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As we lie firmly entrenched within what many have termed the Anthropocene, the time of humans,
human influence on the functioning of the planet has never been greater or in greater need of mitigation.
Climate change, the accelerated warming of the planet’s surface attributed to human activities, is now
at the forefront of global politics. The 21st United Nations Climate Change Conference of the Parties
(COP21) Paris Agreement saw a landmark agreement reached between countries belonging to the
United Nations Framework Convention on Climate Change (UNFCCC). The agreement seeks to
arrest climate change and maintain the global temperature rise below a 2 ◦C increase compared to
pre-industrial levels, and to devise means and ways to adapt to its effects.

The agriculture sector not only contributes to climate change but, as a land-based industry, is also
greatly affected by climate change. Agriculture has a key function in the role of the carbon and nitrogen
cycles, contributing a significant proportion of methane and nitrous oxide toward global greenhouse
gas (GHG) emissions, more than any other sector. The Organisation for Economic Co-operation and
Development (OECD) states that 17% of GHGs arise from agricultural activities directly, with a further
7% to 14% due to changes in land use. Agriculture will be affected by climate change, particularly in
some parts of the world, where the extremes of its impact will be felt severely. Flooding and droughts
are predicted to increase in frequency with an associated detrimental impact on crop productivity
either due to prolonged water shortages or the creation of anoxic soil conditions and crop hypoxia.
Flooded soils also promote the denitrification process and an increase in the release of nitrous oxide.

The type of risk and the severity of its impact is spatially explicit, with different parts of the planet
and their associated crop production systems subject to more intense effects and levels of threat, as
illustrated for Iran by Alamgir et al. [1] and Bangladesh by Mirgol et al. [2]. The sub-Saharan region of
Africa is becoming increasingly vulnerable to drought and temperature rises and farmers will need
to adapt the types of crops they grow and their associated management practices [3–6]. Other parts
of the world, including North America, may experience warmer winters, resulting in diminished
vernalisation [7,8], a process required to promote flowering in certain types of crops. It is not all bad
news, however. Significant potential exists to both adapt to and mitigate climate change within the
agricultural sector. Any changes will need to be implemented in a sustainable manner to ensure that
the solution does not cause other socio-economic or environmental problems. Each potential solution
must also be tailored to individual regions and farming systems, as highlighted by Zheng et al. [9]
in Australia. The introduction of Climate-Smart Agriculture and technology for use by smallholder
farmers in South America, Africa and Asia [10–12] and the provision of farming subsidies to promote
further engagement with these techniques is demonstrated by Arunrat et al. [13]. The growing of novel
crops such as Cannabis sativa for energy production in Europe [14] or the utilisation of plant breeding
to develop novel wheat varieties capable of reducing nitrous oxide emissions [15] are other examples.

All these factors are explored in this Special Issue. We are pleased to include a range of quality
academic contributions from across the five continents, providing a truly global perspective. Multiple
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crops and production systems are represented, including studies that utilise valuable research completed
with limited resources available.

Author Contributions: The guest editors contributed equally to all aspects of this editorial. All authors have read
and agreed to the published version of the manuscript.

Acknowledgments: The guest editors would like to extend their thanks to the authors who contributed to
this Special Issue and to the reviewers who dedicated their time providing the authors with valuable and
constructive recommendations.

Conflicts of Interest: The guest editors declare no conflict of interest.

References

1. Alamgir, M.; Furuya, J.; Kobayashi, S.; Binte, M.; Salam, M. Farmers’ Net Income Distribution and Regional
Vulnerability to Climate Change: An Empirical Study of Bangladesh. Climate 2018, 6, 65. [CrossRef]

2. Mirgol, B.; Nazari, M. Possible Scenarios of Winter Wheat Yield Reduction of Dryland Qazvin Province,
Iran, Based on Prediction of Temperature and Precipitation Till the End of the Century. Climate 2018, 6, 78.
[CrossRef]

3. Bossa, A.; Hounkpè, J.; Yira, Y.; Serpantié, G.; Lidon, B.; Fusillier, J.; Sintondji, L.; Tondoh, J.; Diekkrüger, B.
Managing New Risks of and Opportunities for the Agricultural Development of West-African Floodplains:
Hydroclimatic Conditions and Implications for Rice Production. Climate 2020, 8, 11. [CrossRef]

4. Egbebiyi, T.; Crespo, O.; Lennard, C. Defining Crop–Climate Departure in West Africa: Improved
Understanding of the Timing of Future Changes in Crop Suitability. Climate 2019, 7, 101. [CrossRef]

5. Egbebiyi, T.; Lennard, C.; Crespo, O.; Mukwenha, P.; Lawal, S.; Quagraine, K. Assessing Future
Spatio-Temporal Changes in Crop Suitability and Planting Season over West Africa: Using the Concept of
Crop-Climate Departure. Climate 2019, 7, 102. [CrossRef]

6. Ibn Musah, A.; Du, J.; Bilaliib Udimal, T.; Abubakari Sadick, M. The Nexus of Weather Extremes to Agriculture
Production Indexes and the Future Risk in Ghana. Climate 2018, 6, 86. [CrossRef]

7. Parker, L.; Abatzoglou, J. Warming Winters Reduce Chill Accumulation for Peach Production in the
Southeastern United States. Climate 2019, 7, 94. [CrossRef]

8. Petersen, L. Impact of Climate Change on Twenty-First Century Crop Yields in the U.S. Climate 2019, 7, 40.
[CrossRef]

9. Zheng, B.; Chapman, S.; Chenu, K. The Value of Tactical Adaptation to El Niño–Southern Oscillation for East
Australian Wheat. Climate 2018, 6, 77. [CrossRef]

10. Haworth, B.; Biggs, E.; Duncan, J.; Wales, N.; Boruff, B.; Bruce, E. Geographic Information and Communication
Technologies for Supporting Smallholder Agriculture and Climate Resilience. Climate 2018, 6, 97. [CrossRef]

11. Hellin, J.; Fisher, E. Climate-Smart Agriculture and Non-Agricultural Livelihood Transformation. Climate
2019, 7, 48. [CrossRef]

12. Matewos, T. Climate Change-Induced Impacts on Smallholder Farmers in Selected Districts of Sidama,
Southern Ethiopia. Climate 2019, 7, 70. [CrossRef]

13. Arunrat, N.; Sereenonchai, S.; Pumijumnong, N. On-Farm Evaluation of the Potential Use of Greenhouse
Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand. Climate 2018, 6, 36. [CrossRef]

14. Asquer, C.; Melis, E.; Scano, E.; Carboni, G. Opportunities for Green Energy through Emerging Crops: Biogas
Valorization of Cannabis sativa L. Residues. Climate 2019, 7, 142. [CrossRef]

15. Demone, J.; Wan, S.; Nourimand, M.; Hansen, A.; Shu, Q.; Altosaar, I. New Breeding Techniques for
Greenhouse Gas (GHG) Mitigation: Plants May Express Nitrous Oxide Reductase. Climate 2018, 6, 80.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

2



climate

Article

On-Farm Evaluation of the Potential Use of
Greenhouse Gas Mitigation Techniques for Rice
Cultivation: A Case Study in Thailand

Noppol Arunrat *, Sukanya Sereenonchai and Nathsuda Pumijumnong

Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
sukanya.ser@mahidol.ac.th (S.S.); nathsuda.pum@mahidol.ac.th (N.P.)
* Correspondence: noppol.aru@mahidol.ac.th; Tel.: +66-2-441-5000

Received: 27 March 2018; Accepted: 25 April 2018; Published: 2 May 2018

Abstract: Environmental and socio-economic evaluations that imply techniques for mitigating
greenhouse gas (GHG) emissions from rice cultivation are a challenging and controversial issue.
This study was designed to investigate the potential use of mitigation techniques for rice cultivation.
Mid-season drainage (MD), using ammonium sulfate instead of urea (AS), and site-specific nutrient
management (SSNM) were chosen as mitigation techniques. Data were collected using field surveys
and structured questionnaires at the same 156 farms, covering four crop years. The GHG emissions
were evaluated based on the concept of the life cycle assessment of the GHG emissions of products.
The farmers’ assessments of mitigation techniques, with multiple criteria evaluation, were obtained
by face-to-face interviews. Opinions on all mitigation techniques were requested two times covering
four years with the same 156 farm owners. The multinomial logistic regression model was used to
examine the factors influencing the farmers’ decisions. The results show that SSNM was evaluated
as the highest abatement potential (363.52 kgCO2eq ha−1), the negative value of abatement cost
(−2565 THB ha−1), and the negative value of the average abatement cost (−14 THB kgCO2eq−1).
Among the different techniques, SSNM was perceived as the most suitable one, followed by MD
and AS. Highly significant factors influencing decision making consisted of planted area, land size,
farmer liability, farmer perception of yield, and GHG emissions. Subsidies or cost-sharing measures
to convince farmers to adopt new techniques can enhance their practices, and more support for the
development of water systems can increase their availability.

Keywords: rice field; mitigation techniques; greenhouse gas emissions; life cycle assessment; farmer
acceptance; incentive measures

1. Introduction

Rice paddies are considered to be one of the most important sources of anthropogenic emissions
of greenhouse gases (GHGs), particularly nitrous oxide (N2O), methane (CH4), and carbon dioxide
(CO2) [1] and therefore play an important role in climate change [2,3]. Notably, many studies state that
N2O emissions are associated with nitrogen (N) fertilizer application and dry land conditions [4,5],
while flooded fields are a significant source of CH4 and contribute little to N2O emissions [6–8]. The use
of agricultural machines requires the use of fossil fuels, resulting in CO2 emissions. Projected increases
in the demand for rice have raised considerable concerns about increasing greenhouse gas (GHG)
emissions [9]. Thus, knowledge about trade-offs between rice yield increases and GHG emission
reductions is urgently needed for the development of effective mitigation and adaptation strategies.

Considering possible strategies for mitigating GHG emissions from rice cultivation, those having
no effect on rice yield would be the best techniques. Methane emissions vary markedly with
water management. In particular, mid-season drainage, with the short-term removal of irrigation

Climate 2018, 6, 36; doi:10.3390/cli6020036 www.mdpi.com/journal/climate3
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water, is one of the most promising strategies for reducing CH4 emissions [10–12]. Several field
measurements indicate that mid-season drainage (MD) significantly reduces CH4 emissions and exerts
a positive impact on rice yields by increasing N mineralization in the soil and increasing rice plant
root development [13–17]. However, it also increases N2O emissions by creating nearly saturated
soil conditions, which promote N2O production [18–20]. Fertilizer management has frequently been
suggested as a mitigation option by substituting urea as N fertilizer with ammonium sulfate (NH4)2SO4

(inhibits methanogens) and ammonium phosphate (promotes rice plant growth) [21]. Ammonium
sulfate has a significant effect on N2O reduction and slightly depresses CH4 production by 10–67% [22],
because sulfate-reducing bacteria can outcompete CH4-producing bacteria under these conditions [23].
Moreover, site-specific nutrient management (SSNM) has been suggested as a method to reduce N2O
emissions by controlling the use of fertilizers with synchronization and precise farming techniques,
using slow-release nutrients (including nitrification inhibitors) [24,25] and avoiding their overuse [26].
Dobermann and Cassman [27] state that an N recovery of over 70% can be achieved for many cereal
crops by using intensive site-specific nutrient management, based on the principles of the 4R nutrient
stewardship—the right source at the right rate, time, and place [28]. However, the sources of CH4 and
N2O from rice fields cannot be reliably identified and discriminated in various areas.

There is an urgent need to quantify the effects and costs of mitigation strategies in rice fields,
which, at present, remain difficult to enumerate, and could result as being speculative. A significant
problem is that most farmers do not apply these mitigation strategies, for various reasons such as no
ownership on farmland [29,30], less education or training on mitigation strategies [30,31], low income
and access to credit [30–32], or less farming experience [33]. An evaluation method is therefore required
that highlights decision factors and provides insight into the balance between environmental impacts,
economic productivity, and social acceptance regarding mitigation strategies. Another significant
problem is that the decision-making processes in terms of employing mitigation strategies are
complicated by financial incentives and because agricultural activities depend on, and have a large
impact on, natural resources [34]. These factors indicate the need to better understand decision making
by farmers and the barriers inhibiting the adoption of mitigation and adaptation strategies.

Mitigation and adaptation are two basic, but distinctly different responses. Farmers’ attitudes
towards these two general responses to tackle changing climate conditions must be understood if
scientists, policy makers, and others are to effectively support adaptive and mitigative actions [35,36].
Moreover, integrating mitigation and adaptation are win-win actions because they can mitigate the
causes of climate change (mitigation) and adapt to changing climatic conditions (adaptation) [37].
Many studies have investigated farmer behavior and the associated socio-economic characteristics
(e.g., [38–40]). Until now, mitigation costs caused by improvements in farming practices have rarely
been reported, and information on the socio-economic feasibility of these mitigation techniques are still
lacking, while their social acceptance and the minimization of their costs have not been discussed at any
length. Therefore, the objectives of this study are: (1) to evaluate the GHG emissions of each mitigation
technique for rice cultivation; (2) to clarify the farmers’ assessment with multiple criteria evaluation of
each mitigation technique; and (3) to examine the factors influencing the farmers’ decisions to use a
mitigation technique. The knowledge provided by this study can aid policy makers and other related
agencies in their efforts to design and compare mitigation policies and reach mitigation goals.

2. Materials and Methods

2.1. Mitigation Technique Selection

Mitigation techniques were selected based on a literature review and on the recommendations
of experts, provided in a report by the Office of Agricultural Economics [41], Ministry of Agriculture
and Cooperatives, Thailand. Moreover, we expected that any mitigation techniques suggested to
government agencies would be likely to be promoted and supported by the government in the near
future. Based on these criteria, mid-season drainage (MD), replacement of urea with ammonium
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sulfate ((NH4)2SO4) (AS), and site-specific nutrient management (SSNM) were chosen as mitigation
techniques for this study.

2.2. Site Selection

Multi-stage sampling was employed for this study as follows. Firstly, at the provincial level,
purposive sampling was used, focusing on farmers who have grown rice. They voluntarily participated
and provided their information and opinions. Secondly, at the district and sub-district levels, cluster
sampling was used to determine two clusters: irrigated areas and rain-fed areas. Moreover, farmers’
average net household incomes (calculated by subtracting expenses from total revenue) for each
district and sub-district were set as the criterion, based on the assumption that money is the major
factor that can improve their livelihood and is the major factor likely to convince them to change their
behavior. The four districts with the highest net incomes (Bang Mun Nak, Taphan Hin, Bueng Na
Rang, and Pho Prathap Chang districts) and the four districts with the lowest net incomes (Sam Ngam,
Wachira Barami, Wang Sai Phun, and Thap Khlo districts) in Phichit province were selected as samples.

2.3. Data Collection

Data were obtained from participatory observation, in-depth interviews, and a questionnaire
survey at the same 156 farms (in irrigated and rain-fed areas of 78 farms, respectively) in four crop
years (2012/2013, 2013/2014, 2014/2015 and 2015/2016) to avoid data variation. Data throughout
the crop years from each crop, consisting of cultivation practices, agricultural inputs (e.g., fossil fuels,
fertilizers, insecticides, herbicides, and water sources), yields, transportation costs, and benefits were
collected from the farm owners. Data were also obtained from the record books for the standards for
good agricultural practices (GAP) for farm owners, which was disseminated to the farmers by the
Department of Agricultural Extension, Ministry of Agriculture and Cooperatives, Thailand.

2.4. Estimation of GHG Emissions

2.4.1. System Boundary and Functional Unit

The concept of the life cycle assessment of the greenhouse gas emissions of products, based
on cradle-to-gate, was employed. It is because this approach is widely used for evaluating and
comparing the environmental impacts of various products, and also to identify, quantify, and track the
sources of GHG emissions throughout production process [42]. System boundary covers raw material
production, transport of agricultural inputs (diesel fuel, gasoline fuel, chemical fertilizers, insecticides
and herbicides) to the farm, land preparation, planting, harvesting, storing and post-harvest burning
of crop residues (Figure 1). The transportation data were considered for two distances: the average
distance from the farms to the retailer in the municipality of each sub-district and the average distance
from the farms to the retailer in the community of each farm. Burning crop residues in the paddy field
were included in this study because it is a common way to eliminate rice residues in Asia, including
Thailand [43,44], and GHG emissions from open burning concentrated in the harvest season [45]. It is
indicated that emissions from burning crop residues play an important role in the air pollution and
climate change [46]. To assess the combined global warming potential (GWP), CH4, and N2O were
calculated as CO2 equivalents over a 100-year time scale, using a radiative forcing potential relative to
CO2 of 28 for CH4 and 265 for N2O [47]. The functional unit used in assessments was kg CO2eq ha−1

for each technique.

5



Climate 2018, 6, 36

Figure 1. System boundary from cradle to farm gate of the study (adapted from Arunrat et al. [48]).

2.4.2. Calculation of GHG Emissions

The GHG emissions were calculated for each farm using four scenarios, including the business
as usual (BAU) case, and the use of MD, AS, and SSNM techniques. Upstream emissions were
accounted for in terms of raw material production and the transportation of agricultural inputs to
the farm. Fossil fuels, chemical fertilizers, as well as insecticide and herbicide production were
estimated using specific emission factors, as characterized in Ecoinvent 3.2 [49]. Emissions from the
transportation of agricultural inputs to the farm were estimated based on diesel fuel consumption,
using the emission factors from the National Technical Committee on Product Carbon Footprinting
(Thailand) [50]. In some cases, specific emission factors for gasoline or insecticides and herbicides
were not available in Ecoinvent 3.2, so country-specific emission factors for Thailand from the National
Technical Committee on Product Carbon Footprinting (Thailand) [50] were used instead.

Field CH4 emissions from rice cultivation were used as the model for the calculations, according
to the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse
Gas Inventories [51]. The baseline emission factor was taken from Yan et al. [16], who adjusted
region-specific emission factors for rice fields in east, southeast, and south Asian countries, and all
scaling factors used were derived from the IPCC [51]. Direct and indirect N2O emissions and
CO2 emissions from urea applications were also estimated using the methodology proposed by
the IPCC [50]. The GHG emission calculations and parameters and emission factors for diesel and
gasoline usage in stationary combustion were taken from the IPCC [51]. The GHG emissions from the
mobile combustion of diesel fuel by farm tractors and harvesters were estimated from the emission
factors of Maciel et al. [52], and GHG emissions from gasoline fuel were estimated following the
EPA [53]. Figures for insecticides and herbicides were provided by the emission factors from Lal [54].
Equations, parameters, and emission factors for the calculation of GHG emissions are presented in the
Supplementary Material by Arunrat et al. [48].
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2.5. Economic Analysis

2.5.1. Estimation of the Costs of Each Technique

The production input of each technique consists of water (W), tillage (T), seed (S), labor (L),
fertilizer (F), insecticide (P), herbicide (H), harvest (V), and land rental (R). The total production cost
[C(Qi)] for each technique is the sum of production input costs Equation (1).

C(Qi) = (CW × Wi) + (CT × Ti) + (Cs × Si) + (CL × Li) + (CF × Fi) + (CP × Pi) + (CH × Hi)

+(CV × Vi) + (CR × Ri)
(1)

where i is each technique, C(Q) is the cost of crop production, in Baht ha−1, and CW, CT, CS, CL, CF, CP,
CH, CV, and CR are costs of water management, tillage, seed, labor, fertilizer, insecticide, herbicide,
harvest, and land rental, in Baht−1 unit, respectively.

In addition, the specific details of the methods used to estimate the costs of each technique are
described below.

(1) MD Technique

The cost of the MD technique was calculated by multiplying the quantity of fuel used for pumping
water back into the fields, using the fuel price per unit. The cost of this technique was investigated
depending on the distance from the fields and the ownership of the water source by dividing the farms
into two groups: (1) those far away from water sources (natural sources or irrigation systems at >100 m
or >50 m from the fields, respectively); and (2) farms with their own surface pond or artesian well.

(2) AS Technique

The use of ammonium sulfate (21-0-0) instead of urea (46-0-0) requires changes in the quantities
of the fertilizers used and their costs. The relevant calculations are as follows: (1) 1 kg of urea contains
0.46 kg N; (2) it takes 2.19 kg of ammonium sulfate to replace 1 kg of urea, providing 0.46 kg of N;
(3) the amount of ammonium sulfate used, multiplied by its unit price, is equal to the total cost of the
ammonium sulfate used.

(3) SSNM Technique

The cost of the SSNM technique was calculated based on the following steps. Firstly, the amount of
each fertilizer to be used was calculated based on the instructions provided by the Land Development
Department of Thailand after soil factor analysis. For instance, in the Nong Phra sub-district,
Wang Sai Phun district, the soil series is Chiang Rai, suitable for growing photosensitive rice varieties.
Suggested fertilizers are 31 kg ha−1 of 46-0-0, 71 kg ha−1 of 16-20-0, and 37 kg ha−1 of 0-0-60, to be
applied 7–10 days after sowing or 25–30 days after transplanting, and 31 kg ha−1 of 46-0-0, to be
applied again during the early flowering phase. After the suitable amounts of all fertilizers were
established, the cost of each fertilizer used was calculated by multiplying the quantity by the price per
unit. Finally, the total fertilizer cost of the SSNM technique was compared to the fertilizer cost of the
BAU case.

2.5.2. Average Abatement Cost (AAC)

The AAC was used to assess the economic potential for the reduction of GHG emissions in this
study; AAC refers to the cost of implementing a technique to reduce GHG emissions to an anticipated
level. Similar to the GHG emission estimations, AAC was estimated using four scenarios comprising
the BAU case and the use of the MD, AS, and SSNM techniques. The AAC (THB kgCO2eq−1) of
each technique was calculated by dividing the total abatement cost (THB ha−1) (TAC) by the total
abatement potential (kgCO2eq ha−1) (TAP), and each TAC and TAP were obtained by subtracting
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the cost under the BAU scenario. Indeed, the reduction of GHG emissions is involved with cropping
system, mitigation techniques, and farmers’ behavior. Therefore, ACC was then presented to the
farmers of each farm during their assessments on each mitigation technique. This is because ACC can
help the farmers to visualize about being environmentally friendly and reducing production costs.

2.6. Farmers’ Assessment and Analysis Tools

After the last crop year (2015/2016) for data collection, the investigation of the farmers’ assessment
for each farm was taken place in 2017. A multiple criteria evaluation was developed to assess farmers in
the qualitative evaluation of the mitigation techniques. In this study, the criteria applied in the multiple
criteria evaluation for farmers’ assessment on the three mitigation techniques were as defined in
Table 1, adapted from Webb et al. [55]. To reduce the bias and uncertainty from the farmers’ assessment,
the survey was administered via a face-to-face interview in November 2016 and August 2017, with the
same 156 farm owners. The farmers were introduced and explained the purposes of the survey.
The farmers’ assessment was investigated after calculating the AAC for each scenario and each farm,
but the farmers were allowed to choose only one suitable technique to implement. A questionnaire
was presented to the farmers to evaluate the rating of each mitigation technique. A four-Likert scale
was adopted for the evaluation [56]. The rating scale for the farmers’ assessment was: ‘4′ = very
good, ‘3′ = good, ‘2′ = poor, and, ‘1′ = very poor. We used a four-point scale to interpret the farmers’
response because a mid-point is considered as too ambiguous for decision making [57], which was
also mentioned in Webb et al. [55]. The scores of each farmer were summed up from the scores of
each criterion for the three mitigation techniques. For instance, 78 farmers gave a score of 4 (very
good) to the MD technique on the criteria of effectiveness; the total score was 312 (78 × 4). Moreover,
the farmers were asked about their needs for policies and incentives to support their farming.

Table 1. Definitions of the criteria for farmers’ assessment (adapted from Webb et al. [55]).

Criteria Definition

Effective Evaluates whether or not the mitigation technique reduces GHG emissions

Flexible Evaluates whether or not the ability of the mitigation technique to enhance
opportunity for other cropping systems and places

Economically efficient Evaluates whether or not implementing the mitigation technique reduces
production cost and increases household income

Easy to implement Evaluations whether a mitigation technique is easy to implement by farmers with
technical and managerial ease

Ability to trial Evaluates whether a mitigation technique can be easily trialed or tested before
full implementation

Institutional
compatibility

Evaluates whether a mitigation technique is consistent with the current
management framework, laws, regulations and will be promoted and supported
by the government in the near future

2.7. Estimating the Determinants of Mitigation Techniques and Socio-Economic Variables

Factors that might influence the farmers’ decision to adopt or reject the mitigation techniques were
examined using the multinomial logistic regression (MNL) model. The MNL model is an extension
of logistic regression, which is generally effective when the dependent variable is composed of a
polytomous category with multiple choices. Explanatory variables included in the MNL model were
defined as two types: dichotomous and continuous variables, as detailed below (Table 2). The model
was estimated using the following specification:

Y = β0 + β1 AREA + β2EXP + β3OWN + β4SIZE + β5 INC + β6LIB
+β7LABOR + β8MEM + β9PYIELD + β10PGHG + β11MEA

+β12TRAIN + β13DOUB + β14TRI + u
(2)
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where Y is the acceptability of the mitigation technique; AREA is the planted area; EXP is the experience;
OWN is the land owner; SIZE is the land size; INC is the farmer´s income; LIB is liability; LABOR is
the amount of labor; MEM is the membership of the environment group; PYIELD is the perception
of yield; PGHG is the perception of GHG emissions; MEA represents government measures; TRAIN
represents attendance at training; DOUB is the double cropping system; TRI is the triple cropping
system; and μ is the error term.

Table 2. Definition and descriptive statistics of variables used in the MNL model.

Variable Description

Planted area Dummy, 1 if the farm is located in a rain fed area; 0 irrigated area

Experience Continuous, rice cultivation experience of farmer (years)

Land owner Dummy, 1 if the farmer is a land owner; 0 otherwise

Land size Continuous, size of plantation (ha)

Farmer income Continuous, farmer income from in-farm and off-farm (THB year−1 household−1)

Farmer liability Continuous, farmer liability from formal and informal financial institutions (THB household−1)

Number of labor Continuous, number of laborers in the household (persons)

Membership of
environment group Dummy, 1 if the farmer is the member of an environmental group or institution; 0 otherwise

Perception on yield Dummy, 1 if the farmer’s perception is that the mitigation technique will increase the rice yield; 0 otherwise

Perception on
GHG emissions Dummy, 1 if the farmer thinks that the mitigation technique can reduce GHG emissions; 0 otherwise

Perception on measures Dummy, 1 if the farmer’s perception is that the mitigation technique will be supported by government
agencies; 0 otherwise

Attendance in training Dummy, 1 if the farmer had attended the training about the impact of climate change impact on the
environment; 0 otherwise

Double cropping system Dummy, 1 if the farmer practices as usual the double cropping system; 0 otherwise

Triple cropping system Dummy, 1 if the farmer practices as usual the triple cropping system; 0 otherwise

3. Results and Discussion

3.1. Cost of Rice Production under BAU and Mitigation Techniques

Marked significant differences in costs between irrigated and rain-fed areas were revealed using
the t-test (p < 0.05). The average production costs under BAU were 27,521 and 24,240 THB ha−1 for
irrigated and rain-fed areas, respectively. Using cost structure analysis, the average variable cost was
22,375 THB ha−1, consisting of an average labor cost of 11,918 THB ha−1 and an average material cost
of 10,456 THB ha−1, while the average fixed cost was 4213 THB ha−1. Furthermore, a lack of laborers
and water for planting were the outstanding factors increasing the production costs. The average rice
yields were 5.58 and 4.58 tons ha−1 for irrigated and rain-fed areas, respectively. The net profit in
irrigated areas was higher than that in rain-fed areas, being 34,079 and 32,960 THB ha−1, respectively.

This study found that when implementing the MD technique, the average cost of rice production
was 30,100 and 29,662 THB ha−1 for irrigated and rain-fed areas, respectively. Rain-fed areas were
associated with higher average production costs than irrigated areas, about 2840 THB ha−1 or double
the increase in costs. Comparing the cost of water source distance, farmers who owned their surface
pond or artesian well, implementing MD, would face average costs 1946 THB ha−1 higher than those
for BAU. Meanwhile, at distances of 100 and 50 m from the water sources, the costs would be 6843 and
5584 THB ha−1, respectively. Consequently, this study reflects that the cost of implementing MD is
reduced by 28–35% if farmers own their own surface pond or artesian well for cultivation, while the
average cost will be higher with increasing distance to the water source.

To implement the AS technique, the average production costs were 28,985 and 25,998 THB ha−1

for irrigated and rain fed-areas, respectively. An interesting point is that organic farmers following
the AS technique can reduce their costs by about 645 and 863 THB ha−1 for irrigated and rain-fed
areas, respectively, due to their lower costs for chemical fertilizer application under the BAU case.
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Therefore, if organic farmers switch from using urea to ammonium sulfate, their average costs will
be reduced as well. A cost-benefit analysis showed that organic rice farming could generate higher
net profits than conventional farming, of about 437 and 289 THB ha−1 for irrigated and rain-fed areas,
respectively. Consequently, to effectively implement the AS technique, organic fertilizer should be
applied in combination to further reduce costs and increase net profit while not affecting rice yields.

For SSNM, the average production costs were 26,450 and 23,354 THB ha−1 for irrigated and
rain-fed areas, respectively. Following this technique, farmers could achieve reductions in the average
production cost compared with BAU of 1068 and 885 THB ha−1 for irrigated and rain-fed areas,
respectively. The average production costs in irrigated areas were about 182 THB ha−1 lower than
those in rain-fed areas, as lower amounts of chemical fertilizer were applied under BAU conditions.

Comparing the cost of BAU and using mitigation techniques for both irrigated and rain-fed areas,
performing SSNM can reduce the average production costs compared with BAU. However, MD and
AS resulted in higher production costs than BAU. Overall, the average production costs were higher in
irrigated areas than in rain-fed areas. This result reflects that the average production costs are higher
when farmers own more land for growing rice, but this higher average cost tends to decrease when
farmers adapt their rice cultivation behavior by adopting the option that has lower costs than BAU,
without reducing the rice yields.

3.2. GHG Emissions, Abatement Potential, and AAC Under BAU and Mitigation Techniques

The results of estimates of GHG emissions, abatement potential, and AAC between BAU and
the different mitigation techniques are presented in Table 3 and Figures 2 and 3. There were highly
significant differences in the first and second cultivations between irrigated and rain-fed areas and
for each technique. These results reflect the fact that MD is more appropriate for implementation in
irrigated rather than rain-fed areas and more appropriate for the second rice cultivation than for the
first cultivation. The AS technique led to a higher abatement potential for the second rice cultivation
than for the first one. Meanwhile, SSNM generated a 42.6% higher abatement potential for the second
rice cultivation than for the first one, with a 9.8% lower AAC for irrigated than rain-fed areas. However,
among all techniques, SSNM was the most appropriate one because its AAC was lower than that for
BAU, and it had a 60.2 and 58.1% higher abatement potential than MD and AS, respectively.

Table 3. Average abatement cost (AAC) using different mitigation techniques (Authors own calculation).

GHG Emissions under
BAU (kgCO2eq ha−1)

GHG Emissions under
Mitigation Technique

(kgCO2eq ha−1)

Abatement Potential
(kgCO2eq ha−1)

Abatement Cost
(THB ha−1)

AAC (THB
kgCO2eq−1)

MD technique

1st rice

Irrigated 3549 3411 138 7372 53
Rain-fed 3214 3089 125 8975 71

2nd rice

Irrigated 2767 2590 176 7960 45
Rain-fed 2185 2046 139 9663 69

AS technique

1st rice

Irrigated 3549 3403 146 3405 23
Rain-fed 3214 3062 151 3002 19

2nd rice

Irrigated 2767 2618 148 3641 24
Rain-fed 2185 2022 163 3499 21

SSNM technique

1st rice

Irrigated 3549 3276 273 −4718 −17
Rain-fed 3214 2888 326 −3747 −11

2nd rice

Irrigated 2767 2269 497 −6600 −13
Rain-fed 2185 1828 357 −5738 −15
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Figure 2. Comparison between abatement cost and abatement potential for each mitigation technique
(Authors own calculation).

 

Figure 3. Average abatement cost (AAC) under BAU and using mitigation techniques (Authors own calculation).

3.3. Farmers’ Assessment on Mitigation Techniques and Barriers

In the survey, farmers were requested to indicate their opinion on all mitigation techniques.
Farmers’ assessments across multiple criteria and the total score of each mitigation technique are
provided in Table 4. As a result, the SSNM technique was the most favored one and presented
the highest score, followed by MD and AS, respectively. The criteria of effectiveness, flexibility,
economic efficiency, and institutional compatibility indicated the highest score regarding the SSNM
technique. This is in line with Dobermann et al. [58], who reported that the higher benefit for
farmers from the implementation of nutrient management strategies can increase the profitability of
rice cropping, enhance socio-economic conditions, and mitigate labor shortage. Moreover, efficient
nutrient management can also result in environmental benefits through a reduction of chemical
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fertilizers without a reduction in yield [59]. The criteria “easy to implement” and “ability to trial” were
implementing the MD technique because it is easy to drain the water out of the rice field, but farmers
need reliable control over irrigation water to implement this technique, otherwise rice yields are
impacted. On the other hand, the AS technique obtained the lowest scores for the criteria “economic
efficiency”, “easy to implement”, and “institutional compatibility”.

Table 4. Summary of farmers’ assessment with multiple criteria evaluation of each mitigation technique
(Authors own calculation).

Assessment Criteria
Mitigation Techniques

MD AS SSNM

Effectiveness 542 393 588
Flexibility 317 446 565
Economic efficiency 376 201 603
Farmer implementability 496 233 468
Ability to trial 510 420 464
Institutional
compatibility 495 233 570

Total score 2736 1926 3258

The scale used for scoring is presented in Table 4; green reflects low scores, while red reflects high scores.

The percentage of farmers ranking the mitigation techniques for each criterion, indicating the level
of agreement, across the survey is provided in Table 5. The SSNM technique was the technique most
favored by the farmers, with 86.5% indicating that they strongly agreed with the highest economic
efficiency compared with other mitigation techniques, while only 13.5% of farmers indicated that they
strongly agreed that this technique is easy to implement. Indeed, 4.5% of the farmers considered its
“ability to trial” as very poor. Similarly, Chinese farmers willing to adopt low-carbon technology when
the expenses of required inputs increase less after application [60]. In terms of the MD technique, 50%
of the farmers strongly agreed with “effectiveness”, followed by “institutional compatibility” (43.6%),
“farmer implementability” (41.7%), and “ability to trial” (40.4%). However, 87.8% and 17.9% of farmers
considered “flexibility” as poor and “economic efficiency” as very poor, respectively. Further, 32.1 and
10.9% of farmers evaluating the AS technique selected very good in terms of “flexibility” and “ability
to trial”. On the other hand, 71.2% of the farmers considered “economic efficiency” of the AS technique
as very poor.

Table 5. The percentage of farmers showing a score of the level of agreement for each criteria (Authors
own calculation).

Criteria/Rank

Mitigation Techniques

MD AS SSNM

1 2 3 4 1 2 3 4 1 2 3 4

Effectiveness 0 2.6 47.4 50.0 10.9 32.1 51.3 5.8 0 0 23.1 76.9
Flexibility 4.5 87.8 7.7 0 3.8 38.5 25.6 32.1 0 2.6 39.1 58.3
Economic efficiency 17.9 41.0 23.1 17.9 71.2 28.8 0 0 0 0 13.5 86.5
Farmer implementability 9.0 5.8 43.6 41.7 50.6 49.4 0 0 0 4.5 82.1 13.5
Ability to trial 1.3 10.9 47.4 40.4 2.6 36.5 50.0 10.9 4.5 16.7 17.9 60.9
Institutional compatibility 0 26.3 30.1 43.6 34.0 54.5 11.5 0 0 0 34.6 65.4

The scale used for scoring is presented in Table 5; green reflects low scores, while red reflects high scores.

When the farmers were asked to select one technique, 58.87% of the respondents were willing to
implement SSNM, 29.29% AS, and 11.84% MD. Farmers in irrigated areas were most willing to perform
SSNM, followed by AS and MD. In contrast, farmers in rain-fed areas were most willing to operate via
SSNM, followed by AS, similar to those in irrigated areas, but no farmers were willing to implement
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MD. As a result, we suggest that state policies should encourage SSNM in both irrigated and rain-fed
areas as a practice that can result in lower fertilizer use. However, the relative willingness, beliefs,
attitudes, and perceptions concerning such choices are indicators of the future likelihood to adopt a
certain practice, which have also been described by McCown [61], Morton [62], and Jones et al. [63].

The reasons for the unwillingness to implement MD were water shortage, fear of increased weeds
and pests, worries about nutrient losses, potential declines in rice yield, and a perception of MD being
time-consuming, labor-consuming, and requiring more investment. Concerning the AS technique,
farmers were worried about lower yields when not using urea, as they believe that urea contributes to
greater yields, and there was a lack of knowledge about implementing the use of ammonium sulfate.
Farmers unwilling to implement SSNM were concerned about yield decrease and felt that SSNM
is time-consuming and complex. They also reported a lack of knowledge to support the use of soil
analysis and high expenditures on soil analysis as matters of concern.

3.4. Factors Determining Farmers’ Decisions

The results of the MNL model are presented in Table 6. The variables that were highly
significant in the allocation of the farmers’ decisions concerning each mitigation technique were
as follows: (i) planted area; (ii) land size; (iii) farmer liability; (iv) farmer’s perception of yield; and (v)
farmer’s perception of GHG emissions. Multicollinearity was checked among independent variables.
The variance inflation factor (VIF) for all independent variables ranged from 1.108 to 1.265 (VIF < 5),
which means that multicollinearity should not be a serious concern in this regression (p < 0.01).

Table 6. Estimated marginal effects of the farmers’ decision to use the mitigation technique.

