
S I M U L A S P R I N G E R B R I E F S O N CO M P U T I N G 6

Joakim Sundnes

Introduction
to Scientific
Programming
with Python

Simula SpringerBriefs on Computing

Volume 6

Editor-in-Chief
Aslak Tveito, Fornebu, Norway

Series Editors
Are Magnus Bruaset, Fornebu, Norway
Kimberly Claffy, San Diego, USA
Magne Jørgensen, Fornebu, Norway
Olav Lysne, Fornebu, Norway
Andrew McCulloch, La Jolla, USA
Fabian Theis, Neuherberg, Germany
Karen Willcox, Cambridge, USA
Andreas Zeller, Saarbrücken, Germany

Springer and Simula have launched a new book series, Simula SpringerBriefs on
Computing, which aims to provide introductions to select research in computing.
The series presents both a state-of-the-art disciplinary overview and raises essential
critical questions in the field. Published by SpringerOpen, all Simula SpringerBriefs
on Computing are open access, allowing for faster sharing and wider dissemination
of knowledge.

Simula Research Laboratory is a leading Norwegian research organization which
specializes in computing. The book series will provide introductory volumes on
the main topics within Simula’s expertise, including communications technology,
software engineering and scientific computing.

By publishing the Simula SpringerBriefs on Computing, Simula Research
Laboratory acts on its mandate of emphasizing research education. Books in this
series are published only by invitation from a member of the editorial board.

More information about this series at http://www.springer.com/series/13548

Joakim Sundnes

Introduction
to Scientific
Programming
with Python

Joakim Sundnes
Simula Research Laboratory
Lysaker, Norway

Simula SpringerBriefs on Computing
ISBN 978-3-030-50355-0 ISBN 978-3-030-50356-7 (eBook)
https://doi.org/10.1007/978-3-030-50356-7

Mathematics Subject Classification (2010): 65D15, 65D25, 65D30, 68-01, 68N01, 68N19, 97-04

© The Editor(s) (if applicable) and the Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the book's Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book's
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to the memory of Hans Petter
Langtangen.

Foreword

Dear reader,
Our aim with the series Simula SpringerBriefs on Computing is to provide

compact introductions to selected fields of computing. Entering a new field of
research can be quite demanding for graduate students, postdocs, and experienced
researchers alike: the process often involves reading hundreds of papers, and the
methods, results and notation styles used often vary considerably, which makes for
a time-consuming and potentially frustrating experience. The briefs in this series are
meant to ease the process by introducing and explaining important concepts and
theories in a relatively narrow field, and by posing critical questions on the fun-
damentals of that field. A typical brief in this series should be around 100 pages and
should be well suited as material for a research seminar in a well-defined and
limited area of computing.

We have decided to publish all items in this series under the SpringerOpen
framework, as this will allow authors to use the series to publish an initial version
of their manuscript that could subsequently evolve into a full-scale book on a
broader theme. Since the briefs are freely available online, the authors will not
receive any direct income from the sales; however, remuneration is provided for
every completed manuscript. Briefs are written on the basis of an invitation from a
member of the editorial board. Suggestions for possible topics are most welcome
and can be sent to aslak@simula.no.

January 2016 Prof. Aslak Tveito
CEO

Dr. Martin Peters
Executive Editor Mathematics
Springer Heidelberg, Germany

vii

Preface

This book was originally written as a set of lecture notes to the book A
Primer on Scientific Programming with Python by Hans Petter Langtangen1,
and can be used either as a supplement to that book or on its own, as a com-
pact introduction to scientific programming. Langtangen’s book and these
lecture notes, have formed the core of an introductory course on scientific
programming at the University of Oslo (INF1100/IN1900, 10 ETCS credits).
The course has been running since 2007 and is primarily taken by first-year
students of mathematics, engineering, physics, chemistry, and geosciences.

The writing of these lecture notes, and their subsequent evolution into a
book, were primarily motivated by two factors. The first was that many stu-
dents found the nearly 1000 pages of Langtangen’s book a bit overwhelming
as a first introduction to programming. This effect could be mostly psy-
chological, since the book is well structured and suited for selective study
of chapters and sections, but the student feedback from students still indi-
cated the need for a more compact and (literally) lightweight introduction.
The second factor was that, sadly, Hans Petter Langtangen passed away in
2016, and his book has therefore not been updated to the newest versions
of Python and the various tools introduced in the book. This issue could
also be mostly a mental obstacle, since the differences between the Python
versions are quite small, and only minor edits are needed to make most of
the examples from the original book run on the newest Python platform.
However, the book is intended as an introduction to programming, and when
learning an entirely new topic, any minor inconsistency is a potential source
of confusion. I therefore saw the need for an updated document where all the
code examples would run without any modifications on the most common
Python platforms. That said, in spite of these minor shortcomings as an in-
troductory text, Langtangen’s book is still an excellent resource on scientific
programming in Python. Compared with the present book, it covers a much

1Hans Petter Langtangen, A Primer on Scientific Programming with Python, 5th
edition, Springer-Verlag, 2016.

ix

x Preface

broader set of topics and includes more examples, more detailed discussions
and explanations, and many more useful programming hints and tips. I highly
recommend it as a supplement to these notes for anyone with ambitions to
become an expert scientific programmer.

The present book was written specifically for the course Introduction to
programming for scientific applications (IN1900) at the University of Oslo. It
follows exactly the same teaching philosophy and general structure as Lang-
tangen’s original book, with the overarching idea that the only way to learn
to program is to write programs. Reading theory is useful, but without actual
programming practice, the value is very limited. The IN1900 course is there-
fore largely based on problem solving and programming exercises, and this
book’s main purpose is to prepare the students for such tasks by providing a
brief introduction to fundamental programming concepts and Python tools.
The presentation style is compact and pragmatic, and includes a large num-
ber of code examples to illustrate how new concepts work and are applied in
practice. The examples are a combination of pieces of code (so-called code
snippets), complete Python programs, and interactive sessions in a Python
shell. Readers are encouraged to run and modify the codes to gain a feel for
how the various programming concepts work. Source code for most of the
examples, as well as Jupyter notebooks for all the chapters, is provided in
the online resources accompanying this book.

The typical reader of the book will be a student of mathematics, physics,
chemistry, or other natural science, and many of the examples will be famil-
iar to these readers. However, the rapidly increasing relevance of data science
means that computations and scientific programming will be of interest to
a growing group of users. No typical data science tools are presented in this
book, but the reader will learn tasks such as reading data from files, sim-
ple text processing, and programming with mathematics and floating point
computations. These are all fundamental building blocks of any data science
application, and they are essential to know before diving into more advanced
and specialized tools.

No prior knowledge of programming is needed to read this book. We start
with some very simple examples to get started with programming and then
move on to introduce fundamental programming concepts such as loops, func-
tions, if-tests, lists, and classes. These generic concepts are supplemented
by more specific and practical tools for scientific programming, primarily
plotting and array-based computations. The book’s overall purpose is to in-
troduce the reader to programming and, in particular, to demonstrate how
programming can be an extremely useful and powerful tool in many branches
of the natural sciences.

Many people have contributed to this book, in particular my colleagues at
Simula Research Laboratory and the University of Oslo. However, the contri-
butions of Professor Hans Petter Langtangen stand head and shoulders above
everyone else. He has been an extremely inspiring teacher, mentor, and col-
league throughout my scientific career; he developed the course that is now

Preface xi

IN1900; and he wrote the book on which these notes are based. Throughout
these lecture notes I have extensively copied ideas, presentation style, and
code examples from his original book, simply because I find them excellent
for introducing programming in a scientific context. If it were not for Hans
Petter I would clearly never have written these notes. I would probably not
be writing this either if he had not, sadly, passed away in 2016 – there would
be no need to, because he would surely have written a far better and more
extensive book himself.

May 2020 Joakim Sundnes

Contents

Preface . ix

1 Getting Started with Python . 1
1.1 The First Example: Hello, World! . 1
1.2 Different Ways to Use Python . 2

2 Computing with Formulas . 5
2.1 Programming Simple Mathematics . 5
2.2 Variables and Variable Types . 7
2.3 Formatting Text Output . 11
2.4 Importing Modules . 13
2.5 Pitfalls When Programming Mathematics 15

3 Loops and Lists . 19
3.1 Loops for Automating Repetitive Tasks 19
3.2 Boolean Expressions . 21
3.3 Using Lists to Store Sequences of Data . 23
3.4 Iterating Over a List with a for Loop . 25
3.5 Nested Lists and List Slicing . 31
3.6 Tuples . 33

4 Functions and Branching . 35
4.1 Programming with Functions . 35
4.2 Function Arguments and Local Variables 38
4.3 Default Arguments and Doc Strings . 44
4.4 If-Tests for Branching the Program Flow 46
4.5 Functions as Arguments to Functions . 48
4.6 Solving Equations with Python Functions 50
4.7 Writing Test Functions to Verify our Programs 53

xiii

xiv Contents

5 User Input and Error Handling . 57
5.1 Reading User Input Data . 57
5.2 Flexible User Input with eval and exec 61
5.3 Reading Data from Files . 65
5.4 Writing Data to Files . 69
5.5 Handling Errors in Programs. 70
5.6 Making Modules . 75

6 Arrays and Plotting . 81
6.1 NumPy and Array Computing . 81
6.2 Plotting Curves with Matplotlib . 86
6.3 Plotting Discontinuous and Piecewise-Defined Functions 90
6.4 Making a Movie of a Plot . 93
6.5 More Useful Array Operations . 98

7 Dictionaries and Strings . 101
7.1 Dictionaries . 101
7.2 Example: A Dictionary for Polynomials 105
7.3 Example: Reading File Data to a Dictionary 107
7.4 String Manipulation . 107

8 Classes . 115
8.1 Basics of Classes . 115
8.2 Protected Class Attributes . 121
8.3 Special Methods . 123
8.4 Example: Automatic Differentiation of Functions 127
8.5 Test Functions for Classes . 129
8.6 Example: A Polynomial Class . 130

9 Object-Oriented Programming . 135
9.1 Class Hierarchies and Inheritance . 135
9.2 Example: Classes for Numerical Differentiation 139
9.3 Example: Classes for Numerical Integration 142

Index . 147

Chapter 1
Getting Started with Python

This book teaches the Python programming language, which is one of the
most popular languages for introductory programming courses. An advantage
of Python is that it is a so-called high-level language, with simple and intuitive
syntax that makes it easy to get started. However, although it works well as a
beginner’s language, Python is also suitable for more advanced tasks, and it
is currently one of the most widely used programming languages worldwide.

1.1 The First Example: Hello, World!

Most introductory books on programming start with a so-called Hello, World!
program, which is a program that simply writes Hello, World! to the screen.
In Python, this program is just a single line;

print("Hello, World!")

To actually write and run such a program, Python offers a number of different
options. Throughout this book we will mostly apply the classical program-
ming approach, where a program is written in a text editor and stored as a
file that is then run from the command line window or an integrated devel-
opment environment (IDE). To write and run the "Hello, World!"-program
above, open your favorite editor (Atom, gedit, Emacs etc.), type the given
line and save the file with a suitable filename, for instance, hello.py.1 Then,
open a terminal or an iPython window, navigate to the directory where you
saved the file, and type python hello.py, if you are using a regular terminal,
or run hello.py if you are using iPython. The output Hello, World! should

1We do not describe the technical details of acquiring and installing Python here,
since this information is platform dependent and becomes outdated very quickly. For up-
dated hints on installing Python, see the web page for the IN1900 course at the University
of Oslo (https://www.uio.no/studier/emner/matnat/ifi/IN1900/index-eng.html),
or to the numerous other resources found online.

1
© The Author(s) 2020
J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_1

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_1&domain=pdf

2 1 Getting Started with Python

appear in the terminal right after the command. If you are using an IDE,
it is essentially an editor and an iPython/terminal window combined. For
instance, in the popular Spyder IDE the editor is usually in the upper left
window, while the window in the lower right corner is the iPython window
where you run the program. 2

Although the "Hello, World!"-program could seem like a silly example, it
serves a number of useful purposes. First of all, running this small program
will verify that you have installed Python properly, and that you have in-
stalled the right version. It also introduces the function print, which will be
used virtually every time we program, and it illustrates how we use quotes to
define a string in Python. While print is a word that Python understands,
the words "Hello" and "World" are not. By using the quotes, we tell Python
that it should not try to understand (or interpret) these words, but, rather,
treat them as simple text that, in this case, is to be printed to the screen.
We will come back to this topic in more detail later.

1.2 Different Ways to Use Python

As briefly mentioned above, Python offers some alternatives to the traditional
style of programming using a text editor and a terminal window, and some of
these alternatives can be very useful when learning to program. For instance,
we can use Python interactively by simply typing python or ipython in a
terminal window, without a subsequent file name. This will open an environ-
ment for typing and running Python commands, which is not very suitable for
writing programs over several lines, but extremely useful for testing Python
commands and statements, or simply using Python as a calculator. In a reg-
ular terminal window on macOS or Linux, an interactive version of the Hello,
World! example would look something like

Terminal

Terminal> ipython
Python 3.7.3 (default, Mar 27 2019, 16:54:48)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.4.0 -- An enhanced Interactive Python.

In [1]: print("Hello, World!")
Hello, World!

In [2]:

The two versions python and ipython work largely the same way, but
ipython has a number of additional features and is recommended.

2For details, see, for instance, https://www.spyder-ide.org/.

1.2 Different Ways to Use Python 3

A third way to use Python is through Jupyter notebooks, which are a
form of interactive notebooks that combine code and text. The notebooks
are viewed through a browser and look quite similar to a simple web page,
but with the important difference that the code segments are "live" Python
code that can be run, changed, and re-run while reading the document. These
features are particularly useful for teaching purposes, since detailed explana-
tions of new concepts are easily combined with interactive examples. All the
chapters of this book are also available as Jupyter notebooks.

Minor drawbacks of the Python language. Although Python is a very
popular and suitable language for learning to program, it also has some minor
drawbacks. One of the more important is tightly linked to its advantage of
being a flexible high-level language with a short and intuitive syntax. Writing
small programs in Python can be very efficient, and beginners can quickly
start writing useful programs, but the downside is that the code can become
messy as the programs grow in size and complexity. Other languages such as
C, C++, and Java tend, to enforce more structure in the code, which can
be confusing for beginners and annoying when you want to write a small
program quickly, but it can be more efficient in the long run when writing
larger programs. However, it is certainly possible to write neat and nicely
structured programs in Python as well, but this requires a choice by the
programmer to follow certain principles of coding style, and is not enforced
by the language itself.

Another slightly annoying aspect of Python is that it exists in different
versions. At the time of this writing, Python 3 has been dominant for quite
a while, but if you look for programming resources online or read older text-
books, you will find many examples using Python 2. For the mathematics-
centered programming covered in this book, the difference between Python
2 and Python 3 is actually quite small, but some differences are important
to be aware of. The most obvious one is how print works. In Python 2,
the program above would read print "Hello, World!", that is, without
the parentheses. Since nearly all code examples use print to some extent,
programs written in Python 2 will typically not run in Python 3. One partic-
ularly relevant resource for scientific Python (on which this book is largely
based) is "A Primer on Scientific Programming with Python", by Hans Petter
Langtangen3. However, the latest version of that book was written in 2016,
and all the code examples are in Python 2 and will stop with an error mes-
sage if they are run in Python 3. In most cases, the only error is the missing
parentheses; so the addition of parentheses to all the print statements will
make most of the examples run fine in Python 3. We will comment on some
of the other differences between the Python versions later.

3Hans Petter Langtangen, A Primer on Scientific Programming with Python, 5th
edition, Springer-Verlag, 2016.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

1 Getting Started with Python4

Chapter 2
Computing with Formulas

In this chapter, we will go one step beyond the Hello, World! example of the
first chapter, and introduce programming with mathematical formulas. Such
formulas are essential parts of most programs written for scientific applica-
tions, and they are also useful for introducing the concept of variables, which
is a fundamental part of all programming languages.

2.1 Programming Simple Mathematics

To introduce the concepts of this chapter, we first consider a simple formula
for calculating the interest on a bank deposit:

A = P (1+(r/100))n,

where P is the initial deposit (the principal), r is the yearly interest rate
given in percent, n is the number of years, and A is the final amount.

The task is now to write a program that computes A for given values of
P , r and n. We could, of course, easily do so with a calculator, but a small
program can be much more flexible and powerful. To evaluate the formula
above, we first need to assign values to P , r and n, and then make the
calculation. Choosing, for instance, P = 100, r = 5.0, and n = 7, a complete
Python program that does the calculation and outputs the result reads

print(100*(1 + 5.0/100)**7)

140.71004226562505

As described in the previous chapter this line can be typed into an inter-
active Python session, or written in an editor and stored in a file, for in-
stance interest0.py. The program is then run with the command python

5J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_2

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_2&domain=pdf

6 2 Computing with Formulas

interest0.py in a regular terminal or run interest0.py in an iPython
window or Spyder.

The interest0.py program is not much more complex or useful than the
Hello, World! example from the previous chapter, but there are a couple of
important differences. First, notice that, in this case we did not use quotation
marks inside the parentheses. This is because we want Python to evaluate
the mathematical formula, and print the result to the screen, which works
fine as long as the text inside the parentheses is valid Python code, or, more
precisely, a valid expression that can be evaluated to produce a result. If we
put quotation marks around the formula above, the code would still work,
but the result is not what we want – try it!. At this point, it is also worth
noting that, while we stated above that Python is a flexible and high-level
language, all programming languages are extremely picky about spelling and
grammar. Consider, for instance the line

write(100*(1+5,0/100)^7)

While most people can read this line quite easily, and interpret it as the
same formula as the one above, it makes no sense as a Python program.
There are multiple errors: write is not a legal Python word in this context,
a comma has another meaning than the decimal point, and the hat does not
mean exponentiation. We have to be extremely accurate with how we write
computer programs, and it takes time and experience to learn this.

The mathematical formula above is evaluated according to the standard
rules. The terms are evaluated one by one, from left to right, with exponentia-
tion performed first and then multiplication and division. We use parentheses
to control the order of the evaluation, just as we do in regular mathemat-
ics. The parentheses around (1 + 5.0/100) means that this sum is evalu-
ated first (to obtain 1.05), and then raised to the power of 7. Forgetting the
parenthesis and writing 1 + 5.0/100**7 will produce a very different result,
just as in mathematics. Because the use of parentheses to group calculations
works exactly as in mathematics, it is not very difficult to understand for
people with a mathematical background. However, when programming more
complicated formulas it is very easy to make mistakes such as forgetting or
misplacing a closing parenthesis. This mistake is probably the most common
source of error when programming mathematical formulas, and it is worth
paying close attention to the order and number of parentheses in the expres-
sions, even for experienced programmers. Getting this principle wrong will
lead to either an error message when the code is run or to a program that
runs fine but produces unexpected results. The first type of error is usually
quite easy to find and fix, but the latter can be much harder.

Although Python is quite strict on spelling and grammar, in programming
terms called the syntax, there is some flexibility. For instance, whitespace
inside a formula does not matter at all. An expression like 5 *2 works just
as well as 5*2. Generally, whitespace in a Python program only matters if it
is at the start of a line, which we will return to later. Otherwise, one should

2.2 Variables and Variable Types 7

use whitespace in order to make the code as readable as possible to humans,
since Python will ignore it anyway.

2.2 Variables and Variable Types

We are used to variables in mathematics, such as P , r and n in the interest
formula above. We can use variables in a program too, and this makes the
program easier to read and understand:

primary = 100
r = 5.0
n = 7
amount = primary * (1+r/100)**n
print(amount)

This program spans several lines of text and uses variables, but otherwise
performs the same calculations and produces the exact same output as the
one-line program above. Still, the use of variables has a few advantages, even
in this very simple example. One is that the program becomes easier to read,
since the meaning of the numbers becomes more intuitive and the formula
is easier to recognize. Another advantage, which could be more important,
is that it becomes easier to change the value of one of the variables. This
advantage becomes even more obvious in more complex formulas where the
same variable occurs multiple times. Having to change the code in multiple
places each time a new value is needed is guaranteed to introduce errors. If
the same number occurs more than once in a program, it should always be
stored in a variable.

The instructions in the program above are called statements, and are exe-
cuted one by one when the program is run. It is common to have one state-
ment per line, although it is possible to put multiple statements on one line,
separated by semicolons, as in primary = 100; r = 5.0; n=7. For people
new to programming, especially those used to reading mathematics, it is
worth noting the strict sequence in which the lines are executed. In the
mathematical equation above, we first introduced the formula itself, and then
defined and explained the variables used in the formula (P,r,n, and A) on
the next line. This approach is completely standard in mathematics, but it
makes no sense in programming. Programs are executed line by line from the
top, so so all the variables must be defined above the line where they are
used.

The choice of variable names is up to the programmer and, generally, there
is great flexibility in choosing such names. In mathematics, it is common to
use a single letter for a variable, but a variable in a Python program can be
any word containing the letters a–z, A–Z, underscore _ and the digits 0-9, but
it cannot start with a digit. Variable names in Python are also case-sensitive,

8 2 Computing with Formulas

for instance, a is different from A. The following program is identical to the
one above, but with different variable names:

initial_amount = 100
interest_rate = 5.0
number_of_years = 7
final_amount = initial_amount*(1 + interest_rate/100)**number_of_years
print(final_amount)

These variable names are arguably more descriptive, but they also make the
formula very long and cumbersome to read. Choosing good variable names
is often a balance between being descriptive and conciseness, and the choice
can be quite important for making a program easy to read and understand.
Writing readable and understandable code is obviously important if you col-
laborate with others who have to understand your code, but it also makes it
easier for you to find errors in the code or develop it further at a later stage.
Choosing good variable names is therefore worthwhile, even if you are the
only person who will ever read your code.

The program above contains two different types of statements; first there
are four assignment statements, which assign values to variables, and then a
single print statement at the end. How these statements work might be quite
intuitive, but the assignment statements are worth looking into in more detail.
In these statements, the expression on the right-hand side of the equality sign
is evaluated first, and then the result is assigned to the variable on the left.
An effect of this execution order is that statements such as the following work
just fine, and are common in programs:

t = 0.6
t = t + 0.1
print(t)

0.7

The line t = t + 0.1 would not make sense as a mathematical equation,
but it is a perfectly valid assignment in a computer program. The right-hand
side is evaluated first, using the value of t already defined, and then the t
variable is updated to hold the result of the calculation. The equality sign
in Python is called the assignment operator, and, although it works similarly
to an equality sign in mathematics, it is not quite the same. If we want the
more usual meaning of the equality sign, for instance, to determine if two
numbers are equal, the operator to use in Python is ==. A trivial comparison
could look like

a = 5
print(a == 5)

True

We will see many more such examples later.

2.2 Variables and Variable Types 9

Comments are useful for explaining the thought process in pro-
grams. It is possible to combine the strengths of the two programs above
and have both compact variable names and a more detailed description of
what each variable means. This can be done using comments, as illustrated
in the following example:

program for computing the growth of
money deposited in a bank
primary = 100 # initial amount
r = 5.0 # interest rate in %
n = 7 # the number of years
amount = primary * (1+r/100)**n
print(amount)

In this code, all the text following the # symbol is treated as a comment
and effectively ignored by Python. Comments are used to explain what the
computer instructions mean, what the variables represent, and how the pro-
grammer reasoned when writing the program. They can be very useful for
increasing readability, but they should not be over-used. Comments that say
no more than the code, for instance, a = 5 # set a to 5, are not very
useful.

All variables have types. So far all the variables we have used have been
numbers, which is also how we are used to thinking of variables in mathe-
matics. However, in a computer program we can have many different kinds of
variables, not just numbers. More precisely, a variable is a name for a Python
object, and all objects have a type. The type of a variable Python is usually
decided automatically based on the value we assign to it. For instance, the
statement n = 7 will create a variable of the type integer, or int, whereas
r = 5.0 will create a variable with type float, representing a floating point
number. We can also have text variables, called strings, which have type str.
For instance, the Hello, World! example above could have been written as

hello = "Hello, World!"
print(hello)

Here we create a variable hello, which automatically gets type str, and then
print the contents of this variable to the screen. The output is exactly the
same as for the first example of Chapter 1.

We can check the type of a variable using the built-in function type:

print(type(hello))
print(type(r))
print(type(primary))
print(type(n))

<class ’str’>
<class ’float’>
<class ’float’>
<class ’int’>

10 2 Computing with Formulas

We see that the output is as expected from the definitions of these variables
above. The word class preceding the types indicates that these types are
defined as classes in Python, a concept we will return to later. It is usually
not necessary to check the type of variables inside a Python program, but it
could be very useful when learning new concepts or if your program produces
errors or unexpected behavior.

We will encounter many more variable types in subsequent chapters. The
type of a variable decides how it can be used, and also determines the effects of
various operations on that variable. The rules for these operations are usually
quite intuitive. For instance, most mathematical operations only work with
variable types that actually represent numbers, or they have a different effect
on other variable types, when this is natural. For an idea of how this works in
Python, think about some simple mathematical operations on text strings.
Which of the following operations do you think are allowed, and what are
the results: (i) adding two strings together, (ii) multiplying a string with
an integer, (iii) multiplying two strings, and (iv) multiplying a string with
a decimal number? After giving some thought to this question, check your
answers by trying them in Python:

hello = "Hello, World!"
print(hello + hello)
print(hello*5)

Strings that contain numbers are a potential source of confusion. Consider
for instance the code

x1 = 2
x2 = "2"
print(x1+x1)
print(x2+x2)

4
22

We see that the variable x2 is treated as a text string in Python, because
it was defined using the quotation marks, even though it contains a single
number. For the examples we have seen so far, it is easy to ensure that
numbers are numbers, simply by not using quotation marks when they are
defined. However, later in this book, we will write programs that read data
from files or user input. Such data will usually be in the form of text, and any
numbers will be text strings similar to the variable x2 above. Before using
the numbers in calculations, we therefore need to convert them to actual
numbers, which can be done with the built-in function float:

x1 = float(x1)
x2 = float(x2)
print(type(x1))
print(type(x2))
print(x2+x2)

2.3 Formatting Text Output 11

<class ’float’>
<class ’float’>
4.0

Of course, using float to convert a string to a number requires that the string
actually be a number. Trying to convert a regular word, as in float(hello)
will make the program stop with an error message. There are numerous other
built-in functions for converting between types, such as int for conversion to
an integer and str for conversion to a string. Throughout this book we will
mostly use the float conversion.

2.3 Formatting Text Output

The calculations in the programs above would output a single number, and
simply print this number to the screen. In many cases this solution is fine,
but sometimes we want several numbers or other types of output from a
program. This is easy to do with the print function, by simply putting
several variables inside the parentheses, separated by comma. For instance,
if we want to output both primary and final_amount from the calculation
above, the following line would work:

print(primary,final_amount)

100 140.71004226562505

However, although this line works, the output is not very readable or useful.
Sometimes a better output format or a combination of text and numbers is
more useful, for instance,

After 7 years, 100 EUR has grown to xxx EUR.

There are multiple ways to obtain this result in Python, but the most re-
cent and arguably most convenient is to use so called f-strings, which were
introduced in Python 3.6. If you are using an earlier version of Python, the
following examples will not work, but there are alternative and fairly similar
ways of formatting the text output.

To achieve the output string above, using the f-string formatting, we would
replace the final line of our program by with

print(f"After {n} years, 100 EUR has grown to {amount} EUR.")

After 7 years, 100 EUR has grown to 140.71004226562505 EUR.

There are a couple of things worth noticing here. First, we enclose the output
in quotation marks, just as in the Hello, World! example above, which tells
Python that this is a string. Second, the string is prefixed with the letter f,
which indicates that the string is an f-string that could contain something

12 2 Computing with Formulas

extra. More specifically, the string could contain expressions or variables en-
closed in curly brackets, and we have included two such variables, n and
amount. When Python encounters the curly brackets inside an f-string, it
will evaluate the contents of the curly brackets, which can be an expression
or a variable, and insert the resulting value into the string. The process is
often referred to as string interpolation or variable interpolation, and it ex-
ists in various forms in many programming languages. In our case, Python
will simply insert the current values of the variables n and amount into the
string, but, if desired, we can also include a mathematical expression inside
the brackets, such as

print(f"2+2 = {2+2}")

2+2 = 4

The only requirement for the contents inside the curly brackets is that it
be a valid Python expression that can be evaluated to yield some kind of
value. Throughout this book we will typically use f-string formatting to insert
combining text and numbers, but it may also be used for expressions with
other types of output.

The f-string formatting will often produce nicely formatted output by de-
fault, but sometimes more detailed control of the formatting is desired. For
instance, we might want to control the number of decimal places when out-
putting numbers. This is conveniently achieved by including a format specifier
inside the curly brackets. Consider, for instance, the following code:

t = 1.234567
print(f"Default output gives t = {t}.")
print(f"We can set the precision: t = {t:.2}.")
print(f"Or control the number of decimals: t = {t:.2f}.")

Default output gives t = 1.234567.
We can set the precision: t = 1.2.
Or control the number of decimals: t = 1.23.

There are many different format specifiers, for controlling the output format
of both numbers and other types of variables. We will use only a small subset
in this book, and primarily to control the formatting of numbers. In addition
to those shown above, the following format specifiers can be useful;

print(f"We may set the space used for the output: t = {t:8.2f}.")

We may set the space used for the output: t = 1.23

This specifier is used to control the number of decimals, as well as how much
space (the number of characters) used to output the number on the screen.
Here we have specified the number to be output with two decimal places
and a length of eight, including the decimal places. This form of control is
very useful for outputting multiple lines in tabular format, to ensure that the

2.4 Importing Modules 13

columns in the table are properly aligned. A similar feature can be used for
integers:

r = 87
print(f"Integer set to occupy exactly 8 chars of space: r = {r:8d}")

Integer set to occupy exactly 8 chars of space: r = 87

Finally, the generic format specifier g outputs a floating point number in the
most compact form:

a = 786345687.12
b = 1.2345
print(f"Without the format specifier: a = {a}, b = {b}.")
print(f"With the format specifier: a = {a:g}, b = {b:g}.")

Without the format specifier: a = 786345687.12, b = 1.2345.
With the format specifier: a = 7.86346e+08, b = 1.2345.

2.4 Importing Modules

We have seen that standard arithmetic operations are directly available in
Python, with no extra effort. However, what if more advanced mathematical
operations, such as sinx, cosx, lnx, are required? These functions are not
available directly, but can be found in a so-called module, which must be
imported before they can be used in our program. Generally, a great deal of
functionality in Python is found in such modules, and we will import one or
more modules in nearly all the programs we write. Standard mathematical
functions are found in a module named math, and the following code computes
the square root of a number using the sqrt function in the math module:

import math
r = math.sqrt(2)
or
from math import sqrt
r = sqrt(2)
or
from math import * # import everything in math
r = sqrt(2)

This example illustrate three different ways of importing modules. In the
first one, we import everything from the math module, but everything we
want to use must be prefixed with math. The second option imports only
the sqrt function, and this function is imported into the main namespace of
the program, which means it can be used without a prefix. Finally, the third
option imports everything from math into the main namespace, so that all
the functions from the module are available in our program without a prefix.

