
European Journal of Operational
Research. 2018;271(3):1145-1155

[19] Wadsworth Y. What Is
Participatory Action Research? Action
Research Issues Association; 1993

[20] Padak N, Padak G. Guidelines for
planning action research projects.
Research to Practice. ERIC. 1994

[21] Kitchenham B. Procedures for
performing systematic reviews. Keele,
UK, Keele University. 2004;33(2004):
1-26

[22] Kitchenham BA, Pfleeger SL.
Personal opinion surveys. In: Guide to
Advanced Empirical Software
Engineering. Springer; 2008. pp. 63-92

[23] Rosqvist T, Koskela M, Harju H.
Software quality evaluation based on
expert judgement. Software Quality
Journal. 2003;11(1):39-55

[24] Runeson P, Host M, Rainer A,
Regnell B. Case Study Research in
Software Engineering: Guidelines and
Examples. John Wiley & Sons; 2012

[25] Velásquez I, Caro A, Rodríguez A.
Authentication schemes and methods:
A systematic literature review.
Information and Software Technology.
2018;94:30-37

[26] Velásquez I, Caro A, Rodríguez A.
Kontun: A framework for
recommendation of authentication
schemes and methods. Information and
Software Technology. 2018;96:27-37

104

Computer and Network Security

105

Section 2

Cryptography

107

Chapter 7

Secure Communication Using
Cryptography and Covert Channel
Tamer S.A. Fatayer

Abstract

The keys which are generated by cryptography algorithms have still been
compromised by attackers. So, they extra efforts to enhance security, time con-
sumption and communication overheads. Encryption can achieve confidentiality
but cannot achieve integrity. Authentication is needed beside encryption technique
to achieve integrity. The client can send data indirectly to the server through a
covert channel. The covert channel needs pre-shared information between parties
before using the channel. The main challenges of covert channel are security of
pre-agreement information and detectability. In this chapter, merging between
encryption, authentication, and covert channel leads to a new covert channel
satisfying integrity and confidentiality of sending data. This channel is used for
secure communication that enables parties to agree on keys that are used for future
communication.

Keywords: encryption, authentication, dynamically, covert channel,
confidentiality, algorithm, undetectability, fake key

1. Introduction

Encryption is considered the main key factor of security to achieve confi-
dentiality and to protect data from disclosure [1]. Encryption is not efficient to
achieve integrity. It needs another factor called authentication [2]. Covert channel
is created to transfer data indirectly between client and server; it was created by
Lampson [3].

Before the client and server use the covert channel, they must agree on a pre-
agreement knowledge. Also, they agree on how to send that knowledge. A good
example is they agree on even word meaning “00” and odd word meaning “11.” If
the client sends “communication channels,” the server will know that the client’s
message is “1100” [4, 5].

Covert channel cannot be detected if the following two factors exist: plausi-
bility and bit distribution. Plausibility deceives the attacker who thinks that the
channel is normal channel and it is not used to send secret information. On the
other hand, the bit distribution of normal channel must same distribution of
covert channel [5].

The technique is worked as shown in Figure 1, where it shows the general idea of
the proposed technique. Covert channel needs shared information. In my protocol,
it is considered as a table shared between the client and server. This table contains
characteristics of the client such as the name which represents the original key. Each

107

Chapter 7

Secure Communication Using
Cryptography and Covert Channel
Tamer S.A. Fatayer

Abstract

The keys which are generated by cryptography algorithms have still been
compromised by attackers. So, they extra efforts to enhance security, time con-
sumption and communication overheads. Encryption can achieve confidentiality
but cannot achieve integrity. Authentication is needed beside encryption technique
to achieve integrity. The client can send data indirectly to the server through a
covert channel. The covert channel needs pre-shared information between parties
before using the channel. The main challenges of covert channel are security of
pre-agreement information and detectability. In this chapter, merging between
encryption, authentication, and covert channel leads to a new covert channel
satisfying integrity and confidentiality of sending data. This channel is used for
secure communication that enables parties to agree on keys that are used for future
communication.

Keywords: encryption, authentication, dynamically, covert channel,
confidentiality, algorithm, undetectability, fake key

1. Introduction

Encryption is considered the main key factor of security to achieve confi-
dentiality and to protect data from disclosure [1]. Encryption is not efficient to
achieve integrity. It needs another factor called authentication [2]. Covert channel
is created to transfer data indirectly between client and server; it was created by
Lampson [3].

Before the client and server use the covert channel, they must agree on a pre-
agreement knowledge. Also, they agree on how to send that knowledge. A good
example is they agree on even word meaning “00” and odd word meaning “11.” If
the client sends “communication channels,” the server will know that the client’s
message is “1100” [4, 5].

Covert channel cannot be detected if the following two factors exist: plausi-
bility and bit distribution. Plausibility deceives the attacker who thinks that the
channel is normal channel and it is not used to send secret information. On the
other hand, the bit distribution of normal channel must same distribution of
covert channel [5].

The technique is worked as shown in Figure 1, where it shows the general idea of
the proposed technique. Covert channel needs shared information. In my protocol,
it is considered as a table shared between the client and server. This table contains
characteristics of the client such as the name which represents the original key. Each

Computer and Network Security

108

original key has fake keys. I used encryption algorithm to guarantee the confidenti-
ality. HMAC is used to check integrity. Finally, the time that is needed for the client
and server to agree on secret information (e.g., secret keys) is measured.

In this chapter, secure communication channel for transferring data is imple-
mented. The channel between the client and server is considered a covert channel
that depends on authentication and encryption.

2. Background

Lampson was the first to introduce the idea of a covert channel [3]. Transferring
data between two entities indirectly through a channel is called a covert channel.
Before the client and server use the channel to transfer data, they must agree on
a pre-agreement knowledge (e.g., shared memory, table). For example, a word
containing “mm” means bit “0” other than this means bit “1.” So, if the client wants
to send “10” to the server indirectly, the client will send “secure communication” to
the server. The attacker hardly breaks the covert channel and it is considered to be
more secure if it is undetectable [3, 4].

2.1 Covert channel characteristics and properties

Although a covert channel transfers information in a hidden way, it has the same
characteristics as other communication channels. These characteristics are:

• Capacity: the amount of data that can be transmitted through the channel.
From security viewpoint, increasing channel capacity leads to more informa-
tion leakage. The covert channel capacity is measured in bits/second. To obtain
maximum bandwidth through a covert channel, encoding schemes must be
chosen between the sender and receiver.

• Noise: transmitted data through a covert channel are exposed to an amount of
perturbations that makes the transmitted and received information between
two entities not the same.

• Transmission mode: the transmission of information in covert channels (as
in normal channels) can be synchronous or asynchronous. The sender and
receiver in synchronous mode should manage their transmission based on a
condition or a specific event. On the other hand, in asynchronous mode, the
transmission occurs without a prior condition.

Figure 1.
Secure communication using covert channel, encryption, and authentication.

109

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

2.2 The covert channel is more private and undetectable if it satisfies
the following

1. Plausibility: the TCP is usually used for Internet traffic, and it always employs
using time stamp option. As a result, TCP using time stamp is a plausible
covert channel because the majority of users using TCP will not use it for send-
ing covert data. So, the adversary will believe that TCP time stamps will not be
used for sending data covertly.

2. Undetectability: in order for a channel to be more undetectable, the channel
must satisfy that the distribution of bits with covert data must be similar to
the distribution of the normal channel. If an adversary notices that there are
differences (using statistical tests) in bit distribution, then he will detect that
the channel is a covert channel. Also, to achieve undetectability, the channel’s
bits must be random; otherwise, it will be noticed by the adversary.

3. Indispensability: Lampson [3] reports that a communication channel is a
covert channel if it is neither designed nor intended to transfer information at
all. The channel should introduce several benefits to the users besides sending
data covertly; thus, the adversary cannot or will not close off that channel.

2.3 Covert channel classification

Covert channels can be classified as storage or timing channels, noisy or noise-
less channels, and program-flow channels.

2.3.1 Storage channels and timing channels

The covert storage channel depends on a shared variable or a storage location,
whereby one process (sender) can be allowed to write directly or indirectly to the
storage location and the other process (receiver) reads from that storage location.
On the other hand, the covert timing channel enables senders to send informa-
tion to the receiver through signals, whereby the sender manages the time that is
needed to perform some operation in such a way that when the receiver observes the
time, it will understand a special event or a special piece of information. The main
disadvantage of the timing channel is that it is considered very noisy because of the
several external factors that affect the execution time of a process. Covert storage
channels and timing channels need a synchronization process, which enables the
sender and receiver to synchronize with each other to send and receive information.
The storage covert channel uses a data variable to enable the sender and receiver
to communicate. Therefore, a synchronization variable, called sender-receiver, is
needed by the sender to notify the receiver that he has completed reading or writing
a data variable. The covert channel uses another synchronization variable, called
receiver-sender. To distinguish between storage and timing channels, if a chan-
nel uses a storage variable to transfer data between the sender and receiver, it is
considered a storage channel. On the other hand, a covert timing channel uses time
reference (e.g., a clock) to transfer data between the sender and receiver, whereby
the sender and receiver use a common time reference.

2.3.2 Noisy and noiseless channels

I discussed previously that the characteristics of the covert channel are similar to
any communication channel. One of these characteristics is that the channel may be

Computer and Network Security

108

original key has fake keys. I used encryption algorithm to guarantee the confidenti-
ality. HMAC is used to check integrity. Finally, the time that is needed for the client
and server to agree on secret information (e.g., secret keys) is measured.

In this chapter, secure communication channel for transferring data is imple-
mented. The channel between the client and server is considered a covert channel
that depends on authentication and encryption.

2. Background

Lampson was the first to introduce the idea of a covert channel [3]. Transferring
data between two entities indirectly through a channel is called a covert channel.
Before the client and server use the channel to transfer data, they must agree on
a pre-agreement knowledge (e.g., shared memory, table). For example, a word
containing “mm” means bit “0” other than this means bit “1.” So, if the client wants
to send “10” to the server indirectly, the client will send “secure communication” to
the server. The attacker hardly breaks the covert channel and it is considered to be
more secure if it is undetectable [3, 4].

2.1 Covert channel characteristics and properties

Although a covert channel transfers information in a hidden way, it has the same
characteristics as other communication channels. These characteristics are:

• Capacity: the amount of data that can be transmitted through the channel.
From security viewpoint, increasing channel capacity leads to more informa-
tion leakage. The covert channel capacity is measured in bits/second. To obtain
maximum bandwidth through a covert channel, encoding schemes must be
chosen between the sender and receiver.

• Noise: transmitted data through a covert channel are exposed to an amount of
perturbations that makes the transmitted and received information between
two entities not the same.

• Transmission mode: the transmission of information in covert channels (as
in normal channels) can be synchronous or asynchronous. The sender and
receiver in synchronous mode should manage their transmission based on a
condition or a specific event. On the other hand, in asynchronous mode, the
transmission occurs without a prior condition.

Figure 1.
Secure communication using covert channel, encryption, and authentication.

109

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

2.2 The covert channel is more private and undetectable if it satisfies
the following

1. Plausibility: the TCP is usually used for Internet traffic, and it always employs
using time stamp option. As a result, TCP using time stamp is a plausible
covert channel because the majority of users using TCP will not use it for send-
ing covert data. So, the adversary will believe that TCP time stamps will not be
used for sending data covertly.

2. Undetectability: in order for a channel to be more undetectable, the channel
must satisfy that the distribution of bits with covert data must be similar to
the distribution of the normal channel. If an adversary notices that there are
differences (using statistical tests) in bit distribution, then he will detect that
the channel is a covert channel. Also, to achieve undetectability, the channel’s
bits must be random; otherwise, it will be noticed by the adversary.

3. Indispensability: Lampson [3] reports that a communication channel is a
covert channel if it is neither designed nor intended to transfer information at
all. The channel should introduce several benefits to the users besides sending
data covertly; thus, the adversary cannot or will not close off that channel.

2.3 Covert channel classification

Covert channels can be classified as storage or timing channels, noisy or noise-
less channels, and program-flow channels.