Variable
Mitigation Technique

MD AS SSNM

Planted area −0.246 ** (0.0732) −1.082 *** (0.153) 0.381 *** (0.022)
Experience 0.00384 (0.00492) 0.00376 (0.00348) 0.00743 (0.00315)
Land owner 0.00485 (0.0105) 0.0255 * (0.00503) 0.0466 * (0.0062)
Land size −1.208 *** (0.0632) −0.00478 (0.00255) 0.050 * (0.0260)
Farmer income 0.164 ** (0.00478) 0.403 ** (0.00455) 0.365 ** (0.00173)
Farmer liability −0.411 * (0.00251) −0.548 *** (0.000751) 0.332 *** (0.000177)
Number of labor 0.0301 (0.0137) 0.00428 (0.00199) 0.0676 (0.00295)
Membership of environment group 0.0446 (0.00662) 0.0507 (0.00227) 0.215 ** (0.00351)
Perception on yield −0.0643 * (0.0338) 0.0661 (0.0255) 0.332 *** (0.00708)
Perception on GHG emissions −0.0162 (0.0582) −0.314 ** (0.0122) −0.209 *** (0.00314)
Perception on measures 0.00944 (0.0132) 0.0407 (0.00671) 0.00194 (0.0118)
Attendance in training 0.0552 (0.00831) 0.0253 (0.0448) 0.0158 ** (0.00257)
Double cropping system 0.0308 (0.000744) −0.206 ** (0.00678) 0.0321 (0.0186)
Triple cropping system −0.0269 (0.00731) 0.0316 (0.0733) −0.00736 (0.00228)
Constant 122461.72 ** (13562.15) 140939.82 ** (18953.05) −159005.10 *** (10535.43)
Observations 156 156 156

* p < 0.1; ** p < 0.05; *** p < 0.01; SE in parentheses.

In the area studied, a great number of rice fields are located in rain-fed areas. The negative
coefficient for rain-fed areas for MD and AS implies that these techniques are considerably less likely
to be implemented in rain-fed areas compared with the irrigated areas, or not implemented at all.
The reason is that when implementing MD in rain-fed areas, it is difficult to drain water into rice
fields after it has been drained out, resulting in higher costs. Similarly, in terms of the AS technique,
the farmers felt unaccustomed to the use of ammonium sulfate fertilizers. If adopting AS, farmers face
higher costs as more ammonium sulfate fertilizer is required to maintain the same level of nutrients
while possibly achieving lower yields. On the other hand, SSNM has a positive and significant
influence when implemented, and it is highly likely that farmers will implement this technique.

Land size is an important factor influencing farmers’ decisions in terms of various mitigation
techniques. Land size had a negative and significant influence on MD, which probably means that the
larger the land, the less likely the farmers are to implement MD. The same is true for AS, which can
generate higher production costs in water and chemical fertilizer management. In contrast, farmers
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who owned more land were interested in SSNM because of its obvious cost savings. However, farmers
with large areas of land were also worried about high expenses for soil characteristics analysis.

Of the significant variables, farmer liability had a positive influence favoring SSNM, while having
a negative influence towards AS. Therefore, farmers with greater liabilities were interested in low-cost
techniques and may reject high-cost techniques.

The effect on rice yield of each mitigation technique was the priority of the farmers. Consequently,
farmers’ perception of yield was one of the significant variables influencing their decision making.
The results show that farmers’ perception of yield had a positive and significant influence favoring
SSNM. It can be inferred that farmers perceived that implementing SSNM could increase their yields,
so they decided to use it.

Farmers’ perception of GHG emissions had a negative and significant influence favoring SSNM
and AS, meaning that farmers perceived that implementing SSNM and AS techniques would reduce
GHG emissions, which was particularly the case for SSNM. Likewise, MD had a negative but
non-significant influence, which might be because most farmers still do not have sufficient knowledge
about the mitigation potential of each technique. It should be noted that relevant and responsible
organizations should encourage and provide knowledge on GHG reduction techniques. Sources of
information, including extensions, workshops, and training can enhance the adoption of a certain
technology [30]. However, there are several farmers who have less chances for training, probably
due to a limitation of time and budget. Therefore, participatory action research should receive more
attention both from research-funding organizations and researchers to support collaborations among
academicians, local authorities/leaders, and farmers [64]. This would increase the effectiveness of
transferring knowledge, the sharing of knowledge and experiences, and could serve as a means to
raise awareness about the positive effects of mitigation techniques.

3.5. Prioritizing Incentive Measures for the Adoption of Mitigation Techniques

Understanding farmers’ decision-making behavior regarding their current practices is important
and must be based on the knowledge of why farmers reject or accept different techniques [65]. Based on
the results of the field survey and the in-depth interviews, three incentive measures were important
from the point of the view of farmers: (1) cash incentives from governmental agencies to convince
farmers to adapt their practices; (2) assistance for cost reduction—seed support and soil property
analysis; and (3) support for water system development for agricultural activities—digging ponds and
drilling wells near rice fields. The classification of farmers’ characteristics for prioritizing supporting
measures were identified as follows.

3.5.1. Planted Area

Farmers in irrigated areas rated cash incentive measures as the highest priority, while farmers in
rain-fed areas were more concerned about supports for water system development.

3.5.2. Land Size

According to land tenure, farmers could be grouped as: (1) small land owners (1.3–6.5 ha);
(2) medium land owners (6.6–11.6 ha); and (3) large land owners (11.7–16.8 ha). Medium land owners
rated supports for water system development as the highest priority, while small and large land
owners rated assistance with cost reduction as their major concern.

3.5.3. Farmer Income

Farmers could be categorized into three groups based on their income: (1) low-income farmers
(52,800–128,000 THB year−1 household−1); (2) medium-income farmers (128,001–203,200 THB year−1

household−1); and (3) high-income farmers (203,201–278,400 THB year−1 household−1). Farmers
with medium and high incomes rated support for water system development as the first priority,
followed by assistance with cost reduction and cash incentive measures. For farmers with low income,
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cash incentive measures were most important, because this measure had a direct impact on their
income and expenses for implementing GHG mitigation techniques.

3.5.4. Farmer Liability

Regarding the levels of liability, there were three groups of farmers: low liability (58,400–538,933
THB household−1), medium liability (538,934–1,019,467 THB household−1), and high liability
(1,019,468–1,500,000 THB household−1). Low liability farmers mainly highlighted support for
water system development, while medium liability farmers stressed assistance with cost reduction.
High liability farmers highly valued cash incentive measures due to their direct and immediate impact
on income. Farmers with low or medium liability gave higher priority to investment in their land
(seeds, soil property analysis, and water sources).

3.5.5. Number of Laborers in a Household

According to the number of household members, farms were grouped into low-labor households
(1–3 persons) and high-labor households (3–5 persons). Low-labor households made seed support a
higher priority than high-labor households. This was because most low-labor households conducted
their agricultural activities on smaller areas, so seed support and soil property analysis could greatly
help to reduce their production costs. High-labor households prioritized support for water system
development, because potential improvements in their water systems could allow them to increase
their agricultural activities and gain more income.

3.5.6. Cropping System Pattern

Farmers using a double cropping system preferred support for water system measures, followed
by cash incentives and assistance for cost reduction measures. This was because although the farmers’
way of making a living in Thailand was based on rice cultivation, these farmers had limited water
sources, so they selected crop rotation, which requires less water during the dry season. This could
also reduce the cost of water management for agricultural activities. Among farmers using a triple
cropping system, assistance for cost reduction measures was the first priority as it reduces the costs of
seeds and soil property analysis.

The outstanding point was that cash incentives can be appropriate for low-income farmers or
small land owners, who have fewer opportunities to increase their income and need more assistance.
These farmers obviously considered subsidies are the priority. Besides, small land owners also placed
emphasis on developing their land to be more appropriate for agricultural activities, as their main
income relies on their land. On the other hand, high-income farmers and large land owners were aware
of other alternatives to increase their income, whether from rice grain or crop rotation. Farmers with
medium incomes or medium land owners were more concerned about water system development
for agricultural activities than the other groups, because having enough water could lead to greater
income and increased crop production efficiency [66]. For farmers with high liabilities, subsidies were
of greater concern than for farmers with low or medium liabilities due to their direct and immediate
effect on income.

4. Conclusions

Site-specific nutrient management (SSNM) was evaluated as the highest abatement potential
(363.52 kgCO2eq ha−1), the negative value of abatement cost (−2565 THB ha−1), and the negative
value of the average abatement cost (−14 THB kgCO2eq−1). Based on farmers’ assessment to be a
mitigation technique for rice cultivation, SSNM reached the highest score for effectiveness, flexibility,
economic efficiency, and institutional compatibility. This indicated that SSNM was obviously preferable
and presented the highest scores for farmer acceptability, followed by the replacement of urea with
ammonium sulfate ((NH4)2SO4) and mid-season drainage. Irrigation systems, land size, farmers’
liability, and perception of yield and GHG emissions were found as the main factors affecting the
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farmers’ decision to accept the mitigation techniques. Therefore, incentive measures, such as subsidies
or cost-sharing measures can convince farmers to adopt new techniques and enhance their practices.
More support of water system development can increase their availability.
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Abstract: Widespread poverty is the most serious threat and social problem that Bangladesh faces.
Regional vulnerability to climate change threatens to escalate the magnitude of poverty. It is essential
that poverty projections be estimated while bearing in mind the effects of climate change. The main
purpose of this paper is to perform an agrarian sub-national regional analysis of climate change
vulnerability in Bangladesh under various climate change scenarios and evaluate its potential impact
on poverty. This study is relevant to socio-economic research on climate change vulnerability
and agriculture risk management and has the potential to contribute new insights to the complex
interactions between household income and climate change risks to agricultural communities in
Bangladesh and South Asia. This study uses analysis of variance, cluster analysis, decomposition of
variance and log-normal distribution to estimate the parameters of income variability that can be
used to ascertain vulnerability levels and help us to understand the poverty levels that climate change
could potentially generate. It is found that the levels and sources of income vary greatly among
regions of Bangladesh. The variance decomposition of income showed that agricultural income in
Mymensingh and Rangpur is the main cause of the total income difference among all sources of
income. Moreover, a large variance in agricultural income among regions is induced by the gross
income from rice production. Additionally, even in the long run the gradual, constant reduction of
rice yield due to climate change in Bangladesh is not a severe problem for farmers. However, extreme
events such as floods, flash floods, droughts, sea level rise and greenhouse gas emissions, based on
Representative concentration pathways (RCPs), could increase the poverty rates in Mymensingh,
Rajshahi, Barisal and Khulna—regions that would be greatly affected by unexpected yield losses
due to extreme climatic events. Therefore, research into and development of adaptation measures to
climate change in regions where farmers are largely dependent on agricultural income are important.

Keywords: income distribution; cost distribution; vulnerable region; adaptation measures;
Bangladesh

1. Introduction

Bangladesh has experienced severe famines [1–3]. However, heavy investments in agriculture
following these famines have given rise to enhanced food production and have caused significant
increases in domestic rice production [4,5]. Both the cultivation techniques and cropping patterns
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relating to rice production have gradually changed in terms of yield potential [6,7]. Despite huge
population pressures, the country has reached self-sufficiency in rice production [8–10]. Additionally,
Bangladesh’s economic situation is improving; as such, it is one among a rather small group of
countries that have seen remarkable progress in terms of both economic performance and development
indicators [11]. However, poverty remains a critical social concern in this country [6,12,13].

Climate change will have a largely adverse impact on agricultural production in Asia [14].
For particular geographical locations and due to other environmental reasons, Bangladesh is one of
the world’s most disaster-prone countries [15–18]. Given climate change impacts, natural resource
constraints and competing demands, agriculture and food systems continue to face considerable
challenges. The livelihoods of the poor who are directly reliant on agriculture already face a profound
threat due to the current climate change in Bangladesh [19,20], which could lead to increased
pauperization. At the household level, climate change significantly affects food production [21]
which in turn influences food prices and directly affects the poverty of low-income household [22,23].
Agricultural income and non-farm income are the most significant factors in poverty reduction among
rural people [24–27]. However, Chaudhry and Wimer reported that household income plays a vital
role in the social and economic development of a community and income from agriculture might result
in increasing per capita income [28].

Agriculture is strongly influenced by weather and climate, which in turn have impacts on
agricultural production [29]. Over the last three decades, temperature has been increasing in
Bangladesh [30,31] and the average daily temperature is predicted to undergo an increase of 1.0 ◦C
by 2030 and 1.4 ◦C by 2050 [32,33]. The annual rainfall is also unevenly distributed in some areas of
Bangladesh. Rainfall patterns might change with increasing temperature and drought occur in some
areas; however, total rainfall sometimes increases and heavy rainfall induces floods in Bangladesh.
Increasing temperature also enhances extreme events, such as cyclones in coastal areas and adversely
affects rice production [7,30,34–36]. Additionally, climate change is projected to affect agriculture and
it is very likely that climate change will induce significant yield reduction in the future due to climate
variability in Bangladesh [37–39], with a projected decline of 8–17% in rice production by 2050 [33,40].
In Bangladesh, nearly 80% of the total cropped area is dedicated to rice production, accounting for
almost 90% of total grain production [39,41–46]. Agricultural production, farm income and food
security are significantly affected by seasonal growing temperatures [47].

Some previous studies have projected the impacts of climate change on food production and
national food security [48,49], as well as their impact on agricultural production, by collecting
information under drought, rainfall, sea level rise, flood and temperature increases [39,43,50] and
the impact of coastal flooding on rice [7,51,52]. However, there have been fewer studies from micro
or regional points of view based on integrated household survey data or poverty measurements
under yield reductions of crops due to climate change vulnerabilities. Farmers’ low incomes are the
main reinforcing factors in poverty traps, so this context of research is not sufficient. To consider
suitable adaptation technologies and policies for farmers, impact projections in terms of regional
characteristics and poverty are needed far more. To alleviate the severity of climate change’s impact
on farm production and poverty, adaptation strategies, such as new crop varieties, changing planting
times, homestead gardening, planting trees and migration, are vital approaches [6]. Furthermore,
research that projects climate change’s impacts on poverty or that pinpoints especially vulnerable
regions and the vulnerability of farm household income under the impact of climate change is still
needed [53,54]. Using statistical analysis, the current study attempts to derive an understanding of
regional characteristics in terms of income and agriculture and to assess the contributions of different
components on the observed total variance of income and cost, with an eye towards determining
regional vulnerability to climate change and projecting the potential effects of climate change on
poverty in Bangladesh. In this study, we used high-quality plot-level agricultural production data
from the nationally representative survey by the International Food Policy Research Institute (IFPRI)
( Appendix A.1). We used different analytical techniques to evaluate regional characteristics and to
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assess the potential climate change impacts on farm production and poverty under newly developed
representative concentration pathways (RCPs) and other climate scenarios. The objective of this study
was to project the poverty under the impacts of climate change on crop production and to provide
possible adaptive measures.

The paper is designed as follows: we draw a review of the related literature concerning climate
change, vulnerability and poverty in Section 2; Section 3 is the methodology section, in which we
describe the data sources, compilation procedures and the analytical approaches of the data; in Section 4,
descriptive statistics and empirical results of the analysis with discussion are presented; and in Section 5,
we conclude by emphasizing the future research directions and some policy guidelines.

2. Review of the Literature

The research on climate change scenarios and poverty in terms of regional characteristics is
outlined concisely in this section. Climate change is a reality that is occurring and will increasingly
affect the poor; moreover, it is a serious threat to poverty eradication [55]. Poor agricultural
communities are always disrupted by climate change’s impact on household food security
and poverty [56,57]; climate change impacts could increase household poverty [55]. Poverty as
a dynamic and multidimensional condition is characterized by the interaction of individual and
community features, socioeconomic and political issues, environmental processes and historical
circumstances. Particularly in less developed countries and regions through several direct and
indirect channels, climatic variability and change can worsen poverty [58]. Lade et al. reviewed the
socio-ecological relationship in rural development concepts, emphasizing the economic, biophysical
and cultural aspects of poverty. This study classified the poverty alleviation strategies and developed
multidimensional poverty trap models and it stated that interventions that ignore nature and culture
can reinforce poverty [59].

A multi-factor impact analysis framework was developed by Yu et al. [39] and using this
framework [50] Ruane et al. provided sub-regional vulnerability analyses and quantified key
uncertainties in climate and crop production. Climate change impacts increase under the higher
emissions scenarios and agriculture in Bangladesh is severely affected by sea level rise [50].
Over the same period, several attempts have been made regarding climate scenario development in
Bangladesh, mainly using Global Climate Models (GCMs) and in some cases Regional Climate Models
(RCMs) [60–62]. From these studies, the overall conclusions include increases in temperature and
rainfall, different drought seasons and impacts on crop production.

The projected future yield of rice cultivars in 2030 and 2050 in different areas of Bangladesh
by DSSAT crop modelling showed that Bagerhat, Dinajpur, Gaibandha, Maulvibazar, Panchagarh,
Rangpur, Sirajganj and Thakurgaon districts will have high yield losses due to climate change impacts.
Rainfall, temperature and CO2 affect the yield for aman rice in Rangpur and Khulna divisions and
for boro rice in Rajshahi, Barisal and the southwest region [63]. Changing patterns of rainfall and
temperature in different regions of Bangladesh are significantly higher, compared to IPCC predictions.
For sustainable adaptation, location-specific management of seed, crop and irrigation is needed [21].
Soil tolerance, flood tolerance and shorter varieties of rice and other crops could be used to adapt
to climate change impacts [64]. Climate change is likely to have an adverse effect on rice and
wheat production [5] and significant yield reductions in the future due to climate variability [38]
are also directly associated with extreme weather events [19]; due to population pressures, future
food production is a challenge in maintaining food security in Bangladesh [5]. Food demand changes
because of urbanization, population structure, among other factors; however, food supply can change
due to extreme climate change impacts on agricultural production in Bangladesh. The combined effects
on rice of major climatic variables were checked by Karim et al. and they found that rice yield would
decrease by 33% in both 2046–2065 and 2081–2100 for Rangpur, Barisal and the Faridpur region [65].

Total annual income of a farm household depends on farm and non-farm income. Farm income is
always unstable due to the dependency of weather and even if farm income is high poverty may occur;
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however, higher non-farm income could reduce the poverty [28]. Farm households in Bangladesh are
the most prone to the impacts of climatic hazards. Uncertainty is high in farm income and it depends
on the wide fluctuations of yields and prices. Unexpected weather can easily damage crop production,
rendering farms more vulnerable [66]. In Bangladesh, farmers are fully dependent on weather for their
crop production, resulting in lower farm income if extreme climatic events occur. Unexpected yield
reductions cause fluctuating farm income and increase food insecurity and poverty. Agriculture is
the main source of income of farmers in Bangladesh [8,21] and it might cause per capita income to
increase, which in turn could further reduce poverty. The participation of government programs and
off-farm income is significantly important in reducing poverty [24].

There has been much research on climate change impacts, adaptations and projections in
agriculture. The IPCC’s fifth assessment report showed that food production in Asia will vary and
decline in many regions under the impact of climate change [37]. Rajendra et al. focused on climate
change impacts on farming in northern Thailand, where the vulnerability of farm households persists
under the negative impact of climate change [54]. Yamei et al. assessed the adverse effects of future
climate on rice yields and provided potential adaptive measures [67]. Nazarenko et al. examined
the climate response under a representative concentration pathway (RCP) for the 21st century [68],
while there are fewer comprehensive scenarios for the whole country regarding farm income and
poverty projections.

In addition, in-depth empirical research on farm income distribution and regional vulnerability
to climate change has been lacking. Furthermore, most of the previous studies of climate change
impacts on agricultural production have been for specific regions. However, a comprehensive study of
climate change impacts comparing the regions of Bangladesh could be enormously significant. One of
the motivations of the study is to summarize the farmers’ net income scenarios for all of the regions
of Bangladesh, assessing the contributions of different components on the observed total variance
in income and costs and possible poverty under climate change impacts on agricultural production.
Moreover, understanding farmers’ local economic situations and coping strategies with climate change
impacts could have immense significance for regional point of view. Based on actual farm income,
this study evaluates the projected farm income under the scenario that extreme climatic events occur.
It then determines the projected poverty to identify vulnerable regions and to suggest appropriate
coping and poverty alleviation strategies.

3. Methodology

3.1. Survey Data

In its empirical analysis, this study uses cross-sectional data drawn from nine administrative
regions across Bangladesh. These data were derived from the International Food Policy Research
Institute (IFPRI), which adopted a multi-stage stratified random sampling method to collect primary
data: first a selection of primary sampling units (325 villages) and then a selection of farm households
(20 farms) from each primary sampling unit. Randomly selected villages with probability proportional
to size (PPS) sampling using the number of households from the Bangladesh population census data in
2001. Randomly selected 20 farm households in each village from the aforementioned national census
list. IFPRI researchers designed the Bangladesh Integrated Household Survey (BIHS) (Appendix A.1),
the most comprehensive, nationally representative household survey conducted to date. Plot-wise
crop production data were collected via semi-structured questionnaire by the IFPRI from 6503 sample
farmers across Bangladesh vis-à-vis cultivated crops; the survey period was from 1 December 2010,
to 30 November 2011. The original data were collected in a typical agricultural year according to rice
production statistics; there was no severe crop loss in the 2010 or 2011 rice years in Bangladesh [69].
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3.2. Data Compilation

This study models the poverty rate change under climate change vulnerability in different regions
of Bangladesh. Based on the purpose of this study, to analyze the data we applied descriptive,
inferential, statistical and multivariate techniques. Plot-wise raw data were compiled in line with the
study objectives. We compiled data pertaining to many income sources for each separate household
into some important sectors. In addition, for agricultural activities, we also compiled all types of
input cost data into some important cost items and output values for each crop. We then compiled
and combined them into one data set of households for all 6503 farms. Bangladesh consists of
30 agro-ecological zones (AEZs) that overlap with each other [69,70]. For the convenience of this
research, some homogenous agro-ecological zones were combined into the nine administrative regions
with their geographical locations. In this manner, we tried to develop nine mutually exclusive regions
for our research. To overcome the resulting challenge in consistency under the same impact of
climate change in each region [50], we categorized all the sample farmers per the nine administrative
zones of Bangladesh, calling each a division (nine different colors indicating the individual divisions)
(Figure 1): Barisal (700 sample farmers), Chittagong (300), Comilla (660), Dhaka (1380), Khulna (1020),
Mymensingh (600), Rajshahi (580), Rangpur (543) and Sylhet (720).

Figure 1. Map of the objective regions of Bangladesh.

We estimated the costs and incomes associated with 17 major crops produced by farmers in
Bangladesh (each is considered an important crop); other crops (such as pulses, oil seeds, spices except
for chili and onion, vegetables, leafy vegetables, etc.) and all types of fruits (such as banana, mango,
pineapple, jackfruit, papaya, guava, litchi, orange, etc.) were added to another group, “all other crops.”
The 18 groups are aus (Appendix ??), rice local, aus rice LIV, aus rice HYV, aman rice local, aman rice
LIV, aman rice HYV, aman rice Hybrid, T aus rice HYV, boro rice HYV, boro rice Hybrid, wheat local,
wheat HYV, maize, jute, potato, chili, onion and all other crops.

To estimate per-capita income for farm household members in all nine administrative regions of
Bangladesh, this study considers all income sources, including income from agriculture. The basic unit
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of analysis is each farm, while farming is the only significant source of income among other sources,
such as employment, small business and so on, for the family in a one-year period. Net income for the
farm household from agriculture was calculated by deducting total input costs from gross income:

π = ∑
i

PiYi − ∑
i

∑
j

PijXij (1)

where π is net income, Pi is price of crop i, Yi is production of crop i, Pij is price of input j for crop i
and Xij is input j for crop i.

This analysis used only the accounting costs to estimate net income from agriculture
(Appendix B.1); these costs include the so-called explicit costs actually incurred by the farms and in
surveys, farmers reported their own cost data. For this reason, this study regards supply of one’s
own land and family labor as part of agricultural income. The farm gate price of each crop for each
household was used to estimate gross income derived from agricultural crops, livestock and poultry
and fish production; additionally, actual input prices were used to estimate the production costs cited
by each farmer and in-kind payments by crops are deducted for estimating gross income. For farmers
with no information about farm gate prices or input prices for their respective crops, we used the
average prices from the region. This study crosschecked the farm gate prices and input prices with
data pertaining to the average national retail price data of select commodities in Bangladesh [71]
during the aforementioned study period. Farmers used farm gate prices to sell their crops and for this
reason, there was some divergence between national retail prices and the farmers’ prices. To estimate
per-capita income for each member of the farm, this study assumes that all negative returns tend
towards zero so that we can calculate shares of income sources.

Income data were collected for each household and these data were used to calculate overall
household income. Income was broadly classified into seven major sectors, as follows:

(i) Agricultural crop income: income from all crop types produced by farmers throughout the year;
(ii) Income from fish/shrimp farming;
(iii) Income from livestock and poultry enterprises;
(iv) Nonagricultural enterprise income: income from nurseries, food processing, fishing,

nonagricultural day labor, retail, wholesale, construction, manufacturing, wooden furniture
and other businesses;

(v) Remittances: remittances from within or outside Bangladesh, with the persons who sent the
remittances excluded from their respective households;

(vi) Employment: both formal and informal employment, income from self-employed and/or owned
businesses that are not agricultural, income received from relatives and friends not presently
living with the household and so on; and

(vii) Other income: income received from land rent or property rent, income from life and nonlife
insurance, profit from shares, gratuities, or retirement benefits, income from lotteries or prizes,
interest received from banks, charity assistance, other cash receipts and/or other in-kind receipts.

These seven sectors of household income were used to determine the actual income and income
sector shares, both of which reflect income distributions significantly.

3.3. Analytical Approach

This study used four types of statistical analysis.

3.3.1. Analysis of Variance (ANOVA)

After dividing farm households into the nine aforementioned regions, we conducted single-factor
analysis of variance (ANOVA) to examine differences among the farm households of the nine regions
in Bangladesh in terms of mean per-capita income.
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3.3.2. Cluster Analysis

The cluster analysis (CA) technique was used to determine the main and dominant income
sources in Bangladesh’s various regions. Environmental (i.e., topographical) divergence is a common
phenomenon in Bangladesh and it diversifies farm production, although farm households within
a certain region do tend to be similar. Ward’s hierarchical method and the partitioning method
can be used to determine the most appropriate clusters regarding the main income sources in each
region. A dendrogram—a graphical representation of the hierarchy of nested cluster explanations—
is a manifestation of Ward’s method and it provides clues for finding the preferable number of clusters
regarding income sources.

3.3.3. Decomposition of Variances

To understand the interregional differences and to assess the contributions of different components
to the observed total variance of input cost and income, different crop production data are used [72–75].
These data include per hectare crop yields, prices and all costs at the farm level and we decompose the
variances in net cost and net income into different factors using the following relations.

V(X ± Y) = V(X) + V(Y)± 2Cov(X, Y) (2)

where X and Y are stochastic variables, such as the costs of inputs or incomes from different sectors;
V (·) is variance and Cov (·) is covariance.

3.3.4. Projections: Log-Normal Distributions

There are different types of probability distributions studied in probability theory. Lognormal
distribution is one of the most important one and was established long ago [76–78]. Lognormal
distribution is a type of a continuous distribution. It is a probability distribution in which the logarithm
of the random variable is distributed normally. This distribution is closely related to the normal
distribution. Lognormal distribution is very commonly used in the social sciences, economics and
finance [79].

Arata [80] pointed out that the income distribution among individuals is very important and is
one of the main themes in economics. Income distribution is widely understood to be well described
by a log-normal distribution.

Lognormal distribution has two parameters: mean (μ) and standard deviation (σ). If x is
distributed log-normally with parameters μ and σ, then log(x) is distributed normally with mean μ

and standard deviation σ. The log-normal distribution is applicable when the quantity of interest must
be positive since log(x) exists only when x is positive. A positive random variable X is log-normally
distributed if the logarithm of X is normally distributed.

ln(X) ∼ N
(

μ, σ2
)

(3)

Let Φ and ϕ be, respectively, the cumulative probability distribution function and the probability
density function of the N (0, 1) distribution.

The probability density function of the log-normal distribution is;

f (x|μ, σ) =
1

xσ
√

2π
exp

{
−(lnx − μ)2

2σ2

}
; x > 0 (4)

If we substitute a poverty line into x and integrate the probability density function up to x,
we can obtain a poverty rate. The poverty line, which is estimated by world Bank, is inserted into the
equation [12,67].
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We estimate the incomes of all sample families on the assumption of climate change impacts and
draw the distribution of the estimated incomes, assuming that the distribution follows log normal
distribution. To draw log normal distribution, we must find the mean and standard deviation of ln(x)
(Appendix B.2). From the actual per-capita income of household members in the study areas, we obtain
the actual distribution of per-capita income using the lognormal distribution. Next, we project the crop
yield loss from the assumption of the literature reviews and we estimate the projected per-capita income.
From projected per-capita income using lognormal distribution, we obtain the estimated distribution
of per-capita income. By simulating these two distributions, we find the poverty rate graph.

4. Results and Discussion

4.1. Comparison of Income Levels Among Regions

Agricultural income is a key driver in reducing poverty in Bangladesh, where it accounted for
90% of all poverty alleviation between 2005 and 2010 [81]. In terms of employment, Bangladesh’s
economy is primarily dependent on agriculture. Approximately 85% of the population is directly or
indirectly attached to the agriculture sector [38,69].

Agriculture continues to be the main source of income in the sample households in all regions
(Table 1) and this result is consistent with Hossain and Silva (2013) [5]. However, in all regions,
nonagricultural profit and employment are important income sources and these results are consistent
with Bangladesh Economic Review [45]. The amount of remittances varies by region: that in Sylhet is
not the highest nationally but the people there do consider remittances to be the main income source
in the region. The agricultural income is higher in Rajshahi than in other regions and the per capita
income of this region per the study sample is US$ 423.6 (Table 2). Diversification of agricultural crops
results in this region having highest income from agriculture.

Table 1. Each income sector’s share in total household income (%), by region.

B CH CO D K M RJ RN S BD

Agril. crops 12.71 8.14 5.50 13.55 19.43 20.15 18.72 21.41 9.03 14.32
Main crops 6.08 2.89 2.34 8.25 10.81 11.44 11.72 14.84 6.15 8.36
Other crops 6.63 5.25 3.16 5.30 8.62 8.71 7.00 6.58 2.87 5.96

Fish 9.23 1.54 0.57 2.18 7.93 6.06 2.87 1.14 3.16 3.96
Livestock 2.19 1.17 1.48 3.60 6.15 5.12 4.43 3.10 1.80 3.47
Non-ag. profit 20.76 19.25 14.13 21.22 18.09 17.66 19.61 14.88 20.05 18.80
Remittance 11.04 24.99 41.48 15.68 7.64 9.11 4.48 7.58 17.77 15.22
Employment 38.91 44.35 30.80 41.10 38.52 39.04 38.83 50.54 44.02 40.10
Other income 5.16 0.55 6.04 2.66 2.23 2.86 11.06 1.35 4.18 4.12
Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet, BD = Bangladesh, Main crops = Aus, Aman and Boro rice and other crops = Wheat, maize, jute, potato,
chili, onion and so on.

Table 2. Mean, median and standard deviation of per-capita income (US$/yr), by region.

B CH CO D K M RJ RN S BD

Mean 308.93 336.75 378.35 362.17 369.84 307.63 423.63 308.76 301.63 327.55
Median 289.93 217.83 246.25 242.87 254.11 215.04 283.14 226.99 204.82 232.94

SD 314.75 418.11 314.22 403.66 382.81 278.08 372.71 246.61 301.02 348.64
PR 0.51 0.48 0.46 0.46 0.42 0.51 0.33 0.47 0.49 0.46

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN =
Rangpur, S = Sylhet, SD = Standard deviation and PR = Poverty rate.

Table 1 shows significant differences in main income sources among farmers in various regions
in Bangladesh. Employment is the predominant income source in most regions, followed by
nonagricultural profits and agriculture. The share of agriculture in total income varies by region.
Among Bangladeshi farming households, the employment share is 40.10%, although the overall
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share of agriculture in total income is 14.32%. Rangpur has the highest share of agricultural income
in total annual income (21.41%), followed by the Mymensingh region (20.15%). Comilla’s share of
remittances in total annual income was highest (41.48% of total income); in comparison, the share
generated by agricultural crops in Comilla was only 5.50%. Currently, overseas workers are more
often from the Comilla region than other regions in Bangladesh, with a significant proportion of
them sending remittances, becoming a vital source of income in the Comilla region. Rice and other
crops were the main sources of income among the sampled farm households in the study areas
(Appendix C). Incomes from maize and potato appear to be growing but their respective shares remain
small. There are regional land conditions and climate differences among Bangladesh’s regions, so
wheat, maize, onion and potato production is not familiar to all farmers. Consequently, farmers in all
areas of Bangladesh tend to focus on rice cultivation.

Table 2 shows descriptive statistics of income status by region. Poverty rates were estimated by
applying the poverty line and the purchasing power parity from the World Bank [22] to log-normal
income distributions. The findings presented in Table 2 indicate differences in mean, median and
standard deviation of net incomes among the nine regions in Bangladesh; using these findings, one
can pinpoint relatively rich and poor regions.

In terms of mean net income, incomes of sampled farm households in Rajshahi are the highest,
while those of Barisal, Mymensingh, Rangpur and Sylhet are lower. As some farmers had negative
or zero per-capita income, the standard deviation is relatively large in certain regions. The highest
standard deviation value is found in Chittagong (US$ 418.1), reflecting a large income gap among the
farmers there.

The highest poverty rate (i.e., 0.51) was found in Mymensingh and Barisal (Table 2), while the
lowest (i.e., 0.33) was in Rajshahi; overall, the country’s upper poverty rate is 0.46. The rates in
Chittagong and Sylhet were also relatively low (i.e., 0.49). The officially estimated upper poverty rate
and national average poverty rate are both in the vicinity of 0.35 [12,82], which makes sense because
the original data were collected from rural, farming-engaged people and excluded affluent or single
urban people.

Among regions where the poverty rates were high, Barisal, Mymensingh and Sylhet had the
lower mean incomes. In contrast, Chittagong had the highest standard deviation, compared to the
other regions. In the regions of Barisal, Mymensingh and Sylhet, it appeared that the mean income
level was low; however, in the other regions, the mean income was large. These results show that these
low-income regions are vulnerable regions and should be the targets of farmers’ support policies.

From results of Table 2, this study found that there are differences in mean, median and standard
deviation of net incomes among the nine regions in Bangladesh and for validation of this difference,
we perform ANOVA and report the results in Table 3. Analysis of variance (ANOVA) is a statistical
test designed to examine means across more than two groups by comparing variances, based upon
the variability in each sample and in the combined samples. We analyzed the variance within and
between the sample farmers to determine the significance of any differences in per capita income of
farm household members among the regions of Bangladesh. The results of the overall F test in the
ANOVA summary shows the results regarding the variability of means between groups and within
groups. As indicated, the overall F test is significant (i.e., p-value < 0.05), indicating that means between
groups are not equal and it is statistically concluded that there have been significant differences among
the regions in terms of mean per-capita income.

Table 3. ANOVA mean differences across regions.

Source of Variation SS df MS F p-Value F Crit

Between groups 6.31 × 1010 9 7.01 × 109 4.757462 2.39 × 10–6 1.880604
Within groups 1.91 × 1013 12,996 1.47 × 109

Total 1.92 × 1013 13,005
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The first column in ANOVA provides us with the sum of squares between and within the groups
and for the total sample farmers. The total sum of squares represents the complete variance on the
dependent variable for the total sample. The second column represents the degrees of freedom, (n − 1).
The total degrees of freedom represent 13,006 − 1 = 13,005; degrees of freedom between groups
equals the number of groups minus one (10 − 1 = 9). The within groups degrees of freedom equals
13,005 − 9 = 12,996. The third (mean square) column contains the estimates of variability between
and within the groups. The mean square estimate is equal to the sum of the squares divided by the
degrees of freedom. The between groups mean square is 7.01 × 109; the within-groups mean square
is 1.47 × 109. The fourth column, the F ratio, is calculated by dividing the mean square between
groups by the mean square within the groups. The F ratio should be one if the null hypothesis is true,
while both mean square estimates are equal. However, as shown in Table 3, larger F values (4.757462)
imply that the means of the per capita income groups are greatly different from each other, compared
to the variation in the individual sample farmers in each group. The next column is the significance
level (p-value) and it indicates that the value of F ratio is sufficiently large to reject the null hypothesis.
The significance level is 2.39 × 10–6, which is less than 0.05. Therefore, the mean per capita incomes of
sample households among the regions of the country were significantly different in the study year.

4.2. Regional Characteristics on Income Source

This section intends to classify regions of Bangladesh to determine the regional characteristics
of income sources in each administrative region. Sectoral income shares from Table 1 are analyzed
by cluster analysis and are shown in Figure 2. Here, a dendrogram depicts the income source
relationships among the regions. The horizontal axis of the dendrogram (in Figure 2) represents
the distance or dissimilarity between clusters and the vertical axis represents the objects (regions) of
clusters. From the cluster analysis, this study attempted to find the similarity and clustering with
the dendrogram, which visually displays a certain cluster shape. Regions that are close to each other
(have small dissimilarities) are linked near the right side of the plot. In Figure 2, we note that Khulna
and Mymensingh are very similar compared to the regions that link up near the left side, which are
very different. For example, Comilla appears to be quite different from any of the other regions.
The number of clusters formed at a particular cluster cutoff value can be quickly determined from
this plot by drawing a vertical line at this value and counting the number of lines that the vertical line
intersects. In this study, we can see that, if we draw a vertical line at the value of 18.0, four clusters
will result. One cluster contains four regions, one contains three regions and two clusters each contain
only one region, as shown in Figure 2, in which Barisal, Mymensingh, Khulna and Rajshahi are
more alike than resembling Rangpur. In addition, Chittagong, Dhaka and Sylhet are more alike than
resembling Comilla.

Figure 2. Dendrogram showing clusters for main income sources, by region.
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Table 4 summarizes regional characteristics of income sources. Clusters 1 and 2 are largely
dependent on agriculture. Clusters 3 and 4 are not largely dependent on agriculture. This result
indicates the importance of agricultural research for clusters 1 and 2.

Table 4. Cluster characteristics of main income sources, by region.

Cluster Region Main Income Source Distinction

1 Barisal, Mymensingh, Khulna, Rajshahi Agricultural. crops, non-agricultural
profit, employment2 Rangpur Dominant Employment

3 Chittagong, Dhaka, Sylhet Non-agricultural profit, remittance,
employment4 Comilla Dominant Remittance

Using the dendrogram in Figure 3 (agricultural crop share in total agricultural income analyzed
by cluster analysis), four clusters were determined (Table 5) as the clusters suitable for representing
agricultural crop income sources among the regions. We followed the same procedure for this
dendrogram (Figure 3) that we followed in Figure 2.

Figure 3. Dendrogram showing clusters for agricultural income sources, by region.

Table 5. Cluster characteristics of agricultural income sources, by region.