14 2 Computing with Formulas

A natural question to ask is why we need three different ways to import a
module. Why not use the simple from math import * and gain access to all
the mathematics functions we need? The reason is that we will often import
from several modules in the same program, and some of these modules can
contain functions with identical names. In these cases it is useful to have some
control over which functions are actually used, either by selecting only what
we need from each module, as in from math import sqrt, or by importing
with import math so that all the functions must be prefixed with the module
name. To avoid confusion later, it might be good to get into the habit of
importing modules in this manner right away, although, in small programs
where we import only a single module, there is nothing wrong with from
math import *.

As another example of computing with functions from math, consider eval-
uating the bell-shaped Gaussian function

f(x) = 1√
2πs

exp
[

−1
2

(
x−m

s

)2]

for m = 0,s = 2, and x = 1. For this calculation, we need to import the square
root, the exponential function, and π from the math module, and the Python
code may look as follows:

from math import sqrt, pi, exp
m = 0
s = 2
x = 1.0
f = 1/(sqrt(2*pi)*s) * exp(-0.5*((x-m)/s)**2)
print(f)

Notice that for this more complex formula it is very easy to make mistakes
with the parentheses. Such errors will often lead to an error message that
points to a syntax error on the next line of your program. This can be con-
fusing at first, so it is useful to be aware of. If you obtain an error message
pointing to a line directly below a complex mathematical formula, the source
is usually a missing closing parenthesis in the formula itself.
Finding information about Python modules. At this point, it is nat-
ural to ask how we know where to find the functions we want. Say we
need to compute with complex numbers. How can we know if there is a
module in Python for this? And, if so, what is it called? Generally, learn-
ing about the useful modules and what they contain are part of learning
Python programming, but knowing where to find such information could be
even more important. An excellent source is the Python Library Reference
(https://docs.python.org/3/library/), which contains information about all
the standard modules that are distributed with Python. More generally, a
Google search for complex numbers python quickly leads us to the cmath
module, which contains mostly the same functions as math, but with support
for complex numbers. If we know the name of a module and want to check its

2.5 Pitfalls When Programming Mathematics 15

contents, we can go to straight to the Python Library Reference, but there
are also other options. The command pydoc in the terminal window can be
used to list information about a module (try, e.g., pydoc math), or we can
import the module in a Python program and list its contents with the built-in
function dir.

import math
print(dir(math))

[’__doc__’, ’__file__’, ’__loader__’, ’__name__’, (...)]

2.5 Pitfalls When Programming Mathematics

Usually, the mathematical operations described above work as expected.
When the results are not as expected, the cause is usually a trivial error
introduced during typing, typically assigning the wrong value to a variable
or mismatching the number of parentheses. However, some potential error
sources are less obvious and are worth knowing about, even if they are rela-
tively rare.

Round-off errors give inexact results. Computers have inexact arith-
metic because of rounding errors. This is usually not a problem in computa-
tions, but in some cases it can cause unexpected results. Let us, for instance,
compute 1/49 ·49 and 1/51 ·51:

v1 = 1/49.0*49
v2 = 1/51.0*51
print(f"{v1:.16f} {v2:.16f}")

The output with 16 decimal places becomes

0.9999999999999999 1.0000000000000000

Most real numbers are represented inexactly on a computer, typically with
an accuracy of 17 digits. Neither 1/49 nor 1/51 are represented exactly, and
the error is approximately 10−16. Errors of this order usually do not matter,
but there are two particular cases in which they can be significant. In one
case, errors can accumulate through numerous computations, ending up as a
significant error in the final result. In the other case, which is more likely to
be encountered in the examples of this book, the comparison of two decimal
numbers can be unpredictable. The two numbers v1 and v2 above are both
supposed to be equal to one, but look at the result of this code:

print(v1 == 1)
print(v2 == 1)

16 2 Computing with Formulas

False
True

We see that the evaluation works as expected in one case, but not the other,
and this is a general problem when comparing floating point numbers. In most
cases the evaluation works, but in some cases it does not. It is difficult or
impossible to predict when it will not work, and the behavior of the program
thus becomes unpredictable. The solution is to always compare floats by using
a tolerance value, as in

tol = 1e-14
print(abs(v1-1) < tol)
print(abs(v2-1) < tol)

True
True

There is no strict rule for setting the value of the tolerance tol; however, it
should be small enough to be considered insignificant for the application at
hand, but larger than the typical machine precision 10−16.
Some words are reserved and cannot be used as variables. Although
the choice of variable names is up to the programmer, some names are re-
served in Python and are not allowed to be used. These names are and,
as, assert, break, class, continue, def, del, elif, else, except, exec,
finally, for, from, global, if, import, in, is, lambda, not, or, pass,
print, raise, return, try, with, while, and yield. Memorizing this list is
by no means necessary at this point, and we will use many of these reserved
words in our programs later, so it will become quite natural to not use them
as variable names. However, for programming physics and mathematics, it
could be worth noting lambda, since the Greek letter λ is common in physics
and mathematics formulas. Since Python does not understand Greek letters,
it is common to just spell them out when programming a formula, that is, α
becomes alpha, and so on. However, using this approach for λ will lead to
an error, and the error message might not be very easy to understand. The
problem is easily solved by introducing a small intentional typo and writing
lmbda or similar.
Integer division can cause surprising errors. In Python 2, and many
other programming languages, unintended integer division can sometimes
cause surprising results. In Python 3 this is no longer a problem, so you
are not likely to run into it during this course, but it is worth being aware
of, since many other programming languages behave in this way. Recall from
above that various operations behave differently, depending on the type of the
variable they work on, such as in adding two strings versus adding numbers.
In Python 2, the division operator, /, behaves as in normal division if one
of the two arguments is a float, but, if both are integers then it will perform
integer division and discard the decimal portion of the result. Consider the
following interactive session, which runs Python 2.7:

2.5 Pitfalls When Programming Mathematics 17

Terminal

Terminal> python2.7
Python 2.7.14 (default, Sep 22 2017, 00:06:07)
(...)
>>> print(5.0/100) #the parentheses are optional in Python 2.7
0.05
>>> print(5/100)
0

Integer division is useful for many tasks in computer science, and is there-
fore the default behavior of many programming languages, but it is usually
not what we want when programming mathematical formulas. Therefore, it
could be a good habit to ensure that variables used in calculations are actu-
ally floats, by simply defining them as r = 5.0 rather than r = 5. Although
it does not really make a difference in Python 3, it is good to get into this
habit simply to avoid problems when programming in other languages later.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

Chapter 3
Loops and Lists

In this chapter, programming starts to become useful. The concepts intro-
duced in the previous chapter are essential building blocks in all computer
programs, but our example programs only performed a few calculations,
which we could easily do with a regular calculator. In this chapter, we will
introduce the concept of loops, which can be used to automate repetitive and
tedious operations. Loops are used in most computer programs, and they look
very similar across a wide range of programming languages. We will primarily
use loops for calculations, but as you gain more experience, you will be able
to automate other repetitive tasks. Two types of loops will be introduced in
this chapter: the while loop and the for loop. Both will be used extensively
in all subsequent chapters. In addition to the loop concept, we will introduce
Boolean expressions, which are expressions with a true/false value, and a new
variable type called a list, which is used to store sequences of data.

3.1 Loops for Automating Repetitive Tasks

To start with a motivating example, consider again the simple interest cal-
culation formula;

A = P · (1+(r/100))n.

In Chapter 2 we implemented this formula as a single-line Python program,
but what if we want to generate a table showing how the invested amount
grows with the years? For instance, we could write n and A in two columns
like this

0 100
1 105
2 110
3 ...
... ...

19J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_3

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_3&domain=pdf

20 3 Loops and Lists

How can we make a program that writes such a table? We know from the
previous chapter how to generate one line in the table:

P = 100
r = 5.0
n = 7
A = P * (1+r/100)**n
print(n,A)

We could then simply repeat these statements to write the complete program:

P =100; r = 5.0;
n=0; A = P * (1+r/100)**n; print(n,A)
n=1; A = P * (1+r/100)**n; print(n,A)
...
n=9; A = P * (1+r/100)**n; print(n,A)
n=10; A = P * (1+r/100)**n; print(n,A)

This is obviously not a very good solution, since it is very boring to write and
errors are easily introduced in the code. As a general rule, when program-
ming becomes repetitive and boring, there is usually a better way of solving
the problem at hand. In this case, we will utilize one of the main strengths
of computers: their strong ability to perform large numbers of simple and
repetitive tasks. For this purpose, we use loops.

The most general loop in Python is called a while loop. A while loop will
repeatedly execute a set of statements as long as a given condition is satisfied.
The syntax of the while loop looks like the following:

while condition:
<statement 1>
<statement 2>
...

<first statement after loop>

The condition here is a Python expression that is evaluated as either true
or false, which, in computer science terms, is called a Boolean expression.
Notice also the indentation of all the statements that belong inside the loop.
Indentation is the way Python groups code together in blocks. In a loop
such as this one, all the lines we want to be repeated inside the loop must
be indented, with exactly the same indentation. The loop ends when an
unindented statement is encountered.

To make things a bit more concrete, let us use write a while loop to produce
the investment growth table above. More precisely, the task we want to solve
is the following: Given a range of years n from zero to 10, in steps of one year,
calculate the corresponding amount and print both values to the screen. To
write the correct while loop for solving a given task, we need to answer four
key questions: (i) Where/how does the loop start, that is, what are the initial
values of the variables; (ii) which statements should be repeated inside the
loop; (iii) when does the loop stop, that is, what condition should become
false to make the loop stop; and (iv) how should variables be updated for each

3.2 Boolean Expressions 21

pass of the loop? Looking at the task definition above, we should be able to
answer all of these questions: (i) The loop should start at zero years, so our
initial condition should be n = 0; (ii) the statements to be repeated are the
evaluation of the formula and the printing of n and A; (iii) we want the loop
to stop when n reaches 10 years, so our condition becomes something like n
<= 10; and (iv) we want to print the values for steps of one year, so we need
to increase n by one for every pass of the loop. Inserting these details into
the general while loop framework above yields the following code:

P = 100
r = 5.0
n = 0
while n <= 10: # loop heading with condition

A = P * (1+r/100)**n # 1st statement inside loop
print(n, A) # 2nd statement inside loop
n = n + 1 # last statement inside loop

The flow of this program is as follows:

1. First, n is 0, 0 ≤ 10 is true; therefore we enter the loop and execute the
loop statements:

• Compute A
• Print n and A
• Update n to 1

2. When we have reached the last line inside the loop, we return to the while
line and evaluate n ≤ 10 again. This condition is still true, and the loop
statements are therefore executed again. A new A is computed and printed,
and n is updated to the value of two.

3. We continue this way until n is updated from 10 to 11; now, when we
return to evaluate 11 ≤ 10, the condition is false. The program then jumps
straight to the first line after the loop, and the loop is finished.

Useful tip: A very common mistake in while loops is to forget to update the
variables inside the loop, in this case forgetting the line n = n + 1. This error
will lead to an infinite loop, which will keep printing the same line forever.
If you run the program from the terminal window it can be stopped with
Ctrl+C, so you can correct the mistake and re-run the program.

3.2 Boolean Expressions

An expression with a value of true or false is called a Boolean expression.
Boolean expressions are essential in while loops and other important program-
ming constructs, and they exist in most modern programming languages. We
have seen a few examples already, including comparisons such as a == 5 in

22 3 Loops and Lists

Chapter 2 and the condition n <= 10 in the while loop above. Other exam-
ples of (mathematical) Boolean expressions are t = 140, t �= 140, t ≥ 40, t > 40,
t < 40. In Python code, these are written as

t == 40 # note the double ==, t = 40 is an assignment!
t != 40
t >= 40
t > 40
t < 40

Notice the use of the double == when checking for equality. As we mentioned
in Chapter 2 the single equality sign has a different meaning in Python (and
many other programming languages) than we are used to from mathematics,
since it is used to assign a value to a variable. Checking two variables for
equality is a different operation, and to distinguish it from assignment, we
use ==. We can output the value of Boolean expressions with statements such
as print(C<40) or in an interactive Python shell, as follows:

>>> C = 41
>>> C != 40
True
>>> C < 40
False
>>> C == 41
True

Most of the Boolean expressions we will use in this course are of the simple
kind above, consisting of a single comparison that should be familiar from
mathematics. However, we can combine multiple conditions using and/or to
construct while loops such as these:

while condition1 and condition2:
...

while condition1 or condition2:
...

The rules for evaluating such compound expressions are as expected: C1 and
C2 is True if both C1 and C2 are True, while C1 or C2 is True if at least
one of the two conditions C1 and C2 is True. One can also negate a Boolean
expression using the term not, which simply yields that not C is True if C
is False, and vice versa. To gain a feel for compound Boolean expressions,
you can go through the following examples by hand and predict the outcome,
and then try to run the code to obtain the result:

x = 0; y = 1.2
print(x >= 0 and y < 1)
print(x >= 0 or y < 1)
print(x > 0 or y > 1)
print(x > 0 or not y > 1)
print(-1 < x <= 0) # same as -1 < x and x <= 0
print(not (x > 0 or y > 0))

3.3 Using Lists to Store Sequences of Data 23

Boolean expressions are important for controlling the flow of programs, both
in while loops and in other constructs that we will introduce in Chapter 4.
Their evaluation and use should be fairly familiar from mathematics, but it
is always a good idea to explore fundamental concepts such as this by typing
in a few examples in an interactive Python shell.

3.3 Using Lists to Store Sequences of Data

So far, we have used one variable to refer to one number (or string). Some-
times we naturally have a collection of numbers, such as the n-values (years)
0,1,2, . . . ,10 created in the example above. In some cases, such as the one
above, we are simply interested in writing all the values to the screen, in
which case using a single variable that is updated and printed for each pass
of the loop works fine. However, sometimes we want to store a sequence of
such variables, for instance, to process them further elsewhere in the program.
We could, of course, use a separate variable for each value of n, as follows:

n0 = 0
n1 = 1
n2 = 2
...
n10 = 10

However, this is another example of programming that becomes extremely
repetitive and boring, and there is obviously a better solution. In Python,
the most flexible way to store such a sequence of variables is to use a list:

n = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Notice the square brackets and the commas separating the values, which is
how we tell Python that n is a list variable. Now we have a single variable
that can hold all the values we want. Python lists are not reserved just for
numbers and can hold any kind of object, and even different kinds of objects.
They also have a great deal of convenient built-in functionality, which makes
them very flexible and useful and extremely popular in Python programs.

We will not cover all the aspects of lists and list operations in this book,
but we will use some of the more basic ones. We have already seen how to
initialize a list using square brackets and comma-separated values, such as

L1 = [-91, ’a string’, 7.2, 0]

To retrieve individual elements from the list, we can use an index, for instance
L1[3] will pick out the element with index 3, that is, the fourth element
(having a value of zero) in the list, since the numbering starts at zero. List
indices start at zero and run to the n−1, where n is the number of elements
in the list:

24 3 Loops and Lists

mylist = [4, 6, -3.5]
print(mylist[0])
print(mylist[1])
print(mylist[2])
len(mylist) # length of list

The last line uses the built-in Python function len, which returns the number
of elements in the list. This function works on lists and any other object that
has a natural length (e.g., strings), and is very useful.

Other built-in list operations allow us, for instance, to append an element
to a list, add two lists together, check if a list contains a given element, and
delete an element from a list:

n = [0, 1, 2, 3, 4, 5, 6, 7, 8]
n.append(9) # add new element 9 at the end
print(n)
n = n + [10, 11] # extend n at the end
print(n)
print(9 in n) #is the value 9 found in n? True/False
del n[0] #remove the first item from the list

These list operations, in particular those to initialize, append to, and index
a list, are extremely common in Python programs, and will be used through-
out this book. It is a good idea to spend some time making sure you fully
understand how they work.

It is also worth noting one important difference between lists and the sim-
pler variable types we introduced in Chapter 2. For instance, two statements,
such as a = 2; b = a would create two integer variables, both having value
2, but they are not the same variable. The second statement b=a will create
a copy of a and assign it to b, and if we later change b, a will not be affected.
With lists, the situation is different, as illustrated by the following example:

>>> l[0] = 2
>>> a = [1,2,3,4]
>>> b = a
>>> b[-1] = 6
>>> a
[1, 2, 3, 6]

Here, both a and b are lists, and when b changes a also changes. This happens
because assigning a list to a new variable does not copy the original list, but
instead creates a reference to the same list. So a and b are, in this case, just
two variables pointing to the exact same list. If we actually want to create a
copy of the original list, we need to state this explicitly with b = a.copy().

3.4 Iterating Over a List with a for Loop 25

3.4 Iterating Over a List with a for Loop

Having introduced lists, we are ready to look at the second type of loop we
will use in this book: the for loop. The for loop is less general than the while
loop, but it is also a bit simpler to use. The for loop simply iterates over
elements in a list, and performs operations on each one:

for element in list:
<statement 1>
<statement 2>
...

<first statement after loop>

The key line is the first one, which will simply run through the list, element
by element. For each pass of the loop, the single element is stored in the
variable element, and the block of code inside the for loop typically involves
calculations using this element variable. When the code lines in this block are
completed, the loop moves on to the next element in the list, and continues
in this manner until there are no more elements in the list. It is easy to see
why this loop is simpler than the while loop, since no condition is needed
to stop the loop and there is no need to update a variable inside the loop.
The for loop will simply iterate over all the elements in a predefined list, and
stop when there are no more elements. On the other hand, the for loop is
slightly less flexible, since the list needs to predefined. The for loop is the best
choice in most cases in which we know in advance how many times we want
to perform a set of operations. In cases in which this number is not known,
the while loop is usually the best choice.

For a concrete for loop example, we return to the investment growth exam-
ple introduced above. To write a for loop for a given task, two key questions
must be answered: (i) What should the list contain, and (ii) what operations
should be performed on the elements in the list? In the present case, the
natural answers are (i) the list should be a range of n-values from zero to 10,
in steps of 1, and (ii) the operations to be repeated are the computation of A
and the printing of the two values, essentially the same as in the while loop.
The full program using a for loop thus becomes

years = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
r = 5.0
P = 100.0
for n in years:

A = P * (1+r/100)**n
print(n, A)

As with the while loop, the statements inside the loop must be indented.
Simply by counting the lines of code in the two programs shows that the
for loop is somewhat simpler and quicker to write than the while loop. Most
people will argue that the overall structure of the program is also simpler
and less error-prone, with no need to check a criterion to stop the loop or to

26 3 Loops and Lists

update any variables inside it. The for loop will simply iterate over a given
list, perform the operations we want on each element, and then stop when it
reaches the end of the list. Tasks of this kind are very common, and for loops
are extensively used in Python programs.

The observant reader might notice that the way we defined the list years
in the code above is not very scalable to long lists, and quickly becomes repet-
itive and boring. As stated above, when programming become repetitive and
boring, a better solution usually exists. Such is the case here, and very rarely
do values in a list need to be filled explicitly, as done here. Better alternatives
include a built-in Python function called range, often in combination with a
for loop or a so-called list comprehension. We will return to these tools later
in the chapter. When running the code, one can also observe that the two
columns of degrees values are not perfectly aligned, since print always uses
the minimum amount of space to output the numbers. If we want the output
in two nicely aligned columns, this is easily achieved by using the f-string
formatting we introduced in the previous chapter. The resulting code can
look like this:

years = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for n in years:

r = 5.0
P = 100.0
A = P * (1+r/100)**n
print(f’{n:5d}{A:8.2f}’)

Output is now nicely aligned:

0 100.00
1 105.00
2 ...

A for loop can always be translated to a while loop. As described
above, a while loop is more flexible than a for loop. A for loop can always be
transformed into a while loop, but not all while loops can be expressed as for
loops. A for loop always traverses traverses a list, carries out some processing
on each element, and stops when it reaches the last one. This behavior is easy
to mimic in a while loop using list indexing and the len function, which were
both introduced above. A for loop of the form

for element in somelist:
process element

translates to the following while loop:

index = 0
while index < len(somelist):

element = somelist[index]
process element
index += 1

3.4 Iterating Over a List with a for Loop 27

Using the function range to loop over indices. Sometimes we do not
have a list, but want to repeat the same operation a given number of times.
If we know the number of repetitions this task is an obvious candidate for
a for loop, but for loops in Python always iterate over an existing list (or
a list-like object). The solution is to use a built-in Python function named
range, which returns a list of integers1:

P = 100
r = 5.0
N = 10
for n in range(N+1):

A = P * (1+r/100)**n
print(n,A)

Here we used range with a single argument N + 1 which will generate a list
of integers from zero to N (not including N + 1). We can also use range
with two or three arguments. The most general case range(start, stop,
inc) generates a list of integers start, start+inc, start+2*inc, and so
on up to, but not including, stop. When used with just a single argument,
as above, this argument is treated as the stop value, and range(stop) is
short for range(0, stop, 1). With two arguments, the interpretation is
range(start,stop), short for range(start,stop,1). This behavior, where
a single function can be used with different numbers of arguments, is com-
mon both in Python and many other programming languages, and makes the
use of such functions very flexible and efficient. If we want the most common
behavior, we need only provide a single argument and the others are auto-
matically set to default values; however, if we want something different, we
can do so easily by including more arguments. We will use the range func-
tion in combination with for loops extensively through this book, and it is
a good idea to spend some time becoming familiar with it. A good way to
gain a feel for how the range-function works is to test statements such as
print(list(range(start,stop,inc))) in an interactive Python shell, for
different argument values.

Filling a list with values using a for loop. One motivation for introduc-
ing lists is to conveniently store a sequence of numbers as a single variable,
for instance, for processing later in the program. However, in the code above,
we did not really utilize this, since all we did was print the numbers to the
screen, and the only list we created was a simple sequence from zero to 10.
It could be more useful to store the amounts in a list, which can be easily be
achieved with a for loop. The following code illustrates a very common way
to fill lists with values in Python:

1In Python 3, range does not technically produce a list, but a list-like object called
an iterator. In terms of use in a for loop, which is the most common use of range, there
is no practical difference between a list and an iterator. However, if we try, for instance,
print(range(3)) the output does not look like a list. To obtain output that looks like
a list, which can be useful for debugging, the iterator must be converted to an actual
list: print(list(range(3))).

28 3 Loops and Lists

P = 100
r = 5.0
N = 10
amounts = [] # start with empty list
for n in range(N+1):

A = P*(1+r/100)**n
amounts.append(A) # add new element to amounts list

print(amounts)

The parts worth noting in this code are amounts = [], which simply creates
a list with no elements, and the use of the append function inside the for loop
to add elements to the list. This simple way of creating a list and filling it
with values is very common in Python programs.

Mathematical sums are implemented as for loops. A very common
example of a repetitive task in mathematics is the computation of a sum, for
instance,

S =
N∑

i=1
i2.

For large values of N such sums are tedious to calculate by hand, but they
are very easy to program using range and a for loop:

N = 14
S = 0
for i in range(1, N+1):

S += i**2

Notice the structure of this code, which is quite similar to the way we filled
a list with values in the previous example. First, we initialize the summation
variable (S) to zero, and then the terms of the sum are added one by one
for each iteration of the for loop. The example shown here illustrates the
standard recipe for implementing mathematical sums, which are common in
scientific programming and appear frequently in this book. It is worthwhile
spending some time to fully understand and remember how such sums is
implemented.

How can we change the elements in a list? In some cases we want to
change elements in a list. Consider first a simple example where we have a list
of numbers, and want to add the value of two to all the numbers. Following
the ideas introduced above, a natural approach is to use a for loop to traverse
the list, as follows:

v = [-1, 1, 10]
for e in v:

e = e + 2
print(v)

[-1, 1, 10] # unaltered!!

3.4 Iterating Over a List with a for Loop 29

As demonstrated by this small program, the result is not what we want.
We added the value of two to every element, but after the loop finished,
our list v was unchanged. The reason for this behavior is that although the
list is traversed as desired when we create the for loop using for e in v:,
the variable e is an ordinary (int) variable, and it is in fact a copy of each
element in the list, and not the actual element. Therefore, when we change
e, we change only the copy and not the actual list element. The copy is
overwritten in the next pass of the loop anyway, so, in this case, all the
numbers that are incremented by two are simply lost. The solution is to
access the actual elements by indexing into the list:

v = [-1, 1, 10]
for i in range(len(v)):

v[i] = v[i] + 2
print(v)

[1, 3, 12]

Notice in particular the use of range(len(v)), which is a common con-
struction in Python programs. It creates a set of integers running from zero
to len(v)-1 that can be iterated over with the for loop and used to loop
through all the elements in the list v.

List comprehensions for compact creation of lists. Above, we intro-
duced one common way of constructing lists, which is to start with an empty
list and use a for loop to fill it with values. We can extend this example to
fill several lists in one loop, for instance, if we want to examine the effect of
low and high interest rates on our bank deposit. We start with two empty
lists and fill both with values in the same loop:

P = 100
r_low = 2.5
r_high = 5.0
N = 10
A_high = []
A_low = []
for n in range(N+1):

A_low.append(P*(1+r_low/100)**n)
A_high.append(P*(1+r_high/100)**n)

This approach to using a for loop to fill a list with values is so common in
Python that a compact construct has been introduced, called a list compre-
hension. The code in the previous example can be replaced by the following:

P = 100
r_low = 2.5
r_high = 5.0
N = 10
A_low = [P*(1+r_low/100)**n for n in range(N+1)]
A_high = [P*(1+r_high/100)**n for n in range(N+1)]

30 3 Loops and Lists

The resulting lists A_low and A_high are exactly the same as those from the
for loop, but the code is obviously much more compact. To an experienced
Python programmer, the use of list comprehensions also makes the code
more readable, since it becomes obvious that the code creates a list, and the
contents of the list are usually easy to understand from the code inside the
brackets. The general form of a list comprehension looks like

newlist = [expression for element in somelist]

where expression typically involves element. The list comprehension works
exactly like a for loop; it runs through all the elements in somelist, stores
a copy of each element in the variable element, evaluates expression, and
appends the result to the list newlist. The resulting list newlist will have
the same length as somelist, and its elements are given by expression.
List comprehensions are important to know about, since you will see them
frequently when reading Python code written by others. They are convenient
to use for the programming tasks covered in this book, but not strictly nec-
essary, since the same thing can always be accomplished with a regular for
loop.
Traversing multiple lists simultaneously with zip. Sometimes we want
to loop over two lists at the same time. For instance, consider printing out
the contents of the A_low and A_high lists of the example above. We can
accomplish this using range and list indexing, as in

for i in range(len(A_low)):
print(A_low[i], A_high[i])

However, a built-in Python function named zip provides an alternative so-
lution, which many consider more elegant and "Pythonic":

for low, high in zip(A_low, A_high):
print(low, high)

The output is exactly the same, but the use of zip makes the for loop more
similar to the way we traverse a single list. We run through both lists, extract
the elements from each one into the variables low and high, and use these
variables inside the loop, as we are used to. We can also use zip with three
lists:

>>> l1 = [3, 6, 1]; l2 = [1.5, 1, 0]; l3 = [9.1, 3, 2]
>>> for e1, e2, e3 in zip(l1, l2, l3):
... print(e1, e2, e3)
...
3 1.5 9.1
6 1 3
1 0 2

Lists traversed with zip typically have the same length, but the function also
works for lists of different lengths. In this case, the for loop will simply stop
when it reaches the end of the shortest list, and the remaining elements of
the longer lists are not visited.

3.5 Nested Lists and List Slicing 31

3.5 Nested Lists and List Slicing

As described above, lists in Python are quite general and can store any object,
including another list. The resulting list of lists is often referred to as a nested
list. Instead of storing the amounts resulting from the low and high interest
rates above as two separate lists, we could put them together in a new list:

A_low = [P*(1+2.5/100)**n for n in range(11)]
A_high = [P*(1+5.0/100)**n for n in range(11)]

amounts = [A_low, A_high] # list of two lists

print(amounts[0]) # the A_low list
print(amounts[1]) # the A_high list
print(amounts[1][2]) # the 3rd element in A_high

The indexing of nested lists illustrated here is quite logical, but can take
some time getting used to. The important thing is that, if amounts is a
list containing lists, then, for instance, amounts[0] is also a list and can be
indexed in the way we are used to. Indexing into this list is done in the usual
way, such that, for instance, amounts[0][0] is the first element of the first
list contained in amounts. Playing a bit with indexing nested lists in the
interactive Python shell is a useful exercise to understand how they are used.

Iterating over nested lists also works as expected. Consider, for instance,
the following code

for sublist1 in somelist:
for sublist2 in sublist1:

for value in sublist2:
work with value

Here, somelist is a three-dimensional nested list, that is, its elements are
lists, which, in turn, contain lists. The resulting nested for loop looks a bit
complicated, but it follows exactly the same logic as the simpler for loops used
above. When the outer loop starts, the first element from somelist is copied
into the variable sublist1, and then we then enter the code block inside the
loop, which is a new for loop that will start traversing sublist1, that is,
first copying the first element into the variable sublist2. Then the process
is repeated, with the innermost loop traversing all the elements of sublist2,
copying each element into the variable value, and doing some calculations
with this variable. When it reaches the end of sublist2, the innermost for
loop is over, we "move outward" one level in terms of the loops, to the loop
for sublist2 in sublist, which moves to the next element and starts a
new run through the innermost loop.

Similar iterations over nested loops can be obtained by looping over the
list indices, as follows:

for i1 in range(len(somelist)):
for i2 in range(len(somelist[i1])):

32 3 Loops and Lists

for i3 in range(len(somelist[i1][i2])):
value = somelist[i1][i2][i3]
work with value

Although their logic is the same as regular (one-dimensional) for loops,
nested loops look more complicated and it can take some time to fully un-
derstand how they work. As noted above, a good way to obtain such under-
standing is to create some examples of small nested lists in a Python shell
or a small Python program, and examine the results of indexing and looping
over the lists. The following code is one such example. Try to step through
this program by hand and predict the output before running the code and
checking the result:

L = [[9, 7], [-1, 5, 6]]
for row in L:

for column in row:
print(column)

List slicing is used to extract parts of a list. We have seen how we can
index a list to extract a single element, but sometimes it is useful to capture
parts of a list, for instance, all the elements from an index n to an index
m. Python offers list slicing for such tasks. For a list A, we have seen that a
single element is extracted with A[n], where n is an integer, but we can also
use the more general syntax A[start:stop:step] to extract a slice of A.
The arguments resemble those of the range function, and such a list slicing
will extract all elements starting from index start up to but not including
stop, with a step step. As for the range function, we can omit some of the
arguments and rely on default values. The following examples illustrate the
use of slicing:

>>> a = [2, 3.5, 8, 10]
>>> a[2:] # from index 2 to end of list
[8, 10]

>>> a[1:3] # from index 1 up to, but not incl., index 3
[3.5, 8]

>>> a[:3] # from start up to, but not incl., index 3
[2, 3.5, 8]

>>> a[1:-1] # from index 1 to next last element
[3.5, 8]

>>> a[:] # the whole list
[2, 3.5, 8, 10]

Note that these sublists (slices) are copies of the original list. A statement
such as, for instance, b = a[:] will make a copy of the entire list a, and any
subsequent changes to b will not change a. As for the nested lists considered
above, a good way to become familiar with list slicing is to create a small

3.6 Tuples 33

list in the interactive Python shell and explore the effect of various slicing
operations. It is, of course ,possible to combine list slicing with nested lists,
and the results can be confusing even to experienced Python programmers.
Fortunately, we will consider only fairly simple cases of list slicing in this
book, and we will work mostly with lists of one or two dimensions (i.e., non-
nested lists or the simplest lists-of-lists).

