
22nd International Conference, FASE 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019, Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 1

14
24

AR
Co

SS
Reiner Hähnle
Wil van der Aalst (Eds.)

Lecture Notes in Computer Science 11424

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Reiner Hähnle • Wil van der Aalst (Eds.)

Fundamental Approaches
to Software Engineering
22nd International Conference, FASE 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019
Proceedings

Editors
Reiner Hähnle
Technische Universität Darmstadt
Darmstadt, Germany

Wil van der Aalst
RWTH Aachen University
Aachen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-16721-9 ISBN 978-3-030-16722-6 (eBook)
https://doi.org/10.1007/978-3-030-16722-6

Library of Congress Control Number: 2019936008

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8000-7613
https://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-030-16722-6
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.

The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbrücken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Lüttgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara König (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Müller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at the 22nd International Conference on
Fundamental Approaches to Software Engineering (FASE 2019) held during April
9–11, 2019, in Prague. FASE 2019 was organized as part of the annual European Joint
Conferences on Theory and Practice of Software (ETAPS 2019). ETAPS is the most
important and visible annual European event related to software sciences.

As usual, the papers submitted to FASE focus on the foundations on which software
engineering is built. The papers submitted covered topics such as software engineering,
requirements engineering, software architectures, specification, software quality,
validation, verification of functional and non-functional properties, model-driven
development and model transformation, model transformations, software processes,
and software evolution.

We received 94 abstract submissions of which 74 were turned into full submissions
(63 research papers, five tool papers, and six demo papers). We had submissions from
the following countries (sorted based on the number of submissions): Germany, France,
Canada, Estonia, USA, Argentina, UK, Norway, Spain, Brazil, China, South Korea,
Australia, Czechia, Austria, Denmark, Italy, Japan, the Netherlands, Pakistan,
South Africa, Tunisia, India, Poland, Portugal, Romania, Turkey, Belgium, Colombia,
Macedonia, Malta, Sweden, and Ukraine.

Of the 74 submitted papers, 24 papers were accepted after reviewing and discus-
sions among the Program Committee (PC) members (20 research papers, two tool
papers, and two demo papers). This corresponds to a 32% acceptance rate. Beside the
30 PC members, there were 100 external reviewers. For the fourth time, FASE used a
double-blind reviewing process. Overall the reviewing process was smooth and it was
possible to have consensus on all decisions. We thank the PC members and reviewers
for doing a great job!

Apart from thanking the authors, we also thank Marsha Chechik (University of
Toronto) for contributing a paper based on her plenary ETAPS 2019 invited talk, which
is also included in these proceedings. The title of Marsha’s talk was “Software
Assurance in an Uncertain World.” She discussed the problem that software systems
are deeply rooted in uncertainty since most complex open-world functionality is either
not completely specifiable or it is not cost-effective to do so. Moreover, these systems
are placed in an uncertain ever-evolving environment.

This volume shows that, despite the rapid progress in software engineering, there are
still many open problems. These problems are important for the way we do business,
the way we govern, and the way we socialize. We depend on complex software
artifacts, yet we still need to fully understand how to best develop and maintain them.
The papers in this volume help to progress the state of the art and hopefully inspire and
influence future work.

We thank the ETAPS 2019 organizers, in particular, Jan Kofron and Jan Vitek
(general chairs), Barbora Buhnova (publicity chair), Vojtech Horkey and Arten

Pelnisyn (web chairs), and David Safranek (publications chair). We also thank
Joost-Pieter Katoen, the ETAPS SC chair, for managing the whole process, and
Gabriele Taentzer, the FASE SC chair, for swift feedback on several questions.

We hope that you will enjoy reading the volume.

February 2019 Wil van der Aalst
Reiner Hähnle

viii Preface

Organization

Program Committee

Christel Baier TU Dresden, Germany
Stefano Berardi University of Turin, Italy
Mario Bravetti University of Bologna, Italy
Jordi Cabot Open University of Catalonia, Spain
Ana Cavalcanti University of York, UK
Marsha Chechik University of Toronto, Canada
Ferruccio Damiani University of Turin, Italy
Ewen Denney NASA Ames Research Center, USA
Dilian Gurov KTH Royal Institute of Technology, Sweden
Ludovic Henrio CNRS, France
Reiner Hähnle TU Darmstadt, Germany
Gerti Kappel Vienna University of Technology, Austria
Ekkart Kindler Technical University of Denmark, Denmark
Martin Leucker University of Lübeck, Germany
Jun Pang University of Luxembourg, Luxembourg
André Platzer Carnegie Mellon University, USA
Bernhard Rumpe RWTH Aachen University, Germany
Alessandra Russo Imperial College London, UK
Rick Salay University of Toronto, Canada
Ina Schaefer Technische Universität Braunschweig, Germany
Andy Schürr TU Darmstadt, Germany
Perdita Stevens The University of Edinburgh, UK
Mariëlle Stoelinga University of Twente, The Netherlands
Jun Sun Singapore University of Technology and Design,

Singapore
Gabriele Taentzer Philipps-Universität Marburg, The Netherlands
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Maurice H. Ter Beek ISTI-CNR, Pisa, Italy
Wil M. P. van der Aalst RWTH Aachen University, Germany
Heike Wehrheim Paderborn University, Germany
Yingfei Xiong Peking University, China