Cluster Region Main Income Source Distinction

1 Barisal, Mymensingh, Rajshahi
Rice, other crops2 Rangpur, Sylhet Dominant rice

3 Chittagong, Comilla Dominant other crops

4 Dhaka, Khulna Rice, jute, chili, onion, other crops

The selected clusters show significant differences among the regions. Rice and other crops were
identified as the main agricultural income sources of clusters 1–3, whereas rice, jute, chili, onion and
other crops were those of cluster 4. The selected clusters produced the significant differences among
the regions. In addition, rice predominated in cluster 2, while other crops predominated in cluster 3.
These findings imply, for example, that rice is the main agricultural income source in Rangpur and
Sylhet, while other crops are those in Chittagong and Comilla.
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4.3. Reasons for Broad Income Distribution within a Region

To grasp the diversity of income for sampled farm households, the income can be decomposed
into seven broad components, such as Agriculture, Fish, Livestock and poultry, Nonagricultural
enterprise profit, Remittance, Other income and Employment income, in each region. We applied
decomposition of variances and the results are shown in Table 6. The decomposition of variances is
useful in evaluating how much each source of income contributes to total income variation of farm
households. The decomposed variance share was derived from annual per capita income from the
seven aforementioned broad income source sectors. Across Bangladesh, differences in remittances,
other income and employment are important factors that all contribute the largest share of variation in
total income. If a family can find good employment both inside and outside its region, it can become
relatively wealthy, although income share from employment does not significantly more contribute in
all regions (Table 6).

Table 6. Share of broad income components (%) in total income variation, by region.

B CH CO D K M RJ RN S BD

V(b) 6.57 1.67 1.94 4.19 8.18 13.87 3.18 20.59 2.49 4.79
V(c) 20.03 0.19 0.03 1.57 35.73 8.17 1.11 0.23 1.98 6.42
V(d) 1.08 0.18 0.17 0.87 1.78 4.58 2.81 0.98 1.05 1.54
V(e) 17.39 13.64 6.33 16.50 13.47 11.90 5.09 7.84 19.73 11.63
V(f) 8.70 40.78 54.36 10.94 10.22 12.99 1.61 30.23 29.95 17.78
V(g) 4.84 0.05 14.76 1.16 0.61 2.38 69.70 0.37 2.82 21.63
V(h) 19.44 27.29 11.61 44.54 17.17 25.26 7.16 38.32 21.01 22.05

2*Cov(e,h) 21.95 15.22 10.81 20.22 12.85 14.22 7.32 20.96 14.16
2*Cov(b,c) 1.43
2*Cov(c,h) 2.03
2*Cov(f,g) 0.99
2*Cov(c,e) 6.63

Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh; b = Agriculture, c = Fish, d = Livestock and poultry, e = Nonagricultural enterprise
profit, f = Remittance, g = Other income and h = Employment income.

We found in Table 6 that agriculture is one of the main contributors to income differences in
Mymensingh and Rangpur regions. Figure 4 shows total income distribution by income sources for
the whole country, of which 22% of income inequality of total income is explained by inequality of
employment income, while 13.87% and 20.59% of income inequality of total income explained by
agriculture in Mynemnsingh and Rangpur respectively (Figures 5 and 6). Furthermore, this result
indicates that remittance is the most important sector inducing income disparity in Comilla, compared
to employment in Dhaka and Rangpur. In addition, other income sources are significant sources of
income to confirm the total income disparity in Rajshahi. This finding likely explains that the income
inequality of total income makes the larger contribution of inequality in agricultural income for crop
farm households in Bangladesh.
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Figure 4. Distribution of total income for farm households in Bangladesh by income sources.

Figure 5. Distribution of total income (US$) for farm households in Mymensingh by income sources.
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Figure 6. Distribution of total income (US$) for farm households in Rangpur by income sources.

4.4. Factors in Agricultural Income Differences

The main factors of agricultural income differences are shown in Table 7 obtained by the
decomposed variance method. We estimate the variance component shares of crops for all farms
across nine regions. From Table 6, we identify that agriculture is one of the main reasons for income
differences in Mymensingh, Rangpur, Barisal, Khulna and Rajshahi. The empirical estimates of Table 7
indicate that the main variation in agricultural income comes from aman HYV (g) and boro HYV (j)
rice. However, the results also display the contributions of other crop income to total agricultural
income variation.

Table 7. Shares of crop income (%) in total agricultural income variation, by region.

B CH CO D K M RJ RN S BD

V(b) 0.35 0.07 0.03 0.15 0.10 0.00 0.01 0.00 0.36 0.11
V(c) 0.08 0.04 0.03 0.00 0.00 0.06 0.06 0.01 0.04 0.04
V(d) 0.64 0.43 0.01 0.02 1.54 0.06 0.13 0.13 1.06 0.53
V(e) 5.23 0.00 0.36 0.36 0.53 0.50 0.50 0.15 2.06 1.02
V(f) 0.47 0.02 0.16 0.02 0.07 0.06 0.01 0.15 0.00 0.10
V(g) 8.95 7.67 1.12 1.63 10.15 3.84 7.64 12.95 7.88 8.50
V(h) 0.02 0.00 0.00 0.00 0.09 0.09 0.05 0.11 0.00 0.06
V(i) 0.70 0.00 0.06 0.01 0.06 0.00 0.00 0.36 0.16 0.14
V(j) 6.36 4.32 8.13 34.03 17.72 20.89 17.72 14.03 48.26 25.30
V(k) 2.49 2.13 1.26 5.71 3.88 0.69 3.56 3.40 17.82 5.03
V(l) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

V(m) 0.00 0.00 0.01 0.04 0.15 0.00 0.23 0.18 0.00 0.11
V(n) 0.00 0.00 0.27 0.07 0.10 0.00 0.53 0.65 0.00 0.28
V(o) 0.26 0.00 4.28 4.74 2.46 0.04 0.91 0.93 0.14 2.38
V(p) 0.49 0.04 20.77 0.35 0.03 0.08 1.78 6.48 0.16 2.68
V(q) 1.65 0.90 0.81 11.56 12.40 0.98 0.17 0.49 0.08 6.00
V(r) 0.00 0.00 0.00 6.51 0.54 0.00 0.63 0.02 0.00 1.91
V(s) 67.37 75.85 43.55 29.35 44.77 62.62 16.16 24.67 21.98 44.00

2*Cov(o,r) 5.43 0.85 0.81 1.79
2*Cov(g,j) 5.75 9.73 11.64 13.34
2*Cov(g,k) 2.79 0.37 4.55 7.94
2*Cov(g,p) 0.02 3.58 11.66
2*Cov(o,p) 18.45 0.34 6.19 2.33
2*Cov(g,s) 9.54
2*Cov(j,s) 13.61
2*Cov(d,j) 4.95 0.72 4.20

Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet, BD = Bangladesh; b = Aus rice local, c = Aus rice LIV, d = Aus rice HYV, e = Aman rice Local, f = Aman rice
LIV, g = Aman rice HYV, h = Aman rice Hybrid, i = T Aus rice HYV, j = Boro rice HYV, k = Boro rice Hybrid, l = Wheat
Local, m = Wheat HYV, n = Maize, o = Jute, p = Potato, q = Chili, r = Onion, s = All other crops.
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Rice is the leading crop in Bangladesh, accounting for more than 90% of total cereal production
covering 75% of Bangladesh’s total cropped area [45,69]. For Mymensingh and Rangpur, variances in
both aman HYV and boro HYV rice are high. For other regions, variances in boro HYV are high.

All other crops(s) are among the main causes (44% variance share) of income differences for all
of Bangladesh since all types of pulses, oil seeds, spices, vegetable, leafy vegetables and fruits are
included in the group of “all other crops.” Moreover, all other crops(s) explain the larger contribution
to total agricultural income variation because, in some regions, vegetables and fruits, among others,
excluding rice, are important agricultural income sources.

The distribution of crop income among total agricultural income for the whole country is shown
in Figure 7, which follows in Figures 8 and 9 for Mymensingh and Rangpur, respectively, with selected
crops mainly produced by farmers in these regions. We found that boro rice has the widest variation in
both the region and the highest inequality of total agricultural income, explained by the inequality of
boro HYV income.

Figure 7. Distribution of agricultural income for farm households in Bangladesh by crop income.

Figure 8. Distribution of agricultural income for farm households in Mymensingh by crop income.
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Figure 9. Distribution of agricultural income (US$) for farm households in Rangpur by crop income.

4.5. Factors Contributing to Variations in Income from Aman HYV and Boro HYV Rice Production

According to the results of Table 7, it is important to determine the factor causing the net income
differences in aman HYV production. From decomposed variance of gross income and gross cost,
we find in Table 8 that gross income is the main factor in net income difference, indicating that,
although farmers in same region cultivated aman HYV rice, their gross incomes were different.

Table 8. Decomposed variances share (%) of GI and GC for aman HYV rice, by region.

B CH CO D K M RJ RN S BD

V(GI) 75.31 74.34 98.38 53.87 76.53 57.17 66.88 74.25 45.49 69.45
V(GC) 80.97 33.57 35.80 91.18 36.13 49.23 55.56 30.27 55.10 45.67

−2*Cov(GI, GC) −56.27 −7.91 −34.18 −45.06 −12.66 −6.39 −22.44 −4.52 −0.59 −15.11
Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh; GI = Gross income; and GC = Gross cost.

These gross income differences mainly induce the net income disparities in Comilla, Khulna,
Chittagong and Rangpur, while gross cost induces the income disparities in Dhaka and Barisal for
aman HYV rice. Additionally, gross cost also contributes to the total net income disparity of aman HYV
rice production. To determine the variance in gross cost for aman HYV rice production, we estimate
the variance component shares of all costs contributing to gross cost and present them in Table 9.

The results show the factors responsible for large variations in cost from aman HYV rice production.
As shown in Table 9, variances in seed (c) shows in third row, chemical fertilizer (g) in row seven
and hired labor costs (k) in row eleven, are high across all regions. In Dhaka, the highest 80% of
inequality of gross cost for aman HYV rice production is explained by the inequality of hired labor
cost (k), while in Barisal, the highest 25% inequality of gross cost is explained by inequality of seed
cost. These costs were the main factors inducing the income differences in aman HYV rice production.
This result indicates the importance of farming knowledge and easy input access to rice cultivation.
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Table 9. Decomposed variances share (%) of costs for aman HYV rice production, by region.

B CH CO D K M RJ RN S BD

V(b) 3.64 3.73 3.79 0.97 3.66 5.50 3.72 8.79 4.32 3.24
V(c) 25.01 1.87 24.54 1.47 3.55 5.56 3.12 6.78 3.81 5.15
V(d) 0.53 1.79 1.04 1.32 8.33 2.04 4.15 6.70 0.67 3.69
V(e) 0.07 0.18 0.19 0.08 0.41 0.64 0.77 0.64 0.23 0.33
V(f) 0.54 0.48 0.28 0.07 0.65 0.10 0.65 0.54 0.14 0.35
V(g) 5.32 9.73 6.27 1.54 12.74 6.72 7.57 7.05 3.38 6.42
V(h) 0.98 0.06 0.01 0.04 0.30 2.76 0.05 0.57 1.42 0.50
V(i) 9.49 2.29 1.88 0.35 4.25 1.29 1.31 2.70 1.62 2.10
V(j) 3.47 0.58 1.62 0.10 0.44 0.70 0.15 0.26 3.04 0.69
V(k) 15.16 39.90 45.37 80.58 37.61 70.65 40.88 58.04 74.50 59.53

2*Cov(f,g) 1.72 2.37 1.33 0.33 2.14 0.77 3.05 1.26 1.41
2*Cov(i,f) 2.07 0.59 0.13 1.17 1.03 0.41 0.54
2*Cov(i,g) 11.50 3.88 0.77 5.69 3.26 4.29 4.69 1.94 3.32
2*Cov(k,g) 5.46 20.32 8.55 19.47 18.35 12.74
2*Cov(c,j) 15.04 0.95 4.52
2*Cov(k,f) 3.79 2.04 4.82
2*Cov(k,i) 1.90 9.21 1.67 0.75 5.94
2*Cov(c,k) 11.0

Total 100 100 100 100 100 100 100 100 100 100

B = Barisal; CH = Chittagong; CO = Comilla; D = Dhaka; K = Khulna; M = Mymensingh; RJ = Rajshahi;
RN = Rangpur; S = Sylhet; and BD = Bangladesh; b = Rental cost of land; c = Seed cost; d = Irrigation cost;
e = Manure/compost cost; f = Pesticide cost; g = Chemical fertilizer cost; h = Draft animal cost for land preparation;
i = Rental cost for tools and machinery; j = Threshing cost; and k = Hired labor cost.

In Table 7, we note that boro HYV also had an influence on agricultural income. It is essential
to determine the factors affecting the net income variation for boro HYV rice cultivation. Table 10
summarizes the decomposed variance of gross income and gross cost from boro HYV rice production
and shows that gross income is the main factor in net income differences for boro HYV rice production,
except for in Chittagong and Sylhet. However, gross cost also contributes to the total net income
disparity of boro HYV rice production.

Next, we want to know which costs are the main factors in income differences in boro HYV
rice production. To know the variance in gross costs for boro HYV rice production, we estimate the
variance component shares of all cost expenditures contributing to gross cost and present them in
Table 11. We found that the variances in seed (c) shows in third row, irrigation (d) in row four, chemical
fertilizer (g) in row seven and hired labor cost (k) in row eleven, are high in all regions, indicating that
adaptation strategies, such as low input costs, have priorities for the large gross income variances of
boro rice cultivation.

Table 10. Decomposed variance share (%) of gross income and cost of boro HYV rice, by region.

B CH CO D K M RJ RN S BD

V(GI) 101.34 46.75 264.6 62.73 79.59 70.15 69.81 80.61 67.68 91.68
V(GC) 43.86 79.49 97.26 41.17 40.46 47.38 60.96 28.25 84.98 54.04

−2*Cov (GI, GC) −45.20 −26.24 −261.9 −3.90 −20.05 −17.53 −30.77 −8.86 −52.66 −45.72
Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh; GI = Gross income and GC = Gross cost.

These input costs were made the net income differences in this rice production for sample farmers.
Based on the findings in Table 11, it is also important to note that, in Chittagong region, the variance in
hired labor cost (k) is highest (69.84%) while it is lowest in Comilla region (27.25%). This result implies
that 69.84% of inequality of gross cost is elucidated by the inequality of hired labor cost in Chittagong
region. As shown in the fourth row, irrigation cost (d) contributes a significant share of the variation of
gross cost; the highest 22.93% of inequality of gross cost is explained by the inequality of irrigation
cost in Dhaka, compared to the lowest in Chittagong. This result implies that reduction of input cost
variances will ensure the low net income differences for this rice production. Farm households are
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not entirely self-sufficient regard the labor supply for their farming. In peak times of agricultural
production, such as transplanting, weeding and harvesting, hired labor demand occurs. However,
the labor supply is low in Chittagong due to hill tract areas of Bangladesh [69], resulting in the higher
costs of labor.

Table 11. Decomposed variance share (%) of costs for boro HYV rice production, by region.

B CH CO D K M RJ RN S BD
V(b) 2.87 0.66 0.50 1.88 2.66 4.11 1.32 5.32 2.63 2.27
V(c) 4.10 0.71 2.21 3.67 4.78 2.72 1.73 4.34 2.20 3.61
V(d) 8.89 2.70 4.06 22.93 22.39 22.42 10.70 16.00 7.57 18.01
V(e) 0.24 0.05 1.10 0.31 0.76 0.88 0.33 2.56 0.12 0.80
V(f) 0.89 0.09 0.18 0.16 0.48 0.33 0.31 0.60 0.07 0.33
V(g) 7.71 3.31 1.98 6.71 14.76 12.82 4.71 13.54 3.23 8.21
V(h) 0.04 0.03 0.00 0.05 0.79 10.08 0.13 0.38 2.04 1.16
V(i) 2.42 0.89 1.01 0.93 1.47 1.09 0.47 1.68 1.12 1.23
V(j) 0.98 0.20 0.15 1.08 0.75 2.24 0.24 0.39 0.18 0.78
V(k) 38.05 69.84 27.25 42.04 38.45 31.49 51.04 38.17 65.10 51.51

2*Cov(f,g) 3.91 0.73 0.66 0.90 2.15 1.49 3.46 0.50 1.55
2*Cov(d,g) 4.98 1.18 4.35
2*Cov(f,i) 1.07 1.15 2.62 0.39 0.52 0.52 0.97 0.26 0.61
2*Cov(g,i) 4.68 2.70 1.99 2.87 5.47 3.76 2.14 5.69 1.99 3.43
2*Cov(g,k) 11.72 14.45 6.27 11.25 10.64 11.72
2*Cov(i,k) 7.46 6.84 4.83 4.58 8.05 3.89 5.90
2*Cov(e,i) 2.50 9.58 1.25 0.22 0.60
2*Cov(f,k) 5.34 5.99
2*Cov(e,g) 1.50 4.90 0.44
2*Cov(e,f) 7.04 0.76 0.63
2*Cov(d,k) 8.70
2*Cov(e,k) 9.85

Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh; b = Rental cost of land, c = Seed cost, d = Irrigation cost, e = Manure/compost cost,
f = Pesticide cost, g = Chemical fertilizer cost, h = Draft animal cost for land preparation, i = Rental cost for tools
and machinery, j = Threshing cost and k = Hired labor cost.

4.6. Future Projections

Production levels in agriculture, fishery and livestock raising are projected to change due to
climate change [39,83]. We therefore sought to project the impact of rice yield change on the state
of poverty in Bangladesh. If rice is a commercial crop, a price hike due to any damage from climate
change could increase Bangladeshi farmers’ living standards. However, rice remains a subsistence
crop among most Bangladeshi farmers; therefore, we assume that rice yield reduction will lead to
a rice consumption reduction.

The effects of climate change on rice yields, as has been estimated and shown by International
Food Policy Research Institute [37], are such that, without adaptation to climate change impacts, aman
HYV and boro HYV rice yields will decline by 3.5% and 10.2%, respectively, in Bangladesh. According
to the Geophysical Fluid Dynamics Laboratory (GFDL) scenarios, if temperature changes by 4.0 ◦C,
then 17% decline in overall rice will occur in Bangladesh [84].

According to this projection, we assumed that, due to climate change effects on boro HYV and
aman HYV, rice yields will be reduced by 10% and 4%, respectively, as well as a 17% reduction in
overall rice among the sample households. We applied log-normal distribution to project the poverty
rate due to income reduction by yield loss on the effects of climate change.

Figure 10 shows the annual per-capita income (actual and projected) in US$ of the sample
households across Bangladesh. In general, one can see from this figure that the sample population
density (i.e., probability density) mostly lies within the low annual per-capita income range, which is
less than the poverty line. Additionally, the probability density of the low-income range increases in
the projected income distribution when one considers rice yield loss due to climate change.
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Figure 10. Annual per-capita income (US$) distribution of Bangladesh (17% loss of rice).

From the decomposed variance share of income sources in Table 9, we found that agriculture
was the main reason for income differences in Mymensingh and Rangpur. Now, we can examine
the effects of climate change on rice production (10% and 17% losses) in these two regions by
log-normal distribution.

We analyzed and found that constant reduction of rice yield (10% loss) by climate change in
Bangladesh is not such a severe problem for farmers. Because the change in net per-capita income
is very small, there is not a dramatic change of poverty rate. However, if unexpected extreme
events, such as floods, flash floods, droughts and sea level rise, occur in specific areas of Bangladesh,
they create a more vulnerable situation for the farmers’ livelihood. In addition, the probability
density of low-income range increases (Figures 11 and 12) in both Mymensingh and Rangpur districts,
where rice income decreases due to climate change.

Figure 11. Annual per-capita income (US$) distribution of Mymensingh (17% loss of rice).
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Figure 12. Annual per-capita income (US$) distribution of Rangpur (17% loss of rice).

We also applied the same analysis in Figures 10–12 to all of the regions and Table 12 shows the
results of the poverty rate after income changes due to assumed yield losses of aman HYV, boro HYV
rice and overall rice.

Table 12. Change in poverty rate following a loss of rice yield due to climate change.

B CH CO D K M RJ RN S BD

Actual 0.507 0.484 0.446 0.455 0.415 0.496 0.323 0.462 0.484 0.454

10% loss
Projected 0.508 0.491 0.447 0.458 0.417 0.502 0.330 0.466 0.487 0.457
Change 0.001 0.007 0.001 0.003 0.002 0.006 0.007 0.004 0.003 0.003

Increase (%) 0.197 1.446 0.224 0.659 0.482 1.210 2.167 0.866 0.620 0.661

17% loss
Projected 0.513 0.494 0.449 0.460 0.422 0.511 0.335 0.473 0.490 0.461
Change 0.006 0.010 0.003 0.005 0.007 0.015 0.012 0.011 0.006 0.007

Increase (%) 1.183 2.066 0.673 1.099 1.687 3.024 3.715 2.381 1.240 1.542

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh.

The estimated results suggest that rice yield loss would reduce the annual per-capita income
of the sample farm households and increase the poverty rate in various regions across Bangladesh.
It was found that the highest poverty rate increase (3.024%) would occur in Mymensingh, Rajshahi
(3.715%) and Rangpur (2.381%). Rajshahi and Rangpur are in northwestern Bangladesh and are prone
to drought; climate change would affect rice production specifically in the summer, when boro rice is
being produced. Mymensingh is affected by floods, flash floods and heavy rainfall each year, owing to
the effects of climate change on aman and boro harvests.

Climate Change Impact Scenario

Extreme events, such as floods, droughts and changes in seasonal rainfall patterns, negatively
impact crop yields in vulnerable areas [85–87]. In Bangladesh, the rural poverty rate would be
exacerbated [88] as a result of the impacts of extreme events on the yield of rice crop and increases
in food prices and the cost of living [89,90]. The impacts of climate change on poverty would
be heterogeneous among countries [91]. Due to the impact of climate change, rice production
would decrease and some rice exporting countries, such as Indonesia, the Philippines and Thailand,
would benefit from global food price rises and reduced poverty, while Bangladesh would experience
a net increase in poverty of approximately 15% by 2030 [89,91].
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Climate change refers to changes in climate attributed directly as temperature, precipitation,
CO2 concentrations and solar radiation or indirectly as river floods, flash floods and sea level rise that
alter the composition of the global atmosphere, as well as to natural climate variability observed over
comparable time periods [33,50].

Temperature Increase

Temperature is an important factor for boro rice production and the maximum temperature is
always more vulnerable with a negative impact on rice yields. In Bangladesh, seasonal temperature
suddenly fluctuates, causing drastically declines in the yield of boro rice. Boro rice yields decrease
by a maximum of 18.7% due to an increase in minimum temperature of 2.0 ◦C–4.0 ◦C and by 36.0%
for 2.0 ◦C–4.0 ◦C maximum temperature increases in different location of Bangladesh in 2008 [92].
According to the Intergovernmental Panel on Climate Change (IPCC), SRES emissions scenarios and
climate models being considered, global mean surface temperature is projected to rise in the range
of 1.8 to 4.0 ◦C by 2100 [93]. Following the previous assessment, the IPCC concludes in their fifth
assessment report (AR5) that it will be difficult to adapt with large-scale warming of approximately
4◦C or more, which will increase the likelihood of severe, pervasive and irreversible impacts [91,94,95].

According to the previous projection of temperature fluctuations in Bangladesh, we assume that,
due to the maximum and minimum temperature fluctuations, in the future, the overall rice production
will decrease by approximately 17% of the sample farmers and results are shown in Table 12. The table
shows that maximum 3.7% poverty will increase in Rajshahi and second highest (3.0%) in Mymensingh
region and this implies that it is important to adaptation strategies for Rajshahi and Mymensingh for
high temperature.

Rainfall Decreases (Drought)

Inadequate rainfall leads to greater drought frequency and intensity, while increased evaporation
increases the chance of complete crop failure [96,97]. Drought is the most widespread and damaging
of all environmental stresses [35,98]. In South and Southeast Asia, including some states of India,
severe drought affects rain-fed rice and yield, with losses as high as 40% and the total area affected
measuring 23 million hectares, amounting to $800 million [99]. Bangladesh experienced severe drought
in different years and locations in the districts of the northwestern border [100]. Erratic rainfall and
drought reduce crop production by 30% and 40%, respectively [84]. Boro rice production will decrease
due to rainfall in winter [92]. This study noted that, with 5-mm and 10-mm rainfall reductions in the
future, boro rice will decrease by a maximum of 16.6% and 24.2%, respectively, in the winter. Drought
caused 25% to 30% crop reduction in the northwestern part of Bangladesh based on from 2008 [101].
Due to the high rainfall variability and dryness, the northwestern region is the most drought-prone area
in Bangladesh [102,103]. Rajshahi, Chapai-Nawabganj, Naogaon, Natore, Bogra, Joypurhat, Dinajpur
and Kustia districts are drought prone areas in Bangladesh because of their moisture-retention capacity
and infiltration rate characteristics [104].

According to the previous projection of drought, we assume that, if rainfall decreases and drought
occur in the future, the overall rice production will decrease by approximately 20% of the sample
farmers in northwestern districts of Bangladesh. By using log-normal distribution, we project the
poverty rate due to income reduction by yield loss because of drought.

Table 13 shows the results of the poverty rate (Figure 13) after income changes due to assumed
yield losses of overall rice by drought in the northwestern region in Bangladesh, while the Dinajpur
(10.175% poverty increase), Rajshahi (5.670% poverty increase) and Naogaon (11.245% poverty increase)
districts are most vulnerable to poverty. Dependency on agriculture with high variability of annual
rainfall has made the northwestern regions highly susceptible to droughts and high poverty rates,
compared to other parts of the country. Conservation of water could play an important role in reducing
the impact of drought and alleviating poverty in this area [103].
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Table 13. Poverty rate in drought-prone districts on rainfall decrease.

BG CN DI KU NG NT RJ JT

Actual 0.242 0.354 0.285 0.447 0.249 0.448 0.388 0.268
Projected 0.263 0.361 0.314 0.452 0.277 0.452 0.410 0.282
Change 0.021 0.007 0.029 0.005 0.028 0.004 0.022 0.014

Increase (%) 8.678 1.977 10.175 1.119 11.245 0.893 5.670 5.224

BG = Bogra, CN = Chapai-Nawabganj, DI = Dinajpur, KU = Kustia, NG = Naogaon NT = Natore, RJ = Rajshahi and
JT = Joypurhatr.

Figure 13. Changing poverty rates caused by drought in northwestern regions.

Flood

From the GBM basins, the monsoonal discharge of water causes seasonal floods and affects most
of the areas of Bangladesh, with extent varying by year [50]. Floods occur almost every year and in 1998,
floods covered almost 70% of total land area in Bangladesh, causing the maximum damage by floods
in Bangladesh [105]. According to the IPCC’s fourth assessment report, the intensity and frequency of
floods and cyclones will increase in the near future [33]. Moreover, the IPCC’s fifth assessment report
(AR5) predicts that greater risks of flooding will increase on the regional scale [91,94–99]. In addition,
extreme flood events will reduce crop production by 80% in Bangladesh [37,84].

Mymensingh, Sylhet, Dhaka, Comilla, some parts of Rangpur and Khulna regions are the mainly
river-flooded areas in Bangladesh [50]. We assume that, if extreme floods, as in 1998 (the magnitude
of the 1998 flood was the maximum in Bangladesh), occur, farm production will decrease by 80% in
the flood-prone regions of Bangladesh. By log-normal distribution we project the poverty rate due to
income reduction by yield loss due to the effects of extreme floods. The results are shown in Table 14.
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Table 14. Poverty rate due to yield loss by flood in Bangladesh.

CO D K M RN S

Actual 0.446 0.455 0.415 0.496 0.462 0.484
Projected 0.465 0.502 0.479 0.554 0.529 0.519
Change 0.019 0.047 0.064 0.058 0.067 0.035

Increase (%) 4.260 10.330 15.422 11.694 14.502 7.231

CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RN = Rangpur and S = Sylhet.

The estimated results in Table 14 suggest that rice yield loss would reduce the annual per-capita
income of the sample farm households and increase the poverty rate in various regions across
Bangladesh (Figure 14). It was found that the highest poverty rate increases would occur in Rangpur
(14.502%) and Khulna (15.422%). This result implies that coping strategies to highly flood affected
areas of crops loss should have priority.

Figure 14. Changing poverty rates caused by floods in different regions.

Flash Floods

The northeastern parts of Bangladesh—mostly Sunamganj, Kishorganj, Netrokona, Sylhet,
Habiganj and Maulvibazar—are prone to flash floods during the months of April to November
and these areas are covered by many haors, where water remains stagnant [106]. Farmers of these
districts produced boro rice in almost 80% of their land, while only approximately 10% of the area is
covered by transplanted aman production [107]. In 2017, flash floods affected these areas and damaged
almost 90% (maximum) of boro rice [108]. According to this scenario, we assumed that if in the future
this extreme event occurs in haor areas, boro rice yields will be reduced by a maximum of 90% of the
sample households. We applied log-normal distribution to project the poverty rate due to income
reduction by yield loss due to the effects of flash floods on boro rice yields by a maximum of 90%.

Table 15 shows the results of the poverty rate after incomes changed due to assumed yield loss of
boro rice in flash flood regions in Bangladesh, while Kishorganj district is most vulnerable to poverty
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(19.214% increase) if flash floods occur (Figure 15). The projected results are treated as flash flood to be
changed the poverty in northern-eastern parts of Bangladesh and this region are vulnerable on flash
flood. Therefore, ex-ante coping strategies are important to the damages of flash flood.

Table 15. Poverty rate in flash flood region in Bangladesh.

HB KI MV NT SU SY TH

Actual 0.354 0.458 0.624 0.585 0.511 0.427 0.354
Projected 0.381 0.546 0.637 0.628 0.550 0.452 0.381
Change 0.027 0.088 0.013 0.043 0.039 0.025 0.027

Increase (%) 7.627 19.214 2.083 7.350 7.632 5.855 7.627

HB = Habiganj, KI = Kishorganj, MV = Maulvibazar, NT = Netrokona SU = Sunamganj, SY = Sylhet and
TH = Total Haor.

Figure 15. Changing poverty rate caused by flash floods in northeastern regions.

Sea Level Rise

Approximately 80% of the land of Bangladesh is flatlands, while 20% is 1 m or less above sea level,
which is the coastal area (southern 19 districts beside the Bay of Bengal) and particularly vulnerable to
sea level rise [109]. The coastal area covers approximately 20% of the country (including 19 districts
beside the Bay of Bengal), which is approximately 30% of the net cultivable area and 25.7% of the
population of Bangladesh [110,111]. Sea level rise will directly result in increased coastal flooding,
which will increase in the event of storm surges. IPCC’s fourth assessment report [33] reports that
a 1-m sea level rise will displace approximately 14,800,000 people by inundating a 29,846-sq. km.
coastal area [112]. Nicholls and Leatherman in 1995 [113] predicted that a 1-m sea level rise would
result in a 16% of national rice production loss in Bangladesh [114].

In terms of number of people affected with respect to sea level rise, Bangladesh has been rated
as the third most vulnerable country in the world. By 2050, approximately 33 million people would
be suffering from surging, assuming a sea level rise of 27 cm. A full 18% of the total land area in
Bangladesh would submerge with a 1-m rise in sea level [115]. Based on the IPCC fifth annual report
(AR5), across all representative concentration pathways (RCPs), global mean temperature (◦C) is
projected to rise by 0.3 to 4.8 ◦C by the late-21st century and global mean sea level (m) is projected to
increase by 0.26 to 0.82 m [91]. The Global Circulation Model (GCM) predicts an average temperature
increase of 1.0 ◦C by 2030, 1.4 ◦C by 2050 and 2.4 ◦C by 2100; the study revealed that the sea level will
rise by 14 cm, 32 cm and 62 cm, respectively. A rise in temperature would cause significant decreases
in production of 28 % and 68 % for rice and wheat, respectively [84].

According to this scenario, we assumed that, due to sea level rise in the southern part of
Bangladesh, boro rice yields will be reduced by 30% of the sample households. We applied log-normal
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distribution to project the poverty rate due to income reduction with yield loss based on the effects of
sea level rise.

Table 16 shows the results of the poverty rate after income changes due to assumed yield loss of
rice in coastal regions due to sea level rise, while Khulna district is the most vulnerable to poverty and
poverty will increase by 6.752% (Figure 16). Changing continuous sea level rise in the coastal region
result in no significant loss reduction for rice.

Table 16. Poverty rate in sea level rise regions in Bangladesh.

SK KH BT PR JL BG BS PT BL LK NK FN CT CX

Actual 0.599 0.295 0.363 0.388 0.640 0.532 0.419 0.628 0.491 0.529 0.438 0.481 0.505 0.462
Projected 0.609 0.315 0.370 0.390 0.650 0.545 0.431 0.636 0.493 0.533 0.440 0.487 0.515 0.464
Change 0.010 0.020 0.007 0.002 0.011 0.013 0.013 0.008 0.002 0.004 0.002 0.007 0.010 0.002

Increase (%) 1.688 6.752 1.924 0.527 1.674 2.388 3.081 1.255 0.491 0.770 0.410 1.361 1.901 0.367

SK = Satkhira, KH = Khulna, BT = Bagerhat, PR = Pirozpur, JL = Jhalakati, BG = Barguna, BS = Barisal,
PT = Patuakhali, BL = Bhola, LK = Lakshmipur, NK = Noakhali, FN = Feni, CT = Chittagong and CX = Cox’s Bazaar.

Figure 16. Changing poverty rate caused by sea level rise in southern regions.

Representative Concentration Pathways (RCPs)

In assessing future climate change, the fifth assessment report (AR5) of the IPCC selected four
RCPs, –RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 [91], with RCP 4.5 and RCP 8.5 covering both medium
and extreme scenarios. These four RCPs describe four probable climate futures depending on how
much greenhouse gasses are emitted over the next 85 years.

According to the IPCC’s fifth annual report (AR5), across all representative concentration
pathways (RCPs), global mean temperature (◦C) is projected to rise by 0.3 to 4.8 ◦C by the late-21st
century [68]. Increasing temperatures will increase the number of growing days over time. Heat stress
is a major issue for crop production and reduces yields.

Climate change will certainly continue in coming decades and affect agricultural production.
Yamei Li et al. worked on simulating total climate change impacts on rice production under RCP
scenarios and projected that average rice yields during the 2020s, 2050s and 2080s would decrease by
12.3%, 17.2% and 24.5% under RCP 4.5 and by 14.7%, 27.5% and 47.1% under RCP 8.5, respectively [67].
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According to this scenario, we assumed that, due to total climate change impacts, rice yields
would be reduced by a maximum of 47% based on RCP 8.5 among the sample households. We applied
log-normal distribution to project the poverty rate due to income reduction by yield loss. Table 17
shows that, under RCP 4.5 and RCP 8.5, the poverty rate will increase in all of the regions because of
rice income reductions.

Additional increases in average poverty occur in Rajshahi, Mymensingh, Rangpur, Khulna and
Sylhet region under both RCP 4.5 and RCP 8.5 with variations in the total climate change impacts on
rice production. The yield of rice is predicted to decrease more under RCP 8.5 than RCP 4.5, resulting
in per-capita income decreases. Under RCP 8.5, this study predicts a maximum increase in poverty of
10.526% in Rajshahi and the lowest of 3.139% in Comilla (Table 17). It is possible that our predicted
rice yield declines by RCP scenario and relatively drought prone areas, such as Rajshahi, will be
more vulnerable (Figure 17). The results from our drought scenarios are comparable to the results for
RCP 8.5 and it is consistent that Rajshahi region is more vulnerable under climate change impacts.
In both scenarios, our predicted yield decline and resulting per-capita income decline increase poverty.
Climate change forces a decline in rice yield [116], suggesting that the predicted decreases in heat
stress yield can be mostly attributed to an increased drought tolerant variety.

Table 17. Changes in poverty rates following a loss of rice yield due to RCPS.

B CH CO D K M RJ RN S BD

Actual 0.507 0.484 0.446 0.455 0.415 0.496 0.323 0.462 0.484 0.454

25% loss of rice
under RCP 4.5

Projected 0.516 0.490 0.455 0.462 0.424 0.510 0.345 0.471 0.497 0.463
Change 0.009 0.006 0.009 0.007 0.009 0.014 0.022 0.009 0.013 0.009

Increase (%) 1.775 1.240 2.018 1.538 2.169 2.823 6.811 1.948 2.686 1.982

47% loss of rice
under RCP 8.5

Projected 0.524 0.500 0.460 0.470 0.438 0.526 0.357 0.488 0.507 0.474
Change 0.017 0.016 0.014 0.015 0.023 0.030 0.034 0.026 0.023 0.020

Increase (%) 3.353 3.306 3.139 3.297 5.542 6.048 10.526 5.628 4.752 4.405

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh.

Figure 17. Changing poverty rate caused by total climate change impact based on RCP 4.5 and 8.5.

5. Conclusions

This paper has focused on the agrarian sub-national regional analysis of climate change
vulnerability in Bangladesh under various climate change scenarios and its potential impact on
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poverty. It has drawn some significant evidence of regional vulnerability to climate change from
regional characteristics, per-capita income, total income disparity, cost of production and poverty,
based on statistical analysis of farm survey data. Our findings indicated that some regions are
vulnerable to climate change impact on agricultural production among the administrative regions of
Bangladesh, where coping strategies and techniques are important.

Bangladeshi farmers are producing crops, although there is much uncertainty due to associated
risks of climate change. The results of our study show that, from the income shares of income source
sectors, farmers in Mymensingh and Rangpur are largely dependent on agriculture. Of these regions,
Mymensingh is one of the regions with the highest poverty rates. The income share in income sources
revealed that income category shares across the various regions of Bangladesh are far from uniform.
Income share comparisons and cluster analysis classified the regions into three groups as follows.
(1) In some regions, namely Rajshahi, Khulna and Dhaka, income from agriculture is important and
these regions receive relatively high income. (2) In other regions, namely Mymensingh, Rangpur and
Barisal, agriculture income is important but the regions receive relatively low income. (3) The other
regions, which are Comilla, Chittagong and Sylhet, are not strongly dependent on agriculture and
Comilla region strongly relies on income from remittances. The principal targets of agricultural
research for poverty reduction are considered to be in group (2).

Variance decomposition of income showed that agricultural income in Mymensingh and Rangpur
is the main cause of income differences. Moreover, large variances in agricultural income in the regions
are induced by gross incomes from rice production, indicating that rice yield can have large impacts
on income levels. Therefore, research and development and technical support for farmers to realize
high and stable rice yields in these regions are important.

