Irek Ulidowski

Ivan Lanese

Ulrik Pagh Schultz
Carla Ferreira (Eds.)

State-of-the-Art

LNCS 12070 RIS

Reversible Computation:
Extending Horizons
of Computing

Selected Results of the COST Action 1C1405

- r,r /./ - ‘,..'-_-
A e 5

2 Springer Open cCcostE

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12070

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Irek Ulidowski - Ivan Lanese -
Ulrik Pagh Schultz - Carla Ferreira (Eds.)

Reversible Computation:
Extending Horizons
of Computing

Selected Results of the COST Action IC1405

@

@ Springer Open

Editors

Irek Ulidowski Ivan Lanese

University of Leicester University of Bologna
Leicester, UK Bologna, Italy

Ulrik Pagh Schultz Carla Ferreira

University of Southern Denmark NOVA University Lisbon
Odense, Denmark Caparica, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-47360-0 ISBN 978-3-030-47361-7 (eBook)

https://doi.org/10.1007/978-3-030-47361-7
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

Acknowledgement and Disclaimer

This publication is based upon work from COST Action IC1405 Reversible Computation: Extending
Horizons of Computing, supported by COST (European Cooperation in Science and Technology).

The book reflects only the authors’ views. Neither the COST Association nor any person acting on its behalf
is responsible for the use, which might be made of the information contained in this publication. The COST
Association is not responsible for external websites or sources referred to in this publication.

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3834-2036
https://orcid.org/0000-0003-2527-9995
https://orcid.org/0000-0003-4119-2689
https://orcid.org/0000-0003-3680-7634
https://doi.org/10.1007/978-3-030-47361-7
http://creativecommons.org/licenses/by/4.0/

European Cooperation in Science and Technology (COST)

This publication is based upon work from COST Action IC1405 Reversible
Computation - Extending Horizons of Computing, supported by COST (European
Cooperation in Science and Technology).

COST is a funding agency for research and innovation networks. Our Actions help
connect research initiatives across Europe and enable scientists to grow their ideas by
sharing them with their peers. This boosts their research, career, and innovation.

WWW.cost.eu

N
<~

http://www.cost.eu/

Preface

Reversible Computation (RC) is a new paradigm that extends the traditional
forwards-only mode of computation with the ability to execute in reverse, so that
computation can run backwards as easily as forwards. It aims to deliver novel com-
puting devices and software, and to enhance existing systems by equipping them with
reversibility. There are many potential applications of RC, including languages and
software tools for reliable and recovery-oriented distributed systems and revolutionary
reversible logic gates and circuits, but they can only be realised and have lasting effect
if conceptual and firm theoretical foundations are established first. This state-of-the-art
survey presents the main recent scientific outcomes in the area of RC, focusing on those
that have emerged during COST Action IC1405 Reversible Computation - Extending
Horizons of Computing, a European research network that operated from May 2015 to
April 2019.

Action IC1405 was organised into four Working Groups. The members of Working
Group 1 concentrated their efforts on establishing Foundations of RC. Working Groups
2 and 3 focused on specific technical challenges and potential application areas of
reversibility in Software and Systems and in Reversible Circuit Design respectively.
The purpose of Working Group 4 was to validate and explore application of Action’s
research results via practical case studies.

Working Groups 1-3 produced yearly scientific reports during the life of the Action,
and these reports have been developed further into four comprehensive chapters sur-
veying the main conceptual, theoretical, and technical achievements of the RC Action.
Seven of the case studies from Working Group 4 were selected for presentation in this
book. They show that RC techniques can form essential parts of solutions to many
difficult practical problems as can be seen, for example, in the success of reversible
debugging software tools. Overall, there are 40 co-authors of the book, which repre-
sents a substantial proportion of around 110 active members of the RC Action. This
survey is a result of collaborative work that was carried out in part during regular
Action meetings and Short-Term Scientific Missions (STSMs) supported by COST.

The content of the survey is structured as follows:

— Chapter 1 presents many new theoretical developments in the foundations of RC. It
is worth noting the work on reversing Petri nets and on categorical characterisation
of reversibility which was carried out as a direct result of the members of the
respective communities participation in IC1405. Results obtained by Working
Group 1 on reversibility in programming languages, term rewriting, membrane
systems, process calculi, automata, and quantum formal verification are also given
here.

— The main results obtained in the area of reversible software and systems are
described in Chapter 2. They span from the definition of imperative and reversible
object-oriented languages to the impact of reversibility on analysis techniques based
on behavioural types, and to the application of reversibility for recovery, efficient

viii

Preface

simulation, and wireless communications. The outcomes of Working Group 2 have
been mostly of practical nature, hence some of the topics above are further dis-
cussed in the chapters of the book devoted to case studies.

Chapter 3 covers simulation and design techniques for quantum circuits. Quantum
circuits are inherently reversible and have received significant attention in the recent
years. Simulating and designing them in a proper fashion is however a non-trivial
task. The chapter provides an overview of solutions for these tasks which utilise
expertise on efficient data structures and algorithms gained in the design of con-
ventional circuits and systems.

An overview of recent results towards a new classification of reversible functions,
which would be useful in the synthesis of reversible circuits, is presented in Chapter
4. Firstly, theoretical results on properties of component functions of reversible
functions are given. Then, the results of recent research on the existence of Boolean
reversible functions of any number of variables (with all component functions
belonging to different equivalence classes) are described. Finally, results on the
existence of Boolean reversible functions with specified properties of all component
functions are reported.

Chapter 5 focuses on the application of reversibility to debugging. This is a quite
natural application, since debugging aims at finding bugs (that is, wrong lines of
code) causing visible misbehaviours, and to do that it is quite natural to execute
backward from the misbehaviour. The chapter focuses on debugging of concurrent
systems, where the use of reversibility is more recent, and considers both a standard
imperative language and a subset of the functional language Erlang. Notably, the
results described in this section are practical, but obtained as a direct application
of theoretical investigations in the area of process calculi and semantics.

The combination of reversibility and run-time monitoring of distributed systems is
advocated in Chapter 6. It considers Erlang programs as an instance of the
implementation of a model-driven methodology which can also be applied to other
message-passing frameworks. Reversible choreographies are introduced to
abstractly represent message-passing software and are used to specify adaptation
and recovery strategies. These specifications are then used to generate monitors that
govern the recovery and run-time adaptation of the execution according to the
specified recovery policies.

Chapter 7 give an overview of process calculi and Petri nets techniques for the
modeling and reasoning about reversibility of systems, including out-of-causal-order
reversibility as in chemical reactions. As an example, the autoprotolysis of water
reaction is modeled in the Calculus of Covalent Bonding, the Bonding Calculus, and
in Reversing Petri Nets.

A robotic assembly case study is presented in Chapter 8. It investigates to what
extent program inversion of a robotic assembly sequence can be considered to
derive a reverse behaviour, and to what extent changing the execution direction at
runtime (namely backtracking and retrying) using program inversion can be used as
an automatic error handling procedure. The programming model is used to rever-
sibly control industrial robots and demonstrates reversible control of industrial
robots in real-world scenarios.

Preface ix

— Chapter 9 presents practical results in the field of optimistic parallel discrete event
simulation (PDES). Optimistic PDES requires reversibility to perform a distributed
roll-back in case conflicts are detected due to the optimistic execution approach.
Two approaches to reversibility are compared: one based on the reversible pro-
gramming language Janus, the other based on a variant of checkpointing, also called
incremental state saving. For the purpose of comparing the performance of the two
approaches, a benchmark simulation model is presented which is specifically
designed for evaluating the performance of approaches to reversibility in PDES.

— A case study on applications of RC in wireless communications is given in Chapter
10. A communication system has an inherent link with RC. It is demonstrated that
the communication channel can be modeled using reversible paradigms such as
reversible cellular automata, that the hardware conducting communications based
on wave time reversal has a natural, simple implementation in terms of reversible
gates, and, lastly, that optimisation for large antenna arrays can be efficiently done
in real time using reversible computational models such as Reversing Petri Nets.

— Finally, Chapter 11 provides an overview of key reconciliation techniques in
quantum key distribution protocols with a focus on communication and computing
performance. Different ways to identify errors in establishing symmetric crypto-
graphic keys are investigated, with a focus on recursivity and reversibility. This is
particularly noticeable with the Cascade Protocol, while other protocols focus on
achieving one-sided processing which is of great importance for satellite quantum
communications. Also, a new approach to key reconciliation techniques based on
artificial neural networks is introduced.

We are grateful to all the contributors of this book, who worked tirelessly preparing
the chapters and improving them greatly following a review process. Our thanks are
due to many reviewers who helped to improve the scientific quality of the book. We
would like to thank Veroniva Gaspes, the STSM Coordinator of Action 1C1405, for
dealing efficiently with over 80 STSM visits. We also thank Jovanka Pantovi¢ for
taking care of ICT conference grants.

We would like to express our appreciation to Ralph Stiibner, the Scientific Officer
of the Action, for the support and advice received over the four years of the Action. Our
administrative and financial affairs were looked after very effectively by Olga Gorczyca
from COST. Our special thanks also go to Alfred Hofmann, Anna Kramer and Elke
Werner, and other members of the editorial team at Springer, for their efficient and
patient editorial assistance.

March 2020 Irek Ulidowski
Ivan Lanese

Ulrik Pagh Schultz

Carla Ferreira

Organization

Action IC1405 Committee

Action Scientific Officer

Ralph Stiibner COST Association, Belgium

Action Chair

Irek Ulidowski University of Leicester, UK
Action Vice-chair
Ivan Lanese Focus Team, University of Bologna/Inria, Italy

Working Group (WG) Leaders and Co-leaders

WG1 Leader
Tain Phillips Imperial College London, UK

WG1 Co-leader
Michael Kirkedal Thomsen University of Copenhagen, Denmark

WG2 Leader

Claudio Antares Mezzina University of Urbino, Italy

WG2 Co-leader

Rudolf Schlatte University of Oslo, Norway
WG3 Leader
Robert Wille Johannes Kepler University, Austria

WG3 Co-leader
Pawet Kerntopf Warsaw University of Technology, Poland

WG4 Leader
Ulrik Pugh Schultz University of Southern Denmark, Denmark

xii Organization

WG4 Co-leader

Carla Ferreira University of Lisbon, Portugal

STSM Coordinator

Veronica Gaspes University of Halmstad, Sweden

ITC Conference Grants Coordinator

Jovanka Pantovi¢ University of Novi Sad, Serbia

COST Action Equality Chair

Anna Philippou University of Cyprus, Cyprus

COST Action Website Chair

Michael Kirkedal Thomsen University of Copenhagen, Denmark

Additional Reviewers

Aman, Bogdan Niemann, Philipp
Ciobanu, Gabriel Philippou, Anna
Di Giusto, Cinzia Podlaski, Krzysztof
Francalanza, Adrian Schlatte, Rudolf
Giunti, Marco Schordan, Markus
Gliick, Robert Tuosto, Emilio
Hoey, James Vidal, German
Kerntopf, Pawel Wille, Robert
Krivine, Jean Worsch, Thomas
Mehic, Miralem Yokoyama, Tetsuo

Mezzina, Claudio

Contents

Foundations of Reversible Computation. 1
Bogdan Aman, Gabriel Ciobanu, Robert Gliick, Robin Kaarsgaard,
Jarkko Kari, Martin Kutrib, Ivan Lanese, Claudio Antares Mezzina,
Ltukasz Mikulski, Rajagopal Nagarajan, lain Phillips, G. Michele Pinna,
Luca Prigioniero, Irek Ulidowski, and German Vidal

Software and Reversible Systems: A Survey of Recent Activities 41
Claudio Antares Mezzina, Rudolf Schlatte, Robert Gliick, Tue Haulund,
James Hoey, Martin Holm Cservenka, Ivan Lanese,
Torben A£. Mogensen, Harun Siljak, Ulrik P. Schultz, and Irek Ulidowski

Simulation and Design of Quantum Circuits. 60
Alwin Zulehner and Robert Wille

Research on Reversible Functions Having Component Functions

with Specified Properties: An Overview. 83
Pawet Kerntopf, Claudio Moraga, Krzysztof Podlaski,
and Radomir Stankovié

A Case Study for Reversible Computing: Reversible Debugging

of Concurrent Programs. 108
James Hoey, Ivan Lanese, Naoki Nishida, Irek Ulidowski,
and German Vidal

Towards Choreographic-Based Monitoring. 128
Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto

Reversibility in Chemical Reactions 151
Stefan Kuhn, Bogdan Aman, Gabriel Ciobanu, Anna Philippou,
Kyriaki Psara, and Irek Ulidowski

Reversible Control of Robots 177
Ulrik Pagh Schultz

Reversible Languages and Incremental State Saving in Optimistic Parallel

Discrete Event Simulation L 187
Markus Schordan, Tomas Oppelstrup, Michael Kirkedal Thomsen,
and Robert Gliick

X1v Contents

Reversible Computation in Wireless Communications

Harun Siljak

Error Reconciliation in Quantum Key Distribution Protocols
Miralem Mehic, Marcin Niemiec, Harun Siljak, and Miroslav Voznak

Author Index

Foundations of Reversible Computation

Bogdan Aman'2, Gabriel Ciobanu'?, Robert Gliick?, Robin Kaarsgaard?,
Jarkko Kari, Martin Kutrib®, Ivan Lanese®, Claudio Antares Mezzina’,
Lukasz Mikulski®, Rajagopal Nagarajan?, Iain Phillips'0(®)

G. Michele Pinna!!, Luca Prigioniero®!'2, Irek Ulidowski!3,
and German Vidal4

! Romanian Academy, Institute of Computer Science, Iasi, Romania
baman@iit.tuiasi.ro
2 AL Cuza University, Iasi, Romania
gabriel@info.uaic.ro
3 University of Copenhagen, Copenhagen, Denmark
{glueck,robin}@di.ku.dk
4 University of Turku, Turku, Finland
jkari@utu.fi
5 University of Giessen, Giessen, Germany
kutrib@informatik.uni-giessen.de
6 Focus Team, University of Bologna/Inria, Bologna, Italy
ivan.lanese@gmail.com
7 Universita di Urbino, Urbino, Ttaly
claudio.mezzina@uniurb.it
8 Folco Team, Nicolaus Copernicus University, Torusi, Poland
mikulskilukasz@gmail.com
9 Middlesex University, London, England
R.Nagarajan@mdx.ac.uk
10 Tmperial College London, London, England
i.phillips@imperial.ac.uk
' Universita di Cagliari, Cagliari, Italy
gmpinna@unica.it
12 Universita degli Studi di Milano, Milan, Italy
prigioniero@di.unimi.it
13 University of Leicester, Leicester, England
iu3@leicester.ac.uk
4 MiST, VRAIN, Universitat Politécnica de Valéncia, Valencia, Spain
gvidal@dsic.upv.es

Abstract. Reversible computation allows computation to proceed not
only in the standard, forward direction, but also backward, recovering
past states. While reversible computation has attracted interest for its
multiple applications, covering areas as different as low-power comput-
ing, simulation, robotics and debugging, such applications need to be
supported by a clear understanding of the foundations of reversible com-
putation. We report below on many threads of research in the area of
foundations of reversible computing, giving particular emphasis to the
results obtained in the framework of the European COST Action 1C1405,
entitled “Reversible Computation - Extending Horizons of Computing”,
which took place in the years 2015-2019.
© The Author(s) 2020

I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 1-40, 2020.
https://doi.org/10.1007/978-3-030-47361-7_1

®

Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_1

2 B. Aman et al.

1 Introduction

Reversible computation allows computation to proceed not only in the standard,
forward direction, but also backward, recovering past states, and computing
inputs from outputs. Reversible computation has attracted interest for multiple
applications, covering areas as different as low-power computing [113], simula-
tion [37], robotics [122] and debugging [129]. However, such applications need to
be supported by a clear understanding of the foundations of reversible compu-
tation. Over the years, a number of theoretical aspects of reversible computing
have been studied, dealing with categorical foundations of reversibility, founda-
tions of programming languages and term rewriting, considering various models
of sequential (automata, Turing machines) and concurrent (cellular automata,
process calculi, Petri nets and membrane computing) computations, and tack-
ling also the challenges posed by quantum computation, which is in a large part
naturally reversible. We report below on those threads of research, giving partic-
ular emphasis to the results obtained in the framework of the European COST
Action IC1405 [78], titled “Reversible Computation - Extending Horizons of
Computing”, which took place in the years 2015-2019 and involved researchers
from 34 different countries.

The contents of this chapter are as follows. Section 2 covers category theory,
Sect. 3 reversible programming languages, Sect.4 term rewriting, and Sect.5
membrane computing. We then discuss process calculi (Sect.6), Petri nets
(Sect. 7), automata (Sect.8), and quantum verification and machine learning
(Sect.9). The chapter ends with a brief conclusion (Sect. 10).

2 Category Theory

Category theory is a framework for the description and development of mathe-
matical structures. In category theory mathematical objects and their relation-
ships within mathematical theories are abstracted into primal notions of object
and morphism. Despite being a staple of the related field of quantum computer
science for years (see, e.g., [3,79,174]), category theory has seen comparatively
little use in modelling reversible computation, where operational methods remain
the standard. While the present section aims to give an overview of the use of
categorical models in providing categorical semantics for reversible program-
ming languages, categorical models have also been studied for other reversible
computing phenomena, notably reversible event structures [65].

2.1 Dagger Categories

One approach to categorical models of reversible computation is given by dagger
categories, i.e., categories with an abstract notion of inverse given by assigning to

4
each morphism X Ly an adjoint morphism Y EAR X, such that (gof)" = ffogt

and id& = idx (that is, composition is respected) and fTf = f for all compatible
morphisms f and g. Note that this definition says nothing about how f and f*

Foundations of Reversible Computation 3

ought to interact. As such, f' is not required to “undo” the behaviour of f in
any way, but can be any morphism with the appropriate signature, so long as
the above constraints are met.

A useful specialisation of dagger categories, in connection with reversible
computation, is dagger traced symmetric bimonoidal (or rig) categories, i.e.,
dagger categories equipped with two symmetric monoidal tensors (usually
denoted — @ — and — ® —), interacting through a distributor and an anni-
hilator, yielding the structure of a rig (i.e., a ring without additive inverses).
Iteration is modelled by means of a trace operator Tr (see [1,85,175]) such that
(Trf)" = Tr(f7). These categories are strongly related to the dagger compact
closed categories [3,174] that serve as the model of choice for the Oxford school
of quantum computing.

The use of dagger traced symmetric bimonoidal categories to model reversible
computations goes back at least as far as to the works by Abramsky, Haghverdi
and Scott (see, e.g., [2,4]) on (reversible) combinatory algebras, though its appli-
cations in reversible programming were perhaps best highlighted by the devel-
opment of the IT and I1° calculi [34,83]. In addition, the reversible functional
programming language Theseus [82] exhibits a correspondence with the IT° cal-
culus. However, dagger traced symmetric bimonoidal categories are not strictly
enough to model IT°, as such categories fail to account for the recursive data
types formed using — & —, — ® —, and their units. In his recent thesis, Karvo-
nen [94] describes precisely the categorical features necessary for such a corre-
spondence, which he calls traced w-continuous dagger rig categories.

Another notable application of this line of research is found in [167], where
a reversible I7°-like language is extended to describe quantum computations
without measurement, but with support for (necessarily terminating) primitively
recursive functions.

2.2 Inverse Categories

Another approach to model reversible computation is inverse categories [95]
(see [40] for a more modern presentation), a specialisation of dagger categories

in which morphisms are required to be partial isomorphisms. More precisely,
t
each morphism X Iy may be uniquely assigned a partial inverse Y ILx

satisfying fo ffo f = f.

The development of inverse categories as models of reversible computation
was pioneered in the thesis of B.G. Giles [58], though a concrete correspondence
was never provided. This work, combined with the comprehensive account of
inverse categories with joins given in the thesis of Guo [67], was exploited in [86]
to give an account of reversible recursion in inverse categories with joins.

Much of this theory was then put to use in [87], where the authors managed
to show soundness, adequacy, and (under certain conditions) full abstraction for
reversible flowchart languages [185] in a class of inverse categories with joins.

4 B. Aman et al.

2.3 Monads and Arrows for Reversible Effects

The first account of monads pertaining to reversible computing was given in [71]
as dagger Frobenius monads. Though these arise naturally in quantum compu-
tation in the context of measurement, it turns out that they are exceedingly
rare in the case of classical reversible computing. A better concept for modelling
and programming with reversible effects turns out to be that of dagger and
inverse arrows [70], with examples such as reversible computation with mutable
memory, errors and error handling, and more.

3 Foundations of Reversible Programming Languages

Reversible programming languages bridge the gap between the hardware and
the specific application, and therefore play a central role in the development
of reversible computing. Reversible languages must be expressive and usable
in a variety of application domains. Their semantics must be precise and their
programs accessible to program inversion, analysis and verification. Additionally,
they must have efficient realisations on reversible devices and on standard ones.
Recent programming language studies have advanced the foundations and theory
of reversible languages in several interrelated directions.

3.1 Language Cores

Reversible languages have been reduced to their computational cores:

R-Core [63] is a structured reversible language consisting of a single command
for reversible store updates, a single control-flow operator for reversible iteration,
and data structures built from a single binary constructor and a single symbol.
Despite its extreme simplicity, the language is reversibly universal, which means
it is as computationally powerful as any reversible language can be. Its four-
line program inverter is as concise as the one for Bennett’s reversible Turing
machines. The core language and a recent extension with reversible recursion
were equipped with a denotational semantics [61,63,64].

R-While [62] adds reversible rewrite rules and pattern matching as syntactic
sugar to R-Core, which makes the family of structured reversible languages more
accessible to foundational studies and educational purposes than do reversible
Turing machines and other reversible devices. The procedural extension [64]
draws a distinction between tail-recursion by iteration and general recursion
by reversible procedures, a notoriously difficult transformation problem in pro-
gram inversion [96,151]. The linear-time self-interpretability makes the language
also suitable for foundational studies of computability and complexity from a
programming language perspective [84].

CoreFun [80] is a typed reversible functional language that seeks to reduce
reversible functional programming [184] to its essentials so that it can serve as a
foundation for modern functional language concepts. The language has a formal
semantics and a type system to statically check for reversibility of programs.

Foundations of Reversible Computation 5

3.2 Formal Semantics

Precise semantics is the foundation of every programming language, and formal-
ity is from where programming languages derive their usefulness and power.

A program is regarded as reversible if each of its meaningful subprograms is
partially invertible. Thus, reversible programs have reversible semantics [61]. A
foundation of the semantics has been established for structured reversible lan-
guages built on inverse categories [59,60]. This class of languages includes Janus,
a reversible language that was originally formalised by conventional (irreversible)
operational semantics, and the R-Core and R-While languages. For example,
predicates and assertions occurring in reversible alternatives and reversible iter-
ations are modelled by decision maps, in contrast to conventional semantics. A
benefit of the reversible semantic approach is that program inverters and equiv-
alences of reversible programs can be derived directly from the semantics.

The assumption of countable joins in inverse categories is suitable in a cat-
egorical account of reversible recursion [86], which enables modelling of proce-
dures in reversible structured and functional languages. Reversibility of Janus
was proved with a proof assistant [153].

3.3 Compilation Principles

High-level languages are more productive in most application domains, but high
levels of computational abstractions do not come for free. A clean and effective
translation to lower abstraction levels is required and sophisticated optimisations
may be necessary to generate high quality implementations.

Dynamic memory management is a central runtime mechanism to sup-
port dynamic data structures in reversible machines. Its purpose is to sup-
port reversible object-oriented languages as well as the core languages described
above. Garbage collectors that use multiple references [142] to overcome linearity
requirements and heap manager algorithms have been developed and experimen-
tally evaluated. To ease the analysis and optimisation when translating from a
high-level reversible language to the underlying reversible machine, the reversible
single static assignment (RSSA) form can be a suitable intermediate representa-
tion in optimising compilers [141]. Its aim is to allow for advanced optimisations
such as register allocation on reversible Von Neumann machines.

The recent languages Joule [173] and ROOPL [68] demonstrated that well-
known object-oriented concepts can be captured reversibly by extending a Janus-
like imperative language. Reversible data types [43], that is data structures with
all of its associated operations implemented reversibly, are enabled by dynamic
allocation of constructor terms on the heap [11]. A reversible dynamic mem-
ory management based on the Buddy Memory system [99] has been developed
and tested in a compiler targeting the assembly language of a reversible com-
puter [43].

6 B. Aman et al.

3.4 Reversibilisation Techniques

A separate approach to reversibility is reversibilisation, which turns irreversible
computations into reversible computations. This can be achieved by extending
the semantics of an irreversible language or by instrumenting an irreversible
program to continually produce information that ensures reversibility.

Some reversibilisation techniques work without user interaction, while oth-
ers require annotation of programs. Techniques have been developed in recent
years that add tracing to term rewriting systems [150] and instrument C++ pro-
grams with incremental state saving [171]. Other investigations have focused on
techniques for debugging concurrent programs [121,149] and on extending the
operational semantics of an irreversible language with tracing [72], thereby defin-
ing the inverse semantics of the language. Hybrid approaches aim to combine
reversibilisation and reversible sublanguages [172]. In general, the minimisation
of the additional computational resources required for sealing information leaks
by reversibilisation remains a central challenge.

4 Term Rewriting

Term rewriting [17,98,178] is a foundational theory of computing that under-
lies most rule-based programming languages. A term rewriting system (TRS) is
specified as a set of rewrite rules of the form [— 7 such that [is a nonvariable
term and r is a term whose variables appear in [. Positions are used to address
the nodes of a term viewed as a tree. A position p in a term ¢ is represented by
a finite sequence of natural numbers, where ¢|, denotes the subterm of t at posi-
tion p and ¢[s], the result of replacing the subterm t|, by the term s. Substitutions
are mappings from variables to terms.

Given a TRS R, we define the associated rewrite relation —% as the smallest
binary relation satisfying the following: given terms s, t, we have s —x t iff there
exist a position p in s, a rewrite rule [— r € R, and a substitution o such that
slp = lo and t = s[ro],. Given a binary relation —, we denote by —* its reflexive
and transitive closure, i.e., s =% ¢ means that s can be reduced to ¢ in R in zero
or more steps. The goal of term rewriting is reducing terms to so-called normal
forms, where a term t is called irreducible or in normal form w.r.t. a TRS R if
there is no term s with ¢ —x s. Computing normal forms can be seen as the
counterpart of computing values in functional programming.

We also consider Conditional TRSs (CTRSs) of the form [— r < s; —
ti,...,8, — tyn, with — interpreted as reachability (—%). Roughly speaking,

s —x tiff there exist a position p in s, a rewrite rule] — r < s — t1,..., 8, —
t, € R, and a substitution o such that s|, = lo, s,0 =% t;o foralli=1,...,n,
and t = s[ro],. Consider, e.g., the following CTRS R™:

Bz fn([]) = [

]
B2 : fn(person(n,l):xs) — n:ys < fn(zs) — ys
Bs : fn(city(c):xs) — ys < fn(xs) — ys

Foundations of Reversible Computation 7

where we use “:” and [] as list constructors. Here, 31, B2 and (5 denote labels
that uniquely identify each rewrite rule. Function fn takes a list of persons of the
form person(first_name, last_name) and cities of the form city(city_-name) and
returns a list of first names. Note that it could be specified in a typical functional
language (say, Haskell) as follows:

fn[] =]
fn ((Person n l):xs) = n:ys where ys = fn xs
fn ((City ¢):2zs) = ys where ys = fn xs

4.1 Reversible Term Rewriting

In general, term rewriting is not reversible, even for injective functions; namely,
given a rewrite step t; — 5, we do not always have a decidable method to get
t1 from ty. One of the first approaches to reversibility in term rewriting is due
to Abramsky [2], who considered reversibility in the context of pattern match-
ing automata.! Abramsky’s approach requires a condition called biorthogonal-
ity (which, in particular, implies injectivity), so that the considered automata
are reversible. This work can be seen as a rather fundamental delineation of
the boundary between reversible and irreversible computation in logical terms.
However, biorthogonality is overly restrictive in the context of term rewriting,
since almost no term rewrite system is biorthogonal. Another example of a term
rewrite system with both forward and reverse rewrite relations is the reaction sys-
tems for bonding in [159]. It has been used to model a simple catalytic reaction,
polymer construction, by a scaffolding protein and a long-running transaction
with a compensation.

In the context of the COST action IC1405, Nishida et al. [148,150] introduced
the first generic notion of reversible rewriting, a conservative extension of term
rewriting based on a so-called Landauer embedding. In this approach, for every
rewrite step s —x t, one should store the applied rule 3, the selected position p,
and a substitution o with the values of some variables (e.g., the variables that
occur in the left-hand side of a rule but not in its right-hand side). Therefore,
reversible rewrite steps have now the form (s,7) — (¢, 8(p,0) :), where — is
a reversible (forward) rewrite relation and 7 is a trace that stores the sequence
of terms of the form B(p, o). The dual, inverse relation — is also introduced, so
that its union = can be used to perform both forward and backward reductions.

Moreover, [148] also introduces a scheme to compile the reversible extension
of rewriting into the system rules. Essentially, given a system R, new systems
Ry and R, are produced, so that standard rewriting in Ry, i.e., =g, coincides
with the forward reversible extension —x in the original system, and analogously
—R, is equivalent to «—x. Therefore, Ry can be seen as an injectivisation of R,
and R, can be seen as the inversion of Ry.

1 Although he did not consider rewriting explicitly, pattern matching automata can
also be represented in terms of standard notions of term rewriting.

8 B. Aman et al.

For instance, the injectivisation R‘}‘ of the previous CTRS R is as follows:

fa'([1) — ([, B1) _
fn'(person(n,l):xs) — (n:ys, B2(l,ws)) < fn'(xs) — (ys, ws)
fn'(city(c):xs) — (ys, B3(c, ws)) < fn'(xs) - (ys, ws)

together with the corresponding inversion RZ":

fn ([, B1) — []
fn=1(n:ys, Ba(l,ws)) — person(n,l):zs < fn~1(ys, ws) - xs
fn=1(ys, B3(c,ws)) — city(c):xs < fn~L(ys, ws) — xs

For example, the following rewrite derivation in R:
fn([person(john, smith), city(london), person(ada, lovelace)]) —* [john, ada]
is now as follows in Rf:

fni([person(john, smith), city(london), person(ada, lovelace)])
—* ([john, ada], B2 (smith, 85 (london, 32 (lovelace, £1))))

where [2(smith, G3(london, B2(lovelace, 81))) is the trace of the computation.
Besides proving some fundamental properties of reversible rewriting, Nishida
et al. [150] have developed a prototype implementation of the reversibilisa-
tion transformations (injectivisation and inversion), which is publicly available
through a web interface from http://kaz.dsic.upv.es/rev-rewriting.html.

4.2 Application to Bidirectional Transformations

The framework of bidirectional transformations considers two representations
of some data and the functions that convert one representation into the other
and vice versa (see, e.g., [75] for an overview). Typically, we have a function
called “get” that takes a source and returns a view. In turn, the function “put”
takes a possibly updated view (together with the original source) and returns the
corresponding, updated source. In this context, bidirectionalisation [128] aims at
automatically producing one of the functions, typically producing a function put
from the corresponding function get. For this purpose, a so-called complement
function is often introduced so that get becomes injective (see, e.g., [55]).

In [152], Nishida and Vidal present a bidirectionalisation technique based
on the injectivisation and inversion transformations of CTRSs from [150]. They
also prove a number of relevant properties which ensure that changes in both the
source and the view are correctly propagated and that no undesirable side-effects
are introduced.

To be precise, given a get function f, the corresponding put can be automat-
ically defined as follows:

pute(v,s) — & < fi(s) = (W, 7),f (v, 1) > &

http://kaz.dsic.upv.es/rev-rewriting.html

Foundations of Reversible Computation 9

Note that the trace of a computation, 7, plays the role of a complement (following
the terminology in the literature of bidirectional transformations).

For instance, given the previous function fn, the corresponding put function
is defined as follows:

pute, (v, s) — s < fni(s) — (W, 1), fn (v, 7) > &

so that, e.g., puts, ([peter, ada], B2 (smith, 85 (london, B2 (lovelace, 51)))) reduces to
[person(peter, smith), city(london), person(ada, lovelace)]. Note that the first ele-
ment has been updated from person(john,smith) to person(peter, smith).

However, puts is only defined for “compatible” view updates. E.g., the func-
tion pute,([ada], B2(smith, B3(london, B2 (lovelace, £1)))) cannot be reduced to a
value. In [152], the use of narrowing [76,176]—an extension of rewriting that
replaces matching with unification—is introduced to precisely characterise com-
patible (also called in-place) view updates.

For example, given the trace G2 (smith, 33(london, (5 (lovelace, 31))), narrowing
allows us to compute the view skeleton [z1, z2]. This means that any view update
that can be obtained as an instance of [z1, 25| is compatible with the trace (and,
thus, the put function is well defined).

Finally, [152] also discusses some directions for dealing with view updates
that are not compatible.

5 Membrane Computing

Natural computing is a complex field of research dealing with models and com-
putational techniques inspired by nature that helps us in understanding the bio-
chemical world in terms of information processing. Membrane computing [154]
and reaction systems [53] are two important theories of natural computing
inspired by the functioning of living cells.

Membrane computing deals with multisets of symbols processed in the com-
partments of a membrane structure according to some multiset rewriting rules;
some of the symbols (presented with their multiplicity within the regions delim-
ited by membranes) evolve in parallel according to the rules associated with their
membranes, while the others remain unchanged and can be used in the subse-
quent steps. It is also possible to send multisets of symbols in the neighbouring
membranes, the systems being organised in a tree-like fashion. The evolution
takes place in a maximal parallel manner: all the instances of the applicable
rules have to be applied in order to reach the next state.

The situation is different in reaction systems. These systems represent a
qualitative model: they deal with sets rather than multisets. Two major assump-
tions distinguish the reaction systems from the membrane systems: (i) thresh-
old assumption: reaction systems have actually an infinite multiplicity for their
resources; (ii) no permanency assumption: only entities produced at one step
will be present in the system at the next step.

The issue of reversibility in various computational paradigms has gained
interest in recent years. In one of the earliest papers on reversibility in mem-
brane systems [5], the authors (under the influence of category theory) presented

10 B. Aman et al.

reversibility as a form of duality. A full description of this kind of reversibility
in membrane systems is given by Agrigoroaiei and Ciobanu in [6].

In [7], Aman and Ciobanu investigated the reversibility of biochemical reac-
tions in parallel rewriting systems; these systems can easily represent some
classes of membrane systems and Petri nets. Formally, a parallel rewriting sys-
tem is a tuple (O, R, wp), where O is a finite alphabet of objects, R is a set of
rewriting rules and wy is a multiset of objects over O. For each rule r € R there
exist the non-empty multisets (hs(r),rhs(r) € OT standing for the left-hand
side and right-hand side of the rule, respectively, such that r : lhs(r) — rhs(r).
Given a multiset of rules F', then the left-hand side and right-hand side of it can
be defined as: [hs(F') =) . F(r) - lhs(r) and rhs(F') = Y . F(r) - rhs(r).

A parallel rewriting system (O, R, wp) evolves in a maximal parallel manner.
This means that a non-empty multiset R of rules is applicable to a multiset w
of objects if [hs(R) < w and there does not exist r € R such that lhs(r) <w —
lhs(R). By applying a multiset R of rules, a multiset w of objects is transformed
into another multiset w’ = w—1hs(R)+rhs(R) of objects. If no multiset of rules
is applicable, then the computation stops.

The new features of this approach are given by adding an external control
specified by using a special symbol p ¢ O that informs the system that a rollback
will be executed, and by constructing two new sets of rules R = {u — v|-, |

u— v € R} and %p:{vﬂmp|u%uER}UpH)\tomarktherulesthat
will be applied in forward and backward steps, respectively.

Several theoretical results are obtained, including the so-called loop results
and the connections between the evolutions of these systems and their reversible
extensions. If there exist multisets of rules not competing for the same resources,
then the following results hold.

A first result presents the forward diamond property:
If w & w' and w R—> w”, where R and R’ are two valid multisets of rules such
that lhs(R) N lhs(R’) = (), then there exists a multiset wy such that w' L w1
and w" i wy.

The second result presents the reverse diamond property:

= ’

R = =7 . .
Ifw == w'" andw — w", where R, and R}, are two valid multisets of rules such

—
’

R
that lhs(R n lhs(R’) = (), then there exists a multiset wy such that w' — w;

—

R
and w'" % w;.
N
A forward step performed using the multiset R of rules can be matched by a
bl
backward step performed using the multiset R, of rules, and vice-versa (loop):

— P

R
w2 w if and only if pw’ —2 w.

Foundations of Reversible Computation 11

In [8], Aman and Ciobanu investigated reversibility in reaction systems.
Reaction systems [53] deal with sets rather than multisets, assuming that each
resource is present in the system in a sufficient amount to ensure that several
reactions needing such a resource are not in conflict. Formally, a reaction sys-
tem A is a tuple (S, A), where S is a finite alphabet and A C rac(S). The set
rac(S) = {(R,I,P) | R,I,P C S,RN I = 0} is the set of all reactions over S.
Given a reaction a = (Rg, I,, P,), the sets R,, I, and P, contain the reactants,
inhibitors and products of a, respectively. For a set C C S and a set of reactions
A C rac(S), the result of applying A on C' is defined by res(A,C) = J,c 4 Pas

and the evolution can be written as C' 25 res(A,C). The set of all reactions
from A that are enabled by C is en(A4,C)={a€ A| R, CC,I,NC = 0}.

An interactive process is a pair # = (v,9) such that v = Co,...,Ch_1,
0 =D,...,D, with n > 1, where C;_;, D; C S for 1 < j < n are the context
and result sets, respectively. The sets D, are computed using the equalities D; =
res(A, Wy) and D; = res(A, W;_1), where the sets Wy = Cy and W; = D; U C;
for each 2 < i < n represent the states.

In order to have backward computations, we add to each state W; a register T;
to remember objects no longer available after step i. The reverse of a set A of
reactions is the set A = {(Py, I, Ry) | (Ra, 1o, P,) € A}. If p &€ W, and E; # 0,

then a forward computation (W;, T;) &, (Wit1,Ti41) takes place, where T; 11 =
inc(T;)V Usew,\ins(m) (8 0), inc(T) = U yer(t,i+1) and Wigy = res(E;, W;).

However, if p € W; and E; # 0, then a backward computation (Wi 1, Tiy1) ~5
(Wi, T;) takes place, where T; = dec(Tit1), dec(Ta) = Uy peryiso(tsi — 1)
and W; = res(E;, Wi11) U zero(Tiy1) with zero(T) = Ugoert:

If the states satisfy some preconditions, then backward reductions are the
inverse of the forward ones, and vice-versa:

o If W =res(E, W)U zero(T') and p € W', then

(W,T) £ (W', ") implies (W', T') & (W, T).
o If W =res(E,W) and p ¢ W, then

W', T £ (W, T) implies (W, T) Z (W', T").

An operational correspondence between reaction systems and rewriting the-
ory is also proved. It allows a translation of the reversible reaction systems into
some rewriting systems executable in the rewriting engine Maude [39].

In [163] Pinna pursues reversibility in membrane systems from a different
perspective. The paper focuses on how to reverse steps in computations of mem-
brane systems, without adding rules to represent the reverse application of the
original rules. Just one assumption on rules is made, namely that rules are not
allowed to rewrite a multiset of objects into an empty multiset: the application
of a rule must have an effect, though this could be not observable. This require-
ment is driven by the necessity that, in order to reversely apply a rule, this one

12 B. Aman et al.

must produce something. Furthermore, as in most rewriting systems, also in the
considered membrane systems a computation step does not register the (multiset
of) rules applied. Since this information may be crucial to reversely apply the
same (multiset of) rules, one needs some strategies to solve the issue and obtain
reversibility.