2.3.1 Storage channels and timing channels

The covert storage channel depends on a shared variable or a storage location,
whereby one process (sender) can be allowed to write directly or indirectly to the
storage location and the other process (receiver) reads from that storage location.
On the other hand, the covert timing channel enables senders to send informa-
tion to the receiver through signals, whereby the sender manages the time that is
needed to perform some operation in such a way that when the receiver observes the
time, it will understand a special event or a special piece of information. The main
disadvantage of the timing channel is that it is considered very noisy because of the
several external factors that affect the execution time of a process. Covert storage
channels and timing channels need a synchronization process, which enables the
sender and receiver to synchronize with each other to send and receive information.
The storage covert channel uses a data variable to enable the sender and receiver
to communicate. Therefore, a synchronization variable, called sender-receiver, is
needed by the sender to notify the receiver that he has completed reading or writing
a data variable. The covert channel uses another synchronization variable, called
receiver-sender. To distinguish between storage and timing channels, if a chan-
nel uses a storage variable to transfer data between the sender and receiver, it is
considered a storage channel. On the other hand, a covert timing channel uses time
reference (e.g., a clock) to transfer data between the sender and receiver, whereby
the sender and receiver use a common time reference.

2.3.2 Noisy and noiseless channels

I discussed previously that the characteristics of the covert channel are similar to
any communication channel. One of these characteristics is that the channel may be

Computer and Network Security

110

noisy. The covert channel can be noiseless if the transmitted data by the sender and
received data by the receiver are the same with probability 1; otherwise, the channel
is noisy. Usually, data transmitted through a covert channel is represented by bit
“0” or “1.” Nevertheless, if the receiver decodes every bit transmitted by the sender
correctly, then the covert channel is considered noiseless. Thus, to reduce error rate,
which is produced by noise, correction codes are used [6].

2.3.3 Program-flow channels

I present a new type of covert channel, which is program-flow. The program-flow
covert channel depends on the flow of program execution to convey information.
In our proposed covert channel, the sender tries to guess the correct delta_mmap
(encoded information) of the vulnerable server program. The server code which
executes in case of successful guess differs from which executes in a failed guess. The
receiver distinguishes between server code executed in successful and failed guesses.

2.4 Authentication and key exchange

Authentication process identifies entities that are attempting to access some
resources. Diffie-Hellman (DH) algorithm is used as method of public key
exchange.

2.4.1 Authentication process

Authentication is a process of checking whether someone or something is autho-
rized or not to access some resources. Authentication can be computer to computer
or process to process and mutual in both directions [7, 8]. Bob can authenticate
Alice’s identity depending on four factors [7, 9], which are:

2.4.1.1 Something you know

Alice sends a request to the server to access some resources; Bob authenticates
Alice by asking her about a secret thing that she knows, such as password. If Alice
issues a correct password, then Bob will accept her request for accessing some
resources. Fortunately, a password is needed to login into the system and access its
resources. Yet, unfortunately, the user is always asked to reuse the password when
he wants to log into the system, which gives attackers opportunities to hack the
password and reuse it. The solution for this problem is to use a onetime password
(OTP) so that the user each time she logs into a system needs a new password.

2.4.1.2 Something you have

One of the disadvantages of the first authentication factor (something you
know) is that the user may forget his password. Thus, the second authentication
factor (something you have) overcomes this problem, whereby the user has an
object (e.g., automatic teller machine (ATM) cards, OTP cards [7], and smart cards
[9]) to access the system. Unfortunately, the objects may get stolen by attackers.

2.4.1.3 Something you are

The third authentication factor is based on the measurements of the user’s
physical characteristics such as the fingerprints, iris, and voice. The techniques that
measure the behavioral characteristics of the user are called biometrics [7, 8]. This

111

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

factor overcomes the problems of the previous factors because it does not depend
on a password or a token.

2.4.1.4 Somebody you know

Brainard et al. [9] proposes a fourth factor of authentication that is dependent
on emergency authenticator, and it is used when the primary authenticator is
unavailable to a user. A good example for emergency system is email; thus, when
a user forgets his password, he often has the option of having password reset
instructions. A system called “vouching” is introduced. A voucher system permits
swapping of the roles of the token and PIN to deal with the case when the user has
forgotten his PIN but still has his token.

2.4.2 Message authentication

When Alice and Bob want to exchange messages, they do not want an attacker
to modify the contents of their messages. This can be achieved by using message
authentication odes (MACs), where the MAC is a tag, attached to the message
by Alice to Bob or vice versa. If Bob validates this tag, the request of Alice will be
accepted by Bob; otherwise, it is rejected [7]. MAC that is based on cryptographic
hash functions is called HMAC [10]. There are many hash functions, such as
message digest 5 (MD5) and Secure Hash Algorithm 1 (SHA1). When HMAC is
used with MD5, it is called Hashed Message Authentication Code-Message Digest
5 (HMAC-MD5), and when it is used with SHA1, it is called Hashed Message
Authentication Code-Secure Hash Algorithm 1 (HMAC-SHA1) [7, 10, 11]. In our
dissertation, we use the secure hash algorithm SHA256 with pre-shared key to form
HMAC-SHA256, where the secure hash algorithm SHA256 takes a message of 512-
bit blocks as input and returns a digest message with 256 bits as output [7].

2.4.3 Diffie-Hellman (DH) key exchange algorithm

Key exchange algorithms are cryptographic methods that generate crypto-
graphic shared keys that are shared among users. After Alice and Bob agree on a
shared key, they can use it in HMAC, and they can also use it in symmetric encryp-
tion algorithms to encrypt or to decrypt files. Alice encrypts file using one of the
symmetric algorithms and sends it to Bob. Bob in turn uses the same symmetric
algorithm to decrypt the file. Note that Alice and Bob must agree on a shared key
before using symmetric algorithm. Many key agreement protocols have been
proposed. The Diffie-Hellman (DH) algorithm [12] is a very popular example that
introduces a key exchange protocol using the discrete logarithm problem [13]. DH
algorithm enables Alice and Bob to exchange secure keys over an insecure channel.

Figure 2 shows the mechanism of DH. The values g and p are public parameters
known to Alice and Bob, whereby p is a prime number and g (generator of p) is an
integer less than p. This means that for all every number n between 1 and p-1, there
is a power k of g such that n = gk mod p. Both Alice and Bob choose a secret random
integer number, a and b, respectively. After that, Alice sends to Bob (gb mod p),
and Bob sends to Alice (gb mod p). Finally, they agree on a secret key by using this
formula ((ga)b mod p).

Figure 3 shows that a “man-in-the-middle” (Mallory) can listen and modify
the conversation messages between Alice and Bob. In so doing, she can convince
Alice and Bob that they are communicating with each other while in fact both are
communicating with Mallory [7]. Moreover, Figure 3 shows that the main vulner-
ability in the DH protocol is that it does not have an authentication process. Several

Computer and Network Security

110

noisy. The covert channel can be noiseless if the transmitted data by the sender and
received data by the receiver are the same with probability 1; otherwise, the channel
is noisy. Usually, data transmitted through a covert channel is represented by bit
“0” or “1.” Nevertheless, if the receiver decodes every bit transmitted by the sender
correctly, then the covert channel is considered noiseless. Thus, to reduce error rate,
which is produced by noise, correction codes are used [6].

2.3.3 Program-flow channels

I present a new type of covert channel, which is program-flow. The program-flow
covert channel depends on the flow of program execution to convey information.
In our proposed covert channel, the sender tries to guess the correct delta_mmap
(encoded information) of the vulnerable server program. The server code which
executes in case of successful guess differs from which executes in a failed guess. The
receiver distinguishes between server code executed in successful and failed guesses.

2.4 Authentication and key exchange

Authentication process identifies entities that are attempting to access some
resources. Diffie-Hellman (DH) algorithm is used as method of public key
exchange.

2.4.1 Authentication process

Authentication is a process of checking whether someone or something is autho-
rized or not to access some resources. Authentication can be computer to computer
or process to process and mutual in both directions [7, 8]. Bob can authenticate
Alice’s identity depending on four factors [7, 9], which are:

2.4.1.1 Something you know

Alice sends a request to the server to access some resources; Bob authenticates
Alice by asking her about a secret thing that she knows, such as password. If Alice
issues a correct password, then Bob will accept her request for accessing some
resources. Fortunately, a password is needed to login into the system and access its
resources. Yet, unfortunately, the user is always asked to reuse the password when
he wants to log into the system, which gives attackers opportunities to hack the
password and reuse it. The solution for this problem is to use a onetime password
(OTP) so that the user each time she logs into a system needs a new password.

2.4.1.2 Something you have

One of the disadvantages of the first authentication factor (something you
know) is that the user may forget his password. Thus, the second authentication
factor (something you have) overcomes this problem, whereby the user has an
object (e.g., automatic teller machine (ATM) cards, OTP cards [7], and smart cards
[9]) to access the system. Unfortunately, the objects may get stolen by attackers.

2.4.1.3 Something you are

The third authentication factor is based on the measurements of the user’s
physical characteristics such as the fingerprints, iris, and voice. The techniques that
measure the behavioral characteristics of the user are called biometrics [7, 8]. This

111

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

factor overcomes the problems of the previous factors because it does not depend
on a password or a token.

2.4.1.4 Somebody you know

Brainard et al. [9] proposes a fourth factor of authentication that is dependent
on emergency authenticator, and it is used when the primary authenticator is
unavailable to a user. A good example for emergency system is email; thus, when
a user forgets his password, he often has the option of having password reset
instructions. A system called “vouching” is introduced. A voucher system permits
swapping of the roles of the token and PIN to deal with the case when the user has
forgotten his PIN but still has his token.

2.4.2 Message authentication

When Alice and Bob want to exchange messages, they do not want an attacker
to modify the contents of their messages. This can be achieved by using message
authentication odes (MACs), where the MAC is a tag, attached to the message
by Alice to Bob or vice versa. If Bob validates this tag, the request of Alice will be
accepted by Bob; otherwise, it is rejected [7]. MAC that is based on cryptographic
hash functions is called HMAC [10]. There are many hash functions, such as
message digest 5 (MD5) and Secure Hash Algorithm 1 (SHA1). When HMAC is
used with MD5, it is called Hashed Message Authentication Code-Message Digest
5 (HMAC-MD5), and when it is used with SHA1, it is called Hashed Message
Authentication Code-Secure Hash Algorithm 1 (HMAC-SHA1) [7, 10, 11]. In our
dissertation, we use the secure hash algorithm SHA256 with pre-shared key to form
HMAC-SHA256, where the secure hash algorithm SHA256 takes a message of 512-
bit blocks as input and returns a digest message with 256 bits as output [7].

2.4.3 Diffie-Hellman (DH) key exchange algorithm

Key exchange algorithms are cryptographic methods that generate crypto-
graphic shared keys that are shared among users. After Alice and Bob agree on a
shared key, they can use it in HMAC, and they can also use it in symmetric encryp-
tion algorithms to encrypt or to decrypt files. Alice encrypts file using one of the
symmetric algorithms and sends it to Bob. Bob in turn uses the same symmetric
algorithm to decrypt the file. Note that Alice and Bob must agree on a shared key
before using symmetric algorithm. Many key agreement protocols have been
proposed. The Diffie-Hellman (DH) algorithm [12] is a very popular example that
introduces a key exchange protocol using the discrete logarithm problem [13]. DH
algorithm enables Alice and Bob to exchange secure keys over an insecure channel.

Figure 2 shows the mechanism of DH. The values g and p are public parameters
known to Alice and Bob, whereby p is a prime number and g (generator of p) is an
integer less than p. This means that for all every number n between 1 and p-1, there
is a power k of g such that n = gk mod p. Both Alice and Bob choose a secret random
integer number, a and b, respectively. After that, Alice sends to Bob (gb mod p),
and Bob sends to Alice (gb mod p). Finally, they agree on a secret key by using this
formula ((ga)b mod p).

Figure 3 shows that a “man-in-the-middle” (Mallory) can listen and modify
the conversation messages between Alice and Bob. In so doing, she can convince
Alice and Bob that they are communicating with each other while in fact both are
communicating with Mallory [7]. Moreover, Figure 3 shows that the main vulner-
ability in the DH protocol is that it does not have an authentication process. Several

Computer and Network Security

112

versions of DH protocol exist to overcome this problem, for example, by using DH
with digital signature [11]. Diffie et al. [14] enhance a Diffie-Hellman protocol with
an authentication process, whereby Alice and Bob must authenticate themselves
using a digital signature. Alice and Bob must have a pair of keys (public key and pri-
vate key) and a certificate for the public key. So, during execution of DH protocol,
Alice and Bob transmit massages with signature; Mallory cannot forge the signature
because she needs to share Alice’s private key and Bob’s private key.

