claim 1 X =
⋃

F∈U∪V F �.

Proof. Take any x ∈ X. Let S =
⋃

F∈U∪V sup(F ). Since U and V are finite, S is
a finite set. Pick an automorphism π such that its inverse π−1 maps sup(x) to
a set disjoint with S. Consider the element y = π−1 · x ∈ X. Since U ∪ V = X,
there must be some F ∈ U ∪ V such that y ∈ F . Then x ∈ F �. ��

Let us first prove the lemma for the special case where X = F � for some
F ∈ U∪V. Suppose that X = F � for some F ∈ U (the case F ∈ V is symmetric).

Claim 2 Every y ∈ X with sup(y) ∩ sup(F ) = ∅ belongs to F .

Proof. Take any y as above. As X = F �, there is some π and x ∈ F such that
y = π · x and sup(x) ∩ sup(F ) = ∅. Pick an automorphism θ such that:

– θ agrees with π on sup(x), mapping it bijectively to sup(y),
– θ fixes sup(F ) pointwise.

Such a θ exists since sup(x) and sup(y) are both disjoint from F . Then θ · x =
π ·x = y by the first property above, and θ ·x ∈ θ ·F = F by the second property.
Altogether, y ∈ F . ��

Claim 3 For every G ∈ V, sup(F ) ∩ sup(G) �= ∅.

Proof. We show that if sup(G) is disjoint from sup(F ) then G must be empty,
contradicting our previous assumption.

Suppose x ∈ G. Pick an automorphism π which fixes sup(G) pointwise and
maps sup(x) to a set disjoint with sup(F ). Such a π exists because sup(G) and
sup(F ) are disjoint. Letting y := π · x, we have y ∈ F by Claim 2, and moreover
y = π ·x ∈ π ·G = G. Then y ∈ F ∩G ⊆ U ∩V = ∅, a contradiction. This proves
G = ∅, which in turn contradicts the assumption that ∅ �∈ V. ��

Denote T = sup(F ). If T = ∅ then by Claim 3, V has dimension 0 and
therefore V is supported by the empty set. So we may assume that T �= ∅. For
the same reason we may assume that the family V is not empty.
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Let AtomsT be obtained from Atoms by including the elements of T as
new constants. Hence, AtomsT extends Atoms by at most r constants, where
r := dim(F).

Let l be the number of orbits in F. By Lem. 2, the family F, treated as a
family of sets over the atoms AtomsT , is still orbit-finite, with the number of
orbits l′ depending only on l and r. Clearly, U 0 V remains a split of F. Note
that if F ∈ F is supported by some set S over Atoms, then F is supported by S,
indeed even by S \ T , over AtomsT . In particular, the dimension of F does not
increase by moving from Atoms to AtomsT . More interestingly, by Claim 3,
the least supports of all the elements in V actually decrease when considering
AtomsT as atoms. Since V is not empty, the dimension of V strictly decreases
and it follows that dim(U) + dim(V) < k over AtomsT . Applying the inductive
assumption yields a set T ′ of size N ′, depending on k − 1 and l′, such that
T ′ supports V over AtomsT . By construction, V is supported by T ∪ T ′ over
Atoms. Note that

|T ∪ T ′|  N ′′ := N ′ + r.

This concludes the proof in the special case when X = F � for some F ∈ U ∪ V.
In the general case, for each F ∈ U ∪ V define:

FF :=
{
G ∩ F �

∣∣ G ∈ F
}

UF :=
{
G ∩ F �

∣∣ G ∈ U
}

VF :=
{
G ∩ F �

∣∣ G ∈ V
}

UF := U ∩ F � =
⋃

UF VF := V ∩ F � =
⋃

VF .

Then
⋃
FF = F � and (UF , VF ) is a split of FF which falls into the special

case considered above. Hence, UF has some support SF of size at most N ′′.
Then U is supported by S :=

⋃
F∈U∪V SF . Note that SF only depends on the

orbit of F , as F � = (π · F )� for any automorphism π. As there are l such orbits
contained in F, it follows that S has size at most N := N ′′l. This concludes the
inductive step, and the proof of Lem. 3. ��

Using Lem. 3, we now proceed to prove Lem. 1.

Proof (of Lemma 1). Consider an equivariant set X and an equivariant, orbit
finite family F of finitely supported subsets of X. Let ((Ui, Vi))i∈I be a family
of splits of F. By Lem. 3, each one of these splits is supported by some set of a
bounded size. Applying suitable automorphisms to each of these splits, we can
obtain a family of splits ((U ′

i , V
′
i ))i∈I such that, for all i ∈ I:

– U ′
i and Ui are in the same orbit, and

– each U ′
i is supported by the same set S.

It is now enough to show that there are only finitely many subsets U ⊆ X
supported by a fixed set S, which are unions of elements of F.

By Lem. 2 it follows that F has finitely many orbits under the action of
the group Aut(AtomsS) of all automorphisms which fix S pointwise. (Here, as
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in the statement of Lem. 1, Atoms are the pure equality atoms without any
constants.) If a set U ⊆ X supported by S contains some F ∈ F as a subset,
then it contains π · F for every π ∈ Aut(AtomsS). In other words, U contains
(the union of) the entire orbit in F under the action of Aut(AtomsS). Since we
assume that U is a union of elements of F, it is a union of (the unions of) orbits
in F, and there are only finitely many of these.

This completes the proof of Lem. 1. ��

7 Application to Unambiguous Register Automata

Lemma 1 is interesting in its own right and its applications are not limited to
the ones mentioned in Sec. 4. We shall now show how it can be used to decide
universality (and hence also language containment and equality, cf. [8, Lem. 8])
of URA over the pure equality atoms Atoms.

Theorem 4. [22, Thm. 14] The language containment and equality problems
are decidable for unambiguous register automata.

As an application of Lem. 1, we give an alternative decidability proof for the
universality problem of URA. First, we prove a consequence of Lem. 1.

Lemma 4. Let X be an equivariant set over equality atoms, and let F be an
equivariant, orbit-finite family of finitely supported subsets of X. There is a
bound M , computable from dim(F) and the number of orbits in F, such that
every P ⊆ F which is a partition of X has size at most M .

Proof. Let G = {U | (U, V ) is a split of F}. By Lem. 1, G is orbit-finite. More-
over, its elements are finitely supported. Let P ⊆ F be a partition of X into
nonempty subsets. For each U ⊆ P, the union

⋃
U belongs to G; in particular,

we have 2|P| elements of G, each containing different sets in P. The proof is
completed by the following counting argument.1

Let S =
⋃

F∈P sup(F ). An S-orbit in G is an orbit in G with respect to the
action of those atom permutations which fix S pointwise. Equivalently, it is an
orbit in G viewed as a Aut(AtomsS)-set. By Lem. 2, for any finite S ⊆ Atoms,
the number of S-orbits in G is bounded by l · (|S| + 1)k, where k and l are
computable from dim(F) and the number of orbits of F.

Two splits G,G′ ∈ G in the same S-orbit contain the same elements of P: if
G′ = π · G then by equivariance of F and G, for each F ∈ P we have F ⊆ G if
and only if π ·F ⊆ π ·G, but π ·F = F when π fixes S pointwise. Hence, for any
two distinct U,U′ ⊆ P, their unions

⋃
U and

⋃
U′ belong to different S-orbits

in G, so there are least 2|P| such orbits. As |S|  dim(F) · |P|, we get:

2|P|  l · (|S|+ 1)k  l · (dim(F) · |P|+ 1)k.

It follows that |P| is bounded by some M computable from k, l, and dim(F). ��
1 It exhibits the well-known fact that equality atoms have the NIP property studied
in model theory.
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Lemma 4 has the following corollary, which is a strong restriction on the
structure of universal URA and easily yields Thm. 4.

Call a configuration c of a NRA A nonempty if the NRA accepts some word
from this configuration, i.e., the following language is nonempty:

Lc := {w ∈ A∗ | A accepts w from c}

Since NRA emptiness is decidable, it is not difficult to modify any given NRA to
one with only nonempty configurations. This transformation preserves URA, so
we may safely assume that we only consider URA with this property.

Corollary 1. Let A be a URA with nonempty configurations and which accepts
every input word. Then there is a computable bound M such that A may reach
at most M different configurations when reading any given input word.

Proof. Let A be an URA over an input alphabet A = S ×Atoms. Let C be the
set of configurations of A and let F := {Lc | c ∈ C} . Note that dim(F) is not
larger than the number of registers r of A, and the number of orbits in F is not
larger than the number of orbits of configurations in A, which in turn is equal to
the number of control states in A times the number of orbits in (Atoms0{⊥})r
(equal to the r + 1-st Bell number).

For each w ∈ A∗, the set A(w) ⊆ C of configurations reachable when reading
w is finite, since A has no guessing. Unambiguity of A implies that the family

Pw := {Lc | c ∈ A(w)} ⊆ F

consists of pairwise disjoint sets. If additionally L(A) = A∗, then Pw forms
a partition of A∗, so |Pw|  M where M is the bound from Lemma 4. As
|A(w)|  |Pw|, this yields the corollary. ��

Decidability of universality of URA now follows using standard ideas.

Proof (of Thm. 4, sketch). We use the notation of the proof of Cor. 1. The idea
is to construct the truncated powerset automaton whose states are sets of at
most M states of A.

Let C ′ denote the family of subsets of C of size at most M ; then C ′ is orbit-
finite. We define a deterministic automaton A′ with an infinite, but orbit-finite
state space C ′. Its transitions are X

a−→ Y, for X,Y ∈ C ′ such that

Y =
{
y ∈ C

∣∣∣ x a−→ y in A, x ∈ X
}
.

The initial state of A′ is the set C0 ⊆ C of initial configurations of A (unless
|C0| > M , but then L(A) �= A∗ by the corollary). Accepting states are all states
X ∈ C ′ which contain an accepting configuration of A. All the ingredients of A′

are equivariant, orbit-finite sets, so A′ is an orbit-finite deterministic automaton,
and can be effectively constructed given A and M . Its language L(A′) is defined
as usual. By construction,

– L(A′) ⊆ L(A) ⊆ A∗;
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– if L(A) = A∗ then L(A′) = A∗, by Cor. 1.

Hence, A′ is universal if and only if A is universal. Since A′ is orbit-finite,
universality of A′ can be effectively decided, using standard techniques for orbit-
finite automata [1,5]: by first complementing and then testing emptiness. ��

8 Proof of Theorem 2

Towards proving Thm. 2, assume A and B are two complementing 1-NRA over
an alphabet A = S ×Atoms and that Atoms admit wqo.

Recall that configurations of a 1-NRA are either of the form q(a) where q is
a control state and a ∈ Atoms is the register value, or of the form q(⊥) when
the register value is still undefined. We assume, without losing generality, that
both register automata A and B immediately update their register, i.e., every
transition rule outgoing from an initial state updates the register.

Let Q and Q′ denote sets of control states of A and B, respectively, and
assume without losing generality that Q and Q′ are disjoint.

For every nonempty data word w ∈ A+, the set A(w) ∪ B(w) of configura-
tions of A and B reachable along w is finite, since NRA have no guessing, and
contains no undefined configurations of the form q(⊥) due to the immediate up-
date assumption. For every w ∈ A+ define a finite induced substructure Cw of
Atoms, labeled with the finite set P = P(Q ∪ Q′), as follows. The elements of
Cw are the atoms that appear in configurations in A(w) ∪B(w):

Cw = {a ∈ Atoms | (q, a) ∈ A(w) ∪B(w) for some state q.}

The labeling 
w : Cw → P of Cw maps a ∈ Cw to the set of all control states
which appear in A(w) ∪B(w) together with a:


w(a) = {q ∈ Q | (q, a) ∈ A(w)} ∪ {q ∈ Q′ | (q, a) ∈ B(w)} .

Let L = L(A). For each v ∈ A∗ define the partition of A∗ into:

Uv = {w ∈ A∗ | vw ∈ L} and Vv = {w ∈ A∗ | vw /∈ L} .

Recall that u ∼L v if and only if Uu = Uv.

Claim. Let u, v ∈ A+. If Cu ( Cv then π · u ∼L v for some automorphism π.

Proof. By definition of (, there is some π ∈ Aut(Atoms) which maps Cu to a
substructure of Cv, so that π · Cu ⊆ Cv and


u(a) = 
v(π(a)) for a ∈ Cu. (2)

Let u′ = π · u. By equivariance of register automata, if A reaches a config-
uration (q, a) when reading u, then it reaches the configuration (q, π(a)) when
reading u′ = π · u. Hence, Cu′ ⊆ Cv and 
u(a) = 
u′(π(a)) for a ∈ Cu. Together
with (2) we get 
u′(a) = 
v(a) for all a ∈ Cu′ .
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We show that this implies Uu′ = Uv, which will yield the claim as u′ = π · u.
Towards proving Uu′ ⊆ Uv take any w ∈ Uu′ ; then u′w ∈ L. Pick an accepting
run of A on u′w. Let q(a) be the configuration of A in this run reached after
reading the (nonempty) prefix u′. In particular, A accepts w starting from the
configuration q(a). Moreover, a ∈ Cu′ and q ∈ 
u(a). As Cu′ ⊆ Cv and 
u′(a) =

v(a), it follows that A may reach the configuration q(a) after reading v. As w is
accepted by A from this configuration, it follows that A accepts vw, so w ∈ Uv.

The inclusion Vu′ ⊆ Vv is proved by a similar argument, using B instead of
A, since L(B) = A∗ \ L(A) = A∗ \ L. As Uu′ = A∗ \ Vu′ and Vv = A∗ \ Uv, the
inclusion Vu′ ⊆ Vv implies Uu′ ⊇ Uv. Altogether, Uu′ = Uv, so u′ ∼L v, yielding
the claim. ��

Theorem 2 now follows easily: assume towards a contradiction that A∗/∼L

is not orbit-finite. Then there is an infinite set X ⊆ A+ such that π(u) �∼L v for
all distinct u, v ∈ X and π ∈ Aut(Atoms). As Atoms admits wqo, there are
distinct u, v ∈ X such that Cu ( Cv. The claim above yields a contradiction. ��

9 Final remarks

We have studied a deterministic collapse for NRA: if a language and its comple-
ment are both recognized by NRA then they are also recognized by DRA. We
have proved this for register automata over equality atoms; and for automata
with one register only, over any atoms that admit wqo. We have also applied
our key technical observation, namely orbit-finiteness of the set of splits of an
orbit-finite family of sets, in order to re-prove decidability of universality of URA.

The assumed form A = S ×Atoms of the input alphabets is not important;
the results apply to arbitrary orbit-finite input alphabets A.

The proof of our main result (also of decidability of universality of URA) is
effective, with elementary bounds. In particular, given two NRA with comple-
menting languages the equivalent DRA from Thm. 1 has an exponential num-
ber of registers and a doubly-exponential number of orbits of states. The same
bounds apply to a DRA constructed in our proof of Thm. 4. Moreover, assum-
ing Atoms satisfy standard effectiveness assumptions, like decidability of their
first-order theory, one can also compute an equivalent DRA from Thm. 2.

Concerning possible generalisations of our results, we believe that Thm. 1
holds not only for equality atoms, but for arbitrary oligomorphic ω-stable atoms.
These include e.g. the nested equality atoms mentioned in Sec. 2. On the other
hand Thm. 1 does not extend to disjoint but non-complementing NRA languages:
it is not true that for every two disjoint NRA languages there is a DRA language
that separates them, i.e., includes one of them and is disjoint from the other.
The corresponding decision problem (given two disjoint NRA, does a separating
DRA exist?) is decidable when the number of registers of a separating automaton
is fixed [9], and open in general.

An intriguing open question (not unlike the wqo Dichotomy Conjecture [19])
is whether it is necessary for Atoms to admit wqo for Thm. 2 to hold.
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Abstract Different classes of automata on infinite words have different
expressive power. Deciding whether a given language L ⊆ Σω can be
expressed by an automaton of a desired class can be reduced to deciding
a game between Prover and Refuter: in each turn of the game, Refuter
provides a letter in Σ, and Prover responds with an annotation of the
current state of the run (for example, in the case of Büchi automata,
whether the state is accepting or rejecting, and in the case of parity
automata, what the color of the state is). Prover wins if the sequence
of annotations she generates is correct: it is an accepting run iff the
word generated by Refuter is in L. We show how a winning strategy
for Refuter can serve as a simple and easy-to-understand certificate to
inexpressibility, and how it induces additional forms of certificates. Our
framework handles all classes of deterministic automata, including ones
with structural restrictions like weak automata. In addition, it can be
used for refuting separation of two languages by an automaton of the
desired class, and for finding automata that approximate L and belong
to the desired class.

Keywords: Automata on infinite words · Expressive power · Games.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were
the key to the solution of several fundamental decision problems in mathemat-
ics and logic [8,33,41]. Today, automata on infinite objects are used for speci-
fication, verification, and synthesis of nonterminating systems. The automata-
theoretic approach reduces questions about systems and their specifications to
questions about automata [28,49], and is at the heart of many algorithms and
tools. Industrial-strength property-specification languages such as the IEEE 1850
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Standard for Property Specification Language (PSL) [14] include regular expres-
sions and/or automata, making specification and verification tools that are based
on automata even more essential and popular.

A run r of an automaton on infinite words is an infinite sequence of states, and
acceptance is determined with respect to the set of states that r visits infinitely
often. For example, in Büchi automata, some of the states are designated as
accepting states, denoted by α, and a run is accepting iff it visits states from
the accepting set α infinitely often [8]. Dually, in co-Büchi automata, a run is
accepting if it visits the set α only finitely often. Then, in parity automata, the
acceptance condition maps each state to a color in some set C = {j, . . . , k}, for
j ∈ {0, 1} and some index k ≥ 0, and a run is accepting if the maximal color it
visits infinitely often is odd.

The different classes of automata have different expressive power. For ex-
ample, while deterministic parity automata can recognize all ω-regular lan-
guages, deterministic Büchi automata cannot [29]. We use DBW, DCW, and
DPW to denote a deterministic Büchi, co-Büchi, and parity word automaton,
respectively, or (this would be clear from the context) the set of languages
recognizable by the automata in the corresponding class. There has been ex-
tensive research on expressiveness of automata on infinite words [48,20]. In
particular, researchers have studied two natural expressiveness hierarchies in-
duced by different classes of deterministic automata. The first hierarchy is the
Mostowski Hierarchy, induced by the index of parity automata [35,50]. For-
mally, let DPW[0, k] denote a DPW with C = {0, . . . , k}, and similarly for
DPW[1, k] and C = {1, . . . , k}. Clearly, DPW[0, k] ⊆ DPW[0, k + 1], and simi-
larly DPW[1, k] ⊆ DPW[1, k+1]. The hierarchy is infinite and strict. Moreover,
DPW[0, k] complements DPW[1, k+1], and for every k ≥ 0, there are languages
Lk and L′

k such that Lk ∈ DPW[0, k] \ DPW[1, k + 1] and L′
k ∈ DPW[1, k +

1] \ DPW[0, k]. At the bottom of this hierarchy, we have DBW and DCW.
Indeed, DBW=DPW[0, 1] and DCW=DPW[1, 2].

While the Mostowski Hierarchy refines DPWs, the second hierarchy, which we
term the depth hierarchy, refines deterministic weak automata (DWWs). Weak
automata can be viewed as a special case of Büchi or co-Büchi automata in which
every strongly connected component in the graph induced by the structure of the
automaton is either contained in α or is disjoint from α, where α is depending on
the acceptance condition the set of accepting or rejecting states. The structure of
weak automata captures the alternation between greatest and least fixed points
in many temporal logics, and they were introduced in this context in [36]. DWWs
have been used to represent vectors of real numbers [6], and they have many
appealing theoretical and practical properties [32,21]. In terms of expressive
power, DWW = DCW ∩ DBW.

The depth hierarchy is induced by the depth of alternation between accepting
and rejecting components in DWWs. For this, we view a DWW as a DPW
in which the colors visited along a run can only increase. Accordingly, each
run eventually gets trapped in a single color, and is accepting iff this color is
odd. We use DWW[0, k] and DWW[1, k] to denote weak-DPW[0, k] and weak-
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DPW[1, k], respectively. The picture obtained for the depth hierarchy is identical
to that of the Mostowski hierarchy, with DWW[j, k] replacing DPW[j, k] [50].
At the bottom of the depth hierarchy we have co-safety and safety languages
[2]. Indeed, co-safety languages are DWW[0, 1] and safety are DWW[1, 2].

Beyond the theoretical interest in expressiveness hierarchies, their study is
motivated by the fact many algorithms, like synthesis and probabilistic model
checking, need to operate on deterministic automata [5,3]. The lower the au-
tomata are in the expressiveness hierarchy, the simpler are algorithms for rea-
soning about them. Simplicity goes beyond complexity, which typically depends
on the parity index [16], and involves important practical considerations like min-
imization and canonicity (exists only for DWWs [32]), circumvention of Safra’s
determinization [26], and symbolic implementations [47]. Of special interest is
the characterization of DBWs. For example, it is shown in [25] that given a
linear temporal logic formula ψ, there is an alternation-free μ-calculus formula
equivalent to ∀ψ iff ψ can be recognized by a DBW. Further research studies
typeness for deterministic automata, examining the ability to define a weaker
acceptance condition on top of a given automaton [19,21].

Our goal in this paper is to provide a simple and easy-to-understand expla-
nation to inexpressibility results. The need to accompany results of decision pro-
cedures by an explanation (often termed “certificate”) is not new, and includes
certification of a “correct” decision of a model checker [24,44], reachability cer-
tificates in complex multi-agent systems [1], and explainable reactive synthesis
[4]. To the best of our knowledge, our work is the first to provide certification to
inexpressibility results.

The underlying idea is simple: Consider a language L and a class γ of de-
terministic automata. We consider a turn-based two-player game in which one
player (Refuter) provides letters in Σ, and the second player (Prover) responds
with letters from a set A of annotations that describe states in a deterministic
automaton. For example, when we consider a DBW, then A = {acc,rej}, and
when we consider a DPW[0, k], then A = {0, . . . , k}. Thus, during the interac-
tion, Refuter generates a word x ∈ Σω and Prover responds with a word y ∈ Aω.
Prover wins if for all words x ∈ Σω, we have that x ∈ L iff y is accepting accord-
ing to γ. Clearly, if there is a deterministic γ automaton for L, then Prover can
win by following its run on x. Dually, a finite-state winning strategy for Prover
induces a deterministic γ automaton for L. The game-based approach is not new,
and has been used for deciding the membership of given ω-regular languages in
different classes of deterministic automata [26]. Further, the game-based formu-
lation is used in descriptive set theory to classify sets into hierarchies, see for
example [39, Chapters 4 and 5] for an introduction that focuses on ω-regular
languages. Our contribution is a study of strategies for Refuter. Indeed, since
the above described game is determined [9] and the strategies are finite-state,
Refuter has a winning strategy iff no deterministic γ automaton for L exists,
and this winning strategy can serve as a certificate for inexpressibility.

Example 1. Consider the language L¬∞a ⊆ {a, b}ω of all words with only finitely
many a’s. It is well known that L cannot be recognized by a DBW [29]. In Fig-
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T :

a b

rej

acc

acc rej

Figure 1. A refuter for DBW-recognizability of “only finitely many a’s”.

ure 1 we describe what we believe to be the neatest proof of this fact. The figure
describes a transducer R with inputs in {acc,rej} and outputs in {a, b} – the
winning strategy of Refuter in the above described game. The way to interpret
R is as follows. In each round of the game, Prover tells Refuter whether the
run of her DBW for L¬∞a is in an accepting or a rejecting state, and Refuter
uses R in order to respond with the next letter in the input word. For example,
if Prover starts with acc, namely declaring that the initial state of her DBW
is accepting, then Refuter responds with a, and if Prover continues with rej,
namely declaring that the state reachable with a is rejecting, then Refuter re-
sponds with b. If Prover continues with rej forever, then Prover continues with b
forever. Thus, together Prover and Refuter generate two words: y ∈ {acc,rej}ω
and x ∈ {a, b}ω. Prover wins whenever x ∈ L¬∞a iff y contains infinitely many
acc’s. If Prover indeed has a DBW for L¬∞a, then she can follow its transition
function and win the game. By following the refuter R, however, Refuter can
always fool Prover and generate a word x such that x ∈ L¬∞a iff y contains only
finitely many acc’s. �

We first define refuters for DBW-recognizability, and study their construction
and size for languages given by deterministic or nondeterministic automata. Our
refuters serve as a first inexpressibility certificate. We continue and argue that
each DBW-refuter for a language L induces three words x ∈ Σ∗ and x1, x2 ∈ Σ∗,
such that x·(x1+x2)

∗ ·xω
1 ⊆ L and x·(x∗

1 ·x2)
ω∩L = ∅. The triple 〈x, x1, x2〉 is an

additional certificate for L not being in DBW. Indeed, we show that a language
L is not in DBW iff it has a certificate as above. For example, the language L¬∞a

has a certificate 〈ε, b, a〉. In fact, we show that Landweber’s proof for L¬∞a can
be used as is for all languages not in DBW, with x1 replacing b, x2 replacing a,
and adding x as a prefix.

We then generalize our results on DBW-refutation and certification in two
orthogonal directions. The first is an extension to richer classes of deterministic
automata, in particular all classes in the two hierarchies discussed above, as
well as all deterministic Emerson-Lei automata (DELWs) [17]. For the depth
hierarchy, we add to the winning condition of the game a structural restriction.
For example, in a weak automaton, Prover loses if the sequence y ∈ Aω of
annotations she generates includes infinitely many alternations between acc
and rej. We show how structural restrictions can be easily expressed in our
framework.

The second direction is an extension of the recognizability question to the
questions of separation and approximation: We say that a language L ⊆ Σω is
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a separator for two languages L1, L2 ⊆ Σω if L1 ⊆ L and L ∩ L2 = ∅. Studies
of separation include a search for regular separators of general languages [11],
as well as separation of regular languages by weaker classes of languages, e.g.,
FO-definable languages [40] or piecewise testable languages [12]. In the context
of ω-regular languages, [2] presents an algorithm computing the smallest safety
language containing a given language L1, thus finding a safety separator for L1

and L2. As far as we know, besides this result there has been no systematic
study of separation of ω-regular languages by deterministic automata.

In addition to the interest in separators, we use them in the context of rec-
ognizability in two ways. First, a third type of certificate that we suggest for
DBW-refutation of a language L are “simple” languages L1 and L2 such that
L1 ⊆ L, L∩L2 = ∅, and 〈L1, L2〉 are not DBW-separable. Second, we use sepa-
rability in order to approximate languages that are not in DBW. Consider such
a language L ⊆ Σω. A user may be willing to approximate L in order to obtain
DBW-recognizability. Specifically, we assume that there are languages I↓ ⊆ L
and I↑ ⊆ Σω \L of words that the user is willing to under- and over-approximate
L with. Thus, the user searches for a language that is a separator for L \ I↓ and
Σω \ (L ∪ I↑). We study DBW-separability and DBW-approximation, namely
separability and approximation by languages in DBW. In particular, we are in-
terested in finding “small” approximating languages I↓ and I↑ with which L has a
DBW-approximation, and we show how certificates that refute DBW-separation
can direct the search to for successful I↓ and I↑. Essentially, as in counterexample
guided abstraction-refinement (CEGAR) for model checking [10], we use certifi-
cates for non-DBW-separability in order to suggest interesting radius languages.
While in CEGAR the refined system excludes the counterexample, in our set-
ting the approximation of L excludes the certificate. As has been the case with
recognizability, we extend our results to all classes of deterministic automata.

2 Preliminaries

2.1 Transducers and Realizability

Consider two finite alphabets Σ and A. It is convenient to think about Σ as
the “main” alphabet, and about A as an alphabet of annotations. For two words
x = x0 ·x1 ·x2 · · · ∈ Σω and y = y0 ·y1 ·y2 · · · ∈ Aω, we define x⊕y as the word in
(Σ×A)ω obtained by merging x and y. Thus, x⊕y = (x0, y0)·(x1, y1)·(x2, y2) · · · .

A (Σ/A)-transducer models a finite-state system that responds with letters
in A while interacting with an environment that generates letters in Σ. Formally,
a (Σ/A)-transducer is T = 〈Σ,A, ι, S, s0, ρ, τ〉, where ι ∈ {sys , env} indicates
who initiates the interaction – the system or the environment, S is a set of states,
s0 ∈ S is an initial state, ρ : S×Σ → S is a transition function, and τ : S → A is
a labelling function on the states. Consider an input word x = x0 ·x1 ·x2 · · · ∈ Σω.
The run of T on x is the sequence s0, s1, s2 . . . such that for all j ≥ 0, we have
that sj+1 = ρ(sj , xj). The annotation of x by T , denoted T (x), depends on ι.
If ι = sys , then T (x) = τ(s0) · τ(s1) · τ(s2) · · · ∈ Aω. Note that the first letter
in A is the output of T in s0. This reflects the fact that the system initiates the
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interaction. If ι = env , then T (x) = τ(s1) · τ(s2) · τ(s3) · · · ∈ Aω. Note that now,
the output in s0 is ignored, reflecting the fact that the environment initiates the
interaction.

Consider a language L ⊆ (Σ ×A)ω. Let comp(L) denote the complement of
L. Thus, comp(L) = (Σ × A)ω \ L. We say that a language L ⊆ (Σ × A)ω is
(Σ/A)-realizable by the system if there is a (Σ/A)-transducer T with ι = sys
such that for every word x ∈ Σω, we have that x ⊕ T (x) ∈ L. Then, L is
(A/Σ)-realizable by the environment if there is an (A/Σ)-transducer T with
i = env such that for every word y ∈ Aω, we have that T (y) ⊕ y ∈ L. When
the language L is regular, realizability reduces to deciding a game with a regular
winning condition. Then, by determinacy of games and due to the existence of
finite-memory winning strategies [9], we have the following.

Proposition 1. For every ω-regular language L ⊆ (Σ×A)ω, exactly one of the
following holds.

1. L is (Σ/A)-realizable by the system.
2. comp(L) is (A/Σ)-realizable by the environment.

2.2 Automata

A deterministic word automaton over a finite alphabet Σ is A = 〈Σ,Q, q0, δ, α〉,
where Q is a set of states, q0 ∈ Q is an initial state, δ : Q×Σ → Q is a transition
function, and α is an acceptance condition. We extend δ to words in Σ∗ in the
expected way, thus for q ∈ Q, w ∈ Σ∗, and letter σ ∈ Σ, we have that δ(q, ε) = q
and δ(q, wσ) = δ(δ(q, w), σ). A run of A on an infinite word σ0, σ1, · · · ∈ Σω is
the sequence of states r = q0, q1, . . . , where for every position i ≥ 0, we have that
qi+1 = δ(qi, σi). We use inf (r) to denote the set of states that r visits infinitely
often. Thus, inf (r) = {q : qi = q for infinitely many i ≥ 0}.

The acceptance condition α refers to inf (r) and determines whether the run
r is accepting. For example, in the Büchi, acceptance condition, we have that
α ⊆ Q, and a run is accepting iff it visits states in α infinitely often; that is,
α ∩ inf (r) �= ∅. Dually, in co-Büchi, α ⊆ Q, and a run is accepting iff it visits
states in α only finitely often; that is, α∩inf (r) = ∅. The language of A, denoted
L(A), is then the set of words w such that the run of A on w is accepting.

A parity condition is α : Q → {0, . . . , k}, for k ≥ 0, termed the index of α. A
run r satisfies α iff the maximal color i ∈ {0, . . . , k} such that α−1(i)∩inf (r) �= ∅
is odd. That is, r is accepting iff the maximal color that r visits infinitely often is
odd. Then, a Rabin condition is α = {〈G1, B1〉, . . . , 〈Gk, Bk〉}, with Gi, Bi ⊆ Q,
for all 0 ≤ i ≤ k. A run r satisfies α iff there is 1 ≤ i ≤ k such that inf (r)∩Gi �= ∅
and inf (r)∩Bi = ∅. Thus, there is a pair 〈Gi, Bi〉 such that r visits states in Gi

infinitely often and visits states in Bi only finitely often.
All the acceptance conditions above can be viewed as special cases of the

Emerson-Lei acceptance condition (EL-condition, for short) [17], which we define
below. LetM be a finite set of marks. Given an infinite sequence π = M0·M1 · · · ∈
(2M)ω of subsets of marks, let inf (π) be the set of marks that appear infinitely
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often in sets in π. Thus, inf (π) = {m ∈ M : there exist infinitely many i ≥ 0
such that m ∈ Mi}. An EL-condition is a Boolean assertion over atoms in M.
For simplicity, we consider assertions in positive normal form, where negation is
applied only to atoms. Intuitively, marks that appear positively should repeat
infinitely often and marks that appear negatively should repeat only finitely
often. Formally, a deterministic EL-automaton is A = 〈Σ,Q, q0, δ,M, τ, θ〉, where
τ : Q → 2M maps each state to a set of marks, and θ is an EL-condition over M.
A run r of a A is accepting if inf (τ(r)) satisfies θ.

For example, a Büchi condition α ⊆ Q can be viewed as an EL-condition
with M = {acc} and τ(q) = {acc} for q ∈ α and τ(q) = ∅ for q �∈ α. Then, the
assertion θ = acc is satisfied by sequences π induced by runs r with inf (r)∩α �=
∅. Dually, the assertion θ = ¬rej with M = {rej} is satisfied by sequences π
induced by runs r with inf (r) ∩ α = ∅, and thus corresponds to a co-Büchi
condition. In the case of a parity condition α : Q → {0, . . . , k}, it is not hard to
see that α is equivalent to an EL-condition in which M = {0, 1, . . . , k}, for every
state q ∈ Q, we have that τ(q) = {α(q)}, and θ expresses the parity condition.
Lastly, a Rabin condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} is equivalent to an EL-
condition with M = {G1, B1, . . . , Gk, Bk} and τ(q) = {m ∈ M : q ∈ m}. Note
that now, the mapping τ is not to singletons, and each state is marked by all
sets in α in which it is a member. Then, θ =

∨
1≤i≤k(Gi ∧ ¬Bi).

We use DBW, DCW, DPW, DRW, DELW to denote deterministic Büchi, co-
Büchi, parity, Rabin, and EL word automata, respectively. For parity automata,
we also use DPW[0, k] and DPW[1, k], for k ≥ 0, to denote DPWs in which the
colours are in {0, . . . , k} and {1, . . . , k}, respectively. For Rabin automata, we use
DRW[k], for k ≥ 0, to denote DRWs that have at most k elements in α. Finally,
we use DELW[θ], to denote DELWs with EL-condition θ. We sometimes use the
above acronyms in order to refer to the set of languages that are recognizable by
the corresponding class of automata. For example, we say that a language L is
in DBW if L is DBW-recognizable, thus there is a DBW A such that L = L(A).
Note that DBW = DPW[0, 1], DCW = DPW[1, 2], and DRW[1] = DPW[0, 2].
In fact, in terms of expressiveness, DRW[k] = DPW[0, 2k] [43,31].

Consider a directed graph G = 〈V,E〉. A strongly connected set of G (SCS)
is a set C ⊆ V of vertices such that for every two vertices v, v′ ∈ C, there is a
path from v to v′. An SCS C is maximal if it cannot be extended to a larger
SCS. Formally, for every nonempty C ′ ⊆ V \ C, we have that C ∪ C ′ is not an
SCS. The maximal strongly connected sets are also termed strongly connected
components (SCC). An automaton A = 〈Σ,Q,Q0, δ, α〉 induces a directed graph
GA = 〈Q,E〉 in which 〈q, q′〉 ∈ E iff there is a letter σ such that q′ ∈ δ(q, σ).
When we talk about the SCSs and SCCs of A, we refer to those of GA. Consider
a run r of an automaton A. It is not hard to see that the set inf (r) is an SCS.
Indeed, since every two states q and q′ in inf (r) are visited infinitely often, the
state q′ must be reachable from q.
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3 Refuting DBW-Recognizability

Let A = {acc,rej}. We use ∞acc to denote the subset {a0 · a1 · a2 · · · ∈ Aω :
there are infinitely many j ≥ 0 with aj = acc} and ¬∞acc = comp(∞acc) =
{a0 · a1 · a2 · · · ∈ Aω : there are only finitely many j ≥ 0 with aj = acc}.

A DBW A = 〈Σ,Q, q0, δ, α〉 can be viewed as a (Σ/A)-transducer TA =
〈Σ,A, sys , Q, q0, δ, τ〉, where for every state q ∈ Q, we have that τ(q) = acc if
q ∈ α, and τ(q) = rej otherwise. Then, for every word x ∈ Σω, we have that
x ∈ L(A) iff TA(x) ∈ ∞acc.

For a language L ⊆ Σω, we define the language DBW(L) ⊆ (Σ × A)ω of
words with correct annotations. Thus,

DBW(L) = {x⊕ y : x ∈ L iff y ∈ ∞acc}.

Note that comp(DBW(L)) is the language

NoDBW(L) = {x⊕ y : (x ∈ L and y �∈ ∞acc) or (x �∈ L and y ∈ ∞acc)}.

A DBW-refuter for L is an (A/Σ)-transducer with ι = env realizing NoDBW(L).

Example 2. For every language R ⊆ Σ∗ of finite words, the language Rω ⊆ Σω

consists of infinite concatenations of words in R. It was recently shown that Rω

may not be in DBW [30]. The language used in [30] is R = $+ (0 · {0, 1, $}∗ · 1).
In Figure 2 below we describe a DBW-refuter for Rω.

R:

1 $$ 0
acc,rej acc,rej

rej

acc

acc rej

Figure 2. A DBW-refuter for ($ + (0 · {0, 1, $}∗ · 1))ω.

Following R, Refuter starts by generating a prefix 0 · 1 and then responds
to acc with 1 and responds with $ to rej. Accordingly, if Prover generates a
rejecting run, Prover generates a word in 0 ·1 · (1+$)∗ ·$ω, which is in Rω. Also,
if Prover generates an accepting run, Prover generates a word in 0 · 1 · (1+ · $∗)ω,
which has a single 0 and infinitely many 1’s, and is therefore not in Rω. �

By Proposition 1, we have the following.

Proposition 2. Consider a language L ⊆ Σω. Let A = {acc,rej}. Exactly
one of the following holds:

– L is in DBW, in which case the language DBW(L) is (Σ/A)-realizable by
the system, and a finite-memory winning strategy for the system induces a
DBW for L.

– L is not in DBW, in which case the language NoDBW(L) is (A/Σ)-realizable
by the environment, and a finite-memory winning strategy for the environ-
ment induces a DBW-refuter for L.
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3.1 Complexity

In this section we analyze the size of refuters. We start with the case where the
language L is given by a DPW.

Theorem 1. Consider a DPW A with n states. Let L = L(A). One of the
following holds.

1. There is a DBW for L with n states.
2. There is a DBW-refuter for L with 2n states.

Proof. If L is in DBW, then, as DPWs are Büchi type [19], a DBW for L can be
defined on top of the structure of A, and so it has n states. If L is not in DBW,
then by Proposition 2, there is a DBW-refuter for L, namely a ({acc,rej}/Σ)-
transducer that realizes NoDBW(L). We show we can define a DRW U with 2n
states for NoDBW(L). The result then follows from the fact a realizable DRW
is realized by a transducer of the same size as the DRW [15].

We construct U by taking the union of the acceptance conditions of a DRW
U1 for {x⊕ y : x ∈ L and y �∈ ∞acc} and a DRW U2 for {x⊕ y : x �∈ L and y ∈
∞acc}. We obtain both DRWs by taking the product of A, extended to the
alphabet Σ × {acc,rej}, with a 2-state automaton for ∞acc, again extended
to the alphabet Σ × {acc,rej}.

We describe the construction in detail. Let A = 〈Σ,Q, q0, δ, α〉. Then, the
state space of U1 is Q × {acc,rej} and its transition on a letter 〈σ, a〉 follows
δ when it reads σ, with a determining whether U1 moves to the acc or rej
copy. Let α1 be the Rabin condition equivalent to α. We obtain the acceptance
condition of U1 by replacing each pair 〈G,B〉 in α1 by 〈G× {rej}, B × {rej} ∪
Q × {acc}〉. It is not hard to see that a run of U1 satisfies the latter pair iff
its projection on Q satisfies the pair 〈G,B〉 and its projection on {acc,rej}
has only finitely many acc. The construction of U2 is similar, with α2 being a
Rabin condition that complements α, and then replacing each pair 〈G,B〉 in α2

by 〈G × {acc}, B × {acc,rej})〉. Since U1 and U2 have the same state space,
and we only have to take the union of the pairs in their acceptance conditions,
the 2n bound follows. ��

Now, when L is given by an NBW, an exponential bound follows from the
exponential blow up in determinization [42]. If we are also given an NBW for
comp(L), the complexity can be tightened. Formally, we have the following.

Theorem 2. Given NBWs with n and m states, for L and comp(L), respec-
tively, one of the following holds.

1. There is a DBW for L with min{(1.65n)n, 3m} states.
2. There is a DBW-refuter for L with min{2 · (1.65n)n, 2 · (1.65m)m} states.

Proof. If L is in DBW, then a DBW for L can be defined on top of a DPW for
L, which has at most (1.65n)n states [45], or by dualizing a DCW for comp(L).
Since the translation of an NBW with m states to a DCW, when it exists, results
in a DCW with 3m states [7], we are done. If L is not in DBW, then we proceed
as in the proof of Theorem 1, defining U on the top of a DPW for either L or
comp(L). ��
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3.2 Certifying DBW-Refutation

Consider a DBW-refuter R = 〈{acc,rej}, Σ, env , S, s0, ρ, τ〉. We say that a
path s0, . . . , sm in R is an rej+-path if it contains at least one transition and
all the transitions along it are labeled by rej; thus, for all 0 ≤ j < m, we
have that sj+1 = ρ(sj ,rej). Then, a path s0, . . . , sm in R is an acc-path if it
contains at least one transition and its first transition is labeled by acc. Thus,
s1 = ρ(s0,acc).

Lemma 1. Consider a DBW-refuter R = 〈{acc,rej}, Σ, env , S, s0, ρ, τ〉. Then
there exists a state s ∈ S, a (possibly empty) path p = s0, s1, . . . sm, a rej+-cycle
p1 = s10, s

1
1 . . . s

1
m1

, and an acc-cycle p2 = s20, s
2
1 . . . s

2
m2

, such that sm = s10 =
s1m1

= s20 = s2m2
= s.

Proof. Let si ∈ S be a reachable state that belongs to an ergodic component in
the graph of R (that is, si ∈ C, for a set C of strongly connected states that
can reach only states in C). Since R is responsive, in the sense it can read in
each round both acc and rej, we can read from si the input sequence rejω.
Hence, R has a rej+-path si, . . . , sl, . . . , sk with sl = sk, for l < k. It is easy to
see that the claim holds with s = sl. In particular, since R is responsive and C
is strongly connected, there exists an acc-cycle from sl to itself. ��

Theorem 3. An ω-regular language L is not in DBW iff there exist three finite
words x ∈ Σ∗ and x1, x2 ∈ Σ+, such that x · (x1 + x2)

∗ · xω
1 ⊆ L and x · (x∗

1 ·
x2)

ω ∩ L = ∅.

Proof. Assume first that L is not in DBW. Then, by Theorem 2, there exists
a DBW-refuter R for it. Let p = s0, s1, . . . sm, p1 = s10, s

1
1, . . . , s

1
m1

, and p2 =
s20, s

2
1, . . . , s

2
m2

, be the path, rej+-cycle, and acc-cycle that are guaranteed to
exist by Lemma 1. Let x, x1, and x2 be the outputs that R generates along
them. Formally, x = τ(s1)·τ(s2) · · · τ(sm), x1 = τ(s11)·τ(s12) · · · τ(s1m1

), and x2 =
τ(s21) · τ(s21) · · · τ(s2m2

). Note that as the environment initiates the interaction,
the first letter in the words x, x1, and x2, are the outputs in the second states
in p, p1, and p2. The final step, i.e., that x, x1, and x2 satisfy the two conditions
of the theorem, can be found in the full version of this article [27].

For the other direction, we adjust Landweber’s proof [29] for the non-DBW-
recognizability of ¬∞a to L. Essentially, ¬∞a can be viewed as a special case of
x·(x1+x2)

∗ ·xω
1 , with x = ε, x1 = b, and x2 = a. Assume by way of contradiction

that there is a DBW A with L(A) = L. Let A = 〈Σ,Q, q0, δ, α〉. Consider the
infinite word w0 = x · xω

1 . Since w0 ∈ x · (x1 + x2)
∗ · xω

1 , and so w ∈ L, the run
of A on w0 is accepting. Thus, there is i1 ≥ 0 such that A visits α when it reads
the x1 suffix of x ·xi1

1 . Consider now the infinite word w1 = x ·xi1
1 ·x2 ·xω

1 . Since
w1 is also in L, the run of A on w1 is accepting. Thus, there is i2 ≥ 0 such that
A visits α when it reads the x1 suffix of x · xi1

1 · x2 · xi2
1 . In a similar fashion we

can continue to find indices i1, i2, . . . such for all j ≥ 1, we have that A visits α
when it reads the x1 suffix of x · xi1

1 · x2 · xi2
1 · x2 · · ·x2 · xij

1 . Since Q is finite, we
can construct a word w ∈ x · (x∗

1 · x2)
ω that is accepted, but we assumed that
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x · (x∗
1 · x2)

ω ∩ L = ∅, and thus we have reached a contradiction. The details of
this step are given in [27]. ��

We refer to a triple 〈x, x1, x2〉 of words that satisfy the conditions in Theo-
rem 3 as a certificate to the non-DBW-recognizability of L.

Example 3. In Example 2, we described a DBW-refuter for L = ($+(0·{0, 1, $}∗ ·
1))ω. A certificate to its non-DBW-recognizability is 〈x, x1, x2〉, with x = 01,
x1 = $, and x2 = 1. Indeed, 01 · ($+ 1)∗ · $ω ⊆ L and 01 · ($∗ · 1)ω ∩ L = ∅. �

Note that obtaining certificates according to the proof of Theorem 3 may
not give us the shortest certificate. For example, for L in Example 3, the proof
would give us x = 01$, x1 = $, and x2 = 1$, with 01$ · ($ + 1$)∗ · $ω ⊆ L and
01$ · ($∗ · 1$)ω ∩L = ∅. The problem of generating smallest certificates is related
to the problem of finding smallest witnesses to DBW non-emptiness [22] and is
harder. Formally, defining the length of a certificate 〈x, x1, x2〉 as |x|+ |x1|+ |x2|,
we have the following (see proof in [27]):

Theorem 4. Consider a DPW A and a threshold l ≥ 1. The problem of deciding
whether there is a certificate of length at most l for non-DBW-recognizability of
L(A) is NP-complete, for l given in unary or binary.

Remark 1. [Relation with existing characterizations] By [29], the language
of a DPW A = 〈Σ,Q, q0, δ, α〉 is in DBW iff for every accepting SCS C ⊆ Q and
SCS C ′ ⊇ C, we have that C ′ is accepting. The proof of Landweber relies on a
complicated analysis of the structural properties of A. As we elaborate in the full
version [27], Theorem 3, which relies instead on determinacy of games, suggests
an alternative proof. Similarly, [50] examines the structure of a deterministic
Muller automaton, and Theorem 3 can be viewed as a special case of Lemma 14
there, with a proof based on the game setting.

�

Being an (A/Σ)-transducer, every DBW-refuter R is responsive and may
generate many different words in Σω. Below we show that we can leave R re-
sponsive and yet let it generate only words induced by a certificate. Formally,
we have the following.

Lemma 2. Given a certificate 〈x, x1, x2〉 to non-DBW-recognizability of a lan-
guage L ⊆ Σω, we can define a refuter R for L such that for every y ∈ Aω,
if y |= ∞acc, then R(y) ∈ x · (x∗

1 · x2)
ω, and if y |= ¬∞acc, then R(y) ∈

x · (x1 + x2)
∗ · xω

1 .

Proof. Intuitively, R first ignores the inputs and outputs x. It then repeatedly
outputs either x1 or x2, according to the following policy: in the first iteration,
R outputs x1. If during the output of x1 all inputs are rej, then R outputs x1

also in the next iteration. If an input acc has been detected, thus the prover
tries to accept the constructed word, the refuter outputs x2 in the next iteration,
again keeping track of an acc input. If no acc has been input, R switches back
to outputting x1. The formal definition of R can be found in [27]. ��
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By Theorem 3, every language not in DBW has a certificate 〈x, x1, x2〉. As we
argue below, these certificates are linear in the number of states of the refuters.

Lemma 3. Let R be a DBW-refuter for L ⊆ Σω with n states. Then, L has a
certificate of the form 〈x, x1, x2〉 such that |x|+ |x1|+ |x2| ≤ 2 · n.

Proof. The paths p, p1, and p2 that induce x, x1 and x2 in the proof of Theorem 3
are simple, and so they are all of length at most n. Also, while these paths
may share edges, we can define them so that each edge appears in at most two
paths. Indeed, if an edge appears in all three path, we can shorten p. Hence,
|x|+ |x1|+ |x2| ≤ 2 · n, and we are done. ��

Theorem 5. Consider a language L ⊆ Σω not in DBW. The length of a cer-
tificate for the non-DBW-recognizability of L is linear in a DPW for L and is
exponential in an NBW for L. These bounds are tight.

Proof. The upper bounds follow from Theorem 1 and Lemma 3, and the expo-
nential determinization of NBWs. The lower bound in the NBW case follows
from the exponential lower bound on the size of shortest non-universality wit-
nesses for non-deterministic finite word automata (NFW) [34]. We sketch the
reduction: Let Ln ⊆ {0, 1}∗ be a language such that the shortest witness for
non-universality of Ln is exponential in n, but Ln has a polynomial sized NFW.
We then define L′

n = (Ln · $ · (0∗ · 1)ω) + ((0 + 1)∗ · $ · (0 + 1)∗ · 0ω). It is clear
that L′

n has a NBW polynomial in n and is not DBW-recognizable. Note that
for every word w ∈ Ln, we have w · $ · (0 + 1)ω ⊆ L′

n. Thus, in order to satisfy
Theorem 3, every certificate 〈x, x1, x2〉 needs to have w ·$ as prefix of x, for some
w /∈ Ln. Hence, it is exponential in the size of the NBW. ��

Remark 2. [LTL] When the language L is given by an LTL formula ϕ, then
DBW(ϕ) = ϕ ↔ GFacc and thus an off-the-shelf LTL synthesis tool can
be used to extract a DBW-refuter, if one exists. As for complexity, a doubly-
exponential upper bound on the size of a DPW for NoDBW(L), and then also on
the size of DBW-refuters and certificates, follows from the double-exponential
translation of LTL formulas to DPWs [49,42]. The length of certificates, how-
ever, and then, by Lemma 2, also the size of a minimal refuter, is related to the
diameter of the DPW for NoDBW(L), and we leave its tight bound open. �

4 Separability and Approximations

Consider three languages L1, L2, L ⊆ Σω. We say that L is a separator for
〈L1, L2〉 if L1 ⊆ L and L2 ∩ L = ∅. We say that a pair of languages 〈L1, L2〉 is
DBW-separable iff there exists a language L in DBW such that L is a separator
for 〈L1, L2〉.

Example 4. Let Σ = {a, b}, L1 = (a + b)∗ · bω, and L2 = (a + b)∗ · aω. By [29],
L1 and L2 are not in DBW. They are, however, DBW-separable. A witness for
this is L = (a∗ · b)ω. Indeed, L1 ⊆ L, L∩L2 = ∅, and L is DBW-recognizable. �
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Consider a language L ⊆ Σω, and suppose we know that L is not in DBW. A
user may be willing to approximate L in order to obtain DBW-recognizability.
Specifically, we assume that there is a language I ⊆ Σω of words that the user
is indifferent about. Formally, the user is satisfied with a language in DBW
that agrees with L on all words that are not in I. Formally, we say that a
language L′ approximates L with radius I if L \ I ⊆ L′ ⊆ L ∪ I. It is easy to
see that, equivalently, L′ is a separator for 〈L \ I, comp(L ∪ I)〉. Note that the
above formulation embodies the case where the user has in mind different over-
and under-approximation radiuses, thus separating 〈L \ I↓, comp(L ∪ I↑)〉 for
possibly different I↓ and I↑. Indeed, by defining I = (I↓ ∩ L) ∪ (I↑ \ L), we get
〈L \ I, comp(L ∪ I)〉 = 〈L \ I↓, comp(L) \ I↑)〉.

It follows that by studying DBW-separability, we also study DBW-approx-
imation, namely approximation by a language that is in DBW, possibly with
different over- and under-approximation radiuses.

Remark 3. [From recognizability to separation] It is easy to see that DBW-
separability generalizes DBW-recognizability, as L is in DBW iff 〈L, comp(L)〉
is DBW-separable. Given L ⊆ Σω, we say that a pair of languages 〈L1, L2〉
is a no-DBW-witness for L if L is a separator for 〈L1, L2〉 and 〈L1, L2〉 is not
DBW-separable. Note that the latter indeed implies that L is not in DBW.

A simple no-DBW witness for L can be obtained as follows. Let R be a DBW
refuter for L. Then, we define L1 = {R(y) : y ∈ ¬∞acc} and L2 = {R(y) : y ∈
∞acc}. By the definition of DBW-refuters, we have L1 ⊆ L and L2 ∩ L = ∅,
and so 〈L1, L2〉 is a no-DBW witness for L. It is simple, in the sense that when
we describe L1 and L2 by a tree obtained by pruning the Σ∗-tree, then each
node has at most two children – these that correspond to the responses of R to
acc and rej. �

4.1 Refuting Separability

For a pair of languages 〈L1, L2〉, we define the language SepDBW(L) ⊆ (Σ×A)ω

of words with correct annotations for separation. Thus,

SepDBW(L1, L2) = {x⊕ y : (x ∈ L1 → y ∈ ∞acc) ∧ (x ∈ L2 → y �∈ ∞acc)}.

Note that comp(SepDBW(L1, L2)) is then the language

NoSepDBW(L1, L2) = {x⊕ y : (x ∈ L1 ∧ y �∈ ∞acc) ∨ (x ∈ L2 ∧ y ∈ ∞acc)}.

A DBW-sep-refuter for 〈L1, L2〉 is an (A/Σ)-transducer with ι = env that
realizes NoSepDBW(L1, L2).