A solution can be to enrich each object with the information on how the
particular object has been produced, namely each object now may carry the
name of the rule r used to produce it. Objects are then O x RU{ L} where R is
the set of rules | J; R;, with ¢ ranging over the membranes, and L denotes that
the object is present in the initial configuration. The unique assumption is that
rule names are unique. The drawback of this solution is that once an object is
used the information on how it has been produced is lost.

To overcome this problem, the proposed solution is to add to the notion of
configuration, previously a vector of multiset of objects, with one element for
each membrane, a memory organised as a labelled partial order. Each element
of the partial order corresponds to an object and carries also the information
on which rule produced it. According to this a memory m is a triple (X, <,1)
where < is a partial order and I : X — O x RU{L} x {1,...,n} is the labelling
associating the object, the name of rule that produced it and the membrane
where the object is allocated. A configuration of a membrane system with n

membranes is then the pair C = (C,m), where C = (w1,...,wy,) is the tuple
of multisets over objects O and m = (X, <,1) is a memory such that for each
i € {1,...,n} it holds that w; = obj,(maz(m)), where maz gives the multiset

of maximal elements of the memory and obj; forgets the information about the
rule.

The effect of applying a vector of multisets of rules R does not consist only in
updating suitably the multisets of objects forming a configuration in the classical
sense, but also in adding the information on which rule produced a specific object
in the memory. This will be denoted with (C, m){{R > (C’,m’) where C R —> "
is the usual step in membrane systems computation and the new memory m’ is
obtained adding to m the objects produced by the rules in R and by updating the
partial order so that the produced elements are greater than the ones consumed
by these rules.

Then the reverse application of a vector of multisets of rules can be obtained
by looking in this memory for the maximal elements, which correspond to the
right-hand sides of the rules to be reversely applied. The proper configuration
is then computed from the new memory obtained by removing the maximal
elements. The reverse application of a vector of multisets of rules R is denoted
with (C,m) <RJ}(C’,m’), where the maximal elements of m’ corresponding to
the right-hand sides of rules in R are removed obtaining a memory m and a
configuration C where each element w; = obj,(maz(m)).

The following result has been proved:
Let II,, be a membrane system with memory, (C,m) a configuration, and R
be a vector of multisets of rules such that (C,m){{R > (C',m’). Then, for all
multi-rule vectors R’ such that (C',m’) <RIJ}(C, m), it holds that R' = R.

Foundations of Reversible Computation 13

This simple implementation has the advantage of properly realising the causal
reversibility. Furthermore the memory allows also to capture the dependencies
among objects in a membrane system computation.

6 Process Calculi

Process calculi are a class of algebraic models for concurrent and distributed sys-
tems. Process calculi allow one to express the behaviour of a concurrent system
in a concise way, abstracting away from implementation details, and focusing
on the interaction patterns among the components of the system. Thus, it is
possible to express the behaviour of a system in a mathematically precise way
and verification techniques can be easily developed on top of it.

Research on reversing process calculi can be perhaps tracked back to the
Chemical Abstract Machine [30], a calculus inspired by chemical reactions whose
operational semantics defines both forward and reverse reduction relations. The
first attempts to reverse existing process calculi can be found in [44,46], where
a reversible extension of CCS [140] was presented. A main contribution of [44]
was the definition of the notion of causal-consistent reversibility: any action
can be undone, provided that its consequences, if any, are undone first. This
definition is tailored to concurrent systems, where actions may overlap in time,
hence saying “undo the last action” is not meaningful. Notably, this definition
relates reversibility to causality instead of time, thus it can be applied even in
those settings, such as some distributed systems, where no unique notion of time
exists. A survey on causal-consistent reversibility can be found in [120].

6.1 Reversing Process Calculi

Following [44], causal-consistent extensions of other and more expressive process
calculi have been defined. They can be divided into two families, one dealing with
calculi equipped with labelled transition system semantics (describing interac-
tions between the process and the outside world), and one dealing with reduction
semantics (describing the evolution of processes in isolation). The former is more
general, while the latter is normally simpler and hence more easily applicable
to expressive calculi. The first approach extended causal-consistent reversibility
from CCS to any calculus defined using a specific SOS format (a subset of the
path format [146]) [160,161], and to w-calculus [42]. In the second line of research
we find extensions of a fragment of CCS with biological relevance [35,36], of the
higher-order m-calculus [117,119], of the coordination language Klaim [56], of
a m-calculus with sessions [179], and of a CCS with broadcast communications
[133]. The instance of the framework in [160] on CCS is called CCSK. CCSK
differs from the reversible CCS in [44] in the way history is kept. Indeed, the
approach of [160] can be considered static, since the structure of processes does
not change during computation, and the minimal history information needed to
enable reversibility is kept in the processes themselves, while in [44] the pro-
cess is consumed during execution (as standard in process calculi) and larger

14 B. Aman et al.

memories are added to store history information. Nonetheless the two methods
are equivalent as hinted at by [130] and fully proved by [115], where a mapping
from an instance on CCS of [160] to the reversible CCS of [44] and vice versa is
presented.

As discussed above, causally-consistent reversibility relates reversibility with
causality. In CCS just one main notion of causality exists, and both the reversible
variants of CCS above are based on it. In the w-calculus, many relevant notions
of causality exist, which differ in the treatment of parallel extrusions of the same
name. In [131] a uniform framework to define reversible m-calculi is presented.
The framework is parametric w.r.t. a data structure that stores information
about extrusions of a name. Different data structures yield different approaches
to the parallel extrusion problem, leading to different ways of reversing a name
extrusion, thus giving rise to different reversible variants of the 7-calculus.

A o
A——DB B’ A——DB
|3k |
D<2—C E<t <D< _(
RSx4

Fig. 1. Example of causal-consistent (left) and out-of-causal order reversibility (right)

6.2 Controlled Reversibility

The line of research described above focused on uncontrolled reversibility, defin-
ing how to reverse a process execution (in particular, which history and causal
information is needed, and how to manage it), but not specifying when and
whether to prefer backward execution over forward execution or vice versa.
Uncontrolled reversibility allows one to understand how reversibility works, but
not to exploit it into applications. Indeed, different application areas need differ-
ent mechanisms to control reversibility. For instance, in biological systems the
direction of the computation depends on physical conditions such as temperature
and pressure, while in reliable systems reversibility is used to recover a consistent
state when a bad event occurs. Triggered by these needs different mechanisms for
controlling reversibility have been proposed (see the categorisation in [118]). For
instance, [45,179] introduced irreversible actions to avoid going backward after
a relevant result has been computed. Instead, [56,57,114,116,118,126] proposed
an explicit rollback operator undoing a past action inside calculi where normal
computation is forward, and a mechanism of alternatives allowing one to avoid
trying the same path again and again. As shown in [57], the rollback operator
satisfies a simple intuitive specification, namely that it is the smallest causal-
consistent sequence of backward moves undoing the target action. Also, [18] let
an energy potential drive the direction of computation while [158] introduced a
forward monitor controlling the direction of execution of a reversible monitored

Foundations of Reversible Computation 15

process. A process calculus with a prefixing operator to model locally-controlled
reversibility is introduced in [102,103]. Actions can be undone spontaneously,
as in other reversible process calculi, or as pairs of concerted actions, where
performing a weak action forces the undoing of a past action. Concerted actions
allow one to model out-of-causal order computation, where effects can be undone
before their causes, which is forbidden in most other reversible calculi. This
form of reversibility is common in biochemical reactions, e.g., in the hydration
of formaldehyde in water into methanediol. Such a feature can be disabled by
considering a reduced form of concerted actions.

Reversibility, both in causal order and out-of-causal order, can be modelled
in reversible event structures [157].

Figure1 shows the difference between causal-consistent (left) and out-of-
causal order reversibility. In both cases, the system performs actions a, b and ¢
to reach state D. On the left, in order to get back to the original state, one has
to first undo (in Fig. 1 undoing is represented with squiggly arrows) ¢ then b and
finally a. On the right, since causes do not need to be respected, the system can
undo b before ¢, reaching in this way a new state £ which may not have been
reachable from the initial configuration by just using forward steps. From there,
a and ¢ may or may not be undoable. In the example, only ¢ can be undone,
leading to B’. If undoing b and undoing ¢ do commute, then B = B’.

6.3 Analysis Techniques

Despite the proliferation of calculi for reversibility, when the COST Action
1C1405 started, analysis techniques for reversible calculi were very limited, con-
sisting essentially in some limited analysis about behavioural equivalences (in
particular, forward-reverse bisimilarity [161]) and a technique for causal com-
pression in CCS with irreversible actions [101]. Thus, the work in the COST
Action tackled analysis techniques in depth, considering behavioural equiva-
lences, contracts [77] and session types [77].

Behavioural Equivalences. Understanding which notions of behavioural
equivalences are suitable for reversible process calculi is a non-trivial, and still
open, problem.

As shown in [119], notions of weak bisimilarity that do not distinguish for-
ward actions from backward actions are very coarse, while notions of strong
bisimilarity distinguishing them, such as forward-reverse bisimilarity [161], are
very fine-grained, hence other notions are worth exploring.

In [135] Mezzina and Koutavas studied testing preorders, and in particu-
lar a safety one and a liveness one, in a reversible CCS where reductions are
totally ordered and rollbacks lead systems to past states. Liveness and safety
in this setting correspond to the should-testing [166] and inverse may-testing
preorders [50] for the underlying forward calculus, respectively. In general, one
would expect the models of these preorders to be based on both forward and
backward transitions, thus offering complex proof techniques for verification.
Instead, in [135] full abstraction of liveness and safety is based only on forward

16 B. Aman et al.

transitions and limited rollback points, giving rise to considerably simpler proof
techniques. Moreover, total reversibility allows one to make finer observations
w.r.t. liveness, but not w.r.t. safety.

Contracts. (Binary) contracts are a behavioural model [77] to study the inter-
actions between a client and a server. The first investigation of contracts in
a reversible setting appeared in [21,22]. There, both the client and the server
could rollback to a previous checkpoint at any moment. The main result was that
the compliance relation, ensuring that the client and the server can successfully
interact, and the sub-behaviour relation, are both decidable, and they remain so
also when the possibility of skipping some messages is added.

In retractable contracts [23,24] the client and the server can both get back
to previous decision points and take alternative paths only when the interaction
is stuck. The main results in [23,24] are that retractable contracts are a con-
servative extension of contracts, both compliance and the subcontract relation
are decidable in polynomial time, and the dual of a contract always exists and
has a simple syntactic characterisation. Furthermore, retractable contracts are
equivalent to a novel model of contracts featuring a speculative choice: all the
options of the choice are explored concurrently, and the computation succeeds
if at least one of the options is successful. In [20], a three-party game-theoretic
interpretation of retractable session contracts [23] has been proposed. In such an
interpretation a client is compliant with a server if and only if there exists a win-
ning strategy for a particular player in a game-theoretic model of contracts. Such
a player can be looked at as a mediator, driving the choices in the retractable
points.

Session Types. Session types [77] are one of the formalisms that have been
proposed to structure interaction and reason over communicating processes and
their behaviour. In a series of works [136—-138] reversible monitored semantics for
binary [136,138] and multiparty [137] session types is investigated. The novelty
of the approach is that monitors are derived by types, and they store all the
needed information to bring the system back to previous states. This implies
that processes of the system are oblivious to reversibility, as they do not store
any information about past computations. A deeper discussion on session types
and reversibility can be found in [134].

7 Petri Nets

Petri nets [165] are a mathematical formalism for modelling and reasoning on
concurrent systems. In most of the cases, Petri nets are four-tuples containing
two finite sets, of active (actions/transitions) and static (places) elements, which
are connected by a flow function (or relation) with initial state given by tokens
scattered on places. In what follows, by Petri net we mean its most common
variant, called place-transition net.

Petri nets support both action-based and state-based approaches (via reach-
ability graphs which are equivalent to transition systems). Reversibility in Petri

Foundations of Reversible Computation 17

nets was always an important notion, however its meaning changed in time. At
first, in the seventies, the notion of reversibility referred to nets where each tran-
sition has its inverse [54]. Such a notion of local reversibility is very close to the
one currently used in other fields, like programming languages or process calculi.
This notion of reversible nets (also called symmetric nets [54]) is still occasion-
ally used to define the inverse net [33]. The time complexity of some decision
problems in bounded symmetric Petri nets is lower than in the general case of
bounded nets. The other meaning of reversibility in Petri nets, also called cyclic-
ity [33], takes a global approach and requires the initial state of the net to be
reachable from any other reachable state [147]. Petri nets are called symmetric
also in other situations than the described local notion of reversibility [41].

During the four years of the COST Action IC1045, “Reversible Computation
- Extending Horizons of Computing”, the notion of local reversibility was inves-
tigated. One can divide the proposed contributions into three main threads: two
of them consider how to reverse a single transition in a Petri net, allowing one to
use, respectively, a single reverse transition or a set of reverses. The last thread
focuses on modelling reversible semantics in specific models based on Petri nets.

An approach to invert a single transition using a single (strict) reverse was
investigated under both the sequential semantics and the true concurrent seman-
tics. The case of sequential semantics was considered in [28]. The strict reverse
is added to the net as a fresh transition with arcs copied from the original one,
but with the opposite direction. The problem of checking whether the set of
reachable markings in a net changes, when a strict reverse for a single transition
is added, was proven to be undecidable. The opposite result was shown for the
set of all coverable markings. Another important fact shown in [28] is related
to cyclicity: introducing a strict reverse in a cyclic net may change the set of
reachable markings.

The above problem of checking whether the set of reachable markings in a
net changes by adding a strict reverse for a single transition becomes decidable
for the bounded nets. Therefore, one can ask a more general question - is it
possible to reverse the specified transition while only requiring the resulting net
and the given one to have isomorphic behaviour (i.e., isomorphic reachability
graph), but allowing one to change the structure of the net? The question has
been answered by using well-known techniques from region theory [19]. There are
transition systems which are reachability graphs of a bounded Petri net where
transitions cannot be inverted by strict reverses, but one can easily combine
separate solutions for different transitions to solve the problem [26]. Even in the
special case of linear transition systems over binary sets of actions the transitions
cannot be always inverted by strict reverses. In such systems, the time complexity
of the problem of checking whether the set of reachable markings changes by
adding a strict reverse for a single transition is linear [48]. Another special case
of bounded nets are occurrence nets, that is 1-safe and acyclic nets without
backward conflicts, where one can always use strict reverses. This property of
occurrence nets and their infinite extensions was used as an intermediate step
in [132], described later on.

18 B. Aman et al.

Another line of research on strict reverses considers systems under concurrent
semantics of action execution. In such systems one can execute more than one
action at the same time, including the situation when a single action is executed
multiple times (auto-concurrence). Reversing atomic transitions in such systems
is discussed in [49]. In simple cases, where auto-concurrence is excluded, one can
reduce reversing under the concurrent semantics to the sequential case. However,
in the case of true multisets of actions executed simultaneously, one needs to
allow mixed reverses (i.e., steps where both forward and backward actions are
present) and true concurrent reversing can be reduced to coping with all spikes
(i.e., multisets of actions with singleton support).

In a more general setting, in order to invert a single transition, one can allow
to define a set of reverses with the opposite effect, called effect reverses [26]. In
such a case, the problem of finding a bounded Petri net where each transition can
be reversed and with isomorphic behaviour becomes always solvable [26]. Hence,
some systems where inverting transitions using strict reverses was impossible
become reversible in this setting. Moreover, the price to make any bounded
net ready for inverting by the sets of effect reverses is not high - one needs to
transform the original net into its complementary version, which doubles the size
of the set of places [26].

A similar attempt for unbounded nets is presented in [139]. There are
unbounded nets which cannot be inverted even using infinite sets of effect
reverses for their transitions. However, if it is possible, then finite sets are enough.
The problem of finding a possibly totally different net with isomorphic behaviour
that can be reversed was reduced to extending the existing one by new places
which do not disable any transitions in any reachable state and checking whether
there exists a pair of problematic states. Those pairs of problematic states are
strongly structured, with a natural partial order. The set of all minimal pairs of
problematic states for a given system is finite, however, the problem of check-
ing whether two given states form a problematic pair is not elementary, while
the problem of checking whether there exists at least one such pair is undecid-
able [139].

A different line of research considers extensions of Petri nets with causal-
consistent local reversibility [132]. Such an extension can be obtained for any
place transition net by unfolding it into occurrence nets and folding them back
to a coloured Petri net with an infinite number of colours. Those colours are
used to encode the content of a stack used to reverse the computation. The price
to be paid is that coloured Petri nets with infinitely many colours are in general
Turing complete.

Another approach to investigate causal-consistent local reversibility, but also
out-of-order local reversibility, is the biologically inspired model of reversing
Petri nets [155]. There tokens are persistent bases connected by bonds which
are relocated by transitions of the net. The greatest limitation of the approach
is the requirement of finiteness and acyclicity of the net modelled in this way.
On the other hand, one can encode reversing Petri nets into coloured Petri
nets with a finite number of colours [27], hence also into classical bounded

Foundations of Reversible Computation 19

place-transition systems. Moreover, reversing Petri nets were successfully applied
to the distributed antenna selection problem [156].

Petri net theory has been deeply studied. Cyclic and symmetric systems play
quite an important role, however the issue of equipping concurrent systems with
reversing mechanisms was not explored. The research conducted as a part of
the COST Action IC1405 “Reversible Computation - Extending Horizons of
Computing” enriched the theory of Petri nets by exploring some approaches to
reverse transitions in existing systems. Although the effect of adding reverses of
the actions to the existing system is in general difficult to evaluate (the problem
of behaviour preservation is undecidable for place-transition nets), the problem
can be solved if one allows unbounded stacks (coloured Petri nets approach) or
restricts oneself to bounded models.

8 Automata

Automata theory studies abstract machines, or automata, as mathematical mod-
els of computation. They help in understanding limits of computation and the
role of various resources — such as time and space — on the computational power.
Examples of widely studied classes of automata include finite automata (bounded
memory), pushdown automata (infinite memory organised as a stack), counter
machine (infinite memory organised as counters), Turing machines (infinite mem-
ory tape) and cellular automata (massively parallel regular network of finite
automata). These come in several flavours and variations, e.g., with respect to
determinism. An automaton is reversible if it preserves information so that its
computation can be retraced back in time. All the automata classes above can
support reversibility. See [105,143] for details on computation by various models
of reversible automata.

8.1 Finite Automata

Reversibility in finite automata has been widely investigated, e.g., [9,162]. The
class of languages having a reversible one-way automaton is a proper subclass
of the regular one. However, different models have been considered, depending
on whether automata are required to have only one initial state and/or only one
final state. Languages not having any reversible classical automaton have been
characterised in terms of a forbidden pattern in the minimum automaton [73]. In
the same paper, an NL-complete method to decide whether the language accepted
by a given deterministic finite automaton can also be accepted by some reversible
deterministic finite automaton has been derived.

In case the language accepted by a deterministic finite automaton is
reversible, the size of the smallest reversible automaton may be exponential with
respect to the size of the minimal irreversible one [73]. Recently analyses about
the descriptional complexity of reversible deterministic finite automata provided
some techniques to simulate these devices in an efficient way [123,125]. Indeed,
though converting a deterministic automaton into a reversible one may require

20 B. Aman et al.

an exponential increase in size, the proposed representation allows to limit this
cost by concisely representing the reversible automaton rather than explicitly
writing down its description.

Based on the forbidden pattern approach, the degree of irreversibility for a
regular language has been studied [13]. The degree is defined to be the minimal
number of such forbidden patterns necessary in any deterministic finite automa-
ton accepting the language. It is shown that the degree induces a strict infi-
nite hierarchy of language families. The behaviour of the degree of irreversibility
under the usual language operations union, intersection, complement, concatena-
tion, and Kleene star, has been studied, showing tight bounds (some asymptotic)
on the degree.

Because of the narrowness of the power of reversible finite automata with
respect to the irreversible ones, the definition of reversibility has been relaxed,
by considering finite automata whose computations can be reversed, at any point,
by accessing the last k& symbols read from the input, for a fixed k. These devices
are said to be “weakly irreversible”. Characterisations of languages accepted by
weakly irreversible automata and languages not having any weakly irreversible
automaton (“strongly irreversible” languages) have been given [124].

Another treatment of a relaxed definition of reversibility concerns nondeter-
minism. It turned out that reversible nondeterministic finite automata are more
powerful compared to their reversible deterministic counterparts, but still can-
not accept all regular languages [74]. The two notions of relaxed reversibility
have been compared and closure properties of the language family induced by
these devices have been derived.

8.2 Pushdown Automata

Reversible classical pushdown automata have been introduced in [107]. Their
computational capacity turned out to lie properly in between the regular and
deterministic context-free languages. In the same paper, it is shown that a deter-
ministic context-free language cannot be accepted reversibly if more than real-
time is necessary for acceptance. Closure properties as well as decidability ques-
tions for reversible pushdown automata are studied and it is shown that the
problem to decide whether a given nondeterministic or deterministic pushdown
automaton is reversible is P-complete, whereas it is undecidable whether the lan-
guage accepted by a given nondeterministic pushdown automaton is reversible.

One extension of finite automata in order to enlarge the underlying language
class as well as to preserve many positive closure properties and decidable ques-
tions is represented by input-driven pushdown automata. Such automata share
many desirable properties with finite automata, but still are powerful enough to
describe important non-regular behaviour. Basically, for such devices the opera-
tions on the pushdown store are determined by the input symbols. With respect
to reversibility they have been studied in [110]. So, the sub-family of the context-
free languages that share the two important properties of being accepted by an
input-driven pushdown automaton as well as of being accepted by a reversible
pushdown automaton are considered. This intersection can be defined on the

Foundations of Reversible Computation 21

underlying language families or on the underlying machine classes. It turned
out that the latter class is properly included in the former. The relationships
between the language families obtained in this way and to reversible context-
free languages as well as to input-driven languages are studied. In general, a
hierarchical inclusion structure within the real-time deterministic context-free
languages is obtained. Finally, the closure properties of these families under the
standard operations are investigated and it turned out that all language fam-
ilies introduced are anti-AFLs (that is, they are not closed under any of the
operations required to be an Abstract Family of Languages).

Since reversible finite automata do not accept all regular languages and
reversible pushdown automata do not accept all deterministic context-free lan-
guages, it is of significant interest both from a practical and theoretical point of
view to close these gaps. Therefore these reversible models have been extended
by a preprocessing unit which is basically a reversible injective and length-
preserving sequential transducer [16]. It turned out that preprocessing the input
using such weak devices increases the computational power of reversible deter-
ministic finite automata to the acceptance of all regular languages. On the other
hand, for reversible pushdown automata the accepted family of languages lies
strictly in between the reversible deterministic context-free languages and the
real-time deterministic context-free languages. Moreover, it has been derived that
the computational power of both types of machines is not changed by allowing
the preprocessing sequential transducer to work irreversibly.

Two-pushdown automata where the input is placed in one pushdown and
that perform computations by inspecting and rewriting words at the top of the
pushdowns are of particular interest as the deterministic variant is known to
characterise the class of Church-Rosser languages when the rewriting is length-
reducing. Such reversible two-pushdown automata are studied in [14]. A sepa-
ration of the deterministic and reversible variants are obtained as well as the
incomparability with the (deterministic) context-free languages. However, their
properties of emptiness, (in)finiteness, universality, inclusion, equivalence, regu-
larity, and context-freeness are not even semi-decidable.

8.3 Finite State and Pushdown Transducers

Computational models are not only interesting from the viewpoint of accepting
some input, but also from the more applied perspective of transforming some
input into some output. Transductions that are computed by different variants
of transducers are studied in detail in the book of Berstel [31].

Reversibility in transducing devices has been investigated recently in [47,111]
for deterministic finite state transducers. In [111], the families of transductions
computed are classified with regard to three types of length-preserving trans-
ductions as well as to the property of working reversibly. It is possible to settle
all inclusion relations between these families of transductions even with injec-
tive witness transductions. Furthermore, the standard closure properties and
decidability questions have been investigated. It turned out that the non-closure
under almost all operations can be shown, whereas all decidability questions

22 B. Aman et al.

can be answered in polynomial time. Finally, the strict concept of reversibil-
ity is relaxed and an infinite and dense hierarchy with respect to the grade of
reversibility is obtained.

Deterministic pushdown transducers have also been introduced, and analysed
with respect to their ability to compute reversible transductions [66]. Now, the
families of transductions computed are classified with regard to four types of
length-preserving transductions as well as to the property of working reversibly.
It turns out that accurate to one case separating witness transductions can
be provided. For the remaining case it is possible to establish the equivalence
of both families by proving that stationary moves can always be removed in
length-preserving reversible pushdown transductions.

8.4 Queue Automata and Limited Automata

A further natural and well-studied extension of finite automata are queue
automata, where the extension is by a storage media of type queue. Their
reversible variant has been studied in [109]. In contrast to, for example, finite
or pushdown automata, it has been shown that any queue automaton can be
simulated by a reversible one. So, reversible queue automata are as powerful as
Turing machines. Therefore it is of interest to impose time restrictions on queue
automata. Quasi real-time and real-time computations have been considered. It
has been shown that every reversible quasi real-time queue automaton can be
sped up to real-time. On the other hand, under real-time conditions reversible
queue automata are less powerful than general queue automata. Furthermore, a
lower bound of 2 (%) time steps for real-time queue automata witness lan-
guages to be accepted by any equivalent reversible queue automaton has been
exhibited. The closure properties of reversible real-time queue automata are sim-
ilar as for reversible deterministic pushdown automata. Moreover, all commonly
studied decidability questions such as emptiness, finiteness, or equivalence are
not semi-decidable for reversible real-time queue automata. Furthermore, it is
not semi-decidable whether an arbitrary given real-time queue automaton is
reversible.

A k-limited automaton is a linear bounded automaton that may rewrite each
tape square only in the first k visits, where k& > 0 is a fixed constant. It is
known that these automata accept context-free languages only. The determinis-
tic k-limited automata have been investigated towards their ability to perform
reversible computations [112]. It turned out that, for all k¥ > 0, sweeping k-
limited automata accept regular languages only. In contrast to reversible finite
automata, all regular languages are accepted by sweeping 0-limited automata.
Then the computational power gained in the number k of possible rewrite opera-
tions has been studied. It has been shown that the reversible 2-limited automata
accept regular languages only and, thus, are strictly weaker than general 2-
limited automata. Furthermore, a proper inclusion between reversible 3-limited
and 4-limited automata languages has been obtained. The next levels of the
hierarchy are separated between every k and k + 3 rewrite operations. Finally,

Foundations of Reversible Computation 23

it turned out that all k-limited automata accept Church-Rosser languages only,
that is, the intersection between context-free and Church-Rosser languages con-
tains an infinite hierarchy of language families beyond the deterministic context-
free languages.

8.5 Cellular Automata

A cellular automaton (CA) is a dynamical system on an infinite grid of cells
defined by a local update rule that is applied simultaneously at all cells. More
precisely, in the usual rectilinear d-dimensional setting the cells are the elements
of Z% and each cell stores an element of a finite state set A. The dynamics is
specified by a finite neighbourhood D C Z? that gives the relative offsets to
neighbours of cells, and a local rule f : AP — A that gives the new state
of a cell based on the previous states in its neighbourhood. A configuration
c: 7% — A, specifying the global state of the system, changes in a single time
unit to become the new configuration ¢’ with ¢/(i@) = f(o"(c)|p) for every cell
i € Z¢, where 0" denotes the shift map that translates the configurations so
that cell 7 moves to the origin.

By carefully choosing the update rule f, the global dynamics ¢ +— ¢’ can be
made information preserving. In this case, an inverse cellular automaton retraces
the computation back in time, and the cellular automaton is called reversible
(RCA). See [90] for a recent survey on reversible cellular automata. Cellular
automata have an important role as providing simple models in microscopic
physics, and because of time-reversibility of microscopic dynamics the cellular
automata models are also typically reversible [181]. Reversible cellular automata
are able to carry out universal computation [180], even in the one-dimensional
setting [144].

In the symbolic dynamics nomenclature reversible cellular automata are
called automorphisms of the (full) shift. By Hedlund’s theorem [69] cellular
automata are precisely the transformations ALY — AZ" of the configuration
space that commute with shifts ¢” and that are continuous under the compact
prodiscrete topology on AZ*, Reversibility then just means that the transforma-
tion is a bijection, i.e., a homeomorphism. Automorphisms form a group under
composition, and the structure of the automorphism group of the full shift (as
well as of its subshifts) is a topic of active research [168]. For example, it is
not known if the groups of one-dimensional RCA over two states and over three
states are isomorphic with each other.

Decision Problems. Decision problems concerning reversibility and related
properties have been extensively studied. There are efficient algorithms to test
one-dimensional cellular automata for reversibility [177] while in higher dimen-
sional cases reversibility is undecidable [88]. It is also undecidable, even in the
one-dimensional case, whether a given RCA is periodic [92], that is, whether
some iteration of the CA amounts to the identity function. Periodicity among
one-sided RCA is not known to be decidable or undecidable at this time, where

24 B. Aman et al.

one-sidedness refers to the property that the neighbours to the left of a cell have
no influence on its next state, nor on the previous state given by the inverse
automaton. Periodicity in the one-sided case remains an active research topic due
to its link to the finiteness problem of groups generated by Mealy automata [51].

Two dynamical systems are called conjugate if there is a homeomorphism
between them that maps orbits to orbits. Conjugate systems are essentially iden-
tical. It is undecidable if two given cellular automata are conjugate [81]. This is
true even for one-dimensional cellular automata, but if the considered CA are
reversible then the undecidability is known in the two- and higher dimensional
cases only.

Physical Universality and Glider Automorphisms. A cellular automaton
is called physically universal if it can implement any transformation of pat-
terns on any finite domain of cells by suitably choosing the initial states outside
the domain. There are reversible cellular automata that are physically univer-
sal [170], even in the one-dimensional setting [169]. These automata (reversibly)
break the input pattern into fleets of gliders that scatter out of the finite domain.
Symmetrically, the inverse automaton breaks the desired output pattern into
fleets of inverse gliders. The task of the surrounding gadget is to change the first
fleet into the second fleet to implement the desired transformation.

Glider automorphisms that decompose finite configurations into fleets of glid-
ers have been studied in more general subshifts, and they have found applications
in understanding the structure of the automorphism groups [100].

Reversible Cellular Automata and Mahler’s Problem in Number The-
ory. If real numbers are written in base pq for some co-primes p and ¢ then there
is no carry propagation when numbers are multiplied by constant p. This means
that multiplying by p is a local operation, that is, a reversible cellular automa-
ton. Composing such reversible cellular automata yields, for example, an RCA
for multiplying numbers in base 6 by constant 3/2.

Mahler’s problem asks whether there exists some positive real number & such
that the fractional part of £ (%)n is less than 0.5 for all positive integers n [127].
So the fractional part of the number should remain below one half no matter how
many times the number is multiplied by 3/2. The problem is still unsolved. The
problem has a very simple interpretation in terms of the RCA that multiplies by
3/2 in base six [89], and using this link it has been proved that for arbitrarily
small € > 0 there is a number £ > 0 and a finite union U C [0,1) of intervals
of total length such that the fractional parts of all £ (2)" are in U [91]. The
dynamical property of expansivity of the associated reversible cellular automaton
plays a central role in the proof. Conversely, there is also a finite union V' C [0, 1)
of intervals of total length 1 — e that does not contain the fractional parts of all
13 (%)n for any £ > 0.

Foundations of Reversible Computation 25

Asynchronous Updating. In an asynchronous cellular automaton (ACA) only
some cells are updated simultaneously. In the one-dimensional setting, one pos-
sibility is that states are updated sequentially during a left-to-right (or right-to-
left) sweep across the entire infinite line of cells. Such a setup is studied in [93]
where the update performed once in each position is given by a reversible block
rule A" — A™ on n consecutive cells. The authors give a precise characteri-
sation of the one-dimensional cellular automata that can be realised by such a
sweep. It turns out that not all reversible CA can be realised, while also some
non-reversible ones can be obtained. It is decidable whether a CA can be realised
that way or not.

Self-Timed Cellular Automata. Self-Timed Cellular Automata (STCA) are
a form of Asynchronous Cellular Automata where transitions of cells can take
place if they are triggered by transitions of the neighbouring cells. Delay-
Insensitive (DI) circuits are asynchronous circuits which make no assumption
about delays within modules or wires of circuits, and where there is no global
clock [97]. As a result, logical gates such as NAND and XOR are not Turing-
complete when operated in a DI environment. A lot of research went into finding
universal sets of DI modules and [145] contributes a solution for reversible DI
circuits in terms of STCAs. Serial and parallel DI circuits are simulated with
new STCAs that contain rules for signal movement, right and left turn, memory
toggle, merge, fork and join, and parallel crossing of signals. In addition to a
number of reversibility and determinism properties, including local determinism
and local reversibility, the STCAs exhibit direction-reversibility, where reversing
the direction of a signal and running a circuit forwards is equivalent to running
the circuit in reverse. Benefits of direction-reversibility are discussed, including
garbage-less implementation of reversible functions.

Cellular Automata as Language Acceptors. From the perspective of lan-
guage recognition, real-time bounded cellular automata which are reversible on
the core of computation, that is, from initial configuration to the configura-
tion given by the time complexity, have been studied in [106]. The question
whether for a given real-time CA working on finite configurations with fixed
boundary conditions there exists a reverse real-time CA with the same neigh-
bourhood has been addressed. It has been shown that real-time reversibility is
undecidable, which contrasts the general case, where reversibility is decidable
for one-dimensional devices. Moreover, the undecidability of emptiness, finite-
ness, infiniteness, inclusion, equivalence, regularity, and context-freedom has
been proved. First steps towards the exploration of the computational capac-
ity have been done and closure under Boolean operations have been shown.
Similar investigations for real-time one-way cellular automata have been done
in [108]. In this case, it turned out that the standard model with fixed boundary
conditions is quite weak in terms of reversible information processing, since it
accepts exactly the regular languages reversibly. The extension that allows the
information to flow circularly from the leftmost cell into the rightmost cell does

26 B. Aman et al.

not increase the computational power in the general case, but does increase it
for reversible computations. On the other hand, the model is less powerful than
real-time reversible two-way cellular automata. Additionally, it has been derived
that the corresponding language class is closed under Boolean operations, and
the undecidability of several decidability questions has been proved. Finally,
it turned out that the reversibility of an arbitrary real-time circular one-way
cellular automaton is undecidable as well.

8.6 Turing Machines

Turing machines (TM) are a classical model of computation where a finite state
control unit, the head, moves along a bi-infinite tape of cells, each containing a
tape symbol. The head reads and writes symbols on the tape, changes its internal
state, and moves to neighbouring cells at discrete time steps as instructed by a
fixed transition rule, the program of the TM. A suitable choice of the program
makes the machine reversible (RTM). Turing machines are traditionally viewed
as language acceptors, but one can also incorporate outputs in the model so that
the machine becomes a transducer that computes a (partial) function. In [12] the
authors investigate RTM under the strict function semantics that requires that
at the end of the computation only the output remains on the tape, and they
develop a rigorous foundational theory of reversible computation of functions in
this semantics, including the appropriate concept of universality and a design of
a universal machine.

Turing machines with bi-infinite tape contents are also discrete dynamical
systems (on a compact space) under two possible viewpoints [104]: in the mov-
ing tape view (TMT) the position of the head is fixed but the entire tape shifts
left or right depending on the current instruction, while in the usual moving
head view (TMH) one needs to allow configurations without a head to make the
configuration space compact. In [38] the authors present a reversible TMT with
the rather surprising property that it has no halting or temporally periodic con-
figurations, thus answering positively a conjecture made in [92]. The machine,
dubbed “SMART”, is small (4 internal states, 3 tape symbols) and nicely sym-
metric in both time and space. It possesses the good dynamical properties of
transitivity and minimality. The machine is further applied to settle another
conjecture made in [92]: it is undecidable whether a given complete reversible
Turing machine has a periodic orbit.

The class of RTM dynamical systems becomes more robust if the head is
allowed to view and modify locally blocks of several tape symbols at once. In
particular, compositions of machines and inverse machines are now in the same
class so that reversible Turing machines with any fixed states and tape symbols
form a group under composition. The structure of this group and algorithmic
questions concerning the group are studied in [25]. The paper also introduces
a number of natural subgroups. The model includes multidimensional Turing
machines where the tape cells are indexed by Z¢ for dimension d, and both the
moving head and the moving tape viewpoints can be taken.

Foundations of Reversible Computation 27

Finally, reversible Turing machines with a working tape and a one-way or
two-way read-only input tape are considered as language recognisers [15]. In
particular, the classes of languages acceptable by such devices with small time
bounds in the range between real time and linear time, that is, with time bounds
of the form n+r(n) where r € o(n) is a sublinear function, have been considered.
It has been shown that there exist infinite time hierarchies of separated com-
plexity classes in that range. The question of whether reversible Turing machines
in the range of interest are weaker than general ones or not is answered posi-
tively by proving that there are languages accepted by irreversible one-way Tur-
ing machines in real time that cannot be accepted by any reversible one-way
machine in less than linear time.

9 Quantum Formal Verification and Quantum Machine
Learning

Large-scale, fault-tolerant quantum computers are still under development and,
despite a recent major push for “quantum supremacy” by companies like IBM,
Google and Intel, it is not clear when they will become a reality. On the other
hand there is much recent interest in using Noisy Intermediate Scale Quantum
(NISQ) computers to provide a “quantum advantage”. This involves the use
of existing or near-term quantum computers to solve valuable problems, faster,
cheaper, or more efficiently than any available classical solution. Potential appli-
cation areas include simulation of many-body physics, quantum chemistry, opti-
misation and quantum machine learning. Airbus has issued its Quantum Com-
puting Challenge to tackle aerospace flight physics problems using quantum com-
puters. Many companies such as IBM, Microsoft, D-Wave, Rigetti and Xanadu
are developing full-stack solutions for implementing quantum algorithms. This
typically starts from a high-level programming language and a compiler, down to
an assembly language and quantum hardware. These resources are usually acces-
sible via the cloud. Much of these developments will need guarantees regarding
security and correctness. Formal verification, which has been used successfully
in classical computing for a number of years, could be extremely valuable in
increasing confidence in quantum systems.

Quantum cryptography aims to overcome the limitations of classical cryp-
tography by providing unconditional security, which is not dependent on the
difficulty of inverting a particular computation. Quantum Key Distribution pro-
tocols have been implemented in commercial products by Id Quantique, MagiQ,
NEC and Toshiba, amongst others, and have been used in practical applica-
tions, e.g. the Geneva election ballot count. Various QKD networks have been
built, including the DARPA Quantum Network in Boston, the SeCoQC net-
work around Vienna and the Tokyo QKD Network. China has launched a ded-
icated satellite “Micius” for quantum communication. On the theoretical side,
quantum key distribution protocols such as BB84 [29] have been proved to be
unconditionally secure. It is important to understand, however, that this is an

28 B. Aman et al.

information-theoretic proof, which does not necessarily guarantee that imple-
mented systems are unconditionally secure. This area is also where approaches
such as those based on formal methods could be useful in analysing behaviour
of implemented systems.

The paper [32] presents a novel framework for modelling and verifying quan-
tum protocols and their implementations using the proof assistant Coq. It pro-
vides a Coq library for quantum bits (qubits), quantum gates, and quantum
measurement. As a step towards verifying practical quantum communication
and security protocols such as Quantum Key Distribution, it supports multi-
ple qubits, communication and entanglement. These concepts are illustrated by
modelling the Quantum Teleportation Protocol, which communicates the state
of an unknown quantum bit using only a classical channel. In more recent work,
a Quantum IO monad has been implemented in Coq for the specification of the
protocols. In addition to quantum operations and measurement, the monad gives
us a lightweight process calculus which supports sequencing of operations and
keeping of state. This monad has the necessary properties. The process simu-
lation function that gives the QIO monad its semantics has also been written.
Current work concerns proving properties of simple quantum protocols.