3.6 Tuples

Lists are a flexible and user-friendly way to store sequences of numbers, and
are used in nearly all Python programs. However, a few other data types are
also made to store sequences of data. One of the most important ones is called
a tuple, and it is essentially a constant list that cannot be changed. A tuple is
defined in almost the same way as a list, but with normal parentheses instead
of the square brackets. Alternatively, we can skip the parentheses and just
use a comma-separated sequence of values to define a tuple. The following
are two examples that are entirely equivalent and define the same tuple:

>>> t = (2, 4, 6, ’temp.pdf’) # define a tuple
>>> t = 2, 4, 6, ’temp.pdf’ # can skip parentheses

Tuples also provide much of the same functionality as lists, including indexing
and and slicing:

>>> t = t + (-1.0, -2.0) # add two tuples
>>> t
(2, 4, 6, ’temp.pdf’, -1.0, -2.0)
>>> t[1] # indexing
4
>>> t[2:] # subtuple/slice
(6, ’temp.pdf’, -1.0, -2.0)
>>> 6 in t # membership
True

However, tuples are immutable, which means that they cannot be changed.
Therefore, some operations we are used to from lists will not work. Continuing
the interactive session from above, the following are some examples of illegal
tuple operations:

>>> t[1] = -1
...
TypeError: ’tuple’ object does not support item assignment

>>> t.append(0)
...
AttributeError: ’tuple’ object has no attribute ’append’

>>> del t[1]

34 3 Loops and Lists

...
TypeError: ’tuple’ object doesn’t support item deletion

The observant reader might wonder why the line t = t + (-1.0, -2.0) in
the example above works, since t is supposed to be immutable and therefore
impossible to change. The answer is related to the way assignment statements
work in programming. As briefly explained in Chapter 2, assignment works by
first evaluating the expression on the right hand side, which in this example
means to add two tuples together. The result is a new tuple, and neither t
nor (-1.0, 2.0) are changed in the process. Then, the new tuple is assigned
to the variable t, meaning that the original tuple is replaced by the new
and longer tuple. The tuple itself is never changed, but the contents of the
variable t is replaced with a new one.

A natural question to ask, then, is why do we need tuples at all, when lists
can do the same job and are much more flexible? The main reason for this is
that, in many cases, it is convenient to work on item that is constant, since it
is protected against accidental changes and can be used as a key in so-called
dictionaries, an important Python datastructure that will be introduced in
Chapter 7. Throughout this book, we will not do much explicit programming
with tuples, but we will run into them as part of the modules we import and
use, so it is important to know what they are.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

Chapter 4
Functions and Branching

This chapter introduces two fundamental programming concepts: functions
and branching. We are used to functions from mathematics, where we typi-
cally define a function f(x) as some mathematical expression of x, and then
we can then evaluate the function for different values of x, plot the curve
y = f(x), solve equations of the kind f(x) = 0, and so on. A similar function
concept exists in programming, where a function is a piece of code that takes
one or more variables as input, carries out some operations using these vari-
ables, and produces output in return. The function concept in programming
is more general than in mathematics, and is not restricted to numbers or
mathematical expressions, but the general idea is exactly the same.

Branching, or if-tests, is another fundamental concept that exists in all
common programming languages. The idea is that decisions are made in
the code based on the value of some Boolean expression or variable. If the
expression evaluates to true, one set of operations is performed, and if the
expression is false, a different set of operations is. Such tests are essential for
controlling the flow of a computer program.

4.1 Programming with Functions

We have already used a number of Python functions in the previous chapters.
The mathematical functions from the math module are essentially the same
as we are used to from mathematics or from pushing buttons on a calculator:

from math import *
y = sin(x)*log(x)

Additionally, we used a few non-mathematical functions, such as len and
range

n = len(somelist)
for i in range(5, n, 2):

35J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_4

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_4&domain=pdf

36 4 Functions and Branching

(...)

and we also used functions that were bound to specific objects, and accessed
with the dot syntax, for instance, append to add elements to a list:

C = [5, 10, 40, 45]
C.append(50)

This last type of function is quite special, since it is bound to an object, and
operates directly on that object (C.append changes C). These bound func-
tions are also referred to as methods, and will be considered in more detail
in Chapter 8. In the present chapter we will primarily consider regular, un-
bound, functions. In Python, such functions provide easy access to already
existing program code written by others (e.g., sin(x)). There is plenty of
such code in Python, and nearly all programs involve importing one or more
modules and using pre-defined functions from them. One advantage of func-
tions is that we can use them without knowing anything about how they are
implemented. All we need to know is what goes in and what comes out, and
the function can thus be used as a black box.

Functions also provide a way of reusing code we have written ourselves,
either in previous projects or as part of the current code, and this is the
main focus of this chapter. Functions let us delegate responsibilities and split
a program into smaller tasks, which is essential for solving all problems of
some complexity. As we shall see later in this chapter, splitting a program into
smaller functions is also convenient for testing and verifying that a program
works as it should. We can write small pieces of code that test individual
functions and ensure that they work correctly before putting the functions
together into a complete program. If such tests are done properly, we can
have some confidence that our main program works as expected. We will
return to this topic towards the end of the chapter.

So how do we write a function in Python? Starting with a simple example,
consider the previously considered mathematical function

A(n) = P (1+ r/100)n.

For given values P = 100 and r = 5.0, we can implement this in Python as
follows:

def amount(n):
P = 100
r = 5.0
return P*(1+r/100)**n

These two lines of code are very similar to the examples from Chapter 3, but
they contain a few new concepts that are worth noting. Starting with the first
line, def amount(n): is called the function header, and defines the function’s
interface. All function definitions in Python start with the word def, which
is simply how we tell Python that the following code defines a function. Af-
ter def comes the name of the function, followed by parentheses containing

4.1 Programming with Functions 37

the function’s arguments (sometimes called parameters). This simple func-
tion takes a single argument, but we can define functions that take multiple
arguments by separating the arguments with commas. The parentheses need
to be there, even if we do not want the function to take any arguments, in
which case we would just leave the parentheses empty.

The lines following the function header are the function body, which need
to be indented. The indentation serves the same purpose as for the loops
in Chapter 3: to specify which lines of code belong inside the function, or
to the function body. The two first lines of the function body are regular
assignments, but since they occur inside a function, they define local variables
P and r. Local variables the argument n are used inside the function just as
regular variables. We will return to this topic in more detail later. The last
line of the function body starts with the keyword return, which is also new in
this chapter and is used to specify the output returned by the function. It is
important not to confuse this return statement with the print statements we
used previously. The use of print will simply output something to the screen,
while return makes the function provide an output, which can be thought of
as a variable being passed back to the code that called the function. Consider
for instance the example n = len(somelist) used in the previous chapter,
where len returned an integer that was assigned to a variable n.

Another important thing to note about the code above is that it does not
do much. In fact, a function definition does essentially nothing before it is
called.1 The analogue to the function definition in mathematics is to simply
write down a function f(x) as a mathematical expression. This defines the
function, but there is no output until we start evaluating the function for
some specific values of x. In programming, we say that we call the function
when we use it. When programming with functions, it is common to refer to
the main program as basically every line of code that is not inside a function.
When running the program, only the statements in the main program are
executed. Code inside function definitions is not run until we include a call
to the function in the main program. We have already called pre-defined
functions like sin, len, etc, in previous chapters, and a function we have
written ourselves is called in exactly the same way:

def amount(n):
P = 100
r = 5.0
return P*(1+r/100)**n

year1 = 10
a1 = amount(year1) # call
a2 = amount(5) # call

1This is not entirely true, since defining the function creates a function object, which
we can see by defining a dummy function in the Python shell and then calling dir()
to obtain a list of defined variables. However, no visible output is produced until we
actually call the function, and forgetting to call the function is a common mistake when
starting to program with functions.

38 4 Functions and Branching

print(a1, a2)
print(amount(6)) # call
a_list = [amount(year) for year in range(11)] #multiple calls

The call amount(n) for some argument n returns a float object, which es-
sentially means that amount(n) is replaced by this float object. We can
therefore make the call amount(n) everywhere a float can be used.

Note that, unlike many other programming languages, Python does not
require the type of function arguments to be specified. Judging from the
function header only, the argument of amount(n) above could be any kind
of variable. However, by looking at how n is used inside the function, we
can tell that it must be a number (integer or float). If we write complex
functions where the argument types are not obvious, we can insert a comment
immediately after the header, a so-called doc string, to tell users what the
arguments should be. We will return to the topic of doc strings later in this
chapter.

4.2 Function Arguments and Local Variables

Just as in mathematics, we can define Python functions with more than one
argument. The formula above involves both P and r in addition to n, and
including them all as arguments could be useful. The function definition could
then look like

def amount(P, r, n):
return P*(1+r/100.0)**n

sample calls:
a1 = amount(100, 5.0, 10)
a2 = amount(10, r= 3.0, n=6)
a3 = amount(r= 4, n = 2, P=100)

Note that we are using the arguments P, r, and n inside the function exactly
as in the previous example, where we defined P and r inside the function.
Inside a function, there is no distinction between such local variables and the
arguments passed to the function. The arguments also become local variables,
and are used in exactly the same way as any variable we define inside the
function. However, there is an important distinction between local and global
variables. Variables defined in the main program become global variables,
whereas variables defined inside functions are local. The local variables are
only defined and available inside a function, whereas global variables can
be used everywhere in a program. If we tried to access P, r, or n (e.g., by
print(P)) from outside the function, we will simply obtain an error message
stating that the variable is not defined.
Arguments can be positional arguments or keyword arguments. No-
tice also the alternative ways of calling a function. We can either specify the

4.2 Function Arguments and Local Variables 39

argument names in the call, as in r=3.0, n=6, or simply pass the values. If
we specify the names, the order of the arguments becomes arbitrary, as in the
last call above. Arguments that are passed without specifying the name are
called positional arguments, because their position in the argument list de-
termines the variable to which they are assigned. Arguments that are passed
including the name are called keyword arguments. Keyword arguments need
to match the definition of the function; that is, calling the function above with
amount(100, 5.0, year=5) would cause an error message because year is
not defined as an argument to the function. Another rule worth noting is
that a positional argument cannot follow a keyword argument; a call such
as amount(100, 5.0, n=5) is fine, but amount(P=100, 5.0, 5) is not and
the program will stop with an error message. This rule is quite logical, since
a random mix of positional and keyword arguments would make the call very
confusing.
The difference between local and global variables. The distinction
between local and global variables is generally important in programming,
and can be confusing at first. As stated above, the arguments passed to
a function, as well as variables we define inside the function, become local
variables. These variables behave exactly as we are used to inside the function,
but are not visible outside it. The potential source of confusion is that global
variables are also accessible inside a function, just as everywhere else in the
code. We could have assigned a value to the variables P and r outside the
function, anywhere before the first call to amount, and the code would still
work:

P = 100
r = 5.0

def amount(n):
return P*(1+r/100)**n

print(amount(7))

Here n is passed as an argument, while, for P and r, the values assigned
outside the function is used. However, it is also possible to define local and
global variables with the same name, such as

P = 100
r = 5.0

def amount(n):
r = 4.0
return P*(1+r/100)**n

Which value of r is used in the function call here? Local variable names always
take precedence over the global names. When the mathematical formula is
encountered in the code above, Python will look for the values of the variables
P, r, and n that appear in the formula. First, the so-called local namespace
is searched, that is, Python looks for local variables with the given names. If

40 4 Functions and Branching

local variables are found, as for r and n in this case, these values are used. If
some variables are not found in the local namespace, Python will move to the
global namespace, and look for global variables that match the given names.
If a variable with the right name is found among the global variables, that
is, it has been defined in the main program, then the corresponding value is
used. If no global variable with the right name is found there are no more
places to search, and the program ends with an error message. This sequential
search for variables is quite natural and logical, but still a potential source
of confusion and programming errors. Additional confusion can arise if we
attempt to change a global variable inside a function. Consider, for instance,
this small extension of the code above:

P = 100
r = 5.0

def amount(n):
r = 4.0
return P*(1+r/100)**n

print(amount(n=6))
print(r)

126.53190184960003
5.0

As revealed by the print statements, r is set to 4.0 inside the function, but
the global variable r remains unchanged after the function has been called.
Since the line r = 4.0 occurs inside a function, Python will treat this as
the definition of a new local variable, rather than trying to change a global
one. We thus define a new local r with value 4.0, while there is still another
r defined in the global namespace. After the function has ended, the local
variable no longer exists (in programming terms, it goes out of scope), whereas
the global r is still there and has its original value. If we actually want to
change a global variable inside a function, we must explicitly state so by using
the keyword global. Consider this minor change of the code above:

P = 100
r = 5.0

def amount(n):
global r
r = 4.0
return P*(1+r/100)**n

print(amount(n=6))
print(r)

126.53190184960003
4.0

4.2 Function Arguments and Local Variables 41

In this case, the global r is changed. The keyword global tells Python that
we do want to change a global variable, and not define a new local one. As a
general rule, one should minimize the use of global variables inside functions
and, instead, define all the variables used inside a function either as local
variables or as arguments passed to the function. to the function. Similarly,
if we want the function to change a global variable then we should make
the function return this variable, instead of using the keyword global. It is
difficult to think of a single example where using global is the best solution,
and in practice it should never be used. If we actually wanted the function
above to change the global r, the following is a better way:

P = 100
r = 5.0

def amount(n,r):
r = r - 1.0
a = P*(1+r/100)**n
return a, r

a0, r = amount(7)
print(a0, r)

Notice that, here, we return two values from the function, separated by a
comma, just as in the list of arguments, and we also assign the returned
values to the global variables a0, r in the line where the function is called.
Although this simple example might not be the most useful in practice, there
are many cases in which it is useful for a function call to change a global
variable. In such cases the change should always be performed in this way,
by passing the global variable in as an argument, returning the variable from
the function, and then assigning the returned value to the global variable.
Following these steps is far better than using the global keyword inside the
function, since it ensures that each function is a self-contained entity, with a
clearly defined interface to the rest of the code through the list of arguments
and return values.
Multiple return values are returned as a tuple. For a more practi-
cally relevant example of multiple return values, say we want to implement a
mathematical function so that both the function value and its derivative are
returned. Consider, for instance, the simple physics formula that describes
the height of an object in vertical motion; y(t) = v0t + (1/2)gt2, where v0 is
the initial velocity, g is the gravitational constant, and t is time. The deriva-
tive of the function is y′(t) = v0 −gt, and we can implement a Python function
that returns both the function value and the derivative:

def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

42 4 Functions and Branching

call:
position, velocity = yfunc(0.6, 3)

As above, the return arguments are separated by a comma, and we assign
the values to the two global variables position and velocity, also separated
by a comma. When a function returns multiple values like this, it actually
returns a tuple, the immutable list type defined in the previous chapter. We
could therefore replace the call above with something like the following:

pos_vel = yfunc(0.6,3)
print(pos_vel)
print(type(pos_vel))

(0.034199999999999786, -2.886)
<class ’tuple’>

We see that the function returns a tuple with two elements. In the previous
call, when we included a comma-separated list of variable names on the left-
hand side (i.e., position, velocity), Python would unpack the elements in
the tuple into the corresponding variables. For this unpacking to work, the
number of variables must match the length of the tuple; otherwise, we obtain
an error message stating that there are too many or not enough values to
unpack.

A function can return any number of arguments, separated by commas
exactly as above. Here we have three:

def f(x):
return x, x**2, x**4

s = f(2)
print(type(s), s)
x, x2, x4 = s

Notice the last line, where a tuple of length 3 is unpacked into three individual
variables.

Example: A function to compute a sum. For a more relevant function
example, of a kind that will arise frequently in this book, consider the sum

L(x;n) =
n∑

i=1

xi

i
,

which is an approximation to − ln(1 − x) for a finite n and |x| < 1. The
corresponding Python function for L(x;n) looks like

def L(x,n):
s = 0
for i in range(1,n+1):

s += x**i/i

return s

4.2 Function Arguments and Local Variables 43

#example use
x = 0.5
from math import log
print(L(x, 3), L(x, 10), -log(1-x))

The output from the print statement indicates that the approximation im-
proves as the number of terms n is increased, as is usual for such approxi-
mating series. For many purposes, it would be useful if the function returned
the error of the approximation, that is, − ln(1 − x) − L(x;n), in addition to
the value of the sum:

from math import log

def L2(x, n):
s = 0
for i in range(1,n+1):

s += x**i/i
value_of_sum = s

error = -log(1-x) - value_of_sum
return value_of_sum, error

typical call:
x = 0.8; n = 10
value, error = L2(x, n)

A function does not need a return statement. All the functions con-
sidered so far have included a return statement. While this will be the case
for most of the functions we write in this course, there will be exceptions,
and a function does not need to have a return statement. For instance, some
functions only serve the purpose of printing information to the screen, as in

def somefunc(obj):
print(obj)

return_value = somefunc(3.4)

Here, the last line does not make much sense, although it is actually valid
Python code and will run without errors. If somefunc does not return any-
thing, how can we then call the function and assign the result to a variable? If
we do not include a return statement in a function, Python will automatically
return a variable with value None. The value of the variable return_value in
this case will therefore be None, which is not very useful, but serves to illus-
trate the behavior of a function with no return statement. Most functions we
will write in this course will either return variables or print or plot something
to the screen. One typical use of a function without a return value is to print
information in a tabular format to the screen. This is useful in many contexts,
including studying the convergence of series approximations such as the one
above. The following function calls the L2(x,n) function defined above, and
uses a for loop to print relevant information in a nicely formatted table:

44 4 Functions and Branching

def table(x):
print(f’x={x}, -ln(1-x)={-log(1-x)}’)
for n in [1, 2, 10, 100]:

value, error = L2(x, n)
print(f’n={n:4d} approx: {value:7.6f}, error: {error:7.6f}’)

table(0.5)

x=0.5, -ln(1-x)=0.6931471805599453
n= 1 approx: 0.500000, error: 0.193147
n= 2 approx: 0.625000, error: 0.068147
n= 10 approx: 0.693065, error: 0.000082
n= 100 approx: 0.693147, error: 0.000000

This function does not need to return anything, since entire purpose is to
print information to the screen.

4.3 Default Arguments and Doc Strings

When we used the range-function in the previous chapter, we saw that we
could vary the number of arguments in the function call from one to three, and
the non-specified arguments would be assigned default values. We can achieve
the same functionality in our own functions, by defining default arguments
in the function definition:

def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
print(arg1, arg2, kwarg1, kwarg2)

A function defined in this way can be called with two, three, or four argu-
ments. The first two have no default value and must therefore be included in
the call, while the last two are optional and will be set to the default value if
not specified in the call. In texts on Python programming, default arguments
are often referred to as keyword arguments, although these terms do not mean
exactly the same thing. They are, however, closely related, which is why the
terms are sometimes used interchangeably. Just as we cannot have keyword
arguments preceding positional arguments in a function call, we cannot have
default arguments preceding non-default arguments in the function header.
The following code demonstrates uses of the alternative function calls for a
useless but illustrative function. Testing a simple function such as the follow-
ing, which does nothing but print out the argument values, is a good way to
understand the implications of default arguments and the resulting flexibility
in argument lists:

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print(arg1, arg2, kwarg1, kwarg2)

>>> somefunc(’Hello’, [1,2]) # drop kwarg1 and kwarg2

4.3 Default Arguments and Doc Strings 45

Hello [1, 2] True 0 # default values are used

>>> somefunc(’Hello’, [1,2], ’Hi’)
Hello [1, 2] Hi 0 # kwarg2 has default value

>>> somefunc(’Hello’, [1,2], ’Hi’, 6)
Hello [1, 2] Hi 0 # kwarg2 has default value

>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’) #kwarg2
Hello [1, 2] True Hi # kwarg1 has default value

>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’, kwarg1=6)
Hello [1, 2] 6 Hi # specify all args

Using what we now know about default arguments, we can improve the func-
tion considered above, which implements the formula

y(t) = v0t− 1
2gt2.

Here, it could be natural to think of t as the primary argument to the func-
tion, which should always be provided, while v0 and possibly also g could be
provided as default arguments. The function definition in Python could read

def yfunc(t, v0=5, g=9.81):
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

#example calls:
y1, dy1 = yfunc(0.2)
y2, dy2 = yfunc(0.2,v0=7.5)
y3, dy3 = yfunc(0.2,7.5,10.0)

Documentation of Python functions. An important Python convention
is to document the purpose of a function, its arguments, and its return values
in a doc string - a (triple-quoted) string written immediately after the func-
tion header. The doc string can be long or short, depending on the complexity
of the function and its inputs and outputs. The following two examples show
how a doc string can be used:

def amount(P, r, n):
"""Compute the growth of an investment over time."""
a = P*(1+r/100.0)**n
return a

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).

46 4 Functions and Branching

x1, y1: another point on the line (floats).
return: a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/(x1 - x0)
b = y0 - a*x0
return a, b

Doc strings do not take much time to write, and are very useful for others who
want to use the function. A widely accepted convention in the Python com-
munity, doc strings are also used by various tools for automatically generating
nicely formatted software documentation. Much of the online documentation
of Python libraries and modules is automatically generated from doc strings
included in the code.

4.4 If-Tests for Branching the Program Flow

In computer programs we often want to perform different actions depending
on a condition. As usual, we can find a similar concept in mathematics that
should be familiar to most readers of this book. Consider a function defined
in a piecewise manner, for instance,

f(x) =
{

sinx, 0 ≤ x ≤ π
0, otherwise

The Python implementation of such a function needs to test the value of the
input x, and return either zero or sin(x) depending on the outcome. Such
a decision in the program code is called branching and is obtained using an
if-test, or, more generally, an if-else block. The code looks like

from math import sin, pi

def f(x):
if 0 <= x <= pi:

return sin(x)
else:

return 0

print(f(0.5))
print(f(5*pi))

The new item here is the if-else block. An if-test is simply constructed by
the keyword if followed by a Boolean variable or expression, and then a
block of code which is to be executed if the condition is true. When the if-
test is reached in the function above, the Boolean condition is tested, just
as for the while loops in the previous chapter. If the condition is true, the
following block of indented code is executed (in this case, just one line); if
not, the indented code block after else is executed. You might also notice

4.4 If-Tests for Branching the Program Flow 47

that, unlike the functions seen so far, this function has two return statements.
This is perfectly valid and is quite common in functions with if-tests. When
a return statement is executed, the function call is over and any following
lines in the function are simply ignored. Therefore, there is usually no point
in having multiple return statements unless they are combined with if-tests,
since, if the first one is always executed the others will never be reached.

Sometimes we just want a piece of code to be executed if a condition is
true, and to do nothing otherwise. In such cases, we can skip the else block
and define only an if-test:

if condition:
<block of statements, executed if condition is True>

<next line after if-block, always executed>

Here, whatever is inside the if-block is executed if condition is true, other-
wise the program simply moves to the next line after the block. As above,
we can add an else-block to ensure that exactly one of two code blocks is
executed

if condition:
<block of statements, executed if condition is True>

else:
<block of statements, executed if condition is False>

For mathematical functions of the form considered above we usually want to
include an else-block, since we want the function to return a meaningful value
for all input arguments. Forgetting the else-block in the definition f(x) above
would make the function return sin(x) (a float) for 0 ≤ x ≤ π, and otherwise
None, which is obviously not what we want. Finally, we cans combine multiple
if-else statements with different conditions

if condition1:
<block of statements>

elif condition2:
<block of statements>

elif condition3:
<block of statements>

else:
<block of statements>

<next statement>

Notice the keyword elif, short for else if, which ensures that that subse-
quent conditions are only tested only if the preceding ones are False. The
conditions are checked one by one and, as soon as one is evaluated as true,
the corresponding block is executed and the program moves to the first state-
ment after the else block. The remaining conditions are not checked. If none
of the conditions is true, the code inside the else block is executed.

Multiple branching has useful applications in mathematics, since we often
see piecewise functions defined on multiple intervals. Consider for instance
the piecewise linear function

48 4 Functions and Branching

N(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0
x, 0 ≤ x < 1
2−x, 1 ≤ x < 2
0, x ≥ 2

.

which in Python can be implemented with multiple if-else-branching

def N(x):
if x < 0:

return 0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0

In later chapters we will see multiple examples of more general use of branch-
ing, not restricted to mathematics or piecewise-defined functions.

Inline if-tests for shorter code. The list comprehensions in Chapter 3
offered a more compact alternative to the standard way of defining lists, and
a similar alternative exists for if-tests. A common use of if-else blocks is to
assign a value to a variable, where the value depends on some condition, just
as in the examples above. The general form looks like

if condition:
variable = value1

else:
variable = value2

This code can be replaced by the following one-line if-else block:

variable = (value1 if condition else value2)

Using this compact notation, we can write the example from the start of this
section as

def f(x):
return (sin(x) if 0 <= x <= pi else 0)

4.5 Functions as Arguments to Functions

Arguments to Python functions can be any Python object, including another
function. This functionality is quite useful for many scientific applications,
where we need to define mathematical functions that operate on or make use
of other mathematical functions. For instance, we can easily write Python
functions for numerical approximations of integrals

∫ b
a f(x)dx, derivatives

f ′(x), and roots f(x) = 0. For such functions to be general and useful, they

4.5 Functions as Arguments to Functions 49

should work with an arbitrary f(x), which is most conveniently accomplished
by passing a Python function f(x) as an argument to the function.

Consider the example of approximating the second derivative f ′′(x) by
centered finite differences,

f ′′(x) ≈ f(x−h)−2f(x)+f(x+h)
h2 .

The corresponding Python function looks like

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

We see that the function f is passed to the function just as any other argu-
ment, and is called as a regular function inside diff2. Of course, for this to
work, we need to actually send a callable function as the first argument to
diff2. If we send something else, like a number or a string, the code will stop
with an error when it tries to make the call f(x-h) in the next line. Such
potential errors are part of the price we pay for Python’s flexibility. We can
pass any argument to a function, but the object we pass must be possible to
use as intended inside the function. As noted above, for more complex func-
tions, it is useful to include a doc string that specifies the types of arguments
the function expects.
Lambda functions for compact inline function definitions. In order
to use the function diff2 above, one would standardly define our f(x) as a
Python function, and then pass it as an argument to diff2. The following
code shows an example:

def f(x):
return x**2 - 1

df2 = diff2(f,1.5)
print(df2)

The concept known as a lambda function offers a compact way to define
functions, which can be convenient for the present application. Using the
keyword lambda, we can define our f on a single line, as follows:

f = lambda x: x**2 - 1

More generally, a lambda function defined by

somefunc = lambda a1, a2, ...: some_expression

is equivalent to

def somefunc(a1, a2, ...):
return some_expression

It could be natural to ask whether anything is really gained here, and whether
it is useful to introduce a new concept just to reduce a function definition

50 4 Functions and Branching

from two lines to one line. One answer is that the lambda function definition
can be placed directly in the argument list of the other function. Instead of
first defining f(x) and then passing it as an argument, as in the code above,
we can combine these tasks into one line:

df2 = diff2(lambda x: x**2-1,1.5)
print(df2)

Using lambda functions in this way can be quite convenient in cases in which
we need to pass a simple mathematical expression as an argument to a Python
function. We save some typing, and could also improve the code’s readability.

4.6 Solving Equations with Python Functions

Solving equations of the form f(x) = 0 is a frequently occuring task in all
branches of science and engineering. For special cases, such as a linear or
quadratic f , we have simple formulas that give us the solution directly. In
the general case, however, the equation cannot be solved analytically, and we
need to find an approximate solution using numerical methods. We shall see
that we can create powerful and flexible tools for equation solving based on
the building blocks introduced so far. Specifically, we will combine functions
and function arguments with the while loop introduced in Chapter 3.

Finding roots on an interval with the bisection method. One of the
simplest algorithms for solving equations of the form f(x) = 0 is called the
bisection method. This method is founded on the intermediate value theorem,
which states that, if a continuous function changes sign on an interval [a,b]
then there must be a value x ∈ [a,b] such that f(x) = 0. In the bisection
method we start by choosing an interval [a,b] on which f changes sign (i.e.,
f(a)f(b) < 0), and then compute the midpoint m = (a + b)/2 and check the
sign of f(m). If f changes sign on [a,m] then we repeat the process on the
interval [a,m]; otherwise, we choose [m,b] as our new interval and repeat the
process there. These steps are conveniently implemented as a while loop, and
we can create a generic tool by placing the while loop inside a function that
takes a function as argument:

from math import exp

def bisection(f,a,b,tol= 1e-3):
if f(a)*f(b) > 0:

print(f’No roots or more than one root in [{a},{b}]’)
return

m = (a+b)/2

while abs(f(m)) > tol:
if f(a)*f(m) < 0:

4.6 Solving Equations with Python Functions 51

b = m
else:

a = m
m = (a+b)/2

return m

#call the method for f(x)= x**2-4*x+exp(-x)
f = lambda x: x**2-4*x+exp(-x)
sol = bisection(f,-0.5,1,1e-6)

print(f’x = {sol:g} is an approximate root, f({sol:g}) = {f(sol):g}’)

We see that the bisection function takes four arguments: the mathematical
function f(x) implemented as a Python function, the bounds for our initial
interval, and the tolerance for the approximate solution. The first if-test of
the function simply checks that f changes sign in [a,b], which ensures that the
function has at least one root on the interval. We then proceed to define the
midpoint m and enter the while-loop, which forms the core of the algorithm.
This loop will continue running as long as abs(f(m)) > tol (otherwise m is
our solution), repeatedly checking whether f changes sign on [a,m] or [m,b],
and then calculating a new m to repeat the process on an interval of half the
size.
Newton’s method gives faster convergence. The bisection method con-
verges quite slowly, and other methods are far more popular for solving non-
linear equations. In particular, numerous varieties of Newton’s method are
widely used in practice. Newton’s method is based on a local linearization of
the non-linear function f(x). Starting with an initial guess x0, we replaces
f(x) by a linear function g(x) that satisfies g(x) ≈ f(x) in a small interval
around x0. Then, we solve the equation g(x) = 0 to find an updated guess
x1, and repeat the process of linearization around that point. Repeated ap-
plication of these steps converges quickly towards the true solution, provided
that the initial guess x0 is sufficiently close. In mathematics, one step of the
algorithm looks like

xn+1 = xn − f(xn)
f ′(xn) ,

where xn is the solution after n iterations, xn+1 is the improved approxima-
tion, and f ′(xn) is the derivative of f in xn.