Example 5. Consider the language L¬∞a = (a + b)∗ · bω, which is not DBW.
Let I = a∗ · bω + b∗ · aω, thus we are indifferent about words with only one
alternation between a and b. In Figure 3 we describe a DBW-sep refuter for
〈L¬∞a \ I, comp(L¬∞a ∪ I)〉. Note that the refuter generates only words in a ·
b · a · (a+ b)ω, whose intersection with I is empty. Consequently, the refutation
is similar to the DBW-refutation of L¬∞a. �
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T :

a a b a b

acc
rej

acc
rej

acc
rej

rej

acc

acc rej

Figure 3. A DBW-sep refuter for 〈L¬∞a \ I, comp(L¬∞a ∪ I)〉.

By Proposition 1, we have the following extension of Proposition 2.

Proposition 3. Consider two languages L1, L2 ⊆ Σω. Let A = {acc,rej}.
Exactly one of the following holds:

– 〈L1, L2〉 is DBW-separable, in which case the language SepDBW(L1, L2) is
(Σ/A)-realizable by the system, and a finite-memory winning strategy for the
system induces a DBW for a language L that separates L1 and L2.

– 〈L1, L2〉 is not DBW-separable, in which case the language NoSepDBW(L) is
(A/Σ)-realizable by the environment, and a finite-memory winning strategy
for the environment induces a DBW-sep-refuter for 〈L1, L2〉.

As for complexity, the construction of the game for SepDBW(L1, L2) is sim-
ilar to the one described in Theorem 1. Here, however, the input to the problem
includes two DPWs. Also, the positive case, namely the construction of the sep-
arator does not follow from known results.

Theorem 6. Consider DPWs A1 and A2 with n1 and n2 states, respectively.
Let L1 = L(A1) and L2 = L(A2). One of the following holds.

1. There is a DBW A with 2 · n1 · n2 states such that L(A) DBW-separates
〈L1, L2〉.

2. There is a DBW-sep-refuter for 〈L1, L2〉 with 2 · n1 · n2 states.

Proof. We show that SepDBW(L1, L2) and NoSepDBW(L1, L2) can be recog-
nised by DRWs with at most 2 · n1 · n2 states. Then, by [15], we can construct
a DBW or a DBW-sep-refuter with at most 2 · n1 · n2 states. The construction
is similar to the one described in the proof of Theorem 1. The only technical
challenge is the fact SepDBW(L1, L2) is defined as the intersection, rather than
union, of two languages. For this, we observe that we can define SepDBW(L1, L2)
also as {x⊕ y : (y ∈ ∞acc and x /∈ L2) or (y /∈ ∞acc and x /∈ L1)}. With this
formulation we then can reuse the union construction as seen in Theorem 1 to
obtain DRWs with at most 2 · n1 · n2 states. ��

As has been the case with DBW-recognizability, one can generate certificates
from a DBW-sep-refuter. The proof is similar to that of Theorem 3, with mem-
bership in L1 replacing membership in L and membership in L2 replacing being
disjoint from L. Formally, we have the following.

Theorem 7. Two ω-regular languages L1, L2 ⊆ Σω are not DBW-separable iff
there exist three finite words x ∈ Σ∗ and x1, x2 ∈ Σ+, such that x·(x1+x2)

∗·xω
1 ⊆

L1 and x · (x∗
1 · x2)

ω ⊆ L2.
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We refer to a triple 〈x, x1, x2〉 of words that satisfy the conditions in Theorem 7
as a certificate to the non-DBW-separability of 〈L1, L2〉. Observe that the same
way we generated a no-DBW witness in Remark 3, we can extract, given a DBW-
sep-refuter R for 〈L1, L2〉, languages L′

1 ⊆ L1 and L′
2 ⊆ L2 that tighten 〈L1, L2〉

and are still not DBW-separable.

4.2 Certificate-Guided Approximation

In this section we describe a method for finding small approximating languages
I↓ and I↑ such that 〈L \ I↓, comp(L) \ I↑〉 is DBW-separable. If this method
terminates we obtain an approximation for L that is DBW-recognizable. As in
counterexample guided abstraction-refinement (CEGAR) for model checking [10],
we use certificates for non-DBW-separability in order to suggest interesting ap-
proximating languages. Intuitively, while in CEGAR the refined system excludes
the counterexample, here the approximation of L excludes the certificate.

Consider a certificate 〈x, x1, x2〉 for the non-DBW-separability of 〈L1, L2〉.
We suggest the following five approximations:

C0 = x · (x1 + x2)
ω � 〈L1 \ C0, L2 \ C0〉

C1 = x · (x1 + x2)
∗ · xω

1 = L1 ∩ C0 � 〈L1 \ C1, L2〉
C2 = x · (x∗

2 · x1)
ω ⊃ C1 � 〈L1, L2 \ C2〉

C3 = x · (x∗
1 · x2)

ω = L2 ∩ C0 � 〈L1, L2 \ C3〉
C4 = x · (x1 + x2)

∗ · xω
2 ⊂ C3 � 〈L1, L2 \ C4〉

First, it is easy to verify that 〈x, x1, x2〉 is indeed not a certificate for the non-
DBW-separability of the obtained candidate pairs 〈L′

1, L
′
2〉. If 〈L′

1, L
′
2〉 is DBW-

separable, we are done (yet may try to tighten the approximation). Otherwise,
we can repeat the process with a certificate for the non-DBW-separability of
〈L′

1, L
′
2〉. As in CEGAR, some suggestions may be more interesting than others,

in some cases the process terminates, in some it does not, and the user takes
part directing the search.

Example 6. Consider again the language L = (a + b)∗ · bω and the certificate
〈x, x1, x2〉 = 〈ε, b, a〉. Trying to approximate L by a language in DBW, we start
with the pair 〈L, comp(L)〉. Our five suggestions are then as follows.

C0 = Σω � 〈L \ C0, comp(L) \ C0〉 = 〈∅, ∅〉
C1 = (b+ a)∗ · bω � 〈L \ C1, comp(L)〉 = 〈∅, comp(L)〉
C2 = (a∗ · b)ω � 〈L, comp(L) \ C2〉 = 〈L, (a+ b)∗ · aω〉
C3 = (b∗ · a)ω � 〈L, comp(L) \ C3〉 = 〈L, ∅〉
C4 = (b+ a)∗ · aω � 〈L, comp(L) \ C4〉 = 〈L, (a+ b)∗ · (a · a∗ · b · b∗)ω〉

Candidates C0, C1, and C3 induce trivial approximations. Then, C2 suggests
to over-approximate L by setting I↑ to (a∗ · b)ω, which we view as a nice solu-
tion, approximating “eventually always b” by “infinitely often b”. Then, the pair
derived from C4 is not DBW-separable. We can try to approximate it. Note,
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however, that repeated approximations in the spirit of C4 are going to only ex-
tend the prefix of x in the certificates, and the process does not terminate. In
the full version of this article [27], we describe the process for the certificate
〈x, x1, x2〉 = 〈a, b, a〉, which again might not terminate. �

5 Other Classes of Deterministic Automata

In this section we generalise the idea of DBW-refuters to other classes of de-
terministic automata. For this we take again the view that a deterministic au-
tomaton is a 〈Σ,A〉-transducer over a suitable annotation alphabet A. We then
characterize each class of deterministic automata by two languages over A:

– The language Lacc ⊆ Aω, describing when a run is accepting. For example,
for DBWs, we have A = {acc,rej} and Lacc =∞acc.

– The language Lstruct ⊆ Aω, describing structural conditions on the run. For
example, recall that a DWW is a DBW in which the states of each SCS are
either all accepting or all rejecting, and so each run eventually get trapped in
an accepting or rejecting SCS. Accordingly, the language of runs that satisfy
the structural condition is Lstruct = A∗ · (accω + rejω).

We now formalize this intuition. Let A be a finite set of annotations and
let γ = 〈Lacc, Lstruct〉, for Lacc, Lstruct ⊆ Aω. A deterministic automaton A =
〈Σ,Q, q0, δ, α〉 is a deterministic γ automaton (DγW, for short) if there is a
function τ : Q → A that maps each state to an annotation such that a run r of
A satisfies α iff τ(r) ∈ Lacc, and all runs r satisfy the structural condition, thus
τ(r) ∈ Lstruct. We then say that a language L is γ-recognizable if there a DγW
A such that L = L(A).

Before we continue to study γ-recognizability, let us demonstrate the γ-
characterization of common deterministic automata. We first start with classes
γ for which Lstruct is trivial; i.e., Lstruct = Aω.

– DBW: A = {acc,rej} and Lacc =∞acc.
– DCW: A = {acc,rej} and Lacc = ¬∞acc.
– DPW[i, k]: A = {i, . . . , k} and Lacc = {y ∈ Aω : max(inf (y)) is odd}.
– DELW[θ]: A = 2M and Lacc = {y ∈ Aω : y |= θ}.

Note that the characterizations for Büchi, co-Büchi, and parity are special cases
of the characterization for DELW. In a similar way, we could define a language
Lacc for DRW[k] and other common special cases of DELWs. We continue to
classes in the depth hierarchy, where γ includes also a structural restriction:

– DWW: The set A and the language Lacc are as for DBW or DCW. In addi-
tion, Lstruct = A∗ · (accω + rejω).

– DWW[j, k], for j ∈ {0, 1}: The set A and the language Lacc are as for
DPW[j, k]. In addition, Lstruct = {y0 · y1 · · · ∈ Aω : for all i ≥ 0, we have
that yi ≤ yi+1}.
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– Bounded Languages: A language L is bounded if it is both safety and co-
safety. Thus, every word w ∈ Σω has a prefix v ∈ Σ∗ such that either for all
u ∈ Σω we have v ·u ∈ L, or for all u ∈ Σω we have v ·u �∈ L [23]. To capture
this, we use A = {acc,rej, ?}, where “?” is used for annotating states with
both accepting and rejecting continuations. Then, Lacc = A∗ · accω, and
Lstruct =?∗ · (accω + rejω).

– Deterministic (m,n)-Superparity Automata [39]: A = {(i, j) : 0 ≤ i ≤ m, 0 ≤
j ≤ n}, Lacc = {ym ⊕ yn ∈ Aω : max(inf (ym)) + max(yn) is odd}, and
Lstruct = {ym ⊕ (y0 · y1 · · · ) ∈ Aω : yi ≤ yi+1, for all i ≥ 0}.

Let Σ be an alphabet, let A be an annotation alphabet, and let γ = 〈Lacc,
Lstruct〉, for Lacc, Lstruct ⊆ Aω. We define the language Real(L, γ) ⊆ (Σ × A)ω

of words with correct annotations.

Real(L, γ) = {x⊕ y : y ∈ Lstruct and (x ∈ L iff y ∈ Lacc)}.

Note that the language DBW(L) can be viewed as a special case of our general
framework. In particular, in cases Lstruct = Aω, we can remove the y ∈ Lstruct

conjunct from Real(L, γ). Note that comp(Real(L, γ)) is the language

NoReal(L, γ) = {x⊕ y : y �∈ Lstruct or (x ∈ L iff y �∈ Lacc)}.

A γ-refuter for L is then an (A/Σ)-transducer with ι = env that realizes
NoReal(L, γ). We can now state the “DγW-generalization” of Proposition 2.

Proposition 4. Consider an ω-regular language L ⊆ Σω, and a pair γ =
〈Lacc, Lstruct〉, for ω-regular languages Lacc, Lstruct ⊆ Aω. Exactly one of the
following holds:

1. L is in DγW, in which case the language Real(L, γ) is (Σ/A)-realizable by
the system, and a finite-memory winning strategy for the system induces a
DγW for L.

2. L is not in DγW, in which case the language NoReal(L, γ) is (A/Σ)-re-
alizable by the environment, and a finite-memory winning strategy for the
environment induces a γ-refuter for L.

Note that every DELW can be complemented by dualization, thus by chang-
ing its acceptance condition from θ to ¬θ. In particular, DBW and DCW dualize
each other. As we argue below, dualization is carried over to refutation. For ex-
ample, the ({acc,rej}/Σ)-transducer R from Figure 1 is both a DBW-refuter
for ¬∞a and a DCW-refuter for ∞a. Formally, we have the following.

Theorem 8. Consider an EL-condition θ over M. Let A = 2M. For every
(A/Σ)-transducer R and language L, we have that R is a DELW[θ]-refuter for
L iff R is a DELW[¬θ]-refuter for comp(L). In particular, for every language L
and ({acc,rej}/Σ)-transducer R, we have that R is a DBW-refuter for L iff
R is a DCW-refuter for comp(L).
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Proof. For DELW[θ]-recognizability of L, the language of correct annotations is
{x⊕ y : (x ∈ L iff y |= θ)}, which is equal to {x⊕ y : (x ∈ comp(L) iff y |= ¬θ)},
which is the language of correct annotations for DELW[¬θ]-recognizability of
comp(L). ��

While dualization is nicely carried over to refutation, this is not the case
for all expressiveness results. For example, while DWW=DBW∩DCW, and in
fact DBW and DCW are weak type (that is, when the language of a DBW
is in DWW, an equivalent DWW can be defined on top of its structure, and
similarly for DCW [21]), we describe in [27] a DWW-refuter that is neither a
DBW- nor a DCW-refuter. Intuitively, this is possible as in DWW refutation,
Prover loses when the input is not in A∗ · (accω + rejω), whereas in DBW and
DCW refutation, Refuter has to respond correctly also for these inputs.

On the other hand, as every DWW is also a DBW and a DCW, every DBW-
refuter or DCW-refuter is also a DWW-refuter.

It is easy to see that our results about DγW-recognizability can be extended
to separability and approximation in the same way DBW-recognizability has
been extended in Section 4. We describe the details in the full version [27], as
well as word-certificates for the non-DγW-recognizability and -separability of
several well-known types of γ.

6 Discussion and Directions for Future Research

The automation of decision procedures makes certification essential. We suggest
to use the winning strategy of the refuter in expressiveness games as a certificate
to inexpressibility. We show that beyond this state-based certificate, the strategy
induces a word-based certificate, generated from words traversed along a “flower
structure” the strategy contains, as well as a language-based certificate, consisting
of languages that under- and over-approximate the language in question and that
are not separable by automata in the desired class.

While our work considers expressive power, one can use similar ideas in order
to question the size of automata needed to recognize a given language. For
example, in the case of a regular language L of finite words, the Myhill-Nerode
characterization [37,38] suggests to refute the existence of deterministic finite
word automata (DFW) with n states for L by providing n + 1 prefixes that
are not right-congruent. Using our approach, one can alternatively consider the
winning strategy of Refuter in a game in which the set of annotations includes
also the state space, and Lstruct ensures consistency of the transition relation.
Even more interesting is refutation of size in the setting of automata on infinite
words. Indeed, there, minimization is NP-complete [46], and there are interesting
connections between polynomial certificates and possible membership in co-NP,
as well as connections between size of certificates and succinctness of the different
classes of automata.

Finally, while the approximation scheme we studied is based on suggested
over- and under-approximating languages, it is interesting to study approxima-
tions that are based on more flexible distance measures [13,18].
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Abstract. Dependent refinement types are types equipped with predi-
cates that specify preconditions and postconditions of underlying func-
tional languages. We propose a general semantic construction of depen-
dent refinement type systems from underlying type systems and pred-
icate logic, that is, a construction of liftings of closed comprehension
categories from given (underlying) closed comprehension categories and
posetal fibrations for predicate logic. We give sufficient conditions to lift
structures such as dependent products, dependent sums, computational
effects, and recursion from the underlying type systems to dependent
refinement type systems. We demonstrate the usage of our construction
by giving semantics to a dependent refinement type system and proving
soundness.

1 Introduction

Dependent refinement types [6] are types equipped with predicates that restrict
values in the types. They are used to specify preconditions and postconditions
which may depend on input values and to verify that programs satisfy the speci-
fications. Many dependent refinement types systems are proposed [5,6,13,14,25]
and implemented in, e.g., F
 [23, 24] and LiquidHaskell [19, 26,27].

In this paper, we address the question: “How are dependent refinement type
systems, underlying type systems, and predicate logic related from the viewpoint
of categorical semantics?” Although most existing dependent refinement type
systems are proved to be sound using operational semantics, we believe that
categorical semantics is more suitable for the general understanding of their
nature, especially when we consider general computational effects and various
kinds of predicate logic (e.g., for relational verification). This understanding will
provide guidelines to design new dependent refinement type systems.

Our answer to the question is a general semantic construction of dependent
refinement type systems from underlying type systems and predicate logic. More
concretely, given a closed comprehension category (CCompC for short) for inter-
preting an underlying type system and a fibration for predicate logic, we combine
them to obtain another CCompC that can interpret a dependent refinement type
system built from the underlying type system and the predicate logic.
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For example, consider giving an interpretation to the term “x : {int | x ≥
0} � x + 1 : {v : int | v = x + 1}” in a dependent refinement type system. Its
underlying term is “x : int � x + 1 : int,” and we assume that it is interpreted
as the successor function of Z in Set. The problem here is how to refine this
interpretation with predicates. In dependent refinement types, predicates may
depend on the variables in contexts. In this example, the type “x : {int | x ≥
0} � {v : int | v = x + 1}” depends on the variable x. Thus, the interpretation
of such types must be a predicate on the context and the type, i.e.,

�x : {int | x ≥ 0} � {v : int | v = x+ 1}� = {(x, v) ∈ Z× Z | x ≥ 0 ∧ v = x+ 1}.

As a result, the term in the dependent refinement type system is interpreted as
the interpretation in the underlying type system together with the property that
if the input satisfies preconditions, then the output satisfies postconditions.

{x ∈ Z | x ≥ 0} {(x, v) ∈ Z× Z | x ≥ 0 ∧ v = x+ 1}

Z Z× Z

⊆ ⊆

〈idZ,(−)+1〉
(1)

{E | P} E

P B
p

q

Fig. 1. Lifting.

We formalize this refinement process as a construction of
liftings of CCompCs, which are used to interpret dependent
type theories. Assume that we have a pair of a CCompC
p : E → B for interpreting underlying type systems and a
fibration q : P → B for predicate logic satisfying certain con-
ditions. Then we construct a CCompC {E | P} → P for interpreting dependent
refinement type systems. This construction also yields a morphism of CCompCs
from {E | P} → P to p : E→ B in Fig. 1. Given the simple fibration s(Set)→ Set
for underlying type systems and the subobject fibration Sub(Set) → Set for
predicate logic, then we get interpretations like (1).

We extend the construction of liftings of CCompCs to liftings of fibred mon-
ads [1] on CCompCs, which is motivated by the fact that many dependent refine-
ment type systems have computational effects, e.g., exception (like division and
assertion), divergence, nondeterminism [25], and probability [5]. Assume that we
have a fibred monad T̂ on p : E→ B, a monad T on B, and a lifting Ṫ of T along
q : P→ B. Under a certain condition that roughly claims that T̂ and T represent
the same computational effects, we construct a fibred monad on {E | P} → P,
which is a lifting of T̂ in the same spirit of the given lifting Ṫ . This situation is
rather realistic because the fibred monad T̂ on the CCompC p : E→ B is often
induced from the monad T on the base category B. The lifting Ṫ of the monad
T along p : P → B specifies how to map predicates P ∈ PX on values X ∈ B
to predicates ṪP ∈ PTX on computations TX, which enables us to express, for
example, total/partial correctness and may/must nondeterminism [1].

We explain the usage of these categorical constructions by giving semantics
to a dependent refinement type system with computational effects, which is
based on [4]. Our system also supports subtyping relations induced by logical
implication. We prove soundness of the dependent refinement type system.
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Finally, we discuss how to handle recursion in dependent refinement type
systems. In [4], Ahman gives semantics to recursion in a specific model, i.e., the
fibration of continuous families of ω-cpos CFam(CPO) → CPO. We consider
more general characterization of recursion by adapting Conway operators for
CCompCs, which enables us to lift the structure for recursion. We show that
a rule for partial correctness in our dependent refinement type system is sound
under the existence of a generalized Conway operator.

Our contributions are summarized as follows.

– We provide a general construction of liftings of CCompCs from given CCom-
pCs and posetal fibrations satisfying certain conditions, as a semantic coun-
terpart of construction of dependent refinement type systems from under-
lying type systems and predicate logic. We extend this to liftings of fibred
monads on the underlying CCompCs to model computational effects.

– We consider a type system (based on EMLTT [2–4]) that includes most of
basic features of dependent refinement type systems and prove its soundness
in the liftings of CCompCs obtained from the above construction.

– We define Conway operators for dependent type systems. This generalizes
the treatment of general recursion in [4]. We prove soundness of the typing
rule for partial correctness of recursion under the existence of a lifting of
Conway operators.

2 Preliminaries

We review basic definitions and fix notations for comprehension categories, which
are used as categorical models for dependent type theories. We assume basic
knowledge of fibrations (see e.g. [10]).

Let p : E→ B be a fibration (opfibration). We denote the cartesian (cocarte-
sian) lifting over u : I → J by u(Y ) : u∗Y → Y (u(X) : X → u!X) where
u∗ : EJ → EI (u! : EI → EJ) is the reindexing (coreindexing) functor. We call
p : E→ B a posetal fibration if p is a fibration such that each fibre category is a
poset. Note that the fibration p : E→ B is split and faithful if p is posetal.

A comprehension category is a functor P : E→ B→ such that the composite
cod ◦ P : E→ B is a fibration and P maps cartesian morphisms to pullbacks in
B. A comprehension category P is full if P is fully faithful.

A comprehension category with unit is a fibration p : E → B that has a
fibred terminal object 1 : B → E and a comprehension functor {−} : E → B
which is a right adjoint of the fibred terminal object functor 1 - {−}. Projection
πX : {X} → pX is defined by πX = pε

1�{−}
X for each X ∈ E. Intuitively, E

represents a collection of types Γ � A in dependent type theories; B represents
a collection of contexts Γ ; p : E→ B is the mapping (Γ � A) → Γ ; 1 : B→ E is
the unit type Γ → (Γ � 1); and {−} is the mapping (Γ � A) → Γ, x : A where
x is a fresh variable.

The comprehension category with unit p : E→ B induces several structures.
It induces a comprehension category P defined by PX = πX . The adjunction
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1 - {−} defines the bijection s : EI(1I,X) ∼= {f : I → {X} | πX ◦ f = idI}
between vertical morphisms in E and sections in B. For each X,Y ∈ EI , we have
an isomorphism φ : E{X}(1{X}, π∗

XY ) ∼= EI(X,Y ). Consider the pullback square
P(πX(Y )) where X,Y ∈ EI . By the universal property of pullbacks, we have the
symmetry isomorphism σX,Y : {π∗

XY } → {π∗
Y X} as a unique morphism σX,Y

such that ππ∗
XY = {πY (X)} ◦ σX,Y and {πX(Y )} = ππ∗

Y X ◦ σX,Y . Similarly, we
have the diagonal morphism δX : {X} → {π∗

XX} as a unique morphism δX such
that ππ∗

XX ◦ δX = {πX(X)} ◦ δX = id{X}.

Let p : E → B be a comprehension category with unit and q : D → B be
a fibration. The fibration q has p-products if π∗

X : DpX → D{X} has a right
adjoint π∗

X -
∏

X for each X ∈ E and these adjunctions satisfy the BC (Beck-
Chevalley) condition for each pullback square Pf where P is a comprehension
category induced by p and f is a cartesian morphism in E. Similarly, we define
p-coproducts by

∐
X - π∗

X and p-equality by EqX - δ∗X plus the BC condition
for each cartesian morphism (see [10, Definition 9.3.5] for detail).

A comprehension category with unit p : E→ B admits products (coproducts)
if it has p-products (p-coproducts). The coproducts are strong if the canonical
morphism κ : {Y } → {

∐
X Y } defined by {πX(

∐
X Y ) ◦ ηπ

∗
X�

∐
X} is an iso-

morphism for each X ∈ E and Y ∈ E{X}. A closed comprehension category
(CCompC) is a full comprehension category with unit that admits products and
strong coproducts and has a terminal object in the base category. A split closed
comprehension category (SCCompC) is a CCompC such that p is a split fibration,
and the BC condition for products and coproducts holds strictly (i.e., canonical
isomorphisms are identities). For example, the simple fibration sB : s(B)→ B on
a cartesian closed category B is a SCCompC (see [10, Theorem 10.5.5]). Another
example of SCCompCs is the family fibration famSet : Fam(Set)→ Set.

Fibred coproducts in a comprehension category with unit p : E → B are
strong if the functor 〈{ι1}∗, {ι2}∗〉 : E{X+Y } → E{X} × E{Y } is fully faithful
where ι1 : X → X + Y and ι2 : Y → X + Y are injections for fibred coproducts.
Strong fibred coproducts are used to interpret fibred coproduct types A+B.

3 Lifting SCCompCs and Fibred Coproducts

In this section, we give a construction of liftings of SCCompCs with strong fibred
coproducts from given SCCompCs with strong fibred coproducts for underlying
types and posetal fibrations for predicate logic satisfying appropriate conditions.

3.1 Lifting SCCompCs

Let p : E → B be a SCCompC for underlying type systems. Let q : P → B be a
posetal fibration with fibred finite products for predicate logic.

Definition 1. We define a category {E | P} by the pullback of q→ : P→ → B→

along P : E→ B→ where the comprehension category P is induced by p : E→ B.
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{E | P} P→

E B→

(q→)∗P

P∗(q→) � q→

P

That is, objects are tuples (X,P,Q) where X ∈ E, P ∈ PpX , Q ∈ P{X}, and
Q ≤ π∗

XP ; and morphisms are tuples (f, g, h) : (X,P,Q) → (X ′, P ′, Q′) where
f : X → X ′, g : P → P ′, h : Q → Q′, pf = qg, and {f} = qh.

The intuition of this definition is as follows. For each object (X,P,Q) ∈ {E | P},
X represents a type Γ � A in the underlying type system, P represents a
predicate on the context Γ , and Q represents the conjunction of a predicate
on Γ, v : A and the predicate P (thus Q ≤ π∗

XP is imposed). Note that
P∗(q→) : {E | P} → E is faithful because q is faithful.

Let {p | q} : {E | P} → P be a functor defined by cod ◦ (q→)∗P, that is,
(X,P,Q) → P . The functor {p | q} inherits most of the CCompC structure of
p : E→ B.

Lemma 2. The functor {p | q} : {E | P} → P is a split fibration. The cartesian
lifting of g : P ′ → P is given by

(qg(X), g, {qg(X)}(Q) ◦ π′) : ((qg)∗X,P ′, π∗
(qg)∗XP ′ ∧ {qg(X)}∗Q)→ (X,P,Q)

where π′ is a projection for fibred products. ��

Lemma 3. The fibration {p | q} : {E | P} → P is a full comprehension category
with unit that admits strong coproducts.

Proof. The main idea is that the structure in the CCompC p : E → B can be
lifted to {E | P} → P. Here, we only show the definition of (object parts of) fibred
terminal objects 1 : P→ {E | P}, the comprehension functor {−} : {E | P} → P,
and coproducts

∐
(X,P,Q) : {E | P}Q → {E | P}P for each (X,P,Q) ∈ {E | P}.

1P = (1qP, P, π∗
1qPP ) {(X,P,Q)} = Q

∐
(X,P,Q)

(Y,Q,R) = (
∐
X

Y, P, (κ−1)∗R)

The rest of the proof is omitted. ��

The existence of products in {p | q} requires additional conditions.

Lemma 4. If q : P → B has fibred exponentials and p-products (in addition to
fibred finite products), then {p | q} : {E | P} → P admits products.

Proof. We define
∏

(X,P,Q) : {E | P}Q → {E | P}P by

∏
(X,P,Q)

(Y,Q,R) = (
∏
X

Y, P, π∗∏
X Y P ∧

∏
π∗∏

X Y
X

σ∗∏
X Y,X(π∗

π∗
X

∏
X Y Q ⇒ {επ∗

X�∏
X

Y }∗R)).

Q ∈ P{X}
P{π∗

X

∏
X Y } P{π∗∏

X Y
X} P{

∏
X Y }

R ∈ P{Y }

π∗
π∗
X

∏
X Y

σ∗∏
X Y,X

∏
π∗∏

X Y
X

π∗
π∗∏

X Y
X

-

{επ
∗
X�

∏
X

Y }∗
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Then, this gives products in {p | q} but we omit the lengthy proof. ��

As a result, we get a lifting of SCCompCs over p : E→ B.

{E | P} E

P B

{p|q}

P∗(q→)

p

q

Theorem 5. If p : E→ B is a SCCompC and q : P→ B
is a fibred ccc that has p-products, then {p | q} : {E | P} →
P is a SCCompC. Moreover, (P∗(q→), q) : {p | q} → p is
a morphism of SCCompCs, i.e., a split fibred functor that
preserves the CCompC structure strictly.

Proof. By Lemma 3 and Lemma 4. A terminal object in P exists because B has
a terminal object and q : P→ B has fibred terminal objects. It is almost obvious
that (P∗(q→), q) preserves the structure of CCompCs. ��

Example 6. Consider the simple fibration sSet : s(Set) → Set and the sub-
object fibration subSet : Sub(Set) → Set (see [10, §1.3]). Objects in {s(Set) |
Sub(Set)} are tuples ((I,X), P,Q) where (I,X) ∈ s(Set), P ⊆ I, and Q ⊆
P ×X ⊆ I ×X, and morphisms are those in s(Set) that preserve predicates. In
{sSet | subSet} : {s(Set) | Sub(Set)} → Sub(Set), products are given by∏

((I,X),P,Q)

((I ×X,Y ), Q,R) =
(
(I,X ⇒ Y ), P, {(i, f) ∈ I × (X ⇒ Y ) |

i ∈ P ∧ ∀x ∈ X, (i, x) ∈ Q =⇒ ((i, x), f(x)) ∈ R}
)
. (2)

Example 7. Let erel : ERel → Set be the fibration of endorelations defined
by change-of-base from Sub(Set) → Set along the functor X → X × X. The
fibration erel is a fibred ccc and has products (i.e. right adjoints of reindexing
functors that satisfy the BC condition for each pullback square). Therefore,
erel has p-products for any comprehension category with unit p. If we apply
Theorem 5 to erel and the simple fibration sSet : s(Set) → Set, then products
are defined similarly to Example 6.

Example 8. Consider the family fibration famSet : Fam(Set) → Set [10,
Def 1.2.1] and the subobject fibration subSet : Sub(Set) → Set. Objects in
{Fam(Set) | Sub(Set)} are tuples ((I,X), P,Q) where (I,X) ∈ Fam(Set),
P ⊆ I, and Q ⊆

∐
i∈P Xi ⊆

∐
i∈I Xi. Note that subsets Q ⊆

∐
i∈I Xi have

a one-to-one correspondence with families of subsets (Qi ⊆ Xi)i∈I when we
define Qi = ι∗i (Q) where ιi : Xi →

∐
i∈I Xi is the i-th injection. So, we

often identify Q with the family of subsets Qi ⊆ Xi. We get products in
{famSet | subSet} : {Fam(Set) | Sub(Set)} → Sub(Set) by modifying (2) for
dependent functions.

3.2 Lifting Fibred Coproducts

A sufficient condition for {p | q} : {E | P} → P to have strong fibred coproducts
is given by the following lemma, which is analogous to [9, Prop. 4.5.8].

Lemma 9. If (1) p : E → B is a CCompC that has strong fibred coproducts
(2) for each X,Y ∈ EI , X ′, Y ′ ∈ EI′ , u : I → I ′, and pair of cartesian liftings
f : X → X ′ and g : Y → Y ′ over u, the following two squares are pullbacks
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{X} {X + Y } {Y }

{X ′} {X ′ + Y ′} {Y ′}

�
{ι1}

{f} {f+g}

{ι2}

{g}
�

{ι1} {ι2}

(3) q : P → B is a fibred distributive category (4) for each X,Y ∈ EI and
Z ∈ E{X+Y }, q has cocartesian liftings of {ι1} : {X} → {X + Y }, {ι2} : {Y } →
{X + Y }, {{ι1}(Z)} : {{ι1}∗Z} → {Z}, and {{ι2}(Z)} : {{ι2}∗Z} → {Z} that
satisfy the BC condition for each pullback squares and Frobenius, then {p | q} :
{E | P} → P has strong fibred coproducts, and the fibred functor (P∗(q→), q) :
{p | q} → p strictly preserves fibred coproducts.

Proof. We define fibred coproducts by (X,P,Q)+(Y, P,R) = (X+Y, P, {ι1}!Q∨
{ι2}!R). We omit the rest of the proof. ��

Note that if q is fibred bicartesian closed, then q is a fibred distributive category.

Example 10. Consider sSet : s(Set)→ Set and subSet : Sub(Set)→ Set (re-
call Example 6). This combination satisfies four conditions in Lemma 9. Fibred
coproducts in {s(Set) | Sub(Set)} → Sub(Set) are defined as follows.

((I,X), P,Q) + ((I, Y ), P,R) = ((I,X + Y ), P, {(i, x) | (i, x) ∈ Q ∨ (i, x) ∈ R})

4 Lifting Monads on SCCompCs

Suppose we have a SCCompC p : E → B and a posetal fibration q : P → B as
ingredients for {p | q} : {E | P} → P in Theorem 5. We explain how to construct
a fibred monad on {p | q} : {E | P} → P from monads on p and q.

First, we assume that a monad T on B and a fibred monad T̂ on p : E→ B are
given. These monads are intended to represent the same computational effects
in underlying type systems, but T is more “primitive” than T̂ , and T̂ is induced
from T in some natural way. For example, we can use the maybe monad or the
powerset monad on Set as T and define T̂ by (I,X) → (I, TX) on the simple
fibration s(Set) → Set. In such a situation, we often have an oplax monad
morphism (Definition 11) θ : {T̂ (−)} → T{−}. Intuitively, θ extends the action
of T̂ on types to contexts, just like strengths of strong monads. We also need a
lifting Ṫ of T along q : P→ B to specify a mapping from predicates on values in
X ∈ B to predicates on computations in TX [1]. Given all these ingredients and
some additional conditions, we define a fibred monad on {p | q} : {E | P} → P,
which is a lifting of the fibred monad T̂ on p : E→ B.

Definition 11 (oplax monad morphism). Let C,D be categories, F : C→ D
be a functor, and (S, ηS , μS), (T, ηT , μT ) be monads on C and D, respectively. A
natural transformation θ : FS → TF is an oplax monad morphism if θ respects
units and multiplications.

FX

FSX TFX

FηS
X

ηT
FX

θX

FS2X TFSX T 2FX

FSX TFX

θSX

FμS
X

TθX

μT
FX

θX
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Theorem 12. Let T be a monad on B, T̂ be a fibred monad on p : E → B in
the 2-category FibB of fibrations over B, θ : {T̂ (−)} → T{−} be an oplax monad
morphism, and Ṫ be a fibred lifting [1] of T along q : P→ B. If

π∗
T̂X

P ∧ θ∗X ṪQ ≤ θ∗X Ṫ (π∗
XP ∧Q) (3)

holds for each X ∈ E, P ∈ PpX and Q ∈ P{X}, then there exists a fibred monad
S on {p | q} : {E | P} → P in FibP such that the fibred functor {p | q} → p in
Theorem 5 is a fibred monad morphism from S to T̂ .

Proof. We define S(X,P,Q) = (T̂X, P, π∗
T̂X

P ∧ θ∗ṪQ). Then the monad struc-

ture of T̂ lifts to S. The assumption (3) is required to prove that S is fibred.

P θ∗ṪQ ṪQ

B {T̂X} T{X}
q

θ(ṪQ)

θ ��

Example 13. Any strong monad T on a CCC B gives rise to a split fibred
monad T̂ on the simple fibration sB : s(B) → B (actually, there is a one-to-one
correspondence [10, Ex.2.6.10]). The monad T̂ is defined by (I,X) → (I, TX).
An oplax monad morphism θ : I × TX → T (I ×X) is given by the strength.

Now consider the case where B = Set. Since the strength for the monad T
on Set is given uniquely [17, Proposition 3.4], we can prove that (3) holds for
any fibred lifting of T along the subobject fibration subSet : Sub(Set)→ Set.

Let T be the maybe monad (−) + {∗}. There are two fibred liftings of T :

Ṫ1(P ⊆ I) = (P + {∗} ⊆ I + {∗}) Ṫ2(P ⊆ I) = (P ⊆ I + {∗})

for each (P ⊆ I) ∈ Sub(Set). The lifting Ṫ1 corresponds to partial correctness,
and Ṫ2 corresponds to total correctness. The fibred monads on {sSet | subSet}
defined in Theorem 12 from Ṫ1 and Ṫ2 are given by

((I,X), P,Q) →
(
(I,X + {∗}), P, {(i, x) | (i ∈ P ∧ x = ∗) ∨ (i, x) ∈ Q}

)
((I,X), P,Q) →

(
(I,X + {∗}), P, {(i, x) | (i, x) ∈ Q}

)
respectively. Here, we leave the left/right injection of coproducts implicit.

Example 14. For each monad T on Set, we have a split fibred monad on
the family fibration Fam(Set) → Set defined by T̂ (I,X) = (I, T ◦ X). We
have an oplax monad morphism θ :

∐
i∈I TXi → T

∐
i∈I Xi defined by the

cotupling [(Tιi)i∈I ] :
∐

i∈I TXi → T
∐

i∈I Xi where ιi : Xi →
∐

i∈I Xi is
the i-th injection. The condition (3) holds for any fibred lifting of T along the
subobject fibration Sub(Set) → Set. Moreover, we have ι∗i θ

∗ṪQ = Ṫ ι∗iQ for
each Q ∈ Sub(Set)∐

i∈I Xi, so the monad in Theorem 12 is given by(
(I,X), P, (Qi ⊆ Xi)i∈I

)
→

(
(I, T ◦ X), P, (ṪQi ⊆ TXi)i∈I

)
.
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5 Soundness

We consider a concrete dependent refinement type system with computational
effects and define sound semantics to show that the SCCompC defined in The-
orem 5 has sufficient structures for dependent refinement types. Here, we con-
sider two type systems. One is an underlying type system that is a fragment
of EMLTT [2–4]. The other is a refinement of the underlying type system that
has refinement types {v : A | p} and a subtyping relation Γ � A <: B induced
by logical implication. The two type systems share a common syntax for terms
while types are more expressive in the refinement type system. We consider lift-
ings of fibred adjunction models to interpret the refinement type system. Here,
Theorem 12 can be used to obtain a lifting of fibred adjunction models via
Eilenberg-Moore construction. We prove a soundness theorem that claims if a
term is well-typed in the refinement type system, then the interpretation of the
term has a lifting along the morphism of CCompCs defined in Theorem 5.

5.1 Underlying Type System

We define the underlying dependent type system by a slightly modified version
of a fragment of EMLTT [2–4]. We remove some of the types and terms from
the original for simplicity. We parameterize our type system with a set of base
type constructors (ranged over by b) and a set of value constants (ranged over
by c) for convenience.

We define value types (A,B, . . . ), computation types (C,D, . . . ), contexts
(Γ, . . . ), value terms (V,W, . . . ), and computation terms (M,N, . . . ) as follows.

A := 1 | bA(V ) | Σx:A.B | UC | A+B

C := FA | Πx:A.C Γ := 2 | Γ, x : A

V := x | ∗ | cA | 〈V,W 〉(x:A).B | thunk M | inlA+B V | inrA+B V

M := return V | M to x : A inC N | forceC V | λx : A.M | M(V )(x:A).C |
pm V as 〈x : A, y : B〉 inz.C M |
case V ofz.C (inl (x : A) → M, inr (y : B) → N)

We implicitly assume that variables in Γ are mutually different. We use many
type annotations in the syntax of terms for a technical reason, but we might
omit them if they are clear from the context. We define substitution A[V/x],
C[V/x], W [V/x], and M [V/x] as usual.

For each type constructor b, let arg(b) be a closed value type of the argument
of b. We write b : A → Type if A = arg(b). For each value constant c, let ty(c)
be a closed value type of c.

We have several kinds of judgements: well-formed contexts � Γ ; well-formed
(value or computation) types Γ � A, Γ � C; well-typed (value or computation)
terms Γ � V : A, Γ � M : C; and definitional equalities for contexts, types and
terms � Γ1 = Γ2, Γ � A = B, Γ � C = D, Γ � V = W : A, Γ � M = N : C.

Typing rules are basically the same as EMLTT. Rules for base type construc-
tors and value constants are shown in Fig. 2
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	 Γ  	 ty(c)

Γ 	 cty(c) : ty(c)

b : A → Type
 	 A Γ 	 V : A

Γ 	 bA(V )

b : A → Type  	 A
Γ 	 V = W : A

Γ 	 bA(V ) = bA(W )

Fig. 2. Some typing rules for the underlying type system.

Semantics. We use fibred adjunction models to interpret terms and types. We
adapt the definition for our fragment of EMLTT as follows.

Definition 15 (Fibred adjunction models). A fibred adjunction model is a
fibred adjunction F - U : r → p where p : E → B is a SCCompC with strong
fibred coproducts and r : C→ B is a fibration with p-products.

The Eilenberg-Moore fibration of a CCompC p : E→ B inherits products in
p [2, Theorem 4.3.24] and thus gives an example of fibred adjunction models.

Lemma 16. Given a SCCompC p : E → B with strong fibred products and a
split fibred monad T on p, then the Eilenberg-Moore adjunction of T is a fibred
adjunction model. ��

We assume that a fibred adjunction model F - U : r → p between p : E→ B
and r : C→ B is given and that interpretations of base type constructors �b� ∈ E
and value constants �c� ∈ E1(1, X) (for some X ∈ E1) are given. We define a
partial interpretation �−� of the following form for raw syntax.

E C

B
p

F

r
U

- �Γ � ∈ B �Γ ;A� ∈ E�Γ � �Γ ;C� ∈ C�Γ �

�Γ ;V � ∈ E�Γ �(1�Γ �, A) for some A

�Γ ;M� ∈ E�Γ �(1�Γ �, UC) for some C ∈ C

Most of the definition of �−� are the same as [2]. For base type constructors b
and value constants c, we define �−� as follows.

�Γ ; bA(V )� = (s�Γ ;V �)∗{!�Γ �(�2;A�)}∗�b� �Γ ; cA� = !∗�Γ ��c�

Here, left-hand sides are defined if right-hand sides are defined.

Proposition 17 (Soundness). Assume that �b� ∈ E{��;A�} holds for each b :
A → Type such that �2;A� is defined, and �c� ∈ E1(1, �2; ty(c)�) holds if �2; ty(c)�
∈ E1 is defined. Interpretations �−� of well-formed contexts and types and well-
typed terms are defined. If two contexts, types, or terms are definitionally equal,
then their interpretations are equal. ��

5.2 Predicate Logic

We define syntax for logical formulas by

p = � | p ∧ q | p ⇒ q | ∀x : A.p | V =A W | a(V )
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Γ 	 V : A Γ 	 W : A

Γ 	 V =A W : Prop

a : A → Prop  	 A Γ 	 V : A

Γ 	 a(V ) : Prop

Fig. 3. Some rules for well-formed predicates.

where a ranges over predicate symbols. Here, we added � and V =A W for
typing rule for the unique value of the unit type and variables of base types
(i.e. for selfification [18]), respectively, which we describe later. However, there
is a large amount of freedom to choose the syntax of logical formulas. The least
requirement here is that logical formulas can be interpreted in a posetal fibration
q : P → B, and interpretations of logical formulas admit semantic weakening,
substitution, and conversion in the sense of [2, Proposition 5.2.4, 5.2.6]. So, we
can almost freely add or remove logical connectives and quantifiers as long as
q : P→ B admits them.

We define a standard judgement of well-formedness for logical formulas. Some
of the rules for well-formedness are shown in Fig. 3

Logical formulas are interpreted in the fibration q : P → B. We assume that
interpretation �a� ∈ P{��;A�} for each predicate symbol a : A → Prop is given.
The interpretation �Γ � p� ∈ P�Γ � is standard and defined inductively for each
well-formed formulas. For example:

�Γ � V =A W � = (s�Γ ;V �)∗(s(π∗
�Γ ;A��Γ ;W �))∗Eq(�{�Γ ;A�})

�Γ � a(V )� = s(�Γ ;V �)∗{!�Γ �(�2;A�)}∗�a�

where a : A → Prop is a predicate symbol and s is the bijection defined in §2.

5.3 Refinement Type System

We refine the underlying type system by adding predicates to base types and
the unit type. From now on, we use subscript Au for types in the underlying
type system to distinguish them from types in the refinement type system.

A := {v : bAu
(V ) | p}

∣∣ {v : 1 | p}
∣∣ Σx:A.B

∣∣ UC | A+B

C := FA | Πx:A.C Γ := 2 | Γ, x : A

We use the same definition of terms as the underlying type system and the same
set of base type constructors and value constants. Argument types of base type
constructors b : Au → Type are also the same, but types ty(c) assigned to value
constants c are redefined as refinement types. Given a type A (or C) in the
refinement type system, we define its underlying type |A| (or |C|) by induction
where predicates are eliminated in the base cases.

|{v : bAu(V ) | p}| = bAu(V ) |{v : 1 | p}| = 1

Underlying contexts |Γ | are also defined by | 2 | = 2 and |Γ, x : A| = |Γ |, x : |A|.
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b : Au → Type � Γ |Γ | � bAu (V )

|Γ |, v : bAu (V ) � p : Prop

Γ � {v : bAu (V ) | p}

� Γ |Γ | � bAu (V ) = bAu (W )

Γ ; v : bAu (V ) | p � q

Γ � {v : bAu (V ) | p} <: {v : bAu (W ) | q}

� Γ1, x : {v : bAu (V ) | p}, Γ2

Γ1, x : {v : bAu (V ) | p}, Γ2 � x : {v : bAu (V ) | v = x}
� Γ � � ty(c)

Γ � c|ty(c)| : ty(c)

Γ � A2 <: A1

Γ, x : A1 � C1 Γ, x : A2 � C1 <: C2

Γ � Πx:A1.C1 <: Πx:A2.C2

Γ2 � V : A

� Γ1 <: Γ2 Γ1 � A <: B

Γ1 � V : B

� Γ

Γ � ∗ : {v : 1 | �}

� Γ |Γ |, v : 1 � p : Prop

Γ � {v : 1 | p}
� Γ Γ ; v : 1 | p � q

Γ � {v : 1 | p} <: {v : 1 | q}

Fig. 4. Some typing rules for the refinement type system.

Judgements in the refinement type system are as follows. We have judge-
ments for well-formedness or well-typedness for contexts, types and terms in the
refinement type system, which are denoted in the same way as the underlying
type system. We do not consider definitional equalities for terms because they
are the same as the underlying type system. Instead, we add judgements for sub-
typing between types and contexts. They are denoted by � Γ1 <: Γ2 for context,
Γ � A <: B for value types, and Γ � C <: D for computation types.

Most of term and type formation rules are similar to the underlying type
system. We listed some of the non-trivial modifications of typing rules in Fig. 4.
We add typing rules for {v : bBu(V ) | p} and {v : 1 | p}. Subtyping for these
types are defined by judgements Γ ; v : Au | p � q for logical implication. Here,
Γ ; v : Au | p � q means “assumptions in Γ and p implies q” where p and q are
well-formed formulas in the context |Γ |, v : Au. We do not specify derivation
rules for the judgement Γ ; v : Au | p � q but assume soundness of the judge-
ment (explained later). We allow “selfification” [18] for variables of base types.
Subtyping for Σx:A.B, UC, FA, and Πx:A.C are defined covariantly except
the argument type A of Πx:A.C, which is contravariant. We have the rule of
subsumption. Value constants are typed with a refined type assignment ty(c).
The unique value ∗ of the unit type has type {v : 1 | �}.

Lemma 18. If we eliminate predicates in the refinement types from well-formed
contexts, types and terms, then we get well-formed contexts, types and terms of
the underlying type system.

– If � Γ , then � |Γ |. If Γ � A, then |Γ | � |A|. If Γ � C, then |Γ | � |C|.
– If � Γ1 <: Γ2, then � |Γ1| = |Γ2|. If Γ � A <: B, then |Γ | � |A| = |B|. If

Γ � C <: D, then |Γ | � |C| = |D|.

Proof. By induction on the derivation of judgements. Each typing rule in the
refinement type system has a corresponding rule in the underlying system. ��

Example 19. We can express conditional branching using the elimination rule
of the fibred coproduct type 1 + 1. For example, assume we have a base type
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constructor int : 1→ Type for integers and a value constant for comparison.

(≤) : U(Πx:int.Πy:int.F ({v : 1 | x ≤ y}+ {v : 1 | x > y}))

We can define if x ≤ y then M else N to be a syntax sugar for

(x ≤′ y) to z in (case z of (inl v → M, inr v → N))

where (≤′) = force (≤). Note that M and N are typed in contexts that have
v : {v : 1 | x ≤ y} or v : {v : 1 | x > y} depending on the result of comparison.

5.4 Semantics

Definition 20 (lifting of fibred adjunction models). Suppose that we have
two fibred adjunction models F - U : q → p between p : E → B and q : C → B
and Ḟ - U̇ : s → r between r : U → P and s : D → P. The fibred adjunction
model Ḟ - U̇ is a lifting of F - U if there exists functors u : U→ E, v : D→ C,
and t : P → B such that these functors strictly preserve all structures of Ḟ - U̇
to those of F - U . That is, (u, t) : r → p and (v, t) : s → q are split fibred
functors, the pair of fibred functor (u, t) and (v, t) is a map of adjunctions in
the 2-category Fib, (u, t) strictly preserves the CCompC structure and fibred
coproducts, and (v, t) maps r-products to p-products in the strict sense.

We assume that a lifting of fibred adjunction models is given as follows.

E C

B
p

F

U

- {E | P} D

P{p|q}

Ḟ

U̇

- {E | P} E

P B

u

{p|q} p

q

D C

P B

v

q

(4)

Here, we assume more than just a lifting of fibred adjunction models by requiring
the specific SCCompC {p | q} with strong fibred coproducts, and the split functor
(u, q) : {p | q} → p defined in Theorem 5 and Lemma 9. The underlying fibred
adjunction model F - U is used for the underlying type system in §5.1, and
q : P → B is for predicate logic in §5.2. One way to obtain such liftings of
fibred adjunction models is to apply the Eilenberg-Moore construction to the
monad morphism in Theorem 12, but in general we do not restrict C and D
to be Eilenberg-Moore categories. We further assume that q has p-equalities to
interpret logical formulas of the form V =A W .

We define partial interpretation of refinement types �Γ � ∈ P, �Γ ;A� ∈
{E | P}�Γ �, and �Γ ;C� ∈ D�Γ � similarly to the underlying type system but with

the following modification. Here, we make use of the definition of {E | P}.

�Γ ; {v : b(V ) | p}� =
(
�|Γ |; b(V )�, �Γ �, π∗

�|Γ |;b(V )��Γ � ∧ �|Γ |, v : b(V ) � p�
)

�Γ ; {v : 1 | p}� =
(
�|Γ |; 1�, �Γ �, π∗

�|Γ |;1��Γ � ∧ �|Γ |, v : 1 � p�
)

For each (X,P,Q), (X ′, P ′, Q′) ∈ {E | P}, we define a semantic subtyping re-
lation (X,P,Q) <: (X ′, P ′, Q′) by the conjunction of X = X ′, P = P ′, and
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Q ≤ Q′. In other words, we have (X,P,Q) <: (X ′, P ′, Q′) if and only if there
exists a morphism (idX , idP , h) : (X,P,Q) → (X ′, P ′, Q′) that is mapped to
identities by u : {E | P} → E and {p | q} : {E | P} → P.
Lemma 21. – If �Γ � is defined, then �|Γ |� is defined and equal to q�Γ �.
– If �Γ ;A� is defined, then �|Γ |; |A|� is defined and equal to u�Γ ;A�.
– If �Γ ;C� is defined, then �|Γ |; |C|� is defined and equal to v�Γ ;C�.

Proof. By simultaneous induction. The case of {v : Au | p} is obvious, and other
cases follow from the definition of liftings of fibred adjunction models. ��

We do not specify syntactic derivation rules for judgement for logical impli-
cation Γ ; v : Au | p � q. Instead, we assume soundness of Γ ; v : Au | p � q in
the following sense: π∗

�|Γ |;Au��Γ � ∧ �|Γ |, v : Au � p� ≤ �|Γ |, v : Au � q� holds in
P�|Γ |,v:Au�. For example, we can define a derivation rule for logical implication
Γ ; v : Au | p � q from derivation rules for predicate logic Γu | p � q (“p implies q
in the context Γu”). This is done by collecting predicates in context Γ by

�2� = � �Γ, x : A� =

{
�Γ � ∧ p[x/v] if A = {v : Au | p}
�Γ � otherwise

and defining a derivation rule for judgement for logical implication Γ ; v : Au |
p � q by |Γ |, v : Au | �Γ � ∧ p � q. If the derivation rules for predicate logic
Γu | p � q is sound (i.e., Γu | p � q implies �Γu � p� ≤ �Γu � q�), then so are the
derivation rule for Γ ; v : Au | p � q. This technique is used in, e.g., [27].

Theorem 22 (Soundness). Assume that Γ ; v : Au | p � q is sound in the
sense described above, �b� ∈ E{��;A�} holds for each b : A → Type if �2;A� is
defined, and �c� ∈ {E | P}1(1, �2; ty(c)�) holds if �2; ty(c)� ∈ {E | P}1 is defined.
Then we have the following.

– If � Γ , then �Γ � ∈ P is defined. If Γ � A, then �Γ ;A� ∈ {E | P}�Γ � is defined.

If Γ � C, then �Γ ;C� ∈ D�Γ � is defined.
– If � Γ1 <: Γ2, then �Γ1� ≤ �Γ2� in a fibre category of P.
– If Γ � A <: B, then �Γ ;A� <: �Γ ;B�. If Γ � C <: D, then U̇�Γ ;C� <:

U̇�Γ ;D�.
– If Γ � V : A, then there exists a lifting �Γ ;V � : 1�Γ � → �Γ ;A� above

�|Γ |;V � along u : {E | P} → E. If Γ � M : C, then there exists a lifting
�Γ ;M� : 1�Γ � → �Γ ;C� above �|Γ |;M� along u : {E | P} → E.
Since we have the bijection s : {E | P}P (1P, (X,P,Q)) → {f : P → Q |

π(X,P,Q) ◦ f = idP } for each (X,P,Q) ∈ {E | P}, we obtain liftings of interpre-
tations of terms along q : P→ B.
Corollary 23. If Γ � V : A, then s�|Γ |;V � : �|Γ |� → {�|Γ |;A�} has a lifting
s�Γ ;V � : �Γ � → {�Γ ;A�} along q : P→ B (and similarly for computation terms
Γ � M : C). ��
Corollary 24. Assume the lifting of fibred adjunction models is given by ap-
plying the Eilenberg-Moore construction to a lifting of monads in Theorem 12.
If Γ � M : FA, then θ ◦ s�|Γ |;M� : �|Γ |� → T{�|Γ |;A�} has a lifting of type
�Γ � → Ṫ{�Γ ;A�} along q : P→ B. ��
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6 Toward Recursion in Refinement Type Systems

We consider how to deal with general recursion in dependent refinement type sys-
tems. In [4], Ahman used a specific model of the fibrationCFam(CPO)→ CPO
of continuous families of ω-cpos to extend EMLTT with recursion. However, we
need to identify the structure that characterizes recursion to lift recursion from
the underlying type system to dependent refinement type systems. So, we con-
sider a generalization of Conway operators [22] and prove the soundness of the
underlying and the dependent refinement type system extended with typing rules
for recursion. This extension enables us to reason about partial correctness of
general recursion.