Additional Reviewers

Aspinall, David
Bafrani, Mahsa
Baxter, James
Berti, Alessandro
Bettini, Lorenzo
Bill, Robert
Bozzano, Marco
Bubel, Richard
Canovas Izquierdo,

Javier Luis
Cerone, Andrea
Chen, Yifan
Ciancia, Vincenzo
Cordwell, Katherine
Dalibor, Manuela
Dashevskyi, Stanislav
Din, Crystal Chang
Drave, Imke Helene
Ed-Douibi, Hamza
Escobar, Santiago
Ferrari, Alessio
Fritsche, Lars
Fulton, Nathan
Gadyatskaya, Olga
Gario, Marco
Gerhold, Marcus
Gerking, Christopher
Giannini, Paola
Girault, Alain
Guanciale, Roberto
Gómez, Abel
Habermehl, Peter
Haglund, Jonas
Henderson, Robbie

Herda, Mihai
Hillemacher, Steffen
Johnsen, Einar Broch
Kamburjan, Eduard
Kharraz, Karam
Knüppel, Alexander
Kosiol, Jens
König, Jürgen
Lange, Felix Dino
Laurent, Jonathan
Leroy, Dorian
Lidström, Christian
Lienhardt, Michael
Lindner, Andreas
Lischke, Sabrina
Lochau, Malte
Lu, Sirui
Luthmann, Lars
Martínez, Salvador
Mauro, Jacopo
Mazzanti, Franco
Meijer, Jeroen
Mereuta, Radu
Michael, Judith
Mitsch, Stefan
Miyazawa, Alvaro
Mover, Sergio
Najafzadeh, Mahsa
Nassar, Nebras
Netz, Lukas
Oortwijn, Wytse
Palmskog, Karl
Paolini, Luca
Papadakis, Michail

Papadakis, Mike
Pedro, Andre
Petrocchi, Marinella
Pozzato, Gian Luca
Raco, Deni
Ren, Luyao
Ribeiro, Pedro
Ruijters, Enno
Ruland, Sebastian
Runge, Tobias
Schivo, Stefano
Schlatte, Rudolf
Schlie, Alexander
Schmalzing, David
Schmitz, Malte
Sharma, Arnab
Shumeiko, Igor
Sogokon, Andrew
Spagnolo, Giorgio Oronzo
Sproston, Jeremy
Steffen, Martin
Thoma, Daniel
Thüm, Thomas
Toews, Manuel
Tomaszek, Stefan
Tveito, Lars
Wally, Bernhard
Wang, Bo
Wang, Guancheng
Zacchiroli, Stefano
Zawadzki, Erik
Zhang, Yuhao
Zhu, Qihao

x Organization

Contents

FASE Invited Talk

Software Assurance in an Uncertain World . 3
Marsha Chechik, Rick Salay, Torin Viger, Sahar Kokaly,
and Mona Rahimi

Software Verification I

Tool Support for Correctness-by-Construction. 25
Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm,
Derrick Kourie, and Bruce W. Watson

Automatic Modeling of Opaque Code for JavaScript Static Analysis 43
Joonyoung Park, Alexander Jordan, and Sukyoung Ryu

SMT-Based Bounded Schedulability Analysis of the Clock Constraint
Specification Language . 61

Min Zhang, Fu Song, Frédéric Mallet, and Xiaohong Chen

A Hybrid Dynamic Logic for Event/Data-Based Systems 79
Rolf Hennicker, Alexandre Madeira, and Alexander Knapp

Model-Driven Development and Model Transformation

Pyro: Generating Domain-Specific Collaborative Online
Modeling Environments . 101

Philip Zweihoff, Stefan Naujokat, and Bernhard Steffen

Efficient Model Synchronization by Automatically Constructed
Repair Processes . 116

Lars Fritsche, Jens Kosiol, Andy Schürr, and Gabriele Taentzer

Offline Delta-Driven Model Transformation with Dependency Injection 134
Artur Boronat

A Logic-Based Incremental Approach to Graph Repair 151
Sven Schneider, Leen Lambers, and Fernando Orejas

Software Verification II

DeepFault: Fault Localization for Deep Neural Networks 171
Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen

Variability Abstraction and Refinement for Game-Based Lifted Model
Checking of Full CTL . 192

Aleksandar S. Dimovski, Axel Legay, and Andrzej Wasowski

Formal Verification of Safety & Security Related Timing Constraints
for a Cooperative Automotive System . 210

Li Huang and Eun-Young Kang

Checking Observational Purity of Procedures . 228
Himanshu Arora, Raghavan Komondoor, and G. Ramalingam

Software Evolution and Requirements Engineering

Structural and Nominal Cross-Language Clone Detection 247
Lawton Nichols, Mehmet Emre, and Ben Hardekopf

SL2SF: Refactoring Simulink to Stateflow . 264
Stephen Wynn-Williams, Zinovy Diskin, Vera Pantelic, Mark Lawford,
Gehan Selim, Curtis Milo, Moustapha Diab, and Feisel Weslati

Metric Temporal Graph Logic over Typed Attributed Graphs 282
Holger Giese, Maria Maximova, Lucas Sakizloglou, and Sven Schneider

KUPC: A Formal Tool for Modeling and Verifying Dynamic Updating
of C Programs . 299

