
Towards Choreographic-Based Monitoring

Adrian Francalanza1, Claudio Antares Mezzina2(B), and Emilio Tuosto3,4

1 University of Malta, Msida, Malta
2 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy

claudio.mezzina@uniurb.it
3 Gran Sasso Science Institute, L’Aquila, Italy

4 University of Leicester, Leicester, UK

Abstract. Distributed programs are hard to get right because they are
required to be open, scalable, long-running, and dependable. In particu-
lar, the recent approaches to distributed software based on (micro-) ser-
vices, where different services are developed independently by disparate
teams, exacerbate the problem. Services are meant to be composed
together and run in open contexts where unpredictable behaviours can
emerge. This makes it necessary to adopt suitable strategies for monitor-
ing the execution and incorporate recovery and adaptation mechanisms
so to make distributed programs more flexible and robust. The typical
approach that is currently adopted is to embed such mechanisms within
the program logic. This makes it hard to extract, compare and debug.
We propose an approach that employs formal abstractions for specify-
ing failure recovery and adaptation strategies. Although implementation
agnostic, these abstractions would be amenable to algorithmic synthesis
of code, monitoring, and tests. We consider message-passing programs
(a la Erlang, Go, or MPI) that are gaining momentum both in academia
and in industry. We first propose a model which abstracts away from
three aspects: the definition of formal behavioural models encompassing
failures; the specification of the relevant properties of adaptation and
recovery strategy; and the automatic generation of monitoring, recovery,
and adaptation logic in target languages of interest. To show the efficacy
of our model, we give an instance of it by introducing reversible chore-
ographies to express the normal forward behaviour of the system and the
condition under which adaptation has to take place. Then we show how
it is possible to derive Erlang code directly from the global specification.

1 Introduction

Distributed applications are notoriously complex and guaranteeing their cor-
rectness, robustness, and resilience is particularly challenging. These reliability

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233 and by COST Action IC1405 on
Reversible Computation - Extending Horizons of Computing. The second author has
been partially supported by the French National Research Agency (ANR), project
DCore n. ANR-18-CE25-0007.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 128–150, 2020.
https://doi.org/10.1007/978-3-030-47361-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_6

Towards Choreographic-Based Monitoring 129

requirements cannot be tackled without considering the problems that are not
generally encountered when developing non-distributed software. In particular,
the execution and behaviour of distributed applications is characterised by a
number of factors, a few of which we discuss below:

– Firstly, communication over networks is subject to failures (hardware or soft-
ware) and to security concerns: nodes may crash or undergo management
operations, links may fail or be temporarily unavailable, access policies may
modify the connectivity of the system.

– Secondly, openness—a key requirement of distributed applications—
introduces other types of failures. A paradigmatic example are (micro-)
service architectures where distributed components dynamically bind and
execute together. In this context, failures in the communication infrastruc-
tures are possibly aggravated by those due to services’ unavailability, their
(behavioural) incompatibility, or to unexpected interactions emerging from
unforeseen compositions.

– Also, distributed components may belong to different administrative domains;
this may introduce unexpected changes to the interaction patterns that may
not necessarily emerge at design time. In addition, unforeseen behaviour may
emerge because components may evolve independently (e.g., the upgrade of
a service may hinder the communication with partner services).

– Another element of concern is that it is hard to determine the causes of errors,
which in turn complicates efforts to rectify and/or mitigate the damage via
recovery procedures. Since the boundary of an application are quite “fluid”,
it becomes infeasible to track and confine errors whenever they emerge. These
errors are also hard to reproduce for debugging purposes, and some of them
may even constitute instances of Heisenbugs [27].

For the above reasons (and others), developers have to harness their software
with mechanisms that ensure (some degree of) dependability. For instance, the
use of monitors capable of detecting failures and triggering automated counter-
measures can avoid catastrophic crashes in distributed settings [24]. The typical
mechanisms to foster reliability are redundancy (typically to tackle hardware
failures) and exception handling for software reliability. It has been observed
(see e.g., [42]) that the use of exception handling mechanisms naturally leads to
defensive approaches in software development. For instance, network communi-
cations in languages such as Java require to extensively cast code in try-catch
blocks in order to deal with possible exceptions due to communications. This
muddles the main program logic with auxiliary logic related to error handling.
Defensive programming, besides being inelegant, is not appealing; in fact, it
requires developers to entangle the application-specific software with the one
related to recovery procedures.

We advocate the use of choreographies to specify, analyse, and implement
reliable strategies for recovery and monitoring of distributed message-passing
applications. We strive towards a setup that teases apart the main program
logic from the coordination of error detection, correction and recovery. The rest
of the paper motivates our approach: Sect. 2 further introduces our motivations,

130 A. Francalanza et al.

Sect. 3 presents our (abstract) model by posing some research challenges, while
Sects. 4 to 6 provide and instance of such model. We draw some conclusions in
Sect. 7.

Disclaimer. This paper gathers the results obtained in [13,23] with the intent to
present them as a whole. In particular, the model presented in Sect. 3 is taken
from [13], while Sects. 4 to 6 are adapted from [23]. These results were obtained
during the COST Action IC1405 within the case study “Reversible Choreogra-
phies via Monitoring in Erlang” of the Working Group 4 on case studies. We
thank Carla Ferreira and Ulrik Pagh Schultz for having wisely led such working
group.

2 Motivation

We are interested in message-passing frameworks, i.e., models, systems, and
languages where distributed components coordinate by exchanging messages.
One archetypal model of the message-passing paradigm is the actor model [5]
popularised by industry-strength language implementations such as those found
in Akka (for both Scala and Java) [46], Elixir [44], and Erlang [15]. In particular,
one effective approach to fault-tolerance is the model adopted by Erlang.

Rather than trying to achieve absolute error freedom, Erlang’s approach
concedes that failures are hard to rule out completely in the setting of open
distributed systems. Accordingly, Erlang-based program development takes into
account the possibility of computation going wrong. However, instead of resort-
ing to the usual defensive programming, it adopts the so-called “let it fail” princi-
ple. In place of intertwining the software realising the application logic with logic
for handling errors and faults, Erlang proposes a supervisory model whereby
components (i.e., actors) are monitored within a hierarchy of independently-
executing supervisors (which can be monitor for other supervisors themselves).
When an error occurs within a particular component, it is quarantined by let-
ting that component fail (in isolation); the absence of global shared memory of
the actor model facilitates this isolation. Its supervisor is then notified about
this failure, creating a traceable event that is useful for debugging. More impor-
tantly to our cause, this mechanism also allows the supervisor to take remedial
action in response to the reported failure. For instance, the failing component
may be restarted by the supervisor. Alternatively, other components that may
have been contaminated by the error could also be terminated by the supervisor.
Occasionally supervisors themselves fail in response to a supervised component
failing, thus percolating the error to a higher level in the supervision hierarchy.

Erlang’s model is an instance of a programming paradigm commonly termed
as Monitor Oriented Programming (MOP) [16,35]. It neatly separates the appli-
cation logic from the recovery policy by encapsulating the logic pertaining to
the recovery policy within the supervision structure encasing the application.
Despite this clear advantage, the solution is not without its shortcomings. For
instance, the Erlang supervision mechanism is still inherently tied to the con-
structs of the host language and it is hard to transfer to other technologies.

Towards Choreographic-Based Monitoring 131

Despite it being localised within supervisor code, manual effort is normally still
required to disentangle it from the context where it is defined in order to be
understood in isolation. Also, the manual construction of logic associated with
recovery is itself prone to errors.

We advocate for a recovery mechanism that sits at a higher level of abstrac-
tion than the bare metal of the programming language where it is deployed. In
particular, we envisage the three challenges outlined below:

1. The explicit identification and design of recovery policies in a technology
agnostic manner. This will facilitate the comprehension and understanding
of recovery policies and allow for better separation of concerns during program
development.

2. The automated code synthesis from high-level policy descriptions. There exist
only a handful of methods for recovery policy specification and these have
limited support for the automatic generation of monitors that implement
those policies.

3. The evaluation of recovery policies. We require automated techniques that
allow us to ascertain the validity of recovery policies with respect to notions
of recovery correctness. We are also unaware of many frameworks that permit
policies to be compared with one another and thus determine whether one
recovery policy is better than (or equivalent to) another one.

To the best of our knowledge, there is a lack of support to take up the first
challenge. For instance, Erlang folklore’s to recovery policies simply prescribes
the “one-for-one” or the “one-for-all” strategies. Recently, Neykova and Yoshida
have shown how better strategies are sometimes possible [40]. We note that the
approach followed in [40] is based on simple yet effective choreographic models.

The second challenge somehow depends on the support one provides for the
design and implementation of recovery strategies. A basic requirement of (good)
abstract software models is that an artefact has a clear relationship with the
other artefacts that it interacts with, possibly at different levels of abstraction.
This constitutes the essence of model-driven design. The preservation of these
clearly defined interaction-points (across different abstraction levels) is crucial
for sound software refinement. Such a translation from one abstraction level to
a more concrete one forms the basis for an actual “compilation” from one model
to the other. In cases where such relations have a clear semantics, they can be
exploited to verify properties of the design (and the implementation) as well
as to transform models (semi-)automatically. In our case, we would expect run-
time monitors to be derived from their abstract models, to ease the development
process and allow developers to focus on the application logic (such as in [6,11]).

Finally, the right abstraction level should provide the foundations neces-
sary to develop formal techniques to analyse and compare recovery policies as
outlined in our third challenge. The right abstraction level would also permit
us to tractably apply these techniques to specific policy instances; these may
either have been developed specifically for the policy formalism considered by
the technique or obtained via reverse-engineering methods from a technology-
specific application. Possible examples that may be used as starting points for

132 A. Francalanza et al.

such an investigation are [20], where various pre-orders for monitor descriptions
are developed, and [21] where intrinsic monitor correctness criteria such as con-
sistent detections are studied.

3 The Model

We advocate that the development of recovery logic is orthogonal to the appli-
cation logic, and this separation of concerns could induce separate development
efforts which are, to a certain degree, independent from one another. Similar to
the case for the application logic, we envisage global and local points of view for
the recovery logic whereby the latter is attained by projecting the global strat-
egy. Our approach is schematically described in Fig. 1. The left-most part of the
diagram illustrates the top-down approach of choreographies of the application
logic described in Sect. 4.1. We propose to develop a similar approach for the
recovery logic as depicted in the right-most part of Fig. 1, where the triangu-
lar shape for monitors evokes that monitors are possibly arranged in a complex
structure (as e.g., the hierarchy of Erlang supervisors). In fact, we envisage that
a local strategy could correspond to a subsystem of monitors as in the case of
[6,10] (unlike the choreographies for the application logic, where each local view
typically yields one component).

Local View

proj projproj

Global View

Application Logic

Global Strategy

Recovery Logic

Monitors

Research Challenge 1

Local View Local View Local
Strategy

projprojproj

Local
Strategy

Local
Strategy

Research Challenge 2

ComponentComponent Component

Research Challenge 3

Monitors Monitors

Fig. 1. A global-local approach to adaptation strategies incorporating the three
research challenges identified in Sect. 2

Models to Express Global and Local Strategies. Choreographic models should be
equipped with features allowing us to design and analyse the recovery logic of
systems. This requires, on the one hand, the identification of suitable linguis-
tic mechanisms for expressing global/local strategies and, on the other hand, to
define principles of monitors programming by looking at state-of-the-art tech-
niques. For example, the (global) recovery logic should allow us to specify recov-
ery points where parties can roll-back if some kind of error is met or compensa-
tions to activate when anomalous configurations are reached.

Towards Choreographic-Based Monitoring 133

A challenge here is the definition of projection operations that enable fea-
turing recovery mechanisms. A first step in this direction is a recent proposal of
Mezzina and Tuosto [39] who extend the global graphs reviewed in Sect. 4.1 with
reversibility guards to recover the system when it reaches undesired configura-
tions. A promising research direction in this respect is to extend the language
of reversibility guards with the patterns featured by adaptEr [10–12] and then
define projection operations to automatically obtain adaptEr monitors.

Properties of Recovery Logic. We should understand general properties of inter-
est of recovery as well as specific ones. One general property could be the fact
that the strategy guides the application toward a safe state (i.e. stability enve-
lope [35]) when errors occur. For example, the recovery strategy could guarantee
causal consistency, namely that a safe state is one that the execution could have
reached, possibly following a different interleaving of concurrent actions. Recov-
ery strategies may be subject to resource requirements that need to be taken into
consideration and/or adhered to. One such example would be the minimisation
of the number of components that have to be re-started when a recovery pro-
cedure is administered, whereby the restarted components are causally related
to the error detected. The work discussed in [10,11] provides another example
of resource requirements for recovery strategies: in an asynchronous monitoring
setting, component synchronisations are considered to be expensive operations
and, as a result, the monitors are expected to use the least number of component
synchronisations for the adaptation actions to be administered correctly.

Also, as typical for choreographies, we should unveil the conditions under
which a recovery strategy is realisable in a distributed settings. In other words,
not all globally-specified recovery policies are necessarily implementable in a
choreographed distributed setting; we therefore seek to establish well-formedness
criteria that allow us to determine when a global recovery policy can be projected
(and thus implemented) in a decentralised setup.

Compliance. In the case of recovery strategies, it is unclear when monitors are
deemed to be compliant with their local strategy. A central aspect that we
should tackle is that of understanding what it actually means for monitors and
local strategy to be compliant, and subsequently to give a suitable compliance
definition that captures this understanding. One possible approach to address
this problem is to emulate and extend what was done for the application logic
where several notions of behavioural compliance have been studied (e.g. [8,14]).

Another potential avenue worth considering is the work on monitorability
[2,22] and enforceability [4,43] that relates the behaviour of the monitor to that
specified by the correctness property of interest; the work in [25] investigates
these issues for a target actor calculus that is deeply inspired by the Erlang
model. In such cases we would need to extend the concept of monitorability and
enforceability to adaptability with respect to the local strategy derived from the
global specification.

Once we identify and formalise our notions of compliance, we should study
their decidability properties, and investigate approaches to check compliance

134 A. Francalanza et al.

such as type-checking or behavioural equivalence checking (e.g., via testing pre-
orders or bisimulations [3,20]).

Seamless Integration. A key driving principle of our proposed approach is that
the recovery logic should be orthogonal to the application logic. This separa-
tion of concerns allows the traditional designers to focus on the application logic
and just declare the error conditions to be managed by the recovery logic. The
dedicated designers of the recovery logic would then use those error conditions
and the structure of the choreography of the application logic to specify a recov-
ery strategy. Finally, the application and recovery logic should be integrated
via appropriate code instrumentation mechanisms to cater for reliability. The
driving principle we will follow is that of minimising the entanglement between
the respective models of the application logic and those of the recovery logic.
This principled approach with clearly delineated separation of concerns should
also manifest itself at the code level of the systems produced, that will, in turn,
improve the maintainability of the resulting systems.

4 An Instance

We propose a line of research that aims to combine the run-time monitoring and
local adaptation of distributed components with the top-down decomposition
approach brought about by choreographic development. Our manifesto may thus
be distilled as:

Local Runtime Adaptation + Static Choreography Specifications
= Choreographed MOP

Our work stems from two existing bodies of work. On the one hand, our
investigation is grounded on the Erlang monitoring framework developed and
implemented in [10,11], which showed that these concepts are realisable. On the
other hand, the end point of what we want to achieve is driven by the design of
a choreographic model for distributed computation with global views and local
projections of [34], reviewed in Sect. 4.1.

4.1 Global and Local Specifications

A key reason that makes choreographies appealing for the modelling, design, and
analysis of distributed applications is that they do not envisage centralisation
points. Roughly, in a choreographic model one describes how a few distributed
components interact in order to coordinate with each other. There is a range
of possible interpretations for choreographies [7]; a widely accepted informal
description is the one suggested by W3C’s [30]:

[...] a contract containing a global definition of the common ordering conditions
and constraints under which messages are exchanged, is produced that describes,
from a global viewpoint [...] observable behaviour [...]. Each party can then use
the global definition to build and test solutions that conform to it. The global
specification is in turn realised by combination of the resulting local systems
[...]

Towards Choreographic-Based Monitoring 135

According to this description, a global and a local view are related as in the
left-most diagram in Fig. 1 which evokes the following software development
methodology. First, an architect designs the global specification and then uses
the global specification to derive, via a ‘projection’ operation, a local specifica-
tion for the distributed components. Programmers can then use the local spec-
ifications to check that the implementation of their components are compliant
with the local specification. The keystones of this process are (i) that the global
specification can be used to guarantee good behaviour of the system abstracting
away from low level details (typically assuming synchronous communications),
(ii) that projection operation can usually be automatised so to (iii) produce
local specifications at a lower level of abstraction (where communication are
asynchronous) while preserving the behaviour of the global specification.

We remark that the relations among views and systems of choreographies are
richer than those discussed here. For instance, local views can also be compiled
into template code of components and the projection operation may have an
“inverse” (cf. [34]). Those aspects are not in scope here.

We choose two specific formalisms for global and local specifications. More
precisely, we adapt to our needs the global graphs of [34] for global specifications
and Erlang actors to express local views of choreographies.

Global Specifications. Global graphs, originally proposed in [18] and recently
generalised in [28,45], are a convenient specification language for global views
of message-passing systems. They yield both a formal framework and a sim-
ple visual representation that we review here, adapting notation and definition
from [45].

Hereafter we fix two disjoint sets P and M; the former is a finite set of
participants (ranged over by A, B, etc.) and M is the set of messages (ranged
over by m, x, etc.). To exchange messages and coordinate with each other, par-
ticipants use asynchronous point-to-point communication via channels following
the actor model [5,29]. We remark that global graphs abstract away from data;
the messages specified in interactions of global graphs have to be thought of as
data types rather than values.

The syntax of global graphs is defined by the grammar

G ::= A−→B : m | G;G′ | G | G′ | G+G′ | ∗G@A

A global graph can be a simple interaction A−→B : m (for which we require A �=
B), the sequential composition G;G′ of G and G′, the parallel composition (for
which the participants of G and of G′ are disjoint), a nondeterministic choice
G+G′ between G and G′, or the iteration ∗G@A of G. The syntax captures the
structure of a visual language of distributed workflows illustrated in Fig. 2. Each
global graphs G can be represented as a rooted diagram with a single source
node and a single sink node respectively represented as ◦ and �. Other nodes are
drawn as • and a dotted edge from/to a •-node singles out the source/sink nodes
the edge connects to. For instance, in the diagram for the sequential composition,
the top-most edge identifies the sink node of G and the other edge identifies the

136 A. Francalanza et al.

Fig. 2. A visual notation for global graphs

source node of G′; intuitively, • is the node of the sequential composition of G
and G′ obtained by “coalescing” the sink of G with the source of G′. In our
diagrams, branches and forks are marked respectively by and nodes; also,
to each branch/fork nodes corresponds a “closing” gate merge/join gate.

Example 1. Consider a protocol where iteratively participant C sends a newReq
message to a logging service L. In parallel, a C’s partner, A, makes either requests
of either type req1 or type req2 to a service B, which, in turn, replies via two
different types of responses, namely res1 and res2. Once a request is served, B
also sends a report to A, which logs this activity on L. This protocol can be
modelled with the graph G = ∗(

G1 | G′
1

)
;G2;G3@A where

G1 =C−→L : newReq

G2 =L−→C : ack | B−→A : rep

G3 =A−→L : log

G′
1 =A−→B : req1;B−→A : res1

+
A−→B : req2;B−→A : res2

The decision to leave or repeat the loop is non-deterministically taken by one
of the participants (in this case A) which then communicates to all the others
what to do. This will become clearer in Sect. 6. The diagram in Fig. 3 is the
visual counterpart of G. �

The (forward) semantics of global graphs can be defined in terms of partial
orders of communication events [28,45]. We do not present this semantics here
(the reader is referred to [28,45]) for space limitations; instead, we give only a
brief and informal account through a “token game” similar to the one of Petri
nets based on Fig. 3. The token game would start from the source node and flow
down along the edges in the diagram as described by the test in Fig. 3.

For the semantics of global graphs to be defined, well-branchedness [28,45] is a
key requirement. This is a simple condition guaranteeing that all the participants
involved in a distributed choice follow a same branch. Well-branchedness requires
that each branch in a global graph (i) has a unique active participant (that is a

Towards Choreographic-Based Monitoring 137

Fig. 3. The diagram of a global graph and its semantics

unique participant taking the decision on which branch to follow) and (ii) that
any other participant is passive, namely that it is either able to ascertain which
branch was selected from the messages it receives or it does not play any role in
the branching.

Example 2. In the branch of Example 1, A is the active participant while the
others are passive; in fact, C and L are not involved in the choice, while B can
determine that the left or the right branch was selected depending on which type
of request it receives. �

Local Specifications. We adopt systems of CFSMs [9] as our model of local spec-
ifications. A CFSM is a finite-state automaton where transitions represent input
or output events from/to other machines. Each machine in the system corre-
sponds to an actor which can send or receive messages to/from other machines.
Communications take place on unbound FIFO buffers: for each pair of machines,
say A and B, there is a buffer from A to B and one from B to A. Basically, when a
machine A is in a state q with a transition to a state q′ whose label is an output

138 A. Francalanza et al.

of message m to B, then m is put in the buffer from A to B and A moves to state
q′. Similarly, when B is in a state q with a transition to a state q′ whose label is
an input of m from B and the m is on the top of the buffer from A to B then B
pops m from the buffer and moves to state q′.

Noteworthy, the model of CFSMs is very close to the actor model and CFSMs
can be projected from global graphs automatically. Moreover, when the global
graph, say G, is well-formed then the behaviour of the projected machines faith-
fully refines the semantics of G [28]. In this paper, we will directly synthesise
Erlang code from the global specification, that is we will use Erlang actors to
model our local specifications.

5 Global Graphs for Reversibility

We propose a variant of global graphs, dubbed reversibility-enabling (global)
graphs (REGs for short) that generalises the branching construct to cater for
reversibility. We will use REGs to render the recovery model in Sect. 3.

Example 3. Recall the global graph in Example 1. A possible reversion guard for
B could specify that the port required to respond A needs to be available at the
time of communication, or that the size of the communication buffer for this port
does not exceed a given threshold. At runtime, both conditions may prohibit the
respective participants from completing the execution of the specified protocol.
By reversing the choice taken (i.e. A making requests of either type req1 or of
type req2), the participants involved can make alternative choices. �

The syntax of REGs uses control points1 to univocally identify positions
where choices have to be made on how to continue the protocol. Syntactically,
control points are written as i.G, where i is a strictly positive integer.

Definition 1 (Reversibility-enabling global graphs). The set G of rever-
sibility-enabling global graphs (REGs) consists of the terms G derived by the
following grammar:

G ::=A−→B : m | G;G′ | i.(G | G′) |
i.
(
G1 unless φ1 + G2 unless φ2

) | (1)

i.
(∗G@A

)
(2)

that satisfy the following conditions:

– in i.
(∗G@A

)
, A is the active participant of G and

– for any two control points i and j occurring in different positions of a REG it
must be the case that the indices are distinct, i �= j.

1 Control points can be automatically generated; for simplicity, we explicitly put them
in the syntax of REGs.

Towards Choreographic-Based Monitoring 139

In (1), the formulas φh (for h ∈ {1, 2}) are reversion guards expressed in terms
of boolean expressions.

In Definition 1, the participant A in (2) decides whether to repeat the body G
or exit an iteration. Hereafter, we consider equivalent REGs that differ only in
the indices of control points (the indices of control points are, in fact, irrelevant
as long as they are unique) and may omit control points when immaterial, e.g.
writing G unless φ + G′

unless φ′ instead of i.
(
G unless φ + G′

unless φ′).
The new branching construct (1) extends the usual branching construct of

choreographies to control reversible computations. The semantics of this con-
structs is rendered by the encoding in Sect. 6 which realises the following intended
behaviour. The execution of i.

(
G1 unless φ1 + G2 unless φ2

)
requires first to non-

deterministically choose h ∈ {1, 2} and execute the REG Gh. At the end of the
execution of Gh then its guard φh is checked. It the guard is false, then the exe-
cution exits the branch and continues executing normally. It the guard is true we
may have two sub-cases depending whether the other branch has been already
reversed or not. In the first case, then the execution is forced to proceed normally
(e.g., there is no alternatives to try), in the second case then the execution of
Gh is reversed and the other branch is executed.

Note that, by keeping track of all reversed branches and fully executing the
last branch when all the others have been reversed, we can easily generalise to a
branching construct i.

(
G1 unless φ1 + · · · + Gh unless φh

)
with h ≥ 2; for simplicity

we just consider h = 2 here.
Definition 1 parameterises REGs on the notion of reversion guard. However,

our study required us to address crucial design choice on how reversion guards
are rendered in a language like Erlang (without a global state). Roughly, rever-
sion guards can be thought of as propositions predicating on the state of the
forward execution. A key requirement for a proper projection, however, is that
the evaluation of such guards must be “distributable”, i.e. we want revision
guards to be “projectable” from the global view to the components realising the
behaviour of the participants. To meet this requirements, we use local guards,
i.e. boolean expression that predicate on the state of a specific participant and
assume that a revision guard is a conjunction of the local guards at each partici-
pant. More concretely, we exploit Erlang’s support [1] for accessing the status of
a process implementing a participant via system functions such as process info
or system info, which return a dictionary with miscellaneous information about
a process or a physical node respectively.

Example 4. Consider the following concrete examples of revision guards:

140 A. Francalanza et al.

Participant Actor Selector Actor

Participant Monitor Selector Monitor

Forward Attempt
(Phase 2)

φ

Guard Check
(Phase 3)

Continuation
(Phase 4)

Decision
(Phases 1 and 5)

Decision
(Phase 5)

Fig. 4. The instrumentation architecture connecting participant actors, coordinating
(selector) actors and their respective monitor actors

Predicate queue len checks if the size of the mailbox is above a threshold,
whereas message exists checks for the presence of a message matching some
pattern in a mailbox. Other examples of reversion guards are conditions on PIDs
and port identifiers, heap size, or the status of processes (e.g., waiting, running,
runnable, suspended). �

Our reversible semantics still requires well-branchedness: a REG, say G, is
well-branched when the global graph obtained by removing reversion guards
from G is well-branched (as defined in Sect. 4). This guarantees communication
soundness in presence of reverse executions.

6 From REGs to Erlang

This section shows how we map REGs into Erlang programs. This mapping cor-
responds to the definition of projection from the global view provided by REGs
into Erlang implementations of their local view. Our encoding embraces the prin-
ciples advocated in [13] and reviewed in Sect. 3: we strive for a solution yielding
a high degree of decoupling between forward and reverse executions. Unsurpris-
ingly, the most challenging aspect concerns how branches are projected. This
is done by realising a coordination mechanism which interleaves forward and
reversed behaviour, as described in Sect. 5. In the following, we first describe the
architecture of our solution. We then show how forward and reversed executions
are rendered in it.

6.1 Architecture

The abstract architecture of our proposal is given in Fig. 4. Each participant
of a REG is mapped to a pair of Erlang actors, the participant actor and the
participant monitor which liaise with one another in order to realise reversible
distributed choices. The execution of a distributed choice is supported by another
pair of (dynamically generated) actors, the selector actor which liaises with its
corresponding selector monitor. The basic idea is that participant and selector
actors are in charge of executing the forward logic part of the choice while their
respective monitors deal with the reversibility logic.

Towards Choreographic-Based Monitoring 141

A key structural invariant of the architecture is that monitors can interact
only with their corresponding participant or with the monitors of the selectors
currently in execution, as depicted in Fig. 4. This organisation is meant to repre-
sent the information and control flow of our solution. The coordination protocol
required to resolve a distributed choice specified in a REG is made of the fol-
lowing phases:

1. Inception: The selector actor (started at a branching point) decides which
branch to execute and communicates its decision to the participants involved.

2. Forward attempt: Participant actors execute the selected branch accord-
ingly and report their local state at the end of the branch to their participant
monitor.

3. Guards checking: Participant monitors check their reversion guard and
communicate the outcome to the selector monitor.