Unfortunately, we still do not know an example of liftings of Conway oper-
ators, although (1) CFam(CPO) → CPO does have a Conway operator and
(2) the soundness of the refinement type system with recursion holds under the
existence of a lifting of Conway operators. We leave this problem for future work.

6.1 Conway Operators

The notion of Conway operators for cartesian categories is defined in [22]. We
adapt the definition for comprehension categories with unit. We allow partially
defined Conway operators because we need those defined only on interpretations
of computation types.

Definition 25 (Conway operator for comprehension categories with
unit). Let p : E → B be a comprehension category with unit and K ⊆ E
be a collection of objects. A Conway operator for the comprehension category
with unit p defined on K is a family of mappings (−)‡ : EI(X,X)→ EI(1I,X)
for each X ∈ EI ∩K such that the following conditions are satisfied.

(Naturality) For each X ∈ K, f ∈ EI(X,X), and u : J → I, u∗f‡ = (u∗f)‡.
(Dinaturality) For each X,Y ∈ K, f ∈ EI(X,Y ), and g ∈ EI(Y,X), (g ◦

f)‡ = g ◦ (f ◦ g)‡.
(Diagonal property) For each X ∈ K and f ∈ E{X}(π

∗
XX,π∗

XX), if π∗
XX ∈

K, then (φ(f‡))‡ = (φ(δ∗X(φ−1(f))))‡ holds where φ : E{X}(1{X}, π∗
XX)→

EI(X,X) is the isomorphism defined in §2.

Lemma 26. Let B be a cartesian category. There is a bijective correspondence
between the following. (1) Conway operators (−)† on the cartesian category B.
(2) Conway operators (−)‡ on the simple comprehension category s(B) → B→

that are defined totally on s(B). ��

Example 27. Let K ⊆ CFam(CPO) be a collection of objects defined by
K = {(I,X) ∈ CFam(CPO) | for each i ∈ I, Xi has a least element}. For each
(I,X) ∈ K and vertical morphism f = (idI , (fi)i∈I) : (I,X)→ (I,X), we define
f‡ = (idI , (∗ → lfpfi)i∈I) : (I, 1) → (I,X). Then (−)‡ is a Conway operator,
which is implicitly used in [4].
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Γ 	 C Γ, x : UC 	 M : C

Γ 	 μx : UC.M : C

Γ 	 C = D Γ, x : UC 	 M = N : C

Γ 	 μx : UC.M = μx : UD.N : C

Γ 	 C Γ, x : UC 	 M : C

Γ 	M [thunk (μx : UC.M)/x]

= μx : UC.M : C

Γ 	 C Γ, x : UC, y : UC 	 M : C

Γ 	μx : UC.μy : UC.M

= μx : UC.M [x/y] : C

Fig. 5. Typing rules for general recursion.

6.2 Recursion in the Underlying Type System

Syntax. We add recursion μx : UC.M to the syntax of computation terms. We
also add typing rules in Fig. 5.

Semantics. Assume we have a fibred adjunction model F - U : r → p where
p : E → B and r : C → B. We need a Conway operator defined on objects in
{�Γ ;UC� | Γ � C} ⊆ E. However, here is a circular definition because �Γ ;UC�
may contain terms of the form μx : UD.M , whose interpretations are defined
by the Conway operator. So, we use a slightly stronger condition.

Definition 28. A Conway operator defined on computation types is a Conway
operator defined on K ⊆ E such that K satisfies the following conditions. (1)
UFX ∈ K holds for each X ∈ E. (2)

∏
X Y ∈ K holds for each X ∈ E and

Y ∈ K ∩ E{X}. (3) For each X ∈ K and Y ∈ E, X ∼= Y implies Y ∈ K.

Given a Conway operator defined on computation types, we interpret μx :
UC.M by �Γ ;μx : UC.M� = (φ(�Γ, x : UC;M�))‡ : 1�Γ � → U�Γ ;C�.

Proposition 29. Soundness (Proposition 17) holds for the underlying type sys-
tem extended with general recursion.

Proof. By induction. We can prove that the given Conway operator is defined
on {�Γ ;UC� | Γ � C} ⊆ E by [2, Proposition 4.1.14]. ��

6.3 Recursion in Refinement Type System

Syntax. We add the typing rule for Γ � μx:UC.M : C in Fig. 5 to the refinement
type system. Here, recall that we remove definitional equalities when we consider
the refinement type system.

Semantics. We consider liftings of Conway operators to interpret recursion in
the refinement type system.

Definition 30. Let p : E → B and q : D → A be comprehension categories
with unit, (u, v) : p → q be a morphism of comprehension categories with unit.
Assume q has a Conway operator (−)‡ defined on K ⊆ D. A lifting of the Conway
operator (−)‡ along (u, v) is a Conway operator (−)� for p defined on L ⊆ E
such that uL ⊆ K and u(f �) = (uf)‡ for each f ∈ EI(X,X) where X ∈ L.
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Lemma 31. Let (u, v) be a morphism of CCompCs defined in Theorem 5. As-
sume p : E → B has a Conway operator (−)‡ defined on K ⊆ E. The CCompC
{E | P} → P has a lifting of the Conway operator defined on L ⊆ {E | P} if
uL ⊆ K and for each (X,P,Q) ∈ L and f ∈ {E | P}P ((X,P,Q), (X,P,Q)),
{f‡} has a lifting π∗

1pXP → Q along q : P→ B. ��

Proof. Let (f, idP , h) : (X,P,Q) → (X,P,Q) be a morphism in {E | P} where
(X,P,Q) ∈ L. We define a Conway operator by (f, idP , h)� = (f‡, idP , h′) :
(1pX, P, π∗

1pXP )→ (X,P,Q) where h′ is a lifting of {f‡}. ��

We assume that a lifting of fibred adjunction models (4) together with a
lifting of Conway operators defined on computation types is given.

Theorem 32. Soundness (Theorem 22) holds for the refinement type system
extended with general recursion. ��

Consider the fibrationCFam(CPO)→ CPO for the underlying type system
with recursion. To support recursion in our refinement type system, a natural
choice of a fibration for predicate logic is the fibration of admissible subsets
Adm(CPO)→ CPO because the least fixed point of an ω-continuous function
f : X → X is given by lfpf =

∨
n fn(⊥). However, we cannot apply Theorem 5

because Adm(CPO)→ CPO is not a fibred ccc [9, §4.3.2]. Specifically, it is not
clear whether this combination admits products. We believe that our approach is
quite natural but leave giving concrete examples of liftings of Conway operators
for future work.

7 Related Work

Dependent refinement types. Historically, there are two kinds of refinement types.
One is datasort refinement types [7], which are subsets of underlying types but
not necessarily dependent. The other is index refinement types [28]. A typical
example of index refinement types is a type of lists indexed by natural num-
bers that represent the length of lists. Nowadays, the word “refinement types”
includes datasort and index refinement types, and moreover, mixtures of them.

Among a wide variety of the meaning of refinement types, we focus on types
equipped with predicates that may depend on other terms [6, 20], which we
call dependent refinement types or just refinement types. Dependent refinement
types are widely studied [5, 13, 14, 25], and implemented in, e.g., F
 [23, 24] and
LiquidHaskell [19,26,27]. However, most studies focus on decidable type systems,
and only a few consider categorical semantics.

We expect that some of the existing refinement type systems are combined
with effect systems. For example, a dependent refinement type system for non-
determinism and partial/total correctness proposed in [25] contains types for
computations indexed by quantifiers Q1Q2 where Q1, Q2 ∈ {∀, ∃}. Here, Q1 rep-
resents may/must nondeterminism, and Q2 represents total/partial correctness.
It has been shown that Q1Q2 corresponds to four cartesian liftings of the monad
P+((−) + 1) [1, 12]. We conjecture that these liftings are connected by monad
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morphisms and hence yield a lattice-graded monad. Another example is a rela-
tional refinement type system for differential privacy [5]. Their system seems to
use a graded lifting of the distribution monad where the lifting is graded by pri-
vacy parameters, as pointed out in [21]. We leave for future work combining our
refinement type system with effect systems based on graded monads [8, 11,15].

Categorical semantics. Our interpretation of refinement type systems is based
on a morphism of CCompCs, which is a similar strategy to [16]. The difference
is that our paper focuses on dependent refinement types and makes the role
of predicate logic explicit by giving a semantic construction of refinement type
systems from given underlying type systems and predicate logic.

Combining dependent types and computational effects is discussed in [2–4].
Although their aim is not at refinement types, their system is a basis for the
design and semantics of our refinement type system with computational effects.

Semantics for types of the form {v : Au | p} are characterized categorically
as right adjoints of terminal object functors in [10, Chapter 11]. Such types are
called subset types there. They consider the situation where a given CCompC
p : E → B is already rich enough to interpret {v : Au | p}, and do not aim to
interpret refinement type systems by liftings of CCompCs. Moreover, we cannot
directly use the interpretations in [10] for our CCompC {E | P} → P because we
are not given a fibration for predicate logic whose base category is P.

8 Conclusion and Future Work

We provided a general construction of liftings of CCompCs from combinations
of CCompCs and posetal fibrations satisfying certain conditions. This can be
seen as a semantic counterpart of constructing dependent refinement type sys-
tems from underlying type systems and predicate logic. We identified sufficient
conditions for several structures in underlying type systems (e.g. products, co-
products, fibred coproducts, fibred monads, and Conway operators) to lift to
dependent refinement type systems. We proved the soundness of a dependent
refinement type system with computational effects with respect to interpreta-
tions in CCompCs obtained from the general construction.

We aim to extend our dependent refinement type system by combining ef-
fect systems based on graded monads [8, 11, 15]. We hope that this extension
will give us a more expressive framework that subsumes, for example, dependent
refinement type systems in [5,25]. Another direction is to define interpretations
of {v : Au | p} in the style of subset types in [10, Chapter 11]. Lastly, we
are interested in finding more examples of possible combinations of underlying
type systems and predicate logic (especially for recursion in dependent refine-
ment type systems but not limited to this) so that we can find a new practical
application of this paper.
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Abstract. We study stochastic games with energy-parity objectives,
which combine quantitative rewards with a qualitative ω-regular condition:
The maximizer aims to avoid running out of energy while simultaneously
satisfying a parity condition. We show that the corresponding almost-sure
problem, i.e., checking whether there exists a maximizer strategy that
achieves the energy-parity objective with probability 1 when starting at
a given energy level k, is decidable and in NP ∩ coNP. The same holds
for checking if such a k exists and if a given k is minimal.

Keywords: Simple Stochastic Games, Parity Games, Energy Games

1 Introduction

Simple stochastic games (SSGs), also called competitive Markov decision processes
[30], or 2 1

2 -player games [23,22] are turn-based games of perfect information
played on finite graphs. Each state is either random or belongs to one of the
players (maximizer or minimizer). A game is played successively moving a pebble
along the game graph, where the next state is chosen by the player who owns
the current one or, in the case of random states, according to a predefined
distribution. This way, an infinite run is produced. The maximizer tries to achieve
an objective (in our case almost surely), while the minimizer tries to prevent this.
The maximizer can be seen as a controller trying to ensure an objective in the
face of both known random failure modes (encoded by the random states) and
an unknown or hostile environment (encoded by the minimizer player).

Stochastic games were first introduced in Shapley’s seminal work [46] in 1953
and have since then played a central role in the solution of many problems
in computer science, including synthesis of reactive systems [45,42]; checking
interface compatibility [27]; well-formedness of specifications [28]; verification of
open systems [4]; and many others.

A huge variety of objectives for such games was already studied in the
literature. We will mainly focus on three of them in this paper: parity; mean-
payoff; and energy objectives. In order to define them we assume that numeric
rewards are assigned to transitions, and priorities (encoded by bounded non-
negative numbers) are assigned to states.
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The parity objective simply asks that the minimal priority that appears
infinitely often in a run is even. Such a condition is a canonical way to define
desired behaviors of systems, such as safety, liveness, fairness, etc.; it subsumes
all ω-regular objectives. The algorithmic problem of deciding the winner in non-
stochastic parity games is polynomial-time equivalent to the model checking of
the modal μ-calculus [49] and is at the center of the algorithmic solutions to the
Church’s synthesis problem [44]. But the impact of parity games goes well beyond
automata theory and logic: They facilitated the solution of two long-standing
open problems in stochastic planning [29] and in linear programming [32], which
was done by careful adaptation of the parity game examples on which the strategy
improvement algorithm [31] requires exponentially many iterations.

The parity objective can be seen as a special case of the mean-payoff ob-
jective that asks for the limit average reward per transition along the run to
be non-negative. Mean-payoff objectives are among the first objectives studied
for stochastic games and go back to a 1957 paper by Gillette [33]. They allow
for reasoning about the efficiency of a system, e.g., how fast it operates once
optimally controlled.

The energy objective [14] can be seen as a refinement of the mean-payoff
objective. It asks for the accumulated reward at any point of a run not to be
lower than some finite threshold. As the name suggests, it is useful when reasoning
about systems with a finite initial energy level that should never become depleted.
Note that the accumulated reward is not bounded a-priori, which essentially
turns a finite-state game into an infinitely-state one.

In this paper we consider SSGs with energy-parity objectives, which requires
runs to satisfy both an energy and a parity objective. It is natural to consider
such an objective for systems that should not only be correct, but also energy
efficient. For instance, consider a robot maintaining a nuclear power plant. We
not only require the robot to correctly react to all possible chains of events
(parity objective for functional correctness), but also never to run out of energy
as charging it manually would be risky (energy objective).

While the complexity of games with single objectives is often in NP ∩ coNP,
asking for multiple objectives often makes solving games harder. Parity games
are commonly viewed as the simplest of these objectives, and some traditional
solutions for non-stochastic games go through simple reductions to mean-payoff or
energy conditions (which are quite similar in non-stochastic games) to discounted
payoff games that establishes the membership of those problems in UP and coUP
[35]. However, asking for two parity objectives to be satisfied at the same time
leads to coNP completeness [21].

We study the almost sure satisfaction of the energy-parity objective, i.e.,
with probability 1. Such qualitative analysis is important as there are many
applications where we need to know whether the correct behavior arises almost-
surely, e.g., in the analysis of randomized distributed algorithms (see, e.g, [43,47])
and safety-critical examples like the one from above. Moreover, the algorithms
for quantitative analysis, i.e., computing the optimal probability of satisfaction,
typically start by performing the qualitative analysis first and then solving a
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game with a simpler objective (see, e.g., [23,15]). Finally, there are stochastic
models for which qualitative analysis is decidable but quantitative one is not
(e.g., probabilistic finite automata [6]). This may also be the case for our model.

Our contributions. We consider stochastic games with energy-parity winning
conditions and show that deciding whether maximizer can win almost-surely for
a given initial energy level k is in NP ∩ coNP. We show the same for checking if
such k exists at all and checking if a given k is the smallest possible for which this
holds. The proofs are considerably harder than the corresponding result for MDPs
[40] (on which they are partly based), because the attainable mean-payoff value
is no longer a valid criterion in the analysis (via combinations of sub-objectives).
E.g., even though the stored energy might be inexorably drifting towards +∞
(resp. −∞), the mean-payoff value might still be zero because the minimizer
(resp. maximizer) can delay payoffs for longer and longer (though not indefinitely,
due to the parity condition). Moreover, the minimizer might be able to choose
between different ways of losing and never commit to any particular way after
any finite prefix of the play (see Example 1).

Our proof characterizes almost-sure energy-parity via a recursive combination
of complex sub-objectives called Gain and Bailout, which can each eventually be
solved in NP ∩ coNP.

Our proof of the coNP membership is based on a result on the strategy
complexity of a natural class of objectives, which is of independent interest. We
show (cf. Theorem 6; based on previous work in [34]) that, if an objective O is
such that its complement is both shift-invariant and submixing, and that every
MDP admits optimal finite-memory deterministic maximizer strategies for O,
then the same is true in turn-based stochastic games.

Example 1. Fig. 1 shows an energy-parity game that the maximizer can win
almost surely when starting with an energy level of ≥ 2 from the middle left
node. Whenever the game is at that node with an energy level ≥ 3, then the
maximizer can turn left and has at least 1

2 chance that the energy level will
never drop to 2 while wining the game with priority 2. This is because we can

2 2 2 1

2
3 , 1 1

3 ,−1

0

−2

2

3

0

Fig. 1: A SSG with two maximizer states (�), one minimizer state (�) and one
probabilistic state (�). Each state is annotated with its priority. Each edge is
annotated with a reward by which the energy level is increased after traversing
it (respectively, decreased if the reward is negative). The maximizer wins if the
lowest priority visited infinitely often is even and the energy level never drops
below 0.
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view this process as a random walk on a half line. If xn is the probability of
reaching energy level 2 when starting at energy n then these probabilities are
the least point-wise positive solution to the following system of linear equations:
x2 = 1, xn = 2

3xn+1 +
1
3xn−1 for all n ≥ 3. We then get that xn = 1

2n−2 so the
probability of not reaching energy level 2 is ≥ 1

2 for all n ≥ 3. Always turning left
guarantees that, almost surely, the parity condition holds and the limes inferior
of the energy level is not −∞. We call this condition Gain. Strategies for Gain
can be used when the energy level is sufficiently high (at least 3 in our example)
to win with a positive probability.

However, if maximizer plays for Gain and always moves left, then for every
initial energy level the chance of eventually dropping the energy down to level 2
is positive, due to the negative cycle. When that happens, the only other option
for the maximizer is to move right. There minimizer can ‘choose how to lose’,
via a disjunction of two conditions that we later formalize as Bailout. Either
minimizer goes back to the start state without changing the energy level (thus
maximizer wins as the energy stays at level 2 and only the good priority 2 is
seen), or minimizer turns right. In the latter case, the play visits a dominating
odd priority (which is bad for maximizer) but also increases the energy by 1,
which allows maximizer to switch back to playing left for the Gain condition
until energy level 2 is reached again.

Our maximizer strategies are a complex interplay between Bailout and Gain.
In the example, it is easy to see that the probability of seeing priority 1 infinitely
often is zero if maximizer follows the just described strategy (the probability
of requiring to go right more than n times is at most ( 12 )

n), so maximizer wins
this energy-parity game almost surely. Note that maximizer does not win almost
surely when the initial energy level is 0 or 1.

Previous work on combined objectives. Non-stochastic energy-parity games
have been studied in [16]. They can be solved in NP ∩ coNP and maximizer
strategies require only finite (but exponential) memory, a property that also
allowed to show P-time inter-reducibility with mean-payoff parity games. More
recently they were also shown to be solvable in pseudo-quasi-polynomial time [26].
Related results on non-stochastic games (e.g., mean-payoff parity) are summarized
in [18].

Most existing work on combined objectives for stochastic systems, for example
[17,18,9,40], is restricted to Markov decision processes (MDPs; aka 1 1

2 -player
games). Almost-sure energy-parity objectives for MDPs were first considered in
[17,18], where a direct reduction to ordinary energy games was proposed. This
reduction relies on the assumption that maximizer can win using finite memory
if at all. Unfortunately, this assumption does not necessarily hold: it was shown
in [40] that an almost sure winning strategy for energy-parity in finite MDPs
may require infinite memory. Nevertheless, it was possible to recover the original
result, that deciding the existence of a.s. winning strategies is in NP ∩ coNP
(and pseudo-polynomial time), by showing that the existence of an a.s. winning
strategy can be witnessed by the existence of two compatible, and finite-memory,
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winning strategies for two simpler objectives. We generalize this approach from
MDPs to full stochastic games.

Stochastic mean-payoff parity games were studied in [20], where it was shown
that they can be solved in NP∩ coNP. However, this does not imply a solution for
stochastic energy-parity games, since, unlike in the non-stochastic case [16], there
is no known reduction from energy-parity to mean-payoff parity in stochastic
games. (The reduction in [16] relies on the fact that maximizer has a winning finite-
memory strategy for energy-parity, which does not generally hold for stochastic
games or MDPs; see above.)

A related model are the 1-counter MDPs (and stochastic games) studied in
[12,11,8], since the value of the counter can be interpreted as the stored energy.
These papers consider the objective of reaching counter value zero (which is
dual to the energy objective of staying above zero), thus the roles of minimizer
and maximizer are swapped. However, unlike in this paper, these works do not
combine termination objectives with extra parity conditions.

Structure of the paper. The rest of the paper is organized as follows. We
start by introducing the notation and formal definitions of games and objectives
in the next section. In Section 3 we show how checking almost-sure energy-parity
objectives can be characterized in terms of two newly defined auxiliary objectives:
Gain and Bailout. In Sections 4 and 5, we show that almost-sure Bailout and
Gain objectives, respectively, can be checked in NP and coNP. Section 6 contains
our main result: NP and coNP algorithms for checking almost-sure energy-parity
games with a known and unknown initial energy, as well as checking if a given
initial energy is the minimal one. We conclude and point out some open problems
in Section 7. Due to page restrictions, most proofs in the main body of the paper
were replaced by sketches. The detailed proofs can be found in the full version of
this paper [41].

2 Preliminaries

A probability distribution over a set X is a function f : X → [0, 1] such that∑
x∈X f(x) = 1. We write D(X) for the set of distributions over X.

Games, Strategies, Measures. A Simple Stochastic Game (SSG) is a directed

graph G def
= (V,E, λ), where all states have an outgoing edge and the set of

states is partitioned into states owned by maximizer (V�), minimizer (V�) and
probabilistic states (V�). The set of edges is E ⊆ V × V and λ : V� → D(E)
assigns each probabilistic state a probability distribution over its outgoing edges.
W.l.o.g., we assume that each probabilistic state has at most two successors,
because one can introduce a new probabilistic state for each excess successor. We

let λ(ws)
def
= λ(s) for all ws ∈ (V E)∗V�.

A path is a finite or infinite sequence ρ
def
= s0e0s1e1 . . . such that ei =

(si, si+1) ∈ E holds for all indices i. A run is an infinite path and we write

Runs
def
= (V E)ω for the set of all runs.
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A strategy for maximizer is a function σ : (V E)∗V� → D(E) that assigns
to each path ws ∈ (V E)∗V� a probability distribution over the outgoing edges
of its target node s. That is, σ(ws)(e) > 0 implies e = (s, t) ∈ E for some
t ∈ V . A strategy is called memoryless if σ(xs) = σ(ys) for all x, y ∈ (V E)∗

and s ∈ V�, deterministic if σ(w) is Dirac for all w ∈ (V E)∗V�, and finite-state
if there exists an equivalence relation ∼ on (V E)∗V� with a finite index, such
that σ(ρ1) = σ(ρ2) if ρ1 ∼ ρ2. Of particular interest to us will be the class
of memoryless deterministic strategies (MD) and the class of finite-memory
deterministic strategies (FD). Strategies for minimizer are defined analogously
and will usually be denoted by τ : (V E)∗V� → D(E).

A maximizing (minimizing) Markov Decision Process (MDP) is a game in
which minimizer (maximizer) has no choices, i.e., all her states have exactly one
successor. We will write G[τ ] for the MDP resulting from fixing the strategy τ . A
Markov chain is a game where neither player has a choice. In particular, G[σ, τ ] is
a Markov chain obtained by setting, in the game G, the strategies for maximizer
and minimizer to σ and τ , respectively.

Given an initial state s ∈ V and strategies σ and τ for maximizer and
minimizer, respectively, the set of runs starting in s naturally extends to a
probability space as follows. We write RunsGw for the w-cylinder, i.e., the set of all
runs with prefix w ∈ (V E)∗V . We let FG be the σ-algebra generated by all these
cylinders. We inductively define a probability function PG,σ,τ

s on all cylinders,
which then uniquely extends to FG by Carathéodory’s extension theorem [5], by

setting PG,σ,τ
s (RunsGs )

def
= 1 and PG,σ,τ

s (RunsGw)
def
=

∏n−1
i=0 dist i(s0e0s1e1 . . . si)(ei)

for w = s0e0s1e1 . . . en−1sn, where s0 = s, ei = (si, si+1) and dist i is σ(·), τ(·)
or λ(·), for si ∈ V�,V� or V�, respectively.

Objective Functions. A (Borel) objective is a set Obj ∈ FG of runs. We write

Obj
def
= Runs \Obj for its complement. Borel objectives Obj are weakly determined

[39,38], which means that

sup
σ

inf
τ
Pσ,τ
s (Obj) = inf

τ
sup
σ

Pσ,τ
s (Obj).

This quantity is called the value of Obj in state s, and written as ValGs (Obj). We
say that Obj holds almost-surely (abbreviated as a.s.) at state s iff there exists
σ such that ∀τ,PG,σ,τ

s (Obj) = 1. Let ASG (Obj) denote the set of states at which
Obj holds almost surely. We will drop the superscript G and simply write Runs,
Pσ,τ
s and AS (Obj), if the game is clear from the context.

We use the syntax and semantics of operators F (eventually) and G (always)
from the temporal logic LTL [25] to specify some conditions on runs.

A reachability condition is defined by a set of target states T ⊆ V . A run
ρ = s0e0s1 . . . satisfies the reachability condition iff there exists an i ∈ N s.t.
si ∈ T . We write FT ⊆ Runs for the set of runs that satisfy this reachability
condition. Given a set of states W ⊆ V , we lift this to a safety condition on runs
and write GW ⊆ Runs for the set of runs ρ = s0e0s1 . . . where ∀i. si ∈ W .
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A parity condition is given by a bounded function parity : V → N that assigns
a priority (a non-negative integer) to each state. A run ρ ∈ Runs satisfies the
parity condition iff the minimal priority that appears infinitely often on the run
is even. The parity objective is the subset PAR ⊆ Runs of runs that satisfy the
parity condition.

Energy conditions are given by a function r : E → Z, that assigns a reward
value to each edge. For a given initial energy value k ∈ N, a run s0e0s1e1 . . .
satisfies the k-energy condition if, for every finite prefix of length n, the energy
level k +

∑n
i=0 r(ei) is greater or equal to 0. Let EN(k) ⊆ Runs denote the

k-energy objective, consisting of those runs that satisfy the k-energy condition.
The l-storage condition holds for a run s0e0s1e1 . . . if l+

∑n−1
i=m r(si, si+1) ≥ 0

holds for every infix smemsm+1 . . . sn. Let ST(k, l) ⊆ Runs denote the k-energy
l-storage objective, consisting of those runs that satisfy both the k-energy and
the l-storage condition. We write ST(k) for

⋃
l ST(k, l). Clearly, ST(k) ⊆ EN(k).

Mean-payoff and limit-payoff conditions are defined w.r.t. the same reward
function as the energy conditions. The mean-payoff value of a run ρ = s0e0s1e1 . . .

is MP(ρ)
def
= lim infn→∞

1
n

∑n−1
i=0 r(ei). For 3 ∈ {>,≥,=,≤, <} and c ∈ R ∪

{−∞,∞}, the set MP(3c) ⊆ Runs consists of all runs ρ with MP(ρ)3c. Let
LimInf(3c) ⊆ Runs contain all runs ρ with (lim infn→∞

∑n
i=0 r(ei))3c, and

likewise for LimSup(3c).
The combined energy-parity objective EN(k) ∩ PAR is Borel and therefore

weakly determined, meaning that it has a well-defined (inf sup = sup inf) value
for every game [39,38]. Moreover, the almost-sure energy-parity objective (asking
to win with probability 1) is even strongly determined [37]: either maximizer has
a strategy to enforce the condition with probability 1 or minimizer has a strategy
to prevent this.

3 Characterizing Energy-Parity via Gain and Bailout

The main theorem of this section (Theorem 5) characterizes almost sure energy-
parity objectives in terms of two intermediate objectives called Gain and k-Bailout
for parameters k ≥ 0. This will form the basis of all computability results: we
will show (as Theorems 14, 17 and 18) how to compute almost-sure sets for these
intermediate objectives.

Definition 2. Consider a finite SSG G = (V,E, λ), as well as reward and parity
functions defining the objectives PAR, LimInf(> −∞), LimSup(= ∞) as well as
ST(k, l) and EN(k) for every k, l ∈ N. We define combined objectives Gain and

k-Bailout
def
= ∪lBailout(k, l) where

Gain
def
= LimInf(> −∞) ∩ PAR

Bailout(k, l)
def
= (ST(k, l) ∩ PAR) ∪ (EN(k) ∩ LimSup(=∞)).

The main idea behind these two objectives is a special witness property for
energy-parity. We argue that, if maximizer has an almost-sure winning strategy



434 R. Mayr et al.

for energy-parity then he also has one that combines two almost-sure winning
strategies, one for Gain and one for k-Bailout.

Notice that playing an almost-sure winning strategy for Gain implies a uni-
formly lower-bounded strictly positive chance that the energy level never drops
below zero (assuming it is sufficiently high to begin with). This fact uses the
finiteness of the set of control-states and does not hold for infinite-state MDPs. In
the unlikely event that the energy level does get close to zero, maximizer switches
to playing an almost sure winning strategy for k-Bailout. This is a disjunction of
two scenarios, and the balance might be influenced by minimizer’s choices. In the
first scenario (ST(k, l)∩ PAR) the energy never drops much and stays above zero
(thus satisfying energy-parity). In the second scenario, (EN(k) ∩ LimSup(=∞)),
the parity objective is temporarily suspended in favor of boosting (while always
staying above zero) the energy to a sufficiently high level to switch back to the
strategy for Gain and thus try again from the beginning. The probability of
infinitely often switching between these modes is zero due to the lower-bounded
chance of success in the Gain phase. Therefore, maximizer eventually wins by
playing for Gain. Note that maximizer needs to remember the current energy
level in order to know when to switch and consequently, this strategy uses infinite
memory.

Example 3. Consider again the game in Fig. 1. The middle left state satisfies
both Gain and k-Bailout objectives for all k ≥ 2 almost-surely. The respective
winning strategies are to always go left for Gain or always go right for k-Bailout
when at that state. Note that it neither satisfies 0-Bailout nor 1-Bailout objectives.

We define the subset W ⊆ V of states from which maximizer can almost
surely win both Gain and k-Bailout (assuming sufficiently high initial energy),
while at the same time ensuring that the play remains within this set of states.
These are the states from which maximizer can win by freely combining individual
strategies for the Gain and Bailout objectives.

Definition 4. Given a finite SSG G = (V,E, λ), let W ⊆ V be the largest subset
of states satisfying the following condition

W ⊆ AS (Gain ∩GW ) ∩
⋃
k

AS (k-Bailout ∩GW )

This condition describes a fixed-point, and as it is easy to see that if two
sets W1 and W2 are such fixed-points, then so is W1 ∪W2. Thus, the maximal
fixed-point W is well-defined.

Our main characterization of almost-sure energy-parity objectives is the
following Theorem 5. It states that maximizer can almost surely win an EN(k) ∩
PAR objective if, and only if, he can win the easier k-Bailout objective while
always staying in the safe set W .

Theorem 5. For every k ∈ N, AS (EN(k) ∩ PAR) = AS (k-Bailout ∩GW ).
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Our proof of this characterization theorem relies on the following claim, which
allows to lift the existence of finite-memory deterministic optimal strategies from
MDPs to SSGs. It applies to a fairly general class of objectives and, we believe,
is of independent interest.

Recall that Obj
def
= Runs \ Obj denotes the complement of objective Obj. For

runs a, b, c ∈ Runs we say that a is a shuffle of b and c if there exist factorizations
b = b0b1 . . . and c = c0c1 . . . such that a = b0c0b1c1 . . . . An objective Obj is
called submixing if, for every run a ∈ Obj that is a shuffle of runs b and c, either
b ∈ Obj or c ∈ Obj. Obj is shift-invariant if, for every run s1e1s2e2 . . ., it holds
that s1e1s2e2 . . . ∈ Obj ⇐⇒ s2e2 . . . ∈ Obj. Shift-invariance slightly generalizes
the better-known tail condition (see [34] for a discussion).

Theorem 6. Let O be an objective such that O is both shift-invariant and
submixing. If maximizer has optimal FD strategies (from any state s) for O for
every finite MDP then maximizer has optimal FD strategies (from any state s)
for O for every finite SSG.

This applies in particular to the Gain objective, but not to k-Bailout objectives,
as these are not shift-invariant. A proof of Theorem 6 can be found in [41]. It
uses a recursive argument based on the notion of reset strategies from [34].

The remainder of this section is dedicated to proving Theorem 5. We will
first collect the remaining technical claims about Gain, Bailout, and reachability
objectives. Most notably, as Lemma 8, we show that if maximizer can almost
surely win Gain in a SSG, then he can do so using a FD strategy which moreover
satisfies an energy-parity objective with strictly positive (and lower-bounded)
probability. This is shown in part based on Theorem 6 applied to the Gain
objective. We will also need the following fact about reachability objectives in
finite MDPs.

Lemma 7 ([8, Lemma 3.9]). Let M be a finite MDP and ReachT be the

reachability objective with target T
def
= {s′ | Vals′(LimInf(= −∞)) = 1}. One can

compute a rational constant c < 1 and an integer h ≥ 0 such that for all states s

and i ≥ h we have ∀τ.Pτ
s (EN(i) ∩ ReachT ) ≤ ci

1−c .

Lemma 8. Consider a finite SSG G = (V,E, λ) where Gain holds a.s. for every

state s ∈ V . Then, for every δ ∈ [0, 1) and s ∈ V , there exists a k̂ ∈ N and an
FD strategy σ̂ s.t.

1. ∀τ.Pσ̂,τ
s (Gain) = 1, and

2. ∀τ.Pσ̂,τ
s (EN(k̂) ∩ PAR) ≥ δ.

Proof. Fix a δ ∈ [0, 1) and a state s ∈ V . Both LimInf(= −∞), as well as PAR
objectives are shift-invariant and submixing, and therefore also the union has
both these properties. It follows that Gain = LimInf(> −∞) ∩ PAR = LimInf(=
−∞) ∪ PAR is both shift-invariant and submixing, since the complement of a
parity objective is also a parity objective. By Lemma 16 and Theorem 6, there
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exists an almost-sure winning FD strategy σ̂ for maximizer for the objective Gain
from s, i.e., ∀τ.Pσ̂,τ

s (Gain) = 1, thus yielding Item 1.
Let M be the MDP obtained from G by fixing the strategy σ̂ for maximizer

from s. Since G is finite and σ̂ is FD, alsoM is finite. InM we have ∀τ.Pτ
s (Gain) =

1. In particular, in M, the set T
def
= {s′ | Vals′(LimInf(= −∞)) = 1} is not

reachable, i.e., ∀τ.Pτ
s (ReachT ) = 0.

By Lemma 7, inM there exists a horizon h ∈ N and a constant c < 1 such that

for all i ≥ h we have ∀τ.Pτ
s (EN(i) ∩ ReachT ) ≤ ci

1−c . Since T cannot be reached

in M, the condition ReachT evaluates to true and we have ∀τ.Pτ
s (EN(i)) ≥

1 − ci

1−c . Since c < 1 and δ < 1, we can pick a sufficiently large k̂ ≥ h such

that 1 − ck̂

1−c ≥ δ and obtain ∀τ.Pτ
s (EN(k̂)) ≥ δ in M. Moreover, the above

property ∀τ.Pτ
s (Gain) = 1 in particular implies ∀τ.Pτ

s (PAR) = 1. Thus we obtain

∀τ.Pτ
s (EN(k̂) ∩ PAR) ≥ δ in M.

Back in the SSG G, we have ∀τ.Pσ̂,τ
s (EN(k̂) ∩ PAR) ≥ δ as required for

Item 2.

Lemma 9. EN(k) ∩ PAR ⊆ k-Bailout.

Proof. Let ρ be a run in EN(k) ∩ PAR. There are two cases. In the first case
we have ρ ∈ ∪lST(k, l) ∩ PAR and thus directly ρ ∈ k-Bailout. Otherwise, ρ /∈
∪lST(k, l)∩PAR. Since ρ ∈ PAR, we must have ρ /∈ ∪lST(k, l). Since ρ ∈ EN(k), it
follows that ρ does not satisfy the l-storage condition for any l ∈ N. So, for every
l ∈ N, there exists an infix ρ′ of ρ s.t. l+r(ρ′) < 0. Let ρ′′ be the prefix of ρ before
ρ′. Since ρ ∈ EN(k) we have k+r(ρ′′ρ′) ≥ 0 and thus r(ρ′′) ≥ −k−r(ρ′) > −k+ l.
To summarize, if ρ /∈ ∪lST(k, l) ∩ PAR then, for every l, it has a prefix ρ′′ with
r(ρ′′) > −k + l. Thus ρ ∈ LimSup(=∞). Thus ρ ∈ k-Bailout.

We now define W ′ as the set of states that are almost-sure winning for
energy-parity with some sufficiently high initial energy level. (W ′ is also called
the winning set for the unknown initial credit problem.)

Definition 10. W ′ def
=

⋃
k AS (EN(k) ∩ PAR).

Lemma 11.

1. AS (EN(k) ∩ PAR) ⊆ AS (Gain ∩GW ′)
2. AS (EN(k) ∩ PAR) ⊆ AS (k-Bailout ∩GW ′)

Proof. Let s ∈ AS (EN(k) ∩ PAR) and σ a strategy that witnesses this property.
Except for a null-set, all runs ρ = se0s1e1 . . . en−1sn . . . from s induced by σ
satisfy EN(k) ∩ PAR.

Let ρ′ = se0s1e1 . . . sm be a finite prefix of ρ. For every n ≥ 0 we have
k +

∑n−1
i=0 r(ei) ≥ 0, since ρ ∈ EN(k). In particular this holds for all n ≥ m.

So, for every n ≥ m, we have k +
∑m−1

i=0 r(ei) +
∑n−1

i=m r(ei) ≥ 0. Therefore

sm ∈ AS (EN(k′) ∩ PAR), where k′ = k +
∑m−1

i=0 r(ei), as witnessed by playing
σ with history se0s1e1 . . . sm from sm. Thus sm ∈

⋃
k AS (EN(k) ∩ PAR) = W ′,

i.e., almost all σ-induced runs ρ satisfy GW ′.
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Towards Item 1, we have EN(k) ⊆ LimInf(> −∞) and thus EN(k) ∩ PAR ⊆
LimInf(> −∞) ∩ PAR = Gain. Therefore σ witnesses s ∈ AS (Gain ∩GW ′).

Towards Item 2, we have EN(k) ∩ PAR ⊆ k-Bailout by Lemma 9. Thus σ
witnesses s ∈ AS (k-Bailout ∩GW ′).

Lemma 12. W ′ ⊆ W .

Proof. It suffices to show that W ′ satisfies the monotone condition imposed on
W (cf. Definition 4), since W is defined as the largest set satisfying this condition.

Let s ∈ W ′ =
⋃

k AS (EN(k) ∩ PAR). Then s ∈ AS
(
EN(k̂) ∩ PAR

)
for some

fixed k̂. By Lemma 11(1) we have s ∈ AS (Gain ∩GW ′). By Lemma 11(2) we

have s ∈ AS
(
k̂-Bailout ∩GW ′

)
⊆

⋃
k AS (k-Bailout ∩GW ′).

Proof of Theorem 5. Towards the ⊆ inclusion, we have

AS (EN(k) ∩ PAR) ⊆ AS (k-Bailout ∩GW ′) ⊆ AS (k-Bailout ∩GW )

by Lemma 11(2) and Lemma 12.
Towards the ⊇ inclusion, let s ∈ AS (k-Bailout ∩GW ) and σ1 be a strategy

that witnesses this. We show that s ∈ AS (EN(k) ∩ PAR). We now consider the
modified SSG G′ = (W,E, λ) with the state set restricted to W . In particular,
s ∈ W and σ1 witnesses s ∈ AS (k-Bailout) in G′. We now construct a strategy σ
that witnesses s ∈ AS (EN(k) ∩ PAR) in G′, and thus also in G. The strategy σ
will use infinite memory to keep track of the current energy level of the run.

Apart from σ1, we require several more strategies as building blocks for the
construction of σ.

First, in G we had ∀s′ ∈ W. s′ ∈ AS (Gain ∩GW ), and thus in G′ we have
∀s′ ∈ W. s′ ∈ AS (Gain). For every s′ ∈ W we instantiate Lemma 8 for G′ with

δ = 1/2 and obtain a number k̂s′ and a strategy σ̂s′ with

1. ∀τ.Pσ̂s′ ,τ
s′ (Gain) = 1, and

2. ∀τ.Pσ̂s′ ,τ
s′ (EN(k̂s′) ∩ PAR) ≥ 1/2.

Let k1
def
= max{k̂s′ | s′ ∈ W}. The strategies σ̂s′ are called gain strategies.

Second, by the finiteness of V , there is a minimal number k2 such that⋃
k AS (k-Bailout ∩GW ) =

⋃
k≤k2

AS (k-Bailout ∩GW ) in G. Therefore, in G′ we
have that

W ⊆
⋃
k

AS (k-Bailout) =
⋃

k≤k2

AS (k-Bailout) = AS (k2-Bailout) .

Thus in G′ for every s′ ∈ W there exists a strategy σ̃s′ with ∀τ.Pσ̃s′ ,τ
s′ (k2-Bailout) =

1. The strategies σ̃s′ are called bailout strategies. Let k′ def
= k1 + k2 − k + 1. We

now define the strategy σ.

Start: First σ plays like σ1 from s. Since σ1 witnesses s ∈ AS (k-Bailout) against
every minimizer strategy τ , almost all induced runs ρ = se0s1e1 . . . satisfy
either
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(A) (∪lST(k, l) ∩ PAR), or

(B) (EN(k) ∩ LimSup(=∞)).

Almost all runs ρ of the latter type (B) (and potentially also some runs of

type (A)) satisfy EN(k) and
∑l

i=0 r(ei) ≥ k′ eventually for some l. If we

observe
∑l

i=0 r(ei) ≥ k′ for some prefix se0s1e1 . . . els
′ of the run ρ then our

strategy σ plays from s′ as described in the Gain part below. Otherwise, if
we never observe this condition, then our run ρ is of type (A) and σ continues
playing like σ1. Since property (A) implies (EN(k) ∩ PAR), this is sufficient.

Gain: In this case we are in the situation where we have reached some state s′

after some finite prefix ρ′ of the run, where r(ρ′) ≥ k′. Our strategy σ now
plays like the gain strategy σ̂s′ , as long as r(ρ′) ≥ k′−k1 holds for the current

prefix ρ′ of the run. By Item 2, this will satisfy ∀τ.Pσ̂s′ ,τ
s′ (EN(k̂s′)∩PAR) ≥ 1/2

and thus ∀τ.Pσ̂s′ ,τ
s′ (EN(k1) ∩ PAR) ≥ 1/2. It follows that with probability

≥ 1/2 we will keep playing σ̂s′ forever and satisfy PAR and always r(ρ′) ≥
k′ − k1 and thus EN(k), since k + r(ρ′) ≥ k + k′ − k1 = k2 + 1 ≥ 0.

Otherwise, if eventually r(ρ′) = k′ − k1 − 1 then we have k + r(ρ′) = k2. In
this case (which happens with probability < 1/2) we continue playing as
described in the Bailout part below.

Bailout: In this case we are in the situation where we have reached some
state s′′ ∈ W after some finite prefix ρ′ of the run, where k + r(ρ′) = k2.
Since s′′ ∈ W , we can now let our strategy σ play like the bailout strategy
σ̃s′′ and obtain ∀τ.Pσ̃s′′ ,τ

s′′ (k2-Bailout) = 1. Thus almost all induced runs
ρ′′ = s′′e0s1e1 . . . from s′′ satisfy either

(A) (∪lST(k2, l) ∩ PAR), or

(B) (EN(k2) ∩ LimSup(=∞)).

As long as r(ρ′) < k′ holds for the current prefix ρ′ of the run, we keep
playing σ̃s′′ . Otherwise, if eventually r(ρ′) ≥ k′ holds, then we switch back
to playing the Gain strategy above. All the runs that never switch back to
playing the Gain strategy must be of type (A) and thus satisfy PAR. Since
we have k2-Bailout ⊆ EN(k2), it follows that, for every prefix ρ′′ of the run
from s′′, according to σ̃s′′ we have k2 + r(ρ′′) ≥ 0. Thus, for every prefix ρ′′′

of ρ, we have k + r(ρ′′′) = k + r(ρ′) + r(ρ′′) = k2 + r(ρ′′) ≥ 0. Therefore, the
EN(k) objective is satisfied by all runs.

As shown above, almost all runs induced by σ that eventually stop switching
between the three modes satisfy EN(k) ∩ PAR. Switching from Gain/Bailout to
Start is impossible, but switching from Gain to Bailout and back is possible.
However, the set of runs that infinitely often switch between Gain and Bailout is
a null-set, because the probability of switching from Gain to Bailout is ≤ 1/2.
Thus, σ witnesses s ∈ AS (EN(k) ∩ PAR).
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Remark 13. It follows from the results above that W ′ = W . The ⊆ inclusion
holds by Lemma 12. For the reverse inclusion we have

W ⊆
⋃
k

AS (k-Bailout ∩GW ) by Definition 4

=
⋃
k

AS (EN(k) ∩ PAR) by Theorem 5

= W ′ by Definition 10.

4 Bailout

In this section we will argue that it is possible decide, in NP and coNP, whether
the bailout objective can be satisfied almost surely. More precisely, we show the
existence of procedures to decide if, for a given k ∈ N and state s, there exists
an l ∈ N such that s almost-surely satisfies the Bailout(k, l) objective

Bailout(k, l)
def
= (ST(k, l) ∩ PAR) ∪ (EN(k) ∩ LimSup(=∞)).

Recall that the idea behind the Bailout objective is that, during a game
for energy-parity, maximizer is temporarily abandoning the parity (but not the
energy) condition in order to increase the energy to a sufficient level (which
will then allow him to try an a.s. strategy for Gain once more). However, in a
stochastic game – as opposed to an MDP [40] – an opponent could possibly
prevent this increase in energy level at the expense of satisfying the original
energy-parity objective in the first place (cf. Example 1). The Bailout objective
is designed to capture the disjunction of both outcomes, as both are favorable
for the maximizer. The parameter k is the acceptable total energy drop (i.e., the
initial value), and the parameter l is the acceptable energy drop on any infix of
a play, which translates to the upper bound on the energy level in the second
outcome.

The question can be phrased equivalently as membership of a control state s
in the almost-sure set for the k-Bailout objective for a given game G and energy
level k ∈ N.

Theorem 14. One can check in NP, coNP and pseudo-polynomial time if, for

a given SSG G def
= (V,E, λ), k ∈ N and control state s ∈ V , maximizer can

almost-surely satisfy k-Bailout from s.
Moreover, there are K,L ∈ N, polynomial in |V | and the largest absolute

transition reward, so that
⋃

k≥0 AS
G (k-Bailout) = ASG (Bailout(K,L)). And so,

checking whether state s belongs to
⋃

k≥0 AS
G (k-Bailout) is in NP and coNP.

Proof (sketch). This is shown by a sequence of transformations of the game and
ultimately reduced to a finding the winner of a non-stochastic game with an
energy-parity objective, which is known to be solvable in NP, coNP and pseudo-
polynomial time [19]. One important observation is that it is possible to replace,
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without changing the outcome, the energy EN(k) condition in the Bailout(k, l)
objective by the more restrictive energy-storage ST(k, l) condition. See [41] for
further details.

5 Gain

In this section we will argue that it is possible to decide, in NP and coNP, whether
the Gain objective (i.e., LimInf(> −∞) ∩ PAR) can be satisfied almost surely.

We start by investigating the strategy complexity of winning strategies for
the Gain objective.

Lemma 15. In every finite SSG, minimizer has optimal MD strategies for
objective Gain.

Proof. We show that maximizer has MD optimal strategies for LimInf(= −∞) ∪
PAR. This is equivalent to the claim of the lemma because LimInf(> −∞) ∩ PAR =
LimInf(= −∞) ∪ PAR and the complement of a parity condition is itself a parity
condition (with all priorities incremented by one).

We note that both LimInf(= −∞), as well as parity objectives PAR are shift-
invariant and submixing and therefore also that the union LimInf(= −∞) ∪ PAR
has both these properties. The claim now follows from the fact that SSGs
with objectives that are both submixing and shift-invariant admit MD optimal
strategies for maximizer [34, Theorem 5.2].

Based on the results in [40] one can show a similar claim for maximizer strategies
in MDPs.

Lemma 16. For finite MDPs, almost-sure winning maximizer strategies for Gain
can be chosen FD.

Using the existence of MD optimal minimizer strategies (Lemma 15) and a coNP
upper bound for checking almost sure Gain in MDPs established in [40], we can
derive a coNP procedure. See [41] for full details.

Theorem 17. Checking whether a state s ∈ V of a SSG satisfies Gain almost-
surely is in coNP.

The rest of this section will deal with the NP upper bound, which is the most
challenging part of this paper. The crux of our proof is the observation that
if maximizer has a strategy that wins almost surely against all MD minimizer
strategies, then he wins almost surely. This is because one of these MD strategies is
optimal due to Lemma 15. We show that, in order to witness such an almost-sure
winning strategy for maximizer in SSG G, it suffices to provide a polynomially
larger SSG G3, together with an almost-sure winning strategy for the storage-
parity objective (see Theorem 21 in Section 6) in G3. This will give us an NP
algorithm, because G3, along with its winning strategy, can be guessed and verified
in polynomial time. Formally we claim that:
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Theorem 18. Checking whether a state s ∈ V of G satisfies Gain almost-surely
is in NP.

Proof. (sketch) For technical convenience, we will assume w.l.o.g. that every
SSG henceforth is in a normal form, where every random state has only one
predecessor, which is owned by the maximizer. To show the existence of G3, we
are going to introduce two intermediate games: G1 and G2. These games are never
constructed by our NP algorithm, but are just defined to break down the complex
construction of G3 into more manageable steps.

Intuitively, G1 is just G where all rewards on edges are multiplied by a large
enough factor, f , to turn strategies with a mean-payoff > 0 into ones with
mean-payoff > 2. G2 is an extension of G1 where the maximizer is given a choice
before every visit to a probabilistic node. He can either let the game proceed
as before, or sacrifice part of his one-step reward in exchange for a more evenly
balanced reward outcome, so the energy can no longer drop arbitrarily low
when a probabilistic cycle is reached. As a result, in G2 it suffices to consider
a storage-parity objective (see Theorem 21 in Section 6) instead of Gain. The
number of choices maximizer is given is the number of MD minimizer strategies,
which clearly can be exponential. That would not suffice for an NP algorithm.
Therefore, we show that most of these choices are redundant and can be removed
without impairing the almost sure wining region. As the result of that pruning,
we obtain G3 of polynomial size.

For the the technical details of the G → G1 → G2 → G3 constructions please
see [41]. Figure 2 shows how these transformations may look like.

6 The Main Results

In this section, we prove the main results of the paper, namely that almost-sure
energy parity stochastic games can be decided in NP and coNP. The proofs
are straightforward and follow from the much more involved characterization of
almost sure energy parity objective in terms of the Bailout and Gain objectives
established in Section 3 and their computational complexity analysis in Sections
4 and 5, respectively.

Theorem 19. Given an SSG, energy level k∗, checking if a state s is almost-sure
winning for EN(k∗) ∩ PAR is in NP ∩ coNP.

Proof. Recall that we can compute the set W from Definition 4 by iterating

Wi
def
= AS (Gain ∩GWi−1) ∩

⋃
k

AS (k-Bailout ∩GWi−1)

starting with W0
def
= V , until we reach the greatest fixed point W . Note that

at step i we need to solve almost sure Gain and almost sure
⋃

k AS (k-Bailout),
where the states of the game are restricted to Wi−1. There can be at most |V |
steps, because at least one state is removed in each iteration.
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(c) The game G3

Fig. 2: An example game G (left) and the derived games. The strategy that
always loops in the right-most state of G ensures a mean-payoff of 3. As this
is the only MD strategy for maximizer that ensures a positive mean-payoff, a
factor f = 1 is sufficient here and we have G1 = G. In the derived game G2 in
Fig. 2b there are as many trade-in options for the random state as there are MD
minimizer’s strategies in G1 (just two in this example). The blue one (top left)
corresponds to minimizer going left and the red one (top right) to going up in G1.
Maximizer almost-surely wins Gain in G iff he almost-surely wins a storage-parity
condition (see Theorem 21) in G3.

It then suffices to check AS (k-Bailout ∩GW) (i.e., AS (k-Bailout) for the
subgame that consists only of the states of the fixed point W for k = k∗. Note
that this step can be skipped if k∗ ≥ K, the bound from Theorem 14.

Before we discuss how to use NP and coNP procedures to construct these sets
and to conduct the final test on the fixed point W , we note that the ‘∩GWi−1’ does
not add anything substantial, as these are simply the same tests and procedures
conducted on the subgame that only consist of the states of Wi−1.

To obtain an NP procedure for constructing AS (Gain)—or, as remarked
above, AS (Gain ∩GWi−1)—we can guess and validate its membership for each
state s in this set, using the NP result from Theorem 18, and we can guess
and validate its non-membership for each state s not in this set in NP, using
the coNP result from Theorem 17. Similarly, we can guess and validate both
the membership and the non-membership in

⋃
k AS (k-Bailout ∩GWi−1)—and

of
⋃

k AS (k-Bailout ∩GWi−1) by analysing the subgame with only the states in
Wi−1—by using the NP and coNP result, respectively, from Theorem 14.

Once we can construct these sets, we can also intersect them and check if a
fixed point has been reached. (One can, of course, stop when s /∈ Wi.)

We can now conduct the final check in NP using Theorem 18.

A coNP algorithm that constructs W can be designed analogously: once Wi−1

is known, membership and non-membership of a state s in AS (Gain ∩GWi−1) can
be guessed and validated in coNP by Theorem 17 and by Theorem 18, respectively;
and membership or non-membership of a state in

⋃
k AS (k-Bailout ∩GWi−1) can
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be guessed and validated in coNP using the coNP and NP part, respectively, of
Theorem 14.

Once W is constructed, we can conduct the final check in coNP using Theo-
rem 17.

This result, together with the upper bound on the energy needed to win
energy-parity objective, allows us to solve the “unknown initial energy problem”
[7], which is to compute the minimal initial energy level required.