In [10], the authors present CCSq, a concurrent language for describing
quantum systems, and develop verification techniques for checking equivalence
between CCSq processes. CCSq has well-defined operational and superoperator
semantics for protocols that are functional, in the sense of computing a determin-
istic input-output relation for all interleavings arising from concurrency in the
system. They have implemented QEC (Quantum Equivalence Checker), a tool
that takes the specification and implementation of quantum protocols, described
in CCSq, and automatically checks their equivalence. QEC is the first fully auto-
matic equivalence checking tool for concurrent quantum systems. For efficiency
purposes, the approach is restricted to Clifford operators in the stabiliser for-
malism, but it is able to verify protocols over all input states. A collection of
interesting and practical quantum protocols, ranging from quantum communica-
tion and quantum cryptography to quantum error correction, have been specified
and verified.

In other recent work, a version of the quantum process calculus CQP has been
implemented. The implementation, which has the working title qtpi and is avail-
able from github.com/mdxtoc/qtpi, uses symbolic rather than numeric prob-
ability calculation. Programs are checked statically, before they run, to ensure
that they obey real-world restrictions on the use of gbits (e.g. no cloning, no
sharing). Qtpi has been used to simulate some simple protocols such as tele-
portation, and some more involved ones including QKD. It is early days in the
development of the tool, but it can already simulate well over 1M gbit transfers
per minute.

Quantum machine learning is the aspect of quantum computing concerned
with the design of algorithms capable of generalised learning from labelled train-
ing data by effectively exploiting quantum effects. The undertaken work makes
various contributions to this emerging area; in particular it has pursued the

Foundations of Reversible Computation 29

issue of classification error within a standard quantum computational setting,
and explored the congruence of Kernel Methods with the topological quantum
computational setting (a congruence that will be developed further in future
work).

Specifically, the following have been achieved:

In [52] the authors present a novel approach to computing Hamming distance
and its kernelisation within Topological Quantum Computation. This approach
is based on an encoding of two binary strings into a topological Hilbert space,
whose inner product yields a natural Hamming distance kernel on the two strings.
Kernelisation forges a link with the field of Machine Learning, particularly in
relation to binary classifiers such as the Support Vector Machine (SVM). This
makes our approach of potentially wide interest to the quantum machine learning
community.

In [183], the authors set out a strategy for quantising attribute bootstrap
aggregation to enable variance-resilient quantum machine learning. To do so,
they utilise the linear decomposability of decision boundary parameters in the
Rebentrost et al. Support Vector Machine [164] to guarantee that stochastic
measurement of the output quantum state will give rise to an ensemble decision
without destroying the superposition over projective feature subsets induced
within the chosen SVM implementation. It achieves a linear performance advan-
tage, O(d), in addition to the existing O(log(n)) advantages of quantisation as
applied to Support Vector Machines. The approach extends to any form of quan-
tum learning giving rise to linear decision boundaries.

Error-correcting output codes (ECOC) are a standard setting in machine
learning for efficiently rendering the collective outputs of a binary classifier, such
as the support vector machine, as a multi-class decision procedure. Appropriate
choice of error-correcting codes further enables incorrect individual classification
decisions to be effectively corrected in the composite output. In [182], the authors
propose an appropriate quantisation of the ECOC process, based on the quantum
support vector machine. They show that, in addition to the usual benefits of
quantising machine learning, this technique leads to an exponential reduction in
the number of logic gates required for effective correction of classification error.

10 Conclusion

We gave in the previous sections an overview of the status and recent develop-
ments of different research threads on the foundations of reversible computation.
While many interesting results have been found, we notice that the field is still
very heterogeneous. For instance, while process calculi, Petri nets and cellular
automata are all models of concurrent systems, they come equipped with dif-
ferent notions of reversibility. Cellular automata are considered reversible if the
global dynamics is bijective (similarly to what is done in sequential reversible
models), Petri nets if reverse transitions can be added without changing the
behaviour of the net, while process calculi are mainly based on the notion of
causal-consistent reversibility. Some initial cross-fertilisation results came thanks

30

B. Aman et al.

to the COST Action, e.g. there have been works applying causal-consistent
reversibility to Petri nets [132] and related models [27,155]. We also remark
that some of the developments described in this chapter have been instrumental
to better understand reversibility in programming languages and to advance on
a number of application areas, as discussed in the rest of the book.

References

1.

11.

12.

13.

14.

15.

16.

Abramsky, S.: Retracing some paths in process algebra. In: Montanari, U., Sas-
sone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1-17. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61604-7_44

. Abramsky, S.: A structural approach to reversible computation. Theoret. Comput.

Sci. 347(3), 441-464 (2005)

Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Logic
in Computer Science, LICS 2004, pp. 415-425. IEEE (2004)

Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear com-
binatory algebras. Math. Struct. Comput. Sci. 12(5), 625-665 (2002)
Agrigoroaiei, O., Ciobanu, G.: Dual P systems. In: Corne, D.W., Frisco, P., Pdun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95-107.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7_7
Agrigoroaiei, O., Ciobanu, G.: Reversing computation in membrane systems. J.
Logic Algebraic Program. 79(3-5), 278288 (2010)

Aman, B., Ciobanu, G.: Reversibility in parallel rewriting systems. J. Univers.
Comput. Sci. 23(7), 692-703 (2017)

Aman, B., Ciobanu, G.: Controlled reversibility in reaction systems. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp- 40-53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3_3
Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741-765 (1982)

. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Automated equivalence checking

of concurrent quantum systems. ACM Trans. Comput. Logic 19(4), 28:1-28:32
(2018)

Axelsen, H.B., Gliick, R.: Reversible representation and manipulation of con-
structor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS,
vol. 7948, pp. 96-109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38986-3-9

Axelsen, H.B., Gliick, R.: On reversible turing machines and their function uni-
versality. Acta Inf. 53(5), 509-543 (2016)

Axelsen, H.B., Holzer, M., Kutrib, M.: The degree of irreversibility in determin-
istic finite automata. Int. J. Found. Comput. Sci. 28, 503-522 (2017)

Axelsen, H.B., Holzer, M., Kutrib, M., Malcher, A.: Reversible shrinking two-
pushdown automata. In: Dediu, A.-H., Janousek, J., Martin-Vide, C., Truthe, B.
(eds.) LATA 2016. LNCS, vol. 9618, pp. 579-591. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30000-9_44

Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible
turing machines. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138,
pp. 29-44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20860-2_2
Axelsen, H.B., Kutrib, M., Malcher, A., Wendlandt, M.: Boosting reversible push-
down machines by preprocessing. In: Devitt, S., Lanese, 1. (eds.) RC 2016. LNCS,
vol. 9720, pp. 89-104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40578-0_6

https://doi.org/10.1007/3-540-61604-7_44
https://doi.org/10.1007/978-3-540-95885-7_7
https://doi.org/10.1007/978-3-319-73359-3_3
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-319-30000-9_44
https://doi.org/10.1007/978-3-319-30000-9_44
https://doi.org/10.1007/978-3-319-20860-2_2
https://doi.org/10.1007/978-3-319-40578-0_6
https://doi.org/10.1007/978-3-319-40578-0_6

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Foundations of Reversible Computation 31

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press, Cambridge (1998)

Bacci, G., Danos, V., Kammar, O.: On the statistical thermodynamics of
reversible communicating processes. In: Corradini, A., Klin, B., Cirstea, C. (eds.)
CALCO 2011. LNCS, vol. 6859, pp. 1-18. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22944-2_1

Badouel, E.; Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4
Barbanera, F., de’Liguoro, U.: A game interpretation of retractable contracts. In:
Lluch Lafuente, A., Proenga, J. (eds.) COORDINATION 2016. LNCS, vol. 9686,
pp. 18-34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39519-7_2
Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Compliance for reversible
client/server interactions. In: Workshop on Behavioural Types, BEAT 2014.
EPTCS, vol. 162, pp. 35-42 (2014)

Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Reversible client/server
interactions. Formal Asp. Comput. 28(4), 697-722 (2016)

Barbanera, F., Dezani-Ciancaglini, M., Lanese, 1., de’Liguoro, U.: Retractable
contracts. In: Workshop on Programming Language Approaches to Concurrency-
and Communication-cEntric Software, PLACES 2015. EPTCS, vol. 203, pp. 61—
72 (2015)

Barbanera, F., Lanese, 1., de’Liguoro, U.: Retractable and speculative contracts.
In: Jacquet, J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319,
pp. 119-137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59746-
1.7

Barbieri, S., Kari, J., Salo, V.: The group of reversible turing machines. In: Cook,
M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 49-62. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39300-1_5

Barylska, K., Erofeev, E., Koutny, M., Mikulski, L., Piatkowski, M.: Reversing
transitions in bounded Petri nets. Fund. Inf. 157(4), 341-357 (2018)

Barylska, K., Gogolinska, A., Mikulski, L., Philippou, A., Piatkowski, M., Psara,
K.: Reversing computations modelled by coloured Petri nets. In: Workshop on
Algorithms & Theories for the Analysis of Event Data. CEUR Workshop Pro-
ceedings, vol. 2115, pp. 91-111. CEUR-WS.org (2018)

Barylska, K., Koutny, M., Mikulski, L., Piatkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48-60 (2018)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Conference on Computers, Systems & Signal Processing, CSSP
1984, pp. 175-179 (1984)

Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217-248 (1992)

Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)
Boender, J., Kammiiller, F., Nagarajan, R.: Formalization of quantum protocols
using Coq. In: Workshop on Quantum Physics and Logic, QPL 2015, pp. 71-83
(2015)

Bouziane, Z., Finkel, A.: Cyclic Petri net reachability sets are semi-linear effec-
tively constructible. In: Workshop on Verification of Infinite State Systems,
INFINITY 1997, ENTCS, pp. 15-24. Elsevier (1997)

Bowman, W.J., James, R.P., Sabry, A.: Dagger traced symmetric monoidal cat-
egories and reversible programming. In: Reversible Computation, RC 2011, pp.
51-56. Ghent University (2011)

https://doi.org/10.1007/978-3-642-22944-2_1
https://doi.org/10.1007/978-3-642-22944-2_1
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-319-39519-7_2
https://doi.org/10.1007/978-3-319-59746-1_7
https://doi.org/10.1007/978-3-319-59746-1_7
https://doi.org/10.1007/978-3-319-39300-1_5

32

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

B. Aman et al.

Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann.
Comp. Sci. 21(2), 175-198 (2011)

Cardelli, L., Laneve, C.: Reversible structures. In: Computational Methods in
Systems Biology, CMSB 2011, pp. 131-140. ACM (2011)

Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224-253 (1999)

Cassaigne, J., Ollinger, N., Torres-Avilés, R.: A small minimal aperiodic reversible
Turing machine. J. Comput. Syst. Sci. 84, 288-301 (2017)

Clavel, M., et al.: Maude: specification and programming in rewriting logic. Theor.
Comput. Sci. 285(2), 187-243 (2002)

Cockett, J.R.B., Lack, S.: Restriction categories I: categories of partial maps.
Theoret. Comput. Sci. 270(1-2), 223-259 (2002)

Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Crocodile: a sym-
bolic/symbolic tool for the analysis of symmetric nets with bag. In: Kristensen,
L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 338-347.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-7_20
Cristescu, 1., Krivine, J., Varacca, D.: A compositional semantics for the reversible
m-calculus. In: Logic in Computer Science, LICS 2013, pp. 388-397. IEEE Com-
puter Society (2013)

Cservenka, M.H., Gliick, R., Haulund, T., Mogensen, T./A.: Data structures and
dynamic memory management in reversible languages. In: Kari, J., Ulidowski, I.
(eds.) RC 2018. LNCS, vol. 11106, pp. 269-285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99498-7_19

Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292-307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398-412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452_31

Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Workshop
on Concurrent Models in Molecular Biology, BioConcur 2003, vol. 180(3) (2003).
Electr. Notes Theor. Comput. Sci., 31-49. Elsevier (2007)

Dartois, L., Fournier, P., Jecker, 1., Lhote, N.: On reversible transducers. In:
International Colloquium on Automata, Languages, and Programming, ICALP
2017. LIPIcs, vol. 80, pp. 113:1-113:12. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik (2017)

de Frutos Escrig, D., Koutny, M., Mikulski, L.: An efficient characterization of
Petri net solvable binary words. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 207-226. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4_11

de Frutos Escrig, D., Koutny, M., Mikulski, L.: Reversing steps in Petri nets. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 171-191.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_11

De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83-133 (1984)

Delacourt, M., Ollinger, N.: Permutive one-way cellular automata and the finite-
ness problem for automaton groups. In: Kari, J., Manea, F., Petre, I. (eds.) CiE
2017. LNCS, vol. 10307, pp. 234-245. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58741-7_23

https://doi.org/10.1007/978-3-642-21834-7_20
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-319-91268-4_11
https://doi.org/10.1007/978-3-319-91268-4_11
https://doi.org/10.1007/978-3-030-21571-2_11
https://doi.org/10.1007/978-3-319-58741-7_23
https://doi.org/10.1007/978-3-319-58741-7_23

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Foundations of Reversible Computation 33

Di Pierro, A., Mengoni, R., Nagarajan, R., Windridge, D.: Hamming distance
kernelisation via topological quantum computation. In: Martin-Vide, C., Neruda,
R., Vega-Rodriguez, M.A. (eds.) TPNC 2017. LNCS, vol. 10687, pp. 269—-280.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71069-3_21
Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fund. Inf. 75(1), 263-280
(2007)

Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Rep. Ser. 1(8)
(1994)

Foster, N., Matsuda, K., Voigtlander, J.: Three complementary approaches to
bidirectional programming. In: Gibbons, J. (ed.) Generic and Indexed Program-
ming. LNCS, vol. 7470, pp. 1-46. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32202-0_1

Giachino, E., Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility
in a tuple-based language. In: Parallel, Distributed, and Network-Based Process-
ing, PDP 2015, pp. 467-475. IEEE Computer Society (2015)

Giachino, E., Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in
a tuple-based language. J. Log. Algebr. Meth. Program. 88, 99-120 (2017)
Giles, B.G.: An investigation of some theoretical aspects of reversible computing.
Ph.D. thesis, University of Calgary (2014)

Gliick, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages. In: Mathematical Foundations of Programming Semantics,
MFPS 2018. Electronic Notes in Theoretical Computer Science, vol. 341, pp.
155-171. Elsevier (2018)

Glick, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages: soundness and adequacy. Logical Methods Comput. Sci.
14(3) (2018)

Glick, R., Kaarsgaard, R., Yokoyama, T.: Reversible programs have reversible
semantics. In: Reversibility in Programming, Languages, and Automata, RPLA
2019. Lecture Notes in Computer Science. Springer (2019, to appear)

Glick, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative
language. Comput. Soft. 33(3), 108-128 (2016)

Gliick, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans.
Inf. Syst. E100-D(5), 1026-1034 (2017)

Glick, R., Yokoyama, T.: Constructing a binary tree from its traversals by
reversible recursion and iteration. Inf. Process. Lett. 147, 32-37 (2019)
Graversen, E., Phillips, 1., Yoshida, N.: Towards a categorical representation of
reversible event structures. J. Logical Algebraic Methods Program. 104, 16-59
(2019)

Guillon, B., Kutrib, M., Malcher, A., Prigioniero, L.: Reversible pushdown trans-
ducers. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 354-365.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_29

Guo, X.: Products, joins, meets, and ranges in restriction categories. Ph.D. thesis,
University of Calgary (2012)

Haulund, T., Mogensen, T./&., Glick, R.: Implementing reversible object-oriented
language features on reversible machines. In: Phillips, I., Rahaman, H. (eds.) RC
2017. LNCS, vol. 10301, pp. 66-73. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59936-6_5

Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical sys-
tems. Mathe. Syst. Theor. 3(4), 320-375 (1969)

https://doi.org/10.1007/978-3-319-71069-3_21
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-319-98654-8_29
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-319-59936-6_5

34

70.

71.

72.

73.

74.

75.

76.

e

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

B. Aman et al.

Heunen, C., Kaarsgaard, R., Karvonen, M.: Reversible effects as inverse arrows.
In: Mathematical Foundations of Programming Semantics, MFPS XXXIV. Elec-
tronic Notes in Theoretical Computer Science, vol. 341, pp. 179-199. Elsevier
(2018)

Heunen, C., Karvonen, M.: Monads on dagger categories. Theor. Appl. Categories
31, 1016-1043 (2016)

Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and
procedures. In: Expressiveness in Concurrency/Structural Operational Seman-
tics. Electronic Proceedings in Theoretical Computer Science, vol. 276, pp. 6986
(2018)

Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. Int. J. Found. Comput. Sci. 29(2), 251-270 (2018)

Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35-51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6_3

Hu, Z., Schiirr, A., Stevens, P., Terwilliger, J.F.: Bidirectional transformation
“bx” (Dagstuhl Seminar 11031). Dagstuhl Reports 1(1), 42-67 (2011). http://
drops.dagstuhl.de/volltexte/2011/3144/

Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)
CADE 1980. LNCS, vol. 87, pp. 318-334. Springer, Heidelberg (1980). https://
doi.org/10.1007/3-540-10009-1_25

Hiittel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1-3:36 (2016)

European COST Action IC1405 on “Reversible Computation - Extending Hori-
zons of Computing”. http://www.revcomp.eu/

Jacobs, B.: New directions in categorical logic, for classical, probabilistic and
quantum logic. Logical Methods Comput. Sci. 11(3), 1-76 (2015)

Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: CoreFun: a typed functional
reversible core language. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol.
11106, pp. 304-321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99498-7_21

Jalonen, J., Kari, J.: Conjugacy of one-dimensional one-sided cellular automata
is undecidable. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wieder-
mann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 227-238. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73117-9_16

James, R.P., Sabry, A.: Theseus: a high level language for reversible computing.
In: Work-in-Progress Report Presented at RC 2014. http://www.cs.indiana.edu/
~sabry /papers/theseus.pdf

James, R.P., Sabry, A.: Information effects. ACM SIGPLAN Not. 47(1), 73-84
(2012)

Jones, N.D.: Computability and Complexity: From a Programming Language
Perspective. Foundations of Computing. MIT Press, Cambridge (1997)

Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cam-
bridge Philos. Soc. 119(3), 447-468 (1996)

Kaarsgaard, R., Axelsen, H.B., Gliick, R.: Join inverse categories and reversible
recursion. J. Logical Algebraic Methods Program. 87, 33-50 (2017)

Kaarsgaard, R., Glick, R.: A categorical foundation for structured reversible
flowchart languages: soundness and adequacy. Logical Methods Comput. Sci.
14(3), 1-38 (2018)

Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45(1),
379-385 (1990)

https://doi.org/10.1007/978-3-319-59936-6_3
http://drops.dagstuhl.de/volltexte/2011/3144/
http://drops.dagstuhl.de/volltexte/2011/3144/
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
http://www.revcomp.eu/
https://doi.org/10.1007/978-3-319-99498-7_21
https://doi.org/10.1007/978-3-319-99498-7_21
https://doi.org/10.1007/978-3-319-73117-9_16
http://www.cs.indiana.edu/~sabry/papers/theseus.pdf
http://www.cs.indiana.edu/~sabry/papers/theseus.pdf

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.
100.

101.

102.

103.

104.

105.

106.

107.

Foundations of Reversible Computation 35

Kari, J.: Universal pattern generation by cellular automata. Theoret. Comput.
Sci. 429, 180-184 (2012)

Kari, J.: Reversible cellular automata: from fundamental classical results to recent
developments. New Generation Comput. 36(3), 145-172 (2018)

Kari, J., Kopra, J.: Cellular automata and powers of p/q. RAIRO - Theor. Inf.
Applic. 51(4), 191-204 (2017)

Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmariski, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419-430.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_34
Kari, J., Salo, V., Worsch, T.: Sequentializing cellular automata. In: Baetens,
J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS, vol. 10875, pp. 72-87. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92675-9_6

Karvonen, M.: The way of the dagger. Ph.D. thesis, School of Informatics, Uni-
versity of Edinburgh (2019)

Kastl, J.: Inverse categories. In: Algebraische Modelle, Kategorien und Gruppoide.
Studien zur Algebra und ihre Anwendungen, vol. 7, pp. 51-60. Akademie-Verlag
(1979)

Kawabe, M., Gliick, R.: The program inverter LRinv and its structure. In:
Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 219-234.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30557-6_17
Keller, R.: Towards a theory of universal speed-independent modules. IEEE Trans.
Comput. 23(1), 21-33 (1974)

Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, vol. I, pp. 1-112. Oxford
University Press (1992)

Knowlton, K.C.: A fast storage allocator. Commun. ACM 8(10), 623-625 (1965)
Kopra, J.: Glider automorphisms on some shifts of finite type and a finitary
Ryan’s theorem. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS,
vol. 10875, pp. 88—-99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92675-9_7

Krivine, J.: A verification technique for reversible process algebra. In: Gliick, R.,
Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204-217. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36315-3_17

Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese,
I. (eds.) RC 2016. LNCS, vol. 9720, pp. 20-35. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40578-0_2

Kuhn, S.; Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci.
Comput. Program. 151, 18-47 (2018)

Kurka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci.
174(1-2), 203-216 (1997)

Kutrib, M.: Reversible and irreversible computations of deterministic finite-state
devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 38-52. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48057-1_3

Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular
automata. Inf. Comput. 206, 1142-1151 (2008)

Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.
78, 1814-1827 (2012)

https://doi.org/10.1007/978-3-540-85238-4_34
https://doi.org/10.1007/978-3-319-92675-9_6
https://doi.org/10.1007/978-3-540-30557-6_17
https://doi.org/10.1007/978-3-319-92675-9_7
https://doi.org/10.1007/978-3-319-92675-9_7
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-662-48057-1_3
https://doi.org/10.1007/978-3-662-48057-1_3

36

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

B. Aman et al.

Kutrib, M., Malcher, A., Wendlandt, M.: Real-time reversible one-way cellular
automata. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds.)
AUTOMATA 2014. LNCS, vol. 8996, pp. 56—69. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18812-6_5

Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. Fund. Inf.
148, 341-368 (2016)

Kutrib, M., Malcher, A., Wendlandt, M.: When input-driven pushdown automata
meet reversiblity. RAIRO - Theor. Inf. Applic. 50, 313-330 (2016)

Kutrib, M., Malcher, A., Wendlandt, M.: Transducing reversibly with finite state
machines. Theor. Comput. Sci. 787, 111-126 (2019)

Kutrib, M., Wendlandt, M.: Reversible limited automata. Fund. Inf. 155, 31-58
(2017)

Landauer, R.: Irreversibility and heat generated in the computing process. IBM
J. Res. Dev. 5, 183-191 (1961)

Lanese, 1., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370-390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6-21

Lanese, 1., Medic, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Informatica (2019)

Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297-311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6_20

Lanese, 1., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478-493. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_33

Lanese, 1., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glick, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233-240.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3-19
Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order -
calculus. Theor. Comput. Sci. 625, 25-84 (2016)

Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014)

Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247-263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7_16

Laursen, J.S., Schultz, U.P., Ellekilde, L.: Automatic error recovery in robot
assembly operations using reverse execution. In: Intelligent Robots and Systems,
IROS 2015, pp. 1785-1792. IEEE (2015)

Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible
automata. J. Automata, Lang. Comb. 22(1-3), 145-168 (2017)

Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible
regular languages. In: Automata and Formal Languages, AFL 2017. EPTCS, vol.
252, pp. 143-156 (2017)

Lavado, G.J., Prigioniero, L.: Concise representations of reversible automata. Int.
J. Found. Comput. Sci. 30(6-7), 1157-1175 (2019)

https://doi.org/10.1007/978-3-319-18812-6_5
https://doi.org/10.1007/978-3-319-18812-6_5
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-642-36315-3_19
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

Foundations of Reversible Computation 37

Lienhardt, M., Lanese, 1., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1-17. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30793-5_1

Mabhler, K.: An unsolved problem on the powers of 3/2. J. Australian Math. Soc.
8(2), 313-321 (1968)

Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
International Conference on Functional Programming, ICFP 2007, pp. 47-58.
ACM (2007)

McNellis, J., Mola, J., Sykes, K.: Time travel debugging: root causing bugs in com-
mercial scale software. CppCon talk (2017). https://www.youtube.com/watch?
v=I1YJTg_A914

Medié, D., Mezzina, C.A.: Static VS dynamic reversibility in CCS. In: Devitt, S.,
Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 36-51. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40578-0_3

Medic, D., Mezzina, C.A., Phillips, I., Yoshida, N.: A parametric framework for
reversible pi-calculi. In: Workshop on Expressiveness in Concurrency and Work-
shop on Structural Operational Semantics, EXPRESS/SOS 2018. EPTCS, vol.
276, pp. 87-103 (2018)

Melgratti, H., Mezzina, C.A., Ulidowski, I.: Reversing P/T Nets. In: Riis Niel-
son, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 19-36.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_2

Mezzina, C.A.: On reversibility and broadcast. In: Kari, J., Ulidowski, I. (eds.)
RC 2018. LNCS, vol. 11106, pp. 67-83. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99498-7_5

Mezzina, C.A., et al.: Software and reversible systems: a survey of recent activities.
In: Ulidowski, 1., et al. (eds.) Reversible Computation. LNCS 12070, pp. 41-59.
Springer, Cham (2020)

Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibil-
ity. In: Theoretical Aspects of Software Engineering, TASE 2017, pp. 1-8. IEEE
Computer Society (2017)

Mezzina, C.A., Pérez, J.A.: Reversible sessions using monitors. In: Workshop
on Programming Language Approaches to Concurrency- and Communication-
cEntric Software, PLACES 2016. EPTCS, vol. 211, pp. 56-64 (2016)

Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a
monitors-as-memories approach. In: Principles and Practice of Declarative Pro-
gramming, PPDP 2017, pp. 127-138. ACM (2017)

Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh
look. J. Log. Algebr. Meth. Program. 90, 2-30 (2017)

Mikulski, L., Lanese, I.: Reversing unbounded Petri nets. In: Donatelli, S., Haar,
S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 213-233. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21571-2_13

Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980). https://doi.org/10.1007/3-540-10235-3

Mogensen, T./A.: RSSA: a reversible SSA form. In: Mazzara, M., Voronkov, A.
(eds.) PSI 2015. LNCS, vol. 9609, pp. 203-217. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41579-6_16

Mogensen, T.&.: Reversible garbage collection for reversible functional languages.
New Gener. Compu. 36(3), 203-232 (2018)

https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-642-30793-5_1
https://www.youtube.com/watch?v=l1YJTg_A914
https://www.youtube.com/watch?v=l1YJTg_A914
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.1007/978-3-030-22397-7_2
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/978-3-030-21571-2_13
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-41579-6_16
https://doi.org/10.1007/978-3-319-41579-6_16

38

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

B. Aman et al.

Morita, K.: Theory of Reversible Computing. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, Tokyo (2017). https://doi.org/10.
1007/978-4-431-56606-9

Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. IEICE Trans. ET2(6), 758-762 (1989)

Morrison, D., Ulidowski, I.: Direction-reversible self-timed cellular automata for
delay-insensitive circuits. J. Cellular Automata 12(1-2), 101-120 (2016)
Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3), 238—-272 (2007)

Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989)

Nishida, N., Palacios, A., Vidal, G.: Reversible term rewriting. In: Formal Struc-
tures for Computation and Deduction, FSCD 2016. LIPIcs, vol. 52. pp. 28:1-28:18.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2016)

Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184,
pp. 259-274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-
415

Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J.
Log. Algebr. Meth. Program. 94, 128-149 (2018)

Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Rewrit-
ing Techniques and Applications, RTA 2011. LIPIcs, vol. 10, pp. 283-298. Schloss
Dagstuhl - Leibniz-Zentrum fir Informatik (2011)

Nishida, N., Vidal, G.: Characterizing compatible view updates in syntactic bidi-
rectionalization. In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol.
11497, pp. 67-83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21500-2_5

Paolini, L., Piccolo, M., Roversi, L.: A certified study of a reversible programming
language. In: Types for Proofs and Programs, TYPES 2018. LIPIcs, vol. 69, pp.
7:1-7:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2018)

Piun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108-143
(2000)

Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Uli-
dowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84-101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7_6

Philippou, A., Psara, K., Siljak, H.: Controlling reversibility in reversing Petri
nets with application to wireless communications. In: Thomsen, M.K., Soeken, M.
(eds.) RC 2019. LNCS, vol. 11497, pp. 238-245. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21500-2_15

Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event struc-
tures. J. Log. Algebr. Meth. Program. 84(6), 781-805 (2015)

Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glick, R., Yokoyama, T. (eds.) RC 2012.
LNCS, vol. 7581, pp. 218-232. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36315-3_18

Phillips, I., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and
events. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141—
154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38986-3_12
Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,
Ingélfsdéttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 246-260. Springer,
Heidelberg (2006). https://doi.org/10.1007/11690634_17

https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-030-21500-2_5
https://doi.org/10.1007/978-3-030-21500-2_5
https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-38986-3_12
https://doi.org/10.1007/11690634_17

161.

162.

163.

164.

165.

166.
167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

Foundations of Reversible Computation 39

Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr.
Program. 73(1-2), 70-96 (2007)

Pin, J-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS,
vol. 583, pp. 401-416. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0023844

Pinna, G.M.: Reversing steps in membrane systems computations. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 245-261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-
3-16

Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big
data classification. Phys. Rev. Lett. 113, 130503 (2014)

Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.1007/
978-3-642-69968-9

Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125-198 (2007)
Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quan-
tum control. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803,
pp. 348-364. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-
219

Salo, V.: Groups and monoids of cellular automata. In: Kari, J. (ed.) AUTOMATA
2015. LNCS, vol. 9099, pp. 17-45. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47221-7_3

Salo, V., Térmé, I.: A one-dimensional physically universal cellular automaton.
In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 375-386.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7_35
Schaeffer, L.: A physically universal cellular automaton. In: Innovations in The-
oretical Computer Science, ITCS 2015, pp. 237-246. ACM (2015)

Schordan, M., Oppelstrup, T., Jefferson, D., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput. 36(3), 257-280 (2018)

Schordan, M., Oppelstrup, T., Thomsen, M.K., Gliick, R.: Reversible languages
and incremental state saving in optimistic parallel discrete event simulation. In:
Ulidowski, I., et al. (eds.) Reversible Computation. LNCS 12070, pp. 187-207.
Springer, Cham (2020)

Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 153-159. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_10

Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Workshop on Quantum Programming Languages, QPL 2005. Electronic Notes in
Theoretical Computer Science, vol. 170, pp. 139-163 (2005)

Selinger, P.: A survey of graphical languages for monoidal categories. New Struc-
tures for Physics. Lecture Notes in Physics, vol. 813, pp. 289-355. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-12821-9_4

Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commuta-
tivity and associativity. J. ACM 21(4), 622-642 (1974)

Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Syst. 5(1),
19-30 (1991)

Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth.
Program. 84(5), 684-707 (2015)

https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-662-47221-7_3
https://doi.org/10.1007/978-3-662-47221-7_3
https://doi.org/10.1007/978-3-319-58741-7_35
https://doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1007/978-3-642-12821-9_4

40

180.

181.

182.

183.

184.

185.

B. Aman et al.

Toffoli, T.: Computation and construction universality of reversible cellular
automata. J. Comput. Syst. Sci. 15(2), 213-231 (1977)

Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

Windridge, D., Mengoni, R., Nagarajan, R.: Quantum error-correcting output
codes. Int. J. Quantum Inf. 16(8), 1840003 (2018)

Windridge, D., Nagarajan, R.: Quantum bootstrap aggregation. In: de Barros,
J.A., Coecke, B., Pothos, E. (eds.) QI 2016. LNCS, vol. 10106, pp. 115-121.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52289-0_9
Yokoyama, T., Axelsen, H.B., Gliick, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14-29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1_2

Yokoyama, T., Axelsen, H.B., Gliick, R.: Fundamentals of reversible flowchart
languages. Theoret. Comput. Sci. 611, 87-115 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-52289-0_9
https://doi.org/10.1007/978-3-642-29517-1_2
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Software and Reversible Systems:
A Survey of Recent Activities

Claudio Antares Mezzina! ™ Rudolf Schlatte?, Robert Gliick®, Tue Haulund?,
James Hoey®, Martin Holm Cservenka®, Ivan Lanese’,

Torben A&. Mogensen?, Harun Siljak®, Ulrik P. Schultz®, and Irek Ulidowski®

! Dipartimento di Scienze Pure e Applicate, Universita di Urbino, Urbino, Ttaly
2 Department of Informatics, University of Oslo, Oslo, Norway
3 DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
torbenm@di.ku.dk
4 A.P. Moller Maersk, Copenhagen, Denmark
5 School of Informatics, University of Leicester, Leicester, UK
§ Practio ApS, Copenhagen, Denmark
" Focus Team, University of Bologna/Inria, Bologna, Italy
8 CONNECT Centre, Trinity College Dublin, Dublin, Ireland
9 University of Southern Denmark, Odense, Denmark

Abstract. Software plays a central role in all aspects of reversible com-
puting. We survey the breadth of topics and recent activities on reversible
software and systems including behavioural types, recovery, debugging,
concurrency, and object-oriented programming. These have the poten-
tial to provide linguistic abstractions and tools that will lead to safer
and more reliable reversible computing applications.

1 Introduction

The notion of reversible computation has a long history [37] which started by
studies on the thermodynamic cost of irreversible actions. It was noted that
since computation is usually irreversible, information loss causes dissipation of
heat. Therefore it could be possible to execute reversible computations in a heat
dissipation free way. This was the motivation that gave rise to several reversible
computation models such as reversible Turing machines [6] and conservative
logic [22]. Since then there has been a huge effort to introduce reversibility
at the level of programming languages and software systems [7,44], where it
can bring additional benefits towards reliability, robustness and scalability of
conventional software systems. Part of this effort has been carried out by the
Working Group (WG) 2: Software and Systems of the COST Action 1C1405
Reversible Computation — Extending Horizons of Computing.

This work has been partially supported by COST Action IC1405 on Reversible Com-
putation - Extending Horizons of Computing.
© The Author(s) 2020

I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 41-59, 2020.
https://doi.org/10.1007/978-3-030-47361-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_2

42 C. A. Mezzina et al.

Software plays a central role in all aspects of reversible computing. We sur-
vey the breadth of topics and recent activities on reversible software and sys-
tems including behavioural types, recovery, debugging, concurrency, and object-
oriented programming. These have the potential to provide linguistic abstrac-
tions and tools that will lead to safer and more reliable reversible computing
applications.

The rest of the chapter is structured as follows: Sect. 2 reports on reversibility
and behavioural types; Sect. 3 reports on the interplay between reversibility and
recovery for distributed systems; Sect. 4 reports on reversibility and object ori-
entation; Sect. 5 reports on reversing imperative programs with shared memory
concurrency and its possible application on reversible debugging; Sect. 6 reports
on reversibility and message passing systems, with a special focus on reversible
(core) Erlang and its reversible debugger. Section 7 reports on reversibility and
control theory. Section 8 concludes the chapter.

2 Behavioural Types

The interest in behavioural types [35] stems from the fact that it is easier to work
with a system whose behaviour (in terms of communications) is strongly disci-
plined by a type theory. Among behavioural types we distinguish: binary session
types and contracts, multiparty session types and choreographies. Choreographies
will be discussed in Sect. 3.

Reversibility and monitored semantics for binary session types have been
recently studied by Mezzina and Pérez [46,47,49]. In their work, they propose
a monitor as memory mechanism in which information about the monitor of a
process can be used to enable its reversibility. Moreover, by adding modalities
information at the level of session types, reversibility can be controlled.

In the context of multiparty session types, global types describe the message-
passing behaviour of a set of participants in a system from a global point of view.
A global type can be projected onto each participant so as to obtain local types,
which describe individual contributions to the global protocol. The work [48]
extends global and local types to keep track of the stage of the protocol that
has been already executed; this enables reversible steps in an elegant way. The
authors develop a rigorous process framework for multiparty communication,
which improves over prior works by featuring asynchrony, decoupled rollbacks
and process passing. In this framework, concurrent processes are untyped but
their forward and backward steps are governed by monitors. The main technical
result is that the developed multiparty reversible semantics is causally-consistent.
Finally, [15] proposes a Haskell implementation of the asynchronous reversible
operational semantics for multiparty session types proposed in [48]. The imple-
mentation exploits algebraic data types to faithfully represent three core ingre-
dients: a process calculus, multiparty session types, and forward and backward
reduction semantics. This implementation bears witness to the convenience of
pure functional programming for implementing reversible languages.

Software and Reversible Systems: A Survey of Recent Activities 43

In a series of works [11,16] multiparty session types (aka global types) have
been enriched with checkpoint labels on choices that mark points of the proto-
col where the computations may roll back. In [16], a simple model is developed
in which rollback could be done any time after a participant has crossed the
checkpointed choice. In [11] a more refined model is presented, in which the pro-
grammer can define points where the computation may revert to a checkpointed
label, and rollback has to be triggered by the participant that made the decision.

Behavioural contracts are abstract descriptions of expected communication
patterns followed by either clients or servers during their interaction. Behavioural
contracts come naturally equipped with a notion of compliance: when a client and
a server follow compliant contracts, their interaction is guaranteed to progress or
successfully complete. In [5] two extensions of behavioural contracts are studied:
retractable contracts dealing with backtracking and speculative contracts dealing
with speculative execution. These two extensions give rise to the same notion of
compliance. As a consequence, they also give rise to the same subcontract rela-
tion, which determines when one server can be replaced by another while preserv-
ing compliance. Moreover, compliance and subcontract relation are both decid-
able in quadratic time. The above paper also studies the relationship between
retractable contracts and calculi for reversible computing.

3 Recovery

Distributed programs are hard to get right because they are required to be open,
scalable, long-running, and tolerant to faults. This problem is exacerbated by the
recent approaches to distributed software based on (micro-)services where dif-
ferent services are developed independently by disparate teams. In fact, services
are meant to be composed together and run in open context where unpredictable
behaviours can emerge. This makes it necessary to adopt suitable strategies for
monitoring the execution and incorporate recovery and adaptation mechanisms
to make distributed programs more flexible and robust. The typical approach
that is currently adopted is to embed such mechanisms in the program logic,
which makes it hard to extract, compare and debug.

An approach that employs formal abstractions for specifying failure recovery
and adaptation strategies has been proposed in [10]. Although implementation-
agnostic, these abstractions would be amenable to algorithmic synthesis of code,
monitoring and tests. Message-passing programs (a la Erlang, Go, or MPI) are
considered, since they are gaining momentum both in academia and industry.
In [20] an instance of the framework proposed in [10] is given. More precisely,
this approach imbues the communication behaviour of multi-party protocols with
minimal decorations specifying the conditions triggering monitor adaptations. It
is then shown that, from these extended global descriptions, one can (i) synthe-
sise actors implementing the normal local behaviour of the system prescribed by
the global graph, but also (ii) synthesise monitors that are able to coordinate a
distributed rollback when certain conditions (denoting abnormal behaviour) are
met. The synthesis algorithm produces Erlang code. For each role in the global

44 C. A. Mezzina et al.

description, two Erlang actors are generated: one actor implements the normal
(forward) behaviour of the system and a second one (the monitor) is in charge
of implementing the reversible behaviour of the role. When certain conditions
are detected at runtime, the monitors will coordinate with each other in order
to bring back the system if possible. One interesting property of this approach is
that the two semantics are highly decoupled, meaning that the system is always
able to normally execute (i.e., going forward) even in case of a monitor crash.

A static analysis, based on multiparty session types, to efficiently compute a
safe global state from which to recover a system of interacting processes has been
integrated with the Erlang recovery mechanism in [50]. From a global description
of the program communication flow, given in multiparty protocol specification,
causal dependencies between processes are extracted. This information is then
used at runtime by a recovery mechanism, integrated in Erlang, to determine
which process has to be terminated and which one has to be restarted upon a
node failure. Experimental results indicate that the proposed framework outper-
forms a built-in static recovery strategy in Erlang when a part of the protocol
can be safely recovered.