4. Continuation: The selector monitor aggregates the individual outcome of all
participant monitors and reports the aggregated result to the selector actor.

5. Decision: Based on suggestion forwarded by the selector monitor, the selec-
tor actor decides whether to continue forward or reverse the execution and
communicates the decision to all participants, which in turn propagate it to
their participant monitor.

These phases roughly correspond to the arrows in Fig. 4.

6.2 Branching Actors and Monitors

We now describe the behaviour of actors and monitors in a choice, with the help
of their automata-like representation in Fig. 5. The coordination protocol that
we describe here resembles a 2-phase commit protocol where participants report
the outcome of local computations to a coordinator that then decides how to
continue the execution.

When participant actors (start to) reach a branching point, the inception
phase begins. The actor corresponding to the (unique) active participant of the
choice spawns the selector actor and waits from the selector message telling
which branch to take in the choice; all other participant actors just wait for the
selector’s decision. The act of spawning the selector arrow by the active partici-
pant is represented in Fig. 5 via the gray arrow and the cloud in the automaton
of the participant actor. Subsequently, all the actor participants involved in a
branch will wait from the selector to instruct them with the branch (either left or
right) to take—these are the yellow arrows in the automaton of Fig. 5. Upon the
receipt of such a message, participant actors first forward this message to their
monitor and then enter the second phase executing the branch—represented by
the cloud in the automaton. Unless the chosen branch diverges, the third phase
starts when participant actors finish the branch (possibly at different times)
and they signal to their monitor that they are ready to exit the choice. This
is signalled by the exit message which also carries the local state of execu-
tion (described in Sect. 5). At this point, participant actors take part only in

142 A. Francalanza et al.

Fig. 5. Automata-like description of actors and monitors for the projection of branches

the last phase: they receive from the selector either an ack message (confirming
that the choice has been resolved) or a rev message to reverse the execution.
In either case, they propagate the message to their monitor and either “com-
mit” the branch or return to the state that waits for the message dictating the
next branch to take. Participant actors behave uniformly but for the active one,
which has the additional task of spawning the selector at the very beginning
(for non-active participants the grey transition is an internal step not affecting
communications).

Each participant monitor waits for the message carrying the local state that
its participant actor sends at the end of the second phase in the exit message.
The state is used to check whether the reversion guard of the branch, say φ,
holds or not. If φ holds for the local state of the participant actor, then the
participant monitor sends the selector monitor a request to reverse the branch
(message rev). Otherwise the monitor sends a message to commit the choice
(message exit). In Fig. 5 this is represented by the label sel m!d, where d stands
for decision and sel m binds to the unique identifier of the selection monitor
implemented as an actor. After this, the monitor waits from its participant actor
for the rev or the ack message sent in the last phase: if rev is received the
monitor returns to its initial state and leaves the branch otherwise.

Towards Choreographic-Based Monitoring 143

The selector actor spawned in the inception phase starts by spawning a selec-
tor monitor and then deciding which branch to take initially—represented in
Fig. 5 by the grey transition and the cloud in the automaton of the selector.
After communicating its decision to all participant actors, the selector waits for
the request of its monitor and starts phase five of Sect. 6.1 by deciding whether
to reverse the branch or not. The decision process is as follows: if the selector
receives an ack message then the branch is committed and the selector monitor
terminates. Otherwise, the selector participants receive a rev message to reverse
the branch. If there are branches that have not been taken yet, then the last
executed branch is marked as “tried”, a branch that has not been attempted
yet is selected, and a rev message is sent to all participant actors. Otherwise,
the decision to commit the branch is taken and the ack message is sent to all
participant actors. In the former case, the selector returns to its initial state,
and terminates otherwise.

The selector monitor participates to the fourth phase. It first gathers all
the outcomes from the guard-checking phase from all the participant monitors
involved into the choice. Recall that a rev message is received from any par-
ticipant monitor whose revision guard becomes true, while an ack message is
received from any participant monitor whose revision guard does not hold. Then,
the selector monitor computes an outcome to be sent to the selector actor: if all
received messages are ack then an ack message is sent to the selector actor, oth-
erwise the monitor sends a rev message to the selector actor. In both cases, the
selector monitor terminates; a new selector monitor is spawned by the selector
actor if the branch is actually reversed.

Iteration is a simplification of a distributed choice: we just generate a selector
for an iteration but not its monitor. The reason for not having a monitor for
the iterator selector is due to the fact that there is no reversible semantics to be
implemented for the iteration. This does not imply that within the body of an
iteration a reversible step can not be taken (e.g. there can be an inner choice), but
just that iterations are not points at which the computation can be reversed.
The selector (instantiated by the active participant of the iteration, similarly
to choices) just decides whether to iterate or exit the loop. A participant actor
within a loop, after completing an iteration, awaits the decision from the selector
actor and continues accordingly.

6.3 Compiling to Erlang

The code generated for the projections from REGs to Erlang is discussed below.
We focus on the compiled code for the branches constructs, since the compilation
of the other constructs is standard and therefore omitted. Our discussion uses
auxiliary functions for which the code is not reported.

144 A. Francalanza et al.

The code for the participant actor (lines 1–21) is parametrised with respect
to cp, the value of the control point2 univocally identifying the point of branch in
the REG. The commented lines 2–5 are generated only for the code of the active
participant which spawns the selector actor of the branch CP. Note that the
process is registered under a unique name sel act cp (which is an atom). This
snippet is actually a template which would be filled up with the code generated
for the participant communications respectively on the left and on the right
branches (i.e. the commented lines 9 and 13).

The Erlang process spawned by a participant actor implementing the selector
actor executes the function on lines 44–70. This function takes two parameters:
the Attempt representing the branches chosen so far and the control point CP
identifying the choice. The former parameter is a list of atoms left and right;
note that the empty list is passed initially when the process is spawned and
that (in our case) the size of this list should never exceed 1. As discussed above,
the selector chooses a branch (lines 49–55) and communicates its decision to
the participants of the branch (lines 56–57, where participants is computed
at compile time, from the global graph script, and returns the participants of a
branch given its control point). Finally, the selector enters the fourth phase of
Sect. 6.1, waiting for the message from its monitor, and decides accordingly how
to continue the execution of the choreographed choice.

2 Note that the value cp is statically determined by the compiler.

Towards Choreographic-Based Monitoring 145

As in the case of the participant actor, the snippet of the participant monitor
(lines 22–43) does not make explicit the code for the monitoring of the left and
right branches (commented lines 25 and 30). The auxiliary function check guard
returns the evaluation of the guard for the state provided by the participant (lines
26–28 and 31–33). The function get selector monitor retrieves the PID of the
selector monitor from the control point value CP.

The selector monitor, spawned by the selector process, is registered with the
name sel mon cp (lines 45–48) where cp is the second actual CP when invoking
sel act. Note that the invocation to get selector monitor on line 35 returns
the atom sel mon cp. The snippet for the selector monitor uses the auxiliary
function participants returning the list of participant actors involved in the
branch cp. The outcome Msg is computed on lines 73–79 and sent to the selec-
tor on line 80. The selector monitor awaits a message from all the participant
monitors involved in the branch (lines 73–74), and then it decides the message
to communicate to the selector actor. If at least one of the messages received is
rev, then the final message is rev, otherwise the final message is ack.

7 Conclusions

We have presented a methodology to automate the process of adding recovery
strategies to message passing systems specified via a global protocol. In partic-
ular, our model abstracts from (1) the definition of formal behavioural models
encompassing failures, (2) the specification of the relevant properties of adapta-
tion and recovery strategy, (3) the automatic generation of monitoring, recovery,
and adaptation logic in target languages of interest.

In line with the principles advocated by our model, we then have presented a
minimally-intrusive extension to global graph choreographies [28] for expressing
reversible computation. We showed how these descriptions could be realised into
executable actor-based Erlang programs that compartmentalise the reversion
logic as Erlang monitors, minimally tainting the application logic.

Related Work. The closest work to ours is [19,33,40]. In [33] a reversible seman-
tics for a subset of Erlang is given. The goal of [33] is a debugger based on a
fully reversible semantics. To achieve this, they modify the Erlang semantics
in order to keep track of the computational history and build an ad-hoc inter-
preter for it. Our goal is different since we focus on controlled reversibility [31].
Our framework automates the derivation of rollback points (namely the exact
point at which the execution has to revert) from the recovery logic. Also, the
use of monitors avoids any changes to Erlang’s run-time support. Choreogra-
phies are used in [40] to devise an algorithm that optimises Erlang’s recovery
policies. More precisely, global views specify dependencies from which a global
recovery tables are derived. Such tables tell which are the safe rollback points.
The framework then exploits the supervision mechanism of Erlang to pair par-
ticipants with a monitor. In case of failure, the monitor restarts the actor to
a consistent rollback point. One could combine our approach with the recovery

146 A. Francalanza et al.

mechanism of [40] so as to generalise our reversible semantics to harness fault
tolerance. This is not a trivial task, because the fault-tolerance mechanism of [40]
needs to follow a specific protocol, making it unclear whether participants can
be automatically derived. In [19] actors are extended with checkpoints primi-
tives, which the programmer has to specify in order to rollback the execution.
In order to reach globally-consistent checkpoints severe conditions have to be
met. Thanks to the correctness-by-design principle induced by global views, our
approach automatically deals with checkpoints, relieving this burden from the
programmer.

Other works [37,38,41] have investigated the use of monitors to steer
reversibility in concurrent systems. In [41] a monitored reversible process algebra
is presented where each agent is paired with a monitor. But, unlike our approach,
the monitor tells the agent what to do both in the forward and in the reverse
way. In [37,38] the authors investigate the use of monitors to steer reversibil-
ity in message oriented systems. Here monitors are used as memories storing
information about the forward execution of the monitored participants, and this
information is then used to reconstruct previous states. As in our approach,
in [38] participants and their monitors are derived from a global specification
as well. We diverge from [37,38] in several aspects. Firstly, our monitors do not
store any information about the forward computation. Secondly, all the mon-
itors coordinate amongst each other to decide whether to revert a particular
computation or not. The coordination mechanism of our monitors is automat-
ically derived. Moreover in our approach reversibility is triggered at run-time
when certain conditions (specified at design-time in the recovery logic) are met.

Conclusions. We have presented a method to automatically derive reversible
computation as Erlang actors. A key aspect of our approach is the ability to
express, from a global point of view, when a reverse distributed computation
has to take place and not how. Starting from a global specification of the sys-
tem, branches can be decorated with conditions that at run-time will enable the
coordinated undoing of a certain branch. Another novelty of our approach is the
use of monitors to enact reversibility. We leave as future work the measurement
of the overhead of our approach on the normal forward semantics of the actors,
in terms of messages and memory consumption. Another research direction is
to integrate our recovery logic with existing monitoring frameworks for Erlang.
In [10,11], Cassar et al. developed the monitoring tool adaptEr3 for synthesis-
ing adaptation monitors for actor systems developed in Erlang. Specifications in
adaptEr are defined using a version of Safe Hennessy Milner Logic with recursion
(sHML) that is extended with data binding, if statements for inspecting data,
adaptations and synchronisation actions. We will investigate the idea of extend-
ing this logic with reversibility capabilities, and then to synthesise monitors
directly from this logic formulae.

3 The tool adaptEr is open-source and downloadable from https://bitbucket.org/
casian/adapter.

https://bitbucket.org/casian/adapter
https://bitbucket.org/casian/adapter

Towards Choreographic-Based Monitoring 147

Several works have shown that reversible debuggers can be built on top of
reversible semantics [17,26,32]. In line with these works, our ultimate goal would
also be to build a (reversible) debugger for Erlang systems. One idea could be
to integrate our automatic synthesis of reversible code with commercial sys-
tems which are able to monitor and aggregate several information (events) of a
message passing system. One of such candidate is WombatAOM4. Such an inte-
gration will allow our reversion guards to predicate on real runtime information.
On a different topic, REGs could also be used to enhance Continuous Inte-
grations [36] scenarios, by proposing a formalism to express workflows imbued
with reversible behaviour to support automatic tests generation and flakiness
detection.

References

1. Erlang run-time system application, reference manual version 9.2 (2017)
2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-

tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019)

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Testing
equivalence vs. runtime monitoring. In: Boreale, M., Corradini, F., Loreti, M.,
Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed
Programming. LNCS, vol. 11665, pp. 28–44. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-21485-2 4

4. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement via
suppressions. In: 29th International Conference on Concurrency Theory, CONCUR
2018, Beijing, China, 4–7 September 2018. LIPIcs, vol. 118, pp. 34:1–34:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

5. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press Series in Artificial Intelligence. MIT Press, Cambridge (1990)

6. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 31

7. Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. JLAMP 85(3), 425–446 (2016)

8. Bernardi, G., Hennessy, M.: Mutually testing processes. LMCS 11(2), 1–23 (2015)
9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),

323–342 (1983)
10. Cassar, I., Francalanza, A.: Runtime adaptation for actor systems. In: Bartocci,

E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 38–54. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23820-3 3

11. Cassar, I., Francalanza, A.: On implementing a monitor-oriented programming
framework for actor systems. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016.
LNCS, vol. 9681, pp. 176–192. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33693-0 12

12. Cassar, I., Francalanza, A., Attard, D.P., Aceto, L., Ingólfsdóttir, A.: A suite of
monitoring tools for Erlang. In: Reger, G., Havelund, K. (eds.) RV-CuBES 2017. An

4 https://www.erlang-solutions.com/products/wombatoam.html.

https://doi.org/10.1007/978-3-030-21485-2_4
https://doi.org/10.1007/978-3-030-21485-2_4
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-23820-3_3
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-319-33693-0_12
https://www.erlang-solutions.com/products/wombatoam.html

148 A. Francalanza et al.

International Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools. Kalpa Publications in Computing,
vol. 3, pp. 41–47. EasyChair (2017)

13. Cassar, I., Francalanza, A., Mezzina, C.A., Tuosto, E.: Reliability and fault-
tolerance by choreographic design. In: PrePost@iFM. EPTCS, vol. 254 (2017)

14. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)

15. Cesarini, F., Thompson, S.: Erlang behaviours: programming with process design
patterns. In: Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol.
6299, pp. 19–41. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17685-2 2

16. Chen, F., Jin, D., Meredith, P., Roşu, G.: Monitoring oriented programming -
a project overview. In: Proceedings of the Fourth International Conference on
Intelligent Computing and Information Systems (ICICIS 2009), pp. 72–77. ACM
(2009)

17. de Vries, F., Pérez, J.A.: Reversible session-based concurrency in Haskell. In: Pa�lka,
M., Myreen, M. (eds.) TFP 2018. LNCS, vol. 11457, pp. 20–45. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-18506-0 2

18. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

19. Field, J., Varela, C.A.: Transactors: a programming model for maintaining glob-
ally consistent distributed state in unreliable environments. In: POPL 2005. ACM
(2005)

20. Francalanza, A.: A theory of monitors - (extended abstract). In: Jacobs, B., Löding,
C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49630-5 9

21. Francalanza, A.: Consistently-detecting monitors. In: 28th International Confer-
ence on Concurrency Theory, CONCUR 2017, 5–8 September 2017. LIPIcs, vol.
85, pp. 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

22. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des. 51, 1–30 (2017). https://
doi.org/10.1007/s10703-017-0273-z

23. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

24. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

25. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Formal Methods Syst. Des. (FMSD) 46(3), 226–261 (2015). https://doi.org/10.
1007/s10703-014-0217-9

26. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

27. Gray, J.: Why do computers stop and what can be done about it? In: SRDS. IEEE
(1986)

28. Guanciale, R., Tuosto, E.: An abstract semantics of the global view of choreogra-
phies. In: ICE 2016, Heraklion, Greece, pp. 67–82 (2016)

https://doi.org/10.1007/978-3-642-17685-2_2
https://doi.org/10.1007/978-3-642-17685-2_2
https://doi.org/10.1007/978-3-030-18506-0_2
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/978-3-642-54804-8_26

Towards Choreographic-Based Monitoring 149

29. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: IJCAI. Morgan Kaufmann Publishers Inc. (1973)

30. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web services
choreography description language version 1.0 (2004). http://www.w3.org/TR/
2004/WD-ws-cdl-10-20041217

31. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3 19

32. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7 16

33. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebraic Methods Program. 100, 71–97 (2018)

34. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232 (2015)

35. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tech. Technol. Transf. 14, 249–289
(2011)

36. Meyer, M.: Continuous integration and its tools. IEEE Softw. 31(3), 14–16 (2014)
37. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a

monitors-as-memories approach. In: PPDP (2017)
38. Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh look.

J. Log. Algebr. Meth. Program. 90, 2–30 (2017)
39. Mezzina, C.A., Tuosto, E.: Choreographies for automatic recovery. CoRR,

abs/1705.09525 (2017)
40. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:

CC. ACM (2017)
41. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling

of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3 18

42. Rook, P.: Software Reliability Handbook. Elsevier Science Inc., New York (1990)
43. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),

30–50 (2000)
44. Thomas, D.: Programming Elixir: Functional, Concurrent, Pragmatic, Fun, 1st

edn. Pragmatic Bookshelf (2014)
45. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.

Algebr. Meth. Program. 95, 17–40 (2018)
46. Wyatt, D.: Akka Concurrency. Artima Incorporation, USA (2013)

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
https://doi.org/10.1007/978-3-642-36315-3_19
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18

150 A. Francalanza et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Reversibility in Chemical Reactions

Stefan Kuhn1(B) , Bogdan Aman2,3 , Gabriel Ciobanu2,3 ,
Anna Philippou4 , Kyriaki Psara4 , and Irek Ulidowski5

1 School of Computer Science and Informatics, De Montfort University, Leicester, UK
stefan.kuhn@dmu.ac.uk

2 Romanian Academy, Institute of Computer Science, Iaşi, Romania
3 Faculty of Computer Science, A.I. Cuza University, Iaşi, Romania

{bogdan.aman,gabriel}@info.uaic.ro
4 Department of Computer Science, University of Cyprus, Nicosia, Cyprus

{annap,kpsara01}@cs.ucy.ac.cy
5 School of Informatics, University of Leicester, Leicester, UK

irek.ulidowski@leicester.ac.uk

Abstract. In this chapter we give an overview of techniques for the
modelling and reasoning about reversibility of systems, including out-
of-causal-order reversibility, as it appears in chemical reactions. We con-
sider the autoprotolysis of water reaction, and model it with the Calculus
of Covalent Bonding, the Bonding Calculus, and Reversing Petri Nets.
This exercise demonstrates that the formalisms, developed for express-
ing advanced forms of reversibility, are able to model autoprotolysis of
water very accurately. Characteristics and expressiveness of the three
formalisms are discussed and illustrated.

Keywords: Reversible computation · Reaction modelling · Calculus of
Covalent Bonding · Bonding Calculus · Reversing Petri Nets

1 Introduction

Biological reactions, pathways, and reaction networks have been extensively
studied in the literature using various techniques, including process calculi and
Petri nets. Initial research was mainly focused on reaction rates by the mod-
elling and simulating networks of reactions, in order to analyse or even predict
the common paths through the network. Reversibility was not considered explic-
itly. Later on reversibility started to be taken into account, since it plays a crucial
rôle in many processes, typically by going back to a previous state in the sys-
tem. Two common types of reversibility are backtracking and causally-consistent
reversibility [8,19,25]. Backtracking executes exactly the inverse order of the for-
ward execution, and causally-consistent reversibility allows undoing effects before
causes, but not necessarily in the exact inverse order. Beyond backtracking and

The authors acknowledge partial support of COST Action IC1405 on Reversible Com-
putation - Extending Horizons of Computing.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 151–176, 2020.
https://doi.org/10.1007/978-3-030-47361-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_7&domain=pdf
http://orcid.org/0000-0002-5990-4157
http://orcid.org/0000-0001-7649-8181
http://orcid.org/0000-0002-8166-9456
http://orcid.org/0000-0002-1665-9913
http://orcid.org/0000-0002-6554-7950
http://orcid.org/0000-0002-3834-2036
https://doi.org/10.1007/978-3-030-47361-7_7

152 S. Kuhn et al.

causally-consistent reversibility, there is a more general form of reversibility,
known as out-of-causal-order reversibility [28], which makes it possible to get to
states which cannot be reached by forward reactions alone. Such sequences of
forward and reverse reaction steps are important as they lead to new chemical
structures and new reactions, which would not be possible without out-of-causal-
order reversibility [28]. A typical example is a catalytic reaction: a catalyst C
enables compounds A and B to combine, a combination that would not normally
happen or be very unlikely without the presence of C. Initially, catalyst C binds
with B resulting in a compound BC. Then A combines with BC creating ABC.
Finally, with its job done, C breaks away from ABC, leaving A and B bonded.
This sequence of reactions can be written as follows:

A + B + C → A + BC → ABC → AB + C

This is a typical example of out-of-causal order reversibility since the bond
between B and C is undone before its effect, namely the bond from A to B
(which is not undone at all). The modelling of such reactions is the focus of
this chapter. For further motivation, formal definitions and more illustrating
examples of the various types of reversibility we refer the reader to [8,19,25,28].

1.1 Contribution

This chapter presents and compares three formalisms, the Calculus of Covalent
Bonding (CCB) [15,16], the Bonding Calculus [1], and Reversing Petri Nets [23],
that have been developed during COST Action IC1405. These models are vari-
ations of existing formalisms and set out to study reversible computation by
allowing systems to reverse at any time leading to previously visited states or
even new states without the need of additional forward actions. The contribution
of this chapter is a comparative overview of the three formalisms, a discussion of
their expressiveness, and a demonstration of their use on a common case study,
namely the autoprotolysis of water reaction.

Our case study was selected to be non-trivial, of manageable size, and to allow
us to exhibit the crucial features of the formalisms. It is a chemical reaction that
involves small molecules, so it is different from biological reactions that involve
proteins and other macromolecules. New modelling techniques may be needed in
order to capture fully reversible behaviour of biological systems, however, in this
chapter we concentrate on chemical reactions, a domain that offers interesting
examples of out-of-causal-order reversibility.

The discussed formalisms enable us to model the intermediate steps of chem-
ical reactions where some bonds are only “helping” to achieve the overall aim
of the reaction: specifically, they are only formed to be broken before the end of
the reactions. Thus, the allowed level of detail makes a more accurate depiction
of the reversibility possible, and allows a more thorough understanding of the
underlying reaction mechanisms compared to higher-level models.

Reversibility in Chemical Reactions 153

1.2 Related Work

Process calculi, originally designed for the modelling of sequential and concurrent
computation, have been applied to biochemical and biological systems. The main
instances are the π-calculus [34], BioAmbients [33], the stochastic π-calculus [30],
beta binders [31] and bioPEPA [6]. Another way to model biochemical reactions
is with rule-based formalisms such as BIOCHAM [10], the κ-calculus [7], and
the BioNetGen Language (BNGL) [9]. The formalisms κ and BNGL can be used
to model interactions between proteins, while this is not possible in BIOCHAM.
BNGL allows the use of molecule sites having the same name, which is not
allowed in the κ-calculus.

Most of the formalisms mentioned above do not explicitly represent reversibil-
ity. If an action is the reverse of another action performed before, there is no
explicit knowledge of that in the model. Reversibility was added explicitly to
process calculi in RCCS [8], CCSK [25], and reversible π [17,18]. CCSK and
RCCS are based on the Calculus of Communicating Systems (CCS) [21]. They
extend CCS by keeping track of past actions and enabling an undo of those. So a
reverse action is the reverse execution of a forward action. These calculi support
backtracking and causally-consistent reversibility. Out-of-causal-order reversibil-
ity was first addressed in CCSK extended with controller processes [28], and in
the context of reversible event structures [26,27,37]. CCB [16] allows all types
of reversibility in the context of chemical reactions and in other settings.

Petri nets (PNs) [35] are another formalism that has been widely used to
model and reason about a wide range of applications featuring concurrency and
distribution. They are a graphical language associated with a rich mathematical
theory and supported by a variety of tools. Their use in systems biology dates
back to [12,32]. Since then, they have been employed for the modelling, analysis,
and simulation of biochemical reactions in metabolic pathways, gene expression,
signal transduction, and neural processes [2,4,5]. Indeed, PNs seem to be a
natural framework for representing biochemical systems as they constitute a set
of interdependent transitions/reactions which consume and produce resources,
and are represented graphically in a similar fashion to the systems in question.
Several specialised Petri net classes, such as qualitative, stochastic, continuous,
or hybrid Petri nets and their coloured counterparts, have been used to describe
different biochemical systems [13,20,22,29,38].

Even though classical PNs and their extensions have been extensively used to
model biochemical systems, they cannot directly model reversibility. Specifically,
when modelling reversible reactions in these formalisms it is required to employ
mechanisms involving two distinct transitions, one for the forward and one for the
reverse version of a reaction. This may result in expanded models and less natural
and/or less accurate models of reversible behaviour. It is also in contrast to the
notion of reversible computation, where the intention is not to return to a state
via arbitrary execution but to reverse the effect of already executed transitions.
For this reason, the formalism of reversing Petri nets [23] has been proposed
to allow systems to reverse already executed transitions leading to previously
visited states or even new ones without the need of additional forward actions.

154 S. Kuhn et al.

Reversing Petri nets have also been extended with a mechanism for controlling
transition reversal by associating transitions with conditions [24].

1.3 Paper Organisation

In the next section, we introduce the autoprotolysis of water reaction, which will
be modelled using our three formalisms. This is followed by a section introducing
the formalisms, their syntax and, informally, their operational semantics. We also
give three models of the autoprotolysis of water using the formalisms. In Sect. 4,
we compare the formalisms and the models of our example reaction, and we
also briefly discuss software support for the three formalisms. Finally, Sect. 5
concludes the paper.

2 Autoprotolysis of Water

We consider a chemical reaction that transfers a hydrogen atom between two
water molecules. This reaction is known as the autoprotolysis of water and is
shown in Fig. 1. There, O indicates an oxygen atom and H a hydrogen atom.
The lines indicate bonds. Positive and negative charges on atoms are shown by
⊕ and � respectively. The meaning of the curved arrows and the dots will be
explained in the next paragraphs. The reaction is reversible and it takes place
at a relatively low rate, making pure water slightly conductive. We have chosen
this reaction as our example reaction, since it is non-trivial but manageable, and
has some interesting aspects to be represented.

Fig. 1. Autoprotolysis of water.

To model the reaction we need to understand why it takes place and what
causes it. The main reason is that the oxygen in the water molecule is nucle-
ophilic, meaning it has the tendency to bond to another atomic nucleus, which
would serve as an electrophile. This is because oxygen has a high electro-
negativity, therefore it attracts electrons and has an abundance of electrons
around it. The electrons around the atomic nucleus are arranged on electron
shells, where only those in the outer shell participate in bonding. Oxygen has
four electrons in its outer shell, which are not involved in the initial bonding
with hydrogen atoms. These electrons form two lone pairs of two electrons each,
which can form new bonds (lone pairs are shown in Fig. 1 by pairs of dots). All

Reversibility in Chemical Reactions 155

this makes oxygen nucleophilic: it tends to connect to other atomic nuclei by
forming bonds from its lone pairs. Since oxygen attracts electrons, the hydrogen
atoms in water have a positive partial charge and oxygen has a negative partial
charge.

The reaction starts when an oxygen in one water molecule is attracted by a
hydrogen in another water molecule due to their opposite charges. This results in
a hydrogen bond. This bond is formed out of the electrons of one of the lone pairs
of the oxygen. The large curved arrow in Fig. 1 indicates the movements of the
electrons. Since a hydrogen atom cannot have more than one bond, the creation
of a new bond is compensated by breaking the existing hydrogen-oxygen bond
(indicated by the small curved arrow). When this happens, the two electrons,
which formed the original hydrogen-oxygen bond, remain with the oxygen. Since
a hydrogen contains one electron and one proton, it is only the proton that is
transferred, so the process can be called a proton transfer as well as a hydrogen
transfer. The forming of the new bond and the breaking of the old bond are
concerted, meaning that they happen together without a stable intermediate
configuration. As a result we have reached the state where one oxygen atom
has three bonds to hydrogen atoms and is positively charged, represented on
the right side of the reaction in Fig. 1. This molecule is called hydronium and
is written as H3O+. The other oxygen atom bonds to only one hydrogen and
is negatively charged, having an electron in surplus. This molecule is called a
hydroxide and is written as OH−.