Corollary 20. For any state s, checking if there is k such that AS (EN(k) ∩ PAR)
holds is in NP ∩ coNP. Also, for a given k∗, checking if k∗ is the minimal energy
level required to win almost surely is in NP ∩ coNP as well.

Proof. Due to Theorem 14, if there is an energy level k for which AS (EN(k) ∩ PAR)
holds, then it also holds for the bound K whose size is polynomial in the size of
the game. We can then simply calculate K and then use NP and coNP algorithms
from Theorem 19 for AS (EN(K) ∩ PAR).

As for the second claim, note that checking whether maximizer cannot win
almost surely EN(k) ∩ PAR is also in NP and coNP as a complement of a coNP
and an NP set, respectively. Therefore, for an NP/coNP upper bound it suffices to
simultaneously guess certificates for almost surely EN(k∗) ∩ PAR and not almost
surely EN(k∗ − 1) ∩ PAR and verify them in polynomial time.

Finally, let us mention that the slightly more restrictive storage-parity objec-
tives can also be solved in NP∩ coNP. These are almost identical to energy-parity
except that, in addition, there must exist some bound l ∈ N such that the energy
level never drops by more than l during a run. This extra condition ensures
that, if the storage-parity objective holds almost-surely, then there must exist a
finite-memory winning strategy for maximizer.

Theorem 21. One can check in NP, coNP and pseudo-polynomial time if, for

a given SSG H def
= (V,E, λ), k ∈ N and control state s ∈ V , maximizer can

almost-surely satisfy ST(k) ∩ PAR from s.
Moreover, there is a bound L ∈ N, polynomial in the number of states and

the largest absolute transition reward, so that ST(k) ∩ PAR = ST(k, L) ∩ PAR.

Proof. (sketch) This result follows by a simple adaptation of the proofs showing
the same computational complexity of the Bailout objective (Section 4). See [41]
for further details.

Example 22. In the game in Fig. 1, maximizer cannot ensure the storage-parity
condition ST(k)∩PAR for any initial energy level k. This is because it would imply
the existence of a finite-memory almost-surely winning strategy, which as we
have already argued, cannot be true. More intuitively, to prevent an intermediate
energy drop by l units, a winning maximizer strategy for storage-parity would
need to stop moving left after observing the negative cycle in the leftmost state l
successive times. However, when maximizer moves right, this gives minimizer the
chance to visit the rightmost bad state (with dominating odd priority 1). The
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chance of that happening is (1/3)l > 0. In particular, this probability is > 0 for
any value of the intermediate energy drop l. Therefore, for any fixed l, maximizer
would need to move right infinitely often to satisfy storage and lose (against an
optimal minimizer strategy that moves to the rightmost state).

7 Conclusion and Outlook

We showed that several almost-sure problems for combined energy-parity ob-
jectives in simple stochastic games are in NP ∩ coNP. No pseudo-polynomial
algorithm is known (just like for stochastic mean-payoff parity games [20]). All
these problems subsume (stochastic) parity games, by setting all rewards to 0.
Thus the existence of a pseudo-polynomial algorithm would imply that (stochastic
and non-stochastic) parity games are in P, which is a long-standing open problem.

It is known that maximizer already needs infinite memory to win almost-
surely a combined energy-parity objective in MDPs [40]. Our results do not imply
anything about the memory requirement for optimal minimizer strategies in SSGs
for this objective. We conjecture that memoryless minimizer strategies suffice. If
this conjecture holds (and is proven), this would greatly simplify the coNP upper
bound that we established for this problem.

A natural question is whether results on mean-payoff/energy/parity games
can be generalized to a setting with multi-dimensional payoffs. Non-stochastic
multi-mean-payoff and multi-energy games have been studied in [48,36,1]. To
the best of our knowledge, the techniques used there, e.g. upper bounds on
the necessary energy levels as in [36], do not generalize to stochastic games (or
MDPs).

Multiple mean-payoff objectives in MDPs have been studied in [10,24], but
the corresponding multi-energy (resp. multi-energy-parity) objective has extra
difficulties due to the 0-boundary condition on the energy. I.e., even on Markov
chains, and without any parity condition, it subsumes problems about multi-
dimensional random walks. Some partial results on Markov chains and MDPs
have been obtained in [13,2,3], but the decidability of the almost-sure problem
for stochastic multi-energy-parity games (and MDPs) remains open.
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Abstract We introduce a new measure on regular languages: their non-
deterministic syntactic complexity. It is the least degree of any extension
of the ‘canonical boolean representation’ of the syntactic monoid. Equival-
ently, it is the least number of states of any subatomic nondeterministic
acceptor. It turns out that essentially all previous structural work on non-
deterministic state-minimality computes this measure. Our approach rests
on an algebraic interpretation of nondeterministic finite automata as de-
terministic finite automata endowed with semilattice structure. Crucially,
the latter form a self-dual category.

1 Introduction

Regular languages admit a plethora of equivalent representations: finite automata,
finite monoids, regular expressions, formulas of monadic second-order logic, and
numerous others. In many cases, the most succinct representation is given by a
nondeterministic finite automaton (nfa). Therefore, the investigation of state-
minimal nfas is of both computational and mathematical interest. However, this
turns out to be surprisingly intricate; in fact, the task of minimizing an nfa, or even
of deciding whether a given nfa is minimal, is known to be PSPACE-complete [23].
One intuitive reason is that minimal nfas lack structure: a language may have
many non-isomorphic minimal nondeterministic acceptors, and there are no clearly
identified and easily verifiable mathematical properties distinguishing them from
non-minimal ones. As a consequence, all known algorithms for nfa minimization
(and related problems such as inclusion or universality testing) require some form
of exhaustive search [9, 11,26]. This sharply contrasts the situation for minimal
deterministic finite automata (dfa): they can be characterized by a universal
property making them unique up to isomorphism, which immediately leads to
efficient minimization.

In the present paper, we work towards the goal of bringing more structure
into the theory of nondeterministic state-minimality. To this end, we propose a
novel algebraic perspective on nfas resting on boolean representations of monoids,
i.e. morphisms M → JSL(S, S) from a monoid M into the endomorphism monoid
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of a finite join-semilattice S. Our focus lies on quotient monoids of the free monoid
Σ∗ recognizing a given regular language L ⊆ Σ∗. The largest such monoid is Σ∗

itself, while the smallest one is the syntactic monoid syn(L). For both of them, L
induces a canonical boolean representation

Σ∗ → JSL(SLD(L), SLD(L) and syn(L) → JSL(SLD(L), SLD(L))

on the semilattice SLD(L) of all finite unions of left derivatives of L. The first
representation gives rise to an algebraic characterization of minimal nfas:
Theorem. The size of a state-minimal nfa for L equals the least degree of any
extension of the canonical representation of Σ∗ induced by L.
Here, the degree of a representation refers to the number of join-irreducibles of the
underlying semilattice. In the light of this result, it is natural to ask for an ana-
logous automata-theoretic perspective on the canonical representation of syn(L)

and its extensions. For this purpose, we introduce the class of subatomic nfas, a
generalization of atomic nfas earlier introduced by Brzozowski and Tamm [6]. In
order to get a handle on them, we employ an algebraic framework that interprets
nfas in terms of JSL-dfas, i.e. deterministic finite automata in the category
of semilattices. In this setting, the semilattice SLD(L) used in the canonical
representations naturally arises as the minimal JSL-dfa for the language L. We
shall demonstrate that much of the structure theory of (sub-)atomic nfas reduces
to the observation that the category of JSL-dfas is self-dual. Our main result
gives an algebraic characterization of minimal subatomic nfas:
Theorem. The size of a state-minimal subatomic nfa for L equals the least
degree of any extension of the canonical representation of syn(L).
We call the measure suggested by the above theorem the nondeterministic
syntactic complexity of the language L. It turns out to be extremely natural: as
illustrated in Section 5, essentially all existing work on the structure of state-
minimal nfas implicitly identifies classes of languages whose nondeterministic
state complexity equals their nondeterministic syntactic complexity, and thus is
actually concerned with computing minimal subatomic acceptors.

2 Preliminaries

We start by introducing some notation and terminology used in the paper.
Semilattices. A (join-)semilattice is a poset (S,≤S) in which every finite subset
X ⊆ S has a least upper bound, a.k.a. join, denoted by

∨
X. A morphism of

semilattices is a map preserving all finite joins. Let JSL denote the category
of join-semilattices and their morphisms. An element j of a semilattice S is
join-irreducible if for all finite subsets X ⊆ S with j =

∨
X one has j ∈ X. Let

J(S) = { j ∈ S : j is join-irreducible }.

Let 2 = {0, 1} denote the two-element semilattice with 0 ≤ 1. Since 2 ∼= (P(1),⊆)

is the free semilattice on a single generator, morphisms from 2 into a semilattice S
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correspond uniquely to elements of S. Similarly, a morphism f : S → 2 corresponds
uniquely to a prime filter F = f−1[1] ⊆ S, i.e. an upwards closed subset such
that

∨
X ∈ F implies X ∩ F �= ∅ for every finite subset X ⊆ S. If S is finite,

prime filters are precisely the sets F = {s ∈ S : s �≤ s0} for s0 ∈ S. If S is a
subsemilattice of a semilattice T , every prime filter F of S can be extended to the
prime filter T \ (↓(S \ F )) of T , where ↓X = { t ∈ T : t ≤ x for some x ∈ X }
denotes the down-closure of a subset X ⊆ T . Equivalently, every morphism
f : S → 2 can be extended to a morphism g : T → 2. In category-theoretic
terminology, this means that the semilattice 2 forms an injective object of JSL.

The category JSLf of finite semilattices is self-dual [25]. The equivalence
functor JSLf


−→ JSLop
f sends a semilattice S to its dual semilattice Sop obtained

by reversing the order, and a morphism f : S → T to the morphism f∗ : T op → Sop

mapping t ∈ T to the ≤S-largest element s ∈ S with f(s) ≤T t. Note that f is
adjoint to f∗: for s ∈ S and t ∈ T we have f(s) ≤T t iff s ≤S f∗(t).

Languages. A language is a subset L of Σ∗, the set of finite words over an alphabet
Σ. We let L = Σ∗ \L denote the complement and Lr = {wr : w ∈ L} the reverse,
where wr = an . . . a1 for w = a1 . . . an. The left derivatives, right derivatives and
two-sided derivatives of L are, respectively, given by u−1L = {w ∈ Σ∗ : uw ∈ L},
Lv−1 = {w ∈ Σ∗ : wv ∈ L} and u−1Lv−1 = {w ∈ Σ∗ : uwv ∈ L} for u, v ∈ Σ∗.
More generally, for U ⊆ Σ∗ the language U−1L =

⋃
u∈U u−1L is called the left

quotient of L w.r.t. U . We define the following sets of languages generated by L:

– LD(L) = {u−1L : u ∈ Σ∗}, the set of all left derivatives of L;
– SLD(L), its closure under finite union;
– BLD(L), its closure under all set-theoretic boolean operations;
– BLRD(L), its closure under all boolean operations and right derivatives.
In other words, SLD(L) is the ∪-semilattice of all left quotients of L, or equival-
ently, the ∪-subsemilattice of P(Σ∗) generated by all left derivatives. Moreover,
BLD(L) and BLRD(L) form the boolean subalgebras of P(Σ∗) generated by all
left derivatives and all two-sided derivatives, respectively.

3 Duality Theory of Semilattice Automata

In this section, we set up the algebraic framework in which nondeterministic
automata can be studied. Since it involves considering several different types of
automata, it is convenient to view them all as instances of a general categorical
concept. For the rest of this paper, let Σ denote a fixed finite input alphabet.

Definition 3.1. Let C be a category and let X, Y ∈ C be two fixed objects.
An automaton in C is a quadruple (S, δ, i, f) consisting of an object S ∈ C of
states, a family δ = (δa : S → S)a∈Σ of morphisms representing transitions, and
two morphisms i : X → S and f : S → Y representing initial and final states
(see the left-hand diagram below). A morphism between automata (S, δ, i, f) and
(S′, δ′, i′, f ′) is given by a morphism h : S → S′ in C preserving transitions, initial
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states and final states, i.e. making the right-hand diagram below commute for all
a ∈ Σ:

X
i �� S

δa

�� f
�� Y

X
i ��

i′ ��

S
δa ��

h ��

S

h��

f
�� Y

S′
δ′

a

�� S′ f ′

��

Let Aut(C ) denote the category of automata in C and their morphisms.

Notation 3.2. We put δw := δan
◦ · · · ◦ δa1 for w = a1 . . . an in Σ∗.

Example 3.3. (1) An automaton D = (S, δ, i, f) in Set, the category of sets
and functions, with X = 1 and Y = 2, is precisely a classical deterministic
automaton. It is called a dfa if S is finite. We identify the map i : 1 → S with an
initial state s0 = i(∗) ∈ S, and the map f : S → 2 with a set F = f−1[1] ⊆ S
of final states. The language L(D, s) accepted by a state s ∈ S is the set of all
words w ∈ Σ∗ such that δw(s) ∈ F . The language L(D) accepted by D is the
language accepted by the state s0.
(2) An automaton N = (S, δ, i, f) in Rel, the category of sets and relations,
with X = Y = 1, is precisely a classical nondeterministic automaton. It is called
an nfa if S is finite. We identify i ⊆ 1× S with a set I ⊆ S of initial states and
f ⊆ S × 1 with a set F ⊆ S of final states. Thus, in our view an nfa may have
multiple initial states. The language L(N, R) accepted by a subset R ⊆ S consists
of all w ∈ Σ∗ such that (r, s) ∈ δw for some r ∈ R and s ∈ F . The language
L(N) accepted by N is the language accepted by the set I.
(3) An automaton A = (S, δ, i, f) in JSL with X = Y = 2, shortly a JSL-
automaton, is given by a semilattice S of states, a family δ = (δa : S → S)a∈Σ

of semilattice morphisms specifying transitions, an initial state s0 ∈ S (corres-
ponding to i : 2 → S), and a prime filter F ⊆ S of final states (corresponding to
f : S → 2). It is called a JSL-dfa if S is finite. The language accepted by a state
s ∈ S or by the automaton A, resp., is defined as for deterministic automata.

Remark 3.4 (JSL-dfas vs. nfas). Dfas, nfas and JSL-dfas are expressively
equivalent; they all accept precisely the regular languages. The interest of JSL-
dfas is that they constitute an algebraic representation of nfas:
(1) Every JSL-dfa A = (S, δ, s0, F ) induces an equivalent nfa J(A) on the set
J(S) of join-irreducibles of S. Given s, t ∈ J(S) and a ∈ Σ, there is a transition
s

a−→ t in J(A) iff t ≤ δa(s); the initial states are those s ∈ J(S) with s ≤ s0, and
the final states form the set J(S) ∩ F .
(2) Conversely, for every nfa N = (Q, δ, I, F ), the subset construction yields an
equivalent JSL-dfa P(N) with states P(Q) (the ∪-semilattice of subsets of Q),
transitions Pδa : P(Q) → P(Q), X �→ δa[X], initial state I ∈ P(Q), and final
states those subsets of Q containing some state from F . Note that J(P(Q)) ∼= Q.
It follows that the task of finding a state-minimal nfa for a given language is
equivalent to finding a JSL-dfa with a minimum number of join-irreducibles [4].
This idea has recently been extended to a general coalgebraic framework [32,39].
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Recall that the minimal dfa [7] for a regular language L, denoted by dfa(L),
has states LD(L) (the set of left derivatives of L), transitions K

a−→ a−1K for
K ∈ LD(L) and a ∈ Σ, initial state L = ε−1L, and final states those K ∈ LD(L)

containing ε. Up to isomorphism, it can be characterized as the unique dfa
accepting L that is reachable (i.e. every state is reachable from the initial state
via transitions) and simple (i.e. any two distinct states accept distinct languages).
We now develop the analogous concepts for JSL-automata; they are instances of
the categorical theory of minimality due to Arbib and Manes [3] and Goguen [15].
Let us first observe that every language has two canonical infinite JSL-acceptors:

Definition 3.5. Let L ⊆ Σ∗ be a language.
(1) The initial JSL-automaton Init(L) for L has states Pf(Σ

∗) (the ∪-semilattice
of finite subsets of Σ∗), initial state {ε}, final states all X ∈ Pf(Σ

∗) with
X ∩ L �= ∅, and transitions X �→ Xa = {xa : x ∈ X} for X ∈ Pf(Σ

∗) and
a ∈ Σ.
(2) The final JSL-automaton Fin(L) for L has states P(Σ∗) (the ∪-semilattice
of all languages), initial state L, final states all languages K containing ε, and
transitions K �→ a−1K for K ∈ P(Σ∗) and a ∈ Σ.

As suggested by the terminology, these automata form the initial and the final
object in the category of JSL-automata accepting L:

Lemma 3.6 [3, 15]. For every JSL-automaton A = (S, δ, s0, F ) accepting the
language L ⊆ Σ∗, there exist unique JSL-automata morphisms

eA : Init(L) → A and mA : A → Fin(L).

The map eA sends {w1, . . . , wn} ∈ Pf(Σ
∗) to the state

∨n
i=1 δwi(s0), and the map

mA sends a state s ∈ S to L(A, s), the language accepted by s.

Definition 3.7. A JSL-automaton A = (S, δ, s0, F ) is called
(1) reachable if the unique morphism eA : Init(L) → A is surjective, i.e. every
state is of the form

∨n
i=1 δwi

(s0) for some w1, . . . , wn ∈ Σ∗;
(2) simple if the unique morphism mA : A → Fin(L) in injective, i.e. any two
distinct states accept distinct languages;
(3) minimal if it is both reachable and simple.

Remark 3.8. (1) The category Aut(JSL) has a factorization system given by
surjective and injective morphisms. Thus, for every JSL-automata morphism
h : (S, δ, i, f) → (S′, δ′, i′, f ′) with image factorization h = (S

e �� ��S′′ �� m ��S′ )
in JSL, there exists a unique JSL-automaton structure (S′′, δ′′, i′′, f ′′) on S′′

making both e and m automata morphisms. We call e the coimage and m the
image of h. Subautomata and quotient automata of JSL-automata are represented
by injective and surjective morphisms, respectively.
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(2) Every JSL-automaton A has a unique reachable subautomaton reach(A) �
A, the reachable part of A. It is the smallest subautomaton of A and arises as
the image of the unique morphism eA : Init(L) → A. Thus,

A is reachable iff A ∼= reach(A) iff A has no proper subautomaton.

Let us emphasize that a state in reach(A) is not necessarily reachable when A is
viewed as an ordinary dfa. For distinction, we thus call a state JSL-reachable if
it lies in reach(A), and dfa-reachable if it is reachable in the usual sense.
(3) Dually, every JSL-automaton A has a unique simple quotient automaton
A � simple(A), the simplification of A. It is the smallest quotient automaton of
A and arises as the coimage of the unique morphism mA : A → Fin(L). Thus,

A is simple iff A ∼= simple(A) iff A has no proper quotient automaton.

(4) Every language L ⊆ Σ∗ has a minimal JSL-automaton, unique up to iso-
morphism. It can be constructed as the image of the unique automata morphism
hL : Init(L) → Fin(L). Since hL sends {w1, . . . , wn} ∈ Pf(Σ

∗) to the language⋃n
i=1 w−1

i L, the minimal automaton of L is the subautomaton SLD(L) of Fin(L)

carried by the semilattice of finite unions of left derivatives of L.
Example 3.9. The minimal JSL-dfa accepting L = {a, aa} is shown below,
with the dashed lines representing the partial order.

{ε, a}−1L
a

��

a−1L

a

��
L

a
		





(aa)−1L

a
�� ∅ a

��

Remark 3.10. The self-duality of JSLf lifts to a self-duality of the category of
JSL-dfas. The equivalence functor Aut(JSLf)


−→ Aut(JSLf)
op maps a JSL-dfa

A = (S, (δa : S → S)a∈Σ , i : 2 → S, f : S → 2) to its dual automaton

Aop = (Sop, (δ∗
a : Sop → Sop)a∈Σ , f∗ : 2 → Sop, i∗ : Sop → 2),

using that 2op ∼= 2. Thus, the initial state of Aop is the ≤S-largest non-final state
of A, and its final states are those s ∈ S with s0 �≤S s. Given s, t ∈ S and a ∈ Σ,
there is a transition s

a−→ t in Aop iff t is the ≤S-largest state with δa(t) ≤S s.

The dualization of JSL-dfas can be seen as an algebraic generalization of the
reversal operation on nfas. Recall that the reverse of an nfa N is the nfa N r

obtained by flipping all transitions and swapping initial and final states. If N
accepts the language L, then N r accepts the reverse language Lr.

Lemma 3.11. For each nfa N = (Q, δ, I, F ), we have the JSL-dfa isomorphism

[P(N)]op ∼=−→ P(N r), X �→ X = Q \X.
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The following lemma summarizes some important properties of Aop:
Lemma 3.12. Let A = (S, δ, i, f) be a JSL-dfa.
(1) For every s ∈ S, we have L(Aop, s) = {w ∈ Σ∗ : δwr (s0) �≤S s }.
(2) If A accepts the language L, then Aop accepts the reverse language Lr.
(3) We have [reach(A)]op ∼= simple(Aop). Thus, A is reachable iff Aop is simple.
Our next goal is to give, for every regular language L, dual characterizations
of SLD(L), BLD(L) and BLRD(L), the JSL-subautomata of Fin(L) carried by
all finite unions of left derivatives, boolean combinations of left derivatives and
boolean combinations of two-sided derivatives, respectively. These results form
the core of our duality-based approach to (sub-)atomic nfas in the next section.
The minimal JSL-dfa SLD(L) admits the following dual description:
Proposition 3.13. For every regular language L, the minimal JSL-dfas for L
and Lr are dual. More precisely, we have the JSL-dfa isomorphism

drL : [SLD(Lr)]op ∼=−→ SLD(L), K �→ (Kr)−1L.

Remark 3.14. (1) The isomorphism drL induces a bijection between the left
and right factors of L, i.e. the inclusion-maximal left/right solutions of X ·Y ⊆ L.
Conway [10] observed that the left and right factors are respectively {Kr : K ∈
SLD(Lr)} and {K : K ∈ SLD(L)} and that they biject. Backhouse [5] observed
that they are dually isomorphic posets. Proposition 3.13 provides an explicit
automata-theoretic lattice isomorphism arising canonically via duality.
(2) The isomorphism drL is tightly connected to the dependency relation [18,20]
of a regular language L, i.e. the binary relation given by

DRL ⊆ LD(L)× LD(Lr), DRL(u−1L, v−1Lr) :⇐⇒ uvr ∈ L.

Its restriction DRj
L := DRL ∩ J(SLD(L))× J(SLD(Lr)) to the ∪-irreducible left

derivatives of L and Lr is called the reduced dependency relation. The following
theorem shows that the semilattice of left quotients and the dependency relation
are essentially the same concepts. In part (3), we use that the isomorphism
drL restricts to a bijection between the ∪-irreducible derivatives of Lr and the
meet-irreducible elements of the lattice SLD(L).
Theorem 3.15 (Dependency theorem).
(1) We have the JSL-isomorphism

SLD(L)
∼=−→ ({DRL[X] : X ⊆ LD(L)},∪, ∅), K �→ {v−1Lr : v ∈ Kr }.

Note that its codomain forms a subsemilattice of P(LD(Lr)).
(2) For all u, v ∈ Σ∗ we have DRL(u−1L, v−1Lr) ⇐⇒ u−1L � drL(v−1Lr).
(3) The following diagram in Rel commutes:

J(SLD(Lr)) ∼=
drL �� M(SLD(L))

J(SLD(L))

DRj
L



J(SLD(L))

�
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Let us now turn to a dual characterization of the JSL-dfa BLD(L):

Proposition 3.16. For every regular language L, the JSL-dfa BLD(L) is dual
to the subset construction of the minimal dfa for Lr:

[BLD(L)]op ∼= P(dfa(Lr)).

The isomorphism maps {w−1
1 Lr, . . . , w−1

n Lr} ∈ P(dfa(Lr)) to
⋂n

i=1 At(wr
i), where

At(x) is the unique atom (= join-irreducible) of BLD(L) containing x.

To state the dual characterization of BLRD(L), we recall two standard concepts
from algebraic language theory [33]. The transition monoid of a deterministic
automaton D = (S, δ, i, f) is the image tm(D) ⊆ Set(S, S) of the morphism

Σ∗ → Set(S, S), w �→ δw.

Thus, tm(M) is carried by the set of extended transition maps δw (w ∈ Σ∗) with
multiplication given by δv • δw = δvw and unit idS = δε : S → S. We may view
tm(D) as a deterministic automaton with initial state idS , final states all δw such
that w is accepted by D, and transitions δw

a−→ δwa for w ∈ Σ∗ and a ∈ Σ. This
automaton accepts the same language as D. The syntactic monoid syn(L) of a
regular language L ⊆ Σ∗ is the transition monoid of its minimal dfa:

syn(L) = tm(dfa(L)).

Equivalently, syn(L) is the quotient monoid of the free monoid Σ∗ modulo the
syntactic congruence of L, i.e the monoid congruence on Σ∗ given by

v ≡L w iff ∀x, y ∈ Σ∗ : xvy ∈ L ⇐⇒ xwy ∈ L.

The associated surjective monoid morphism μL : Σ∗ � syn(L), mapping w ∈ Σ∗

to its congruence class [w]L ∈ syn(L), is called the syntactic morphism.

Proposition 3.17. For every regular language L, the JSL-dfa BLRD(L) is dual
to the subset construction of syn(Lr), viewed as a dfa:

[BLRD(L)]op ∼= P(syn(Lr)).

The isomorphism maps { [w1]Lr , . . . , [wn]Lr } ∈ P(syn(Lr)) to
⋂n

i=1 At(wi
r), with

At(x) denoting the unique atom of BLRD(L) containing x.

Our final duality result in this section concerns the transition semiring [35], a
generalization of the transition monoid to JSL-automata. Note that the monoid
JSL(S, S) of endomorphisms of a semilattice S forms an idempotent semiring with
join defined pointwise: for any f, g : S → S, the morphism f ∨ g : S → S is given
by s �→ f(s) ∨ g(s). The transition semiring of a JSL-automaton A = (S, δ, i, f)

is the image ts(A) ⊆ JSL(S, S) of the semiring morphism

Pf(Σ
∗) → JSL(S, S), {w1, . . . , wn} �→

n∨
i=1

δwi
.
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Here Pf(Σ
∗) is the free idempotent semiring on Σ, with composition given by

concatenation of languages and join given by union. Thus, ts(A) is the semi-
ring carried by all morphisms

∨n
i=1 δwi

for w1, . . . , wn ∈ Σ∗, with join given
as above and multiplication

∨
j δvj

•
∨

i δwi
=

∨
i,j δvjwi

. We view ts(A) as a
JSL-automaton with initial state idS = δε, final states all

∨
i δwi such that some

wi is accepted by A, and transitions
∨n

i=1 δwi

a−−→
∨n

i=1 δwia for w1, . . . , wn ∈ Σ∗

and a ∈ Σ. This JSL-automaton is reachable and accepts the same language as
A. It has the following dual characterization:

Notation 3.18. Given a simple JSL-automaton A = (S, δ, i, f), the subauto-
maton of Fin(L) obtained by closing S (viewed as a set of languages) under right
derivatives is called the right-derivative closure of A and denoted rdc(A).

Proposition 3.19. Let A be a reachable JSL-dfa. Then the transition semiring
of A, viewed as a JSL-dfa, is dual to the right-derivative closure of Aop:

[ts(A)]op ∼= rdc(Aop).

Note that both [ts(A)]op and rdc(Aop) are simple, hence subautomata of Fin(L).
Thus, the isomorphism just expresses that their states accept the same languages.

4 Boolean Representations and Subatomic NFAs

Based upon the duality results of the previous section, we will now introduce our
algebraic approach to nondeterministic state minimality. It rests on the concept
of a representation of a monoid on a finite semilattice.

Definition 4.1 (Boolean representation). Let M be a monoid.
(1) A boolean representation of M is given by a finite semilattice S together with
a monoid morphism ρ : M → JSL(S, S). The degree of ρ is

deg(ρ) := |J(S)|.

(2) Given boolean representations ρi : M → JSL(Si, Si), i = 1, 2, an equivariant
map f : ρ1 → ρ2 is a JSL-morphism f : S1 → S2 such that

f(ρ1(m)(s)) = ρ2(m)(f(s)) for all m ∈ M and s ∈ S1.

If f is injective, we say that the representation ρ2 extends ρ1.

Remark 4.2. (1) The above representations are called boolean because sem-
ilattices are precisely semimodules over the boolean semiring 2 = {0, 1} with
1 + 1 = 1. For more on representations over general commutative semirings,
see [21].
(2) The category of boolean representations of M coincides with the functor
category JSLM

f , viewing M as a one object category.
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Definition 4.3 (Canonical representation). For every regular language L,
the canonical boolean representation of the syntactic monoid syn(L) is given by

κL : syn(L) → JSL(SLD(L), SLD(L)), [w]L �→ λK.w−1K.

It induces the canonical boolean presentation of the free monoid Σ∗ given by

κL ◦ μL : Σ∗ → JSL(SLD(L), SLD(L)), w �→ λK.w−1K,

where μL : Σ∗ � syn(L) is the syntactic morphism.

The representation κL ◦ μL amounts to constructing the transition semiring of
the minimal JSL-automaton SLD(L), i.e. the syntactic semiring [35] of L.

Example 4.4. We describe the canonical boolean representation κLn
for the

language Ln := (0 + 1)∗1(0 + 1)n, n ∈ N. Let S := 2n+1
⊥ be the semilattice

of binary words of length n + 1, ordered pointwise, with an additional bottom
element ⊥. Then SLD(Ln) is isomorphic to S, as witnessed by the isomorphism

f : S
∼=−→ SLD(Ln), f(⊥) = ∅, f(w) = w−1Ln.

Thus, κLn is isomorphic to the representation ρ : syn(Ln) → JSL(S, S) where:
(1) ρ([0]Ln) : S → S performs a left-shift (distinct from left-rotate);
(2) ρ([1]Ln) : S → S performs a left-shift and sets the last bit as 1.
Finally, deg(κLn) = deg(ρ) = 1 + |J(2n+1)| = n + 2 is the number of states of
the usual minimal nfa for L.

Example 4.5. We describe the canonical boolean presentation κL for the lan-
guage L = a1(a2 +a3)+a2(a1 +a3)+a3(a1 +a2) over Σ = {a1, a2, a3}. Consider
the ∪-semilattice M3 = {∅, {a1, a2}, {a1, a3}, {a2, a3}, Σ}. Then SLD(L) is iso-
morphic to the product semilattice 2×M3 × 2 via the map

f : SLD(L)
∼=−→ 2×M3 × 2, f(X) = (X ∩Σ2, X ∩Σ, X ∩ {ε}).

Note that the first and third component is either ∅ or one other set, i.e. it may be
identified with the elements of 2. For i = 1, 2, 3 we define the following semilattice
morphisms:

αi : 2 → M3, αi(1) = Σ \ {ai};
βi : M3 → 2, βi(S) = 1 ⇐⇒ ai ∈ S;

γ : 2 → 2 γ(1) = 0;

δ : M3 × 2× 2 → 2×M3 × 2, δ(x, y, z) = (z, x, y).

Then κL is isomorphic to ρ : syn(L) → JSL(2×M3 × 2, 2×M3 × 2) where

ρ([ai]L) = ( 2×M3 × 2
αi×βi×γ−−−−−−→ M3 × 2× 2

δ−→ 2×M3 × 2 ).

Thus, deg(κL) = deg(ρ) = 1 + 3 + 1 = 5. An analogous description of κL exists
for any language L where each word has the same length.
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The next theorem links minimal nfas and representations.

Definition 4.6. The nondeterministic state complexity ns(L) of a regular lan-
guage L is the least number of states of any nfa accepting L.

Theorem 4.7. For every regular language L, the nondeterministic state com-
plexity ns(L) is the least degree of any boolean representation extending the
canonical representation κL ◦ μL : Σ∗ → JSL(SLD(L), SLD(L)).

Proof (Sketch).
(1) Given a k-state nfa N = (Q, δ, I, F ) accepting L, consider the subsemilattice
langs(N) = simple(P(N)) of P(Σ∗) on all languages accepted by subsets of Q.
The embedding SLD(L) � langs(N) yields an extension of κL ◦ μL. Since the
semilattice langs(N) is generated by the languages accepted by single states of
N , this extension has degree at most k.
(2) Conversely, let ρ : Σ∗ → JSL(S, S) be a boolean representation of degree k
extending κL ◦ μL, witnessed by an injective equivariant map h : SLD(L) � S.
One can equip S with a JSL-dfa structure making h an automata morphism.
Since morphisms preserve accepted languages, it follows that S accepts L. Then
the nfa of join-irreducibles of S, see Remark 3.4, is a k-state nfa accepting L. ��

As an application, let us return to the dependency relation DRL introduced
in Remark 3.14(2). Recall that a biclique of a relation R ⊆ X × Y (viewed as
a bipartite graph) is a subset of the form X ′ × Y ′ ⊆ R, where X ′ ⊆ X and
Y ′ ⊆ Y . A biclique cover of R is a set C of bicliques with R =

⋃
C . The bipartite

dimension dim(R) is the least cardinality of any biclique cover of R.

Theorem 4.8 (Gruber-Holzer [18]). For every regular language L, we have

dim(DRL) ≤ ns(L).

We give a new algebraic proof of this result based on boolean representations.

Proof. (1) The task of computing biclique covers is well-known to be equivalent
to the set basis problem. Given a family C ⊆ P(Y ) of subsets of a finite set
Y , a set basis for C is a family B ⊆ P(Y ) such that each element of C can be
expressed as a union of elements of B. A relation R ⊆ X ×Y has a biclique cover
of size k iff the family CR = {R[x] : x ∈ X} ⊆ P(Y ) of neighborhoods of nodes
in X has a set basis of size k.
(2) Given an instance C ⊆ P(Y ) of the set basis problem, consider the ∪-
subsemilattice 〈C〉 ⊆ P(Y ) generated by C, i.e. the semilattice of all unions of
sets in C. We claim that C has a set basis of size at most k iff there exists an
extension of 〈C〉 of degree at most k, i.e. a monomorphism 〈C〉� S into some
finite semilattice S with |J(S)| ≤ k.
For the “only if” direction, suppose that B ⊆ P(Y ) is a set basis of C of size
at most k. The the embedding 〈C〉 � 〈B〉 gives an extension of 〈C〉 with the
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desired property: since the semilattice 〈B〉 has a set of generators with at most k
elements, it has at most k join-irreducibles.
For the “if” direction, suppose that m : 〈C〉 � S with |J(S)| ≤ k is given.
Since the free semilattice P(Y ) is an injective object of JSL [19, Corollary 2.9],
there exists a morphism f : S → P(Y ) extending the embedding 〈C〉� P(Y ).
Consider the image S′ ⊆ P(Y ) of f , leading to the commutative diagram below:

〈C〉
��

⊆ ��

�� m �� S

f
��

e �� �� S′
��

⊆��

P(Y )

We thus have 〈C〉 ⊆ S′ ⊆ P(Y ). Every set of generators of the semilattice S′ is
a basis of C. Since the morphism e is surjective, we have |J(S′)| ≤ |J(S)| ≤ k,
i.e. S′ has a set of generators with at most k elements.
(3) Let CDRL

⊆ P(LD(Lr)) be the instance of the set basis problem corres-
ponding to the dependency relation DRL ⊆ LD(L)× LD(Lr). Note that 〈CDRL

〉
consists of all DRL[X] for X ⊆ LD(L). Thus, Theorem 3.15(1) shows that
〈CDRL

〉 ∼= SLD(L). In particular, every extension of the canonical boolean repres-
entation of Σ∗ yields an extension of the semilattice 〈CDRL

〉 of the same degree.
Therefore, by part (1) and (2) and Theorem 4.7, we have dim(DRL) ≤ ns(L), as
required.

Theorem 4.7 motivates the following definition, which can be considered the key
concept of our paper:

Definition 4.9. The nondeterministic syntactic complexity nμ(L) of a regular
language L is the least degree of any boolean representation of syn(L) extending
the canonical boolean representation κL : syn(L) → JSL(SLD(L), SLD(L)).

Just like the degrees of boolean representations of Σ∗ determine the state com-
plexity of nfas, we will provide an automata-theoretic characterization of nμ(L)

in terms of subatomic nfas in Theorem 4.14 below.

Definition 4.10. An nfa accepting the language L is called
(1) atomic if each state accepts a language from BLD(L), and
(2) subatomic if each state accepts a language from BLRD(L).

The notion of an atomic nfa goes back to Brzozowski and Tamm [6], as does the
following characterization.

Notation 4.11. For any nfa N , let rsc(N) denote the dfa obtained via the
reachable subset construction, i.e. the dfa-reachable part of P(N).

Theorem 4.12. An nfa N is atomic iff rsc(N r) is a minimal dfa.

We present a new conceptual proof, interpreting this theorem as an instance of
the self-duality of JSL-dfas.
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Proof (Sketch). Let L be the language accepted by N . We establish the theorem
by showing each of the following statements to be equivalent to the next one:
(1) N is atomic.
(2) There exists a JSL-automata morphism from P(N) to BLD(L).
(3) There exists a JSL-automata morphism from P(dfa(Lr)) to P(N r).
(4) There exists a dfa morphism from dfa(Lr) to P(N r).
(5) There exists a dfa morphism from dfa(Lr) to rsc(N r).
(6) rsc(N r) is a minimal dfa.
The key step is (2)⇔(3), which follows via duality from Lemmas 3.11 and 3.12,
and Proposition 3.16. All remaining equivalences follow from the definitions. ��
The next theorem gives an analogous characterization of subatomic nfas. Again,
the proof is based on duality.

Theorem 4.13. An nfa N accepting the language L is subatomic iff the trans-
ition monoid of rsc(N r) is isomorphic to the syntactic monoid syn(Lr).

Proof (Sketch). Each of the following statements is equivalent to the next one:
(1) N is subatomic.
(2) There exists a JSL-dfa morphism from P(N) to BLRD(L).
(3) There exists a JSL-dfa morphism from rdc(simple(P (N))) to BLRD(L).
(4) There exists a JSL-dfa morphism from P(syn(Lr)) to ts(reach(P(N r))).
(5) There exists a dfa morphism from syn(Lr) to ts(reach(P(N r))).
(6) There exists a dfa morphism from syn(Lr) to tm(rsc(N r)).
(7) The monoids syn(Lr) and tm(rsc(N r)) are isomorphic.
The equivalence (3)⇔(4) follows via duality from Lemma 3.11, Proposition 3.17
and Proposition 3.19. All remaining equivalences follow from the definitions. ��
We are prepared to state the main result of our paper, an automata-theoretic
characterization of the nondeterministic syntactic complexity:
Theorem 4.14. For every regular language L, the nondeterministic syntactic
complexity nμ(L) is the least number of states of any subatomic nfa accepting L.

Proof (Sketch).
(1) Let N be a k-state subatomic nfa accepting the language L. As in the proof
of Theorem 4.7, we consider the semilattice langs(N) = simple(P(N)). Then

ρ : syn(L) → JSL(langs(N), langs(N)), [w]L �→ λK.w−1K,

is a representation of syn(L) of degree at most k extending κL.
(2) Conversely, let ρ : syn(L) → JSL(S, S) be a boolean representation extending
κL, and let h : SLD(Q) � S be the embedding. As in the proof of Theorem 4.7,
we can equip S with the structure of a JSL-dfa making h an automata morphism.
Its nfa of join-irreducibles, see Remark 3.4, is a subatomic nfa accepting L with
deg(ρ) states. ��
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We conclude this section with the observation that the state complexity of
unrestricted nfas, subatomic nfas and atomic nfas generally differs:

Example 4.15 (Subatomic more succinct than atomic). Consider the
language L accepted by the nfa N shown below, along with the minimal dfas for
L and Lr. Each automaton has exactly one initial state, namely 0.
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Brzozowski and Tamm [6] showed that there is no atomic nfa with four states
accepting L. However, N is subatomic: one can verify that the transition monoids
of dfa(Lr) and rsc(N r) both have 22 elements. Since the former is the syntactic
monoid of Lr, they are isomorphic, and so Theorem 4.13 applies.

Example 4.16 (Subatomic less succinct than general nfas). There is a
regular language for which no state-minimal nfa is subatomic:

L := { an : n ∈ N, n �= 5 } ⊆ {a}∗.

It is accepted by the following nfa:
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��
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��

a

��
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An exhaustive search shows that no subatomic nfa with five states accepts L.
In fact, L is the unique (!) unary language with ns(L) ≤ 5 and ns(L) < nμ(L).
Moreover, the above nfa and its reverse are the only state-minimal nfas for L.

5 Applications

While subatomic nfas are generally less succinct then unrestricted ones, all struc-
tural results concerning nondeterministic state complexity we have encountered
in the literature are actually about nondeterministic syntactic complexity: they
implicitly identify classes of languages where the two measures coincide. In the
present section, we illustrate this in a few selected applications.
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5.1 Unary languages

For unary languages L ⊆ {a}∗, two-sided derivatives are left derivatives. Thus, a
unary nfa is atomic iff it is subatomic.

Example 5.1 (Cyclic unary languages). A unary language L is cyclic if
its minimal dfa is a cycle [16]. We claim that ns(L) = nμ(L). To see this, let
d := |LD(L)| be the period (i.e. number of states) of the minimal dfa. By Fact 1 of
[16] (originally from [22]) every state-minimal nfa N accepting L is a disjoint union
of cyclic dfas whose periods divide d.1 Then |rsc(N r)| = d: we have |rsc(N r)| ≥ d
since rsc(N r) is a dfa accepting L = Lr and d is the size of the minimal dfa for
L, and |rsc(N r)| ≤ d because after d steps, each cycle will be back in its initial
state. Thus N is atomic by Theorem 4.12 and hence subatomic.

We deduce the following result for (not necessarily unary) regular languages:

Theorem 5.2. If syn(L) is a cyclic group, then ns(L) = nμ(L).

Proof (Sketch). Suppose that syn(L) = tm(dfa(L)) is cyclic. Then there exists
w0 ∈ Σ∗ such that the map λX.w−1

0 X : LD(L) → LD(L) generates tm(dfa(L)).
Fix an alphabet Σ0 = {a0} disjoint from Σ and consider the unary language

L0 := { an
0 : n ∈ N, wn

0 ∈ L } ⊆ Σ∗
0 .

Let g : Σ∗
0 → Σ∗ be the monoid morphism where g(a0) := w0. Then we have the

JSL-isomorphism

f : SLD(L0)
∼=−→ SLD(L), f(X−1L0) := [g[X]]−1L.

For each a ∈ Σ choose na ∈ N such that a−1K = (wna
0 )−1K for all K ∈ LD(L).

The respective transition endomorphisms of the JSL-automata SLD(L0) and
SLD(L) determine each other in the sense that the following diagrams commute:

SLD(L0)
f

∼=
��

a−1
0 (−)

��

SLD(L)

w−1
0 (−)

��

SLD(L0)
f

∼= �� SLD(L)

SLD(L0)
f

∼=
��

(ana
0 )−1(−)

��

SLD(L)

a−1(−)
��

SLD(L0)
f

∼= �� SLD(L)

Then ns(L) = ns(L0) by Theorem 4.7 and nμ(L) = nμ(L0) by Theorem 4.14.
Moreover, by Example 5.1 we know that ns(L0) = nμ(L0), so the claim follows.

Example 5.3 (nμ(L) no larger than Chrobak normal form). A unary nfa
is in Chrobak normal form [8, 13] if it has a single initial state and at most one
state with multiple successors, all of which lie in disjoint cycles. We claim that
for any nfa N in Chrobak normal form accepting the language L, we have

nμ(L) ≤ |N |,
1 In [16] nfas are restricted to have a single initial state and so are distinguished from

unions of dfas; the latter are valid nfas from our perspective.
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where |N | denotes the number of states of N . To see this, observe that each state
of N up to and including the unique choice state accepts some left derivative of
L. The successors of the choice state collectively accept a derivative u−1L; this
language is cyclic because it is a finite union of cyclic languages. Therefore, by
Example 5.1 we may replace the cycles by an atomic nfa accepting u−1L, without
increasing the number of states. The resulting nfa is atomic.

Since every unary nfa on n states can be transformed into an nfa in Chrobak
normal form with O(n2) states [8, Lemma 4.3], we get:

Corollary 5.4. If L is a unary regular language, then nμ(L) = O(ns(L)2).

5.2 Languages with a canonical state-minimal nfa

There are several natural classes of regular languages for which canonical state-
minimal nondeterministic acceptors have been identified. We show that these
acceptors are actually subatomic. In our arguments, we frequently consider the
length of a finite semilattice S, i.e. the maximum length n of any ascending chain
s0 < s1 < . . . < sn in S. Note that since every element is uniquely determined
by the set of join-irreducibles below it, the length of S is at most |J(S)|.

Example 5.5 (Bideterministic and biseparable languages).
(1) A language is called bideterministic if it is accepted by a dfa whose reverse is
also a dfa. In this case, the minimal dfa is a minimal nfa [34,38]. Bideterministic
languages have been studied in the context of automata learning [2] and coding
theory, where they are known as rectangular codes [27, 36]. We show that for
every bideterministic language L,

ns(L) = nμ(L) = |LD(L)|.

To this end, we first note that by [36, Theorem 3.1] a language L ⊆ Σ∗ is
bideterministic iff the left derivatives of L are pairwise disjoint. This implies that
SLD(L) is a boolean algebra with atoms LD(L). Since the length of a boolean
algebra equals the number of atoms (= join-irreducibles), we conclude that for
every finite semilattice extension SLD(L) � S, the semilattice S has length
at least |LD(L)|. Thus, |LD(L)| ≤ |J(S)|, so any representation ρ extending
κL or κL ◦ μL satisfies |LD(L)| ≤ deg(ρ). Hence, ns(L) = nμ(L) = |LD(L)| by
Theorem 4.7 and 4.14. In particular, the minimal dfa of L is a minimal nfa.
(2) A language L is biseparable if SLD(L) is a boolean algebra [28].2 For every
biseparable language L, the canonical residual automaton [12], i.e. the nfa NL

of join-irreducibles of the minimal JSL-dfa SLD(L), is a state-minimal nfa; it
is subatomic because every state of NL accepts a derivative of L. This follows
exactly as in (1): our argument only used that SLD(L) is a boolean algebra.
2 Actually [28] defines biseparability as a property of nfas, and characterizes biseparable

nfas as those accepting a language L for which no ∪-irreducible left derivative is
contained in the union of other ∪-irreducible left derivatives. This is equivalent to
the lattice SLD(L) being boolean, i.e. to L being ‘biseparable’ in our sense.
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Example 5.6 (Maximal reachability). A folklore result asserts that if N
is an nfa whose accepted language L satisfies |LD(L)| = 2|N |, then N is state-
minimal. Since LD(L) forms the set of states of the minimal dfa for L and rsc(N)

accepts L, we have rsc(N) = P(N). It follows the JSL-dfa P(N) is reachable
and simple, hence isomorphic to the minimal JSL-dfa SLD(L). This proves that
SLD(L) is a boolean algebra, i.e. L is a biseparable language. We conclude from
Example 5.5(2) that ns(L) = nμ(L) = |N | and NL is a subatomic minimal nfa.

Example 5.7 (BiRFSA and topological languages). So far SLD(L) has
been a boolean algebra. But the argument in Example 5.5 also applies when
SLD(L) is a distributive lattice, noting that the length of a finite distributive
lattice is equal to the number of its join-irreducibles [17, Corollary 2.14]. Languages
with this property are called topological [1]. It thus follows as in Example 5.5(2)
that for any topological language L, the canonical residual automaton NL is
subatomic and a state-minimal nfa. Thus, ns(L) = nμ(L) = |J(SLD(L))|.

There is another class of languages where NL is known to be a state-minimal
nfa, the biRFSA languages [28]. A language L is called biRFSA if NL is isomorphic
to (NLr )

r. Surprisingly, these languages are exactly the topological ones:
(1) Suppose that L is topological. Recall that NL is the nfa of join-irreducibles
of the minimal JSL-dfa. Thus, it has states J(SLD(L)) and transitions given by
X

a−→ Y iff Y ⊆ a−1X for a ∈ Σ. Moreover, a join-irreducible j is initial iff j ⊆ L
and final iff ε ∈ j. Since the lattice SLD(L) is distributive, we have a canonical
bijection between its join- and meet-irreducibles:

τ : J(SLD(L))
∼=−→ M(SLD(L)), τ(j) =

⋃
{X ∈ SLD(L) : j � X}.

Let θ be the unique map making the following diagram commute, where drL is
the restriction of the isomorphism of Proposition 3.13:

J(SLD(L))
τ

∼= ��

θ
∼=��

J(SLD(Lr))
drL

∼= �� M(SLD(L))

One can show θ to be an nfa isomorphism from NL to (NLr )
r. Thus, L is biRFSA.

(2) Suppose that L is biRFSA. Then we have a surjective JSL-morphism

[P(J(SLD(L)))]op ∼= P(J(SLD(Lr)))
eLr−−→ SLD(Lr) ∼= [SLD(L)]op,

where the first isomorphism follows from NL
∼= (NLr )

r and Lemma 3.11, the
second isomorphism is given by Proposition 3.13, and eLr sends X ⊆ J(SLD(Lr))
to

⋃
X. The dual of this morphism is the injective JSL-morphism

mL : SLD(L) � P(J(SLD(L)))

sending K ∈ SLD(L) to the set of all j ∈ J(SLD(L)) with j ⊆ K. Note that
eL ◦mL = idSLD(Q), showing that SLD(L) is a retract of P(J(SLD(L))). Since
JSL-retracts of finite distributive lattices are distributive, see e.g. [31, Lemma
2.2.3.15], it follows that SLD(L) is distributive. Thus, L is topological.



Nondeterministic Syntactic Complexity 465

Example 5.8 (Extremal languages). Call a language extremal if SLD(L) has
length |J(SLD(L))| i.e. we have an extremal lattice in the sense of Markowsky
[29]. Again, the argument of Example 5.5 applies and we get ns(L) = nμ(L) =

|J(SLD(L))|. Topological languages are extremal since every distributive lattice
is an extremal lattice, although extremal languages need not be topological. Both
classes are naturally characterized in terms of the reduced dependency relation:
(1) L is topological iff DRj

L is essentially an order relation ≤P ⊆ P × P of a
finite poset [30, Example 2.2.12].
(2) L is extremal iff DRj

L is upper unitriangularizable [29, Theorem 11].
The latter means the adjacency matrix of the bipartite graph DRj

L can be
put in upper triangular form with ones along the diagonal, by permuting rows
and columns. An order relation is upper unitriangularizable because it may be
extended to a linear order.

6 Conclusion and Future Work

Motivated by the duality theory of deterministic finite automata over semilattices,
we introduced a natural class of nondeterministic finite automata called subatomic
nfas and studied their state complexity in terms of boolean representations of
syntactic monoids. Furthermore, we demonstrated that a large body of previous
work on state minimization of general nfas actually constructs minimal subatomic
ones. There are several directions for future work.

As illustrated by Theorem 4.8, the dependency relation DRL forms a useful
tool for proving lower bounds on nfas. It is also a key element of the Kameda-
Weiner algorithm [26,37] for minimizing nfas, which rests on computing biclique
covers of DRL. We aim to give an algebraic interpretation of dependency rela-
tions based on the representation of finite semilattices by contexts [24], which
can be augmented to a categorical equivalence between JSLf and a suitable
category of bipartite graphs [31]. Under this equivalence, JSL-dfas correspond to
dependency automata; in particular, the minimal JSL-dfa SLD(L) corresponds
to a dependency automaton whose underlying bipartite graph is precisely the
dependency relation DRL. We expect that this observation can lead to a fresh
algebraic perspective on the Kameda-Weiner algorithm, as well as a generalization
of it computing minimal (sub-)atomic nfas.

On a related note, we also intend to investigate the complexity of the minim-
ization problem for (sub-)atomic nfas. While minimizing general nfas is PSPACE-
complete, even if the input automaton is a dfa, we conjecture that the additional
structure present in (sub-)atomic acceptors will simplify their minimization to
an NP-complete task. First evidence in this direction is provided by Geldenhuys,
van der Merve, and van Zijl [14] whose work implies that minimal atomic nfas
can be efficiently computed in practice using SAT solvers.
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A String Diagrammatic Axiomatisation
of Finite-State Automata
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Abstract. We develop a fully diagrammatic approach to finite-state au-
tomata, based on reinterpreting their usual state-transition graphical rep-
resentation as a two-dimensional syntax of string diagrams. In this set-
ting, we are able to provide a complete equational theory for language
equivalence, with two notable features. First, the proposed axiomatisation
is finite— a result which is provably impossible for the one-dimensional
syntax of regular expressions. Second, the Kleene star is a derived con-
cept, as it can be decomposed into more primitive algebraic blocks.

Keywords: string diagrams · finite-state automata · symmetric monoidal
category · complete axiomatisation

1 Introduction

Finite-state automata are one of the most studied structures in theoretical com-
puter science, with an illustrious history and roots reaching far beyond, in the
work of biologists, psychologists, engineers and mathematicians. Kleene [25]
introduced regular expressions to give finite-state automata an algebraic pre-
sentation, motivated by the study of (biological) neural networks [31]. They are
the terms freely generated by the following grammar:

e, f ::= e + f | e f | e∗ | 0 | 1 | a ∈ A (1)

Equational properties of regular expressions were studied by Conway [14] who
introduced the term Kleene algebra: this is an idempotent semiring with an oper-
ation (−)∗ for iteration, called the (Kleene) star. The equational theory of Kleene
algebra is now well-understood, and multiple complete axiomatisations, both
for language and relational models, have been given. Crucially, Kleene alge-
bra is not finitely-based: no finite equational theory can appropriately capture
the behaviour of the star [35]. Instead, there are purely equational infinitary
axiomatisations [28,4] and Kozen’s finitary implicational theory [26].

Since then, much research has been devoted to extending Kleene algebra
with operations capturing richer patterns of behaviour, useful in program veri-
fication. Examples include conditional branching (Kleene algebra with tests [27],
and its recent guarded version [37]), concurrent computation (CKA [19,23]),
and specification of message-passing behaviour in networks (NetKAT [1]).
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The meta-theory of the formalisms above essentially rests on the same three
ingredients: (1) given an operational model (e.g., finite-state automata), (2) de-
vise a syntax (regular expressions) that is sufficiently expressive to capture the
class of behaviours of the operational model (regular languages), and (3) find a
complete axiomatisation (Kleene algebra) for the given semantics.