Just as the bisection method, Newton’s method is easy to implement in
a while loop, and we can implement it as a generic function that takes a
Python function implementing f(x) as argument. The function will also need
f ′(x), since this is used in the algorithm, as well as an initial guess x0 and a
tolerance:

from math import exp

def Newton(f, dfdx, x0, tol= 1e-3):
f0 = f(x0)
while abs(f0) > tol:

52 4 Functions and Branching

x1 = x0 - f0/dfdx(x0)
x0 = x1
f0 = f(x0)

return x0

#call the method for f(x)= x**2-4*x+exp(-x)
f = lambda x: x**2-4*x+exp(-x)
dfdx = lambda x: 2*x-4-exp(-x)

sol = Newton(f,dfdx,0,1e-6)

print(f’x = {sol:g} is an approximate root, f({sol:g}) = {f(sol):g}’)

Notice how the x0 variable is updated inside the loop. The algorithm only
needs to know the value at one iteration to compute the next one, so for each
iteration we update x0 to hold the most recent approximation, and then use
this to compute the next one. Note also that the implementation provided
here is not very robust, and if the method does not converge, it will simply
continue in an infinite loop. One simple way to improve the implementation
is to stop the method after a given number of iterations:

from math import exp

def Newton2(f, dfdx, x0, max_it=20, tol= 1e-3):
f0 = f(x0)
iter = 0
while abs(f0) > tol and iter < max_it:

x1 = x0 - f0/dfdx(x0)
x0 = x1
f0 = f(x0)
iter += 1

converged = iter < max_it
return x0, converged, iter

#call the method for f(x)= x**2-4*x+exp(-x)
f = lambda x: x**2-4*x+exp(-x)
dfdx = lambda x: 2*x-4-exp(-x)

sol, converged, iter = Newton2(f,dfdx,0,tol=1e-3)

if converged:
print(f’Newtons method converged in {iter} iterations’)

else:
print(f’The method did not converge’)

Newton’s method usually converges much faster than the bisection method,
but has the disadvantage the function f needs to be manually differentiated.
In Chapter 8 we will see some examples of how this step can be avoided.

4.7 Writing Test Functions to Verify our Programs 53

4.7 Writing Test Functions to Verify our
Programs

In the first part of this chapter, we mentioned the idea of writing tests to
verify that functions work as intended. This approach to programming can be
very effective, and although we spend some time writing the tests, we often
save much more time by the fact that we discover errors early, and can build
our program from components that are known to work. The process is often
referred to as unit testing, since each test verifies that a small unit of the
program works as expected. Many programmers even take the approach one
step further and write the test before they write the actual function. This
approach is often referred to as test-driven development and is an increasingly
popular method for software development.

The tests we write to test our functions are also functions, a special type
of function known as test functions. Writing good test functions, which test
the functionality of our code in a reliable manner, can be quite challenging;
however, the overall idea of test functions is very simple. For a given function,
which often takes one or more arguments, we choose arguments such that we
can calculate the result of the function by hand. Inside the test function,
we then simply call our function with the right arguments and compare the
result returned by the function with the expected (hand-calculated) result.
The following example illustrates how we can write a test function to test
that the (very) simple function double(x) works as it should:

def double(x): # some function
return 2*x

def test_double(): # associated test function
x = 4 # some chosen x value
expected = 8 # expected result from double(x)
computed = double(x)
success = computed == expected # Boolean value: test passed?
msg = f’computed {computed}, expected {expected}’
assert success, msg

In this code, the only Python keyword that we have not seen previously is
assert, which is used instead of return whenever we write a test function.
Test functions should not return anything, so a regular return statement
would not make sense. The only purpose of the test function is to compare
the value returned by a function with the value we expect it to return, and
to write an error message if the two are different. This task is precisely what
assert does. The keyword assert should always be followed by a condi-
tion, success in the code above, that is true if the test passes and false if
it fails. The code above follows the typical recipe; we compare the expected
with the returned result in computed == expected, which is a Boolean ex-
pression returning true or false. This value is then assigned to the variable
success, which is included in the assert statement. The last part of the

54 4 Functions and Branching

assert statement, the text string msg, is optional and is simply included to
give a more meaningful error message if the test fails. If we leave this out, and
only write assert success, we will see a general message stating that the
test has failed (a so-called assertion error), but without much information
about what actually went wrong.

Some rules should be observed when writing test functions:

• The test function must have at least one statement of the type assert
success, where success is a Boolean variable or expression, which is true
if the test passed and false otherwise. We can include more than one assert
statement if we want, but we always need at least one.

• The test function should take no arguments. The function to be tested
will typically be called with one or more arguments, but these should be
defined as local variables inside the test function.

• The name of the function should always be test_, followed by the name
of the function we want to test. Following this convention is useful because
it makes it obvious to anyone reading the code that the function is a test
function, and it is also used by tools that can automatically run all test
functions in a given file or directory. More about this is discussed below.

If we follow these rules, and remember the fundamental idea that a test func-
tion simply compares the returned result with the expected result, writing
test functions does not have to be complicated. In particular, many of the
functions we write in this course will evaluate some kind of mathematical
function and then return either a number or a list/tuple of numbers. For this
type of function, the recipe for test functions is quite rigid, and the structure
is usually exactly the same as in the simple example above.

If you are new to programming, it can be confusing to be faced with
a general task such as "write a test function for the Python function
somefunc(x,y)," and it is natural to ask questions about what arguments the
function should be tested for and how you can know what the expected values
are. In such cases it is important to remember the overall idea of test func-
tions, and also that these are choices that must be made by the programmer.
You have to choose a set of suitable arguments, then calculate or otherwise
predict by hand what the function should return for these arguments, and
write the comparison in the test function.

A test function can include multiple tests. We can have multiple assert
statements in a single test function. This can be useful if we want to test a
function with different arguments. For instance, if we write a test function
for one of the piecewise-defined mathematical functions considered earlier in
this chapter, it would be natural to test all the separate intervals on which
the function is defined. The following code illustrates how this can be done:

from math import sin, pi

def f(x):
if 0 <= x <= pi:

4.7 Writing Test Functions to Verify our Programs 55

return sin(x)
else:

return 0

def test_f():
x1, exp1 = -1.0, 0.0
x2, exp2 = pi/2, 1.0
x3, exp3 = 3.5, 0.0

tol = 1e-10
assert abs(f(x1)-exp1) < tol, f’Failed for x = {x1}’
assert abs(f(x2)-exp2) < tol, f’Failed for x = {x2}’
assert abs(f(x3)-exp3) < tol, f’Failed for x = {x3}’

Note here that, since we compare floating point numbers, which have finite
precision on a computer, we compare with a tolerance rather than the equality
==. The tolerance tol is some small number, chosen by the programmer,
that is small enough that we would consider a di�erence of this magnitude
insignificant, but greater than the machine precision (¥ 10≠16). In practice,
comparing floats using == will quite often work, but sometimes it fails and it
is impossible to predict when this will happen. The code therefore becomes
unreliable, and it is much safer to compare with a tolerance. On the other
hand, when we work with integers , we can always use ==.

One could argue that the test function code above is quite inelegant and
repetitive, since we repeat the same lines multiple times with very minor
changes. Since we only repeat three lines, it might not be a big deal in this
case, but if we included more assert statements it would certainly be both
boring and error-prone to write code in this way. In the previous chapter, we
introduced loops as a much more elegant tool f or performing such repetitive
tasks. Using lists and a for loop, the example above can be written as follows:
from math import sin, pi

def f(x):
if 0 <= x <= pi:

return sin(x)
else:

return 0

def test_f():
x_vals = [-1, pi/2, 3.5]
exp_vals = [0.0, 1.0, 0.0]
tol = 1e-10
for x, exp in zip(x_vals, exp_vals):

assert abs(f(x)-exp) < tol, \
f’Failed for x = {x}, expected {exp}, but got {f(x)}’

Python tools for automatic testing. An advantage of following the nam-
ing convention for test functions defined above is that there are tools that
can be used to automatically run all the test functions in a file or folder
and report if any bug has sneaked into the code. The use of such automatic
testing tools is essential in larger development projects with multiple people

56 4 Functions and Branching

working on the same code, but can also be quite useful for your own projects.
The recommended and most widely used tool is called pytest or py.test,
where pytest is simply the new name for py.test. We can run pytest from
the terminal window, and pass it either a file name or a folder name as an
argument, as in

Terminal

Terminal> pytest .
Terminal> pytest my_python_project.py

If we pass it a file name, pytest will look for functions in this file with a name
starting with test_, as specified by the naming convention above. All these
functions will be identified as test functions and called by pytest, regardless
of whether the test functions are actually called from elsewhere in the code.
After execution, pytest will print a short summary of how many tests it
found, and how many that passed and failed.

For larger software projects, it might be more relevant to give a directory
name as argument to pytest, as in the first line above. In this case, the
tool will search the given directory (here ., the directory we are currently
in) and all its sub-directories for Python files with names starting or ending
with test (e.g., test_math.py, math_test.py, etc.). All these files will be
searched for test functions following the naming convention, and these will
be run as above. Large software projects typically have thousands of test
functions, and it is very convenient to collect them in a separate file and use
automatic tools such as pytest. For the smaller programs we write in this
course, it can be just as easy to write the test functions in the same file as
the functions being tested.

It is important to remember that test functions run silently if the test
passes; that is, we only obtain an output if there is an assertion error, other-
wise nothing is printed to the screen. When using pytest we are always given
a summary specifying how many tests were run, but if we include calls to the
test functions directly in the .py file, and run this file as normal, there will
be no output if the test passes. This can be confusing, and one is sometimes
left wondering if the test was called at all. When first writing a test function,
it can be useful to include a print-statement inside the function, simply to
verify that the function is actually called. This statement should be removed
once we know the function works correctly and as we become used to how
the test functions work.
Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

Chapter 5
User Input and Error Handling

So far, all the values we have assigned to variables have been written directly
into our programs. If we want a different value of a variable, we need to
edit the code and rerun the program. Of course, this is not how we are
used to interacting with computer programs. Usually, a program will receive
some input from users, most often through a graphical user interface (GUI).
However, although GUIs dominate in modern human–computer interaction,
other ways of interacting with computer programs can be just as efficient
and, in some cases, far more suitable for processing large amounts of data
and automating repetitive tasks. In this chapter we will show how we can
extend our programs with simple yet powerful systems for user input. In
particular, we will see how a program can receive command line arguments
when it is run, how to make a program stop and ask for user input, and how
a program can read data from files.

A side effect of allowing users to interact with programs is that things
will often go wrong. Users will often provide the wrong input, and programs
should be able to handle such events without simply stopping and writing
a cryptic error message to the screen. We will introduce a concept known
as exception handling, which is a widespread system for handling errors in
programs, used in Python and many other programming languages.

Finally, in this chapter, we shall see how to create our own modules that
can be imported for use in other programs, just as we have done with the
math module in previous chapters.

5.1 Reading User Input Data

So far, we have implemented various mathematical formulas that involved
input variables and parameters, but all of these values have been hard-coded
into the programs. To introduce a new example, consider the following for-
mula, which gives an estimate of the atmospheric pressure p as a function of

57J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_5

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_5&domain=pdf

58 5 User Input and Error Handling

altitude h:
p = p0e−h/h0 ,

where p0 is the pressure at sea level (≈ 100 kPa) and h0 is the so-called scale
height (≈ 8.4km). A Python program for evaluating this formula could look
like

from math import exp

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

h = 8848
p = p0 * exp(-h/h0)
print(p)

Of course, we are usually interested in evaluating the formula for different
altitudes, which, in this code, would require editing the line h = 8848 to
change the respective variable, and then rerunning the program. This solution
could be acceptable for programs we write and use ourselves, but it is not how
we are used to interacting with computers. In particular, if we write programs
that could be used by others, editing the code this way is inconvenient and
can easily introduce errors.

For our programs to be robust and usable, they need to be able to read
relevant input data from the user. We will consider three different ways to
accomplish this, each with its strengths and weaknesses. We will (i) create
programs that stop and ask for user input, and then continue the execution
when the input is received; (ii) enable our programs to receive command line
arguments, that is, arguments provided when we run the program from the
terminal; and (iii) make the programs read input data from files.
Obtaining input from questions and answers. A natural extension of
this program is to allow it to ask the user for a value of h, and then compute
and output the corresponding atmospheric pressure. A Python function called
input provides exactly this functionality. For instance a line such as

input(’Input the altitude (in meters):’)

will make the program stop and display the text Input the altitude (in
meters): in the terminal, and then continue when the user presses Enter.
The complete code could look like

from math import exp

h = input(’Input the altitude (in meters):’)
h = float(h)

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

p = p0 * exp(-h/h0)
print(p)

5.1 Reading User Input Data 59

Running the program in a terminal window could look like:

Terminal

Terminal> python altitude.py
Input the altitude (in meters): 2469
74.53297273796525

Notice in particular the line h = float(h), which is an example of the type
conversions mentioned in Chapter 2. The input function will always return a
text string, which must be converted to an actual number before we can use it
in computations. Forgetting this line in the code above will lead to an error in
the line that calculates amount, since we would by trying to multiply a string
with a float. From these considerations, we can also imagine how easy it is
to break the program above. The user can type any string, or simply press
enter (which makes h an empty string), but the conversion h = float(h)
only works if the string is a number.

As another example, consider a program that asks the user for an integer
n and prints the n first even numbers:

n = int(input(’n=? ’))

for i in range(1, n+1):
print(2*i)

Here we convert the input text using int(...), since the range function
only accepts integer arguments. Just as in the example above, the code is not
very robust, since it will break from any input that cannot be converted to
an integer. Later in this chapter we will look at ways to handle such errors
and make the programs more robust.
Command line arguments are words written after the program
name. When working in a Unix-style terminal window (e.g., Mac, Linux,
Windows PowerShell), we often provide arguments when we run a command.
These arguments can be names of files or directories, for example, when copy-
ing a file with cp, or they can change the output from the command, such as
ls -l to obtain more detailed output from the ls command. Anyone who is
used to working in Unix-style terminals will be familiar with commands like
these:

Terminal

Terminal> cp -r yourdir ../mydir
Terminal> ls -l
terminal> cd ../mydir

Some commands require arguments – for instance, you receive an error mes-
sage if you do not give two arguments to cp – while other arguments are
optional. Standard Unix programs make heavy use of command line argu-
ments, (try, for instance, typing man ls), because they are a very efficient

60 5 User Input and Error Handling

way of providing input and modifying program behavior. We will make our
Python programs do the same, and write programs that can be run as

Terminal

Terminal> python myprog.py arg1 arg2 arg3 ...

where arg1 arg2 arg3, and so forth are input arguments to the program.
We again consider the air pressure calculation program above, but now we

want the altitude to be specified as a command line argument rather than
obtained by stopping and asking for input. For instance, we want to run the
program as followss:

Terminal

Terminal> python altitude_cml.py 2469
74.53297273796525

To use command line arguments in a Python program, we need to import
a module named sys. More specifically, the command line arguments, or,
in reality, any words we type after the command python altitude.py, are
automatically stored in a list named sys.argv (short for argument values)
and can be accessed from there:

import sys
from math import exp

h = sys.argv[1]
h = float(h)

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

p = p0 * exp(-h/h0)
print(p)

Here, we see that we pull out the element with index one from the sys.argv
list, and convert it to a float. Just as the input provided with the input
function above, the command line arguments are always strings and need
to be converted to floats or integers before they are used in computations.
The sys.argv variable is simply a list that is created automatically when
your Python program is run. The first element, sys.argv[0] is the name
of the .py-file containing the program. The remainder of the list is made
up of whatever words we type after the program filename. Words separated
by a space become separate elements in the list. A nice way to gain a feel
for the use of sys.argv is to test a simple program that will just print out
the contents of the list, for instance, by writing this simple code into the file
print_cml.py:

import sys
print(sys.argv)

5.2 Flexible User Input with eval and exec 61

Running this program in different ways illustrates how the list works; for
instance,

Terminal

Terminal> python print_cml.py 21 string with blanks 1.3
[’print_cml.py’, ’21’, ’string’, ’with’, ’blanks’, ’1.3’]

Terminal> python print_cml.py 21 "string with blanks" 1.3
[’print_cml.py’, ’21’, ’string with blanks’, ’1.3’]

We see from the second example that, if we want to read in a string containing
blanks as a single command line argument, we need to use quotation marks
to override the default behavior of each word being treated as a separate list
element.

5.2 Flexible User Input with eval and exec

Generally, the safest way to handle input data in the form of text strings is
to convert it to the specific variable type needed in the program. We did this
above, using the type conversions int(...) and float(...), and we will
see below how such conversions can be made failproof and handle imporper
user input. However, Python also offers a couple of more flexible functions
to handle input data, namely, eval and exec, which are nice to know about.
Extensive use of these functions is not recommended, especially not in larger
programs, since the code can become messy and error-prone. However, they
offer some flexible and fun opportunities for handling input data. Starting
with eval, this function simply takes a string s as input and evaluates it as a
regular Python expression, just as if it were written directly into the program.
Of course, s must be a legal Python expression, otherwise the code stops
with an error message. The following interactive Python session illustrates
how eval works:

>>> s = ’1+2’
>>> r = eval(s)
>>> r
3
>>> type(r)
<type ’int’>

>>> r = eval(’[1, 6, 7.5] + [1, 2]’)
>>> r
[1, 6, 7.5, 1, 2]
>>> type(r)
<type ’list’>

62 5 User Input and Error Handling

Here, the line r = eval(s) is equivalent to writing r = 1+2, but using eval
gives much more flexibility, of course, since the string is stored in a variable
and can be read as input.

A small Python program using eval can be quite flexible. Consider, for
instance, the following code

i1 = eval(input(’operand 1: ’))
i2 = eval(input(’operand 2: ’))
r = i1 + i2
print(f’{type(i1)} + {type(i2)} becomes {type(r)} with value{r}’)

This code can handle multiple input types. If we save the code in a file
add_input.py and run it from the terminal, we can, for instance, add integer
and float numbers, as in:

Terminal

Terminal> python add_input.py
operand 1: 1
operand 2: 3.0
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 4

or two lists, as follows:

Terminal

Terminal> python add_input.py
operand 1: [1,2]
operand 2: [-1,0,1]
<type ’list’> + <type ’list’> becomes <type ’list’>
with value [1, 2, -1, 0, 1]

We could achieve similar flexibility with conventional type conversion, that
is, using float(i1), int(i1), and so on, but that would require much more
programming to correctly process the input strings. The eval function makes
such flexible input handling extremely compact and efficient, but it also
quickly breaks if the input is slightly wrong. Consider the following examples:

Terminal

Terminal> python add_input.py
operand 1: (1,2)
operand 2: [3,4]
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: can only concatenate tuple (not "list") to tuple

Terminal> python add_input.py

5.2 Flexible User Input with eval and exec 63

operand 1: one
Traceback (most recent call last):

File "add_input.py", line 1, in <module>
i1 = eval(input(’operand 1: ’))

File "<string>", line 1, in <module>
NameError: name ’one’ is not defined

In the first of these examples, we try to add a tuple and a list, which one
could easily imagine would work, but Python does not allow this and there-
fore the program breaks. In the second example, we try to make the program
add two strings, which usually works fine; for instance "one" +"one" be-
comes the string "oneone". However, the eval function breaks when we try
to input the first string. To understand why, we need to think about what
the corresponding line really means. We try to make the assignment i1 =
eval(’one’), which is equivalent to writing i1 = one, but this line does
not work unless we have already defined a variable named one. A remedy to
this problem is to input the strings with quotation marks, as in the following
example

Terminal

Terminal> python add_input.py
operand 1: "one"
operand 2: "two"
<class ’str’> + <class ’str’> becomes <class ’str’>
with value onetwo

These examples illustrate the benefits of the eval function, and also how it
easily breaks programs and is generally not recommended for "real programs".
It is useful for quick prototypes, but should usually be avoided in programs
that we expect others to use or that we expect to use ourselves over a longer
time frame.

The other "magic" text handling function is named exec, and it is fairly
similar to eval. However, whereas eval evaluates an expression, exec exe-
cutes a string argument as one or more complete statements. For instance,
if we define a string s = "r = 1+1", eval(s) is illegal, since the value of s
("r = 1+1") is a statement (an assignment), and not a Python expression.
However, exec(s) will work fine and is the same as including the line r =
1+1 directly in the code. The following code illustrates the difference:

expression = ’1+1’ #store expression in a string
statement = ’r = 1+1’ # store statement in a string
q = eval(expression)
exec(statement)

print(q,r) # results are the same

64 5 User Input and Error Handling

We can also use exec to execute multiple statements, for instance using
multi-line strings:

somecode = """
def f(t):

term1 = exp(-a*t)*sin(w1*x)
term2 = 2*sin(w2*x)
return term1 + term2

"""
exec(somecode) # execute the string as Python code

Here, the exec line will simply execute the string somecode, just as if we had
typed the code directly in our program. After the call to exec we have de-
fined the function f(t) and can call this function in the usual way. Although
this example does not seem very useful, the flexibility of exec becomes more
apparent if we combine it with actual user input. For instance, consider the
following code, which asks the user to type a mathematical expression in-
volving x and then embeds this expression in a Python function:

formula = input(’Write a formula involving x: ’)
code = f"""
def f(x):

return {formula}
"""
from math import * # make sure we have sin, cos, log, etc.
exec(code) # turn string formula into live function

#Now the function is defined, and we can ask the
#user for x values and evaluate f(x)
x = 0
while x is not None:

x = eval(input(’Give x (None to quit): ’))
if x is not None:

y = f(x)
print(f’f({x})={y}’)

While the program is running, the user is first asked to type a formula, which
becomes a function. Then the user is asked to input x values until the answer
is None, and the program evaluates the function f(x) for each x. The program
works even if the programmer knows nothing about the user’s choice of f(x)
when the program is written, which demonstrates the flexibility offered by
the exec and eval functions.

To consider another example, say, we want to create a program diff.py
that evaluates the numerical derivative of a mathematical expression f(x)
for a given value of x. The mathematical expression and the x value will be
given as command line arguments. The program could be used as follows:

Terminal

Terminal> python diff.py ’exp(x)*sin(x)’ 3.4
Numerical derivative: -36.6262969164

5.3 Reading Data from Files 65

The derivative of a function f(x) can be approximated with a centered finite
difference:

f ′(x) ≈ f(x+h)−f(x−h)
2h

,

for some small h. The implementation of the diff.py program could look
like

from math import *
import sys

formula = sys.argv[1]
code = f"""
def f(x):

return {formula}
"""

exec(code)
x = float(sys.argv[2])

def numerical_derivative(f, x, h=1E-5):
return (f(x+h) - f(x-h))/(2*h)

print(f’Numerical derivative: {numerical_derivative(f, x)}’)

Again we see that the flexibility of the exec function enables us to implement
fairly advanced functionality in a very compact program.

5.3 Reading Data from Files

Scientific data are often available in files, and reading and processing data
from files have always been important tasks in programming. The data science
revolution that we have witnessed in recent years has only increased their
importance further, since all data analysis starts with being able to read
data from files and store them in suitable data structures. To start with a
simple example, consider a file named data.txt containing a single column
of numbers:

21.8
18.1
19
23
26
17.8

We assume that we know in advance that there is one number per line, but
we do not know the number of lines. How can we read these numbers into a
Python program?

66 5 User Input and Error Handling

The basic way to read a file in Python is to use the function open, which
takes a file name as an argument. The following code illustrates its use:

infile = open(’data.txt’, ’r’) # open file
for line in infile:

do something with line
infile.close() # close file

Here, the first line opens the file data.txt for reading, as specified with the
letter r, and creates a file object named infile. If we want to open a file for
writing, which we will consider later, we have to use open(’data.txt’,’w’).
The default is r, so, to read a file we could also simply write infile =
open(’data.txt’). However, including the r can be a good habit, since it
makes the purpose of the line more obvious to anyone reading the code. In the
second line, we enter a regular for loop, which will treat the object infile as
a list-like object and step through the file line by line. For each pass through
the for loop, a single line of the file is read and stored in the string variable
line, and inside the for loop we add any code we want for processing this
line. When there are no more lines in the file, the for loop ends, just as when
looping over a regular list. The final line, infile.close(), closes the file
and makes it unavailable for further reading. This line is not very important
when reading from files, but it is a good habit to always include it, since it
can make a difference when writing to files.

To return to the concrete data file above, say the only processing we want
is to compute the mean value of the numbers in the file. The complete code
could look like this:

infile = open(’data.txt’, ’r’) # open file
mean = 0
lines = 0
for line in infile:

number = float(line) # line is string
mean = mean + number
lines += 1

mean = mean/lines
print(f’The mean value is {mean}’)

This is a standard way to read files in Python, but, as usual, in programming
there are multiple ways to do things. An alternative way of opening a file,
which many will consider more modern, is by using the following code:

with open(’data.txt’, ’r’) as infile: # open file
for line in infile:

do something with line

The first line, using with and as probably does not look familiar, but it
does essentially the same thing as the line infile = open(...) in the first
example. One important difference is that, if we use with we see that all file
reading and processing must be put inside an indented block of code, and the
file is automatically closed when this block has been completed. Therefore,

5.3 Reading Data from Files 67

the use of with to open files is quite popular, and you are likely to see it
in Python programs you encounter. The keyword with has other uses in
Python that we will not cover in this book, but it is particularly common
and convenient for reading files and therefore worth mentioning here.

To actually read a file after it has been opened, there are a couple of
alternatives to the approach above. For instance, we can read all the lines
into a list of strings (lines) and then process the list items one by one:

lines = infile.readlines()
infile.close()
for line in lines:

process line

This approach is very similar to the one used above, but here we are done
working directly with the file after the first line, and the for loop instead
traverses the list of strings. In practice there is not much difference. Usually,
processing files line by line is very convenient, and our good friend the for
loop makes such processing quite easy. However, for files with no natural line
structure, it can sometimes be easier to read the entire text file into a single
string:

text = infile.read()
process the string text

The data.txt file above contain a single number for each line, which is
usually not the case. More often, each line contains many data items, typically
both text and numbers, and we might want to treat each one differently. For
this purpose Python’s string type has a built-in method named split that is
extremely useful. Say we define a string variable s with some words separated
by blank spaces. Then, calling s.split() will simply return a list containing
the individual words in the string. By default, the words are assumed to be
separated by blanks, but if we want a different separator, we can pass it as
an argument to split. The following code gives some examples:

s = "This is a typical string"
csvline = "Excel;sheets;often;use;semicolon;as;separator"
print(s.split())
print(csvline.split())
print(csvline.split(’;’))

[’This’, ’is’, ’a’, ’typical’, ’string’]
[’Excel;sheets;often;use;semicolon;as;separator’]
[’Excel’, ’sheets’, ’often’, ’use’, ’semicolon’, ’as’, ’separator’]

We see that the first attempt to split the string csvline does not work very
well, since the string contains no spaces and the result is therefore a list of
length one. Specifying the correct separator, as in the last line, solves the
problem.

To illustrate the use of split in the context of file data, assume we have
a file with data on rainfall:

68 5 User Input and Error Handling

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970
Jan 81.2
Feb 63.2
Mar 70.3
Apr 55.7
May 53.0
Jun 36.4
Jul 17.5
Aug 27.5
Sep 60.9
Oct 117.7
Nov 111.0
Dec 97.9
Year 792.9

Although this data file is very small, it is a fairly typical example. Often,
there are one or more header lines with information that we are not really
interested in processing, and the remainder of the lines contain a mix of text
and numbers. How can we read such a file? The key to processing each line is
to use split to separate the two words and, for instance, store them in two
separate lists for later processing:

months = []
values = []
for line in infile:

words = line.split() # split into words
months.append(words[0])
values.append(float(words[1]))

These steps, involving a for loop and then split to process each line, will
be the fundamental recipe for all file processing throughout this book. It
is important to understand these steps properly and well worth spending
some time reading small data files and playing around with split to become
familiar with its use. To write the complete program for reading the rainfall
data, we must also account for the header line and the fact that the last line
contains data of a different type. The complete code could look like:

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
months = []
rainfall = []
for line in infile:

words = line.split() #words[0]: month, words[1]: rainfall
months.append(words[0])
rainfall.append(float(words[1]))

infile.close()
months = months[:-1] # Drop the "Year" entry
annual_avg = rainfall[-1] # Store the annual average
rainfall = rainfall[:-1] # Redefine to contain monthly data
return months, rainfall, annual_avg

months, values, avg = extract_data(’rainfall.txt’)

5.4 Writing Data to Files 69

print(’The average rainfall for the months:’)
for month, value in zip(months, values):

print(month, value)
print(’The average rainfall for the year:’, avg)

This code is merely a combination of tools and functions that we have al-
ready introduced above and in earlier chapters, so nothing is truly new. Note,
however, how we skip the first line with a single call to infile.readline(),
which will simply read the first line and move to the next one, thus being
ready to read the lines in which we are interested. If there are multiple header
lines in the file we can simply add multiple readline calls to skip whatever
we don’t want to process. Notice also how list slicing is used to remove the
yearly data from the lists. Negative indices in Python lists run backward,
starting from the last element, so annual_avg = rainfall[-1] will extract
the last value in the rainfall list and assign it to annual_avg. The list
slicing months[:-1], rainfall[:-1] will extract all elements from the lists
up to, but not including the last one, thereby removing the yearly data from
both lists.

5.4 Writing Data to Files

Writing data to files follows the same pattern as reading. We open a file for
writing and typically use a for loop to traverse the data, which we then write
to the file using write:

outfile = open(filename, ’w’) # ’w’ for writing

for data in somelist:
outfile.write(sometext + ’\n’)

outfile.close()

Notice the inclusion of \n in the call to write. Unlike print, a call to write
will not by default add a line break after each call by defauls, so if we do
not add this explicitly, the resulting file will consist of a single long line. It is
often more convenient to have a line-structured file, and for this we include
the \n, which adds a line break. The alternative way of opening files can also
be used for writing, and it ensures that the file is automatically closed:

with open(filename, ’w’) as outfile: # ’w’ for writing
for data in somelist:

outfile.write(sometext + ’\n’)

One should use caution when writing to files from Python programs. If you
call open(filename,’w’) with a filename that does not exist, a new file will
be created; however, if a file with that name exists, it will simply be deleted
and replaced by an empty file. Therefore, even if we do not actually write

70 5 User Input and Error Handling

any data to the file, simply opening it for reading will erase all its contents.
A safer way to write to files is to use ‘open(filename,‘a‘), which will append
data to the end of the file if it already exists, and create a new file if it does
not exist.