This paper used modelling to predict crop yield changes by different aspects of climate change
under droughts, floods, flash floods, sea level rise and RCP scenarios. We account for some uncertainty
in crop yields and the resulting reduction in per-capita income of farm households. The proposed
lognormal distribution projected the poverty rate and examined the vulnerable regions. The key is
to understand the future projections of poverty rates on assumptions of boro HYV and aman HYV
rice yield decreases on each farm due the climate change impacts and climate volatility subjecting the
poor to poverty rate increases in different regions. Current climate change impacts are not the same
in different regions; in particular, different extreme climatic events in specific regions often result in
irreversible losses. One of the examples of the interventions of climatic events is that dependency on
agriculture with high variability in annual rainfall has render the northwestern parts highly vulnerable
to droughts and has increased the high poverty rates, compared to other parts of the country. Extreme
floods can increase the poverty rates in Rangpur, Mymensingh and Khulna regions. Kishorganj district
is the most vulnerable on poverty (8.8% increase) if sudden flash floods occur in the northeastern part
of the country. Due to sea level rise, coastal areas will face poverty.

Strategies and techniques to cope with climate change for regions where small-scale farmers are
largely dependent on agriculture are important challenges. Among the negative consequences of
climate change impacts, subsistence farmers are suffering more from vulnerabilities such as extreme
poverty or hunger. However, adaptation techniques in agriculture are a vital tool to avoid the adverse
impacts of climate change [117]. Given the complex nature of droughts, floods, flash floods and
sea level rise as phenomena, the development of drought-tolerant, short-maturing and salt-tolerant
varieties is critically important.

More generally, our results are focused on farm income and poverty, including regional
vulnerability due to climate change impacts on agricultural production. In recent years, climate
change impacts have played a vital role in increasing the poverty rate and income variability among
farm households in Bangladesh. Extreme environmental hazards are faced by farmers in this country
and their net farm production decreases drastically, increasing the poverty rate while changes in
weather conditions are a less severe problem for farmers due to their involvement in other income
activities. We actually performed this study focusing on revealing the comprehensive impact of
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climate change on farm production and the crops are that the most important for per capita income
differences across the country and that enhance the poverty rate, using the covariance and lognormal
distribution methods.

This study has attempted to bridge the gap between academic research and professional practices
in the context of potential climate change impacts on crop production and poverty. Because of the
relatively large sample size, compilation and manipulation of the data were challenging. With the
assessment of poverty and regional vulnerability due to climate changes, it is hoped that the study
in general will assist in guiding authorities in terms of interventions aimed at climate change risk
reduction in Bangladesh. Therefore, we believe that this research will help to reveal the mechanisms
behind the per capita income differences and projected poverty rates of farm households based on
different climate change impact scenarios across Bangladesh. Future work might also be more micro
level for policy making to test root-level poverty and to further evaluate the impact of climate change
on different crops and it should include the model for poverty determinants to confirm the relationships
studied and their adaptations.
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Appendix A

Appendix A.1

In this study, we used the primary data from Bangladesh Integrated Household Survey
(BIHS 2011–2012) by IFPRI, https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/
21266.

Appendix A.2

“aus” is former rainy season, “aman” is rainy season and “boro” is dry season irrigated rice.

Appendix B

Appendix B.1

Net accounting costi = ∑
i

∑
j

PijXij

= ci, Rental cost o f land + ci, seed cost + ci, irrigation cost
+ci, manure or compost cost + ci, pesticides cost + ci, f ertilizer cost
+ci, dra f t animal cost + ci, machinery cost + ci,threshing cost + ci, hired labor cost

(A1)

Production valuei = ∑
i

PiYi (A2)

Gross incomei = ∑
i

PiYi − Inkind paymenti

= ∑
i

PiYi − (Ci, irrigation cost paid by crop + Ci, labor cost paid by crop)
(A3)

Net income(π)i = Gross incomei − Net accounting costi (A4)
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Appendix B.2

We estimate per-capita incomes (US$) of all sample families on assumption of climate change
impacts and draw the distribution of the estimated incomes assuming that the distribution follows log
normal distribution. To draw log normal distribution, we have to find mean and standard deviation of
ln(x). Firstly, we divide the per capita income in different class and make the average (x) of each class
and we find the frequency of household (n) in each per-capita income class. Then we find the log of
average per-capita class, log (x); and multiplied by the frequency of household in each class, n * log (x).
Next average,

u =
∑ n{log(x)}

∑ n
(A5)

Then we estimate, log(x)− u, {log(x)− u}2 and n{log(x)− μ}2

Next standard deviation,

σ =

√
∑ n {log(x)− u}2

∑ n
(A6)

Returns the lognormal distribution of x, where ln (x) is normally distributed with parameters Mean
and Standard deviation. Use this function to analyze data that has been logarithmically transformed.

fX(x) = 1
dx Pr(X ≤ x) = 1

dx Pr(lnX ≤ lnx) = 1
dx Φ

(
lnx−μ

σ

)
= ϕ

(
lnx−μ

σ

)
1

dx

(
lnx−μ

σ

)
= ϕ

(
lnx−μ

σ

)
1

σx = 1
x . 1

σ
√

2π
exp

(
− (lnx−μ)2

2σ2

) (A7)

Syntax: LOGNORM.DIST(x, mean, standard deviation and cumulative)

Appendix C

Table A1. Household income (US$/yr.) from different sources, by region.

B CH CO D K M RJ RN S BD

Agril. crops 159.35 124.17 82.83 194.67 273.63 225.23 322.78 246.71 131.77 200.28
Main crops 76.23 44.11 35.22 118.52 152.25 127.87 202.10 170.95 89.86 116.89
Other crops 83.13 80.06 47.61 76.16 121.39 97.36 120.69 75.76 41.92 83.39

Fish 115.70 23.47 8.54 31.34 111.73 67.72 49.43 13.14 46.17 55.45
Livestock 27.43 17.81 22.35 51.76 86.61 57.25 76.48 35.67 26.20 48.60
Non-Ag. profit 260.29 293.63 212.95 304.83 254.71 197.39 338.22 171.49 292.70 262.92
Remittance 138.41 381.12 624.89 225.28 107.64 101.84 77.30 87.37 259.51 212.90
Employment 487.70 676.42 464.06 590.46 542.42 436.33 669.77 582.29 642.59 560.94
Other income 64.65 8.41 90.96 38.22 31.36 32.01 190.70 15.53 60.98 57.61
Total 1253.53 1525.04 1506.60 1436.53 1408.12 1117.77 1724.70 1152.23 1459.92 1398.71

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet, BD = Bangladesh, Main crops = Aus, Aman and Boro rice and other crops = Wheat, Maize, Jute, Potato,
Chili, Onion etc.

Table A2. Each agricultural crop’s share in total net agricultural income (%), by region.

Crops B CH CO D K M RJ RN S BD

Rice 45.51 33.66 32.99 37.39 43.52 55.62 51.27 57.72 67.05 47.22
Aus 6.37 2.89 1.51 0.64 3.03 0.84 1.11 1.39 5.19 2.24
Aman 24.36 17.83 6.42 5.22 15.55 15.37 17.27 22.12 18.45 14.96
Boro 14.78 12.95 25.06 31.54 24.95 39.42 32.89 34.21 43.41 30.02

Wheat 0.00 0.00 0.19 0.22 0.70 0.07 1.32 0.96 0.00 0.48
Maize 0.00 0.00 0.84 0.30 0.26 0.00 1.40 2.01 0.00 0.56
Jute 0.61 0.00 3.03 10.53 5.85 0.44 2.80 2.96 0.11 4.37
Potato 0.66 0.37 5.49 0.53 0.18 0.36 4.04 4.68 1.00 1.62
Chili 1.82 2.17 2.69 6.85 5.72 1.54 0.67 1.20 0.53 3.40
Onion 0.00 0.00 0.01 5.79 1.01 0.00 1.81 0.32 0.00 1.70
Other crops 51.39 63.80 54.77 38.38 42.76 41.96 36.67 30.16 31.31 40.65
Total 100 100 100 100 100 100 100 100 100 100

B = Barisal, CH = Chittagong, CO = Comilla, D = Dhaka, K = Khulna, M = Mymensingh, RJ = Rajshahi, RN = Rangpur,
S = Sylhet and BD = Bangladesh.
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Abstract: El Niño–Southern Oscillation strongly influences rainfall and temperature patterns in
Eastern Australia, with major impacts on frost, heat, and drought stresses, and potential consequences
for wheat production. Wheat phenology is a key factor to adapt to the risk of frost, heat, and drought
stresses in the Australian wheatbelt. This study explores broad and specific options to adapt wheat
cropping systems to El Niño–Southern Oscillation, and more specifically, to the Southern Oscillation
Index (SOI) phases ahead of the season (i.e., April forecast) in Eastern Australia, when wheat
producers make their most crucial management decisions. Crop model simulations were performed
for commercially-grown wheat varieties, as well as for virtual genotypes representing possible
combinations of phenology alleles that are currently present in the Australian wheat germplasm
pool. Different adaptation strategies were tested at the site level, across Eastern Australia, for a
wide range of sowing dates and nitrogen applications over long-term historical weather records
(1900–2016). The results highlight that a fixed adaptation system, with genotype maturities, sowing
time, and nitrogen application adapted to each location would greatly increase wheat productivity
compared to sowing a mid-maturity genotype, mid-season, using current practices for nitrogen
applications. Tactical adaptation of both genotype and management to the different SOI phases and
to different levels of initial Plant Available Water (‘PAW & SOI adaptation’) resulted in further yield
improvement. Site long-term increases in yield and gross margin were up to 1.15 t·ha−1 and AU$
223.0 ha−1 for fixed adaptation (0.78 t·ha−1 and AU$ 153 ha−1 on average across the whole region),
and up to an extra 0.26 t·ha−1 and AU$ 63.9 ha−1 for tactical adaptation. For the whole eastern region,
these results correspond to an annual AU$ 440 M increase for the fixed adaptation, and an extra AU$
188 M for the PAW & SOI tactical adaptation. The benefits of PAW & SOI tactical adaptation could be
useful for growers to adjust farm management practices according to pre-sowing seasonal conditions
and the seasonal climate forecast.

Keywords: ENSO; Southern Oscillation Index; SOI; El Niño; La Niña; soil water; environment type;
climate adaptation; management practices; crop model; APSIM

1. Introduction

In Australia, the wheat industry is challenged by complex genotype x environment x management
(GxExM) interactions [1,2], due in part to the high spatial and temporal variability of the Australian
climate (e.g., [3]). In the eastern part of the continent, annual variations in temperature and rainfall
that are influenced by El Niño–Southern Oscillation (ENSO) [1,4,5] affect frost, heat, and drought
stress patterns [5–7], and ultimately, wheat production [1,3,5]. Drought and warmer temperatures, but
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also greater frost risk due to the clear night sky, are generally associated with the onset of El Niño
episodes [5,8,9], and limit grain yield [10–13]. Stronger ENSO climate oscillations are expected in the
near future, as climate forecasts project more frequent extreme El-Niño and La-Niña conditions [14,15].

As the major driver of inter-annual climate variability in Eastern Australian [4,5,16], ENSO is a
quasiperiodic climate pattern that occurs across the tropical Pacific Ocean every 3–8 years. It is caused
by variations in the surface temperature of the tropical eastern Pacific Ocean, and the air surface
pressure in the tropical western Pacific [17]. The Southern Oscillation Index (SOI), as measured by
surface pressure anomaly difference between Tahiti and Darwin, has been used to investigate ENSO
effects on crops. Five SOI phases have been defined through grouping all sequential two-month
pairs of the SOI into five clusters, using principal component analysis and a cluster analysis [18].
Hammer et al. [1] found that using the 5-phase SOI classification (based on SOI values for the current
and previous month) could significantly increase wheat profits (up to 20%) and decrease failure risk
(up to 35% less risk) in Goondiwindi, South-Eastern Queensland, Australia, through adapting wheat
cultivars and nitrogen fertiliser.

Strategies for yield improvement include breeding new cultivars and adapting management
practices to the target population of environments [19]. Climate forecasting offers new opportunities
in terms of agricultural planning and operation [4]. In the Australian broad-acre dryland wheat
production area, most major decisions occur prior to sowing. Producers can potentially react to
early indicators of upcoming rainfall and temperature. Early estimation of SOI phases can thus help
farmers adjust management practices such as which cultivar to sow, when to sow, and what nitrogen
fertilisation to apply [5,20,21].

In Eastern Australia, wheat crops rely heavily on soil-stored plant available water (PAW) [6,22].
An appropriate combination of sowing data, variety maturity, and pre-sowing PAW is crucial to allow
flowering and grain filling to occur with minimal stress, in particular frost, heat, and drought stress,
and thus, to maximise yield potential [6,7,23–25]. In this context, crop modelling can assist farmers to
adapt their practices to specific SOI phases through adequate choice of maturity type and sowing date,
in order to get extra benefit and increased profit [26].

The aims of this paper were to determine the values of (i) fixed adaptation (no distinction between
the years) and (ii) adaptations to specific pre-sowing plant available water (PAW) and/or SOI phase.
In this study, adaptation strategies were defined in terms of sowing, maturity type, and nitrogen
fertilisation, to target the greatest long-term productivity at each site. The APSIM crop model [27],
together with a phenology model [28], frost impact module [12] and heat impact module [10], were used
to predict flowering time and yield of wheat, and search for the best long-term adaptation strategies.

2. Materials and Methods

2.1. Climatic Data

Fifteen weather stations representing local pedo-climatic conditions from the East Australian
wheatbelt [7,22] were selected (see Chenu et al., 2013 [22] for more details) to compare adaptation
options to Southern Oscillation Index (SOI) phases (Figure 1, Table 1).

The SOI, which corresponds to differences in sea level pressure between Tahiti and Darwin,
has been classified in five phases [18]: ‘consistently negative’ (I), ‘consistently positive’ (II),
‘rapidly falling’ (III), ‘rapidly rising’ (IV) and ‘consistently near zero’ (V). These phases were grouped
into three classes: consistently negative and rapidly falling (SOI phases I & III), consistently positive
and rapidly rising (SOI phases II & IV), and consistently near zero (SOI phase V), as suggested by
Potgieter et al. [3]. Weather records from 1900 to 2016 (117 years) were extracted from the Australian
weather database (SILO Patched Point Dataset [29]; http://www.longpaddock.qld.gov.au/silo/).
The SOI phase classification was sourced from Seasonal Climate Outlook in the Long Paddock
(http://www.longpaddock.qld.gov.au/). In this study, the SOI phases were classified using SOI
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values from March–April to look at the effects for a pre-season indicator. From 1900 to 2016, 36 years
had been classified as SOI phases I & III, 45 years as SOI phases II & IV and 34 years as SOI phase IV.

Figure 1. Map of the seven regions of the East Australian wheatbelt, with 15 sites chosen to represent
those regions. Details on the locations can be found in Chenu et al., 2013 [22].

Table 1. Regions, locations, soil nitrogen at sowing and nitrogen fertilisation (in the baseline
simulations), minimum pant available water (PAW) at sowing chosen to represent the East Australian
wheatbelt. Initial and applied nitrogen (N) is indicated by ‘x-y-z-a’: x, initial N present in the soil at
sowing; y, N applied at sowing as urea; z and a, N applied as nitrate at the stages ‘beginning of stem
elongation’ and ‘mid-stem elongation’, respectively.

Region Location Lat. Long.
Nitrogen
(kg ha−1)

Minimum PAW at
Sowing (mm)

Central Queensland Emerald −23.53 148.16 30-50-0-0 80
Eastern Darling Downs Dalby −27.18 151.26 30-130-0-0 80
Eastern NSW Gunnedah −30.98 150.25 50-70-60 *-0 80

Wellington −32.80 148.80 50-50-50 †-0 50
Northern NSW Moree −29.48 149.84 30-80-0-0 80

Walgett −30.04 148.12 30-80-0-0 80
Narrabri −30.32 149.78 30-130-0-0 80
Coonamble −30.98 148.38 50-70-60 †-0 50

Southern West
Queensland Roma −26.57 148.79 30-50-0-0 80

Western Darling Downs Meandarra −27.32 149.88 30-80-0-0 80
Goondiwindi −28.55 150.31 30-80-0-0 80

Western NSW Nyngan −31.55 147.2 50-60-60 †-0 80
Gilgandra −31.71 148.66 50-50-50 †-0 50
Dubbo −32.24 148.61 50-50-50 †-0 50
Condobolin −33.07 147.23 50-60-60 †-0 80

* >80 mm of rainfall from sowing to the stage “end of tillering–beginning of stem elongation”. † >100 mm of rainfall
from sowing to the stage “end of tillering–beginning of stem elongation”.

Monthly temperature and cumulated rainfall were calculated as the average for each month from
1900 to 2016. Daily minimum and maximum temperatures were used to determine occurrences of frost
and heat events.
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2.2. Crop Simulations and Gross Margins

Wheat yield (dry weight without moisture content) was simulated for the 15 sites (Figure 1, Table 1)
from 1900 to 2016. The simulations were performed with the APSIM 7.5 model [27,30], which has
been widely tested for wheat across Eastern Australia (e.g., Chenu et al., 2011; Holzworth et al.,
2014; Christopher et al., 2016 [6,27,31]; http://www.apsim.info/APSIM.Validation/Main.aspx), and a
wheat-phenology gene-based module [28], a heat impact module [10], and a frost impact module with
a frost-stress threshold of −2 ◦C [12].

For each site and year, the simulations were begun with a summer fallow starting from
1 November with a soil containing 20% of its potential available soil water capacity (PAWC).
Wheat crops were sown at two-day intervals within a fixed sowing window from the 1 April to
30 June for all 15 sites, when the soil held enough plant available water (PAW) at sowing (Table 1).
Soil nitrogen and surface organic matter were reset at sowing. The base nitrogen fertilisation was
chosen to reflect local farming practices, and therefore, varied with site and seasonal rainfall, as defined
in Chenu et al., 2013 [22] (Table 1). Plants were grown at a density of 100 plants per m2. Seasons
with not enough soil water on 1 April (i.e., when management options were chosen for the tactical
adaptation scenarios, see below) were excluded from the analysis.

Different management strategies were tested with a range of sowing dates (sowing every two days
from 1 April to 30 June) and nitrogen applications. An extra 0 to 140 kg·ha−1 (at 20 kg·ha−1 interval) of
nitrogen was applied to the base simulations. Nitrogen fertilisation was applied at the same stage(s) as
in the base simulations (i.e., local farming practices) with the same proportions, i.e., at sowing and/or
‘beginning of stem elongation’ depending on the seasonal opportunities.

Simulations were performed for 208 genotypes including commercial varieties and virtual
genotypes that could potentially be bred based on the flowering alleles present in the Australian
germplasm pool (see Zheng et al., 2013 for details [28]). Virtual genotypes were created including all
combinations of VRN-A1, VRN-B1, VRN-D1, and PPD-D1 genes (two alleles for each gene), and the
full range of values of additional thermal time requirement from floral to flowering (from 425 to
1025 ◦Cd [28]). Genotypes with the same phenology (from different allelic combinations) were
disregarded, so that a total of 156 genotypes unique for their phenology were considered. Overall,
the selected genotypes had APSIM parameters ranging from 0 to 1.2 for the photoperiod sensitivity
(0.6 for the reference genotype Janz), 0.9 to 1.7 for the vernalisation sensitivity (0.9 for Janz), and 425 to
1025 ◦Cd for the additional thermal time requirement from floral to flowering (675 ◦Cd for Janz).

Odd and even years were first simulated separately as some crops matured after 1 November
(date of the simulation initialisation). Odd- and even-year simulations were then merged together.
Overall, 800 thousand simulations were run through the CSIRO HTCondor service using ClusterRun
platform with the runs being completed in less than 4 h [32].

The gross margin was estimated for each simulation based on wheat and nitrogen prices.
Other costs of wheat production were ignored, as only variations in gross margin were considered in
this study (i.e., only the fertilisation costs varied among the tested management options). The wheat
and nitrogen (as urea) prices were sourced from Australian Commodity Statistics [33], and calculated as
median values from 2003 to 2012 (i.e., AU$ 269 and AU$ 547 per tonne for wheat and urea, respectively).
Variation in grain quality was not considered in this study as the APSIM-wheat model is currently not
able to accurately simulate changes in wheat protein content. Increase in gross margin at each site was
multiplied with the planting area of the considered region (averaged data from 1975 to 2000, 2004 and
2006; source: Australian Bureau of Statistics), and all regional values were summed to obtain the total
increase in gross margin for the Eastern region. Hence, gross margin estimations did not account for
changes in fertilizer prices, changes in planting area, changes in wheat prices related to the harvested
grain quality, nor changes in wheat prices related to fluctuations in the domestic and/or global market.
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2.3. Fixed and Tactical Adaptation Options

Different scenarios exploring the GxExM interactions were evaluated to test their values for
different pre-sowing levels of soil water and/or for the three different SOI classes at each studied
site. The acceptable range of soil PAW (from minimum required PAW at sowing (Table 1) to the
PAWC) calculated at 1 April was divided into three groups (0–33%, 33–67%, 67–100%) to represent
Low, Median and High pre-sowing water levels. The 156 genotypes unique for their phenology were
considered, as well as sowing dates from 1 April to 30 June and different nitrogen fertilisation options
(see previous section).

To provide a reference against conventional practice, a baseline scenario was defined. In this
scenario, the reference cultivar Janz was simulated from 1900 to 2016 for a sowing at 21 May using
standard farmer practices for fertilisation (Table 1) [22]. A strategic ‘fixed scenario’ that considers
the best management and best genotype for all years (in terms of highest average yield) at each
location (‘Fixed adaptation’) was used as benchmark for best long-term practices (1900–2016). To
investigate the potential tactical advantages of adapting, whereby a grower would modify planting
decisions based on the SOI phases and/or soil PAW prior to sowing, scenarios with optimised
genotypes and management practices specific to SOI classes and/or PAW groups were defined (at each
location) through maximizing the average yield for crops grown within each SOI class and/or PAW
group. For each location, the tactical adaptation scenarios consisted in either (1) the ‘PAW’ scenario,
which considered the best overall genotype and management within situations from each PAW group,
(2) the ‘SOI’ scenario, which considered the best overall genotype and management within situations
from each SOI class, or (3) the ‘PAW & SOI’ scenario where both genotype and management were
optimised for each combination of PAW group × SOI class. For the different scenarios, yield differences
and changes in gross margin compared to the baseline and fixed adaptation scenarios were calculated
for each year.

3. Results and Discussion

3.1. SOI Impacts on Seasonal Temperature and Rainfall

In the Eastern wheatbelt, SOI phases from the end of summer (calculated in March–April) were
typically associated with temperature and cumulated rainfall recorded during the ‘summer’ fallow
preceding the wheat crop (November to April). Higher temperatures were recorded for years with
consistently negative SOI (phase I), and to a lesser extent, for years with rapidly falling SOI (III),
while lower temperatures occurred in years with consistently positive SOI (II), and to a lesser extent,
in years with rapidly increasing SOI (IV) (data not shown, Figure 2A and Figures S1–S3). For instance,
the temperature in years from SOI phase I was up to 1.5 ◦C higher than the ‘all years’ data in February
and March in Emerald, Roma and Gunnedah (data not shown). By contrast, summer rainfall tended
to be lowest for SOI phases I & III, and highest for SOI phases II & IV (Figure 2B and Figure S7).
As wheat crops in the Eastern wheatbelt heavily rely on soil-stored plant available water (PAW) [6,22],
this implies that differences observed in summer rainfall for the different SOI phases are likely to
impact crop water-stress pattern and yield, and also the type of genotype and management best suited
for specific adaptation.

The impacts of SOI phases (calculated in March–April) for the upcoming ‘winter’ season
(May to October) were weaker than climate variations observed during the previous ‘summer’
(Figure 2 and Figures S1–S8). In ‘winter’, differences in temperatures were forecasted for most
sites with a tendency for greater differences in the northern sites (e.g., Emerald, Roma, and Meandarra),
with highest temperatures for SOI phases I & III, and lowest for SOI phases II & IV (Figure 2B and
Figures S4–S6). In any case, monthly temperatures of any SOI phases differed by less than 0.5 ◦C
compared to ‘all years’ (data not shown, Figure 2A and Figures S4–S6). The impact of SOI phases on
rainfall was only visible for a few sites, and mainly for higher rainfall in SOI phase IV years (data not
shown, Figure 2B and Figure S8). As found in previous studies (e.g., [34]), ENSO had a substantial
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impact in northern sites, while a relatively weak impact in southern sites (data not presented for sites
south of Condobolin).

(A)

(B)

Figure 2. Cumulative probability distributions (probability of exceedance) of ‘summer’ and ‘winter’
average temperature (A) and cumulated rainfall (B) for the three SOI classes, singly (SOI phases I &
III, SOI phases II & IV, and SOI phase V) and combined (‘all years’) for 1900–2016 at three sites in the
Eastern wheatbelt. The three SOI classes correspond to SOI consistently negative and rapidly failing
(phases I & III), SOI consistently positive and rapidly rising (phases II & IV), and SOI consistently near
zero (phase V). SOI phases were determined in March–April, prior to sowing. The ‘summer’ data were
recorded from the previous November to April, while ‘winter’ data are for the up-coming May to
October period. See Figures S1–S8 for average, minimum and maximum temperature, and cumulated
rainfall at other sites for both the ‘summer’ and ‘winter’ periods.
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3.2. ENSO Impacts the Frequency of Occurrence of Frost and Heat Events around Flowering

Extreme temperatures can greatly decrease yield by affecting reproductive organs or impacting
grain filling [11,12]. Australian wheat farmers manage their crops to minimise the risk of frost, heat,
and drought by targeting the flowering time into an optimum window [7,25]. The last frost day with a
10% risk of frost tended to be earlier in SOI phases II & IV, and delayed in SOI phases I & III mostly in
the eastern sites (Figure S9). By contrast, the first heat day with a 30% risk of heat tended to be earlier
in SOI phases I & III, and delayed in SOI phases II & IV. Hence, in terms of temperature, the low-risk
flowering window tended to last longer for SOI phases II & IV, while it tended to be reduced for
SOI phases I & III. Using the three ENSO phases (i.e., El Niño, La Niña and Neutral), Alexander and
Hayman [35] found similar trends for distribution and tails of last frost day in 15 sites across the
Australian wheatbelt.

3.3. Variations in Yield across SOI Phases

For the reference cultivar and management (i.e., baseline simulations: Janz sown 21 May with
farmer fertilisation practices), long-term average yield ranged from 0.93 to 2.71 t·ha−1 across sites and
averaged 2.06 t·ha−1 among the 15 studied sites (Figure 3; ‘all years’). Greatest yields were achieved
in SOI phases II & IV, with long-term average yield ranging from 0.98 to 2.70 t·ha−1 across locations
and averaging 2.10 t·ha−1 for Eastern Australia. By contrast, long-term average yield in the SOI
phases I & III were commonly lower, ranging from 0.90 to 2.70 t·ha−1 across locations, and averaging
2.00 t·ha−1 for Eastern Australia. Strong links between wheat yield with ENSO were also found in the
Eastern wheatbelt in other studies [18,36]. While the early study of Rimmington et al. [37] suggested
little impact of ENSO types on wheat yields in Southern and Western Australia, more recent studies
found wheat yields to be affected by ENSO in Southern and South-eastern Australia [38,39].

Figure 3. Simulated average yield in the baseline scenario for all years (1900–2016) and for years
from each of the three SOI classes at 15 sites across the Eastern wheatbelt and for the whole Eastern
wheatbelt region. Baseline simulations corresponded to a standard farmer practice (a medium-season
cultivar Janz was sown at semi-optimum sowing date (21 May) with current fertilisation practice).
The three SOI classes correspond to SOI consistently negative and rapidly failing (SOI phases I & III),
SOI consistently positive and rapidly rising (SOI phases II & IV), and SOI consistently near zero
(SOI phase V). SOI phases were determined in March–April, prior to sowing.
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3.4. Optimising Genotype and Management across All Years Results in Consistent Yield Improvement and
Higher Gross Margins

A large number of adaptation strategies were simulated, combining a wide range of genotypes
(with all potential phenology range for Australian wheat) and diverse management practices (a broad
range of sowing dates and nitrogen fertilisation options). These strategies were first applied to
optimise average yield for a site across all years (‘fixed adaptation’) by selecting the top yielding
genotype × management combination (Figure 4, Figure 5 and Figure S10).

Figure 4. Yield advantage of fixed adaptation over the baseline scenario. The yield difference is
calculated for each year. The baseline corresponds to simulated yield for a medium-season cultivar
Janz sown at semi-optimum sowing date (21 May) with current fertilisation practice. See Figure S10 for
other sites.

Figure 5. Simulated mean yields for the baseline, fixed adaption, and all the studied tactical adaptation
scenarios related to pre-sown soil water and SOI forecast. The baseline corresponds to simulated yield
for a medium-season cultivar Janz sown at semi-optimum sowing date (21 May) with no extra nitrogen
input. The fixed adaptation scenario corresponds to optimised genotype and management across all
years for each site. The three tactical adaptation scenarios include specific adaptation to soil PAW
(plant available water) groups, SOI classes, and PAW & SOI groups. These adaptations correspond
to optimised genotype and management for each PAW group and/or SOI class. SOI phases were
determined in March–April, prior to sowing.
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Compared to the baseline, the fixed adaptation scenario increased yields in the majority of
years in all sites, although yield losses were also observed for a few years in all sites (Figure 4 and
Figure S10). Regional yield (average across all sites) thus increased from 2.06 (baseline) to 2.96 t·ha−1

(fixed adaptation) (Figure 5). At the site level, long-term average yield ranged from 1.38 to 3.82 t·ha−1

for fixed adaptation compared to 0.91 to 2.90 t·ha−1 for the baseline, meaning a yield increase from
0.22 to 1.15 t·ha−1 (0.78 t·ha−1 on average for the whole region; Figure 3). Compared to the baseline,
the fixed adaptation strategy corresponded to an earlier sowing with more nitrogen application of,
in general, a shorter-maturing genotype in the northern part of the region, and a longer-maturing
genotype in the southern part of the region (data not shown).

In terms of gross margin, site long-term increases from the baseline to fixed adaptation scenario
ranged from AU$ 40.5 to 223.0 ha−1, which corresponds to a regional increase of AU$ 153.00 ha−1 on
average for the whole region. Across Eastern Australia, fixed adaptation resulted in an AU$ 440.00 M
increase in gross margin compared to the standard current practice considered here.

3.5. Benefits of Tactical Compared to Fixed Adaptation Vary with the Location, the Soil Pre-Sowing Conditions
and the SOI Forecast

To explore the potential of tactical adaptation over fixed adaptation, the genotype and
management were optimised for pre-sowing PAW- and/or SOI-specific conditions, and then compared
to the fixed adaptation scenario. For most sites (Figure 5), slight increases in long-term average yield
were simulated when adapting the genotype and management to either pre-sown PAW or SOI solely.
Substantial improvements occurred when optimising average yield for both the genotype and the
management for each SOI class and PAW group together (PAW & SOI), rather than sole optimisation
of either the PAW group or SOI class. It can nevertheless be noted that fewer of the 117 seasons were
classified in each of the nine PAW & SOI groups than in each of three PAW groups or the three SOI
classes, meaning that the optimised yield is prone to more uncertainty due to the likely reduction in
environmental variations within groups of years considered.

However, tactical adaptation scenarios only allowed yield to increase for some of the years
compared to the fixed adaptation (Figure 6 and Figures S11–S13). Actually, when adapting the PAW
group only (‘PAW adaptation’), losses in yield compared to the fixed adaptation occurred relatively
frequently, with losses that were typically small, but which could be as substantial as 2 t·ha−1 in
some locations (Figure 6 and Figure S11). Similar trends and extents were observed for adaption
to SOI classes. Adapting to both PAW and SOI tended to increase the frequency of yield gains,
especially in poor seasons (i.e., when yield was medium to low in the fixed adaptation scenario),
mainly due to better tuning of the crop phenology (maturity type × sowing time) to the considered
environmental conditions. However, yield losses compared to the fixed adaptation still occurred
frequently in locations such as Wellington, while they were relatively rare in locations like Coonamble
and Moree (Figure S13). Note that the unbalanced number of years among PAW groups, SOI classes,
and PAW × SOI groups might cause bias in the adaptation values and risks.

Overall, when considering the optimised genotypes and management for each PAW group
(‘PAW’), long-term average yield and gross margin increased at each site from 0.012 to 0.13 t·ha−1,
and from AU$ 2.63 to 41.9 ha−1, respectively, compared to the fixed adaptation scenario (Figure 7).
When considering genotype and management practices optimised for each SOI class (‘SOI’), long-term
average yield and gross margin at each site increased from 0.037 to 0.17 t·ha−1, and from AU$ 5.00
to 41.50 ha−1, respectively. Finally, when considering optimised management and cultivar for each
combination of PAW group and SOI class (‘PAW & SOI’), average yield and gross margin at each
site increased from 0.15 to 0.46 t·ha−1, and from AU$ 34.2.00 to 108 ha−1, respectively, compared
to the fixed adaptation. Hammer et al. (1996) studied the adapted values of SOI phases through
changing cultivars and nitrogen fertilisation at Goondiwindi, and also found a substantial, although
more limited, increase in gross margin ($26 ha−1) compared with results in this study ($48 ha−1,
Figure 7B) [1].
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(A)—PAW adaptation

(B)—SOI adaptation

(C)—PAW & SOI adaptation

Figure 6. Yield advantage of tactical adaptation scenarios for (A) pre-sowing soil PAW (low, median
and high), (B) SOI classes (I & III, II & IV and V), and (C) both PAW & SOI groups over fixed adaptation.
The yield difference is calculated for each year. The fixed adaptation scenario corresponds to optimised
genotype and management across all years. The three tactical adaptation scenarios correspond to
optimised genotype and management for each PAW (plant available water) group and/or SOI class.
SOI phases were determined in March–April, prior to sowing. See Figures S11–S13 for other sites.
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(A)

(B)

Figure 7. Increase in simulated yield (A) and gross margin (B) for tactical adaptation options compared
to the fixed adaptation in each studied site and the whole Eastern wheatbelt. Increases in yield were
averaged for all years from 1900 to 2016. The three tactical adaptation options correspond to optimise
long-term yield for either (i) low/medium/high pre-sowing plant available water (PAW), (ii) each class
of Southern Oscillation Index (SOI), or (iii) each combination of PAW group and SOI class.

At the regional scale, long-term mean increased in yield and gross margin of PAW & SOI tactical
adaptation versus fixed adaptation were 0.26 t·ha−1 and AU$ 63.90 ha−1, respectively. The cumulated
regional increase in gross margin was AU$ 188 M for the Eastern wheatbelt. Note that the increase
gross margin in this paper considered fixed nitrogen price, and accounted for neither changing wheat
price related to the harvested grain quality, nor to the domestic and/or global market.

3.6. Should Eastern Australian Wheat Producers Adapt Their Decisions Based on SOI Phases?

In Australia, SOI phases impact the climate and crops mostly in the eastern part of the wheatbelt.
In this region, wheat management occurs almost exclusively at sowing. While specific adaptation
could be more accurate later in the season, i.e., when climate trends in regard to El Niño/La Niña are
clearer, early forecast of the SOI phases is required to allow farmers to prepare seeds and plan suitable
management. The potential gains of specific adaptation to such pre-sowing forecasts of SOI phases
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combined with knowledge on initial soil water appeared to be substantial (Figures 5 and 7). While the
gains are variable depending on the location, the extra costs for seed companies and farmers to store
large stocks of seeds required for specific adaptation may have to be considered, especially at the farm
scale. Unpredictable rainfall in the autumn before sowing may also constrain sowing opportunities [1].
That said, the potential gains of specific adaptation appear to be well above what could be expected
from most breeding innovations, at least in the short term [40].

Other methods exist to forecast short-term or seasonal climate. For instance, the Australian Bureau
of Meteorology produced twice-weekly weather forecasts for a period of 270 days, with a dynamic
model called POAMA (http://poama.bom.gov.au/info/poama-2.html) [41–43]. Such seasonal
forecasts have been used to look at management strategies of crops [44–46]. To improve these
forecasts, which use on a grid of about 250 km, the Bureau of Meteorology is now proposing
seasonal forecasts (ACCESS-S) based on ACCESS (Australian Community Climate and Earth System
Simulator; http://www.bom.gov.au/australia/charts/about/about_access.shtml) using a 60 km grid.
Other indices than SOI or ENSO phases could also be used for specific adaptation, such as the
Inter-decadal Pacific Oscillation (IPO) phases [47] or drought environmental types [20,22,48,49] if
climate forecasts are sufficiently reliable. For instance, crop models have been used to assess the value
of broad and specific adaptations to select sorghum varieties and managements for different types of
drought environments [20].

4. Conclusions

In this study, we assessed the value of fixed adaptation (no distinction between the years) and
tactical adaptations based on pre-sowing plant available water (PAW) and/or SOI forecasts to increase
productivity at given sites. Overall, with our current knowledge, it appears that yield gains can
be made from improving cultivar and management strategy both regardless of climate forecast
(fixed adaptation), and as a tactical adaptation to pre-sowing soil water conditions and climate
forecasts. The benefits of PAW and SOI tactical adaptation could be useful for farmers to adjust farm
management practices according to the season, and may be improved with new forecasting climate
methods such as the newly developed ACCESS-S model.
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distributions of ‘summer’ minimum temperature for the three SOI classes, singly and combined (‘all years’),
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distributions of ‘winter’ minimum temperature for the three SOI classes, singly and combined (‘all years’),
Figure S7: Cumulative probability distributions of ‘summer’ total rainfall for the three SOI classes, singly and
combined (‘all years’), Figure S8: Cumulative probability distributions (probability of exceedance) of ‘winter’ total
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Abstract: The climate of the Earth is changing. The Earth’s temperature is projected to maintain its
upward trend in the next few decades. Temperature and precipitation are two very important factors
affecting crop yields, especially in arid and semi-arid regions. There is a need for future climate
predictions to protect vulnerable sectors like agriculture in drylands. In this study, the downscaling
of two important climatic variables—temperature and precipitation—was done by the CanESM2 and
HadCM3 models under five different scenarios for the semi-arid province of Qazvin, located in Iran.
The most efficient scenario was selected to predict the dryland winter wheat yield of the province for
the three periods: 2010–2039, 2040–2069, and 2070–2099. The results showed that the models are able
to satisfactorily predict the daily mean temperature and annual precipitation for the three mentioned
periods. Generally, the daily mean temperature and annual precipitation tended to decrease in
these periods when compared to the current reference values. However, the scenarios rcp2.6 and B2,
respectively, predicted that the precipitation will fall less or even increase in the period 2070–2099.
The scenario rcp2.6 seemed to be the most efficient to predict the dryland winter wheat yield of the
province for the next few decades. The grain yield is projected to drop considerably over the three
periods, especially in the last period, mainly due to the reduction in precipitation in March. This leads
us to devise some adaptive strategies to prevent the detrimental impacts of climate change on the
dryland winter wheat yield of the province.