The DH algorithm relies on heavy computation, which may not be suitable to
resource-constrained platforms.

3. Related work

There are many researches that target covert channel undetectability [15–17],
but most of the works have drawbacks and lack in channel detectability (Girling
[18] in 1987). He creates three covert channels through a local area network (LAN):
two of them are storage channels, and the third is a timing channel. The two storage
channels depend on “what-is-sent” strategy, whereby one of them depends on the
frame size, which is sent by the sender. If the frame size equals to 256, the amount
of covert information decoded by receiver, who monitors the sender activity on the
LAN, would be 8 bits. On the other hand, the timing channel depends on the time
that represents the time interval between successive sends. The time difference
between successive sends may be odd or even, and the prior agreement between
the sender and receiver (who monitors the time between successive sends) is such

Figure 2.
Diffie-Hellman key exchange algorithm. Alice and Bob agree on a secret key over an insecure channel. The
secret key that they agree on is computed as (ga)b mod p.

Figure 3.
A Diffie-Hellman weakness. A man-in-the-middle (e.g., Mallory) impersonates Alice to agree on a shared key
with Bob. Also, she impersonates Bob to agree on a shared key with Alice.

113

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

that the odd time means bit “0” and even time means bit “1.” So, the timing channel
obviously depends on “when-is-sent” strategy.

TCP/IP protocol is used to create covert channel that is targeted by many
researchers, where they used TCP to hide information [19–22]. Zhang et al. [6]
propose covert channel to transfer messages to control (increasing or decreasing)
the period of silence in traffic of VoLTE traffic. Create covert channel through
hiding information in IP fields [20, 23]. Mead et al. [24] propose timing covert
channel for wireless communication; they developed android application to com-
municate through local area network and mobile network. The results show that
the channel is very undetectable in spite of the existence of malware and intrusion
detection system.

Some researches, Fatayer et al. [15–17], try to use covert channel as benign chan-
nel, and it can be used to send legal information between the client and server. They
used gaps in memory to create covert channel. Also, they used the channel to send
text and audio files in acceptable time. The proposed technique depends on pre-
agreement database which consists of original keys and its corresponding fake keys.
Each original key has multiple fake keys. The database consist of the characteristics
of clients; each feature represents an original key, and it has multiple fake keys.
Figure 4 figures out the pre-agreement between the client and server before using
covert channel.

Customer asks cloud provider to access his resources. The summarization of
approach is as follows. First, pre-agreement between the server and client is shown
in Figure 4. Second, the customer sends a packet which contains “Fakei” attribute
belongs to a specific customer (e.g., name) to the cloud provider. Third, the cloud
provider will analyze the packet and make sure that the “Fakei” belongs to which
customer. If yes, the provider goes to next step. Fourth, the cloud provider will
ask for extra information to verify the customer and then he sends a packet that
contains another fake key to the customer. Fifth, the customer receives the packet
and he verifies the packet. The customer will send the required information to cloud
provider such as one of the fake keys of email. Seventh, the cloud provider will
analyze the packet to make sure that the “Fakei” (email) belongs to which customer.
If yes, the cloud provider will accept the request. Eight, steps from 4 to 7 are consid-
ered the first level of security, so if these steps are repeated more than one time, it
can achieve multilevel of security.

A new detection approach of covert timing channel is proposed by Fahimeh
et al. [25], where this approach enables to detect covet time channel through traffic
distribution. They used statistical test to measure the network traffic online.

Figure 4.
Database as pre-agreement between the client and server.

Computer and Network Security

112

versions of DH protocol exist to overcome this problem, for example, by using DH
with digital signature [11]. Diffie et al. [14] enhance a Diffie-Hellman protocol with
an authentication process, whereby Alice and Bob must authenticate themselves
using a digital signature. Alice and Bob must have a pair of keys (public key and pri-
vate key) and a certificate for the public key. So, during execution of DH protocol,
Alice and Bob transmit massages with signature; Mallory cannot forge the signature
because she needs to share Alice’s private key and Bob’s private key.

The DH algorithm relies on heavy computation, which may not be suitable to
resource-constrained platforms.

3. Related work

There are many researches that target covert channel undetectability [15–17],
but most of the works have drawbacks and lack in channel detectability (Girling
[18] in 1987). He creates three covert channels through a local area network (LAN):
two of them are storage channels, and the third is a timing channel. The two storage
channels depend on “what-is-sent” strategy, whereby one of them depends on the
frame size, which is sent by the sender. If the frame size equals to 256, the amount
of covert information decoded by receiver, who monitors the sender activity on the
LAN, would be 8 bits. On the other hand, the timing channel depends on the time
that represents the time interval between successive sends. The time difference
between successive sends may be odd or even, and the prior agreement between
the sender and receiver (who monitors the time between successive sends) is such

Figure 2.
Diffie-Hellman key exchange algorithm. Alice and Bob agree on a secret key over an insecure channel. The
secret key that they agree on is computed as (ga)b mod p.

Figure 3.
A Diffie-Hellman weakness. A man-in-the-middle (e.g., Mallory) impersonates Alice to agree on a shared key
with Bob. Also, she impersonates Bob to agree on a shared key with Alice.

113

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

that the odd time means bit “0” and even time means bit “1.” So, the timing channel
obviously depends on “when-is-sent” strategy.

TCP/IP protocol is used to create covert channel that is targeted by many
researchers, where they used TCP to hide information [19–22]. Zhang et al. [6]
propose covert channel to transfer messages to control (increasing or decreasing)
the period of silence in traffic of VoLTE traffic. Create covert channel through
hiding information in IP fields [20, 23]. Mead et al. [24] propose timing covert
channel for wireless communication; they developed android application to com-
municate through local area network and mobile network. The results show that
the channel is very undetectable in spite of the existence of malware and intrusion
detection system.

Some researches, Fatayer et al. [15–17], try to use covert channel as benign chan-
nel, and it can be used to send legal information between the client and server. They
used gaps in memory to create covert channel. Also, they used the channel to send
text and audio files in acceptable time. The proposed technique depends on pre-
agreement database which consists of original keys and its corresponding fake keys.
Each original key has multiple fake keys. The database consist of the characteristics
of clients; each feature represents an original key, and it has multiple fake keys.
Figure 4 figures out the pre-agreement between the client and server before using
covert channel.

Customer asks cloud provider to access his resources. The summarization of
approach is as follows. First, pre-agreement between the server and client is shown
in Figure 4. Second, the customer sends a packet which contains “Fakei” attribute
belongs to a specific customer (e.g., name) to the cloud provider. Third, the cloud
provider will analyze the packet and make sure that the “Fakei” belongs to which
customer. If yes, the provider goes to next step. Fourth, the cloud provider will
ask for extra information to verify the customer and then he sends a packet that
contains another fake key to the customer. Fifth, the customer receives the packet
and he verifies the packet. The customer will send the required information to cloud
provider such as one of the fake keys of email. Seventh, the cloud provider will
analyze the packet to make sure that the “Fakei” (email) belongs to which customer.
If yes, the cloud provider will accept the request. Eight, steps from 4 to 7 are consid-
ered the first level of security, so if these steps are repeated more than one time, it
can achieve multilevel of security.

A new detection approach of covert timing channel is proposed by Fahimeh
et al. [25], where this approach enables to detect covet time channel through traffic
distribution. They used statistical test to measure the network traffic online.

Figure 4.
Database as pre-agreement between the client and server.

Computer and Network Security

114

4. Covert channel with authentication leads to secure communication

The proposed technique is responsible for creating secure communication chan-
nel using covert channel, encryption, and authentication. In the first step before
using covert channel, the client and server must agree on pre-agreement table as
shown in Figure 4, where it depicts out the pre-agreement table consisting of origi-
nal key (OK) and its corresponding fake keys. The key point here is that the fake key
is used in communication channel and the original key is kept secret in both sides
(client and server). Figure 5 illustrates the proposed technique, where the network
consists of the client and server. The client agrees on shared information (e.g., table
as database) with the server.

The client wants to send to the server a message. Then, he encrypts the message
using the original key. After that the encrypted message is attached with the fake key
to be a parameter to HMAC function. HMAC depends on shared key between the
client and server. Then the client sends (HMAC + encrypted message + fake key) to
the server. Where, HMAC is used for integrity and fake key for server to know the

Figure 5.
Technique for transferring secure data through covert channel using covert channel, encryption, and
authentication.

115

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

original key to decrypt the encrypted message. On the other hand, the server receives
the client’s message. After that he separates the message to the HMAC, encrypted
message, and fake key. Then, he checks the integrity of the message. After that he gets
the original key from its corresponding fake key to decrypt the encrypted message.

5. Performance discussion

The implementation of technique is done by: first create a network as client and
server with implemented java application. Client and server machines are 32 bit
×86, CPU Core (TM) i5 2.40 GHz, and Ram 4GB. Advanced Encryption Standard
(AES) [26] algorithm is used in the implementation. Hashed message authentica-
tion code (HMAC) is used to guarantee the integrity [7, 11, 12]. The following issues
are satisfying in this technique:

1. Confidentiality: the technique guarantees that the messages are protected from
disclosure, which is done by encrypting the messages with original keys that do
not send through communication channel. Instead, the original keys are sent
encrypted by fake keys.

2. Integrity: the information is protected from being changed by unauthorized
parties through using HMAC function which checks if the content of the mes-
sage is altered or not.

3. Undetectability: undetectability is achieved depending on two conditions:
first, plausibility, the messages that are sent through the covert channel are
protected from adversary by making the covert channel appear like a normal
channel through sending normal encrypted messages, and, second, hiding the
fake key inside the message which does not affect bit distribution, especially
when the size of the fake key is small.

4. Comparative analysis: My technique is used in two ways, malicious and benign
usages. Also, encryption and authentication are used that differ from other
techniques.

5. Dynamically: the generating keys between the client and server have a flexible
length. Because when you repeat the scenario in Figure 5 several times, you get
new keys with different sizes. If you repeat the technique four times and each
time generates key with 16-bit size, then you will get a key with 64-bit size.

Figure 6.
The technique can handle multiple users in acceptable time.

Computer and Network Security

114

4. Covert channel with authentication leads to secure communication

The proposed technique is responsible for creating secure communication chan-
nel using covert channel, encryption, and authentication. In the first step before
using covert channel, the client and server must agree on pre-agreement table as
shown in Figure 4, where it depicts out the pre-agreement table consisting of origi-
nal key (OK) and its corresponding fake keys. The key point here is that the fake key
is used in communication channel and the original key is kept secret in both sides
(client and server). Figure 5 illustrates the proposed technique, where the network
consists of the client and server. The client agrees on shared information (e.g., table
as database) with the server.

The client wants to send to the server a message. Then, he encrypts the message
using the original key. After that the encrypted message is attached with the fake key
to be a parameter to HMAC function. HMAC depends on shared key between the
client and server. Then the client sends (HMAC + encrypted message + fake key) to
the server. Where, HMAC is used for integrity and fake key for server to know the

Figure 5.
Technique for transferring secure data through covert channel using covert channel, encryption, and
authentication.

115

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

original key to decrypt the encrypted message. On the other hand, the server receives
the client’s message. After that he separates the message to the HMAC, encrypted
message, and fake key. Then, he checks the integrity of the message. After that he gets
the original key from its corresponding fake key to decrypt the encrypted message.

5. Performance discussion

The implementation of technique is done by: first create a network as client and
server with implemented java application. Client and server machines are 32 bit
×86, CPU Core (TM) i5 2.40 GHz, and Ram 4GB. Advanced Encryption Standard
(AES) [26] algorithm is used in the implementation. Hashed message authentica-
tion code (HMAC) is used to guarantee the integrity [7, 11, 12]. The following issues
are satisfying in this technique:

1. Confidentiality: the technique guarantees that the messages are protected from
disclosure, which is done by encrypting the messages with original keys that do
not send through communication channel. Instead, the original keys are sent
encrypted by fake keys.

2. Integrity: the information is protected from being changed by unauthorized
parties through using HMAC function which checks if the content of the mes-
sage is altered or not.