In [26] a rollback operator, based on the notion of causal-consistent reversibil-
ity, is defined for a language with shared memory. A rollback is defined as
the minimal causal-consistent sequence of backward steps able to undo a given
action. The paper [69] explores the relationship between the Manetho [17] dis-
tributed checkpoint/rollback scheme (based on causal logging) and a reversible
concurrent model of computation based on the w-calculus with imperative roll-
back called roll-m [38]. A rather tight relationship between rollback based on
causal logging as performed in Manetho and the rollback algorithm underlying
roll-7 is shown. The main result is that roll-7 can faithfully simulate Manetho
under weak barbed simulation, but that the converse only holds if possible roll-
backs are restricted.

4 Reversibility and Object-Oriented Languages

Object-oriented (OO) programming uses classes as a means to encapsulate
behaviour and state. Classes permit programmers to define new abstractions,
such as abstract data types. The key elements of reversible OO languages were
initially introduced with a prototype of the Joule language [60] and subsequently
formally described for the ROOPL language [29]. Joule and ROOPL demonstrate
that well-known object-oriented concepts such as encapsulation, inheritance, and
virtual methods can be captured reversibly by extending a base Janus-like imper-
ative language [71] with support for such features.

This approach allows standard OO programming patterns, such as the fac-
tory and iterator design patterns [23], to be used reversibly [59], and well-known
structures such as an OO-style collection hierarchy (i.e., OO abstract data types
but with reversible operations) can similarly be implemented in such languages.
Reversible data types [13], that is data structures with all of its associated oper-
ations implemented reversibly, are enabled by dynamic allocation of constructor

Software and Reversible Systems: A Survey of Recent Activities 45

terms in the heap of a reversible machine [1]. Data structures are safe in OO
languages because they require no explicit pointer arithmetic in user programs,
which is notoriously error prone.

Memory handling is a key concern for reversible object-oriented languages.
The original Joule prototype relied on static stack allocation of objects, which
does not permit full OO programming: common patterns such as factories are for
example not possible [60]. Joule was subsequently extended into Joule which
uses region-based [24,66] memory management [59]. Regions are sufficient to sup-
port the implementation of standard OO programming patterns and a collection
hierarchy. The initial presentation of the ROOPL language relied exclusively on
stack allocation [29], and was subsequently extended with a reversible heap-based
memory manager [13] based on Knuth’s Buddy Memory algorithm [36]. With this
extension, data structures such as min-heaps and circular buffers can be imple-
mented [13]. The language is reversibly universal (r-Turing complete), which
means it has the computational power of reversible Turing machines (cf. [71]).
See Figs. 1, 2, and 3 for example programs in Joule and ROOPL, which will be
described in the next section.

4.1 Object Orientation and Data Structures

As exemplified by the representation of abstract-syntax trees in the reversible
Janus self-interpreter [73], even complex data structures can be expressed in
reversible languages with simple type systems including only integers and arrays.
However, more effort is required to represent and manipulate the data structures
and as the resulting code base grows, the problem exacerbates.

Reversible object-oriented languages allow for easier code reuse and exten-
sibility by encapsulating data and methods in classes, thereby also abstracting
from the underlying memory model of the reversible machine. See Figs. 1 and 2
for two classic object-oriented examples in Joule and ROOPL, respectively.

The example in Joule in Fig. 1 models a single point in a two-dimensional
space by a class Point with two integer coordinates (x, y) and two methods that
translate a point by adding an integer displacement to the respective coordinate
(add_to_x, add_to_y). Here, this.x refers to the x-coordinate of the point to
which the displacement parameter x is added when add_to_x is applied to a
point object.

The example in ROOPL in Fig.2 illustrates a simple class hierarchy of
geometric shapes in a two-dimensional space. The two shapes Rectangle and
Circle inherit the reference point (x, y) from their superclass Shape and eztend
it with the length and width (1, w) in the case of Rectangle and with the
radius r in the case of Circle. The two subclasses add a class-specific method
getArea that defines how to calculate the area of the respective shape. All meth-
ods defined in these three classes are implemented by reversible statements that
are similar to those in Janus and reversible flowcharts [71,73]. Methods can also
be implemented using reversible control-flow operators (conditionals, iteration)
and recursive method calls and uncalls, as illustrated in the next example. It is

46 C. A. Mezzina et al.

1 class Point {

2 int x; int y; // private fields, zero-initialised

3

4 Point (int x, int y) { // constructor, runs after allocation

5 this.x += x; this.y += y; // this.x is a field, x a parameter
6 }

7

8 procedure add_to_x(int x) { this.x += x; }

9 procedure add_to_y(int y) { this.y += y; }

10 }

Fig. 1. Example Joule class modelling a single point in two-dimensional space, origi-
nally from [60]

1 class Shape // superclass Shape
2 int x, y // reference point
3

4 method getArea(int out) // abstract method
5 skip

6

7 method translate(int dx, int dy) // common method
8 x += dx

9 y += dy

10

11 class Rectangle inherits Shape // subclass Rectangle
12 int 1, w // length, width
13

14 method getArea(int out) // concrete method
15 out "= 1 *x w

16

17 class Circle inherits Shape // subclass Circle
18 int r // radius

19

20 method getArea(int out) // concrete method
21 out “= PI * r * r

Fig. 2. Example ROOPL class hierarchy modeling basic geometric shapes in two-
dimensional space, originally from [13]

important to note that a reversible method cannot overwrite any of the encap-
sulated data, only perform a reversible update [2]. This makes reversible OO
languages different from their mainstream counterparts, such as Java or C++,
which can perform destructive updates.

The reversible min-heap in Fig. 3 serves as an example of the expressiveness
afforded by the richer type systems and memory models of these languages. The
insert method reversibly inserts a node in the heap, where the only output
is the depth of the inserted node, maintaining the min-heap property in the
process. This procedure can be used to reversibly extract the minimal value of a
data set. The class Node recursively defines a binary tree structure by including
two nodes, left and right. The integer v is the value of a node.

The insert method makes use of a reversible conditional if...£i (lines 5 to
16), which means it contains not only an entry predicate (v < w) but also an exit
predicate (counter > 0). As usual in reversible languages, both predicates are
checked at runtime: both must be true when control passes along the then-branch
and both must be false when control passes along the else-branch; otherwise, the

Software and Reversible Systems: A Survey of Recent Activities 47

class Node
Node left, right /* roots of subtrees */
int v /* value of node */
method insert(int w, int counter) /* counter initially 0 */
if v < w then
if left = nil then
new Node left
left.v <=> w
else call left::insert(w, counter)
fi left.right = nil
counter += 1 /* counter > 0 %/

0 N U A W N

[
= o ©

12 else

13 v <=> w

14 call insert(w, counter)

15 counter -= 1 /* counter = 0 */

fi counter > 0
left <=> right
/* at return, w = 0 and counter = depth of insertion */

o e
w0 N o

Fig. 3. Recursive min-heap value insertion implemented in ROOPL using reversible
updates and reversible conditionals, originally from [13]

program is undefined (cf. [71,73]). Method calls and uncalls refer to an object.
For example, call left::insert(w, counter) recursively applies the insert
method to the left node 1left with the integer parameters w and counter. This
allows to work with recursively-defined data structures, which in our case are
binary trees.

Objects, which are instances of the classes defined in a program, can be
allocated and deallocated at runtime in any order using explicit statements. For
example, a new object of class node is created by statement new Node left
where the object’s reference is assigned to left (line 7). When a new object is
created all its fields are initialised with default values, here integer v is initialised
with zero and references left and right with the null pointer nil.

Reversible programming demands certain sacrifices compared to mainstream
programming because data cannot be overwritten and join points in the control
flow require explicit tests (e.g., the exit predicate in if...fi), which can also be
seen in the case of the insert method. As a consequence, conventional algorithms
and data structures need to be rethought in a reversible context regardless of
the data structures offered by a reversible language [13,27,28,72]. However, the
abstraction and expressiveness of OO reversible data structures ease the task.

With the addition of Joule and ROOPL, reversible programs can now be
expressed in a modern programming paradigm like OO programming, with
dynamic memory management of variably sized records and programmer-defined
recursive data structures that can grow to an arbitrary size at runtime. These
new features significantly broaden the applicability of reversible languages and
support increased complexity in reversible programs.

5 Reversing Imperative Concurrent Programs

Adding reversibility to irreversible imperative languages has been studied for
many years, for example in [9,52,57,58,70]. A proof of correctness is often

48 C. A. Mezzina et al.

missing from work in this area. Hoey and Ulidowski introduce a small impera-
tive while language and describe a state-saving approach to reversing executions
[33]. This was then extended to support an imperative concurrent language,
using identifiers to capture the specific interleaving order and to ensure state-
ments are reversed in the correct order [34]. The proof of correctness provided
shows that the reversal is both correct and garbage free. A simulation tool imple-
menting this approach is mentioned in [32] and described in more detail in [30].
Performance evaluation carried out using this simulator indicates that overheads
associated with saving and using of reversal information is reasonable. Finally,
a link between this simulator and debugging is explored in [32].

5.1 Language and Program State

The imperative language used in this approach contains assignments, condi-
tional statements (branching) and loops (iteration), much like a while language.
Details on reversing this imperative while language are available in [33]. This
is later extended with block statements containing local variable or procedure
declarations, as well as (potentially recursive) procedure calls. With the ability
for multiple variables to share a name as a result of local variables, the syntax
of this language contains construct identifiers (unique names given to complex
constructs including block statements) and paths (sequence of block names in
which a statement resides capturing the position needed for evaluation). Block
statements allow the declaration of local variables or procedures, and as such are
extended to “clean” up at the end of its execution by “un-declaring” these via
removal statements. The final addition is that of interleaving parallel composi-
tion, where the execution of two (or more if nested) programs can be interleaved.
The syntax of this language follows.

o
i

=e¢|S|P; P|P par P

skip I |X = E (pa,A) | if In B then P else Q end (pa,A) |
while Wn B do P end (pa,A) | begin Bn BB end |

call Cn n (pa,A) | runc Cn P end

BB ::=DV; DP; P; RP; RV

DV:=¢|var X = v (pa,A); DV DP::=¢ | proc Pn n is P end (pa,A); DP
RV ::

€| remove X = v (pa,A); RV RP:=¢ |remove Pn n is P end (pa,A); RP

The program state is represented as a series of environments, including the
variable environment ~ (linking variables to memory locations), the data store
o (linking memory locations to values), the procedure environment p (storing
multiple copies of procedure bodies being executed in parallel) and the while
environment (3 (storing multiple copies of loops being executed in parallel) [34].

Software and Reversible Systems: A Survey of Recent Activities 49

5.2 Annotation, Inversion and Operational Semantics

The considered approach is state-saving, where any information required for
inversion that is lost during traditional execution is saved [52]. Two versions of
an original program are produced. The first, named the annotated version and
generated via annotation, performs the expected forwards execution and saves
any required information, named reversal information. A design choice made
to aid the correctness proof is to store all reversal information in an auziliary
store & separate to the program state. This store is a collection of stacks (ideal for
reversal due to their FIFO nature), one for each variable name (all versions share
a stack to handle races), two stacks for loops (one for capturing the loop count
and one for identifiers), one for conditional statements and one for procedure
calls.

The information required depends on the type of statement. Each assignment
is destructive as the old value of the variable is lost. This old value is crucial
for reversal, thus it is saved into the stack for that variable name on § prior to
each assignment. Conditions are not guaranteed to be invariant, meaning this
approach cannot rely on re-evaluation during inversion to behave correctly. For
each conditional statement, the result of evaluation is saved onto the stack for
conditionals on ¢. Loops are handled similarly, with a sequence of booleans saved
to capture the number of iterations (onto the first stack for loops). A second
design choice made is to save a sequence over implementing a loop counter in
order to aid the correctness proof, avoiding modifying the loop code and therefore
the behaviour with respect to the program state. Lastly, the final value of a local
variable is saved prior to its removal, into the stack for that variable name.

Supporting interleaving parallel composition also requires further informa-
tion to be saved. Interleaving allows different execution orders to be followed,
which must then be correctly inverted. The specific execution order is captured
using identifiers similarly to Phillips and Ulidowski [55,56]. The next identifier is
assigned to a statement as it executes, stored into a stack of integers associated
with each required statement during annotation. Consider the small example
shown in Fig.4 and the executed forwards version shown in Fig.4a. This is a
simple interleaving of three statements, captured via the identifiers 1-3, where
the first statement of the right hand side is executed first, before interleaving
to the left and finally completing the right. Assuming X and Y are initially 1,
this interleaving produces the final state X =4 and Y= 3. These identifiers also
create a link between a statement and its reversal information, as all entries on
¢ contain the corresponding identifier. For example, the stack X on § will contain
the pair (2,1) (statement with identifier 2 overwrote the value 1). For loops or
procedure calls (potentially multiple copies of the same code in execution across
a parallel), identifiers are assigned to the specific copy within p or 8. Since local
copies are removed at the end of their execution, the final example of reversal
information is the identifiers assigned to such a copy (saved onto the second
stack for loops or the stack for calls).

50 C. A. Mezzina et al.

X = Y+2 [2]; par Y = X42 [1]; X = Y+2 [2]; par X = 4 [3];
X =4 [3]; Y=X+2 [1];
(a) Executed annotated program (b) Inverted program

Fig. 4. Identifier use example

The execution of an annotated program is defined in terms of small step
operational semantics, where each rule performs the expected forwards execution
alongside the saving of reversal information and assigning of an identifier [34].

The second version of an original program produced, called the inverted ver-
ston, is generated via inversion and has an inverted statement order with all dec-
laration statements changed to removals and vice versa. This forwards-executing
program simulates reversal using the saved information and identifiers.

Throughout the inverse execution, the decision of which statement to execute
next (that is, invert) is made using the identifiers in descending order to force
backtracking order. Returning to the example in Fig. 4, the identifiers are used in
the order 3-1, meaning any incorrect inverse execution path cannot be followed.
Each statement also uses the identifiers to access the correct reversal information.
Assignments will no longer evaluate the expression and instead retrieve the old
value from 6. From the example in Fig.4b, execution of the statement with
identifier 2 uses the pair (2,1) to restore the variable to 1. Similarly conditionals
and loops retrieve the result of condition evaluation from . Declaring a local
variable during an inverse execution initialises it to the final value it held during
forward execution (retrieved from the stack). Lastly, whenever a copy of a loop
or procedure body is made during the inverse execution, it is populated with the
required identifiers from 4.

As before, inverse execution is defined by small step semantics, with each rule
using identifiers and reversal information to undo the effects of a statement (or
step). Complete inverse execution undoes the effects of all statements, producing
a state equivalent to that of prior to the forward execution. We refer to the
previous property, coupled with the property that all reversal information is
consumed (the approach is garbage free), as correct inversion.

5.3 Correctness of Annotation and Inversion

This approach is proved to perform correct reversal information saving as well
as correct and garbage-free inversion. The two results are described in [34] and
extended to hold for all programs including parallel composition in [30]. The
first, named the annotation result, states that an original program and its anno-
tated version executed on the same initial program state will produce equivalent
final program states, with the obvious exception of the annotated execution
populating the auxiliary store with the required reversal information.

The second result, named the inversion result, states that provided an anno-
tated execution has been performed producing the final program state and auxil-
iary store, then the corresponding inverse execution ran on these final stores will

Software and Reversible Systems: A Survey of Recent Activities 51

produce a program state and auxiliary store equivalent to that of prior to the
forwards execution. This means the inverse execution reverses all effects of the
original program, as well as using all of the reversal information saved (the app-
roach is garbage free). These two results together show that no state is reached
that was not originally reached in either the forward or reverse execution.

5.4 Simulator and Performance Evaluation

A simulator implementing this approach has been developed, originally for the
purposes of testing [30]. The simulator reads a program written in a simplified
language (omitting paths, construct identifiers and removal statements as these
can be automatically inserted), parses it and sets up the initial program state.
Key features include complete or step-by-step execution, viewable program state
and reversal information at any point, random or manual interleaving and record
mode (storing further details including interleaving decisions/rule applications).

This simulator has been used for performance evaluation. Design choices
(mentioned above) have been made to aid the proof and may not be the most
efficient solution, and no optimisation techniques have yet been applied. This
analysis concerns the overhead associated with annotation (time required to
save reversal information), and the overhead associated with inversion (inverse
execution time compared to annotated forward execution time). From figures
n [32], the annotated execution experiences a reasonable overhead of between
4.2%-13.4%, while the inverted execution experiences an again reasonable over-
head of between —14.7%-1.9%. As expected, the inverse execution is sometimes
faster as there is no evaluation (values retrieved from ¢).

5.5 Application to Debugging

Many works including [12,18,25,40,41,68] have described how reversibility can
be beneficial for debugging. The link between this approach to reversibility and
debugging is explored in [32], showing that this simulator (not originally devel-
oped as a debugger) helps with finding errors. Benefits include bugs being repro-
ducible should a user wish to re-execute a program forwards (for example, a
randomly interleaved program experiences a bug that can only be reproduced
by luck, with inversion obviously still possible), the ability to pause executions
and to view program state at any point. In [32] and [31], this simulator is used
to debug an example atomicity violation.

6 Reversible Debugger for Message Passing Systems

A relevant research thread in WG2 has tackled the problem of debugging concur-
rent message-passing applications using the so called causal-consistent approach.
Causal-consistent reversibility [14] stems from the observation that in concur-
rent systems, events (e.g., sending and receive of messages) are not always totally
ordered since there may be no unique notion of time. Even if events are totally

52 C. A. Mezzina et al.

ordered in principle, such an order is not relevant since it depends on the speed
of execution of the various processes, and it is difficult to observe and even more
to control. Instead, events naturally form a partial order dictated by causality:
causes precede their consequences, while there is no order between concurrent
events. The corresponding notion of reversibility, causal-consistent reversibility,
allows one to undo any event, provided that its consequences, if any, are undone
beforehand. A main property of this notion of reversibility is that states reachable
via backward computation are also reachable via forward computation from the
initial state, hence reversibility does not introduce new states but only provides
different ways of exploring states of forward computations.

This observation led to the development of causal-consistent reversible debug-
ging [25], which allows one to explore a concurrent computation backward and
forward, looking for the causes of a given misbehaviour, e.g., a wrong value
printed on the screen. Indeed, a misbehaviour is due to a bug, that is a wrong
line of code, and the execution of the wrong line of code is a cause of the misbe-
haviour. More precisely, causal-consistent reversible debugging provides primi-
tives to undo past events, including all and only their consequences. For instance,
if variable x has a wrong value, one can go back to where variable x has been
assigned. If the wrong value is in a message payload, one can go back where the
message has been sent. By iterating this technique, one can look for causes of
the misbehaviour until the bug is found.

Inside WG2 the research focused on how to apply this approach to a real
programming language, and Erlang was the language of choice. Erlang features
native primitives for message-passing concurrency, and has been used in relevant
applications such as some versions of Facebook chat [45]. For simplicity, the
research thread does not deal directly with Erlang, but with Core Erlang (8],
which is an intermediate step in Erlang compilation, essentially removing some
syntactic sugar from Erlang.

The research thread started with an investigation on the reversible semantics
of Core Erlang, aiming at defining a rollback operator to undo a past action in
a causal-consistent way [51]. The study was further developed in [42], where
relevant properties of the approach were proved, e.g., that the rollback operator
indeed satisfies the constraints of causal-consistent reversibility. The focus on
debugging started in [41], where CauDEr [40], a Causal-consistent Debugger for
(core) Erlang, was described. CauDEr provided the primitives above for causal-
consistent reversible debugging, paired with primitives for forward execution and
with a graphical interface to show the runtime structure of the program under
analysis and the relevant concurrent events in the computation.

A main limitation of CauDEr was that if the user went too far back, there
was no automatic way to go forward again with the guarantee to replay the
misbehaviour under analysis. This is a relevant problem, since in concurrent
systems misbehaviours depend on the scheduling, and of course it is not possible
to debug a misbehaviour that does not appear when executing the wrong applica-
tion inside the debugger. To solve this problem, the research studied techniques
for tracing a computation and replay it inside the debugger. This lead to the

Software and Reversible Systems: A Survey of Recent Activities 53

definition of a new form of replay, called causal-consistent replay [43], which
allows one to redo a future event of a traced computation, including all and
only its causes. One can notice that causal-consistent reversibility and causal-
consistent replay are dual, and together they allow one to explore a wrong com-
putation back and forward, always concentrating on events of interest. Also, this
approach ensures that if a misbehaviour occurred in the traced computation then
the same misbehaviour occurs also in each possible replay (provided that exe-
cution goes forward enough). A tracer for Erlang compatible with CauDEr was
produced and is available at [39]. An example of application of this framework
to a simple Erlang program can be found in [21].

7 Control Theory

The challenge of reversible control is its interaction with the irreversible object
of control. Even when the object is reversible, (e.g. motion of a fluid) often the
ability to reverse it is not controllable [61]. Disturbance in the system can be fully
reversible, but inacessible to the control mechanism. We explored the elements of
reversible control in an applied setting of wireless communications, through two
different realistic examples, one of resource management in large antenna arrays,
and one of wave time reversal in underwater acoustic communications [62].

In the first example [64], we perform antenna selection in a large distributed
antenna array which serves as a distributed base station in a next generation
cellular network: at any point in time, we want to use n out of m available anten-
nas to serve k < n users in the cell. The subset of antennas to be used is selected
S0 to maximise the Shannon capacity of the communication channel between
the base station and the users, which is a non-trivial optimisation task: select-
ing simply the antennas with the strongest signal does not help as they tend
to be correlated and not contributing to the diversity in the channel. We pro-
pose a solution using reversing Petri nets [53] with controlled transitions: tokens
(indicating antennas that are “on”) move between places (antennas) based on
simple calculations at the transitions (do the channel sum rates increase with the
change of token position, i.e. reconfiguration of the array?) [54]. The results of
experiments with varying number of users show that this distributed approach
delivers results on par with computationally demanding centralised approaches,
and tend to outperform the competition as the number of users increases. The
approach we proposed here is not limited to the problem of antenna selection:
in the ongoing work, we extend it to general resource management in wireless
setting, using the advantages offered by having a reversible control algorithm,
namely fault recovery, partial reversal of the system and repetitive motion han-
dling [65].

In the second example, we focus on wave time reversal, the idea of recon-
structing a wave (e.g. an acoustic pulse) by measuring the incoming wave at the
boundary of a cavity and then re-transmitting the collected samples in reverse,
producing a wave that reconverges at the original source [19]. It is straightforward
to see how this scheme can be used to establish a communication channel, and

54 C. A. Mezzina et al.

hence be used in a communication scheme in e.g. underwater acoustic commu-
nications. We selected sound propagation in water as an example of a reversible
(but rarely reversed) medium under control, and proposed a reversible hardware
architecture for this task [63]. Here we recognised another control challenge: dis-
turbance compensation. If there is a source of disturbance in the medium (e.g.
strong stream in the water) the reconstructed pulse will be distorted and hence
the quality of communication will degrade. If we cannot remove the source of
disturbance, but are in position to control a different part of the environment
based on measurements from sensors in the medium, how can we improve the
quality of wave time reversal? The more general question we pose here is whether
control of a reversible medium is simpler than control of an irreversible one, and
the model we chose to work on is one provided by reversible cellular automata.
These automata, in the form of lattice gases, have been extensively used for
fluid modelling. In cellular automata, the control problem revolves around the
question of reaching a certain configuration from an arbitrary initial configura-
tion [3]. In our consideration of reversible cellular automata, instead of observing
the question of reaching a microstate, we investigate the problem of reaching a
statistical macrostate in a region of the automaton [4]. The idea of reversible
automata control being easier than the general automata control stems from the
fact that states in reversible automata have unique predecessors, hence minimis-
ing the combinatorics of the arc of transition between an initial and a final state,
which is an important element of cellular automata control.

8 Conclusions

We have summarised the main results obtained by the Working Group 2 on Soft-
ware and System of the COST Action IC1405. In these four years the WG was
active and produced important results, as witnessed by this document. Research
in applying reversibility to software and systems is ongoing, and some of the
guidelines and topics indicated in the MOU [67] were not exhaustively investi-
gated during the lifetime of WG2. The interplay between reversibility and the so
called recovery patterns deserves to be further investigated. Also, the integration
of reversibility in software development is still at an early stage.

Acknowledgement. The WG2 has been led by Claudio Antares Mezzina and Rudolf
Schlatte. For both of us, it has been an enormous honour to lead such WG, to organise
the WG meetings and to interact with all the people involved in the working group.
A witness of the liveness of the working group is the list of authors who happily con-
tributed to this document. We would also thank Irek Ulidowski (chair) and Ivan Lanese
(vice-chair) who wisely have led this COST Action and the Management Committee
(MC) who appointed us as leader and co-leader (respectively) of this WG.

Software and Reversible Systems: A Survey of Recent Activities 55

References

10.

11.

12.

13.

14.

15.

16.

Axelsen, H.B., Gliick, R.: Reversible representation and manipulation of construc-
tor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol.
7948, pp. 96-109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38986-3_9

Axelsen, H.B., Gliick, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56—69. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74510-5-9

Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys.
Rev. E 86(6), 066201 (2012)

Bagnoli, F., Siljak, H.: Control of reversible cellular automata (2019, Manuscript
in preparation)

Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative
contracts. Sci. Comput. Program. 167, 25-50 (2018)

Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525—
532 (1973)

Bishop, P.G.: Using reversible computing to achieve fail-safety. In: Proceedings the
Eighth International Symposium on Software Reliability Engineering, pp. 182-191,
November 1997

Carlsson, R., et al.: Core Erlang 1.0.3. Language specification (2004). https://www.
it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

Carothers, C.D.; Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224-253 (1999)

Cassar, 1., Francalanza, A., Mezzina, C.A., Tuosto, E.: Reliability and fault-
tolerance by choreographic design. In: Francalanza, A., Pace, G.J. (eds.) Proceed-
ings Second International Workshop on Pre- and Post-Deployment Verification
Techniques, PrePost@iFM 2017. EPTCS, vol. 254, pp. 69-80 (2017)

Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Concurrent reversible sessions.
In: Meyer, R., Nestmann, U. (eds.) International Conference on Concurrency The-
ory, CONCUR 2017. LIPIcs, vol. 85, pp. 30:1-30:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

Chen, S.-K., Fuchs, W.K., Chung, J.-Y.: Reversible debugging using program
instrumentation. IEEE Trans. Softw. Eng. 27, 715-727 (2001)

Cservenka, M.H., Gliick, R., Haulund, T., Mogensen, T./A.: Data structures and
dynamic memory management in reversible languages. In: Kari, J., Ulidowski, I.
(eds.) RC 2018. LNCS, vol. 11106, pp. 269-285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99498-7_19

Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292-307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

de Vries, F., Pérez, J.A.: Reversible session-based concurrency in Haskell. In: Palka,
M., Myreen, M. (eds.) TFP 2018. LNCS, vol. 11457, pp. 20-45. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-18506-0-2

Dezani-Ciancaglini, M., Giannini, P.: Reversible multiparty sessions with check-
points. In: Gebler, D., Peters, K. (eds.) Proceedings Combined 23rd International
Workshop on Expressiveness in Concurrency and 13th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2016. EPTCS, vol. 222, pp. 60-74 (2016)

https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-030-18506-0_2

56

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

C. A. Mezzina et al.

Elnozahy, E.N., Zwaenepoel, W.: Manetho: transparent rollback-recovery with low
overhead, limited rollback, and fast output commit. IEEE Trans. Comput. 41(5),
526-531 (1992)

Engblom, J.: A review of reverse debugging. In: System, Software, SoC and Silicon
Debug, pp. 1-6. IEEE (2012)

Fink, M.: Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 39(5), 555-566 (1992)

Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Riviere, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75-92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0_6
Francalanza, A., Mezzina, C.A., Tuosto, E.: Towards choreographic-based mon-
itoring. In: Ferreira, C., Lanese, I., Schultz, U., Ulidowski, I. (eds.) Reversible
Computation: Theory and Applications. LNCS, vol. 12070. Springer, Heidelberg
(2020)

Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219-253 (1982)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

Gay, D., Aiken, A.: Language support for regions. In: Proceedings of the ACM SIG-
PLAN 2001 Conference on Programming Language Design and Implementation,
PLDI 2001, pp. 70-80. ACM (2001)

Giachino, E., Lanese, 1., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370-384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26

Giachino, E., Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebr. Methods Program. 88, 99-120 (2017)
Gliick, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative
language. Comput. Softw. 33(3), 108-128 (2016)

Glick, R., Yokoyama, T.: Constructing a binary tree from its traversals by
reversible recursion and iteration. Inf. Process. Lett. 147, 32-37 (2019)

Haulund, T., Mogensen, T./A., Gliick, R.: Implementing reversible object-oriented
language features on reversible machines. In: Phillips, I., Rahaman, H. (eds.) RC
2017. LNCS, vol. 10301, pp. 66-73. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59936-6_5

Hoey, J.: Reversing imperative concurrent programs. Ph.D. thesis, University of
Leicester (2020)

Hoey, J., Lanese, 1., Nishida, N., Ulidowski, I., Vidal, G.: A case study for reversible
computing: reversible debugging. In: Ferreira, C., Lanese, ., Schultz, U., Ulidowski,
I. (eds.) Reversible Computation: Theory and Applications. LNCS, vol. 12070.
Springer, Heidelberg (2020)

Hoey, J., Ulidowski, I.: Reversible imperative parallel programs and debugging.
In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497, pp. 108-127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2_7

Hoey, J., Ulidowski, L., Yuen, S.: Reversing imperative parallel programs. In: Peters,
K., Tini, S. (eds.) Proceedings Combined 24th International Workshop on Expres-
siveness in Concurrency and 14th Workshop on Structural Operational Semantics,
EXPRESS/SOS. EPTCS, vol. 255, pp. 51-66 (2017)

Hoey, J., Ulidowski, 1., Yuen, S.: Reversing parallel programs with blocks and pro-
cedures. In: Pérez, J.A., Tini, S. (eds.) Proceedings Combined 25th International
Workshop on Expressiveness in Concurrency and 15th Workshop on Structural
Operational Semantics, EXPRESS/SOS. EPTCS, vol. 276, pp. 69-86 (2018)

https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-030-21500-2_7

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Software and Reversible Systems: A Survey of Recent Activities 57

Hiittel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1-3:36 (2016)

Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms.
Addison-Wesley, Boston (1998)

Landauer, R.: Irreversibility and heat generated in the computing process. IBM J.
Res. Dev. 5, 183-191 (1961)

Lanese, 1., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order pi. In: Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297-311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6_20

Lanese, 1., Nishida, N., Palacios, A., Vidal, G.: CauDEr tracer website. https://
github.com/mistupv/tracer/

Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr website. https://github.
com/mistupv/cauder

Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247-263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7_16

Lanese, 1., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebr. Methods Program. 100, 71-97 (2018)

Lanese, 1., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message
passing programs. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol.
11535, pp. 167-184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21759-4_10

Leeman Jr., G.B.: A formal approach to undo operations in programming lan-
guages. ACM Trans. Program. Lang. Syst. 8(1), 50-87 (1986)

Letuchy, E.: Erlang at Facebook (2009). http://www.erlang-factory.com/
conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy

Mezzina, C.A., Pérez, J.A.: Reversible semantics in session-based concurrency. In:
Proceedings of the 17th Italian Conference on Theoretical Computer 2016, Volume
1720 of CEUR Workshop Proceedings, pp. 221-226 (2016). CEUR-WS.org
Mezzina, C.A., Pérez, J.A.: Reversible sessions using monitors. In: Proceedings
of the Ninth Workshop on Programming Language Approaches to Concurrency-
and Communication-cEntric Software, PLACES 2016. EPTCS, vol. 211, pp. 56-64
(2016)

Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a
monitors-as-memories approach. In: Vanhoof, W., Pientka, B. (eds.) Proceedings
of the 19th International Symposium on Principles and Practice of Declarative
Programming, pp. 127-138. ACM (2017)

Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh look.
J. Log. Algebr. Methods Program. 90, 2-30 (2017)

Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
26th International Conference on Compiler Construction, pp. 98-108. ACM (2017)
Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp.
259-274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_15
Perumalla, K.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2014)

Philippou, A., Psara, K.: Reversible computation in petri nets. In: Kari, J., Ulid-
owski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84-101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7_6

https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://github.com/mistupv/tracer/
https://github.com/mistupv/tracer/
https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-99498-7_6

58

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

C. A. Mezzina et al.

Philippou, A., Psara, K., Siljak, H.: Controlling reversibility in reversing petri nets
with application to wireless communications. In: Thomsen, M.K., Soeken, M. (eds.)
RC 2019. LNCS, vol. 11497, pp. 238-245. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-21500-2_15

Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Algebraic
Program. 73(1-2), 70-96 (2007)

Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Gliick, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218-232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3_18

Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code
generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.-B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 95-110. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-20860-2_6

Schordan, M., Oppelstrup, T., Jefferson, D., Barnes Jr., P.D., Quinlan, D.J.: Auto-
matic generation of reversible C++ code and its performance in a scalable kinetic
Monte-Carlo application. In: SIGSIM-PADS 2016 (2016)

Schultz, U.P.: Reversible object-oriented programming with region-based memory
management. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp.
322-328. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_22
Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, 1. (eds.) RC 2016. LNCS, vol. 9720, pp. 153-159. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0-10

Siljak, H.: Reversibility in space, time, and computation: the case of underwater
acoustic communications. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol.
11106, pp. 346-352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99498-7_25

Siljak, H.: Reversible computation in wireless communications. In: Ferreira, C.,
Lanese, 1., Schultz, U., Ulidowski, I. (eds.) Reversible Computation: Theory and
Applications. LNCS, vol. 12070. Springer, Heidelberg (2020)

Siljak, H., de Rosny, J., Fink, M.: Reversible hardware for acoustic wave time
reversal. IEEE Commun. Mag. 58(1), 55-61 (2020)

Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive
MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427-1430
(2019)

Siljak, H., Psara, K., Philippou, A.: Reversing Petri nets for resource management
in wireless networks (2019, Manuscript in preparation)

Tofte, M., Talpin, J.-P.: Region-based memory management. Inf. Comput. 132(2),
109-176 (1997)

Ulidowski, I.: IC1405 - Reversible Computation: extending horizons of computing
- Memorandum of Understanding. https://e-services.cost.eu/files/domain_files/
ICT/Action_I1C1405/mou/IC1405-e.pdf

Undo Software: Undodb. Commercial reversible debugger. http://undo-software.
com/

Vassor, M., Stefani, J.-B.: Checkpoint/Rollback vs causally-consistent reversibility.
In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286-303. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_20

Vulov, G., Hou, C., Vuduc, R.W., Fujimoto, R., Quinlan, D.J., Jefferson, D.R.:
The backstroke framework for source level reverse computation applied to parallel
discrete event simulation. In: WSC 2011 (2011)

https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-99498-7_22
https://doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1007/978-3-319-99498-7_25
https://doi.org/10.1007/978-3-319-99498-7_25
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf
http://undo-software.com/
http://undo-software.com/
https://doi.org/10.1007/978-3-319-99498-7_20

Software and Reversible Systems: A Survey of Recent Activities 59

71. Yokoyama, T., Axelsen, H.B., Gliick, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damgard, I., Goldberg, L.A.,
Halld6rsson, M.M., Ingélfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 258-270. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3-22

72. Yokoyama, T., Axelsen, H.B., Gliick, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14-29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1_2

73. Yokoyama, T., Gliick, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation, Proceedings,
pp. 144-153. ACM (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-642-29517-1_2
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Simulation and Design of Quantum
Circuits

Alwin Zulehner and Robert Wille®™)

Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
{alwin.zulehner,robert.wille}@jku.at

Abstract. Currently, there is an ongoing “race” to build the first prac-
tically useful quantum computer that provides substantial speed-ups for
certain problems compared to conventional computers. In addition to
the development of such devices, this also requires the development of
automated tools and methods that provide assistance in the simulation
and design of corresponding applications. Otherwise, a situation might
be reached where we have powerful quantum computers but hardly any
proper means to actually use them. This work provides an overview of
corresponding solutions for the task of quantum circuit simulation, the
task of quantum circuit design, as well as corresponding mapping tasks.
The covered solutions utilise expertise on efficient data structures and
algorithms gained in the design of conventional circuits and systems over
the last decades. While the respective descriptions are kept brief and
mainly convey the general ideas, references to further readings are pro-
vided for a more detailed treatment.

1 Introduction

In quantum computing, so-called quantum bits (i.e., qubits) serve as elementary
information unit, which—in contrast to conventional bits—can not only be in
one of its two orthogonal basis states (denoted |0) and |1) using Dirac notation),
but also in superposition (i.e., a linear combination) of both [1]. Together with
further quantum-physical phenomena such as entanglement (the state of a qubit
might be influenced by the state of other qubits), this allows that the pure
state of a quantum system composed of n qubits may represent a superposition
of 2" basis states and corresponding complex amplitudes—resulting in higher
information density and computational power.

Well-known initial representatives of quantum algorithms following this pow-
erful computation paradigm are Grover’s search algorithm [2] and Shor’s algo-
rithm for integer factorisation in polynomial time [3]—both allowing to sig-
nificantly outperform conventional machines. Recently, the application area of
quantum algorithms has significantly broadened and provides efficient methods
in areas like chemistry, solving systems of linear equations, physics simulations,
machine learning, and many more [4-6].

These developments are also triggered by the fact that quantum computers
are reaching feasibility since “big players” such as IBM, Google, Microsoft, and
© The Author(s) 2020

I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 60-82, 2020.
https://doi.org/10.1007/978-3-030-47361-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_3

Simulation and Design of Quantum Circuits 61

Intel as well as specialised startups such as Rigetti and Ion@ have entered this
research field and are heavily investing in it [7-11]. In 2017, this led to the first
quantum computers that are publicly available through cloud access by IBM.
Since then, their machines have been used by more than 100,000 users, who have
run more than 6.5 million experiments thus far. Recently, IBM followed with the
presentation of their prototype towards a quantum computer for commercial use
(a stand-alone quantum computer to be operated outside of their labs)—the
IBM @ System One presented in January 2019 at CES [12].

Since currently available quantum computers are still limited in the number of
qubits, gate fidelity, as well as coherence time, they are classified as Noisy Inter-
mediate Scale Quantum (NISQ [5]) devices that will only be able to successfully
run some of the quantum algorithms outlined above (due to their limitations). In
fact, unveiling the full potential of quantum computing requires—besides further
reduction of error rates and improvement of coherence time—error-correcting
codes where each logical qubit in a computation is realised by several (up to sev-
eral hundreds) of physical qubits—eventually resulting in fault-tolerant devices
that are capable of conducting very deep computations on a large number of
qubits and with perfect accuracy [13,14].

In addition to these accomplishments and prospects, also the development
of automated tools and methods that provide assistance in the simulation and
design of corresponding applications is required. In this regard, the task of quan-
tum circuit simulation, the task of quantum circuit design, as well as correspond-
ing mapping tasks are important. Since modelling (arbitrary) quantum states
on conventional machines requires exponential overhead and many design prob-
lems are of exponential nature, straightforward solutions for these tasks will not
scale to relevant problem sizes. Hence, clever data-structures and algorithms are
required that allow for efficient solutions (at least) in certain cases. Otherwise, we
are approaching a situation where we might have powerful quantum computers
but hardly any proper means to actually use them.

This work provides an overview on solutions which have been developed
for these tasks and utilise expertise on efficient data structures and algorithms
gained in the design automation community over the last decades for conven-
tional circuits and systems. To this end, the simulation of quantum circuits,
their design, as well as technology mapping (compiling) are covered and dis-
cussed from a design automation perspective. The reviewed solutions often yield
improvements of several orders of magnitude compared to the current state of
the art (regarding runtime and corresponding design objectives)—showing the
tremendous available potential.