Keywords: CanESM2; HadCM3; precipitation; temperature; winter wheat yield

1. Introduction

The temperature of the Earth is increasing more rapidly than during the previous decades, leading
to extensive climate change [1]. The Earth’s temperature is projected to maintain its upward trend
slightly in the next few decades [1]. A significant rise in the concentration of greenhouse gases such as
CO2, CH4, N2O, and water vapor, mainly caused by human activities, has intensified this trend [2].
The concentration of greenhouse gases, volume of ozone, aerosols, and sunspots seem to be the most
noticeable reason for temperature variations and climate change in the recent century [3].

More than two billion people live in drylands, constituting nearly 40% of the world’s
population [4]. Cereals are the major crops cultivated in drylands [5]. Crop production in drylands
mainly depends on precipitation during the growing season [6]. Moreover, the rise in temperature has
led to exacerbating droughts and a considerable loss in crop yields in arid and semi-arid regions [7].
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It is necessary to manage drylands in a sustainable way, by which food security is achieved [8]. To do
so, there must be some possible measurements and predictions to protect vulnerable sectors such as
agriculture and water resources in drylands [9].

General Circulation Models (GCMs) are the most developed tools for the simulation of general
responses to the accumulation of greenhouse gases [10]. Studies have shown that the results of
GCMs cannot be exploited directly because they are not accurate enough in describing sub-grid
data [10]. Therefore, Statistical Downscaling Models (SDSMs) are one of the tools that have been
developed to deal with this problem [11]. SDSMs are the most frequently used models in agricultural
research, where some independent variables are measured and collected to predict dependent
variables [12]. Tatsumi et al. [13] applied the Hadley Centre Coupled Model (version 3; HadCM3) and
Coupled Global Climate Model 3 (CGCM3) to forecast the daily minimum, maximum, and average
temperature of Shikoku city in Japan, using downscaling techniques. Their results indicated that
the temperature is likely to increase in the Shikoku region, Japan, within the period 2071–2099. In a
similar study, Ribalaygua et al. [14] used downscaling techniques to simulate the daily minimum and
maximum temperature and daily precipitation in a region located in Spain. Their results showed that
maximum and minimum temperatures will rise, while precipitation will decrease in the 21st century.
Johns et al. [15], by applying the HadCM3 model, predicted that some regions of Central America
and Southern Europe might be moister in the future, whereas Australia may experience a type of
drier climate.

In recent years, researchers have studied the potential impacts of climate change on plant growth
by using different types of simulation models [16,17]. Russell et al. [18] reported that most of the
alterations in wheat yield in the United States are related to climate change. Temperature and
precipitation, as two important climatic variables for the evaluation of future grain yield, have been
investigated by many researchers. For instance, [16] indicated that the changes in temperature and
precipitation within the last 30 years in Mexico had positively impacted on the winter wheat yield.
In another study, Landau et al. [19], by applying a multiple-regression model, indicated that the
temperature increase led to an improvement in the winter wheat crop characteristics, while the
precipitation increase could have negative impacts.

The downscaling of GCMs parameters and studying the possible changes in wheat yield due to
climatic effects have been distinctly investigated [14,20]. Lhomme et al. [21], for example, studied the
potential effect of climate change on durum wheat yield in Tunisia using the downscaled values of some
scenarios. Moreover, the efficiency of the IPCC scenarios has rarely been evaluated and compared [22].
In the present study, the downscaling of two important climatic parameters—temperature and
precipitation—was done by the Canadian Earth System Model (CanESM2) and HadCM3 models
for the province of Qazvin, located in Iran, where the climate is semi-arid and the dryland farming
of winter wheat dominates. Then, the most efficient scenario was chosen to predict the dryland
winter wheat yield of the province for the next few decades through a multiple-regression model.
The efficiency of the fourth and fifth IPCC scenarios in predicting the temperature and precipitation of
the region was also compared.

2. Materials and Methods

2.1. Geography, Climate, and Dryland Farming of the Province

The province of Qazvin has an area of 15,821 km2, located between 48–45 to 50–50 East of the
Greenwich Meridian of longitude and 35–37 to 36–45 North latitude of the Equator. Its average altitude
is 1278 m above sea level. It has a semi-arid climate with the annual mean precipitation, daily mean
temperature, and relative humidity of 301 mm, 14.2 ◦C, and 51%, respectively. The province is affected
by Siberian and Mediterranean winds, which are considerably important factors in controlling the
climate of the province. The geographical situation of the studied area is shown in Figure 1.
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The total winter wheat yield of the province is 445 million kg, 364 million kg (82%) of which
belongs to irrigated farming and 80.7 million kg (18%) to dryland farming. The total cultivated area for
winter wheat is nearly 202,497 ha, 95792 ha and 106,704 ha of which are under irrigated and dryland
farming, respectively. The average dryland winter wheat yield of the province is estimated to be
1541 kg ha−1.

 

Figure 1. Map of the studied area.

2.2. Methodology

The daily mean temperature and precipitation data for 32 years (1985–2017) were collected from
the six meteorological stations in the province (Figure 1). Thereafter, the daily mean temperature and
precipitation of all days of all years were calculated separately by the Thiessen polygons method using
the software ArcGIS version 10 via Equations (1) and (2):

Pa =
∑ piAi

∑ Ai
(1)

Ta =
∑ tiAi

∑ Ai
(2)

where Pa and Ta are the daily mean precipitation and temperature of the province, respectively; pi and
ti are the daily mean precipitation and temperature in the station i, respectively; and Ai is the area of
the province.

The HadCM3 and CanESM2 models were used to compare the scenarios. HadCM3 has a spatial
resolution of 2.5◦ × 3.75◦ (latitude by longitude) and the representation produces a grid box resolution
of 96 × 73 grid cells. This produces a surface spatial resolution of about 417 km × 278 km, reducing to
295 km × 278 km at 45 degrees North and South. In CanESM2, the long-term time series of standardized
daily values are extracted into a one column text file per grid cell. The 128 × 64 grid cells cover global
domain according to a T42 Gaussian grid. This grid is uniform along the longitude with a horizontal

75



Climate 2018, 6, 78

resolution of 2.81◦ and is nearly uniform along the latitude of roughly 2.81◦. The calibration of the
stations (points) against the grid-cells (pixels) was done by the downscaling of the SDSM linear
regression model. Data from the years 2006–2015 and 2016–2017 were used for the calibration and
validation of both models, respectively. Figures 2 and 3 show the observed versus the simulated
values of the temperature and precipitation for the years 2006–2015. Meanwhile, since 26 synoptic
variables are considered as predictor variables in these models, having a unique equation was not
logically possible because of the accumulated error. To solve this problem, only the predictor variables,
being more correlative with the daily mean precipitation and temperature than others, were chosen.
Then, the correlation between the variables was detected by Pearson’s correlation test (p < 0.01)
and the most important variables were selected according to the statistical significance between
them and the dependent variables (p < 0.01). To analyze the climatic data across the study, it was
necessary to apply a Statistical Downscaling Model (SDSM). To do so, SDSM version 5.2 was used.
SDSM is a decision support tool for assessing local climate change impacts using a powerful statistical
downscaling technique. It has the potential to rapidly develop downscaled climatic data [11]. To make
statistical connections between the predictor and predicted variables, some regression equations were
acquired to predict the climatic variables for the next few periods under the impact of climate change.
After acquiring the regression equations and measuring their accuracy, the scenarios were produced
through both models for the periods 2010–2039, 2040–2069, and 2070–2099. The properties of these
scenarios are indicated in Table 1.

 
Figure 2. Results of the comparison between the observed and simulated monthly mean temperature
values (2006–2015).

Table 1. Properties of the used standard Intergovernmental Panel on Climate Change [10] scenarios.

Models Scenarios Properties

CanESM2
rcp2.6 Radiative forcing peaks at 3 W m−2 and stabilizes to 2.6 W m−2 by the end of 2100;

CO2 concentration is estimated to be 490 ppm by 2100.

rcp4.5 Radiative forcing is estimated to be 4.5 W m−2 by 2100;
CO2 concentration is estimated to be 650 ppm by 2100

rcp8.5 Radiative forcing is estimated to be 8.5 W m−2 by 2100;
CO2 concentration is estimated to be 1370 ppm by 2100

HadCM3
A2 Describes a very heterogeneous world with high population growth,

slow economic development, and slow technological change.

B2 Describes a world with intermediate population and economic growth,
emphasizing local solutions to economic, social, and environmental sustainability.
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Figure 3. Results of the comparison between the observed precipitation values (2006–2015) and
the simulated precipitation values. I = ± SD: standard deviation, the overlapping bars show no
significant differences.

The efficiency of the scenarios was compared and the most efficient scenario was recognized
through the statistical indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
Nash-Sutcliffe coefficient (NS), Coefficient of Determination (R2), and Analysis of Variance (at p < 0.01)
as follows:

Zi =
Pi − P
σp

or Zi =
Oi − O
σo

(3)

MAE = ∑n
i=1

∣∣∣∣Pi − Oi

n

∣∣∣∣ (4)

RMSE =

√
∑n

i=1(Pi − Oi)
2

n
(5)

NS = 1 −
(

∑n
i=1(Oi − Pi)

2

∑n
i=1

(
Oi − O

)2

)
(6)

R2 =

[
1
n ∑n

i=1
(
Pi − P

)(
Oi − O

)
σp × σo

]
(7)

where Zi is the standardized daily mean precipitation or temperature values; Oi and Pi are the observed
and simulated daily mean precipitation or temperature values, respectively; O is the average of the
observed daily mean precipitation or temperature values; P is the average of the simulated daily mean
precipitation or temperature values; σO is the variance of the observed daily mean precipitation or
temperature values; σP is the variance of the simulated daily mean precipitation and temperature
values; and n is the number of data.

Isaaks and Serivastava [23] suggested the MAE and RMSE as statistical indicators able to compare
the accuracy of variables. Once the MAE and RMSE values are closer to zero in a scenario, the scenario
would be more efficient for predicting climatic variables [24]. When they are exactly 0, it means that
there is no error in the predicting task [24]. The Nash-Sutcliffe coefficient (NS) shows to what extent
the regression line between the simulated data and measured data can be similar to the regression line

77



Climate 2018, 6, 78

1:1. Its domain is from the negative infinity to 1, and NS = 1 reveals either a complete similarity or a
perfect efficiency of a scenario [25]. Meanwhile, R2 gives information on the correlation between the
observed and predicted data and its domain is from 0 to 1 [26]. When R2 becomes closer to 1, there will
be a significant correlation between the data groups [26]. Significant differences between the observed
data and values of the predictor scenarios can be distinguished by the analysis of variance [27]. Lack of
any significant difference reveals a similarity between the predicted and observed data. In addition,
to obtain more appropriate results for the prediction of precipitation, the occurrence of precipitation
approach was used. This is a dichotomous method by which the accuracy of whether the occurrence or
non-occurrence of precipitation is evaluated. If there is no occurrence of precipitation, then the answer
is ‘NO’, while the answer ‘Yes’ is a sign of precipitation occurrence [28]. There are four statuses when
the observed data are compared with scenario predictions, where a couple of predictions could be true
and the remaining predictions could be false. The scenario with a higher percentage of true predictions
was selected as the most efficient scenario for predicting the precipitation.

Finally, to predict the dryland winter wheat yield of the province for the next decades and to make
a connection between the climatic and yield data for the period 2005–2014, a linear regression model
was used. Furthermore, Pearson’s correlation test (at p < 0.01) between the simulated and observed
data, RMSE, and R-square were used to check the regression’s validity. All statistical analyses were
performed by the software SPSS version 21 (IBM Inc., Chicago, IL, USA).

3. Results

3.1. Temperature Predictions

All three CanESM2 scenarios predicted that the daily mean temperatures would generally increase
in the periods 2010–2039, 2040–2069, and 2070–2099 (Table 2). However, the scale of these increases
differed by the different scenarios. The scenario rcp2.6 projected that the daily mean temperature of the
periods 2010–2039, 2040–2069, and 2070–2099 would be 13.6, 13.9, and 13.9 ◦C, respectively, which are
0.9, 1.2, and 1.1 ◦C higher when compared to the observed daily mean temperature. The other scenario
rcp4.5 also predicted an increasing trend in the daily mean temperature in the three prospective periods
and showed that the mean daily temperature would be 13.4, 14.2, and 14.4 ◦C in the periods 2010–2039,
2040–2069, and 2070–2099, respectively, each being 0.7, 1.4, and 1.6 ◦C higher when compared to the
observed one. The scenario rcp8.5 predicted the highest temperature trends in comparison with the
other two scenarios. It predicted that the mean daily temperature would rise by 13.8, 14.8, and 15.5 ◦C
in the periods 2010–2039, 2040–2069, and 2070–2099, with changes of 1.0, 2.0, and 2.7 ◦C, respectively,
in analogy with the observed value.

Both scenarios (A2 and B2) of HadCM3 generally predicted an increasing daily mean temperature
trend for the three future periods in comparison with the observed one, except for scenario B2,
which projected a very slightly decreasing trend only for the period 2070–2099 (Table 3). The scenario
A2 forecasted that the mean daily temperature would rise to 12.7, 12.8, and 12.8 ◦C in the periods
2010–2039, 2040–2069, and 2070–2099, being 0.0, 0.1, and 0.2 ◦C higher, respectively, when compared to
the value of the observed period. The mean daily temperatures were projected by the scenario B2 to
increase to 12.6 and 12.7 ◦C in the periods 2010–2039, 2040–2069, respectively. In contrast, it predicted
that the mean daily temperature would decrease to 12.6 ◦C in the period 2070–2099. Accordingly,
the predicted temperature changes by scenario B2 are 0.02, 0.05, and −0.04 ◦C in the periods 2010–2039,
2040–2069, and 2070–2099, respectively, when compared to the observed period.
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Table 2. Results of the daily mean temperature predictions of the CanESM2 scenarios for the periods
2010–2039, 2040–2069, and 2070–2099.

Scenarios Periods Daily Mean Temperature (◦C)

Observed period 1985–2005 (obs) 12.7

rcp2.6

2010–2039 (P1) 13.6
2040–2069 (P2) 13.9
2070–2099 (P3) 13.9

◦C change P1 vs. obs 0.9
◦C change P2 vs. obs 1.2
◦C change P3 vs. obs 1.1

rcp4.5

2010–2039 (P1) 13.4
2040–2069 (P2) 14.2
2070–2099 (P3) 14.4

◦C change P1 vs. obs 0.7
◦C change P2 vs. obs 1.4
◦C change P3 vs. obs 1.6

rcp8.5

2010–2039 (P1) 13.8
2040–2069 (P2) 14.8
2070–2099 (P3) 15.5

◦C change P1 vs. obs 1
◦C change P2 vs. obs 2
◦C change P3 vs. obs 2.7

Table 3. Results of the daily mean temperature predictions of the HadCM3 scenarios for the periods
2010–2039, 2040–2069, and 2070–2099.

Scenarios Periods Mean Temperature (◦C)

Observed period 1985–2005 (obs) 12.7

A2

2010–2039 (P1) 12.7
2040–2069 (P2) 12.8
2070–2099 (P3) 12.8

◦C change P1 vs. obs 0
◦C change P2 vs. obs 0.1
◦C change P3 vs. obs 0.2

B2

2010–2039 (P1) 12.6
2040–2069 (P2) 12.7
2070–2099 (P3) 12.6

◦C change P1 vs. obs 0.02
◦C change P2 vs. obs 0.05
◦C change P3 vs. obs −0.04

3.2. Precipitation Predictions

Overall, the three scenarios of CanESM2 projected a diminishing trend in the annual precipitation
for the future periods 2010–2039, 2040–2069, and 2070–2099, when compared to the observed period
(Table 4). However, the scenario rcp2.6 projected a less decreasing trend in the annual precipitation
for the period 2070–2099. The scenario rcp2.6 predicted that the annual precipitation would drop to
287 and 277 mm in the periods 2010–2039 and 2040–2069, respectively, and decrease to 296 mm in
the period 2070–2099. The projected annual precipitation by the scenario rcp4.5 would be 258, 264,
and 293 mm in the periods 2010–2039, 2040–2069, and 2070–2099, respectively. The other scenario rcp8.5
forecasted that the annual precipitation would be 283, 278, and 278 mm for the periods 2010–2039,
2040–2069, and 2070–2099, respectively.

Scenario A2 of HadCM3 predicted a decreasing trend in the annual precipitation for the periods
2010–2039, 2040–2069, and 2070–2099, in analogy with the observed period (Table 5). The annual
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precipitation projected by scenario A2 would be 340, 292, and 276 mm for the periods 2010–2039,
2040–2069, and 2070–2099, respectively. Scenario B2 also forecasted that the annual precipitation for
the periods 2010–2039 and 2040–2069 would be 310 and 321 mm, respectively, when compared
to the observed period, which conveys a reducing trend. In contrast, it projected an increased
annual precipitation of 875 mm for the period 2070–2099, which will be noticeably higher than
the observed amount.

Table 4. Results of the annual precipitation predictions of the CanESM2 scenarios for the periods
2010–2039, 2040–2069, and 2070–2099.

Scenarios Periods Precipitation (mm)

Observed period 1985–2005 (obs) 346

rcp2.6

2010–2039 (P1) 287
2040–2069 (P2) 277
2070–2099 (P3) 296

% change P1 vs. obs −18
% change P2 vs. obs −21
% change P3 vs. obs −15

rcp4.5

2010–2039 (P1) 258
2040–2069 (P2) 264
2070–2099 (P3) 293

% change P1 vs. obs −29
% change P2 vs. obs −26
% change P3 vs. obs −16

rcp8.5

2010–2039 (P1) 283
2040–2069 (P2) 278
2070–2099 (P3) 278

% change P1 vs. obs −20
% change P2 vs. obs −21
% change P3 vs. obs −21

Table 5. Results of the annual precipitation predictions of the HadCM3 scenarios for the periods
2010–2039, 2040–2069, and 2070–2099.

Scenarios Periods Precipitation (mm)

Observed period 1985–2005 (obs) 346

A2

2010–2039 (P1) 340
2040–2069 (P2) 292
2070–2099 (P3) 276

% change P1 vs. obs −1
% change P2 vs. obs −16
% change P3 vs. obs −22

B2

2010–2039 (P1) 310
2040–2069 (P2) 321
2070–2099 (P3) 875

% change P1 vs. obs −10
% change P2 vs. obs −7
% change P3 vs. obs 86

3.3. Comparison of the Scenarios

The variance analysis results showed a higher efficiency for the RCP scenarios than the A and
B scenarios in predicting the daily mean temperature of the region (Table 6), because there was no
statistically significant difference between the temperature values simulated by the RCPs and the
observed values (at p < 0.01), while the temperature values simulated by A and B significantly differed
from the observed ones (at p < 0.01). Among the three scenarios of the model CanESM2, rcp2.6 was
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selected as the most efficient scenario for predicting the daily mean temperature, as it had the highest
Nash-Sutcliffe coefficient and R2 value and the lowest MAE and RMSE values when compared to
scenarios rcp4.5 and rcp8.5.

The results of variance analysis indicated that all scenarios were efficient enough to predict the
annual precipitation of the region (Table 7), since no statistically significant difference was found
between the simulated and observed values (at p < 0.01). The scenario rcp2.6 displayed the lowest
values for both MAE and RMSE. Moreover, it showed the highest Nash-Sutcliffe coefficient and R2

value. Thus, it was selected as the best scenario for predicting the annual precipitation. In addition,
the scenarios of CanESM2 simulated closer annual precipitation values to the observed values than the
HadCM3 scenarios (Table 8). The CanESM2 scenarios resulted in higher values of true predictions and
lower values of false prediction than the scenarios of HadCM3. The indicators provided in Table 8
also, in general, confirmed the excellence of scenario rcp2.6 for predicting the annual precipitation.

Together, these indicators showed a relatively higher efficiency for the CanESM2 scenarios than
the HadCM3 scenarios in predicting the daily mean temperature and annual precipitation of the region.

Table 6. Results of the efficiency evaluation of the used scenarios for the daily mean
temperature predictions.

Models Scenarios MAE RMSE Nash-Sutcliffe R2 Analysis of Variance

CanESM2
rcp2.6 0.348 0.445 0.808 0.8177

0.772 nsrcp4.5 0.355 0.45 0.801 0.8047
rcp8.5 0.362 0.461 0.795 0.8174

HadCM3
A2 0.0529 0.0658 0.707 0.7346

0.000 **B2 0.0523 0.0654 0.706 0.7380

ns: no-significant; **: significant at p < 0.01.

Table 7. Results of the efficiency evaluation of the used scenarios for the annual
precipitation predictions.

Models Scenarios MAE RMSE Nash-Sutcliffe Analysis of Variance

CanESM2
rcp2.6 0.434 1.297 −2.139
rcp4.5 0.442 1.298 −3.154 0.279 ns

rcp8.5 0.45 1.351 −8.576

HadCM3
A2 0.444 1.33 −7.243 0.453 ns

B2 0.442 1.299 −3.222

ns: no-significant.

Table 8. Occurrence of precipitation under the used scenarios.

Occurrences
CanESM2 HadCM3

rcp8.5 rcp4.5 rcp2.6 B2 A2

Hit (hit event) 390 395 366 406 425
CN (correct Negative) 1832 1827 1856 1816 1797

Miss (miss event) 1246 1225 1250 1191 1159
FA (false alarm events) 184 205 180 239 271

% true prediction ( Hit+CN
n ) 44.79 44.35 44.25 43.72 43.37

% false prediction ( Miss+FN
n ) 55.2 55.64 55.75 56.27 56.62

3.4. Yield Predictions

The results of the regression analysis and Pearson’s correlation test showed that the precipitation
in March was the most effective factor for the dryland winter wheat yield of the region (Table 9).
The prediction results indicated that the yield would noticeably reduce to 1176, 984, and 890 kg ha−1

in the periods 2010–2039, 2040–2069, and 2070–2099, respectively (Table 10). The reduction percentage
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in the above-mentioned periods is predicted to be −22, −34, and −41%, respectively. These reductions
in the yield are consistent with the reductions in the mean precipitation in March during the three
prospective periods (Figure 4). The reduction in the yield in the periods 2040–2069 and 2070–2099 will
be more severe than that of the period 2010–2039, which is in line with a more severe reduction in the
precipitation in March than in the former periods.

Table 9. Regression and correlation results of the yield and precipitation data.

Crop Regression Model R R2 RMSE (%) Significance Level Predictor Model

winter wheat Forward 0.78 0.62 18.82 0.012 * Y = 20.883X + 625.846

*: significant at p < 0.05 where Y is dryland winter wheat yield; X is the precipitation in March; and the constant
numbers are Y-intercepts.

Table 10. Results of the dryland winter wheat yield predictions for the periods 2010–2039, 2040–2069,
and 2070–2099.

Crop Cropping Year Grain Yield (kg ha−1)

Winter wheat

2010–2011 (obs) 1512
2010–2039 (P1) 1176
2040–2069 (P2) 984
2070–2099 (P3) 890

% change P1 vs. obs −22
% change P2 vs. obs −34
% change P3 vs. obs −41

 
Figure 4. Relationship between the yield reduction and rcp2.6-induced precipitation of March in the
three future periods.

4. Discussion

4.1. Temperature Predictions

GCMs have widely been used for predicting future temperature trends. Van Vuuren et al. [29]
showed that the mean temperature was likely to increase in the future in many parts of the world.
For instance, Basheer et al. [30] claimed that the climate over the Dinder River Basin would be
warmer in the upcoming decades. Majhi and Pattnayak [31] also revealed that there would be a
gradual temperature increase in Nabarangpur district at the end of the 21st century. Our results also
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indicated that the temperature would generally increase in the three investigated periods; however,
the magnitude of these increases are dependent on the scenarios applied. The CanESM2 scenarios
postulated a higher variability in the predicted temperature values than the HadCM3 scenarios.
In addition, the temperature changes predicted by CanESM2 were noticeably higher than those
predicted by HadCM3. Such different trends have also been observed by [22], who compared some
GCMs such as HadCM3 and CanESM2. These diverse trends could have been due to the different
scenarios used, as was the case for the study of [32]. Among the CanESM2 scenarios, rcp8.5 and
rcp4.5 predicted the highest temperature values, respectively, whilst rcp2.6 projected the lowest
ones. These results are in line with the findings of [22]. The greatest temperature values predicted
by scenarios rcp8.5 and rcp4.5 seem plausible due to the underlying physical laws to simulate the
ongoing increases in the radiative forcing and CO2 concentrations by the end of the 21st century.
In contrast, rcp2.6 simulated a lower radiative forcing towards the end of the 21st century as well as
lower CO2 concentrations.

4.2. Precipitation Predictions

All scenarios, except B2, revealed that there would be a reduction in the annual precipitation in all
investigated periods. Scenarios rcp4.5 and rcp8.5 projected the maximum and the minimum reductions
in the annual precipitation, respectively, which was a very similar result to what [33] concluded.
Scenario B2 projected substantial increases in the annual precipitation for the period 2070–2099.
Moreover, scenario rcp2.6 projected a less decreased annual precipitation for the aforementioned period.
One study has shown that there is a possibility for a reduction in the rivers’ ice thickness in winter and a
slight increase in the discharge during the break up from May to June in Siberia [34]. This phenomenon
can be caused by extreme warming around Siberia in the period 2070–2099. To confirm this notion,
Shiklomanov et al. [35] predicted an increased mean temperature trend for Siberia by the late 21st
century. The province of Qazvin is extremely affected by Siberian winds. Therefore, the increased and
less decreased annual precipitation projections for the period 2070–2099 by scenarios B2 and rcp2.6
might be logical. Nevertheless, the properties of the scenarios used could be among other reasons for
the different precipitation results achieved. Scenarios rcp2.6 and B2 more optimistically simulated the
future projections when compared to the other scenarios used. For instance, rcp2.6 predicted a radiative
forcing of 3 W m−2 and a CO2 concentration of 490 ppm; and B2 described a world with intermediate
population and economic growth, emphasizing local solutions to economic, social, and environmental
sustainability. Thus, a more optimistic simulation of the annual precipitation of the region could
have been another possible reason for the increased and less decreased precipitation values predicted.
Vallam and Qin [22], using a statistical downscaling technique, also showed that scenarios rcp2.6 and B2
could predict either increased or at least lesser decreased rainfall percentage for Frankfurt (Germany),
Singapore, and Miami (USA) in the 2080s when compared to the other scenarios used. However,
the CanESM2-derived RCP scenarios led to great variabilities in predicting future meteorological
variables, especially rainfall in arid regions [22]. This might be another plausible reason for the increase
(14%) in the annual precipitation predicted by rcp2.6.

4.3. Yield Predictions

Studies have shown that there is a significant correlation between winter wheat yield and the
climatic variables [16]. Thus, the most efficient scenario (rcp2.6) in predicting both temperature and
precipitation was applied to predict the dryland winter wheat yield of the province. The results of the
Pearson’s correlation test indicated that the precipitation in March was the most effective factor on yield
(r = 0.78, p < 0.01). A study on the effects of precipitation on dryland cereals yield in three provinces
of Iran was performed, where the climate is semi-arid [36]. The results of the study showed that the
yield of dryland winter wheat was significantly correlated to precipitation, especially the precipitation
in April. In the province of Qazvin, dryland winter wheat is at the tillering stage in March (personal
communication with the farmers). It seems that the lower precipitation in March could lead to a
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lower number of head-bearing tillers and lack of the opportunity for their survival, finally resulting
in lower grain yields. Karimi [37] investigated the effects of precipitation during the tillering of
dryland winter wheat in Iran and reported a significant impact on the final grain yield. Even though
agricultural factors such as soil, fertilizers, and other climatic variables like radiation could also be
effective, Lobell [16] indicated that precipitation had a more considerable influence on dryland farming.
Meanwhile, the value of R2 between the observed and simulated data was 0.62, meaning that the
yield was 62% dependent on the annual precipitation and the other 38% was dependent on other
unspecified factors. The percentage of RMSE was about 18% between the observed and simulated data,
which was an acceptable value that showed the adequate accuracy of the predictions [38]. Moreover,
the observed reductions in the precipitation in March during the three future periods could have been
due to shifts in the seasons due to warmer temperatures of the areas by which the studied region is
affected. As mentioned earlier, the temperature of Siberia has been projected to rise by the late 21st
century [35]. Since the province of Qazvin is extremely affected by Siberian winds, it is plausible that
these winds will alter the seasons of this province.

5. Conclusions

In this study, the downscaling of two important climatic variables—temperature and
precipitation—was done by the CanESM2 and HadCM3 models for the province of Qazvin, located in
Iran. The used scenarios were able to predict the daily mean temperature and annual precipitation
for the three different future periods 2010–2039, 2040–2069, and 2070–2099. The CanESM2 scenarios
seemed to be more efficient than the HadCM3 scenarios in simulating the future temperature and
precipitation trends of the region. Generally, the region’s daily mean temperature tended to increase
and the annual precipitation tended to decrease in the three prospective periods investigated. However,
scenarios rcp2.6 and B2, respectively, predicted that the precipitation would decrease less or even
increase in the third period (2070–2099). Scenario rcp2.6 was assumed to be the most efficient to predict
the dryland winter wheat yield of the province for the upcoming decades. The grain yield was projected
to considerably decrease in the three periods, especially in the last period. The yield reductions are
assumed to mainly be due to the decrease in precipitation in March during the investigated periods.
Some adaptive strategies to prevent the detrimental impacts of climate change on the province dryland
wheat yield include the cultivation of resistant winter wheat varieties to drought as well as earlier
sowing dates. The authors would like to recommend the comparative use of the applied CanESM2
and HadCM3 scenarios to predict climatic variables of other semi-arid regions.
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Abstract: Nitrous oxide (N2O) is a potent greenhouse gas (GHG). Although it comprises only 0.03%
of total GHGs produced, N2O makes a marked contribution to global warming. Much of the N2O
in the atmosphere issues from incomplete bacterial denitrification processes acting on high levels
of nitrogen (N) in the soil due to fertilizer usage. Using less fertilizer is the obvious solution for
denitrification mitigation, but there is a significant drawback (especially where not enough N is
available for the crop via N deposition, irrigation water, mineral soil N, or mineralization of organic
matter): some crops require high-N fertilizer to produce the yields necessary to help feed the world’s
increasing population. Alternatives for denitrification have considerable caveats. The long-standing
promise of genetic modification for N fixation may be expanded now to enhance dissimilatory
denitrification via genetic engineering. Biotechnology may solve what is thought to be a pivotal
environmental challenge of the 21st century, reducing GHGs. Current approaches towards N2O
mitigation are examined here, revealing an innovative solution for producing staple crops that can
‘crack’ N2O. The transfer of the bacterial nitrous oxide reductase gene (nosZ) into plants may herald
the development of plants that express the nitrous oxide reductase enzyme (N2OR). This tactic would
parallel the precedents of using the molecular toolkit innately offered by the soil microflora to reduce
the environmental footprint of agriculture.

Keywords: radiative warming; atmospheric phytoremediation; N2O; nitrous oxide reductase; N2OR;
nosZ; fertilizer; crop breeding; transgenic; GHG

1. Introduction—Nitrous Oxide Continues to Bloom Unabated

Atmospheric nitrogen (N) deposition is a pressing matter for climate change scientists concerned
with the increasing danger that nitrous oxide (N2O), a noxious greenhouse gas (GHG), poses. Reactive
nitrogen (Nr)—ammonia (NH3), nitrogen oxides (NOx), nitrates (NO3

−), and N2O—enters the
biosphere from its original form of atmospheric N as at least three derivatives: gas, dry deposit,
and precipitation (wet deposition) [1,2]. The sources of N2O are largely anthropogenic [3]. Many
crops must receive N-based fertilizer to reach yield targets, which is supplied by inorganic fertilizers
and animal manure [4]. In an effort to boost the yield in crop staples like wheat, corn, and soybeans,
farmers apply N fertilizers at rates and times that are not always properly synchronized with crop
demand [5]. While crops thrive when fertilized, experimental analysis has demonstrated that up to
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40% of fertilizer N can be lost via leaching [6,7]. Other routes of N loss include soil erosion, NH3

volatilization and oxidation, and bacterial/fungal denitrification [8], although N losses through NH3

volatilization are higher than those via N leaching [9]. Around 62% of total global N2O issues from
natural and agricultural soils, and the bulk of this production, mainly results from the processes of
bacterial nitrification and denitrification [10].

Nr compounds enter the atmosphere through biological processes, but the invention of the
Haber-Bosch process in 1908 was a critical moment for the sudden increase in Nr and GHG production
globally [11]. This process of artificial N-fixation allowed for the large-scale reduction of N2 to NH3,
producing massive amounts of synthetic N-based fertilizers that supported dramatic increases in
high-yield farming [12]. This process now accounts for 80% of anthropogenic N-fixation (the remaining
20% resulting from combustion [13], with anthropogenic N-fixation in turn accounting for 60% of
global N-fixation [14]). Haber-Bosch remains the industry standard synthetic N fertilizer today and as
a result, has contributed to the ~2% increase in atmospheric levels of N2O [15,16]. This effect is also
magnified by the global emissions of N2O produced by fossil fuel combustion [17] and the natural
ability of legumes to fix N through symbiotic relationships with soil bacteria [18].

N2O is the third most prevalent GHG, behind carbon dioxide (CO2) and methane (CH4) [19]. The
concentration of this gas in the atmosphere has been steadily increasing since the early 1900s (Figure 1),
and it is 265 times more radiative than CO2 [19]. N2O also has an atmospheric lifetime of 121 years; by
comparison, CH4 has an atmospheric lifetime of only 12 years, but CO2 also has a long half-life and
can take anywhere from 20–200 years to be absorbed by the ocean [19], compounding the ‘greenhouse
gas’ effect. Since chlorofluorocarbons (CFCs) were banned in 1989, N2O has become the leading cause
of ozone layer depletion [20].

Figure 1. GHG levels since 1850. The green line represents the increase in CO2 concentration since 1850;
the orange line represents the increase in CH4 concentration since 1850; lastly, the red line represents
the increase in N2O since 1850 [19].

N2O emission results from the coupled oxidation and reduction of N performed by
heterotrophic [21] (and some autotrophic) soil proteobacteria: (1) the nitrification pathway is
catalyzed by autotrophs (Nitrosomonas spp. and other genera [22]) and also heterotrophs, and
involves the oxidation of NH3/ammonium(NH4

+) to nitrite (NO2
−) [23] and nitric oxide (NO) [24]),

which is followed by the oxidation of NO2
− to NO3

− by Nitrobacter spp. [25]; and (2) the
denitrification pathway, whereby NO3

− is reduced to N2O and ultimately inert N2 gas [26]. As
many as a third of soil bacterial species [27] lack the nosZ gene that reduces N2O to inert N2 [28], which
leads to a sizeable amount of incomplete denitrification reactions and the subsequent buildup of N2O
since it is an obligate intermediate [29]. This N2O diffuses out of the soil and into the atmosphere,
contributing to the greenhouse effect, contaminating water, and leading to serious human health
implications [30,31].
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2. Combating GHGs: Current N2O Mitigation Strategies and Limitations

Demands for crop-borne food must be met, and so researchers must address the hazards of
N-based fertilizers [32]. There are multiple N2O mitigation strategies either currently in commercial
use or in development (summarized in Table 1).

Table 1. Summary of current N2O mitigation strategies.