3. Undetectability: undetectability is achieved depending on two conditions:
first, plausibility, the messages that are sent through the covert channel are
protected from adversary by making the covert channel appear like a normal
channel through sending normal encrypted messages, and, second, hiding the
fake key inside the message which does not affect bit distribution, especially
when the size of the fake key is small.

4. Comparative analysis: My technique is used in two ways, malicious and benign
usages. Also, encryption and authentication are used that differ from other
techniques.

5. Dynamically: the generating keys between the client and server have a flexible
length. Because when you repeat the scenario in Figure 5 several times, you get
new keys with different sizes. If you repeat the technique four times and each
time generates key with 16-bit size, then you will get a key with 64-bit size.

Figure 6.
The technique can handle multiple users in acceptable time.

Computer and Network Security

116

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Tamer S.A. Fatayer
Computer Science and Information Technology, Al-Aqsa University, Gaza, Palestine

*Address all correspondence to: ts.fatayer@alaqsa.edu.ps

The time that is needed by the server to serve the client is measured. The tech-
nique can handle several clients with acceptable time as shown in Figure 6. The
server needs less than 0.25 s to deal and handle 30 clients.

6. Conclusion and future work

Encryption is used to achieve confidentiality to protect data from stealing from
the third party (e.g., attacker). If users use encryption, they cannot achieve integ-
rity. They need authentication and covert channel besides encryption technique to
achieve integrity. In this chapter, we used encryption, authentication, and covert
channel to produce a secure communication between eligible parties. This technique
satisfies confidentiality through encryption and integrity using authentication
algorithm. Finally, this technique generates undetectability covert channel through
normal distribution of bits. Secure communication channel between the client and
server that enables them to transfer data securely and to agree on keys that are used
for future communication. The technique needs pre-shared table that consists of
original and fake keys.

Acknowledgements

This is to happily express my sincere thanks and appreciation to the following
for their support and guidance throughout the chapter writing. I would like to
thank my friends who stood beside me and helped me pursue my work. This chapter
is dedicated to my parents, without whom, after the blessings of Allah, all this work
would not be possible. They have been a source of endless love, encouragement, and
support. They believed in me and in whatever decision I took and are proud of me
on whatever achievement I may have.

Thanks

Your support means a lot of thanks.

117

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

[1] Dlaminia EM, Eloffb M. Information
security: The moving target. Computers
& Security. 2009;28:10

[2] Tilborg H, Jajodia S. Encyclopedia
of Cryptography and Security. 2nd
edition. Boston: Springer; 2011. ISBN:
978-1441959058

[3] Lampson B. A note on the
confinement problem. Communications
of the ACM. 1973;16:613-615

[4] Ray B, Mishra S. A protocol for
building secure and reliable covert
channel. In: PST’08: Proceedings of the
Sixth Annual Conference on Privacy,
Security and Trust; Washington, DC,
USA; 2008. pp. 246-253

[5] Giffin J, Greenstadt R, Litwack P,
Tibbetts R. Covert messaging through
TCP timestamps. Presented at the
PET’02: The Workshop on Privacy
Enhancing Technologies; San Francisco,
CA, USA; 2002

[6] Zhang X, Tan Y-A, Liang C, Li U,
Li J. A covert channel over VoLTE via
adjusting silence periods. IEEE Access.
February 2018;6:9292-9302

[7] Daswani N, Kern C, Kesavan
A. Foundations of Security: What Every
Orogrammer Needs to Know. 1st ed.
Berkely, USA: Apress; 2007

[8] Sandhu R, Samarati P.
Authentication, access control, and
audit. ACM Computing Surveys.
1996;28:241-243

[9] Brainard J, Juels A, Rivest R. Fourth
factor authentication: Somebody you
know. In: CCS’06: Proceedings of the
13th ACM conference on Computer and
communications security; Virginia,
USA; 2006. pp. 168-178

[10] Kumar M. An enhanced remote
user authentication scheme with smart

card. International Journal of Network
Security. 2010;10:175-184

[11] Information Technology Laboratory.
The keyed-hash message authentication
code (HMAC). National Institute of
Standards and Technology, Technical
Report FIPS PUB 198; 2002

[12] Bellare M, Canetti R, Krawczyk
H. Keying hash functions for message
authentication. In: CRYPTO’96:
Proceedings of the 16th Annual
International Cryptology conference on
Advances in Cryptology; London, UK;
1996. pp. 1-15

[13] Diffie W, Hellman M. New
directions in cryptography. IEEE
Transactions on Information Theory.
1976;IT-22:644-654

[14] Mahalanobis A. Diffie-Hellman key
exchange protocol, its generalization
and nilpotent groups [Ph.D.
dissertation]. Florida: The Charles
E. Schmidt College of Science, Florida
Atlantic University; August 2005

[15] Fatayer T, Khattab S, Omara F. A
key-exchange protocol based on the
stack-overflow software vulnerability.
In: ISCC’10: IEEE Symposium on
Computers and Communications;
Riccione, Italy; June 2010. pp. 411-416

[16] Fatayer T, Khattab S, Omara
F. OverCovert: Using stack overflow
software vulnerability to create a
covert channel. In: NTMS’11: 4th IFIP
International Conference on New
Technologies, Mobility and Security;
Paris, France; February 2011

[17] Fatayer T, Timraz K. MLSCPC:
Multi-level security using covert
channel to achieve privacy through
cloud computing. Presented at
the WSCNIS’2015 the 2nd World
Symposium on Computer Networks

References

Computer and Network Security

116

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Tamer S.A. Fatayer
Computer Science and Information Technology, Al-Aqsa University, Gaza, Palestine

*Address all correspondence to: ts.fatayer@alaqsa.edu.ps

The time that is needed by the server to serve the client is measured. The tech-
nique can handle several clients with acceptable time as shown in Figure 6. The
server needs less than 0.25 s to deal and handle 30 clients.

6. Conclusion and future work

Encryption is used to achieve confidentiality to protect data from stealing from
the third party (e.g., attacker). If users use encryption, they cannot achieve integ-
rity. They need authentication and covert channel besides encryption technique to
achieve integrity. In this chapter, we used encryption, authentication, and covert
channel to produce a secure communication between eligible parties. This technique
satisfies confidentiality through encryption and integrity using authentication
algorithm. Finally, this technique generates undetectability covert channel through
normal distribution of bits. Secure communication channel between the client and
server that enables them to transfer data securely and to agree on keys that are used
for future communication. The technique needs pre-shared table that consists of
original and fake keys.

Acknowledgements

This is to happily express my sincere thanks and appreciation to the following
for their support and guidance throughout the chapter writing. I would like to
thank my friends who stood beside me and helped me pursue my work. This chapter
is dedicated to my parents, without whom, after the blessings of Allah, all this work
would not be possible. They have been a source of endless love, encouragement, and
support. They believed in me and in whatever decision I took and are proud of me
on whatever achievement I may have.

Thanks

Your support means a lot of thanks.

117

Secure Communication Using Cryptography and Covert Channel
DOI: http://dx.doi.org/10.5772/intechopen.82580

[1] Dlaminia EM, Eloffb M. Information
security: The moving target. Computers
& Security. 2009;28:10

[2] Tilborg H, Jajodia S. Encyclopedia
of Cryptography and Security. 2nd
edition. Boston: Springer; 2011. ISBN:
978-1441959058

[3] Lampson B. A note on the
confinement problem. Communications
of the ACM. 1973;16:613-615

[4] Ray B, Mishra S. A protocol for
building secure and reliable covert
channel. In: PST’08: Proceedings of the
Sixth Annual Conference on Privacy,
Security and Trust; Washington, DC,
USA; 2008. pp. 246-253

[5] Giffin J, Greenstadt R, Litwack P,
Tibbetts R. Covert messaging through
TCP timestamps. Presented at the
PET’02: The Workshop on Privacy
Enhancing Technologies; San Francisco,
CA, USA; 2002

[6] Zhang X, Tan Y-A, Liang C, Li U,
Li J. A covert channel over VoLTE via
adjusting silence periods. IEEE Access.
February 2018;6:9292-9302

[7] Daswani N, Kern C, Kesavan
A. Foundations of Security: What Every
Orogrammer Needs to Know. 1st ed.
Berkely, USA: Apress; 2007

[8] Sandhu R, Samarati P.
Authentication, access control, and
audit. ACM Computing Surveys.
1996;28:241-243

[9] Brainard J, Juels A, Rivest R. Fourth
factor authentication: Somebody you
know. In: CCS’06: Proceedings of the
13th ACM conference on Computer and
communications security; Virginia,
USA; 2006. pp. 168-178

[10] Kumar M. An enhanced remote
user authentication scheme with smart

card. International Journal of Network
Security. 2010;10:175-184

[11] Information Technology Laboratory.
The keyed-hash message authentication
code (HMAC). National Institute of
Standards and Technology, Technical
Report FIPS PUB 198; 2002

[12] Bellare M, Canetti R, Krawczyk
H. Keying hash functions for message
authentication. In: CRYPTO’96:
Proceedings of the 16th Annual
International Cryptology conference on
Advances in Cryptology; London, UK;
1996. pp. 1-15

[13] Diffie W, Hellman M. New
directions in cryptography. IEEE
Transactions on Information Theory.
1976;IT-22:644-654

[14] Mahalanobis A. Diffie-Hellman key
exchange protocol, its generalization
and nilpotent groups [Ph.D.
dissertation]. Florida: The Charles
E. Schmidt College of Science, Florida
Atlantic University; August 2005

[15] Fatayer T, Khattab S, Omara F. A
key-exchange protocol based on the
stack-overflow software vulnerability.
In: ISCC’10: IEEE Symposium on
Computers and Communications;
Riccione, Italy; June 2010. pp. 411-416

[16] Fatayer T, Khattab S, Omara
F. OverCovert: Using stack overflow
software vulnerability to create a
covert channel. In: NTMS’11: 4th IFIP
International Conference on New
Technologies, Mobility and Security;
Paris, France; February 2011

[17] Fatayer T, Timraz K. MLSCPC:
Multi-level security using covert
channel to achieve privacy through
cloud computing. Presented at
the WSCNIS’2015 the 2nd World
Symposium on Computer Networks

References

118

Computer and Network Security

and Information Security; Hammamet,
Tunisia; 2015

[18] Girling CG. Covert channels in
LAN’s. IEEE Transactions on Software
Engineering. 1987;13:292-296

[19] Gligor V. A Guide to Understanding
Covert Channel Analysis of Trusted
System. National Computer Security
Center (NCSC) Technical Report,
Version 1; 1993

[20] Valentin B, Annessi R, Tanja
Z. Decision tree rule induction for
detecting covert timing channels in TCP/
IP traffic. In: International Cross-Domain
Conference for Machine Learning and
Knowledge Extraction; 2017

[21] Katzenbeisser S, Petitcolas
F. Information Hiding Techniques
for Steganography and Digital
Watermarking. 1st ed. Norwood,
USA: Artech House, Inc; 2000. ISBN:
1580530354

[22] Ahsan K. Covert channel analysis
and data hiding in TCP/IP [Master
of applied Science thesis]. Electrical
and Computer Engineering, Toronto
University; 2002

[23] Rowland C. Covert channels in the
TCP/IP protocol suite. First Monday
Journal. 1997;2:5

[24] Mead FC, Zielinski JM, Watkins
L, Robinson WH. A mobile two-way
wireless covert timing channel suitable
for peer-to-peer malware. In: 2017 IEEE
28th Annual International Symposium
on Personal, Indoor, and Mobile Radio
Communications (PIMRC); Montreal,
QC; 2017. pp. 1-6

[25] Rezaei F, Hempel M, Sharif H.
Towards a reliable detection of covert
timing channels over real-time
network traffic. IEEE Transactions on
Dependable and Secure Computing.
2017;4:249-264

[26] Shao F, Chang Z, Zhang Y. AES
encryption algorithm based on the high
performance computing of GPU. In:
2010 Second International Conference
on Communication Software and
Networks; 2010. pp. 588-590

119

Chapter 8

High-Speed Area-Efficient
Implementation of AES Algorithm
on Reconfigurable Platform
Altaf O. Mulani and Pradeep B. Mane

Abstract

Nowadays, digital information is very easy to process, but it allows unauthorized
users to access to this information. To protect this information from unauthorized
access, cryptography is one of the most powerful and commonly used techniques.
There are various cryptographic algorithms out of which advanced encryption
standard (AES) is one of the most frequently used symmetric key cryptographic
algorithms. The main objective of this chapter is to implement fast, secure, and area-
efficient AES algorithm on a reconfigurable platform. In this chapter, AES algorithm is
designed using Xilinx system generator, implemented on Nexys-4 DDR FPGA devel-
opment board and simulated using MATLAB Simulink. Synthesis results show that the
implementation consumes 121 slice registers, and its maximum operating frequency is
1102.536 MHz. Throughput achieved by this implementation is 14.1125 Gbps.