The overview is thereby structured as follows: First, Sect. 2 provides a back-
ground on quantum computing. Afterwards, Sect. 3, Sect.4, and Sect.5 sketch
the developed methods for the considered design tasks, i.e., quantum-circuit
simulation, the design of Boolean components occurring in quantum algorithms,
as well as mapping quantum circuits to real hardware (including references to
further reading for a more detailed treatment). Finally, Sect.6 concludes the

paper.

62 A. Zulehner and R. Wille

2 Background on Quantum Computing

Quantum computations operate on qubits—two-level quantum systems that can
be combined into n-qubit systems. The state of a qubit is given by a linear
combination (i.e., a superposition) of these basis states |¢) = ag - |0) + oy - 1),
where the complex amplitudes oo and «a; satisfy agaf + a1af = 1.

The joint state of n qubits (also denoted as the system’s wave function)
is contained in the tensor product of n two-dimensional Hilbert spaces—the 2"-
dimensional Hilbert space spanned by the basis |0}, ..., |2" — 1). Hence, a super-
position of all computational basis states may need up to 2" complex-valued
parameters—appearing as the amplitudes of the unit-norm state vector.

Definition 1. Consider a quantum system composed of n qubits. Then, all pos-
sible states of the system are of the form

lp) = Z Qg - |y, where Z azay =1 and a, € C.
z€{0,1}" zef{0,1}n

The state |@) can be also represented by a column vector p = [p;] with 0 < i < 2™
and @; = o, where nat(z) = i.

Quantum states cannot be directly observed. To extract (partial) informa-
tion from quantum states in the form of conventional bits, one performs a mea-
surement operation. In contrast to conventional computers, this measurement
modifies the quantum state. In the process of measurement, the quantum state
non-deterministically collapses to one of these basis states where the probability
of each outcome reflects the proximity to the respective basis state. More pre-
cisely, measuring a one-qubit state ag - |0) + a3 - |1) (with agaf + anaf = 1)
changes the state to |0) or |1) with probabilities o and agaf, respectively.

Example 1. Consider a quantum system composed of n = 3 qubits qo, q1, and
g2 that assumes the state @) = |qoqig2) = % -010) + 5 - [100) — % -1110). Then,
the state vector of the system is given by

T
1 1 1
= 070777077707_770 .
7 2720V }
Measuring the system yields basis states |010), |100), and |110) with probabilities
i, i, and %, respectively. Measuring only qubit qo collapses qo into basis state
|0) and |1) with probabilities i and i + % = %, respectively—changing the state
of the system either to |¢’) =1010) or to |¢") = % - 1100) — \/g |110).

Aside from measurements, quantum computers apply quantum operations
to a fixed set of qubits, altering the joint state of the qubits in a reversible
fashion. These operations are described by unitary matrices of size 2™ x 2".
Simple quantum operations (also denoted gates) are defined over one or two
qubits only. Mathematically speaking, the resulting 2" x 2" matrix can then

Simulation and Design of Quantum Circuits 63

be computed as the Kronecker product of the matrix representing the gate’s
operation and a large identity matrix.

Commonly used quantum gates for generating a superposition (the
Hadamard operation H), inverting a quantum state (X), and applying phase
shifts by —1 (Z), are respectively defined as

a1 e o1l ,_J1 0
H_ﬂ[ll NOT=X= |, [.Z2=|, 4|

Two-qubit gates can couple pairs of qubits and are represented by 4 x 4
unitary matrices. By applying arbitrary two-qubit gates to different pairs of
qubits, it is possible to effect any 2"-dimensional unitary, i.e., attain universal
quantum computation (each quantum functionality can be realised with those
gates). It is common to allow a variety of one-qubit gates but limit two-qubit
gates, e.g., to CNOT gates:

1000
0100
CNOT = 0001
0010

The two-qubit CNOT gate can also be defined by its action |z y) — |z = @ y),
where @ represents the ezclusive-or (XOR) operation, the unmodified qubit z is
called control, and the other bit is called target.

Quantum circuits [1] are used as proper description means for a finite
sequence of “small” gates that cumulatively enact some unitary operator U and,
given an initial state |p) (which is usually the basis state |0...0)), produce a
final state vector |¢') = |[Uy). Hence, a quantum gate does not represent a phys-
ical entity (like in the conventional realm), rather an operation that is applied
to a set of qubits.

Definition 2. In quantum circuits, the qubits are vertically aligned in a circuit
diagram, and the time axis (read from left to right) is represented by a horizontal
line for each qubit. Boxzes on the time axis of a qubit (or enclosing several qubits)
indicate gates to be applied.! Note that measurement also counts as quantum
operation in this context. Control qubits are indicated by e and are connected to
the controlled operations by a single line.

Example 2. Figure 1 shows a quantum circuit. The circuit contains two qubits,
qo and q1, which are both initialised with basis state |0). First, a Hadamard
operation is applied to qubit qo, which is represented by a box labelled H. Then,
a CNOT operation is conducted, where qqy is the control qubit (denoted by e)
and qq 1s the target qubit (denoted by @). Eventually, qubit qy is measured as
indicated by the meter symbol.

When two gates are applied on the same qubits in sequence, the result-
ing operation is represented by the matrix product of gate matrices. When an

! Note that an X gate may also be denoted by @.

64 A. Zulehner and R. Wille

a0) = o)

lq1) = 10) 4

'

Fig. 1. Quantum circuit.

m-qubit gate A and an n-qubit gate B are applied in parallel (on different
qubits), the resulting operation is represented by the Kronecker product A ®@ B
of two matrices.

Example 3. Consider again the quantum circuit shown in Fig. 1. The resulting
state |¢') (before measurement) is determined by multiplying the respective uni-
tary matrices to the state vector. Since the Hadamard gate shall only affect qo,
the Kronecker product of H and the identity matriz I is formed, i.e.,

101 0
111 10] 1 {010 1
H®I2_\/§[1—1] [01}_\/5 10-1 0
01 0 —1
Then, |¢') is determined by
1000 101 0] [1
Wy 0100 1 jo1 o 1f joj 10
71 looo1| "z [10-1 0| |o] =z |0
0010 010 —1] [0 1

As can be seen, the two gates entangle the qubits gy and ¢y —generating a so-called
Bell state |¢') = \%(|OO> +|11)). Measuring qubit qo collapses its superposition
into one of the two basis states. Since qy and q1 are entangled, g1 collapses to
the same basis state.

3 Quantum-Circuit Simulation

Since physical realisations of quantum computers are limited in their availability,
their number of qubits, their gate fidelity, and coherence time, quantum-circuit
simulators running on conventional machines are required for many tasks. From
a user’s perspective, possible applications (or at least their prototypes) for quan-
tum computers are usually first evaluated through simulators that serve as tem-
porary substitute. Moreover, simulation can be adapted to circuit equivalence-
checking and other functional verification tasks useful for circuit designers [15—
17]. Simulation also plays an important role for designers of quantum systems,
e.g., to foster the development of error-correcting codes. Besides that, the urgent
need of verifying quantum hardware might be conducted (at least some of the
required verification tasks) by comparing runs on these machines to simulation

Simulation and Design of Quantum Circuits 65

outcome [18,19]. Ultimately, quantum-circuit simulation capabilities provide an
estimate on quantum supremacy [18] as well as to identify classes of circuits
where no quantum speed-up is reachable (i.e., in case these circuits can be sim-
ulated efficiently on a conventional machine). In all these scenarios, simulators
may give additional insights since, e.g., the precise amplitudes of a quantum
state are explicitly determined (while they are not observable in a real quantum
computer).

However, quantum-circuit simulation in general constitutes a computation-
ally very complex task since each quantum gate and each quantum state is
eventually represented by a unitary matrix or state vector that grows exponen-
tially with the number of qubits. In fact, each quantum operation applied to a
quantum state composed of n qubits requires multiplying a 2" x 2"-dimensional
matrix with a 2"-dimensional vector.? This constitutes a serious bottleneck,
which prevents the simulation of many quantum applications and, by this, the
evaluation of their potential. In fact, the array-like representation of the state
vector in current state-of-the-art simulators limits the number of qubits to be
simulated to approximately 30 on a modern computer (and to 50 when consid-
ering supercomputers with petabytes of distributed memory) [20].

This section presents a complementary simulation approach that aims for
overcoming this memory bottleneck (based on [21]). To this end, dedicated Deci-
sion Diagrams (DDs) are developed, which reduce the memory requirements by
representing redundancies in the occurring vectors and matrices by means of
shared nodes. This allows gaining significant improvements compared to straight-
forward realisations (relying on array-like representations) in many cases—often
reducing the simulation time from several hours or days to seconds or minutes.?

3.1 General Idea

The general idea of the presented complementary approach is to exploit redun-
dancies in the 2"-dimensional vectors representing quantum states. To this end,
decision diagram techniques (similar to those from the conventional realm) are
employed. More precisely, a given state vector with entries being complex num-
bers is decomposed into sub-vectors. To this end, consider a quantum system
with qubits qo, q1, - . - ¢n—1, whereby without loss of generality ¢y represents the
most significant qubit. Then, the first 2"~! entries of the corresponding state
vector represent the amplitudes for the basis states with ¢o set to |0); the other
entries represent the amplitudes for states with go set to |1). This decomposition
is represented in a decision diagram structure by a node labelled gy and two
successors leading to nodes representing the sub-vectors. The sub-vectors are

2 Note that different simulation approaches exist that do not compute the complete
final state vector, and that it is usually not necessary to represent the exponentially
large matrix explicitly. However, this does not decrease the exponential complexity.

3 Note that previous DD-based simulators (e.g., QuIDDPro [22]) did not get estab-
lished due to their limited applicability (i.e., they provide improvements in rather
few cases).

66 A. Zulehner and R. Wille

recursively decomposed further until vectors of size 1 (i.e., a complex number)
result. This eventually represents the amplitude «; for the basis state and is
given by a terminal node. During these decompositions, equivalent sub-vectors
are represented by the same node—allowing for sharing and, hence, a reduction
of the memory complexity. An example illustrates the idea.

Example 4. Consider a quantum system with n = 3 qubits situated in a state
given by the following vector:

1 1 1 17

= 0,0,2,0,2,07 \/TO
Applying the decompositions described above yields a decision diagram as shown
in Fig. 2a. The left (right) outgoing edge of each node labelled q; points to a node
representing the sub-vector with all amplitudes for the basis states with q; set to
|0) (11)). Following a path from the root to the terminal node yields the respective
entry. For example, following the path highlighted bold in Fig. 2a provides the
amplitude for the basis state with qo = |1) (right edge), ¢ = |1) (right edge),
and g2 = |0) (left edge), i.e., —% which is exactly the amplitude for basis state

|110) (seventh entry in the vector). Since some sub-vectors are equal (e.g., [, O]T
represented by the left node labelled g), sharing is possible.

However, even more sharing is possible since sub-vectors often differ in a
common factor only. This is additionally exploited in the proposed representation
by denoting common factors of amplitudes as weights attached to the edges of the
decision diagram. Then, the value of an amplitude for a basis state is determined
by following the path from the root to the terminal, and additionally multiplying
the weights of the edges along this path. Again, an example illustrates the idea.

Example 4 (continued). As can be seen, the sub-vectors represented by the

1
27

In the decision diagram shown in Fig. 2b, both sub-trees are merged. This
s possible since the corresponding value of the amplitudes is now determined
not by the terminals, but the weights on the respective paths. As an example,
consider again the path highlighted bold representing the amplitude for the basis
state |110). Since this path includes the weights %, 1, =2, and 1, an amplitude

Of% 1-(=v2) 1= —% results.

T
nodes labelled g (i.e., [O]T and [—%,0}) differ in a common factor only.

Note that, of course, various possibilities exist to factorise an amplitude.
Hence, a normalisation is applied which assumes the left edge to inherit a weight
of 1. More precisely, the weights w; and w, of the left and right edge are both
divided by w; and this common factor is propagated upwards to the parents of
the node. If w; = 0, the node is normalised by propagating w, upwards to the
parents of the node.

The idea used for representing state vectors by means of DDs can be extended
to also represent unitary matrices. Here, each DD-node has four successors that

Simulation and Design of Quantum Circuits 67

(a) Without edge weights. (b) With edge weights.

Fig. 2. DD-based representation of state vectors.

represent the four quadrants of the sub-matrix. Having description means for
state vectors and unitary matrices (describing the functionality of gates) it is
left to provide algorithms for matrix-vector multiplication as well as for mea-
surement. Fortunately, all these operations can be directly employed on the DDs
and without the need of explicitly representing the underlying exponentially
large entities. For further details we refer to [21].

3.2 Resulting Approaches

Following the general idea outlined above leads to a simulation approach that
scales polynomially with the size of the DD representing the state vector. Since
the DD often remains rather compact, significant improvements can be observed
compared to straightforward Schrodinger-style simulators as well as to previous
DD-based simulators in many cases—even though these techniques have been
heavily optimised over the last decade and utilise multiple CPU-cores to reduce
simulation time (while the proposed approach utilises a single core only). More
precisely, the approach proposed in [21] is capable of (1) simulating quantum
computations for more qubits than before, (2) in significantly less run-time, and
(3) on a regular Desktop machine.

For further details on the basic ideas and required algorithms of the DD-
based simulator we refer to [21,23]. Moreover, [21] shows that for many cases,
the simulation time can be reduced from several days to just a few seconds
or minutes. This initial version of a DD-based simulator did not only lead to
a significant improvement compared to the current state of the art, but has
also received significant acknowledgement by the community—triggering further
optimisations as done for array-based Schrodinger-style simulators for more than
a decade.

Using DDs for representing occurring vectors and matrices, the complexity of
multiplications depends on the size (i.e, the number of nodes) of the respective
operands in DD-based simulation. Together with the fact that the DDs for the
usually considered gate matrices are linear in size (with respect to the number

68 A. Zulehner and R. Wille

of qubits), this implies that it might be beneficial to combine gate operations
before applying them to the state vector. In [24], strategies are described for com-
bining operations that allow improving the initial version of the proposed DD-
based simulator significantly—up to several orders of magnitude when exploiting
application-specific knowledge.

Enormous improvements compared to the state of the art as described above
obviously require an efficient implementation of the underlying DD-package—
especially for handling the occurring complex numbers. By providing such
techniques—in joint consideration of implementation techniques for decision dia-
grams in the conventional domain developed decades ago—the development of a
powerful DD-package for the quantum domain was leveraged in [25]. The eval-
uation conducted in [25] showed that complex numbers can be handled much
more efficiently than in previous implementations and that decision diagrams
for established quantum functionality is constructed in significantly less run-
time (up to several orders of magnitude). Presumably, this performance boost
can be easily passed to DD-based methods for other design automation tasks like
synthesis [26,27] or verification [15-17], just by incorporating this new package.

Since handling complex numbers is crucial in DDs for quantum computa-
tion (especially when occurring as edge weights), the resulting trade-off between
accuracy and compactness has been thoroughly discussed and evaluated in [28].
Since this trade-off requires fine-tuning of parameters on a case-by-case basis
and might still yield useless results, an algebraic decision diagram is proposed
in [28] to overcome this issue. The proposed algebraic representation guarantees
perfect accuracy while remaining compact (all redundancies that are actually
present are detected)—with moderate overhead in many cases.

All the endeavours listed above have been implemented in C/C++ and
made publicly available at http://iic.jku.at/eda/research/quantum_simulation.
Besides that, a stand-alone version of the developed DD-package is available
at http://iic.jku.at/eda/research/quantum_dd. Together with the significant
improvements gained compared to the state of the art, this did not only result
in acknowledgement inside the academic community, but also received interest
from big players in the field. More precisely, the developed simulation approach
has been acknowledged with a Google Research Faculty Award and has recently
been officially integrated into IBM’s SDK Qiskit. This further emphasises the
potential of DD-based design methods in the quantum domain—hopefully lead-
ing to as powerful DD-based methods as taken for granted in the conventional
domain today. Questions on whether hybrid approaches are possible or whether
concurrent approaches as well as approximation schemes can be exploited remain
open issues for future work. First results towards these questions are provided
in [29,30].

4 Design of Boolean Components for Quantum Circuits

Estimating resource requirements of quantum algorithms (i.e., the number of
required qubits and run-time on quantum computers), their simulation, or their

http://iic.jku.at/eda/research/quantum_simulation
http://iic.jku.at/eda/research/quantum_dd

Simulation and Design of Quantum Circuits 69

execution on real hardware requires compiling quantum algorithms containing
high-level operations (e.g., modular exponentiation in Shor’s algorithm) into
quantum circuits composed of elementary gates available on the considered tar-
get architecture. Thereby, quantum circuits composed of gates with multiple
control qubits (multiple-controlled qubit gates) are usually considered since they
(1) describe a rather low-level but still technology independent description of the
algorithm, (2) can be directly handled by most simulators, and (3) are usually
utilised as input for technology mapping algorithms (which will be covered in
the next section).

For the “quantum part” of an algorithm, a decomposition into multiple-
controlled qubit gates is usually inherently given by the algorithm, by using
common building blocks like a Quantum Fourier Transform (QFT [31]), or
determined by hand. However, this is different for large Boolean components
that are contained in many quantum algorithms, e.g., the modular exponentia-
tion in Shor’s algorithm for integer factorisation [3] or a Boolean description of
the database that is queried in Grover’s algorithm [2].

Even though the functionality of the Boolean components can be described
in the conventional domain, corresponding design methods cannot be utilised
since the inherent reversibility of quantum computations has to be considered.
In fact, determining circuits composed of reversible gates only, requires dedi-
cated reversible-circuit synthesis approaches. To manage the complex function-
ality of Boolean components, they are usually split into several (non-)reversible
parts [32]. However, these resulting non-reversible sub-functions have to be
embedded into reversible ones to ensure the desired unique mapping from inputs
to outputs—a task that can either be conducted explicitly or implicitly. This
embedding process requires adding several so-called ancillary qubits, which shall
be kept as small as possible since qubits are a highly limited resource. Besides
that, T-count and T-depth of the synthesised reversible circuits serve as cost
metric to compare different approaches that yield circuits with an equal (or at
least a close-to equal) number of qubits.

This section focuses on the functional design flow for synthesising Boolean
components (where the reversible function resulting from an explicit embed-
ding step is passed to synthesis algorithm) since it yields circuits with a mod-
erate number of qubits (often the minimum). Investigating this problem from
a design automation perspective allows developing efficient methods utilising
the decision diagrams introduced in the context of simulation (cf. Sect.3) [33—
35]. However, there is even more (yet) unused potential that allows synthesis-
ing cheaper circuits, yields better scalability, and even reduces the number of
required qubits below what is currently considered as the minimum (for certain
cases)—significantly improving the current state of the art.

4.1 One-Pass Design of Reversible Circuits

Despite using efficient description means like DDs for functional synthesis, the
currently established design flow still suffers from the need to conduct embedding

70 A. Zulehner and R. Wille

and actual synthesis separately—a major drawback that prohibits the exploita-
tion of a huge degree of freedom since embedding is not necessarily conducted
in a fashion, which suits the following synthesis step. To overcome this draw-
back, the work [36,37] introduced a completely new design flow that combines
functional synthesis and the embedding to a one-pass design flow. This generic
flow is not bound to a certain functional synthesis approach and—for the first
time—exploits the available degree of freedom to significantly increase scalabil-
ity and to reduce the costs of the synthesised circuit while keeping the number
of required qubits at the minimum.

In the established flow, an individual step is required that embeds the
non-reversible function to be synthesised into a reversible one. Thereby, k =
[logy p(p1)] further so-called garbage outputs are added (assuming that the
most frequent output pattern p; occurs p(p;) times) and the additional rows
and columns of the truth table are assigned such that a unique mapping from
inputs and outputs results [33]. Passing a non-reversible function directly to a
functional reversible-circuit synthesis approach will fail, since several input com-
binations shall be mapped to the same output combination. This can be avoided
in two ways:

— Following the ezxact solution guarantees to result in a circuit requiring the
minimum number of qubits. The general idea is to add k further variables
to the function description (e.g., a DD), but keep all additional entries in
the function don’t care—allowing to exploit the available degree of freedom
of their assignment (which does not matter as long as a reversible func-
tion results). Having these additional variables allows conducting synthesis
(almost) as usual. During synthesis, the don’t cares are inherently assigned
(1) in a way that suits best to the synthesis algorithm, and (2) such that a
reversible function results (since only reversible gates are added to the cir-
cuit).

— Following the heuristic solution does not necessarily result in a circuit requir-

ing the minimum number of qubits, but still bounded. The general idea is
to conduct synthesis without embedding. Whenever an error is encountered
during synthesis (i.e., synthesis cannot proceed due to the missing embedding
step), the function to be synthesised is modified such that the algorithms can
continue. Since this obviously results in a circuit different to the intended
one, the modifications of the function are stored on so-called buffer-lines (at
most one buffer line is required for each variable of the function). After syn-
thesis finishes, these modifications are reverted by a single CNOT gate for
each buffer line.
The advantage of the heuristic approach is that no additional variables are
added to the function description (as done in the usual functional design
flow and the exact one-pass design). Hence, this heuristic approach is even
more scalable that the exact solution since the function description remains
smaller.

Example 5. Consider a function f : B" — IB" with n inputs and m outputs
and assume that the most frequent output pattern occurs p(p1) times. Then,

Simulation and Design of Quantum Circuits 71

following the exact solution, the f is enriched by k = [logy pu(p1)] further outputs
to make all output patterns distinguishable. Hence, the synthesis is conducted on
a function with max(n,m + k) variables—like in the established design flow.
However, the additional entries in the truth table remain don’t care initially and
are assigned 0 or 1 during synthesis as suitable.

Instead, the heuristic solution conducts synthesis directly on f and, hence
max(n, m) variables. The modifications made to f during synthesis require at
most min(n, m) buffer lines—resulting in a quantum circuit with at most n+m
qubits.

The evaluations provided in [36] show the advantages of the one-pass design
flow (which can be also applied to other functional synthesis approaches) com-
pared to the conventional two-stage design flow. Besides substantial speedups
compared to the state-of-the-art design flow, the T-count is reduced by sev-
eral orders of magnitude in most cases—clearly outperforming the currently
established functional design flow for reversible circuits where embedding and
synthesis are conducted separately. For further details, we refer to [36].

4.2 Exploiting Coding Techniques

The proposed one-pass design flow can be enriched with the idea of exploiting
coding techniques in order to reduce the number of variables that have to be
considered during synthesis [38].* This idea is based on the fact, that the output
patterns in non-reversible functions are not uniformly distributed—leading to
a situation where some patterns require many additional outputs while others
require only a few. Hence, several garbage outputs are required only for cer-
tain output patters. Avoiding this overhead provides significant potential for
improving synthesis. In fact, employing a variable-length code allows realising
any non-reversible function with a single ancillary qubit only—allowing conduct-
ing synthesis on significantly fewer variables than before [39]. The key idea is
to represent frequently occurring output patterns (which require more garbage
outputs) with a smaller number of variables. Vice versa, less frequently occur-
ring patterns (which require less garbage outputs) are represented with a larger
number of variables. In other words, coding techniques are utilised in order to
encode the desired function with a variable-length code in which the length of
the code word for an output pattern p; is indirectly proportional to the number
1(p;) of times the pattern occurs. An example illustrates that.

Example 6. Consider the Boolean function shown in Table 1a and its distri-
bution of the output patterns as shown in Table 1b. Following, e.g., the exact
one-pass design flow outlined above results in a function with 5 inputs/outputs
since the most frequent output pattern p1 = 010 occurs four times and, thus,
requires two garbage outputs. However, using a variable-length code as shown in

4 Note that exploiting coding techniques is also possible in the original design flow
composed of an embedding and a synthesis step.

72 A. Zulehner and R. Wille

Table 1. Variable-length encoding for one-pass design.

(a) Orig. function (b) Output patterns (c) Encoding (d) Encoded function

To T1 T2|Yo Y1 Y2 i| pi |p(pi) i| pi |c(pi) To T1 T2|Yo Y1 Y2
00 0|0 1 0 11010 4 1(010| 0 - - 00 0|0 - -
00 1|01 0 2(100 2 2110010 - 00 1|0 - -
01 0|1 0O 3(001 1 3001|110 01 0|1 0 -
01 1|1 00 41011 1 41011111 01 1|1 0 -
1 0 0|0 1 1 5000 0 1 0 0|1 11
1 0 1/0 10 6(101 0 1 0 110 - -
1 1 0|/0 10 71110 0 1 1 0/0 - -
1 1 1|0 01 8111 0 1 1 1]1 10

Table 1¢c allows reducing the number of required qubits. There, the most frequent
output pattern is encoded by c(p1) = 0. Since this pattern requires two garbage
outputs, in total 1 +2 = 3 outputs are required.® The second most frequent output
pattern ps = 100 is encoded by c(p2) = 10. Since this pattern occurs only twice,
one garbage output is required—again resulting in 2 + 1 = 3 outputs. The pat-
terns ps and py are encoded by c(ps) = 110 and c(ps) = 111, respectively. Here,
no garbage outputs are required. The remaining patterns (ps to ps) do not have
to be encoded, since they never occur. Overall, this yields an (encoded) reversible
function which embeds f as shown in Table 1d and is composed of a total of 3
inputs/outputs only—two qubits fewer than without using coding.

The code is computed by generating a Pseudo-Huffman tree: Starting with
terminal nodes—one for each output pattern with p(p;) > 0 (no code has to be
assigned to output patterns that do not occur)—with attached weights repre-
senting the number of respectively required garbage outputs (i.e., [logy p(p:)]),
the Pseudo-Huffman tree is then generated by repeatedly combining the two
nodes a and b with the smallest attached weights w(a) and w(b) to a new node ¢
with weight w(c) = max(w(a),w(b)) + 1 until a single node results. The weight
of such a node w(c) then gives the number of outputs required to represent
all combined output patterns uniquely, i.e., one additional variable is required
(aside from max(w(a),w(d))) to distinguish between a and b.

Example 7. Consider the distribution of the output patterns as shown in
Table 1b. Determining the Pseudo-Huffman code starts with the nodes vy, va, v3,
and vy—one for each output pattern p; with u(p;) > 0. These nodes are shown
at the bottom of Fig. 3. The weights are drawn inside the respective nodes. The
weight of node vy is w1 = k1 = 2, because output pattern p; = 010 requires two
garbage outputs. The weights of the nodes representing pa, ps, and py are 1, 0,
and 0, respectively. In a first step, the nodes vy and vy (both have weight 0) are
combined. The resulting node vs has a weight of ws = max(0,0) + 1 = 1. Next,
the two nodes with weight 1 (i.e., vy and vs) are combined. The resulting node

5 The garbage outputs are represented by a dash, since they represent don’t care values
(as long as it is ensured that the resulting function is reversible).

Simulation and Design of Quantum Circuits 73

p1 =010 p2 =100 p3 =001 ps =011

Fig. 3. Huffman tree for the function from Table 1a.

vg has a weight of wg = max(1,1) + 1 = 2. Finally, the two remaining nodes
are combined to a new node vy with weight w; = max(2,2) + 1 = 3—eventually
resulting in the tree shown in Fig. 3.

After generating the Pseudo-Huffman tree, the overall number of variables
that are required to realise the encoded function is given by the weight of the
root node of the tree. The resulting code is inherently given by the structure of
the Pseudo-Huffman tree. In fact, each path from the root node to a leaf node
represents a code word, where taking the left (right) edge implies a 0 (1).

Example 7 (continued). Since the root node has a weight of 3, three variables
are required to realise the encoded function (without encoding, max(3,3+2) =5
variables would be required). The path from the root node to the leaf node vy
(which represents output pattern ps) traverses the right edge of the root node vy
as well as the left edge of vg. Consequently, c(p2) = 10 encodes p; = 100. Since vq
has weight wo = 1, one output is used as garbage output in this case. Accordingly,
code words for all other output patterns are determined—eventually resulting in
the code shown in Table 1c. Dashes again represent don’t cares.

Following this idea, at most n + 1 qubits—instead of max(n,m +
[log, 11(p1)])—are required to embed any non-reversible function with n inputs.
Concerning the design of Boolean components contained in quantum algo-
rithms, the encoded outputs can be handled (1) locally where decoders are
required for each sub-component that again increase the number of qubits to
max(n, m + [logy u(p1)]), or (2) globally where subsequent components that are
capable of handling encoded inputs allow remaining at n + 1 qubits.

Incorporating the idea of utilising coding techniques into the one-pass design
flow introduced above unveils even more potential. In fact, it allows exploiting an
even larger degree of freedom since the values of the garbage outputs are basically
don’t care (except the restriction that a reversible function has to be realised)—
while still guaranteeing to synthesise a circuit that uses the minimum number
of qubits (or even below that minimum if no decoding is required afterwards).
This degree of freedom allows for synthesising circuits with significantly smaller
T-count [38].

74 A. Zulehner and R. Wille

5 Mapping Quantum Circuits to NISQ Devices

In order to use currently developed Noisy Intermediate-Scale Quantum (NISQ)
devices, the quantum algorithm to be executed has to be properly mapped to
these devices such that their underlying physical constraints are satisfied (this
is one part of the overall compilation task). To this end, it is assumed that
the considered quantum algorithm has already been translated into a quantum
circuit composed of multiple-controlled one-qubit gates. For the “quantum part”
of the algorithm, this is often inherently given (e.g., by using components for
which such translations are known) or done by hand. For the “Boolean part”
of the algorithm, a gate-level description is often gained by reversible circuit
synthesis, as discussed in the previous section.

Then, mapping quantum circuits to NISQ devices requires the consideration
of two aspects. First, the occurring gates have to be decomposed into elementary
operations provided by the target device—usually a single two-qubit gate as well
as a broader variety of one-qubit gates to gain a universal gate set. Second, the
logical qubits of the quantum circuit have to be mapped to the physical qubits
of the target device while satisfying the so-called coupling-constraints given by
the respective device. Since not all physical qubits are coupled directly with each
other (due to missing physical connections), two-qubit gates can only be applied
to selected pairs of physical qubits. Since it is usually not possible to determine
a mapping such that all coupling-constraints are satisfied throughout the whole
circuit, the mapping has to change dynamically. This is achieved by inserting
additional gates, e.g., realising SWAP operations, in order to “move” the logical
qubits to other physical ones.

While there exist several methods to address the first issue, i.e., how to
efficiently decompose multiple-controlled one-qubit gates into elementary oper-
ations (see [40,41]), there is only few work on how to efficiently satisfy the
coupling-constraints of real devices. Although there are similarities with recent
work on nearest-neighbour optimisation of quantum circuits as proposed in [42—
45], they are not applicable since simplistic architectures with 1-dimensional or
2-dimensional layouts are assumed which have a fixed coupling (all adjacent
qubits are coupled) that does not allow modelling all current NISQ devices.

This section covers the mapping of the logical qubit of a quantum circuit
to the physical ones of a NISQ device from a design automation perspective.
Thereby, IBM @ devices are considered as representatives for NISQ devices to
discuss the occurring challenges in detail, as well as to describe the proposed
solutions. IBM’s approach has been chosen, since it provides the first publicly
available quantum devices (available since 2017) that can be accessed by everyone
(not only academics) through cloud access. Moreover, their coupling-constraints
are described more flexibly than those of other companies—allowing to map
their coupling-constraints to IBM’s model as well.

Simulation and Design of Quantum Circuits 75

Fig. 4. IBM Q 16 Rueschlikon V1.0.0 (IBM QX3) [46].

5.1 Considered Problem

While one-qubit gates can be applied without limitations in IBM’s devices, the
physical architecture of the respectively developed quantum computers—usually
a linear or rectangular arrays of qubits—limits two-qubit gates to neighbouring
qubits that are connected by a superconducting bus resonator. In IBM’s devices
that use cross-resonance interaction as the basis for CNOT gates, the frequencies
of the qubits also determine the direction of the gate (i.e., determining which
qubit is the control and which is the target). The possible CNOT gates are
captured by so-called coupling maps [46], giving a very flexible description means
to specify the coupling-constraints of a certain quantum device. Figure 4 shows
the coupling map of the IBM QX3 device. Physical qubits are visualised with
nodes and a directed edge from physical qubit (); to physical qubit (); indicates
that a CNOT with control qubit @); and target qubit Q); can be applied.

To satisfy the coupling-constraints, one has to map the n logical qubits
qo,q1,---,qn—1 of the decomposed circuit to the m > n physical qubits
Qo,Q1,...,Qm_1 of the considered quantum device such that all coupling-
constraints given by the corresponding coupling map are satisfied. Unfortunately,
it is usually not possible to find a mapping such that the coupling-constraints are
satisfied throughout the whole circuit (this is already impossible if the number of
other qubits, a logical qubit interacts with, is larger than the maximal degree of
the coupling map). More precisely, the following problems—using CNOT (g, q+)
to describe a CNOT gate with control qubit ¢g. and target qubit ¢;, and CM to
describe the edges of the device’s coupling map—may occur:

— A CNOT gate CNOT(qc, q:) shall be applied while g. and ¢ are mapped
to physical qubits @Q; and Q;, respectively, and (Q;,Q;) ¢ CM as well as
Q). Q) & CM.

— A CNOT gate CNOT(qc, q:) shall be applied while g. and ¢; are mapped to
physical qubits Q; and @Q;, respectively, and (Q;, Q,) ¢ CM while (Q,,Q;) €
CM.

To overcome these problems, one strategy is to insert additional gates into
the circuit to be mapped. More precisely, to overcome the first issue, one can
insert so-called SWAP operations into the circuit that exchange of the states of
two physical qubits and, by this, “move” around the logical ones—changing the
mapping dynamically.

76 A. Zulehner and R. Wille

Example 8. Figure5 shows the effect of a SWAP gate as well as its decom-
position into elementary gates supported by the IBM @ devices. Assume that
the logical qubits qo and q1 are initially mapped to the physical ones Qg and
Q1, respectively (indicated by —). Then, by applying a SWAP gate, the states of
Qo and Q1 are exchanged—eventually yielding a mapping where qo and q are

mapped to Q1 and Qq, respectively.
q0 —~ Qo I q }
q — Q1 qo H

Fig. 5. Decomposition of a SWAP operation.

Fany
%
FanY
'

[any
"y
¢

The second issue may also be solved by inserting SWAP operations. However,
it is cheaper (fewer overhead is generated) to insert four Hadamard operations
(labelled by H) as they switch the direction of the CNOT gate (i.e., they change
the target and the control qubit). This can also be observed in Fig.5, where H
gates switch the direction of the middle CNOT in order to satisfy all coupling-
constraints given by the coupling map (assuming that only CNOTs with control
qubit @1 and target qubit @)y are possible).

However, inserting additional gates in order to satisfy the coupling-
constraints drastically increases the number of operations—a significant draw-
back, which affects the fidelity of the quantum circuit since each gate has a
certain error rate. Since each SWAP operation is composed of 7 elementary
gates (cf. Fig.5), particularly their number shall be kept as small as possible.
Accordingly, this raises the question of how to derive a proper mapping of logi-
cal qubits to physical qubits while, at the same time, minimising the number of
added SWAP and H operations—an NP-complete problem as recently proven
in [47,48].

Example 9. Consider the quantum circuit composed of 5 CNOT gates shown in
Fig. 6a and assume that the logical qubits qo, q1, q2, q3, q4, and qs are respectively
mapped to the physical qubits Qop, Q1, @2, @3, Q14, and Q15 of IBM QX3
shown in Fig. /] on Page 16. The first gate can be directly applied, because the
coupling-constraints are satisfied. For the second gate, the direction has to be
changed because a CNOT with control qubit Qg and target Q1 is valid, but not vice
versa. This can be accomplished by inserting Hadamard gates as shown in Fig. 6b.
For the third gate, the mapping has to change. To this end, SWAP operations
SWAP(Q1,Q2) and SWAP(Q2,Qs) are inserted to move logical qubit g1 to
become a neighbour of logical qubit q4 (see Fig. 6b). Afterwards, q1 and g4 are
mapped to the physical qubits Q3 and Q14, respectively, which allows applying the
desired CNOT gate. Following this procedure for the remaining qubits eventually
results in the circuit shown in Fig. 6b. The mapped circuit is composed of 51
elementary operations and has a depth of 36 when using a naive algorithm—a
significant overhead that motivates research on improved approaches.

Simulation and Design of Quantum Circuits 77

|
@ ; — @ > Q [HKPH f x a2
q2 ﬁ‘ ‘ q2 q2 — QQ } = 113 lH IQS_/ q3
| |
s D OB 62 D H.\ I 3 i
44 : : g4 qa — Qua T q4 qa
B — 1 @— O q5s = Q15 qs
go 91192 93194 go g1 g2 g3 g4
| |
(a) Original circuit. (b) Naive strategy.

Fig. 6. Mapping of a quantum circuit to IBM QX3.

5.2 Existing Approaches and Results

There exist only very few algorithms that explicitly tackle the mapping problem
for IBM Q devices, and, thus, serve as alternative to IBM’s own solution provided
within its SDK Qiskit [49].% To encourage further development in this area, IBM
even launched the IBM Qiskit Developer Challenge seeking for the best possible
solution [50]. This led to the development of several approaches that explicitly
consider design automation techniques to tackle the mapping problem.

The work [51] provides—for the first time—an exact approach (using a for-
mal description of the mapping problem that is passed to a powerful reasoning
engine) to solve the mapping problem by inserting the minimum number of
additional H and SWAP operations. By this, a lower bound on the overhead
is provided (when neglecting pre- and post-mapping optimisations), which is
required to satisfy the coupling-constraints given by the quantum hardware—
allowing to show that IBM’s own solution often exceeds the minimal overhead
by more than 100 % (even for small instances). However, the exponential nature
of the mapping problem (it has been proven to be N'"P-complete [47]) makes the
exact approach applicable for small instances only.

This limitation—together with the fact that IBM’s approach generates map-
ping that are far above the minimum—motivates the development of heuristic
approaches. The heuristic methods presented in [52] are heuristic solution that
utilises the A* search method to determine proper mappings. This allows reduc-
ing the overhead compared to Qiskit by approximately one fourth on average.”
This difference in quality is mainly because IBM’s solution randomly searches
for a mapping that satisfies the coupling-constraints—leading to a rather small
exploration of the search space so that only rather poor solutions are usually
found. In contrast, the proposed approach aims for an optimised solution by
exploring more suitable parts of the search space and additionally exploiting

5 Note that IBM’s solution randomly searches (guided by heuristics) for mappings of
the qubits at a certain point of time.

” Note that the proposed approach has additionally been integrated into Qiskit to
allow a fair comparison by utilising the same post-mapping optimisations.

78 A. Zulehner and R. Wille

information of the circuit. More precisely, a look-ahead scheme is employed that
considers gates that are applied in the near future and, thus, allows determining
mappings which aim for a global optimum (instead of local optima) with respect
to the number of SWAP operations.

Even though this heuristic approach allows outperforming Qiskit’s mapping
algorithm, it has some scalability issues when used for mapping certain random
circuits for validating quantum computers [19], which also served as benchmarks
in the IBM Qiskit Developer Challenge (a challenge for writing the best quantum-
circuit compiler to encourage development). These circuits provide a worst-case
scenario that heavily affects the efficiency of the proposed heuristic approach.
Therefore, a dedicated approach is proposed in [53], which explicitly considers
their structure by using dedicated pre- and post-mapping optimisations. The
resulting methodology has been declared as winner of the IBM Qiskit Developer
Challenge, since it generated mapped/compiled circuits with at least 10 % lower
costs than the other submissions while generating them at least 6 times faster,
and is currently being integrated into Qiskit by researchers from IBM. Besides
that, all mapping approaches developed in context of this thesis are publicly
available at http://iic.jku.at/eda/research/ibm_gx_mapping.