In this paper, we open up a direct path from (1) to (3). Instead of thinking
of automata as a combinatorial model, we formalise them as a bona-fide (two-
dimensional) syntax, using the well-established mathematical theory of string
diagrams and monoidal categories [36]. This approach lets us axiomatise the
behaviour of automata directly, freeing us from the necessity of compressing
them down to a one-dimensional notation like regular expressions.

This perspective not only sheds new light on a venerable topic, but has sig-
nificant consequences. First, as our most important contribution, we are able to
provide a finite and purely equational axiomatisation of finite-state automata, up
to language equivalence. Intriguingly, this does not contradict the impossibility
of finding a finite basis for Kleene algebra, as the algebraic setting is different:
our result gives a finite presentation as a symmetric monoidal category, while
the impossibility result prevents any such presentation to exist as an algebraic
theory (in the standard sense). In other words, there is no finite axiomatisation
based on terms (tree-like structures), but we demonstrate that there is one based
on string diagrams (graph-like structures).

Secondly, embracing the two-dimensional nature of automata guarantees a
strong form of compositionality that the one-dimensional syntax of regular ex-
pressions does not have. In the string diagrammatic setting, automata may have
multiple inputs and outputs and, as a result, can be decomposed into subcom-
ponents that retain a meaningful interpretation. For example, if we split the
automata below left, the resulting components are still valid string diagrams
within our syntax, below right:

a

a

b a
→

b
a

a

a
(2)

In line with the compositional approach, it is significant that the Kleene star can
be decomposed into more elementary building blocks (which come together to
form a feedback loop):

e∗ → e (3)

This opens up for interesting possibilities when studying extensions of Kleene
algebra within the same approach— we elaborate on this in Section 6.

Finally, we believe our proof of completeness is of independent interest, as it
relies on fully diagrammatic reformulation of Brzozowski’s minimisation algo-
rithm [12]. In the string diagrammatic setting, the symmetries of the equational
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theory give this procedure a particularly elegant and simple form. Because all
of the axioms involved in the determinisation procedure come with a dual, a co-
determinisation procedure can be defined immediately by simply reversing the
former. This reduces the proof of completeness to a proof that determinisation
can be performed diagrammatically.

We should also note that this is not the first time that automata and regular
languages are recast into a categorical mould. The iteration theories [5] of Bloom
and Ésik, sharing graphs [17] of Hasegawa or network algebras [39] of Stefanescu
are all categorical frameworks designed to reason about iteration or recursion,
that have found fruitful applications in this domain. They are based on a no-
tion of parameterised fixed-point which defines a categorical trace in the sense
of [22]. While our proposal bears resemblance to (and is inspired by) this prior
work, it goes beyond in one fundamental aspect: it is the first to give a finite
complete axiomatisation of automata up to language equivalence.

A second difference is methodological: our syntax (4) does not feature any
primitive for iteration or recursion. In particular, the star is a derived concept,
in the sense that it is decomposable into more elementary operations (3). Cate-
gorically, our starting point is a compact-closed rather than traced category.

We elaborate on the relation between ours and existing work in Section 6.
Omitted proofs can be found in [33].

2 Syntax and semantics

Syntax. We fix an alphabet Σ of letters a ∈ Σ. We call AutΣ the symmetric strict
monoidal category freely generated by the following objects and morphisms:

– three generating objects� (‘action’),� (‘right’) and� (‘left’) with their iden-
tity morphisms depicted respectively as , and .

– the following generating morphisms, depicted as string diagrams [36]:
a

(a ∈ Σ)
(4)

Freely generating AutΣ from these data (usually called a symmetric monoidal the-
ory [42,11]) means that morphisms of AutΣ will be the string diagrams obtained
by pasting together (by sequential composition and monoidal product in AutΣ)
the basic components in (4), and then quotienting by the laws of symmetric
monoidal categories. For instance, (3) is a morphism of AutΣ of type �→�, and

is one of type �� �→ �.

Semantics. We first define the semantics for string diagrams simply as a func-
tion, and then discuss how to extend it to a functor from AutΣ to another cate-
gory. Our interpretation maps generating morphisms to relations between reg-
ular expressions and languages over Σ:

� � = {((e, e) | e ∈ RegExp} � � = {(e, e∗) | e ∈ RegExp}
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=

{(
e, (e, e)

)
| e ∈ RegExp

}
� � = {(e, •) | e ∈ RegExp}

	 

= {((e, f ), e f ) | e, f ∈ RegExp} � � = {(•, 1)}

� a �
=

{
(•, a)

}
	 


= {((e, f ), e + f ) | e, f ∈ RegExp} � � = {(•, 0)}
� �

=
{(

L, (K1, K2)
)
| L ⊆ Ki, i = 1, 2 and L, K1, K2 ⊆ Σ

}
� �

=
{(

(L1, L2), K
)
| Li ⊆ K, i = 1, 2 and L1, L2, K ⊆ Σ

}
� � = {(L, •) | L ⊆ Σ}

� �
= {(•, (L, K)) | L ⊆ K | L, K ⊆ Σ}

� � = {(•, K) | K ⊆ Σ}
� �

= {((L, K), •) | K ⊆ L | L, K ⊆ Σ}

� � = {((L, K), L ⊆ K) | L, K ⊆ Σ}
� � = {((L, K), K ⊆ L) | L, K ⊆ Σ}

 �
= {((e, L), K) | L �e�R ⊆ K and e ∈ RegExp, L, K ⊆ Σ} (5)

In (5), the semantics �e�R ∈ 2A∗ of a regular expression e ∈ RegExp is defined
inductively on e (see (1)), in the standard way:

�e + f �R = �e�R ∪ � f �R �e f �R = {vw | v ∈ �e�R , w ∈ � f �R}
�1�R = {ε} �0�R = ∅ �a�R = {a} �e∗�R =

⋃
n∈N

�en�R

where en+1 := een and e0 := 1. The semantics highlights the different roles
played by red1 and black generators. In a nutshell, red generators stand for
regular expressions ( the sum, is 0, the product, is 1,
the Kleene star, and

a
the letters of Σ), and black generators for operations

on the set of languages ( is copy, is delete, and feed back out-
puts into inputs, in a way made more precise later). These two perspectives,
which are usually merged, are kept distinct in our approach and only allowed

to communicate via , which represents the product action of regular
expressions (the red wire) on languages via concatenation on the right.

In order for this mapping to be functorial from AutΣ, we now introduce
a suitable target semantic category. Interestingly, this will not be the category
Rel of sets and relations: indeed, the identity morphisms and are
not interpreted as identities of Rel. Instead, the semantic domain will be the
category ProfB of Boolean(-enriched) profunctors [15] (also called in the literature
relational profunctors [20] or weakening relations [32]).

Definition 1. Given two preorders (X,≤X) and (Y,≤Y), a Boolean profunctor R :
X → Y is a relation R ⊆ X × Y such that if (x, y) ∈ R and x′ ≤X x, y ≤Y
y′ then (x′, y′) ∈ R.

1 The reader with a greyscale version of the paper should see light grey generators
instead.
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Preorders and Boolean profunctors form a symmetric monoidal category ProfB with
composition given by relational composition. The identity for an object (X,≤X) is the
order relation ≤X itself. The monoidal product is the usual product of preorders.

The rich features of our diagrammatic language are reflected in the profunc-
tor interpretation. Indeed, the order relation is built into the wires and

. The two possible directions represent the identities on the ordered set of
languages and the same set with the reversed order, respectively. The additional
red wire represents the set RegExp of regular expressions, with equality as
the associated order relation.2 It is clear that all monochromatic generators sat-

isfy the condition of Definition 1. Similarly, the action generator is a
Boolean profunctor: if ((e, L), K) are such that L �e�R ⊆ K and L′ ⊆ L, K ⊆ K′

then we have L′ �e�R ⊆ L �e�R ⊆ K ⊆ K′ by monotony of the product of lan-
guages. We can conclude that

Proposition 1. �·� defines a symmetric monoidal functor of type AutΣ → ProfB.

In particular, because AutΣ is free, we can unambiguously assign meaning to
any composite diagram from the semantics of its components using composi-
tion and the monoidal product in ProfB:

	
c d



=

{
(L, K) | ∃M (L, M) ∈

	
c



, (M, K) ∈

	
d


}


c1

c2

�
=

{(
(L1, L2), (K1, K2)

)
| (Li, Ki) ∈

	
ci



, i = 1, 2

}
Example 1. We include here a worked out example to show how to compute the
behaviour of a composite diagram which, as we will see, represents the action
by concatenation of the regular language a∗. We assign variable names to each
wire: O to the top wire of the feedback loop, N to the output wire of the action
node, and M to the middle wire joining to so that we can compute:
�

�

a �

�
= {(L, K) | ∃M, N, O, L, N ⊆ M, O �a�R ⊆ N, M ⊆ O, K}
= {(L, K) | ∃N, O, L, N ⊆ O, L, N ⊆ K Oa ⊆ N}
= {(L, K) | ∃O, Oa ⊆ O, L ⊆ O, L, O ⊆ K}.

Call this diagram d. Since Oa ⊆ O and L ⊆ O is equivalent to L ∪Oa ⊆ O,
�d� = {(L, K) | ∃O s.t. L ∪Oa ⊆ O, L, O ⊆ K}. Finally, by Arden’s lemma [2],
La∗ is the least solution of the language inequality L ∪ Xa ⊆ X; thus �d� =
{(L, K) | ∃O s.t. La∗ ⊆ O, L, O ⊆ K} = {(L, K) | La∗ ⊆ K}.

3 Equational theory

In Figure 1 we introduce =KDA, the (finite) equational theory of Kleene Diagram
Algebra, on AutΣ. It will be later shown to be complete for the given semantics.
We explain some salient features of =KDA below.

2 Note that we can always consider any set with equality as a poset and that, therefore,
Rel is a subcategory of ProfB, but not vice-versa, for the simple reason that the identity
relation of an arbitrary poset in ProfB is not mapped to the identity relation in Rel.
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(A1)
=

(A2)
=

(A3)
=

(B1)
=

(B2)
=

(B3)
=

(B4)
=

(B5)
=

(B6)
=

(B7)
=

(B8)
=

(B9)
=

(B10)
=

(B11)
=

(B12)
=

(C1)
=

(C2)
=

(C3)
=

(C4)
=

(C5)
=

(D1)
=

(D2)
=

(D3)
=

(D4)
=

(E1)
=

(E2l)
=

(E2r)
=

(E3)
=

(E4)
=

(E5)
=

a (E6)
=

a
a

a (E7)
=

(E8)
=

(E9)
=

(E10)
=

(E11)
=

(E14)
=

(E13)
=

(E15)
=

(E14)
=

Fig. 1. Equational theory =KDA of Kleene Diagram Algebra.
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– (A1)-(A2) relate and , allowing us to bend and straighten wires at will.
This makes the full subcategory of AutΣ on � and �, modulo (A1)-(A2),
compact closed [24]. (A3) allows us to eliminate isolated loops. Note that the
whole category is not compact closed because � has no dual.

– The B block states that , forms a cocommutative comonoid (B1)-

(B3), while , form a commutative monoid (B4)-(B6). Moreover,

, , , form an idempotent bimonoid (B7)-(B11). (B12) al-
lows us to eliminate trivial feedback loops.

– The C block axiomatises the action of regular expressions on languages.
These laws mimic the usual definition of the action of a semiring on a set,
except for (C5) which is novel and captures the interaction with the Kleene
star. Here lies a distinctive feature of our theory: the behaviour of the star is
derived from its decomposition as the feedback loop on the right of (C5).

– The D block forces the action to be a comonoid ((D1)-(D2)) and monoid
((D1)-(D2)) homomorphism.

– The E block axiomatises the purely red fragment. Remarkably, these ax-
ioms do not describe any of the actual Kleene algebra structure: they just
state that and form a commutative comonoid ((E1)-(E3)) and that
all other red generators are comonoid homomorphisms ((E4)-(E15)). This
means that the red fragment is actually the free (cartesian) algebraic theory
(cf. [42,11]) on generators , , , , ,

a
(a ∈ Σ), where

the remaining generators and act as copy and discard of vari-
ables.

Let =KDA be the smallest equational theory containing all equations in Fig. 1.
Their soundness for the chosen semantics is not difficult to show and, for space
reasons, we omit the proof. We now state our completeness result, whose proof
will be discussed in Section 5.

Theorem 1 (Completeness). For morphisms d, e in AutΣ , d =KDA e iff �d� = �e�.

Remark 1. In the usual approach to the theory of regular languages (e.g. [26]), a
completeness result like Theorem 1 is typically proven by first defining a class
of models for the algebraic theory, and showing that the standard semantics
constitutes the initial/free model. Our proof is different in flavour, but equiva-
lent: taking advantage of the categorical formulation of our diagrammatic syn-
tax and its semantics, we construct an equivalence of categories between our
model and the diagrams quotiented by the equations of KDA.

Remark 2. Some axiomatisations of Kleene algebra use a partial order between
terms, which can be defined from the idempotent monoid structure: f ≤ e iff
e + f = e. At the semantic level, it corresponds to inclusion of languages. Simi-
larly, using the idempotent bimonoid structure of our equational theory, we can

define a partial order on �→� diagrams: f ≤ e iff
e

f
= e . This

partial order structure can also be extended to all morphisms �n→�m by using
the vertical composition of n copies of and m copies of instead.
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Remark 3. There are no specific equations relating the atomic actions
a

(a ∈
Σ). This is because, as we study automata, we are interested in the free monoid
Σ∗ over Σ. However, nothing would prevent us from modelling other struc-
tures. Free commutative monoids (powers of N), whose rational subsets corre-
spond to semilinear sets [14, Chapter 11] would be of particular interest.

4 Encoding regular expressions and automata

A major appeal of our approach is that both regular expressions and automata
can be uniformly represented in the graphical language of string diagrams, and
the translation of one into the other becomes an equational derivation in =KDA.
In fact, we will see there is a close resemblance between automata and the shape
of the string diagrams interpreting them — the main difference being that string
diagrams are composable structures.

In this section we describe how regular expressions (resp. automata) can be
encoded as string diagrams, such that their semantics corresponds in a precise
way to the languages that they describe (resp. recognise).

In a sense, regular expressions are already part of the graphical syntax, as
the red generators: for any regular expression e, one may always construct a
‘red’ string diagram e : 0 → � such that � e � = {(•, e)}. However, these
alone are meaningless, since their image under the semantics is simply the free
term algebra RegExp (see (7)) . They acquire meaning as they act on the set of
languages over Σ, represented by the black wire.

4.1 From regular expressions to string diagrams

To define these encodings, it is convenient to introduce the following syntactic
sugar. We will write e for the composite of e with the action, as defined
below left, with the particular case of a letter a ∈ Σ on the right:

e :=
e

a :=

a

(6)

Using this action, we can inductively define an encoding 〈−〉 of regular expres-
sions into string diagrams of AutΣ, as the rightmost diagram for each expression
below:

〈e + f 〉 =
f

e

(C4)
=KDA

e

f
〈0〉 =

(C3)
=KDA

〈e f 〉 =
f

e

(C1)
=KDA e f 〈1〉 =

(C2)
=KDA

〈e∗〉 =
e

(C5)
=KDA

e 〈a〉 =

a

=: a (7)
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For example, 〈ab(a + ab)∗〉 =

a

b

=KDA a b

a

a b
(8)

As expected, the translation preserves the language interpretation of regular
expressions in a sense that the following proposition makes precise.

Proposition 2. For any regular expression e, �〈e〉� = {(L, K) | �e�R L ⊆ K}.

4.2 From automata to string diagrams...

Example (8) suggests that the string diagram 〈e〉 corresponding to a regular
expression e looks a lot like a nondeterministic finite-state automaton (NFA)
for e. In fact, the translation 〈−〉 can be seen as the diagrammatic counterpart
of Thompson’s construction [40] that builds an NFA from a regular expression.

We can generalise the encoding of regular expressions and translate NFA
directly into string diagrams, in at least two ways. The first is to encode an
NFA as the diagrammatic counterpart of its transition relation. The second is to
translate directly its graph representation into the diagrammatic syntax.

Encoding the transition relation. This is a simple variant of the translation of ma-
trices over semirings that has appeared in several places in the literature [29,42].

Let A be an NFA with set of states Q, initial state q0 ∈ Q, accepting states
F ⊆ Q and transition relation δ ⊆ Q × Σ × Q. We can represent δ as a string
diagram d with |Q| incoming wires on the left and |Q| outgoing wires on the
right.The left jth port of d is connected to the ith port on the right through
an a whenever (qi, a, qj) ∈ δ. To accommodate nondeterminism, when the
same two ports are connected by several different letters of Σ, we join these
using and . When (qi, ε, qj) ∈ δ, the two ports are simply
connected via a plain identity wire. If there is no tuple in δ such that (qi, a, qj) ∈
δ for any a, the two corresponding ports are disconnected.
For example, the transition relation of
an NFA with three states and δ =
{((q0, a, q1), (q1, b, q2), (q2, a, q1), (q2, a, q2))} (dis-
regarding the initial and accepting states for the
moment) is depicted on the right. Conversely, given
such a diagram, we can recover δ by collecting
Σ-weighted paths from left to right ports.

d =

a

b

a

a

To deal with the initial state, we add an additional incoming wire connected
to the right port corresponding to the initial state of the automaton. Similarly,
for accepting states we add an additional outgoing wire, connected to the left
ports corresponding to each accepting state, via if there is more than
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one. Finally, we trace out the |Q| wires of the di-
agrammatic transition relation to obtain the asso-
ciated string diagram. In other words, for a NFA
with initial state q0, set of accepting states F, transi-
tion relation δ, we obtain the string diagram on the
right, where d is the diagrammatic counterpart of

d

fe0

|Q| |Q|

δ as defined above, e0 is the injection of a single wire as the first amongst |Q|
wires, and f deletes all wires that are not associated to states in F with , and
applies to merge them into a single outgoing wire.

For example, if A with δ as above has initial state q0 and accepting state {q2},
we get the diagram below left; instead, if all states are accepting, we obtain the
diagram below right:

a

b

a

a

a

b

a

a

The correctness of this simple translation is justified by a semantic correspon-
dence between the language recognised by a given NFA A and the denotation
of the corresponding string diagram.

Proposition 3. Given an NFA A which recognises the language L, let dA be its asso-
ciated string diagram, constructed as above. Then �dA� = {(K, K′) | LK ⊆ K′}.

From graphs to string diagrams. The second way of translating automata into
string diagrams mimics more directly the combinatorial representation of au-
tomata. The idea (which should be sufficiently intuitive to not need to be made
formal here) is, for each state, to use to represent incoming edges,

and to represent outgoing edges. As above, labels a ∈ A will be mod-
elled using a . For example, the graph and the associated string diagram
corresponding with the NFA above are

a

a

b a
→

a

b a
a (9)

Note the initial state of the automaton corresponds to the left interface of the
string diagram, and the accepting state to the right interface. As before, when
there are multiple accepting states, they all connect to a single right interface,
via . For example, if we make all states accepting in the automaton above,
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we get the following diagrammatic representation:

a

a

b a
→

a

b aa

4.3 ...and back

The previous discussion shows how NFAs can be seen as string diagrams of
type �→�. The converse is also true: we now show how to extract an automa-
ton from any string diagram d : �→�, such that the language the automaton
recognises matches the denotation of d.

In order to phrase this correspondence formally, we need to introduce some
terminology. We call left-to-right those string diagrams whose domain and co-
domain contain only �, i.e. their type is of the form �n→�m. The idea is that,
in any such string diagram, the n left interfaces act as inputs of the computa-
tion, and the m right interfaces act as outputs. For instance, (9) is a left-to-right
diagram �→�.

A string diagram d is atomic if the only red generators occurring in d are of
the form

a
. By unfolding all red components e in any left-to-right diagram,

using axioms (C1)-(C5), we can prove the following statement.

Proposition 4. Any left-to-right diagram is =KDA-equivalent to an atomic one.

For instance, the string diagram on the left of (8) is =KDA-equivalent to the
atomic one on the right.

We call block of a certain subset of generators a vertical composite of these
generators followed by some permutations of the wires.

Definition 2. A matrix-diagram (resp. generalised matrix-diagram) is a left-to-
right diagram that factors as a block of , , followed by a block of a for

a ∈ Σ (resp. e for e ∈ RegExp) and finally, a block of , .

To each matrix-diagram d we can associate a unique transition relation δ by
gathering paths from each input to each output: (qi, a, qj) ∈ δ if there is a

joining the ith input to the jth output.
A transition relation is ε-free if it does not contain the
empty word. It is deterministic if it is ε-free and, for
each i and each a ∈ Σ there is at most one j such
that (qi, a, qj) ∈ δ. We will apply these terms to matrix-
diagrams and the associated transition relation inter-

a

b

a

a

changeably. The example of Section 4.2 above, with the three blocks highlighted,
is a matrix-diagram. It is ε-free but not deterministic since there are two a-
labelled transitions starting from the third input.

Given a matrix-diagram d :�l+n→�p+m, we will write dij, with i = l, n and
j = p, m, for the subdiagrams corresponding to the appropriate submatrices.
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Definition 3. For any left-to-right diagram d :�n→�m, a representation is a matrix-

diagram d̂ :�l+n→�l+m, such that d
mn

= d̂ mn

l

and d̂ll , d̂nl are

ε-free. It is a deterministic representation if moreover d̂ll is deterministic.
For example, given the string diagram below on the left, the one on the right is
a representation for it, whose highlighted matrix-diagram is the same as above.

a

b a
a =KDA

a

b

a

a

(10)

We will refer to the associated matrix-diagram d̂ as the transition matrix of a
given representation. From a�→� diagram with representation d̂ :�l+1→�l+1

we can construct an NFA from its transition matrix d̂ as follows:
– its state set is Q = {q1, . . . , ql}, i.e., there is one state for each wire of d̂ll ;
– its transition relation built from d̂ll as described above;
– its initial states Q0 are those qi for which there exists an index j such that

the ijth coefficient of d̂1l is non-zero (and therefore ε);
– its final states F are those qj for which there exists an index i such that the

ijth coefficient of d̂l1 is non-zero (and therefore ε);

The construction above is the inverse of that of Section 4.2. The link between
the constructed automaton and the original string diagram is summarised in
the following statement, which is a straightforward corollary of Proposition 3.

Proposition 5. For a diagram d :�→� with a representation d̂, let Ad̂ be the asso-
ciated automaton, constructed as above. Then L̂ is the language recognised by Ad̂ iff
�d� =

{
(K, K′) | L̂K ⊆ K′

}
.

The next proposition states that a representation can be extracted from any
string diagram.
Proposition 6. Any left-to-right diagram has a representation.
We established a correspondence between �→� diagrams and automata. What
about arbitrary left-to-right diagrams �n→�m? To characterise the precise re-
lationship between our syntax and regular expressions we can prove a Kleene
theorem for AutΣ. Recall, from Definition 2 that a generalised matrix-diagram is the
diagrammatic counterpart of a matrix whose coefficients are regular expres-
sions. It turns out that every left-to-right diagram can be put in this form.
Proposition 7 (Kleene’s for AutΣ). Any left-to-right diagram is equal to a gener-
alised matrix diagram.
As a result, the semantics of a given �n→�m diagram is fully characterised by
an m× n array of regular languages.
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4.4 Interlude: from regular to context-free languages

It is worth pointing out how a simple modification of the diagrammatic syn-
tax takes us one notch up the Chomsky hierarchy, leaving the realm of regular
languages for that of context-free grammars and languages.

Our syntax allows to specify systems of language equations of the form
aX ⊆ Y. In this context, feedback loops can be interpreted as fixed-points. For
example, the automaton below left, and its corresponding string diagram, be-
low right, translate to the system of equations at the center:

a

a

b a
→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε ⊆ X0

X0a ⊆ X1

X1b ⊆ X2

X2a ⊆ X1

X2a ⊆ X2

← �
a

b a
a (11)

This translation can be obtained by simply labelling each state with a variable
and adding one inequality of the form Xia ⊆ Xj for each a-transition from state
i to state j. The system we obtain corresponds very closely to the �−�-semantics
of the associated string diagram.

The distinction between red and black wires can be understood as a type
discipline that only allows linear uses of the product of languages. It is legiti-
mate and enlightening to ask what would happen if we forgot about red wires
and interpreted the action directly as the product. We would replace the action
by a new generator with semantics

� �
= {

(
(M, L), K

)
| ML ⊆ K}.

This would allow us to specify systems of language equations with unre-
stricted uses of the product on the left of inclusions, e.g. UVW ⊆ X. Equations
of this form are similar to the production rules (e.g. X → UVW) of context-free
grammars and it is well-known that the least solutions of this class of systems
are precisely context-free languages [14, Chapter 10].

For example we could encode the language
X → XX | (X) | ε of properly matched
parentheses as least solution of the system
ε ⊆ X, (X) ⊆ X, XX ⊆ X which gives the
diagram displayed on the right.

)

(

5 Completeness and Determinisation

This section is devoted to prove our completeness result, Theorem 1. We use
a normal form argument: more specifically we mimic automata-theoretic re-
sults to rewrite every string diagram to a normal form corresponding to a mini-
mal deterministic finite automaton (DFA). We achieve it by implementing Brzo-
zowski’s algorithm [12] through diagrammatic equational reasoning. The proof
proceeds in three distinct steps.
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1. We first show (Section 5.1) how to determinise (the representation of) a dia-
gram: this step consists in eliminating all subdiagrams that correspond to
nondeterministic transitions in the associated automaton.

2. We use the previous step to implement a minimisation procedure (Section
5.2) from which we obtain a minimal representation for a given diagram:
this is a representation whose associated automaton is minimal—with the
fewest number of states—amongst DFAs that recognise the same language.
To do this, we show how the four steps of Brzozowski’s minimisation algo-
rithm (reverse; determinise; reverse; determinise) translate into diagram-
matic equational reasoning. Note that the first three steps taken together
simply amount to applying in reverse the determinisation procedure we
have already devised. That this is possible will be a consequence of the
symmetry of =KDA.

3. Finally, from the uniqueness of minimal DFAs, any two diagrams that have
the same denotation are both equal to the same minimal representation and
we can derive completeness of =KDA.

We will now write equations in =KDA simply as = to simplify notation and
say that diagrams c and d are equal when c =KDA d.

First, we use the symmetries of the equational theory to make simplifying
assumptions about the diagrams to consider in the completeness proof.

A few simplifying assumptions. Without loss of generality, the proof we give
is restricted to string diagrams with no � in their domain as well as in their
codomain. This is simply a matter of convenience: the same proof would work
for more general diagrams, that may contain � in their (co)domain, at the cost
of significantly cluttering diagrams. Henceforth, one can simply think of the
labels for the action x as uniquely identifying one open red wire in a dia-
gram. With this convention, two or more occurrences of the same x in a diagram
can be seen as connected to the same red wire on the left, via . That we
can safely do so is a consequence of the completeness of =KDA restricted to the
monochromatic red fragment, itself a consequence of [11, Theorem 6.1].

Arbitrary objects in AutΣ are lists of the three generating objects. We have
already motivated focusing on string diagrams with no open red wires so that
the objects we care about are lists of � and �. The following proposition implies
that, without loss of generality, for the proof of completeness we can restrict
further to left-to-right diagrams (Section 4.2).

Proposition 8. There is a natural bijection between sets of string diagrams of the form

A1 B1

A2 B2 ↔
A1 B1

A2 B2 where Ai, Bi represent lists of � and �.

Proposition 8 tell us that we can always bend the incoming wires to the left and
outgoing wires to the right before applying some equations, and recover the
original orientation of the wires by bending them into their original place later.
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5.1 Determinisation

In diagrammatic terms, a nondeterministic transition of the automaton asso-
ciated to (a representation of) a given diagram, corresponds to a subdiagram

of the form
a

a
for some a ∈ Σ. Clearly, using the definition of a :=

a

in (6) and the axiom (D1)
= , we have

a

a
=

a , which will prove to be the engine of our determinisation procedure,
along with the fact that any red expression can be copied and deleted. The next
two theorems generalise the ability to copy and delete to arbitrary left-to-right
diagrams.

Theorem 2. For any left-to-right diagram d :�m→�n, we have

d
m

n

n
(cpy)
=

d
m

n

d
n

d
m n (del)

=
m

d
m

n

d
m

(co-cpy)
= d

m
n

m
n (co-del)

= d
m n

For d :�m→�n, let dij be the string diagram of type �→� obtained by compos-
ing every input with except the ith one, and every output with except
the jth one. Theorem 2 implies that string diagrams are fully characterised by
their �→� subdiagrams.

Corollary 1. Given d, e :�m→�n, d =KDA e iff dij =KDA eij, for all 1 ≤ i ≤ m and
1 ≤ j ≤ n.

Thus, we can restrict our focus further to left-to-right �→� diagrams, without
loss of generality. We are now able to devise a determinisation procedure for
representation of diagrams, which we illustrate below on a simple example.

Proposition 9 (Determinisation). Any diagram �→� has a deterministic repre-
sentation.

Example 2.

a
a

a
a

b

c

→

a

ba

a

ca
=

a

b

a

c

a

a

(D1)
=

a

b

a

c
a

=:
b

c
a

a∗

a∗

(cpy)
=

b

c
a a∗
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:=
b

c
a

a

← �
a

a c

b

Dealing with useless states. Notice that our deterministic form is partial and that
the determinisation procedure disregards useless states, i.e., parts of a string di-
agram that do not reach an output wire. None of these contribute to the seman-
tics of the diagram and can be safely eliminated using Theorem 2 (del)-(co-del).

5.2 Minimisation and completeness

As explained above, our proof of completeness is a diagrammatic reformulation
of Brzozowski’s algorithm which proceeds in four steps: determinise, reverse,
determinise, reverse. We already know how to determinise a given diagram.
The other three steps are simply a matter of looking at string diagrams differ-
ently and showing that all the equations that we needed to determinise them,
can be performed in reverse.

We say that a matrix-diagram is co-deterministic if the converse of its associ-
ated transition relation is deterministic.

Proof (Theorem 1 (Completeness)). We have a procedure to show that, if �d� = �e�,
then there exists a string diagram f in normal form such that d = f = e. This
normal form is the diagrammatic counterpart of the minimal automaton asso-
ciated to d and e. In our setting, it is the deterministic representation equal to
d and e with the smallest number of states. This is unique because we can ob-
tain from it the corresponding minimal automaton, which is well-known to be
unique. First, given any string diagram we can obtain a representation for it
by Proposition 6. Then we obtain a minimal representation by splitting Brzo-
zowski’s algorithm in two steps.

1. Reverse; determinise; reverse. A close look at the determinisation procedure
shows that, at each step, the required laws all hold in reverse. For example,
we can replace every instance of (cpy) with (co-cpy). We can thus define,
in a completely analogous manner, a co-determinisation procedure which
takes care of the first three steps of Brzozowski’s algorithm, and obtain a
co-deterministic representation for the given diagram.

2. Determinise. By applying Proposition 9, we can obtain a deterministic rep-
resentation for the co-deterministic representation of the previous step. The
result is the desired minimal representation and normal form.

6 Discussion

In this paper, we have given a fully diagrammatic treatment of finite-state au-
tomata, with a finite equational theory that axiomatises them up to language
equivalence. We have seen that this allows us to decompose the regular opera-
tions of Kleene algebra, like the star, into more primitive components, resulting
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in greater modularity. In this section, we compare our contributions with re-
lated work, and outline directions for future research.

Traditionally, computer scientists have used syntax or railroad diagrams to
visualise regular expressions and context-free grammars [41]. These diagrams
resemble our very closely but have remained mostly informal More recently,
Hinze has treated the single input-output case rigorously as a pedagogical tool
to teach the correspondence between finite-state automata and regular expres-
sions [18]. He did not, however, study their equational properties.

Bloom and Ésik’s iteration theories provide a general categorical setting in
which to study the equational properties of iteration for a broad range of struc-
tures that appear in programming languages semantics [5]. They are cartesian
categories equipped with a parameterised fixed-point operation closely related
to the feedback notion we have used to represent the Kleene star. However, the
monoidal category of interest in this paper is compact-closed (only the full sub-
category over � and � to be precise), a property that is incompatible with the
existence of categorical products (any category that has both collapses to a pre-
order [30]). Nevertheless, the subcategory of left-to-right diagrams (Section 4.2)
is a (matrix) iteration theory [6], a structure that Bloom and Ésik have used to
give an (infinitary) axiomatisation of regular languages [4].

Similarly, Stefanescu’s work on network algebra provides a unified algebraic
treatment of various types of networks, including finite-state automata [39]. In
general, network algebras are traced monoidal categories where the product is
not necessarily cartesian, and therefore more general than iteration theories. In
both settings however, the trace is a global operation, that cannot be decom-
posed further into simpler components. In our work, on the other hand, the
trace can be defined from the compact-closed structure, as was depicted in (3).

Note that the compact closed subcategory in this paper can be recovered
from the traced monoidal category of left-to-right diagrams, via the Int construc-
tion [22]. Therefore, as far as mathematical expressiveness is concerned, the two
approaches are equivalent. However, from a methodological point of view, tak-
ing the compact closed structure as primitive allows for improved composition-
ality, as example (2) in the introduction illustrates. Furthermore, the compact
closed structure can be finitely presented relative to the theory of symmetric
monoidal categories, whereas the trace operation cannot. This matters greatly
in this paper, where finding a finite axiomatisation is our main concern.

Finally, the idea of treating regular expressions as a free structure acting on
a second algebraic structure also appeared in Pratt’s dynamic algebras, which
axiomatise the propositional fragment of dynamic modal logic [34]. Like our
formalism, the variety of dynamic algebras is finitely-based. But they assume
more structure: the second algebraic structure is a Boolean algebra.

In all the formalisms we have mentioned, the difficulty typically lies in cap-
turing the behaviour of iteration—whether as the star in Kleene algebra [26,4],
or a trace operator [5] in iteration theory and network algebra [39]. The axioms
should be coercive enough to force it to be the least fixed-point of the language
map L → {ε} ∪ LK. In Kozen’s axiomatisation of Kleene algebra [26] for exam-
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ple, this is through (a) the axiom 1+ ee∗ ≤ e∗ (star is a fixpoint) and (b) the Horn
clause f + ex ≤ x ⇒ e∗ f ≤ x (star is the least fixpoint). In our work, (a) is a con-
sequence of the unfolding of the star into a feedback loop and can be derived
from the other axioms. (b) is more subtle, but can be seen as a consequence
of (D1)-(D4) axioms. These allows us to (co)copy and (co)delete arbitrary di-
agrams (Theorem 2) and we conjecture that this is what forces the star to be
a single definite value, not just any fixed-point, but the least one. Making this
statement precise is the subject of future work.

The difficulty in capturing the behaviour of fixed-points is also the reason
why we decided to work with an additional red wire, to encode the action of
regular expressions on the set of languages—without it, global (co)copying and
(co)deleting (Theorem 2) cannot be reduced to the local (D1)-(D4) axioms. There
is another route, that leads to an infinitary axiomatisation: we could dispense
with the red generators altogether and take a (for a ∈ Σ) as primitive in-
stead, with global axioms to (co)copy and (co)delete arbitrary diagrams. This
would pave the way for a reformulation of our work in the context of iteration
(matrix) theories, where the ability to (co)copy and (co)delete arbitrary expres-
sions is already built-in. We leave this for future work.

There is an intriguing parallel between our case study and the positive frag-
ment of relation algebra (also known as allegories [16]). Indeed, allegories, like
Kleene algebra, do not admit a finite axiomatisation [16]. However, this result
holds for standard algebraic theories. It has been shown recently that a structure
equivalent to allegories can be given a finite axiomatisation when formulated
in terms of string diagrams in monoidal categories [9]. It seems like the greater
generality of the monoidal setting—algebraic theories correspond precisely to
the particular case of cartesian monoidal categories [11]—allows for simpler
axiomatisations in some specific cases. In the future we would like to under-
stand whether this phenomenon, of which now we have two instances, can be
understood in a general context.

Lastly, extensions of Kleene Algebra, such as Concurrent Kleene Algebra
(CKA) [19,23] and NetKAT [1], are increasingly relevant in current research.
Enhancing our theory =KDA to encompass these extensions seems a promis-
ing research direction, for two main reasons. First, the two-dimensional na-
ture of string diagrams has been proven particularly suitable to reason about
concurrency (see e.g. [7,38]), and more generally about resource exchange be-
tween processes (see e.g. [10,13,21,3,8]). Second, when trying to transfer the
good meta-theoretical properties of Kleene Algebra (like completeness and de-
cidability) to extensions such as CKA and NetKAT, the cleanest way to proceed
is usually in a modular fashion. The interaction between the new operators of
the extension and the Kleene star usually represents the greatest challenge to
this methodology. Now, in =KDA, the Kleene star is decomposable into simpler
components (see (3)) and there is only one specific axiom (C5) governing its
behaviour. We believe this is a particularly favourable starting point to modu-
larise a meta-theoretic study of CKA and NetKAT with string diagrams, taking
advantage of the results we presented in this paper for finite-state automata.



A String Diagrammatic Axiomatisation of Finite-State Automata 487

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C., Walker,
D.: Netkat: semantic foundations for networks. ACM SIGPLAN Notices 49(1), 113–
126 (2014)

2. Arden, D.N.: Delayed-logic and finite-state machines. In: 2nd Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT 1961). pp. 133–151. IEEE
(1961)

3. Baez, J.C., Fong, B.: A compositional framework for passive linear networks. Theory
& Applications of Categories 33 (2018)

4. Bloom, S.L., Ésik, Z.: Equational axioms for regular sets. Mathematical structures in
computer science 3(1), 1–24 (1993)

5. Bloom, S.L., Ésik, Z.: Iteration theories. Springer (1993)
6. Bloom, S.L., Ésik, Z.: Matrix and matricial iteration theories. Journal of Computer

and System Sciences 46(3), 381–439 (1993)
7. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic alge-
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Abstract. Which amount of parallel resources is needed for updating a
query result after changing an input? In this work we study the amount of
work required for dynamically answering membership and range queries
for formal languages in parallel constant time with polynomially many
processors. As a prerequisite, we propose a framework for specifying dy-
namic, parallel, constant-time programs that require small amounts of
work. This framework is based on the dynamic descriptive complexity
framework by Patnaik and Immerman.

Keywords: Dynamic complexity · work · parallel constant time.

1 Introduction

Which amount of parallel resources is needed for updating a query result after
changing an input, in particular if we only want to spend constant parallel time?

In classical, non-dynamic computations, parallel constant time is well under-
stood. Constant time on CRAMs, a variant of CRCW-PRAMs used by Immer-
man [15], corresponds to constant-depth in circuits, so, to the circuit class AC0,
as well as to expressibility in first-order logic with built-in arithmetic (see, for
instance, the books of Immerman [15, Theorem 5.2] and Vollmer [26, Theorems
4.69 and 4.73]). Even more, the amount of work, that is, the overall number of
operations of all processors, is connected to the number of variables required by
a first-order formula [15, Theorem 5.10].

However, the work aspect of constant parallel time algorithms is less under-
stood for scenarios where the input is subject to changes. To the best of our
knowledge, there is only little previous work on constant-time PRAMs in dy-
namic scenarios. A notable exception is early work showing that spanning trees
	 A full version of the paper is available at [21], https://arxiv.org/abs/2101.08735
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and connected components can be computed in constant time by CRCW-PRAMs
with O(n4) and O(n2) processors, respectively [24].

In an orthogonal line of research, parallel dynamic constant time has been
studied from a logical perspective in the dynamic complexity framework by Pat-
naik and Immerman [20] and Dong, Su, and Topor [7,6]. In this framework, the
update of query results after a change is expressed by first-order formulas. The
formulas may refer to auxiliary relations, whose updates in turn are also specified
by first-order formulas (see Section 3 for more details). The queries maintainable
in this fashion constitute the dynamic complexity class DynFO. Such queries can
be updated by PRAMs in constant time with a polynomial number of proces-
sors. In this line of work, the main focus in recent years has been on proving that
queries are in DynFO, and thus emphasised the constant time aspect. It has, for
instance, been shown that all context-free languages [11] and the reachability
query [5] are in DynFO.

However, if one tries to make the “DynFO approach” for dynamic problems
relevant for practical considerations, the work that is needed to carry out the
specified updates, hence the work of a parallel algorithm implementing them, is
a crucial factor. The current general polynomial upper bounds are too coarse. In
this paper, we therefore initiate the investigation of more work-efficient dynamic
programs that can be specified by first-order logic and that can therefore be
carried out by PRAMs in constant time. To do so, we propose a framework for
specifying such dynamic, parallel, constant-time programs, which is based on
the DynFO framework, but allows for more precise (and better) bounds on the
necessary work of a program.

Goal 1.1. Extend the formal framework of dynamic complexity towards the con-
sideration of parallel work.

Towards this goal, we link the framework we propose to the CRAM framework in
Section 3. In fact, the new framework also takes a somewhat wider perspective,
since it does not focus exclusively at one query under a set of change operations,
but rather considers dynamic problems that may have several change and query
operations (and could even have operations that combine the two). Therefore,
from now on we speak about dynamic problems and not about (single) queries.

Goal 1.2. Find work-efficient DynFO-programs for dynamic problems that are
known to be in DynFO (but whose dynamic programs5 are not competitive, work-
wise).

Ideally we aim at showing that dynamic problems can be maintained in
DynFO with sublinear or even polylogarithmic work. One line of attack for this
goal is to study dynamic algorithms and to see whether they can be transformed
into parallel O(1)-time algorithms with small work. There is a plethora of work

5 In the field of dynamic complexity the term “dynamic program” is traditionally used
for the programs for updating the auxiliary data after a change. The term should not
be confused with the “dynamic programming” technique used in algorithm design.
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that achieves polylogarithmic sequential update time (even though, sometimes
only amortised), see for instance [3,9,12,13]. For many of these problems, it is
known that they can be maintained in constant parallel time with polynomial
work, e.g. as mentioned above, it has been shown that connectivity and mainte-
nance of regular (and even context-free) languages is in DynFO.

In this paper, we follow this approach for dynamic string problems, more
specifically, dynamic problems that allow membership and range queries for reg-
ular and context-free languages. Our results can be summarised as follows.

We show in Section 5 that regular languages can be maintained in constant
time with O(nε) work for all ε > 0 and that for star-free languages even work
O(log n) can be achieved. These results hold for range and membership queries.

For context-free languages, the situation is not as nice, as we observe in
Section 6. We show that subject to a well-known conjecture, we cannot hope for
maintaining membership in general context-free languages in DynFO with less
than O(n1.37−ε) work. The same statement holds even for the bound O(n2−ε)
and “combinatorial dynamic programs”. For Dyck languages, that is, sets of well-
formed strings of parentheses, we show that this barrier does not apply. Their
membership problem can be maintained with O(n(log n)3) work in general, and
with polylogarithmic work if there is only one kind of parentheses. By a different
approach, range queries can be maintained with work O(n1+ε) in general, and
O(nε) for one parenthesis type.

Related work. A complexity theory of incremental time has been developed
in [19]. We discuss previous work on dynamic complexity of formal languages in
Sections 5 and 6.

2 Preliminaries

Since dynamic programs are based on first-order logic, we represent inputs like
graphs and strings as well as “internal” data structures as logical structures.

A schema τ consists of a set of relation symbols and function symbols with
a corresponding arity. A constant symbol is a function symbol with arity 0. A
structure D over schema τ with finite domain D has, for every k-ary relation
symbol R ∈ τ , a relation RD ⊆ Dk, as well as a function fD : Dk → D for every
k-ary function symbol f ∈ τ . We allow partially defined functions and write
fD(ā) = ⊥ if fD is not defined for ā in D. Formally, this can be realized using
an additional relation that contains the domain of fD. We occasionally also use
functions fD : Dk → D for some 
 > 1. Formally, such a function represents 

functions fD

1 , . . . , fD
 : Dk → D with fD(ā)

def
= (fD

1 (ā), . . . , fD
 (ā)).

Throughout this work, the structures we consider provide a linear order ≤
on their domain D. As we can thus identify D with an initial sequence of the
natural numbers, we usually just assume that D = [n]

def
= {0, . . . , n−1} for some

natural number n.
We assume familiarity with first-order logic FO, and refer to [17] for basics of

Finite Model Theory. In this paper, unless stated otherwise, first-order formulas
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always have access to a linear order on the domain, as well as compatible func-
tions + and × that express addition and multiplication, respectively. This holds
in particular for formulas in dynamic programs. We use the following “if-then-
else” construct: if ϕ is a formula, and t1 and t2 are terms, then ITE(ϕ, t1, t2) is
a term. Such a term evaluates to the result of t1 if ϕ is satisfied, otherwise to t2.

Following [11], we encode words of length (at most) n over an alphabet Σ by
word structures, that is, as relational structures W with universe {0, . . . , n− 1},
one unary relation Rσ for each symbol σ ∈ Σ and the canonical linear order ≤ on
{0, . . . , n− 1}. We only consider structures for which, for every position i, Rσ(i)
holds for at most one σ ∈ Σ and write W (i) = σ if Rσ(i) holds and W (i) = ε if
no such σ exists. We write word(W ) for the word represented by W , that is, the
concatenation w = W (0)◦ . . .◦W (n−1). As an example, the word structure W0

with domain {0, 1, 2, 3}, W (1) = a, W (3) = b and W (0) = W (2) = ε represents
the string ab. We write word(W )[
, r] for the word W (
) ◦ . . . ◦W (r).

Informally, a dynamic problem can be seen as a data type: it consists of some
underlying structure together with a set Δ of operations. We distinguish between
change operations that can modify the structure and query operations that yield
information about the structure, but combined operations could be allowed, as
well. Thus, a dynamic problem is characterised by the schema of its underlying
structures and the operations that it supports.6

In this paper, we are particularly interested in dynamic language problems,
defined as follows. Words are represented as word structures W with elementary
change operations setσ(i) (with the effect that W (i) becomes σ if it was ε before)
and reset(i) (with the effect that W (i) becomes ε).

For some fixed language L over some alphabet Σ, the dynamic problem
RangeMember(L) further supports one query operation range(
, r). It yields
the result true, if word(W )[
, r] is in L, and otherwise false.

In the following, we denote a word structure W as a sequence w0 . . . wn−1

of letters with wi ∈ Σ ∪ {ε} in order to have an easier, less formal notation.
Altogether, the dynamic problem RangeMember(L) is defined as follows.

Problem: RangeMember(L)
Input: A sequence w = w0 . . . wn−1 of letters with wi ∈ Σ ∪ {ε}

Changes: setσ(i) for σ ∈ Σ: Sets wi to σ, if wi = ε
reset(i): Sets wi to ε

Queries: range(
, r): Is w ◦ · · · ◦ wr ∈ L?

In this example, the query range maps (binary) pairs of domain elements to a
truth value and thus defines a (binary) relation over the universe of the input
word structure. We call such a query relational. We will also consider functional
queries mapping tuples of elements to elements.

Another dynamic problem considered here is Member(L) which is defined
similarly as RangeMember(L) but instead of range only has the Boolean
query operation member that yields true if w0 ◦ . . . ◦ wn−1 ∈ L holds.
6 This view is a bit broader than the traditional setting of Dynamic Complexity, where

there can be various change operations but usually only one fixed query is supported.
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3 Work-sensitive Dynamic Complexity

Since we are interested in the work that a dynamic program does, our specifica-
tion mechanism for dynamic programs is considerably more elaborated than the
one used in previous papers on dynamic complexity. We introduce the mecha-
nism in this section in two steps. First the general form of dynamic programs
and then a more pseudo-code oriented syntax. Afterwards, we discuss how these
dynamic programs translate into work-efficient constant-time parallel programs.

3.1 The Dynamic Complexity Framework

Our general form of dynamic programs mainly follows [23], but is adapted to the
slightly broader view of a dynamic problem as a data type. For a more gentle
introduction to dynamic complexity, we refer to [22].

The goal of a dynamic program for a dynamic problem Π is to support all
its operations Δ. To do so, it stores and updates an auxiliary structure A over
some schema τaux, over the same domain as the input structure I for Π.

A (first-order) dynamic program P consists of a set of (first-order) update
rules for change operations and query rules for query operations. More precisely,
a program has one query rule over schema τaux per query operation that speci-
fies how the (relational) result of that operation is obtained from the auxiliary
structure. Furthermore, for each change operation δ ∈ Δ, it has one update
rule per auxiliary relation or function that specifies the updates after a change
based on δ.

A query rule is of the form on query Q(p̄) yield ϕQ(p̄), where ϕQ is the
(first-order) query formula with free variables from p̄.

An update rule for a k-ary auxiliary relation R is of the form

on change δ(p̄) update R at (t1(p̄; x̄), . . . , tk(p̄; x̄)) as ϕR
δ (p̄; x̄) where C(x̄).

Here, ϕR
δ is the (first-order) update formula, t1, . . . , tk are first-order terms (pos-

sibly using the ITE construct) over τaux, and C(x̄), called a constraint for the
tuple x̄ = x1, . . . , x of variables, is a conjunction of inequalities xi ≤ fi(n) using
functions fi : N → N, where n is the size of the domain and 1 ≤ i ≤ 
. We
demand that all functions fi are first-order definable from + and ×.

The effect of such an update rule after a change operation δ(ā) is as follows:
the new relation RA′

in the updated auxiliary structure A′ contains all tuples
from RA that are not equal to (t1(ā; b̄), . . . , tk(ā; b̄)) for any tuple b̄ that satisfies
the constraints C; and additionally RA′

contains all tuples (t1(ā; b̄), . . . , tk(ā; b̄))
such that b̄ satisfies C and A |= ϕR

δ (ā; b̄) holds.
Phrased more operationally, an update is performed by enumerating all tu-

ples b̄ that satisfy C, evaluating ϕR
δ (ā; b̄) on the old auxiliary structure A, and

depending on the result adding the tuple (t1(ā; b̄), . . . , tk(ā; b̄)) to R (if it was
not already present), or removing that tuple from R (if it was present).

Update rules for auxiliary functions are similar, but instead of an update
formula that decides whether a tuple of the form (t1(ā; b̄), . . . , tk(ā; b̄)) is con-
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tained in the updated relation, it features an update term that determines the
new function value for a function argument of the form (t1(ā; b̄), . . . , tk(ā; b̄)).

We say that P is a dynamic program for a dynamic problem Π if it sup-
ports all its operations and, in particular, always yields correct results for query
operations. More precisely, if the result of applying a query operation after a
sequence α of change operations on an initial structure I0 yields the same result
as the evaluation of the query rule on the auxiliary structure that is obtained by
applying the update rules corresponding to the change operations in α to an ini-
tial auxiliary structure A0. Here, an initial input structure I0 over some domain
D is empty, that is, it is a structure with empty relations and with all function
values being undefined (⊥). The initial auxiliary structure A0 is over the same
domain D as I0 and is defined from I0 by some FO-definable initialization.

By DynFO, we denote the class of all dynamic problems that have a dynamic
program in the sense we just defined.

3.2 A syntax for work-efficient dynamic programs

In this paper we are particularly interested in dynamic programs that require
little work to update the auxiliary structure after every change operation and to
compute the result of a query operation. However, since dynamic programs do
not come with an execution model, there is no direct way to define, say, when a
DynFO-programs has polylogarithmic-work, syntactically.

We follow a pragmatic approach here. We define a pseudo-code-based syntax
for update and query procedures that will be used in place of the update and
query formulas in rules of dynamic programs. This syntax has three important
properties: (1) it is reasonably well readable (as opposed to strict first-order
logic formulas), (2) it allows a straightforward translation of rules into proper
DynFO-programs, and (3) it allows to associate a “work-bounding function” to
each rule and to translate it into a PRAM program with O(1) parallel time and
work bounded by this function.

The syntax of the pseudo-code has similarities with Abstract State Ma-
chines [4] and the PRAM-syntax of [16]. For simplicity, we describe a minimal
set of syntactic elements that suffice for the dynamic programs in this paper.
We encourage readers to have a look at Section 4 for examples of update rules
with pseudo-code syntax.

We only spell out a syntax for update procedures that can be used in place
of the update formula ϕR

δ (p̄; x̄) of an update rule

on change δ(p̄) update R at (t1(p̄; x̄), . . . , tk(p̄; x̄)) as ϕR
δ (p̄; x̄) where C(x̄).

Query procedures are defined similarly, but they can not invoke any change
operations for supplementary instances, and their only free variables are from p̄.

We allow some compositionality: a dynamic program on some main instance
can use supplementary instances of other dynamic problems and invoke change
or query operations of other dynamic programs on those instances. These sup-
plementary instances are declared on a global level of the dynamic program and
each has an associated identifier.
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Update procedures P = P1;P2 consist of two parts. In the initial procedure
P1 no reference to the free variables from x̄ are allowed, but change operations
for supplementary instances can be invoked. We require that, for each change
operation δ of the main instance and each supplementary instance S, at most
one update rule for δ invokes change operations for S.

In the main procedure P2, no change operations for supplementary instances
can be invoked, but references to x̄ are allowed.

More precisely, both P1 and P2 can use (a series of) instructions of the
following forms:

– assignments f(ȳ)← term of a function value,
– assignments R(ȳ)← condition of a Boolean value,
– conditional branches if condition then P ′ else P ′′, and
– parallel branches for z ≤ g(n) pardo P ′.

Semantically, here and in the following n always refers to the size of the
domain of the main instance. The initial procedure P1 can further use change
invocations instance.δ(ȳ). However, they are not allowed in the scope of parallel
branches. And we recall that in P1 no variables from x̄ can be used.

The main procedure P2 can further use return statements return condition
or return term, but not inside parallel branches.

Of course, initial procedures can only have initial procedures P ′ and P ′′ in
conditional and parallel branches, and analogously for main procedures.

Conditions and terms are defined as follows. In all cases, ȳ denotes a tuple
of terms and z is a local variable, not occurring in p̄ or x̄. In general, a term
evaluates to a domain element (or to ⊥). It is built from

– local variables and variables from p̄ and x̄,
– function symbols from τaux and previous function assignments,
– if-then-else terms if condition then term′ else term′′,
– functional queries instance.Q(ȳ), and
– expressions getUnique(z ≤ g(n) | condition).

For the latter expression it is required that there is always exactly one domain
element a ≤ g(n) satisfying condition.

A condition evaluates to true or false. It may be

– an atomic formula with relation symbols from τaux or previous assignments,
with terms as above,

– an expression exists(z ≤ g(n) | condition),
– a relational query instance.Q(ȳ) with terms ȳ, and
– a Boolean combination of conditions.

All functions g : N → N in these definitions are required to be FO-definable.
For assignments of relations R and functions f we demand that these symbols
do not appear in τaux. If an assignment with a head f(ȳ) or R(ȳ) occurs in the
scope of a parallel branch that binds variable z, then z has to occur as a term yi
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in ȳ. We further demand that update procedures are well-formed, in the sense
that every execution path ends with a return statement of appropriate type.