Jiaqi Qian, Min Zhang, Yi Wang, and Kazuhiro Ogata

Business Process Privacy Analysis in PLEAK . 306
Aivo Toots, Reedik Tuuling, Maksym Yerokhin, Marlon Dumas,
Luciano García-Bañuelos, Peeter Laud, Raimundas Matulevičius,
Alisa Pankova, Martin Pettai, Pille Pullonen, and Jake Tom

Specification, Design, and Implementation of Particular
Classes of Systems

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 315
Chao Peng and Ajitha Rajan

Implementing SOS with Active Objects: A Case Study of a Multicore
Memory System . 332

Nikolaos Bezirgiannis, Frank de Boer, Einar Broch Johnsen, Ka I Pun,
and S. Lizeth Tapia Tarifa

Optimal and Automated Deployment for Microservices 351
Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi,
and Gianluigi Zavattaro

xii Contents

A Data Flow Model with Frequency Arithmetic . 369
Paul Dubrulle, Christophe Gaston, Nikolai Kosmatov, Arnault Lapitre,
and Stéphane Louise

Software Testing

CoVeriTest: Cooperative Verifier-Based Testing . 389
Dirk Beyer and Marie-Christine Jakobs

: Priority Aware Test Case Reduction . 409
Golnaz Gharachorlu and Nick Sumner

Automatically Identifying Sufficient Object Builders from Module APIs 427
Pablo Ponzio, Valeria S. Bengolea, Mariano Politano,
Nazareno Aguirre, and Marcelo F. Frias

Author Index . 445

Contents xiii

FASE Invited Talk

Software Assurance in an Uncertain
World

Marsha Chechik(B) , Rick Salay, Torin Viger,
Sahar Kokaly, and Mona Rahimi

University of Toronto, Toronto, Canada
chechik@cs.toronto.edu

Abstract. From financial services platforms to social networks to vehi-
cle control, software has come to mediate many activities of daily life.
Governing bodies and standards organizations have responded to this
trend by creating regulations and standards to address issues such as
safety, security and privacy. In this environment, the compliance of soft-
ware development to standards and regulations has emerged as a key
requirement. Compliance claims and arguments are often captured in
assurance cases, with linked evidence of compliance. Evidence can come
from testcases, verification proofs, human judgment, or a combination
of these. That is, experts try to build (safety-critical) systems carefully
according to well justified methods and articulate these justifications in
an assurance case that is ultimately judged by a human. Yet software
is deeply rooted in uncertainty; most complex open-world functional-
ity (e.g., perception of the state of the world by a self-driving vehicle),
is either not completely specifiable or it is not cost-effective to do so;
software systems are often to be placed into uncertain environments,
and there can be uncertainties that need to be We argue that the role of
assurance cases is to be the grand unifier for software development, focus-
ing on capturing and managing uncertainty. We discuss three approaches
for arguing about safety and security of software under uncertainty, in
the absence of fully sound and complete methods: assurance argument
rigor, semantic evidence composition and applicability to new kinds of
systems, specifically those relying on ML.

1 Introduction

From financial services platforms to social networks to vehicle control, software
has come to mediate many activities of daily life. Governing bodies and standards
organizations have responded to this trend by creating regulations and standards
to address issues such as safety, security and privacy. In this environment, the
compliance of software development to standards and regulations has emerged
as a key requirement.

Development of safety-critical systems begins with hazard analysis, aimed to
identify possible causes of harm. It uses severity, probability and controllability
of a hazard’s occurrence to assign the Safety Integrity Levels (in the automo-
tive industry, these are referred to as ASILs [35]) – the higher the ASIL level,
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-16722-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_1&domain=pdf
http://orcid.org/0000-0002-6301-3517
https://doi.org/10.1007/978-3-030-16722-6_1

4 M. Chechik et al.

the more rigor is expected to be put into identifying and mitigating the hazard.
Mitigating hazards therefore becomes the main requirement of the system, with
system safety requirements being directly linked to the hazards. These require-
ments are then refined along the LHS of the V until individual modules and their
implementation can be built. The RHS includes appropriate testing and valida-
tion, used as supporting evidence in developing an argument that the system
adequately handles its hazards, with the expectation that the higher the ASIL
level, the stronger the required justification of safety is.

Assurance claims and arguments are often captured by assurance cases, with
linked evidence supporting it. Evidence can come from testcases, verification
proofs, human judgment, or a combination of these. Assurance cases organize
information allowing argument unfolding in a comprehensive way and ultimately
allowing safety engineers to determine whether they trust that the system was
adequately designed to avoid systematic faults (before delivery) and adequately
detect and react to failures at runtime [35].

Yet software is deeply rooted in uncertainty; most complex open-world func-
tionality (e.g., perception of the state of the world by a self-driving vehicle),
is either not completely specifiableor it is not cost-effective to do so [12]. Soft-
ware systems are often to be placed into uncertain environments [48], and there
can be uncertainties that need to be considered at the design phase [20]. Thus,
we believe that the role of assurance cases is to explicitly capture and manage
uncertainty coming from different sources, assess it and ultimately reduce it to an
acceptable level, either with respect to a standard, company processes, or asses-
sor judgment. The various software development steps are currently not well
integrated, and uncertainty is not expressed or managed explicitly in a uniform
manner. Our claim in this paper is that an assurance case is the unifier among
the different software development steps, and can be used to make uncertainties
explicit, which also makes them manageable. This provides a well-founded basis
for modeling confidence about satisfaction of a critical system quality (security,
safety, etc.) in an assurance case, making assurance cases play a crucial role
in software development. Specifically, we enumerate sources of uncertainty in
software development. We also argue that organizing software development and
analysis activities around the assurance case as a living document allows all parts
of the software development to explicitly articulate uncertainty, steps taken to
manage it, and the degree of confidence that artifacts acting as evidence have
been performed correctly. This information can then help potential assessors in
checking that the development outcome adequately satisfies the software desired
quality (e.g., safety).