6 Conclusion

This chapter has shown the great potential of bringing knowledge gained from
the design automation of conventional circuits and systems into the quantum
realm. More precisely, quantum-circuit simulation, the design of Boolean com-
ponents for quantum algorithms, as well as technology mapping have been con-
sidered from a design automation perspective—leading to improvements of sev-
eral orders of magnitude (with respect to runtime or other design objectives) in
many cases. For further information on the developed algorithms we refer to the
cited papers. In the future, this development shall continue on a larger scale—
eventually providing the foundation for design automation methods that accom-
plish for quantum computing what the design automation community realised
for conventional (electronic) circuits.

Acknowledgments. This work has partially been supported by the European Union
through the COST Action IC1405 and the LIT Secure and Correct System Lab funded
by the State of Upper Austria.

References

1. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information.
AAPT 70, 558 (2002)

2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on the Theory of Computing, pp. 212-219 (1996)

3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. STAM J. Comput. 26(5), 1484-1509 (1997)

http://iic.jku.at/eda/research/ibm_qx_mapping

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Simulation and Design of Quantum Circuits 79

Montanaro, A.: Quantum algorithms: an overview. npj Quantum Inf. 2, 15023
(2016)

Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018)

Coles, P.J., et al.: Quantum algorithm implementations for beginners. arXiv
preprint arXiv:1804.03719 (2018)

Gambetta, J.M., Chow, J.M., Steffen, M.: Building logical qubits in a supercon-
ducting quantum computing system. npj Quantum Inf. 3(1), 2 (2017)

Kelly, J.: A preview of Bristlecone, Google’s new quantum processor (2018).
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
Hsu, J.: CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy. IEEE
Spectrum Tech Talk (2018). https://spectrum.ieee.org/tech-talk/computing/
hardware/intels-49qubit-chip-aims-for-quantum-supremacy

Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: International Conference on Rebooting Computing (ICRC),
pp. 1-6 (2016)

IonQ: IonQ: trapped ion quantum computing. https://ionq.co. Accessed 15 June
2019

Nay, C.: IBM unveils world’s first integrated quantum computing system for com-
mercial use. https://newsroom.ibm.com/2019-01-08-IBM-Unveils- Worlds-First-
Integrated- Quantum-Computing-System-for-Commercial-Use. Accessed 15 June
2019

Horsman, C., Fowler, A.G., Devitt, S., Van Meter, R.: Surface code quantum com-
puting by lattice surgery. New J. Phys. 14(12), 123011 (2012)

Gottesman, D.: An introduction to quantum error correction and fault-tolerant
quantum computation. In: Quantum Information Science and Its Contributions to
Mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13-58
(2010)

Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. In:
International Symposium on Nanoscale Architectures. pp. 23-28. IEEE Press
(2010)

Niemann, P., Wille, R., Drechsler, R.: Equivalence checking in multi-level quan-
tum systems. In: International Conference of Reversible Computation, pp. 201-215
(2014)

Burgholzer, L., Wille, R.: Improved DD-based equivalence checking of quantum
circuits. In: Asia and South Pacific Design Automation Conference (ASP-DAC)
(2020)

Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat.
Phys. 14(6), 595 (2018)

Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Val-
idating quantum computers using randomized model circuits. arXiv preprint
arXiv:1811.12926 (2018)

Smelyanskiy, M., Sawaya, N.P.D., Aspuru-Guzik, A.: qHiPSTER: the quantum
high performance software testing environment. arXiv preprint arXiv:1601.07195
(2016)

Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE
Trans. CAD Integr. Circuits Syst. 38, 848-859 (2019)

Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Dordrecht (2009). https://doi.org/10.1007/978-90-481-3065-8

http://arxiv.org/abs/1804.03719
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://ionq.co
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
http://arxiv.org/abs/1811.12926
http://arxiv.org/abs/1601.07195
https://doi.org/10.1007/978-90-481-3065-8

80

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

A. Zulehner and R. Wille

Niemann, P., Zulehner, A., Wille, R., Drechsler, R.: Efficient construction of
QMDDs for irreversible, reversible, and quantum functions. In: Phillips, 1.,
Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 214-231. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6_17

Zulehner, A., Wille, R.: Matrix-vector vs. matrix-matrix multiplication: potential
in DD-based simulation of quantum computations. In: Design, Automation and
Test in Europe, European Design and Automation Association (2019)

Zulehner, A.; Hillmich, S., Wille, R.: How to efficiently handle complex values?
Implementing decision diagrams for quantum computation. In: International Con-
ference on CAD (2019)

Niemann, P., Datta, R., Wille, R.: Logic synthesis for quantum state generation.
In: International Symposium on Multi-Valued Logic, pp. 247-252. IEEE (2016)
Niemann, P., Wille, R., Drechsler, R.: Improved synthesis of Clifford+T quantum
functionality. In: Design, Automation and Test in Europe, pp. 597-600 (2018)
Zulehner, A., Niemann, P., Drechsler, R., Wille, R.: Accuracy and compactness in
decision diagrams for quantum computation. In: Design, Automation and Test in
Europe (2019)

Hillmich, S., Zulehner, A., Wille, R.: Concurrency in DD-based quantum circuit
simulation. In: Asia and South Pacific Design Automation Conference (ASP-DAC)
(2020)

Zulehner, A., Hillmich, S., Markov, 1., Wille, R.: Approximation of Quantum States
Using Decision Diagrams. Asia and South Pacific Design Automation Conference
(ASP-DAC) (2020)

Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev.
Mod. Phys. 68(3), 733 (1996)

Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: LUT-based hierarchical
reversible logic synthesis. IEEE Trans. CAD Integr. Circuits Syst. 38, 848-859
(2018)

Zulehner, A., Wille, R.: Make it reversible: efficient embedding of non-reversible
functions. In: Design, Automation and Test in Europe, European Design and
Automation Association, pp. 458-463 (2017)

Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: Asia and South Pacific
Design Automation Conference, pp. 85-92 (2012)

Zulehner, A., Wille, R.: Improving synthesis of reversible circuits: exploiting redun-
dancies in paths and nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds.) RC 2017.
LNCS, vol. 10301, pp. 232-247. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59936-6_18

Zulehner, A., Wille, R.: One-pass design of reversible circuits: combining embed-
ding and synthesis for reversible logic. IEEE Trans. CAD Integr. Circuits Syst.
37(5), 996-1008 (2018)

Zulehner, A., Wille, R.: Skipping embedding in the design of reversible circuits. In:
International Symposium on Multi-Valued Logic, pp. 173-178. IEEE (2017)
Zulehner, A., Wille, R.: Exploiting coding techniques for logic synthesis of
reversible circuits. In: Asia and South Pacific Design Automation Conference, pp.
670-675. IEEE Press (2018)

Zulehner, A., Niemann, P.; Drechsler, R., Wille, R.: One additional qubit is enough:
encoded embeddings for Boolean components in quantum circuits. In: International
Symposium on Multi-Valued Logic (2019)

https://doi.org/10.1007/978-3-319-59936-6_17
https://doi.org/10.1007/978-3-319-59936-6_18
https://doi.org/10.1007/978-3-319-59936-6_18

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Simulation and Design of Quantum Circuits 81

Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 32(6), 818-830 (2013)

Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffoli gates. In: International Symposium on Multi-Valued Logic,
pp. 288-293. IEEE (2011)

Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.:
Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum
circuits. In: Asia and South Pacific Design Automation Conference, pp. 292-297
(2016)

Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for inter-
action distance in linear nearest neighbor architectures. In: Design Automation
Conference, pp. 41-46 (2013)

Wille, R., Quetschlich, N., Inoue, Y., Yasuda, N., Minato, S.I.: Using 7DDs for
nearest neighbor optimization of quantum circuits. In: International Conference of
Reversible Computation, pp. 181-196 (2016)

Zulehner, A., Gasser, S., Wille, R.: Exact global reordering for nearest neighbor
quantum circuits using A*. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS,
vol. 10301, pp. 185-201. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59936-6-15

IBM Q team: IBM Q 16 Rueschlikon backend specification v1.0.0. https://ibm.
biz/qiskit-rueschlikon. Accessed 15 June 2019

Botea, A., Kishimoto, A., Marinescu, R.: On the complexity of quantum circuit
compilation. In: Symposium on Combinatorial Search (2018)

Siraichi, M., Dos Santos, V.F., Collange, S., Pereira, F.M.Q.: Qubit allocation. In:
International Symposium on Code Generation and Optimization (CGO), pp. 1-12
(2018)

Cross, A.: The IBM Q experience and QISKit open-source quantum computing
software. Bull. Am. Phys. Soc. 63(1) (2018)

IBM Q team: QISKit Developer Challenge. https://qx-awards.mybluemix.net/#
giskitDeveloperChallengeAward. Accessed 15 June 2019

Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to IBM QX
architectures using the minimal number of SWAP and H operations. In: Design
Automation Conference (2019)

Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum
circuits to the IBM QX architectures. IEEE Trans. CAD Integr. Circuits Syst. 38,
1226-1236 (2018)

Zulehner, A., Wille, R.: Compiling SU(4) quantum circuits to IBM QX architec-
tures. In: Asia and South Pacific Design Automation Conference, pp. 185-190.
ACM (2019)

https://doi.org/10.1007/978-3-319-59936-6_15
https://doi.org/10.1007/978-3-319-59936-6_15
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
https://qx-awards.mybluemix.net/#qiskitDeveloperChallengeAward
https://qx-awards.mybluemix.net/#qiskitDeveloperChallengeAward

82 A. Zulehner and R. Wille

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Research on Reversible Functions
Having Component Functions
with Specified Properties: An Overview

Pawel Kerntopf' ™9, Claudio Moraga?, Krzysztof Podlaski®,
and Radomir Stankovié*

! Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
pawel .kerntopf@gazeta.pl
2 Faculty of Computer Science, Technical University of Dortmund,
Dortmund, Germany
claudio.moraga@tu-dortmund.de
3 Faculty of Physics and Applied Informatics, University of Léd%, L6dz, Poland
podlaski@uni.lodz.pl
4 Department of Computer Science, Faculty of Electronic Engineering,
University of Nis, Nis, Serbia
radomir.stankovic@gmail.com

Abstract. In the traditional logic synthesis, different classifications
of non-reversible Boolean functions have found many applications.
Recently, some attempts to deal with classifications of reversible func-
tions have been published. In this paper, an overview of our results
towards constructing a new classification of reversible functions is pre-
sented. These results were obtained due to our discussions during two
Short Term Scientific Missions (STSMs) as well as during our further
research in the framework of COST Action 1C1405 “Reversible Compu-
tation - Extending Horizons of Computing” and were published in five
papers.

Keywords: Reversible functions + Component functions -
Classification

1 Introduction

Recent advances in nanotechnology, low-power design, and quantum computing
have renewed interest in reversible logic synthesis since they allow for reducing
the power dissipation in related circuits and the potential speed-up in quantum
computations. More details can be found in [4,25] and references therein.

A reversible function is defined as a bijective mapping f : A" — A", where
A is any finite set of elements which can be conveniently identified with non-
negative integers {0,1,...,p — 1}. In particular, for p = 2 and p = 3, we speak
about binary or Boolean and ternary reversible functions, respectively. There-
fore, an n-variable reversible function is actually a permutation on A™, and can

© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 83-107, 2020.
https://doi.org/10.1007/978-3-030-47361-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_4

84 P. Kerntopf et al.

be viewed as a vector of n functions called the component functions (CFs), i.e.,
F = (f1, fo,..., fn). In [27], the term components is applied in the similar mean-
ing, meanwhile in the literature on cryptography the term coordinate functions
is used, see e.g., [3,30]. However, in [30] the term component function means
a linear combination of coordinate functions.

Correspondingly, a reversible circuit is a circuit that realises a reversible
function, i.e., performs a bijective mapping of n input signals onto n output
signals in a manner specified by the function to be realised.

Recently in [13,14], we discussed the question if it is possible to extend
a Boolean function f :{0,1}" — {0,1} into a reversible function F : {0,1}" —
{0,1}", under the condition that all its component functions have a homogeneous
property. The term homogeneous property means that all component functions
express the same particular property Boolean functions might have, e.g. all the
component functions belong to the same equivalence class in a particular clas-
sification of Boolean functions. The motivation was that if such an embedding
of a Boolean function into a reversible function is possible, then new classes of
reversible functions can be defined. In [15,17] the same question is explored for
ternary functions F' : {0,1,2}™ — {0, 1,2}" and we have shown that there are
significant differences in the theory of binary and ternary reversible functions in
the case of linear component functions.

As homogeneous properties, we have chosen typical ones considered in clas-
sical logic synthesis: symmetry, affinity, linearity, nonlinearity, self-duality, self-
complementarity, monotonicity, unateness (see, e.g. [31]). In papers [13-15,17]
the exemplary functions used in proofs of the results were obtained in a construc-
tive manner. In [16] the results on properties of component functions of Boolean
reversible functions obtained by the extrapolation approach were demonstrated.
An overview of the most relevant of these results in the binary case is presented
here. Because of lack of space we have omitted our results on reversible multiple-
valued functions. The reader can find them in [15,17].

The presentation is organised in the following way. For the sake of com-
pleteness, necessary definitions and basic results from the theory of standard
Boolean as well as from reversible Boolean functions are provided in Sect.2. In
Sect. 3, a brief overview of related and background work is presented. Section 4
demonstrates our theoretical results on properties of component functions of
reversible functions. Section 5 describes the results of our research on the exis-
tence of Boolean reversible functions with all component functions belonging to
different equivalence classes while considering well-known and newly constructed
reversible functions defined for any number of variables. Section 6 presents our
numerical calculations of all equivalence classes of balanced Boolean functions
up to n = 4 and all reversible functions up to n = 3. Finally, Sect. 7 describes
our results on the existence of Boolean reversible functions with specified prop-
erties of all component functions obtained by extrapolating some properties of
reversible functions. The presented research is summarised in Sect. 8.

Research on Reversible Functions 85

2 Preliminaries

In this section, the basic definitions and known results are provided for the
convenience of the reader. Let us first briefly survey fundamental notions related
to standard Boolean functions and reversible Boolean functions.

First we present notation and terminology for fundamental notions. The sym-
bols +, —, - denote ordinary addition, subtraction, and multiplication, respec-
tively. For arbitrary elements and y in the set {0, 1} basic operations in this
set (one unary and three binary operations) are defined in the usual way:

Negation ' = 1 — z, i.e. if the argument z is 0, then the result is 1, otherwise
it is 0;

Product zy = z - y, i.e. its value is 1 if and only if both arguments are 1;

Sum zVy=xz+y—x-y, ie. its value is 0 if and only if both arguments are 0;

EXOR z®dy =2z +y(mod2) =z +y—2-x-y, ie. its value is 1 if and only if
exactly one argument is 1.

In classical logic synthesis, the basic representation of a Boolean function is
the Sum-of-Products expression (SOP). In the field of reversible circuit syn-
thesis two other representations are commonly used. Any Boolean function
f:{0,1}" — {0,1} can be described using an EXOR-sum of products (ESOP)
expression. In ESOPs each variable may appear in both uncomplemented and
complemented forms. The Positive Polarity Reed-Muller (PPRM) expression is
an ESOP expression which uses only uncomplemented variables. It is a canonical
expression and for small functions can be easily generated from a truth table or
other representations of the Boolean function.

A Boolean function f(z1,22,...,2,) depends essentially on its variable x; if
and only if f(x1,...,2,-1,0, Tiy1,...,Tn) # f(T1,. s Tic1, L, Tit1, .oy).
Definition 1. A Boolean function depending essentially on all its variables is
called non-degenerate, otherwise it is called degenerate.

Example 1. There are 16 functions of two variables x and y: 0, 1, z, 2', y, v/,
zy, o'y, 2y, o'y, cVy, 2’ Vy, z2Vy, VY, c@y=2"0y, 2 dy=2dvy.
The first six of them are degenerate: the first two depend essentially on none of
the variables, the next four depend essentially on only one of the variables. |

Let us define an order relation in the set {0,1} in the usual way: 0 < 1 and
a partial order relation in the set {0, 1}™: for any two vectors a = (a1, as, ..., ay,),
b = (b1,b2,...,b,) in {0,1}" a < b if and only if a¢; < b; for 1 <i < n.

Definition 2. A Boolean function f is monotone increasing if and only ifa < b
implies f(a) < f(b) which will simply be called a monotone function. By changing
the inequalities into inverse ones we obtain a definition of monotone decreasing
function.

Example 2. Both the constant functions 0 and 1 are monotone increasing and
monotone decreasing. There are siz monotone increasing functions of two vari-
ablesx and y: 0, 1, z, y, xy, x Vy. Similarly, there are six monotone decreasing
functions of two variables x and y: 0, 1, ', ¢/, 'y, ' V3. |

86 P. Kerntopf et al.

Definition 3. A Boolean function f(x1,xa,...,2,) is called unate (or mized
monotone) if and only if it is a constant or there exists its SOP representation
using either uncomplemented or complemented literals for each variable.

Example 3. There are 1} unate functions of two variables x and y: only func-
tions x ®y and ¥’ &y are not unate. 1

Definition 4. A Boolean function f(x1,xa,...,2,) is called threshold (or lin-
early separable) if and only if there exist real numbers a1, as, ..., a,, and b such
that f =1 if the sum of all a;x;, 1 < i < n, is greater than or equal to b, and
f =0 otherwise.

Example 4. All unate functions of up to three variables are threshold functions.
Thus, for two variables there are 14 threshold functions (i.e., all except x ® y
and &’ @ y), in particular,

when a1 =ax=1 and b=15 then f=uzy,

when a1 =ax=1 and b=0.5 then f=zVy,
when a1 =ay=—1 and b= —0.5 then f=2a'y,
when a; =ay=—1 and b=—15 then f=2'Vy.

The 4-variable function f(x1,22,23,24) = T122 V T3x4 is an example of a
monotone increasing function which is not a threshold function. |

Definition 5. A Boolean function f on an odd number of arguments is called
majority function if and only if f = 1 when more than half of the arguments
are 1.

Example 5. The 3-variable majority function f(x,y,z) = xy ® 2z D yz is a
threshold function, where a1 = as = az =1 and b = 2. |

It is well known that the following result holds.
Lemma 1.

(1) Every threshold function is a unate function.
(2) Every majority function is a threshold function.

Definition 6. A Boolean function f is linear with respect to a variable x; if it
can be expressed in the form f = x; ® g, where @ denotes XOR operation and
g is a function independent of x; (then the variable x; is called linear in f). A
function has property LV if it contains at least one linear variable. A function f
1s called affine if and only if each of variable x; is either linear in f, or f does
not depend on x;, i.e. f(x1,2T2,...,Tn) = ao® a1z1 D asxs D -+ D anTy, where
ag, a1, 0z, ... 0, € {0,1}. If ag = 0 then it is called linear. Any affine function
which is not linear can be obtained by negating an appropriate linear function.
A Boolean function which is not affine is called nonlinear.

Example 6. fi(x,y,2) = c®ydyz is linear with respect to © as then g = yDyz
1s independent of x, but fi is not linear with respect to y as then g = x B yz is
dependent of y. Similarly, fo(x,y) = x © y ® xy is neither linear with respect to
x, nor to y. 1

Research on Reversible Functions 87

Definition 7. A Boolean function is (totally) symmetric if any permutation of
all its variables does not change the function.

There are 2"+ symmetric Boolean functions.

Definition 8. If any permutation of a proper subset S of the variables of cardi-
nality at least 2 does not change the Boolean function f, then f is called a par-
tially symmetric function with respect to S and S is called a partial symmetry
of variables of f. The collection of mazimal partial symmetry subsets of vari-
ables of f is called a partial symmetry profile and is denoted by S¢. The partial
symmetry profile of a totally symmetric Boolean function f(x1,xa,...,x3) s
equal to {{x1,xa,...,x,}}. Let partial symmetry profiles of Boolean functions
f1, fay -+, fn be denoted by S1, 54, ...,S,, respectively. The intersection of such
profiles is the collection of subsets of variables obtained by taking all possibilities
of performing intersection operation on an element in S, an element in Ss, ...,

and an element in S,. If the intersection operation on Sy,Se,...,S, does not
contain an element with at least two variables, then there does not exist a partial
symmetry subset of all functions f1, fo,..., fn.

Example 7. Let f(u,v,w,x,y,2) = u®vw S xyz and g(u,v,w,x,y,z) = uv B
w & xyz. Then the partial symmetry profile of f is Sy{{v,w},{z,y,2}}, the
partial symmetry profile of g is Sqg = {{u,v},{x,y,2}} and the intersection of
Sy and Sy is equal to {{v}, ¢, {x,y, 2}}, i.e. both functions f and g are partially
symmetric with respect to {{x,y, z}} as well as this subset is the only one partial
symmetry subset of both functions f and g. |

Definition 9. A Boolean function f : {0,1}" — {0,1} is called balanced if it
takes value 1 the same number of times as value 0.

Example 8. There are 70 balanced Boolean functions on 3 arguments, includ-
ing degenerate ones. Only four of them are totally symmetric, namely parity and
magjority functions and their negations:

parity TOYydz 1PxDYyd 2z,
magjority xy B xz Pyz 1 Dy rz d yz.

Eight of the balanced functions, including degenerate ones, are partially symmet-
ric with respect to each 2-element subset of variables, for instance, functions

Dy, 1¢xdy,
xy Dz, 1®ay @ z,
TDYyDry D2, 1z yPzy ® 2,

TRYPryPrz®yz, 1O Dydry Drzdy:z.
are partially symmetric with respect to {x,y}. |
Definition 10. Two Boolean functions are:

(1) P-equivalent if they can be converted to each other by the permutation of
variables,

88 P. Kerntopf et al.

(2) NP-equivalent if they can be converted to each other by the negation and/or
permutation of variables,

(8) NPN-equivalent if they can be converted to each other by negation of vari-
ables, permutation of variables and negation of the function.

Definition 11. A Boolean function f is self-complementary (SC) if f and f’
are NP-equivalent.

Definition 12. A Boolean function f is self-dual (SD) if

flr1, @0,) = fl(2h,xh, ... 2h).
The following results are well-known:

Lemma 2. (1) All self-complementary functions are balanced,

(2) All self-dual functions are self-complementary,

(3) All functions having property LV are self-complementary,

(4) If a Boolean function f is linear with respect to a variable x; then

flzi=1) = f'(z; =0).

In the case of Boolean functions, depending on the operations allowed in
a particular classification, the P-equivalent, NP-equivalent, and NPN-equivalent
functions are distinguished. In some applications, equivalence classes defined
with respect to a restricted set of operations are of a particular interest, as for
example, in [5,6]. Here, we are particularly interested in P-equivalent functions
when studying the properties of component functions.

Definition 13. A mapping F : {0,1}" — {0,1}"™ is called an nxn reversible
function if it is bijective. Functions which are not reversible are called irre-
versible. An nxn reversible function F' can be considered as a vector of standard
Boolean functions called component functions f; : {0,1}" — {0,1},1 < i <n,
which are defined at every x € {0,1}™ by F(z) = (f1(x),..., fn(2)).

In the truth table of a reversible nxn Boolean function there are n input columns
and n output columns. The output rows of such a truth table form a permutation
of the input rows. From the bijectivity of reversible functions it follows that all
component functions have to be balanced Boolean functions.

By an analogy with the definition of NPN-equivalence classes for standard
Boolean functions, the following definition of equivalence classes for Boolean
reversible functions can be given.

Definition 14. Two reversible Boolean functions are NPNP-equivalent if they
can be transformed to each other by the following operations (including the com-
binations that do not use all of these operations):

(1) Negation of variables,

(2) Permutation of variables,

(3) Negation of component functions, and
(4) Permutation of component functions.

Research on Reversible Functions 89

Each reversible function can be treated as a permutation. This is why we
also recall basic notions connected with permutations. Let A be any finite set. A
permutation on a set A is a bijective mapping from A to itself. Every permutation
can be considered as a collection of disjoint cycles. Here such a collection will
be called a cycle structure. We will write a cycle in the form < ay,as,...,a; >,
meaning that a; is mapped onto as, . . ., ai is mapped onto a;. It could be written
in different ways, e.g. < as,as,...,ag,a; >. The number of elements in a cycle
is called the length of the cycle. A cycle with the length & is called a k-cycle.
A 2-cycle is also called a transposition.

3 Previous Work

The motivation for our studies of reversible functions toward constructing their
classifications is borrowed from the classical logic synthesis by referring to an
analogy with related problems. For example, in classical logic synthesis, the
equivalence of two functions under permutation of the variables is an impor-
tant problem due to applications in the synthesis of multiplexer-based field-
programmable gate arrays [5,6]. The problem is called Boolean matching, and
two functions match if they have the same P-representative. The extension to
NP-representatives is done in [7,8] in solving the Boolean matching problem in
cell-library binding.

Classification of Boolean functions is a classical problem in logic synthesis
due to its various applications, with fast prototyping and unification of testing
procedures being just two of them [28]. However, a considerably smaller amount
of work has been done in the classification of reversible functions. In [18,19] it is
presented an approach to enumerate equivalence classes of reversible functions
with the equivalence classes defined as follows. Denote by G and H the groups of
permutations acting on the inputs and outputs of Boolean reversible functions,
respectively. Two functions fi(z) and fo(x) are equivalent if for each n-tuple
x, there is a ¢ € G and an h € H such that fi(z) = h(f2(g(x))). It is also
provided a list of all NPNP-equivalence classes of 3-variable reversible functions
as well as a classification based on properties of the inverses of the representative
functions for the equivalence classes considered. The lists consist of triples of
balanced Boolean functions specified by ESOPs. Unfortunately, using “prime”
for negation led to a number of typographical errors which has been discovered
by us recently [13] (see Sect. 6).

A technical report from 1962 by C. S. Lorens [18] and an article by the same
author [19] can be viewed as a starting point of subsequent work on an enu-
meration of equivalence classes of reversible functions by several authors [10,20-
23,29]. With the exception of [22], these publications consider the classifica-
tion of binary reversible functions. These publications were discussed mainly by
researchers in combinatorial mathematics and cryptography but hardly used and
correspondingly rarely if at all referred within the reversible functions commu-
nity, the main reason probably being that the term invertible instead of reversible

90 P. Kerntopf et al.

functions has been used. A classification scheme for reversible functions was the
subject of a profound study in [24], however, without a concrete solution pro-
posed.

Recently, certain aspects of the classification problem have been addressed.
In [26], the list of all NPNP-equivalence classes for three variable reversible
functions from [19] is presented in the context of a study of the complexity of
reversible circuits with the representative functions for equivalence classes given
in the form of permutations (i.e. without considering individual component func-
tions). The minimal number of nonlinear gates needed in the implementation of
reversible functions is used as a classification criterion in [9]. The structure of
closed classes of reversible functions is described in [1]. Enumeration of equiva-
lence classes under the action of permutation of the inputs and outputs on the
domain and the range is presented in [2].

For the first time in the literature, we solved in [13,14] several problems of
the existence of binary reversible functions with all component functions hav-
ing the same known property (e.g., symmetry, affinity, linearity, nonlinearity,
self-duality, self-complementarity, monotonicity, unateness). Solutions of such
problems for ternary reversible functions are presented by us in [15]. In [17]
we presented results on the existence of ternary/multiple-valued reversible func-
tions with all component functions belonging to different P-equivalence classes.
In [16] it is shown how we discovered solutions of some problems by extrapolating
properties of previously found reversible functions of 3 and 4 variables.

4 Theoretical Results

This section presents basic theoretical results on properties of component func-
tions of reversible functions. We begin with the following general result:

Theorem 1. If f(x1,22,...,2n) = (f1, f2,--., fn) is an nxn reversible (irre-
versible) Boolean function, then the function obtained from f by any of the fol-
lowing transformations

negation of variables,

— permutation of variables,

— negation of a component function,

— permutation of component functions,

is also reversible (irreversible).

Proof. Tt is sufficient to notice that any of the above transformations corre-
sponds to a permutation of rows in the truth table, i.e. preserves the property
of bijectivity. 0O

The following result follows directly from Theorem 1.

Corollary 1. nxn functions belonging to an NPNP-equivalence class either are
all reversible or none of them is reversible.

Research on Reversible Functions 91

There are constraints on using totally and partially symmetric functions
as component functions of an n#n reversible function f(x1,x2,...,2,) =
(f1, fo,---, fn). Let partial symmetry profiles of the component functions
f1, f2, .-+, fn be denoted by S1,Ss,...,S,, respectively (see Definition 8).

Theorem 2. A necessary condition for an nxn function f(x1,2a,...,2,) =
(f1, fas---, fn) to be reversible is as follows: intersection of all profiles
51,82, ...,5n, has to be equal to the collection of results each of which has no

more than one element.

Proof. Let us assume that two variables x; and x; belong to one subset being
an element of the intersection of the profiles Sy, ég, ..., Sp, i.e. appear in one
subset in all these profiles. It is equivalent to the equation:

flxe, oo w1, 0,1, xio1, Lxjaa, . mn) = f(z1, .21, L, @iy, -0, 251, 0,

Tjql,e- oy Tn).

However, because any reversible function f is a bijective mapping then
flz1, o, 2i21,0, 241, -, xj—1, L, Ty, ..., xp) differs from f(zq,..., 21,
lazi-‘rla'"axj—1307xj+1a"'axn)' O
Thus, the following theorem holds.

Theorem 3. nxn reversible Boolean functions, n > 1, with all totally symmetric
CF's being non-degenerate do not exist.

On the other hand, component functions of a reversible function can be totally
or partially symmetric if at least two of them are partially symmetric.

Example 9. It is easy to show that the following function is reversible

fi=21®x2 ® 23, fo=121® o, fza=x1 ® xs,

where f1 is a totally symmetric function and both fs and fs are partially sym-
metric functions The simple generalization of the above reversible function to
the case of any n can be defined as follows:

n
flz@xi7 fk:®xi7ke{2>"'7n}>

i=1 i#k

where the symbol @ denotes summing modulo 2. 1
In some papers, algorithms for synthesis of reversible circuits for (totally)

symmetric functions are considered. However, symmetric functions in these
papers are first embedded in reversible specifications with additional inputs
and/or outputs.

Now let us consider linear and affine CFs. For any n there is only one non-
degenerate linear Boolean function:

1 DPxros D - Dxy,.

Hence, by Theorem 1 the following result is true:

92 P. Kerntopf et al.

Theorem 4. Forn > 1 nxn reversible Boolean functions with all linear or affine
CFs being non-degenerate do not exist.

However, reversible Boolean functions having as CFs one of non-degenerate
linear (affine) functions and the other functions depending essentially on k < n
variables do exist as is shown in Example 9.

Let us consider the following property of monotone Boolean functions.

Lemma 3. Every monotone Boolean function which is balanced, except projec-
tion functions P-equivalent to the identity, cannot be equal to 1 for an assignment
with weight 1 (i.e. with only one non-zero entry).

Proof. Assume that the lemma is not true. Then there exists a balanced mono-
tone Boolean function f, not being a projection function, and an assignment
a = (a1, as,...,a,) with weight 1 for which f(a) is not equal to zero. Without
loss of generality let a = (1,0,...,0,0), ie. z; = 1, 2; = 0 for 2 < i < n.
Because f is monotone so f(b) =1 for all assignments b = (b, bs,...,b,) with
by = 1. The number of such assignments is equal to 2"~'. As the number of
all binary assignments is 2" hence the number of assignments ¢ not compatible
with assignments b, i.e. having ¢; = 0, is equal to 2" —2"~! = 27~1 A balanced
Boolean function takes values 0 and 1 the same number of times so f = 0 for all
those assignments with ¢; = 0. Thus,

fa) =0 for all binary assignments a=(0,as,...,a,-1,0),

fla) =1 for all binary assignments a=(1l,a2,...,an-1,0n),
i.e., f is a projection function what is in contradiction with the initial assump-
tion. O

Theorem 5. An n#n reversible Boolean function, n > 3, with all component
functions being non-degenerate monotone does not exist.

Proof. Lemma 3 states that for any monotone balanced Boolean function F' and
any input assignment a with weight 1

F(a) =0.

Thus, for any n*n reversible Boolean function G, n > 3, with all CFs being
monotone and any input assignment a with weight 1

G(0,0,...,0,0,1) = G(0,0,...,0,1,0) = (0,0,...,0,0,0),

what contradicts the reversibility constraint as G takes value (0,0,...,0,0,0)
more than once. Thus, any nxn Boolean function, n > 3, with all component
functions being monotone, is not reversible.

By Definition 3, Definition 4, Lemma 1, Theorem 1 and Theorem 5 the
following result holds. O

Research on Reversible Functions 93

Corollary 2. An n#n reversible Boolean function, n > 3, with all component
functions being non-degenerate and threshold, does not exist.

5 Results Based on Newly Constructed Functions

Let us first introduce simple notions related to Positive Polarity Reed-Muller
expressions for Boolean functions. The number of literals in a term will be called
its rank. Denote by T; ; the exclusive-or sum of all terms having a rank not
smaller than ¢ and not greater than j (7;; will denote all terms with rank 7).
In [13] we introduced the following nxn reversible function, for arbitrary n,
which will be called Negation with Preservation of Constants (in short NPCnsn):

Definition 15. The reversible function NPCnsn(xi,a,...,2,), n > 3, is
defined in such a manner that its component functions NPCn are defined as
follows:

fi =21 ®22D23D-- B Tp_2 D Tp1 &T2n-1,
fo =21 ®T2@23D---Dxp_2@ T ®Top—1,
fn—l = D3 D Dxry_o2Drpn_1DTy EBTQ,TL—la
fn = ToDx3 D DB Ty_2® Ty_1 DTy, DI p—1,

i.e., in each of the above equations eractly one variable is missing, namely in
the ith equation variable x,_;11 is missing.

The formulas in Definition 15 can be transformed taking into account that

1. 2101220 23B - ®xTn-—2@Tn-1PTn BT pn =T1n=
=xz1Vz2VI3V- ---VITp_1VITn,

(this transformation can be easily proved by induction starting from the well-
known formula for n =2 : z1 V29 = 21 ® 2 ® 1122),

2. fi=fi®Tp—it1 D Tp—it1 ®T1T2... T DT1T2 ... T =T10n D Tpn—it1 DT1T2...Tp

=(@1VazaVaezV- - VIp_1VTn)®Tn_it1 DT1T2...Tn,
where we applied the following three obvious formulas:
fi = fi®0, Tp—it1 P Tp—iy1 =0, T1T2 ... T BT 1T2 ... Ty = 0,
and the transformation used in case 1:

fi®Tniv1Pziz2...2n=21D22P 3P - Brpn2®Tn—1Pan PTon_1Ox1,22...2n
:ﬁl@w2®$3@"'®xn72®zw71@wn@T2,7L:T1,n~

94 P. Kerntopf et al.

Using the above formulas we will show by example how the values of the function
fi can be calculated. Without loss of generality we will show this for fi:
Step 1. Calculate fl(l) =z VaaVaesV---Va,_1Vaz, (see Tablel).
Step 2. Calculate fl(z) = (@1 VaeaVa3V---Vr,_1Vaz,)®dz (by negating the
lower half of the truth table obtained in Step 1).
Step 3. Calculate f1 = (x1 VaaVasV - Va,_1Va,) ®ry ®xi2e...2, (by
negating the output value in the last row of the truth table obtained in Step 2).
These steps are performed for n = 3 in Table 1.

Thus, fi; has the well-known property of preserving constants:

f1(07070):0 and f1(17171):17

as well as is negating the input z; for all other vectors of input values. Similarly
(see Table 2), the reversible function NPC3%3 is preserving constants:

NPC33(0,0,0) = (0,0,0) and NPC3+3(1,1,1) = (1,1,1),

as well as negating all the other input vectors. This is why we gave this reversible
function the name Negation with Preservation of Constants.

Table 1. Establishing values of the 3-variable function f; in three steps

T1X2T3 1(1> 1(2) fi
000 0 0 0
001 1 1 1
010 1 1 1
011 1 1 1
100 1 0 0
101 1 0 0
110 1 0 0
111 1 0 1

By analogy with the above example it is easy to show that the following two
results hold for any n:

Lemma 4. Fach function NPCnxn is reversible.

Lemma 5. Fach component function of NPCnxn can be obtained from the
Boolean function NPCn as a result of a permutation of its variables.

Research on Reversible Functions 95

Table 2. Truth table for the function NPC3x3

T17223 | f1f2f3
000 (00O
001 110
010 101
011 100
100 |011
101 010
110 001
111 111

Theorem 6. All component functions of NPCnxn, n > 3, are (1) nonlinear,
(2) self-dual, (3) self-complementary, (4) P-equivalent, and (5) unate.

Proof. (1) The function NPCn is nonlinear because its PPRM contains terms of

rank 2 for any n > 2.
(2) Without loss of generality we write NPCn(z1,22,...,2n) = (1 Va2 V-V

Tpn) D1 DT1x2 . .. Ty On the other hand, by De Morgan’s laws the following
two formulas hold:

(@) VoV Val) = (r122...2,) = 1B 2129 .. Ty,
riwy. . .xh = (e VeV Va,) =1& (@ Vae V.- Va,).

Thus,

(NPCn)' (2, 2%, ...,20) =1® () VaLbV---Val) ez, @iz, .. x]
=1®[(z122...2,) B 2] B (1 Vaa V-V,
=10[l®rize... 2, P1lPx1®1B (1 Va2 V-V,
=@ VaaV- -V, ®r ®r1xs...T,
= NPCn(z1,x2,...,2s).

and by Definition 12 any NPCn is self-dual.
(3) From Lemma 2 it follows that it is self-complementary.

(4) P-equivalence follows from Lemma 5.
(5) Once again, without loss of generality we can write

NPCn(z1,x2,...,xn) =[(z1 Va2 V- - Va,) x| ®x122... 20,

and transform it using well-known formulas a & b = ab’ + a’b,aa’ = 0,
a =a V ab, and De Morgan’s laws:

NPCn(z1,22,...,2n) = [(®1 V22 V- Vap)zi V(z1 Vo V- Vp)z1] ® 2122 ... Tn
=[zhze Vaizz V- Vaiz, vV (2i2h .. 2))z] D rim2 .. T8

= (@ Vaizs V- Vaizy) (122 .. 20) V (Plz2 Vo V- VT, (122 ... 20)

:x’lxg\/z'lzgv---\/x'lzang,..xn.

96 P. Kerntopf et al.

Thus, in the reduced SOP for NPCn the variable x; appears only as comple-
mented and all the other variables are uncomplemented, i.e. NPCn is unate. O

Corollary 3. For any n > 3 there exist reversible functions having all compo-
nent functions being:

(1) nonlinear,

(2) self-dual,

(8) self-complementary,
(4) P-equivalent,

(5) unate.

6 Computational Results

By running simple programs on a laptop we have obtained the computational
results described in this section. The configuration of the laptop we used was
standard: i7 processor and 4 GB of RAM. Each of the computational tasks
took less than one hour. First we calculated in an exhaustive manner all NPN-
equivalence classes of balanced Boolean functions of 1, 2, 3 and 4 variables. The
results for n = 1,2, 3 are shown in Table 3 and for n = 4 in Table 4 together with
sizes and functional properties of all these classes. These results were published
for the first time in [13]. Each row gives one equivalence class identified by its
representative expressed in the form of PPRM expressions. For our purpose
considering each component function separately is a more convenient form than
permutation which is shorter but in which component functions are not shown
explicitly. For each class, the table shows the number of variables (n), the name
of the class (Class), the size of the equivalence class (Size), a Representative
of the class, and the classical Properties the class possesses (the meanings of
abbreviations L, LV, NL, SC and SD were introduced in Sect. 2). Equivalence
classes are sorted first by the size of the number of terms in PPRM expression
and in case of a tie by the sizes of the consecutive terms in the expression (the
terms of the same size are given in the lexicographic order). To decrease the
width of Tables4 and 5 we used names a, b, ¢ and d to denote variables (instead
of x1, xa, x3, T4 which we use in the rest of the paper).