Strategy Mechanism of Action Pros Cons

(1) Conservation tillage
and crop rotation [33]

Tillage, rotation of N-fixing
crops, cover cropping [33]

Prevent NH3
volatilization and
eventual N2O emissions
[34,35]

Unreliable N2O mitigation
[36,37]. Yield reduction [38].
Not effective at scrubbing
N2O from the air

(2) Best management
practices (BMPs) [39]

Correct source, placement,
time, and rate of fertilization
[40]. Proper irrigation
(fertigation) [41]

Proven to reduce N2O
emissions [41] and other
N losses [42]

Technical constraints [43]

(3) EENFs [44]

Multiple types: stable,
short-release (SRFs), and
constant-release (CRFs); rely
on enrichment of chemical
inhibitors or coated
N-compounds that are
released into the soil over a
period of time [45]; urease
inhibitors (UIs) [46]

Proven to reduce N2O
emissions [47,48]

Inconsistent yields from year
to year [48]. More expensive
than standard N fertilizers
[49]. Long lifetime of
N-compounds in soil can lead
to NH3 volatilization [50,51].
Not effective at scrubbing
N2O from the air

(4) Synthetic N2O
mitigators

SNIs suppress activity of
nitrifying bacteria in the soil
[52]. SDIs operate by
unknown mechanism
[44,53,54]

SNIs and SDIs reduce
N2O emissions [52,54]

Effectiveness depends on
environmental conditions,
prefer low temperature and
sandy soils [55]. Not effective
at scrubbing N2O from the air

(5) Biological N2O
mitigators

BNIs suppress activity of
nitrifying bacteria in the soil
by releasing compounds that
inhibit NH3-oxidizing
pathways [56]. BDIs inhibit
nitrate reductase to inhibit
N2O production [57]

BNIs demonstrated to
reduce N2O emission
[56]; BDIs inhibit
denitrification and can
conceivably mitigate
N2O emissions [57]

BNI-exuding plants must be
grown in rotation with other
crops [58]. Little work done on
BDI-exuding plants [57]. Not
effective at scrubbing N2O
from the air

(6) Microbial
bioremediation

Proper water table
management to facilitate
growth of rhizobia [59];
inoculation of plant roots
with genetically modified
N2O-cracking rhizobia [60,61]

Enables plants to
degrade contaminants in
the soil; N2O-cracking
rhizobia demonstrated to
reduce N2O emissions
[60,61]

Most effective on crops that
naturally cultivate a
rhizosphere of N2O-reducing
[62] microorganisms, i.e.,
soybean [63]. Not effective at
scrubbing N2O from the air

(7) Rhizosecretion

Transformation of amenable
crops to express recombinant
bacterial proteins that reduce
N2O [64]

Plants that secrete
N2O-cracking enzyme
could target N2O in soil
[64]

Plant transformation is a
time-consuming process [65].
Bacterial proteins may not
function efficiently in
heterologous hosts [66]. Not
effective at scrubbing N2O
from the air

(8) Atmospheric
phytoremediation

Transformation of amenable
crops with genes expressing
recombinant bacterial
proteins that reduce N2O [67]

Arm crops and other
plant species to mop up
N2O in the atmosphere
[67], including N2O
emitted by other
non-agricultural sources

Plant transformation is a
time-consuming process [65].
Bacterial genes may not
function in a heterologous
system [66]. Not yet
experimentally validated via
gas analysis

BDI, biological denitrification inhibitor; BNI, biological nitrification inhibitor; EENFs, enhanced efficiency nitrogen
fertilizers; SDI, synthetic denitrification inhibitor; SNI, synthetic nitrification inhibitor.
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(1) Conservation tillage and crop rotation. Mechanical incorporation (tillage) of N-based fertilizer
into the soil may also be effective [68], but this is affected by many other parameters, such as the
method of N application (i.e., broadcast vs surface urea ammonium nitrate). These techniques also
result in a reduced yield [38]. Conservation tillage increases N2O emissions compared with no-till
and conventional tillage techniques using broadcast application, while tillage in general does not
reduce N2O emissions produced from surface urea ammonium nitrate-treated fields [69]. Other
studies have shown that conservation tillage reduces N2O emissions [70], underscoring the lack of
reliability of this N management technique [36,37]. Crop rotation with N-acquisitive plant species
can also reduce N2O emissions following the application of high N-fertilizer treatment [33]; cover
cropping can also control N2O emissions, but the results are often variable and in some cases can
increase N2O emissions [71];

(2) Best management practices (BMP) [39]. Such nitrogen use efficiency techniques are myriad and
involve simple steps such as proper fertilizer placement, timing of fertilizer application, the
right type of N-compound, and so on. Others involve the proper incorporation of N-compounds
into the soil so that they may be taken up by the plant more effectively and will be less likely
to volatilize [72]. Fertigation, a technique involving careful irrigation of fields following the
application of N fertilizer, is effective at mitigating N2O emissions [41]. Such knowledge-based N
management practices have been shown to be effective at both increasing crop yield and reducing
immediate N2O emissions [73], but some approaches may also increase N2O production in the
long term [55]. Their effectiveness also depends heavily on proper practices put in place by the
farmers themselves, which requires proper training [43];

(3) Fertilizer management using enhanced efficiency nitrogen fertilizers (EENFs). These fertilizer
cocktails are concocted in such a way that they prevent the volatilization of NH3 and
inhibit nitrification/denitrification [46]. EENFs generally fall into one of three categories:
(a) stabilized fertilizers, which contain nitrification and/or urease inhibitors; (b) slow-release
fertilizers (SRFs), whereby the N source in the fertilizer is released over time from encapsulated
granules, although the release rates can be variable; and (c) controlled-release fertilizers (CRFs),
where the release rate is constant [45]. Urease inhibitors (UIs) are also a common EENF
component. N-(n-butyl) thiophosphoric triamide (NBPT), phenylphosphorodiamidate (PPD),
and hydroquinone are used worldwide and act by inhibiting the bacterial hydrolysis of urea into
NH3 in fertilizer [46,74,75]. UIs are typically used in conjunction with nitrification inhibitor
(NIs) for maximum effectiveness [76,77], but NBPT alone can reduce N2O emissions from
N-treated soil [78]. There is controversy regarding the effectiveness of EENFs; while reductions
in N2O emissions from the soil have been recorded [47,48], recent studies have shown that crop
yields are only marginally higher when EENFs are used in place of standard N fertilizers [79].
Those studies that demonstrated reduced N2O emissions also reported inconsistent results from
year to year [50]. Questionable effectiveness notwithstanding, EENFs are more expensive than
conventional N-containing fertilizers and require special handling and storage [49,80], which are
all features that make these fertilizers less attractive to farmers;

(4) Synthetic N2O mitigators. Synthetic nitrification inhibitors (SNIs) and UIs are both used in EENFs
and can be applied to crops in conjunction with standard N fertilizer. NIs inhibit the activity of
Nitrosomonas to block the nitrification of N in fertilizer (the oxidation of NH3 to hydroxylamine
via ammonia monooxygenase (AMO)) [23,52]. The efficacy of the inhibitors is also dependent
on environmental conditions, as they are unstable; 3,4-dimethylpyrazole phosphate (DMPP), for
example, exhibited reduced activity in hot, dry conditions [81]. The use of these inhibitors can
also lead to less than desirable results: DMPP and 3-methylpyrazole 1,2,4-triazole (3MP + TZ)
have been shown to increase N2O emissions in vegetable crop systems, as the inhibitors promote
the buildup of N in the fraction of the soil most available to bacteria during the breakdown of
vegetative matter. Synthetic denitrification inhibitors (SDIs) suppress denitrification via unknown
mechanisms [82], although some are known to inhibit the activity of fungal copper reductase [83].
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SDIs nitrapyrin [84], toluidine [54], and acetylene [44] all effectively mitigate N2O emission, albeit
with toxic side-effects [55], and they do not technically inhibit nitric oxide reductase;

(5) Biological N2O mitigators. This category is comprised of compounds produced by plants that
inhibit enzymes in either the bacterial nitrification or denitrification pathway. The exploitation of
such inhibiting root exudates is another intriguing approach towards N2O mitigation [82]. Biological
nitrification inhibitors (BNIs) are compounds that block the activity of NO2

− producing enzymes.
The roots of the tropical grass Brachiaria humidicola exude brachialactone, a compound that can
mitigate N2O emission from soil [85]. Attempts at developing BNI-producing cultivated wheat by
crossing Triticum aestivum with BNI-producer Leymus racemosus, a wild wheat, have imparted some
BNI activity, but also made the lines susceptible to rust infection [86]. The use of BNIs as an effective
N2O mitigator is also severely limited by the fact that the enactor of nitrification is a plant itself
and cannot be applied to growing crops, although growing B. humidicola in rotation with maize
saw a four-fold increase in yield [87]. Biological denitrification inhibitors (BDIs) are a relatively new
discovery. Currently, the only example of such an inhibitor is the procyanidin produced by the
invasive Fallopia spp. (Asian knotweed). This compound has been demonstrated to be an allosteric
inhibitor of Pseudomonas brassicacearum nitrate reductase and while it does reduce denitrification in
the soil, it has not yet been proven to mitigate N2O levels [57];

(6) Microbial bioremediation [88]. The success of N fertilizer management techniques and proper
irrigation is largely due to the creation of a microsphere conducive to denitrifying bacteria
flourishing [89]. Proper water table management techniques can promote the growth of
N2O-cracking bacteria in the soil and reduce N2O emissions from the managed soil regions [59].
Another type of microbial bioremediation takes advantage of the ability of certain bacterial
species to inhabit the root nodules of leguminous crops. Field peas [62], broad beans [90], and
soybean [63] house bacteria (or rhizobia) that fix N and, unfortunately, also produce N2O gas.
While maintaining the rhizosphere, N2O emissions can be mitigated by inoculating the roots of
leguminous plants with rhizobia modified to express higher levels of a bacterial N2O-cracking
enzyme [60]. Genetically engineered strains of Bradyrhizobium japonicum have been used to
inoculate the roots of soybean and reduced N2O emissions [61]. Needless to say, this method is
far more effective on crops that naturally cultivate a rhizosphere of N2O-reducing microorganisms.
It is also another technique that cannot target atmospheric N2O;

(7) Rhizosecretion. This is a biotechnology-based approach, involving the transformation of
amenable crop plants with genes expressing recombinant bacterial proteins that reduce N2O by
secreting N2O-cracking enzymes [64,91]. Plants can be engineered to express proteins under the
control of promoters that induce hairy root formation in plants. This rooting response results from
the presence of the rolABCD genes from Agrobacterium rhizogenes, the bacterium that induces hairy
root disease [92]. The rhizosecretion expression system harnesses the ability of A. rhizogenes to
both target gene expression to the roots and to increase root biomass, subsequently increasing the
amount of recombinant protein secreted into the soil [91]. Tobacco plants expressing a bacterial
N2O-cracking enzyme tagged for secretion under the control of the A. rhizogenes rolD promoter
have been successful in demonstrating reducing activity [64,93]. Gas analysis was not performed
to confirm that these plants mitigated N2O emission. Ultimately, this approach arrives at a similar
problem as other ‘rhizoremediative’ techniques: the N2O-reducing ability of such a transgenic
plant would be limited to the rhizosphere. This system would not have access to the bulk of N2O
gas, much of which comes from other sources;

(8) Atmospheric phytoremediation using genetically engineered plants. The potential of
transgenic plants for environmental phytoremediation is well-documented: several fungal
and bacterial oxidoreductases have been functionally expressed in plants as phytoremediation
strategies including pentaerythritol tetranitrate reductase [94], mercuric reductase [95], and
arsenate reductase [96]. This type of plant-based decontamination strategy provides advantages,
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such as stable cultivation and control of the remediant organism and atmospheric exposure of
the gas-cracking enzyme [97].

Atmospheric phytoremediation may ameliorate problems created by the other N2O mitigation
strategies described. The concept here is to develop crops with the ability to “crack” N2O in both
the soil and the atmosphere by incorporating the bacterial nosZ gene into their genomes. This gene
encodes the nitrous oxide reductase enzyme (N2OR), an oxidoreductase that catalyzes the removal of
N2O from the atmosphere, a process performed naturally by both denitrifying and non-denitrifying
bacteria in the soil [98]. While conventional N2O mitigation strategies aim to control N2O production
at earlier stages in the nitrification/denitrification pathway, this approach will target the atmospheric
sum of N2O emitted by all sources (Figure 2).

Figure 2. Nitrification-denitrification pathway and overview of current N2O mitigation strategies.
Orange arrows and lines show eight N2O mitigation strategies described in Table 1. Green arrows
show nitrification and purple arrows represent denitrification reactions. BDI, biological denitrification
inhibitor; BMPs, best management practices; BNI, biological nitrification inhibitor; EENFs, enhanced
efficiency nitrogen fertilizers; SDI, synthetic denitrification inhibitor; SNI, synthetic nitrification
inhibitor; UI, urease inhibitor. O Encircled numbers refer to Table 1 strategies.

3. Nitrous Oxide Reductase—An Orphaned Soil Protein?

The nosZ gene can be categorized as either ‘clade I’ or ‘clade II’ based on sequence and nos operon
organization, including the lack of an accessory nosR gene in the clade II members [99]. Clade II
nosZ genes are also known as ‘atypical’ nos genes since they are found in non-denitrifying bacterial
species. The N2OR enzyme that the clade II gene encodes catalyzes the same reaction performed by
the clade I-encoded enzyme, but has a higher affinity for N2O [100], an important factor to consider
when conceptualizing the development of an nosZ-expressing plant.

N2OR is a multi-copper protein encoded by the nosZ gene (which is accompanied by an operon
cluster of additional genes (nosRDFYL) [101]) and is the only enzyme that can catalyze the conversion
of N2O into N2. The first active N2OR was characterized from the soil bacterium Pseudomonas stutzeri
and similar enzyme structures were resolved in bacterial species Marinobacter hydrocarbonoclasticus
(formerly Pseudomonas nautica) (Figure 3), Achromobacter cyclocastes, and Paracoccus denitrificans. N2OR
is a head-to-tail homodimer and each monomer contains two domains: an electron transferring domain
(binuclear CuA centre) and a catalytic domain (tetranuclear CuZ centre) [102]. There is some variability
between the species regarding CuZ bridging and cupric coordination in the catalytic centre, suggesting
that N2OR substrate binding is species-specific. Regardless, the catalytic mechanism of N2O reduction
in N2OR is still unclear [103].
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Figure 3. Structure of Marinobacter hydrocarbonoclasticus nitrous oxide reductase (N2OR) homodimer.
N2OR is organized as a head-to-tail homodimer. Monomers are coloured differently so that they
can be distinguished. In both monomers, the N-terminal domain is dark-coloured. The N-terminal
domain forms a seven-bladed β-propeller fold that coordinates the catalytic tetranuclear active site
CuZ through seven histidine residues at its hub. The C-terminal domain forms a cupredoxin fold and
binds the dinuclear mixed-valent CuA centre [104].

The proven ability of N2OR to “crack” the N2O molecule raises the question of why the protein has
not yet been incorporated into a commercially available transgenic cropping choice for environmentally
motivated producers and small-plot farmers. Work has been done on this gene and its potential role
in plant biotechnology since it was originally isolated in 1998 from the anaerobic soil bacterium A.
cyclocastes [105,106], but it has yet to be converted into a commercially valuable tool. In this sense, N2OR
may be considered an “orphaned” protein, neglected among a veritable molecular toolkit of genes in
the soil microflora [107,108]. Such forays into integrating soil and air sciences are demonstrative of the
possibilities of what the soil microbiome offers biotechnologists [27]; it has already been discussed
regarding the N-management possibilities offered by the microbiome and the current practice of
‘bioprospecting’ is also revealing a plethora of beneficial bacterial products, which is only accelerating
thanks to whole-system approaches involving computational analyses [109].

Web of Science reports that between 1900 and 1991, there are no records binned under the
combined topics “nitrous oxide reductase” and “microb*”. The scientific literature blossomed from its
first occurrence of 1992 to the present day, witnessing at least 175 publications dealing with the science
of this important enzyme in our total environment. The scientific community waited until 1996 to start
discussing denitrification in a plant context, according to these same search terms. With the search
terms “nitrous oxide reductase” and “plant”, the scientific record shows that soil microbiologists have
taken a growing interest in the movement of N into the atmosphere (Figure 4). It is encouraging to
note that in the same time period, the linkage between N2OR and climate began its nascent phase.
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Figure 4. Nitrous oxide reductase-related publications released since 1990 on Web of Science (Clarivate
Analytics). Publications by key word vs “nitrous oxide reductase” from 1990 to 2018. The orange line
indicates “nitrous oxide reductase” + “microb*”; green: “nitrous oxide reductase” + “plant”; blue:
“nitrous oxide reductase” + “climat*”.

4. Catch Me If You Can: Can Plants Catalytically Convert N2O in planta?

Rather than a ‘cat and robin redbreast’ conundrum, we are confronted with an opportunity to
deploy protein engineering to ensure that more N2OR molecules are attracted to the substrate binding
site of the copper enzyme. Protein engineering offers ways to sidestep the challenges of expressing a
complex bacterial protein in a plant [110]. There are potential issues with a recombinant metalloprotein
like N2OR, such as whether the ABC transporter can assemble within a plant cell, or the plant can
incorporate copper into the electron transferring and catalytic domains [111,112]. It is possible to
re-engineer N2OR and produce a functional product [66], so there is precedent for designing an
artificial metalloenzyme through rational protein design. This approach may be key to engineering a
plant-compatible N2OR protein.

A principle challenge associated with imparting N2OR functionality to plants is that transforming
the nosZ sequence alone may not be effective [113]; in P. stutzeri, the transcription of nosZ was
dependent on the nosDFY genes being expressed, as they encode components of a putative ABC
transporter system for the biogenesis of the CuZ centre [114]. Therefore, catalytically active N2OR
may not be produced when only nosZ is expressed in a heterologous host [28]. Nevertheless,
a model N2O-expressing plant has been engineered [64,93]. The clade I nosZ gene from soil
bacterium Pseudomonas stutzeri was successfully expressed in a heterologous system—in this case,
the tobacco plant (Nicotiana tabacum). In those proof-of-concept experiments the nosZ-expressing
tobacco plants reduced 826 μg N2O/min/gram of leaf tissue [115]. Assuming the tobacco yield to
be 0.50 tonne/ha [116], the calculated N2O-cracking ability of the nosZ-expressing tobacco could be
as high as 600 kg of N2O/ha/day [115], or 60 tonnes/ha/year (100 day growing season). This value
surpasses the calculated N2O flux of 0.05–1.98 kg N2O/ha/year [117]. In other words, if every tobacco
plant in the world produced N2OR, this industrial crop (6.6 million tonnes were produced worldwide
in 2016 [118]) could conceivably crack 785 Tg of N2O (1 Tg = 1 million metric tonnes) during an average
growing season of 100 days, far surpassing the estimated ~30 Tg of N2O emitted per year [119]. Such
catalytic capacity would give the ‘Stop Smoking’ campaigns a whole new flavour.
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Although these transgenic plants produced a functional N2OR enzyme, no gas analysis was
performed to quantifiably ensure that these plants could reduce N2O to N2 using a recombinant N2OR.
In the future, it is imperative that such analyses be performed to properly judge the efficacy of such a
gene-stacking trait system for atmospheric phytoremediation.

An associated issue rests with P. stutzeri being an anaerobic species that produces enzymes
that function optimally in a low-oxygen environment. While expressing nosZ in plants to reduce
N2O appears to be an elegant solution, the N2OR enzyme was not evolutionarily engineered to be
functional in the presence of oxygen. Most soil bacteria that produce N2OR do so in an anaerobic
environment [102].

In the past five years, studies have identified several prokaryotic species that may express an
oxygen-compatible N2OR. Aerobic N2O reducers may be undertaking an important role in mitigating
the amounts of N2O emitted to the atmosphere in events of oxic-to-anoxic transitions, but these systems
have not yet been validated in plants. Here, we discuss two candidates for an oxygen-compatible
nosZ expression system: clade II-nosZ member Gemmatimonas aurantiaca gen nov., spp. nov. strain
T-27, a polyphosphate-accumulating soil aerobe that is strongly represented in many oxygen-rich
soil samples [120]; and Azospira oryzae, another clade II N-fixing bacterium originally isolated from
the roots of rice (Oryza sativa) [121]. N2O reduction by the G. aurantiaca strain T-27 was observed in
both the absence and presence of oxygen [120]. The inability of this organism to consume N2O in the
complete absence of oxygen and the observed oxygen-induced activation of nosZ expression compels
one to consider in planta overexpression, whereby the diurnal fluctuation of photosynthetic oxygen
production may offer an egress for N2O accumulation. The A. oryzae strains I09 and I13 also show
more rapid N2OR recovery rates and tolerance against oxygen inhibition than P. stutzeri [121] and so
may be appropriate candidates for crop plant transformation and N2OR expression.

If the ideal nosZ sequence were to be identified and transformed into commercially important
crop plants, the benefits would be numerous and profound: seed-borne GHG technology foresees
the transgenic cassette passed on from generation to generation, meaning that constant application
of the beneficial catalyst would not be required (as with NI application and rhizoremediation); the
expression of nosZ in the aerial tissues of the plants allows the reducing enzyme to confront N2O much
more easily than when the enzyme is expressed in the soil.

5. Novel Breeding Task: “Gas Cracking” Plants

The challenge of expressing heterologous bacterial proteins in plants necessitates codon
optimization due to differences in GC content and codon bias with eukaryotes [122]. Altering the
codon bias (or applying ‘directed evolution’ [123]) of a bacterial gene to be expressed in plants has
been highly successful: P. stutzeri nosZ in tobacco [115], 5-enolpyruvylshikimate-3-phosphate (EPSP)
synthase from Agrobacterium tumefaciens in Roundup Ready crops [124], and Bacillus thuringiensis
Cry genes in maize [125] and rice [126]. Indeed, the global advance promulgating engineered crops
is pillared on today’s artificial intelligence-guided plant codon optimization rules offered by both
large and small boutique DNA houses. However, there has been success expressing native bacterial
sequences in plants, i.e., in the case of cotton expressing the native sequence of the P. stutzeri gene ptxd
(PHOSPHONATE DEHYDROGENASE) [127,128]. One can dare to fathom how a universally-functional
nosZ expression system could conceivably redirect some aspects of GHG mitigation research. Such a
plant transformation cassette could theoretically be applied to any plant—wheat, rice, soybean, peat
moss [129]—recruiting these species for the purpose of denitrification mitigation.

Even with an effective nosZ expression system, there are additional challenges in developing
nosZ-expressing plant lines. There are relatively few powerful monocot-optimized expression systems
available [130] (although Bt corn, LibertyLink wheat, and Roundup Ready wheat can attest to
the effectiveness of the 35S promoter system in monocots), and there is difficulty in transforming
monocots [65]. With the advent of new plant transformation technologies like the soil bacterium
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Ochrobactrum haywardense [131] and the BABYBOOM/WUSCHEL2 system [132], the production of
genetically modified crops with stacked or pyramided GHG genes may be expedited in the near future.

6. Conclusions—Challenges to the Future Success of nosZ

We must address what may be the greatest challenge of all for the modern molecular plant breeder:
convincing the general public that transgenic crops may be beneficial for all the plant-planet’s denizens,
as modified crops that enter the food stream may appear unpopular in some boroughs. Regardless,
there is a clear, urgent need to control soil N2O losses due to the detrimental effects of this potent GHG
in the atmosphere. Climate-smart crops should be given a crack at directly addressing this issue and
tackling climate change. Such GHG-reducing plant lines, endowed with the ability to catalytically
“crack” N2O in the air, could be vital in the battle to shift public perception towards the acceptance of
“GMOs” in agricultural research.

Involvement of N2O in climate change and global warming has been the subject of increasing
investigations due to its potential heat-trapping properties [3]. N2O emission from soil is primarily
the result of an incomplete enzymatic reaction which is mediated by the bacterial enzyme, N2OR [98].
Therefore, in the late 1990s [105,106], the development of N2OR-positive transgenic plants was
proposed as an environmental phytoremediation strategy with promise to remove N2O from soil and
the atmosphere (Figure 2). However, producing a foreign protein in a plant cell is often a serious
challenge. For example, different codon usage [133] and cellular properties between eukaryotic and
prokaryotic cells are considered as unknown aspects of this strategy. At least two key questions
need to be addressed in future studies to probe the probability for success of this green gene de-toxic
tactic for accelerating the destruction of nitrous oxide via canopy catalysis: (1) Which candidate is
the best source-organism to donate nosZ sequence for plant transformation? Activity of bacterial
N2OR is associated with the anaerobic conditions in soil [101], whereas the plant cell is mostly an
aerobic environment. Photosynthesis and respiration cause different levels of oxygen content in plant
cells in a diurnal cycle which is not consistent with the enzymatic activity of N2OR in anaerobic soil
bacteria. Therefore, selecting obligate or facultative aerobic bacteria containing active N2OR enzymes
as ‘the source code’ would be pivotal; (2) Which plant cell compartment is the best destination for
targeting N2OR accumulation? The native enzyme N2OR in bacteria is directed to the periplasm,
where Cu chaperones provide enough Cu for the assembly of metal centres [134]. The absence
of periplasmic space in plant cells reinforces the notion that subcellular localization of N2OR may
influence its enzymatic activity in planta. Moreover, the important role of Cu in the functional assembly
of N2OR posits whether the transformation of bacterial nosDFY, along with nosZ, is essential for a
functional enzyme. Urgent exploration of how the cellular pool of metal nutrients and proteins (pseudo
chaperones) in eukaryotic cells may suffice to activate N2OR in planta may compel the use of such
climate-smart plants.
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Abstract: The agricultural industry employs a large workforce in Ghana and remains the primary
source of food security and income. The consequences of extreme weather in this sector can
be catastrophic. A consistent picture of meteorological risk and adaptation patterns can lead
to useful information, which can help local farmers make informed decisions to advance their
livelihoods. We modelled historical data using extreme value theory and structural equation
modelling. Subsequently, we studied extreme weather variability and its relationship to composite
indicators of agricultural production and the long-term trend of weather risk. Minimum and
maximum annual temperatures have negligible heterogeneity in their trends, while the annual
maximum rainfall is homogenous in trend. Severe rainfall affects cereals and cocoa production,
resulting in reduced yields. Cereals and cocoa grow well when there is even distribution of rainfall.
The return levels for the next 20–100 years are gradually increasing with the long-term prediction of
extreme weather. Also, heavy rains affect cereals and cocoa production negatively. All indicators of
agriculture had a positive relationship with maximum extreme weather.

Keywords: extreme weather; agriculture production; return level; extreme value theory; weather; risk

1. Introduction

Many developing countries particularly those in the tropical regions are sensitive to changing
the climate, especially where temperatures are already threatening agricultural production [1–3].
They have restricted access to a human and physical asset that can mitigate its effects [4].
These difficulties are often manifold by the lack of connection to new technologies and established
markets [2,4]. Ghana is an example of a country facing these challenges. The irrigated land for
agricultural use covers only 1% of farmland, and the majority of the farmers are entirely dependent
upon seasonal rainfall [5–7].

This concern about the changing climate is due to its negative impact on the living conditions of
humankind. Developing nations, particularly Ghana, is increasingly concerned about the changing
climate because they are more vulnerable compared to developed nations. Climate change is a
significant issue of risk to sustainable growth in Africa. As such, the efforts of African countries to
realise the Millennium Development Goals can be considered as an offer if the adverse effects of
climate change are taken seriously by Africa nations. Generally, African states contribute very little to
climate change yet they bear the major brunt of it. Also, the Africa continent is more vulnerable to the
effects of this changing climate as a result of its excessive reliance on rainfed agriculture, and extreme
poverty [8]. The critical long-term effects of climate variation include: change in precipitation leading to
reduced agricultural production, reduced food security, deterioration of water security, and reduction
of fish stocks due to high temperature and displacement. Also, sea-level upsurge due to climate
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variation affects coastal areas greatly. The adverse effects of climate change in the form of a reduction
in agricultural output ultimately lead to a delay in the development of African countries where a more
substantial part of national income comes from agriculture. Also, the agricultural sector functions as a
basis of livelihood for most people in Africa [8].

To tackle climate change, Ghana signed the United Nations Framework Convention on Climate
Change (UNFCCC) at the Earth Summit in Rio de Janeiro in June 1992, following the adoption of the
Convention on 9 May 1992 [9]. In Ghana, three critical physical effects of climate change identified
include temperature change, precipitation change, and sea level rise [7]. According to a report [10],
there is a shift in the rainfall regime in Ghana towards a longer dry season and vanishing wet season.
Despite the signing of the Convention by Ghana, the country continues to face the adverse effects
of climate change in the area of health, agricultural, already depletion of coastal areas, and low
water levels. For example the country’s only hydroelectric dam (which produces 80% of the national
electricity supply) due to lower rainfall [11]. The consequence of climate change on the Ghanaian
economy is due to the lack of environmental adaptation strategies and the socio-economic costs of
adapting those strategies to mitigate the effects of climate change.

Climate change affects the transport system in the areas that are heavily dependent on weather
conditions [12,13]. According to Reference [14], climate change adversely affects the critical elements
of food production such as soil, water, and biodiversity. As a result, Ghana’s economic dependence on
areas (as energy, agriculture and forestry) which are particularly susceptible to the changing climate
makes it more prone to the adverse effects of weather. In this vein, it is essential to carry out studies on
the changing climate and its volatility in Ghana.

Specifically, this article examines the following.

� Examining the trends in extreme maximum rainfall and extreme high/low temperature
� Assessing the variability and weather risk of extreme maximum/minimum
� Analysis of the relationship of extreme weather to agriculture production indexes

• Effect of exceptionally high rainfall on agriculture production indexes
• Effect of extremely high temperature on agriculture production indexes
• Impact of low temperature on agriculture production indexes

Rare weather conditions like severe rainfall, extreme temperature (and heat waves), or strong
winds, may have significant effects on sectors such as agriculture and health, which may result in
severe risk to human life [15]. Further, risks of extreme heat and drought depend not only on the
severity of the event but also on the sensitivity and vulnerability of the exposure system [16].

The existing studies only show regional climate parameters and how the joints of their scales
occur. We contend that the environmental parameters if could serve as a tool for eliminating human
disasters if their extreme conditions are well understood and managed correctly [17]. Focusing on
the regional research, particularly climate system, the influence of climate change and uncertainty in
weather conditions could alter and transform societal and institutional behaviours [18,19].

Substantial studies concede extreme value theory as a method that estimates rare event
whiles generalised extreme value distribution (GEVD) is capable in determining the probability
of events occurrence that fall outside of an observed data range. Given this, GEVD has attracted
attention in diverse areas of research such as climatology data analysis [20–23]. Issues relating to
Extreme Value Theory gradually implemented in practical covariate approach of non-stationary
conditions [15,20,24–28]. An investigation by [29–31] on daily rainfall at various observation sites
in West Africa revealed an increasing trend of yearly maximum rainfall. Research has shown
variations in extreme rainfall [30]. Thus extreme rain is related to a decline in annual precipitation
intensity. In weather forecasting, efforts are made to predict the impact of weather conditions on food
security [32]. Such reviews can help planners provide adequate protection and adaptation solutions
that contribute to the resilience of the population and the reduction of socio-economic disasters. In the
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world over, 33% of observed crop production modifiability emanates from a change in climate thereby,
a cause of variations of crop yield in Africa [33–35]. The intra-inter yearly rainfall and temperature
show considerable effects on crops production and therefore ensures food safety [36].

Similar studies demonstrate that rainfall and temperature adversely affect crop yield. It calls for
authorities in Africa to enforce sustainable food security policies [37,38]. In a period of severe soil
moisture, flowering development stagnates [39]. Research has shown that drought is inimical to the
growth of cocoa. Therefore, there is a causality between rainfall and cocoa yield [40]. Analogously,
the sustenance of a bumper harvest is positively related to rainfall distribution than the total amount of
rainfall received annually [41]. However, Reference [42] argues on the positive and negative causality
of crops production in Ghana.

The yearly rainfall in cocoa growing areas in Ghana is more than 2000 mm. Also, two rainfall
seasons are recorded from April to July and September to November, where July to August faces
relative dry weather with high humidity condition. There is a dry weather condition between a second
month and the eleventh month of the annual calendar [40,43]. Variations in climate pose a threat to the
health of animals, and unfavourable heat affects them reproductively [44,45].

The 21st century saw a decline in yields ranging from 2.5% and 10% as temperature rises in some
agronomic species [46]. The results of the evaluation of the effect temperature on crop yield at various
levels indicate a decrease in yield. For example, the decline in barley production is due to the low
temperatures during the vegetative stages and represents about 42% of low yield. The different seasons
with low temperatures and high rainfall are unusable conditions for the potato, resulting in reduced
yields [47].

Ascertained by [48–50], climate change due to the uncertainty of precipitation has a significant
impact on agriculture production. On this account, this study introduces a different dimension into
the analysis of weather effects on agriculture by looking at the extremes conditions of temperature and
rainfall hence; we aim to fill this gap in the literature.

Given the increasing occurrences of climate change, there is a need for researchers to consider
extreme conditions that often occur due to climate variability and its related events. Relying on
climate variation in a whole without considering the specifics thus, minimum and maximum extremes
have resulted in a situation where policies are formulated but not directed at specific extreme effects.
This study looks at weather variability concerning maximum and minimum extreme conditions to
enhance the formulation of targeted policies to help curb their impact on agriculture production.
Further, we have investigated the relationship between extreme weather events and agriculture
production indexes and assessed agricultural risk using extreme value theory (EVT) and structural
equation modelling, which are different from previous studies.

2. Materials and Methods

2.1. Climate Change and Variability in Ghana

The regional scenarios of seasonal precipitation and temperature changes in 32 regions globally
analysed by (IPCC, 2014) show the current variations in climate and the range of variations in 30-year
period predicted by GCM, focused in 2025, 2055, and 2085. This background information is critical in
explaining the probable effects of climate variation on livestock and crop production.

The IPCC approximate that the past period saw temperatures increased by an average of 0.6 ◦C.
The preceding 25 years, there was no observation of atmospheric temperatures from 1995–2006, 11 out
of 12 was the warmest years [51]. Countries are beginning to experience consequences related to global
warmings, such as the long-term drought within the Sahel zone in Africa and the expansion of the
malaria transmission belt of tropical Africa [52]. Universally, the figure noted for weather-associated
natural adversities is fast increasing. From the 1960s, accounts of natural risks have tripled. During
2007, fifteen (14) out of fourteen (15), “emergency appeals” for emergency public-spirited assistance
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were in the areas of storms, droughts and floods, five times more than in the prior year [53]. Ghana’s,
climate variation is experiencing increasing unpredictable rainfall and temperatures in all regions [54].

Also, global warming is predicted to show variations in rainfall patterns, acidification,
and moisture [55]. In this context, the global effect of climate variation on global life-assistance systems
remains uncertain. Some parts experience extreme precipitation resulting in flooding; for example,
the Mediterranean areas are experiencing a decline that could result in drought conditions [55]. By some
reports [55], the anticipation of global average temperatures will rise between 1.4–5.8 ◦C by close of the
century, as sea levels, increase as melting glaciers melt. Observations recently, however, indicate that
many predictions concerning climate change are near the higher limit of the IPCC estimates. Sea levels,
for example, have exceeded the IPCC estimates of up to 30 cm [56].

Based on a study by Reference [57], is establish that an estimated 35% of the entire land in Ghana is
affected by increasing desertification. The unexpected variability of precipitation patterns is observed
for years in Ghana as affirmed by Reference [58]. With the historical data, precipitation was mostly
high in the 1960s, but fell to low levels by the end of 1970s and then rose again in 1980s. This fall in
precipitation patterns is still prevalent currently, as Reference [59], with 20 years of data, observed this;
temperatures are rising throughout Ghana and is precipitation decreasing and becoming gradually
unpredictable. The effects of changing climate are anticipated to be severe in Ghana, even though
there are rises and fall in both yearly temperatures and precipitation. Conceding to the World Bank’s
projection, the temperature trend from 2010–2050 shows warming in almost the highest-temperature
parts of Ghana, including the North and the Upper Regions.

Nevertheless, the region with the lowest temperature is the Brong Ahafo region. These are base
on different climate scenarios [58]. For example, looking at the scenario, it was recognised that the
temperatures of the three northern regions would increase by 2.1–2.4 ◦C by 2050. On the contrary,
the predicted increase in Ashanti, West, East, Volta, and Central regions ranges from 1.7–2.0 ◦C and
those of Brong Ahafo 1.3–1.6 ◦C.

We also reviewed the latest temperature and precipitation forecasts from the Intergovernmental
Panel on Climate Change (IPCC) [60] to simulate the impact of climate change on agricultural
production in Ghana. These projections are on Phase Five of the Coupled Model Inter-comparison
Project (CMIP5), which brings together the results of 39 different global models. We used projections
for West Africa until 2035. According to the first scenario, the most optimistic, the temperature should
increase by 0.7 degrees and precipitation by 8%. These increases represent the expected minimum
increase in temperature and the maximum expected increase in precipitation. The second scenario
concerns the median increase in temperature (0.9 degrees) and precipitation (1%). The third scenario,
the least optimistic, concerns the maximum expected increase in temperature (1.5 degrees) and the
maximum decrease in precipitation (4%). A meta-analysis of crop yield response to climate change,
using local average temperature as an indicator of change, concluded that global warming at 2 ◦C
could lead to an increase in wheat, rice, and maize yields, with yields subsequently decreasing with
increased warming. The AR4 also showed that crop-level adaptations had a markedly positive effect
on all crops, regions, and warming levels [61].

According to Reference [62], Tables 1 and 2 show some of the climate changes in Ghana and the
corresponding time periods.
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Table 1. The projections of precipitation in Ghana.

Location Climate Type Forecast Changes

Accra Coastal Savanna Zone From 52% decreases to 44% increases in wet season
rainfall by the year 2080.

Kumasi Deciduous Forest Zone

From 48% decreases to 45% increases in wet season
rainfall by the year 2080. Based on their A2 scenario,
which generally shows the largest greenhouse gas
(GHG) impact, predicts the weakest increase in wet
season rainfall, 1.13%.

Tarkwa Rain Forest Zone From 45% decreases to 31% increases in wet season
rainfall.

Techiman Forest-Savanna Transition Zone

From 46% decreases to 36% increases in wet season
rainfall. The A2 scenario, which generally shows the
largest GHG impact, predicts the largest decrease in
wet season rainfall, −2.94%.

Tamale Guinea Savanna Zone From 36% decreases to 32% increases in wet season
rainfall consistent trend toward decreased rainfall.

Walembelle Northern Guinea Savanna Zone From 25% decreases to 24% increases in wet season
rainfall

Bawku Sudan Savanna Zone Range from 28% decreases to 30% increases in wet
season rainfall.

Source: Extracted from [8,43].

Table 2. Temperature projections in various climate stations in Ghana.

Location Climate Type
Temperature Projections

Wet Season Dry Season

Accra Coastal Savanna Zone 1.68 ± 0.38 ◦C by 2050
2.54 ± 0.75 ◦C by 2080

1.74 ± 0.60 ◦C by 2050
2.71 ± 0.91 ◦C by 2080

Kumasi Deciduous Forest Zone 1.71 ± 0.39 ◦C by 2050
2.60 ± 0.77 ◦C by 2080

1.81 ± 0.68 ◦C by 2050
2.83 ± 1.04 ◦C by 2080.

Tarkwa Rain Forest Zone 1.69 ± 0.37 ◦C by 2050
2.56 ± 0.75 ◦C by 2080

1.76 ± 0.67 ◦C by 2050
2.76 ± 1.01 ◦C by 2080.

Techiman Forest-Savanna Transition Zone 1.77 ± 0.43 ◦C by 2050
2.71 ± 0.85 ◦C by 2080

1.95 ± 0.79 ◦C by 2050
3.05 ± 1.20 ◦C by 2080.

Tamale Guinea Savanna Zone 1.84 ± 0.46 ◦C by 2050
2.83 ± 0.91 ◦C by 2080

2.05 ± 0.75 ◦C by 2050
3.18 ± 1.18 ◦C by 2080.

Walembelle Northern Guinea Savanna Zone 1.92 ± 0.52 ◦C by 2050
2.96 ± 0.98 ◦C by 2080

2.10 ± 0.71 ◦C by 2050
3.27 ± 1.11 ◦C by 2080.

Bawku Sudan Savanna Zone 1.92 ± 0.53 ◦C by 2050
2.97 ± 0.98 ◦C by 2080

2.11 ± 0.68 ◦C by 2050
3.25 ± 1.08 ◦C by 2080

Source: Extracted from [8,43].

2.2. Seasonal Changes of Precipitation and Temperature

The climate of Ghana is tropical, with a dry season in winter and a rainy season during the
summer due to an African monsoon. The duration of the rains varies according to the ecological zones.
As shown in Figure 1, the rainy season is usually from May to September to the north, from April to
October in the centre, and from April to November to the south. However, on the east coast, the rainy
season is shorter than the rains from April to June, with no rainfall in July and August, and it picks
up slightly in September and October. The south is the coolest part of Ghana, where it has more than
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1500 mm (per year), and even more the small west coast, where it reaches 2000 mm (80 inches) per
year. The north is the driest in Ghana, where rainfall is about 1000 mm (40 inches) per year and the
east coast, including the city of Accra, where it falls below 800 mm (31.5 in).

Figure 1. The Monthly trend of temperature and rainfall in Ghana.