The area of system dependability has produced a significant body of work
describing how to model assurance cases (e.g., [4,5,14,38]), and how to assess
reviewer’s confidence in the argument being made (e.g., [16,31,45,59,60]). There
is also early work on assessing the impact of change on the assurance argument
when the system undergoes change [39]. A recent survey [43] provides a com-
prehensive list of assurance case tools developed over the past 20 years and
an analysis of their functionalities including support for assurance case creation,

Software Assurance in an Uncertain World 5

assessment and maintenance. We believe that the road to truly making assurance
cases the grand unifier for software development for complex high-assurance sys-
tems has many challenges. One is to be able to successfully argue about safety
and security of software under uncertainty, without fully sound and complete
methods. For that, we believe that assurance arguments must be rigorous and
that we need to properly understand how to perform evidence composition for
traditional systems, but also for new kinds of systems, specifically those relying
on ML. We discuss these issues below.

Rigor. To be validated or reused, assurance case structures must be as rigorous
as possible [51]. Of course, assurance arguments ultimately depend on human
judgment (with some facts treated as “obvious” and “generally acceptable”),
but the structure of the argument should be fully formal so as to allow to assess
its completeness. Bandur and McDermid called this approach “formal modulo
engineering expertise” [1].

Evidence Composition. We need to effectively combine the top-down process
of uncertainty reduction with the bottom-up process of composing evidence,
specifically, evidence obtained from applying testing and verification techniques.

Applicability to “new” kinds of systems. We believe that our view – rig-
orous, uncertainty-reduction focused and evidence composing – is directly appli-
cable to systems developed using machine learning, e.g., self-driving cars.

This paper is organized as follows: In Sect. 2, we briefly describe syntax of
assurance cases. In Sect. 3, we outline possible sources of uncertainty encountered
as part of system development. In Sect. 4, we describe the benefits of a rigorous
language for assurance cases by way of example. In Sect. 5, we describe, again by
way of example, a possible method of composing evidence. In Sect. 6, we develop
a high-level assurance case for a pedestrian detection subsystem. We conclude
in Sect. 7 with a discussion of possible challenges and opportunities.

2 Background on Assurance Case Modeling Notation

The most commonly used representation for safety cases is the graphical Goal
Structuring Notation (GSN) [30], which is intended to support the assurance of
critical properties of systems (including safety). GSN is comprised of six core
elements – see Fig. 1. Arguments in GSN are typically organized into a tree
of the core elements shown in Fig. 11. The root is the overall goal to be sat-
isfied by the system, and it is gradually decomposed (possibly via strategies)
into sub-goals and finally into solutions, which are the leaves of the safety case.
Connections between goals, strategies and solutions represent supported-by rela-
tions, which indicate inferential or evidential relationships between elements.
Goals and strategies may be optionally associated with some contexts, assump-
tions and/or justifications by means of in-context-of relations, which declare a
contextual relationship between the connected elements.
1 In this paper, we use both diamond and triangle shapes interchangeably to depict

an “undeveloped” element.

6 M. Chechik et al.

Fig. 1. Core GSN elements from [30].

Fig. 2. Example safety case in GSN (from [30]).

For example, consider the safety case in Fig. 2. The overall goal G1 is that
the “Control System is acceptably safe to operate” given its role, context and
definition, and it is decomposed into two sub-goals: G2, for eliminating and mit-
igating all identified hazards, and G3, for ensuring that the system software is
developed to an appropriate ASIL. Assuming that all hazards have been iden-
tified, G2 can in turn be decomposed into three sub-goals by considering each
hazard separately (S1), and each separate hazard is shown to be satisfied using
evidence from formal verification (Sn1) or fault tree analysis (Sn2). Similarly,
under some specific context and justification, G3 can be decomposed into two
sub-goals, each of which is shown to be satisfied by the associated evidence.

3 Sources of Uncertainty in Software Development

In this section, we briefly survey uncertainty in software development, broadly
split into the categories of uncertainties about the specifications, about the envi-
ronment, about the system itself, and about the argument of its safety. For each

Software Assurance in an Uncertain World 7

part, we aim to address how building an assurance case is related to understand-
ing and mitigating such uncertainties.

Uncertainty in Specifications. Software specifications tend to suffer from
incompleteness, inconsistency and ambiguity [42,46]. Specification uncertainty
stems from a misunderstanding or an incomplete understanding of how the sys-
tem is supposed to function in early phases of development; e.g., miscommuni-
cation and inability of stakeholders to transfer knowledge due to differing con-
cepts and vocabularies [2,13]; unknown values for sets of known events (a.k.a.
the known unknowns); and the unknown and unidentifiable events (a.k.a. the
unknown unknowns) [57].