In our pseudo-code algorithms, we display update procedures P = P1;P2

with initial procedure P1 and main procedure P2 as
on change δ(p̄) with P1

update R at (t1(p̄, x̄), . . . , tk(p̄, x̄)), for all C(x̄), by: P2.

to emphasise that P1 only needs to be evaluated once for the update of R, and
not once for every different value of x̄.

In a nutshell, the semantics of an update rule

on change δ(p̄) update R at (t1(p̄; x̄), . . . , tk(p̄; x̄)) as P where C(x̄)

is defined as in Subsection 3.1, but A |= ϕR
δ (ā, b̄) has to be replaced by the

condition that P returns true under the assignment (p̄ → ā; x̄ → b̄).
For update rules for auxiliary functions, P returns the new function value

instead of a Boolean value.
Since P1 is independent of x̄, in the semantics, it is only evaluated once. In

particular, any change invocations are triggered only once.
With Procedural-DynFO-programs we refer to the above class of dynamic

update programs. Here and later we will introduce abbreviations as syntactic
sugar, for example the sequential loop for z ≤ m do P , where m ∈ N needs to
be a fixed natural number.

We show next that update and query procedures can be translated into
constant-time CRAM programs. Since the latter can be translated into FO-
formulas [14, Theorem 5.2], therefore Procedural-DynFO-programs can be trans-
lated in DynFO-programs.

3.3 Implementing Procedural-DynFO-programs as PRAMs

We use Parallel Random Access Machines (PRAMs) as the computational model
to measure the work of our dynamic programs. A PRAM consists of a number
of processors that work in parallel and use a shared memory. We only consider
CRAMs, a special case of Concurrent-Read Concurrent-Write model (CRCW
PRAM), i.e. processors are allowed to read and write concurrently from and
to the same memory location, but if multiple processors concurrently write the
same memory location, then all of them need to write the same value. For an
input of size n we denote the time that a PRAM algorithm needs to compute
the solution as T (n). The work W (n) of a PRAM algorithm is the sum of the
number of all computation steps of all processors made during the computation.
For further details we refer to [14,16].

It is easy to see that Procedural-DynFO programs P can be translated into
O(1)-time CRAM-programs C. To be able to make a statement about (an upper
bound of) the work of C, in the full version of this paper we associate a function
w with update rules and show that every update rule π can be implemented by
a O(1)-time CRAM-program with work O(w). Likewise for query rules.
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In a nutshell, the work of an update procedure mainly depends on the scopes
of the (nested) parallel branches and the amount of work needed to query and
update the supplementary instances. The work of a whole update rule is then
determined by adding the work of the initial procedure once and adding the
work of the main procedure for each tuple that satisfies the constraint of the
update rule.

4 A simple work-efficient Dynamic Program

In this section we consider a simple dynamic problem with a fairly work-efficient
dynamic program. It serves as an example for our framework but will also be
used as a subroutine in later sections.

The dynamic problem is to maintain a subset K of an ordered set D of
elements under insertion and removal of elements in K, allowing for navigation
from an element of D to the next larger and smaller element in K. That is, we
consider the following dynamic problem:

Problem: NextInK
Input: A set K ⊆ D with canonical linear order ≤ on D

Changes: ins(i): Inserts i ∈ D into K
del(i): Deletes i ∈ D from K

Queries: pred(i): Returns predecessor of i in K, i.e. max{j ∈ K | i > j}
succ(i): Returns successor of i in K, i.e. min{j ∈ K | i < j}

For the smallest (largest) element the result of a pred (succ) query is unde-
fined, i.e. ⊥. For simplicity, we assume in the following that D is always of the
form [n], for some n ∈ N.

Sequentially, the changes and queries of NextInK can be handled in sequen-
tial time O(log log n) [9]. Here we show that the problem also has a dynamic
program with parallel time O(1) and work O(log n).

Lemma 4.1. There is a DynFO-program for NextInK with O(log n) work per
change and query operation.

Proof. The dynamic program uses an ordered binary balanced tree T with leave
set [n], and with 0 as its leftmost leaf. Each inner node v represents the interval
S(v) of numbers labelling the leafs of the subtree of v. To traverse the tree,
the dynamic program uses functions 1st and 2nd that map an inner node to its
first or second child, respectively, and a function anc(v, j) that returns the j-th
ancestor of v in the tree.7 So, anc(v, 2) returns the parent of the parent of v.

The functions 1st, 2nd and anc are static, that is, they are initialized before-
hand and not affected by change operations.

7 Formally, the 2|D| nodes of T can be represented by pairs (a, b) of elements. In our
presentation, we disregard these technical issues and use nodes of T just as domain
elements.
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Algorithm 1 Querying a successor.
1: on query succ(i):
2: if max(T.root) ≤ i then
3: return ⊥
4: else
5: k ← getUnique(1 ≤ k ≤ log(n) | max(T.anc(i, k)) > i)
6: ∧ max(T.anc(i, k − 1)) ≤ i
7: return min(T.2nd(T.anc(i, k)))

Algorithm 2 Updating min after an insertion.
1: on change ins(i) update min at T.anc(i, k), for all k ≤ log n, by:
2: v ← T.anc(i, k)
3: if min(v) > i then
4: return i
5: else
6: return min(v)

The idea of the dynamic program is to maintain, for each node v, the max-
imal and minimal element in K ∩ S(v) (which is undefined if K ∩ S(v) = ∅),
by maintaining two functions min and max. It is easy to see that this informa-
tion can be updated and queries be answered in O(log n) time as the tree has
depth O(log n). For achieving O(log n) work and constant time, we need to have
a closer look.

Using min and max, it is easy to determine the K-successor of an ele-
ment i ∈ D: if v is the lowest ancestor of i with max(v) > i, then the K-successor
of i is min(w) for the second child w

def
= 2nd(v) of v. Algorithm 1 shows a query

rule for the query operation succ(i). The update of these functions is easy when
an element i is inserted into K. This is spelled out for min in Algorithm 2. The
dynamic program only needs to check if the new element becomes the minimal
element in S(v), for every node v that is an ancestor of the leaf i.

Algorithm 3 shows how min can be updated if an element i is deleted from K:
if i is the minimal element of K in S(v), for some node v, then min(v) needs to
be replaced by its K-successor, assuming it is in S(v).

It is easy to verify the claimed work upper bounds for P. Querying a suc-
cessor or predecessor via Algorithm 1 needs O(log n) work, since Line 6 requires
O(log n) and all others require O(1) work. For maintaining the function min
the programs in Algorithms 2 and 3 update the value of log n tuples, but the
work per tuple is constant. In the case of a deletion, Line 3 requires O(log n)
work but is executed only once. The remaining part consists of O(log n) parallel
executions of statements, each with O(1) work.

The handling of max and its work analysis is analogous. ��
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Algorithm 3 Updating min after a deletion.
1: on change del(i)
2: with
3: s ← succ(i)
4: update min at T.anc(i, k), for all k ≤ log n, by:
5: v ← T.anc(i, k)
6: if min(v) �= i then
7: return min(v)
8: else if max(v) = i then
9: return ⊥

10: else
11: return s

5 Regular Languages

In this section, we show that the range problem can be maintained with o(n) work
for all regular languages and with polylogarithmic work for star-free languages.
For the former we show how to reduce the work of a known DynFO-program.
For the latter we translate the idea of [9] for maintaining the range problem for
star-free languages in O(log log n) sequential time into a dynamic program with
O(1) parallel time.

5.1 DynFO-programs with sublinear work for regular languages

Theorem 5.1. Let L be a regular language. Then RangeMember(L) can be
maintained in DynFO with work O(nε) per query and change operation, for every
ε > 0.

The proof of this theorem makes use of the algebraic view of regular lan-
guages. For readers not familiar with this view, the basic idea is as follows: for a
fixed DFA A = (Q,Σ, δ, q0, F ), we first associate with each string w a function
fw on Q that is induced by the behaviour of A on w via fw(q)

def
= δ∗(q, w),

where δ∗ is the extension of the transition function δ to strings. The set of all
functions f : Q → Q with composition as binary operation is a monoid, that is,
a structure with an associative binary operation ◦ and a neutral element, the
identity function. Thus, composing the effect of A on subsequent substrings of
a string corresponds to multiplication of the monoid elements associated with
these substrings. The syntactic monoid M(L) of a regular language L is basically
the monoid associated with its minimal automaton.

It is thus clear that, for the dynamic problem RangeMember(L) where L
is regular, a dynamic program can be easily obtained from a dynamic program
for the dynamic problem RangeEval(M(L)), where RangeEval(M), for finite
monoids M , is defined as follows.8

8 We note that, unlike for words, each position always carries a monoid element.
However, the empty string of the word case corresponds to the neutral element in
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Problem: RangeEval(M)
Input: A sequence m0 . . .mn−1 of monoid elements mi ∈ M

Changes: setm(i) for m ∈ M : Replaces mi by m
Queries: range(
, r): m ◦ · · · ◦mr

For the proof of Theorem 5.1 we do not need any insights into monoid the-
ory. However, when studying languages definable by first-order formulas in The-
orem 5.3 below, we will make use of a known decomposition result.

From the discussion above it is now clear that in order to prove Theorem 5.1,
it suffices to prove the following result.

Proposition 5.2. Let M be a finite monoid. For every ε > 0, RangeEval(M)
can be maintained in DynFO with work O(nε) per query and change operation.

Proof sketch. In [11], it was (implicitly) shown that RangeMember(L) is in
DynProp (that is, quantifier-free DynFO), for regular languages L. The idea was
to maintain the effect of a DFA for L on w[
, r], for each interval (
, r) of positions.
This approach can be easily used for RangeEval(M) as well, but it requires a
quadratic number of updates after a change operation, in the worst case.

We adapt this approach and only store the effect of the DFA for O(nε)
intervals, by considering a hierarchy of intervals of bounded depth.

The first level in the hierarchy of intervals is obtained by decomposing the
input sequence into intervals of length t, for a carefully chosen t. We call these
intervals base intervals of height 1 and their subintervals special intervals of
height 1. The latter are special in the sense that they are exactly the intervals
for which the dynamic program maintaines the product of monoid elements. In
particular, each base interval of height 1 gives rise to O(t2) special intervals
of height 1. The second level of the hierarchy is obtained by decomposing the
sequence of base intervals of height 1 into sequences of length t. Each such
sequence of length t is combined to one base interval of height 2; and each
contiguous subsequence of such a sequence is combined to one special interval
of height 2. Again, each base interval of height 2 gives rise to O(t2) special
intervals of height 2. This process is continued recursively for the higher levels
of the hierarchy, until only one base interval of height h remains. We refer to
Figure 1 for an illustration of this construction.

The splitting factor t is chosen in dependence of n and ε such that the height
of this hierarchy of special intervals only depends on ε and is thus constant for
all n. More precisely, we fix λ

def
= ε

2 and t
def
= nλ. Therefore, h = logt(n) =

1
λ .

The idea for the dynamic program is to store the product of monoid elements
for each special interval. The two crucial observations are then, that (1) the
product of each (not necessary special) interval can be computed with the help
of a constant number of special intervals, and (2) that each change operation
affects at most t2 special intervals per level of the hierarchy and thus at most
ht2 ∈ O(nε) special intervals in total. We refer to the full version for more details.

��
the monoid case. In particular, the initial “empty” sequence consists of n copies of
the neutral element.
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m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10m11m12m13m14m15m16m17m18m19m20m21m22m23m24m25m26

level 1

level 2

level 3

Fig. 1. Illustration of special intervals, for t = 3. The special intervals of level 3
are [0, 9), [9, 18), [18, 27), [0, 18) and [9, 27) with base interval [0, 27). The result of a
query range(2, 22) can be computed as

∏22
i=2 mi =

(
m[2, 3) ◦ m[3, 9)

) ◦ m[9, 18) ◦(
m[18, 21)◦m[21, 23)

)
, illustrated above in blue. The affected base intervals for a change

at position 23 are marked in red. E.g., the new product m′[18, 27) can be computed by
m′[18, 27) = m[18, 21) ◦m′[21, 24) ◦m[24, 27). As the products are recomputed bottom
up, m′[21, 24) is already updated.

5.2 DynFO-programs with polylogarithmic work for star-free
languages

Although the work bound of Theorem 5.1 for regular languages is strongly sublin-
ear, one might aim for an even more work-efficient dynamic program, especially,
since RangeMember(L) can be maintained sequentially with logarithmic up-
date time for regular languages [9]. We leave it as an open problem whether for
every regular language L there is a DynFO-program for RangeMember(L) with
a polylogarithmic work bound. However, we show next that such programs exist
for star-free regular languages, in fact they even have a logarithmic work bound.
The star-free languages are those that can be expressed by regular expressions
that do not use the Kleene star operator but can use complementation.

Theorem 5.3. Let L be a star-free regular language. Then RangeMember(L)
can be maintained in DynFO with work O(log n) per query and change operation.

It is well-known that star-free regular languages are just the regular languages
that can be defined in first-order logic (without arithmetic!) [18]. Readers might
ask why we consider dynamic first-order maintainability of a problem that can
actually be expressed in first-order logic. The key point is the parallel work here:
even though the membership problem for star-free languages can be solved by a
parallel algorithm in time O(1), it inherently requires parallel work Ω(n).

Proof sketch. The proof uses the well-known connection between star-free lan-
guages and group-free monoids (see, e.g., [25, Chapter V.3] and [25, Theorem
V.3.2]). It thus follows the approach of [9].

In a nutshell, our dynamic program simply implements the algorithms of the
proof of Theorem 2.4.2 in [9]. Those algorithms consist of a constantly bounded
number of simple operations and a constantly bounded number of searches for
a next neighbour in a set. Since the latter can be done in DynFO with work
O(log n) thanks to Lemma 4.1, we get the desired result for group-free monoids
and then for star-free languages. We refer to the full version for more details.

��
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6 Context Free Languages

As we have seen in Section 5, range queries to regular languages can be main-
tained in DynFO with strongly sublinear work. An immediate question is whether
context-free languages are equally well-behaved. Already the initial paper by Pat-
naik and Immerman showed that DynFO can maintain the membership problem
for Dyck languages Dk, for k ≥ 1, that is, the languages of well-balanced paren-
theses expressions with k types of parentheses [20]. It was shown afterwards in
[11, Theorem 4.1] that DynFO actually captures the membership problem for all
context-free languages and that Dyck languages even do not require quantifiers
in formulas (but functions in the auxiliary structure) [11, Proposition 4.4]. These
results can easily be seen to apply to range queries as well. However, the dynamic
program of [11, Theorem 4.1] uses 4-ary relations and three nested existential
quantifiers, yielding work in the order of n7.

In the following, we show that the membership problem for context-free lan-
guages is likely not solvable in DynFO with sublinear work, but that the Dyck
language D1 with one bracket type can be handled with polylogarithmic work
for the membership problem and work O(nε) for the range problem, and that
for other Dyck languages these bounds hold with an additional linear factor n.

6.1 A conditional lower bound for context-free languages

Our conditional lower bound for context-free languages is based on a result
from Abboud et al. [2] and the simple observation that the word problem for a
language L can be solved, given a dynamic program for its membership problem.

Lemma 6.1. Let L be a language. If Member(L) can be maintained in DynFO
with work f(n), then the word problem for L can be decided sequentially in time
O(n · f(n)).

The announced lower bound is relative to the following conjecture [1].

Conjecture 6.2 (k-Clique conjecture). For any ε > 0, and k ≥ 3, k-Clique has no
algorithm with time bound O(n(1−ε)ω

3 k).

Here, ω is the matrix multiplication exponent [10,27], which is known to be
smaller than 2.373 and believed to be exactly two [10,27].

In [2], the word problem for context-free languages was linked to the k-Clique
problem as follows.

Theorem 6.3 ([2, Theorem 1.1]). There is a context free grammar G such
that, if the word problem for L(G) can be solved in time T (n), k-Clique can be
solved on n node graphs in O(T (n

k
3+1)) time, for any k ≥ 3.

Putting Lemma 6.1 and Theorem 6.3 together, we get the following result.

Theorem 6.4. There is a context free grammar G such that, if the membership
problem for L(G) can be solved by a DynFO-program with work O(nω−1−ε), for
some ε > 0, then the k-Clique conjecture fails.
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The simple proofs of Lemma 6.1 and Theorem 6.4 are presented in the full
version.

Thus, we can not reasonably expect any DynFO-programs for general context-
free languages with considerable less work than O(n1.37) barring any break-
throughs for matrix multiplication. In fact, for “combinatorial DynFO-programs”,
an analogous reasoning yields a work lower bound of O(n2−ε).

6.2 On work-efficient dynamic programs for Dyck languages

We next turn to Dyck languages. Clearly, all Dyck languages are deterministic
context-free, their word problem can therefore be solved in linear time, and
thus the lower bound approach of the previous subsection does not work for
them. We first present the DynFO-program with polylogarithmic work for the
membership problem of D1. It basically mimics the sequential algorithm from [8]
that maintains D1 sequentially in time O(log n), per change and query operation.

Theorem 6.5. Member(D1) can be maintained in DynFO with O((log n)3)
work.

Proof sketch. Let Σ1 = {〈, 〉} be the alphabet underlying D1. The dynamic
program uses an ordered binary tree T such that each leaf corresponds to one
position from left-to right. A parent node corresponds to the set of positions of
its children. We assume for simplicity that the domain is [n], for some number n
that is a power of 2. In a nutshell, the program maintains for each node x of T
the numbers 
(x) and r(x) that represent the number of unmatched closing and
unmatched opening brackets of the string str(x) corresponding to x via the leaves
of the induced subtree at x. E.g., if that string is 〉〈〉〉〈〈〉 for x, then 
(x) = 2 and
r(x) = 1. The overall string w is in D1 exactly if r(root) = 
(root) = 0.

In the algorithm of [8], the functions 
 and r are updated in a bottom-up fash-
ion. However, we will observe that they do not need to be updated sequentially
in that fashion, but can be updated in parallel constant time. In the following,
we describe how P can update 
(x) and r(x) for all ancestor nodes x of a posi-
tion p, after a closing parenthesis 〉 was inserted at p. Maintaining 
 and r for
the other change operations is analogous.

There are two types of effects that an insertion of a closing parenthesis could
have on x: either 
(x) is increased by one and r(x) remains unchanged, or r(x)
is decreased by one and 
(x) remains unchanged. We denote these effects by the
pairs (+1, 0) and (0,−1), respectively.

Table 1 shows how the effect of a change at a position p below a node x
with children y1 and y2 relates to the effect at the affected child. This depends
on whether r(y1) ≤ 
(y2) and whether the affected child is y1 or y2. A closer
inspection of Table 1 reveals a crucial observation: in the upper left and the
lower right field of the table, the effect on x is independent of the effect on the
child (being it y1 or y2). That is, these cases induce an effect on x independent of
the children. We thus call these cases effect-inducing. In the other two fields, the
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p is in str(y1) p is in str(y2)

r(y1) ≤ �(y2)
(+1, 0) → (+1, 0)
(0,−1) → (+1, 0)

(+1, 0) → (+1, 0)
(0,−1) → (0,−1)

r(y1) > �(y2)
(+1, 0) → (+1, 0)
(0,−1) → (0,−1)

(+1, 0) → (0,−1)
(0,−1) → (0,−1)

Table 1. The effect on x after a closing parenthesis was inserted at position p. The
effects depend on the effect on the children y1 and y2 of x: for example, an entry
’(0,−1) → (+1, 0)’ in the column ’p is in str(y1)’ means that if the change operation
has effect (0,−1) on y1 then the change operation has effect (+1, 0) on x.

effect on x depends on the effect at the child, but in the simplest possible way:
they are just the same. That is the effect at the child is just adopted by x. We
call these cases effect-preserving. To determine the effect at x it is thus sufficient
to identify the highest affected descendant node z of x, where an effect-inducing
case applies, such that for all intermediate nodes between x and z only effect-
preserving cases apply.

Our dynamic program implements this idea. First it determines, for each
ancestor x of the change position p, whether it is effect-inducing and which
effect is induced. Then it identifies, for each x, the node z (represented by its
height i above p) as the unique effect-inducing node that has no effect-inducing
node on its path to x. The node z can be identified with work O((log n)2), as
z is one of at most log n many nodes on the path from x to the leaf of p, and
one needs to check that all nodes between x and z are effect-preserving. As the
auxiliary relations need to be updated for log n many nodes, the overall work of
P is O((log n)3). We refer to the full version for more details. ��

A work-efficient dynamic program for range queries for D1 and Dk

Unfortunately, the program of Theorem 6.5 does not support range queries,
since it seems that one would need to combine the unmatched parentheses of
log n many nodes of the binary tree in the worst case. However, its idea can be
combined with the idea of Proposition 5.2, yielding a program that maintains 

and r for O(nε) special intervals on a constant number of levels.

In fact, this approach even works for Dk for k > 1. Indeed, with the help
of 
 and r, it is possible to identify for each position of an opening parenthesis
the position of the corresponding closing parenthesis in O(1) parallel time with
work nε, and then one only needs to check that they match everywhere. The
latter contributes an extra factor O(n) to the work, for k > 1, but can be
skipped for k = 1.

Theorem 6.6. For all ε > 0, k > 1,

a) RangeMember(D1) can be maintained in DynFO with O(nε) work, and
b) RangeMember(Dk) can be maintained in DynFO with O(nε) work per

change operation and O(n1+ε) work per query operation.
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Proof sketch. In the following we reuse the definition of special intervals from
the proof of Proposition 5.2 as well as the definition of 
 and r from the proof of
Proposition 6.5. We first describe a dynamic program for RangeMember(D1).
It maintains 
 and r for all special intervals, which is clearly doable with O(nε)
work per change operation. Similar to the proof of Proposition 5.2, the two
crucial observations (justified in the full version) are that (1) a range query can
be answered with the help of a constant number of special intervals, and (2) the
change operation affects only a bounded number of special intervals per level.

As stated before, the program for RangeMember(Dk) also maintains 

and r, but it should be emphasised that also in the case of several parenthe-
sis types, the definition of these functions ignores the bracket type. With that
information it computes, for each opening bracket the position of its matching
closing bracket, with the help of 
 and r, and checks that they match. This can
be done in parallel and with work O(nε) per position. We refer to the full version
for more details. ��

Moderately work-efficient dynamic programs for Dk We now turn to the
membership query for Dk with k > 1. Again, our program basically mimics the
sequential algorithm from [8] which heavily depends on the dynamic problem
StringEquality that asks whether two given strings are equal.

Problem: StringEquality
Input: Two Sequences u = u0 . . . un−1 and v = v0 . . . vn−1 of letters

with ui, vi ∈ Σ ∪ {ε}
Changes: setx,σ(i) for σ ∈ Σ, x ∈ {u, v}: Sets xi to σ, if xi = ε

resetx(i) for x ∈ {u, v}: Sets xi to ε
Queries: equals: Is u0 ◦ . . . ◦ un−1 = v0 ◦ . . . ◦ vn−1?

It is easy to show that a linear amount of work is sufficient to maintain
StringEquality.

Lemma 6.7. StringEquality is in DynFO with work O(n).

Because of the linear work bound for StringEquality our dynamic program
for Member(Dk) also has a linear factor in the work bound.

Theorem 6.8. Member(Dk) is maintainable in DynFO with work O(n log n+
(log n)3) for every fixed k ∈ N.

Proof sketch. The program can be seen as an extension of the program for
Member(D1). As unmatched parentheses are no longer well-defined if we have
more than one type of parenthesis the idea of [8] is to maintain the parentheses
to the left and right that remain if we reduce the string by matching opening and
closing parentheses regardless of their type. To be able to answer Member(Dk),
the dynamic program maintains the unmatched parentheses for every node x of
a tree spanning the input word, and a bit M(x) that indicates whether the types
of the parentheses match properly.
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How the unmatched parentheses can be maintained for a node x after a
change operation depends on the “segment” of str(x) in which the change hap-
pened and in some cases reduces to finding a node z with a local property on
the path from x to the leaf that corresponds to the changed position.

To update M(x) for a node x with children y1 and y2 the dynamic program
compares the unmatched parentheses to the right of y1 with the ones to the left
of y2 using StringEquality. We refer to the full version for more details. ��

Maintaining string equality and membership in Dk for k > 1 is even closer
related which is stated in the following lemma.

Lemma 6.9. a) If StringEquality can be maintained in DynFO with work
W (n) then Member(Dk) can be maintained in DynFO with work O(W (n) ·
log n+ (log n)3), for each k ≥ 1.

b) If Member(Dk) can be maintained in DynFO with work W (n) for all k, then
StringEquality can be maintained in DynFO with work O(W (n)).

7 Conclusion

In this paper we proposed a framework for studying the aspect of work for
the dynamic, parallel complexity class DynFO. We established that all regular
languages can be maintained in DynFO with O(nε) work for all ε > 0, and even
with O(log n) work for star-free regular languages. For context-free languages
we argued that it will be hard to achieve work bounds lower than O(nω−1−ε) in
general, where ω is the matrix multiplication exponent. For the special case of
Dyck languages Dk we showed that O(n · (log n)3) work suffices, which can be
further reduced to O(log3 n) work for D1. For range queries, dynamic programs
with work O(n1+ε) and O(nε) exist, respectively.

We highlight some research directions. One direction is to improve the upper
bounds on work obtained here. For instance, it would be interesting to know
whether all regular languages can be maintained with polylog or even O(log n)
work and how close the lower bounds for context-free languages can be matched.
Finding important subclasses of context-free languages for which polylogarithmic
work suffices is another interesting question. Apart from string problems, many
DynFO results concern problems on dynamic graphs, especially the reachability
query [5]. How large is the work of the proposed dynamic programs, and are
more work-efficient dynamic programs possible?

The latter question also leads to another research direction: to establish fur-
ther lower bounds. The lower bounds obtained here are relative to strong con-
jectures. Absolute lower bounds are an interesting goal which seems in closer
reach than lower bounds for DynFO without bounds on the work.
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Abstract. We extend the L	 algorithm to learn bimonoids recognising
pomset languages. We then identify a class of pomset automata that
accepts precisely the class of pomset languages recognised by bimonoids
and show how to convert between bimonoids and automata.

1 Introduction

Automata learning algorithms are useful in automated inference of models, which
is needed for verification of hardware and software systems. In active learning,
the algorithm interacts with a system through tests and observations to produce
a model of the system’s behaviour. One of the first active learning algorithms
proposed was L
, due to Dana Angluin [2], which infers a minimal deterministic
automaton for a target regular language. L
 has been used in a range of verifica-
tion tasks, including learning error traces in a program [5]. For more advanced
verification tasks, richer automata types are needed and L
 has been extended
to e.g. input-output [1], register [20], and weighted automata [16]. None of the
existing extensions can be used in analysis of concurrent programs.

Partially ordered multisets (pomsets) [13,12] are basic structures used in
the modeling and semantics of concurrent programs. Pomsets generalise words,
allowing to capture both the sequential and the parallel structure of a trace in a
concurrent program. Automata accepting pomset languages are therefore useful
to study the operational semantics of concurrent programs—see, for instance,
work on concurrent Kleene algebra [17,26,21,24].

In this paper, we propose an active learning algorithm for a class of pomset
automata. The approach is algebraic: we consider languages of pomsets recog-
nised by bimonoids [28] (which we shall refer to as pomset recognisers). This can
be thought of as a generalisation of the classical approach to language theory of
using monoids as word acceptors: bimonoids have an extra operation that mod-
els parallel composition in addition to sequential. The two operations give rise
to a complex branching structure that makes the learning process non-trivial.
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The key observation is that pomset recognisers are tree automata whose alge-
braic structure satisfies additional equations. We extend tree automata learning
algorithms [7,8,31] to pomset recognisers. The main challenge is to ensure that
intermediate hypotheses in the algorithm are valid pomset recognisers, which is
essential in practical scenarios where the learning process might not run to the
very end, returning an approximation of the system under learning. This requires
equations of bimonoids to be correctly propagated and preserved in the core data
structure of the algorithm—the observation table. The proof of termination, in
analogy to L
, relies on the existence of a canonical pomset recogniser of a lan-
guage, which is based on its syntactic bimonoid. The steps of the algorithm
provide hypotheses that get closer in size to the canonical recogniser.

Finally, we bridge the learning algorithm to pomset automata [21,22] by
providing two constructions that enable us to seamlessly move between pomset
recognisers and pomset automata. Note that although bimonoids provide a useful
formalism to denote pomset languages, which is amenable to the design of the
learning algorithm, they enforce a redundancy that is not present in pomset
automata: whereas a pomset automaton processes a pomset from left to right in
sequence, one letter per branch at a time, a bimonoid needs to be able to take
the pomset represented as a binary tree in any way and process it bottom-up.
This requirement of different decompositions leading to the same result makes
bimonoids in general much larger than pomset automata and hence the latter
are, in general, a more efficient representation of a pomset language.

The rest of the paper is organised as follows. We conclude this introductory
section with a review of relevant related work. Section 2 contains the basic defi-
nitions on pomsets and pomset recognisers. The learning algorithm for pomset
recognisers appears in Section 3, including proofs to ensure termination and in-
variant preservation. Section 4 presents constructions to translate between (a
class of) pomset automata and pomset recognisers. We conclude with discussion
of further work in Section 5. Omitted proofs appear in the extended version [15].

Related Work. There is a rich literature on adaptations and extensions of L


from deterministic automata to various kinds of models, see, e.g., [34,18] for an
overview. To the best of our knowledge, this paper is the first to provide an
active learning algorithm for pomset languages recognised by finite bimonoids.

Our algorithm learns an algebraic recogniser. Urbat and Schröder [33] pro-
vide a very general learning approach for languages recognised by algebras for
monads [4,32], based on a reduction to categorical automata, for which they
present an L
-type algorithm. Their reduction gives rise to an infinite alphabet
in general, so tailored work is needed for deriving algorithms and finite represen-
tations. This can be done for instance for monoids, recognising regular languages,
but it is not clear how this could extend to pomset recognisers. We present a
direct learning algorithm for bimonoids, which does not rely on any encoding.

Our concrete learning algorithm for bimonoids is closely related to learn-
ing approaches for bottom-up tree automata [7,8,31]: pomset languages can be
viewed as tree languages satisfying certain equations. Incorporating these equa-
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tions turned out to be a non-trivial task, which requires additional checks on the
observation table during execution of the algorithm.

Conversion between recognisers and automata for a pomset language was first
explored by Lodaya and Weil [28,27]. Their results relate the expressive power of
these formalisms to sr-expressions. As a result, converting between recognisers
and automata using their construction uses an sr-expression as an intermediate
representation, increasing the resulting state space. Our construction, however,
converts recognisers directly to pomset automata, which keeps the state space
relatively small. Moreover, Lodaya and Weil work focus on pomset languages
of bounded width, i.e., with an upper bound on the number of parallel events.
In contrast, our conversions work for all recognisable pomset languages (and a
suitable class of pomset automata), including those of unbounded width.

Ésik and Németh [9] considered automata and recognisers for biposets, i.e.,
sp-pomsets without commutativity of parallel composition. They equate lan-
guages recognised by bisemigroups (bimonoids without commutativity or units)
with those accepted by parenthesizing automata. Our equivalence is similar in
structure, but relates a subclass of pomset automata to bimonoids instead. The
results in this paper can easily be adapted to learn representations of biposet
languages using bisemigroups, and convert those to parenthesizing automata.

2 Pomset Recognisers

Throughout this paper we fix a finite alphabet Σ and assume � �∈ Σ. When
defining sets parameterised by a set X, say S(X), we may use S to refer to S(Σ).

We recall pomsets [12,13], a generalisation of words that model concurrent
traces. A labelled poset over X is a tuple u = 〈Su,≤u, λu〉, where Su is a finite set
(the carrier of u), ≤u is a partial order on Su (the order of u), and λu : Su → X
is a function (the labelling of u). Pomsets are labelled posets up to isomorphism.

Definition 1 (Pomsets). Let u,v be labelled posets over X. An embedding
of u in v is an injection h : Su → Sv such that λv ◦ h = λu and s ≤u s′ if and
only if h(s) ≤v h(s′). An isomorphism is a bijective embedding whose inverse is
also an embedding. We say u is isomorphic to v, denoted u ∼= v, if there exists
an isomorphism between u and v. A pomset over X is an isomorphism class of
labelled posets over X, i.e., [v] = {u : u ∼= v}. When u = [u] and v = [v] are
pomsets, u is a subpomset of v when there exists an embedding of u in v.

When two pomsets are in scope, we tacitly assume that they are represented
by labelled posets with disjoint carriers. We write 1 for the empty pomset. When
a ∈ X, we write a for the pomset represented by the labelled poset whose sole
element is labelled by a. Pomsets can be composed in sequence and in parallel:

Definition 2 (Pomset composition). Let u = [u] and v = [v] be pomsets
over X. We write u ‖ v for the parallel composition of u and v, which is the
pomset over X represented by the labelled poset

u ‖ v = 〈Su ∪ Sv, ≤u ∪ ≤v, λu ∪ λv〉
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Similarly, we write u · v for the sequential composition of u and v, that is, the
pomset represented by the labelled poset

u · v = 〈Su ∪ Sv, ≤u ∪ ≤v ∪ Su × Sv, λu ∪ λv〉

We may elide the dot for sequential composition, for instance writing ab for a ·b.

The pomsets we use can be built using sequential and parallel composition.

Definition 3 (Series-parallel pomsets). The set of series-parallel pomsets
(sp-pomsets) over X, denoted SP(X), is the smallest set such that 1 ∈ SP(X)
and a ∈ SP(X) for every a ∈ X, closed under parallel and sequential composition.

Concurrent systems admit executions of operations that are not only ordered
in sequence but also allow parallel branches. An algebraic structure consisting
of both a sequential and a parallel composition operation, with a shared unit, is
called a bimonoid. Formally, its definition is as follows.

Definition 4 (Bimonoid). A bimonoid is a tuple 〈M,5,�,1〉 where

– M is a set called the carrier of the bimonoid,
– 5 is a binary associative operation on M ,
– � is a binary associative and commutative operation on M , and
– 1 ∈ M is a unit for both 5 (on both sides) and �.

Bimonoid homomorphisms are defined in the usual way.

Given a set X, the free bimonoid [12] over X is 〈SP(X), ·, ‖, 1〉. The fact
that it is free means that for every function f : X → M for a given bimonoid
〈M,5,�,1M 〉 there exists a unique bimonoid homomorphism f � : SP(X) → M
such that the restriction of f � to X is f .

Just as monoids can recognise words, bimonoids can recognise pomsets [28].
A bimonoid together with the witnesses of recognition is a pomset recogniser.

Definition 5 (Pomset recogniser). A pomset recogniser is a tuple R =
〈M,5,�,1, i, F 〉 where 〈M,5,�,1〉 is a bimonoid, i : Σ → M , and F ⊆ M .
The language recognised by R is given by LR = {u ∈ SP : i�(u) ∈ F} ⊆ SP.

Example 6. Suppose a program consists of a loop, where each iteration runs
actions a and b in parallel. We can describe the behaviour of this program by

L = {a ‖ b}∗ = {1, a ‖ b, (a ‖ b) · (a ‖ b), . . .}

We can describe this language using a pomset recogniser, as follows. Let
M = {qa, qb, q1, q⊥,1}, and let 5 and � be the operations on M given by

q 5 q′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q q′ = 1

q′ q = 1

q1 q = q′ = q1

q⊥ otherwise

q � q′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q q′ = 1

q′ q = 1

q1 {q, q′} = {qa, qb}
q⊥ otherwise
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A straightforward proof verifies that 〈M,5,�,1〉 is a bimonoid.
We set i(a) = qa, i(b) = qb, and F = {1, q1}. Now, for n > 0:

i�((a ‖ b) · · · (a ‖ b)︸ ︷︷ ︸
n times

) = (i(a) ‖ i(b))5 · · · 5 (i(a) ‖ i(b))︸ ︷︷ ︸
n times

= q1 5 · · · 5 q1︸ ︷︷ ︸
n times

= q1

No other pomsets are mapped to q1; hence, 〈M,5,�,1, i, F 〉 accepts L.

Example 7. Suppose a program solves a problem recursively, such that the re-
cursive calls are performed in parallel. In that case, the program would either
perform the base action b, or some preprocessing action a followed by running
two copies of itself in parallel. This behaviour can be described by the smallest
pomset language L satisfying the following inference rules:

b ∈ L
u, v ∈ L

a · (u ‖ v) ∈ L

This language can be described by a pomset recogniser. Let our carrier set
be M = {qa, qb, q1, q⊥,1}, and let 5 and � be the operations on M given by

q 5 q′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q q′ = 1

q′ q = 1

qb q = qa, q
′ = q1

q⊥ otherwise

q � q′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q q′ = 1

q′ q = 1

q1 q = q′ = qb

q⊥ otherwise

〈M,5,�,1〉 is a bimonoid, F = {qb}, and i : Σ → M is given by setting i(a) = qa
and i(b) = qb. One can then show that 〈M,5,�,1, i, F 〉 accepts L.

Pomset contexts are used to describe the behaviour of individual elements in
a pomset recogniser. Formally, the set of pomset contexts over a set X is given
by PC(X) = SP(X ∪ {�}). Here the element � acts as a placeholder, where
a pomset can be plugged in: given a context c ∈ PC(X) and t ∈ SP(X), let
c[t] ∈ SP(X) be obtained by substituting t for � in c.

3 Learning Pomset Recognisers

In this section we present our algorithm to learn pomset recognisers from an
oracle (the teacher) that answers membership and equivalence queries. A mem-
bership query consists of a pomset, to which the teacher replies whether that
pomset is in the language; an equivalence query consists of a hypothesis pom-
set recogniser, to which the teacher replies yes if it is correct or no with a
counterexample—a pomset incorrectly classified by the hypothesis—if it is not.

A pomset recogniser is essentially a tree automaton, with the additional con-
straint that its algebraic structure satisfies the bimonoid axioms. Our algorithm
is therefore relatively close to tree automata learning—in particular Drewes and
Högberg [7,8]—but there are several key differences: we optimise the algorithm
by taking advantage of the bimonoid axioms, and at the same time need to ensure
that the hypotheses generated by the learning process satisfy those axioms.
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3.1 Observation Table

We fix a target language L ⊆ SP throughout this section. As in the original L


algorithm, the state of the learner throughout a run of the algorithm is given by
a data structure called the observation table, which collects information about L.
The table contains rows indexed by pomsets, representing the state reached by
the correct pomset recogniser after reading that pomset; and columns indexed
by pomset contexts, used to approximately indentify the behaviour of each state.
To represent the additional rows needed to approximate the pomset recogniser
structure, we use the following definition. Given U ⊆ SP, we define

U+ = Σ ∪ {u · v : u, v ∈ U} ∪ {u ‖ v : u, v ∈ U} ⊆ SP.

Definition 8 (Observation table). An observation table is a pair 〈S,E〉, with
S ⊆ SP subpomset-closed and E ⊆ PC such that 1 ∈ S and � ∈ E. These sets
induce the function row〈S,E〉 : S ∪ S+ → 2E: row〈S,E〉(s)(e) = 1 ⇐⇒ e[s] ∈ L.
We often write row instead of row〈S,E〉 when S and E are clear from the context.

We depict observation tables, or more precisely row, as two separate tables
with rows in S and S+ \ S respectively, see for instance Example 9 below.

The goal of the learner is to extract a hypothesis pomset recogniser from the
rows in the table. More specifically, the carrier of the underlying bimonoid of the
hypothesis will be given by the rows indexed by pomsets in S. The structure on
the rows is obtained by transferring the structure of the row labels onto the rows
(e.g., row(s) 5 row(t) = row(s · t)), but this is not well-defined unless the table
satisfies closedness, consistency, and associativity. Closedness and consistency
are standard in L
, whereas associativity is a new property specific to bimonoid
learning. We discuss each of these properties next, also including compatibility,
a property that is used to show minimality of hypotheses.

The first potential issue is a closedness defect: this is the case when a com-
posed row, indexed by an element of S+, is not indexed by a pomset in S.

Example 9 (Table not closed). Recall L = {a ‖ b}∗ from Example 6, and suppose
S = {1, a, b} and E = {�, a ‖ �,� ‖ b}. The induced table is

E

� a ‖ � � ‖ b

S

⎡
⎣ 1 1 0 0

a 0 0 1
b 0 1 0

E

� a ‖ � � ‖ b

S+ \ S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

aa 0 0 0
ab 0 0 0
ba 0 0 0
bb 0 0 0
a ‖ a 0 0 0
a ‖ b 1 0 0
b ‖ b 0 0 0

The carrier of the hypothesis bimonoid is M = {row(1), row(a), row(b)}, but the com-
position row(a)$ row(a) cannot be defined since row(aa) �∈ M .

The absence of the issue described above is captured with closedness.
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Definition 10 (Closed table). An observation table 〈S,E〉 is closed if for all
t ∈ S+ there exists s ∈ S such that row(s) = row(t).

Another issue that may occur is that the same row being represented by
different index pomsets leads to an inconsistent definition of the structure. The
absence of this issue is referred to as consistency.

Definition 11 (Consistent table). An observation table 〈S,E〉 is consistent
if for all s1, s2 ∈ S such that row(s1) = row(s2) we have for all t ∈ S that

row(s1 · t) = row(s2 · t) row(t · s1) = row(t · s2) row(s1 ‖ t) = row(s2 ‖ t).

Whenever closedness and consistency hold, one can define sequential and par-
allel composition operations on the rows of the table. However, these operations
are not guaranteed to be associative, as we show with the following example.

Example 12 (Table not associative). Consider L = {au : u ∈ {b}∗} over Σ =
{a, b}, and suppose S = {1, a, b} and E = {�,�a}. The induced table is:

� �a
1 0 1
a 1 0
b 0 0

� �a
aa 0 0
ab 1 0
ba 0 0
bb 0 0
a ‖ a 0 0
a ‖ b 0 0
b ‖ b 0 0

This table does not lead to an associative sequential operation on rows:

(row(a)5 row(b))5 row(a) = row(ab)5 row(a) = row(a)5 row(a) = row(aa)

�= row(ab) = row(a)5 row(b) = row(a)5 row(ba) = row(a)5 (row(b)5 row(a)).

To prevent this issue we enforce the following additional property:

Definition 13 (Associative table). Let ♥ ∈ {·, ‖}. An observation table
〈S,E〉 is ♥-associative if for all s1, s2, s3, sl, sr ∈ S with row(sl) = row(s1 ♥ s2)
and row(sr) = row(s2 ♥ s3) we have row(sl ♥ s3) = row(s1 ♥ sr). An observation
table is associative if it is both ·-associative and ‖-associative.

The table from Example 12 is not ·-associative: we have row(a) = row(ab)
and row(b) = row(ba) but row(aa) �= row(ab).

Putting the above definitions of closedness, consistency and associativity of
tables together, we have the following result for constructing a hypothesis.

Lemma 14 (Hypothesis). A closed, consistent and associative table 〈S,E〉
induces a hypothesis pomset recogniser H = 〈H,5H ,�H ,1H , iH , FH〉 where

H = {row(s) : s ∈ S} row(s1)5H row(s2) = row(s1 · s2)

row(s1) �H row(s2) = row(s1 ‖ s2) 1H = row(1) iH(a) = row(a)

FH = {row(s) : s ∈ S, row(s)(�) = 1}.
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Proof. The operations 5H and �H are well-defined by closedness and consis-
tency, and 1H is well-defined because 1 ∈ S by the observation table definition.
Commutativity of �H follows from commutativity of ‖, and similarly that 1H

is a unit for both operations follows from 1 being a unit. Associativity follows
by associativity of the table (it does not follow from · and ‖ being associative:
given elements s1, s2, s3 ∈ S, s1 · s2 · s3 is not necessarily present in S ∪S+). ��

Since a hypothesis is constructed from an observation table 〈S,E〉 that
records for given s ∈ S and e ∈ E whether e[s] is accepted by the language
or not, one would expect that the hypothesis classifies those pomsets

T〈S,E〉 = {e[s] : s ∈ S, e ∈ E}

correctly. This is not necessarily the case, as we show in the following example.

Example 15. Consider the language L from Example 7, and let S = {1, b} and
E = {�, a(� ‖ b)}. The induced table is

� a(� ‖ b)
1 0 0
b 1 1

� a(� ‖ b)
a 0 0
bb 0 0
b ‖ b 0 0

From this closed, consistent, and associative table we obtain a hypothesis pomset
recogniser that satisfies

(row(a)5 (row(b) � row(b)))(�) = (row(a)5 row(b ‖ b))(�)

= (row(a)5 row(1))(�) = row(a)(�) = 0 �= 1

and thus recognises a language that differs from L on a · (b ‖ b) ∈ T〈S,E〉.

We thus have the following definition, parametric in a subset of T〈S,E〉.

Definition 16 (Compatible hypothesis). A closed, consistent, and associa-
tive observation table 〈S,E〉 induces a hypothesis H that is X-compatible with
its table, for X ⊆ SP, if for x ∈ X we have x ∈ LH ⇐⇒ x ∈ L. We say that the
hypothesis is compatible with its table if it is T〈S,E〉-compatible with its table.

Ensuring hypotheses are compatible with their table will not be a crucial step
in proving termination, but plays a key role in ensuring minimality (Section 3.4).
This was originally shown by van Heerdt [14] for Mealy machines.

3.2 The Learning Algorithm

We are now ready to introduce our learning algorithm, Algorithm 1. The main
algorithm initialises the table to 〈{1}, {�}〉 and starts by augmenting the table
to make sure it is closed and associative. We give an example below.
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1 S = {1}, E = {�}
2 repeat
3 repeat
4 while 〈S,E〉 is not closed or not associative
5 if 〈S,E〉 is not closed
6 find t ∈ S+ such that row(t) �= row(s) for all s ∈ S
7 S = S ∪ {t}
8 for ♥ ∈ {·, ‖}
9 if 〈S,E〉 is not ♥-associative

10 find s1, s2, s3, sl, sr ∈ S and e ∈ E such that
row(sl) = row(s1 ♥ s2),
row(sr) = row(s2 ♥ s3), and
row(sl ♥ s3)(e) �= row(s1 ♥ sr)(e)

11 let b be the result of a membership query on s1 ♥ s2 ♥ s3
12 if row(sl ♥ s3)(e) �= b
13 E = E ∪ {e[� ♥ s3]}
14 else
15 E = E ∪ {e[s1 ♥ �]}
16 construct the hypothesis H for 〈S,E〉
17 if H is not compatible with its table
18 find s ∈ S and e ∈ E such that e[s] ∈ LH ⇐⇒ e[s] �∈ L
19 E = E ∪ {HandleCounterexample(S,E, e[s],�)}
20 until H is compatible with its table
21 if the teacher replies no to H, with a counterexample z
22 E = E ∪ {HandleCounterexample(S,E, z,�)}
23 until the teacher replies yes
24 return H

HandleCounterexample(S,E, z, c)

1 if z ∈ S ∪ S+

2 let s ∈ S be such that row(s) = row(z)
3 if c[s] ∈ L ⇐⇒ c[z] ∈ L
4 return s
5 else
6 return c
7 let non-empty u1, u2 ∈ SP and ♥ ∈ {·, ‖} be such that u1 ♥ u2 = z
8 u1 = HandleCounterexample(S,E, u1, c[� ♥ u2])
9 if u1 �∈ S

10 return u1

11 u2 = HandleCounterexample(S,E, u2, c[u1 ♥ �])
12 if u2 �∈ S
13 return u2

14 return HandleCounterexample(S,E, u1 ♥ u2, c)

Algorithm 1: The pomset recogniser learning algorithm.
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Example 17 (Fixing closedness and associativity). Consider the table from Ex-
ample 9, where row(aa) �∈ {row(1), row(a), row(b)} witnesses a closedness defect.
To fix this, the algorithm would add aa to the set S, which means row(aa) will
become part of the carrier of the hypothesis.

Now consider the table from Example 12. Here we found an associativity
defect witnessed by row(a) = row(ab) and row(b) = row(ba) but row(aa) �=
row(ab). More specifically, row(aa)(�) �= row(ab)(�). Thus, s1 = s3 = sl = a,
s2 = sr = b, sl = a, and e = �. A membership query on aba shows aba �∈ L,
so b = 0. We have row(aa)(�) = 0, and therefore the algorithm would add the
context �[a ·�] = a ·� to E.

Note that the algorithm does not explicitly check for consistency; this is be-
cause we actually ensure a stronger property—sharpness [3]—as an invariant
(Lemma 25). This property ensures every row indexed by a pomset in S is in-
dexed by exactly one pomset in S (implying consistency):

Definition 18 (Sharp table). An observation table 〈S,E〉 is sharp if for all
s1, s2 ∈ S such that row(s1) = row(s2) we have s1 = s2.

The idea of maintaining sharpness is due to Maler and Pnueli [29].
Once the table is closed and associative, we construct the hypothesis and

check if it is compatible with its table. If this is not the case, a witness for in-
compatibility is a counterexample by definition, so HandleCounterexample
is invoked to extract an extension of E, and we return to checking closedness
and associativity. Once we obtain a hypothesis that is compatible with its table,
we submit it to the teacher to check for equivalence with the target language.
If the teacher provides a counterexample, we again process this and return to
checking closedness and associativity. Once we have a compatible hypothesis for
which there is no counterexample, we return this correct pomset recogniser.

The procedure HandleCounterexample, adapted from [7,8], is provided
with an observation table 〈S,E〉 a pomset z, and a context c and finds a sin-
gle context to add to E. The main invariant is that c[z] is a counterexample.
Recursive calls replace subpomsets from S+ with elements of S in this counterex-
ample while maintaining the invariant. There are two types of return values: if
c is a suitable context, c is returned; otherwise the return value is an element
of S that is to replace z. The context c is suitable if z ∈ S+ and adding c to
E would distinguish row(s) from row(z), where s ∈ S is such that currently
row(s) = row(z). Because S is non-empty and subpomset-closed, if z �∈ S ∪ S+

it can be decomposed into z = u1 ♥ u2 for non-empty u1, u2 ∈ SP and ♥ ∈ {·, ‖}.
We then recurse into u1 and u2 to replace them with elements of S and replace
z with u1 ♥u2 ∈ S+ in a final recursive call. If c = �, the return value cannot be
in S, as we will show in Lemma 25 that these elements are not counterexamples.

Example 19 (Processing a counterexample). Consider L = {a, aa, a ‖ a}, and
let S = {1, a} and E = {�}. This induces a closed, sharp, and associative table

�
1 0
a 1

�
aa 1
a ‖ a 1
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Suppose an equivalence query on its pomset recogniser, which rejects only the
empty pomset, gives counterexample z = a ‖ a ‖ aa. We may decompose z
as (� ‖ aa)[a ‖ a], where a ‖ a ∈ S+ \ S. Because row(a ‖ a) = row(a),
(� ‖ aa)[a] = a ‖ aa, and a ‖ aa ∈ L ⇐⇒ z ∈ L, we update z = a ‖ aa and
repeat the process. Now we decompose z = (a ‖ �)[aa]. Since row(aa) = row(a),
(a ‖ �)[a] = a ‖ a, and a ‖ a ∈ L ⇐⇒ z �∈ L, we finish by adding a ‖ � to E.

3.3 Termination and Query Complexity

Our termination argument is based on a comparison of the current observation
table with the infinite table 〈SP,PC〉. We first show that the latter induces a hy-
pothesis, called the canonical pomset recogniser for the language. Its underlying
bimonoid is isomorphic to the syntactic bimonoid [28] for the language.

Lemma 20. 〈SP,PC〉 is a closed, consistent, and associative observation table.

Definition 21 (Canonical pomset recogniser). The canonical pomset re-
cogniser for L is the the hypothesis for the observation table 〈SP,PC〉. We denote
this hypothesis by 〈ML,5L,�L,1L, iL, FL〉.

The comparison of the current table with 〈SP,PC〉 is in terms of the number
of distinct rows they hold. In the following lemma we show that the number of
the former is bounded by the number of the latter.

Lemma 22. If ML is finite, any observation table 〈S,E〉 satisfies

|{row(s) : s ∈ S}| ≤ |ML|.

Proof. Note that ML = {row〈SP,PC〉(s) : s ∈ S}. Given s1, s2 ∈ S such that
row〈S,E〉(s1) �= row〈S,E〉(s2) we have row〈SP,PC〉(s1) �= row〈SP,PC〉(s2). This implies
|{row(s) : s ∈ S}| ≤ |ML|. ��

An important fact will be that none of the pomsets in S can form a coun-
terexample for the hypothesis of a table 〈S,E〉. In order to show this we will first
show that the hypothesis is always reachable, a concept we define for arbitrary
pomset recognisers below.

Definition 23 (Reachability). A pomset recogniser R = 〈M,5,�,1, i, F 〉 is
reachable if for all m ∈ M there exists u ∈ SP such that i�(u) = m.

Our reachability lemma relies on the fact that S is subpomset-closed.

Lemma 24 (Hypothesis reachability). Given a closed, consistent, and as-
sociative observation table 〈S,E〉, the hypothesis it induces is reachable. In par-
ticular, iH

�(s) = row(s) for any s ∈ S.

From the above it follows that we always have compatibility with respect to
the set of row indices, as we show next.
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Lemma 25. The hypothesis of any closed, consistent, and associative observa-
tion table 〈S,E〉 is S-compatible.

Before turning to our termination proof, we show that some simple properties
hold throughout a run of the algorithm.

Lemma 26 (Invariant). Throughout execution of Algorithm 1, we have that
〈S,E〉 is a sharp observation table.

Proof. Subpomset-closedness holds throughout each run since {1} is subpomset-
closed and adding a single element of S+ to S preserves the property.

For sharpness, first note that the initial table is sharp as it only has one row.
Sharpness of 〈S,E〉 can only be violated when adding elements to S. But the
only place where this happens is on line 7, and there the new row is unequal to
all previous rows, which means sharpness is preserved. ��

The preceding results allow us to prove our termination theorem.

Theorem 27 (Termination). If ML is finite, then Algorithm 1 terminates.

Proof. First, we observe that fixing a closedness defect by adding a row (line 7)
can only happen finitely many times, since, by Lemma 22, the size of {row(s) :
s ∈ S} is bounded by ML.

This means that it suffices to show the following two points:

1. Each iteration of any of the loops starting on lines 2–4 either fixes a closed-
ness defect by adding a row, or adapts E so that 〈S,E〉 ends up not being
closed at the end of loop body. In the second case, a closedness defect will
be fixed in the following iteration of the inner while loop.

2. The calls to HandleCounterexample terminate.

Combined, these show that the algorithm terminates. For the first point, we
treat each of the cases:

– If the table is not closed, we directly find a new row that is taken from the
S+-part of the table and added to the S-part of the table.