Note that the reaction is reversible: the oxygen that lost a hydrogen can
pull back one of the hydrogens from the other molecule, the H3O+ molecule.
This is the case since the negatively charged oxygen is a strong nucleophile
and the hydrogens in the H3O+ molecule are all positively charged. Thus, any
of the hydrogens can be removed, making both oxygens formally uncharged,
and restoring the two water molecules. In Fig. 1 the curved arrows are given for
the reaction going from left to right. Since the reaction is reversible (indicated
by the double arrow) there are corresponding electron movements when going
from right to left. These are not given in line with usual conventions, but can
be inferred.

In this simple reaction, the forward and the reverse step consist of two steps
each. The breaking of the old and the forming of the new bond occur simultane-
ously. This means that there is no strict causality of actions, since none of them
can be called the cause of the overall reaction. Furthermore, the reverse step can
be done with a different atom to the one used during the forward step because
each of the molecules are in a sense identical and in practice there does not exist
a single “reverse” path corresponding to a forward one.

It should be noted that there are two types of bonding modelled here. Firstly,
we have the initial bonds where two atoms contribute an electron each. Secondly,
the dative or coordinate bonds are formed where both electrons come from one
atom (an oxygen in this case). Both are covalent bonds, and once formed they
cannot be distinguished. Specifically, in the oxygen with three bonds all bonds
are the same and no distinction can be made. If one of the bonds is broken by

156 S. Kuhn et al.

a deprotonation (as in the autoprotolysis of water) the two electrons are left
behind and they form a lone pair. If the broken bond was not previously formed
as a dative bond, the electrons changed their “rôle”. This explains why any
proton can be transferred in the reverse reaction and not just the one that was
involved in the forward path.

3 Formalisms for Reversible Chemical Reactions

3.1 Calculus of Covalent Bonding

In this subsection we introduce the Calculus of Covalent Bonding (CCB) [16],
concentrating on the new general prefixing operator (s; b).P which, together with
a generalised composition operator, produces pairs of concerted actions. Then
we present a CCB model of the autoprotolysis of water.

Definition of CCB. We recall the definition of CCB, presenting only the main
ideas. More details can be found in [15,16]. First, we introduce some preliminary
notions and notations.

Let A be the set of (forward) action labels, ranged over by a, b, c, d, e, f . We
partition A into the set of strong actions, written as SA, and the set of weak
actions, written as WA. Reverse (or past) action labels are members of A, with
typical members a, b, c, d, e, f , and represent undoing of actions. The set P(A∪A)
is ranged over by L.

Let K be an infinite set of communication keys (or keys for short) [25], ranged
over by k, l,m, n. The Cartesian product A×K, denoted by AK, represents past
actions, which are written as a[k] for a ∈ A and k ∈ K. Correspondingly, we
have the set AK that represents undoing of past actions. We use α, β to identify
actions which are either from A or AK. It would be useful to consider sequences
of actions or past actions, namely the elements of (A ∪ AK)∗, which are ranged
over by s, s′ and sequences of purely past actions, namely the elements of AK∗,
which are ranged over by t, t′. The empty sequence is denoted by ε. We use the
notation “α, s” and “s, s′” to denote a concatenation of elements, which can be
strings or single actions.

We shall also use two sets of auxiliary action labels, namely the set (A) =
{(a) | a ∈ A}, and its product with the set of keys, namely (A)K. These labels
will be used in the auxiliary rules when defining the semantics of CCB. They
denote the execution of a weak action, which makes it possible in the SOS rules
to force breaking of a bond for those actions only.

The syntax of CCB is given below where P is a process term:

P ::= S
∣
∣ S

def
= P

∣
∣ (s; b).P

∣
∣ P |Q ∣

∣ P \L

The set of process identifiers (constants) PI contains typical elements S

and T . Each process identifier S has a defining equation S
def
= P where P contains

Reversibility in Chemical Reactions 157

only forward actions (and no past actions). There is also a special identifier 0,
denoting the deadlocked process, which has no defining equation. For restrictions
L ⊆ A holds.

We have a general prefixing operator (s; b).P , where s is a non-empty
sequence of actions or past actions. This operator extends the prefixing operator
in [28]. The action b is a weak action and it can be omitted, in which case the
prefixing is written as (s).P and is called the simple prefix. The simple prefix
(which is still a sequence) is the prefixing operator in [28]. Exactly one of the
actions in s in (s).P may be a weak action from WA. A weak action in s is
only allowed for the simple prefix, in the (s; b) operator b is the only allowed
weak action. If s is a sequence that contains a single action, then the action is
a strong action and the operator is the prefixing operator of CCS [21]. We omit
trailing 0s so, for example, (s).0 is written as (s). The new feature of the oper-
ator (s; b).P is the execution of the weak action b, which can happen only after
all the actions in s have taken place. Performing b then forces undoing one of
the past actions in s (by the concert rule in Fig. 4). If a (s; b) operator is followed
by another sequence of actions, where all actions in s have already taken place,
then there is a non-deterministic choice of either doing b or progressing to the
next sequence of actions (see act1 and act2).

P | Q represents two systems P and Q which can perform actions or reverse
actions on their own, or which can interact with each other according to a com-
munication function γ. As in the calculus ACP [11], the communication function
is a partial function γ : A × A → A which is commutative and associative. The
function γ is used in the operational semantics to define when two processes can
interact. Processes P and Q in P | Q can also perform a pair of concerted actions,
which is the new feature of our calculus. We also have the ACP-like restriction
operator \L, where L is a set of labels. It prevents actions from taking place
and, due to the synchronisation algebra used, it also blocks communication. If
γ(a, b) = c then a.P and b.Q cannot communicate in (a.P | b.Q) \ c.

The set Proc of process terms is ranged over by P,Q and R. In the setting
of CCB these terms are simply called processes. We define the semantics of our
calculus using SOS rules (Figs. 2, 3, 4) and rewrite rules (Fig. 5).

We use some predicates and functions, which are formally defined in [16].
Informally, a process P is standard, written std(P), if it contains no past actions
(hence no keys). A key n is fresh in Q, written fsh[n](Q), if Q contains no past
action with the key n. Function k returns the keys in a sequence of actions,
whereas keys returns the keys in a process, and fn gives the actions of a process
which could be executed.

The forward and reverse SOS rules for CCB are given in Figs. 2 and 3. Figure 4
contains the SOS rules that define the new concerted actions transitions. The
rule concert defines when a pair of concerted actions takes place. This enables the
linking of forming and breaking of bonds, and therefore a degree of control over
the reversing of actions. The modelling in the next section will give examples of
the application. Note that the concert rule uses lookahead [36]. Lookahead is a
property of SOS rules, where a variable appears both on the right hand side and

158 S. Kuhn et al.

Fig. 2. Forward SOS rules for CCB. The condition (*) is γ(a, d) = c, and b ∈ WA.
Recall that s is a sequence of actions and past actions and t is a sequence of purely
past actions.

Fig. 3. Reverse SOS rules for CCB. The condition (*) is γ(a, d) = c, and b ∈ WA.

on the left hand side of a transition in the premises. for example P ′ and Q′ in
concert. The rule concert par requires that k is fresh in Q, correspondingly as in
par. Moreover, we need to ensure that when we reverse h with the key l in P we
do not leave out any actions with the key l in Q which make up a multiaction
communication with the key l. Hence, we also include the premise fsh[l](Q) in
concert par. The rule concert act requires, correspondingly as act, that k is fresh
in t. Our operational semantics guarantees that if a standard process evolves to
(t; b).P , for some P , and P reverses an action with the key l, then l is fresh in
t. Hence, we do not include fsh[l](t) in the premises of concert act. Overall, the
transitions in Figs. 2, 3 and 4 are labelled with a[k] ∈ AK, or with c[l] ∈ AK, or
with concerted actions (a[k], c[l]).

Next, we recall the main new rewrite rules for a reduction relation for CCB
in Fig. 5. All the rules can be found in [15,16] but here we only give rules for
promotion of actions. These are prom, move-r, and move-l which promote weak
bonds (here b) to strong bonds (here a). The rule prom applies to the full ver-
sion of our prefix operator (with the; construct), and move-r and move-l apply
only to the simple prefix. These three rules are here to model what happens in
chemical systems: a bond on a weak action is temporary and as soon as there
is a strong action that can accommodate that bond (as the result of concerted

Reversibility in Chemical Reactions 159

Fig. 4. SOS rules for concerted actions in CCB. The condition (*) is 1. α = c∨α = (c)
and ∃c ∈ A|γ(b, c) = e, and 2. γ(a, d) = f . The condition (**) is a, h /∈ L ∪ (L). Recall
that t ∈ AK∗, and b ∈ WA.

Fig. 5. New reduction rules for CCB. Sequences s, s′, s′′ are members of (A ∪ AK)∗.

actions) the bond establishes itself on the strong action thus releasing the weak
action. In order to align the use of these three rules to what happens in chemical
reactions, we insist that they are used as soon as they becomes applicable, a
formal definition is given in [15,16].

We shall call henceforth the transitions derived by the forward SOS rules
the forward transitions and, the transitions derived by the reverse SOS rules the
reverse transitions. Correspondingly, there are the concerted (action) transitions.

The Autoprotolysis of Water in CCB. When modelling the autoprotolysis
of water in CCB, we shall model the hydrogen and oxygen atoms as processes H
and O as follows, where h, o are actions representing the bonding capabilities of
the atoms and n, p representing negative and positive charges, respectively. H ′

and O′ are process constants, and p and n are weak actions.

H
def
= (h; p).H ′ O

def
= (o, o, n).O′

The synchronisation function γ is as follows:

γ(h, o) = ho γ(n, p) = np γ(n, h) = nh

160 S. Kuhn et al.

Each water molecule is a structure consisting of two hydrogen atoms and one
oxygen atom which are bonded appropriately. We shall use subscripts to distin-
guish the individual copies of atoms and actions; for example H1 is a specific
copy of hydrogen defined by (h1; p).H ′

1, similarly for O1 defined as (o1, o2, n).O′
1.

The atoms are composed with the parallel composition operator “|” using the
communication keys (which are natural numbers) to combine actions into bonds.
So a water molecule is modelled by the following process, where the key 1 shows
that h1 of H1 has bonded with o1 of O1 (correspondingly for key 2). The restric-
tion \{h1, h2, o1, o2} ensures that these actions cannot happen on their own, but
only together with their partners, forming a bond.

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2}

The system of two water molecules in Fig. 1 is represented by the parallel compo-
sition of two water processes, where the restriction \{n, p} represses actions n, p
from taking place separately by forcing them to combine into bonds (according
to γ).

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2} |

((h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2) \ {h3, h4, o3, o4}) \ {n, p}

Following a general principle in process calculi in the style of CCB we can move
the restrictions to the outside. The rule used can be written as (P | Q) \ L =
P \ L | Q if the actions of L are not used in Q. Applying this gives us a water
molecule modelled as follows:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) | (h3[3]; p).H ′

3 |
(h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2)) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}

Note the hi, oj , and n are not restricted: this allows us to break bonds via
concerted actions involving these actions. We will see an example of this shortly.
We now leave out the restrictions to improve readability.

Actions n in O1 and p in H3 combine (we use the new key 5), representing
a transfer of a proton from one atom of oxygen (O2 in our model) to another
one (O1 in our model). As a hydrogen atom consists of a proton and an elec-
tron, and the electron stays in such a transfer, it can either be called a proton
transfer or the transfer of a (positively charged) hydrogen atom. We perform
the transfer of H3 from O2 to O1. The creation of the bond with key 5 from
O1 to H3 forces a break of the bond with key 3 (between h3 and o3) due to the
property of the operator (s; b).P discussed earlier. These two reactions happen
almost simultaneously so we represent them as a pair of concerted actions.

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 | (h3[3]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2)
{np[5],h3o3[3]}−−−−−−−−−→

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

Reversibility in Chemical Reactions 161

We have now arrived at the state on the right hand side in Fig. 1. There are
weak bonds between n and p (denoted by key 5) and strong bonds between hi

and oj for all appropriate i, j. Since H3 is weakly bonded to O1 and its strong
capability h3 has become available, the bond 5 gets promoted to the stronger
bond, releasing the capability p of H3. We represent this change as a rewrite and
we obtain the following process:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

⇒
((h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[1], o2[2], n[5]).O′

1) | (h3[5]; p).H ′
3)

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

Note that we wrote h3, o3 and the key 5, the actions and keys affected by the
promotion, in bold font to improve readability. We shall do correspondingly
below.

Oxygen O1 is still blocked, which represents it being fully bonded (and pos-
itively charged). Oxygen O2 has a free n capability and can remove any of the
hydrogens from O1. As a result the process can reverse to its original state.

We show this by again transferring H3. We then execute promotion again:

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)
| (h4[4]; p).H ′

4 | (o3, o4[4], n).O′
2

{np[3],nh3[5]}−−−−−−−−−→
(((h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[1], o2[2],n).O′

1) | (h3;p[3]).H ′
3)

| (h4[4]; p).H ′
4 | (o3, o4[4],n[3]).O′

2

⇒
(((h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[1], o2[2],n).O′

1) | (h3[3];p).H ′
3)

| (h4[4]; p).H ′
4 | (o3[3], o4[4],n).O′

2

This corresponds to the original process. Putting back restrictions we obtain

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 | (h3[3]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}
and then if we apply the movement of restrictions in reverse we get

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2} |

((h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2) \ {h3, h4, o3, o4}) \ {n, p}

3.2 Bonding Calculus

In this subsection we recall briefly the Bonding Calculus [1], and illustrate its
expressiveness by modelling the autoprotolysis of water.

162 S. Kuhn et al.

Definition of the Bonding Calculus. The abstraction “processes as interac-
tions” from process calculi is used in the Bonding Calculus, but processes are not
able to communicate values in order to interact. Just like in the BNGL [9], the
Bonding Calculus allows the use of molecule sites having the same name, while
this is not possible in the κ-calculus. While the κ-calculus describes molecules
as a set of sites and uses rules to manipulate these sites between two or more
molecules, in the Bonding Calculus a molecule is described by the sequence of
operations it can perform on its sites (including also non-deterministic choices),
regardless of the form of the other molecules. This allows to use the composi-
tionality of the process calculus.

The syntax of the Bonding Calculus syntax is presented in Fig. 6. Let us
consider the set N of natural numbers, the set N = {x, x+, x−, . . . } of bond
names, the set M = {a, b, . . . } of molecules and the set P = {P,Q, . . .} of
processes. A multiset over N is defined as a partial function N : N → N. In the
Bonding Calculus each molecule has a unique name, and the bond x between
two molecules a and b is denoted by {a −x b}.

Fig. 6. Syntax of the Bonding Calculus

A bond prefix x(b) is used to indicate the availability of a molecule with
name b to create a new bond with name x, while an unbond prefix x(b) indicates
the availability of b to destroy an existing bond x. Creating or breaking a bond
leads to an update of the global bond memory L. As several similar bonds can
exist between the same molecules, L is actually a multiset of bonds.

The process 0 denotes inactivity. The availability to perform an action α, and
then to continue the execution as process P is denoted by the process α.P . The
process P + Q offers a choice between the processes P and Q, while the process
P | Q allows the execution of processes P and Q in parallel, with possible
interactions between them by using appropriate actions.

Reversibility in Chemical Reactions 163

As we work with bonds, we use the function �: M × N
N × M → Bool to

check whether between two molecules there exist certain bonds. For example,
a �N b checks for the existence of all bonds in N between the molecules a and b;
it returns true when such bonds exist, and false otherwise. When we consider
N = ∅, then a �∅ b checks if at least a bond exists between the two molecules.
When b = ε, then a �N ε checks if a has all of bonds from N , regardless of
the molecules he has them with. The Boolean result a �N b used in the testing
process is defined formally as:

a �N b =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
⊎

x∈N

{a −x b}) ∈ L N
= ∅ and a
= b
= ε

(
⊎

x∈N
{a −x b}) ∩ L
= ∅ N = ∅ and a
= b
= ε

∧

x∈N

(|L|a,x = |N |x) N
= ∅ and a
= ε and b = ε

undefined otherwise,

where |L|a,x is the number of bonds containing the molecule a and bond name x
that appear in the multiset L, while |N |x is the number of occurrences of x in N .

Depending on the truth value of a �Nb, the process if a �Nb then P else Q
executes either P or Q. An identifier A(b1, . . . , bn) is used to provide recursion
by creating new instances of processes defined as A(a1, . . . , an) = P , where
ai
= aj for all i
= j ∈ {1, . . . , n}; the new process is defined as A(b1, . . . , bn) =
P{b1/a1, . . . , bn/an}, where {bi/ai} denotes the replacement of variable ai by
value bi. A system S is given as a composition of a process P and the multiset
of bonds L, written as P || L.

The structural congruence relation ≡ is the least congruence such that
(P,+,0) and (P, |,0) are commutative monoids and the unfolding law
A(b1, . . . , bn) ≡ P{b1/a1, . . . , bn/an} holds whenever A(a1, . . . , an) = P .

The calculus presented in [1] was intended to model the creation and breaking
of covalent bonds. In order to be able to model both covalent and hydrogen
bonds, we apply a minor update to the operational semantics in [1] because
we need two instances of the rules used to create and to break bonds. The only
difference between the two instances of the same rule is given by the names of the
bonds appearing in the interacting processes, and by the fact that a bond cannot
be created using the names x+ and x− if other bonds exist between the same
molecules; more details about this restriction are given in the example below.

The operational semantics of the Bonding Calculus is given in Fig. 7. The
rules (CREATE1) and (CREATE2) describe the creation of a new bond {a −x b},
while the rules (REMOVE1) and (REMOVE2) describe the breaking of a bond
{a −x b}. If there exist two bonds {a −x b} in L, then any of these bonds is
broken. The rule (PAR) is used to compose processes in parallel, while the rules
(TRUE) and (FALSE) choose one of the branches of the testing process based
on the result of the checking. The rule (IDE) describes the recursion, while the
(STRUCT) rule indicates the fact that we reason up to the structural congruence.

164 S. Kuhn et al.

Fig. 7. Operational Semantics of the Bonding Calculus.

The Autoprotolysis of Water in the Bonding Calculus. We use two types
of bond names, namely c and h, to stand for the covalent and hydrogen bonds,
respectively. Using our calculus, the system composed of two molecules of water
is described by:

MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)
| MolOxy2(O2) | MolHy1(H3) | MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}
where the molecules are those of hydrogen and oxygen that are described below:

MolHy0(Hi) = c(Hi).MolHy1(Hi)
MolHy1(Hi) = c(Hi).MolHy0(Hi) + h+(Hi).MolHy2(Hi);
MolHy2(Hi) = c(Hi).c(Hi).h+(Hi).MolHy1(Hi).
MolOxy0(Oi) = c(Oi).MolOxy1(Oi);
MolOxy1(Oi) = c(Oi).MolOxy0(Oi) + c(Oi).MolOxy2(Oi);
MolOxy2(Oi) = c(Oi).MolOxy1(Oi) + h−(Oi).MolOxy3(Oi).
MolOxy3(Oi) = h−(Oi).MolOxy2(Oi).

Reversibility in Chemical Reactions 165

Each molecule of water is a structure consisting of one molecule of oxygen
and two molecules of hydrogen which are properly bonded. For example, the
process MolOxy2(O1) | MolHy1(H1) | MolHy(H2) together with the bonds
{O1 −c H1, O1 −c H2} model one molecule of water. We use unique names
for the molecules given as Oi (for oxygen) and Hi (for hydrogen), while the
processes having the names MolHy i and MolOxy i identify processes modelling
hydrogen and oxygen molecules with i bonds, respectively. For example, the pro-
cess MolOxy1(Oi) can either create or break bonds, and this is why we use the
operator + to describe such a (non-deterministic) choice.

Now we present the steps of one of the possible sequences of reactions mod-
elling the autoprotolysis of water. The system of two molecules of water can be
rewritten as follows (where we extend the definitions for the processes that will
interact in the next step, and bold the actions to be executed):

c(O1).MolOxy1(O1) + h−(O1).MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)
| MolOxy2(O2) | MolHy1(H3) | c(H4).MolHy0(H4) + h+(H4).MolHy2(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}

This leads to the next system, where we again bold the processes to be executed:

MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)

| c(O2).MolOxy1(O2) + h−(O2).MolOxy3(O1) | MolHy1(H3)

| c(H4).c(H4).h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3, O2 −c H4}
The creation of the hydrogen bond forces the break of the other bond in which the
hydrogen molecule H4 is involved. This leads to the following system containing
the H3O and HO molecules:

MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)
| c(O2).MolOxy0(O2) + c(O2).MolOxy2(O2)
| MolHy1(H3) | c(H4).h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3}
Since some bonds are weaker, the system is evolving to:

h−(O1).MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)

| MolOxy2(O2) | MolHy1(H3) | h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3, O2 −c H4}
followed by the breaking of the hydrogen bond O1 −h H4:

MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)
| MolOxy2(O2) | MolHy1(H3) | MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}
The obtained system contains again two water molecules of water.

166 S. Kuhn et al.

3.3 Reversing Petri Nets

In this subsection we present Reversing Petri Nets [23] (RPNs, pronounced as
‘reversing Petri nets’), an extension of Petri nets developed for the modelling
reversing computations, and we employ the formalism to model the autoprotol-
ysis of water.

Definition of RPNs. We consider an extension of reversing Petri nets suit-
able for describing chemical reactions by allowing multiple tokens of the same
type as well as the possibility for transitions to break bonds. Thus, a transition
may simultaneously create and/or destroy bonds, and its reversal results in the
opposite effect. Formally, a Reversing Petri net is defined as follows:

Definition 1. A reversing Petri net (RPN) is a tuple (P, T,A,AV , B, F) where:

1. P is a finite set of places and T is a finite set of transitions.
2. A is a finite set of base or token types ranged over by a, b, A = {a | a ∈ A}

contains a “negative” version for each token type. We assume that for any
token type a there may exist a finite number of token instances. We write
a1, . . . , for instances of type a and AI for the set of all token instances.

3. AV is a finite set of token variables. We write type(v) for the type of variable
v and assume that type(v) ∈ A for all v ∈ AV .

4. B ⊆ A × A is a finite set of undirected bond types ranged over by β, γ,
We use the notation a−b for a bond (a, b) ∈ B. B = {β | β ∈ B} contains a
“negative” version for each bond type. BI ⊆ AI × AI is a finite set of bond
instances, where we write βi for elements of B.

5. F : (P × T ∪ T × P) → P(AV ∪ (AV × AV) ∪ A ∪ B) is a set of directed
labelled arcs.

A reversing Petri net is built on the basis of a set of tokens or bases. These
are organised in a set of token types A, where each token type is associated with
a set of token instances. Token instances correspond to the basic entities that
occur in a system and they may occur as stand-alone elements but as compu-
tation proceeds they may also merge together to form bond instances. Places
and transitions have the standard meaning and are connected via directed arcs,
which are labelled by a set of elements from AV ∪ (AV × AV) ∪ A ∪ B. Intu-
itively, these labels express the requirements for a transition to fire when placed
on arcs incoming the transition, and the effects of the transition when placed on
the outgoing arcs. Graphically, a RPN is portrayed as a directed bipartite graph
where token instances are indicated by •, places by circles, transitions by boxes,
and bond instances by lines between token instances.

Before we recall the semantics of RPNs we need to introduce some notation.
Note that in what follows we omit the discussion of negative tokens and negative
bonds as they are not relevant to our case study. We write ◦t = {x ∈ P |
F (x, t)
= ∅} and t◦ = {x ∈ P | F (t, x)
= ∅} for the incoming and outgoing
places of transition t, respectively. Furthermore, we write pre(t) =

⋃

x∈P F (x, t)

Reversibility in Chemical Reactions 167

for the union of all labels on the incoming arcs of transition t, and post(t) =
⋃

x∈P F (t, x) for the union of all labels on the outgoing arcs of transition t.

Definition 2. A reversing Petri net is well-formed, if for all t ∈ T :

1. AV ∩ pre(t) = AV ∩ post(t),
2. F (t, x) ∩ F (t, y) ∩ AV = ∅ for all x, y ∈ P , x
= y.

Thus, a reversing Petri net is well-formed if (1) whenever a variable exists in
the incoming arcs of a transition then it also exists on the outgoing arcs, which
implies that transitions do not erase tokens, and (2) tokens/bonds cannot be
cloned into more than one outgoing places.

As with standard Petri nets the association of token/bond instances to places
is called a marking such that M : P → 2AI∪BI , where we assume that if
(u, v) ∈ M(x) then u, v ∈ M(x). In addition, we employ the notion of a history,
which assigns a memory to each transition H : T → N. Intuitively, a history of
H(t) = 0 for some t ∈ T captures that the transition has not taken place, or
every execution of it has been reversed, and a history of H(t) = k, k > 0, cap-
tures that the transition had k forward executions that have not been reversed.
Note that H(t) > 1 may arise due to the consecutive execution of the transi-
tion with different token instances. A pair of a marking and a history, 〈M,H〉,
describes a state of a RPN with 〈M0,H0〉 the initial state, where H0(t) = 0 for
all t ∈ T .

Finally, we define con(ai, C), where ai ∈ AI and C ⊆ 2AI∪BI , to be the
token instances connected to ai as well as the bonds creating these connections
according to set C.

Forward Execution. During the forward execution of a transition in a RPN, a
set of tokens and bonds, as specified by the incoming arcs of the transition, are
selected and moved to the outgoing places of the transition, as specified by the
transition’s outgoing arcs, possibly forming or destructing bonds, as necessary.
Due to the presence of multiple instances of the same token type, it is possible
that different token instances are selected during the transition’s execution.

A transition is forward-enabled in a state 〈M,H〉 of a reversing Petri net if
there exists a selection of token instances available at the incoming places of the
transition matching the requirements on the transitions incoming arcs. Formally:

Definition 3. Given a RPN (P, T,A,AV , B, F), a state 〈M,H〉, and a tran-
sition t, we say that t is forward-enabled in 〈M,H〉 if there exists a surjective
function U : pre(t) ∩ AV → AI such that:

1. for all v ∈ pre(t), if type(v) = a then type(U(v)) = a
2. for all a ∈ F (x, t), then U(a) ∈ M(x) and for all (a, b) ∈ F (x, t), then

(U(a), U(b)) ∈ M(x),
3. for all (a, b) ∈ post(t) − pre(t) then (U(a), U(b))
∈ M(x) for all x ∈ ◦t.

168 S. Kuhn et al.

Thus, t is enabled in state 〈M,H〉 if (1) there is a type-respecting assign-
ment of token instances to the variables on the incoming edges, with (2) the
token instances originating from the appropriate input places of the transition
and connected with bonds as required by the variable bonds occurring on the
incoming edges, and (3) if a bond occurs in the outgoing edges of the transi-
tion but not the incoming ones, then the selected instances associated with the
bond’s variables should not be bonded together in the incoming places of the
transition (thus transitions do not recreate bonds). We refer to U as a forward
enabling assignment.

To execute a transition t according to an enabling assignment U , the selected
token instances, along with their connected components, are relocated to the
outgoing places of the transition as specified by the outgoing arcs, with bonds
created and destructed accordingly. Furthermore, the history of the executed
transition is increased by one.