Recently, machine-learning approaches for interactively learning the software
specifications have become popular; we discuss one such example, of pedestrian
detection, in Sect. 6. Other mitigations of specification uncertainties, suggested
by various standards and research, are identification of edge cases [36], hazard
and obstacle analysis [55] to help identify unknown unknowns [35], step-wise
refinement to handle partiality in specifications, ontology- [9] and information
retrieval-driven requirements engineering approaches [21], as well as generally
building arguments about addressing specification uncertainties.

Environmental Uncertainty. The system’s environment can refer to adjacent
agents interacting with the system, a human operator using the system, or phys-
ical conditions of the environment. Sources of environmental uncertainties have
been thoroughly investigated [19,48]. One source originates from unpredictable
and changing properties of the environment, e.g., assumptions about actions of
other vehicles in the autonomous vehicle domain or assuming that a plane is
on the runway if its wheels are turning. Another uncertainty source is input
errors from broken sensors, missing, noisy and inaccurate input data, imprecise
measurements, or disruptive control signals from adjacent systems. Yet another
source might be when changes in the environment affect the specification. For
example, consider a robotic arm that moves with the expected precision but the
target has moved from its estimated position.

A number of techniques have been developed to mitigate environmental
uncertainties, e.g., runtime monitoring systems such as RESIST [10], or machine-
learning approaches such as FUSION [18] which self-tune the adaptive behavior
of systems to unanticipated changes in the environment. More broadly, environ-
mental uncertainties are mitigated by a careful requirements engineering process,
by principled system design and, in assurance cases, by an argument that they
had been adequately identified and adequately handled.

System Uncertainties. One important source of uncertainty is faced by devel-
opers who do not have sufficient information to make decisions about their sys-
tem during development. For example, a developer may have insufficient infor-
mation to choose a particular implementation platform. In [19,48], this source
of uncertainty is referred to as design-time uncertainty, and some approaches to
handling it are offered in [20]. Decisions made while resolving such uncertain-
ties are crucial to put into an assurance argument, to capture the context, i.e.,

8 M. Chechik et al.

a particular platform is selected because of its performance, at the expense of
memory requirements.

Another uncertainty refers to correctness of the implementation [7]. This
uncertainty lays in the V&V procedure and is caused by whether the imple-
mentation of the tool can be trusted, whether the tool is used appropriately
(that is, its assumptions are satisfied), and in general, whether a particular ver-
ification technique is the right one for verifying the fulfillment of the system
requirements [15]. We address some of these uncertainties in Sect. 5.

Argument Uncertainty. The use of safety arguments to demonstrate safety
of software-intensive systems raises questions such as the extent to which these
arguments can be trusted. That is, how confident are we that a verified, validated
software is actually safe? How much evidence and how thorough of an argument
do we require for that?

To assess uncertainties which may affect the system’s safety, researchers have
proposed techniques to estimate confidence in structured assurance cases, either
through qualitative or quantitative approaches [27,44]. The majority of these are
based on the Dempster-Shafer Theory [31,60], Josang’s Opinion Triangle [17],
Bayesian Belief Networks (BNNs) [16,61], Evidential Reasoning (ER) [45] and
weighted averages [59]. The approaches which use BBNs treat safety goals as
nodes in the network and try to compute their conditional probability based on
given probabilities for the leaf nodes of the network. Dempster-Shafer Theory is
similar to BBNs but is based on the belief function and its plausibility which is
used to combine separate pieces of information to calculate the probability. The
ER approach [45] allows the assessors to provide individual judgments concerning
the trustworthiness and appropriateness of the evidence, building a separate
argument from the assurance case.

These approaches focus on assigning and propagating confidence measures
but do not specifically address uncertainty in the argument. They also focus on
aggregating evidence coming from multiple sources but treat it as a “black box”,
instead of how a piece of evidence from one source might compose with another.
We look at these questions in Sects. 4 and 5, respectively.

4 Formality in Assurance Cases

As discussed in Sect. 1, we believe that the ultimate goal of an assurance case
is to explicitly capture and manage uncertainty, and ultimately reduce it to an
acceptable level. Even informal arguments improve safety, e.g., by making peo-
ple decompose the top level goal case-wise, and examine the decomposed parts
critically. But the decomposed cases tend to have an ad hoc structure dictated
by experience and preference, with under-explored completeness claims, giving
both developers and regulators a false sense of confidence, no matter how con-
fidence is measured, since they feel that their reasoning is rigorous even though
it is not [58]. Moreover, as assurance cases are produced and judged by humans,
they are typically based on inductive arguments. Such arguments are susceptible
to fallacies (e.g., arguing through circular reasoning, using justification based

Software Assurance in an Uncertain World 9

Fig. 3. A fragment of the Lane Management (LMS) Safety case.

on false dichotomies), and evaluations by different reviewers may lead to the
discovery of different fallacies [28].