2.3. The trend of Climate Change in Ghana

Ghana is located in West Africa, bordered to the north by Burkina Faso, east to Togo, west to Ivory
Coast, and south to the Gulf of Guinea. It is located between 4.50 degrees north and 11.50 degrees
north and longitude 3.50◦ west and 1.30◦ east. The country has an area of 239,460 Km2 and a surface
area of 8520 Km2 as seen in Figure 2. The country has a population of around 24 million since 2010,
with an annual growth rate of about 2.5% [63]. Young people dominate this population. The main
exports are cocoa, gold, wood, diamonds, bauxite, manganese, and hydroelectricity. Until recently,
the country also began to export crude oil. In 1991/92, the poverty level in Ghana reached 51.7 per cent,
and this figure has steadily declined in recent years to 39.5 per cent in 1998/99, 28.5 per cent in 2005/06,
and 24.2 per cent in 2012/2013. The country enjoys a high temperature while the average annual
temperature is between 24 ◦C and 30 ◦C. Despite the average annual temperature, temperatures may
be 18 ◦C and 40 ◦C in the southern and northern parts of Ghana. Rainfall in Ghana is generally
declining from south to north. A more prosperous region in Ghana is the far southwest, with an annual
rainfall of about 2000 mm. However, the annual rainfall in northern Ghana is less than 1100 mm.
The country has two major systems of rain: the double-twin system and the single maximum regime.
For the maximum binary system, the maximum periods are from April to July and from September to
November in southern Ghana. While the only maximum system is from May to October in northern
Ghana, the prolonged drought lasts from November to May. Over the years, temperatures have risen
in all ecological regions of Ghana, while rainfall levels have generally declined and standards have
steadily increased [9].

Despite dramatic improvements in technology and crop yields, food production continues to
depend heavily on the climate because solar radiation, temperature and rainfall are the critical factors
of increase in crop production. The climate is affected by the diseases of plant and the spread of pests,
including the supply and demand for irrigation water. For instance, in recent decades, the ongoing
drought in the Sahel has caused a continued deterioration in food production [64] in Ghana. The effect
of the changing climate on crops was in 1990, where the crop has suffered or decreased. Also, due to
drought, climate indicators such as rainfall and average mean temperature are associated with crop
change [57]. Table 3 below presented climate change variations experienced.
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Figure 2. Location Map of Ghana.

Table 3. Climatic variations experienced in Ghana.

Time Period Climatic Variations

January–July 1976 Scorching weather conditions

1983–1984 Drought: A yearlong of bushfires

October–December 1989 Scorching weather conditions

1991 Lots of rains throughout the year

1995 About 40 days of intensive rains

2004 Noticeable are frigid winds during March–April (Easter) and
November–January was very cold weather

2005 Cold periods resulting in animal deaths

August 2006 One week of intensive rains, and

2007 Lots of rains in August and September.

Source: Extracted from [62].

2.4. The Generalized Extreme Value Distribution (GEVD)

The GEVD is part of the family of continuous distribution functions that allows a continuous
range of shapes and consists of classes of distribution functions such as Gumbel, Fréchet, and Weibull.
Considering the Fisher-Tippett Gnedenko theorem, the GEVD is a limit-form distribution function,
which maximises the maxima of the sequence of random variable considered as independent and
identical distributed (i.i.d). It, therefore, models the maximum of a finite sequence of random variables.
The combined model of maxima is by Equation (1):

Gγ,μ,σ = exp
{
−
(

1 + γ
(

x−μ
σ

)− 1
γ

)}
with, γ �= 0, σ > 0 and γ

(
x−μ

σ

)
> 0

σ > 0
(1)
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The derivative of Equation (1), give a probability density function in Equation (2) as:

gγ,μ,σ =
1
σ

(
1 + γ

(
x − μ

σ

))−1− 1
γ

exp

{
−
(

1 + γ

(
x − μ

σ

))− 1
γ

}
, γ �= 0 (2)

where μ and σ are the location and scale parameters, respectively [20].
The GEVD shape parameter γ also termed as the extreme value index. The decay rate of GEVD

seen as γ−1. If γ > 0 for a class of distributions, G fits distributions as; the heavy-tailed Fréchet
distribution, Cauchy, Student’s t, Pareto class, and mixture other distributions. G fit into the short-tailed
Weibel distribution, uniform, and beta distribution if γ < 0. G fits the right-tailed Gumbel distributions
(normal, exponential, gamma, and lognormal) if γ = 0 [65–67].

2.5. Maximum Likelihood Estimation for GEVD

The assumption that X1, . . . , Xm follows an (i.i.d) and also from generalised extreme value
distribution with parameter when γ �= 0 the log-likelihood function given as:

Provided that 1 + γ

( x(i) − μ

σ

)
> 0 for i = 1, 2, . . . , m (3)

l(μ, σ, γ) = −m ln σ − (1 + 1/γ)
m

∑
i=1

ln
[

1 + γ

( x(i) − μ

σ

)]
−

m

∑
i=1

[
1 + γ

( x(i) − μ

σ

)]−1/γ

(4)

Parameters combination that deviates from the above conditions (Equation (3)), i.e., in a
configuration where at least one of the observed data exceeds the endpoint of the distribution
(Equation (4)), the likelihood is zero, and the log-likelihood is equal to −∞. This case γ = 0
requires separate treatment with GEVD’s Gumbel restriction leading to logarithmic log-likelihood as
in Equation (5);

l(μ, σ) = −m ln σ −
m

∑
i=1

( x(i) − μ

σ

)
−

m

∑
i=1

exp
{
−
( x(i) − μ

σ

)}
(5)

Equations (2) and (3) are differentiated and maximised concerning the parameter vector
(μ, σ, γ), Solving for (μ, σ, γ), results to the maximum likelihood estimates for the whole GEVD
model [20,28,68,69]. Maximum likelihood estimation offers the advantage of estimation of the three
parameters together and applicable to the series of maxima per block [70].

Model Checking for GEVD

The model fit of GEVD measure after estimating the parameters by utilising residual plots function
as defined by Equation (6),

res =

{ (
1 + γ

σ (x − μ)
)−1/γ i f γ = 0

exp
[
− exp

(
− x−μ

σ

)]
i f γ �= 0

(6)

Ascertain by Reference [20] conversion of data to unit exponential distributed residuals is on the
null assumption that GEVD fits the data.

2.6. Return Period or Level Estimates

The frequency of extreme quantiles incidence estimated with a fixed value of return level.
The return level is the mean number of events taking place within a unit period, e.g., one year [71].
Return levels are essential for prediction purposes and estimated from stationary models. The expected
return time is the number of time (years) one is expected to wait on average before the observation of
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another extreme event of at least the same intensity. If a threshold exceedance of a given probability of
an observed extreme incidence in any given time (year) is p, then the mean return period T is such that
T = 1/p.

2.7. Test for Stationarity and Seasonality

The stationarity of the data conducted by the augmented Dickey-Fuller (ADF) stationarity test
on the assumption that there is no trend [72]. The quality of convergence of the weather extremes is
access using the Kolmogorov–Smirnov (K-S) and Anderson–Darling goodness-of-fit tests. The K-S test,
relying on the empirical study of the cumulative distribution function, is used to determine whether
the sample is from the hypothesised continuous distribution. The K-S approach is less sensitive for
normal distribution [72]. The Anderson-Darling test, an enhancement of the K-S test, compares the
fit to the expected cumulative distribution function of the observed cumulative distribution function.
This test gives more substantial weight to the tail of the distribution than the K-S test [72].

The assumption is that the data is from a population which is independent identically distribution
(i.i.d). The alternative hypothesis is a two-tail test on the assumption that the data follow a monotonic
trend. Thus, the following test statistics by Mann-Kendall determine by Equation (7):

S =
n−1

∑
k

n

∑
j=k+1

sgn
(
xj − xk

)
(7)

with sgn the signum function.

3. Methodology

This paper analyses past Composite Indexes in Agriculture ranges from 1961–2016: crops
production, cocoa production, livestock production, cereal production, and food production in
Ghana. The data also consider records of maximum rainfall, maximum temperature, and minimum
temperature value as weather indicators from January 1965 till July 2016. We sourced the data from
the Ghana Meteorological Agency for climate data, and agriculture production indexes from the
Food and Agriculture Organization also in Ghana. Rainfall and temperature are assumed to be
the primary determinants of weather in Ghana as seen in Figure 1. The first task was to check for
stationarity of the weather variables using Augmented Dickey-Fuller (ADF) unit root test and then the
Mann-Kendall Trend Test of seasonality. It was necessary to apply methods that explicitly allow for
testing non-stationarity in the distribution parameters of climate variables [20].

Next step was to model from the dataset of the weather indicators employing the Block Maximum
Method for the weather extremes under Generalized Extreme Value Distribution (GEVD). There were
two approaches to the modelling of Block minima data for the minimum temperature. Either the GEVD
for minima fitted to this data or the data negated and the GEVD for maxima fitted [20]. The latter
approach was adopted since the Extremes Toolkit does not include a routine to estimate the GEVD
for minima directly. The block maxima method is a parametric approach to Extreme Value Theory.
It entails fitting the GEVD to a specific group of maximum values chosen in a given sample of data.
It focuses on the statistical behaviour of the largest or smallest value in a sequence of independent
random variables. Assume that the sequence is grouped into blocks of size N (with a reasonably
large number) and that only the maximum score Mi (i = 1, 2, 3, . . . , n) of each block extracted. Each
Mi (i = 1, 2, 3, . . . , n) of the weather indicators is then used to estimate the relationship between the
composite indexes of agriculture production.

The mean return period defines the amount of time (e.g., years) that is expected to pass on average
before a new extreme with the same or increased intensity. Given the likelihood that events past a
certain threshold will follow an extreme of a particular security at any given time (year) is defined as p,
then the mean return period T can be calculated as T = 1/p.
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Food production index includes food crops that are considered edible, and that contain nutrients
with the exclusion of coffee and tea because they have no nutritive value although edible (FAO).
Figure 3 shows the primary crop food calendar.

Finally, we investigated the relationship between extreme weather events and agriculture
production using SEM software to evaluate the potential impacts of weather extremes on Agriculture
production. We used SEM regression for the paths equation modelling analysis with the partial least
squares (SEM) estimation technique [73]. SEM is a modelling approach with a flexible procedure, which
can handle data with missing values, strongly correlated variables, and small samples. SEM-regression
works with both continuous and discrete observed variables as indicators. The SEM estimates loading
and path parameters between variables and maximises the variance explained for the outcome
variables [73].

Figure 3. Major food crops calendar in Ghana.

4. Results and Discussion

4.1. Stationarity Test for the Weather Indicators

The ADF test is captured in Table 4 indicating the significance of the p-value statistics. The premise
of non-stationary at 1%, 5%, and 10% rejected, and therefore we conclude the stationarity of the
weather indicators.

It is reported by scholars that, Mann-Kendall Trend Test of stationarity is reliable and efficient.
In line with this, analysing environmental data demands the exposure of movements of events on
separate points [74]. Based on this, the test outcome illustrates high or low trends in weather conditions
of a particular jurisdiction.
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Table 4. Stationarity and Seasonality test.

Augmented Dickey-Fuller Stationarity Test

Test Variable
Test’s Critical Values

Test Statistics p-Value
1% 5% 10%

Annual maxi. Rainfall −3.958 −3.410 −3.127 −16.350 0.0000
Annual maxi. Temperature −10.007 −3.431 −2.862 −2.567 0.0000
Annual mini. Temperature −12.482 −3.431 −2.862 −2.567 0.0000

Seasonal Mann-Kendall Trend Test

Series
Statistics p-value tau Slope 95% CI

z (trend) z (Het) p (trend) p (Het)

Maxi. Rainfall 0.434 22.376 0.664 0.0216 0.0019 0.0044 [−0.0194,0.0308]
Maxi. Temperature 21.842 4.779 <0.001 0.9410 0.1320 0.0318 [0.0286,0.0346]
Mini. Temperature 25.123 23.894 <0.001 0.1320 0.1520 0.0231 [0.0212,0.0250]

95% confidence interval in parenthesis.

In Table 4, the estimated annual trend is 0.0044 mm/year, a yearly increase in the maximum
annual rainfall. The p-value based on the Kendall seasonal trend test is p = 0.6640, which shows no
importance. The 95% confidence interval on both sides for the trend (−0.014,0.0307), the chi-square test
for heterogeneity (Het) gave a p-value of 0.0216. Therefore, there is a difference in the level of a trend in
the different seasons of the maximum annual rainfall. As shown in Table 4, the estimated annual trend
is 0.0318 degrees Celsius (◦C)/year, which is a yearly increase in the yearly maximum temperature.
The p-value corresponds to the Kendall seasonal test for the p < 0.001 trends, indicating that it is
statistically significant. The 5% level of significance on both sides for the trend is (0.0286, 0.0346).
The chi-square heterogeneity test (Het) provides a p-value of 0.9410, so there is no evidence for different
sets of stresses at different times of the maximum annual temperature. The estimated annual trend is
0.0231 degrees Celsius (◦C)/year, a yearly increase in the maximum annual temperature. The p-value
of the Kendall seasonal trend test, p < 0.001, indicating that it is statistically significant. The 5% level of
significance on both sides for the trend is (0.0212,0.0250). The chi-square test for heterogeneity (Het)
gives a p-value of 0.1318, i.e., no indication of the different trend in different seasons of the minimum
annual temperature.

4.2. GEVD Model for Extreme Maximum Rainfall

In Table 5, the estimated return periods of maximum rainfall likely to occur over the next 5, 10, 20,
50 or even 100 years fitted by GEVD. The estimated results are (μ , σ , γ) (149.03,23.98,0.0024), with
standard errors (3.758, 2.718, 0.1002). The approximate 95% confidence intervals for the parameters are
thus (141.67, 156.39) for μ, (18.65, 29.31) for σ, and (−0.193,0.198) for γ.

Table 5. Generalised extreme value estimates of maximum rainfall.

GEV
Maximum Rainfall

Location Scale Shape

Estimates μ = 149.03 σ = 23.98 γ = 0.0024
Std error 3.758 2.718 0.1002

95% CI (normal app) (141.67,156.39) (18.65,29.31) (−0.193,0.198)

Estimated Return Levels 95% Lower Estimate 95% Upper

5-year return level 173.14 185.06 196.98
10-year return level 186.59 203.13 219.68
20-year return level 196.99 220.50 244.03
50-year return level 206.49 243.04 279.57
100-year return level 210.72 259.95 309.05
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The validity and reliability of the extrapolation of GEVD fit is assessed base on the observed
data. Four graphical analyses assist with model checking [20,75]. Figure 4 shows diagnostic plots
assessing the accuracy of the GEVD model fitted. Neither the quantile plot nor the density plot has any
reason to doubt the validity of the fitted model: each drawn set of points is almost linear. The return
level plots asymptotically converge to a determinate value due to the positive estimates, with the
curve approaches a straight line. The sample variable under consideration provides an adequate
representation graphically of the empirical estimates. Finally, the corresponding density estimate
appears to be consistent with the density curve. As a result, all four diagnostic diagrams support the
GEVD model as in Figure 4 (Top-left: empirical plot; Top-right: empirical quartile plot; Bottom-left:
density plot; Bottom-right: return level plot).

The determination of the limiting distribution by maximising the GEV negative log-likelihood for
annual maximum rainfall leads to the following function in Equation (8):

G(z) = exp

{
−
[

1 + 0.00243
(

z − 23.98
149.03

)] −1
0.00243

}
(8)

Equation (8) gave estimates of return levels for 5, 10, 20, 50, and 100-years and their 5% significant
level as shown in Table 3. Thus, based on the data from 1965 to 2016, once in 50 years we should expect
to see an extreme annual maximum rainfall hit between 206.5 and 279.6 mm. The upper bound of the
model prediction for the 50-years Return level of 279.6, but 510 mm extreme rainfall recorded in 1968.
Of course, this is undoubtedly extreme beyond regular extreme events, which is not expected based
on the model’s predictions. Results from Table 2, indicates that extreme maximum rainfall is steadily
increasing significantly over the 100 years.

Figure 4. Diagnostic annual maximum rainfall plots.
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4.3. GEVD Model for Extreme Maximum Temperature

As shown in Table 6, the estimated return level of maximum temperature likely to occur over
the next 5, 10, 20, 50, or even 100 years by fitting these data to the GEVD. The maximum rainfall
data yield estimates for (μ , σ , γ) of (41.933,0.892, 0.203), with standard errors (0.137,0.105,0.079).
The approximate 95% confidence intervals for the parameters are thus (41.66,42.20) for μ, (0.686,1.098)
for σ, and (0.0463,0.359) for γ.

Table 6. GEVD estimates of maximum temperature.

GEVD
Maximum Temperature

Location Scale Shape

Estimates μ = 42.08 σ = 0.826 γ = −0.292
Std error 0.128 0.0912 0.0942

95% CI (normal app) (41.664,42.202) (0.686,1.098) (0.046,0.359)

Estimated Return Levels 95% lower Estimate 95% upper

5-year return level 42.82 43.08 43.35
10-year return level 43.16 43.44 43.72
20-year return level 43.39 43.72 44.04
50-year return level 43.59 44.00 44.41
100-year return level 43.67 44.17 44.67

Analytic plots used in estimating the accuracy of the GEVD model fitted to the annual maximum
temperature data shown in Figure 5 (Top-left: empirical plot; Top-right: empirical quartile plot;
Bottom-left: density plot; Bottom-right: return level plot). All four diagnostic schemes provide support
for fitting the GEVD to the maximum annual temperature.

Figure 5. Diagnostic annual maximum temperature plots.

117



Climate 2018, 6, 86

The determination of the limiting distribution by maximising the GEV negative log-likelihood
for annual maximum temperature leads to the following function, Equation (2): (μ , σ , γ) of (42.081,
0.826, −0.292)

G(z) = exp

{
−
[

1 + 0.826
(

z − 0.892
42.08

)] −1
−0292

}
(9)

From Equation (9), estimates of return periods for 5, 10, 20, 50, and 100-years and their confidence
intervals at 95% as shown in Table 6. Thus, based on the data from 1965 to 2016, once in 100 years
we should expect to see an extreme annual maximum temperature hit between 43.6 ◦C and 44.4 ◦C
maximum temperature. The upper bound of the model prediction for the 100-years return is 44.4 ◦C,
but 65 ◦C extreme annual temperature recorded in 1989. Of course, this is also undoubtedly extreme
beyond regular extreme events, which is not expected based on the model’s predictions. It is revealed
by Table 6, that extreme maximum temperature consistently increasing marginally over the 100 years.

4.4. GEVD Model for Extreme Minimum Temperature

In Table 7 below, the estimated return periods of minimum rainfall likely to occur over the
next 5, 10, 20, 50 or even 100 years fitted to the GEVD. The maximum rainfall variable yields
estimates for (μ , σ , γ) of (6.408, 5.261,−0.632), with standard errors (0.817, 0.758, 0.148) respectively.
Approximate 95% confidence intervals for the parameters are thus (4.806, 8.011) for μ, (3.774, 6.747) for
σ, and (−0.922, −0.342) for γ.

Table 7. GEV estimates of Minimum Temperature.

GEV
Minimum Temperature

Location Scale Shape

Estimates μ = 6.408 σ = 5.261 γ = −0.632
Std error 0.817 0.758 0.148

95% CI(normal app) (4.806,8.011) (3.774,6.747) (−0.922,−0.342)

Estimated Return Levels 95% lower Estimate 95% upper

5-year return level 10.355 11.506 12.657
10-year return level 11.882 12.723 13.564
20-year return level 12.761 13.456 14.151
50-year return level 13.233 14.022 14.812
100-year return level 13.333 14.274 15.216

Equation (10) is the determination of the limiting distribution by maximising the GEV negative
log-likelihood for annual minimum temperature leads to the following function:

G(z) = exp

{
−
[

1 − 0.632
(

z − 5.261
6.408

)] −1
(−0.632)

}
(10)

Supposing the relative stability of the GEVD process producing estimates for annual minimum
temperature in degree Celsius (◦C), the model estimates that the 5-year return level is 11.5 ◦C with
95% confidence interval (10.4, 12.7). For ten years it is a 12.7 ◦C extreme minimum temperature with
95% confidence interval (11.9, 13.6), and for 50 years it is 14.0 ◦C extreme minimum temperature with
95% confidence interval (13.2, 14.8). Thus, based on the data from 1968 to 2016, once in 100 years we
should expect to see an extreme annual minimum temperature hit between 13.3 ◦C and 15.2 ◦C. For the
period under annual extreme minimum temperature, there was no extreme beyond normal extreme
events. In Table 7, the extreme minimum temperature is consistently increasing over the 100 years’
duration. In Figure 6 (Top-left: empirical plot; Top-right: empirical quartile plot; Bottom-left: density
plot; Bottom-right: return level plot), all four diagnostic schemes provide support for fitting the GEVD
to the minimum annual temperature.
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Figure 6. Diagnostic annual minimum temperature plots.

4.5. Return Level

Given 50-year return level for each of the indicators of extreme weather (for the year 2076),
the return levels of extreme maximum rainfall in Ghana is higher than 150 mm reaching a warning line
of extremely torrential rain, as defined by the Meteorological Service of Ghana. Similarly, the 50 years
return level for maximum temperature exceeds 40 ◦C reaching a warning line of unusual temperature
as defined by the Meteorological Service of Ghana. Also, the 50 years return level for extreme minimum
temperature is lower than 20 ◦C reaching a warning line of frigid cold, as defined by the Meteorological
Service of Ghana.

4.6. Structural Equation Modeling (SEM)-Regression Analysis

The term “structural equation modelling” (SEM) conveys two significant phases of the process:
(a) causal effects under the research epitomised by a lot of structural equations (i.e., regression),
and (b) these structural relationships can be presented to enable more specific concepts of theory
studying. The assumed model (Figure 7) can then be statistically tested in a simultaneous analysis of
the entire variables system to determine its compatibility with the data. If the suitability is appropriate,
the model argues for the acceptance of assumed interactions between the variables; if inappropriate,
the likelihood of such relationships fails to accept [76]. We chose PLS-SEM in present work for the
following reasons: It is suitable for studies of theory construction [77,78]. It is appropriate to assess
the sophisticated models of the cause-effect interaction [79,80]. The PLS-SEM assume a non-boundary
approach, with fewer restrictions regarding sample size and data distribution [77].

SEM-regression estimation procedure was used to examine the hypothesised relationships as
shown in Figure 4 between weather indicators and agriculture production. The results of SEM analysis
showed a significant correlation between extreme weather and Agriculture production.
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Figure 7. The Conceptual frame of the relationship of extreme weather on agriculture production indexes.

4.6.1. The relationship between Maximum Rainfall and Composite Agriculture Indexes

The analysis as showed in Table 8 is that, Livestock production index (β = −0.1840, p = 0.144),
crop production (β = −0.189, p < 0.133), Cereal production (β = −0.266, p < 0.031), Cocoa (β = −0.461,
p < 0.001), and food production index (β = −0.190, p < 0.131). Each is influenced by the effect of
extreme maximum rainfall negatively on all composite agriculture indexes with no significant effect on
crop production, food production, and livestock indexes. There has been a significant effect on cereal
production and cocoa production indexes.

Table 8. Standardised Regression Weights and significance of correlations.

Predictor Outcome Path Coefficient p-Values

Maximum Rainfall

Livestock Production Index −0.184 0.144
Crop production index −0.189 0.133

Cereal Production index −0.266 * 0.031
Cocoa production −0.461 *** <0.001

Food Production Index −0.190 0.131

Maximum Temperature

Livestock Production Index 0.305 * 0.015
Crop production index 0.263 * 0.037

Cereal Production index 0.276 * 0.025
Cocoa production 0.424 * 0.023

Food Production Index 0.268 * 0.033

Minimum Temperature

Livestock Production Index 0.457 *** <0.001
Crop production index 0.482 *** <0.001

Cereal Production index 0.415 *** <0.001
Cocoa production −0.211 * 0.038

Food Production Index 0.484 *** <0.001

Significance of coefficient: *** p < 0.001 and * p < 0.050.

The results as shown in Table 8, shows each index is influenced by the effect of extreme maximum
rainfall negatively, with no significant impact on crop production, food production, and livestock
indexes. There has been a considerable effect on cereal production and cocoa production indexes.
Maximum extreme rainfall hurts the performance of cereals.

Consequently, a unit increase in maximum extreme rainfall leads to a decrease in cereal production
by 0.266 units. Maximum extreme rain leads to filtration of essential nutrients necessary for grain
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growth. Under such condition, any nutrient whether organic or inorganic leached beyond the reach of
the roots, will result in reduced yields.

For cereals to bear maximum yields, rainfall, especially during tasseling for maize, is needed
in moderation, inter-sparse with sunlight for maximum yields. Torrential rains do not favour most
crops production and most especially cereals. Several studies have shown the importance of rainfall
variability in crop production in various spatial scales [33,38].

Excessive rain has an adverse impact on agriculture. These effects run via different mechanisms.
Heavy rains and floods have resulted in crop damage and the creation of poor conditions for harvesting,
storage and transport of agricultural products. It is not astonishing that maximum rainfall has a
negative association with all the variables under consideration, but only cereal and cocoa production
indexes are statistically significant. Rainfall affects more variations in cocoa yields from year to year
than with any other climatic factor. Trees are prone to a soil water shortage. The rain should be
abundant and well distributed throughout the year. The annual precipitation between 1500 mm to
2000 mm is generally preferred. Droughts with rainfall below 100 mm per month should not exceed
three months. The flooding of farmland leads to the leaching of nutrients needed for the growth of
cocoa trees. If the phenomenon occurs over a period, this often leads to the death of cocoa trees or
poor yields are observed [81]. It affects the flowering of cocoa trees and leads to flower aborting in
some instances.

4.6.2. The Relationship between Maximum Temperature and Composite Agriculture Indexes

As shown in Table 8, Livestock production index (β = 0.305, p = 0.015), crop production
(β = −0.263, p = 0.037), Cereal production (β = 0.276, p = 0.025), Cocoa (β = 0.424, p = 0.023), and food
production index (β = 0.268, p < 0.033). Each is influenced significantly by the effect of extreme
maximum temperature positively on all agriculture production indexes.

As shown in Table 8, each outcome is influenced significantly by the effect of extreme maximum
temperature positively on all agriculture production indexes. The result indicates that a unit change in
the maximum temperature will result in about 0.305 change in livestock production index. The nature
of Ghana’s livestock production immune it from the effects of extreme temperature conditions. Most
animals are subject to a free or semi-intensive management system where animals are about to
move freely.

Also, most cattle raised in Ghana are more adaptable to the state of the coast. As a result,
maximum temperatures in Ghana does not affect them negatively since most of the animal rearing
areas are almost in the coastal savannah region where the temperatures are not as high as the actual
Sahel regions.

Breeding animals are sensitive to climate change and are severely affected by heat stress with an
adverse effect on reproductive function [44,82]. According to Reference [83], high temperature and
radiant heat load affect the reproductive rhythm through the hypothalamohypophyseal-ovarian axis.
The primary factor in regulating ovarian activity is GnRH of thalamus and gonadotropin, i.e., FSH and
LH of the anterior pituitary wall.

Research by [84,85] showed that the LH pulse amplitude and frequency of heat stressed cattle
decreased. However, this is not the case in Ghana as shown in the results. Extreme temperatures that
result in detrimental conditions not recorded in Ghana. High extreme temperatures hurt the crop
production index, cereals production index, cocoa production, and food production index.

The maize pollen viability declines at temperatures above 35 ◦C [86–88]. Temperature increases
in the 21st century may lead to yield losses of between 2.5% and 10% in some agronomic species [46].
Other assessments of crop yield due to temperature have produced different outcomes. Studies
conducted by [89,90] showed estimates of yield between 3.8% and 5% decreases According to [90],
crop growth for maize, soybeans and cotton will increase gradually with temperatures ranging from
29 ◦C to 32 ◦C and then sharply decrease as temperatures rise above this limit. It is however not
surprising that maximum temperature in Ghana does not have adverse effects on yields. Maximum
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temperatures in Ghana is from 29 ◦C to 32 ◦C recorded in a dry season where no cultivation is
taking place.

The period for production is the rainy season where temperatures hardly get close to 29 ◦C to
32 ◦C. Cocoa especially requires much heat, but direct sunshine damages it. As a result, some level
of protection is necessary, especially when trees are young. Cocoa trees respond well to moderately
high temperatures with a maximum yearly mean of 30 ◦C to 32 ◦C [91]. It is however not surprising
that maximum temperature associate positively with cocoa production in Ghana where the maximum
temperature falls within the acceptable range for cocoa.

4.6.3. The Relationship between Minimum Temperature and Composite Agriculture Indexes

As shown in Table 8, livestock (β = 0.457, p < 0.001), crop (β = 0.482, p < 0.001), Cereal (β = 0.415,
p < 0.001), Cocoa (β = −0.211, p = 0.038), and food (β = 0.439, p < 0.001). Each is influenced significantly
by the effect of extreme minimum temperature adversely on cocoa and positively on food, livestock,
cereal, and crop production indexes.

As shown in Table 8, each outcome is influenced significantly by the effect of extreme minimum
temperature adversely on cocoa production index and positively on (food, livestock, cereal, and crop)
production index. Except for the cocoa sector, which is associated negatively with minimum extreme
temperature the remaining areas are associated positively with low temperature. Average monthly
temperatures below 23 ◦C are considered to suppress flowering.

The range in the average monthly temperature of the mainstream of cocoa-growing regions is
found to be from 15 ◦C to 32 ◦C and considered to be the optimum for cocoa growth. The absolute
minimum for any reasonable period is taken to be 10 ◦C, below which frost injury is likely [82].
Temperatures below the absolute minimum have a devastating impact on cocoa yields, as the
results show.

Low arable yields caused by unfavourable weather conditions during certain stages of the
growing season. The effects of unfavourable weather situations have shown reduced arable yields
in recent decades. During the vegetative stage, low temperatures cause a reduction in barley yields.
Low temperatures account for about 42% of the decrease in yield. Estimates show low temperatures
in April, high rainfall in May and a heat wave in July followed by a cold and rainy August created
unfavourable growth conditions for potatoes resulting in a decrease in yields [47].

Low yields of corn associated with a combination of low amounts of irradiation during the
growing season (64% of low yields) and cold and wet spring (79% of low yields) cause delayed
planting and slow biomass growth. Delayed frost has often worsened this situation (36% of low
returns). Also, low yields contributed to the stress of drought and heat in flowering (21 per cent of
low yields) and the recording of water during harvesting (29% of low yields) [47]. The type of low
temperatures that often result in yield reduction is not the type often recorded in Ghana. Shallow
temperatures experienced during the growing seasons in Ghana, hence its positive association with all
the parameters except cocoa.

Regression estimates showed in Figure 7, extreme weather could explain almost 35.2% of the
variance seen in cereal production (R2 = 0.352), 45.3% of the variance seen in cocoa production
(R2 = 0.453), 32.6% of the variance seen in livestock production (R2 = 0.326), 32.4% of the variance seen
in crop production (R2 = 0.324), and 32.9% of the variance seen in food production index (R2 = 0.328).
The whole model demonstrated an acceptable fit to the data for (APC = 0.341, p < 0.001), (ARS = 0.393,
p < 0.001) and AVIF = 1.033

4.6.4. Paths Equations

As seen below, Equations (11)–(15) are the path equations for prediction of the agriculture
production indexes and weather extremes.

Let X1 = Extreme Maximum Rainfall, X2 = Extreme Maximum Temperature
X3 = Extreme Minimum Temperature
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Thus, obtained are the following regression models for indexes prediction

Livestock production index = −0.184 MaxRain + 0.305 MaxTemp + 0.457 MinTemp (11)

Crop production index = −0.189 MaxRain + 0.206 MaxTemp + 0.482 MinTemp (12)

Cereal production index = −0.266 MaxRain + 0.276 MaxTemp + 0.455 MinTemp (13)

Cocoa production index = −0.461 MaxRain + 0.257 MaxTemp − 0.211MinTemp (14)

Food production index = −0.190 MaxRain + 0.268 MaxTemp + 0.484 MinTemp (15)

5. Conclusions

In this present study, we created and examined a model that could contribute to understanding
the linkage, and predictability of severe weather and agriculture production in Ghana. The model and
structure outlined, tested the nature of extreme maximum rainfall, extreme maximum temperature,
extreme minimum temperature and the relationship that exist on agriculture production.

The annual maximum rainfall showed a decreasing trend. However, the yearly maximum
temperature and minimum temperature exhibited a significant increase. As observed, there appears
no significant trend heterogeneity for each month of the yearly minimum and maximum temperatures,
while the annual maximum rainfall shows homogeneity for precipitation in each month. The results
show that Extreme Value Theory (EVT) is a reliable tool for climate extreme scenarios construction,
where maximum likelihood method supported the evaluation of distribution parameters for weather
extreme. Generalised extreme value model is found to be the most suitable model with fulfilling
all statistical selection criteria. The return level for the model is constructed to predict the weather
extremes for a long run in future. There is generally an increase in weather extreme as it consistently
increasing from time to time for the next 100 years.

Evidence from results indicated extreme maximum rainfall adversely affects cereal and cocoa
production. Cereals and cocoa thrive well when the rainfall is well distributed and not concentrated in
some months and leaving other months virtually without rains.

Maximum extreme temperatures contribute positively to all the indicators under consideration.
Minimum extreme temperatures also except cocoa production have a positive impact on the remaining
parameters. In the case of cocoa minimum extreme temperatures result in black pod diseases which
causes yield reduction. The effect of the temperature and rainfall that is maximum or minimum on
food production index depends on their impact on other cereals, livestock and crop productions.
Where their respective measures are positive, it results in a positive outcome for food production
index. To help improve the food production index of the country there is the need to consider investing
in other production sectors. Based on the results the following recommendations are proposed for
consideration by policymakers.

The planting time for cereals should be considered going forward, to avoid the detrimental effects
of maximum extreme rainfalls. By so doing the yields of cereals will not be affected since they will
avoid the period of torrential rains, which affects yields. The diversification of cereals production
will help guide against the effect of maximum extreme rainfall on the cereals sector. Some cereals can
withstand the impact of maximum extreme rains; diversification into those areas will help reduce the
impact of maximum extreme rains if not eliminated.

Minimum extreme temperatures are reported to have detrimental effects on cereals. We recommend
the developing of resistant varieties that can withstand the minimum extreme temperatures, which are
negatively affecting cereals production. In the case of developing a resistant variety for cocoa, it will
help deal with the situation. Since cocoa it is a perennial crop, it will be impossible to use planting
period to help deal with the effects of maximum extreme rainfalls. Developing a resistant cocoa variety
that will be able to withstand both extreme conditions will be a key in mitigating extreme effects on
cocoa yields.
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Other research focuses on the more complex problem of catastrophic agricultural risk. To some
degree, the catastrophic agricultural risk is the result of extreme weather events. However,
the catastrophic agricultural risk is not the same as extreme weather risk. Factors such as environment,
agricultural investment, and farmer management should be of interest. To this extent, the distribution
of potential damages and losses after a particular type of extreme weather condition should be
of interest.

Improving the resilience of Ghanaian agriculture sector is essential. To help do this, farmers and
stakeholders in the food production chain should consider the options for adaptation. Adaptation is
highly context-specific; this is important for crop, region and climatic zone to use specific adaptation
strategies to help minimise the effect of weather extremes on agriculture. The ability of the agricultural
sector to deal with climate events will assume a downward trend as the globe warms, and is likely to
exceed or fall at specific temperatures and rainfalls. Therefore, farmers need to get used to measures
for effective, sustainable, and resilient crop and animal production. Thereby enhancing farmers
understanding of growing seasons, improved crop rotation systems, adaptive water management
techniques, and higher quality weather forecasts.

For further study, researchers can make a long-term prediction for another weather parameter
which indirectly affects the agriculture sector like, production industry on which human life
is dependent.
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Abstract: Multiple factors constrain smallholder agriculture and farmers’ adaptive capacities
under changing climates, including access to information to support context appropriate farm
decision-making. Current approaches to geographic information dissemination to smallholders,
such as the rural extension model, are limited, yet advancements in internet and communication
technologies (ICTs) could help augment these processes through the provision of agricultural geographic
information (AGI) directly to farmers. We analysed recent ICT initiatives for communicating climate
and agriculture-related information to smallholders for improved livelihoods and climate change
adaptation. Through the critical analysis of initiatives, we identified opportunities for the success
of future AGI developments. We systematically examined 27 AGI initiatives reported in academic
and grey literature (e.g., organisational databases). Important factors identified for the success of
initiatives include affordability, language(s), community partnerships, user collaboration, high quality
and locally-relevant information through low-tech platforms, organisational trust, clear business
models, and adaptability. We propose initiatives should be better-targeted to deliver AGI to regions
in most need of climate adaptation assistance, including SE Asia, the Pacific, and the Caribbean.
Further assessment of the most effective technological approaches is needed. Initiatives should be
independently assessed for evaluation of their uptake and success, and local communities should be
better-incorporated into the development of AGI initiatives.

Keywords: climate change adaptation; livelihoods; geographic information; agriculture; resilience

1. Introduction

The agricultural industry is supported by 500 million smallholder farms, responsible for approximately
56% of global agricultural production [1,2]. Smallholder farmers are increasingly resource-poor and
confronted by challenges associated with climate change, natural disasters, resource availability and
access, and food insecurity [1,3]. Global climatic changes are influencing crop growth and yield,
water balances, input availability, and agricultural system management components [4], with ensuing
impacts on farming practices [5–7]. Smallholders are faced with both long-term climate stressors
and short-term shocks [8]. Geographic variability in climate impacts coupled with low levels of
coping and adaptive capacity results in high levels of vulnerability for marginalised farmers [9–11].
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Vulnerability varies geographically (often at very local levels). This arises from the complexity of
smallholder livelihoods, with multiple on-farm/off-farm activities [12], variation in asset levels and
market orientation [13], local (within-farm) variability in productivity [14], gendered roles and access to
resources [15], and differential capacity to manage risk [16], affecting smallholder capacity to respond
and adapt to climatic challenges.

Incorporating geographic components (i.e., locational properties) into information for climate
adaptation is valuable for enhancing environmental decision-making in high risk sectors, such as
agriculture. Rapid advancements in geographic information technologies (e.g., geographic information
systems (GIS)) and the availability of geospatial data allow for sophisticated capture, analysis, storage,
dissemination and access of information across space and time. Concurrently, advancements in
information communication technologies (ICTs) (e.g., short message service (SMS); smartphones;
Web 2.0), have further increased the usability of geographic information derived from a diversity of
sources [17].