Definition 4. Given a RPN (P, T,A,AV , B, F), a state 〈M,H〉, and an
enabling assignment U , we write 〈M,H〉 t→S 〈M ′,H ′〉 where for all x ∈ P :

M ′(x) = M(x) −
⋃

a∈f(x,t)

con(U(a),M(x)) ∪
⋃

a∈f(t,x),U(a)∈M(y)

con(U(a), S)

where S = (M(y) − {(U(a), U(b)) | (a, b) ∈ F (y, t)}) ∪ {(U(a), U(b)) | (a, b) ∈
F (t, x)}

and H ′(t′) =
{

H(t′) + 1, if t′ = t
H(t′), otherwise

Reversing Execution. We now move on to reversing transitions. A transition can
be reversed in a certain state if it has been previously executed and there exist
token instances in its output places that match the requirements on its outgoing
arcs. Specifically, we define the notion of reverse enabledness as follows:

Definition 5. Consider a RPN (P, T,A,AV , B, F), a state 〈M,H〉, and a tran-
sition t. We say that t is reverse-enabled in 〈M,H〉 if (1) H(t)
= 0, and (2) there
exists a surjective function W : post(t) ∩ AV → AI such that:

1. for all v ∈ post(t), if type(v) = a then type(W (v)) = a,
2. for all a ∈ F (t, x), then W (a) ∈ M(x) and for all (a, b) ∈ F (t, x), then

(W (a),W (b)) ∈ M(x),
3. for all (a, b) ∈ pre(t) − post(t) then (W (a),W (b))
∈ M(x) for all x ∈ ◦t.

Thus, a transition t is reverse-enabled in 〈M,H〉 if (1) the transition has been
executed and (2) there exists a type-respecting assignment of token instances,
from the instances in the out-places of the transition, to the variables on the
outgoing edges of the transition, and where the instances are connected with
bonds as required by the transition’s outgoing edges. Also we do not recreate
existing bonds when going backwards. We refer to W as a reversal enabling
assignment. To implement the reversal of a transition t according to a reversal
enabling assignment W , the selected instances are relocated from the outgoing

Reversibility in Chemical Reactions 169

places of the transition to the incoming places, as specified by the incoming arcs
of the transition, with bonds created and destructed accordingly.

Definition 6. Given a RPN (P, T,A,AV , B, F), a state 〈M,H〉, and a tran-
sition t reverse-enabled in 〈M,H〉 with W a reversal enabling assignment, we
write 〈M,H〉 t� 〈M ′,H ′〉 where for all x:

M ′(x) = M(x) −
⋃

a∈f(t,x)

con(W (a),M(x)) ∪
⋃

a∈f(x,t),W (a)∈M(y)

con(W (a), S)

where S = (M(y) − {(W (a),W (b)) | (a, b) ∈ F (t, y)}) ∪ {(W (a),W (b)) | (a, b) ∈
F (x, t)}

and H ′(t′) =
{

H(t′) − 1, if t′ = t
H(t′), otherwise

The Autoprotolysis of Water in RPNs. Figure 8 shows the graphical
representation of the forming of a water molecule as a RPN. In this model,
we assume two token types, H for hydrogen and O for oxygen. They are
instantiated via four token instances of H (H1, H2, H3, and H4) and two
token instances of O, (O1 and O2). The net consists of five places and three
transitions and the edges between them are associated with token variables
and bonds, where we assume that type(o) = type(o1) = type(o2) = O and
type(h) = type(h1) = type(h2) = type(h3) = type(h4) = H. Looking at the tran-
sitions, transition t1 models the formation of a bond between a hydrogen token
and an oxygen token. Precisely, the transition stipulates a selection of two such
molecules with the use of variables o and h on the incoming arcs of the transition
which are bonded together, as described in the outgoing arc of the transition.
Subsequently, transition t2 completes the formation of a water molecule by select-
ing an oxygen token from place x and a hydrogen token from place v and forming
a bond between them, placing the resulting component at place y. Note that the
selected oxygen instance in this transition will be connected to a hydrogen token
via a bond created by transition t1; this bond is preserved and the component
resulting from the creation of the new o − h bond will be transferred to place y.
Finally, transition t3 models the autoprotolysis reaction: assuming the existence
of two distinct oxygen instances, as required by the variables o1 and o2 on the
incoming arc of the transition, connected with hydrogen instances as specified in
F (y, t3), the transition breaks the bond o2 − h3 and forms the bond o1 − h3. As
such, assuming the existence of two water molecules at place y, the transition
will form a hydronium (H+

3 O) and a hydroxin (OH−) molecule in place z of the
net. The reversibility semantics of RPNs ensures that reversing the transition t3
will result in the re-creation of two water molecules placed at y, while the use of
variables allows the formation of water molecules consisting of different bonds
between the hydrogen and oxygen instances.

The first net in Fig. 9 shows the system after the execution of transition
t1 with enabling assignment U(h) = H1, U(o) = O1. Note that the term [1]
written over transition t1 captures that at this point H(t1) = 1 since the

170 S. Kuhn et al.

Fig. 8. RPN model of the formation of a water molecule.

transition has been executed once. This notation is generally used for his-
tories in the graphical representation with occasional missing histories corre-
sponding to histories equal to 0. Subsequently, we have the model after exe-
cution of transition t2 with enabling assignment U(h) = H2, U(o) = O1,
creating the bond O1 − H2, thus forming the first water molecule. A second

Reversibility in Chemical Reactions 171

Fig. 9. RPN model of the execution of the autoprotolysis of water.

execution of transitions t1 and t2 results in the second molecule of water in
the system, placed again at place y, as shown in the third net in the figure.
At this state, transition t3 is forward-enabled and, with enabling assignment
U(o1) = O1, U(o2) = O2, U(h1) = H1, U(h2) = H2, U(h3) = H3, U(h4) = H4,
we have the creation of the hydronium and hydroxide depicted at place z in the
fourth net of the figure. At this stage, transition t3 is now reverse-enabled and

172 S. Kuhn et al.

the last net in the figure illustrates the state resulting after reversing t3 with
reversal enabling assignment W (o1) = O1,W (o2) = O2,W (h1) = H1,W (h2) =
H3,W (h3) = H2,W (h4) = H4.

4 Evaluation

We have presented three formalisms which can be used to model chemical reac-
tions. CCB is a reversible version of ACP that employs communication keys to
record executed actions. Its main feature is a mechanism to link forming and
breaking of bonds, which gives rise to a type of explicit reversibility we call
“locally controlled reversibility”. We have modelled a simple covalent chemi-
cal reaction in CCB. A similar modelling approach can be used to model more
complex atoms and reactions, for example, involving carbon atoms [16]. Finally,
CCB can also be used to model reactions beyond simple chemical reactions [14].
In CCB, we can actually distinguish different instances of the same atom or
molecule, and of identical actions in a process via the use of subscripts. As men-
tioned above, the reverse reaction in the autoprotolysis of water can work by
transferring any of the hydrogens of the hydronium. When reversing the reac-
tion in CCB, instead of the transition in Sect. 3.1, we could also have done this
(writing the transition and the rewrite together):

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)
| (h4[4]; p).H ′

4 | (o3, o4[4], n).O′
2

{np[3],nh1[1]}−−−−−−−−−→⇒
(((h1[3]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[5], o2[2],n).O′

1) | (h3[5]; p).H ′
3)

| (h4[4]; p).H ′
4 | (o3[3], o4[4],n).O′

2

The result is different from that in Sect. 3.1, but identical from a chemical point
of view, since the hydrogens are all identical. On the other hand a technique
called isotopic labelling can be used to trace atoms by using different isotopes
of, in this case hydrogen, confirming that the different options happen in reality.
In CCB, we can trace the atoms as well as show which results are identical from
a chemical point of view (see Section 6.5 of [16]).

The Bonding Calculus is suitable for modelling in a natural way the autopro-
tolysis of water by using only bond and unbond actions. Simulations by using a
software platform can describe the dynamics of the bonding systems, and so it is
possible to test the validity of some underlying assumptions. Also, we can verify
various properties of the bonding compounds described by using the calculus.

Reversing Petri Nets are Petri net structures that assume tokens to be dis-
tinct and persistent. During the execution of transitions individual tokens can be
bonded/unbonded with each other, and the creation/destruction of these bonds
is considered to be the effect of a transition, whereas their destruction/creation
is the effect of the transition’s reversal. Reversing Petri Nets are a natural choice
to model and analyse biochemical reaction systems, such as the autoprotolysis

Reversibility in Chemical Reactions 173

of water, which by nature has multi-party interactions, is inherently concurrent,
and features reversible behaviour. In particular, the feature of token multiplicity
and the use of variables allows to non-deterministically select different com-
binations of atoms of a particular element when creating molecules. Also the
ability of transitions to break bonds allows to model concerted actions where,
for example, a transition simultaneously destroys a water molecule and creates
a hydronium whose reversal results in the opposite effect. Moreover, the collec-
tive token interpretation adopted in the framework, treating all tokens of the
same type as equivalent, allows the reaction to reverse into two different water
molecules than the original ones, i.e. using different instances of the atoms (as
is possible in CCB). Note that the presented model abstracts away the posi-
tive/negative charge of the atoms and captures the existence of electrons by the
enabledness of transitions. A model at a lower level of abstraction would be pos-
sible by introducing tokens to represent the electrons bonded to the associated
atom tokens to illustrate the relevant charges.

The three formalisms presented can model our example fairly well but, as
expected, there are some differences. In order to evaluate each formalism, we con-
sider as first criterion if all chemically valid interactions between the compounds
of the reaction can be represented well in our formalisms. CCB shows the linked
forming and breaking of bonds. RPNs can also express these concerted actions,
since a transition enables the simultaneous creation and destruction of bonds. In
the Bonding Calculus, this link is not expressed. Each of the formalisms can per-
form the forward reaction using any of the hydrogens involved. CCB and RPNs
can perform the reverse reaction by transferring arbitrary hydrogens, whereas
the Bonding Calculus in the reverse reaction permits only the transfer of exactly
those hydrogens that were used in the forward reaction. All models presented
use subscripts and enable the tracking of atoms.

The other criterion for assessing the suitability of our formalisms for the
modelling of chemical reactions is to ask if they enable in the produced model
any transitions that actually do not occur in reality. Each formalism does not
permit a H3O

+ molecule to be formed directly. CCB allows one reaction which is
not realistic: If there are many water molecules and therefore several hydroxide
and water molecules at the same time, it is possible that the remaining hydrogen
is transferred from the hydroxide to a water. In reality, this is not possible since
the hydroxide is strongly negatively charged and no hydrogen bond can form.
Due to the nondeterministic behaviour of processes written with the ‘+’ operator,
such as those for hydrogen and oxygen in Subsect. 3.2, the Bonding Calculus also
presents the same problem. However, this is not the case for RPNs since, on the
one hand, a transition’s conditions make restrictions on the types of molecules
that will participate in a transition firing or its reversal and, on the other hand,
places impose a form of locality for molecules. For instance, in the autoprotolysis
example, each place is the location of specific types of molecules, e.g., transition
t3 modelling the autoprotolysis reaction is only applied on water molecules and
its reversal only on pairs of a hydronium and a hydroxide molecule, as required.

174 S. Kuhn et al.

There are a number of software tools that can aid simulation and analysis
for our formalisms. Regarding the Bonding Calculus, we can simulate various
bonding descriptions by using an existing software platform called UPPAAL (as
shown in [1]). For CCB, there is a simulation tool presented in [14]. It allows
a much closer form of representation of chemical notation than that possible
with a typical programming language. Reversing Petri nets have been shown
to be closely related to Coloured Petri Nets, as a subset of the former model
has been encoded into the latter [3]. Thus, an algorithmic translation can be
implemented that transforms RPNs to CPNs in an automated manner using the
transformation techniques discussed in [3]. This allows RPNs to exploit tools
such as CPNTools that support traditional models of Petri nets.

5 Conclusion

We have presented the Calculus of Covalent Bonding, the Bonding Calculus,
and Reversing Petri Nets as models of chemical reactions and reversible pro-
cesses in general. We have shown that they can all model the out-of-causal-order
reversibility present in such reactions. We have also noted that the two process
calculi allow few reactions which do not happen in reality. This is due to the mod-
elling that abstracts away from some chemical properties of atoms and molecules
such as, for example, spacial arrangement and distance between molecules. In
future work, we plan to develop these formalisms further and apply them to the
modelling and reasoning about reversible biochemical reactions and processes.

References

1. Aman, B., Ciobanu, G.: Bonding calculus. Nat. Comput. 17(4), 823–832 (2018).
https://doi.org/10.1007/s11047-018-9709-7

2. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling metabolic
pathways: a survey. Nat. Comput. 9(4), 955–989 (2010)

3. Barylska, K., Gogolińska, A., Mikulski, �L., Philippou, A., Pia̧tkowski, M., Psara,
K.: Reversing computations modelled by coloured Petri nets. In: Proceedings of
ATAED 2018. CEUR Workshop Proceedings, vol. 2115, pp. 91–111 (2018)

4. Blätke, M.A., Heiner, M., Marwan, W.: Petri nets in systems biology. Technical
report, Otto-von-Guericke University Magdeburg (2011)

5. Chaouiya, C.: Petri net modelling of biological networks. Brief. Bioinform. 8(4),
210–219 (2007)

6. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theoret. Comput. Sci. 410(33–34), 3065–3084 (2009)

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74407-8 3

8. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

https://doi.org/10.1007/s11047-018-9709-7
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-28644-8_19

Reversibility in Chemical Reactions 175

9. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical
systems with BioNetGen. Methods Mol. Biol. 500, 113–167 (2009)

10. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. J. Biol. Phys. Chem. 4,
64–73 (2004)

11. Fokkink, W.: Introduction to Process Algebra. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-662-04293-9

12. Hofestädt, R.: A Petri net application of metabolic processes. J. Syst. Anal. Model.
Simul. 16, 113–122 (1994)

13. Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. Silico
Biol. 1(1), 39–53 (1998)

14. Kuhn, S.: Simulation of base excision repair in the calculus of covalent bonding.
In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 123–129. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 8

15. Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese, I.
(eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40578-0 2

16. Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci.
Comput. Program. 151(Supplement C), 18–47 (2018)

17. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

18. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3 19

19. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 33

20. Matsuno, H., Nagasaki, M., Miyano, S.: Hybrid Petri net based modeling for bio-
logical pathway simulation. Nat. Comput. 10(3), 1099–1120 (2011)

21. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

22. Peleg, M., Rubin, D.L., Altman, R.B.: Using Petri net tools to study properties
and dynamics of biological systems. J. Am. Med. Inform. Assoc. 12(2), 181–199
(2005)

23. Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Uli-
dowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 6

24. Philippou, A., Psara, K., Siljak, H.: Controlling reversibility in reversing Petri nets
with application to wireless communications. In: Thomsen, M.K., Soeken, M. (eds.)
RC 2019. LNCS, vol. 11497, pp. 238–245. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-21500-2 15

25. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Algebraic
Program. 73(1–2), 70–96 (2007)

26. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 303–
318. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 22

27. Phillips, I., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and events.
In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–154.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38986-3 12

https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-319-99498-7_8
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-36315-3_19
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-642-40184-8_22
https://doi.org/10.1007/978-3-642-38986-3_12

176 S. Kuhn et al.

28. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3 18

29. Popova-Zeugmann, L., Heiner, M., Koch, I.: Time Petri nets for modelling and
analysis of biochemical networks. Fundam. Informaticae 67(1–3), 149–162 (2005)

30. Priami, C.: Stochastic π-calculus. Comput. J. 38(7), 578–589 (1995)
31. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V.,

Schachter, V. (eds.) CMSB 2004. LNCS, vol. 3082, pp. 20–33. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-25974-9 3

32. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in
metabolic pathways. In: Proceedings of the 1st International Conference on Intel-
ligent Systems for Molecular Biology, pp. 328–336. AAAI (1993)

33. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an
abstraction for biological compartments. Theoret. Comput. Sci. 325(1), 141–167
(2004)

34. Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems.
In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology, pp. 219–266.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18734-6 11

35. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

36. Ulidowski, I.: Equivalences on observable processes. In: Proceedings of the 7th
Annual IEEE Symposium on Logic in Computer Science, pp. 148–159. IEEE (1992)

37. Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Gener. Com-
put. 36(3), 281–306 (2018)

38. Voss, K., Heiner, M., Koch, I.: Steady state analysis of metabolic pathways using
Petri nets. Silico Biol. 3(3), 367–387 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-540-25974-9_3
https://doi.org/10.1007/978-3-642-18734-6_11
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
http://creativecommons.org/licenses/by/4.0/

Reversible Control of Robots

Ulrik Pagh Schultz(B)

SDU UAS, MMMI, University of Southern Denmark, Odense, Denmark
ups@mmmi.sdu.dk

Abstract. Programming industrial robots is challenging due to the dif-
ficulty of precisely specifying general yet robust operations. As the com-
plexity of these operations increases, so does the likelihood of errors.
Certain classes of errors during industrial robot operations can however
be addressed using reverse execution, allowing the robot to temporar-
ily back out of an erroneous situation, after which the operation can be
automatically retried. Moreover reverse execution permits automatically
deriving programs that physically reverse the operations of an industrial
robot. This can be useful in industrial assembly, where a disassembly
program can be automatically derived from the assembly program.

In this case study we investigate robotic assembly from the point of
view of reversibility, investigating to what extent program inversion of
a robotic assembly sequence for a given product can be considered to
derive a robotic disassembly sequence for this same product, and investi-
gating to what extent changing the execution direction at runtime (i.e.,
backtracking and retrying) using program inversion can be used as an
automatic error handling procedure. The programming model used to
reversibly control industrial robots is based on an abstract semantics-
based model, extended with various features required for reversible con-
trol of industrial robots in real-world scenarios, and implemented as a
domain-specific programming language.

1 Introduction

Robots normally have one or more degrees of freedom controlled by a computa-
tional process; using reversible computing to control the robot potentially gives
rise to new reverse behaviours. For example, major industrial robot manufactur-
ers such as ABB and KUKA offer limited forms of ad-hoc reverse execution for
interactive programming and debugging, but due to limitations in the underlying
execution models, their programming models are incapable of reversing complex
actions such as steps of an industrial assembly process [5,6]. We attribute the
ad-hoc limitations to the lack of an underlying reversible model. The first inves-
tigation of fully reversible robot behaviours was for self-reconfigurable robots
[10]. The useful application of reversibility to this type of robot is however only
observed for self-reconfiguration operations, significantly limiting the notion of

The author acknowledges partial support of COST Action IC1405 on Reversible Com-
putation - Extending Horizons of Computing.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 177–186, 2020.
https://doi.org/10.1007/978-3-030-47361-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_8&domain=pdf
http://orcid.org/0000-0003-4119-2689
https://doi.org/10.1007/978-3-030-47361-7_8

178 U. P. Schultz

reversibility and real-world interaction that can be studied using this type of
robot. To better understand the underlying relation between reversible com-
putation and physical reversibility, we in this case study investigate reversible
control of industrial robots.

Programming industrial robots is challenging due to the difficulty of pre-
cisely specifying general yet robust operations. As the complexity of these oper-
ations increases, so does the likelihood of errors. Certain classes of errors during
industrial robot operations can however be addressed using reverse execution,
allowing the robot to temporarily back out of an erroneous situation, after which
the operation can be automatically retried. Specifically, this approach has been
shown to be useful for automatic error recovery for small-sized batch production
of assembly operations [11]. Moreover, reversibility can in this case be used to
automatically derive a disassembly sequence from a given assembly sequence, or
vice versa. These results were demonstrated using an initial design and imple-
mentation of a reversible domain-specific language (DSL) for specifying such
assembly sequences [5,11]. The area however remains largely unexplored, both
from a theoretical and practical point of view. There is for example a large design
space for different programming language approaches, both in terms of the gener-
ality of the language and the means by which reversibility is achieved. At a more
fundamental level, the notion of reversible control of a reversible physical sys-
tem remains largely unexplored. From a practical point of view, only the specific
case of assembly operations has been investigated, and only using a specific set
of industrial use cases. There has been no attempt at integration into an exist-
ing robotics platform, although we observe that many existing platforms offer
limited notions of reversibility for using during programming and debugging.

The result of this case study is significant progress in the area of reversibility
for industrial robots [4]. Key developments include an improved understanding
of the interaction between reversible computing and real-world systems that
only are partially reversible, as well as a substantial experimental evaluation of
the use of reversible languages to control industrial robots performing assembly
and disassembly in the context of small-batch production. Overall this work
experimentally demonstrates the use of reversible computing to improve system
reliability.

2 Related Work

Reversibility has previously been investigated for self-reconfigurable robots.
Self-reconfigurable, modular robots are distributed robotic devices that can
autonomously change their physical shape [13]. Self-reconfiguration from one
shape to another is typically achieved through a specific sequence of actuation
operations distributed across the modules of the robot. Automatically revers-
ing the sequence of operations can bring the robot back to its initial shape,
as has been experimentally demonstrated using the DynaRole reversible lan-
guage [10]. DynaRole however only allows simple sequences of operations to be
reversed, which is suitable for reversing self-reconfiguration sequences, but lacks

Reversible Control of Robots 179

the generality needed to implement more complex behaviours. Initial ideas on
generalising the DynaRole language to support a wider range of modular robot
control scenarios retain the possibility of reversing distributed sequences [8,9],
but have neither been formalised nor experimentally demonstrated.

Large-scale modular robotic systems can be considered as intensive parallel
systems [7]. Reversibility for intensive parallel systems was studied by Agrig-
oroaiei and Ciobanu [1]. Here, the process of reversing is presented as a form of
duality (a notion from category theory). A related approach presenting reversibil-
ity for the bio-inspired formalism of membrane systems is given by the same
authors [2].

Partial reversibility has been studied for reversible programming languages
[12] using logging of program state to handle irreversible operations. This app-
roach would in our case correspond to recording the motions of the robot and
replaying them in reverse, which is applicable to any operation but does not nor-
mally serve to reverse actions in the real world. Rather, our approach relies on
the programmer explicitly writing reverse code that, through a different sequence
of operations, brings the system back to a previous state. This approach can be
compared to causal-consistent reversibility [3] in the sense that the observable
events (i.e., the state of the system the robot is working on) is reversed in a
consistent way; unlike causal-consistent reversibility we however require the pro-
grammer to manually implement the basic reverse operations using the notion
of indirect reversibility.

3 Reversible Assembly Tasks

We investigate robotic assembly tasks from the point of view of reversibility,
investigating to what extent program inversion of a robotic assembly sequence
for a given product can be considered to derive a robotic disassembly sequence
for this same product, and investigating to what extent changing the execution
direction at runtime (i.e., backtracking and retrying) using program inversion
can be used as an automatic error handling procedure [4].

3.1 Robotics, Assembly, and Reversibility

Robotic assembly and disassembly is done in terms of sequences of operations
such as precise placement of objects, insertions with tight fits, screwing opera-
tions and so forth. All are challenged by uncertainties from sensors, robot kine-
matics and part tolerances; not all are reversible, some are not even repeatable.
Our approach has been tested with a standard robotic platform based on a Uni-
versal Robots UR5, shown in Fig. 1 together with the two industrial assembly
cases used to evaluate the approach [4].

180 U. P. Schultz

Fig. 1. The experimental platform and two assembly test cases (from [4]).

3.2 Reversibility

Many physical phenomena and actions are in principle reversible, although this
reversibility may depend on the abstraction level at which they are observed.
For example, an industrial robot that pushes an object to a new position could
easily move this object back to its original position, but cannot simply do this by
reversing its movements as pulling requires gripping the object first. Moreover,
some operations, such as cutting, should in general be considered nonreversible.
A study of 13 real-world industrial cases showed roughly 76% of the operations
to be reversible [4], but many of the operations require the robot to perform
different physical actions to reverse a given action. Based on this observation,
we can divide the reversible operations into two categories: directly reversible
and indirectly reversible operations. Operations which can be reversed through
program inversion are considered directly reversible. Indirectly reversible oper-
ations on the other hand can be reversed, but require a different sequence of
instructions.

3.3 Repeatability

Unlike Janus-style reversible computing, where programs can be said to be time-
invertible [14], with robotics physical changes made to the environment from the
execution influences the repeatability of operations. Operations that can be done
again and again can be referred to as fully repeatable. Other actions can only
be done a limited number of times, e.g., due to wear and tear, and are said to
be partially-repeatable. Last, nonrepeatable operations are those that cannot be
retried.

Reversible Control of Robots 181

3.4 Reversibility and Repeatability

Considering reversibility and repeatability together leads to a classification of
robotic assembly operations [4]. Operations that are fully repeatable and directly
reversible can be automatically managed using a program inversion approach,
whereas indirectly reversible operations require explicit reverse code to be pro-
vided by a programmer, partially repeatable operations limit how many times a
program can be reversed, and certain operations are fundamentally irreversible
and thus mark points across which the program cannot be reversed.

4 Programming Model

The programming model developed in our case study is based on an abstract
semantics-based model [11] extended with various features required for reversible
control of industrial robots in real-world scenarios [4].

4.1 Basic Model

A robot assembly task is programmed as a sequential flow of operations. It is
sequential since in practice assembly tasks tend to be a simple sequence of oper-
ations (except for error handling, but we aim to automatically handle errors
using reverse execution). Reversibility is relevant due to the presence of random
behaviour of the physical operations: reversing and re-executing an operation
may produce a different results. Each operation represents high-level assembly
case logic and is a sequence of instructions. Instructions are either reversible,
providing a two-way reversible forward/backward mapping of hardware instruc-
tions, or non-reversible, providing a single-directional mapping. Instructions are
implemented using traditional nonreversible programming. Taking inspiration
from Janus [14], it is possible to both call and uncall operations, the latter caus-
ing the operation to be interpreted in reverse.

The programming model used to represent robot assembly tasks is built on
the following principles. (1) Instructions always map the robot system from a
known state to a known state, but may have different semantics for forward and
reverse. (2) Indirect reversibility is achieved by modelling instruction sequences
that are different for forwards and reverse execution using the principle of over-
ridden reverse flow, where users can write different code for forwards and back-
wards execution. (3) Instructions can be marked as nonreversible. A directed
graph is used to model the underlying reversible assembly sequence. In this
graph each node corresponds to a primitive instruction which is executable on
the physical platform. Furthermore, each node contains pointers to the next for-
ward instruction and the next reverse instruction (if any). Overall the graph
is evaluated through forward/backwards interpretation and each instruction is
evaluated using instruction inversion in the sense that different semantics are
applied for forward and backwards execution.

182 U. P. Schultz

operation attach_nut_bolt {
state begin_nut_bolt (...tool pos...) bolt:(...pos...) nut:(...pos...)
moveto (...pos above table...)
pickup (nut, fixed_gripper, (...pos of nut...))
moveto (...)
...

}
operation apply_and_turn_nut { ...commands... }
reverse { ...commands that undo apply_and_turn_nut... }

Fig. 2. Sample RASQ program, vector constants are omitted for clarity (adapted
from [11]).

4.2 Implementation

The basic model provides the foundation for programming realistic assembly
cases [4]. The principle of indirect reversibility is in practice instantiated in many
different ways, such as movement or error detection instructions that only acti-
vate in one execution direction. Error handling is implemented in the interpreter:
when an error is detected during forwards execution the direction is immediately
reversed for a number of steps, after which forwards execution is again resumed.
The same model is applied for execution in reverse, and even applies recursively,
i.e., if an error is detected during reverse execution triggered due to an error.
Each instruction carries specific information describing how to handle switching
of execution direction, specifically whether the instruction should be repeated in
reverse or not when switching direction due to the instruction failing. A simple
error handling strategy that changes execution direction for a random number
of steps and that ensures termination by bounding the total number of steps was
observed to work well in practice.

4.3 Language

The idea of reversible control of industrial robots was initially presented using
a high-level programming language [11]. An example is shown in Fig. 2. The
program declares two operations, attach nut bolt and apply and turn nut. The
operation attach nut bolt only specifies a single (forwards) body for both for-
wards and reverse execution, so reverse execution will inversely evaluate the
forwards body in reverse order. The first statement is a state assertion, named
begin nut bolt, specifying the spatial positioning of the tool and the respective
positions of the bolt and nut objects. The next statement of the program is a
move, which moves the robot to the given position (again, the position is given
as a constant, not shown). After the move follows a pick up instruction that
causes the pickup operation associated with the name fixed gripper and the
object nut to be evaluated. Last follows the declaration of the second operation
apply and turn nut, which is not shown in detail, but has both a forwards and
a reverse body, so forwards execution evaluates the forwards body in forwards

Reversible Control of Robots 183

operation("screwdriver_activate").
io(screwdriver, Switch::on).
wait(0.3).
wait(screwingFinished).
reverseWith("screwing_finished_backwards");
io(screwdriver, Switch::off).
io(screwdriverBackwards, Switch::off);

Fig. 3. Sample SCP-RASQ program (adapted from [4]).

order, and reverse execution evaluates the reverse body in forwards order (i.e.,
in the order written in the program).