There have been several attempts to improve credibility of an argument
by making the argument structure more formal. [25] introduces the notion of
confidence maps as an explicit way of reasoning about sources of doubt in an
argument, and proposes justifying confidence in assurance arguments through
eliminative induction (i.e., an argument by eliminating sources of doubt). [29]
highlights the need to model both evidential and argumentation uncertainties
when evaluating assurance arguments, and considers applications of the formally
evaluatable extension of Toulmin’s argument style proposed by [56]. [11] details
VAA – a method for assessing assurance arguments based on Dempster-Shafer
theory. [51] is a proponent of completely deductive reasoning, narrowing the
scope of the argument so that it can be formalized and potentially formally
checked, using automated theorem provers, arguing that this would give a mod-
ular framework for assessing (and, we presume, reusing) assurance cases. [1]
relaxes Rushby’s position a bit, aiming instead at formal assurance argumen-
tation “modulo engineering expertise”, and proof obligations about consistency
of arguments remain valid even for not fully formal assurance arguments. To
this end, they provided a specific formalization of goal validity given valid-
ity of subgoals and contexts/context assumptions, resulting in such rules as

10 M. Chechik et al.

Fig. 4. An alternative representation of the same LMS fragment.

“assumptions on any given element must not be contradictory nor contradict
the context assumed for that goal” [1].

Our Position. We believe that a degree of formality in assurance cases can go
a long way not only towards establishing its validity, identifying and framing
implicit uncertainties and avoiding fallacies, but also supporting assurance case
modularity, refactoring and reuse. We illustrate this position on an example.

Example. Consider two partially developed assurance cases that argue that the
lane management system (LMS) of a vehicle is safe (Figs. 3 and 4). The top-level
safety goal G1 in Fig. 3 is first decomposed by the strategy Str1 into a set of
subgoals which assert the safety of the LMS subsystems. An assessor can only
trust that goals G2 and G3 imply G1 by making an implicit assumption that
the system safety is completely determined by the safety of its individual subsys-
tems. Neither the need for this assumption nor the credibility of the assumption
itself are made explicit in the assurance case, which weakens the argument and
complicates the assessment process. The argument is further weakened by the
absence of a completeness claim that all subsystems have been covered by this
decomposition.

Strategies Str2 and Str3 in Fig. 3 decompose the safety claims about each
subsystem into arguments over the relevant hazards. Yet the hazards themselves
are never explicitly stated in the assurance case, making the direct relevance of
each decomposed goal to its corresponding parent goal, and thus to the argument
as a whole, unclear. While goals G6 and G9 attempt to provide completeness

Software Assurance in an Uncertain World 11

claims for their respective decompositions, they do so by citing lack of negative
evidence without describing efforts to uncover such evidence. This justification
is fallacious and can be categorized as “an argument from ignorance” [28].

Now consider the assurance case in Fig. 4 which presents a variant of the argu-
ment in Fig. 3, refined with context nodes, justification nodes and completeness
claims. The top-level goal G1 is decomposed into a set of subgoals asserting
that particular hazards have been mitigated, as well as a completeness claim
G3C stating that hazards H1 and H2 are the only ones that may be prevalent
enough to defeat claim G1. Context nodes C1 and C2 define the hazards them-
selves, which clarifies the relevance of each hazard-mitigating goal. The node J1
provides a justification for the validity of Str1 by framing the decomposition
as a proof by (exhaustive) cases. That is, Str1 is justified by the statement
that if H1 and H2 are the only hazards that could potentially make the system
unsafe, then the system is safe if H1 and H2 have been adequately mitigated.
This rigorous argument can be represented by the logical expression G3C =⇒
((G2 ∧ G4) =⇒ G1), and if completeness holds then G2 and G4 are suf-
ficient to show G1. We now have a rigorous argument step that our confidence
in G1 is a direct consequence of confidence in its decomposed goals G2, G3C
and G4, even though there may still be uncertainty in the evidential evaluation
of G2, G3C and G4. That is, uncertainty has been made explicit and can be
reasoned about at the evidential level. By removing argumentation uncertainty
and explicating implicit assumptions, we get a more comprehensive framework
for assurance case evaluation, where the relation between all reasoning steps is
formally clear. Note that if the justification provides an inference rule, then the
argument becomes deductive. Otherwise, it is weaker (the justification node can
be used to quantify just how weaker) but still rigorous.

While the completeness claim G3C in Fig. 4 may be directly supported by
evidence, the goals G2 and G4 are further decomposed by the strategies Str2
and Str3, respectively, which represent decompositions over subsystems. These
strategies are structured similarly to Str1, and can be expressed by the logical
expressions G7C =⇒ ((G5 ∧ G6) =⇒ G2) and G10C =⇒ ((G8 ∧ G9)
=⇒ G4), respectively. In Fig. 3, a decomposition by subsystems was applied
directly to the top-level safety goal which necessitated a completeness claim
that the safety of all individual subsystems implied safety of the entire system.
Instead, the argument in Fig. 4 only needs to show that the set of subsystems in
each decomposition is complete w.r.t. a particular hazard, which may be a more
feasible claim to argue. This ability to transform an argument into a more easily
justifiable form is another benefit of arguing via rigorous reasoning steps.

5 Combining Evidence

Evidence for assurance cases can come from a variety of sources: results from
different testing and verification techniques, human judgment, or their combina-
tion. Multiple testing and verification techniques may be used to make the evi-
dence more complete. A verification technique complements another if it is able

12 M. Chechik et al.

Fig. 5. Confidence argument for code review workflow (from [6]).

to verify types of requirements which cannot be verified by the other technique.
For example, results of verification of properties via a bounded model checker
(BMC) are complemented by additional test cases [8]. A verification technique
supports another if it is used to detect faults in the other’s verification results,
thus providing backing evidence [33]. For example, a model checking technique
may support a static analysis technique by verifying the faults detected [6]. Note
that these approaches are principally different from just aggregating evidence
treating it as a blackbox!