Note, while popularity in use of the term geospatial has grown (e.g., geospatial web [18]; geospatial
semantics [19]), ambiguity remains over the difference between geospatial and geographic information.
Geographic describes information with a reference to Earth’s surface and near-surface [20], and
geospatial data has been defined as location properties (any descriptive information about the
location or area of, and relationships among geographic features) related to any terrestrial feature/
phenomena [21]. We adopt the term geographic information/data, despite much of the material
reviewed employing the term geospatial. We consider geographic information to be any information to
which location on the Earth is a relevant feature, including both explicit and implicit [22] locational data.

Geographic information used within the agriculture sector—here termed agricultural geographic
information (AGI)—is increasingly available to smallholders, yet uptake is limited. Despite a range of
geographic information types, such as remote sensing, household surveys, or climate/market reports,
accessibility and/or availability is often not in useful/usable formats. Traditionally, information
provision to smallholders in developing countries is provided via agricultural extension organisations
through farmer field schools, innovation networks and farming associations [23]. However, resource
constraints and the diverse needs of smallholders limit the flow of top-down information [24].
For example, resource constraints of agricultural extension staff have been identified as a challenge
under climate change in the South Pacific [25] and the lack of transparency and connectivity a constraint
to information delivery in India [26].

To this end, we suggest a different or complementary model to supply smallholders with information
is necessary, whereby smallholders can harness AGI to make better-informed and cost-saving
decisions [27]. Using ICTs to communicate with farmers directly offers a potential for AGI to enhance
sustainable agriculture [28], particularly through resources provision for increasing climate resilience
at multiple landscape scales [29]. For example, access to geographic information regarding which
drought-resistant crops to plant, including when and how, may increase smallholders’ capacities to
prepare for and withstand such long term climate stresses. Or, localised and context-specific weather
forecasts delivered directly to farmers’ mobile phones may allow timely decisions and mitigating
actions to be taken that reduce the impacts of storms on farming livelihoods. The World Bank,
African Development Bank, and African union claim that the greatest opportunities for economic
growth and poverty alleviation (in Africa) are provided by ICTs in the agriculture industry [30]. Yet,
the evidence base for ICT and use of AGI to support adaptive capacity of smallholders is poorly
documented [31]. Baumüller [32] argues that the potential use of ICTs, such as mobile services for
smallholder agriculture remains largely unfulfilled. Consequently, here we review recent trends and
approaches to utilising geographic information and ICTs for agriculture, and in particular, initiatives
for communicating climate and other agriculture-related information to smallholder farmers for
improved livelihood security, climate change adaptation and landscape resilience. Our aim is not
only to contribute to rectifying the dearth of systematically documented and analysed uses of ICTs in
smallholder agriculture, but also to uncover valuable lessons for the design and application of future
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AGI initiatives. We achieve this through a systematic review of multi-source literature to address the
following research questions:

i. What are the key challenges that AGI initiatives aim to address?
ii. What technological approaches have been adopted to provide AGI to smallholder farmers?
iii. Who are the target users of AGI initiatives and how have initiatives been adopted?
iv. What are the factors promoting or limiting the success of AGI initiatives?

We acknowledge that earlier review works exist on related topics with similar aims and methods
to those we present here. The Food and Agriculture Organisation of the United Nations (FAO) [33]
reviewed a decade of ICT advancements with applications to agriculture and rural development
presenting important findings, such as the significant influence of elements like quality partnerships
and the digital divide on project success. But this report was largely descriptive and based on a
narrow selection of projects and therefore lacks the analytical depth and rigour associated with
our systematic review of AGI initiatives. The World Bank [34] also produced a report on ICT in
agriculture, but a similar critique to above could be applied. Baumüller [32] systematically analysed
the impact of various mobile services for smallholder agriculture, offering useful lessons for future
service developments and an assessment of current shortcomings, including a lack of useful empirical
evidence and limitations to current methodologies for evaluating project impact. Our work differs
in that it is not constrained to examining only mobile services, but includes a broader range of ICTs
used in AGI initiatives, and specifically considers delivery of information of a geographic nature.
Duncombe [35] also analysed mobile phone use for agriculture in developing countries, and again, our
work examines a more technologically-diverse breadth of AGI initiatives. Further, our work includes
the review of AGI initiatives found and described in multiple sources, as opposed to reviews based on
only practice-based literature (e.g., [34]) or academic research articles (e.g., [35]).

We first provide a brief background to geographic information and farmer information needs in
agriculture, followed by a detailed methodology, presentation of results and discussion in relation to
the stated research questions, with particular emphasis on lessons learned from examining a broad
range of AGI initiatives. We conclude by identifying critical knowledge gaps and future opportunities.

2. Geographic Information in Agriculture

AGI encompasses a wide range of information types and can be provided through a similarly
wide range of technologies. This includes any agricultural information provided through ICTs that
has a geographic component, such as location-specific information delivered via SMS, telephone or
the Internet, as well as geographic information produced through more sophisticated technological
approaches, such as GIS mapping and spatial modelling. GIS technologies provide flexible
spatially-explicit tools that support decision making for environmental and natural resource
management [36]. Combined with remote sensing technologies, mapping, modelling and monitoring
environmental change aids climate change adaptation and mitigation initiatives across the agriculture
sector [37,38]. These technologies have contributed to advances in precision agriculture and improved
crop management in commercial broad acre agriculture [39–41], yet AGI utilisation by smallholders
remains limited. Reflecting on successes from other sectors, geographic information has been used to
respond to natural disasters and increase community resilience across a range of environments [42,43],
and resilience building in the agricultural sector, particularly in smallholder communities, has similar
use potential. Such an aspiration aligns well with the concept of climate smart agriculture (CSA)—to
increase food and livelihood security, and farming and landscape resilience [8,44,45]—but explicitly
identifies smallholders’ needs for improved information access to enable better decision making for
sustainable agriculture.
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2.1. Information Needs of Smallholders

Smallholder farmers require diverse information to support their livelihoods, with development
in the agriculture sector dependent on success in generating, sharing, and applying knowledge [1,46].
Information can be obtained from scientists, educators, advisors, policy makers, and informal networks
and smallholders themselves [31]. Information needs differ between farmers based on multiple factors,
including socio-economic circumstance, literacy levels, access to resources, size of landholding, and
agroclimatic conditions [28]. These factors, in conjunction with a range of socio-political conditions,
such as governance structures, cultural norms and gender roles, influence how different individuals
obtain and seek (applicable) information (e.g., [47]).

2.1.1. Information Availability

Availability of appropriate climate change adaptation information for smallholders often varies
by geography and culture. For example, public media and personal experience form dominant
information sources amongst Vietnamese farmers [48]. Conversely, in India, farmers rely on external
experts such as non-governmental agricultural research for advice, despite their long histories
of traditional knowledge [49]. Less formal agricultural knowledge transfer takes place through
face-to-face interactions and verbal communication via mobile phones in rural communities [49].
Television, radio, agriculture offices/departments, neighbours and progressive farmers provide the
most useful information sources, at least in part due to exposure and availability [50]. Further,
the availability of precise and timely weather-based agro-advisory messages are useful in making
informed and cost-saving decisions regarding cultivation conditions [27].

2.1.2. Information Accessibility

Information is commonly delivered to farmers through agriculture extension and advisory
services [23]. Primarily top-down approaches, these transfer technologies, skills and knowledge
to rural farmers and families to enhance crop/livestock production systems, household food security,
and livelihoods, through increasing incomes, nutrition, education, and strengthening natural resource
management [3]. However, several deficiencies of extension systems restrict their effectiveness,
including limited staff, rigid organisation, poor capacity, a top-down linear culture, weak links to the
research sector, and limited reach to farmers [28]. In India, for example, there are many [often duplicate]
extension systems, yet the majority of farmers still suffer from inadequate information access [28].
Compounding these issues, women in rural communities bear considerable proportions of farming
workloads, but have limited roles in receiving information and making decisions (see [27]). Women
are often poorer with less land ownership and have difficulty accessing agricultural information from
sources aside from other farmers [51]. Munyna [52] argues that women being ill-informed about
technologies, markets, and other agriculture information is detrimental to agricultural development.

2.1.3. Information Applicability

Scale of agricultural systems can influence who has access to [relevant] information. For example,
national information produced at the government level may not be effective for improving farming
practices at more localised scales. At the local scale, farmer field schools are a variation of extension
services. Small groups of farmers routinely gather to observe and evaluate potential suitability of
agricultural interventions for their farms [53]. This approach also builds social capital, but often
exhibits fiscal limitations [54]. Researchers have argued for an increased emphasis on local rather than
global initiatives in developing countries with improved relevance and applicability of information
(see [55]). This includes the exchange of knowledge in appropriate formats that respect the oral
traditions of many indigenous cultures [56].
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3. Methodology

To identify AGI initiatives for analysis, literature was assessed from (i) peer-reviewed academic
journals, and (ii) projects listed elsewhere or in grey literature, such as through government/
non-government organisation, and other key development organisations and/or private sector agency
databases. Assessing academic literature involved multiple keyword searches of the Web of Science
Core Collection database, which focused on the topic areas of information, climate, and agriculture
practices (in that hierarchical order) (Figure 1). Articles were constrained to include only current or
recent literature (published after the year 2000; the time period considered to represent the growth of
relevant geographic information, the internet, and other ICTs; when mobile technology penetration
rates began to expand in developing countries [32]), those published in English language, and only
items with full-text versions available. We acknowledge relevant literature will also exist in other
languages, such as French, Spanish, Mandarin, or Hindi, among others, and hence incapacity to analyse
non-English sources is a limitation of this study [57]. Articles which met all criteria (n = 156) were
read and either entered into a spreadsheet for summarisation and analysis, or discarded if deemed
not relevant. Assessment of relevance was made in relation to the research questions presented in
Section 1. An article may have met all search criteria by using geographic information technologies to
examine some aspect of improving agricultural practices in the context of climate change, but if the
article did not describe initiatives specifically for communicating such information with farmers it was
deemed not applicable to our research questions and thus was excluded. This process was performed
initially by one author, and afterwards verified by another. Articles were also discarded if they only
provided duplication (e.g., multiple articles describing the same initiative).

 
Figure 1. Flow diagram for the academic literature search resulting in 11 relevant papers (12 agricultural
geographic information (AGI) initiatives) for analysis (see Table 1 for sources). * One paper described
multiple initiatives.

Assessing grey literature involved identifying databases, sources, agencies, and other websites
that may contain information on relevant community, agriculture and climate-related AGI initiatives.
Where a database had a large number of initiatives, filtering based on keywords (in line with those
presented in Figure 1) produced a subset which was manually reviewed for inclusion in a database used
for summarisation and analysis. Grey literature assessment was inherently less systematic and could
not be automated, and we note the limitation to findings for inclusion in this paper, as once a perceived
cross-section of different types of initiatives was obtained the search was ceased. This resulted in
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15 AGI initiatives identified. In total, 27 individual AGI initiatives were identified through the above
scholarly and grey literature search methods (See Table 1). All initiatives were summarised and
analysed in a spreadsheet according to key information relevant for answering the predefined research
questions. This included descriptive information (such as initiative name, source, and year), target
location and users, initiative aims and approach to achieving aims, climate-related challenges being
addressed (short and long term), geographic technologies adopted, the participatory nature of each
initiative, adoption and usage information, and details of if/how the initiative was evaluated and
by whom.

Table 1. All AGI initiatives identified for this review, including description, target locations and source.

Initiative Description
Targeted Country

or Region
Source

Agriculture Monitoring
System

Agriculture monitoring system and technologies for collecting,
analysing, and disseminating information. Includes satellite
remote sensing, GIS, and mobile GPS. Provides a knowledge
base for government, NGOs, rural communities and other
stakeholders that will aid sustainable land use and agriculture.

Afghanistan [58]

Airtel Kilimo
Mobile phone and SMS advisory service. Dissemination of
information related to crops, weather and market prices for
improved farmer livelihood security.

Kenya [59]

Avaaj Otalo
Top-down mobile phone advisory service. Delivery of
weather, crop, fertiliser and other agriculture information to
farmers. Addresses shortcomings of the extension system.

India [60]

Climate Wizard Tool

Web-based system for climate change data analysis and
mapping. Provides practical information for local and
regional agriculture managers. Facilitates advanced statistical
analyses for more technical users.

Global [61]

CROPROTECT

Internet and smartphone application utilising GIS and Google
Earth. Knowledge exchange system for farmers to acquire and
share information relating to pest, weed and
disease management.

United Kingdom [62]

Digital Green

Participatory videos (local languages) used to involve local
communities in sharing scientific agriculture information and
local knowledge to improve livelihoods through better and
more adaptive farming practices.

India, Ghana,
Ethiopia [53,63]

Farmer Decision
Support System (FDSS)

Advisory information for registered farmers via SMS to assist
farming decisions e.g., when and how to plant, harvest,
fertilise and manage crops. 7-day weather forecasts
also provided.

Philippines [64]

Farmforce

SMS and smartphone application to link farmers with other
actors in the agro-value chain to reduce transaction costs, aid
compliance with food standards, and increase
information exchange.

Asia, Africa, Latin
America [65]

Geospatial Information
for Rice Crop
Monitoring (GIRCM)

Agriculture information derived from image classification and
rice crop area estimation to enhance food security. Still in
proposal stage.

Afghanistan [66]

Indian Farmers
Fertiliser Cooperative
(IFFCO) Kisan
Agriculture App

Smartphone application to provide crop information in
various formats for enhanced decision making. Aimed at
farmers who are receptive to new technologies and
business approaches.

India [67]

Information
Technology and
Indigenous Knowledge
with Intelligence
(ITIKI)

Early warning system that integrates information from sensor
networks and local knowledge on droughts. Communication
using SMS, mobile phone calls, website posts, digital
billboards and radio broadcasts to disseminate forecast
information to farmers.

Kenya,
Sub-Saharan Africa [68]

iska
GPS-located weather forecasts (various time intervals)
distributed via SMS to farmers to improve decision making
and reduce weather-related crop losses.

West Africa [69,70]
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Table 1. Cont.

Initiative Description
Targeted Country

or Region
Source

Jayalaxmi Agro Tech
Crop-specific smartphone applications for access to
agriculture, horticulture and animal husbandry information
(English and regional languages).

India [71]

LandCaRe DSS

Spatial simulation modelling to produce information for
stakeholders and farmers involved in decision making related
to land management and long-term impacts of climate change
at regional and farm scales.

Germany [72]

Mobile geospatial
information for African
farmers (MGIAF)

Mobile phone alerts regarding purchasing of drought-tolerant
crops for farmers in remote regions. GIS maps for extension
officers and community development workers for information
dissemination to farmers.

Kenya [73]

Mobile market
information service
(MMIS)

SMS request service for rural farmers to receive information
on market information (e.g., product prices) to improve
selling practices and decision making.

Papua New Guinea [74]

Mobile soil information
for African farmers
(MSIAF)

Web-mapping platform for providing soil information to
farmers and government workers. Accessed via the internet or
mobile phone.

Kenya [73]

(M)obile Solutions

Mobile phone voice and SMS messages (Hindi or a local
language) sent to farmers. Contain information relating to
weather, pests, seed varieties, climate change and
climate-smart technologies. Provides recommended actions.
Option for farmers to provide feedback to inform
future messaging.

India [27]

Participatory Mapping
Disaster Risk
Reduction Local
Knowledge
(PMDRRLK)

Participatory approaches and co-produced mapping to
improve local resilience to climate change related hazards and
increase the use of local environmental knowledge.

Switzerland [75]

Plantwise Knowledge
Bank

Online and smartphone-based knowledge bank with pest
identification tools and factsheets on plant health to aid
community farming.

Global [62]

Radio Monsoon

National meteorological information and local knowledge for
weather forecasts disseminated to fishermen via social media
and the internet, landline and mobile phones, and
loudspeakers positioned in fishing communities.

India [76]

SmartScape

Internet and GIS tool to allow users to experiment with policy
options, predict cropping system changes, and compare
cropping scenarios. Produces information to be shared with
stakeholders, such as policymakers, community agriculture
groups, or non-government organisations.

United States of
America [77]

Sowing Application

Smartphone application and SMS used to advise registered
farmers best times for sowing seeds based on soil health
indicators and rainfall and weather information. Alerts issued
for extreme weather conditions that may damage crops or
impact farmers.

India [78]

Tigo Kilimo
Mobile phone dissemination of information on weather, crops
and markets for enhanced decision making to improve food
security, livelihoods and household income for farmers.

Tanzania [51]

Watershed
Management
Information System
(WATMIS)

Web-based information and decision support system
integrating soil, vegetation, climate and other environment
information to assist agriculturalists, resource managers and
the rural extension community in managing water scarcity.

India [79]

World
AgroMeteorological
Information Service
(WAMIS)

Web-server for disseminating agrometeorological products
and information bulletins. Provides knowledge and training
to large numbers of agriculture stakeholders cost effectively
via the internet.

Global [80]

Wireless Sensor
Network—Decision
Support System
(WSN-DSS)

Wireless sensor network and web-based decision support
system for irrigation scheduling. Supports farmers in
restructuring agricultural land to address issues of food
security and inefficient farming.

Tunisia [81]
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4. Results

4.1. AGI Initiatives

Target users of the AGI initiatives and the key challenges they seek to address are reflected in
the distribution of where implementation occurred (see Table 1 for name and summary description
of each initiative). Initiatives were concentrated in the global south, particularly south Asia, and
east/west Africa. India and Kenya were highlighted as individual countries with the highest numbers
of initiatives reviewed. Initiatives largely targeted smallholder farmers and rural communities
(n = 18). Some AGI initiatives specifically targeted women farmers (Tigo Kilimo), farmers with
low education levels (Tigo Kilimo), fishing households (Radio Monsoon), and progressive farmers
more receptive to new technologies and practices (IFFCO Kisan Agriculture App). These target
user groups are synonymous with those of more traditional approaches to agricultural extension
and advisory services [3]. Other target users included scientists (e.g., PMDRRLK), governments
(Smartscape), the agriculture extension community (WATMIS), NGOs and conservation organisations
(Agriculture Monitoring System; Smartscape; LandCaRe DSS), risk management agencies (PMDRRLK),
and the private sector (Agriculture Monitoring System).

Almost all initiatives adopted a top-down approach (n = 23), with only a few employing bottom-up
practices (Digital Green, PMDRRLK and CROPROTECT). Greater emphasis was on communicating
AGI to farmers, or providing a service that farmers can receive information from, rather than working
with farmers to utilise AGI to support livelihoods. Of the initiatives adopting a bottom-up approach,
Digital Green identified ‘champions’ from a local community to film and edit videos on new farming
practices and topics, such as health (outputs were in local languages and topic selections were informed
by scientists). Videos were then screened regularly in the community to share learnings. The localised
participatory nature of Digital Green was important for people to relate to AGI information and
increased adoption of sustainable livelihood practices throughout the community. IFFCO directly
targeted progressive farmers, or those more likely to trial and adopt new practices based on capacity,
circumstance, and interest. This assumed that farmers who receive AGI through the app, and adopt
new practices, will then influence others in the community, either directly through sharing learnings
or indirectly through demonstrated success.

4.1.1. Agro-Climatic Challenges Being Addressed

Many initiatives addressed climate adaptation of farmers through increasing livelihood security
(n = 19), with some initiatives specifically aiming to increase household income or food security
(n = 15). Several initiatives focus on addressing both long-term and short-term climate change to
combat adverse impacts on livelihoods [53] and agricultural productivity [60]. In Kenya, where rainfed
agriculture supports the majority of subsistence livelihoods, ITIKI sought to address the challenge of
limited rainfall monitoring through the development of an integrated communication framework for
indigenous knowledge and scientific drought forecast information. In Tunisia, issues of agricultural
water wastage and mal-management of resources were being addressed by WSN-DSS, supporting
farmers with weather information, improved irrigation scheduling and water management. In rural
Africa, MSIAF aimed to mitigate the long-term stress of drought by alerting farmers to market locations
to purchase drought-tolerant beans. Initiatives addressing short-term climate shocks were largely
related to weather variability, including increased frequency and intensity of meteorological natural
disasters (PMDRRLK; WAMIS; iska; Digital Green), extreme conditions like hailstorms and unseasonal
rains (Sowing Application), and erratic weather (Radio Monsoon; (M)obile Solutions).

4.1.2. Technological Provisioning to Smallholder Farmers

Various technologies were utilised in the AGI initiatives (Figure 2). MMIS, Tigo Kilimo, Airtel
Kilimo, (M)obile Solutions, and FDSS provided simple weather, crop or market information to farmers
via low-tech tools, such as SMS and mobile phones, whereby farmers could either receive automatic
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updates (push notifications) or request information through SMS request or calling a helpline. Varying
degrees of complexity were built into these basic mobile phone-based solutions. The inclusion of
multiple languages and a peer-to-peer chat function were provided in the Airtel Kilimo mobile service.
iska harnessed GPS technology to provide location-specific weather information via SMS. Other AGI
initiatives employed internet capabilities to develop custom platforms and smartphone applications,
expanding the possible information services offered in terms of both content and format, including
support of images, video, animation, interactive content and maps, and hyperlinks to additional online
resources. Jayalaxmi Agro Tech offered a range of crop-specific smartphone applications that aimed to
enhance food and livelihood security by providing text, audio and visual content on crop information,
pricing analytics, and on-demand weather to farmers in English and local languages. Similarly, IFFCO
Kisan Agriculture App and Sowing Application aided farmer decision making through the provision
of crop or weather information through text, voice, photo and video content. Plantwise Knowledge
Bank used smartphones to augment their community-based information exchange activities by pooling
information into a central resource for farmers and stakeholders to access; this is particularly useful for
remote access by individuals. While GPS was explicitly stated for few AGI initiatives (WATMIS; iska;
Agriculture Monitoring System), other initiatives using smart devices likely exploited this technology
to provide their locational services.

Figure 2. Technologies featured in reviewed AGI initiatives.

Some web-based platform initiatives included and disseminated more data-rich geographic
information, such as fine resolution satellite imagery e.g., WATMIS and Agriculture Monitoring System.
Satellite imagery and other forms of remote sensing are valuable for detailed depictions of landscape
environments and remote capture of data [82]. In Afghanistan, experimentation with methods of
classifying satellite imagery was undertaken to strengthen national capacity on rice crop monitoring
for sustainable development and food security (GIRCM). WATMIS incorporated GIS and remote
sensing data for viable and cost-effective integrated watershed and natural resource planning and
management, used by agriculturalists, rural communities and extension services, and land managers.
Many AGI initiatives used GIS in combination with ICTs to increase landscape resilience. For example,
environmental mapping of drought extent, soils and crops were disseminated to extension workers
and farmers, through mobile phones (MSIAF). Online capabilities of technologies have allowed user
feedback and sharing of local knowledge for a range of applications, in particular, through social
media and crowdsourcing platforms [17]. Radio Monsoon included social media through multiple
AGI dissemination methods, and participatory mapping activities that harness local knowledge were
used in PMDRRLK. Aside from these two initiatives, social media was absent in all other initiatives.
More traditional and primitive forms of information communication, such as radio, loudspeakers and
billboards in communities were utilised in some initiatives (e.g., Radio Monsoon; ITIKI).
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4.1.3. Adoption of Initiatives

Our review identified limited details of AGI initiative adoption details, with a number being at
the proposal, pilot or development stage (n = 10). For those with uptake statistics, assessments of
adoption were complex. While the number of users or downloads (e.g., of a smartphone application)
of an initiative seemed a standard measure of uptake, more nuanced patterns and differences between
numbers of downloads, active users, repeat users, and those who implemented changes to their
livelihood practices were also observed. Tigo Kilimo reported 400,000 registered users in two years.
Of these, 61% were repeat users, with many trialling the service once but not returning. 30% of users
reported continued use with concurrent use of new agricultural practices or growing new crops more
likely. 39% were more likely to experience increased income than those not engaging with the service.
An analogous service, Airtel Kilimo, reported similar adoption patterns, observing 6432 of their total
22,438 registered users (December 2014) as active, with approximately 50% of users implementing
farming changes. IFFCO Kisan Agriculture App reported 170,000 users (October 2016), of which
10–20% were estimated to be active. Iska self-reported to have reached more than 80,000 farmers [70]
and sent more than 8.5 million weather forecasts [71]. However, no data were provided on how farmers
benefited from this service, or how weather forecasts improved livelihoods and were received/read.
Digital Green claimed to have reached one million individuals across 13,592 villages through their
participatory video approach, with 574,222 farmers adopting at least one of the best-practice video
promotions. Yet, similar to iska, no data were available regarding individuals that have/have not
implemented new practices, and why uptake has/has not occurred.

4.2. Factors Promoting or Limiting AGI Success

Given the results of the initiatives reviewed, four cross-cutting themes emerged which are
important for promoting or limiting the success of AGI initiatives for climate change adaptation:
Farmer capacity, delivery approach, technology used, and the organisation delivering the information
(summarised in Table 2).

Table 2. Summary of factors promoting and limiting the success of AGI initiatives for addressing key
agro-climatic challenges.

 Factors Promoting Success Factors Limiting Success 

Fa
rm

er
 c

ap
ac

ity
 Affordability to farmers 

Participation capacity (exclusion through 
gender, costs, digital divide) 

Available languages 

Limited languages 

Information alone often not enough for 
meaningful change 

A
pp

ro
ac

h Partnerships with existing community 
groups 

Methods for incorporating community 
knowledge into GIS  

User collaboration/sharing Purely top-down approach—lack of interactivity 
Farmers involved in design User registration required 

Te
ch

no
lo

gi
ca

l High quality, locally-relevant 
information 

Acquisition and sourcing of suitable and quality 
information/data 

Low tech and user friendly—ease of use 
Availability and capacity of telecommunications 

infrastructure 
Allows participant 

feedback—interactivity functionality 
Personal and community information security 

O
rg

an
is

at
io

na
l 

Organisational trust Low user retention 
Potential for expansion—agile service 

(In)ability to reach target users 
Marketing and endorsements 

Clear business model, including 
funding 

Funding of initiatives 
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4.2.1. Farmer Capacity

The most sophisticated AGI initiatives may be ineffective if target users are unable to access or
utilise the information. Various socio-economic factors potentially limit accessibility for smallholder
farmers, e.g., the level of disposable income required to acquire and/or access technologies like
the internet, computers, smartphones, or televisions. Even relatively low-cost technologies like
mobile phones may be inaccessible for many individuals, particularly in developing nations [83].
Consequently, poorer farmers are disadvantaged with increased difficulty in accessing AGI, despite
often being the most in need. With reference to increasing participation in CROPROTECT, Bruce [62]
described a lessening of digital divides in recent years, but poorer minorities still may lack access
to ICTs. Communication technologies for enhancing knowledge access are often most beneficial for
younger and more highly educated individuals [49]. Conversely, Bojovic et al. [84] demonstrated a
weakening of digital divides for online participation in climate adaptation with groups that are typically
excluded appearing as active participants (e.g., older or uneducated individuals). The contrasting
ability of geographic information and ICTs to disproportionately benefit those who have access could
be exacerbated if existing socioeconomic divisions within and across communities become greater [85].

One measure to increase farmer capacity is to incorporate local and additional languages in AGI
initiatives, to ensure the usefulness of information and geographic information reach to maximise
farmers benefitted. Information services provided only in English, for example, reduce the capacity of
farmers who have first/only language to access the information. Producing and providing content in
local languages facilitates comprehension and immediate connection with the local community (see
Digital Green; [63]). However, using a local language alone reduces opportunities to expand platform
use into other populations/geographical areas. Provision of information in both local/regional and
national/international languages increases the probability of meeting a target user’s preference [59].
Projects incorporating detailed information in multiple languages relevant to the scale of operation,
including regional and local dialects (e.g., Airtel Kilimo, Jayalaxmi Agro Tech, and Digital Green) are
likely to exhibit improved information dissemination and utilisation.

4.2.2. Approach

Approaches with participatory elements offer multiple potential benefits over purely top-down
approaches. Where individuals can share their own information with others and/or feedback with AGI
initiative developers they may feel their input is more valued and subsequently more interconnected
to build community resilience [86]. Partnering with existing community groups can be a useful
approach to increasing community participation. Digital Green leveraged community groups, such as
women’s self-help groups or farmers’ groups by actively partnering with government, non-government,
and private agencies with strong integration and relationships with communities, and cites these
partnerships as critical to their success. Whilst having users involved in initiative development is
beneficial, requiring registration for participation is seen as a limiting factor. Registering and then
subscribing to content causes confusion with some users and has deterred people from using AGI
services ([59]; e.g., CROPROTECT).

4.2.3. Technological

A major consideration for the successful implementation of any AGI initiative is the availability
and capacity of the information and telecommunications infrastructure. This includes infrastructure
for capturing and disseminating information, and for farmers to receive and use it. For example, if an
initiative requires high-speed internet access to deliver high-resolution images/videos, then internet
coverage is essential, as is the accessibility of affordable internet-enabled devices and data plans.
Similarly, if AGI initiatives are designed to include mechanisms for user participation and feedback,
then necessary ICT functionalities are required to facilitate interactivity. Many of the reviewed
initiatives emphasised the importance of low-tech, user-friendly technological platforms, especially
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for those with low digital literacy. Additionally, the information itself is important in AGI initiatives,
particularly in relation to content, quality and scale. High quality and trustworthy, locally-relevant
information is most useful; sourcing and compiling such data can be technologically-challenging for
the success of AGI projects [59]. Jayalaxmi Agro Tech attempted to ensure information was relevant
to users by developing multiple smartphone applications specific to individual crops and livestock,
whereby farmers can select an app to receive only relevant advice to their own farming practices.
Attention also needs to be paid to ensuring the security and privacy of users and the data they might
supply to the system, particularly in approaches that encourage public participation.

4.2.4. Organisational

Organisational factors include the organisation responsible for developing and implementing
the AGI initiative and the kind of support an initiative receives. Initial funding and ongoing financial
capital for maintenance, management, and information sourcing are vital for AGI initiatives. Monetary
uncertainty may result in premature cessation of an initiative. Funded by a university competition prize,
Radio Monsoon was received very positively by village fisherman and the local forecasters. However,
the initiative ceased after two years of operation, as funding was no longer available [76]. Many of the
reviewed initiatives were developed by universities and funded by external grants/agencies which
resulted in uncertain or short-term initiative lifespans (<5 years) and funding unpredictability. This is
problematic for climate change adaptation as climate impacts and building livelihood resilience occur
over longer timeframes and multiple generations. Programs that are supported financially and in-kind
by multiple sources congruently, including through local and international partnerships with the
private sector, government agencies, non-government bodies, and the research sector, such as FDSS,
and with a clear business model to manage these funds, appear to have greater success and longevity
through decreased pressures of financial insecurity.

Reaching and maintaining users is essential for the success of any AGI initiative. Product marketing
is imperative to reach users of relevance, and to raise awareness of initiative existence and accessibility.
IFFCO Kisan Agriculture App utilised an existing mobile phone service with relevant potential users
to target uptake. Search engine optimisation and social media sites can also provide effective and
affordable marketing tools [67], but accessibility to these technologies and services is reflective of farmer
socio-economic development levels. The IFFCO Kisan Agriculture App social media marketing strategy
was augmented by the addition of local celebrity endorsements. GSMA [59] describe marketing and
user retention challenges linked to brand identity and loyalty. Airtel Kilimo is provided to farmers
through Kenyan mobile network provider Airtel, and multiple ownership, name and brand changes
of Airtel have negatively impacted customer loyalty, and thus initiative uptake. Conversely, good
reputation and high organisational trust can foster the success of AGI initiatives through user loyalty,
sharing of positive experiences and promotion to other farmers (e.g., Tigo Kilimo).

5. Future Potential of AGI

We reflect upon the results and cross-cutting themes discussed above to recommend future
avenues for ensuring successful adoption of AGI initiatives by smallholders for climate change
adaptation and mitigation.

5.1. Geographical Targeting

Observational factors (Table 2) suggest that both demand- (by the need for climate adaptation
solutions) and opportunity- (by the growth of populations with functional access to required ICTs)
driven AGI initiatives are important. Geographical targeting of regions currently not utilising AGI
initiatives could substantially benefit smallholder farmers in areas highly impacted by changing
climates. Regarding regions of high climate change vulnerability and areas predicted for severe climate
impacts on agriculture, various reports identify South and Southeast Asia, Africa, Caribbean nations,
and small island developing states (SIDS), such as Vanuatu, Samoa and Tonga (see [4,87–89]. Nations
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in some of these regions already have targeted AGI initiatives (e.g., India, Afghanistan, and parts
of Africa), but many other global priority areas remain untargeted. Further research is needed to
expound the reasons for these geographical gaps, and for smallholders in these countries to develop
appropriate AGI strategies utilising either existing or new infrastructure, technologies, or platforms
that will be most effective for the populations of those regions. Vulnerable climate regions generally
coincide with areas of increasing access to ICTs, with fast-growing global internet penetration rates
observed in Africa, the Middle East, Latin America, and Asia (2000–2017; [90]).

5.2. Types of Information and Information Technologies

Better understanding of the types of information and technologies that are most useful is needed to
target users more effectively. A detailed SWOT (strengths, weaknesses, opportunities, threats) analysis
of technologies would be valuable, specifically to determine which technological approaches would
most effectively deliver AGI to smallholders impacted by digital divides, for example, impoverished
and uneducated farmers, women, and those in regions where access to ICT is limited. Mobile phones
and SMS can be especially useful technologies for communicating AGI to smallholder farmers as
necessary infrastructure is often already present, and data requirements/costs are comparatively low;
in many rural regions, mobile phones are often accessible for farmers where other technologies are
limited [1,59]. However, credit costs and access to electricity for charging phones can prohibit farmers’
use of mobile technologies [83]. Additionally, the information disseminated via mobile phone may
be limited by the text- or voice-only format. Technological, resource (cost), and skill components
required to access and use AGI will present barriers for some farmers, which also impacts the inclusion
of farmer feedback and local knowledge in initiatives. If technologies can be harnessed effectively,
then community information sharing could promote greater peer learning and social connectedness,
and contribute to increased community resilience [86].

5.3. Independent Assessment of Initiatives

Existing initiatives and future AGI projects should be independently assessed to provide robust
success evaluations of their approaches. This is essential as current non-standardised, self-evaluative
techniques provide no meaningful and comparable measures of AGI initiative effectiveness, and
self-published usage statistics are often more aligned with marketing. The observed asymmetrical
pattern of registered and active users is not unique to AGI initiatives, and transferability of assessment
approaches by other online geographic information services could be investigated, e.g., OpenStreetMap
has 0.5 million registered users (2011) with 38% having undertaken some mapping, and 5% classed as
active contributors [91]. There is also a need to examine impacts for users with different characteristics
(considering factors, such as gender, age, income, ethnicity, social status, religion and others), as usage
and impacts will not be homogeneous among heterogeneous populations [32]. Furthermore, how
project success is reported and marketed may have important implications for future funding and
resource allocations, agriculture and climate policies, research and development directions, and the
livelihoods of farmers. Thus, independent standardised approaches to evaluating AGI initiatives with
an emphasis on more nuanced measures of success beyond simple user statistics are recommended.
Moreover, the trust and collaboration often needed for farmers to adopt new practices and alternative
ways of thinking takes time, and processes of social change can occur over generations [44], thus
longitudinal assessments are also advised over raw user statistics.

5.4. Inclusivity for Multi-Level Stakeholder Communication

Ballantyne [31] argues the need for inclusive, participatory approaches to knowledge sharing,
and to successfully use ICT to support farmers and rural communities, farming communities must
be empowered to define their own needs. Public participation in GIS (e.g., participatory mapping by
communities) to contribute their own unique spatial knowledge, often with support from government,
nongovernmental, university and other organisations engaged in development and land-related
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planning [92], can develop community cohesion [93] and facilitate greater local engagement in
land-related decision making [94]. Combining local knowledge on coping mechanisms with top-down
strategies has enhanced the capacity of rural indigenous communities in SIDS to mitigate and
withstand environmental pressures [95]. Additionally, enhancing smallholder social capital can
provide opportunities for more effective articulation of individual and community goals/needs to
policy makers, researchers and extension providers [3]. Challenges to inclusive AGI participation
(e.g., education levels, household resources, local agro-ecological conditions, market access, availability
of local producer organisations, and ability/willingness to collaborate and take risks) need careful
consideration, particularly regarding equality for women [3]. Baumüller [32] reports for mobile services
that study of behavioural factors impacting farmers’ capacity and willingness to participate and/or take
risks is a significant research shortfall. Technologies that are adapted to smallholders’ capacity to take
risks and integrated with relevant support services [28], especially to reach marginal farmers where
traditional extension activities [3] or locations where reliability of traditional farming approaches [70]
fall short, may prove useful in uptake of AGI to overcome cultural and socio-economic obstacles.

Underpinning each area of potential are important considerations and limitations to AGI that
warrant further understanding. Adoption of AGI and any outcomes for smallholders are limited by the
capacity to act on the knowledge or information gained. For example, a farmer may receive information
of a locally-relevant drought-resistant crop, but may not have the financial means to acquire it. Capacity
for decision making will also influence the success of AGI initiatives, and information provision alone
may not result in meaningful change. Information accessibility is just one factor among many that
significantly affect adaptation [96]. Improved comprehension is needed regarding how significant
livelihood change occurs when farmers adopt AGI. This requires localised studies at the level of
those users most affected (smallholder farmer communities). Further, as livelihood change is not a
short-term process and may vary geographically, studies should be longitudinal and undertaken in a
variety of climate-impacted regions. Significantly, the potential ability for AGI provision and adoption
to address long-term systemic vulnerabilities requires further research attention.

6. Summary

Learning from past experiences and innovations to promote a successful climate adaptation and
development research agenda for the future is crucial [97]. Under increasing livelihood pressures
associated with short term, and long term, climate stressors, we advocate that smallholder farmers
require diverse and locally-relevant geographic information to aid adaptation for increased food and
livelihood security. As we identify, only a small percentage of targeted users of AGI initiatives
we reviewed are using and acting on the information provided, which raises questions of the
appropriateness of such approaches for addressing key agro-climatic challenges. Addressing these
shortcomings is important for supporting smallholders to overcome global risks of extreme weather
events, natural disasters, and failures of climate change mitigation and adaptation [98]. Our analysis
has identified key recommendations that will serve as a valuable guide for the success of future
AGI developments whereby knowledge gaps and implementation challenges should be addressed,
particularly to align with the geographically varying needs of smallholder farmers (e.g., [99,100]. Use
of AGI initiatives could greatly aid smallholders to move towards climate-smart agriculture [101]
for sustainably increasing productivity [44], improving environmental livelihood security [102], and
enhancing landscape resilience under a changing climate [103].
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