For a concrete example, consider the task of writing information from a
nested list to a file. We have following the nested list (rows and columns):

data = \
[[0.75, 0.29619813, -0.29619813, -0.75],
[0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75]]

To write these data to a file in tabular form, we follow the steps outlined
above and use a nested for loop (one for loop inside another) to traverse the
list and write the data. The following code will do the trick:

with open(’tmp_table.dat’, ’w’) as outfile:
for row in data:

for column in row:
outfile.write(f’{column:14.8f}’)

outfile.write(’\n’)

The resulting file looks like

0.75000000 0.29619813 -0.29619813 -0.75000000
0.29619813 0.11697778 -0.11697778 -0.29619813

-0.29619813 -0.11697778 0.11697778 0.29619813
-0.75000000 -0.29619813 0.29619813 0.75000000

The nicely aligned columns are caused by the format specifier given to the f-
string in the write call. The code will work fine without the format specifier,
but the columns will not be aligned, and we also need to add a space after
every number or, otherwise, each line will just be a long string of numbers
that are difficult to separate. The structure of the nested for loop is also worth
stepping through in the code above. The innermost loop traverses each row,
writing the numbers one by one to the file. When this inner loop is done
the program moves to the next line (outfile.write(’\n’)), which writes a
linebreak to the file to end the line. After this line, one pass of the outer for
loop is finished and the program moves to the next iteration and the next line
in the table. The code for writing each number belongs inside the innermost
loop, whereas the code for writing the line break is in the outer loop, since
we only want one line break for each line.

5.5 Handling Errors in Programs

As demonstrated above, allowing user input in our programs will often intro-
duce errors, and, as our programs grow in complexity, there can be multiple

5.5 Handling Errors in Programs 71

other sources of errors as well. Python has a general set of tools for handling
such errors that is commonly referred to as exception handling, and it used
in many different programming languages. To illustrate how it works, let us
return to the example with the atmospheric pressure formula:

import sys
from math import exp

h = sys.argv[1]
h = float(h)

p0 = 100.0; h0 = 8400
print(p0 * exp(-h/h0))

As mentioned above, this code can easily break if the user provides a com-
mand line argument that cannot be converted to a float, that is, any argument
that is not a pure number. Potentially even worse is our program failing with
a fairly cryptic error message if the user does not include a command line
argument at all, as in the following:

Terminal

Terminal> python altitude_cml.py
Traceback (most recent call last):

File "altitude_cml.py", line 4, in ?
h = sys.argv[1]

IndexError: list index out of range

How can we fix such problems and make the program more robust with
respect to user errors? One possible solution is to add an if-test to check if
any command line arguments have been included:

import sys
if len(sys.argv) < 2:

print(’You failed to provide a command line arg.!’)
exit() # abort

h = float(sys.argv[1])

p0 = 100.0; h0 = 8400
print(p0 * exp(-h/h0))

The function call exit() will simply abort the program, so this extension
solves part of the problem. The program will still stop if it is used incorrectly,
but it will provide a more sensible and useful error message:

Terminal

Terminal> python altitude_cml.py
You failed to provide a command line arg.!

72 5 User Input and Error Handling

However, we only handle one of the potential errors, and using if-tests to test
for every possible error can lead to quite complex programs. Instead, it is
common in Python and many other languages to try to do what we intend
to and, if it fails, to recover from the error. This principle uses the try-except
block, which has the following general structure:

try:
<statements we intend to do>

except:
<statements for handling errors>

If something goes wrong in the try block, Python will raise an exception and
the execution jumps to the except block. Inside the except block, we need
to add our own code for catching the exception, basically to detect what went
wrong and try to fix it. If no errors occur inside the try block, the code inside
the except block is not run and the program simply moves on to the first
line after the try-except block.
Improving the atmospheric pressure program with try-except. To
apply the try-except idea to the air pressure program, we can try to read h
from the command line and convert it to a float, and, if this fails, we tell the
user what went wrong and stop the program:

import sys
try:

h = float(sys.argv[1])
except:

print(’You failed to provide a command line arg.!’)
exit()

p0 = 100.0; h0 = 8400
print(p0 * exp(-h/h0))

One could argue that this is not very different from the program using the
if-test, but we shall see that the try-except block has some benefits. First, we
can try to run this program with different input, which immediately reveals
a problem:

Terminal

Terminal> python altitude_cml_except1.py
You failed to provide a command line arg.!

Terminal> python altitude_cml_except1.py 2469m
You failed to provide a command line arg.!

Regardless of what goes wrong inside our try block, Python will raise an
exception that needs to be handled by the except block. The problem with
our code is that all possible errors will be handled the same way. In the first
case, the problem is that there are no arguments, that is, sys.argv[1] does
not exist, which leads to an IndexError. This situation is correctly handled

5.5 Handling Errors in Programs 73

by our code. In the second case, we provide an argument, so the indexing
of sys.argv goes well, but the conversion fails, since Python does not know
how to convert the string 2469m to a float. This is a different type of error,
known as a ValueError, and we see that it is not treated very well by our
except block. We can improve the code by letting the except block test for
different types of errors, and handling each one differently:

import sys
try:

h = float(sys.argv[1])
except IndexError:

print(’No command line argument for h!’)
sys.exit(1) # abort execution

except ValueError:
print(f’h must be a pure number, not {sys.argv[1]}’)
exit()

p0 = 100.0; h0 = 8400
print(p0 * exp(-h/h0))

The following two examples illustrate how this more specific error handling
works:

Terminal

Terminal> python altitude.py
No command line argument for h!

Terminal> python altitude.py 2469m
The altitude must be a pure number, not "2469m"

Of course, a drawback of this approach is that we need to guess in advance
what could go wrong inside the try-block, and write code to handle all pos-
sible errors. However, with some experience, this is usually not very difficult.
Python has many built-in error types, but only a few that are likely to occur
and which need to be considered in the programs we encounter throughout
this book. In the code above, if the try block would leads to a different excep-
tion than what we catch in our except block, the code will simply end with a
standard Python error message. If we want to avoid this behavior, and catch
all possible exceptions, we could add a generic except block such as

except:
print(’Something went wrong in reading input data!’)
exit()

Such a block should be added after the except ValueError block in the
code above, and will catch any exception that is not an IndexError nor a
ValueError. In this particular case, it can be difficult to imagine what kind
of error that would be, but if it occurs, it will be caught and handled by our
generic except block.

74 5 User Input and Error Handling

The programmer can also raise exceptions. In the code above, the
exceptions were raised by standard Python functions, and we wrote the code
to catch them. Instead of just letting Python raise exceptions, we can raise
our own and tailor the error messages to the problem at hand. We provide
two examples of such use:

• Catching an exception, but raising a new one (re-raising) with an improved
(tailored) error message.

• Raising an exception because of input data that we know are wrong, al-
though Python accepts the data.

The basic syntax both for raising and re-raising an exception is raise
ExceptionType(message). The following code includes both examples:

import sys

def read_altitude():
try:

h = float(sys.argv[1])
except IndexError:

re-raise, but with specific explanation:
raise IndexError(

’The altitude must be supplied on the command line.’)
except ValueError:

re-raise, but with specific explanation:
raise ValueError(
f’Altitude must be number, not "{sys.argv[1]}".’)

h is read correctly as a number, but has a wrong value:
if h < -430 or h > 13000:

raise ValueError(f’The formula is not valid for h={h}’)
return h

Here we have defined a function to handle the user input, but the code is
otherwise quite similar to the previous examples. As above, the except blocks
will catch two different types of error, but, instead of handling them (i.e.,
stopping the program), the blocks here will equip the exceptions with more
specific error messages, and then pass them on to be handled somewhere
else in our program. For this particular case, the difference is not very large,
and one could argue that our first approach is simpler and therefore better;
however, in larger programs it can often be better to re-raise exceptions and
handle them elsewhere. The last part of the function is different, since the
error raised here is not an error as far as Python is concerned. We can input
any value of h into our formula, and, unless we input a large negative number,
it will not give rise to a Python error1. However, as an estimate of air pressure
the formula is only valid in the troposphere, the lower part of the Earth’s
atmosphere, which extends from the lowest point on Earth (on land), at 430

1If we set h to be a large negative number, the argument for the exp function becomes
large and positive, and leads to an OverflowError. However, this error will occur only
for values far outside the range of validity for our air pressure estimate.

5.6 Making Modules 75

m below sea level, to around 13 km above sea level. We can therefore let the
program raise a ValueError for any h outside this range, even if it does not
involve a Python error in the usual sense.

The following code shows how we can use the function above, and how
we can catch and print the error message provided with the exceptions. The
construction except <error> as e is used to access the error and use it
inside the except block, as follows:

try:
h = read_altitude()

except (IndexError, ValueError) as e:
print exception message and stop the program
print(e)
exit()

We can run the code in the terminal to confirm that we obtain the correct
error messages:

Terminal

Terminal> python altitude_cml_except2.py
The altitude must be supplied on the command line.

Terminal> python altitude_cml_except2.py 1000m
Altitude must be number, not 1000m.

Terminal> python altitude_cml_except2.py 20000
The formula is not valid for h=20000.

Terminal> python altitude_cml_except2.py 8848
34.8773231887747

5.6 Making Modules

So far in this course we have frequently used modules such as math and sys,
by importing them into our code:

from math import log
r = log(6) # call log function in math module

import sys
x = eval(sys.argv[1]) # access list argv in sys module

Modules are extremely useful in Python programs, since they contain a col-
lection of useful data and functions (as well as classes later), that we can reuse
in our code. But what if you have written some general and useful functions
yourself that you would like to reuse in more than one program? In such cases

76 5 User Input and Error Handling

it would be convenient to make your own module that you can import into
other programs when needed. Fortunately, this task is very simple in Python;
just collect the functions you want in a file, and you have a new module!

To look at a specific example, say we want create a module containing
the interest formula considered earlier and a few other useful formulas for
computing with interest rates. We have the mathematical formulas

A = P (1+ r/100)n, (5.1)
P = A(1+ r/100)−n, (5.2)

n =
ln A

P

ln(1+ r/100) , (5.3)

r = 100
((

A

P

)1/n

−1
)

, (5.4)

where, as above, P is the initial amount, r is the interest rate (percent), n is
the number of years, and A is the final amount. We now want to implement
these formulas as Python functions and make a module of them. We write
the functions in the usual way:

from math import log as ln

def present_amount(P, r, n):
return P*(1 + r/100)**n

def initial_amount(A, r, n):
return A*(1 + r/100)**(-n)

def years(P, A, r):
return ln(A/P)/ln(1 + r/100)

def annual_rate(P, A, n):
return 100*((A/P)**(1.0/n) - 1)

If we now save these functions in a file interest.py, it becomes a module
that we can import, just as we are used to with built-in Python modules.
As an example, say we want to know how long it takes to double our money
with an interest rate of 5%. The years function in the module provides the
right formula, and we can import and use it in our program, as follows:

from interest import years
P = 1; r = 5
n = years(P, 2*P, p)
print(f’Money has doubled after {n} years’)

We can add a test block to a module file. If we try to run the module file
above with python interest.py from the terminal, no output is produced
since the functions are never called. Sometimes it can be useful to be able to
add some examples of use in a module file, to demonstrate how the functions

5.6 Making Modules 77

are called and used and give sensible output if we run the file with python
interest.py. However, if we add regular function calls, print statements
and other code to the file, this code will also be run whenever we import
the module, which is usually not what we want. The solution is to add such
example code in a test block at the end of the module file. The test block
includes an if-test to check if the file is imported as a module or if it is run
as a regular Python program. The code inside the test block is then executed
only when the file is run as a program, and not when it is imported as a
module into another program. The structure of the if-test and the test block
is as follows:

if __name__ == ’__main__’: # this test defines the test block
<block of statements>

The key is the first line, which checks the value of the built-in variable
__name__. This string variable is automatically created and is always de-
fined when Python runs. (Try putting print(__name__) inside one of your
programs or type it in an interactive session.) Inside an imported module,
__name__ holds the name of the module, whereas in the main program its
value is "__main__".

For our specific case, the complete test block can look like

if __name__ == ’__main__’:
A = 2.31525
P = 2.0
r = 5
n = 3
A_ = present_amount(P, r, n)
P_ = initial_amount(A, r, n)
n_ = years(P, A, r)
r_ = annual_rate(P, A, n)
print(f’A={A_} ({A}) P={P_} ({A}) n={n_} ({n}) r={r_} ({p})’)

Test blocks are often included simply for demonstrating and documenting
how modules are used, or they are included in files that we sometimes use as
stand-alone programs and sometimes as modules. As indicated by the name,
they are also frequently used to test modules. Using what we learned about
test functions in the previous chapter, we can do this by writing a standard
test function that tests the functions in the module, and then simply calling
this function from inside the test block:

def test_all_functions():
Define compatible values
A = 2.31525; P = 2.0; r = 5.0; n = 3
Given three of these, compute the remaining one
and compare with the correct value (in parenthesis)
A_computed = present_amount(P, r, n)
P_computed = initial_amount(A, r, n)
n_computed = years(P, A, r)
r_computed = annual_rate(P, A, n)
def float_eq(a, b, tolerance=1E-12):

78 5 User Input and Error Handling

"""Return True if a == b within the tolerance."""
return abs(a - b) < tolerance

success = float_eq(A_computed, A) and \
float_eq(A0_computed, A0) and \
float_eq(p_computed, p) and \
float_eq(n_computed, n)

assert success # could add message here if desired

if __name__ == ’__main__’:
test_all_functions()

Since we have followed the naming convention of test functions, the function
will be called if we run, for instance, pytest interest.py, but since we
call it from inside the test block, the test can also be run simply by python
interest.py. In the latter case, the test will produce no output unless there
are errors. However, if we import the module to use in another program, the
test function is not run, because the variable __name__ will be the name of
the module (i.e. interest) and the test __name__ == ’__main__’ will be
evaluated as false.
How Python finds our new module. Python has a number of designated
places where it looks for modules. The first place it looks is in the same folder
as the main program; therefore, if we put our module files there, they will al-
ways be found. However, this is not very convenient if we write more general
modules that we plan to use from several other programs. Such modules can
be put in a designated directory, say /Users/sundnes/lib/python/mymods
or any other directory name that you choose. Then we need to tell Python
to look for modules in this directory; otherwise, it will not find the module.
On Unix-like systems (Linux, Mac, etc.), the standard way to tell Python
where to look is by editing the environment variable called PYTHONPATH. En-
vironment variables are variables that hold important information used by
the operating system, and PYTHONPATH is used to specify the folders where
Python should look for modules. If you type echo $PYTHONPATH in the termi-
nal window, you will most likely obtain no output, since you have not added
any folder names to this variable. We can put our new folder name in this
variable by running the command

Terminal

export PYTHONPATH=/Users/sundnes/lib/python/mymods

However, if the PYTHONPATH already contained any folders, these will now be
lost; therefore, to be on the safe side, it is better to use

Terminal

export PYTHONPATH=$PYTHONPATH:/Users/sundnes/lib/python/mymods

This last command will simply add our new folder to the end of what is
already in our PYTHONPATH variable. To avoid having to run this command

5.6 Making Modules 79

every time we want to import a module, we can put it in the file .bashrc,
to ensure that it is run automatically when we open a new terminal win-
dow. The .bashrc file should be in your home directory (e.g. ‘/Users/sund-
nes/.bashrc’), and will be listed with ls -a. (The dot at the start of the
filename makes it a hidden file, so it will not show up with just ls.) If the
file is not there, you can simply create it in an editor and save it in your
home directory, and the system should find it and read it automatically the
next time you open a terminal window. As an alternative to editing the sys-
temwide environment variable, we can also add our directory to the path
from inside the program. Putting a line such as this inside your code, before
you import the module, should allow Python to find it:

sys.path.insert(0, ’/Users/sundnes/lib/python/mymods’)

As an alternative to creating your own directory for modules, and then
tell Python where to find them, you can place the modules in one of the
places where Python always looks for modules. The location of these varies a
bit between different Python installations, but the directory itself is usually
named site-packages. If you have installed NumPy2 or another package
that is not part of the standard Python distribution, you can locate the
correct directory by importing this package. For instance, type the following
in an interactive Python shell:

>>> import numpy
>>> numpy.__file__
’/Users/sundnes/anaconda3/lib/python3.7/site-packages/numpy/__init__.py’
>>>

The last line reveals the location of the site-packages directory, and placing
your own modules there will ensure Python will find them.

2NumPy is a package for numerical calculations. It is not part of the standard
Python distribution, but it is often installed automatically if you install Python from
other sources, for instance, from Anaconda. Otherwise, it can be installed for instance,
with pip or other tools. The NumPy package will be used extensively in the next chapter.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

5 User Input and Error Handling80

Chapter 6
Arrays and Plotting

In this chapter, we will learn to visualize mathematical functions and the
results of mathematical calculations. You have probably used a variety of
different plotting tools in the past, and we will now do much of the same
thing in Python. The way standard plotting tools work in Python is that
we first compute a number of points lying on the curve we want to show
and then draw straight lines between them. If we have enough points, the
result looks like a smooth curve. For plotting mathematical functions, this
approach can seem a bit primitive, since there are other tools we can use
to simply type in a mathematical expression and have the curve plotted on
the screen. However, the approach we use here is also much more flexible,
since we can plot data when there is no underlying mathematical function,
for instance, experimental data read from a file or results from a numerical
experiment. To plot functions in Python, we need to learn about the package
matplotlib, which is an extensive toolbox for plotting and visualization. In
addition, it is useful to introduce the package named NumPy, which is useful
for storing storing arrays of data for efficient computations.

6.1 NumPy and Array Computing

The standard way to plot a curve y = f(x) is to draw straight lines between
points along the curve, and for this purpose we need to store the coordinates
of the points. We could use lists for this, for instance, two lists x and y,
and most of the plotting tools we will use work fine with lists. However, a
data structure known as an array is much more efficient than a list, and it
offers a number of nice features and advantages. Computing with arrays is
often referred to as array computations or vectorized computations, and these
concepts are useful for much more than just plotting curves.
Arrays are generalizations of vectors. In high school mathematics, vec-
tors were introduced as line segments with a direction, represented by coor-

81J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_6

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_6&domain=pdf

82 6 Arrays and Plotting

dinates (x,y) in the plane or (x,y,z) in space. This concept of vectors can be
generalized to any number of dimensions, and we can view a vector v as a
general n-tuple of numbers; v = (v0, . . . ,vn−1). In Python, we could use a list
to represent such a vector, by storing component vi as element v[i] in the
list. However, vectors are so useful and common in scientific programming
that a special data structure has been created for them: the NumPy array.
An array is much less flexible than a list, in that it has a fixed length (i.e.,
no append-method), and one array can only hold variables of the same type.
However, arrays are also much more efficient to use in computations, and
since they are designed for such use, they have a number of useful features
that can shorten and clarify our code.

For the purpose of plotting, we will mostly use one-dimensional arrays,
but an array can have multiple indices, similar to a nested list. For instance,
a two-dimensional array Ai,j can be viewed as a table of numbers, with one
index for the row and one for the column, as follows:

⎡
⎣ 0 7 −3 5

−1 −3 4 0
9 3 5 −7

⎤
⎦ A =

⎡
⎢⎣

A0,0 · · · A0,n−1
...

. . .
...

Am−1,0 · · · Am−1,n−1

⎤
⎥⎦

Such a two-dimensional case is similar to a matrix in linear algebra, but
NumPy arrays do not follow the standard rules for mathematical operations
on matrices. The number of indices in an array is often referred to as the
rank or the number of dimensions.
Storing (x,y) points on a curve in lists and arrays. To make the array
concept a bit more concrete, we consider the task mentioned above, where
we want to store points on a function curve y = f(x). All the plotting cases
we will consider are based on this idea, so it makes sense to introduce it for
a simple example. We have seen in previous chapters that there are multiple
ways to store such pairs of numbers, for instance in a nested list containing
(x,y) pairs. However, for the purpose of plotting, the easiest approach is to
create two lists or arrays, one holding the x-values and another holding the
y-values. The two lists/arrays should be of equal length, and we will always
create them using the same two steps. First, we create n uniformly spaced
x-values that cover the interval where we want to plot the function. Then, we
run through these numbers and compute the corresponding y-values, storing
these in a separate list or array. The following interactive session illustrates
the procedure, using list comprehensions to first create a list of five x-points
on the interval [0,1], and then compute the corresponding points y = f(x)
for f(x) = x2.

>>> def f(x):
... return x**2
...
>>> n = 5 # number of points
>>> dx = 1.0/(n-1) # x spacing in [0,1]

6.1 NumPy and Array Computing 83

>>> xlist = [i*dx for i in range(n)]
>>> ylist = [f(x) for x in xlist]

Now that we have the two lists, they can be sent directly to a tool such as
matplotlib for plotting, but before we do this, we will introduce NumPy
arrays. If we continue the interactive session from above, the following lines
will turn the two lists into NumPy arrays:

>>> import numpy as np # module for arrays
>>> x = np.array(xlist) # turn list xlist into array
>>> y = np.array(ylist)

It is worth noting how we import NumPy in the first line. As always, we could
import it with from numpy import *, but this is a bad habit, since numpy
and math contain many functions with the same name, and we will often use
both modules in the same program. To ensure that we always know which
module we are using, it is a good habit to import NumPy as we have done
here. Using import numpy as np instead of simply import numpy saves us
some typing in the rest of the code and is also more or less an accepted
standard among Python programmers.

Converting lists to arrays using the array function from NumPy is intu-
itive and flexible, but NumPy has a number of built-in functions that are
often more convenient to use. Two of the most widely used ones are called
linspace and zeros. The following interactive session is a list-free version of
the example above, where we create the NumPy arrays directly, using these
two functions:

>>> import numpy as np
>>> def f(x):
... return x**2
...
>>> n = 5 # number of points
>>> x = np.linspace(0, 1, n) # n points in [0, 1]
>>> y = np.zeros(n) # n zeros (float data type)
>>> for i in range(n):
... y[i] = f(x[i])
...

As illustrated here, we will usually call linspace with three arguments, with
the general form linspace(start,stop,n), which will create an array of
length n, containing uniformly distributed values on the interval from start
to stop. If we leave out the third argument, as in linspace(start,stop),
a default value of n=50 is used. The start and stop arguments must always
be provided. An array of equally spaced x-values is needed nearly every time
we plot something, so we will use linspace frequently. It is worth spending
time to become familiar with how it is used and what it returns.

The second NumPy function used above, zeros(n), does exactly what we
would expect: it creates an array of length n containing only zeros. We have
seen earlier that a common way to create a list is to start with an empty
list and fill it with values using a for loop and the append-method. We will

84 6 Arrays and Plotting

often use a similar approach to create an array, but since an array has fixed
length and no append-method, we must first create an array of the right size
and then loop over it with an index to fill in the values. This operation is
very common, so remembering the existence of NumPy’s zeros function is
important.

As we have seen in Chapter 3, lists in Python are extremely flexible, and
can contain any Python object. Arrays are much more static, and we will
typically use them for numbers (i.e., type float or int). They can also be
of other types, such as boolean arrays (true/false), but a single array always
contains a single object type. We have also seen that arrays are of fixed
length and do not have the convenient append-method. So, why do we use
arrays at all? One reason, which was mentioned above, is that arrays are
more efficient to store in memory and use in computations. The other reason
is that arrays can shortn our code and make it more readable, since we can
perform operations on an entire array at once instead of using loops. Say, for
instance, that we want to compute the cosine of all the elements in a list or
array x. We know how to do this using a for loop

import numpy as np
from math import cos
x = np.linspace(0,1,11)

for i in range(len(x)):
y[i] = cos(x[i])

but if x is an array, y can be computed by

y = np.cos(x) # x: array, y: array

In addition to being shorter and quicker to write, this code will run much
faster than the code with the loop.1 Such computations are usually referred
to as vectorized computations, since they work on the entire array (or vector)
at once. Most of the standard functions we find in math have a corresponding
function in numpy that will work for arrays. Under the hood these NumPy
functions still contain a for loop, since they need to traverse all the elements
of the array, but this loop is written in very efficient C code and is therefore
much faster than Python loops we write ourselves.

A function f(x) that was written to work a for a single number x will often
work well for an array as well. If the function uses only basic mathematical
operators (+,−,∗, etc.), we can pass it either a number or an array as the
argument, and it will work just fine with no modifications. If the function uses
more advanced operations that we need to import, we have to make sure to

1For the small array considered here, containing just 11 numbers, the efficiency gain
does not matter at all. It will be difficult to detect a difference between the two versions
even if we measure the run time of our program. However, certain numerical programs
can use nested arrays containing tens of millions of numbers, and in such cases the
difference between loops and vectorized code becomes very noticeable.

6.1 NumPy and Array Computing 85

import these from numpy rather than math, since the functions in math work
only with single numbers. The following example illustrates how it works:

from numpy import sin, exp, linspace

def g(x):
return x**2+2*x-4

def f(x):
return sin(x)*exp(-2*x)

x = 1.2 # float object
y = f(x) # y is float

x = linspace(0, 3, 101) # 100 intervals in [0,3]
y = f(x) # y is array
z = g(x) # z is array

We see that, except for the initial import from NumPy, the two functions
look exactly the same as if they were written to work on a single number.
The result of the two function calls will be two arrays y,z of length 101, with
each element being the function value computed for the corresponding value
of x.

If we try to send an array of length > 1 to a function imported from math,
we will obtain an error message:

>>> import math, numpy
>>> x = numpy.linspace(0, 1, 6)
>>> x
array([0. , 0.2, 0.4, 0.6, 0.8, 1.])
>>> math.cos(x[0])
1.0
>>> math.cos(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: only size-1 arrays can be converted to Python scalars
>>> numpy.cos(x)
array([1. , 0.98006658, 0.92106099, 0.82533561, 0.69670671,

0.54030231])

On the other hand, using NumPy functions on single numbers will work just
fine. A natural question to ask, then, is why do we ever need to import from
math at all? Why not use NumPy functions all the time, since they do the
job for both arrays and numbers? The answer is that we can certainly do
this, and in most cases it will work fine, but the functions in math are more
optimized for single numbers (scalars) and are therefore faster. One will rarely
notice the difference, but there can be applications where the extra efficiency
matters. There are also functions in math (e.g., factorial) that do not have
a corresponding version in NumPy.

We started this chapter by computing points along a curve using lists and
for loops. Now that we have introduced NumPy, we can solve this task much

86 6 Arrays and Plotting

more easily by using arrays and array computations. Say we want to compute
points on the curve described by the function

f(x) = e−x sin(2πx), x ∈ [0,4]

for x ∈ [0,4∗π]. The vectorized code can look as follows:

import numpy as np

n = 100
x = np.linspace(0, 4, n+1)
y = np.exp(-x)*np.sin(2*np.pi*x)

This code is shorter and quicker to write than the one with lists and loops,
most people find it easier to read since it is closer to the mathematics, and
it runs much faster than the list version.

We have already mentioned the term vectorized computations, and if you
follow a course in scientific Python you will probably be asked at some point
to vectorize a function or a computation. This usually means nothing more
than to ensure that all the mathematical functions are imported from numpy
rather than math, and to then perform all the operations on entire arrays
rather than looping over their individual elements. The vectorized code should
contain no for loops written in Python. The mathematical functions g(x)
and f(x) in the example above are perfectly valid examples of vectorized
functions, even though the actual functions look identical to the scalar ver-
sions. The only major exceptions to this simple recipe for vectorization are
functions that include if-tests. For instance, in Chapter 4, we implemented
piecewise-defined mathematical functions using if-tests. These functions will
not work if the input argument is an array, because a test such as if x >
0 has no precise meaning if x is an array. There are ways, however, to solve
this problem, which we will look into later in the chapter.

6.2 Plotting Curves with Matplotlib

The motivation for introducing NumPy arrays was to plot mathematical
functions, and now that we have introduced all the necessary tools we are
finally ready to do so. Let us start with a simple example. Say we want to
plot the curve y(x) = e−x sin(2πx), for x ranging from zero to four. The code
can look like

import matplotlib.pyplot as plt
import numpy as np

n = 100
x = np.linspace(0, 4, n+1)
y = np.exp(-x)*np.sin(2*np.pi*x)

6.2 Plotting Curves with Matplotlib 87

plt.plot(x, y)
plt.show()

This code is identical to the example above, except for the first line and the
last two lines. The first line imports the plotting tools from the matplotlib
package, which is an extensive library of functions for scientific visualization.
We will only use a small subset of the capabilities of matplotlib, mostly
from the module pyplot, to plot curves and create animations of curves that
change over time. The next few lines are from the example above, and they
simply create the two arrays x and y defining the points along the curve.
The last two lines carry out the actual plotting: the call plt.plot(x,y)
first creates the plot of the curve, and then plt.show() displays the plot on
the screen. The reason for keeping these separate is to make it easy to plot
multiple curves in a single plot, by calling plot multiple times followed by
a single call to show. The resulting plot is shown in Figure 6.1. A common
mistake is to forget the plt.show() call, and the program will then simply
end without displaying anything on the screen.

Fig. 6.1 Simple plot of a function using Matplotlib.

The plot produced by the code above is very simple and contains no title,
axis labels, or other information. We can easily add such information in the
plot by using tools from matplotlib:

import matplotlib.pyplot as plt # import and plotting
import numpy as np

def f(x):

88 6 Arrays and Plotting

return np.exp(-x)*np.sin(2*np.pi*x)

n = 100
x = np.linspace(0, 4, n+1)
y = f(x)

plt.plot(x, y, label=’exp(-x)*sin(2π x)’)

plt.xlabel(’x’) # label on the x axis
plt.ylabel(’y’) # label on the y axis
plt.legend() # mark the curve
plt.axis([0, 4, -0.5, 0.8]) # [tmin, tmax, ymin, ymax]
plt.title(’My First Matplotlib Demo’)

plt.savefig(’fig.pdf’) # make PDF image for reports
plt.savefig(’fig.png’) # make PNG image for web pages
plt.show()

The plot resulting from this code is shown in Figure 6.2. Most of the lines
in the code should be self-explanatory, but some are worth a comment. The
call to legend will create a legend for the plot, using the information pro-
vided in the label argument passed to plt.plot. This is very useful when
plotting multiple curves in a single plot. The axis function sets the length
of the horizontal and vertical axes. These are otherwise set automatically by
Matplotlib, which usually works fine, but in some cases the plot looks better
if we set the axes manually. Later in this chapter, we will create animations
of curves and, in this case, the axes will have to be set to fixed lengths. Fi-
nally, the two calls to savefig will save our plot in two different file formats,
automatically determined by the file name provided.