In practice it turned out to be more useful to rely on an internal DSL imple-
mented in C++, using a model-driven approach that serialises the program to an
XML structure that can subsequently be instantiated as the graph structure used
by the reversible interpreter. This internal DSL, named SCP-RASQ for “Sim-
ple C++ RASQ”, is exemplified in Fig. 3. This program declares an operation
that performs IO operations to communicate with the screwdriver, and shows
how indirect reversibility can be programmed in-place using the reverseWith

declaration.

5 Results

This section will give an overview of the experimental results demonstrated in
earlier work on several industrial use cases [4].

5.1 Methodology

Error recovery using reverse execution was tested using two industrial assembly
tasks use-cases; the physical robot platform and the assembled products are
shown in Fig. 1. An SCP-RASQ program was created for each of the use cases.
Both cases include a final step where the finished product is discarded into a
box. This step was not performed when running the programs backwards, as it is
a nonreversible task since our current setup cannot bin-pick the part out again.

5.2 Experiment 1: Reversing the Programs

Both use-cases were used to test the principle of reversible assembly. Forward
execution performs assembly while reverse execution performs disassembly. For
each case the program is executed forward to assemble an object. Afterwards the
finished objects is then manually placed back into the system, and the program
is then executed backwards to disassemble the object. This was done a total of
three times for each case, with no errors.

In our test programs directly reversible operations made up 45% of all oper-
ations. Moreover, directly reversible operations such as the “pick screwdriver”

184 U. P. Schultz

were used in both their forward and backwards form in the same program using
the call and uncall functionality. Both use-cases could be made almost entirely
reversible using either directly or indirectly reversible operations through the
execution model and the programming language. We believe that if the reversibil-
ity concept was to be integrated more deeply into the design of assembly pro-
cesses and external equipment such as feeders, an even greater degree of directly
reversible instructions could be achieved.

5.3 Experiment 2: Assembling 100 Objects

By assembling a large number of objects the use of reverse execution as an effec-
tive error correction tool was demonstrated. The workcell was set to assemble
100 objects of each type consecutively and without pause. During these 200
assemblies a total of 22 errors occurred, of which 18, corresponding to 82%,
were automatically resolved and corrected using reverse execution. Errors that
were automatically corrected include failed peg-in-hole operations (fixed by back-
tracking and trying again), dropping a tube (fixed by reversing until a new tube
was picked from the feeder), failed to grasp a screw, and screwing failing due
to misalignment. Errors that could not be automatically corrected include air-
tubing from the gripper getting stuck on the platform, causing the gripper to
misalign, and a screw being inserted at a skewed angle causing a bracket to mis-
align, which could not be corrected as the system had no means of detecting the
bracket misalignment.

This experiment shows that reverse execution is capable of solving a wide
variety of errors and that the exact method for solving each kind of error need
not always be the same, as backtracking was done randomly at different lengths
and sometimes resulted in different solutions to the same problem. Moreover
we see that the backtracking system is promising in handling errors related to
small uncertainties in the assembly tasks, but that errors resulting in larger
and mechanical failures still need to be addressed either in the design phase or
by some other error handling mechanism. Last, the experiments also show that
while reverse execution can be used for solving a wide variety of errors, it also
places strong demands on the error detection system.

6 Conclusion

From a society point of view, industrial robots are key to maintaining production
in Europe, and reversible computation has the potential to increase robustness
for specific kinds of operations such as small-batch assembly, and moreover facil-
itate the programming of such operations. In this case study we have introduced
a programming model which enables robot assembly programs to be executed
in reverse. We have experimentally demonstrated that temporarily switching
the direction of program execution can be an efficient error recovery mecha-
nism. Moreover, we have shown that additional benefits arise from supporting

Reversible Control of Robots 185

reversibility in our robotic assembly language, namely increased code reuse and
automatically derived disassembly sequences.

This case study has resulted in an improved understanding of the interaction
between reversible computing and real-world systems that only are partially
reversible, as well as a substantial experimental evaluation of the use of reversible
programming languages to control industrial robots performing assembly and
disassembly in the context of small-batch production. Overall this case study
has experimentally demonstrated the use of reversible computing to improve
system reliability.

Acknowledgements. Thanks to Gabriel Ciobanu for help in describing the related
work on reversibility of massively parallel systems.

References

1. Agrigoroaiei, O., Ciobanu, G.: Dual P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95–107.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7 7

2. Agrigoroaiei, O., Ciobanu, G.: Reversing computation in membrane systems. J.
Logic Algebraic Program. 79(3), 278–288 (2010)

3. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014)

4. Laursen, J., Ellekilde, L., Schultz, U.: Modelling reversible execution of robotic
assembly. Robotica 36(5), 625–654 (2018)

5. Laursen, J.S., Schultz, U.P., Ellekilde, L.P.: Automatic error recovery in robot
assembly operations using reverse execution. In: Evers, C., Sheaffer, J., Tourbabin,
V., Naylor, P.A., Romanoni, A., Matteucci, M. (eds.) International Conference on
Intelligent Robots and Systems (IROS 2015). IEEE/RSJ (2015)

6. Mühe, H., Angerer, A., Hoffmann, A., Reif, W.: On reverse-engineering the KUKA
robot language. In: Schultz, U.P., Stinckwich, S., Ziane, M. (eds.) Proceedings
of the First International Workshop on Domain-Specific Languages for Robotic
Systems (DSLRob 2010) (2010). arXiv:1009.5004 [cs.RO]

7. Pǎun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-642-56196-2

8. Schultz, U.P.: Using scheme to control simulated modular robots. In: Danvy, O.
(ed.) Proceedings of the 2012 Annual Workshop on Scheme and Functional Pro-
gramming, pp. 90–95. ACM (2012)

9. Schultz, U.P.: Towards a general-purpose, reversible language for controlling self-
reconfigurable robots. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol.
7581, pp. 97–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36315-3 8

10. Schultz, U., Bordignon, M., Støy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29, 35–57 (2011)

11. Schultz, U.P., Laursen, J.S., Ellekilde, L.-P., Axelsen, H.B.: Towards a domain-
specific language for reversible assembly sequences. In: Krivine, J., Stefani, J.-B.
(eds.) RC 2015. LNCS, vol. 9138, pp. 111–126. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20860-2 7

https://doi.org/10.1007/978-3-540-95885-7_7
http://arxiv.org/abs/1009.5004
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-36315-3_8
https://doi.org/10.1007/978-3-642-36315-3_8
https://doi.org/10.1007/978-3-319-20860-2_7
https://doi.org/10.1007/978-3-319-20860-2_7

186 U. P. Schultz

12. Tyagi, N., Lynch, J., Demaine, E.D.: Toward an energy efficient language and
compiler for (partially) reversible algorithms. In: Devitt, S., Lanese, I. (eds.) RC
2016. LNCS, vol. 9720, pp. 121–136. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40578-0 8

13. Yim, M., et al.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

14. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of the 5th Conference on Computing Frontiers (CF 2008),
pp. 43–54. ACM (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-40578-0_8
https://doi.org/10.1007/978-3-319-40578-0_8
http://creativecommons.org/licenses/by/4.0/

Reversible Languages and Incremental
State Saving in Optimistic Parallel

Discrete Event Simulation

Markus Schordan1(B), Tomas Oppelstrup1, Michael Kirkedal Thomsen2,
and Robert Glück2

1 Lawrence Livermore National Laboratory, Livermore, USA
{schordan1,oppelstrup2}@llnl.gov

2 University of Copenhagen, Copenhagen, Denmark
m.kirkedal@di.ku.dk, glueck@acm.org

Abstract. Optimistic parallel discrete event simulation (PDES)
requires to do a distributed rollback if conflicts are detected during a
simulation due to the massively parallel optimistic execution approach.
When a rollback of a simulation is performed each node that is deter-
mined to be in a wrong state must be restored to one of its previous
states. This can be achieved through reverse computation or by restor-
ing a previous checkpoint. In this paper we investigate and compare both
approaches, reverse computation and a variant of checkpointing, incre-
mental state saving (also called incremental checkpointing), to restore a
previous program state as part of an optimistic parallel discrete event
simulation. We present a benchmark model that is specifically designed
for evaluating the performance of approaches to reversibility in PDES.
Our benchmarking model has mathematical properties that allow to tune
the amount of arithmetic operations relative to the amount of memory
operations. These tuning opportunities are the basis for our systematic
performance evaluation.

1 Introduction

Discrete event simulation (DES) is a simulation paradigm suitable for systems
whose states are modeled as changing discontinuously and irregularly at discrete
moments of simulation time. State changes occur at simulation times that are cal-
culated dynamically rather than determined statically as typical in time-stepped
simulations. Most irregular systems whose behavior is not describable by contin-
uous equations and do not happen to be suitable for simple time-stepped mod-
els are candidates for DES. Efficient parallel discrete event simulation (PDES)
is much more complicated than the sequential version. There are two broad
approaches to resolving the PDES synchronization issue, called conservative
and optimistic [1]. Recently Omelchenko and Karimabadi have developed an
asynchronous flux-conserving DES technique for physical simulations [2]. Their
preemptive event processing approach to parallel synchronization complements

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 187–207, 2020.
https://doi.org/10.1007/978-3-030-47361-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_9

188 M. Schordan et al.

standard optimistic and conservative strategies for PDES. In this paper we will
discuss optimistic PDES, which requires reversibility, in more detail.

In particular, we will focus on PDES using the Time Warp optimistic synchro-
nization method [3]. The optimistic classification of Time Warp implies that it
employs speculative execution to enable parallelism. In order to allow roll-backs
needed to resolve incorrect speculation, the original formulation of Time Warp
utilized checkpointing of the entire system state. This can be very wasteful, so in
recent years reverse computation has become a key concept in optimistic paral-
lel discrete event simulation [4,5], as it allows one to reduce the overhead in the
forward execution in comparison to checkpointing and, thus, improve the per-
formance. Fundamentally, there are two ways to achieve reversibility: (1) incre-
mental state saving and (2) reverse execution. Incremental state saving (also
called incremental checkpointing in [5]) is a well-established approach, which
has the advantage that only a few language constructs need to be augmented to
establish reversibility of an arbitrary piece of code. However, it (often) results
in a high runtime overhead as any checkpointing is a memory-heavy method.
Reverse execution is based on the idea that for many programs there exists an
inverse program that can uncompute all results of the (forward) computed pro-
gram. The inverse program can be achieved either through implementation of
reverse code from a given forward code, or by implementing the program in a
reversible programming language that offers the capability to automatically gen-
erate the inverse program: the imperative reversible language Janus [6] has such
functionality.1

In this paper we systematically evaluate the generation of forward and reverse
C++ code from Janus code (Sect. 4) as well as automatically generated code
based on incremental state saving (Sect. 5). We also discuss the differences in
methodology, whether a model code is written in a “destructive” language such
as C/C++ or in the reversible language Janus, and its applications when imple-
menting (and debugging) a model for PDES.

For this purpose and in order to validate the simulator and also check cor-
rectness of generated code, we have developed a new discrete event benchmark
model that can be scaled in various dimensions. For execution of our model
codes we use the ROSS general purpose discrete event simulator. Our new dis-
crete event benchmark model is similar to the classic PHOLD benchmark model,
but includes some extra state variables and computations that aid in detecting
simulation errors. In our new model each event involves non-commutative matrix
algebra, and the matrix that results from the simulation of the model serves as
a checksum or hash of the simulation, and is sensitive to the order of events.
The size of this matrix can be controlled by the user, as can the number of bits
in its elements. This new benchmark is particularly useful for debugging simu-
lations that are computed with the Time Warp Algorithm as its mathematical
properties allow for checking of various assertions.

In our new model we can also tune the amount of arithmetic operations rel-
ative to the amount of memory modifying operations. This enables a systematic

1 Online Janus interpreter at https://topps.diku.dk/pirc/?id=janus.

https://topps.diku.dk/pirc/?id=janus

Reversible Languages and Incremental State Saving in PDES 189

comparison of hand-written reverse code with multiple approaches of automati-
cally generated reverse code and code instrumented for incremental state saving.

In our performance evaluation we use several different versions of the model
code: (1) the original forward code with hand written reverse code, (2) Back-
stroke instrumented code to perform incremental state saving [7], and (3) Janus
generated code for forward/reverse functions.

The forward/reverse code generated from Janus is particularly interesting
because it allows to get forward code with no memory overhead and in some
cases no runtime overhead, whereas for instrumented code one can only try to
reduce the runtime and memory overhead in the forward code.

To the best of our knowledge this is the very first runtime comparison of the
two approaches to reversible computation: generating reverse code and incre-
mental state saving. In the optimistic PDES setting incremental state saving is
suitable because optimistic PDES follows the Forward-Reverse-Commit (FRC)
paradigm. In that paradigm, after an event has been executed in the forward
direction, it can either be reversed (e.g. in the case it was incorrect to run it
forward in the first place), or committed (when it has been proved that it was
a correct event). When an event is committed its associated data is no longer
needed, which allows to dispose recorded traces with every commit. In this paper
we also investigate whether the combination of both the reversible language and
incremental checkpointing approaches can be beneficial.

After giving a brief overview of PDES in Sect. 2, we describe our benchmark
model and its properties in Sect. 3. In Sect. 4 we describe the reversible language
Janus and how we generated forward/reverse function from Janus code. In Sect. 5
we briefly describe what source code transformations are applied to code to sup-
port incremental state saving with the Forward-Reverse-Commit paradigm. In
Sect. 6 we describe the discrete event simulator that we use for optimistic par-
allel discrete event simulation and some adaptations that we implemented to
better support the Forward-Reverse-Commit paradigm. The performance evalu-
ation results are presented in Sect. 7. In Sect. 8 we discuss previous work that is
related to our evaluated approaches and in Sect. 9 we discuss conclusions from
the observed performance results.

2 Optimistic Parallel Discrete Event Simulation (PDES)

In this section we give a brief overview of PDES. A more detailed overview can be
found in our previous work [7]. The general approach is to divide the simulation
and its state into semi-independent units called LPs (logical processes) that
can execute concurrently and communicate asynchronously, each maintaining
its own state. A simulated event generally triggers a state change in one LP and
affects only that LP’s state. Any event may schedule other events to happen in
the future of the current LP’s simulation time. Events scheduled for other LPs
must be transmitted to them as event messages with a timestamp indicating the
simulation time when the event happens. Arriving event messages get enqueued
in the event queues of the receiving LPs in increasing time stamp order. The LP
has to allocate enough memory to store these queues.

190 M. Schordan et al.

Every LP must execute all of its events in strictly non-decreasing timestamp
order irrespective of the order in which events may arrive or what timestamps
they may carry. This poses a synchronization problem.

In contrast to optimistic PDES, conservative synchronization in conservative
PDES uses conventional process blocking primitives along with extra knowledge
about the simulation model (called lookahead information) to prevent the exe-
cution from ever getting into a situation in which an event message arrives at
an LP with a timestamp in its past. Conservative synchronization is limited to
models with static communication graphs.

Optimistic synchronization, by contrast, employs speculative execution to
allow dynamic communication graphs and exposure of more parallelism. As a
result, there is the danger of a causality violation when an LP that is behind in
simulation time, e.g. at t1, sends an event message with a (future) timestamp
t2 > t1 that arrives at a receiver that has already simulated to time t3 > t2 due
to its optimistic execution. In that case the receiver has already simulated past
the simulation time when it should have executed the event at t2, but it would
be incorrect to execute events out of order because this may produce different
results. Whenever that occurs, the simulator needs to roll back the LP from t3
to the state it was in at time t2, cancel all event messages the LP had sent after
t2, execute the arriving event, and then re-execute forward from time t2 to t3
and beyond. All event executions are therefore speculative or provisional, and
are subject to rollback if the simulator detects a local causality conflict.

Each LP computes its local virtual time (LVT) based on the time stamps of
event messages it receives. Because of rollbacks the LVT can also be reset to an
earlier point in time. The global virtual time (GVT) is defined to be the minimum
of all of the LVTs. Several algorithms exist to compute an estimate of the GVT
during the simulation. Any events with time stamps older than GVT can be
committed because it is guaranteed that they never need to be reversed. For
more detail see [3,5]. That events are committed once they are older than GVT,
allows to delete all information that may have been stored to enable reversibility.
This commit operation is the same that we also use for incremental state saving,
described in Sect. 5, to dispose recorded execution traces of memory modifying
operations.

3 PDES Model Benchmark

In order to validate the simulator and also check the correctness of automatically
generated code suitable for reversible computation, we have developed a new
discrete event benchmark model. It is similar to the classic PHOLD benchmark
model, but includes some extra state variables and computations which aid in
detecting simulation errors. The state of each LP contains two square matrices:
an accumulation matrix A, and a transformation matrix T, each of size n × n,
where n is an integer constant chosen by the user. Each event message contains
the transformation matrix of the sender, and upon execution of an event the
receiving LP multiplies its accumulation matrix to the right with the received

Reversible Languages and Incremental State Saving in PDES 191

transformation matrix. When an event is executed the receiving LP schedules
a new event for a randomly selected LP at an exponentially distributed time
delay.

At the end of the simulation, the matrices of all LP’s are multiplied together,
in LP ID (rank) order. The resulting matrix is the output of the simulation. Since
matrix multiplication is in general non-commutative, the output depends on the
individual events being executed in the correct order. The output serves as a
check sum or hash of the simulation, and its size can be controlled by choosing
the matrix size and the number of bits in the matrix elements.

The kernel of the event execution is a matrix multiplication, which (in the
conventional implementation that we use) takes O(n3) arithmetic operations
for n × n matrices. Reverse computation involves calculating a matrix inverse
(or solving a matrix equation A′ = A × T for A), which also requires O(n3)
arithmetic operations. Each event or event message contains an n × n matrix
and requires n2 words of storage, and the same amount of data to be transmitted
if communicated over a network. For bench-marking studies we can tune the ratio
of arithmetic operations to memory/communication needs. This ratio is O(n) for
n × n matrices. We want to emphasize that this model is perfectly reversible,
in the sense that no extra state besides the event itself is needed to undo the
forward event: We simply invert the matrix in the event message and multiply
the accumulation matrix to the right with this inverse.

We let the matrix elements be of a standard unsigned integral data type
(e.g. 8, 16, 32, or 64 bits). For each of these types, the standard computer
multiplication, addition, and subtraction perform arithmetic in an associated
finite integer ring; Z2k where k is the number of bits in the data type, e.g.
k ∈ {8, 16, 32, 64}. In these finite rings, all odd numbers have an inverse, and so
half of the numbers in each ring can be used as denominators in division.

In this chapter we are interested in comparing different approaches to gen-
erate reversal of events to support roll-back. One of these approaches is reverse
computation. In order for reverse computation to be applicable, events execution
need to be reversible. To guarantee that, we select the transformation matrices to
be non-singular over the integer ring of their elements. To simplify the expression
of reversible multiplication, we additionally pick the transformation matrices so
that Gaussian elimination can be completed successfully without pivoting.

3.1 Ring Inverses and Non-singular Matrices

The C++ language provides us with addition, subtraction, and multiplication in
the relevant integer rings. We also need a division, which can be implemented as
multiplication with the inverse. In order to find a ring inverse, we can use Euclid’s
extended algorithm. To be specific, we use the following implementation:

The function in Listing 1.1 returns the inverse of b if b is invertible in Z2k ,
otherwise it returns zero. We have the relation b ≡ 1 mod 2 ⇒ b ∗ intinv(b) = b.

192 M. Schordan et al.

myuint intinv(myuint b) {
// Find inverse in integer ring of Z_{2ˆk}, where k is
// the number of bits in the myuint data type. It is
// expected that myuint is an unsigned integer type.
myuint t0 = 0,t = 1,q,r;
myuint a = 0; // Want initial a to be 2ˆk, which can not be

// represented, so we use the lower order bits,
// i.e. a = 0.

if(b <= 1) return b;

q = (∼a) / b; // Surrogate for 2ˆk div b, where ’div’
// is standard integer division (/). Unless
// b is a power of 2, 2ˆk div b = = (2ˆk-1) div b.

if(b∗q+b = = 0) return 0; // Catches when b is power of 2.

r = a - q∗b;
while(r > 0) {
const myuint temp = t0 -q∗t;
t0 = t;
t = temp;
a = b;
b = r;
q = a/b;
r = a - q∗b;

}
if(b = = 1) return t;
else return 0;

}

Listing 1.1. Computation of inverse in Z2k .

One might initially worry that it can be hard to find non-singular matri-
ces over Z2k . It turns out that a significant fraction of such matrices where
the elements are picked from a uniformly random distribution are non-singular.
We can determine this as follows. First, a matrix is non-singular if and only
if Gaussian elimination with row pivoting can be completed successfully. We
note that since we work with a finite set of numbers (ring), there is no need
to worry about stability – all calculations are exact and there are no round-off
errors. Let M be an n×n matrix with elements independently selected uniformly
from Z2k , where k > 0 is an integer. To perform Gaussian elimination on a M
we first need to find a pivot element p in the first row. Any invertible element
will do. The probability that we find one is 1 − (

1
2

)n. Assume p is in column
j. Now swap column j and column 1. For all rows r and for all columns c in
M , set M ′

rc = Mrc − Mr1p
−1M1c. Gaussian elimination proceeds by recursively

performing elimination of the submatrix S of M ′ resulting from removing its
first row and first column. For r > 1 and c > 1, the parity (oddness) of M ′

rc

is swapped if Mr1M1c is odd, and unchanged otherwise. The parity of Mrc is

Reversible Languages and Incremental State Saving in PDES 193

uniformly random, and the parity of Mr1M1c is independent of Mrc. Therefore
the parity of M ′

rc is also uniformly random, since an independent flip does not
change the distribution. By induction, the probability of finding a pivot ele-
ment in S is 1 − (

1
2

)n−1, and carrying out the recursion to the end, yields the
probability of M being non-singular to be

n∏

i=1

(
1 −

(
1
2

)n)
≈ 0.288788

This means that a little bit over one quarter of all uniformly random matrices
over Z2k are non-singular. Therefore we can find suitable ones relatively effi-
ciently by trial and error. Further, in order to create matrices for which we can
do Gaussian elimination without pivoting, we pick a non-singular matrix T , and
then permute the columns in the schedule dictated by the pivot columns given
by computing Gaussian elimination with row pivoting on (a copy of) T .

4 Forward/Backward Code from Reversible Programs

The defining property of reversible programming languages is their forward and
backward determinism, that is, in each computation state not only the successor
state is uniquely defined, but also the predecessor state [8]. The computation
is information preserving. In contrast, mainstream (irreversible) programming
languages, such as C, are forward, but not backward deterministic.

In a reversible imperative programming language, such as Janus, every assign-
ment statement is non-destructive, that is a reversible update, such as x -= e,
where variable x may not occur in expression e on the right side (e.g., x -= x
is not backward deterministic). In case of an assignment to an array element, for
example a[i,j] -= a[k,l], a runtime check ensures that i �= k or j �= l.

All control-flow statements, such as conditionals and loops, are equipped with
assertions, in one way or another, to ensure their backward determinism. The
variant of Janus used for the programs in this paper has a two-way deterministic
loop iterate i = e1 to e2; s; end, where neither the index variable i
nor the variables occurring in expressions e1 and e2, defining the start- and
end-values of i, may be modified in the body statement s, which is executed
once per iteration. Hence, the number of iterations is known before and after the
loop.

An advantage of reversible programming languages is that their programs
do not require instrumentation to restore a previous computation state from
the current state, which is usually necessary in irreversible languages. Backward
determinism opens new opportunities for program development because a pro-
cedure p cannot only be called by a usual call p, but its inverse semantics can
be invoked by an uncall p. Forward and backward execution of a procedure
are equally efficient, thus is makes no difference which direction is implemented
in a program, which therefore is usually the one that is easier to write. We will
make use of this possibility to reuse code by uncalling a procedure.

194 M. Schordan et al.

procedure crout(int LDU[][], int n)
iterate int j = 0 to n-1
iterate int i = j to n-1
iterate int k = 0 to j-1
LDU[i][j] -= LDU[i][k] ∗ LDU[k][j]

end
end
iterate int i = j+1 to n-1
iterate int k = 0 to j-1
LDU[j][i] -= LDU[j][k] ∗ LDU[k][i]

end
uncall mult(LDU[j][i], LDU[j][j])

end
end

Listing 1.2. Janus implementation of the Crout matrix decomposition.

Translation from Janus to C++. Reversible programs can be translated to a
mainstream (irreversible) programming language, which in this paper is C++.
Usually, this requires the implementation of additional runtime checks in the
target program to preserve the semantics of the source program. Assuming that
the source program is correct and only applied to values for which it is well
defined, the runtime checks in the target program can be turned off. The trans-
lation of Janus into C++ which we use for the benchmarks is straightforward,
e.g., iterate is translated into a for-loop, and no further optimizations are
performed by the Janus-to-C++ translator.

Only the translation of an uncall p requires an unconventional step in the
translator, namely first the program inversion of procedure p into its inverse
procedure p-inv, both p and p-inv written in Janus, followed by the trans-
lation of p-inv into the target language and the replacement of every uncall
p by the functionally equivalent call p-inv. The target program then con-
tains the C++ implementation of p and its inverse p-inv. Program inversion
is straightforward in a reversible language (cf. [6]), e.g., a reversible assignment
x -= e is inverted to x += e and a statement sequence is inverted to the
reversed sequence of its inverted statements.

As a non-trivial example, Listing 1.2 shows the Janus implementation of the
Crout algorithm for LDU matrix decomposition. The translation from Janus
into C++ for the forward code is straightforward, and a uncall mult in Janus
becomes a call to mult-inv in C++. To illustrate the generated inverted code,
its C++ translation can be found in Listing 1.3. The iteration is translated into
nested for-loops and the reversible assignment in Janus requires only a minor
adaptation to the C++ syntax. In the C++ listing the mult(a,b) is effectively
a standard integer product a := a × b with appropriate assertions that it can be
inverted, i.e. the inverse of b exists. mult-inv uses intinv from Listing 1.1 to
compute the ring inverse.

Reversible Languages and Incremental State Saving in PDES 195

template<typename myuint>
void crout_inv(myuint ∗LDU, int &n) {
for (int j = n - 1 ; j != 0 + 0 - 1 ; j += 0 - 1) {

for (int i = n - 1 ; i != j + 1 + 0 - 1 ; i += 0 - 1) {
mult(LDU[j∗n+i], LDU[j∗n+j]);
for (int k = j - 1 ; k != 0 + 0 - 1 ; k += 0 - 1) {

LDU[j∗n+i] += LDU[j∗n+k] ∗ LDU[k∗n+i];
}

}
for (int i = n - 1 ; i != j + 0 - 1 ; i += 0 - 1) {

for (int k = j - 1 ; k != 0 + 0 - 1 ; k += 0 - 1) {
LDU[i∗n+j] += LDU[i∗n+k] ∗ LDU[k∗n+j];

}
}

}
}

Listing 1.3. Reverse code of C++ translation of Listing 1.2.

procedure matrix_mult(int A[][], int B[][], int n)
call crout(B, n) // In-place LDU decomposition of B
call multLD(A, B, n) // A := A*LD in place
call multU(A, B, n) // A := A*U in place
uncall crout(B, n) // Revert LDU decomposition to recover B

Listing 1.4. Janus implementation of matrix multiplication.