Keywords: cryptography, AES, FPGA, VLSI, system generator

1. Introduction

NIST has started a development process of FIPS for AES algorithm stat-
ing that this is the replacement for data encryption standard (DES) algorithm.
Alternatively, this algorithm is also known as Rijndael algorithm. Rijndael algorithm
has the advantages like resistance against all recognized attacks, code and speed
compactness, and simple design. Cryptography is a process in which the informa-
tion to be sent is added with secret key so as to transmit the data securely at the
destination. There are two types of cryptography based on the type of key applied:
symmetric key cryptography and asymmetric key cryptography. In symmetric key
cryptography, equal key is utilized for encryption as well as decryption, whereas
in asymmetric key cryptography, different keys are required in encryption and
decryption. AES algorithm is selected for implementation because it is secure and
its components and design principles are completely specified. AES is a symmetric
key block cipher. The design of AES algorithm is based on linear transformation.
Due to the use of Rijndael algorithm, different block and key sizes can be selected
which was not possible in DES algorithm. Block and key size can be selected from
128/160/192/224/256 bits and need not be the same. According to AES standard,
this algorithm can only accept 128 bits of block, and key size can be selected from
128/192/256 bits. Based on the key size, the number of rounds will vary. For exam-
ple, if key size is 128, 192, or 256, then the number of rounds will be 10, 12, and 14,
respectively. The structure of AES algorithm is shown in Figure 1. In this chapter,

118

Computer and Network Security

and Information Security; Hammamet,
Tunisia; 2015

[18] Girling CG. Covert channels in
LAN’s. IEEE Transactions on Software
Engineering. 1987;13:292-296

[19] Gligor V. A Guide to Understanding
Covert Channel Analysis of Trusted
System. National Computer Security
Center (NCSC) Technical Report,
Version 1; 1993

[20] Valentin B, Annessi R, Tanja
Z. Decision tree rule induction for
detecting covert timing channels in TCP/
IP traffic. In: International Cross-Domain
Conference for Machine Learning and
Knowledge Extraction; 2017

[21] Katzenbeisser S, Petitcolas
F. Information Hiding Techniques
for Steganography and Digital
Watermarking. 1st ed. Norwood,
USA: Artech House, Inc; 2000. ISBN:
1580530354

[22] Ahsan K. Covert channel analysis
and data hiding in TCP/IP [Master
of applied Science thesis]. Electrical
and Computer Engineering, Toronto
University; 2002

[23] Rowland C. Covert channels in the
TCP/IP protocol suite. First Monday
Journal. 1997;2:5

[24] Mead FC, Zielinski JM, Watkins
L, Robinson WH. A mobile two-way
wireless covert timing channel suitable
for peer-to-peer malware. In: 2017 IEEE
28th Annual International Symposium
on Personal, Indoor, and Mobile Radio
Communications (PIMRC); Montreal,
QC; 2017. pp. 1-6

[25] Rezaei F, Hempel M, Sharif H.
Towards a reliable detection of covert
timing channels over real-time
network traffic. IEEE Transactions on
Dependable and Secure Computing.
2017;4:249-264

[26] Shao F, Chang Z, Zhang Y. AES
encryption algorithm based on the high
performance computing of GPU. In:
2010 Second International Conference
on Communication Software and
Networks; 2010. pp. 588-590

119

Chapter 8

High-Speed Area-Efficient
Implementation of AES Algorithm
on Reconfigurable Platform
Altaf O. Mulani and Pradeep B. Mane

Abstract

Nowadays, digital information is very easy to process, but it allows unauthorized
users to access to this information. To protect this information from unauthorized
access, cryptography is one of the most powerful and commonly used techniques.
There are various cryptographic algorithms out of which advanced encryption
standard (AES) is one of the most frequently used symmetric key cryptographic
algorithms. The main objective of this chapter is to implement fast, secure, and area-
efficient AES algorithm on a reconfigurable platform. In this chapter, AES algorithm is
designed using Xilinx system generator, implemented on Nexys-4 DDR FPGA devel-
opment board and simulated using MATLAB Simulink. Synthesis results show that the
implementation consumes 121 slice registers, and its maximum operating frequency is
1102.536 MHz. Throughput achieved by this implementation is 14.1125 Gbps.

Keywords: cryptography, AES, FPGA, VLSI, system generator

1. Introduction

NIST has started a development process of FIPS for AES algorithm stat-
ing that this is the replacement for data encryption standard (DES) algorithm.
Alternatively, this algorithm is also known as Rijndael algorithm. Rijndael algorithm
has the advantages like resistance against all recognized attacks, code and speed
compactness, and simple design. Cryptography is a process in which the informa-
tion to be sent is added with secret key so as to transmit the data securely at the
destination. There are two types of cryptography based on the type of key applied:
symmetric key cryptography and asymmetric key cryptography. In symmetric key
cryptography, equal key is utilized for encryption as well as decryption, whereas
in asymmetric key cryptography, different keys are required in encryption and
decryption. AES algorithm is selected for implementation because it is secure and
its components and design principles are completely specified. AES is a symmetric
key block cipher. The design of AES algorithm is based on linear transformation.
Due to the use of Rijndael algorithm, different block and key sizes can be selected
which was not possible in DES algorithm. Block and key size can be selected from
128/160/192/224/256 bits and need not be the same. According to AES standard,
this algorithm can only accept 128 bits of block, and key size can be selected from
128/192/256 bits. Based on the key size, the number of rounds will vary. For exam-
ple, if key size is 128, 192, or 256, then the number of rounds will be 10, 12, and 14,
respectively. The structure of AES algorithm is shown in Figure 1. In this chapter,

Computer and Network Security

120

this algorithm is designed with 128 bits of block size and key size, respectively, that
is, AES generates cipher text of 128 bits for 128 bits of plaintext. After the initial
round, plaintext processes through ten rounds. Each round contains processes like
byte substitution, shift rows, mix columns, and add round key.

1.1 Byte substitution

The 16 input bytes are substituted by using fixed lookup table known as s-box.
Figure 2 shows s-box of AES algorithm. This s-box consists of all possible combina-
tions of 8-bit sequence. The resulting new 16 bytes are organized in a matrix having
four rows and four columns.

Figure 3 shows byte substitution stage in AES algorithm.

Figure 2.
S-box of AES algorithm.

Figure 1.
Structure of AES algorithm.

121

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

1.2 Shift row

Each row from the matrix generated from the byte substitution is cyclically
shifted to the left. Any entry that is dropped off is reinserted to the right side. The
first row is kept as it is, the second row is shifted by one-byte position to the left, the
third row is shifted by two-byte position to the left, and the fourth row is shifted by
three-byte position to the left. The resultant matrix consists of same 16 bytes but at
different position. Figure 4 shows shift row stage in AES algorithm.

1.3 Mix column

Each column of four bytes is now transformed using special arithmetical function
of Galois field (GF) 28. This function takes four bytes of the column as input and

Figure 3.
Byte substitution stage.

Figure 4.
Shift row stage.

Computer and Network Security

120

this algorithm is designed with 128 bits of block size and key size, respectively, that
is, AES generates cipher text of 128 bits for 128 bits of plaintext. After the initial
round, plaintext processes through ten rounds. Each round contains processes like
byte substitution, shift rows, mix columns, and add round key.

1.1 Byte substitution

The 16 input bytes are substituted by using fixed lookup table known as s-box.
Figure 2 shows s-box of AES algorithm. This s-box consists of all possible combina-
tions of 8-bit sequence. The resulting new 16 bytes are organized in a matrix having
four rows and four columns.

Figure 3 shows byte substitution stage in AES algorithm.

Figure 2.
S-box of AES algorithm.

Figure 1.
Structure of AES algorithm.

121

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

1.2 Shift row

Each row from the matrix generated from the byte substitution is cyclically
shifted to the left. Any entry that is dropped off is reinserted to the right side. The
first row is kept as it is, the second row is shifted by one-byte position to the left, the
third row is shifted by two-byte position to the left, and the fourth row is shifted by
three-byte position to the left. The resultant matrix consists of same 16 bytes but at
different position. Figure 4 shows shift row stage in AES algorithm.

1.3 Mix column

Each column of four bytes is now transformed using special arithmetical function
of Galois field (GF) 28. This function takes four bytes of the column as input and

Figure 3.
Byte substitution stage.

Figure 4.
Shift row stage.

Computer and Network Security

122

outputs completely new four bytes that replaces the original four bytes. Figure 5 shows
mix column stage in AES algorithm.

1.4 Add round key

The 16 bytes of the resultant matrix generated from mix column stage are then
considered as 128 bits. In add round key stage, 128 bits of state are bitwise EX-ORed
with 128 bits of round key. If this result belongs to the last round, then the output is
cipher text else the resulting 128 bits is considered as 16 bytes, and another round
is started with new byte substitution process. This is a column-wise operation
between four bytes of state column and one word of round key. In the last round,
there is no mix column step. Figure 6 shows add round key stage in AES algorithm.

Decryption of cipher text, generated from AES encryption, contains all the
stages in encryption but in reverse order. AES decryption starts with inverse initial
round. The remaining nine rounds in decryption consist of processes like add round
key, inverse shift rows, inverse byte substitution, and inverse mix columns.

Add round key: Add round key has its own inverse function since XOR functions
its own inverse and the round keys should be selected in reverse order.

Inverse shift rows: Inverse shift rows functions exactly in the same way as shift
row stage but in opposite direction. The first row is kept as it is, the second row is
shifted by one-byte position to the right, the third row is shifted by two-byte posi-
tion to the right, and the fourth row is shifted by three-byte position to the right.
The resultant matrix consists of same 16 bytes but at different position. Figure 7
shows inverse shift row stage in AES algorithm.

Inverse byte substitution: Inverse byte substitution is done using predefined substitu-
tion table known as inverse s-box. Figure 8 shows inverse s-box in AES algorithm.

Inverse mix column: Transformation in inverse mix column is done using
polynomials of degree less than 4 over Galois field (GF) 28 in which coefficients are
the elements from the column of the state.

The rest of the chapter is organized as follows:
Section 2 presents the survey based on the various kinds of implementation of

AES algorithm on reconfigurable platform. In Section 3, implementation of AES
algorithm using the proposed approach is discussed. In Section 4, experimental
results achieved using the proposed method along with the comparative analysis
with existing methods are discussed.

Figure 5.
Mix column stage.

123

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Figure 6.
Add round key stage.

Figure 7.
Inverse shift row.

Figure 8.
Inverse S-box of AES algorithm.

Computer and Network Security

122

outputs completely new four bytes that replaces the original four bytes. Figure 5 shows
mix column stage in AES algorithm.

1.4 Add round key

The 16 bytes of the resultant matrix generated from mix column stage are then
considered as 128 bits. In add round key stage, 128 bits of state are bitwise EX-ORed
with 128 bits of round key. If this result belongs to the last round, then the output is
cipher text else the resulting 128 bits is considered as 16 bytes, and another round
is started with new byte substitution process. This is a column-wise operation
between four bytes of state column and one word of round key. In the last round,
there is no mix column step. Figure 6 shows add round key stage in AES algorithm.

Decryption of cipher text, generated from AES encryption, contains all the
stages in encryption but in reverse order. AES decryption starts with inverse initial
round. The remaining nine rounds in decryption consist of processes like add round
key, inverse shift rows, inverse byte substitution, and inverse mix columns.

Add round key: Add round key has its own inverse function since XOR functions
its own inverse and the round keys should be selected in reverse order.

Inverse shift rows: Inverse shift rows functions exactly in the same way as shift
row stage but in opposite direction. The first row is kept as it is, the second row is
shifted by one-byte position to the right, the third row is shifted by two-byte posi-
tion to the right, and the fourth row is shifted by three-byte position to the right.
The resultant matrix consists of same 16 bytes but at different position. Figure 7
shows inverse shift row stage in AES algorithm.