If we plot multiple curves in a single plot, Matplotlib will choose the color
of each curve automatically. This default choice usually works well, but we
can control the look of each curve further if desired. Say we want to plot the
functions e−x sin(2πx) and e−2x sin(4πx) in the same plot:

import matplotlib.pyplot as plt
import numpy as np

def f1(x):
return np.exp(-x)*np.sin(2*np.pi*x)

def f2(x):
return np.exp(-2*x)*np.sin(4*np.pi*x)

x = np.linspace(0, 8, 401)
y1 = f1(x)
y2 = f2(x)

plt.plot(x, y1, ’r--’, label=’exp(-x)*sin(2π x)’)
plt.plot(x, y2, ’g:’, label=’exp(-2*x)*sin(4π x)’)

plt.xlabel(’x’)
plt.ylabel(’y’)

6.2 Plotting Curves with Matplotlib 89

Fig. 6.2 Example plot with more information added.

plt.legend()
plt.title(’Plotting two curves in the same plot’)
plt.savefig(’fig_two_curves.png’)
plt.show()

This example shows that the options for changing the color and plotting style
of the curves are fairly intuitive, and can be easily explored by trial and error.
For a full overview of all the options, we refer the reader to the Matplotlib
documentation.

Although the code example above was not too complex, we had to write
an excess of 20 lines just to plot two simple functions on the screen. This level
of programming is necessary if we want to produce professional-looking plots,
such as in a presentation, master’s thesis, or scientific report. However, if we
just want a quick plot on the screen, this can be achieved much more simply.
The following code lines will plot the same two curves as in the example
above, using just three lines:

t = np.linspace(0, 8, 201)
plt.plot(x,np.exp(-x)*np.sin(2*np.pi*x),x,np.exp(-2*x)*np.sin(4*np.pi*x))
plt.show()

As always, the effort we put in depends on what the resulting plot will be
used for, and, in particular, on whether we are just exploring some data on
our own or plan on presenting it to others.

90 6 Arrays and Plotting

Example: Plotting a user-specified function. Say we want to write
a small program plotf.py that asks the user to provide a mathematical
function f(x), and then plots the curve y = f(x). We can also ask the user to
specify the boundaries of the curve, that is, the lower and upper limits for x.
An example of running the program from the terminal can look like should
be

Terminal

Terminal> python plot_input.py
Write a mathematical expression of x:2*x**2-4
Provide lower bound for x:0
Provide upper bound for x:7

For these input values the program should plot the curve y = 2x2 − 4, for
x ∈ [0,7]. The plot_input.py program should work for any mathematical
expression. The task can be solved using the the functions input and eval
introduced in Chapter 5:

from numpy import *
import matplotlib.pyplot as plt

formula = input(’Write a mathematical expression of x:’)
xmin = float(input(’Provide lower bound for x:’))
xmax = float(input(’Provide upper bound for x:’))

x = linspace(xmin, xmax, 101)
y = eval(formula)

plt.plot(x, y)
plt.show()

This small program will stop and ask the user first for a mathematical ex-
pression and then for the bounds on x, and then it will proceed to plot the
resulting curve. Note that, in this case, we have a good reason to import
NumPy with from numpy import *. We want the user to be able type a
formula using standard mathematical terminology, such as sin(x) + x**2
(rather than np.sin(x) + x**2). For this to work, we need to import all the
mathematical functions from NumPy without a prefix.

6.3 Plotting Discontinuous and
Piecewise-Defined Functions

Discontinuous functions, and functions defined in a piecewise manner, are
common in science and engineering. We saw in Chapter 4 how these could be
implemented in Python using if-tests, but, as we briefly commented above,
this implementation gives rise to challenges when using arrays and NumPy.

6.3 Plotting Discontinuous and Piecewise-Defined Functions 91

To consider a concrete example, say we want to plot the Heaviside function,
defined by

H(x) =
{

0, x < 0
1, x ≥ 0

Following the ideas from Chapter 4, a Python implementation of this function
could look like this

def H(x):
if x < 0:

return 0
else:

return 1

Now we want to plot the function using the simple approach introduced
above. It is natural to simply create an array of values x, and to pass this
array to the function H(x) to compute the corresponding y-values:

x = linspace(-10, 10, 5) # few points (simple curve)
y = H(x)
plot(x, y)

However, if we try to run this code, we obtain an error message, a ValueError
error inside the function H(x), coming from the if x < 0 line. We can illus-
trate what goes wrong in an interactive Python session:

>>> x = linspace(-10,10,5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> b = x < 0
>>> b
array([True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a Boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

We see here that the result of the statement b = x < 0 is an array of Boolean
values, whereas, if b were a single number, the result would be a single
Boolean (true/false). Therefore, the statement bool(b), or tests such as if
b or if x < 0 do not make sense, since it is impossible to say whether an
array of multiple true/false values is true or false.

There are several ways to fix this problem. One is to avoid the vectorization
altogether, and return to the traditional for loop for computing the values:

import numpy as np
import matplotlib.pyplot as plt
n = 5
x = np.linspace(-5, 5, n+1)
y = np.zeros(n+1)

for i in range(len(x)):
y[i] = H(x[i])

92 6 Arrays and Plotting

plt.plot(x,y)
plt.show()

A variation of the same approach is to alter the H(x) function itself and put
the for loop inside it:

def H_loop(x):
r = np.zeros(len(x)) # or r = x.copy()
for i in range(len(x)):

r[i] = H(x[i])
return r

n = 5
x = np.linspace(-5, 5, n+1)
y = H_loop(x)

We see that this last approach ensures that we can call the function with
an array argument x, but the downside to both versions is that we need to
write quite a lot of new code, and using a for loop is much slower than using
vectorized array computing.

An alternative approach is to use a built-sin NumPy function named
vectorize2, which offers automatic vectorization of functions with if-tests.
The line

Hv = np.vectorize(H)

creates a vectorized version Hv(x) of the function H(x) that will work with
an array argument. Although this approach is obviously better, in the sense
that the conversion is automatic so we need to write very little new code, it
is about as slow as the two approaches using for loops.

A third approach is to write a new function where the if-test is coded
differently:

def Hv(x):
return np.where(x < 0, 0.0, 1.0)

For this particular case, the NumPy function where will evaluate the ex-
pression x<0 for all elements in the array x, and return an array of the same
length as x, with values 0.0 for all elements where x<0, and 1.0 for the others.
More generally, a function with an if-test can be converted to an array-ready
vectorized version in the following way:

def f(x):

2It is a fairly common misconception to believe that vectorizing a computation
or making a vectorized version of a function, always involves using the function
numpy.vectorize. This is not the case. In most cases, we only need to make sure that
we use array-ready functions, such as numpy.sin, numpy.exp, etc., instead of the scalar
version from math, and code all calculations so that they work on an entire array instead
of stepping through the elements with a for loop. The vectorize-function is usually
only necessary for functions containing if-tests.

6.4 Making a Movie of a Plot 93

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

This conversion is not, of course, as automatic as using vectorize, and re-
quires writing some more code, but it is much more computationally efficient
than the other versions. Efficiency is sometimes important when working with
large arrays.

6.4 Making a Movie of a Plot

It is often useful to make animations or movies of plots, for instance if the
plot represents some physical phenomenon that changes with time, or if we
want to visualize the effect of changing parameters. Matplotlib has multiple
tools for creating such plots, and we will explore some of them here. To start
with a specific case, consider again the well-known Gaussian bell function:

f(x;m,s) = 1√
2π

1
s

exp
[

−1
2

(
x−m

s

)2]

The parameter m is the location of the function’s peak, while s is a measure
of the width of the bell curve. Plots of this function for different values of
s are shown in Figure 6.3. As an alternative illustration of how the parame-
ters change the function we can make a movie (animation) of how f(x;m,s)
changes shape as s goes from two to 0.2.

Movies are made from a large set of individual plots. Movies of plots
are created through the classical approach of cartoon movies (or, really, all
movies): by creating a set of images and viewing them in rapid sequence.
For our specific example, the typical approach is to write a for loop to step
through the s values and either show the resulting plots directly or store
them in individual files for later processing. Regardless of the approach, it is
important to always fix the axes when making animations of plots; otherwise,
the y axis always adapts to the peak of the function and the visual impression
is completely wrong

We will look at three different ways to create a movie of the kind outlined
above:

94 6 Arrays and Plotting

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2
s=1
s=2

Fig. 6.3 The Gaussian bell function plotted for different values of s.

1. Let the animation run live, without saving any files. With this approach,
the plots are simply drawn on the screen as they are created, that is, one
plot is shown for each pass of the for loop. The approach is simple, but
has the disadvantage that we cannot pause the movie or change its speed.

2. Loop over all data values, create one plot for each value and save it to
a file, and then combine all the image files into a movie. This approach
enables us to actually create a movie file that can be played using standard
movie player software. The drawback of this approach is that it requires
separately installed software (e.g., ImageMagick) to create the movie and
view the animation.

3. Use a FuncAnimation object from Matplotlib. This approach uses a
slightly more advanced feature of Matplotlib, and can be considered a
combination of the two approaches above. The animation is played live,
but it can also be stored in a movie file. The downside is that the creation
of the movie file still relies on externally installed software that needs to
be installed separately and integrated with Matplotlib.

First alternative: Running the movie live as the plots are created.
This approach is the simplest of the three and requires very few tools that
we have not already seen. We simply use a for loop to loop over the s values,
compute new y-values, and update the plot for each iteration of the loop.
However, we need to be aware of a couple of technical details. In particular,
the intuitive approach of simply including calls to plot(x,y) followed by
show() inside the for loop does not work. Calling show() will make the
program stop after the first plot is drawn, and it will not run further until we
close the plotting window. Additionally, recall that we used multiple calls to

6.4 Making a Movie of a Plot 95

plot when we wanted multiple curves in a single window, which is not what
we want here. Instead, we need to create an object that represents the plot
and then update the y-values of this object for each pass through the loop.
The complete code can look like

import matplotlib.pyplot as plt
import numpy as np

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plt.plot(x,y) #Returns a list of line objects!

plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel(’x’)
plt.ylabel(’f’)

for s in s_values:
y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
plt.draw()
plt.pause(0.1)

Most of the lines in this code should be familiar, but there are a few items
that are worth noting. First, we use the same plot function as earlier, but in
a slightly different manner. Generally, this function does two things: it creates
a plot that is ready to display on the screen by a subsequent call to show(),
and it returns a special Matplotlib object that represents the plot (a Line2D
object). In the examples above, we did not need this object, so we did not
care about it, but this time we store it in the variable lines. Note also that
the plot-function always returns a list of such objects, representing all the
curves of the plot. In this case, we plot only one curve, and the list has length
one. To update the plot inside the for loop, we call the set_ydata method of
this object, that is, lines[0].set_ydata(y), every time we have computed
a new y array. After updating the data, we call the function draw() to draw
the curve on the screen. The final line inside the for loop simply makes the
program stop and wait for 0.1 seconds. If we remove this call, the movie runs
too fast to be visible, and we can obviously adjust the speed by changing
the function’s argument. As a final comment on this code, remember the
important message from above, that we always need to fix the axes when
creating movies; otherwise, Matplotlib will adjust the axes automatically for
each plot, and the resulting movie will not really look like a movie at all.

96 6 Arrays and Plotting

Here, we compute the maximum value that the function will obtain in the
line max_f = f(m, m, s_stop) (based on either prior knowledge about the
Gaussian function or inspection of the mathematical expression). This value
is then used to set the axes for all the plots that make up the movie.

Second alternative: Saving image files for later processing. This
approach is very similar to the one above, but, instead of showing the plots on
the screen, we save them to files, using the savefig function from Matplotlib.
To avoid having each new plot over-write the previous file, we must include a
counter variable and a formatted string to create a unique filename for each
iteration of the for loop. The complete code is nearly identical to the one
above:

import matplotlib.pyplot as plt
import numpy as np

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plt.plot(x,y)

plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel(’x’)
plt.ylabel(’f’)

frame_counter = 0
for s in s_values:

y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
plt.draw()
plt.savefig(f’tmp_{frame_counter:04d}.png’) #unique filename
frame_counter += 1

Running this program should create a number of image files, all located in
the directory in which we run the program. Converting these images into a
movie requires external software, for instance, convert from the ImageMag-
ick software suite to make animated gifs, or ffmpeg or avconv to make MP4
and other movie formats. For instance, if we want to create an animated gif
of the image files produced above, the following command will do the trick:

Terminal

Terminal> convert -delay 20 tmp_*.png movie.gif

6.4 Making a Movie of a Plot 97

The resulting gif can be played using animate from ImageMagick or in a
browser. Note that, for this approach to work, one needs to be careful about
the filenames. The argument tmp_*.png passed to the convert function will
simply replace * with any text, thereby sending all files with this pattern to
convert. The files are sent in lexicographic (i.e., alphabetical) order, which
is why we use the format specifier 04d in the f-string above. It would be
tempting so simply write {frame_counter}, with no format specifier, inside
the f-string to create the unique filename, and not worry about the format
specifier. This approach would create unique filenames such as tmp_0.png,
tmp_1.png, and so on. However, we would run into problems when creat-
ing the movie with convert, since, for instance, tmp_10.png comes before
tmp_9.png in the alphabetic ordering.

Third alternative: Using built-in Matplotlib tools. The third approach
is the most advanced and flexible, and it relies on built-in Matplotlib tools
instead of the explicit for loop that we used above. Without an explicit for
loop, the actual steps of creating the animation are less obvious, and the
approach is therefore somewhat less intuitive. The essential steps are the
following:

1. Make a function to update the plot. In our case, this function should
compute the new y array and call set_ydata, as above, to update the
plot.

2. Make a list or array of the argument that changes (in this case, s).
3. Pass the function and the list as arguments to create a FuncAnimation

object.

After creating this object, we can use various built-in methods to save the
movie to a file, show it on the screen, and so forth. The complete code looks
like the following:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start,s_stop,30)

x = np.linspace(-3*s_start,3*s_start, 1000)

max_f = f(m,m,s_stop)

plt.axis([x[0],x[-1],0,max_f])
plt.xlabel(’x’)
plt.ylabel(’y’)

y = f(x,m,s_start)

98 6 Arrays and Plotting

lines = plt.plot(x,y) #initial plot to create the lines object

def next_frame(s):
y = f(x, m, s)
lines[0].set_ydata(y)
return lines

ani = FuncAnimation(plt.gcf(), next_frame, frames=s_values, interval=100)
ani.save(’movie.mp4’,fps=20)
plt.show()

Most of the lines are identical to the examples above, but there are some key
differences. We define a function next_frame that contains all the code that
updates the plot for each frame, and returns an updated Line2D object. The
argument to this function should be whatever argument that is changed for
each frame (in our case, s). After defining this function, we use it to create
a FuncAnimation object in the next line:

ani = FuncAnimation(plt.gcf(), next_frame, frames=s_values, interval=100)

This function call returns an object of type FuncAnimation 3. The first ar-
gument is simply the current figure object we are working with (gcf being
short for get current figure), the next is the function we just defined to update
the frames, the third is the array of s-values used to create the plots, and
the last argument is the interval between frames in milliseconds. Numerous
other optional arguments to the function can be used to tune the animation.
We refer to the Matplotlib documentation for the details. After the object
is created, we call the save method of the FuncAnimation class to create a
movie file,4 or the usual show() to play it directly on the screen.

6.5 More Useful Array Operations

At the start of this chapter we introduced the most essential operations
needed to use arrays in computations and for plotting, but NumPy arrays
can do much more. Here we introduce a few additional operations that are
convenient to know about when working with arrays. First, we often need to
make an array of the same size as another array. This can be done in several
ways, for instance, using the zeros function introduced above,

import numpy as np
x = np.linspace(0,10,101)

3Technically, what happens here is that we call the constructor of the class
FuncAnimation to create an object of this class. We will cover classes and construc-
tors in detail in Chapter 7, but, for now, it is sufficient to view this as a regular function
call that returns an object of type FuncAnimation.

4This call relies on external software being installed and integrated with Matplotlib,
so it might not work on all platforms.

6.5 More Useful Array Operations 99

a = zeros(x.shape, x.dtype)

or by copying the x array,

a = x.copy()

or by using the convenient function zeros_like,

a = np.zeros_like(x) # zeros and same size as x

If we write a function that takes either a list or an array as an argument, but
inside the function it needs to be an array, we can ensure that it is converted
by using the function asarray:

a = asarray(a)

This statement will convert a to an array if needed (e.g., if a is a list or a
single number), but do nothing if a is already an array.

The list slicing that we briefly introduced in Chapter 3 also works for
arrays, and we can extract elements from an array a using a[f:t:i]. Here,
the slice f:t:i implies a set of indices (from, to, increment), exactly as for
lists. We can also use any list or array of integers to index into another array:

>>> a = linspace(1, 8, 8)
>>> a
array([1., 2., 3., 4., 5., 6., 7., 8.])
>>> a[[1,6,7]] = 10
>>> a
array([1., 10., 3., 4., 5., 6., 10., 10.])
>>> a[range(2,8,3)] = -2 # same as a[2:8:3] = -2
>>> a
array([1., 10., -2., 4., 5., -2., 10., 10.])

Finally, we can use an array of Boolean expressions to pick out elements of
an array, as demonstrated in the following example:

>>> a < 0
[False, False, True, False, False, True, False, False]
>>> a[a < 0] # pick out all negative elements
array([-2., -2.])

>>> a[a < 0] = a.max() # if a[i]<10, set a[i]=10
>>> a
array([1., 10., 10., 4., 5., 10., 10., 10.])

These indexing methods can often be quite useful, since, for efficiency, we
often want to avoid for loops over arrays elements. Many operations that are
naturally implemented as for loops can be replaced by creative array slicing
and indexing, with potentially substantial improvements in efficiency.
Arrays can have any dimension. Just as lists, arrays can have more than
one index. Two-dimensional arrays are particularly relevant, since these are
natural representations of, for instance, a table of numbers. For instance, to
represent a set of numbers such as

100 6 Arrays and Plotting
S

U
0 12 ≠1 5

≠1 ≠1 ≠1 0
11 5 5 ≠2

T

V

it is natural to use a two-dimensional array Ai,j with the first index for the
rows and the second for the columns:

A=

S

WU
A0,0 · · · A0,n≠1
...

. . .
...

Am≠1,0 · · · Am≠1,n≠1

T

XV

In Python code, two-dimensional arrays are not much di�erent from the one-
dimensional version, except for an extra index. Making, filling, and modifying
a two-dimensional array is done in much the same way, as illustrated by the
following example:

A = zeros((3,4)) # 3x4 table of numbers

A[0,0] = -1
A[1,0] = 1
A[2,0] = 10
A[0,1] = -5
...
A[2,3] = -100

can also write (as for nested lists)

A[2][3] = -100

Notice the argument to the function zeros, which is a tuple specifying the
number of rows and columns in the two-dimensional array. We can create an
array of any dimension we want by passing a tuple of the correct length. It is
quite common for arrays used in numerical computations to be sparse, that
is, to have many zeros. It is therefore often convenient to use zeros to create
an array of the right size and then fill in the nonzero values. Alternatively, we
could create a nested list and convert it to an array with the array function
used in the beginning of the chapter.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

Chapter 7
Dictionaries and Strings

In this chapter we will mainly focus on two data types: dictionaries and
strings. Dictionaries can be considered a generalization of the list data type,
where the indices are not required to be integers. We have already used
strings multiple times in the previous chapters, but we will revisit them here
to introduce a number of new and useful functions. Both dictionaries and
strings are particularly useful for reading and processing text files, and many
of our examples will be related to such applications.

7.1 Dictionaries

In mathematics, a mapping is a relation between objects or structures that
often takes the form of a function. A mapping f is a rule that assigns a
unique value f(x) to a given input x. Mappings are also widely used in com-
puter science and can be implemented in many different ways. For instance,
a Python list can be viewed as a mapping between integers (list indices) and
the objects contained in a list. More general mappings can be implemented
using functions and if-tests; for instance, the mapping

’Norway’ --> ’Oslo’
’Sweden’ --> ’Stockholm’
’France’ --> ’Paris’

could be implemented in Python as a function:

def f(x):
if x == ’Norway’:

return ’Oslo’
elif x == ’Sweden’:

return ’Stockholm’
elif x == ’France’:

return ’Paris’

101J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_7

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_7&domain=pdf

102 7 Dictionaries and Strings

Such an implementation is obviously not very convenient if we have a large
number of input and output values, however. An alternative implementation
of the mapping would be to use two lists of equal length, where, for instance,
item n in list countries corresponds to item n in list capitals. However,
since such general mappings are useful in many contexts, Python provides a
special data structure for them, called a dictionary. Data structures similar
to a dictionary are used in many programming languages, but they often
have different names. Common names are associative array, symbol table,
hash map, or simply map.

A dictionary can be seen as a generalization of a list, where the indices
are not required to be integers, but can be any immutable Python data type.
The "indices" of a dictionary are called keys, and through this course we will
mostly use strings as dictionary keys. The dictionary implementation of the
mapping above looks like

d = {’Norway’:’Oslo’,’Sweden’:’Stockholm’,’France’:’Paris’}

and we can look up values in the dictionary just as we would in a list, using
the dictionary key instead of an index:

print(d[’Norway’])

To extend the dictionary with new values, we can simply write

d[’Germany’] = Berlin

Notice this important difference between a list and a dictionary. For a list
we had to use append() to add new elements. A dictionary has no append
method, and to extend it we simply introduce a new key and a corresponding
value.

Dictionaries can be initialized in two different ways: one is by using the
curly brackets, as in the example above. Alternatively, we can use the built-in
function dict, which takes a number of key–value pairs as arguments and
returns the corresponding dictionary. The two approaches can look like

mydict = {’key1’: value1, ’key2’: value2, ...}

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5}

or
mydict = dict(key1=value1, key2=value2, ...)

temps = dict(Oslo=13, London=15.4, Paris=17.5)

Notice the differences in syntax, particularly the different use of quotation
marks. When initializing using curly brackets, we use a colon to separate
the key from its corresponding value, and the key can be any immutable
Python object (e.g., strings in the example above). When using the dict
function, we pass the key-value pairs as keyword arguments to the function,
and the keywords are converted to keys of type string. However, in both cases,

7.1 Dictionaries 103

the initialization involves defining a set of key–value pairs to populate the
dictionary. A dictionary is simply an unordered collection of such key–value
pairs.

We are used to looping over lists to access the individual elements. We can
do the same with dictionaries, with the small but important difference that
looping over a dictionary means looping over its keys, and not the values. If
we want to access the values we need to look them up in the dictionary using
the keys. For instance, generic code to print all the values of a dictionary
would appear as follows:

for key in dictionary:
value = dictionary[key]
print(value)

A concrete example based on the example above could look like

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5, ’Madrid’: 26}
for city in temps:

print(f’The {city} temperature is temps{city}’)

with the following output:

The Paris temperature is 17.5
The Oslo temperature is 13
The London temperature is 15.4
The Madrid temperature is 26

As mentioned above, a dictionary is an unordered collection of key–value
pairs, meaning that the sequence of the keys in the dictionary is arbitrary. If
we want to print or otherwise process the elements in a particular order, the
keys first need to be sorted, for instance, using the built-in function sorted:

for city in sorted(temps): # alphabetic sort of keys
value = temps[city]
print value

There can be applications where sorting the keys in this manner is important,
but usually the order of a dictionary is insignificant. In most applications
where the order of the elements is important, a list or an array is a more
convenient data type than a dictionary.
Dictionaries and lists share many similarities. Much of the function-
ality that we are familiar with for list also exists for dictionaries. We can, for
instance, check if a dictionary has a particular key with the expression key
in dict, which returns true or false:

>>> if ’Berlin’ in temps:
... print(’Berlin:’, temps[’Berlin’])
... else:
... print(’No temperature data for Berlin’)
...
No temperature data for Berlin
>>> ’Oslo’ in temps # standard Boolean expression

104 7 Dictionaries and Strings

True

Deleting an element of a dictionary is done exactly the same way as with
lists, using the operator del, and we can use len to check its length:

>>> del temps[’Oslo’] # remove Oslo key and value
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
>>> len(temps) # no of key-value pairs in dict.
3

In some cases, it can be useful to access the keys or values of a dictionary as
separate entities, and this can be accomplished with the methods keys and
values, for instance temps.keys() and temps.values() for the case above.
These methods will return iterators, which are list-like objects that can be
looped over or converted to a list:

>>> for temp in temps.values():
>>> print(temp)
...
17.5
15.4
26.0
>>> keys_list = list(temps.keys())

Just as with lists, when we assign an existing dictionary to a new variable,
the dictionary is not copied. Instead, the new variable name becomes a ref-
erence to the same dictionary, and changing it will also change the original
variable. The following code illustrates the behavior:

>>> t1 = temps
>>> t1[’Stockholm’] = 10.0 # change t1
>>> temps # temps is also changed!
{’Stockholm’: 10.0, ’Paris’: 17.5, ’London’: 15.4,

’Madrid’: 26.0}
>>> t2 = temps.copy() # take a copy
>>> t2[’Paris’] = 16
>>> t1[’Paris’] # t1 was not changed
17.5

Here, the call to temps.copy() ensures that t2 is a copy of the original
dictionary, and not a reference, so changing it does not alter the original
dictionary. Recall that lists behave in the same way:

>>> L = [1, 2, 3]
>>> M = L
>>> M[1] = 8
>>> L[1]
8
>>> M = L.copy() #for lists, M = L[:] also works
>>> M[2] = 0
>>> L[2]
3

7.2 Example: A Dictionary for Polynomials 105

So far we have used texts (string objects) as keys, but the keys of a dic-
tionary can be any immutable (constant) object. For instance, we can use
integers, floats, and tuples as keys, but not lists since they are mutable ob-
jects:

>>> d = {1: 34, 2: 67, 3: 0} # key is int
>>> d = {13: ’Oslo’, 15.4: ’London’} # possible
>>> d = {(0,0): 4, (1,-1): 5} # key is tuple
>>> d = {[0,0]: 4, [-1,1]: 5} # list is mutable/changeable
...
TypeError: unhashable type: ’list’

Of course, the fact that these alternatives work in Python does not mean
that they are recommended or very useful. It is, for instance, hard to imagine
a useful application for a dictionary with a temperature as the key and a
city name as the value. Strings are the most obvious and common data type
for dictionary keys and will also be the most common through this book.
However, there are applications where other types of keys can be useful, as
we see in the following examples.

7.2 Example: A Dictionary for Polynomials

The information in a polynomial such as

p(x) = −1+x2 +3x7

can be represented by a dictionary with the power as the key (int) and the
coefficient as the value (float or int):

p = {0: -1, 2: 1, 7: 3}

More generally, a polynomial written on the form

p(x) =
N∑

i∈I

cix
i,

for some set of integers I can be represented by a dictionary with keys i
and values ci. To evaluate a polynomial represented by such a dictionary,
we need to iterate over the keys of the dictionary, extract the corresponding
values, and sum up the terms. The following function takes two arguments –
a dictionary poly and a number or array x – and evaluates the polynomial
in x:

def eval_poly_dict(poly, x):
sum = 0.0
for power in poly:

sum += poly[power]*x**power

106 7 Dictionaries and Strings

return sum

We see that the function follows our standard recipe for evaluating a sum;
set a summation variable to zero and then add in all the terms using a for
loop. We can write an even shorter version of the function using Python’s
built-in function sum:

def eval_poly_dict(poly, x):
Python’s sum can add elements of an iterator
return sum(poly[power]*x**power for power in poly)

Since the keys of the polynomial dictionary are integers, we can also replace
the dictionary with a list, where the list index corresponds to the power of
the respective term. The polynomial above, that is, −1 + x2 + 3x7 can be
represented as the list

p = [-1, 0, 1, 0, 0, 0, 0, 3]

and the general polynomial
∑N

i=0 cix
i is stored as [c0, c1, c2, ..., cN].

The function to evaluate a polynomial represented by a list is nearly identical
to the function for the dictionary. The function

def eval_poly_list(poly, x):
sum = 0
for power in range(len(poly)):

sum += poly[power]*x**power
return sum

will evaluate a polynomial
∑N

i=0 cix
i for a given x. An alternative and ar-

guably more "Pythonic version" uses the convenient enumerate function:

def eval_poly_list_enum(poly, x):
sum = 0
for power, coeff in enumerate(poly):

sum += coeff*x**power
return sum

The enumerate function essentially turns a list into a list of 2-tuples, where
the first element is the index of a list element and the second is the element
itself. The function is quite convenient for iterating through a list when we
also need access to the indices, and it is very common in Python programs.

The representations based on dictionaries and lists are very similar, but
the list representation has the obvious disadvantage that we need to store all
the zeros. For "sparse" high-order polynomials, this can be quite inconvenient,
and the dictionary representation is obviously better. The dictionary repre-
sentation can also easily handle negative powers, for instance 1

2x−3 +2x4:

p = {-3: 0.5, 4: 2}
print eval_poly_dict(p, x=4)

This code will work just fine without any modifications of the eval_poly_dict
function. Lists in Python cannot have negative indices (since indexing a list

7.4 String Manipulation 107

with a negative number implies counting indices from the end of the list), and
extending the list representation to handle negative powers is not a trivial
task.

7.3 Example: Reading File Data to a Dictionary

Say we have a file deg2.txt, containing temperature data for a number of
cities:

Oslo: 21.8
London: 18.1
Berlin: 19
Paris: 23
Rome: 26
Helsinki: 17.8

We now want to read this file and store the information in a dictionary, with
the city names as keys and the temperatures as values. The recipe is nearly
identical to the one we previously used to read file data into lists: first create
an empty dictionary and then fill it with values read from the file:

with open(’deg2.txt’, ’r’) as infile:
temps = {} # start with empty dict
for line in infile:

city, temp = line.split()
city = city[:-1] # remove last char (:)
temps[city] = float(temp)

The only real difference between this code and previous examples based
on lists is the way new data are added to the dictionary. We used the
append method to populate an empty list, but dictionaries have no such
method. Instead, we add a new key–value pair with the line temps[city] =
float(temp). Apart from this technical difference, the recipe for populating
a dictionary is exactly the same as for lists.

7.4 String Manipulation

We have already worked with strings (having type str)in previous chapters,
for instance introducing the very useful split-method:

>>> s = ’This is a string’
>>> s.split()
[’This’, ’is’, ’a’, ’string’]

String manipulation is essential for reading and interpreting the content of
files, and the way we process files often depends on the file structure. For

108 7 Dictionaries and Strings

instance, we need to know the line on which the relevant information starts,
how data items are separated, and how many data items are on each line.
The algorithm for reading and processing the text often needs to be tailored
to the file structure. Although the split function already considered is quite
flexible, and works for most of the examples presented in this book, it might
not always be the best tool. Python has a number of other ways to process
strings, which could, in some cases, make the text processing easier and more
efficient.