Matrix Multiplication in Janus. A conventional matrix-matrix multiplication
needs temporary storage, and the individual steps are not reversible. Since a
reversible language requires each operation to be reversible we need a different
approach. One approach is to use LU or LDU decomposition, which can be
performed in place, and is step-wise reversible. Multiplication with the resulting
triangular matrices can also be done in-place and step-wise reversible. In the
approach here, to compute A := A × B, we perform the Crout algorithm for
LDU decomposition, B = L × D × U in place, then the sequence A := A × L,
A := A × D, A := A × U . Finally we reverse the LDU decomposition in place,
to recover the original input B. For a Janus implementation of the in-place
matrix multiplication, see Listing 1.4. The code for multiplication with triangular
matrices is shown in Listing 1.5. This approach needs no temporary storage and is
step-wise reversible. The price for this reversibility and in-place operation is more
arithmetic operations than a standard matrix product by a factor of about 5/3
(for sufficiently large n, say n > 10). In the full implementation, we used a local
temporary variable to reduce the number of calls to the ring-inverse function
for speed optimization, since it is much more costly than a multiplication or
addition. This does not change any of the reversibility features.

196 M. Schordan et al.

procedure multLD(int A[][], int LDU[][], int n)
iterate int i = 0 to n-1
iterate int j = 0 to n-1
call mult(A[j][i], LDU[i][i])
iterate int k = i+1 to n-1
A[j][i] += LDU[k][i] ∗ A[j][k]

end
end

end

procedure multU(int A[][], int LDU[][], int n)
iterate int i = n-1 by -1 to 0
iterate int j = 0 to n-1
iterate int k = 0 to i-1
A[j][i] += LDU[k][i] ∗ A[j][k]

end
end

end

Listing 1.5. Janus implementation of in-place multiplication with triangular matrices.
multLD(A,LDU) computes A := A∗ (LD) and multU(A,LDU) computes A := A×U .

5 Automatic Generation of Reversible Code
for the Forward-Reverse-Commit Paradigm

In the forward-reverse-commit (FRC) paradigm [5] the original code is trans-
formed such that during its forward execution it stores all information required
to reverse all effects of the forward execution and restore the previous state of
the program, or commit (possibly deferred) operations at a later point in time.
Hence, we add the history of the computation to each saved state, which is usu-
ally called a Landauer’s embedding. In both reverse and commit functions the
additional information stored in the forward code is eventually disposed. Before
that the reverse function uses the stored data to undo all memory modifying
operations, in the commit function performs the deferred memory deallocation.

We generate transformed forward code to implement incremental state sav-
ing. The idea is to only store information about what changes in the program
state because of a state transition, not the entire state. This approach is also
briefly described in [5] for the programming language C (called “incremental
check pointing” by the author). After performing a forward execution of the
transformed program followed by a corresponding reverse operation, the pro-
gram is restored to its original state, i.e. the exact same state as the original
program was before performing any operation. Therefore, the execution of a for-
ward function and a reverse operation is equivalent to executing no code (i.e. a
no-op).

Reversible Languages and Incremental State Saving in PDES 197

After performing a forward execution of the transformed program followed
by a commit operation, the program is in the exact same state as executing
the original program. Therefore, the execution of a forward function and its
corresponding commit operation performs the same changes to the program
state as the execution of the original function.

This transformation can also be considered to turn the program into a trans-
actional program, where each execution step can be reversed (undone) or com-
mitted after which it cannot be reversed since all information necessary to reverse
it is disposed by the commit operation. This is an important aspect when
performing long running discrete event simulations: the forward-commit pairs
ensures that no additional memory is consumed after a commit has been per-
formed. As we shall see, the optimistic parallel discrete event simulation ensures
that such a point in time at which all events can be committed up to a certain
point in the past, can always be computed during the simulation.

In [9] we have shown how this approach can be extended to address C++
without templates. In [10] we have applied this approach to all of C++98, includ-
ing templates and in [7] we have shown that this approach is general enough to
be applied to C++11 standard containers and algorithms.

Our approach to generating reversible forward code introduces one additional
function call, an instrumentation, for each memory modifying operation. Mem-
ory modifying operations are destructive assignments and memory allocation and
deallocation. We only instrument operations of built-in types. For user-defined
types either the existing user-provided assignment operator is instrumented (like
any other code), or we generate a reversible default assignment operator if it is
not user-provided. This is sufficient to cover all forms of memory modifying
operations – of built-in types as well as user-defined types – because our run-
time library that is linked with the instrumented code performs all necessary
book-keeping at run-time. In particular, it also contains C++11 compile-time
predicates. Those predicates check whether a provided type is a built-in type
or a user-defined type and handle assignments of user-defined types (e.g. entire
structs) as fall-through cases because they are handled component-wise by the
respective overloaded assignment operator (which is either user-provided and
automatically instrumented or generated). For a formal definition of the seman-
tics of the instrumentations we refer the reader to [7].

We have implemented our approach in a tool called Backstroke2 as source-to-
source transformation based on the compiler infrastructure ROSE3. The Back-
stroke compiler for generating reversible programs from C++ was released to
the public in March 2017 (version 2.1.0). This was the first public release of
Backstroke V2 using incremental state saving.

2 https://github.com/LLNL/backstroke.
3 https://www.rosecompiler.org.

https://github.com/LLNL/backstroke
https://www.rosecompiler.org

198 M. Schordan et al.

template<typename myuint>
void matmul(int n,myuint A[],myuint B[],myuint AB[]) {
for(int i = 0; i<n; i++) {
for(int j = 0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {
s = s + A[i∗n+k]∗B[k∗n+j];

}
AB[i∗n+j] = s;

}
}

}

Listing 1.6. Original C++ Matrix Multiplication Code Fragment from the Bench-
mark.

template<typename myuint>
void matmul(int n,myuint A[],myuint B[],myuint AB[]) {
for(int i = 0; i<n; i++)
for(int j = 0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {

(xpdes::avpushT(s)) = s +A[i∗n+k]∗B[k∗n+j];
}
(xpdes::avpushT(AB[i∗n+j])) = s;

}
}

Listing 1.7. Backstroke Generated Reversible C++ Forward Code (non-optimized).

5.1 Backstroke Instrumented Code

Three variants of the matrix multiplication are shown: (1) the original C++
code in Listing 1.6 for the matrix multiplication, (2) the non-optimized Back-
stroke generated code in Listing 1.7, and (3) the optimized Backstroke generated
code in Listing 1.8. Backstroke’s optimization detects local variables and ensures
that direct accesses to local variables are not instrumented because those never
need to be restored since memory for local variables is reserved on the run-
time stack. Backstroke instrumented code records memory modifications only
for heap allocated data since only this data persists across event function calls.
In the presence of pointers the accesses to memory locations on the stack may be
instrumented, but a runtime check in the Backstroke library ensures that only
heap allocated data is stored.

This runtime check is always performed in the xpdes::avpush function
because due to pointer aliasing, in general it is not known at compile time where

Reversible Languages and Incremental State Saving in PDES 199

template<typename myuint>
void matmul(int n,myuint A[],myuint B[],myuint AB[]) {
for(int i = 0; i<n; i++) {
for(int j = 0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {

s = s + A[i∗n+k]∗B[k∗n+j];
}
(xpdes::avpushT(AB[i∗n+j])) = s;

}
}

}

Listing 1.8. Backstroke Generated Reversible C++ Forward Code (automatically
optimized).

the data that a pointer is referring to may be allocated. This check is performed
based on the memory addresses of the argument passed to avpush and the stack
boundaries determined as part of the initialization of the Backstroke runtime
library.

In the presented model only C++ assignments are instrumented because no
memory allocation happens in the event functions. The memory for the matrices
is allocated in the initialization of the simulation, i.e. in the initialization function
for each LP.

The avpush function passes a reference to the memory section denoted by
the respective expression as argument and stores a pair of the address (of the
denoted memory location) and the value at that address in a queue in the Back-
stroke runtime library. It returns the very same address such that the code can
execute as usual and perform the write access. Consequently, avpush always
stores the old value before the assignment happens. When a previous state needs
to be restored, the reverse function simply iterates over all those address-value
pairs stored by the avpush function and restores the memory locations at those
addresses to the stored value. The avpush functions are strictly typed, and
restoration follows in exact reverse order, which is important in case a mem-
ory location is written more than once or any forms of aliasing occur. For more
details on the instrumentation functions we refer the reader to [7].

The difference of the non-optimized version to the optimized version is that
the instrumentation in the innermost loop is not necessary because it is a write
to a local variable s. In Listing 1.8 the innermost loop is not instrumented and
therefore the number of instrumentations is only executed n2 times where n is
the size of the quadratic matrices. Without this optimization the Backstroke
generated code would always be slower than the Janus generated code as we
will discuss in more detail in Sect. 7. In general, accesses to memory which only
holds temporary data, not defining the state of an LP, need not be instrumented.

200 M. Schordan et al.

The more precise a static analysis is that determines this property, the more
instrumentations to temporary memory locations can be avoided.

Backstroke also offers program annotations (through pragmas) for users to
manually minimize the number of instrumentations and interface functions to
turn on/off the recording of data at runtime. For example, with this feature one
can add conditions in loops to only record data in the very first iteration, but not
in subsequent iterations that write to the same memory location. Alternatively,
one can unroll a loop and only instrument the first (unrolled) iteration and
exclude the remaining loop from instrumentation. Thus, with Backstroke one
can also manually optimize the recording of data.

6 ROSS Simulator

For execution of our model codes we use the ROSS general purpose discrete
event simulator, developed at RPI by C. Carothers et al. [11]. ROSS has been
developed for more than a decade. It has the capability of running simulations
both sequentially and in parallel using either the YAWNS conservative or Time
Warp optimistic mechanism. Time Warp is an optimistic approach, where each
processor employs speculative execution to process any event messages it is aware
of. Causality conflicts, such as when a previously unknown message which should
already have been processed is received, are handled through local roll back.
During roll back the effects of messages that were processed in error are undone.

In order to use Time Warp in a ROSS model, a reverse event function must
be provided, which is responsible for undoing the state changes that the forward
event function incurred for the same event.

6.1 Adaptations of the ROSS Simulator for the FRC Paradigm

For our evaluation we are using the same ROSS implementation as in [7]. This
version offers a commit method. Whenever an event is committed (during fossil
collection) a commit function is called for the corresponding LP with the event as
an argument. This is a time when non-reversible functions such as file I/O can be
called safely. In particular, this is very useful for Backstroke, since commit time
is the earliest known moment at which the state saved by the Backstroke instru-
mented forward code can be released, and memory deallocated by the forward
event can be returned to the system. In addition to the commit methods, we
extended ROSS to support a C++ class for the simulation time data structure,
as opposed to the default double data type for representing time. This allows
the sender to encode additional bits in the message timestamp to help with tie
breaking of events.

7 Evaluation

We have evaluated the performance of three different implementations for the
forward and reverse code of the matrix mode: Original code with hand written

Reversible Languages and Incremental State Saving in PDES 201

Fig. 1. Top: Performance of original, Backstroke, and Janus versions of the matrix
model code. The graph shows the execution time per event for the three approaches.
The inset shows execution time relative to the original code. Bottom: The time for the
event function for the Backstroke code separated into event setup time, forward event
time, and commit time costs.

reverse code, forward code implemented in Janus with reverse code generated
by the Janus compiler, and forward code instrumented by Backstroke. For these
performance evaluations we used the Backstroke code with local variable opti-
mization.

202 M. Schordan et al.

First we focus on forward event code, which consists of three phases: event
setup, forward computation, and commit. It is only the Backstroke instrumented
code that has any significant work to perform in the setup and commit phases.
We ran the matrix model sequentially using 8000 LP’s and running up to 20
time units.

Figure 1 shows the matrix model performance as a function of matrix size for
the four different reverse code approaches. The upper panel shows total event
execution time, while the lower panel shows the relative cost of the three event
execution phases for the Backstroke instrumented code.

The standard procedure, which we employ in the original code, for multi-
plying two n × n matrices performs n3 multiplications and additions, and thus
in general the execution time for an event should scale as O(n3) for sufficiently
large n.

The Janus code must perform an LU factorization before carrying out the
multiplications, and undo the factorization after the multiplication is complete.
The total number of operations is about 5

3 times as many as for the standard
procedure. We can thus expect the Janus code to be almost twice as slow as the
original code for large matrices. For very small matrices the number of operations
of the Janus implementation is similar to the original code.

The Backstroke instrumented code with local variable optimization instru-
ments 2n2 memory operations (n2 for the matrix multiplication, and another n2

for copying the result into the destination memory). Since there are O(n3) arith-
metic operations, we expect the Backstroke instrumented code to incur negligible
overhead for sufficiently large matrices.

We performed the runs using matrix sizes ranging from 2 to 640. The sim-
ulations were run on an cluster with Infiniband interconnect and 2.6GHz Intel
Xeon E5-2670 cpus, 16 cores per node. We used the GNU g++ compiler with
version 4.9.3, and the “-O3” optimization switches.

In the evaluation results we see that Janus performs best for small matrix
sizes, whereas the Backstroke generated incremental state saving code performs
better the larger the matrix size becomes, with a cross-over point at the size of a
matrix size of 20 and for a matrix size of 640 the performance becomes almost the
same as the non-instrumented version of the original forward code. The reason
is that the Backstroke generated code only instruments those memory modifica-
tions that actually change the state of the simulation, i.e. elements in the matrix,
whereas the computation of the intermediate results is not instrumented. This
optimization is straightforward because this corresponds to not instrumenting
accesses to local (stack-allocated) variables. Since optimistic PDES follows the
forward-reverse-commit paradigm the trace only grows to a certain size, until the
commit function is invoked by the simulator. The simulator guarantees that this
happens in reasonable time intervals. The non-monotonic performance behavior
for small matrices in Backstroke, and for intermediate size matrices in Janus (see
inset in Fig. 1), is likely due to simulator and timing overhead, and cache effects,
respectively.

Reversible Languages and Incremental State Saving in PDES 203

The advantage of Janus generated forward/reverse code is that it does not
need to store any additional data since the Janus implementation of the forward
code is reversible. Saving memory is useful particularly in Time Warp simu-
lations, since the amount of memory available dictates how much speculation
can be performed. A challenge to implementing an algorithm in Janus is that it
requires to writing assertions at the end of constructs that enable reverse exe-
cution to take the right execution path (i.e. reverse conditionals). In addition,
reversibility may require algorithms that use inherently more operations than
the most efficient ones available in traditional non-reversible computing.

8 Related Work

Jefferson started the subject of rollback-based synchronization in 1984 [3]. The
paper discusses rollback implemented by restoring a snapshot of an old state,
but today we are interested in using reverse computation and/or incremental
state saving for that purpose. Also, that paper is written as if discrete event
simulation is one of several applications of virtual time, but in fact it was then
and is now the primary application. Although the term “virtual time” is used,
you can safely read it as “simulation time”.

In 1999 Carothers et al. published the first paper [4], that suggests using
reverse computation instead of snapshot restoration as the mechanism for roll-
back, but it does not contemplate using a reversible language. It is written in
terms of very simple and conventional programming constructs (C-like rather
than C++ -like) and instrumenting the forward code to store near minimal
trace information to allow rollback of side effects by reverse computation.

Barnes et al. demonstrated in 2013 [12], how important reverse computation
can be in a practical application area. The fastest and most parallel discrete event
simulation benchmark ever executed was done at LLNL on one of the world’s
largest supercomputers using reverse computation as its rollback method for
synchronization. The reverse code was hand-generated, and methodologically
we know that this is unsustainable. For practical applications we need a way
of automatically generating reverse code from forward code, and this is what
we address with the work presented in this paper - to have a tool available,
Backstroke (version 2), for generating reverse code that can be applied to the
full C++ language.

Kalyan Perumalla and Alfred Park discuss the use of Reverse Computation
for scalable fault tolerant computations [13]. The paper is limited in a number of
ways, but they make a fundamental point, which is that Reverse Computation
can be used to recover from faults by mechanisms that are much faster than
check pointing mechanisms.

In [14] Justin LaPre et al. discuss reverse code generation for PDES. The
presented method is similar to one of our previous approaches in the work on
Backstroke [15] as it takes control flow into account and generates code for
computing additional information required to reconstruct the execution path
that had been taken in the forward code. The approach we evaluate in this paper

204 M. Schordan et al.

is different as it does not need to take control flow information into account.
Our initial discussion of incremental state saving was presented in [9], but was
limited to C++ without templates. In this paper we evaluate a model that is
implemented using C++ templates as well. The automatic optimization that we
evaluate was also not present in [9].

An example for an optimistic PDES simulation with an automatically gener-
ated code using incremental state saving running thousands of LPs was published
for a Kinetic Monte-Carlo model in [10]. In this crystal grain simulation, a piece
of solid is modeled as a grid of unit elements. Each unit element represents a
microscopic piece of material, big enough to be able to exhibit a well defined
crystal orientation, but much smaller than typical grain sizes. These unit ele-
ments are commonly called spins, since the nature of grain evolution resembles
evolution of magnetic domains. In the experiment the biggest model was run
with a size of 768 × 768 spins divided into a grid of 96 × 96= 9216 LPs with a
slow-down factor in comparison to the hand-written reverse code of 4.7 to 4.3.
In a new experiment presented in [7], the model was run at a much bigger scale
with 1536 × 1536 spins in 256 × 256 logical processes (LPs) and implemented
using C++ Standard containers and algorithms and user-defined types. After
the transformation by Backstroke the model was run for 2 time units, or a total
of 47633718 events on LLNL’s IBM BlueGene/Q supercomputer with 16 cores
per node, using up to 8192 cores. This version showed a penalty of 2.7. to 2.9 in
comparison to the hand-written reverse code.

In [16] an autonomic system is presented that can utilize both an incremental
and a full checkpointing mode. At run time both code variants are available and
the system switches between the two variants, trying to select the more efficient
checkpointing version. With our approach to incremental checkpointing we aim
to reduce the number of instrumentations based on static analysis and offer a
directive to the user for enabling or disabling the recording of data at runtime,
allowing to also manually optimize instrumented code.

In [17] an instrumentation technique is applied to relocatable object files.
Specifically, it operates on the Executable and Linkable Format (ELF). It uses
the tool Hijacker [18] to instrument the binary code to generate a cache of
disassembly information. This allows to avoid disassembly of instructions at
run time. In contrast to our approach, the reverse instructions are built on-
the-fly at runtime, and using pre-compiled tables of instructions. Similar to our
approach there is also an overhead for each instrumentation. The information
that it extracts from instructions, the target address and the size of a memory
write, is similar to our address-value pairs. Recently progress has been made also
in utilizing hardware transactional memory for further optimizing single node
performance [19].

9 Conclusion

We have presented a new benchmark model for evaluating approaches to opti-
mistic parallel discrete event simulation. We evaluated the performance of using

Reversible Languages and Incremental State Saving in PDES 205

Janus generated forward/reverse code and incremental state saving (also called
incremental checkpointing). The benchmark model has as its core operation a
matrix multiplication.

From the results for our presented benchmark model we can conclude that
depending on the matrix size either the Janus generated code or the Backstroke
generated code performs best. Therefore, an implementation could include both
codes and call the respective implementation dependent on the matrix size. If
memory consumption becomes a limiting factor, the Janus implementation could
be favored over the Backstroke implementation as well, since the Janus code does
not store any additional data.

It also could be interesting to further explore how the Janus translator can
be optimized and how this impacts the native C++ compiler. The Janus trans-
lator used in the benchmarks is non-optimizing, which means it implements
every Janus statements in the target program, even when irreversible alterna-
tives provide a faster implementation and some statements may be redundant in
C++. Depending on the architecture, locality can be exploited to improve the
runtime behavior, e.g., when translating summation iterate ... A[i,j]+=e
end the use of a temporary variable in conventional assignments is an option:
s=A[i,j]; for ... s+=e end; A[i,j]=s;. Some optimizations are per-
formed by the native C++ compiler, others are better done by the Janus transla-
tor. Also, Janus may be extended with translator hints that allow a programmer
to mark compute-uncompute pairs, which makes it easier to determine redun-
dant statements.

Acknowledgments. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No.
19-ERD-026. IM release number LLNL-BOOK-780059. The authors acknowledge the
partial support of EU COST Action IC1405 on Reversible Computation—Extending
Horizons of Computing.

References

1. Fujimoto, R.M.: Parallel and Distribution Simulation Systems, 1st edn. Wiley, New
York (1999)

2. Omelchenko, Y., Karimabadi, H.: Hypers: A unidimensional asynchronous frame-
work for multiscale hybrid simulations. J. Comp. Phys. 231(4), 1766–1780 (2012)

3. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404–425
(1985)

4. Carothers, C.D., Perumalla, K.S., Fujimoto, R.M.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224–253 (1999)

5. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press Book, Boca
Raton (2013)

6. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Ramalingam, G., Visser, E. (eds.) Proceedings of the 2007
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, 2007, Nice, France, 15–16 January 2007, pp. 144–153. ACM (2007)

206 M. Schordan et al.

7. Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Generat.
Comput. 36(3), 257–280 (2018)

8. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 258–270. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3_22

9. Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code
generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.-B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 95–110. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-20860-2_6

10. Schordan, M., Oppelstrup, T., Jefferson, D., Barnes, Jr., P.D., Quinlan, D.: Auto-
matic generation of reversible C++ code and its performance in a scalable kinetic
Monte-Carlo application. In: Proceedings of the 2016 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation. SIGSIM-PADS 2016, pp. 111–122.
ACM (2016)

11. Holder, A.O., Carothers, C.D.: Analysis of time warp on a 32,768 processor IBM
Blue Gene/L supercomputer. In: Bruzzone, A., Longo, F., Piera, M.A., Aguilar,
R.M., Frydman, C. (eds.) Proceedings of the European Modeling and Simulation
Symposium (EMSS), pp. 284–292 (2008)

12. Barnes, Jr., P.D., Carothers, C.D., Jefferson, D.R., LaPre, J.M.: Warp speed: exe-
cuting time warp on 1,966,080 cores. In: Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. SIGSIM-PADS 2013,
pp. 327–336. ACM (2013)

13. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance
in large parallel systems. Cluster Comput. 17(2), 303–313 (2013). https://doi.org/
10.1007/s10586-013-0277-4

14. LaPre, J.M., Gonsiorowski, E.J., Carothers, C.D.: LORAIN: a step closer to the
PDES "holy grail". In: Proceedings of the 2nd ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation. SIGSIM-PADS 2014, pp. 3–14. ACM (2014)

15. Vulov, G., Hou, C., Vuduc, R., Fujimoto, R., Quinlan, D., Jefferson, D.: The Back-
stroke framework for source level reverse computation applied to parallel discrete
event simulation. In: Proceedings of the Winter Simulation Conference. WSC 2011,
Winter Simulation Conference, pp. 2965–2979 (2011)

16. Pellegrini, A., Vitali, R., Quaglia, F.: Autonomic state management for optimistic
simulation platforms. IEEE Trans. Parallel Distrib. Syst. 26(6), 1560–1569 (2015)

17. Cingolani, D., Pellegrini, A., Quaglia, F.: Transparently mixing undo logs and
software reversibility for state recovery in optimistic PDES. In: Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
SIGSIM PADS 2015, pp. 211–222. ACM (2015)

18. Pellegrini, A.: Hijacker: Efficient static software instrumentation with applications
in high performance computing: poster paper. In: International Conference on High
Performance Computing and Simulation (HPCS), pp. 650–655. (2013)

19. Santini, E., Ianni, M., Pellegrini, A., Quaglia, F.: Hardware-transactional-memory
based speculative parallel discrete event simulation of very fine grain models. In:
IEEE 22nd International Conference on High Performance Computing (HiPC), pp.
145–154 (2015)

https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/s10586-013-0277-4
https://doi.org/10.1007/s10586-013-0277-4

Reversible Languages and Incremental State Saving in PDES 207

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Reversible Computation in Wireless
Communications

Harun Siljak(B)

CONNECT Centre, Trinity College, The University of Dublin, Dublin, Ireland
harun.siljak@tcd.ie

Abstract. This chapter presents pioneering work in applying reversible
computation paradigms to wireless communications. These applications
range from developing reversible hardware architectures for underwa-
ter acoustic communications to novel distributed optimisation proce-
dures in large radio-frequency antenna arrays based on reversing Petri
nets. Throughout the chapter, we discuss the rationale for introducing
reversible computation in the domain of wireless communications, explor-
ing the inherently reversible properties of communication channels and
systems formed by devices in a wireless network.

1 Introduction

Wireless communication systems come in different shapes and sizes: from radio
frequency (RF) systems we use in everyday life, to underwater acoustic communi-
cations (UAC) used where RF attenuation prevents use of radio communications.
These two examples are of interest to this case study, as we explored the poten-
tial role of reversible computation in improving modern wireless communications
in the RF and acoustic domains.

In the RF context, we examine the concept of distributed massive MIMO
(multiple input multiple output) systems. The distributed massive MIMO
paradigm will have an increasing relevance in fifth generation (5G) wireless
systems and post-5G era, as it will allow formerly centralised base stations to
operate as a group of hundreds (thousands) of small antennas distributed in
space, serving many users by beamforming the signal to them, operating using
distributed algorithms hence providing reduced power consumption and reduced
computational overhead. Our aim is to explore the application of reversible com-
putation paradigms in such systems to contribute in additional reduction of
power consumption, but also to help in fault recovery and meaningful undoing
of algorithmic steps in control and optimisation of such systems.

In the underwater acoustic context, we recognised the wave time reversal
scheme as a physical example of reversibility, a physical method waiting for
its reversible circuit implementation. The mechanism of wave time reversal is
analogous to reversible computation as we know it, and as such it admits elegant
and simple circuit implementation benefiting from all reversible computation
advantages. With this inherent reversibility in mind, we take the question of wave
c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 208–221, 2020.
https://doi.org/10.1007/978-3-030-47361-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_10

Reversible Computation in Wireless Communications 209

time reversal in underwater conditions a step further, and ask about realistic
models of such systems using reversible computation paradigms, and investigate
the options of controlling the environment in which this process is used for
communication.

Communication is inherently reversible: the communication channel changes
direction all the time, with the transmitter and the receiver changing roles and
transmitting through the same medium. Modulation and demodulation, coding
and decoding all these processes aim for information conservation and reversibil-
ity. Hence the motivation for this study is clear: can reversible computation help
in achieving goals of modern wireless communication: increasing access, decreas-
ing latency and power consumption, minimising information losses?

In this chapter, we present results on optimisation schemes for massive MIMO
based on reversing Petri nets, reversible hardware for wave time reversal, and
some preliminary thoughts on our work in progress on modelling and control
of wave time reversal in reversible cellular automata, as well as control of these
automata in general.

2 Reversing Petri Nets and Massive MIMO

2.1 The Problem

In the distributed massive MIMO system described in the previous section, not
all antennas need to be active at all times. Selecting a subset of antennas to
operate at a particular time instant allows the system to retain advantages of a
large antenna array, including interference suppression, spatial multiplexing and
diversity [16] while reducing the number of radio frequency (RF) chains and the
number of antennas to power [13]. The computational demand of optimal trans-
mit antenna selection for large antenna arrays [11] makes it impractical, suggest-
ing the necessity of suboptimal approaches. Traditionally, these approaches were
centralised and based on the knowledge of the communication channel between
every user and every antenna in the array; one widely used algorithm is the
greedy algorithm [12] which operates iteratively by adding the antenna that
increases the sum rate the most when joined with the set of already selected
antennas. In decentralised algorithms similar procedures are conducted on much
smaller subsets of antennas [21], leading to similar results in overall performance.
Our approach here is decentralised, and it relies on Reversing Petri nets (RPN)
[17] as the underlying paradigm. As this chapter focuses on applications, the
reader interested in details about reversing Petri nets used in this example is
advised to see [18]. The presentation here is based on [22].

The optimisation problem we are solving is downlink (transmit) antenna
selection of NTS antennas at the distributed massive MIMO base station with
NT antennas, in presence of NR single antenna users. We maximise the sum-
capacity

C = max
P, Hc

log2 det
(
I + ρ

NR

NTS
HcPHH

c

)
(1)

210 H. Siljak

where ρ is the signal to noise ratio (SNR), I a NTS × NTS identity matrix, P
a diagonal NR × NR power distribution matrix. Hc is the NTS × NR channel
submatrix for a selected subset of antennas from the NT × NR channel matrix
H [10].