– Consider the failure of ♥-associativity, for ♥ ∈ {·, ‖}, and let s1, s2, s3, sl, sr ∈
S and e ∈ E be such that row(sl) = row(s1 ♥ s2), row(sr) = row(s2 ♥ s3), and
row(sl ♥ s3)(e) �= row(s1 ♥ sr)(e). Suppose row(sl ♥ s3)(e) �= b, with b be the
result of a membership query on s1 ♥ s2 ♥ s3. Then e[� ♥ s3] distinguishes the
previously equal rows row(s1 ♥ s2) and row(sl), so adding it to E creates a
closedness defect. The fact that row(s1 ♥ s2) cannot remain equal to another
row than row(sl) is a result of the sharpness invariant.
Alternatively, row(sl ♥ s3)(e) = b means row(s1 ♥ sr)(e) �= b, for otherwise
we would contradict row(sl ♥ s3)(e) �= row(s1 ♥ sr)(e). For similar reasons
the context e[s1 ♥ �] in this case distinguishes the previously equal rows
row(s1 ♥ s2) and row(sr), creating a closedness defect.

– A compatibility defect results in the identification of a counterexample, the
handling of which we discuss next.
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– Whenever a counterexample is identified, we eventually find a context c,
s ∈ S, and t ∈ S+ \ S such that row(t) = row(s) and c[t] ∈ L ⇐⇒ c[s] �∈ L.
Thus, adding c to E creates a closedness defect.

Termination of HandleCounterexample follows: the first two recursive
calls in the procedure replace z with strict subpomsets of z, whereas the last one
replaces z with an element of S+, so no further recursion will happen. ��

Query Complexity. We determine upper bounds on the membership and equiva-
lence query numbers of a run of the algorithm in terms of the size of the canonical
pomset recogniser n = |ML|, the size of the alphabet k = |Σ|, and the maximum
number of operations (from {·, ‖}, used to compose alphabet symbols) m found
in a counterexample. We note that since the number of distinct rows indexed by
S is bounded by n and the table remains sharp throughout any run, the final
size of S is at most n. Thus, the final size of S+ is in O(n2 + k). Given the
initialisation of S with a single element, the number of closedness defects fixed
throughout a run is at most n − 1. This means that the total number of asso-
ciativity defects fixed and counterexamples handled (including those resulting
from compatibility defects) together is n− 1. We can already conclude that the
number of equivalence queries posed is bounded by n. Moreover, we know that
the final table will have at most n columns, and therefore the total number of
cells in that table will be in O(n3 + kn).

The number of membership queries posed during a run of the algorithm is
given by the number of cells in the table plus the number of queries needed
during the processing of counterexamples. Consider the counterexample z that
contains the maximum number of operations among those encountered during
a run. The first two recursive calls of HandleCounterexample break down
one operation, whereas the third is used to execute a base case making two
membership queries and does not lead to any further recursion. The number
of membership queries made starting from a given counterexample is thus in
O(m). This means the total number of membership queries during the processing
of counterexamples is in O(mn), from which we conclude that the number of
membership queries posed during a run is in O(n3 +mn+ kn).

3.4 Minimality of Hypotheses

In this section we will show that all hypotheses submitted by the algorithm to
the teacher are minimal. We first need to define what minimality means. As is
the case for DFAs, it is the combination of an absence of unreachable states and
of every state exhibiting its own distinct behaviour.

Definition 28 (Minimality). A pomset recogniser R = 〈M,5,�,1, i, F 〉 is
minimal if it is reachable and for all u, v ∈ SP with i�(u) �= i�(v) there exists
c ∈ PC such that c[u] ∈ LR ⇐⇒ c[v] �∈ LR.

Before proving the main result of this section, we need the following:



Learning Pomset Automata 523

Lemma 29. For all pomset recognisers 〈M,5,�,1, i, F 〉 and u, v ∈ SP such
that i�(u) = i�(v) we have for any c ∈ PC that i�(c[u]) = i�(c[v]).

The minimality theorem below relies on table compatibility, which allows us
to distinguish the behaviour of states based on the contents of their rows. Note
that the algorithm only submits a hypothesis in an equivalence query if that
hypothesis is compatible with its table.

Theorem 30 (Minimality of hypotheses). A closed, consistent, and as-
sociative observation 〈S,E〉 induces a minimal hypothesis if the hypothesis is
compatible with its table.

Proof. We obtain the hypothesis from Lemma 14. Since S is subpomset-closed,
we have by Lemma 24 that the hypothesis is reachable. Moreover, for every s ∈ S
we have iH

�(s) = row(s). Consider u1, u2 ∈ SP such that iH
�(u1) �= iH

�(u2).
Then there exist s1, s2 ∈ S such that row(s1) = iH

�(u1) and row(s2) = iH
�(u2),

and we have row(s1) �= row(s2). Let e ∈ E be such that row(s1)(e) �= row(s2)(e).
We have

iH
�(e[u1]) ∈ FH ⇐⇒ iH

�(e[s1]) ∈ FH (Lemma 29)

⇐⇒ e[s1] ∈ LH

⇐⇒ row(s1)(e) = 1

⇐⇒ row(s2)(e) = 0

⇐⇒ e[s2] �∈ LH

⇐⇒ iH
�(e[s2]) �∈ FH

⇐⇒ iH
�(e[u2]) �∈ FH . (Lemma 29) ��

As a corollary, we find that the canonical pomset recogniser is minimal.

Proposition 31. The canonical pomset recogniser is minimal.

4 Conversion to Pomset Automata

Bimonoids are a useful representation of pomset languages because sequential
and parallel composition are on an equal footing; in the case of the learning al-
gorithm of the previous section, this helps us treat both operations similarly. On
the other hand, the behaviour of a program is usually thought of as a series of
actions, some of which involve launching two or more threads that later combine.
Here, sequential actions form the basic unit of computation, while fork/join pat-
terns of threads are specified separately. Pomset automata [22] encode this more
asymmetric model: they can be thought of as non-deterministic finite automata
with an additional transition type that brokers forking and joining threads.

In this section, we show how to convert a pomset recogniser to a certain
type of pomset automaton, where acceptance of a pomset is guided by its struc-
ture; conversely, we show that each of the pomset automata in this class can
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be represented by a pomset recogniser. Together with the previous section, this
establishes that the languages of pomset automata in this class are learnable.

If S is a set, we write M(S) for the set of finite multisets over S. A finite
multiset over S is written φ = {|s1, . . . , sn|}.
Definition 32 (Pomset automata). A pomset automaton (PA) is a tuple
A = 〈Q, I, F, δ, γ〉 where
– Q is a set of states, with I, F ⊆ Q the initial and accepting states, and
– δ : Q×Σ → 2Q the sequential transition function, and
– γ : Q×M(Q)→ 2Q the parallel transition function.

Lastly, for every q ∈ Q there are finitely many φ ∈M(Q) such that γ(q, φ) �= ∅.
A finite PA can be represented graphically: every state is drawn as a vertex,

with accepting states doubly circled and initial states pointed out by an arrow,
while δ-transitions are represented by labelled edges, and γ-transitions are drawn
as a multi-ended edge. For instance, in Figure 1a, we have drawn a PA with states
q0 through q5 with q5 accepting, and q1 ∈ δ(q0, a) (among other δ-transitions),
while the multi-ended edge represents that q2 ∈ γ(q1, {|q3, q4|}), i.e., q2 can launch
threads starting in q3 and q4, which, upon termination, resume in q2.

q0 q1

q3

q4

q2 q5
a

b

c

a

(a) A simple PA.

q1 q2

q4

q3

b

a

(b) A non-saturated PA.

Fig. 1: Some pomset automata.

The sequential transition function is interpreted as in non-deterministic finite
automata: if q′ ∈ δ(q, a), then a machine in state q may transition to state q′ after
performing the action a. The intuition to the parallel transition function is that
if q′ ∈ γ(q, {|r1, . . . , rn|}), then a machine in state q may launch threads starting
in states r1 through rn, and when each of those has terminated succesfully,
may proceed in state q′. Note how the representation of starting states in a γ-
transition allows for the possibility of launching multiple instances of the same
thread, and disregards their order—i.e., γ(q, {|r1, . . . , rn|}) = γ(q, {|rn, . . . , r1|}).
This intuition is made precise through the notion of a run.

Definition 33 (Run relation). The run relation of a PA A = 〈Q, I, F, δ, γ〉,
denoted →A, is defined as the the smallest subset of Q× SP×Q satisfying

q 1−→A q

q′ ∈ δ(q, a)

q a−→A q′

∀1 ≤ i ≤ n. ri ui−→A r′i ∈ F
q′ ∈ γ(q, {|r1, . . . , rn|})

q u1‖···‖un−−−−−−→A q′

q u−→A q′′

q′′ v−→A q′

q u·v−−→A q′
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The language accepted by A is LA = {u ∈ SP : ∃q ∈ I, q′ ∈ F. q u−→A q′}.

Example 34. If A is the PA from Figure 1a, we can see that q3 b−→A q5 and

q4 c−→A q5 as a result of the second rule; by the third rule, we find that q1
b‖c−−→A q2.

Since q2 a−→ q5 and q0 a−→A q1 (again by the second rule), we can conclude

q0
a·(b‖c)·a−−−−−→A q5 by repeated application of the last rule. The language accepted

by this PA is the singleton set {a · (b ‖ c) · a}.

In general, finite pomset automata can accept a very wide range of pomset
languages, including all context free (pomset) languages [23]. The intuition be-
hind this is that the mechanism of forking and joining encoded in γ can be used
to simulate a call stack. For example, the automaton in Figure 1b accepts the
strictly context-free language (of words) {an · bn : n ∈ N}. It follows that PAs
can represent strictly more pomset languages than pomset recognisers. To tame
the expressive power of PAs at least slightly, we propose the following.

Definition 35 (Saturation). We say that A = 〈Q, I, F, δ, γ〉 is saturated when
for all u, v ∈ SP with u, v �= 1, both of the following are true:

(i) If q u·v−−→A q′, then there exists a q′′ ∈ Q with q u−→A q′′ and q′′ v−→A q′.

(ii) If q u‖v−−→A q′, then there exist r, s ∈ Q and r′, s′ ∈ F such that

r u−→A r′ s v−→A s′ q′ ∈ γ(q, {|r, s|})

Example 36. Returning to Figure 1, we see that the PA in Figure 1a is saturated,
while Figure 1b is not, as a result of the run q1 a·a·b·b−−−−→A q4, which does not admit
an intermediate state q such that q1 a·a−−→A q and q b·b−−→A q4.

We now have everything in place to convert the encoding of a language given
by a pomset recogniser to a pomset automaton. The idea is to represent every
element q of the bimonoid by a state which accepts exactly the language of
pomsets mapped to q; the transition structure is derived from the operations.

Lemma 37. Let R = 〈M,5,�,1, i, F 〉 be a pomset recogniser. We construct
the pomset automaton A = 〈M,F, {1}, δ, γ〉 (note: we use F as the set of initial
states) where δ : M ×Σ → 2M and γ : M ×M(M)→ 2M are given by

δ(q, a) = {q′ : i(a)5 q′ = q} γ(q, φ) = {q′ : (r � r′)5 q′ = q, φ = {|r, r′|}}

Then A is saturated, and LA = LR.

Example 38. Let 〈M,5,�,1, i, F 〉 be the pomset recogniser from Example 7.
The pomset automaton that arises from the construction above is partially de-
picted in Figure 2; we have not drawn the state q⊥ and its incoming transitions,
or forks into 1, to avoid clutter. In this PA, we see that, since qa 5 q1 = qb and
i(a) = qa, we have q1 ∈ δ(qb, a). Furthermore, since (qb � qb)5 1 = q1 5 1 = q1,
we also have 1 ∈ γ(q1, {|qb, qb|}). Finally, qb is initial, since F = {qb}.
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qb 1q1 qa
ba a

Fig. 2: Part of the PA obtained from the pomset recogniser from Example 7,
using the construction from Lemma 37. The state q⊥ (which does not contribute
to the language of the automaton) and forks into the state 1 are not pictured.

We have thus shown that the language of any pomset recogniser can be
accepted by a finite and saturated PA. In turn, this shows that our algorithm
can, in principle, be adapted to work with a teacher that takes a (saturated) PA
instead of a pomset recogniser as hypothesis, by simply converting the hypothesis
pomset recogniser to an equivalent PA before sending it over.

Conversely, we can show that the transition relations of a saturated PA carry
the algebraic structure of a bimonoid, and use that to show that a language
recognised by a saturated PA is also recognised by a bimonoid. This shows that
our characterisation is “tight”, i.e., languages recognised by saturated PAs are
precisely those recognised by bimonoids, and hence learnable.

Lemma 39. Let A = 〈Q, I, F, δ, γ〉 be a saturated pomset automaton. We can
construct a pomset recogniser R = 〈M,5,�,1, i, F ′〉, where

M = { u−→A : u ∈ SP} u−→A 5 v−→A = u·v−−→A
u−→A � v−→A = u‖v−−→A

i(a) = a−→A F ′ = { u−→A ∈ M : ∃q ∈ I, q′ ∈ F. q u−→A q′}

Now 5 and � are well-defined, and R is a pomset recogniser such that LR = LA.

If A is finite, then so is R, since each of the elements of M is a relation on
Q, and there are finitely many relations on a finite set.

In general, the PA obtained from a pomset recogniser may admit runs where
the same fork transition is nested repeatedly. Recognisable pomset languages
of bounded width may be recognised by a pomset recogniser that is depth-
nilpotent [28], which can be converted into a fork-acyclic PA by way of an
sr-expression [28,22]. However, this detour via sr-expressions is not necessary:
one can adapt Lemma 37 to produce a fork-acyclic PA, when given a depth-
nilpotent pomset recogniser. The details are discussed in the full version [15].

We conclude this section by remarking that the minimal pomset recogniser for
a bounded-width language is necessarily depth-nilpotent [28]; since our algorithm
produces a minimal pomset recogniser, this means that we can also produce a
fork-acyclic PA after learning a bounded-width recognisable pomset language.

5 Discussion

To learn DFAs, there are several alternatives to the observation table data struc-
ture that reduce the space complexity of the algorithm. Most notable is the clas-
sification tree [25], which distinguishes individual pairs of words (which for us
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would be pomsets) at every node rather than filling an entire row for each of
them. The TTT algorithm [19] further builds on this and achieves optimal space
complexity. Given that we developed the first learning algorithm for pomset lan-
guages, we opted for the simplicity of the observation table—optimisations such
as those analogous to the aforementioned work are left to future research.

We would like to extend our algorithm to learn recognisers based on arbitrary
algebraic theories. One challenge is to ensure that the equations of the theory
hold for hypotheses, by generalising our definition of associativity (Definition 13).

Our algorithm can also be specialised to learn languages recognised by com-
mutative monoids. These languages of multisets can alternatively be represented
as semi-linear sets [30] or described using Presburger arithmetic [11]. While not
all languages described this way are recognisable (for instance, the set of multi-
sets over Σ = {a, b} with as many a’s as b’s [28]), it would be interesting to be
able to learn at least the fragment representable by commutative monoids, and
apply that to one of the domains where semi-linear sets are used.

Our algorithm is limited to learning languages of series-parallel pomsets;
there exist pomsets which are not series-parallel, each of which must contain an
“N-shape” [12,13,35]. Since N-shapes appear in pomsets that describe message
passing between threads, we would like to be able to learn such languages as
well. We do not see an obvious way to extend our algorithm to include these
pomsets, but perhaps recent techniques from [10] can provide a solution.

Every hypothesis of our algorithm can be converted to a pomset automaton.
The final pomset recogniser for a bounded-width language is minimal, and hence
depth-nilpotent [28], which means that it can be converted to a fork-acyclic PA.
In future work, we would like to guarantee that the same holds for intermediate
hypotheses when learning a bounded-width language.

Running two threads in parallel may be implemented by running some initial
section of those threads in parallel, followed by running the remainder of those
threads in parallel. This interleaving is represented by the exchange law [12,13].
One can specialise pomset recognisers to include this interleaving to obtain recog-
nisers of pomset languages closed under subsumption [28], i.e., such that if a
pomset u is recognised, then so are all of the “more sequential” versions of u.
We would like to adapt our algorithm to learn these types of recognisers, and
exploit the extra structure provided by the exchange law to optimise further.

We have shown that recognisable pomset languages correspond to saturated
regular pomset languages (Lemmas 37 and 39). One question that remains is
whether there is an algorithm that can learn all or at least a larger class of
regular pomset languages. Given that pomset automata can accept context-free
languages (Figure 1b), we wonder if a suitable notion of context-free grammars
for pomset languages could be identified. Clark [6] showed that there exists
a subclass of context-free languages that can be learned via an adaptation of
L
. Arguably, this adaptation learns recognisers with a monoidal structure and
reverses this structure to obtain a grammar. An extension of this work to pomset
languages might lead to a learning algorithm that learns more PAs.
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7. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: DLT.
pp. 279–291 (2003). https://doi.org/10.1007/3-540-45007-6 22
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15. van Heerdt, G., Kappé, T., Rot, J., Silva, A.: Learning pomset automata (2021),
to appear on arXiv.

16. van Heerdt, G., Kupke, C., Rot, J., Silva, A.: Learning weighted au-
tomata over principal ideal domains. In: FOSSACS. pp. 602–621 (2020).
https://doi.org/10.1007/978-3-030-45231-5 31
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Abstract. We show that the formalism of “Sum-Over-Path” (SOP),
used for symbolically representing linear maps or quantum operators,
together with a proper rewrite system, has the structure of a dagger-
compact PROP. Several consequences arise from this observation:
– Morphisms of SOP are very close to the diagrams of the graphical cal-
culus called ZH-Calculus, so we give a system of interpretation between
the two
– A construction, called the discard construction, can be applied to en-
rich the formalism so that, in particular, it can represent the quantum
measurement.
We also enrich the rewrite system so as to get the completeness of the
Clifford fragments of both the initial formalism and its enriched version.

Keywords: Categorical Quantum Mechanics · Dagger-Compact PROP · Sum-
Over-Paths · Clifford Fragment · Normal Form · Rewriting · Discard Construc-
tion · Verification.

1 Introduction

The “Sum-Over-Paths” (SOP) formalism [1] was introduced in order to perform
verification on quantum circuits. It is inspired by Feynman’s notion of path-
integrals, and can be conceived as a discrete version of it.

The core idea here is to represent unitary transformations in a symbolic
way, so as to be able to simplify the term, which would for instance accelerate
its evaluation. To do so, the formalism comes equipped with a rewrite system,
which reduces any term into an equivalent one.

As pure quantum circuits (which represent unitary maps) can easily be
mapped to an SOP morphism, one can try and perform verification: given a
specification S and another SOP morphism t obtained from a circuit supposed
to implement the specification, we can compute the term S ◦t† and try to reduce
it to the identity. In a very similar way, one can check whether two quantum
circuits implement the same unitary map.

	 This work was made during a Postdoc funded by the project PIA-GDN/Quantex.
Proofs can be found at arXiv:2003.05678
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The rewrite system is known to be complete for Clifford unitary maps, i.e. in
the Clifford fragment of quantum mechanics, the term obtained from t1 ◦ t†2 will
reduce to the identity iff t1 and t2 represent the same unitary map. Moreover,
this reduction terminates in time polynomial in the size of the SOP term (itself
related to the size of the quantum circuit), and still performs well outside the
Clifford fragment.

Lately, the SOP formalism has been used for efficient verification of optimi-
sation strategies such as [4,12], as well as for specification of quantum circuits
[6].

In this paper, we are interested in extensions of the formalism. We first focus
on its categorical structure, and show that arbitrary terms already go beyond
the representation of unitary maps. We then turn to extending the formalism
to encompass mixed quantum processes. In both cases, we show a completeness
result for their respective Clifford fragment.

In Section 2, we explain in details the structure of †-compact PROP, which
we show in Section 3 to be shared by SOP.

Because the formalism is no longer restricted to unitary maps, we argue that
it could benefit from a slight redefinition, which is done in Section 4.

Another “family” of categories that share this structure is the family of
graphical languages for quantum computation: ZX-Calculus, ZW-Calculus and
ZH-Calculus [3,7,8]. All three formalisms represent morphisms of Qubit using
diagrams, and come with equational theories, proven to be complete for the
whole category [3,11,19], i.e. whenever two diagrams represent the same mor-
phism of Qubit, the first can be turned into the other using only the equational
theory.

In Section 5, we present interpretations between the respective Clifford frag-
ments of the ZH-calculus and SOP, in a slightly different way than in [14,15],
partly thanks to our redefinition of sums-over-paths.

In Section 6, we realise that the original rewrite system of SOP is not enough
for the completeness of the Clifford fragment of Qubit. We hence enrich the set
of rules so as to get the completeness in this restriction.

In Section 7, we enrich the whole formalism using the discard construction
[5], so as to be able to represent completely positive maps, as well as the operator
of partial trace. Again, one can consider the Clifford fragment of this formalism.
We give a new set of rewrite rules, and show that it makes the fragment complete.

2 Background

2.1 PROPs and String Diagrams

The first kind of category we will be interested in is the PROP [13,20]. A PROP
C is a strict symmetric monoidal category (SMC) [16,18] generated by a single
object, or equivalently, whose objects form N. Hence the morphisms of C are of
the form f : n → m. They can be composed sequentially (. ◦ .) or in parallel
(.⊗ .), and they satisfy the following axioms:

f ◦ (g ◦ h) = (f ◦ g) ◦ h f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h
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idm ◦ f = f = f ◦ idn id0 ⊗ f = f = f ⊗ id0

(f2 ◦ f1)⊗ (g2 ◦ g1) = (f2 ◦ g2) ◦ (f1 ⊗ g1)

The category is also equipped with a particular family of morphisms σn,m :
n+m → m+n. Intuitively, these allow morphisms to swap places. They satisfy
additional axioms:

σn,m+p = (idm ⊗ σn,p) ◦ (σn,m ⊗ idp) σn+m,p = (σn,p ⊗ idm) ◦ (idn ⊗ σm,p)

σm,n ◦ σn,m = idn+m (idp ⊗ f) ◦ σn,p = σm,p ◦ (f ⊗ idp)

2.2 †-Compact PROPs

Some PROPs can have additional structure, such as a compact-closed structure,
or a †-functor.

A †-PROP C is a PROP together with an involutive, identity-on-objects
functor (.)† : Cop → C compatible with (. ⊗ .). That is, for every morphism
f : n → m, there is a morphism f† : m → n such that f†† = f . It behaves with
the compositions by (f ◦ g)† = g† ◦ f† and (f ⊗ g)† = f† ⊗ g†. Finally, we have
σ†
n,m = σm,n.
A †-compact PROP has two particular families of morphisms: ηn : 0 → 2n

and εn : 2n → 0. These are dual by the †-functor: η†n = εn. They satisfy the
following axioms:

(εn ⊗ idn) ◦ (idn ⊗ ηn) = idn = (idn ⊗ εn) ◦ (ηn ⊗ idn)

σn,n ◦ ηn = ηn ηn+m = (idn ⊗ σn,m ⊗ idm) ◦ (ηn ⊗ ηm)

In this context, one can define the transpose operator of a morphism f as:

f t := (εm ⊗ idn) ◦ (idm ⊗ f ⊗ idn) ◦ (idm ⊗ ηm)

One can check that, thanks to the axioms of †-compact PROP, (f ◦ g)t =
gt ◦ f t, (f ⊗ g)t = f t ⊗ gt, and f tt = f .

We can then compose (.)t and (.)†: (.) := (.)†t. Again using the axioms of
†-compact PROP, one can check that (.)†t = (.)t†.

2.3 Example: Qubit

The usual example of a strict symmetric †-compact monoidal category is FHilb,
the category whose objects are finite dimensional Hilbert spaces, and whose
morphisms are linear maps between them. It is not, however, a PROP, as it is
not generated by a single object.

One subcategory of FHilb that is a PROP, though, is Qubit, the sub-
category of FHilb generated by the object C2, considered as the object 1. A
morphism f : n → m of Qubit is hence a linear map from C2n to C2m . (. ◦ .) is
then the usual composition of linear maps, and (.⊗ .) is the usual tensor product
of linear maps. One can check that the first set of axioms is satisfied.
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This is not enough to conclude that Qubit is a PROP. We still need to define
a family of morphisms σn,m. In the Dirac notation, given a basis B of C2, we
can define σn,m as σn,m :=

∑
(x,y)∈Bn×Bm

|y,x〉〈x,y|. One can then check that all

the axioms of PROPs are satisfied.
Qubit is not only a PROP, but also †-compact. Indeed, first, given a mor-

phism:

f =
∑

(x,y)∈Bn×Bm

ax,y |y〉〈x|

we can define its dagger f† :=
∑

(x,y)∈Bn×Bm

ax,y |x〉〈y|, which is the usual defini-

tion of the dagger for linear maps.
Its compact structure can be given by ηn :=

∑
x∈Bn

|x,x〉, which implies εn =

η†n =
∑

x∈Bn

〈x,x|. One can check that all the axioms of †-compact PROPs are

satisfied.
Since Qubit is †-compact, we can define the transpose (.)t which happens to

be the usual transpose of linear maps, and the conjugate (.), which again is the
usual conjugation in linear maps over C.

There is a subcategory of Qubit that is of importance: Stab. It is the small-
est †-compact subcategory of Qubit (the compact structure is preserved) that
contains:

– |0〉 : 0→ 1
– H := 1√

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) : 1→ 1

– S := |0〉〈0|+ i |1〉〈1| : 1→ 1
– CZ := |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11| : 2→ 2

3 The Category SOP

3.1 SOP as a PROP

The point of the Sum-Over-Paths formalism [1], is to symbolically manipulate
morphisms written in a form akin to the Dirac notation. Reasoning on symbolic
terms allow us to detect where a term can be simplified to a “smaller” one, or
to give a specification on a term.

A morphism of the category will be of the form:

|x〉 → s
∑
y∈V k

e2iπP (x,y) |Q(x,y)〉 where:

– x = x1, . . . , xn is the input signature, it is a list of variables
– V is a set of variables (hence y is a collection of these variables)
– P is a multivariate polynomial, instantiated by the variables x and y
– Q = Q1, . . . , Qm is the output signature, it is a multivariate, multivalued

boolean polynomial
– s is a real scalar
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We may denote Vf a subset of the variables V used in f . Then by default, if Vf

and Vg are used in the same term, we consider that Vf ∩ Vg = ∅. To distinguish
the two sum operators (the one in P and the one in Q), we can denote the
one in the output signature Q as ⊕. Moreover, it will sometimes be necessary
to immerse one of the boolean polynomials Qi in the polynomial P . We hence
define Q̂i inductively as x̂ = x for a variable x, p̂q = p̂q̂ and p̂⊕ q = p̂+ q̂− 2p̂q.

Definition 1 (SOP). SOP is defined as the PROP where, given a set of vari-
ables V :

– Identity morphisms are idn : |x〉 → |x〉
– Morphisms f : n → m are of the form f : |x〉 → s

∑
y∈V k

e2iπP (x,y) |Q(x,y)〉

where s ∈ R, x ∈ V n, P ∈ R[X1, . . . , Xn+k]/(1, X
2
i −Xi),

and Q ∈ (F2[X1, . . . , Xn+k])
m

– Composition is obtained as

f ◦ g := |xg〉 → sfsg
∑

yf∈V
kf
f

yg∈V
kg
g

e2iπ(Pg+Pf [xf←Q̂g ]) |Qf [xf ← Qg]〉

– Tensor product is obtained as
f ⊗ g := |xfxg〉 → sfsg

∑
yf∈V

kf
f

yg∈V
kg
g

e2iπ(Pg+Pf ) |QfQg〉

– The symmetric braiding is σn,m : |x1,x2〉 → |x2,x1〉

The polynomial P is called the phase polynomial, as it appears in the mor-
phism in e2iπ.. Because of this, we consider the polynomial modulo 1. We also
consider the polynomial quotiented by X2 −X for all its variables X, as these
variables are to be evaluated in {0, 1}, so we consider X2 = X.

Notice that the definition of the identities does not directly fit the descrip-
tion of the morphisms. However, we can rewrite it as |x〉 → |x〉 = |x〉 →
1

∑
y∈V 0

e2iπ0 |x〉. Hence, when we sum over a single element, we may forget the

sum operator, and when the phase polynomial is 0, we may not write it. Notice
by the way that id0 = |〉 → |〉. Indeed, |〉 is absolutely valid, it represents an
empty register.

Example 1. We can give the SOP version of the usual quantum gates:

RZ(α) := |x〉 → e2iπ
αx
2π |x〉

H := |x〉 → 1√
2

∑
y∈V

e2iπ
xy
2 |y〉

CNot := |x1, x2〉 → |x1, x1⊕x2〉
CZ := |x1, x2〉 → e2iπ

x1x2
2 |x1, x2〉

Example 2. Let us derive the operation (id⊗H) ◦ CNot:

(id⊗H) ◦ CNot



536 R. Vilmart

=

⎛⎝|x1, x2〉 →
1√
2

∑
y∈V

e2iπ
x2y
2 |x1, y〉

⎞⎠ ◦

⎛⎝ |x1, x2〉 → |x1, x1⊕x2〉

⎞⎠
= |x1, x2〉 →

1√
2

∑
y∈V

e2iπ
(x1+x2−2x1x2)y

2 |x1, y〉

where x1 + x2 − 2x1x2 = x̂1 ⊕ x2.

The previous definition contains a claim: that SOP is a PROP. To be so,
one has to check all the axioms of PROPs. One has to be careful when doing so.
Indeed, the sequential composition (. ◦ .) induces a substitution. Hence, one has
to check all the axioms in the presence of a “context”, that is, one has to show
that the axioms can be applied locally.

If an axiom states t1 → t2, one should ideally check that A◦(idn⊗ t1⊗ idm)◦
B → A ◦ (idn ⊗ t2 ⊗ idm) ◦ B for any “before” morphism B and any “after”
morphism A. However, this can be easily reduced to checking that A ◦ t1 ◦B →
A ◦ t2 ◦B.

In the case of the axioms of PROPs, this can further be reduced to show-
ing the axioms without context, as neither idn nor σn,m introduce variables or
phases. For the other axioms, however, the context will have to be taken into ac-
count. A fairly straightforward but tedious verification gives that, indeed, SOP
is a PROP.

3.2 From SOP to Qubit

To check the soundness of what we are going to do in the following, it may be
interesting to have a way of interpreting morphisms of SOP as morphisms of
Qubit.

Definition 2. The functor �.� : SOP → Qubit is defined as being identity on
objects, and such that

�

�|x〉 → s
∑
y∈V k

e2iπP (x,y) |Q(x,y)〉

�

� := s
∑

(x,y)∈{0,1}n×{0,1}k

e2iπP (x,y) |Q(x,y)〉〈x|

Example 3. The interpretation of H is as intended the Hadamard gate:

�H� =
1√
2

∑
x,y∈{0,1}

e2iπ
xy
2 |y〉〈x| = 1√

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|)

Proposition 1. The interpretation �.� is a PROP-functor, meaning:
i) �. ◦ .� = �.� ◦ �.�, ii) �.⊗ .� = �.�⊗ �.�, iii) �σn,m� = σn,m
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3.3 SOP as a †-Compact PROP

Towards a Compact Structure. It is tempting to try and adapt the compact
structure of Qubit to SOP. To do so, we can first define ηn := |〉 →

∑
y∈V n

|y,y〉.

However, we cannot as easily define εn. To do so, we need to put the phase

polynomial to use: εn := |x1,x2〉 → 1
2n

∑
y∈V n

e2iπ
x1·y+x2·y

2 |〉.

One can easily check that �εn� = εn. We can also easily check that the
axioms of †-compact PROP where εn does not appear, such as σn,n ◦ ηn = ηn
and (idn ⊗ σn,m ⊗ idm) ◦ (ηn ⊗ ηm) = ηn+m are satisfied.

However, the equation (εn ⊗ idn) ◦ (idn ⊗ ηn) = idn = (idn ⊗ εn) ◦ (ηn ⊗ idn)
is not satisfied, as:

(εn ⊗ idn) ◦ (idn ⊗ ηn) = |x〉 → 1

2

∑
y1,y2∈V n

e2iπ
x·y2+y1·y2

2 |y1〉 �= idn

The fact that we have (εn ⊗ idn) ◦ (idn ⊗ ηn) �= idn while its interpretation
in Qubit holds, hints at a way to rewrite the first term as the second.

An Equational Theory. A rewrite strategy is given in [1], and we show in
Figure 1 the rules we are going to use in the paper. Each rewrite rule contains a
condition, which usually ensures that a variable (the one we want to get rid of)
does not appear in some polynomials. We hence use Var as the operator that
gets all the variables from a sequence of polynomials. For simplicity, the input
signature is omitted, as well as the parameters in the polynomials.

∑
y

e2iπP |Q〉 −→
y0 /∈Var(P,Q)

2
∑

y\{y0}
e2iπP |Q〉 (Elim)

∑
y

e2iπ(
y0
2

(y′
0+Q̂2)+R) |Q〉 −→

y0 /∈Var(R,Q2,Q)

y′
0 /∈Var(Q2)

2
∑

y\{y0,y′
0}
e2iπ(R[y

′
0←Q̂2]) ∣∣Q [

y′
0 ← Q2

]〉
(HH)

∑
y

e2iπ(
y0
4

+
y0
2

Q̂2+R) |Q〉 −→
y0 /∈Var(Q2,R,Q)

√
2

∑
y\{y0}

e2iπ(
1
8
− 1

4
Q̂2+R) |Q〉 (ω)

Fig. 1. Rewrite strategy −→
Clif

.

−→
Clif

denotes the rewrite system formed by the three rules (Elim), (HH) and

(ω).
∗−→

Clif
is the transitive closure of the rewrite system. Notice that all the rules

remove at least one variable from the morphism, so we know −→
Clif

terminates.

When the rules are not oriented, we get an equivalence relation on the mor-
phisms of SOP. We denote this equivalence ∼

Clif
.
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We denote SOP/ ∼
Clif

the category SOP quotiented by the equivalence rela-

tion ∼
Clif

.

It is to be noticed that:

Proposition 2. For any rule r of −→
Clif

and t1, t2 ∈ SOP:

t1 −→
r

t2 =⇒

⎧⎨⎩A ◦ t1 ◦B −→
r

A ◦ t2 ◦B for all A and B composable

A⊗ t1 ⊗B −→
r

A⊗ t2 ⊗B for all A and B

This obviously generalises to ∼
Clif

.

This result allows us to forget about the context in the rewriting process.

The newly obtained category SOP/ ∼
Clif

is still a PROP. It even has a compact

structure, as the last necessary axiom is now derivable:

(ε⊗ id) ◦ (id⊗ η) = |x〉 → 1

2

∑
y1,y2∈V

e2iπ(
y1y2

2 +
xy2
2 ) |y1〉 −→

(HH)
|x〉 → |x〉 = id

and similarly for (id⊗ ε) ◦ (η ⊗ id) = id.

†-Functor for SOP. To show that SOP/ ∼
Clif

is †-compact, we lack a notion

of †-functor SOP.

Remember that we defined (.) as (.)†t. Since we have a compact structure, we
can already define the functor (.)t. Thanks to the new equivalence relation ∼

Clif
,

this functor is involutive. Hence, we have (.)† = (.)
t
. An appropriate definition

of the conjugation can be given:

Definition 3. The conjugation is defined as:

|x〉 → sf
∑

e2iπPf |Qf 〉 := |x〉 → sf
∑

e−2iπPf |Qf 〉

By combination of (.)t this gives a definition of (.)†. These three functors are
the expected ones:

Proposition 3. �(.)t� = �.�t ,
�
(.)

�
= �.� ,

	
(.)†



= �.�†

We can finally prove the wanted result:

Theorem 1. SOP/ ∼
Clif

is a †-compact PROP.
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4 Redefinition of SOP

In Qubit, and hence in SOP, because the strutures are †-compact, it may feel
unnatural to have an asymmetry between inputs and outputs of the process.
Why not have morphisms of the form f = s

∑
y e2iπP |O〉〈I|? In this case, we

have to change the definition of the composition, which has for consequence
that the SOP morphisms do not form a category. However, it is a category
when quotiented by ∼

Clif
. This is the reason why we did not define SOP like

this at first, although it greatly simplifies the notions of compact structure and
†-functor.

We now redefine SOP, and will use this new definition in the rest of the
paper:

Definition 4 (SOP). We redefine SOP as the collection of objects N and mor-
phisms between them:

– Identity morphisms are idn :
∑

y∈V n

|y〉〈y|

– Morphisms f : n → m are of the form f : s
∑

y∈V k

e2iπP (y) |O(y)〉〈I(y)| where

s ∈ R, P ∈ R[X1, . . . , Xk]/(1, X
2
i − Xi), O ∈ (F2[X1, . . . , Xk])

m
and I ∈

(F2[X1, . . . , Xk])
n

– Composition is obtained as f◦g :=
sfsg

2|If |
∑

yf ,yg

y∈V m

e
2iπ

(
Pg+Pf+

Og·y+If ·y
2

)
|Of 〉〈Ig|

– Tensor product is obtained as f ⊗ g := sfsg
∑

yf ,yg

e2iπ(Pg+Pf ) |OfOg〉〈IfIg|

– The symmetric braiding is σn,m =
∑

y1,y2

|y2,y1〉〈y1,y2|

– The compact structure is ηn =
∑
y
|y,y〉〈| and εn =

∑
y
|〉〈y,y|

– The †-functor is given by: f† := s
∑
y

e−2iπP |I〉〈O|

– The functor �.� is defined as: �f� := s
∑

y∈{0,1}k

e2iπP (y) |O(y)〉〈I(y)|

As announced, this is not a category, as id ◦ id = 1
2

∑
y e2iπ

y1+y2
2 y3 |y2〉〈y1| �=∑

y |y〉〈y| = id. This problem is solved by reintroducing the rewrite rules, adapted
to the new formalism. In the following, references to the rewrite rules are to their
adapted version.

The results given for the previous formalisation can easily be adapted. In
particular:

Proposition 4. SOP/ ∼
Clif

is a †-compact PROP, and �.� is a †-compact PROP-

functor.

Remark 1. When building a SOP-morphism t from a circuit (or a diagram as
we will show in the following) in this formalism, provided the complexity of the
gates is bounded (e.g. in the gateset 〈H,RZ(α),CNot 〉), the resulting t is always
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of size O(d×n) where n is the size of the register, and d the depth of the circuit
(and for a diagram in O(G× a) where G is the number of generators and a the
maximum arity of these generators). This contrasts with the first definition of
SOP, where the size of the constructed SOP term gets exponential in general.

5 SOP and Graphical Languages

The sum-over-paths formalism was initially intended to be used for isometries.
As such, it was given a weak form of completeness – as we will discuss in the next
section. However, if transforming a quantum circuit – that describes an isometry
– into an SOP morphism is easy, the converse, transforming a SOP morphism
into a circuit is not. And actually, all SOP morphisms do not represent an
isometry. For instance, the morphism ε1 described above is not an isometry. An
even smaller example is

∑
y |〉〈y| which is a valid SOP morphism, but clearly

does not represent an isometry.

Monoidal categories, and subsequently PROPs, have the benefit of having a
nice graphical representation, using string diagrams. The fact that SOP is one
hints at another (family) of language(s) more suited for representing it: the Z∗-
Calculi: ZX, ZW and ZH [7,8,10,3]. These are all †-compact graphical languages,
that have an interpretation in Qubit, and are universal for Qubit. This means
that any morphism of Qubit can be represented as a morphism of either of these
3 languages.

The language that happens to be the closest to SOP is the ZH-Calculus.
This is the one we are going to present in the following. However, bear in mind
that, as we have semantics-preserving functors between any two of these three
languages, one can do the same work with ZX and ZW-Calculi.

The link between the sum-over-paths formalism and the ZH-Calculus was first
shown in [14,15]. We give here a slightly different but equivalent presentation,
that in particular uses the fact that we altered the formalism of SOP, and we
will focus this presentation to the Clifford fragment, as it is sufficient for the
scope of the present article, although a more general presentation could be given
(see the previous two references, or the longer version of the present article).

5.1 The Cliffrord Fragment of the ZH-Calculus

ZHClif is a PROP whose morphisms are composed (sequentially (. ◦ .) or in

parallel (.⊗ .)) from the generators

...

...
, , eiα and s ; where α ∈ π

2Z

and s ∈ 〈
√
2, ei

π
4 〉 the multiplicative group freely generated by

√
2 and ei

π
4 .

ZHClif is made a †-compact PROP, which means it also has the symmetric

structure σn,m ::

n... m...

... ...
, the compact structure

(
ηn :: ...

n
...
n
, εn ::

n... n...)
,

and a †-functor (.)† : ZHop
Clif → ZHClif .
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For convenience, we define two additional spiders:
...

...
:=

...

...
1
2 and

...

...
:=

...

...
¬ 1

2

The full language comes with a way of interpreting the morphisms as mor-
phisms of Qubit, and whose restriction to ZHClif maps to Stab. The standard
interpretation �.� : ZHClif → Stab is a †-compact-PROP-functor, defined as:

� ...

...

�

= |0m〉〈0n|+ |1m〉〈1n| ,
 �

=
∑

x,y∈{0,1}
(−1)xy |y〉〈x| ,


eiα

�
= |0〉+ eiα |1〉 , � s � = s

Notice that we used the same symbol for two different functors: the two inter-
pretations �.� : SOP→ Qubit and �.� : ZHClif → Stab. It should be clear from
the context which one is to be used.

The language is universal for Stab:

Proposition 5. �.� : ZHClif → Stab is onto, i.e.

∀f ∈ Stab, ∃Df ∈ ZHClif , �Df � = f

Since it is not a 1-to-1 correspondence, the language comes with an equational
theory, which in particular gives the axioms for a †-compact PROP. We will not
present it here.

5.2 From ZHClif to SOP

We show in this section how any ZHClif morphism can be turned into a SOP
morphism in a way that preserves the semantics. We define [.]

sop
: ZHClif →

SOP as the †-compact PROP-functor such that:[ ...

...

]sop

:=
∑
y

|y, . . . , y〉〈y, . . . , y|
[ ]sop

:=
∑
y0,y1

e2iπ
y0y1

2 |y0〉〈y1|

[
eiα

]sop
:=

∑
y

e2iπ
α
2π y |y〉

[
ρeiθ

]sop
:= ρ

∑
∅

e2iπ
θ
2π |〉〈| for ρeiθ∈〈

√
2,ei

π
4 〉

This interpretation can be extended to the full graphical language. It preserves
the semantics:

Proposition 6. �[.]sop� = �.�.

5.3 The Clifford Fragment of SOP

Since ZHClif is universal for Stab, the Clifford fragment of Qubit, and since
we have an interpretation [.]

sop
: ZHClif → SOP that preserves the semantics,

we can define SOPClif as the the image of ZHClif by �.�. This gives a charac-
terisation of the fragment:



542 R. Vilmart

Definition 5. SOPClif is the subPROP of SOP with the same objects, and

whose morphisms are of the form
1√
2
p

∑
e2iπ(

1
8P

(0)+ 1
4P

(1)+ 1
2P

(2)) |O〉〈I| where

P (i) is a polynomial with integer coefficients of degree at most i (hence P (0) is
in fact merely an integer); and where all the Oi and Ii are linear.

It is an easy check that [ZHClif ]
sop ⊆ SOPClif , so SOPClif has enough

morphisms to describe the Clifford fragment of quantum computing. We can
even show it exactly captures it. To do so, we introduce an interpretation from
SOPClif back to ZHClif .

5.4 From SOPClif to ZHClif

We define [.]
ZH

: SOPClif → ZHClif on arbitrary SOPClif morphisms as:

[
s
∑
y

e2iπP |O1, . . . , Om〉〈I1, . . . , In|
]ZH

:=
P

...

...

O1 Om

y1 yk

s

...
I1 Im

where the row of Z-spiders represents the variables y1, . . . , yk.
The inputs of Oi are linked to y1, . . . , yk. The nodes Oi can be inductively

defined as:

:=
...

0

...
1 :=
... ...

¬

:=
...

yj

... ...
yj

:=
Q1⊕Q2

...

Q1

...

Q2

Notice that we did not define how to interpret a product Q1Q2. This can
be done for the interpretation of the full SOP category, but it is unnecessary
for SOPClif where the Oi are linear. The nodes Ii are defined similarly, but
upside-down. The node P can be inductively defined as:

P1+P2

...
:=

...

P1 P2

1
2yiyj

...
:=

... ......
yi yj

αyi

...
:=

...

e2iπα

...
yi

α

...
:=

...

e2iπα

The obtained diagram can then be reduced using usual rules of ZH.
The system of interpretations is close to preserving the structure of the terms:

Proposition 7.
[
[.]ZH

]sop ∼
Clif

(.)
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Corollary 1.
	
[.]ZH



= �.�.

This result allows us to prove SOPClif does capture the Clifford fragment of
quantum mechanics:

Proposition 8. �.� : SOPClif → Stab, the restriction of the standard interpre-
tation to SOPClif is onto Stab.

6 A Complete Rewrite System for Clifford

In [1], where the rewrite rules are introduced, the author gives a notion of com-
pleteness for Clifford unitaries, that we will refer to in the following as “weak
completeness”:

Proposition 9 (Weak Completeness for Clifford Unitaries). Given two

terms t1, t2 of SOPClif such that �ti� ◦ �ti�
†
= id = �ti�

† ◦ �ti�, we have:

t1 ◦ t†2
∗−→

Clif
id ⇐⇒ �t1� = �t2�

In practice, this is sufficient for deciding the equivalence of two Clifford quan-
tum circuits, as they are represented as unitary morphisms of SOPClif . However,
in our case, where we deal with more than unitaries, we cannot use this trick.
Instead, we aim at a result like “t1

∗−→ t
∗←− t2 ⇐⇒ �t1� = �t2�”. In other

words, we want a rewrite system that will transform any term of SOPClif into
a unique normal form. However, the rewrite system −→

Clif
is not enough for this:

Lemma 1. −→
Clif

is not confluent in SOPClif .

To address this problem, we propose to add three rewrite rules to the previ-
ously presented ones. These new rewrite rules are shown in Figure 2.

∑
e2iπ(P )|O1, ..., y0 ⊕O′

i︸ ︷︷ ︸
Oi

, ..., Om〉〈I|−→
y0 /∈Var(O1,...,Oi−1,O

′
i) ∧ O′

i �=0

∑
e2iπ(P [y0←Ôi]) (|O〉〈I|) [y0 ← Oi] (ket)

∑
e2iπ(P ) |O〉〈I1, ..., y0 ⊕ I ′i︸ ︷︷ ︸

Ii

, ..., Im| −→
y0 /∈Var(O,I1,...,Ii−1,I

′
i) ∧ I′i �=0

∑
e2iπ(P [y0←Îi]) (|O〉〈I|) [y0 ← Ii] (bra)

s
∑
y

e2iπ(
y0
2

+R) |O〉〈I| −→
(R �=0 or OI �=0) ∧ y0 /∈Var(R,O,I)

∑
y0

e2iπ(
y0
2 ) |0, ..., 0〉〈0, ..., 0| (Z)

Fig. 2. Together with those of −→
Clif

, these rules constitute the rewrite system −→
Clif+

.

The last rule (Z) describes what happens for a term that represents the
linear map 0. Rule (bra) is simply the continuation of (ket). They explain how
to operate suitable changes of variables.



544 R. Vilmart

Proposition 10. The rewrite system −→
Clif+

terminates.

Not only does this rewrite system terminate, it is confluent in SOPClif and
the induced equivalence relation ∼

Clif+
is complete for Clifford. The plan to prove

this is by showing that any morphism of SOPClif reduces to a normal form that
is unique, up to α-conversion (upcoming Thm. 2). To get there, we first need a
few intermediary results.

Lemma 2. Any morphism of SOPClif reduces by −→
Clif+

to a morphism of the

form
1√
2
p

∑
e2iπP |O〉〈I| where:

– Var(P ) ⊆ Var(O, I) or P = y0

2 where y0 /∈ Var(O, I)

– Oi =

⎧⎨⎩either yk or

c⊕
⊕

y∈Var(O1,...,Oi−1)

cyy where c, cy ∈ {0, 1}

– Ii =

⎧⎨⎩either yk or

c⊕
⊕

y∈Var(O,I1,...,Ii−1)

cyy where c, cy ∈ {0, 1}

To start with, we deal with the case where the term represents the null map.

Proposition 11. Let t be a morphism of SOPClif such that �t� = 0. Then:

t
∗−→

Clif+

∑
y0

e2iπ
y0
2 |0, ..., 0〉〈0, ..., 0|

Corollary 2. If a morphism t = 1√
2
p

∑
e2iπP |O〉〈I| of SOPClif is irreducible

such that Var(P ) ⊆ Var(O, I), then �t� �= 0.

Before moving on to the completeness by normal forms theorem, we need a
result for the uniqueness of the phase polynomial:

Lemma 3. Let P1 and P2 be two polynomials of R[X1, ..., Xk]/(1, X
2−X). We

have
(
∀x ∈ {0, 1}k, P1(x) = P2(x)

)
=⇒ (P1 = P2)

Theorem 2. Let t1, and t2 be two morphisms of SOPClif such that �t1� = �t2�.
Then, there exists t in SOPClif such that t1

∗−→
Clif+

t
∗←−

Clif+
t2, up to α-conversion.

This result is not totally surprising, since, as exposed by [15], the rules of −→
Clif

are generalisations of the so-called pivoting and local complementation which can
be used to reduce any Clifford ZX (or ZH)-diagram into a pseudo-normal form
[9,2] there, a diagram can have several different but equivalent pseudo-normal
form. The rules introduced to get −→

Clif+
are simply here to further rewrite terms

in pseudo-normal form into terms in proper (unique) normal form.



Structure of Sum-Over-Paths, Completeness for Clifford 545

Corollary 3. The equality of morphisms in SOPClif/ ∼
Clif+

is decidable in time

polynomial in the size of the phase polynomial and in the combined size of the
ket/bra polynomials.

Although the set of rules is confluent in SOPClif , it is not in SOP:

Lemma 4 (Non-confluence). The rewrite systems −→
Clif

and −→
Clif+

are not con-

fluent in SOP.

7 SOP with Discards

We want in this section to extend SOP to be able to express the larger formalism
of mixed quantum operators. The discard construction can be used for that
purpose, as well as for extending the rewrite system for the Clifford fragment.
We finally leverage the previous completeness theorem to get a similar result in
this extension.

7.1 The Discard Construction on SOP

In [5], a construction is given to extend any †-compact PROP for pure quantum
mechanics to another †-compact PROP for quantum mechanics with environ-
ment. This new formalism can also be understood as the previous one, but where
on top of it, one can discard the qubits. Because SOP fits the requirements, the
construction can be applied to it.

First, we have to create the subcategory SOPiso of SOP that contains all
its isometries. The objects of the new category are the same, and its morphisms
are {f ∈ SOP |

	
f† ◦ f



= id}.

These are important, as the isometries are exactly the pure quantum oper-
ators that can be discarded. The next step in the construction does just that.
We perform the affine completion of SOPiso, that is, for every object n, we add
a new morphism !n : n → 0, and we impose that ! ◦ f =! for any f in the new
category, that we denote SOP!

iso. We also need to impose that !n⊗!m =!n+m

and !0 = id0.
Finally, the category SOP is obtained as the following pushout in the cate-

gory of SMCs, where the arrows are the inclusion functors:

SOPiso SOP

SOP!
iso SOP

We write the new morphisms in the form s
∑
y∈V k

e2iπP (y) |O(y)〉!D(y) 〈I(y)|

where the additional D is a set of multivariate polynomials of F2. The fact
that it is a set, and not a list, already captures some rules on the discard: first
permuting qubits and then discarding them is equivalent to discarding them
right away. Similarly, copying data and discarding the copies is equivalent to
discarding the data right away.
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Pure morphisms are those such that D = {}. In those, no qubits are dis-
carded. We hence easily induce usual morphisms such as H and CZ in the new
formalism.

The new morphisms !n are given by: !n :=
∑

y∈V n

|〉!{y1, . . . , yn} 〈y1, . . . , yn|

In the new formalism, the compositions are obtained exactly like previously,
where the resulting set of discarded polynomial is the union of the other two.

It might be useful to be able to give an interpretation to the morphisms of the
new formalism. To do so, we use the CPM construction [17] to map morphisms
of SOP to morphisms of SOP.

Definition 6. The map CPM : SOP → SOP is defined as:

s
∑
y

e2iπP |O〉!D 〈I| →

s2

2|D|

∑
y1,y2,y

e
2iπ

(
P (y1)−P (y2)+

D(y1)·y+D(y2)·y
2

)
|O(y1),O(y2)〉〈I(y1), I(y2)|

We can now define a standard interpretation of SOP -morphisms as:

Definition 7. The standard interpretation �.� of SOP is defined as �.� :=
�CPM(.)�.

Again, it is easy to transform any morphism of SOP in ZH and vice-
versa: ⎡⎣s

∑
y∈V k

e2iπP (y) |O(y)〉!D(y) 〈I(y)|

⎤⎦ZH

:= P

...

...

O1 Om

y1 yk

s

...
I1 Im

...
D1 Dd

and [ ]
sop

=!1.

7.2 SOP with Discards for Clifford

The discard construction can be applied to the subcategory SOPClif . We end
up with a new category SOPClif , such that the following diagram, whose arrows
are inclusions, commutes: SOPClif SOP

SOPClif SOP

Following the characterisation of SOPClif morphisms, we determine that all the

morphisms of SOPClif are of the form: 1√
2
p

∑
e2iπ(

1
8P

(0)+ 1
4P

(1)+ 1
2P

(2)) |O〉!D 〈I|
where p ∈ Z, where P (i) is a polynomial with integer coefficients and of degree
at most i, and where the polynomials of O,D and I are linear.

The rewrite system presented previously can obviously be adapted to the
new formalism (when there is a substitution, it has to be applied in !D as well).
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On top of that, the condition that makes SOP!
iso terminal can be translated

as a meta rule which sadly is not easy to apply. Thankfully, the last part of
[5] is devoted to showing that this big meta rule can sometimes be replaced by
a few small ones. The idea is that, in some cases (in particular in the Clifford
fragment), all the isometries can be generated from a finite set of generators. In
particular, it is enough to impose the following equations:

eiα = 1 !1 ◦ |0〉 = 1 !1 ◦H =! !1 ◦ S =!1 !2 ◦ CZ =!2

Based on this, we can give an updated set of rewrite rules fit for the introduction
of . Due to the size of this rewrite system, we do not provide it here, but it
can be found in the extended version of this paper. The rewrite system is denoted
−→

Clif
and induces a equivalence relation ∼

Clif
. Notice that we can extend CPM

to CPM : SOP / ∼
Clif

→ SOP/ ∼
Clif+

, which makes it a functor.