To introduce some of the basic operations on strings, we can use the fol-
lowing string variable as an example:

>>> s = ’Berlin: 18.4 C at 4 pm’

Such a string is really just a sequence of characters, and it behaves much like
other sequence data types such as lists and tuples. For instance, we can index
a string to extract individual characters;

>>> s[0]
’B’
>>> s[1]
’e’
>>> s[-1]
’m’

Slices also work in the way we are used to and can be used to extract sub-
strings of a string:

>>> s
’Berlin: 18.4 C at 4 pm’
>>> s[8:] # from index 8 to the end of the string
’18.4 C at 4 pm’
>>> s[8:12] # index 8, 9, 10, and 11 (not 12!)
’18.4’
>>> s[8:-1]
’18.4 C at 4 p’
>>> s[8:-8]
’18.4 C’

Iterating over a string also works as we would expect:

>>> s = ’Berlin: 18.4 C at 4 pm’
>>> for s_ in s:

print(s_, end=’ ’)

Strings have a method named find that searches the string for a given
substring, and returns the index of its location, as follows:

>>> s.find(’Berlin’) # where does ’Berlin’ start?
0 # at index 0
>>> s.find(’pm’)
20
>>> s.find(’Oslo’) # not found
-1

7.4 String Manipulation 109

Lists do not have a find-method, but they have a method named index,
which is quite similar in that it searches for a given element in the list and
returns its index. Strings also have a method named index that does almost
the same thing as find. However, while find will return −1 if the substring
does not exist in the string, index will end with an error message. If we want
to know if a substring is part of a string and do not really care about its
location, we can also use in:

>>> ’Berlin’ in s:
True
>>> ’Oslo’ in s:
False

>>> if ’C’ in s:
... print ’C found’
... else:
... print ’no C’
...
C found

This use of in to check for the existence of a single element also works for
lists and tuples. For strings, the method is slightly more flexible, since we can
check for a substring of arbitrary length.

In many cases, we are interested not only in finding a substring, but also
in finding it and replace it with something else. For this task, we have a string
method named replace. It takes two strings as arguments, and a call such
as s.replace(s1, s2) will replace s1 by s2 everywhere in the string s. The
following examples illustrate how this method is used:

>>> s = ’Berlin: 18.4 C at 4 pm’
>>> s.replace(’ ’, ’__’)
’Berlin:__18.4__C__at__4__pm’
>>> s.replace(’Berlin’, ’Bonn’)
’Bonn: 18.4 C at 4 pm’
>>> s.replace(s[:s.find(’:’)], ’Bonn’)
’Bonn: 18.4 C at 4 pm’

In the final example, we combine find and replace to replace all the text be-
fore the ’:’ with ’Bonn’. First, s.find(’:’) returns the number six, which
is the index where the ’:’ is found; then the slice s[:6] is ’Berlin’, which
is replaced by ’Bonn’. However, one important observation in this example is
that these repeated calls to s.replace do not change s, but, instead, each call
returns a new string where the substrings have been replaced as requested.

Splitting and joining strings. We have already introduced the split
method, which is arguably the most useful method for reading and processing
text files. As we recall from Chapter 5, the call s.split(sep) will split the
string s into a list of substrings separated by sep. The sep argument is
optional, and if it is omitted the string is split with respect to whitespace.
Consider these two simple examples to recall how split is used:

110 7 Dictionaries and Strings

>>> s = ’Berlin: 18.4 C at 4 pm’
>>> s.split(’:’)
[’Berlin’, ’ 18.4 C at 4 pm’]
>>> s.split()
[’Berlin:’, ’18.4’, ’C’, ’at’, ’4’, ’pm’]

The split method has an inverse, called join, which is used to put a list of
strings together with a delimiter in between:

>>> strings = [’Newton’, ’Secant’, ’Bisection’]
>>> ’, ’.join(strings)
’Newton, Secant, Bisection’

Notice that we call the join method belonging to the delimiter ’, ’, which
is a string object, and pass the list of strings as an argument. If we want to
put the same list together separated by whitespace, we would simply replace
’, ’.join(strings) in the example above with ’ ’.join(strings).

Since split and join are inverse operations, using them in sequence will
give back the original string, as in the following example;

>>> l1 = ’Oslo: 8.4 C at 5 pm’
>>> words = l1.split()
>>> l2 = ’ ’.join(words)
>>> l1 == l2
True

A common use case for the join method is to split off a known number of
words on a line. Say we want to read a file in the following format, and
combine the city name and the country into a single string:

Tromso Norway 69.6351 18.9920 52436
Molde Norway 62.7483 7.1833 18594
Oslo Norway 59.9167 10.7500 835000
Stockholm Sweden 59.3508 18.0973 1264000
Uppsala Sweden 59.8601 17.6400 133117

The following code will read such a file and create a nested dictionary con-
taining the data

cities = {}
with open(’cities.txt’) as infile:

for line in infile:
words = line.split()
name = ’, ’.join(words[:2])
data = {’lat’: float(words[2]), ’long’:float(words[3])}
data[’pop’] = int(words[4])
cities[name] = data

Here the line name = ’, ’.join(words[:2]) will create strings such as
’Tromso, Norway’, which are then used as dictionary (keys). The value as-
sociated with each key is a dictionary containing the latitude and longitude
data.

In most of the examples considered so far we have mostly used split for
processing text files line by line, but in some cases we have a string with a

7.4 String Manipulation 111

great deal of text on multiple lines and we want to split it into single lines.
We can do so by using the split method with the appropriate separator. For
instance, on Linux and Mac systems, sthe line separator is \n;

>>> t = ’1st line\n2nd line\n3rd line’
>>> print t
1st line
2nd line
3rd line
>>> t.split(’\n’)
[’1st line’, ’2nd line’, ’3rd line’]

This example works fine on Mac or Linux, but the line separator on Windows
is not \n, but \r\n, and, for a platform-independent solution, it is better to
use the method splitlines(), which works with both line separators:

>>> t = ’1st line\n2nd line\n3rd line’ #Unix format
>>> t.splitlines()
[’1st line’, ’2nd line’, ’3rd line’]
>>> t = ’1st line\r\n2nd line\r\n3rd line’ # Windows
>>> t.splitlines() # cross platform!
[’1st line’, ’2nd line’, ’3rd line’]

Strings are constant – immutable – objects. In many of the examples
above, we highlighted the similarity between strings and lists, since we are
very familiar with lists from earlier chapters. However, strings are even more
similar to tuples, since they are immutable objects. We could change the
elements of a list in place by indexing into the list, but this does not work
for strings. Trying to assign a new value to a part of a string will result in an
error message:

>>> s[18] = 5
...
TypeError: ’str’ object does not support item assignment

Instead, to perform such a replacement, we can build a new string manually
by adding pieces of the original string or use the replace method introduced
above:

>>> # build a new string by adding pieces of s:
>>> s2 = s[:18] + ’5’ + s[19:]
>>> s2
’Berlin: 18.4 C at 5 pm’
>>> s2 = s.replace(s[18],5)
>>> s2
’Berlin: 18.4 C at 5 pm’

The fact that strings are immutable, but still have a method such as replace,
could be confusing to some. How can we replace a substring with another if
strings are immutable objects? The answer is that replace does not really
change the original string, but returns a new one. This behavior is similar
to, for instance, the call s.split(), which will not turn s into a list but,

112 7 Dictionaries and Strings

instead, will leave s unchanged and return a list of the substrings. Similarly,
a call such as s.replace(4,5) does not change s but it will return a new
string that we can assign to either s or some other variable name, as we did
in the example above. The call s.replace(4,5) does nothing useful on its
own, unless it is combined into an assignment such as s2 = s.replace(4,5)
or s = s.replace(4,5).

Other convenient string methods in Python. It is often convenient
to strip leading or trailing whitespace from a string, and there are methods
strip(), lstrip() and rstrip() to do just this:

>>> s = ’ text with leading/trailing space \n’
>>> s.strip()
’text with leading/trailing space’
>>> s.lstrip() # left strip
’text with leading/trailing space \n’
>>> s.rstrip() # right strip
’ text with leading/trailing space’

We can also check whether a string contains only numbers (digits), only space,
or if a string starts or ends with a given substring:

>>> ’214’.isdigit()
True
>>> ’ 214 ’.isdigit()
False
>>> ’2.14’.isdigit()
False

>>> ’ ’.isspace() # blanks
True
>>> ’ \n’.isspace() # newline
True
>>> ’ \t ’.isspace() # TAB
True
>>> ’’.isspace() # empty string
False

>>> s.startswith(’Berlin’)
True
>>> s.endswith(’am’)
False

Finally, we might be interested in converting between lowercase and upper-
case characters:

>>> s.lower()
’berlin: 18.4 c at 4 pm’
>>> s.upper()
’BERLIN: 18.4 C AT 4 PM’

The examples shown so far are just a few of the useful string operations de-
fined in Python. Many more exist, but all the text processing tasks considered

7.4 String Manipulation 113

in this book can be accomplished with the operations listed here. Nearly all
the tasks we encounter in this book can be solved by using a combination of
split and join in addition to string indexing and slicing.

Example: Reading pairs of numbers (x,y) from a file. To summarize
some string operations using an example, consider the task of reading files in
the following format;

(1.3,0) (-1,2) (3,-1.5)
(0,1) (1,0) (1,1)
(0,-0.01) (10.5,-1) (2.5,-2.5)

We want to read these coordinate pairs, convert the numbers to floats, and
store them as a list of tuples. The algorithm is similar to the way we processed
files earlier:

1. Read the file line by line
2. For each line, split the line into words (each number pair)
3. For each word, strip the parentheses and split the rest with respect to

comma to extract the numbers

From these operations, we can observe that the split function is probably a
good tool, as it usually is when processing text files. To strip the parentheses
from the coordinate pairs, we can, for instance, use slicing. Translated into
code, the example can look as follows:

pairs = [] # list of (n1, n2) pairs of numbers
with open(’pairs.txt’, ’r’) as lines:

for line in lines:
words = line.split()
for word in words:

word = word[1:-1] # strip off parentheses
n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair)

There are multiple alternative solutions for reading a file in the given format,
but this one is quite simple and also relatively robust with respect to handling
different numbers of pairs on each line and variable use of whitespace.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

114 7 Dictionaries and Strings

Chapter 8
Classes

In this chapter, we introduce classes, which is a fundamental concept in pro-
gramming. Most modern programming languages support classes or similar
concepts, and we have already encountered classes earlier in this book. Re-
call, for instance, from Chapter 2 how we can check the type of a variable
with the type function, and the output will be of the form <class ’int’>,
<class ’float’>, and so on. This simply states that the type of an object is
defined in the form of a class. Every time we create, for instance, an integer
variable in our program, we create an object or instance of the int class.
The class defines how the objects behave and what methods they contain.
We have used a large number of different methods bound to objects, such as
the append method for list objects and split for strings. All such methods
are part of the definition of the class to which the object belongs. So far, we
have only used Python’s built-in classes to create objects, but in this chapter
we will write our own classes and use them to create objects tailored to our
particular needs.

8.1 Basics of Classes

A class packs together data and functions in a single unit. As seen in previous
chapters, functions that are bound to a class or an object are usually called
methods, and we will stick to this notation in the present chapter. Classes
have some similarity with modules, which are also collections of variables and
functions that naturally belong together. However, while there can be only
a single instance of a module, we can create multiple instances of a class.
Different instances of the same class can contain different data, but they all
behave in the same way and have the same methods. Think of a basic Python
class such as int; we can create many integer variables in a program, and
they obviously have different values (data), but we know that they all have
the same general behavior and the same set of operations defined for them.

115J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_8

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_8&domain=pdf

116 8 Classes

The same goes for more complex Python classes such as lists and strings;
different objects contain different data, but they all have the same methods.
The classes we create in this chapter behave in exactly the same way.

First example: A class representing a function. To start with a familiar
example, we return to the formula calculating atmospheric pressure p as a
function of altitude h. The formula we used is a simplification of a more
general barometric formula, given by:

p = p0e−Mgh/RT , (8.1)

where M is the molar mass of air, g is the gravitational constant, R is the gas
constant, T is temperature, and p0 is the pressure at sea level. We obtain the
simpler formula used earlier by defining the scale height as h0 = RT/Mg. It
could be interesting to evaluate (8.1) for different temperatures and, for each
value of T , to create a table or plot of how the pressure varies with altitude.
For each value of T , we need to call the function many times, with different
values of h. How should we implement this in a convenient way? One possible
solution would be to have both h and T as arguments:

from math import exp

def barometric(h, T):
g = 9.81 #m/(s*s)
R = 8.314 #J/(K*mol)
M = 0.02896 #kg/mol
p0 = 100.0 #kPa

return p0 * exp(-M*g*h/(R*T))

This solution obviously works, but if we want to call the function many times
for the same value of T then we still need to pass it as an argument every
time it is called. However, what if the function is to be passed as an argument
to another function that expects it to take a single argument only?1 In this
case, our function with two arguments will not work. A partial solution would
be to include a default value for the T argument, but we would still have a
problem if we want a different value of T.

Another solution would be to have h as the only argument, and T as a
global variable:

T = 245.0

def barometric(h):
g = 9.81 #m/(s*s)

1This situation is quite common in Python programs. Consider, for instance, the
implementation of Newton’s method in Chapter 4, in the functions Newton and Newton2.
These functions expect two functions as arguments (f and dfdx), and both are expected
to take a single argument (x). Passing in a function that requires two or more arguments
will lead to an error.

8.1 Basics of Classes 117

R = 8.314 #J/(K*mol)
M = 0.02896 #kg/mol
p0 = 100.0 #kPa

return p0 * exp(-M*g*h/(R*T))

We now have a function that takes a single argument, but defining T as a
global variable is not very convenient if we want to evaluate y(t) for different
values of T. We could also set T as a local variable inside the function and
define different functions barometric1(h), barometric2(h), etc., for dif-
ferent values of T, but this is obviously inconvenient if we want many values
of T. However, we shall see that programming with classes and objects of-
fers exactly what we need: a convenient solution to create a family of similar
functions that all have their own value of T.

As mentioned above, the idea of a class is to pack together data and
methods (or functions) that naturally operate on the data. We can make a
class Barometric for the formula at hand, with the variables R, T,‘M‘, g, and
p0 as data, and a method value(t) for evaluating the formula. All classes
should also have a method named __init__ to initialize the variables. The
following code defines our function class

class Barometric:
def __init__(self, T):

self.T = T #K
self.g = 9.81 #m/(s*s)
self.R = 8.314 #J/(K*mol)
self.M = 0.02896 #kg/mol
self.p0 = 100.0 #kPa

def value(self, h):
return self.p0 * exp(-self.M*self.g*h/(self.R*self.T))

Having defined this class, we can create instances of the class with specific
values of the parameter T, and then we can call the method value with h as
the only argument:

b1 = Barometric(T=245) # create instance (object)
p1 = b1.value(2469) # compute function value
b2 = Barometric(T=273)
p2 = b2.value(2469)

These code segments introduce a number of new concepts worth dissecting.
First, we have a class definition that, in Python, always starts with the word
class, followed by the name of the class and a colon. The following indented
block of code defines the contents of the class. Just as we are used to when
we implement functions, the indentation defines what belongs inside the class
definition. The first contents of our class, and of most classes, is a method
with the special name __init__, which is called the constructor of the class.
This method is automatically called every time we create an instance in the
class, as in the line b1 = Barometric(T=245) above. Inside the method, we

118 8 Classes

define all the constants used in the formula – self.T, self.g, and so on –
where the prefix self means that these variables become bound to the object
created. Such bound variables are called attributes. Finally, we define the
method value, which evaluates the formula using the predefined and object-
bound parameters self.T, self.g, self.R, self.M, and self.p0. After
we have defined the class, every time we write a line such as

b1 = Barometric(T=245)

we create a new variable (instance) b1 of type Barometric. The line looks like
a regular function call, but, since Barometric is the definition of a class and
not a function, Barometric(T=245) is instead a call to the class’ constructor.
The constructor creates and returns an instance of the class with the specified
values of the parameters, and we assign this instance to the variable b. All the
__init__ functions we encounter in this book will follow exactly the same
recipe. Their purpose is to define a number of attributes for the class, and
they will typically contain one or more lines of the form self.A = A, where
A is either an argument passed to the constructor or a value defined inside
it.

As always in programming, there are different ways to achieve the same
thing, and we could have chosen a different implementation of the class above.
Since the only argument to the constructor is T, the other attributes never
change and they could have been local variables inside the value method:

class Barometric1:
def __init__(self, T):

self.T = T #K

def value(self, h):
g = 9.81; R = 9.314
M = 0.02896; p0 = 100.0
return p0 * exp(-M*g*h/(R*self.T))

Notice that, inside the value method, we only use the self prefix for T, since
this is the only variable that is a class attribute. In this version of the class
the other variables are regular local variables defined inside the method. This
class does exactly the same thing as the one defined above, and one could
argue that this implementation is better, since it is shorter and simpler than
the one above. However, defining all the physical constants in one place (in
the constructor) can make the code easier to read, and the class easier to
extend with more methods. As a third possible implementation, we could
move some of the calculations from the value method to the constructor:

class Barometric2:
def __init__(self, T):

g = 9.81 #m/(s*s)
R = 8.314 #J/(K*mol)
M = 0.02896 #kg/mol
self.h0 = R*T/(M*g)
self.p0 = 100.0 #kPa

8.1 Basics of Classes 119

def value(self, h):
return self.p0 * exp(-h/self.h0)

In this class, we use the definition of the scale height from above and compute
and store this value as an attribute inside the constructor. The attribute
self.h0 is then used inside the value method. Notice that the constants g,
R, and M are, in this case, local variables in the constructor, and neither these
nor T are stored as attributes. They are only accessible inside the constructor,
while self.p0 and self.h0 are stored and can be accessed later from within
other methods.

At this point, many will be confused by the self variable, and the fact
that, when we define the methods __init__ and value they take two ar-
guments, but, when calling them, they take only one. The explanation for
this behavior is that self represents the object itself, and it is automatically
passed as the first argument when we call a method bound to the object.
When we write

p1 = b1.value(2469)

it is equivalent to the call

p1 = Barometric.value(b1,2469)

Here we explicitly call the value method that belongs to the Barometric
class and pass the instance b1 as the first argument. Inside the method, b1
then becomes the local variable self, as is usual when passing arguments
to a function, and we can access its attributes T, g, and so on. Exactly the
same thing happens when we call b1.value(2469), but now the object b1 is
automatically passed as the first argument to the method. It looks as if we
are calling the method with a single argument, but in reality it gets two.

The use of the self variable in Python classes has been the subject of many
discussions. Even experienced programmers find it confusing, and many have
questioned why the language was designed this way. There are some obvious
advantages to the approach, for instance, it very clearly distinguishes between
instance attributes (prefixed with self) and local variables defined inside a
method. However, if one is struggling to see the reasoning behind the self
variable, it is sufficient to remember the following two rules: (i) self is always
the first argument in a method definition, but is never inserted when the
method is called, and (ii) to access an attribute inside a method, the attribute
needs to be prefixed with self.

An advantage of creating a class for our barometric function is that we
can now send b1.value as an argument to any other function that expects
a function argument f that takes a single argument. Consider, for instance,
the following small example, where the function make_table prints a table
of the function values for any function passed to it:

from math import sin, exp, pi

120 8 Classes

from numpy import linspace

def make_table(f, tstop, n):
for t in linspace(0, tstop, n):

print(t, f(t))

def g(t):
return sin(t)*exp(-t)

make_table(g, 2*pi, 11) # send ordinary function

b1 = Barometric(2469)
make_table(b1.value, 2*pi, 11) # send class method

Because of how f(t) is used inside the function, we need to send make_table
a function that takes a single argument. Our b1.value method satisfies this
requirement, but we can still use different values of T by creating multiple
instances.
More general Python classes. Of course, Python classes have far more
general applicability than just the representation of mathematical functions.
A general Python class definition follows the recipe outlined in the example
above, as follows:

class MyClass:
def __init__(self, p1, p2,...):

self.attr1 = p1
self.attr2 = p2

...

def method1(self, arg):
#access attributes with self prefix

result = self.attr1 + ...
...
#create new attributes if desired
self.attrx = arg
...
return result

def method2(self):
...
print(...)

We can define as many methods as we want inside the class, with or with-
out arguments. When we create an instance of the class the methods be-
come bound to the instance, and are accessed with the prefix, for instance,
m.method2() if m is an instance of MyClass. It is common to have a construc-
tor where attributes are initialized, but this is not a requirement. Attributes
can be defined whenever desired, for instance, inside a method, as in the line
self.attrx = arg in the example above, or even from outside the class:

m = MyClass(p1,p2, ...)
m.new_attr = p3

8.2 Protected Class Attributes 121

The second line here creates a new attribute new_attr for the instance m of
MyClass. Such addition of attributes is entirely valid, but it is rarely good
programming practice since we can end up with instances of the same class
having different attributes. It is a good habit to always equip a class with a
constructor and to primarily define attributes inside the constructor.

8.2 Protected Class Attributes

For a more classical computer science example of a Python class, let us look
at a class representing a bank account. Natural attributes for such a class
will be the name of the owner, the account number, and the balance, and
we can include methods for deposits, withdrawals, and printing information
about the account. The code for defining such a class could look like this:

class BankAccount:
def __init__(self, first_name, last_name, number, balance):

self.first_name = first_name
self.last_name = last_name
self.number = number
self.balance = balance

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def print_info(self):
first = self.first_name; last = self.last_name
number = self.number; bal = self.balance
s = f’{first} {last}, {number}, balance: {balance}’
print(s)

Typical use of the class could be something like the following, where we
create two different account instances and call the various methods for de-
posits, withdrawals, and printing information:

>>> a1 = Account(’John’, ’Olsson’, ’19371554951’, 20000)
>>> a2 = Account(’Liz’, ’Olsson’, ’19371564761’, 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print "a1’s balance:", a1.balance
a1’s balance: 13500
>>> a1.print_info()
John Olsson, 19371554951, balance: 13500
>>> a2.print_info()

122 8 Classes

Liz Olsson, 19371564761, balance: 9500

However, there is nothing to prevent a user from changing the attributes of
the account directly:

>>> a1.first_name = ’Some other name’
>>> a1.balance = 100000
>>> a1.number = ’19371564768’

Although it can be tempting to adjust a bank account balance when needed,
it is not the intended use of the class. Directly manipulating attributes in this
way will very often lead to errors in large software systems, and is considered
a bad programming style. Instead, attributes should always be changed by
calling methods, in this case, withdraw and deposit. Many programming
languages have constructions that can limit the access to attributes from
outside the class, so that any attempt to access them will lead to an error
message when compiling or running the code. Python has no technical way
to limit attribute access, but it is common to mark attributes as protected
by prefixing the name with an underscore (e.g., _name). This convention tells
other programmers that a given attribute or method is not supposed to be
accessed from outside the class, even though it is still technically possible to
do so. An account class with protected attributes can look like the following:

class BankAccountP:
def __init__(self, first_name, last_name, number, balance):

self._first_name = first_name
self._last_name = name
self._number = number
self._balance = balance

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self): # NEW - read balance value
return self._balance

def print_info(self):
first = self.first_name; last = self.last_name
number = self.number; bal = self.balance
s = f’{first} {last}, {number}, balance: {balance}’
print(s)

When using this class, it will still be technically possible to access the at-
tributes directly, as in

a1 = BankAccountP(’John’, ’Olsson’, ’19371554951’, 20000)
a1._number = ’19371554955’

However, all experienced Python programmers will know that the second
line is a serious violation of good coding practice and will look for a better

8.3 Special Methods 123

way to solve the task. When using code libraries developed by others, such
conventions are risky to break, since internal data structures can change,
while the interface to the class is more static. The convention of protected
variables is how programmers tell users of the class what can change and
what is static. Library developers can decide to change the internal data
structure of a class, but users of the class might not even notice this change
if the methods to access the data remain unchanged. Since the class interface
is unchanged, users who followed the convention will be fine, but users who
have accessed protected attributes directly could be in for a surprise.

8.3 Special Methods

In the examples above, we define a constructor for each class, identified by
its special name __init__(...). This name is recognized by Python, and
the method is automatically called every time we create a new instance of
the class. The constructor belongs to a family of methods known as special
methods, which are all recognized by double leading and trailing underscores
in the name. The term special methods could be a bit misleading, since the
methods themselves are not really special. The special thing about them
is the name, which ensures that they are automatically called in different
situations, such as the __init__ function being called when class instances
are created. There are many more such special methods that we can use to
create object types with very useful properties.

Consider, for instance, the first example of this chapter, where the class
Barometric contained the method value(h) to evaluate a mathematical
function. After creating an instance named baro, we could call the method
with baro.value(t). However, it would be even more convenient if we could
just write baro(t) as if the instance were a regular Python function. This be-
havior can be obtained by simply changing the name of the value method to
one of the special method names that Python automatically recognizes. The
special method name for making an instance callable like a regular Python
function is __call__:

class Barometric:
def __init__(self, T):

self.T = T #K
self.g = 9.81 #m/(s*s)
self.R = 8.314 #J/(K*mol)
self.M = 0.02896 #kg/mol
self.p0 = 100.0 #kPa

def __call__(self, h):
return self.p0 * exp(-self.M*self.g*h/(self.R*self.T))

124 8 Classes

Now we can call an instance of the class Barometric just as any other Python
function

baro = Barometric(245)
p = baro(2346) #same as p = baro.__call__(2346)

The instance baro now behaves and looks like a function. The method is
exactly the same as the value method, but creating a special method by
renaming it to __call__ produces nicer syntax when the class is used.

Special method for printing. We are used to printing an object a using
print(a), which works fine for Python’s built-in object types such as strings
and lists. However, if a is an instance of a class we defined ourselves, we
do not obtain much useful information, since Python does not know what
information to show. We can solve this problem by defining a special method
named __str__ in our class. The __str__ method must return a string ob-
ject, preferably a string that provides useful information about the object,
and it should not take any arguments except self. For the function class
seen above, a suitable __str__ method could look like the following:

class Barometric:
...
def __call__(self, h):

return self.p0 * exp(-self.M*self.g*h/(self.R*self.T))

def __str__(self):
return f’p0 * exp(-M*g*h/(R*T)); T = {self.T}’

If we now call print for an instance of the class, the function expression and
the value of T for that instance will be printed, as follows:

>>> b = Barometric(245)
>>> b(2469)
70.86738432067067
>>> print(b)
p0 * exp(-M*g*h/(R*T)); T = 245

Special methods for mathematical operations. So far we have seen
three special methods, namely, __init__, __call__, and __str__, but there
are many more. We will not cover them all in this book, but a few are worth
mentioning. For instance, there are special methods for arithmetic operations,
such as __add__, __sub__, __mul__, and so forth. Defining these methods
inside our class will enable us to perform operations such as c = a+b, where
a,b are instances of the class. The following are relevant arithmetic operations
and the corresponding special method that they will call:

c = a + b # c = a.__add__(b)

c = a - b # c = a.__sub__(b)

c = a*b # c = a.__mul__(b)

8.3 Special Methods 125

c = a/b # c = a.__div__(b)

c = a**e # c = a.__pow__(e)

It is natural, in most but not all cases, for these methods to return an object
of the same type as the operands. Similarly, there are special methods for
comparing objects,as follows:

a == b # a.__eq__(b)

a != b # a.__ne__(b)

a < b # a.__lt__(b)

a <= b # a.__le__(b)

a > b # a.__gt__(b)

a >= b # a.__ge__(b)

These methods should be implemented to return true or false, to be consistent
with the usual behavior of the comparison operators. The actual contents of
the special method are in all cases entirely up to the programmer. The only
special thing about the methods is their name, which ensures that they are
automatically called by various operators. For instance, if you try to multiply
two objects with a statement such as c = a*b, Python will look for a method
named __mul__ in the instance a. If such a method exists, it will be called
with the instance b as the argument, and whatever the method __mul__
returns will be the result of our multiplication operation.

The __repr__ special method. The last special method we will consider
here is a method named __repr__, which is similar to __str__ in the sense
that it should return a string with information about the object. The dif-
ference is that, while __str__ should provide human-readable information,
the __repr__ string will contain all the information necessary to recreate the
object. For an object a, the __repr__ method is called if we call repr(a),
where repr is a built-in function. The intended function of repr is such
that eval(repr(a)) == a, that is, running the string output by a.__repr__
should recreate a. To illustrate its use, let us add a __repr__ method to the
class Barometric from the start of the chapter:

class Barometric:
...
def __call__(self, h):

return self.p0 * exp(-self.M*self.g*h/(self.R*self.T))

def __str__(self):
return f’p0 * exp(-M*g*h/(R*T)); T = {self.T}’

def __repr__(self):

126 8 Classes

"""Return code for regenerating this instance."""
return f’Barometric({self.T})’

Again, we can illustrate how it works in an interactive shell:

>>> from tmp import *
>>> b = Barometric(271)
>>> print(b)
p0 * exp(-M*g*h/(R*T)); T = 245
>>> repr(b)
’Barometric(271)’
>>> b2 = eval(repr(b))
>>> print(b2)
p0 * exp(-M*g*h/(R*T)); T = 245

The last two lines confirm that the repr method works as intended, since
running eval(repr(b) returns an object identical to b. Both __repr__ and
__str__ return strings with information about an object, the difference being
that __str__ gives information to be read by humans, whereas the output
of __repr__ is intended to be read by Python.

How to know the contents of a class. Sometimes listing the contents of a
class can be useful, particularly for debugging. Consider the following dummy
class, which does nothing useful except to define a doc string, a constructor,
and a single attribute:

class A:
"""A class for demo purposes."""
def __init__(self, value):

self.v = value

If we now write dir(A) we see that the class actually contains a great deal
more than what we put into it, since Python automatically defines certain
methods and attributes in all classes. Most of the items listed are default
versions of special methods, which do nothing useful except to give the error
message NotImplemented if they are called. However, if we create an instance
of A, and use dir on that instance, we obtain more useful information:

>>> a = A(2)
>>> dir(a)
[’__class__’, ’__delattr__’, ’__dict__’, ’__dir__’, ’__doc__’, ’__eq__’,
’__format__’, ’__ge__’, ’__getattribute__’, ’__gt__’, ’__hash__’,
’__init__’, ’__init_subclass__’, ’__le__’, ’__lt__’, ’__module__’,
’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’,
’__setattr__’, ’__sizeof__’, ’__str__’, ’__subclasshook__’,
’__weakref__’, ’v’]

We see that the list contains the same (mostly useless) default versions of
special methods, but some of the items are more meaningful. If we continue
the interactive session to examine some of the items, we obtain

>>> a.__doc__
’A class for demo purposes.’