In the case of receiver antenna selection, addition of any antenna to the set of
selected antennas improves the overall sum-capacity, as its equivalent of Eq. (1)
does not involve scaling by the number of selected antennas (i.e. there is not a
power budget to be distributed over antennas in the receive case). This prob-
lem is submodular and has a guaranteed (suboptimal) performance bound for
the previously described greedy algorithm. The greedy algorithm does not have
performance bound for the transmitter antenna selection, as the case described
by Eq. (1) does not fulfil the submodularity condition [24]; the addition of an
antenna to the already selected set of antennas can decrease channel capacity.

As done in [21,24], we optimise (1) with two variables, the subset of selected
antennas and the optimal power distribution over them successively: first, P is
fixed to having all diagonal elements equal to 1/NR (total power is equal to
ρNR/NTS), and after the antenna selection P is optimised by the water filling
algorithm for zero forcing.

Figure 1 illustrates the proposed algorithm based on RPN: the antennas are
Petri net places (circles A–G), with the token (bright circle) in a place indicat-
ing that the current state of the algorithm asks for that place (that antenna)
to be on. The places are divided into overlapping neighbourhoods (N1 and N2

in our toy example) and each two adjacent places have a common neighbour-
hood. Transitions between places move tokens around based on the sum capacity
calculations, with rules described below:

1. A transition is possible if there is a token in exactly one of the two places
(e.g. B and G in Fig. 1) it connects. Otherwise (e.g. A and B, or E and F) it
is not possible.

2. The enabled transition will occur if the sum capacity (1) calculated for all
antennas with a token in the neighbourhood shared by the two places (for B
and G, that is neighbourhood N1) is less than the sum capacity calculated
for the same neighbourhood, but with the token moved to the empty place
(in case of B-G transition, this means CAB < CAG, sum-capacity of antennas
A and B is smaller than that of A and G). Otherwise, it does not occur.

3. In case of several possible transitions from one place (A-E, A-D, A-C) the one
with the greatest sum-capacity difference (i.e. improvement) has the priority.

4. There is no designated order in transition execution, and transitions are per-
formed until a stable state is reached.

The algorithm starts from a configuration of n tokens in random places and
converges to a stable final configuration in a small number (in our experiments,
up to five) of iterations (passes) through the whole network. As the RPN con-
serves the number of tokens in the network, and our rules allow at most one token
per place, the algorithm results in n selected antennas. Executing the algorithm
on several RPNs in parallel (in our experiments, up to five) allows tokens to

Reversible Computation in Wireless Communications 211

traverse all parts of the network and find good configurations even with a rel-
atively small number of antennas and users. The converged state of the RPN
becomes the physical state of antennas: antennas with tokens are turned on for
the duration of the coherence interval. At the next update of the channel state
information, the algorithm proceeds from the current state.

The computational footprint of the described algorithm is very small: two
small matrix multiplications and determinant calculations are performed at a
node which contains a token in a small number of iterations. As such, this
algorithm is significantly faster and computationally less demanding than the
centralised greedy approach which is a low-complexity representative of global
optimisation algorithms in antenna selection [11]. The worst case complexity of
the RPN based approach is O(Nω/a

T) (here, NT denotes the number of antennas,
and ω, 2 < ω < 3 is the exponent in the employed matrix multiplication algo-
rithm complexity). The parameter a is related to the relative size of the neigh-
bourhood as a reciprocal exponent, assuming that a neighbourhood of N

1/a
T ,

a > 1 suffices for RPN algorithm (as
√

NT suffices in our case, we went for
a = 2). The constant factor multiplying the complexity is small because of few
computing nodes (only those with tokens) and few iterations.

Fig. 1. A toy model of antenna selection on a reversing Petri net

2.2 Results and Discussion

The algorithm was tested using the raytracing Matlab tool Ilmprop [9] on a sys-
tem composed of 64 omnidirectional antennas randomly distributed in space
shown in Fig. 2(a). In all computations, channel state information (CSI) in
matrix H was normalised to unit average energy over all antennas, users and sub-
carriers, following the practice from [10]. 75 randomly distributed scatterers and
one large obstacle are placed in the area with the distributed base station. The
number of (randomly distributed) users with omnidirectional antennas varied

212 H. Siljak

(a) Randomly distributed antennas

(b) The mapping to RPN topology

Fig. 2. Antennas in physical and computational domain

from 4 to 16, and we used 300 OFDM (orthogonal frequency-division multiplex-
ing) subcarriers, SNR ρ = –5 dB, 2.6 GHz carrier frequency, 20 MHz bandwidth.
Antennas are computationally arranged in an 4 × 16 array folded into a toroid,
creating a continuous infinite network, as shown in Fig. 2(b), e.g. antenna 1 is a
direct neighbour of antennas 2, 16, 17 and 49. Immediate Von Neumann (top,
down, left, right) neighbours can exchange tokens, and overlapping 8-antenna
neighbourhoods are placed on the grid: e.g. for antenna 1, transitions to 16 and
17 are decided upon within the neighbourhood {16, 32, 48, 64, 1, 17, 33, 49}
and the transitions to 2 and 49 are in {1, 17, 33, 49, 2, 18, 34, 50}. In Fig. 3 we
compare greedy and random selection with two variants of our RPN approach:
the average of five concurrently running RPNs, and the performance of the best
RPN out of those five. The performance is comparable in all cases, and both

Reversible Computation in Wireless Communications 213

variants of our proposed algorithm tend to outperform the centralised approach
as the number of users grows. This in practice means that a single RPN suffices
for networks with a relatively large expected number of users.

The inherent reversibility of this problem and its solution generalises to the
common problem of resource allocation in wireless networks, and sharing any
pool of resources (power, frequency, etc.) can be handled between antennas (and
antenna clusters) over a Reversing Petri Net. At the same time, such a solution
would be robust to changes in the environment, potential faults, sudden changes
in the mode of operation, and could operate on reversible hardware.

Fig. 3. Achieved sum rates for 4–16 users using the proposed algorithm vs random and
centralised greedy selection

Fig. 4. The effects of imperfect CSI and random selection of subcarriers on optimisation

214 H. Siljak

In [21], it has been shown that the distributed algorithms are resistant to
errors in CSI and that they perform well even with just a (randomly selected)
subset of subcarriers used for optimisation. Results in Fig. 4 in the case of 12
users confirm this for the RPN algorithm as well.

3 Reversible Hardware for Time Reversal

The technique called wave time reversal [6] has been introduced in acoustics
almost three decades ago, and has since been applied to other waves as well–
optical and RF. In our work, we focused on acoustic time reversal, thinking of
its applications in acoustic underwater communications. However, it is worth
noting that wave time reversal plays a significant role in RF communications as
well–conjugate beamforming for MIMO systems is based on it. In the remainder
of this section, we introduce the concept of wave time reversal and explain our
proposed solution for its reversible hardware implementation. The presentation
here follows the one in [20].

3.1 Wave Time Reversal

Time reversal mirrors (TRMs) [6] are based on emitter–receptor antennas posi-
tioned on an arbitrary enclosing surface. The wave is recorded, digitised, stored,
time-reversed and rebroadcasted by the same antenna array. If the array on the
boundary intercepts the entire forward wave with a good spatial sampling, it
generates a perfect backward-propagating copy. The procedure begins when the
source radiates a wave inside a volume surrounded by a two-dimensional sur-
face with sensors (microphones) along the surface which record the field and
its normal derivative until the field disappears (Fig. 5). When this recording is
emitted back, it created the time-reversed field which looks like a convergent
wavefield until it reaches the original source, but from that point it propagates
as a diverging wavefield. This can be compensated by an active source at the
focusing point cancelling the field, or a passive sink as a perfect absorber [3].

Fig. 5. A closed surface is filled with transducer elements [7]. The wavefront distorted
by heterogeneities comes from a point source and is recorded on the cavity elements.
The recorded signals are time-reversed and re-emitted by the elements. The time-
reversed field back-propagates and refocuses exactly on the initial source.

Reversible Computation in Wireless Communications 215

Fig. 6. Time-reversal experiment through a diffusive medium [7]

This description asks for the whole surface to be covered with the TRM
transceivers, and for both the signal and the derivative to be stored: for practical
purposes, less hardware-demanding solutions are needed. First, we note that the
normal derivative of the field is proportional to the field in case the TRM is in
the far field, halving the necessity for signal recording. Second, we note that a
TRM can use complex environments to appear as an antenna wider than it is,
resulting in a refocusing quality that does not depend on the TRM aperture [4].
Hence, it can be implemented with just a subset of transceivers located in one
part of the boundary, as seen in Fig. 6.

Fig. 7. (a) The three realms of reversibility, (b) The classical (top) and the reversible
solution (bottom) for the classical time reversal chain

3.2 The Design

Figure 7 illustrates the challenge of designing a reversible hardware solution for
a TRM:

1. The environment is reversible to an extent (we will return to this question
later in this chapter). The physics of wave propagation in water is reversible,
but issues arise as we lose information in the process.

2. The analog computation part of the TRM loses information due to filter-
ing and analog-to-digital/digital-to-analog conversion (ADC/DAC), ampli-
fiers accompanying the filters and the converters themselves, at the transition
to the digital domain.

216 H. Siljak

3. Finally, the digital computation part of the TRM is reversible and no increase
in entropy is necessary: writing in memory and unwriting, in the fashion of
Bennett’s trick, enabling reuse of memory for the next incoming wave, while
not increasing the entropy.

Analog Processing. The real amplifier is an imperfect device with a limited
bandwidth, hence prone to losing signal information. By definition, it takes addi-
tional energy for the signal, so it asks for an additional power source. At the same
time, the analog to digital and digital to analog converters both lose information
because of the finite resolution in time and amplitude, preventing full reversibil-
ity. However, a single device can be both an ADC and a DAC depending on
the direction [14]. In this solution, we assume bi-directional converters placed
together with bi-directional amplifiers [14]. The conversion is additionally simpli-
fied in the one-bit solution [5] where the receivers at the mirror register only the
sign of the waveform and the transmitters emit the reversed version based on this
information. It is a special case of analog-to-digital and digital-to-analog conver-
sion with single bit converters. The reduction in discretisation levels also means
simplification of the processing chain and making its reversal (bi-directivity)
even simpler. The question of the information loss is not straightforward: while
the information about the incoming wave is lost in the conversion process (and
the loss is maximal due to minimal resolution), spatial and temporal resolution
are not significantly degraded. This scheme can also be called “one-trit” (trit is
a ternary digit, analogous to a bit) reversal: there are three possible states in
the practical implementation: positive pressure, negative pressure, and “off”.

Digital Processing. The first, straightforward way of performing time reversal
of a digitally sampled wave is storing it in memory and reading the samples in
the reverse order (last in, first out, LIFO), analogous to storing the samples
on the stack. The design of registers in reversible logic is a well-explored topic
[15] and both serial and parallel reading/writing can be implemented. Design
of latches in reversible logic is a well-studied problem with known solutions;
a combination of latches makes a flip-flop, and a series of flip-flops makes a
register (and a reversible address counter). In the case of wave time reversal,
the recording of data is a large register being loaded serially with wave data.
m bits from the ADC are memorised at the converter’s sample rate inside a
k × m bit register matrix (where k is the number of samples to be stored for
time reversal). In the receiving process the bits are stored, in the transmission
process they are unstored, returning the memory into the blank state it started
from (uncomputation). We utilise Bennett’s trick and lose information without
the entropic penalty: the information is kept as long as it is relevant.

When additional signal processing, e.g. filtering or modulation is performed,
it is convenient to reverse waves in the frequency domain: there, time domain
reversal is achieved by phase conjugation, i.e. changing the sign of the signal’s
phase. The transition from the time to the frequency domain (and vice versa)
in the digital domain is performed by the Fast Fourier Transform (FFT) and

Reversible Computation in Wireless Communications 217

its inverse counterpart, which are reversibly implementable [23]. The necessary
phase conjugation is an arithmetic operation of sign reversal, again reversible.
Any additional signal processing can be reversible as well: e.g. filter banks and
wavelet transforms. These processes remain reversible with preservation of all
components of signals [2].

Figure 8(a) gives a comparison of the bit erasures in different implementa-
tions of the digital circuitry: frequency domain (FFT) and time domain reversal
performed by irreversible circuits, compared to reversible implementations. The
number of erasures changes depending on two parameters: bit resolution of the
ADC and the waiting time–the length of the interval in which samples are col-
lected before reversal starts, equivalent to the number of digitised samples. The
increase in both means additional memory locations and additional dissipation
for irreversible circuits. The irreversible FFT implementation has an additional
information loss caused by additional irreversible circuitry compared to the irre-
versible time domain implementation. Our implementation has no bit erasures
whatsoever. The price that is paid reflects in the larger number of gates used
in the circuit: the number of gates has only spatial consequences, information-
related energy dissipation is zero thanks to information conservation.

On the other hand, Fig. 8(b) shows the information loss in the analog part of
the system, and we differentiate two typical environments, the chaotic cavity and
the complex (multiple scattering) medium. The chaotic cavity is an ergodic space
with sensitive dependence on initial conditions for waves. In such an environment
there is little to no loss in the information if the waiting time is long enough
and the ADC resolution is high enough. In the complex media, the difference
is caused by some of the wave components being reflected backwards by the
scattering environment, hence not reaching the TRM. Again, more information is
retained with the increase in the ADC resolution. However, as reported in [5], the
information loss from low-resolution ADC use does not affect the performance
of the algorithm. The analog part of the scheme remains a topic of our future
work, as it leaves space for improvements of the scheme.

4 Reversible Environment Models and Control

Time reversal described in the previous section is an example of a reversible
process in a nominally reversible environment. While dynamics of water subject
to waves are inherently reversible, most of the sources of the water dynamics
do not reverse naturally: e.g. the Gulf stream or a motion of a school of fish.
Hence, even though it would rarely be completely reversed, the model for UAC
should be reversible. We discuss the questions of reversible models following
the exposition in [19], and the work in progress on control of reversible cellular
automata (RCA).

RCA lattice gas models are cellular automata obeying the laws of fluid
dynamics described by the Navier-Stokes equation. One such model, FHP
(Frisch- Hasslacher-Pomeau) lattice gas [8] is simple and yet following the Navier-
Stokes equations exactly. It is defined on a hexagonal grid with the rules of parti-
cle collision shown in Fig. 9. The FHP lattice gas provides us a two-dimensional

218 H. Siljak

Fig. 8. Information loss in (a) the digital and (b) the analog part of the system. Units
are omitted as the particular aspects of implementation are not relevant for the illus-
tration of effects. Plot (a) is obtained by counting operations, plot (b) by simulation
of back-scattering.

Fig. 9. FHP rules

Reversible Computation in Wireless Communications 219

model for UAC, easily implementable in software and capturing the necessary
properties of the reversible medium.

Following the exposition in the previous section, we observe a model with an
original source (transmitter) which causes the spread of an acoustic wave, the
original sink (receiver) waiting for the wave to reach it, as well as scatterers and
constant flows (streams) in the environment. The constant stream and the loss
of information caused by some wave components never reaching the sink will
result in an imperfect reversal at the original source. The measure of returned
power gives us a directivity pattern (focal point). The amplitude of the peak
will fluctuate based on the location of the original source and is a measure
of reversibility, akin to fidelity or Loschmidt Echo. For us, it is a measure of
the quality of communication, but in a more general context it can measure
reversibility of a cellular automaton.

From the control viewpoint, it is interesting to ask the following: if a certain
part of the environment is controllable (i.e. a number of cells of the RCA does
not obey the rules of the RCA but allows external modification), how can it be
used to achieve better time reversal? This is a compensation approach where
we engineer the environment to compensate for effects caused by sources of
disturbance out of our control. The approach we take is one of control of cellular
automata [1], and it is expected that RCA are easier to control than regular CA,
with easier search strategies and the ability to calculate control sequences.

5 Conclusions

In this chapter, we provided an overview of results obtained in the case study on
reversible computation in wireless communications. Some of the presented work,
such as optimisation in massive MIMO and reversible hardware for wave time
reversal is finished and subject to further extensions and generalisations; other
work, mainly the parts focused on RCA and modelling of reversible physics of
communication, is still ongoing and more results are to come. This has been a
pioneering study into reversibility in communications, and the results obtained
promise a lot of space for improvement and applications in the future. We hope
these efforts will serve as an inspiration and a trigger for the development of this
field of research.

Acknowledgements. The work presented in this chapter was supported by the COST
Association through the IC1405 Action on Reversible Computation, as well as a grant
from Science Foundation Ireland (SFI) co-funded under the European Regional Devel-
opment Fund under Grant Number 13/RC/2077 and European Union’s Horizon 2020
programme under the Marie Sk�lodowska-Curie grant agreement No 713567. I am grate-
ful to my collaborators, Prof Anna Philippou, Kyriaki Psara, Dr Julien de Rosny, Prof
Mathias Fink, and Dr Franco Bagnoli for making this interdisciplinary research possi-
ble, and to Konstantin Popovic for the inspiring ideas.

220 H. Siljak

References

1. Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys.
Rev. E 86(6), 066201 (2012)

2. Chen, Y.-J., Amaratunga, K.S.: M-channel lifting factorization of perfect recon-
struction filter banks and reversible M-band wavelet transforms. IEEE Trans. Circ.
Syst. II Analog Digit. Signal Process. 50(12), 963–976 (2003)

3. de Rosny, J., Fink, M.: Overcoming the diffraction limit in wave physics using a
time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89(12), 124301
(2002)

4. Derode, A., Roux, P., Fink, M.: Robust acoustic time reversal with high-order
multiple scattering. Phys. Rev. Lett. 75(23), 4206 (1995)

5. Derode, A., Tourin, A., Fink, M.: Ultrasonic pulse compression with one-bit time
reversal through multiple scattering. J. Appl. Phys. 85(9), 6343–6352 (1999)

6. Fink, M.: Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 39(5), 555–566 (1992)

7. Fink, M.: From Loschmidt daemons to time-reversed waves. Philos. Trans. Roy.
Soc. A Math. Phys. Eng. Sci. 374(2069), 20150156 (2016)

8. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes
equation. Phys. Rev. Lett. 56(14), 1505 (1986)

9. Del Galdo, G., Haardt, M., Schneider, C.: Geometry-based channel modelling of
MIMO channels in comparison with channel sounder measurements. Adv. Radio
Sci. 2(BC), 117–126 (2005)

10. Gao, X., Edfors, O., Tufvesson, F., Larsson, E.G.: Massive MIMO in real propa-
gation environments: do all antennas contribute equally? IEEE Trans. Commun.
63(11), 3917–3928 (2015)

11. Gao, Y., Vinck, H., Kaiser, T.: Massive MIMO antenna selection: switching archi-
tectures, capacity bounds, and optimal antenna selection algorithms. IEEE Trans.
Signal Process. 66(5), 1346–1360 (2017)

12. Gharavi-Alkhansari, M., Gershman, A.B.: Fast antenna subset selection in MIMO
systems. IEEE Trans. Signal Process. 52(2), 339–347 (2004)

13. Hoydis, J., Ten Brink, S., Debbah, M.: Massive MIMO in the UL/DL of cellular
networks: how many antennas do we need? IEEE J. Sel. Areas Commun. 31, 160–
171 (2013)

14. Mirmotahari, O., Berg, Y.: Pseudo floating-gate and reverse signal flow. In: Recent
Advances in Technologies. IntechOpen (2009)

15. Nayeem, N.M., Hossain, M.A., Jamal, L., Babu, H.M.H.: Efficient design of shift
registers using reversible logic. In: 2009 International Conference on Signal Pro-
cessing Systems, pp. 474–478. IEEE (2009)

16. Ozgur, A., Lévêque, O., Tse, D.: Spatial degrees of freedom of large distributed
MIMO systems and wireless ad hoc networks. IEEE J. Sel. Areas Commun. 31(2),
202–214 (2013)

17. Philippou, A., Psara, K.: Reversible computation in petri nets. In: Kari, J., Ulid-
owski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 6

18. Philippou, A., Psara, K., Siljak, H.: Controlling reversibility in reversing petri nets
with application to wireless communications. In: Thomsen, M.K., Soeken, M. (eds.)
RC 2019. LNCS, vol. 11497, pp. 238–245. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-21500-2 15

https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-030-21500-2_15

Reversible Computation in Wireless Communications 221

19. Siljak, H.: Reversibility in space, time, and computation: the case of underwater
acoustic communications. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol.
11106, pp. 346–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99498-7 25

20. Siljak, H., de Rosny, J., Fink, M.: Reversible hardware for acoustic communications.
IEEE Commun. Mag. 58, 55–61 (2020)

21. Siljak, H., Macaluso, I., Marchetti, N.: Distributing complexity: a new approach to
antenna selection for distributed massive MIMO. IEEE Wireless Commun. Lett.
7(6), 902–905 (2018)

22. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive
MIMO using reversing Petri nets. IEEE Wireless Commun. Lett. 8(5), 1427–1430
(2019)

23. Skoneczny, M., Van Rentergem, Y., De Vos, A.: Reversible Fourier transform chip.
In: 2008 15th International Conference on Mixed Design of Integrated Circuits and
Systems, pp. 281–286. IEEE (2008)

24. Vaze, R., Ganapathy, H.: Sub-modularity and antenna selection in MIMO systems.
IEEE Commun. Lett. 16(9), 1446–1449 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-99498-7_25
https://doi.org/10.1007/978-3-319-99498-7_25
http://creativecommons.org/licenses/by/4.0/

Error Reconciliation in Quantum Key
Distribution Protocols

Miralem Mehic1,3(B), Marcin Niemiec2,3, Harun Siljak4, and Miroslav Voznak3

1 Department of Telecommunications, Faculty of Electrical Engineering,
University of Sarajevo, Zmaja od Bosne bb, Kampus Univerziteta,

71000 Sarajevo, Bosnia and Herzegovina
miralem.mehic@ieee.org

2 AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland

3 Department of Telecommunications, VSB-Technical University of Ostrava,
17. listopadu 15, 70800 Ostrava-Poruba, Czech Republic

4 CONNECT Centre, Trinity College Dublin, Dunlop Oriel House 34 Westland Row,
Dublin 2, Ireland

Abstract. Quantum Key Distribution (QKD) protocols allow the estab-
lishment of symmetric cryptographic keys up to a limited distance at
limited rates. Due to optical misalignment, noise in quantum detectors,
disturbance of the quantum channel or eavesdropping, an error key recon-
ciliation technique is required to eliminate errors. This chapter analyses
different key reconciliation techniques with a focus on communication
and computing performance. We also briefly describe a new approach to
key reconciliation techniques based on artificial neural networks.

Keywords: Error reconciliation · Quantum key distribution ·
Performances · Reversibility

1 Introduction

QKD provides an effective solution for resolving the cryptographic key estab-
lishment problem by relying on the laws of quantum physics. Unlike approaches
based on mathematical constraints whose security depends on the attacker’s
computational and communication resources, QKD does not put a limit on the
available resources but limits the length of the link implementation [1]. A QKD
link can be realized only to a certain distance and at certain rates since it involves
usage of two channels: quantum/optical and public/classical.

This work has been partially supported by COST Action IC1405 on Reversible Compu-
tation - Extending Horizons of Computing, and partly by the European Union’s Hori-
zon 2020 Research and Innovation Programme, under Grant Agreement no. 830943,
the ECHO project. This work was also supported by the Ministry of Education, Science
and Youth of Canton Sarajevo, Bosnia and Herzegovina under Grant No. 11/05-14-
27719-1/19 and partly by the Horizon 2020 project OpenQKD under grant agreement
No. 857156.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 222–236, 2020.
https://doi.org/10.1007/978-3-030-47361-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_11

Error Reconciliation in Quantum Key Distribution Protocols 223

Quantum cryptography focuses on photons (particles of light), using some
of their properties to act as an information carrier. Principally, information is
encoded in a photon’s polarization; a single polarized photon is referred to as a
qubit (quantum bit) which cannot be split, copied or amplified without intro-
ducing detectable disturbances.

The procedure for establishing a key is defined by QKD protocol, and three
basic categories are distinguished: the oldest and widespread group of discrete-
variable protocols (BB84, B92, E91, SARG04), efficient continuous-variable (CV-
QKD) protocols and distributed-phase-reference coding (COW, DPS) [2,3]. The
primary difference between these categories is reflected in the method of prepar-
ing and generating photons over a quantum channel [4–6].

A quantum channel is used only to exchange qubits, and it provides the QKD
protocol with raw keys. All further communication is performed over a public
channel, and it is often denoted as post-processing. It includes steps that need to
be implemented for all types of protocols [2], exchanging only the accompanying
information that helps in the profiling of raw keys. The overall process is aimed
at establishing symmetric keys on both sides of the link in a safe manner.

The initial post-processing step is called a sifting phase, and it is used to
detect those qubits for which adequate polarization measurement bases have
been used on both sides. Therefore, user B, typically designated Bob informs user
A, usually named Alice in literature, about bases he used, and Alice provides
feedback advising when incompatible measurement bases have been used. It is
important to underline that information about the measurement results is not
revealed since only details on used bases are exchanged. Bob will discard bits
for cases when incompatible bases have been used, providing the sifted key.

Further, it is necessary to check whether the eavesdropping of communica-
tion has been performed. This step is known as error-rate estimation since it
is used to estimate the overall communication error. The eavesdropper is not
solely responsible for errors in the quantum channel since errors may occur due
to imperfection in the state preparation procedure at the source, polarization ref-
erence frame misalignment, imperfect polarizing beam splitters, detector dark
counts, stray background light, noise in the detectors or disturbance of the quan-
tum channel. However, the threshold of bit error rate pmax for the quantum
channel without the presence of eavesdropper Eve is known in advance, and this
information can be compared with the measured quantum bit error rate (QBER)
p of the channel. The usual approach for estimation of the QBER in the chan-
nel (p) is to compare a small sample portion of measured values. The selected
portion should be sufficient to make the estimated QBER credible where the
question about the length of the sample portion is vital [4,7,8]. After estimating
QBER, the obtained value can be compared with the already known threshold
value of pmax. If the error rate is higher than a given threshold (p > pmax),
the presence of Eve is revealed which means that all measured values should
be discarded and the process starts from the beginning. Otherwise, the process
continues.

224 M. Mehic et al.

Although the estimated value is lower than the threshold value, there are
still measurement errors that need to be identified, and those bits need to be
corrected or discarded. The process of locating and removing errors is often
denoted as “error key reconciliation”. As shown in traffic analysis experiments [9,
10], error key reconciliation represents a highly time demanding and extensive
computational part of the whole process. Depending on the implementation, a
key reconciliation step may affect the quantum channel and considerably impact
the key generation rate.

In the following sections, we analyze the most popular error reconciliation
approaches. Cascade protocol is discussed in Sect. 2, overview of Winnow proto-
col is given in Sect. 3. Section 4 outlines LDPC approach while the comparison
is given in Sect. 5. We introduce the new key reconciliation protocol in Sect. 6
and provide conclusion in Sect. 7.

2 Cascade

The most widely used error key reconciliation protocol is cascade protocol due
to its simplicity and efficiency [11]. Cascade is based on iterations where random
permutations are performed with the aim of evenly dispersing errors throughout
the sifted key. The permuted sifted key is divided into equal blocks of ki bits,
and after each iteration and new permutations, the block size is doubled: ki =
2 · ki−1. The results of the parity test for each block are compared, and a binary
search to find and correct errors in the block is performed. However, to improve
the efficiency of the process, the cascade protocol investigates errors in pairs of
iterations in a recursive way.

Instead of rejecting error bits in the first stage, information about the pres-
ence of an error bit in the block is used in the further iterations to detect
errors that have not been detected due to the measurement parity. For any
error detected in further iterations, at least one matching error can be identified
in the same block of the previous iteration which was previously considered as
a block without errors. Using a binary search, a deep search for errors in such
a block is performed, and the masked errors can be recursively detected. Two
passes of cascade protocol are illustrated in Fig. 1.