Habli and Kelly [32] and Denney and Pai [15] present safety case patterns
for the use of formal method results for certification. Bennion et al. [3] present a
safety case for arguing the compliance of a particular model checker, namely, the
Simulink Design Verifier for DO-178C. Gallina and Andrews [23] argue about
adequacy of a model-based testing process, and Carlan et al. [7] provide a safety
pattern for choosing and composing verification techniques based on how they

Software Assurance in an Uncertain World 13

contribute to the identification or mitigation of systematic faults known to affect
system safety.

Our Position. We, as a community, need to figure out the precise conditions
under which particular testing and verification techniques “work” (e.g., model-
ing floating-point numbers as reals, making a small model hypothesis to justify
sufficiency of a particular loop unrolling, etc.), and how they are intended to
be composed in order to reduce uncertainty about whether software satisfies its
specification. We illustrate a particular composition here.

Example. In this example, taken from [6], a model checker supports static
analysis tools (that produce false negatives) by verifying the detected faults [6].
The assurance case is based on a workflow (not shown here) where an initial
review report is constructed, by running static analysis tools and possibly peer
code reviews. Then the program is annotated with the negation of each potential
erroneous behavior as a desirable property for the program, and given to a
model-checker. If the model-checker is able to verify the property, it is removed
from the initial review report and not considered as an error. If the model-
checker finds a violation, the alleged error is confirmed. In this case, a weakest-
precondition generation mechanism is applied to find out the environmental
conditions (external parameters that are not under the control of the program)
under which the program shows the erroneous behavior. These conditions and
the error trace are then added to the error description.

The paper [6] presents both the assurance case and the confidence argument
for the code review workflow. We reproduce only the latter here (see Fig. 5),
focusing on reducing uncertainty about the accuracy and consistency of the code
property (goal G2). False positives generated by static analysis are mitigated
using BMC – a method with a completely different verification rationale, thus
implementing the safety engineering principle of independence (J2). Strategy
(Str2) explains how errors can be confirmed or dismissed using BMC (goal
G6). The additional information given by BMC can be used for the mitigation
of the error (C2).

This approach takes good steps towards mitigating particular assurance
deficits using a composition of verification techniques but leaves open several
problems: how to ensure that BMC runs under the same environmental condi-
tions as the static analysis tools? how deeply should the loops be unrolled? what
to do with cases when the model-checker runs out of resources without giving
a conclusive answer? and in general, what are the conditions under which it is
safe to trust the “yes” answers of the model-checker.

6 Assurance Cases for ML Systems

Academia and industry are actively building systems using AI and machine
learning, including a rapid push for ML in safety-critical domains such as medical
devices and self-driving cars. For their successful adoption in society, we need to
ensure that they are trustworthy, including obtaining confidence in their behavior
and robustness.

14 M. Chechik et al.

Fig. 6. A partially developed GSN safety case of pedestrian detector example.

Significant strides have already been made in this space, from extend-
ing mature testing and verification techniques to reasoning about neural net-
works [24,37,47,54] for properties such as safety, robustness and adequate han-
dling of adversarial examples [26,34]. There is active work in designing systems
that balance learning under uncertainty and acting safely, e.g., [52] as well as
the broad notion of fairness and explainability in AI, e.g., [49].

Our Position. We believe that assurance cases remain a unifying view for ML-
based systems just as much as for more conventional systems, allowing us to
understand how the individual approaches fit into the overall goal of assuring
safety and reliability and where there are gaps.

Example. We illustrate this idea with an example of a simple pedestrian detec-
tor (PD) component used as part of an autonomous driving system. The func-
tions that PD supports consist of detection of objects in the environment ahead
of the vehicle, classification of an object as a pedestrian or other, and localiza-
tion of the position and extent of the pedestrian (indicated by bounding box).
We assume that PD is implemented as a convolutional deep neural network
with various stages to perform feature extraction, proposing regions containing
objects and classification of the proposed objects. This is a typical approach for
two-stage object detectors (e.g., see [50]).

Software Assurance in an Uncertain World 15

Fig. 7. A framework for factors affecting perceptual uncertainty (source: [12]).

As part of a safety critical system, PD contributes to the satisfaction of a
top-level safety goal requiring that the vehicle always maintain a safe distance
from all pedestrians. Specific safety requirements for PD can be derived from
this goal, such as (RQ1) PD misclassification rate (i.e., classifying a pedestrian
as “other”) must be less than ρmc, (RQ2) PD false positive rate (i.e., classifying
any non-pedestrian object or non-object as “pedestrian”) must be less than ρfp,
and (RQ3) PD missed detection rate (i.e., missing the presence of pedestrian)
must be less than ρmd. Here, the parameters ρmc, ρfp and ρmd must be derived
in conjunction with the control system that uses the output from PD to plan
the vehicle trajectory.

The partially developed safety case for PD is shown in Fig. 6. The three safety
requirements are addressed via the strategy Str1 and, as expected, testing results
are given as evidence of their satisfaction. However, since testing can only provide
limited assurance about the behaviour of PD in operation, we use an additional
strategy, Str2, to argue that a rigorous method was followed to develop PD.
Specifically, we follow the framework of [12] for identifying the factors that lead
to uncertainty in ML-based perceptual software such as PD.