We have checked that only for the following 18 out of 58 classes of bal-
anced Boolean functions up to 4 variables (B1.1-B4.52) it is impossible to find
four functions belonging to the same class which would constitute a 4-variable
reversible function: B2.1, B3.2, B4.2, B4.3, B4.4, B4.7 (this class includes only
2 functions), B4.13, B4.15, B4.27, B4.28, B.4.31, B4.33, B4.34, B4.35, B4.38,
B4.42, B4.48, B4.51.

We used this result for extrapolation of some properties for a larger number of
variables. We also expect that several interesting conjectures can be formulated
on the basis of the above results.

We have also calculated all NPNP-equivalence classes of 3-variable reversible
functions (see Table 5 organised under the same assumptions as Tables 3 and 4).

Research on Reversible Functions 97

Table 3. NPN-equivalence classes of n-variable balanced Boolean functions for n < 3

Class | Size | Representative | Properties
L |LV|NL|SC|SD

B11| 8 |a + |+ + |+
B21 |12 |a®b + |+ +

B3.1 |96 |a®bc + |+ |+

B32| 8 |adbdec + |+ + |+
B33 196 |a@®abdbc + |+

B34 132 |ab® ac® be + |+ |+

For the synthesis of reversible functions, NPNP-equivalence classes are interest-
ing because permutations of component functions do not change values of cost
functions of optimal reversible circuits implementing them. It is because a per-
mutation of component functions leads to permutation of lines in the circuit
which does not change the cost of the circuit.

As mentioned in Sect. 3 such a table was published in [19] but we were able
to find (probably typographic) errors in it. One type of these errors consists
in non-reversibility of two classes’ representatives. To show precisely where the
errors are located let us point that Lorens’ Table VI is split into three parts
based on properties of the inverses of the classes’ representatives:

(A) 21 functions having their inverses identical to the function (called self-inverse
functions),

(B) 3 classes of functions having their inverses in the same NPNP-equivalence
class,

(C) 28 classes of functions having their inverses in a different NPNP-equivalence
class.

It is easy to check that the following two classes’ representatives from the
Lorens’ table are not reversible:

J1 =2 @ zaxs, fo = w2 ® T173, f3 = T3 ® v x2(Part A, row 16),

J1 = @172 ® w203 B 3371, f2 = 71 B X2Xp, f3 = w3 @ w2a) (Part C, column 1, row 13).
It seems that the correct expressions were supposed to be as follows:

f1 =12} ® zaxs, fo = 22 ® 174, f3 = 23 @) x5(adding a “prime” to the last literal),
f1 = x1220 @ 2223 B T321, fo = T1 D XHX3, f3 = x3 @ zoz| (SWapping the “prime”
in the 2nd term in f2).

The last two functions are reversible and belong to our classes R28 and R31,
respectively, which are not covered by the other representatives in Table VI in
[19].

In Lorens’ Table VI we have also found two pairs of representatives that
belong to the same class:

98 P. Kerntopf et al.

Table 4. NPN-equivalence classes of n-variable balanced Boolean functions for n = 4

Class | Size | Representative Properties
L |LV|NL |SC|SD

B4.1 | 64 | a® bed + |+ |+
B4.2 48 |a Db cd + —+ +
B4.3 192 | a ® b D acd + + +
B4.4 | 96 | a® bc® bd + |+ |+
B4.5 768 | a @ bc @ abd —+
B4.6 192 | a @ abc @ bed —+ +
B4.7 2 la@bdchdd 4+ +
B4.8 192 |a® bP cP abd —+ —+ +
B4.9 96 |aDbDac® cd + —+ +
B4.10 | 384 | a ®b® cd & abe +
B4.11 | 384 | a © b & abc @ acd + +
B4.12| 96 | a® ab® bc @ bd + +
B4.13| 32 | a® bc ® bd ® cd + |+ |+
B4.14 | 384 | a @ bc @ abc @ abd + +
Bl1.15| 64 | a®b®cd®d®D abe + |+ +
B4.16 | 192 | a ® b® c @ abe P abd + +
B4.17 32 |la®bPac®ad P cd —+ —+ + +
B4.18 | 384 | a®b® ab® ac P bed + +
B4.19 | 384 | a ®b® ac P ad @ bed +
B4.20 | 384 | a® b® ac P acd @ bed +
B4.21 | 384 | a® b® ac ® abd @ bed +
B4.22 | 384 | a ® b ® abc @ acd & bed +
B4.23 48 | a D ab® ac D bd P cd + + +
B4.24 | 384 | a ® ab® bc @ bd P acd +
B4.25 | 384 | a @© ab @ bc @ abd & acd +
B4.26 | 192 | a @ ab @ cd @ abc @ acd + +
B4.27 | 384 | a @ bec @ bd P abd P acd + +
B4.28 | 192 | a © bc @ bd @ acd P bed +
B4.29 | 192 | a @ ab @ abc @ abd @ bed —+ +
B4.30 | 384 | a ® bc @ abec @ abd B acd +
B4.31 48 | ab® ac @ ad G be @ bd + +
B4.32 1384 |a®bPcdabd ad @ bed —+ +
B4.33 192 |a®b® cP ad @ abe @ bed +
B4.34 1384 |a®b® cP® ad P abd P bed —+ +
B4.35 24 |a®bPDab@® ac P bd P cd —+ +
B4.36 | 384 | a ®b® ac® cd P abc P abd + +
B4.37 1192 |a®© bP ac P cd @ abd @ acd —+ +
B4.38 1192 | a® b® ab @ abec ® abd @ acd —+ +
B4.39 | 768 a®b®ac® abd @ acd & bed +
B4.40 96 | a Db abc @ abd acd @ bed +
B4.41 96 | a D ab@® ac D bec P bd D cd + +
B4.42 | 192 | a ® ab @ bc P bd & acd & bed +
B4.43 | 384 | a © ab @ bc @ cd @ abd & acd + +
B4.44 | 384 | a @ ab @ cd B abc @ abd ® acd —+
B4.45 | 384 | a ® bc @ bd ® abec ® acd @ bed + +
B4.46 64 | aDbDcDad® abd ® acd @ bed + +
B4.47 1 384 | a® b® ac® cd @ abe P abd P acd —+ +
B4.48 | 192 | a ® b @ ab @ abc ® abd @ acd @ bed +
B4.49 | 384 | a © b @ ac @ abec @ abd @ acd P bed —+ +
B4.50 64 | a® ab@® cd D abe ® abd ® acd P bed —+ + +
B4.51 64 |laDbDcHdDabd abe @ abd B acd + +
B4.52 64 |aDbBcDab® cd P abe @ abd © acd P bed + + +

Research on Reversible Functions

99

Table 5. Representatives of NPNP-equivalence classes of reversible Boolean functions

forn =3
Class | Size | f1(a,b,c) fa(a,b,c) f3(a,b,c) BF classes
R1 48 | a b c 1.11.11.1
R2 288 | a b adc 1.11.121
R3 576 | a b c®ab 1.11.13.1
R4 144 | a b a®bdc 1.11.13.2
R5 144 | a a®b a®ec 1.1 2.1 2.1
R6 288 | a a®b bdc 1.1212.1
RT7 1152 a®b c® ab 1.12.1 3.1
R8 288 a®b a®bdc 1.1 2.1 3.2
R9 576 bdc b® ab® ac 1.1 2.1 3.3
R10 | 1152 b® ac bPcdab 1.13.13.1
R11 576 b® ac bdchac 1.1 3.1 3.1
R12 2304 b @ ac c® abd ac 1.1 3.1 3.3
R13 576 b®d ac adbdcdac 1.1 3.2 3.1
R14 576 adbde b®ab® ac 1.1 3.2 3.3
R15 288 | a b ab @ ac c@® abd ac 1.1 3.3 3.3
R16 288 | a b®dab® ac a®cdab®ac 1.1 3.3 3.3
R17 144 | a B b a®ec a®bPc 2.1 2.1 3.2
R18 576 |a b a®c ab @ ac @ be 2.1 2.1 3.4
R19 576 |a® b c @ ab a®cdab 2.1 3.1 3.1
R20 1152 |a b c @ ab a® ac@ be 2.1 3.1 3.3
R21 1152 |a @b c@ ab a®c®abd ac@ be 2.1 3.1 3.4
R22 576 |a®b adbdec a® ac @ be 2.1 3.2 3.3
R23 288 |a @b a @ ac P be a®cdac®d be 2.1 3.3 3.3
R24 288 |adb a @ ac @ be b®cd ac® be 2.1 3.3 3.3
R25 1152 |a b a @ ac ® be a®cdab®ac® be 2.1 3.3 34
R26 576 |a ® b ab @ ac @ be a®chdab® acd be 2.13434
R27 2304 | a @ be a®bdac c® ab®ac 3.1 3.1 3.3
R28 384 | a® be a®b®dac adPbdcdadb 3.13.1 3.1
R29 1152 | a @ be a®bdac a®bPcdac 3.13.13.1
R30 1152 | a @ be a®bdac b®cdac® be 3.1 3.1 3.3
R31 1152 | a &P be a®bdac a®cdab®ac® be 3.13.134
R32 576 a @ be a®bd be a®cdbe 3.1 3.1 3.1
R33 1152 | a @ be a®bd be c® ab® be 3.13.1 3.3
R34 576 | a P be b®d ab @ ac c® ab® ac 3.1 3.33.3
R35 2304 | a @ be b ab @ ac c@® ab @ be 3.1 3.3 3.3
R36 576 | a @ be b®dab® ac adbdcdbe 3.1 3.3 3.1
R37 1152 | a @ be b® ab® ac a®chab® ac 3.1 3.33.3
R38 1152 | a @ be b @ ac @ be b®cPab@ be 3.1 3.3 3.3
R39 1152 | a @ be b®d ac @ be b®cP ac® be 3.1 3.3 3.3
R40 2304 | a @ be b® ac® be a®chab® ac® be 3.13.334
R41 576 | a @ be a®dbdcdbe a®b®ab® ac @ be 3.1 3.1 3.4
RA42 576 | a @ be a@bDabPacHbe | aDcdab® ac® be 3.13.434
R43 1152 |apbP c a ® ab P be b@ ac @ be 3.23.33.3
R44 288 ladbdc a @ ab @ be c@® ab® be 3.2 3.3 3.3
R45 288 |ad®bdc a @ ab® be a®bd®ab® be 3.23.33.3
R46 384 | a B ab P be b® ac® be c@ ab® ac 3.33.33.3
RAT 1152 | a @ ab @ be b @ ac @ be a®cd®acd be 3.33.33.3
R48 1152 | a P ab @ be b®d ac @ be b®chdab® ac D be 3.33.334
R49 576 | a B ab P be c® ab @ be a®bdabd be 3.33.33.3
R50 576 | a @ ab @ be c@ ab @ be a®dbdab®d ac @ be 3.33.334
R51 576 | a B ab @ be adbdabPBacBdbe bDchHab® ac® be 3.33434
R52 192 |ab@® ac® bec |aDbd ab® ac P be a@cHab®acdbec | 3.43.434

100 P. Kerntopf et al.

— one pair is in Part A, rows 13 and 14 (both representatives belong to our class
R40),

— the other pair: Part C, column 1, row 10, and Part C, column 2, row 11 (both
representatives belong to our class R45).

Thus, 4 out of 52 NPNP-equivalence classes of 3x3 reversible functions are not
represented in Lorens’ Table VI.

In Table 4, in comparison with [19], we added sizes of the classes and informa-
tion showing to which NPN-equivalence class of balanced functions each of the
component functions belongs. The latter information was useful in our extrapo-
lation of some properties of reversible functions [16] (for an example see Sect. 7).

7 Extrapolation Based on Cycle Structures

In [11,12] it has been demonstrated that it is possible to extrapolate some prop-
erties of reversible functions by considering their cycle structures. This is why
we tried to exploit the same approach to discover infinite sequences of reversible
functions with all their component functions being non-degenerate and belong-
ing to different P-classes. We established that there are 26 NPNP-classes of
3-variable functions (R27-R52) that possess all component functions depending
essentially on all three variables. Among them, there is only one class that con-
sists of reversible functions all whose component functions belong to different
NPN-classes. Below the PPRM expressions for a member of this class are shown:

NPNP-class R40

A=aDcDab® ac P be,
B=b® ab® ac,
C=c®ab.

The above PPRM expressions show some regular features. However, our
experience is so that extrapolation of such features of PPRMs is very difficult
because: (1) usually a component function is obtained which is not balanced,
(2) even if all PPRMs correspond to balanced functions then their collection
does not constitute a reversible function. Therefore we have decided to apply
extrapolation based on cycle structures. By considering the appropriate map-
pings {0,1}% — {0,1}? it is easy to establish that the earlier defined member of
the NPNP-class R40 has the following cycle structure:

< 000 > < 010 > < 011 > < 100 > < 001,101,111,110 > .

Research on Reversible Functions 101

Let us note that binary n-tuples in the unique cycle having more than one
element form a regular pattern:

001,
101,
111,
110.

Namely, it is easy to note that

— the first and the second n-tuples differ only in the 1st bit position,
— the second and the third n-tuples differ only in the 2nd bit position,
— the third and the fourth n-tuples differ only in the 3rd bit position.

Thus, we observe here a certain periodicity which can be easily extrapolated
leading to the desired infinite sequence of reversible functions as will be seen
later. In this case, extrapolating was quite simple. Let us introduce additional
notions.

Definition 16. A set of variable assignments over {0, 1} with specified numbers
of p Os and r 1s is called a block and denoted by by, .

Example 10. The set of all eight variable assignments for 3-variable Boolean
functions can be partitioned into the following four blocks:

bso = {000}, by = {001,010,100}, by o = {011,101,110}, bos = {111}
|

Definition 17. For any Boolean function f let B(f) and B'(f) denote the
sets of blocks including all variable assignments for which f is equal 0 and 1,
respectively.

Example 11. Let us consider the following Boolean projection functions:

f(I1,9327I3) =T, g($1,~’027$3) = T2, h(ﬂflﬂﬁz,zs) = I3.

Then,

BO(f) = {{000}, {001,010}, {011}}, B(f) = {{100}, {101,110}, {111}},
B%(g) = {{000}, {001,100}, {101}}, B'(g) = {{010}, {011,110}, {111}},
BO(h) = {{000}, {010,100}, {110}}, B'(h) = {{001}, {011,101}, {111}}.

Notice that for each 3-variable Boolean reversible function k the union of
BO(k) and BY(k) is equal to the set of all 8 Boolean variable assignments. For
each of the component functions of an arbitrary reversible function cardinalities
of unions of their B' sets are the same. |

102 P. Kerntopf et al.

Example 12. Let wus consider a 3-variable Boolean reversible function
F(x1,x0,x3) = (f1, f2, f3) defined in such a manner that the only non-identical
mappings of variable assignments in F are as follows

001 — 101,
101 — 111,
111 — 110,
110 — 001.

When we consider the reversible function F as a permutation of output
assignments it is a single cycle of four elements:

< 001,101,111,110 > .

Notice that in the above mappings

— in the 1st row the leftmost bit is being negated,
— in the 2nd row the second bit is being negated
— in the 3rd row the third bit is being negated

in the 4th row all bits are being negated.

This observation will be generalised later to functions of any number of vari-
ables.

Now let us note what changes have been done in the sets B;, 0 < ¢ <1, for
functions f1, fa, and f3, in comparison with the sets for the function in Exam-
ple 11 (the assignments moved to another block are shown bolded and underlined):

B%(f1) = {{000}, {010}, {011,110}}, B'(f1) = {{001,100}, {101}, {111}},
BY(f2) = ({000}, {001, 100}, {110}}, B(f2) = {{010}, {011,101}, {111}}.

Let us summarise the above observations.
The values of the function f1 differ from the values of the projection function
x1 only for the assignments 001 and 110. Namely, we can notice that

£(0,0,1) =0 £1(0,0,1) =1,
f(1,1,0) =1 f1(1,1,0) = 0.

As a result, the function fi1 can be obtained from the projection function 1
by swapping its values for variable assignments 001 and 110.

Values of each of the other two component functions, fo and f3, also differ
from the values of the corresponding projection functions only for two assign-
ments.

Research on Reversible Functions 103

Swaps for fao in comparison with the projection function xo are as follows:

9(1,0,1)=0 f2(1,0,1) =1,
9(17130):1 f2(13130):0

Swaps for f3 in comparison with the projection function xs are as follows:

Let us show that component functions f1 and fo belong to different P-equiv-
alence classes. Assume that fi and fo belong to the same P-equivalence class.
Then, since any permutation over the variable set {x1,x9,x3} does not change
the assignment 111 there should be f1(1,1,1) = fo(1,1,1), however, f1(1,1,1) =
0 and f3(1,1,1) = 1. It is in contradiction with our assumption that fi and
fa belong to the same P-equivalence class. Thus, f1 and fo belong to different
P-equivalence classes.

In a similar manner it can be shown that the other two pairs of component
functions of F', (f1, f3) and (f2, f3), belong to different P-equivalence classes.

Let us show that component functions fi and f3 belong to different P-equi-
valence classes. Assume that f1 and f3 belong to the same P-equivalence class.
Then, since any permutation over variable set {x1,x2,x3} does not change the
assignment 111 there should be f1(1,1,1) = f3(1,1,1), however f1(1,1,1) =0
and f3(1,1,1) = 1. It is in contradiction with our assumption that f1 and f3
belong to the same P-equivalence class. Thus, fi and f3 belong to different P-
equivalence classes.

Let us show that component functions fa and f3 belong to different P-equivale-
nce classes. Assume that fo and f3 belong to the same P-equivalence class. Then,
let us consider the permutation of variables consisting in swapping variables xo
and x3. Then there should be f2(1,0,0) = f3(1,0,0), however f2(1,0,0) =0 and
f3(1,0,0) = 1. It is in contradiction with our assumption that fo and f3 belong to
the same P-equivalence class. Thus, fo and f3 belong to different P-equivalence
classes. |

Now the presented above methodology of proving that two component func-
tions of F' belong to different P-equivalence classes will be extended to Boolean
reversible functions of any number of variables. To prove that Boolean reversible
functions with all component functions belonging to different P-equivalence
classes exist for any number of variables n > 3, we will define the following
infinite sequence of reversible functions:

Definition 18. The reversible Boolean function H™(x1,x9,...,2,) = (f1,
fas-ooy fn), n >3, is defined in such a manner that the only non-identical map-
pings of variable assignments in H™ are as follows:

104 P. Kerntopf et al.

a1 ag ... ap—1 Ay,
l
a; az ... ap—1 Qp

where the starting variable assignment is as follows:
ai1a2as . ..0an_16, = 000...01.

Notice that in the ith row of the mappings in Definition 18, 1 < ¢ < n, the
ith bit is being negated, and in the last mapping, all bits are being negated.

When we consider the function H™ as a permutation of variable assignments
it is a cycle of n + 1 elements:

<a1,09,...,0p-1, Qp,
alla ag, ..., p—-1, Qn,
ay, ab, ..., Qp_1, an,
a/l’a/27 7a;flaanv
ay, ab, ..., al_q, al, >.

Theorem 7. Each nxn function H" is reversible for any n > 3, where H™ is
formulated in Definition 18.

Proof. Because non-identical mappings of variable assignments in H™ form
a cycle, this function is bijective for any n > 3. Hence, it is reversible. O

In a manner similar to Example 12 we proved in [16] that the following result
holds.

Theorem 8. Any two component functions of the Boolean reversible function
H" belong to different P-equivalence classes for n > 3.

It is obvious that by Theorem 8 the following result holds:

Corollary 4. For any n > 3 there exist binary reversible functions having all
component functions that belong to different P-equivalence classes.

8 Conclusions and Future Work

The chapter presents our results on properties of component functions of Boole-
an reversible functions. The solved problems were described briefly in Sects. 4,
5, 6 and 7. They can be summarised as follows:

(A) For any n > 3 there does not exist a Boolean reversible function with all
component functions being non-degenerate and

(©)

Research on Reversible Functions 105

totally symmetric,

— linear/affine,

— monotone,

— majority,

— threshold.

For any n > 3 there exists a Boolean reversible function with all component
functions being nondegenerate and

— mnonlinear,

— self-complementary,

— self-dual,

— unate.

— P-equivalent.

For any n > 3 there exists a Boolean reversible function with all component
functions being non-degenerate and belonging to different P-equivalence
classes.

Our work has not been finished. We plan to continue efforts for constructing
a classification of reversible Boolean functions which would be useful in the
synthesis of reversible circuits.

Acknowledgements. The authors acknowledge partial support of COST Action
1C1405 on “Reversible Computation - Extending Horizons of Computing”. They are
grateful to Philipp Niemann, one of the reviewers, for many comprehensive remarks.

References

. Aaronson, S., Grier, D., Schaeffer, L.: The classification of reversible bit operations.

Preprint arXiv:1504.05155 [quant-ph] (2015)

Carié¢, M., Zivkovié, M.: On the number of equivalence classes of invertible Boolean
functions under action of permutation of variables on domain and range. Publica-
tions de I'Institut Mathématique 100(114), 95-99 (2016)

Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer,
P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, pp. 398-472. Cambridge University Press, Cambridge (2010)

De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and
Applications. Wiley-VCH Verlag, Weinheim (2010)

Debnath, D., Sasao, T.: Fast Boolean matching under variable permutation using
representative. In: Proceedings of the Asia and South Pacific Design Automation
Conference, pp. 359-362 (1999)

Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean match-
ing in large libraries. In: Proceedings of the Asia and South Pacific Design Automa-
tion Conference, pp. 591-596 (2004)

Debnath, D., Sasao, T.: Fast Boolean matching under permutation by efficient com-
putation of canonical form. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E87—A(12), 3134-3140 (2004)

Debnath, D., Sasao, T.: Efficient computation of canonical form under variable
permutation and negation for Boolean matching in large libraries. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E89—A (12), 3443-3450 (2006)

http://arxiv.org/abs/1504.05155

106

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Kerntopf et al.

Draper, T.G.: Nonlinear complexity of Boolean permutations. Ph.D. thesis,
Department of Mathematics, University of Maryland, College Park, Maryland,
USA (2009)

Harrison, M.A.: The number of classes of invertible Boolean functions. J. ACM
10, 25-28 (1963)

Jegier, J., Kerntopf, P.: Progress towards constructing sequences of benchmarks for
quantum Boolean circuits synthesis. In: Proceedings of the 14th IEEE International
Conference on Nanotechnology, pp. 250-255 (2014)

Jegier, J., Kerntopf, P., Szyprowski, M.: An approach to constructing reversible
multi-qubit benchmarks with provably minimal implementations. In: Proceedings
of the 13th IEEE International Conference on Nanotechnology, pp. 99-104 (2013)
Kerntopf, P., Moraga, C., Podlaski, K., Stankovi¢, R.: Towards classification of
reversible functions. In: Steinbach, B. (ed.) Proceedings of the 12th International
Workshop on Boolean Problems, pp. 21-28 (2018)

Kerntopf, P., Moraga, C., Podlaski, K., Stankovi¢, R.: Towards classification of
reversible functions with homogeneous component functions. In: Steinbach, B. (ed.)
Further Improvements in the Boolean Domain, pp. 386—406. Cambridge Scholars
Publishing, Newcastle upon Tyne (2018)

Kerntopf, P., Podlaski, K., Moraga, C., Stankovi¢, R.: Study of reversible ternary
functions with homogeneous component functions. In: Proceedings of the 47th
IEEE International Conference on Multiple-Valued Logic, pp. 191-196 (2017)
Kerntopf, P., Podlaski, K., Moraga, C., Stankovi¢, R.: New results on reversible
Boolean functions having component functions with specified properties. In: Drech-
sler, R., Soeken, M. (eds.) Advanced Boolean Techniques, pp. 217-236. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-20323-8_10

Kerntopf, P., Stankovié, R., Podlaski, K., Moraga, C.: Ternary/MYV reversible func-
tions with component functions from different equivalence classes. In: Proceedings
of the 48th IEEE International Conference on Multiple-Valued Logic, pp. 109-114
(2018)

Lorens, C.S.: Invertible Boolean functions. Tech. rep. 21, Space-General Corp., El
Monte, CA, Research Memorandum (1962)

Lorens, C.S.: Invertible Boolean functions. IEEE Trans. Electron. Comput. EC—
13(5), 529-541 (1964)

Primenko, E.A.: Invertible Boolean functions and fundamental groups of transfor-
mations of algebras of Boolean functions. Avtomatika & Vychislitelnaya Tekhnika
3, 17-21 (1976)

Primenko, E.A.: On the number of types of invertible Boolean functions.
Avtomatika & Vychislitelnaya Tekhnika 6, 12-14 (1977)

Primenko, E.A.: On the number of types of invertible transformations in multival-
ued logic. Kibernetika 5, 27-29 (1977)

Primenko, E.A.: Equivalence classes of invertible Boolean functions. Kibernetika
6, 1-5 (1984)

Rice, J.E.: Considerations for determining a classification scheme for reversible
Boolean functions. Tech. rep. TR-CSJR2-2007, Department of Mathematics and
Computer Science, University of Lethbridge, Lethbridge, Alberta, Canada (2007)
Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits: a survey.
ACM Comput. Surv. 45(2), 21:1-21:34 (2013)

Soeken, M., Abdessaied, N., De Micheli, G.: Enumeration of reversible functions
and its application to circuit complexity. In: Devitt, S., Lanese, I. (eds.) RC 2016.
LNCS, vol. 9720, pp. 255-270. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40578-0_19

https://doi.org/10.1007/978-3-030-20323-8_10
https://doi.org/10.1007/978-3-319-40578-0_19
https://doi.org/10.1007/978-3-319-40578-0_19

27.

28.

29.

30.

31.

Research on Reversible Functions 107

Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of
large Boolean functions for reversible logic. ACM J. Emerg. Technol. Comput.
Syst. 12(4), 41:1-41:26 (2015)

Stankovié, R.S., Astola, J.T., Steinbach, B.: Former and recent work in classifica-
tion of switching functions. In: Steinbach, B. (ed.) Proceedings of the 8th Interna-
tional Workshop on Boolean Problems, pp. 115-126 (2008)

Strazdins, .LE.: On the number of types of invertible binary networks. Avtomatika
& Vychislitelnaya Tekhnika 1, 30-34 (1974)

Tokareva, N.: Bent Functions, Results and Applications to Cryptography. Aca-
demic Press, London (2015)

Tsai, C.C., Marek-Sadowska, M.: Boolean functions classification via fixed polarity
Reed-Muller forms. IEEE Trans. Comput. 46(2), 173-186 (1997)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

A Case Study for Reversible Computing:
Reversible Debugging of Concurrent
Programs

James Hoey!, Ivan Lanese?, Naoki Nishida®, Irek Ulidowski',
and Germéan Vidal*®

1 School of Informatics, University of Leicester, Leicester, UK
{jbh11/iu3}@leicester.ac.uk
2 Focus Team, University of Bologna/Inria, Bologna, Italy
ivan.lanese@gmail.com
3 Graduate School of Informatics, Nagoya University, Nagoya, Japan
nishida@i.nagoya-u.ac.jp
4 MiST, VRAIN, Universitat Politécnica de Valéncia, Valencia, Spain
gvidal@dsic.upv.es

Abstract. Reversible computing allows one to run programs not only in
the usual forward direction, but also backward. A main application area
for reversible computing is debugging, where one can use reversibility
to go backward from a visible misbehaviour towards the bug causing
it. While reversible debugging of sequential systems is well understood,
reversible debugging of concurrent and distributed systems is less settled.
We present here two approaches for debugging concurrent programs, one
based on backtracking, which undoes actions in reverse order of execution,
and one based on causal consistency, which allows one to undo any action
provided that its consequences, if any, are undone beforehand. The first
approach tackles an imperative language with shared memory, while the
second one considers a core of the functional message-passing language
Erlang. Both the approaches are based on solid formal foundations.

1 Introduction

Reversible computing has been attracting interest due to its applications in fields
as different as, e.g., hardware design [12], computational biology [4], quantum
computing [2], discrete simulation [6] and robotics [31].

One of the oldest and more explored application areas for reversible comput-
ing is program debugging. This can be explained by looking, on the one hand, to

This work has been partially supported by COST Action IC1405 on Reversible Com-
putation - Extending Horizons of Computing. The second author has been partially
supported by the French National Research Agency (ANR), project DCore n. ANR-
18-CE25-0007. The third author has been partially supported by JSPS KAKENHI
Grant Number JP17TH01722. The last author has been partially supported by the EU
(FEDER) and the Spanish MICINN/AEI under grant TIN2016-76843-C4-1-R and by
the Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust).

© The Author(s) 2020

I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 108-127, 2020.
https://doi.org/10.1007/978-3-030-47361-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_5

Reversible Debugging of Concurrent Programs 109

the relevance of the problem, and, on the other hand, to how naturally reversible
computing fits in the picture. Concerning the former, finding and fixing bugs
inside software has always been a main activity in the software development life
cycle. Indeed, according to a 2014 study [47], the cost of debugging amounts to
$312 billions annually. Another recent study [3] estimates that the time spent in
debugging is 49.9% of the total programming time. Concerning how naturally
reversible computing fits in this context, consider that debugging means finding
a bug, i.e., some wrong line of code, causing some visible misbehaviour, i.e., a
wrong effect of a program, such as a wrong message printed on the screen. In
general, the execution of the wrong line precedes the wrong visible effect. For
instance, a wrong assignment to a variable may imply a misbehaviour later on,
when the value of the variable is printed on the screen. Usually, the programmer
has a very precise idea about which line of code makes the misbehaviour visible,
but a non trivial debugging activity may be needed to find the bug. Indeed,
debugging practice requires to put a breakpoint before the line of code where
the programmer thinks the bug is, and use step-by-step execution from there
to find the wrong line of code. However, the guess of the location of the bug is
frequently wrong, causing the breakpoint to occur too late (after the bug) and
a new execution with an updated guess is often needed. Reversible debugging
practice is more direct: first, run the program and stop when the visible misbe-
haviour is reached; then, execute backwards (possibly step-by-step) looking for
the causes of the misbehaviour until the bug is found.

With these premises, it is no surprise that reversible debugging has been
deeply explored, as shown for instance by the survey in [11]. Indeed, many debug-
gers provide features for reversible execution, including popular open source
debuggers such as GDB [8] as well as tools from big corporations such as
Microsoft, the case of WinDbg [34].

However, the problem is far less settled for concurrent and distributed pro-
grams. We remark that nowadays most of the software is concurrent, either since
the platform is distributed, the case of Internet or the Cloud, or to overcome the
advent of the power wall [46]. Finding bugs in concurrent and distributed soft-
ware is more difficult than in sequential software [33], since faults may appear
or disappear according to the speed of the different processes and of the net-
work communications. The bugs generating these faults, called Heisenbugs, are
thus particularly challenging because they are rather difficult to reproduce. Two
approaches to reversible debugging of concurrent systems have been proposed.
Using backtracking,' actions are undone in reverse order of execution, while using
causal-consistent reversibility [25] actions can be undone in any order, provided
that the consequences of a given action, if any, are undone beforehand. Note
that, by exploring a computation back and forth using either backtracking or
causal-consistent reversibility one is guaranteed that Heisenbugs that occurred
in the computation will not disappear.

! Backtracking sometimes refer to the exploration of a set of possibilities: this is not
the case here, since backward execution is (almost) deterministic.

110 J. Hoey et al.

This paper will present two lines of research on debugging for concurrent
systems developed within the European COST Action 1C1405 on “Reversible
Computation - Extending Horizons of Computing” [23]. They share the use of
state saving to enable backward computation (this is called a Landauer embed-
ding [24], and it is needed to tackle languages which are irreversible) and a formal
approach aiming at supporting debugging tools with a theory guaranteeing the
desired properties. The first line of research [20-22] (Sect. 3) supports backtrack-
ing (apart from some non relevant actions) for a concurrent imperative language
with shared memory, while the second line of research [28-30,36] (Sect.4) sup-
ports causal-consistent reversibility for a core subset of the functional message-
passing language Erlang. We will showcase both the approaches on the same
airline booking example (Sect.2), coded in the two languages. Related work is
discussed in Sect. b5 and final remarks are presented in Sect. 6.

2 Airline Booking Example

In this section we will introduce an example program that contains a bug, and
discuss a specific execution leading to a corresponding misbehaviour. This exam-
ple will be used as running example throughout the paper. We will show this
example in the two programming languages needed for the two approaches men-
tioned above. We begin by introducing each of these languages.

2.1 TImperative Concurrent Language

Our first language is much like any while language, consisting of assignments,
conditional statements and while loops. Support has also been added for block
statements containing the declaration of local variables and/or procedures, as
well as procedure call statements. Further to this, removal statements are intro-
duced to “clean up” at the end of a block, where any variables or procedures
declared within the block are removed. Our language also contains unique names
given to each conditional, loop, block, procedure declaration and call state-
ment, named construct identifiers (represented as i1.0, w1.0, b1.0, etc.), and
sequences of block names in which a given statement resides named paths (rep-
resented as pa). Both of these are used to handle variable scope, allowing one to
distinguish different variables with the same name. The final addition to our lan-
guage is interleaving parallel composition. A parallel statement, written P par Q
allows the execution of the programs P and Q to interleave. All statements except
blocks contain a stack A that is used to store identifiers (see below). The syntax
of our language follows, where € represents an empty program. Note that ¢ is
the neutral element of sequential and parallel composition. We write (pa,A)?
to denote the fact that (pa,A) is optional. We also write In, Wn, Bn, Cn to
range, respectively, over identifiers for conditionals, while loops, blocks and call
statements. Also, n refers to the name of a procedure.

Reversible Debugging of Concurrent Programs 111

Pi:=¢|S|P; P|P par P
S :=skip (pa,A)? | X = E (pa,A) | if In B then P else Q end (pa,A)
| while Wn B do P end (pa,A) | begin Bn BB end | call Cn n (pa,A)
BB ::=DV; DP; P; RP; RV
DV:=¢|var X = v (pa,A); DV DP::=¢ | proc Pn n is P end (pa,A); DP
RV:=¢ | remove X = v (pa,A); RV RP:=¢ | remove Pn n is P end (pa,A); RP

Operational Semantics. Our approach (see [20] for a detailed explanation)
to reversing programs starts by producing two versions of the original program.
The first one, named the annotated version, performs forward execution and
saves any information that would be lost in a normal computation but is needed
for inversion (named reversal information and saved into our auxiliary store ¢).
Identifiers are assigned to statements as we execute them, capturing the inter-
leaving order needed for correct inversion. The second one, named the inverted
version, executes forwards but simulates reversal using the reversal information
as well as the identifiers to follow backtracking order. We comment here that
we use ‘inversion’ to refer to both the process of producing the program code
of the inverted version (program inverter [1]), and to the process of executing
the inverted version of a program. A reverse execution computes all parallel
statements as in a forward execution, but it uses identifiers to determine which
statement to invert next (instead of nondeterministically deciding). For pro-
grams containing many nested parallel statements, the overhead of determining
the correct interleaving order increases, though we still deem this as reasonable
[19]. Note that using a nondeterministic interleaving for the reverse execution
is not possible, since it is not guaranteed to behave correctly (e.g., requiring
information from the auxiliary store that is not there may cause an execution to
be stuck). However, a small number of execution steps, including closing a block
and removing a skip, do not use an identifier and can therefore be interleaved
nondeterministically during an inverse execution. Forward and reverse execution
are each defined in terms of a non-standard, small step operational semantics.
Our semantics perform both the expected execution (forward and reverse respec-
tively) and all necessary saving/using of the reversal information. Consider the
example rule [D1a] for assignments, which is a reversibilisation of the traditional
irreversible semantics of an assignment statement [51].

m=next() (e pald,o,v0) <% (v]do,v0) evalV(y,pa,X)=1
(X = o (a,0) | 6,0,7,0) 2 (skip mi& | 8[(m,0(1) — X,ofl — v},7,0)

[D1a]

As shown here, this rule consists of the evaluation of the expression e to the
value v, evaluation of the variable X to a memory location 1 and finally the
assigning of the value v to the memory location 1 as expected. Alongside this,
the rule also pushes the old value of the variable (the current value held at the
memory location, namely (1)) onto the stack for this variable name within §
(6[(m,0(1)) — X], where — denotes a push operation). This old value is saved
alongside the next available identifier m, returned via the function next () and
used within the rule to record interleaving order (represented using the labelled

112 J. Hoey et al.

program = fun, ... fun,
fun = ai1(p11, ..., Pin,) When g1 — e1;
;I;T.L(pml, .., Pmnm) When gn, — e, .
e dexpr == X |literal | [e1|ez] | {e1,...,en} | aler,...,en) | p=e|e1,e2
| receive ci;...;cn end | spawn(mod, a, [e1, ..., exn]) | e1 ez | self()
¢ D clause ::= p when g — ¢ p 3 pat == X | literal | [p1|p2] | {p1,...,pn}

Fig. 1. Language syntax rules

arrow 2) This identifier m is also inserted into the stack A corresponding to
this specific assignment statement, represented as m: A.

Now consider the rule [D1r] from our inverse semantics for reversing assign-
ments (that executed forwards via [Dlal).

A=m:A" m=previous() I(X) = (m,v):X' evalV(y,pa,X)=1

D1 o
(X = e (pa,h) | §,0,00) ~ (skip A | §[X/X], 01 — v],00)

This rule first ensures this is the next statement to invert using the identifier
m, which must match the last used identifier (previous()) and be present in
both the statements stack (A = m:A’) and the auxiliary store alongside the old
value (§(X) = (m,v):X’). Provided this is satisfied, this rule then removes all
occurrences of m, and assigns the old value v retrieved from ¢ to the corresponding
memory location. Note that e appears exactly as in the original version but it is
not evaluated, and that the functions next () and previous() both update the
next and previous identifiers respectively as a side effect.

2.2 Erlang

Our second approach deals with a relevant fragment of the functional and con-
current language Erlang. We show in Fig.1 the syntax of its main constructs,
focusing on the ones needed in our running example. We drop from the syntax
some declarations related to module management, which are orthogonal to our
purpose in this paper.

A program is a sequence of function definitions, where each function has a
name (an atom, denoted by a) and is defined by a number of equations of the
form a;(pi1, ..., Din;) When g; — e;, where p;1, ..., pin, are patterns (i.e.,
terms built from variables and data constructors), g; is a guard (typically an
arithmetic or relational expression only involving built-in functions), and e; is
an arbitrary expression. As is common, the variables in p;1, ..., Din, are the
only variables that may occur free in g; and e;. The body of a function is an
expression, which can include variables, literals (i.e., atoms, integers, floating
point numbers, the empty list [], etc.), lists (using Prolog-like notation, i.e.,
[e1]ea] is a list with head e; and tail es), tuples (denoted by {ei,...,en}),?

2 The only data constructors in Erlang (besides literals) are the predefined functions
for lists and tuples.

Reversible Debugging of Concurrent Programs 113

function applications (we do not consider higher order functions in this paper
for simplicity), pattern matching, sequences (denoted by comma), receive expres-
sions, spawn (for creating new processes), “I” (for sending a message), and self.
Note that some of these functions are actually built-ins in Erlang.

In contrast to expressions, patterns are built from variables, literals, lists, and
tuples. Patterns can only contain fresh variables. In turn, values are built from
literals, lists, and tuples (i.e., values are ground patterns). In Erlang, variables
start with an uppercase letter.

Let us now informally introduce the semantics of Erlang constructions. In the
following, substitutions are denoted by Greek letters o, 6, etc. A substitution o
denotes a mapping from variables to expressions, where Dom(c) is its domain.
Substitution application o(e) is also denoted by eo.

Given the pattern matching p = e, we first evaluate e to a value, say v; then,
we check whether v matches p, i.e., there exists a substitution o for the variables
of p with v = po (otherwise, an exception is raised). Then, the expression reduces
to v, and variables are bound according to o. Roughly speaking, a sequence
(p = e1, e2) is equivalent to the expression let p = ey in ez in most functional
programming languages.