Inverse byte substitution: Inverse byte substitution is done using predefined substitu-
tion table known as inverse s-box. Figure 8 shows inverse s-box in AES algorithm.

Inverse mix column: Transformation in inverse mix column is done using
polynomials of degree less than 4 over Galois field (GF) 28 in which coefficients are
the elements from the column of the state.

The rest of the chapter is organized as follows:
Section 2 presents the survey based on the various kinds of implementation of

AES algorithm on reconfigurable platform. In Section 3, implementation of AES
algorithm using the proposed approach is discussed. In Section 4, experimental
results achieved using the proposed method along with the comparative analysis
with existing methods are discussed.

Figure 5.
Mix column stage.

123

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Figure 6.
Add round key stage.

Figure 7.
Inverse shift row.

Figure 8.
Inverse S-box of AES algorithm.

Computer and Network Security

124

2. Literature survey

In this section, focus is given on the work done by various researchers on FPGA-
based implementation of AES algorithm. There are various researchers which have
either concentrated on area optimization or speed optimization. Mulani and Mane [1]
discussed integrating of DWT and AES algorithm for implementation of watermark-
ing on FPGA. The design was implemented on xc6vcx75t-2ff484, and it utilizes 2117
slices at maximum operating frequency of 228.064 MHz. Ratheesh and Narayanan
[2] proposed implementation of AES algorithm with low-power MUX LUT-based
s-box on FPGA. This design achieved total power distribution of 0.55 W. Agarwal
et al. [3] suggested implementation of AES algorithm using Verilog on Spartan-3E
FPGA. This design utilizes 1464 slices. Farooq and Faisal Aslam [4] discussed imple-
mentation of AES algorithm on FPGA device using five different techniques which
are suitable for area critical applications and speed critical applications. This design
was implemented on Spartan-6 FPGA device, and it utilizes 161 slices at maximum
operating frequency which is 886.64 MHz. The throughput of this system is 113.5
Gbps. Sai Srinivas and Akramuddin [5] proposed less complex hardware imple-
mentation of AES Rijndael algorithm on Xilinx Virtex-7 XC7VX90T FPGA. In the
proposed design, synthesis tool was set to optimize speed, area, and power. Mathur
and Bansode [6] proposed a cryptosystem, which is a combination of AES algorithm
and ECC. This is a hybrid encryption scheme and the key size is 192 bits and there
are 12 numbers of iterations in this system. Kalaiselvi and Mangalam [7] proposed a
low-power and high-throughput FPGA implementation of AES algorithm using key
expansion technique. This design accepts key size of 256 bits for both encryption and
decryption. This design utilizes 5493 slices, and its maximum operating frequency is
277.4 MHz. The throughput of this system is 0.06 Gbps. Deshpande et al. [8] sug-
gested BRAM-based and FPGA-based implementation of AES algorithm. Due to
the use of BRAMs for implementing s-box, this design utilizes less number of slices.
The design was implemented on XC3S1400AN and it utilizes 3376 slices. Ibrahim [9]
presented FPGA implementation of AES encryption core that is suitable for limited
resource-limited applications. This design was implemented on Spartan-3, and it
utilizes 150 slices at maximum operating frequency of 90 MHz. Khose and Raut [10]
proposed implementation of AES algorithm on FPGA in order to achieve high speed
of data processing and also to reduce time for generating key. This design utilizes 201
slices and 2 BRAMs at maximum operating frequency of 70 MHz. Mulani and Mane
[11] proposed FPGA implementation of DES algorithm. The design was implemented
on XC2S200, and it utilizes 2118 slices and 97 IOBs. Yewale Minal and Sayyad [12]
proposed implementation of AES encryption using VHSIC hardware description lan-
guage VHDL) and decryption using Visual Basic. With this approach, 1403 slices are
utilized at maximum operating frequency of 160.875 MHz, and it has a throughput of
2.059 Gbps. Deshpande et al. [13] discussed FPGA-based optimized architecture that
utilizes less area. This design was intended for plaintext of 128 bits and key of 128 bits.
Tonde and Dhande [14] discussed FPGA-based implementation of AES algorithm
using iterative looping approach for 128 bits of block and key size. Varhade and Kasat
[15] proposed a FPGA-based AES algorithm, which utilizes 1746 logic elements and
32,768 memory bits. This design was synthesized on Cyclone-II using Altera. Wadi
and Zainal [16] proposed some modifications like decreasing number of rounds and
replacing S-box with new s-box to reduce hardware requirements in order to enhance
the performance of AES algorithm in terms of time ciphering and pattern appear-
ance. Wang et al. [17] suggested high-speed implementation of AES algorithm on
FPGA to transmit the data securely using pipelining and parallel processing methods.
Shylashree et al. [18] focused on various novel FPGA architectures of AES algorithm.
Borkar et al. [19] proposed iterative design approach for FPGA implementation

125

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

of AES algorithm using VHDL. This design utilizes 1853 slices, and its operating
frequency is 140.390 MHz. Deshpande et al. [20] presented very low complexity
FPGA-based architecture for integrated AES encryptor and decryptor. This design is
synthesized on Spartan-3 XC3S400 FPGA. Kaur and Vig [21] suggested an efficient
implementation of AES algorithm on FPGA in which multiple rounds are processed
simultaneously. Due to this implementation, speed is increased but it increases
area. This design utilizes 6279 slices and 5 BRAMs, and its operating frequency is
119.954 MHz. Samanta [22] proposed fast and efficient reconfigurable platform-
based implementation of AES algorithm using pipelining. This design utilizes 1051
slices and 11 BRAMs, and its operating frequency is 76.699 MHz. Good and Benaissa
[23] discussed hardware implementation of fastest and slowest AES algorithm which
utilizes 16,693 slices at maximum operating frequency of 184.8 MHz.

From the literature survey, it is clear that many researchers have either worked
on optimizing the area or speed. Few researchers have concentrated on optimizing
the speed as well as area. Implementation of AES algorithm, which is optimized in
speed as well as area, is discussed in this chapter.

3. Implementation of AES algorithm

The proposed design is implemented with the aim to achieve both area and
speed optimization. In the proposed design, keys for each round are initially gener-
ated by using MATLAB code, and then those keys are used in the design. Due to this
approach, the design occupies less number of slices, and also the speed is faster than
the normal approach. The design is implemented using Xilinx system generator.
Figure 9 shows Xilinx system generator-based model for AES algorithm.

Figure 9.
System generator model for AES algorithm.

Computer and Network Security

124

2. Literature survey

In this section, focus is given on the work done by various researchers on FPGA-
based implementation of AES algorithm. There are various researchers which have
either concentrated on area optimization or speed optimization. Mulani and Mane [1]
discussed integrating of DWT and AES algorithm for implementation of watermark-
ing on FPGA. The design was implemented on xc6vcx75t-2ff484, and it utilizes 2117
slices at maximum operating frequency of 228.064 MHz. Ratheesh and Narayanan
[2] proposed implementation of AES algorithm with low-power MUX LUT-based
s-box on FPGA. This design achieved total power distribution of 0.55 W. Agarwal
et al. [3] suggested implementation of AES algorithm using Verilog on Spartan-3E
FPGA. This design utilizes 1464 slices. Farooq and Faisal Aslam [4] discussed imple-
mentation of AES algorithm on FPGA device using five different techniques which
are suitable for area critical applications and speed critical applications. This design
was implemented on Spartan-6 FPGA device, and it utilizes 161 slices at maximum
operating frequency which is 886.64 MHz. The throughput of this system is 113.5
Gbps. Sai Srinivas and Akramuddin [5] proposed less complex hardware imple-
mentation of AES Rijndael algorithm on Xilinx Virtex-7 XC7VX90T FPGA. In the
proposed design, synthesis tool was set to optimize speed, area, and power. Mathur
and Bansode [6] proposed a cryptosystem, which is a combination of AES algorithm
and ECC. This is a hybrid encryption scheme and the key size is 192 bits and there
are 12 numbers of iterations in this system. Kalaiselvi and Mangalam [7] proposed a
low-power and high-throughput FPGA implementation of AES algorithm using key
expansion technique. This design accepts key size of 256 bits for both encryption and
decryption. This design utilizes 5493 slices, and its maximum operating frequency is
277.4 MHz. The throughput of this system is 0.06 Gbps. Deshpande et al. [8] sug-
gested BRAM-based and FPGA-based implementation of AES algorithm. Due to
the use of BRAMs for implementing s-box, this design utilizes less number of slices.
The design was implemented on XC3S1400AN and it utilizes 3376 slices. Ibrahim [9]
presented FPGA implementation of AES encryption core that is suitable for limited
resource-limited applications. This design was implemented on Spartan-3, and it
utilizes 150 slices at maximum operating frequency of 90 MHz. Khose and Raut [10]
proposed implementation of AES algorithm on FPGA in order to achieve high speed
of data processing and also to reduce time for generating key. This design utilizes 201
slices and 2 BRAMs at maximum operating frequency of 70 MHz. Mulani and Mane
[11] proposed FPGA implementation of DES algorithm. The design was implemented
on XC2S200, and it utilizes 2118 slices and 97 IOBs. Yewale Minal and Sayyad [12]
proposed implementation of AES encryption using VHSIC hardware description lan-
guage VHDL) and decryption using Visual Basic. With this approach, 1403 slices are
utilized at maximum operating frequency of 160.875 MHz, and it has a throughput of
2.059 Gbps. Deshpande et al. [13] discussed FPGA-based optimized architecture that
utilizes less area. This design was intended for plaintext of 128 bits and key of 128 bits.
Tonde and Dhande [14] discussed FPGA-based implementation of AES algorithm
using iterative looping approach for 128 bits of block and key size. Varhade and Kasat
[15] proposed a FPGA-based AES algorithm, which utilizes 1746 logic elements and
32,768 memory bits. This design was synthesized on Cyclone-II using Altera. Wadi
and Zainal [16] proposed some modifications like decreasing number of rounds and
replacing S-box with new s-box to reduce hardware requirements in order to enhance
the performance of AES algorithm in terms of time ciphering and pattern appear-
ance. Wang et al. [17] suggested high-speed implementation of AES algorithm on
FPGA to transmit the data securely using pipelining and parallel processing methods.
Shylashree et al. [18] focused on various novel FPGA architectures of AES algorithm.
Borkar et al. [19] proposed iterative design approach for FPGA implementation

125

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

of AES algorithm using VHDL. This design utilizes 1853 slices, and its operating
frequency is 140.390 MHz. Deshpande et al. [20] presented very low complexity
FPGA-based architecture for integrated AES encryptor and decryptor. This design is
synthesized on Spartan-3 XC3S400 FPGA. Kaur and Vig [21] suggested an efficient
implementation of AES algorithm on FPGA in which multiple rounds are processed
simultaneously. Due to this implementation, speed is increased but it increases
area. This design utilizes 6279 slices and 5 BRAMs, and its operating frequency is
119.954 MHz. Samanta [22] proposed fast and efficient reconfigurable platform-
based implementation of AES algorithm using pipelining. This design utilizes 1051
slices and 11 BRAMs, and its operating frequency is 76.699 MHz. Good and Benaissa
[23] discussed hardware implementation of fastest and slowest AES algorithm which
utilizes 16,693 slices at maximum operating frequency of 184.8 MHz.

From the literature survey, it is clear that many researchers have either worked
on optimizing the area or speed. Few researchers have concentrated on optimizing
the speed as well as area. Implementation of AES algorithm, which is optimized in
speed as well as area, is discussed in this chapter.

3. Implementation of AES algorithm

The proposed design is implemented with the aim to achieve both area and
speed optimization. In the proposed design, keys for each round are initially gener-
ated by using MATLAB code, and then those keys are used in the design. Due to this
approach, the design occupies less number of slices, and also the speed is faster than
the normal approach. The design is implemented using Xilinx system generator.
Figure 9 shows Xilinx system generator-based model for AES algorithm.

Figure 9.
System generator model for AES algorithm.

Computer and Network Security

126

Figure 10.
System generator-based model of round function.

3.1 AES encryption

A plaintext of 128-bit is processed through 10 rounds. Each round contains pro-
cesses like byte substitution, shift rows, mix columns, and add round key. As keys
are generated using MATLAB code, only remaining system generator-based models
like byte substitution, shift rows, and mix columns are discussed in this section.