8.4 Example: Automatic Differentiation of Functions 127

>>> a.__dict__
{’v’: 2}
>>> a.v
2
>>> a.__module__
’__main__’

The __doc__ attribute is the doc string we defined, while __module__ is the
name of the module to which class belongs, which is simply __main__ in this
case, since we defined it in the main program. However, the most useful item
is probably __dict__, which is a dictionary containing the names and values
of all the attributes of the object a. Any instance holds its attributes in the
self.__dict__ dictionary, which is automatically created by Python. If we
add new attributes to the instance, they are inserted into the __dict__:

>>> a = A([1,2])
>>> print a.__dict__ # all attributes
{’v’: [1, 2]}
>>> a.myvar = 10 # add new attribute (!)
>>> a.__dict__
{’myvar’: 10, ’v’: [1, 2]}

When programming with classes we are not supposed to use the internal data
structures such as __dict__ explicitly, but printing it to check the values of
class attributes can be very useful if something goes wrong in our code.

8.4 Example: Automatic Differentiation of
Functions

To provide a more relevant and useful example of a __call__ special method,
consider the task of computing the derivative of an arbitrary function. Given
some mathematical function in Python, say,

def f(x):
return x**3

we want to make a class Derivative and write

dfdx = Derivative(f)

so that dfdx behaves as a function that computes the derivative of f(x).
When the instance dfdx is created, we want to call it like a regular function
to evaluate the derivative of f in a point x:

print(dfdx(2)) # computes 3*x**2 for x=2

It is tricky to create such a class using analytical differentiation rules, but we
can write a generic class by using numerical differentiation:

128 8 Classes

f ′(x) ≈ f(x+h)−f(x)
h

.

For a small (yet moderate) h, say h = 10−5, this estimate will be sufficiently
accurate for most applications. The key parts of the implementation are to let
the function f be an attribute of the Derivative class and then implement
the numerical differentiation formula in a __call__ special method:

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

The following interactive session demonstrates typical use of the class:

>>> from math import *
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

For a particularly useful application of the Derivative class, consider the so-
lution of a nonlinear equation f(x) = 0. In Chapter 4 we implement Newton’s
method as a general method for solving nonlinear equations, but Newton’s
method uses the derivative f ′(x), which needs to be provided as an argument
to the function:

def Newton2(f, dfdx, x0, max_it=20, tol= 1e-3):
...
return x0, converged, iter

See Chapter 4 for a complete implementation of the function. For many
functions f(x), finding f ′(x) can require lengthy and boring derivations, and
in such cases the Derivative class is quite handy:

>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> dfdx = Derivative(f)
>>> xstart = 1.01
>>> Newton2(f, dfdx, xstart)

8.5 Test Functions for Classes 129

(1.093562409134085, True, 4)

8.5 Test Functions for Classes

In Chapter 4 we introduced test functions as a method to verify that our
functions were implemented correctly, and the exact same approach can be
used to test the implementation of classes. Inside the test function, we define
parameters for which we know the expected output, and then call our class
methods and compare the results with those expected. The only additional
step involved when testing classes is that we will typically create one or
more instances of the class inside the test function and then call their. As an
example, consider a test function for the Derivative class of the previous
section. How can we define a test case with known output for this class? Two
possible methods are; (i) to compute (f(x+h)−f(x))/h by hand for some f
and h, or (ii) utilize the fact that linear functions are differentiated exactly
by our numerical formula, regardless of h. A test function based on (ii) could
look like the following:

def test_Derivative():
The formula is exact for linear functions, regardless of h
f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
diff = abs(dfdx(4.5) - a)
assert diff < 1E-14, ’bug in class Derivative, diff=%s’ % diff

This function follows the standard recipe for test functions: we construct a
problem with a known result, create an instance of the class, call the method,
and compare the result with the expected result. However, some of the details
inside the test function may be worth commenting on. First, we use a lambda
function to define f(x). As you may recall from Chapter 4, a lambda function
is simply a compact way of defining a function, with

f = lambda x: a*x + b

being equivalent to

def f(x):
return a*x + b

The use of the lambda function inside the test function appears straightfor-
ward at first:

f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
dfdx(4.5)

130 8 Classes

The function f is defined to taking one argument x and also using two two
local variables a and b that are defined outside the function before it is called.
However, looking at this code in more detail can raise questions. Calling
dfdx(4.5) implies that Derivative.__call__ is called, but how can this
methods know the values of a and b when it calls our f(x) function? These
variables are defined inside the test function and are therefore local, whereas
the class is defined in the main program. The answer is that a function defined
inside another function "remembers," or has access to, all the local variables
of the function where it is defined. Therefore, all the variables defined inside
test_Derivative become part of the namespace of the function f, and f can
access a and b in test_Derivative even when it is called from the __call__
method in class Derivative. This construction is known as a closure in
computer science.

8.6 Example: A Polynomial Class

As a summarizing example of classes and special methods, we can consider
the representation of polynomials introduced in Chapter 7. A polynomial can
be specified by a dictionary or list representing its coefficients and powers.
For example, 1−x2 +2x3 is

1+0 ·x−1 ·x2 +2 ·x3

and the coefficients can be stored as a list [1, 0, -1, 2]. We now want
to create a class for such a polynomial and equip it with functionality to
evaluate and print polynomials and to add two polynomials. Intended use of
the class Polynomial could look like the following:

>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = p1 + p2
>>> print(p3.coeff)
[1, 0, 0, 0, -6, -1]
>>> print(p3)
1 - 6*x^4 - x^5
>>> print(p3(2.0))
-127.0
>>> p4 = p1*p2
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4

To make all these operations possible, the class needs the following special
methods:

8.6 Example: A Polynomial Class 131

• __init__, the constructor, for the line p1 = Polynomial([1,-1])
• __str__, for doing print(p1)
• __call__, to enable the call p3(2.0)
• __add__, to make p3 = p1 + p2 work
• __mul__, to allow p4 = p1*p2

In addition, the class needs a method differentiate that computes the
derivative of a polynomial, and changes it in-place. Starting with the most
basic methods, the constructor is fairly straightforward and the call method
simply follows the recipe from Chapter 7:

class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

To enable the addition of two polynomials, we need to implement the __add__
method, which should take one argument in addition to self. The method
should return a new Polynomial instance, since the sum of two polynomials
is a polynomial, and the method needs to implement the rules of polynomial
addition. Adding two polynomials means to add terms of equal order, which,
in our list representation, means to loop over the self.coeff lists and add
individual elements, as follows:

class Polynomial:
...

def __add__(self, other):
return self + other

start with the longest list and add in the other:
if len(self.coeff) > len(other.coeff):

coeffsum = self.coeff[:] # copy!
for i in range(len(other.coeff)):

coeffsum[i] += other.coeff[i]
else:

coeffsum = other.coeff[:] # copy!
for i in range(len(self.coeff)):

coeffsum[i] += self.coeff[i]
return Polynomial(coeffsum)

The order of the sum of two polynomials is equal to the highest order of the
two, so the length of the returned polynomial must be equal to the length of
the longest of the two coeff lists. We utilize this knowledge in the code by
starting with a copy of the longest list and then looping through the shortest
and adding to each element.

132 8 Classes

The multiplication of two polynomials is slightly more complex than their
addition, so it is worth writing down the mathematics before implementing
the __mul__ method. The formula looks like

(
M∑

i=0
cix

i

)⎛
⎝ N∑

j=0
djxj

⎞
⎠ =

M∑
i=0

N∑
j=0

cidjxi+j ,

which, in our list representation, means that the coefficient corresponding to
the power i+j is ci ·dj . The list r of coefficients for the resulting polynomial
should have length N +M +1, and an element r[k] should be the sum of all
products c[i]*d[j] for which i + j = k. The implementation of the method
could look like

class Polynomial:
...
def __mul__(self, other):

M = len(self.coeff) - 1
N = len(other.coeff) - 1
coeff = [0]*(M+N+1) # or zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
coeff[i+j] += self.coeff[i]*other.coeff[j]

return Polynomial(coeff)

Just as the __add__ method, __mul__ takes one argument in addition to
self, and returns a new Polynomial instance.

Turning now to the differentiate method, the rule for differentiating a
general polynomial is

d

dx

n∑
i=0

cix
i =

n∑
i=1

icix
i−1

Therefore, if c is the list of coefficients, the derivative has a list of coefficients
dc, where dc[i-1] = i*c[i] for i from one to the largest index in c. Note
that dc will have one element less than c, since differentiating a polynomial
reduces the order by one. The full implementation of the differentiate
method could look like the following:

class Polynomial:
...
def differentiate(self): # change self

for i in range(1, len(self.coeff)):
self.coeff[i-1] = i*self.coeff[i]

del self.coeff[-1]

def derivative(self): # return new polynomial
dpdx = Polynomial(self.coeff[:]) # copy
dpdx.differentiate()
return dpdx

8.6 Example: A Polynomial Class 133

Here, the differentiate method will change the polynomial itself, since
this is the behavior indicated by the way the function was used above. We
have also added a separate function derivative that does not change the
polynomial but, instead, returns its derivative as a new Polynomial object.

Finally, let us implement the __str__ method for printing the polynomial
in human-readable form. This method should return a string representation
close to the way we write a polynomial in mathematics, but achieving this can
be surprisingly complicated. The following implementation does a reasonably
good job:

class Polynomial:
...
def __str__(self):

s = ’’
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += f’ + {self.coeff[i]:g}*x^{i:g}’

fix layout (many special cases):
s = s.replace(’+ -’, ’- ’)
s = s.replace(’ 1*’, ’ ’)
s = s.replace(’x^0’, ’1’)
s = s.replace(’x^1 ’, ’x ’)
if s[0:3] == ’ + ’: # remove initial +

s = s[3:]
if s[0:3] == ’ - ’: # fix spaces for initial -

s = ’-’ + s[3:]
return s

For all these special methods, as well as special methods in general, it is
important to be aware that their contents and behavior are entirely up to
the programmer. The only special thing about special methods is their name,
which ensures that they are automatically called by certain operations. What
they actually do and what they return are decided by the programmer writing
the class. If we want to write an __add__ method that returns nothing, or
returns something completely different from a sum, we are free to do so.
However, it is, of course, a good habit for the __add__(self, other) to
implement something that seems like a meaningful result of self + other.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

Chapter 9
Object-Oriented Programming

Upon reading the chapter title, one could wonder why object-oriented pro-
gramming (OOP) is introduced only now. We have used objects since Chap-
ter 2, and we started making our own classes and object types in Chapter 8,
so what is new in Chapter 9? The answer is that the term OOP can have two
different meanings. The first simply involves programming with objects and
classes, which we introduced in Chapter 8, and is more commonly referred to
as object-based programming. The second meaning of OOP is programming
with class hierarchies, which are families of classes that inherit their methods
and attributes from each other. This is the topic of the present chapter. We
will learn how to collect classes in families (hierarchies) and let child classes
inherit attributes and methods from parent classes.

9.1 Class Hierarchies and Inheritance

A class hierarchy is a family of closely related classes organized in a hierar-
chical manner. A key concept is inheritance, which means that child classes
can inherit attributes and methods from parent classes. A typical strategy is
to write a general class as a base class (or parent class) and then let special
cases be represented as subclasses (child classes). This approach can often
save much typing and code duplication. As usual, we introduce the topic by
looking at some examples.

Classes for lines and parabolas. As a first example, let us create a class
for representing and evaluating straight lines, y = c0 + c1x. Following the
concepts and ideas introduced in Chapter 8, the implementation of the class
can look like

import numpy as np

class Line:

135J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7_9

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=/https://doi.org/10.1007/978-3-030-50356-7_9&domain=pdf

136 9 Object-Oriented Programming

def __init__(self, c0, c1):
self.c0, self.c1 = c0, c1

def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
for x in np.linspace(L, R, n):

y = self(x)
s += f’{x:12g} {y:12g}\n’

return s

We see that we have equipped the class with a standard constructor, a
__call__ special method for evaluating the linear function, and a method
table for writing a table of x and y values. Say we now want to write a
similar class for evaluating a parabola y = c0 + c1x + c2x2. The code could
look like

class Parabola:
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
for x in linspace(L, R, n):

y = self(x)
s += f’{x:12g} {y:12g}\n’

return s

We observe that the two classes are nearly identical, differing only in the
parts that involve c2. Although we could very quickly just copy all the code
from the Line class and edit the small parts that are needed, such duplication
of code is usually a bad idea. At some point, we may need change the code,
for instance, to correct an error or improve the functionality, and having
to make the same change in multiple places often leads to time-consuming
errors. So, is there a way we can utilize the class Line code in Parabola
without resorting to copying and pasting? This is exactly what inheritance
is about.

To introduce inheritance, let us first look at the following class definition:

class Parabola(Line):
pass

Here pass is just a Python keyword that can be used wherever Python ex-
pects to find code, but we do not want to define anything. So, at first sight,
this Parabola class seems to be empty, but notice the class definition class

9.1 Class Hierarchies and Inheritance 137

Parabola(Line), which means that Parabola is a subclass of Line and in-
herits all its methods and attributes. The new Parabola class therefore has
attributes c0 and c1 and three methods __init__, __call__, and table.
Line is a base class (or parent class, superclass) , and Parabola is a sub-
class (or child class, derived class). The new Parabola class, therefore, is
not as useless as it first seemed, but it is still just a copy of the Line class.
To make the class represent a parabola, we need to add the missing code,
that is, the code that differs between Line and Parabola. When creating
such subclasses, the principle is to reuse as much as possible from the base
class, only add what is needed in the subclass, and avoid duplicating code.
Inspecting the two original classes above, we see that the Parabola class
must add code to Line’s constructor (an extra c2 attribute) and an extra
term in __call__, but table can be used unaltered. The full definition of
Parabola as a subclass of Line becomes the following:

class Parabola(Line):
def __init__(self, c0, c1, c2):

super().__init__(c0, c1) # Line stores c0, c1
self.c2 = c2

def __call__(self, x):
return super().__call__(x) + self.c2*x**2

To maximize code reuse, we allow the Parabola class to call the methods
from Line, and then add the missing parts. A subclass can always access its
base class bt using the built-in function super(), and this is the preferred way
to call methods from the base class. We could, however, also use the class
name directly, for instance Line.__init__(self,c0,c1). Generally, these
two methods for invoking superclass methods look like the following:

SuperClassName.method(self, arg1, arg2, ...)
super().method(arg1, arg2, ...)

Notice the difference between the two approaches. When using the class name
directly, we need to include self as the first argument, whereas this aspect
is handled automatically when using super(). The use of super() is usually
preferred, but in most cases the two approaches are equivalent.

To summarize this first example, the main benefits of introducing the
subclass are as follows:
• Class Parabola just adds code to the already existing code in class Line,

with no duplication of the code for storing c0 and c1 and computing
c0 + c1x.

• Class Parabola also has a table method; it is inherited and does not need
to be written.

• __init__ and __call__ are overridden or redefined in the subclass, with
no code duplication.

We can use the Parabola class and call its methods just as if they were
implemented in the class directly:

138 9 Object-Oriented Programming

p = Parabola(1, -2, 2)
p1 = p(2.5)
print(p1)
print(p.table(0, 1, 3))

The real meaning of inheritance. From a practical viewpoint, and for
the examples in this book, the point of inheritance is to reuse methods and
attributes from the base class and minimize code duplication. On a more
theoretical level, inheritance should be thought of as an "is-a" relationship
between the the two classes. By this we mean that if Parabola is a subclass
of Line, an instance of Parabola is also a Line instance. The Parabola
class is thought of as a special case of the Line class, and therefore ev-
ery Parabola is also a Line, but not vice versa. We can check class type
and class relations with the built-in functions isinstance(obj, type) and
issubclass(subclassname, superclassname):

>>> from Line_Parabola import Line, Parabola
>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False
>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
>>> isinstance(p, Line)
True
>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False
>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
’Parabola’

We will not use these methods much in practical applications1, but they are
very useful for gaining a feel for class relationships when learning OOP.

Mathematically oriented readers might have noticed a logical fault in the
small class hierarchy we have presented so far. We stated that a subclass is
usually thought of as a special case of the base class, but a parabola is not
really a special case of a straight line. It is the other way around, since a line
c0 +c1x is a parabola c0 +c1x+c2x2 with c2 = 0. Could then Line, then, be a
subclass of Parabola? Certainly, and many will prefer this relation between
a line and a parabola, since it follows the usual is-a relationship between a
subclass and its base. The code can look like:

1If you have to use isinstance in your code to check what kind of object you
are working with, it is usually a sign that the program is poorly designed. There are
exceptions, but normally isinstance and issubclass should only be used for learning
and debugging.

9.2 Example: Classes for Numerical Differentiation 139

class Parabola:
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
for x in linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

class Line(Parabola):
def __init__(self, c0, c1):

super().__init__(c0, c1, 0)

Notice that this version allows even more code reuse than the previous one,
since both __call__ and table can be reused without changes.

9.2 Example: Classes for Numerical
Differentiation

Common tasks in scientific computing, such as differentiation and integra-
tion, can be carried out with a large variety of numerical methods. Many
such methods are closely related, and can be easily grouped into families
of methods that are very suitable for implementation in a class hierarchy.
As a first example, we consider methods for numerical differentiation. The
simplest formula is a one-sided finite difference:

f ′(x) ≈ f(x+h)−f(x)
h

,

which can be implemented in the following class:

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

To use the Derivative class, we simply define a function f(x), create an
instance of the class, and call it as if it were a regular function (effectively
calling the __call__ method behind the scenes):

140 9 Object-Oriented Programming

from math import exp, sin, pi

def f(x):
return exp(-x)*sin(4*pi*x)

dfdx = Derivative(f)
print(dfdx(1.2))

However, numerous other formulas can be used for numerical differentiation,
for instance

f ′(x) = f(x+h)−f(x)
h

+O(h),

f ′(x) = f(x)−f(x−h)
h

+O(h),

f ′(x) = f(x+h)−f(x−h)
2h

+O(h2),

f ′(x) = 4
3

f(x+h)−f(x−h)
2h

− 1
3

f(x+2h)−f(x−2h)
4h

+O(h4),

f ′(x) = 3
2

f(x+h)−f(x−h)
2h

− 3
5

f(x+2h)−f(x−2h)
4h

+

1
10

f(x+3h)−f(x−3h)
6h

+O(h6),

f ′(x) = 1
h

(
−1

6f(x+2h)+f(x+h)− 1
2f(x)− 1

3f(x−h)
)

+O(h3).

We can easily make a module that offers multiple formulas, as follows:

class Forward1:
def __init__(self, f, h=1E-5):

self.f, self.h = f, h

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Central2:
def __init__(self, f, h=1E-5):

self.f, self.h = f, h

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

class Central4:
def __init__(self, f, h=1E-5):

self.f, self.h = f, h

def __call__(self, x):
f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

9.2 Example: Classes for Numerical Differentiation 141

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

The problem with this code is, of course, that all the constructors are iden-
tical, so we duplicate a great deal of code. Although the duplication of this
simple constructor might not be a big problem, it can easily lead to errors if
we want to change the constructor later, and it is therefore worth avoiding.
As mentioned above, a general idea of OOP is to place code common to many
classes in a superclass and to have that code be inherited by the subclasses.
In this case, we can make a superclass containing the constructor and let the
different subclasses implement their own version of the __call__ method.
The superclass will be very simple and not really useful on its own:

class Diff:
def __init__(self, f, h=1E-5):

self.f, self.h = f, h

The subclasses for the first-order forward formula and the second- and fourth-
order central difference formulas can then look like

class Forward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Central2(Diff):
def __call__(self,x):

f, h = self.f, self.h
return (f(x+h)-f(x-h))/(2*h)

class Central4(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

To use this simple class hierarchy in an example, say, we want to compute the
derivative of f(x) = sinx for x = π with the fourth-order central difference
formula:

from math import sin, pi
mycos = Central4(sin)
mycos(pi)

Here, the line mycos = Central4(sin) creates an instance of the Central4
class by calling the constructor inherited from the superclass, while mycos(pi)
calls the __call__ method implemented in the subclass.

As indicated by the O(hn) terms in the formulas above, the methods have
different levels of accuracy. We can empirically investigate the accuracy of the
numerical differentiation formulas, using the class hierarchy created above.
Using f(x) = sinx,x = π/4 as an example, the code can look like

from Diff import Forward1, Central2, Central4

142 9 Object-Oriented Programming

from math import pi, sin, cos
import numpy as np

h = [1.0/(2**i) for i in range(5)]
ref = cos(pi/4)

print(f’ h Forward1 Central2 Central4’)
for h_ in h:

f1 = Forward1(sin,h_); c2 = Central2(sin,h_); c4 = Central4(sin,h_)
e1 = abs(f1(pi/4)-ref)
e2 = abs(c2(pi/4)-ref)
e4 = abs(c4(pi/4)-ref)
print(f’{h_:1.8f} {e1:1.10f} {e2:>1.10f} {e4:>1.10f}’)

h Forward1 Central2 Central4
1.00000000 0.4371522985 0.1120969417 0.0209220579
0.50000000 0.2022210836 0.0290966823 0.0014299292
0.25000000 0.0952716617 0.0073427121 0.0000913886
0.12500000 0.0459766451 0.0018399858 0.0000057438
0.06250000 0.0225501609 0.0004602661 0.0000003595

Notice that we create new instances f1, c2, and c4 for each iteration of
the loop, since we want a new value of h in the formula. A more elegant
solution could be to add a new method named set_stepsize(h) or similar,
that would allow us to adjust h for an existing instance. Such a method
could easily be added to the superclass and inherited by all subclasses. An
examination of the output numbers confirm that the three methods behave
as expected. For each row, we reduce h by a factor of two, and the errors
are reduced by a factor of about two, four, and 16, respectively. This result
is consistent with the theoretical accuracy of the formulas, which states that
the errors should be proportional to h, h2, and h4, respectively.

9.3 Example: Classes for Numerical Integration

Just as numerical differentiation, numerical integration is a mainstay of com-
putational mathematics. There are numerous methods to choose from, and
they can all be written on the form

∫ b

a
f(x)dx ≈

n−1∑
i=0

wif(xi).

and the Based on this general formula, different methods are realized by
choosing the integration points xi and associated weights wi. For instance,
the trapezoidal rule has

xi = a+ ih, w0 = wn−1 = h

2 , wi = h (i �= 0,n−1),

9.3 Example: Classes for Numerical Integration 143

with h = (b−a)/(n−1), the midpoint rule has

xi = a+ h

2 + ih, wi = h,

with h = (b−a)/n, and Simpson’s rule has

xi = a+ ih, h = b−a

n−1 ,

w0 = wn−1 = h

6 ,

wi = h

3 for i even, wi = 2h

3 for i odd.

Other methods have more complicated formulas for wi and xi, and some
methods choose the points randomly (e.g., Monte Carlo integration).

A numerical integration formula can be implemented as a class, with a, b,
and n as attributes and an integrate method to evaluate the formula and
compute the integral. As with the family of numerical differentiation methods
considered above, all such classes will be quite similar. The evaluation of∑

j wjf(xj) is the same, and the only difference between the methods is the
definition of the points and weights. Following the ideas above, it makes sense
to place all common code in a superclass, and code specific to the different
methods in subclasses. Here, we can put

∑
j wjf(xj) in a superclass (method

integrate), and let the subclasses extend this class with code specific to a
specific formula, that is, the choices of wi and xi. This method-specific code
can be placed inside a method, for instance, named construct_rule. The
superclass for the numerical integration hierarchy can look like

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError(’no rule in class %s’ % \

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

def vectorized_integrate(self, f):
f must be vectorized for this to work
return dot(self.weights, f(self.points))

Notice the implementation of construct_method, which will raise an error if
it is called, indicating that the only purpose of Integrator is as a superclass,

144 9 Object-Oriented Programming

and it should not be used directly. Alternatively, we could, of course, just not
include the construct_method method in the superclass at all. However,
the approach used here makes it even more obvious that the class is just a
superclass and that this method needs to be implemented in subclasses.

The superclass provides a common framework for implementing the differ-
ent methods, which can then be realized as subclasses. The trapezoidal and
midpoint methods can be implemented as follows:

class Trapezoidal(Integrator):
def construct_method(self):

h = (self.b - self.a)/float(self.n - 1)
x = linspace(self.a, self.b, self.n)
w = zeros(len(x))
w[1:-1] += h
w[0] = h/2; w[-1] = h/2
return x, w

class Midpoint(Integrator):
def construct_method(self):

a, b, n = self.a, self.b, self.n # quick forms
h = (b-a)/float(n)
x = np.linspace(a + 0.5*h, b - 0.5*h, n)
w = np.zeros(len(x)) + h

return x, w

The more complex Simpson’s rule can be added in the following subclass:

class Simpson(Integrator):
def construct_method(self):

if self.n % 2 != 1:
print ’n=%d must be odd, 1 is ’added % self.n
self.n += 1

x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)*2
w = np.zeros(len(x))
w[0:self.n:2] = h*1.0/3
w[1:self.n-1:2] = h*2.0/3
w[0] /= 2
w[-1] /= 2
return x, w

Simpson’s rule is more complex because it uses different weights for odd and
even points. We present all the details here for completeness, but it is not
really necessary to study the details of all the formulas. The important parts
here are the class design and usage of the class hierarchy.

To demonstrate how the class can be used, let us compute the integral∫ 2
0 x2dx using 101 points:

def f(x):
return x*x

simpson = Simpson(0, 2, 101)
print(simpson.integrate(f))

9.3 Example: Classes for Numerical Integration 145

trapez = Trapezoidal(0,2,101)
print(trapez.integrate(f))

The program flow in this case might not be entirely obvious. When we
construct the instance with method = Simpson(0, 2, 101), the superclass
constructor is invoked, but this method then calls construct_method in
class Simpson. The call method.integrate(f) then invokes the integrate
method inherited from the superclass. However, as users of the class, none of
these details really matter to us. We use the Simpson class just as if all the
methods were implemented directly in the class, regardless of whether they
are actually inherited from another class.

Open Access Dieses Kapitel wird unter der Creative Commons Namensnennung 4.0
International Lizenz http://creativecommons.org/licenses/by/4.0/deed.de) veröffentli-
cht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe
in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz
beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Kapitel enthaltenen Bilder und sonstiges Drittmaterial unterliegen eben-
falls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungsleg-
ende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten
Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen
Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materi-
als die Einwilligung des jeweiligen Rechteinhabers einzuholen.

 (

Index

__call__, 123
__init__, 117
__repr__, 125
__str__, 124

animation, 93
append (list method), 24
argument, 38
array, 81
array, 83
array slicing, 99
array, two-dimensional, 99
assert, 53

base class, 136
bisection method, 50
Boolean expressions, 21
branching, 46

class, 115
class hierarchy, 135
class instance, 117
cmath, 14
command line argument, 59
comments, 8
constructor, 117
convergence, 51, 141

def, 36

default argument, 44
del function, 24
dictionary, 101
dir function, 126
doc string, 45

editor, 1
elif, 47
else, 46
error handling, 70
eval, 61
exception handling, 70
exec, 61

f-string, 11
file reading, 65
file writing, 69
find (string method), 108
float, 9
for loop, 25
FuncAnimation, 97
function, 35

Gaussian function, 14, 93
global, 40
global variable, 38

Heaviside function, 90

IDE, 1

147J. Sundnes, Introduction to Scientific Programming with
Python, Simula SpringerBriefs on Computing 6,
https://doi.org/10.1007/978-3-030-50356-7

© The Author(s) 2020

148 INDEX

if, 46
if-test, 46
immutable objects, 33, 111
import, 13
index string/list method, 108
inheritance, 135
input, 58
instance, 117
int, 9
integer division, 16
ipython, 2

join, 109
Jupyter notebooks, 2

key, 103
keys (dictionary method), 104
keyword argument, 38

lambda function, 49
linspace, 83
list comprehension, 29
list slicing, 32
lists, 23
local variable, 38
loops, 19

mapping, 101
math, 13
Matplotlib, 86
method, 117
modules, 13
modules, writing, 75
mutable objects, 33

nested dictionary, 110
nested lists, 31
nested loops, 31
Newton’s method, 51
numerical differentiation, 127, 139
numerical integration, 142
NumPy, 81

object, 9
object-oriented programming, 135
open, 65

plotting, 86
polynomial dictionary, 105
positional argument, 38
print function, 1
protected attributes, 121
pytest, 55

raising exceptions, 73
range, 26
readlines, 67
reserved words, 16
return, 36
round-off errors, 15

savefig, 96
self, 119
Simpson’s rule, 142
special method, 123
split, 67, 109
string, 107
strip, 112
subclass, 136
superclass, 136
sys.argv, 60

terminal, 1
test block, 76
test functions, 53
text formatting, 11
trapezoidal rule, 142
try-except, 72
tuples, 33
types, 9

user input, 57

values (dictionary method), 104
variables, 7
vectorize, 81
versions (Python), 2

while loop, 19

zeros, 83
zeros_like, 98
zip, 30

	Preface
	Contents
	Chapter 1 Getting Started with Python
	1.1 The First Example: Hello, World!
	1.2 Different Ways to Use Python

	Chapter 2 Computing with Formulas
	2.1 Programming Simple Mathematics
	2.2 Variables and Variable Types
	2.3 Formatting Text Output
	2.4 Importing Modules
	2.5 Pitfalls When Programming Mathematics

	Chapter 3 Loops and Lists
	3.1 Loops for Automating Repetitive Tasks
	3.2 Boolean Expressions
	3.3 Using Lists to Store Sequences of Data
	3.4 Iterating Over a List with a for Loop
	3.5 Nested Lists and List Slicing
	3.6 Tuples

	Chapter 4 Functions and Branching
	4.1 Programming with Functions
	4.2 Function Arguments and Local Variables
	4.3 Default Arguments and Doc Strings
	4.4 If-Tests for Branching the Program Flow
	4.5 Functions as Arguments to Functions
	4.6 Solving Equations with Python Functions
	4.7 Writing Test Functions to Verify our Programs

	Chapter 5 User Input and Error Handling
	5.1 Reading User Input Data
	5.2 Flexible User Input with eval and exec
	5.3 Reading Data from Files
	5.4 Writing Data to Files
	5.5 Handling Errors in Programs
	5.6 Making Modules

	Chapter 6 Arrays and Plotting
	6.1 NumPy and Array Computing
	6.2 Plotting Curves with Matplotlib
	6.3 Plotting Discontinuous and Piecewise-Defined Functions
	6.4 Making a Movie of a Plot
	6.5 More Useful Array Operations

	Chapter 7 Dictionaries and Strings
	7.1 Dictionaries
	7.2 Example: A Dictionary for Polynomials
	7.3 Example: Reading File Data to a Dictionary
	7.4 String Manipulation

	Chapter 8 Classes
	8.1 Basics of Classes
	8.2 Protected Class Attributes
	8.3 Special Methods
	8.4 Example: Automatic Differentiation of Functions
	8.5 Test Functions for Classes
	8.6 Example: A Polynomial Class

	Chapter 9 Object-Oriented Programming
	9.1 Class Hierarchies and Inheritance
	9.2 Example: Classes for Numerical Differentiation
	9.3 Example: Classes for Numerical Integration

	Index