Proposition 12. The rewrite system −→
Clif

terminates.

We aim to prove a similar result to that of the -free Clifford fragment, that
is that the new rewrite system rewrites any morphism of the Clifford fragment
into a unique normal form. The idea here it to make use of the previous result.

Lemma 5. Any non-null morphism of SOPClif can be reduced to:

1√
2
p

∑
y,yd

e2iπ(
1
4P

(1)(y)+ 1
2P

(2)(y,yd)) |O(y,yd)〉!{yd} 〈I(y,yd)| where:

– polynomials of O and I are linear
– the set of discarded polynomials is reduced to a set of variables {yd}
– P (1) and P (2) have no constants
– no monomial of P (2) uses only variables of yd

– {yd} ⊆ Var(O, I)
– Var(P (1), P (2)) ⊆ Var(O, I,D) or P = y0

2 with y0 /∈ Var(O, I,D).

Corollary 4. Any morphism of SOPClif eventually reduces to a morphism of
the form given in Lem. 5.

Lemma 6. Any morphism t of SOPClif such that �t� = 0 reduces to:∑
y0

e2iπ(
y0
2 ) |0, · · · , 0〉!{} 〈0, · · · , 0|

Corollary 5. If t ∈ SOPClif is terminal with Var(P ) ⊆ Var(O,D, I), then
�t� �= 0.

Definition 8. We define SOPClif as the set of morphisms of SOPClif in the

form given in Lem. 5. We define the function F on SOPClif such that, for any

morphism t =
1√
2
p

∑
y,yd

e2iπP (y,yd) |O(y,yd)〉!{yd} 〈I(y,yd)| of SOPClif :

F (t) :=
1

√
2
2p

∑
y,y′,yd

e2iπ(P (y,yd)-P (y′,yd)) |O(y,yd),O(y′,yd)〉〈I(y,yd), I(y
′,yd)|
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This new functor F can be seen as a simplified CPM construction, applicable
only for terms that are already simplified (in the form of Lem. 5).

Proposition 13. For any t ∈ SOPClif , F (t) ∼
Clif+

CPM(t).

This implies �F (.)� = �CPM(.)�.

Definition 9. We define a function G on some morphisms of SOPClif that have
an appropriate form. Let t = 1√

2
2p

∑
y e2iπP |O1,O2〉〈I1, I2| with |O1| = |O2|

and |I1| = |I2|. Let us partition y into: {yd} := {y} \ Var(O1 ⊕O2, I1 ⊕ I2),
{y1} := Var(O1, I1) \ {yd} and {y2} := ({y} \ {y1}) \ {yd}. If |y1| = |y2| and
if there exists a unique bijection δ : {y2} → {y1} such that:
(O1 ⊕O2, I1 ⊕ I2)[y2 ← δ(y2)] = 0, then G(t) is defined, and:

G(t) :=
1√
2
p

∑
y1,yd

e−2iπP [y1←0][y2←δ(y2)]
(
|O2〉!{yd} 〈I2|

)
[y1←0][y2←δ(y2)]

The function G is designed to be an inverse of F for morphisms where it is
defined, while at the same being impervious to some rewrite rules.

Proposition 14. Let t be terminal with −→
Clif

, and t′ such that F (t)
∗−→

Clif +
t′.

Then, G(F (t)) and G(t′) exist, and G(F (t)) = G(t′).

Theorem 3. Let t1 and t2 be two morphisms of SOPClif such that �t1� = �t2�.
If t′1 and t′2 are terminal such that t1

∗−→
Clif

t′1 and t2
∗−→

Clif
t′2, then t′1 = t′2 up

to α-conversion.

Remark 2. Interestingly, the previous proposition and theorem show that the
simplification of a term of SOPClif can be operated in the “pure” setting, and
then G can be used to retrieve the normal form.

Corollary 6. The equality of morphisms in SOPClif/ ∼
Clif

is decidable in time

polynomial in the size of the phase polynomial and in the combined size of the
ket/bra/discarded polynomials.
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Abstract. The classical van Benthem theorem characterizes modal logic
as the bisimulation-invariant fragment of first-order logic; put differently,
modal logic is as expressive as full first-order logic on bisimulation-
invariant properties. This result has recently been extended to two
flavours of quantitative modal logic, viz. fuzzy modal logic and prob-
abilistic modal logic. In both cases, the quantitative van Benthem the-
orem states that every formula in the respective quantitative variant
of first-order logic that is bisimulation-invariant, in the sense of being
nonexpansive w.r.t. behavioural distance, can be approximated by quan-
titative modal formulae of bounded rank. In the present paper, we unify
and generalize these results in three directions: We lift them to full coal-
gebraic generality, thus covering a wide range of system types includ-
ing, besides fuzzy and probabilistic transition systems as in the existing
examples, e.g. also metric transition systems; and we generalize from
real-valued to quantale-valued behavioural distances, e.g. nondetermin-
istic behavioural distances on metric transition systems; and we remove
the symmetry assumption on behavioural distances, thus covering also
quantitative notions of simulation.

Keywords: Modal logic · Quantale · Fuzzy logic · Coalgebra · Be-
havioural distance · Modal characterization.

1 Introduction

Modal logic takes part of its popularity from the fact that it specifies transi-
tion systems at what for many purposes may be regarded as the right level of
granularity; that is, it is invariant under the standard process-theoretic notion of
bisimulation in the sense that bisimilar states satisfy the same modal formulae.
There are two quite different well-known converses to this elementary property,
which both witness the expressiveness of modal logic: By the Hennessy-Milner
theorem [29], states in finitely branching systems that satisfy the same modal
formulae are bisimilar, and by the van Benthem theorem, every first-order de-
finable bisimulation-invariant property is expressible by a modal formula. Since
modal logic embeds into first-order logic, the latter result may be phrased as say-
ing that modal logic is the bisimulation-invariant fragment of first-order logic.

	 Work of both authors forms part of the DFG project Probabilistic description logics
as a fragment of probabilistic first-order logic (SCHR 1118/6-2)
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In the two-valued setting, there has been increased recent interest in variants
and generalizations of this result (e.g. [54,14,52,22,55,1])

For quantitative systems, it has long been realized (e.g. [26,15,10]) that quan-
titative notions of process equivalence, generally referred to as behavioural met-
rics (although they are in general only pseudometrics, as distinct but equivalent
states have distance zero), are often more appropriate than two-valued bisim-
ilarity. In particular, while two-valued notions of process equivalence just flag
small deviations between systems as inequivalence, behavioural metrics can pro-
vide more fine-grained information on the degree of similarity of systems. Be-
havioural metrics are correspondingly used, e.g., in verification [25], differential
privacy [13], and conformance testing of hybrid systems [36].

In the same way that two-valued modal logic constitutes a natural speci-
fication language for two-valued transition systems, quantitative systems cor-
relate to quantitative modal logics. In this context, bisimulation invariance is
read as nonexpansiveness w.r.t. behavioural distance, i.e. two states differ on a
modal formula at most by their behavioural distance; we refer to this property
as behavioural nonexpansiveness. Notably, van Breugel and Worrell [10] prove
a Hennessy-Milner type theorem for a quantitative probabilistic modal logic:
They show that on compact state spaces, the formulae of the logic lie dense
in the space of behaviourally nonexpansive state properties, which implies that
behavioural distance and logical distance coincide.

In the present paper, we are mainly interested in the other converse to be-
havioural nonexpansiveness, i.e. in quantitative van Benthem theorems. In pre-
vious work with Pattinson and König, we have established such theorems for
quantitative modal logics of fuzzy [57] and probabilistic [58] transition systems.
In the quantitative setting, these theorems take the form of approximability
properties, and state that every behaviourally nonexpansive quantitative first-
order property is approximable by quantitative modal formulae of bounded rank.
The latter qualification is in fact the key content of the respective theorems –
without it, approximability is closer in flavour to Hennessy-Milner-type theo-
rems, which apply to arbitrary rather than just first-order definable properties
(although one should note additionally that our van Benthem theorems do not
assume compactness of the state space).

Our present contribution is to unify and generalize these results in three di-
rections: First, we allow for full coalgebraic generality, i.e. we cover system types
subsumed under the paradigm of universal coalgebra [49]. Besides the fuzzy and
probabilistic systems featuring in the previous concrete instances of our result,
this includes a wide range of weighted, game-based, and preferential systems; for
illustration, we concentrate on the (comparatively simple) case of metric tran-
sition systems [3,20] in the presentation. Second, we generalize from real-valued
to quantale-valued metrics (e.g. [24,33]). Using the unit interval quantale, we
recover our previous results on real-valued logics as special cases. Beyond this,
quantales in particular provide support for what may be termed metrics with
effects; we illustrate this on a notion of convex-nondeterministic behavioural dis-
tance on metric transition systems, where the behavioural distance gives an
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interval of possible real-valued distances. Lastly, we remove the assumption that
distances need to be symmetric, so that we cover also notions of quantitative
simulation. At this level of generality, we prove both a Hennessy-Milner type
theorem stating coincidence of logical and behavioural distance, effectively gen-
eralizing the existing coalgebraic quantitative Hennessy-Milner theorem [37] to
quantale-valued distances; and, as our main result, a quantitative van Benthem
theorem stating that all behaviourally non-expansive first-order properties can
be modally approximated in bounded rank.

Related Work There is a substantial body of work on two-valued modal charac-
terization theorems, e.g. for logics with frame conditions [14], coalgebraic modal
logics [52], fragments of XPath [12,22,1], neighbourhood logic [28], modal logic
with team semantics [38], modal μ-calculi (within monadic second order log-
ics) [35,19], PDL (within weak chain logic) [11], modal first-order logics [6,54],
and two-dimensional modal logics with an S5-modality [55]. We are not aware of
quantitative modal characterization theorems other than the mentioned ones for
fuzzy and probabilistic modal logics [57,58]. Prior to the quantitative Hennessy-
Milner theorems mentioned above [10,37], Hennessy-Milner theorems have been
established for two-valued logics and two-valued bisimilarity over quantitative
systems, e.g. on probabilistic transition systems [39,16,17]. There is work on
Hennessy-Milner theorems for certain Heyting-valued modal logics [21,18]; since
Heyting algebras are quantales but often fail to meet a continuity assumption
needed in our generic Hennessy-Milner theorem, we do not claim to subsume
these results.

2 Preliminaries

We briefly recall basic definitions and examples on quantales and universal coal-
gebra, and fix some data needed throughout the paper. We need some elementary
category theory, see, e.g., [2].

Quantales are order-algebraic structures that serve as objects of truth values
in suitable multi-valued logics, and also support a useful notion of generalized
(pseudo-)metric space (e.g. [24,33,32]). Our arguments will rely on a certain
amount of epsilontics, and hence require more specifically the use of value quan-
tales [24].

We recall some basic order and lattice theory. A complete lattice is a partially
ordered set (V,≤) having all suprema

∨
A for A ⊆ V , equivalently all infima∧

A. We denote binary meets and joins by ∧ and ∨, respectively. Given x, y ∈ V ,
we say that x is well above y, and write x 8 y, if whenever y ≥

∧
A for some

A ⊆ V , then x ≥ a for some a ∈ A. A complete lattice (V,≤) is completely
distributive if all joins in V distribute over all meets, equivalently all meets
distribute over all joins [46]. Another equivalent characterization is that (V,≤)
is completely distributive iff

y =
∧
{x ∈ V | x 8 y}
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for every y ∈ V [47].
In the definition of value quantale, we follow Flagg [24] in dualizing the usual

continuity condition for quantales in order to avoid having to reverse the order
when moving between the general development and basic examples such as the
unit interval; deviating from his terminology, we emphasize this by the prefix
‘co-’:

Definition 2.1 ((Value) co-quantales). A (commutative) co-quantale V is a
complete lattice (V,≤) equipped with a commutative monoid structure (0,⊕)
that is meet-continuous :

a⊕
∧

i∈I bi =
∧

i∈I(a⊕ bi).

A co-quantale V is a value co-quantale [24] if 0 is the bottom element of V
and moreover (V,≤) is a value distributive lattice, i.e. a completely distributive
complete lattice such that |V | > 1 and for all x, y ∈ V , x, y 8 0 implies x∧y 8 0.
Correspondingly, we denote the greatest element of V by 1.

(Dually, in a quantale the operation ⊕ is required to be join-continuous.) By
meet-continuity, we obtain a further binary operator 9 on a co-quantale V by
adjunction, defined by

a9 b ≤ v iff a ≤ b⊕ v

(equivalently, a9 b =
∧
{v | a ≤ b⊕ v}). The operator 9 is sometimes called the

internal hom of V [7]. Moreover, in a value co-quantale, we have that for each
ε 8 0, there exists δ 8 0 such that 2 · δ := δ ⊕ δ ≤ ε [24, Theorem 2.9]. This
allows for proofs where an error bound ε 8 0 needs to be split up into multiple
smaller parts.

A simple example of a value co-quantale is the unit interval [0, 1] with the
usual ordering, with truncated addition a ⊕ b = min(a + b, 1) as the monoid
structure. Correspondingly, the 9 operation is truncated subtraction a 9 b =
max(a−b, 0). We have a 8 b iff a > b. We will give further examples in Section 3.

Universal Coalgebra serves as a unified framework for many types of state-
based systems [49], such as nondeterministic, probabilistic, alternating, game-
based, or weighted systems. It is based on encapsulating the system type as a
functor T , for our purposes on the category Set of sets and functions; such a T
assigns to each set X a set TX, thought of as a type of structured collections
over X, and to each map f : X → Y a map Tf : TX → TY , respecting iden-
tities and composition. A T -coalgebra (A,α) consists of a set A of states and a
transition map α : A → TA, thought of as assigning to each state a structured
collection of successors. Taking T to be the covariant powerset functor P, which
assigns to each set X its powerset PX, we obtain relational transition systems
as T -coalgebras. As a further example, the (discrete) subdistribution functor S
assigns to each set X the set SX of discrete probability subdistributions μ on X
(i.e. μ(X0) = μ(X) ≤ 1 for some countable subset X0 ⊆ X), and to each map
f : X → Y the image measure function (i.e. Sf(μ)(B) = μ(f−1[B]) for B ⊆ Y ).
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S-coalgebras are probabilistic transition systems (or Markov chains) with possi-
ble deadlock: They assign to each state a subdistribution over possible successor
states, with the gap of the total probability to 1 interpreted as the probability
of deadlock. Additional instances are seen in Example 4.4. For the remainder of
the paper, we fix a set functor T and require that T∅ is nonempty (hence our
use of subdistributions instead of distributions in the examples). Moreover, we
require w.l.o.g. that T is standard, i.e. preserves subset inclusions [5].

3 Quantale-Valued Distances and Lax Extensions

A V-valued relation between sets A and B is a map R : A × B → V , which we
also denote by R : A→+ B. For fixed A and B, we order the V-valued relations
between A and B pointwise: R1 ≤ R2 ⇐⇒ ∀a ∈ A, b ∈ B. R1(a, b) ≤ R2(a, b).
We compose relations R : A→+ B and S : B→+ C using the monoid operation on V:

(R;S)(a, c) =
∧
{R(a, b)⊕ S(b, c) | b ∈ B}.

Given a function f : A → B and ε ∈ V , the ε-graph Grε,f is the relation

Grε,f (a, b) =

{
ε, if f(a) = b;

1, otherwise.

We also write Grf = Gr0,f and, in case of the identity function, Δε,X = Grε,idX
and ΔX = Δ0,X .

Definition 3.1 (V-continuity space). Let X be a set and let d : X→+ X. The
pair (X, d) is a V-continuity space [24] if d ≤ ΔX and d ≤ d; d, or equivalently,
if for all x, y, z ∈ X,

d(x, x) = 0 and d(x, z) ≤ d(x, y)⊕ d(y, z).

The dual of (X, d) is the V-continuity space (X, d∗) where d∗(x, y) = d(y, x). The
symmetrization of (X, d) is the space (X, ds) with ds(x, y) = d(x, y) ∨ d∗(x, y).
We say that (X, d) is symmetric if d = d∗.

Remark 3.2. Recall that omission of the metric symmetry axiom d(x, y) =
d(y, x) is standardly designated by the prefix ‘quasi-’ and omission of the anti-
symmetry axiom d(x, y) = 0 ⇒ x = y by the prefix ‘pseudo-’; thus, continuity
spaces could be termed generalized pseudo-quasimetric spaces, and symmetric
continuity spaces generalized pseudometric spaces.

The co-quantale V itself is made into a V-continuity space (V, dV) using the
operator 9:

dV(a, b) = a9 b.

For any set A, the supremum distance between V-valued maps f, g : A → V is

d∨V(f, g) =
∨
a∈A

dV(f(a), g(a)).

The usual notion of nonexpansive map generalizes as expected:
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Definition 3.3 (Nonexpansive maps). A map f : X → Y between V-
continuity spaces (X, d1) and (Y, d2) is nonexpansive if d2(f(x), f(y)) ≤ d1(x, y)
for all x, y ∈ X. We denote the space of nonexpansive maps between (X, d1) and
(Y, d2) by (X, d1)→1 (Y, d2). In the special case of nonexpansive V-valued maps
we write Pred(X, d) = (X, d)→1 (V, dV).

Ultimately we are interested in defining and reasoning about behavioural dis-
tances. Generally speaking, a behavioural distance is a V-continuity space de-
fined on the carrier of a T -coalgebra α : A → TA in such a way that the be-
haviour defined by the coalgebra map α is incorporated into the distance values
of states in A. This is accomplished using relation liftings, which lift V-valued
relations giving distances between states to those giving distances between suc-
cessor structures of states. We specifically generalize the notion of nonexpansive
lax extension [56] to the quantale-valued case:

Definition 3.4 (Lax Extension). A nonexpansive lax extension of T is a map-
ping L that maps V-valued relations R : A×B → V to relations LR : TA×TB →
V and satisfies the following axioms:

(L1) R1 ≤ R2 =⇒ LR1 ≤ LR2

(L2) L(R;S) ≤ LR;LS

(L3) LGrf ≤ GrTf

(L4) LΔε,A ≤ Δε,TA

for all R,R1, R2 : A→+ B,S : B→+ C, f : A → B and ε ∈ V .

(The notion of lax extension, given by axioms (L1)–(L3), is standard, e.g. [31];
the axiom (L4), introduced in [56], guarantees nonexpansiveness w.r.t. the supre-
mum metric as shown in Lemma 3.6.)

Lemma 3.5. If L is a lax extension of T and (A, d) is a V-continuity space,
then so is (TA,Ld).

Lemma 3.6. If L is a nonexpansive lax extension of T , then L is in fact non-
expansive w.r.t. the supremum metric. That is, for R1, R2 : A →+ B we have
d∨V(LR1, LR2) ≤ d∨V(R1, R2).

Proof. We have d∨V(R1, R2) ≤ ε ⇐⇒ R1 ≤ R2;Δε. Using (L1), (L2) and (L4),
we have LR1 ≤ L(R2;Δε) ≤ LR2;LΔε ≤ LR2;Δε, so d∨V(LR1, LR2) ≤ ε. ��

For technical purposes, we will be interested in a generalized version of total
boundedness (recall that a standard metric space is compact iff it is complete
and totally bounded):

Definition 3.7 (Total boundedness). Let (X, d) be a V-continuity space.
For ε 8 0, we write Bs

ε(x) = {y ∈ X | ds(x, y) ≤ ε} for the (symmetric) ball
of radius ε around x ∈ X. A finite ε-cover of (X, d) is a choice of finitely many
x1, . . . , xn ∈ X such that X =

⋃n
i=1 B

s
ε(xi). We say that (X, d) is totally bounded

if X has a finite ε-cover for each ε 8 0.
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Remark 3.8. Note that use of the symmetrization ds is essential in the above
definition; e.g. in the unit interval, with d(x, y) = x9 y, the set {y | d(0, y) ≤ ε}
is the whole space, so 0 alone would form an ε-cover of [0, 1] if we replaced ds

with d.

Moreover, our main result involves a generalization of the standard notion of
density:

Definition 3.9 (Density). Let (X, d) be a V-continuity space. A subset Y ⊆ X
is dense if for every x ∈ X and ε 8 0 there exists y ∈ Y such that ds(x, y) ≤ ε.

Assumption 3.10. Throughout the paper, we fix a value co-quantale V that is
totally bounded as a V-continuity space. Moreover, we fix a dense subset V0 ⊆ V
for use as a set of truth constants in the relevant logics, with a view to keeping
the syntax countable in the central examples. (The technical development, on
the other hand, does not require V0 to be countable, so we can always take
V0 = V .)

Example 3.11 ((Value) co-quantales).

1. The set 2 = {0, 1}, with 0 ≤ 1 and with binary join as the monoid struc-
ture, is a value co-quantale [24], and of course totally bounded. 2-Continuities d
are just preorders, with y being above x if d(x, y) = 0 (!); symmetric 2-
continuities are equivalence relations. Notice that 0 8 0 in 2. The 9 operator is
given by a9 b = 1 iff a = 1 and b = 0.

2. The dual of every locale (e.g. [8]), in particular the set of closed subsets
of any topological space, forms a co-quantale, with binary join as the monoid
structure. However, locales are not in general value co-quantales. The dual Ω(R)
of the free locale over a set R, described as the lattice of downclosed systems of
finite subsets of R (ordered by reverse inclusion of such set systems), does form
a value co-quantale [24], and is totally bounded [30]. Ω(R)-continuity spaces are
known as structure spaces [30,24].

3. The unit interval [0, 1] is totally bounded. [0, 1]-Continuity spaces coin-
cide with 1-bounded pseudo-quasimetric spaces, and symmetric [0, 1]-continuity
spaces with 1-bounded pseudometric spaces in the standard sense (cf. Re-
mark 3.2).

4. Convex-nondeterministic distances: The set I of nonempty closed subin-
tervals (i.e. finitely generated nonempty convex subsets) of [0, 1], written in the
form [a, b] with a ≤ b, ordered by [a, b] ≤ [c, d] iff a ≤ c and b ≤ d, and
equipped with truncated Minkowski addition [a, b]⊕ [c, d] = [a⊕c, b⊕d] (with ⊕
on [0, 1] defined as in the previous item), is a totally bounded value co-quantale.
We write [〈a, b〉] = [a,max(a, b)]. We have [a, b] 8 0 = [0, 0] iff a > 0, and
[a, b]9 [c, d] = [〈a9 c, b9 d〉], again with 9 on [0, 1] described as in the previous
item. We can think of an I-continuity space as assigning to each pair of points
a nondeterministic distance, given as an interval of possible distances.
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4 Quantale-Valued Modal and Predicate Logics

We next introduce the main objects of study, quantale-valued coalgebraic modal
and predicate logics. They will feature modalities interpreted using a quantitative
version of predicate liftings [45,50,51]. Predicate liftings take their name from
the fact that they lift predicates on a base set X to predicates on the set TX
(where T is our globally fixed functor representing the system type according
to Section 2). We work with V-valued predicates, which are organized in the
contravariant V-powerset functor Q given on sets X by QX = X → V and on
functions f : X → Y by Qf(g) = g ◦f (that is, Q is a functor Setop → Set where
Setop is the opposite category of Set). In keeping with the prevalent reading in
fuzzy and probabilistic logics (where, typically, V = [0, 1]), we read 0 ∈ V as
‘false’ and 1 ∈ V as ‘true’ (opposite choices are also found in the literature, e.g.
in modal logics for metric transition systems [3], where 0 ∈ [0, 1] is interpreted
as ‘true’). Predicate liftings can have arbitrary finite arities [50]. For brevity, we
restrict the presentation to unary modalities and predicate liftings; generalizing
to higher arities requires only more indexing.

Definition 4.1. A (V-valued) predicate lifting is a natural transformation
λ : Q → Q ◦ T , i.e. a family of maps λX : QX → QTX, indexed over all sets X,
such that λY (f)(Th(t)) = λX(f ◦ h)(t) for all f : Y → V , h : X → Y , t ∈ TX.

Definition 4.2. Let λ be a predicate lifting.

1. λ is monotone if for all sets X and all f, g ∈ QX with f ≤ g we have
λX(f) ≤ λX(g).

2. λ is nonexpansive if for all sets X and all f, g ∈ QX we have
d∨V(λX(f), λX(g)) ≤ d∨V(f, g).

For the remainder of the paper, we fix a set Λ of monotone and nonexpansive
predicate liftings, which, by abuse of notation, we also use as modalities in the
syntax. A basic example is the ♦ modality of quantitative probabilistic modal
logic [10], which denotes expected probability (in the next transition step) and
corresponds to a predicate lifting for the (sub-)distribution functor S (Section 2);
see Example 4.4.2 for details. The generic syntax of (V-valued) quantitative
coalgebraic modal logic is then given by the grammar

ϕ,ψ ::= c | ϕ⊕ c | ϕ9 c | ϕ ∧ ψ | ϕ ∨ ψ | λϕ (c ∈ V0, λ ∈ Λ).

The operators ⊕, 9, ∨, ∧ denote co-quantale operations, the meaning of λ is
determined by the associated predicate lifting. As usual, the rank of a formula ϕ
is the maximal nesting depth of modalities λ in ϕ. We denote the set of all modal
formulae by LΛ and the set of formulae of rank at most n by LΛ

n .
Formally, the semantics is defined by assigning to each formula ϕ and each

T -coalgebra α : A → TA the extension �ϕ�α : A → V , or just �ϕ�, of ϕ over α,
recursively defined by

�ϕ⊕ c�(a) = �ϕ�(a)⊕ c �ϕ9 c�(a) = �ϕ�(a)9 c

�ϕ ∧ ψ�(a) = �ϕ�(a) ∧ �ψ�(a) �ϕ ∨ ψ�(a) = �ϕ�(a) ∨ �ψ�(a)
�c�(a) = c �λϕ�(a) = λA(�ϕ�)(α(a))
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Remark 4.3. Fuzzy logics differ widely in their interpretation of propositional
connectives (e.g [41]). In our modal syntax, we necessarily restrict to nonexpan-
sive operations, in order to ensure nonexpansiveness w.r.t. behavioural distance
later; this is typical of characteristic logics for behavioural distances (such as
quantitative probabilistic modal logic [10]). The logic hence does not include
binary ⊕ or 9 (in the above syntax, we insist that one of the arguments is a
constant). In terminology usually applied to V = [0, 1], we thus allow Zadeh
connectives (such as ∨, ∧) but not �Lukasiewicz connectives, so for V = [0, 1],
the above version of quantitative coalgebraic modal logic is essentially the Zadeh
fragment of �Lukasiewicz fuzzy coalgebraic modal logic [51].

The syntax does not include negation 1 9 (−); if V satisfies the De Morgan
laws (e.g. these hold in [0, 1]), Λ is closed under duals 19 (λ(19 (−))), and V0

is closed under negation (i.e. c ∈ V0 implies 1 9 c ∈ V0), then negation can be
defined via negation normal forms as usual.

As the ambient predicate logic of the above modal logic, we use (V-valued) quan-
titative coalgebraic predicate logic, a quantitative variant of two-valued coalge-
braic predicate logic [40]. Its syntax is given by

ϕ,ψ ::= c | x = y | ϕ⊕ c | ϕ9 c | ϕ ∧ ψ | ϕ ∨ ψ | ∃x.ϕ | ∀x.ϕ | xλ:y : ϕ;

where c ∈ V0, λ ∈ Λ, and x, y come from a fixed supply Var of (individual)
variables. The reading of xλ:y : ϕ; is the modalized truth degree (according
to λ) to which the successors y of a state x satisfy ϕ; e.g. with ♦ as above,
x♦:y : ϕ; is the expected truth value of ϕ at a random successor y of x. The
semantics over (A,α) as above is given by V-valued maps �ϕ�α, or just �ϕ�, that
are defined on valuations κ : Var → A. The interesting clauses in the definition
are

�∃x.ϕ�(κ) =
∨
a∈A

�ϕ�(κ[x → a]) �∀x.ϕ�(κ) =
∧
a∈A

�ϕ�(κ[x → a])

�xλ:y : ϕ;�(κ) = λA(�ϕ�(κ[y → · ]))(α(κ(x)))

(where κ[y → a] maps y to a and otherwise behaves like κ, and by �ϕ�(κ[y → · ])
we mean the predicate that maps a to �ϕ�(κ[y → a])). Moreover, equality is
crisp, i.e. �x = y�(κ) is 1 if κ(x) = κ(y), and 0 otherwise.

Example 4.4. We discuss some instances of the above framework.

1. Fuzzy modal logic: Take T to be the covariant V-valued powerset functor,
i.e. TX = X → V and Tf(A)(y) =

∨
{A(x) | f(x) = y} for f : X → Y . We think

of A ∈ TX as a V-valued fuzzy subset of X; we say that A is crisp if A(x) ∈ {0, 1}
for all x. Put Λ = {♦} where ♦X(A)(B) =

∨
{A(x)∧B(x) | x ∈ X} for A ∈ QX,

B ∈ TX. Then T -coalgebras are equivalent to fuzzy Kripke frames, which consist
of a set X and a fuzzy relation R : X×X → V , and ♦ is the natural fuzzification
of the standard diamond modality. Fuzzy propositional atoms from a set At
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can be added by passing to the functor that maps a set X to Q(At) × TX.
Instantiating to V = [0, 1], we obtain a basic modal logic of fuzzy relations, or in
description logic terminology Zadeh fuzzy ALC [53]. The corresponding instance
of quantitative coalgebraic predicate logic is essentially the Zadeh fragment of
Novak’s �Lukasiewicz fuzzy first order logic [43].

2. Probabilistic modal logic: As indicated in Section 2, coalgebras for the sub-
distribution functor S are probabilistic transition systems (with possible dead-
lock). We take V = [0, 1] and Λ = {♦}, interpreted by the predicate lifting

♦X(A)(μ) = Eμ(A) for μ ∈ SX
where Eμ(A) denotes the expected value of A(x) when x is distributed according
to μ. The induced instance of quantitative coalgebraic modal logic is (quantita-
tive) probabilistic modal logic [10], which may be seen as a quantitative variant
of two-valued probabilistic modal logic [39], and embeds into the probabilistic μ-
calculus [34,42]. Propositional atoms are treated analogously as in the previous
item (and indeed probabilistic modal logic is trivial without them). The ambient
quantitative probabilistic first-order logic arising as the corresponding instance
of quantitative coalgebraic predicate logic is a quantitative variant of Halpern’s
type-1 (i.e. statistical) probabilistic first-order logic [27].

3. Metric modal logic: In their simplest form, metric transition systems [3]
are just transition systems in which states are labelled in a metric space S
(numerous variants exist, e.g. with states themselves forming a metric space
or with transitions labelled in a metric space [9]). We work with a generalized
version where (S, dS) is a V-continuity space. Metric transition systems are then
coalgebras for the functor TX given on sets by TX = S × PX. We take Λ =
{♦} ∪ S. We interpret Λ using predicate liftings

♦X(A)(s,B) =
∨
{A(x) | x ∈ B} rX(A)(s,B) = dS(s, r)

for A ∈ QX, (s,B) ∈ TX, r ∈ S. Note that r ∈ S ignores its argument A, so is
effectively a nullary modality. Note also that as per our interpretation of truth
values, this nullary modality is read as distinctness from r; in case V = [0, 1],
the degree of equality to r can be expressed as 1 9 r. The induced instance
of coalgebraic modal logic is related to characteristic logics for branching-time
behavioural distances on metric transition systems [3,9].

4. Convex-nondeterministic metric modal logic: We continue to consider met-
ric transition systems as recalled in the previous item, reusing the designa-
tors T, S, dS , and taking V = [0, 1] for simplicity. Recall the value co-quantale I
of nonempty closed subintervals of [0, 1] from Example 3.11.4. We turn the predi-
cate liftings for r ∈ S defined in the previous item into I-valued predicate liftings
by prolonging them along the inclusion ι : [0, 1] ↪→ I, given by ι(a) = [a, a]. We
define an I-valued predicate lifting M for T , where I is the value quantale of
closed intervals introduced in Example 3.11.4, by

MX(A)(s,B) = [
∧
{π1(A(x)) | x ∈ B},

∨
{π2(A(x)) | x ∈ B}]

where πi : I → [0, 1] denote the evident projections π1([a, b]) = a, π2([a, b]) = b.
That is, M returns the range of truth values that A takes on B.
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5 Behavioural Distance and Quantitative Bisimulation
Invariance

The behavioural distance between states of a coalgebra α : A → TA is defined
as a least fixpoint that arises from an iterative process: Initially, at depth 0, all
states are thought of as equivalent and their distance is therefore 0. In order
to increase the depth of the behavioural distance from n to n + 1, we lift the
depth-n distance on A to a the set TA of successor structures. Formally, this
is accomplished using the following quantale-valued version of the coalgebraic
Kantorovich lifting [4,56]:

Definition 5.1 (Kantorovich lifting). Let A and B be sets and R : A→+ B.

1. A pair (f, g) of functions f : A → V , g : B → V is R-nonexpansive if f(a)9
g(b) ≤ R(a, b) for all a ∈ A, b ∈ B.

2. The Kantorovich lifting of R is the relation KΛ(R) : TA→+ TB given by

KΛ(R)(t1, t2) =
∨
{λA(f)(t1)9 λB(g)(t2) | λ ∈ Λ, (f, g) R-nonexpansive}.

(Here, Λ is the set of modalities fixed in Section 4.) Generalizing [56, Theorem
5.6], we have:

Lemma 5.2. The Kantorovich lifting is a nonexpansive lax extension.

Example 5.3 (Kantorovich liftings).

1. For V = [0, 1] and V-valued fuzzy modal logic with Λ = {♦} (i.e. for
simplicity without propositional atoms; cf. Example 4.4.1), the Kantorovich lift-
ing KΛ(R) of a V-valued relation R : X →+ Y coincides with an asymmetric gen-
eralized Hausdorff lifting; i.e.

KΛ(R)(A,B) =
∨
x∈X

∧
y∈Y

((A(x)9B(y)) ∨ (A(x) ∧R(x, y)))

for A ∈ TX = X → V , B ∈ TY . (Obtaining a similar description
for general V remains an open problem.) In particular, on crisp sets A,B,
the symmetrization KΛ(R)s is the usual Hausdorff lifting KΛ(R)s(A,B) =
max(

∨
A(x)=1

∧
B(y)=1 R(x, y),

∨
B(y)=1

∧
A(x)=1 R(x, y)).

2. For probabilistic modal logic (Example 4.4.2), the restriction of KΛ to
distributions coincides, by definition, with the usual (symmetric) Kantorovich-
Wasserstein lifting (e.g. [10]). On subdistributions, one obtains an asymmetric
variant, whose symmetrization then coincides with the standard one.

3. For V-valued metric modal logic (Example 4.4.3), with Λ = {♦} ∪ S, we
similarly obtain a V-valued (asymmetric) Hausdorff distance

KΛ(R)((s,A), (t, B)) = d(s, t) ∨
∨
x∈A

∧
y∈B

R(x, y)

on (s,A) ∈ TX = S × P(X), (t, B) ∈ TY , and R : X →+ Y ; a characterization
that in this case holds for unrestricted V.
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4. Convex-nondeterministic metric modal logic: The I-valued Kantorovich
lifting induced by the set Λ = {M}∪S of modalities on metric transition systems,
with notation as in Examples 3.11.4 and 4.4.4, is given by

KΛ(R)((s,A), (t, B)) = ι(d(s, t))∨
[〈
∨

y∈B

∧
x∈A π1(R(x, y)),

∨
x∈A

∧
y∈B π2(R(x, y))〉]

on (s,A) ∈ TX = S×P(X), (t, B) ∈ TY , and R : X→+ Y (recall that the πi are
the projections I → [0, 1], and ι : [0, 1]→ I denotes the evident injection).

For purposes of lifting V-continuity structures as relations, nonexpansive pairs
can be replaced with the more familiar notion of nonexpansive map:

Lemma 5.4. Let (A, d) be a V-continuity space and let (f, g) be d-nonexpansive.
Put h(b) =

∨
a∈A f(a)9 d(a, b). Then f ≤ h ≤ g and h ∈ Pred(A, d).

By monotonicity of predicate liftings we get the following alternative formulation
for the Kantorovich lifting of a V-continuity structure:

Lemma 5.5. Let (A, d) be V-continuity space. Then for all t1, t2 ∈ TA

KΛ(d)(t1, t2) =
∨
{λA(h)(t1)9 λA(h)(t2) | λ ∈ Λ, h ∈ Pred(A, d)}.

Using the Kantorovich lifting, we can now define a sequence of behavioural
distances between states a, b in a T -coalgebras α : A → TA, β : B → TB:

dK0 (a, b) = 0 dKn+1(a, b) = KΛ(d
K
n )(α(a), β(b)) dKω (a, b) =

∨
n<ω

dKn (a, b).

By general fixed point theory, the continuation of this ordinal-indexed sequence
past ω eventually stabilizes, that is, there exists some ordinal γ such that dKγ+1 =

dKγ . The arising least fixed point is the unbounded behavioural distance dK ,
alternatively given by

dK =
∧
{d | d = KΛ(d) ◦ (α× β)}.

These behavioural distances lead to an appropriate generalization of the notion
of bisimulation invariance. A family f of V-valued predicates fα indexed over
T -coalgebras α : A → TA – such as the extension of a modal formula or of
a first-order formula with a single free variable – is said to be behaviourally
nonexpansive if it is nonexpansive with respect to behavioural distance dK , i.e.
if for all coalgebras α : A → TA, β : B → TB and all a ∈ A, b ∈ B,

fα(a)9 fβ(b) ≤ dK(a, b). (1)

Similarly, f is depth-n behaviourally nonexpansive for finite depth n if f is non-
expansive with respect to depth-n behavioural distance dKn .

To match these notions to the classical setting, consider the binary co-
quantale 2. In the general case, the above notion of behavioural nonexpansive-
ness should then be thought of as preservation under simulation: States a, b have
(asymmetric) distance 0 if b simulates a, and in this case, (1) stipulates that if f
is true at a, then f is also true at b.
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Example 5.6. The behavioural distance arising from the Kantorovich lifting of
metric modal logic (Example 5.3.3) is a simulation distance. The value dK(a, b)
quantifies the degree to which traces starting at b simulate traces starting at a,
where the distance from one trace to another is the supremum over the distances
at all time steps.

On the other hand, there are many cases where the behavioural distance dK is
symmetric. If V = [0, 1] and the set Λ is closed under duals (Remark 4.3), then
we have that KΛ(R

∗) = KΛ(R)∗ for all R and therefore dK is symmetric [56].
Concretely, if we put �X(A) = 19 ♦X(19 A), then in the case of fuzzy modal
logic (Example 4.4.1) we have �X(A)(B) =

∧
{(19B(x)) ∨ A(x) | x ∈ X} and

in the case of probabilistic modal logic (Example 4.4.2) we have �X(A)(μ) =
Eμ(A)⊕ (19 μ(X)), and in both cases Λ = {♦,�} yields a symmetric distance.

In these symmetric cases distance 0 determines a notion of bisimilarity, and
behavioural nonexpansiveness amounts to the standard notion of bisimulation
invariance. Thus, the following straightforward lemma generalizes both bisimu-
lation invariance of modal logic and preservation of positive modal logic (with
only diamond modalities) under simulation:

Lemma 5.7. All modal formulae are behaviourally nonexpansive, and all modal
formulae of rank at most n are depth-n behaviourally nonexpansive.

As expected, coalgebra morphisms preserve behaviour on the nose:

Lemma 5.8. Let α : A → TA and β : B → TB be coalgebras and h : A → B a
coalgebra morphism, that is Th◦α = β ◦h. Then dK,s(a, h(a)) = 0 for all a ∈ A.

Another way to define distances between states of a coalgebra is in terms of the
modal formulae:

Definition 5.9 (Logical distance). Let a, b be states in coalgebras α : A →
TA, β : B → TB. We define

dLn(a, b) =
∨
{�ϕ�(a)9 �ϕ�(b) | ϕ ∈ LΛ

n}

dL(a, b) =
∨
{�ϕ�(a)9 �ϕ�(b) | ϕ ∈ LΛ}

The relationship between fixpoint-based distances dK and logical distances dL is
at the heart of the study of behavioural nonexpansiveness and modal expressive-
ness. For instance, Lemma 5.7 can equivalently be expressed by the inequalities
dL ≤ dK and dLn ≤ dKn , n < ω. In Section 6, we investigate the converse inequal-
ities.

6 Modal Approximation

We now establish our first contribution, a quantitative coalgebraic Hennessy-
Milner theorem. To this end, we first need to pin down the exact relationship of
the two families of distances at finite depth.
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Theorem 6.1. Let the set Λ of monotone and nonexpansive predicate liftings
from Section 4 be finite and let (A,α) be a coalgebra. For all n < ω:

1. We have dKn = dLn =: dn
2. The space (A, dn) is totally bounded.
3. The set LΛ

n is a dense subset of Pred(A, d).

Remark 6.2. The need for assuming that the set Λ of modalities is finite is
specific to quantitative Hennessy-Milner theorems (and implicitly present also
in the existing [0, 1]-valued version of the theorem [37]), and not needed in the
two-valued case [45,50]. It relates to the total boundedness claim in Theorem 6.1,
and features also in the van Benthem theorem, where in fact it is needed also
in the two-valued case [52]; indeed, proofs of the original van Benthem theorem
start by assuming, in that case w.l.o.g., that there are only finitely many propo-
sitional atoms and relational modalities. In our running examples, only the ones
featuring metric transition systems are affected by this assumption; indeed, for
our theorems to apply to such systems, the space of labels needs to be finite.

Theorem 6.1 is proven by induction on n and most of Section 6 is devoted to
the inductive step (the base case n = 0 is immediate from dK0 = dL0 = 0). We
fix a coalgebra α : A → TA and an integer n > 1 and assume as the inductive
hypothesis that the three items of Theorem 6.1 have already been proven for all
m < n. We show Item 1 in Lemma 6.3, Item 2 in Lemma 6.6, and Item 3 in
Lemma 6.7.

Lemma 6.3. We have dKn = dLn on A.

Proof (sketch). We use the alternative formula for the Kantorovich lifting as
given in Lemma 5.5. By Item 3 of the inductive hypothesis, and because the
predicate liftings are nonexpansive, the maps λ(f) ◦ α with f ∈ Pred(A, dn−1)
can be approximated using formula expansions �λψ� with ψ ∈ LΛ

n−1. ��

Having shown that dKn = dLn , from now on we simply use dn to denote both.
To show that dn is totally bounded, we make use of the following version of the
Arzelà-Ascoli theorem [23, Theorem 4.13].

Lemma 6.4 (Arzelà-Ascoli). Let (X, d1) and (Y, d2) be totally bounded V-
continuity spaces. Then the space (X, d1)→1 (Y, d2) is also totally bounded.

Using Lemma 6.4, we show that the Kantorovich lifting preserves total bound-
edness; this generalizes a previous result for the case V = [0, 1] [37, Proposition
29], which in turn generalizes [57, Lemma 5.6].

Lemma 6.5. If the set Λ of predicate liftings is finite and (X, d) is a totally
bounded V-continuity space, then (TX,KΛ(d)) is totally bounded.

The following is now an easy consequence:

Lemma 6.6. The space (A, dn) is totally bounded.
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Finally, we show that the modal formulae up to depth n form a dense subspace
of the space of all nonexpansive properties:

Lemma 6.7. Let f ∈ Pred(A, dn) be a nonexpansive map and let ε 8 0. Then
there exists some modal formula ϕ ∈ LΛ

n such that d∨,s
V (f, �ϕ�) ≤ ε.

Proof (sketch). We use the fact that for all x, y ∈ A

f(x) =
∧

y∈A dn(x, y)⊕ f(y) =
∧

y∈A(
∨

γ∈LΛ
n
�γ�(x)9 �γ�(y))⊕ f(y).

The latter term can be approximated using formulae of LΛ
n , where the infimum

over y and the supremum over γ are made finite using ε-covers of A and LΛ
n . ��

Having shown that behavioural distance and logical distance coincide at all fi-
nite depths, we are now equipped to prove our first main result, a version of the
Hennessy-Milner theorem stating that behavioural distance and logical distance
coincide not only at finite depths (Theorem 6.1.1), but in fact also at unbounded
depth. In general, this equivalence of distances can only be expected to hold if
the functor T in question is finitary, or admits approximation by a finitary sub-
functor [56]. The functor T is finitary if for all sets X and all t ∈ TX there exists
a finite subset Y ⊆ X such that t = Ti(s) for some s ∈ TY , where i : Y → X
is set inclusion. Examples of finitary functors include the finite powerset functor
PωX = {Y ⊆ X | Y finite} and the finite subdistribution functor Sω which maps
a set X to the set of finitely supported probability subdistributions on X. König
and Mika-Michalski [37] prove a quantitative coalgebraic Hennessy-Milner the-
orem for the case of the co-quantale [0, 1]. We generalize their result as follows:

Definition 6.8. We say that the value co-quantale V is continuous from below
if for every monotone increasing sequence (an)n<ω in V and every ε 8 0, there
exists some n such that an ⊕ ε ≥

∨
n<ω an.

This condition essentially allows the use of epsilontic arguments also for joins
of increasing sequences, while value co-quantales in general allow this only for
meets. It holds in all our running examples.

Theorem 6.9 (Quantified Hennessy-Milner theorem). Let Λ be a finite
set of monotone and nonexpansive predicate liftings, let T be a finitary functor
and let V be a totally bounded value co-quantale that is continuous from below.
Then we have dK = dL.

Proof (sketch). Because V is continuous from below, we have KΛ(d
K
ω ) =∨

n<ω KΛ(d
K
n ) on finite sets, and as T is finitary, this also holds for all sets.

This implies that dKω = dKω+1 = dK , so that

dK =
∨

n<ω dKn =
∨

n<ω dLn = dL. ��

Besides examples already covered by the [0, 1]-valued version of the theorem [37],
this result instantiates, e.g., to a quantitative Hennessy-Milner theorem for
convex-nondeterministic metric modal logic (Example 4.4.4).
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7 Locality and Modal Characterization

We proceed to establish our main result, the quantitative coalgebraic van Ben-
them theorem. The main tool in the proof of this result is a notion of locality,
which characterizes formulae that only depend on the structure of the model
in some neighbourhood of the state under consideration. This poses a challenge
when it comes to coalgebraic models, as these need not come with a built-in
graph structure that could be used to define what it means for two states to
be neighbouring. To solve this, we make use of a technique based on supported
coalgebras that has previously been used in the proof of a two-valued coalgebraic
van Benthem theorem [52].

Recall from Section 2 that we assume T∅ �= ∅. We fix an element ⊥ ∈ T∅,
and for each set A put ⊥A = Ti(⊥), where i : ∅ → A is the empty map.

Definition 7.1 (Support). Let A be a set. We say that a set B ⊆ A is a
support of t ∈ TA if t ∈ TB. A supported coalgebra is a coalgebra α : A → TA
together with a map suppα : A → PA such that suppα(a) is a support of α(a)
for every a ∈ A.

Every coalgebra can be supported because we can always put suppα(a) = A for
all a ∈ A. Supporting a coalgebra equips it with a graph structure:

Definition 7.2 (Neighbourhood). Let A = (A,α, suppα) be a supported
coalgebra.

1. The Gaifman graph of A is the undirected graph with vertex set A and edge
set {{a, b} | b ∈ suppα(a)}.

2. For any a, b ∈ A, the Gaifman distance Dsupp (a, b) is the least number of
steps to get from a to b in the Gaifman graph (or ∞, if no path from a to b
exists).

3. The radius-k neighbourhood of a state a ∈ A is the set Uk(a) = {b ∈ A |
Dsupp (a, b) ≤ k}.

For any k < ω and any state a in a supported coalgebra A = (A,α, suppα),
we can define a supported coalgebra Ak

a = (Uk(a), αk, suppαk) on the radius-
k neighbourhood of a. The coalgebra map αk : Uk(a) → T (Uk(a)) is given
by αk(b) = α(b) if suppα(b) ⊆ Uk(a) and αk(b) = ⊥A otherwise. We note
that the latter case only occurs for states on the edge of Uk(a), that is when
Dsupp (a, b) = k. Note that ⊥A has empty support by construction, so that we
can put suppαk(b) = ∅ in this latter case and suppαk(b) = suppα(b) otherwise.

Using the neighbourhood around a state and the coalgebra structure defined
on it, we can now define our notion of locality:

Definition 7.3. A formula ϕ is k-local if we have �ϕ�α(a) = �ϕ�αk(a) for all
supported coalgebras A = (A,α, suppα) and all a ∈ A.

Lemma 7.4. For every supported coalgebra A = (A,α, suppα), k < ω and a ∈
A, we have dK,s

k (a, a) = 0, where the first a lives in A and the second in Ak
a.
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A key step in the proof is the following locality result, which in similar form
appears also in proofs of the classical van Benthem theorem [44], and is proved,
in our case, by a game-theoretic method that is related to classical Ehrenfeucht-
Fräıssé games:

Lemma 7.5. Let ϕ(x) be a behaviourally nonexpansive formula with qr(ϕ) ≤ n.
Then ϕ is k-local for k = 3n.

Proof (sketch). Consider a spoiler-duplicator game over n rounds, where both
players place a pebble every round and the second player needs to maintain the
invariant that if there are m rounds remaining the radius 3m neighbourhoods
around the pebbles need to be isomorphic. One can show that this invariant
guarantees equivalence on formulae of rank at most m.

We use this game to prove for every supported coalgebra A that ϕ has the
same value on A and Ak

a. Nonexpansiveness of ϕ is used to extend the two
coalgebras in such a way that the duplicator always has a suitable response. ��
We next show that every nonexpansive formula that is local is also nonexpan-
sive at some finite depth. We make use of an unravelling construction, where a
coalgebra is enlarged so that the successors of every state in the unravelling (as
given by the support relation) form a tree.

Definition 7.6 (Unravelling). The unravelling of a supported coalgebra
A = (A,α, suppα) is the supported coalgebra A∗ = (A+, α∗, suppα∗), where
A+ is the set of nonempty sequences over A and for a1 . . . an ∈ A+ we
have α
(a1 . . . an) = Tf(α(an)) and suppα∗(a1 . . . an) = f [suppα(an)], where
f : A → A+, a → a1 . . . ana.

Lemma 7.7. For every supported coalgebra A = (A,α, suppα) and every a ∈ A,
we have dK,s(a, a) = 0, where the first a lives in A and the second in A∗.

The mentioned nonexpansiveness at finite depth follows:

Lemma 7.8. Let ϕ be behaviourally nonexpansive and k-local. Then ϕ is also
depth-k behaviourally nonexpansive.

Proof (sketch). By the assumptions on ϕ we may pass from any supported coal-
gebra to the radius-k neighbourhood in the unravelling, which is shaped like a
tree of depth k. Between any two such tree structures we have dKk = dK , as their
behaviour past depth k is fully characterized by the default value ⊥ ∈ T∅. ��
The target result then follows by combining the above lemmas with Theorem 6.1
and a final chain argument that allows us to detach the technical development
from the choice of a fixed coalgebra:

Theorem 7.9 (Quantified van Benthem theorem). Let Λ be a finite set
of monotone and nonexpansive predicate liftings, let T be a standard functor
with T∅ �= ∅, and let V be a totally bounded value co-quantale. Then for ev-
ery behaviourally nonexpansive formula ϕ of quantitative coalgebraic predicate
logic with quantifier rank at most n and every ε 8 0 there exists a modal
formula ψ ∈ LΛ such that for all coalgebras α : A → TA and all a ∈ A,
dsV(�ϕ�α(a), �ψ�α(a)) ≤ ε and the modal rank of ψ is bounded by 3n.
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Proof (sketch). Using the final chain (Tn1)n<ω, where 1 is a singleton set, we
can construct a coalgebra (Z, ζ) such that for all (A,α) and all ϕ,ψ we have
d∨,s
V (�ϕ�α, �ψ�α) ≤ d∨,s

V (�ϕ�ζ , �ψ�ζ).
As ϕ is behaviourally nonexpansive, we get that it is also depth-k be-

haviourally nonexpansive for k = 3qr(ϕ) by Lemmas 7.5 and 7.8, and by Theo-
rem 6.1.3 for every ε 8 0 there is ψ ∈ LΛ

k such that d∨,s
V (�ϕ�ζ , �ψ�ζ) ≤ ε. ��

To our best knowledge, the only previously known instances of this result in the
real-valued setting are the ones for [0, 1]-valued fuzzy modal logic [57] and for
quantitative probabilistic modal logic [58]. In the two-valued setting, we cover a
previous coalgebraic van Benthem result [52] by instantiating to V = 2, and in
fact obtain an additional asymmetric version, characterizing fragments that are
preserved under simulation. In our running examples, we obtain new concrete
van Benthem theorems for [0, 1]-valued metric modal logic (Example 4.4.3) and
convex-nondeterministic metric modal logic (Example 4.4.4). We cover, by de-
fault, the asymmetric case (to be thought of as characterizing fragments that are
preserved under quantitative simulation) and, in the cases V = [0, 1] and V = 2,
also the symmetric case (to be thought of as characterizing fragments that are
invariant under bisimulation).

8 Conclusions

We have established a highly general quantitative version of van Benthem’s
modal characterization theorem, stating that given a value quantale V that is
totally bounded and continuous from below, all state properties, in a given type
of quantitative systems, that are nonexpansive w.r.t. V-valued behavioural dis-
tance and expressible in V-valued coalgebraic (first-order) predicate logic can be
approximated by V-valued modal formulae of bounded rank. A key technical tool
in the proof are versions of the classical Arzela-Ascoli and Stone-Weierstraß the-
orems for totally bounded quantale-valued (pseudo-quasi-)metric spaces. Coalge-
braic generality implies that this result not only subsumes existing quantitative
van-Benthem type theorems for fuzzy [57] and probabilistic [58] systems, but
we also obtain new results, e.g. for metric transition systems. Via the additional
parametrization over a value quantale, we moreover obtain, e.g., a van Benthem
theorem for convex-nondeterministic behavioural distance (‘states x, y have dis-
tance between a and b’) on metric transition systems. Our result complements
previous coalgebraic results for two-valued logics [52]. We do leave some open
problems, in particular to determine whether the main result can be sharpened
to exact modal expressibility instead of approximability, and to obtain a quan-
titative modal characterization over finite models, in generalization of Rosen’s
finite-model variant of van Benthem’s theorem [48].
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57. Wild, P., Schröder, L., Pattinson, D., König, B.: A van Benthem theorem for fuzzy
modal logic. In: Logic in Computer Science, LICS 2018. pp. 909–918. ACM (2018)
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