Round function is one of the important processes in AES algorithm. Figure 10
shows system generator-based model for implementing round0 function.

Round function consists of s-box, shift row, and mix column as shown in Figure 11.
Figure 12 shows implementation of s-box.
Figure 13 shows implementation of shift row.
Figure 14 shows implementation of mix column.

127

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Mix column consists of group_1, group_2, group_3, and group_4. Figure 15
shows implementation of group. Further each group consists of four multiplica-
tion blocks such as mul_blk, mul_blk1, mul_blk2, and mul_blk3. Figure 16 shows
implementation of multiplication block.

3.2 AES decryption

A cipher text of 128-bits is processed through 10 inverse rounds. Each round
contains processes like inverse byte substitution, inverse shift rows, inverse mix
columns, and add round key.

Figure 17 shows implementation of inverse round function.
Inverse round function consists of inverse s-box, inverse shift row, and inverse

mix column as shown in Figure 18.
Figure 19 shows implementation of inverse mix column.
Inverse mix column consists of four groups, i.e., group_1, group_2, group_3, and

group_4. Figure 20 shows implementation of group. Each group consists of multi-
plication blocks like mul_blk, mul_blk1, mul_blk2, and mul_blk3. Figure 21 shows
implementation of multiplication block.

Each multiplication block consists of three multipliers mul_2, mul_4, and mul_8
and EX-OR operations. Figure 22 shows implementation of multipliers.

Figure 11.
Round0.

Computer and Network Security

126

Figure 10.
System generator-based model of round function.

3.1 AES encryption

A plaintext of 128-bit is processed through 10 rounds. Each round contains pro-
cesses like byte substitution, shift rows, mix columns, and add round key. As keys
are generated using MATLAB code, only remaining system generator-based models
like byte substitution, shift rows, and mix columns are discussed in this section.

Round function is one of the important processes in AES algorithm. Figure 10
shows system generator-based model for implementing round0 function.

Round function consists of s-box, shift row, and mix column as shown in Figure 11.
Figure 12 shows implementation of s-box.
Figure 13 shows implementation of shift row.
Figure 14 shows implementation of mix column.

127

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Mix column consists of group_1, group_2, group_3, and group_4. Figure 15
shows implementation of group. Further each group consists of four multiplica-
tion blocks such as mul_blk, mul_blk1, mul_blk2, and mul_blk3. Figure 16 shows
implementation of multiplication block.

3.2 AES decryption

A cipher text of 128-bits is processed through 10 inverse rounds. Each round
contains processes like inverse byte substitution, inverse shift rows, inverse mix
columns, and add round key.

Figure 17 shows implementation of inverse round function.
Inverse round function consists of inverse s-box, inverse shift row, and inverse

mix column as shown in Figure 18.
Figure 19 shows implementation of inverse mix column.
Inverse mix column consists of four groups, i.e., group_1, group_2, group_3, and

group_4. Figure 20 shows implementation of group. Each group consists of multi-
plication blocks like mul_blk, mul_blk1, mul_blk2, and mul_blk3. Figure 21 shows
implementation of multiplication block.

Each multiplication block consists of three multipliers mul_2, mul_4, and mul_8
and EX-OR operations. Figure 22 shows implementation of multipliers.

Figure 11.
Round0.

Computer and Network Security

128

Figure 12.
Implementation of s-box.

Figure 23 shows implementation of inverse shift row.
Figure 24 shows implementation of inverse s-box.

3.3 Tools utilized

3.3.1 Software utilized

For implementing the proposed design, MATLAB 2013a and Xilinx ISE Design
Suite are used. MATLAB is used for generating the keys and also to get the results in
terms of images, whereas Xilinx ISE Design Suite is used to get the synthesis result,
RTL schematic, and throughput of this implementation.

129

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

3.3.2 Hardware utilized

Nexys-4 DDR development board is used for implementation. This board has
the following features:

a. Xilinx Artix-7 FPGA XC7A100T-1CSG324C

b. 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops

c. 4860 Kbits of fast block RAM

Figure 13.
Implementation of shift row.

Computer and Network Security

128

Figure 12.
Implementation of s-box.

Figure 23 shows implementation of inverse shift row.
Figure 24 shows implementation of inverse s-box.

3.3 Tools utilized

3.3.1 Software utilized

For implementing the proposed design, MATLAB 2013a and Xilinx ISE Design
Suite are used. MATLAB is used for generating the keys and also to get the results in
terms of images, whereas Xilinx ISE Design Suite is used to get the synthesis result,
RTL schematic, and throughput of this implementation.

129

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

3.3.2 Hardware utilized

Nexys-4 DDR development board is used for implementation. This board has
the following features:

a. Xilinx Artix-7 FPGA XC7A100T-1CSG324C

b. 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops

c. 4860 Kbits of fast block RAM

Figure 13.
Implementation of shift row.

Computer and Network Security

130

Figure 14.
Implementation of mix column.

d. Six clock management tiles, each with phase-locked loop (PLL)

e. 240 DSP slices

f. Internal clock speeds exceeding 450 MHz

g. On-chip analog-to-digital converter (XADC)

h. 128 MiB DDR2

i. Serial Flash

131

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

j. Digilent USB-JTAG port for FPGA programming and communication

k. MicroSD card connector

l. Ships with rugged plastic case and USB cable

m. USB-UART Bridge

n. 10/100 Ethernet PHY

o. PWM audio output

p. 3-axis accelerometer

q. 16 user switches

Figure 15.
Implementation of group.

Figure 16.
Implementation of multiplication block.

Computer and Network Security

130

Figure 14.
Implementation of mix column.

d. Six clock management tiles, each with phase-locked loop (PLL)

e. 240 DSP slices

f. Internal clock speeds exceeding 450 MHz

g. On-chip analog-to-digital converter (XADC)

h. 128 MiB DDR2

i. Serial Flash

131

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

j. Digilent USB-JTAG port for FPGA programming and communication

k. MicroSD card connector

l. Ships with rugged plastic case and USB cable

m. USB-UART Bridge

n. 10/100 Ethernet PHY

o. PWM audio output

p. 3-axis accelerometer

q. 16 user switches

Figure 15.
Implementation of group.

Figure 16.
Implementation of multiplication block.

Computer and Network Security

132

Figure 17.
System generator-based model of inverse round function.

Figure 18.
Inverse round0.

133

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Figure 19.
Inverse mix column.

Figure 20.
Implementation of group.

Computer and Network Security

132

Figure 17.
System generator-based model of inverse round function.

Figure 18.
Inverse round0.

133

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Figure 19.
Inverse mix column.

Figure 20.
Implementation of group.

Computer and Network Security

134

Figure 21.
Implementation of multiplication block.

Figure 22.
Implementation of multipliers.

Figure 23.
Implementation of inverse shift row.

135

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

r. 16 user LEDs

s. Two tri-color LEDs

t. PDM microphone

u. Temperature sensor

v. Two 4-digit 7-segment displays

w. USB HID Host for mice, keyboards, and memory sticks

x. PMOD for XADC signals

y. 12-bit VGA output

z. Four PMOD ports

Figure 24.
Implementation of inverse s-box.

Computer and Network Security

134

Figure 21.
Implementation of multiplication block.

Figure 22.
Implementation of multipliers.

Figure 23.
Implementation of inverse shift row.

135

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

r. 16 user LEDs

s. Two tri-color LEDs

t. PDM microphone

u. Temperature sensor

v. Two 4-digit 7-segment displays

w. USB HID Host for mice, keyboards, and memory sticks

x. PMOD for XADC signals

y. 12-bit VGA output

z. Four PMOD ports

Figure 24.
Implementation of inverse s-box.

Computer and Network Security

136

4. Experimental results

4.1 RTL schematic

Figure 25 shows detailed RTL schematic of the proposed implementation of
AES algorithm.

4.2 Synthesis result

The design is synthesized using Xilinx XST synthesizer. In the proposed design,
an optimized and synthesizable very high speed integrated circuit (VHSIC) hard-
ware description language (VHDL) code for the implementation of image as well as
128-bit data encryption is developed so as to utilize less area and increase the speed.
Table 1 shows design utilization summary of the proposed design.

From the synthesis results of the proposed design, it is clear that this system uti-
lizes only 121 slice registers, and its maximum operating frequency is 1102.536 MHz.
The throughput of the system is calculated using the following formula:

 (Throughput) of the system = 128 bits × Clock frequency _______________________________ Cycles per Encrypted block (1)

By substituting the values in Eq. (1), throughput of the systems is 14.1125 Gbps.

4.3 Simulation result

Figure 26 shows simulation result when an image is applied as an input.

4.4 Performance analysis

Performance analysis is a must to compare the performance of the proposed
implementation with existing methods. The performance is compared on the basis
of area and operating frequency. Till date various researchers have worked on FPGA-
based implementations of AES algorithm; some of them have optimized speed and

Figure 25.
Detailed RTL schematic of AES algorithm.

137

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Sr. No. Authors Slices Operating freq. (MHz)

1 Proposed work 121 1102.536

2 [3] 1464 —

3 [4] 161 886.64

4 [7] 5493 277.4

5 [8] 3376 —

6 [9] 150 90

7 [10] 201 70

8 [12] 1403 160.875

9 [15] 1746 —

10 [19] 1853 140.390

11 [21] 6279 119.954

Table 2.
Performance comparison of the proposed system with previous work.

Design utilization summary

Logic utilization Used Available % utilization

Number of slice registers 121 126,800 0.00095

Number of slice LUTs 4782 63,400 7

Number of bonded IOBs 25 210 11

Table 1.
Design utilization summary.

Figure 26.
Simulation result (a) Original image, (b) Encrypted image, and (c) Decrypted image.

Computer and Network Security

136

4. Experimental results

4.1 RTL schematic

Figure 25 shows detailed RTL schematic of the proposed implementation of
AES algorithm.

4.2 Synthesis result

The design is synthesized using Xilinx XST synthesizer. In the proposed design,
an optimized and synthesizable very high speed integrated circuit (VHSIC) hard-
ware description language (VHDL) code for the implementation of image as well as
128-bit data encryption is developed so as to utilize less area and increase the speed.
Table 1 shows design utilization summary of the proposed design.

From the synthesis results of the proposed design, it is clear that this system uti-
lizes only 121 slice registers, and its maximum operating frequency is 1102.536 MHz.
The throughput of the system is calculated using the following formula:

 (Throughput) of the system = 128 bits × Clock frequency _______________________________ Cycles per Encrypted block (1)

By substituting the values in Eq. (1), throughput of the systems is 14.1125 Gbps.

4.3 Simulation result

Figure 26 shows simulation result when an image is applied as an input.

4.4 Performance analysis

Performance analysis is a must to compare the performance of the proposed
implementation with existing methods. The performance is compared on the basis
of area and operating frequency. Till date various researchers have worked on FPGA-
based implementations of AES algorithm; some of them have optimized speed and

Figure 25.
Detailed RTL schematic of AES algorithm.

137

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

Sr. No. Authors Slices Operating freq. (MHz)

1 Proposed work 121 1102.536

2 [3] 1464 —

3 [4] 161 886.64

4 [7] 5493 277.4

5 [8] 3376 —

6 [9] 150 90

7 [10] 201 70

8 [12] 1403 160.875

9 [15] 1746 —

10 [19] 1853 140.390

11 [21] 6279 119.954

Table 2.
Performance comparison of the proposed system with previous work.

Design utilization summary

Logic utilization Used Available % utilization

Number of slice registers 121 126,800 0.00095

Number of slice LUTs 4782 63,400 7

Number of bonded IOBs 25 210 11

Table 1.
Design utilization summary.

Figure 26.
Simulation result (a) Original image, (b) Encrypted image, and (c) Decrypted image.

Computer and Network Security

138

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Altaf O. Mulani* and Pradeep B. Mane
AISSMS Institute of Information Technology, Pune, Maharashtra, India

*Address all correspondence to: aksaltaaf@gmail.com

some have optimized area. In the proposed system, both area and speed are optimized.
Table 2 shows performance comparison of the proposed system with previous work.