A similar pattern matching operation is performed during a function applica-

tion a(eq,...,e,). First, one evaluates eq, ..., e, to values, say vi,...,v,. Then,
we scan the left-hand sides of the equations defining the function a until we find
one that matches a(vy,...,v,). Let a(p1,...,pn) when g — e be such equation,

with a(vy,...,v,) = a(p1,...,pn)o. Here, we should also check that the guard,
go, reduces to true. In this case, execution proceeds with the evaluation of the
function’s body, ec.

Let us now consider the concurrent features of our language. In Erlang, a run-
ning system can be seen as a pool of processes that can only interact through
message sending and receiving (i.e., there is no shared memory). Received mes-
sages are stored in the queues of processes until they are consumed; namely,
each process has one associated local (FIFO) queue. A process is uniquely iden-
tified by its pid (process identifier). Message sending is asynchronous, while
receive instructions block the execution of a process until an appropriate mes-
sage reaches its local queue (see below).

We consider the following functions with side-effects: self, , spawn, and
receive. The expression self() returns the pid of a process, while p ! v evaluates
to v and, as a side-effect, sends message v to the process with pid p, which
will be eventually stored in p’s local queue. New processes are spawned with
a call of the form spawn(mod,a,[v1,...,v,]), where mod is the name of the
module declaring function a, and the new process begins with the evaluation of
the function application a(vy, ..., v,). The expression spawn(mod, a, [v1, ..., v,])
returns the (fresh) pid assigned to the new process.

Finally, an expression “receive p; when g1 — e1;...;p, when g, — e, end”
should find the first message v in the process’ queue (if any) such that v matches
some pattern p; (with substitution o) and the instantiation of the corresponding
guard g;o reduces to true. Then, the receive expression evaluates to e;o, with

“'77

114 J. Hoey et al.

the side effect of deleting the message v from the process’ queue. If there is no
matching message in the current queue, the process suspends until a matching
message arrives.

2.3 Airline Code

We are now ready to describe the example. Consider a model of an airline book-
ing system, where multiple agents sell tickets for the same flight. In order to
keep the example concise, we consider only two agents selling tickets in parallel,
with three seats initially available. The code of the example is shown in List-
ing 1.1, written in the concurrent imperative programming language described
in Sect. 2.1.

The code contains two while loops operating in parallel (lines 10-16 and 18-
24), where each loop models the operation of a single agent. Let us consider the
first loop. For each iteration, the agent checks whether any seat remains (line
11). As long as the number of currently available seats is greater than zero, the
agent is free to sell a ticket via the procedure named sell (called at line 12).
Once the number of available tickets has reached zero, each agent will then close,
terminating its loop.

As previously mentioned, this program can show a misbehaviour under cer-
tain execution paths. Recall the simplified setting of three initially available
seats. Consider an execution that begins with each agent selling a single ticket
(allocating one seat) via one full iteration of each while loop (the interleaving
among the two iterations is not relevant). At this point, both agents remain open
(since agentl = 1 and agent2 = 1), and the current number of seats is 1. Now
assume that the execution continues with the following interleaving. The condi-
tion of each while loop is checked, both of which will evaluate to true as each
agent is open. Next, the execution of each loop body begins with the evaluation
of the guard of each conditional statement. They will both evaluate to true, as
there is at least one seat available. At this point, each agent is committed to
selling one more ticket, even if only one seat is available. The rest of the execu-
tion can then be finished under any interleaving. The important thing to note
here is that the final number of free seats is —=1. This is an obvious misbehaviour,
as the two agents allocated four tickets when only three seats were available.
This misbehaviour occurs since the programmer assumed that the checking for
an available seat and its allocation were atomic, but there is no mechanism
enforcing this.

Listing 1.2 shows the same example coded in Erlang. A call to the initial
function, main, spawns two processes (the agents) that start with the execution
of function calls agent(1,Main) and agent(2,Main), respectively. Here, Main
is a variable with the pid of the main process, which is obtained via a call to the
predefined function self.

Then, at line 8, the main process calls to function seats with argument 3 (the
initial number of available seats). From this point on, the main process behaves
as a server that executes a potentially infinite loop that waits for requests and
replies to them. Here, the state of the process is given by the argument Num which

Reversible Debugging of Concurrent Programs 115

1 seats = 3;

2 begin b0.0

3 var agentl = 1;

4 var agent2 = 1;

5 proc p0.0 sell is

6 seats = seats - 1;

7 end;

8

9 par {

10 while w0.0 (agentl == 1) do
11 if i0.0 (seats > 0) then
12 call c0.0 sell;

13 else

14 agentl = 0;

15 end;

16 end ;

17 r A

18 while w1.0 (agent2 == 1) do
19 if i1.0 (seats > 0) then
20 call c1.0 sell;

21 else

22 agent2 = 0;

23 end;

24 end ;

256}

26 remove proc p0.0 sell end;
27 remove var agent2 = 1;

28 remove var agentl = 1;

29 end

Listing 1.1. Airline booking example in a concurrent imperative language. All paths
and identifier stacks are omitted as these are inserted automatically.

represents the current number of available seats. The server accepts two kinds of
messages: {num0fSeats,Pid}, a request to know the current number of available
seats, and {sell,Pid}, to decrease the number of available seats (analogously
to the procedure sell in Listing 1.1). In the first case, the number of available
seats is sent back to the agent that performed the request (Pid ! Num); in the
second case, the number of the booked seat is sent.> The behaviour of the agents
(lines 17-23) is simple. An agent first sends a request to know the number of
available seats, Pid ! {numOfSeats,self ()}, where self () is required for the
main process to be able to send a reply back to the sender. Then, the agent
suspends its execution waiting for an answer {seats,Num}: if Num is greater than
zero, the agent sends a new message to sell a seat (Pid ! {sell,self()}) and

3 We note that the number of the booked seat, Num, is not used by function agent
in our example, but might be used in a more realistic program. We keep this value
anyway since it will ease the understanding of the trace in Sect. 4.

116 J. Hoey et al.

1 -module(airline).

2 -export([main/0,agent/2]).

3 8

4 main() ->

5 Main = self (),

6 spawn (?MODULE, agent, [1,Main]),

7 spawn (?MODULE, agent, [2,Main]),

8 seats (3).

9

10 seats(Num) ->

11 receive

12 {num0fSeats ,Pid} -> Pid ! {seats,Num}, seats(Num);
13 {sell,Pid} -> io:format("Seat sold!~n"),

14 Pid ! {booked,Num},seats(Num-1)

15 end.

16

17 agent (NAg,Pid) ->

18 Pid ! {numOfSeats,self()},

19 receive

20 {seats,Num} when Num > 0 -> Pid ! {sell,self()},
21 receive {booked,_} -> agent(NAg,Pid) end;
22 _ —-> io:format ("Agent~“p done! " n",[NAgl)

23 end.

Listing 1.2. Airline booking example, in Erlang.

receives the confirmation ({booked, });* otherwise, it terminates the execution
with the message “AgentN done!”, where N is either 1 or 2.

3 Backtracking in a Concurrent Imperative Language

In this section we describe a state-saving approach to reversibility in the con-
current imperative programming language described in Sect.2.1. We begin by
discussing our approach and its use within the debugging of the airline example
(see Sect. 2.3), along with our simulation tool [20,21].

As described in more detail in [21], we have produced a simulator implement-
ing the operational semantics of our approach. This simulator is capable of pars-
ing a program, automatically inserting removal statements, construct identifiers
and paths, and simulating both forward and reverse execution. Each execution
can be either end-to-end, or step-by-step.

We first execute the forward version of our airline example completely. This
execution produces the annotated version in Fig. 2a, where the identifier stack for
each statement has been populated capturing an interleaving order that experi-
ences the bug as outlined in Sect. 2.3. The inverted version of the airline example
is shown in Fig. 2b, where the overall statement order has been inverted. Note
that some annotations are omitted to keep this source code concise (e.g., no paths

w

4 Anonymous variables are denoted by an underscore

Reversible Debugging of Concurrent Programs 117

1 seats = 3 [0]; 1 //Expect seats=0, not seats=-1
2 begin b0.0 2 begin b0.0

3 wvar agentl =1 [1]; 3 wvar agentl = 1 [40];

4 var agent2 = 1 [2]; 4 var agent2 = 1 [39];

5 proc p0.0 sell is 5 proc p0.0 sell is

6 seats = seats - 1 [7,13,22,23]; 6 seats = seats - 1 [7,13,22,23];
7 end [31; 7 end [38];

8 8

9 par { 9 par {

10 while w0.0 (agentl == 1) do 10 while w0.0 (agentl == 1) do
11 if 10.0 (seats > 0) then 11 if 10.0 (seats > 0) then

12 call c0.0 sell [6,8,20,24]; 12 call c0.0 sell [6,8,20,24];
13 else 13 else

14 agentl = 0 [31]; 14 agentl = 0 [31];

15 end [5,9,18,26,30,32]; 15 end [5,9,18,26,30,32];

16 end [4,17,29,33]; 16 end [4,17,29,33];

7} 7} o

18 while w1.0 (agent2 == 1) do 18 while w1.0 (agent2 == 1) do
19 if i1.0 (seats > 0) then 19 if i1.0 (seats > 0) then
20 call c1.0 sell [12,14,21,25];20 call c1.0 sell [12,14,21,25];
21 else 21 else
22 agent2 = 0 [35]; 22 agent2 = 0 [35];
23 end [11,15,19,27,34,36]; 23 end [11,15,19,27,34,36];
24 end [10,16,28,37]; 24 end [10,16,28,37];
25} 25}
26 remove proc p0.0 sell end [38]; 26 remove proc p0.0 sell end [3];
27 remove var agent2 = 1 [39]; 27 remove var agent2 = 1 [2];
28 remove var agentl = 1 [40]; 28 remove var agentl = 1 [1];
29 end 29 end
30 //Finishes with seats = -1 30 seats = 3 [0];

(a) Annotated program (executed) (b) Inverted program (not yet executed)

Fig. 2. Final annotated and inverted versions of the airline example, with paths omitted

are shown). We start the debugging process at the beginning of the execution of
the inverted version (line 1 of Fig. 2b). Recall that all expressions or conditions
are not, evaluated or used during an inverse execution. Using the final program
state showing the misbehaviour (produced via the annotated execution with
seats = -1), the simulator begins by opening the block and re-declaring both
local variables and the procedure, using identifiers 40-38. From here, the execu-
tion continues with the parallel statement. The final iteration of each while loop
is reversed (simulating the inversion of the closing of each agent) using identifiers
37-28. Now the penultimate iteration of each while loop must be inverted. The
consecutive identifiers 27 and 26 are then used to ensure that each of the condi-
tional statements (lines 11 and 19) are opened, using two true values retrieved
from the reversal information saved.

The execution then continues using identifiers 25—20, where each loop almost
completes the current iteration, reversing the last time each of them allocated a

118 J. Hoey et al.

Simulator: Rev-Ex> di
|--Displaying the current while loop environment

currently executing a parallel statement
Loop Name | Program

| while we.@ (agentlOpen == 1) do

| if i@.2 (numOfSeats > @) then

| call c@.2 sellTicket(be.9;) [6, 8]
| else

| agentlOpen = @ (b@.9;) []

| fi (b8.8;) [5, 9, 18] <--------

| elihw (b@.@;) [4, 17]

| while wl.@ (agent20pen == 1) do

| if i1.2 (numOfSeats > @) then

| call c1.2 sellTicket(be.@;) [12, 14]
| else

| agent20pen = @ (be.e;) []

| fi (be.e;) [11, 15, 19] <--------

| elihw (be.e;) [1@, 16]

Fig. 3. Stopping position of the inverse execution (containing paths automatically
inserted by the simulator)

seat. This produces the state where seats = 1, and where the next available step
is to close either of the inverse conditional statements. Though the identifiers
ensure we must start by closing the conditional with identifier 19, the fact that
both can be closed implies that both are open at the same time. This current
position within the inverse execution is shown in Fig.3, where the command
‘display loops’ outputs all current while loops (agents) with arrows indicating
the next statement to be executed. It is clear from our semantics (see [20]) that
the closing of an inverted conditional is the reverse of opening its forward version.
Since the two conditionals have been opened using consecutive identifiers, one
can see that each committed to selling a ticket. Given that the current state has
seats = 1, this execution commits to selling two tickets when only one remains.
It is therefore clear that this is an atomicity violation, since interleaving of
other actions is allowed between the checking for at least one free seat and the
allocation of it. We have therefore shown how the simulator implementing our
approach to reversibility can be used during the debugging process of an example
bug.

4 Causal-Consistent Reversibility in Erlang

In this section we will discuss how to apply causal-consistent reversible debugging
to the airline booking example in Sect. 2.3. Our approach to reversible debugging
is based on the following principles [29,30]:

Reversible Debugging of Concurrent Programs 119

— First, we consider a reduction semantics for the language (a subset of Core
Erlang [5], which is an intermediate step in Erlang compilation). Our seman-
tics includes two transition relations, one for expressions (which is mostly a
call-by-value semantics for a functional language) and one for systems, i.e.,
collections of processes, possibly interacting through message passing. An
advantage of this modular design is that only the transition relation for sys-
tems needs to be modified in order to produce a reversible semantics.

— Then, we instrument the standard semantics in different ways. On the one
hand, we instrument it to produce a log of the computation; namely, by
recording all actions involving the sending and receiving of messages, as well as
the spawning of new processes (see [30] for more details). On the other hand,
one can instrument the semantics so that the configurations now carry enough
information to undo any execution step, i.e., a typical Landauer embedding.
Producing then a backward semantics that proceeds in the opposite direction
is not difficult. Here, the configurations may include both a log—to drive
forward executions—and a history—to drive backward executions.

— It is worthwhile to note that forward computations need not follow exactly
the same steps as in the recorded computation (indeed the log does not record
the total order of steps). However, it is guaranteed that the admissible com-
putations are causally equivalent to the recorded one; namely, they differ only
for swaps of concurrent actions. Analogously, backward computations need
not be the exact inverse of the considered forward computation, but ensuring
that backward steps are causal-consistent suffices. This degree of freedom is
essential to allow the user to focus on the process and/or actions of interest
during debugging, rather than inspecting the complete execution (which is
often impractical).

— Finally, we define another layer on top of the reversible semantics in order
to drive it following a number of requests from the user, e.g., rolling back
up to the point where a given process was spawned, going forward up to the
point where a message is sent, etc. This layer essentially implements a stack
of requests that follows the causal dependencies of the reversible semantics.

In the following, we consider the causal-consistent reversible debugger
CauDEr [27,28] which follows the principles listed above.

CauDEr first translates the airline example into Core Erlang [5]. Then one
can execute the program, either using a built-in scheduler, or using the log of an
actual execution [30].

Here, if we compile the program in the standard environment and execute
the call main(), we get the following output:

Seat sold!
Seat sold!
Seat sold!
Seat sold!
Agentl done!
Agent2 done!

120 J. Hoey et al.
g » CauDEr v~Q
File View Compiler Help
Code State Manual Replay | Rollback l
GM: [(68,{{'seats’,-1},19)),(67,{{ seats’,-1},17})] Pid| steps] Replay |
============= ProcC. 63: Main/0 ============= Pid: Re| spawn
H: [send({'seats',-1},19),rec({'numOfSeats',68}, i ‘
18),send({'seats',-1},17),rec({'numOfSeats',67}, Msgld: | Replay send ‘
15),send({'booked',0},16),rec({'sell',68},)
13),send({’booked’,1},14),rec({'sell',67},11),send({'seats’, Msqld:
1},12),rec({'numOfSeats’,68},10),send({'seats’, 1}, e SRS ‘
9),rec({numOfSeats',67},7),send({’booked,2},
8),rec({'sell',68},5),send({'booked",3},6),rec({'sell',67},
4),send({'seats’,3},3),rec({'numOfSeats’,68},
1),send({'seats’,3},2),rec({'numoOfSeats’,67}, Trace l Roll Log ‘
0),spawn(68),spawn(67)] =
LOG:[Proc. 63 spawns Proc. 67 A
ENV: {_ @c0_92->-1} Proc. 63 spawns Proc. 68
EXP: do {'seats’,-1} Proc. 67 sends {'numOfSeats',67} to Proc. 63 (0)
apply ‘seats’/1 Proc. 63 receives {numOfSeats’,67} (0)
(L@c0_92) Proc. 63 sends {'seats’,3} to Proc. 67 (2)
Proc. 68 sends {'numOfSeats',68} to Proc. 63 (1)
===Proc. 67: agent/2 = Proc. 63 receives {numOfSeats',68} (1)
H : [send({'numOfSeats’,67},15),rec({'booked, 1}, Proc. 63 sends {'seats’,3} to Proc. 68 (3)
14),send({'sell',67},11)rec({’'seats’, 1}, Proc. 67 receives {'seats’,3} (2)
9),send({ numOfSeats’,67},7),rec({'booked",3}, Proc. 67 sends {'sell',67} to Proc. 63 (4)
6),send({'sell',67},4),rec({'seats’,3},2),send({ numOfSeats’, Proc. 63 receives {'sell,67} (4)
67}.0)] Proc. 63 sends {'booked’,3} to Proc. 67 (6)
106G - frac1 70 =] = = - T]
Started system with main/0 fun application! 7/

Fig. 4. CauDEr debugging session

which is clearly incorrect since we only had three seats available.

By using the logger and, then, loading both the program and the log into
CauDEr (as described in [30]), we can replay the entire execution and explore
the sequence of concurrent actions. Figure4 shows the final state (on the left)
and the sequence of concurrent actions (on the right), where process 63 is the
main process, and processes 67 and 68 are the agents.

Now, we can look at the sequence of concurrent actions, where messages are
labelled with a unique identifier, added by CauDEr, which is shown in brackets

to the right of the corresponding line:

Proc. 63 spawns Proc. 67
Proc. 63 spawns Proc. 68

Proc. 67 sends {’numOfSeats’,67} to Proc. 63 (0)

19 lines
Proc. 63 receives {’numOfSeats’,68} (10)
Proc. 63 sends {’seats’,1} to Proc. 68 (12)
Proc. 67 receives {’seats’,1} (9)
Proc. 67 sends {’sell’,67} to Proc. 63 (11)
Proc. 63 receives {’sell’,67} (11)

Reversible Debugging of Concurrent Programs 121

Proc. 63 sends {’booked’,1} to Proc. 67 (14)
Proc. 68 receives {’seats’,1} (12)

Proc. 68 sends {’sell’,68} to Proc. 63 (13)

Proc. 63 receives {’sell’,68} (13)

Proc. 63 sends {’booked’,0} to Proc. 68 (16)
Proc. 67 receives {’booked’,1} (14)

Proc. 67 sends {’numOfSeats’,67} to Proc. 63 (15)
Proc. 63 receives {’numOfSeats’,67} (15)

Proc. 63 sends {’seats’,-1} to Proc. 67 (17)
Proc. 68 receives {’booked’,0} (16)

Proc. 68 sends {’numOfSeats’,68} to Proc. 63 (18)
Proc. 63 receives {’numOfSeats’,68} (18)

Proc. 63 sends {’seats’,-1} to Proc. 68 (19)

One can see that seat number 0 (which does not exist!) has been booked by
process 68, and the notification has been provided via message number 16.

A good state to explore is the one where message number 16 has been sent.
Here a main feature of causal-consistent reversible debugging comes handy: the
possibility of going to the state just before a relevant action has been per-
formed, by undoing it, including all and only its consequences. This is called a
causal-consistent rollback. CauDEr provides causal-consistent rollbacks for var-
ious actions, including send actions. Thus, the programmer can invoke a Roll
send command with message identifier 16 as a parameter.

In this way, one discovers that the message has been sent by process 63
(as expected, since process 63 is the main process). By exploring its state one
understands that, from the point of view of process 63, sending message 16 is
correct, since it is the only possible answer to a sell message. The bug should
be thus before.

From the program code, the programmer knows that whether seat Num is
available or not is checked by a message of the form {numOfSeats,Pid}, which
is answered with a message of the form {seats,Num}, where Num is the number
of available seats.

Looking again at the concurrency actions, the programmer can see that pro-
cess number 68 was indeed notified of the availability of a seat by message
number 12.

We can use again Roll send, now with parameter 12, to check whether this
send is correct or not. We discover that indeed the send is correct since, when the
message is sent, there is one available seat. However, here, another window comes
handy: the Roll log window that shows which actions (causally dependent on
the one undone) have been undone during a rollback, which shows:

Roll send from Proc. 63 of {’booked’,1} to Proc. 67 (14)
Roll send from Proc. 67 of {’numOfSeats’,67} to Proc. 63 (15)
Roll send from Proc. 63 of {’seats’,1} to Proc. 68 (12)
Roll send from Proc. 68 of {’sell’,68} to Proc. 63 (13)

122 J. Hoey et al.

By checking it the programmer sees that also the interactions between process
67 and process 63 booking seat 1 are undone. Hence the problem is that, in
between the check for availability and the booking, another process may interact
with main, stealing the seat; thus, the error is an atomicity violation.

Of course, given the simplicity of the system, one could have spotted the bug
directly by looking at the code or at the full sequence of message exchanges,
but the technique above is quite driven by the visible misbehaviour, hence it
will better scale to larger systems (e.g., with more seats and agents, or with
additional functionalities).

We remark that, while the presentation above concentrates on the debugger
and its practical use, this line of research also deeply considered its theoretical
underpinning, as briefly summarised at the beginning of the section. Thanks to
this, relevant properties have been proved, e.g., that if a misbehaviour occurs in
a computation then the same misbehaviour will occur also in each replay [30].

5 Related Work

Reversible computation in general, and reversible debugging in particular, have
been deeply explored in the literature.

A line of research considers naturally reversible languages, that is languages
where only reversible programs can be written. Such approaches include the
imperative languages Janus [49,50], R-CORE [17] and R-WHILE [16], and the
object-oriented languages Joule [43] and ROOPL [18]. These approaches require
dedicated languages, and cannot be applied to mainstream languages like Erlang
or a classic imperative language, as we do in this paper.

The backtracking approach has been applied, e.g., in the Reverse C Compiler
(RCC) defined by Perumalla et al. [6,37]. It supports the entire programming
language C, but lacks a proof of correctness, which is instead provided by our
approaches. The Backstroke framework [48] is a further example, supporting
the vast majority of the programming language C++. This framework has been
used to provide reverse execution in the field of Parallel Discrete Event Simula-
tion (PDES) [13], as described in more recent works by Schordan et al. [40-42].
Similar approaches have been used for debugging, e.g., based on program instru-
mentation techniques [7]. Identifiers and keys are used to control execution in
the work by Phillips and Ulidowski [38,39]. Another related work is omniscient
debugging, where each assignment and method call is stored in an execution
history, which can be used to restore any desired program state. An example of
such a debugger written for Java was proposed by Lewis [32].

Causal-consistent reversibility has been mainly studied in the area of foun-
dational process calculi such as CCS [10] and its variants [35,38], m-calculus [9],
and higher-order m-calculus [26] and coordination languages such as Klaim [15].
The application to debugging has been first proposed in [14] in the context of
the toy functional language pOz. A related approach is Actoverse [44], for Akka-
based applications. It provides many relevant features complementary to ours,
such as a partial-order graphical representation of message exchanges. On the

Reversible Debugging of Concurrent Programs 123

other side, Actoverse allows one to explore only some states of the computa-
tion, such as the ones corresponding to message sending and receiving. We also
mention Causeway [45], which however is not a full-fledged debugger, but just a
post-mortem traces analyser.

6 Conclusion

We presented two approaches to reversible debugging of concurrent systems, we
will now briefly compare them. Beyond the language they consider, the main
difference between the two approaches is in the order in which execution steps
can be reversed. The backtracking approach undoes them in reverse order of
execution. This means that there is no need to track dependencies, and the user
of the debugger can easily anticipate which steps will be undone by looking at
identifiers. The causal-consistent approach instead allows independent steps of
an execution to be reversed in any order, hence tracking dependencies between
steps is crucial. This offers the benefit that only the steps strictly needed to
reach the desired point of an execution need to be reversed, and steps which
happened in between but were actually independent are disregarded.

Debugging is a relevant application area for reversible computation, but
reversible debugging for concurrent and distributed systems is still in its infancy.
While different techniques have been put forward, they are not yet able to deal
with real, complex systems. A first reason is that they do not tackle mainstream
languages (Erlang could be considered mainstream, but only part of the language
is currently covered). When this first step will be completed, then runtime over-
head and size of the logs will become relevant problems, as they are now in the
setting of sequential reversible debugging.

References

1. Abramov, S., Gliick, R.: Principles of inverse computation and the universal resolv-
ing algorithm. In: Mogensen, T./&., Schmidt, D.A., Sudborough, I.H. (eds.) The
Essence of Computation. LNCS, vol. 2566, pp. 269-295. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36377-7_13

2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In: Pro-
ceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
pp- 249-258. IEEE Computer Society (2005). https://doi.org/10.1109/LICS.2005.1

3. Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T.: Reversible
debugging software - quantify the time and cost saved using reversible debuggers
(2012). http://www.roguewave.com

4. Cardelli, L., Laneve, C.: Reversible structures. In: Fages, F. (ed.) Proceedings
of the 9th International Conference on Computational Methods in Systems Biol-
ogy (CMSB 2011), pp. 131-140. ACM (2011). https://doi.org/10.1145/2037509.
2037529

5. Carlsson, R., et al.: Core Erlang 1.0.3. language specification (2004). https://www.
it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

https://doi.org/10.1007/3-540-36377-7_13
https://doi.org/10.1109/LICS.2005.1
http://www.roguewave.com
https://doi.org/10.1145/2037509.2037529
https://doi.org/10.1145/2037509.2037529
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

124

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Hoey et al.

Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224-253 (1999)

Chen, S., Fuchs, W.K., Chung, J.: Reversible debugging using program instrumen-
tation. IEEE Trans. Softw. Eng. 27(8), 715-727 (2001). https://doi.org/10.1109/
32.940726

Conrod, J.: Tutorial: reverse debugging with GDB 7 (2009). http://jayconrod.com/
posts/28/tutorial-reverse-debugging-with-gdb-7

Cristescu, 1., Krivine, J., Varacca, D.: A compositional semantics for the reversible
m-calculus. In: Proceedings of the 28th Annual ACM/TEEE Symposium on Logic
in Computer Science (LICS 2013), pp. 388-397. IEEE Computer Society (2013).
https://doi.org/10.1109/LICS.2013.45

Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292-307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

Engblom, J.: A review of reverse debugging. In: Morawiec, A., Hinderscheit, J.
(eds.) Proceedings of the 2012 System, Software, SoC and Silicon Debug Conference
(S4D), pp. 28-33. IEEE (2012)

Frank, M.P.: Introduction to reversible computing: motivation, progress, and chal-
lenges. In: Bagherzadeh, N., Valero, M., Ramirez, A. (eds.) Proceedings of the
Second Conference on Computing Frontiers, pp. 385-390. ACM (2005). https://
doi.org/10.1145/1062261.1062324

Fujimoto, R.: Parallel discrete event simulation. Commun. ACM 33(10), 30-53
(1990). https://doi.org/10.1145/84537.84545

Giachino, E., Lanese, 1., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370-384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26

Giachino, E., Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebraic Meth. Program. 88, 99-120 (2017)
Gliick, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative
language. Comput. Softw. 33(3), 108-128 (2016)

Gliick, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans.
100-D(5), 1026-1034 (2017)

Haulund, T.: Design and implementation of a reversible object-oriented program-
ming language. Master’s thesis, Faculty of Science, University of Copenhagen
(2017). https://arxiv.org/abs/1707.07845

Hoey, J.: Reversing an imperative concurrent programming language. Ph.D. thesis,
University of Leicester (2020)

Hoey, J., Ulidowski, I., Yuen, S.: Reversing imperative parallel programs with
blocks and procedures. In: 2018 Proceedings of Express/SOS (2018)

Hoey, J., Ulidowski, I.: Reversible imperative parallel programs and debugging.
In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497, pp. 108-127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2_7

Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and pro-
cedures. In: Pérez, J.A., Tini, S. (eds.) Proceedings of the Combined 25th Interna-
tional Workshop on Expressiveness in Concurrency and 15th Workshop on Struc-
tural Operational Semantics (EXPRESS/SOS 2018), EPTCS, vol. 276, pp. 69-86
(2018). https://doi.org/10.4204/EPTCS.276.7

European COST actions 1C1405 on “reversible computation - extending horizons
of computing”. http://www.revcomp.eu/

https://doi.org/10.1109/32.940726
https://doi.org/10.1109/32.940726
http://jayconrod.com/posts/28/tutorial-reverse-debugging-with-gdb-7
http://jayconrod.com/posts/28/tutorial-reverse-debugging-with-gdb-7
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1145/1062261.1062324
https://doi.org/10.1145/1062261.1062324
https://doi.org/10.1145/84537.84545
https://doi.org/10.1007/978-3-642-54804-8_26
https://arxiv.org/abs/1707.07845
https://doi.org/10.1007/978-3-030-21500-2_7
https://doi.org/10.4204/EPTCS.276.7
http://www.revcomp.eu/

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Reversible Debugging of Concurrent Programs 125

Landauer, R.: Irreversibility and heat generated in the computing process. IBM J.
Res. Dev. 5, 183-191 (1961)

Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114, 121-139 (2014)

Lanese, 1., Mezzina, C.A., Stefani, J.B.: Reversibility in the higher-order 7-calculus.
Theor. Comput. Sci. 625, 25-84 (2016)

Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr. https://github.com/
mistupv/cauder

Lanese, 1., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247-263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7_16

Lanese, 1., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebraic Meth. Program. 100, 71-97 (2018)

Lanese, 1., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message
passing programs. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol.
11535, pp. 167-184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21759-4_10

Laursen, J.S., Schultz, U.P., Ellekilde, L.: Automatic error recovery in robot assem-
bly operations using reverse execution. In: Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2015), pp.
1785-1792. IEEE (2015). https://doi.org/10.1109/IR0OS.2015.7353609

Lewis, B.: Debugging backwards in time. In: Ronsse, M., Bosschere, K.D. (eds.)
Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), pp. 225-235 (2003). https://arxiv.org/abs/cs/0310016

Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: Eggers, S.J., Larus, J.R. (eds.)
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2008), pp. 329-339.
ACM (2008). https://doi.org/10.1145/1346281.1346323

McNellis, J., Mola, J., Sykes, K.: Time travel debugging: root causing bugs in
commercial scale software. CppCon talk (2017). https://www.youtube.com/watch?
v=11YJTg_A914

Mezzina, C.A.: On reversibility and broadcast. In: Kari, J., Ulidowski, 1. (eds.)
RC 2018. LNCS, vol. 11106, pp. 67-83. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99498-7_5

Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp.
259-274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_15
Perumalla, K.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2014)

Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebraic
Program. 73(1-2), 70-96 (2007)

Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Gliick, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218-232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3_18

Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code
generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.-B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 95-110. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-20860-2_6

https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1109/IROS.2015.7353609
https://arxiv.org/abs/cs/0310016
https://doi.org/10.1145/1346281.1346323
https://www.youtube.com/watch?v=l1YJTg_A914
https://www.youtube.com/watch?v=l1YJTg_A914
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-20860-2_6

126

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

J. Hoey et al.

Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput. 36(3), 257-280 (2018). https://doi.org/10.1007/s00354-018-0038-2
Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr, P.D., Quinlan, D.J.:
Automatic generation of reversible C++ code and its performance in a scalable
kinetic Monte-Carlo application. In: Fujimoto, R., Unger, B.W., Carothers, C.D.
(eds.) Proceedings of the 2016 Annual ACM Conference on SIGSIM Principles of
Advanced Discrete Simulation (SIGSIM-PADS 2016), pp. 111-122. ACM (2016).
https://doi.org/10.1145/2901378.2901394

Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, 1. (eds.) RC 2016. LNCS, vol. 9720, pp. 153-159. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0-10

Shibanai, K., Watanabe, T.: Actoverse: a reversible debugger for actors. In: Pro-
ceedings of the 7th ACM SIGPLAN International Workshop on Programming
Based on Actors, Agents, and Decentralized Control (AGERE 2017), pp. 50-57.
ACM (2017). https://doi.org/10.1145/3141834.3141840

Stanley, T., Close, T., Miller, M.S.: Causeway: a message-oriented distributed
debugger. Technical report, HP Labs tech report HPL-2009-78 (2009). http://
www.hpl.hp.com/techreports/2009/HPL-2009-78.html

Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s J. 30(3), 202-210 (2005)

Undo Software: Increasing software development productivity with reversible
debugging (2014). http://undo-software.com/wp-content/uploads/2014/10/
Increasing-software-development- productivity- with-reversible-debugging.pdf
Vulov, G., Hou, C., Vuduc, R.W., Fujimoto, R., Quinlan, D.J., Jefferson, D.R.:
The backstroke framework for source level reverse computation applied to parallel
discrete event simulation. In: Jain, S., Creasey Jr, R.R.., Himmelspach, J., White,
K.P., Fu, M.C. (eds.) Proceedings of the Winter Simulation Conference (WSC
2011), pp. 2965-2979. IEEE (2011). https://doi.org/10.1109/WSC.2011.6147998
Yokoyama, T., Gliick, R.: A reversible programming language and its invertible
self-interpreter. In: Ramalingam, G., Visser, E. (eds.) Proceedings of the 2007
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM 2007), pp. 144-153. ACM (2007)

Yokoyama, T., Axelsen, H.B., Gliick, R.: Principles of a reversible programming
language. In: Ramirez, A., Bilardi, G., Gschwind, M. (eds.) Proceedings of the 5th
Conference on Computing Frontiers, pp. 43-54. ACM (2008). https://doi.org/10.
1145/1366230.1366239

Yokoyama, T., Axelsen, H.B., Gliick, R.: Fundamentals of reversible flowchart lan-
guages. Theor. Comput. Sci. 611, 87-115 (2016). https://doi.org/10.1016/j.tcs.
2015.07.046

https://doi.org/10.1007/s00354-018-0038-2
https://doi.org/10.1145/2901378.2901394
https://doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1145/3141834.3141840
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html
http://undo-software.com/wp-content/uploads/2014/10/Increasing-software-development-productivity-with-reversible-debugging.pdf
http://undo-software.com/wp-content/uploads/2014/10/Increasing-software-development-productivity-with-reversible-debugging.pdf
https://doi.org/10.1109/WSC.2011.6147998
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1016/j.tcs.2015.07.046
https://doi.org/10.1016/j.tcs.2015.07.046

Reversible Debugging of Concurrent Programs 127

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	European Cooperation in Science and Technology (COST)
	Preface
	Organization
	Contents
	Foundations of Reversible Computation
	1 Introduction
	2 Category Theory
	2.1 Dagger Categories
	2.2 Inverse Categories
	2.3 Monads and Arrows for Reversible Effects

	3 Foundations of Reversible Programming Languages
	3.1 Language Cores
	3.2 Formal Semantics
	3.3 Compilation Principles
	3.4 Reversibilisation Techniques

	4 Term Rewriting
	4.1 Reversible Term Rewriting
	4.2 Application to Bidirectional Transformations

	5 Membrane Computing
	6 Process Calculi
	6.1 Reversing Process Calculi
	6.2 Controlled Reversibility
	6.3 Analysis Techniques

	7 Petri Nets
	8 Automata
	8.1 Finite Automata
	8.2 Pushdown Automata
	8.3 Finite State and Pushdown Transducers
	8.4 Queue Automata and Limited Automata
	8.5 Cellular Automata
	8.6 Turing Machines

	9 Quantum Formal Verification and Quantum Machine Learning
	10 Conclusion
	References

	Software and Reversible Systems: A Survey of Recent Activities
	1 Introduction
	2 Behavioural Types
	3 Recovery
	4 Reversibility and Object-Oriented Languages
	4.1 Object Orientation and Data Structures

	5 Reversing Imperative Concurrent Programs
	5.1 Language and Program State
	5.2 Annotation, Inversion and Operational Semantics
	5.3 Correctness of Annotation and Inversion
	5.4 Simulator and Performance Evaluation
	5.5 Application to Debugging

	6 Reversible Debugger for Message Passing Systems
	7 Control Theory
	8 Conclusions
	References

	Simulation and Design of Quantum Circuits
	1 Introduction
	2 Background on Quantum Computing
	3 Quantum-Circuit Simulation
	3.1 General Idea
	3.2 Resulting Approaches

	4 Design of Boolean Components for Quantum Circuits
	4.1 One-Pass Design of Reversible Circuits
	4.2 Exploiting Coding Techniques

	5 Mapping Quantum Circuits to NISQ Devices
	5.1 Considered Problem
	5.2 Existing Approaches and Results

	6 Conclusion
	References

	Research on Reversible Functions Having Component Functions with Specified Properties: An Overview
	1 Introduction
	2 Preliminaries
	3 Previous Work
	4 Theoretical Results
	5 Results Based on Newly Constructed Functions
	6 Computational Results
	7 Extrapolation Based on Cycle Structures
	8 Conclusions and Future Work
	References

	A Case Study for Reversible Computing: Reversible Debugging of Concurrent Programs
	1 Introduction
	2 Airline Booking Example
	2.1 Imperative Concurrent Language
	2.2 Erlang
	2.3 Airline Code

	3 Backtracking in a Concurrent Imperative Language
	4 Causal-Consistent Reversibility in Erlang
	5 Related Work
	6 Conclusion
	References

	Towards Choreographic-Based Monitoring
	1 Introduction
	2 Motivation
	3 The Model
	4 An Instance
	4.1 Global and Local Specifications

	5 Global Graphs for Reversibility
	6 From REGs to Erlang
	6.1 Architecture
	6.2 Branching Actors and Monitors
	6.3 Compiling to Erlang

	7 Conclusions
	References

	Reversibility in Chemical Reactions
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Paper Organisation

	2 Autoprotolysis of Water
	3 Formalisms for Reversible Chemical Reactions
	3.1 Calculus of Covalent Bonding
	3.2 Bonding Calculus
	3.3 Reversing Petri Nets

	4 Evaluation
	5 Conclusion
	References

	Reversible Control of Robots
	1 Introduction
	2 Related Work
	3 Reversible Assembly Tasks
	3.1 Robotics, Assembly, and Reversibility
	3.2 Reversibility
	3.3 Repeatability
	3.4 Reversibility and Repeatability

	4 Programming Model
	4.1 Basic Model
	4.2 Implementation
	4.3 Language

	5 Results
	5.1 Methodology
	5.2 Experiment 1: Reversing the Programs
	5.3 Experiment 2: Assembling 100 Objects

	6 Conclusion
	References

	Reversible Languages and Incremental State Saving in Optimistic Parallel Discrete Event Simulation
	1 Introduction
	2 Optimistic Parallel Discrete Event Simulation (PDES)
	3 PDES Model Benchmark
	3.1 Ring Inverses and Non-singular Matrices

	4 Forward/Backward Code from Reversible Programs
	5 Automatic Generation of Reversible Code for the Forward-Reverse-Commit Paradigm
	5.1 Backstroke Instrumented Code

	6 ROSS Simulator
	6.1 Adaptations of the ROSS Simulator for the FRC Paradigm

	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Reversible Computation in Wireless Communications
	1 Introduction
	2 Reversing Petri Nets and Massive MIMO
	2.1 The Problem
	2.2 Results and Discussion

	3 Reversible Hardware for Time Reversal
	3.1 Wave Time Reversal
	3.2 The Design

	4 Reversible Environment Models and Control
	5 Conclusions
	References

	Error Reconciliation in Quantum Key Distribution Protocols
	1 Introduction
	2 Cascade
	3 Winnow
	4 Low Density Parity Check
	5 Comparisson
	6 Error Correction Based on Artificial Neural Networks
	6.1 Tree Parity Machines
	6.2 Error Correction Based on TPMs

	7 Conclusion
	References

	Author Index