The length of the initial block k1 is a critical parameter which depends on
the estimated QBER. The empirical analysis described in [11] proposes the use
of value k1 = 0.73/p as the optimal value, where p is the estimated QBER.
Sugimoto modified the cascade protocol to bring the cascading protocol closer
to theoretical limits [12]. Besides, he confirmed that four iterations are sufficient
for the effective key reconciliation as originally proposed in [11]. However, due
to the dependence of the initial block’s length on the estimated QBER, it is
advisable to execute all the iterations (as long as the length of the block ki is
not equal to the length of the key). In [4], Rass and Kollmitzer showed that
adopting block-size to variations of the local error rate is worthwhile, as the
efficiency of error correction can be increased by reducing the number of bits
revealed to an adversary [13].

Error Reconciliation in Quantum Key Distribution Protocols 225

Fig. 1. Illustration of the first two passes of reconciliation using a Cascade protocol.

226 M. Mehic et al.

Cascade protocol relies on the use of the binary search to locate an error
bit. The binary search includes further division of the block into two smaller
subblocks for which the results of parity check values are compared until an error
is found. For each block with an error bit, in total 1+ �log2 ki� parity values are
exchanged since 1+ �log2 ki� is the maximum number of times that block ki can
be splitted, and only one parity value is exchanged for blocks without errors.

In addition to discarding the sample portion bits used to estimate QBER
value, it is advised to discard the last bit of each block and subblock for which
the parity bit was exchanged to minimize the amount of information gained by
Eve. The maximum number of discared bits denoted as Di can be calculated
based on ki value in the ith iteration as follows:

∑
Di =

∑

i

(
∑

initially
even

blocks

1 +
∑

initially
odd

blocks

(1 + �log2 ki�) +
∑

other
errors

corrected

�log2 ki�) (1)

As proposed in [14], Eq. (1) can be shortened to:

D =
∑

Di =
∑

i

(
n

ki
+

∑

errors
corrected

�log2 ki�) (2)

where ki = 2 ·ki−1, ki < n
2 and n denotes the amount of the measured values

in sifting phase. The number of discarded bits depends on the QBER value and
initial block size. However, Sugimoto showed [12] that most errors are corrected
in the first two iterations. The empirical analysis of cascade protocol is given
in [15], while the practical impact of cascade protocols on post-processing is
considered in [9,16]. In [17], Chen proposed the extension of random permuta-
tions using interleaving technique optimized to reduce or eliminate error clusters
from burst errors. Nguyen proposed modifying the permutation method used in
cascade [18]. Yan and Martinez proposed modifications based the initial key’s
length in [19,20] while the use of Forward Error Correction was analyzed in [21]
(Table 1).

Table 1. Error correction per passes using Cascade protocol

Iteration 1 2 3 4

Corrected errors (%) 54.522% 45.347% 0.451% 0.002%

3 Winnow

In 2003, Winnow protocol based on Hamming codes was introduced [22]. The
aim was to increase the throughput and reduce the interactivity of Cascade by
eliminating the binary search step.

Error Reconciliation in Quantum Key Distribution Protocols 227

Both parties, Alice and Bob, divide their random keys Ma and Mb into blocks
of equal length (recommended starting size is k = 8) and calculate syndrome
values Sa and Sb based on a Generator matrix G and a parity check Matrix H
where H ·GT = 0. For each block of size k, based on his key values Mb, Bob will
generate and transmit his syndrome Sb = H · Mb to Alice, which will calculate
the syndrome differences Sd. If Sd is non-zero, Alice will attempt to correct the
errors with the fewest changes leading to syndrome zero values.

Sa = H · MT
a =

⎡

⎣
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1

⎤

⎦ · [
0 1 1 0 0 1 1

]T =

⎡

⎣
1
0
0

⎤

⎦

Sb = H · MT
b =

⎡

⎣
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1

⎤

⎦ · [
0 1 0 0 0 1 1

]T =

⎡

⎣
0
1
0

⎤

⎦

Sa

⊗
Sb =

⎡

⎣
1
1
0

⎤

⎦

1 · 20 + 1 · 21 + 0 · 22 = 3 (bit on position 3 is the error) (3)

The Hamming distance dmin between codewords limits the number of errors
that are suitable for correction where a code word with the number of errors
greater than dmin

2 may closely resemble different code word then correcting
the considered code word. Due to reliance on Hamming codes, the Winnow
protocol may actually introduce errors, which is the main disadvantage of the
shortly described approached. Its efficiency is lower when compared to Cascade
for QBER values below 10% that are useful for practical QKD [23].

To achieve information-theoretical secrecy, Buttler suggested discarding an
additional bit of each block of size k in the privacy maintenance phase [22].

4 Low Density Parity Check

With terrestrial links, Alice and Bob are usually not limited to execution time,
computation and communication complexity. However, with satellite links, the
parties need to consider significant losses in the channel, limited time to establish
a key due to periodic satellite passage where communication and computation
complexity puts additional constraint. Therefore, in previous years, researchers
have turning to the application of Gallager’s Low Density Parity Check (LDPC)
codes that have recently been shown to reconcile errors at rates higher than those
of Cascade and Winnow [24–26]. LDPC provides low communication overhead
and inherent asymmetry in the amount of computation power required at each
side of the channel.

LDPC linear codes are based on a parity check matrix H and a generator
matrix G where a decoding limit of the code is defined with the minimum dis-
tance. The dimensions of H and G are m×n where m = n·(1−r) and r is defined

228 M. Mehic et al.

as code rate in range [0, 1]. The code rate value is usually defined beforehand; it
defines the correcting power and efficiency. The reconciliation algorithm based
on LDPC includes following steps:

– An estimation of QBER of the communication channel is performed,
– Based on estimated QBER, Alice and Bob choose the same m × n generator

matrix G and parity check matrix H,
– For each sifted key, Bob calculates syndrome Sb and send it to Alice,
– Alice attempts to reconcile sifted key, assuming that Bob has the correct

sifted key. Her goal is to resolve Bob’s key vector x, based on her key
vector y, received syndrome Sb, the parity-check matrix H, and estimated
QBER value. Alice can use several techniques to decode LDPC such as belief
propagation decoding algorithm (also known as the Sum-Product algorithm)
or Log-Likelihood Ratios which significantly lower computational complex-
ity [4,16,23].

Decoding LDPC code requires larger computational and memory require-
ments than either the Cascade or Winnow algorithms. However, it has a signifi-
cant advantage due to the reduction of communication resources since only one
information exchange is required. In networks with limited resources (bandwidth
and latency), such tradeoff provides potentially large gains in overall runtime and
secrecy. In the context of QKD, LDPC was firstly used as a base for the BBN
Niagara protocol in DARPA QKD network [27].

5 Comparisson

For testing purposes, Cascade, Winnow and LDPC code were implemented in
C++ programming language on servers Intel (R) Xeon (R) Silver 4116 CPU @
2.10 GHz with 8 GB, and 512 GB HDD. For each value of QBER, 10.000 random
keys were tested with the same random seed, which allowed repeating scenarios
for different protocols used (Cascade, Winnow and LDPC). In total, 870,000
tests were performed.

The total number of leaked bits is defined as follows:

– Cascade: For each exchange of parity value, one bit is discarded.
– Winnow: For each block k, one bit is discarded.
– LDPC: Total length of syndrome Sb value exchanged.

Figure 2 shows that for small values of QBER (up to 0.05%), Cascade quickly
finds and removes errors resulting in a small number of iterations. However, as
the QBER value increases (up to 0.10%), LDPC shows better efficiency in terms
of overhead and information exchanged.

Figure 3 shows that the overhead efficiency has its price in terms of execution
time. Due to the simplicity of algorithms, Cascade and Winnow codes have
almost fixed execution time, while in LDPC, the code execution time varies, and
gradually increases with the QBER increase.

Error Reconciliation in Quantum Key Distribution Protocols 229

Fig. 2. The number of bits leaked (discarded) for different QBER values. Due to its
simplicity, the binary search within Cascade protocol can locate errors in a short time
for lower values of QBER. However, for more significant QBER values, binary search
requires deeper checking of the sifted key, which increases communication. In the case
of Winnow, syndrome message per each block of length k is exchanged which can be
used to detect errors in early stages.

Fig. 3. The execution time for different QBER values. LDPC predominantly requires
more time to execute key reconciliation tasks while due to its simplicity, the execution
time of the Cascade and Winnow protocols is almost constant. LDPC based on the
belief propagation algorithm was used for decoding.

230 M. Mehic et al.

6 Error Correction Based on Artificial Neural Networks

Using artificial neural networks for error correction during a key reconciliation
process is a new concept, introduced in [28]. This proposal assumes the use of
mutual synchronization of artificial neural networks to correct errors occurring
during transmission in the quantum channel. Alice and Bob create their own
neural networks based on their keys (with errors). After the mutual learning
process, they correct all errors and can use the final key for cryptography pur-
poses.

6.1 Tree Parity Machines

Tree parity machine (TPM) is a type of artificial neural networks (ANN) –
a family of statistical learning models inspired by biological neural networks
[29]. It consists of artificial neurons (analogous to biological neurons) which are
connected and are able to transmit a signal from one neuron to another [30].
Neurons are usually organized in layers: the first layer consists of input neurons
which can send the data to the second layer (called hidden). The last layer –
called the output layer – consists of output neurons. TPM contains only one
hidden layer and has a single neuron in the output layer. It consists of KN
input neurons, where K is the number of neurons in the hidden layer and N is
the number of inputs into each neuron in the hidden layer. An example of TPM
is presented in Fig. 4.

Fig. 4. Structure of TPM machine [28]

TPMs have another important feature: connections between neurons can
store parameters (called weights) that can be manipulated during calculation.

Error Reconciliation in Quantum Key Distribution Protocols 231

Each connection between the input layer and hidden layer is characterized by its
weight, which is an integer from the range [−L,L]. The output value of neuron
k in the hidden layer depends on input x and weight w and is calculated as:

σk = sgn(
N∑

n=1

xkn ∗ wkn) (4)

where signum function is:

sgn(z) =

{
−1 z ≤ 0
1 z > 0

(5)

The output value of the neuron in the output layer is calculated as:

τ =
K∏

k=1

σk (6)

When Alice and Bob build their own TPMs with the same structure (K, N
and L), they can synchronize these artificial networks after mutual learning [31].
At the beginning of this process, each TPM generates random values of weights,
however after the synchronization process both users have TPMs with the same
values of weights. Therefore, Alice and Bob can use this phenomenon to correct
errors occurring in the quantum channel.

In order to synchronize neural networks, Alice or Bob generates random
inputs and both users compute outputs from each TPM. If the outputs have the
same value, they start the learning process, but if the outputs are different, a
new string of bits must be generated. Alice and Bob can choose any learning
algorithm; however, the generalized form of Hebbian method is the most popular
in practical implementations [32]. This algorithm strengthens the connections
which have the same value as the TPM output. The new weights are calculated
by means of the following formula:

w�
kn = νL(wkn + xkn ∗ σk ∗ Θ(σk, τ)) (7)

where:

Θ(σk, τ)) =

{
0 if σk �= τ

1 if σk = τ
(8)

and function νL limits values of connections to the range [−L,L]:

νL(z) =

⎧
⎪⎨

⎪⎩

−L if z ≤ −L

z if − L < z < L

L if z ≥ L

(9)

After the appropriate number of iterations, the synchronization process ends,
and the weights of both TPM machines are the same. However, synchronization

232 M. Mehic et al.

of TPMs requires public channel for communication between Alice and Bob
where Eve can eavesdrop and try to synchronize her own TPM machine with
Alice and Bob. Fortunately, if the output of Eve’s TPM machine is different
than the outputs of Alice and Bob’s machines, the learning process cannot be
performed. Therefore, the synchronization of Eve’s TPM is much slower than the
synchronization of the TPMs belonging to Alice and Bob. An example of the
synchronization process is presented in Fig. 5 (TPM machines with parameters:
N = 8, K = 6, L = 2 and Hebbian learning algorithm). Alice and Bob synchronized
neural networks before 200 iterations, but the attacker was not able to do it for
1000 iterations.

Fig. 5. Example of TPMs synchronization: Alice’s TPM and Bob’s TPM, Bob’s TPM
and Attacker’s TPM (TPM machines with parameters: N= 8, K = 6, L = 2 and Hebbian
learning algorithm)

6.2 Error Correction Based on TPMs

We can use the presented synchronization of the TPM machines to correct errors
in the quantum cryptography. In the beginning, Alice and Bob create their own
TPM machines based on their own strings of bits. The users change the string
of bits into weights in their own TPM machines (bits into numbers from the
range [−L,L]). Values {−L,−L + 1, ...L − 1, L} become weights of connections
between the input neurons and the neurons in the hidden layer. In this way,
Alice and Bob construct very similar neural networks – the TPM machines
have the same structure, and most of the weights are the same. The differences
are located only in the places where errors occurred: for example, if QBER
≈3%, it means that ≈97% of bits are correct. After this, synchronization of the

Error Reconciliation in Quantum Key Distribution Protocols 233

TPM machines begins and continues until all weights in both machines become
the same. When each random input is chosen (input strings have KN length),
the users compute outputs and compare the obtained values. When the TPM
machines are synchronized, the weights are the same in both neural networks.
Therefore Alice and Bob can convert the weights back into bits because both
strings are now the same. All errors have been corrected.

Importantly, Alice’s binary string is very similar to Bob’s string of bits. The
typical value for QBER does not exceed a few percent; therefore we must correct
only a small part of the whole key. This means that the TPM machines are close
to synchronization and the learning process will finish much faster than in the
case of synchronization of random strings of bits. Of course, this increases the
security level significantly.

It is worth mentioning that this idea – using the mutual synchronization of
neural networks to correct errors – is a special case when this process makes
sense. In general, TPM machines cannot be used for error correction of digital
information because we are not able to predict the final weights after the learning
process.

7 Conclusion

In this chapter, we analyzed techniques of implementing the key reconciliation
using Cascade, Winnow, Low-density parity-check code and the application of
neural networks with a focus on communication and computing performances.

Our previous results [9] showed that key reconciliation process takes the
dominant part of QKD post-processing. With increasing interest in satellite and
global QKD connections, minimizing the duration of key establishment process
is becoming an increasingly attractive area. It is necessary to take into account
the possibilities of asymmetric processing, which simplifies the requirements for
computing power budgets as well as requirements for minimizing the exchange
of packets to reduce overhead and the ability to work in networks with weaker
network performance (bandwidth and network delay).

Since the development of metropolitan QKD testbed networks [33–39], LDPC
is increasingly being considered as an adequate basis for the key reconciliation
process in QKD, and there are noticeable variations in how this protocol is
implemented. However, techniques of reversibility or on artificial neural networks
can significantly improve the process to reduce communication and computing
resources and represent areas of great interest for further research.

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, New York, vol. 175, p. 8 (1984)

2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N.,
Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys.
81(3), 1301–1350 (2009)

234 M. Mehic et al.

3. Assche, G.V.: Quantum Cryptography and Secret-Key Distribution. Cambridge
University Press, Cambridge (2006)

4. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography, vol. 1. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-04831-9

5. Dodson, D., et al.: Updating quantum cryptography report ver. 1. arXiv preprint
arXiv:0905.4325, May 2009

6. Dusek, M., Lutkenhaus, N., Hendrych, M.: Quantum cryptography. In: Progress
in Optics, vol. 49, pp. 381–454. Elsevier, January 2006

7. Niemiec, M., Pach, A.R.: The measure of security in quantum cryptography.
In: 2012 IEEE Global Communications Conference (GLOBECOM), pp. 967–972,
December 2012

8. Mehic, M., Niemiec, M., Voznak, M.: Calculation of the key length for quantum
key distribution. Elektron. Elektrotech. 21(6), 81–85 (2015)

9. Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis
of the public channel of quantum key distribution link. IEEE J. Quantum Electron.
53(5), 1–8 (2017)

10. Mehic, M., et al.: A novel approach to quality-of-service provisioning in trusted
relay quantum key distribution networks. IEEE/ACM Trans. Netw. 28(1), 168–
181 (2020)

11. Brassard, Gilles, Salvail, Louis: Secret-key reconciliation by public discussion. In:
Helleseth, Tor (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 35

12. Sugimoto, T., Yamazaki, K.: A study on secret key reconciliation protocol. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E83-A(10), 1987–1991 (2000)

13. Lustic, K.: Performance analysis and optimization of the winnow secret key recon-
ciliation protocol. Ph.D. thesis, Air Force Institute of Technology (2010)

14. Ruth, Y.: A probabilistic analysis of binary and cascade. math.uchicago.edu (2013)
15. Calver, T.: An empirical analysis of the cascade secret key reconciliation protocol

for quantum key distribution. Master thesis (2011)
16. Pedersen, T.B., Toyran, M., Pearson, D., Pedersen, T.B., Toyran, M.: High perfor-

mance information reconciliation for QKD with CASCADE. Quantum Inf. Com-
put. 734(5–6), 419–434 (2013)

17. Keath, C.: Improvement of reconciliation for quantum key distribution. Ph.D. the-
sis, Rochester Institute of Technology, February 2010

18. Nguyen, K.C.: Extension des protocoles de réconciliation en cryptographie quan-
tique. Université Libre de Bruxelles, Travail de fon d’études (2002)

19. Yan, H., et al.: Information reconciliation protocol in quantum key distribution
system. In: Proceedings - 4th International Conference on Natural Computation,
ICNC 2008, vol. 3, pp. 637–641 (2008)

20. Martinez-Mateo, J., Pacher, C., Peev, M., Ciurana, A., Martin, V.: Demystifying
the information reconciliation protocol cascade. arXiv preprint arXiv:1407.3257,
pp. 1–30, July 2014

21. Nakassis, A., Bienfang, J.C., Williams, C.J.: Expeditious reconciliation for prac-
tical quantum key distribution. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds.)
Quantum Information and Computation II, vol. 5436, p. 28, August 2004

22. Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., Nickel, G.H., Donahue, C.H.,
Peterson, C.G.: Fast, efficient error reconciliation for quantum cryptography. Phys.
Rev. A 67(5), 052303 (2003)

23. Elkouss, D., Leverrier, A., Alleaume, R., Boutros, J.J.: Efficient reconciliation pro-
tocol for discrete-variable quantum key distribution, June 2009

https://doi.org/10.1007/978-3-642-04831-9
http://arxiv.org/abs/0905.4325
https://doi.org/10.1007/3-540-48285-7_35
http://arxiv.org/abs/1407.3257

Error Reconciliation in Quantum Key Distribution Protocols 235

24. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8, 21–28
(1962)

25. Elkouss, D., Martinez-Mateo, J., Vicente, M.: Information reconciliation for QKD.
Quantum Inf. Comput. 11(March), 226–238 (2011)

26. Elkouss, D., Martinez-Mateo, J., Martin, V.: Analysis of a rate-adaptive reconcil-
iation protocol and the effect of leakage on the secret key rate. Phys. Rev. A - At.
Mol. Opt. Phys. 87(4), 1–7 (2013)

27. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status
of the DARPA quantum network (Invited Paper). In: Donkor, E.J., Pirich, A.R.,
Brandt, H.E. (eds.) Quantum Information and Computation III. Proceedings of
SPIE, vol. 5815, pp. 138–149, May 2005

28. Niemiec, M.: Error correction in quantum cryptography based on artificial neural
networks. Quantum Inf. Process. 18(6), 174 (2019)

29. Kanter, I., Kinzel, W.: The theory of neural networks and cryptography (2007)
30. Hadke, P.P., Kale, S.G.: Use of neural networks in cryptography: a review. In: IEEE

WCTFTR 2016 - Proceedings of 2016 World Conference on Futuristic Trends in
Research and Innovation for Social Welfare (2016)

31. Chakraborty, S., Dalal, J., Sarkar, B., Mukherjee, D.: Neural synchronization based
secret key exchange over public channels: a survey. In: 2014 International Confer-
ence on Signal Propagation and Computer Technology, ICSPCT 2014 (2014)

32. Kriesel, D.: A brief introduction on neural networks. Technical report, December
2007. www.dkriesel.com

33. Elliott, C., Yeh, H.: DARPA quantum network testbed. Technical report July, BBN
Technologies Cambridge, New York, USA, New York (2007)

34. Alleaume, R., et al.: SECOQC white paper on quantum key distribution and cryp-
tography. arXiv preprint quant-ph/0701168, p. 28 (2007)

35. Korzh, B., et al.: Provably secure and practical quantum key distribution over 307
km of optical fibre. Nat. Photon. 9(3), 163–168 (2015)

36. Sasaki, M.: Tokyo QKD network and the evolution to secure photonic network. In:
CLEO:2011 - Laser Applications to Photonic Applications, vol. 1, JTuC1. OSA,
Washington, D.C. (2011)

37. Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Continuous
operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96(2010),
2008–2011 (2010)

38. Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.:
Security of trusted repeater quantum key distribution networks. J. Comput. Secur.
18(1), 61–87 (2010)

39. Shimizu, K., et al.: Performance of long-distance quantum key distribution over
90-km optical links installed in a field environment of Tokyo metropolitan area. J.
Lightwave Technol. 32(1), 141–151 (2014)

www.dkriesel.com

236 M. Mehic et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Aman, Bogdan 1, 151

Ciobanu, Gabriel 1, 151

Francalanza, Adrian 128

Glück, Robert 1, 41, 187

Haulund, Tue 41
Hoey, James 41, 108
Holm Cservenka, Martin 41

Kaarsgaard, Robin 1
Kari, Jarkko 1
Kerntopf, Paweł 83
Kuhn, Stefan 151
Kutrib, Martin 1

Lanese, Ivan 1, 41, 108

Mehic, Miralem 222
Mezzina, Claudio Antares 1, 41, 128
Mikulski, Łukasz 1
Mogensen, Torben Æ. 41
Moraga, Claudio 83

Nagarajan, Rajagopal 1
Niemiec, Marcin 222
Nishida, Naoki 108

Oppelstrup, Tomas 187

Philippou, Anna 151
Phillips, Iain 1
Pinna, G. Michele 1
Podlaski, Krzysztof 83
Prigioniero, Luca 1
Psara, Kyriaki 151

Schlatte, Rudolf 41
Schordan, Markus 187
Schultz, Ulrik P. 41
Schultz, Ulrik Pagh 177
Siljak, Harun 41, 208, 222
Stanković, Radomir 83

Thomsen, Michael Kirkedal 187
Tuosto, Emilio 128

Ulidowski, Irek 1, 41, 108, 151

Vidal, Germán 1, 108
Voznak, Miroslav 222

Wille, Robert 60

Zulehner, Alwin 60

	European Cooperation in Science and Technology (COST)
	Preface
	Organization
	Contents
	Foundations of Reversible Computation
	1 Introduction
	2 Category Theory
	2.1 Dagger Categories
	2.2 Inverse Categories
	2.3 Monads and Arrows for Reversible Effects

	3 Foundations of Reversible Programming Languages
	3.1 Language Cores
	3.2 Formal Semantics
	3.3 Compilation Principles
	3.4 Reversibilisation Techniques

	4 Term Rewriting
	4.1 Reversible Term Rewriting
	4.2 Application to Bidirectional Transformations

	5 Membrane Computing
	6 Process Calculi
	6.1 Reversing Process Calculi
	6.2 Controlled Reversibility
	6.3 Analysis Techniques

	7 Petri Nets
	8 Automata
	8.1 Finite Automata
	8.2 Pushdown Automata
	8.3 Finite State and Pushdown Transducers
	8.4 Queue Automata and Limited Automata
	8.5 Cellular Automata
	8.6 Turing Machines

	9 Quantum Formal Verification and Quantum Machine Learning
	10 Conclusion
	References

	Software and Reversible Systems: A Survey of Recent Activities
	1 Introduction
	2 Behavioural Types
	3 Recovery
	4 Reversibility and Object-Oriented Languages
	4.1 Object Orientation and Data Structures

	5 Reversing Imperative Concurrent Programs
	5.1 Language and Program State
	5.2 Annotation, Inversion and Operational Semantics
	5.3 Correctness of Annotation and Inversion
	5.4 Simulator and Performance Evaluation
	5.5 Application to Debugging

	6 Reversible Debugger for Message Passing Systems
	7 Control Theory
	8 Conclusions
	References

	Simulation and Design of Quantum Circuits
	1 Introduction
	2 Background on Quantum Computing
	3 Quantum-Circuit Simulation
	3.1 General Idea
	3.2 Resulting Approaches

	4 Design of Boolean Components for Quantum Circuits
	4.1 One-Pass Design of Reversible Circuits
	4.2 Exploiting Coding Techniques

	5 Mapping Quantum Circuits to NISQ Devices
	5.1 Considered Problem
	5.2 Existing Approaches and Results

	6 Conclusion
	References

	Research on Reversible Functions Having Component Functions with Specified Properties: An Overview
	1 Introduction
	2 Preliminaries
	3 Previous Work
	4 Theoretical Results
	5 Results Based on Newly Constructed Functions
	6 Computational Results
	7 Extrapolation Based on Cycle Structures
	8 Conclusions and Future Work
	References

	A Case Study for Reversible Computing: Reversible Debugging of Concurrent Programs
	1 Introduction
	2 Airline Booking Example
	2.1 Imperative Concurrent Language
	2.2 Erlang
	2.3 Airline Code

	3 Backtracking in a Concurrent Imperative Language
	4 Causal-Consistent Reversibility in Erlang
	5 Related Work
	6 Conclusion
	References

	Towards Choreographic-Based Monitoring
	1 Introduction
	2 Motivation
	3 The Model
	4 An Instance
	4.1 Global and Local Specifications

	5 Global Graphs for Reversibility
	6 From REGs to Erlang
	6.1 Architecture
	6.2 Branching Actors and Monitors
	6.3 Compiling to Erlang

	7 Conclusions
	References

	Reversibility in Chemical Reactions
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Paper Organisation

	2 Autoprotolysis of Water
	3 Formalisms for Reversible Chemical Reactions
	3.1 Calculus of Covalent Bonding
	3.2 Bonding Calculus
	3.3 Reversing Petri Nets

	4 Evaluation
	5 Conclusion
	References

	Reversible Control of Robots
	1 Introduction
	2 Related Work
	3 Reversible Assembly Tasks
	3.1 Robotics, Assembly, and Reversibility
	3.2 Reversibility
	3.3 Repeatability
	3.4 Reversibility and Repeatability

	4 Programming Model
	4.1 Basic Model
	4.2 Implementation
	4.3 Language

	5 Results
	5.1 Methodology
	5.2 Experiment 1: Reversing the Programs
	5.3 Experiment 2: Assembling 100 Objects

	6 Conclusion
	References

	Reversible Languages and Incremental State Saving in Optimistic Parallel Discrete Event Simulation
	1 Introduction
	2 Optimistic Parallel Discrete Event Simulation (PDES)
	3 PDES Model Benchmark
	3.1 Ring Inverses and Non-singular Matrices

	4 Forward/Backward Code from Reversible Programs
	5 Automatic Generation of Reversible Code for the Forward-Reverse-Commit Paradigm
	5.1 Backstroke Instrumented Code

	6 ROSS Simulator
	6.1 Adaptations of the ROSS Simulator for the FRC Paradigm

	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Reversible Computation in Wireless Communications
	1 Introduction
	2 Reversing Petri Nets and Massive MIMO
	2.1 The Problem
	2.2 Results and Discussion

	3 Reversible Hardware for Time Reversal
	3.1 Wave Time Reversal
	3.2 The Design

	4 Reversible Environment Models and Control
	5 Conclusions
	References

	Error Reconciliation in Quantum Key Distribution Protocols
	1 Introduction
	2 Cascade
	3 Winnow
	4 Low Density Parity Check
	5 Comparisson
	6 Error Correction Based on Artificial Neural Networks
	6.1 Tree Parity Machines
	6.2 Error Correction Based on TPMs

	7 Conclusion
	References

	Author Index