5. Conclusion

In this chapter, fast, area-efficient, and secure implementation of AES algorithm
on FPGA is suggested. As per the literature survey, it is clear that Farooq and Faisal
Aslam [4] achieved better performance in terms of speed, whereas Ibrahim [9]
achieved better performance in terms of area. In this design, due to better Xilinx
system generator-based design, the system is optimized, and it utilizes only 121 slice
registers at maximum operating frequency of 1102.536 MHz. Also, throughput of
the proposed system is 14.1125 Gbps.

Conflict of interest

There is no conflict of interest.

Acronyms and abbreviations

AES advanced encryption standard
DDR double data rate
DES data encryption standard
FPGA field-programmable gate array
Gbps gigabits per second
MHz megahertz
VHDL VHSIC Hardware Description Language
VHSIC very high speed integrated circuit

139

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

[1] Mulani AO, Mane PB. Watermarking
and cryptography based image
authentication on reconfigurable
platform. Bulletin of Electrical
Engineering and Informatics. June
2017;6(2):181-187

[2] Ratheesh T, Narayanan S. FPGA
based implementation of AES
encryption and decryption with low
power multiplexer LUT based S-box.
IOSR Journal of Electronics and
Communication Engineering. April
2017;12(2):57-61

[3] Agarwal A, Singh G, Sharma N.
Implementation of AES algorithm.
International Journal of Engineering
Research and Science (IJOER). April
2016;2(4):112-116

[4] Farooq U, Faisal Aslam M.
Comparative analysis of different
AES implementation techniques for
efficient resource usage and better
performance of an FPGA. Journal
of King Saud University-Computer
and Information Sciences. March
2016;29(3):295-302

[5] Sai Srinivas NS, Akramuddin Md.
FPGA based hardware implementation
of AES Rijndael algorithm for
encryption and decryption. In:
IEEE International Conference on
Electrical, Electronics and Optimization
Techniques; March 2016

[6] Mathur N, Bansode R. AES based
text encryption using 12 rounds with
dynamic key selection. In: International
Conference on Communication,
Computing and Virtualization. Elsevier;
2016

[7] Kalaiselvi K, Mangalam H. Power
efficient and high performance VLSI
architecture for AES algorithm.
Journal of Electrical Systems and
Information Technology. September
2015;2(2):178-183

[8] Deshpande HS, Karande KJ, Mulani
AO. Area optimized implementation
of AES algorithm on FPGA. In:
IEEE International Conference on
Communications and Signal Processing
(ICCSP); April 2015

[9] Ibrahim A. FPGA based hardware
implementation of compact AES
encryption hardware core. WSEAS
Transactions on Circuits and Systems.
2015;14:364-371

[10] Khose PN, Raut VG. Implementation
of AES algorithm on FPGA for low area
consumption. In: IEEE International
Conference on Pervasive Computing
(ICPC); January 2015

[11] Mulani AO, Mane PB. Area
optimization of cryptographic
algorithm on less dense reconfigurable
platform. In: IEEE International
Conference on Smart Structures and
Systems (ICSSS); October 2014

[12] Yewale Minal J, Sayyad MA.
Implementation of AES on FPGA. IOSR
Journal of VLSI and Signal Processing
(IOSR-JVSP). October 2014;4(5):65-69

[13] Deshpande HS, Karande KJ,
Mulani AO. Efficient implementation
of AES algorithm on FPGA. In:
IEEE International Conference on
Communications and Signal Processing
(ICCSP); April 2014

[14] Tonde AR, Dhande AP. Review
paper on FPGA based implementation
of advanced encryption standard (AES)
algorithm. International Journal of
Advanced Research in Computer and
Communication Engineering. January
2014;3(1):4878-4880

[15] Varhade SA, Kasat NN. Imple-
mentation of AES algorithm using
FPGA and its performance analysis.
International Journal of Science and
Research. May 2013;4(5):2484-2492

References

Computer and Network Security

138

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Altaf O. Mulani* and Pradeep B. Mane
AISSMS Institute of Information Technology, Pune, Maharashtra, India

*Address all correspondence to: aksaltaaf@gmail.com

some have optimized area. In the proposed system, both area and speed are optimized.
Table 2 shows performance comparison of the proposed system with previous work.

5. Conclusion

In this chapter, fast, area-efficient, and secure implementation of AES algorithm
on FPGA is suggested. As per the literature survey, it is clear that Farooq and Faisal
Aslam [4] achieved better performance in terms of speed, whereas Ibrahim [9]
achieved better performance in terms of area. In this design, due to better Xilinx
system generator-based design, the system is optimized, and it utilizes only 121 slice
registers at maximum operating frequency of 1102.536 MHz. Also, throughput of
the proposed system is 14.1125 Gbps.

Conflict of interest

There is no conflict of interest.

Acronyms and abbreviations

AES advanced encryption standard
DDR double data rate
DES data encryption standard
FPGA field-programmable gate array
Gbps gigabits per second
MHz megahertz
VHDL VHSIC Hardware Description Language
VHSIC very high speed integrated circuit

139

High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
DOI: http://dx.doi.org/10.5772/intechopen.82434

[1] Mulani AO, Mane PB. Watermarking
and cryptography based image
authentication on reconfigurable
platform. Bulletin of Electrical
Engineering and Informatics. June
2017;6(2):181-187

[2] Ratheesh T, Narayanan S. FPGA
based implementation of AES
encryption and decryption with low
power multiplexer LUT based S-box.
IOSR Journal of Electronics and
Communication Engineering. April
2017;12(2):57-61

[3] Agarwal A, Singh G, Sharma N.
Implementation of AES algorithm.
International Journal of Engineering
Research and Science (IJOER). April
2016;2(4):112-116

[4] Farooq U, Faisal Aslam M.
Comparative analysis of different
AES implementation techniques for
efficient resource usage and better
performance of an FPGA. Journal
of King Saud University-Computer
and Information Sciences. March
2016;29(3):295-302

[5] Sai Srinivas NS, Akramuddin Md.
FPGA based hardware implementation
of AES Rijndael algorithm for
encryption and decryption. In:
IEEE International Conference on
Electrical, Electronics and Optimization
Techniques; March 2016

[6] Mathur N, Bansode R. AES based
text encryption using 12 rounds with
dynamic key selection. In: International
Conference on Communication,
Computing and Virtualization. Elsevier;
2016

[7] Kalaiselvi K, Mangalam H. Power
efficient and high performance VLSI
architecture for AES algorithm.
Journal of Electrical Systems and
Information Technology. September
2015;2(2):178-183

[8] Deshpande HS, Karande KJ, Mulani
AO. Area optimized implementation
of AES algorithm on FPGA. In:
IEEE International Conference on
Communications and Signal Processing
(ICCSP); April 2015

[9] Ibrahim A. FPGA based hardware
implementation of compact AES
encryption hardware core. WSEAS
Transactions on Circuits and Systems.
2015;14:364-371

[10] Khose PN, Raut VG. Implementation
of AES algorithm on FPGA for low area
consumption. In: IEEE International
Conference on Pervasive Computing
(ICPC); January 2015

[11] Mulani AO, Mane PB. Area
optimization of cryptographic
algorithm on less dense reconfigurable
platform. In: IEEE International
Conference on Smart Structures and
Systems (ICSSS); October 2014

[12] Yewale Minal J, Sayyad MA.
Implementation of AES on FPGA. IOSR
Journal of VLSI and Signal Processing
(IOSR-JVSP). October 2014;4(5):65-69

[13] Deshpande HS, Karande KJ,
Mulani AO. Efficient implementation
of AES algorithm on FPGA. In:
IEEE International Conference on
Communications and Signal Processing
(ICCSP); April 2014

[14] Tonde AR, Dhande AP. Review
paper on FPGA based implementation
of advanced encryption standard (AES)
algorithm. International Journal of
Advanced Research in Computer and
Communication Engineering. January
2014;3(1):4878-4880

[15] Varhade SA, Kasat NN. Imple-
mentation of AES algorithm using
FPGA and its performance analysis.
International Journal of Science and
Research. May 2013;4(5):2484-2492

References

Computer and Network Security

140

[16] Wadi SM, Zainal N. Rapid
encryption method based on AES
algorithm for Grey scale HD image
encryption. In: International
Conference on Electrical Engineering
and Informatics. Elsevier; 2013

[17] Wang W, Chen J, Xu F. An
implementation of AES algorithm
based on FPGA. In: IEEE International
Conference on Fuzzy Systems and
Knowledge Discovery; May 2012

[18] Shylashree N, Bhat N, Shridhar V.
FPGA implementations of advanced
encryption standard: A survey.
International Journal of Advances in
Engineering and Technology (IJAET).
May 2012;3(2):265-285

[19] Borkar AM, Kshirsagar RV,
Vyawahare MV. FPGA implementation
of AES algorithm. In: IEEE International
Conference on Electronics Computer
Technology (ICECT);April 2011

[20] Deshpande AM, Deshpande MS,
Kayatanavar DN. FPGA implementation
of AES encryption and decryption.
In: IEEE International Conference on
Control, Automation, Communication
and Energy Conservation; June 2009

[21] Swinder K, Vig R. Efficient
implementation of AES algorithm in
FPGA device. In: IEEE International
Conference on Computational
Intelligence and Multimedia
Applications; December 2007

[22] Samanta S. FPGA Implementation
of AES Encryption and Decryption.
Surat: Sardar Vallabhbhai National
Institute of Technology; 2007

[23] Good T, Benaissa M. AES on
FPGA from fastest to smallest. In:
Proceedings of International Workshop
on Cryptographic Hardware and
Embedded systems. Springer; 2005

Chapter 9

Hybrid Approaches to Block
Cipher
Roshan Chitrakar, Roshan Bhusal and Prajwol Maharjan

Abstract

This chapter introduces two new approaches to block cipher—one is DNA
hybridization encryption scheme (DHES) and the other is hybrid graphical encryp-
tion algorithm (HGEA). DNA cryptography deals with the techniques of hiding
messages in the form of a DNA sequence. The key size of data encryption standard
(DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is
used for encryption and decryption, and one-time pad (OTP) scheme is used for
key generation. The output of DES algorithm is passed as an input to DNA hybrid-
ization scheme to provide an added security. The second approach, HGEA, is based
on graphical pattern recognition. By performing multiple transformations, shifting
and logical operations, a block cipher is obtained. This algorithm is influenced by
hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation
and computation of selected quadrant value are the unique features of HGEA.
Moreover, multiple key generation scheme combined with graphical interpretation
method provides an increased level of security.

Keywords: DNA hybridization encryption scheme (DHES), hybrid graphical
encryption algorithm (HGEA), DNA cryptography, data encryption standard
(DES), one-time pad (OTP), hybrid cube encryption algorithm (HiSea),
block cipher

1. Introduction

There exist a number of cryptographic techniques for secure data communica-
tion [1], but many are vulnerable to attacks. With the failure of cryptographic
algorithms like data encryption standard (DES), new approaches to cipher security
are needed [2, 3]. A cryptographic scheme can be made more secure by combining
it with relatively secure techniques. Theoretically, this hybridization method can be
applied to any cryptographic scheme but block ciphers provide more rounds for
working in terms of permutation and combination.

DNA-based method [4, 5] is one such approach that along with one-time pad
(OTP) scheme can be applied to DES. OTP is the only unbreakable encryption that
uses polyalphabetic randomness for the key [6]. So, OTP can be combined with
DNA cryptography by taking longer message and key size (≥ 64 bit) so as to make
brute force attack difficult and impractical [7].

As the first part of this chapter, DNA hybridization encryption scheme (DHES)
is described, in which an improved algorithm named DDHO (that stands for DES
and DNA-based hybridization with OTP) is proposed.

141

	Computer and Network Security
	Contents
	Preface
	Section 1
Network Security
	Chapter1
Introductory Chapter: Machine Learning in Misuse and Anomaly Detection
	Chapter2
A New Cross-Layer FPGA-Based Security Scheme forWireless Networks
	Chapter3
Anomaly-Based Intrusion Detection System
	Chapter4
Security inWireless Local Area Networks (WLANs)
	Chapter5
Analysis of Network Protocols: The Ability of Concealing the Information
	Chapter6
Multifactor Authentication Methods: A Framework forTheir Comparison and Selection

	Section 2
Cryptography
	Chapter7
Secure Communication Using Cryptography and Covert Channel
	Chapter8
High-Speed Area-Efficient Implementation of AES Algorithm on Reconfigurable Platform
	Chapter9
Hybrid Approaches to Block Cipher