The framework is defined at a high level in Fig. 7. The left “perception trian-
gle” shows how the perceptual concept (in the case of PD, the concept “pedes-
trian”) can occur in various scenarios in the world, how it is detected using
sensors such as cameras, and how this can be used to collect and label exam-
ples in order to train an ML component to learn the concept. The perception
triangle on the right is similar but shows how the trained ML component can be
used during the system operation to make inferences (e.g., perform the pedes-
trian detection). The framework identifies seven factors that could contribute to
uncertainty in the behaviour of the perceptual component. A safety case demon-
strating a rigorous development process should provide evidence that each factor
has been addressed.

In Fig. 6, strategy Str2 uses the framework to argue that the seven factors are
adequately addressed for PD. We illustrate development of two of these factors

16 M. Chechik et al.

here. Scenario coverage (Goal G-F2) deals with the fact that the training data
must represent the concept in a sufficient variety of scenarios in which it could
occur in order for the training to be effective. The argument here first decom-
poses this goal into different types of variation (Str3) and provides appropriate
evidence for each. The adequacy of age and ethnicity variation in the data set is
supported by census data (S2) about the range of these dimensions of variation
in the population. The variation in the pedestrian pose (i.e., standing, leaning,
crouching, etc.) is supplied by a standard ontology of human postures (S3).
Finally, evidence that the types are adequate to provide sufficient coverage of
variation (completeness) is provided by an expert review (S4).

Another contributing factor developed in Fig. 6 is model uncertainty (Goal
G-F6). Since there is only finite training data, there can be many possible models
that are equally consistent with the training data, and the training process could
produce any one of them, i.e., there is residual uncertainty whether the produced
model is in fact correct. The presence of model uncertainty means that while the
trained model may perform well on inputs similar to the training data, there is no
guarantee that it will produce the right output for other inputs. Some evidence of
good behaviour here can be gathered if there are known properties that partially
characterize the concept and can be checked. For example, a reasonable necessary
condition for PD is that the object being classified as a pedestrian should be
less than 9 ft tall. Another useful property type is an invariant, e.g., a rotated
pedestrian image is still a pedestrian. Tools for property checking of neural
networks (e.g., [37]) can provide this kind of evidence (S5). Another way to
deal with model uncertainty is to estimate it directly. Bayesian deep learning
approaches [22] can do this by measuring the degree of disagreement between
multiple trained models that are equally consistent with the training data. The
more the models are in agreement are about how to classify a new input, the
less model uncertainty is present and the more confident one can be in the
prediction. Using this approach on a test data set can provide evidence (S6)
about the degree of model uncertainty in the model. This approach can also
be used during the operation to generate a confidence score in each prediction
and use a fault tolerance strategy that takes a conservative action when the
confidence falls below a threshold.

7 Summary and Future Outlook

In this paper, we tried to argue that an assurance case view on establishing
system correctness provides a way to unify different components of the soft-
ware development process and to explicitly manage uncertainty. Furthermore,
although our examples came from the world of safety-critical automotive sys-
tems, the assurance case view is broadly applicable to a variety of systems, not
just those in the safety-critical domain and includes those constructed by non-
traditional means such as ML. This view is especially relevant to much of the
research activity being conducted by the ETAPS community since it allows, in
principle, to understand how each method contributes to the overall problem of
system assurance.

Software Assurance in an Uncertain World 17

Most traditional assurance methods aim to build an informal argument, ulti-
mately judged by a human. However, while these are useful for showing compli-
ance to standards and are relatively easy to construct and read, such arguments
may not be rigorous, missing essential properties such as completeness, indepen-
dence, relevance, or a clear statement of assumptions [51]. As a result, fallacies in
existing assurance cases are present in abundance [28]. To address this weakness,
we argued that building assurance cases should adhere to systematic principles
that ensure rigor. Of course, not all arguments can be fully deductive since rel-
evance and admissibility of evidence is often based on human judgment. Yet,
an explicit modeling and management of uncertainty in evidence, specifications
and, assumptions as well as the clear justification of each step can go a long way
toward making such arguments valid, reusable, and generally useful in helping
produce high quality software systems.

Challenges and Opportunities. Achieving this vision has a number of chal-
lenges and opportunities. In our work on impact assessment of model change on
assurance cases [39,40], we note that even small changes to the system may have
significant impact on the assurance case. Because creation of an assurance case
is costly, this brittleness must be addressed. One opportunity here is to recog-
nize that assurance cases can be refactored to improve their qualities without
affecting their semantics. For example, in Sect. 4, we showed that the LMS safety
claim could either be decomposed first by hazards and then by subsystems or
vice versa. Thus, we may want to choose the order of decomposition based on
other goals, e.g., to minimize the impact of change on the assurance case by
pushing the affected subgoals lower in the tree. Another issue is that complex
systems yield correspondingly complex assurance cases. Since these must ulti-
mately be judged by humans, we must manage the cognitive load the assurance
case puts on the assessor. This creates opportunities for mechanized support,
both in terms of querying, navigating and analyzing assurance cases as well as
in terms of modularization and reuse of assurance cases.

Evidence composition discussed in Sect. 5 also presents significant challenges.
While standards such as DO-178C and ISO26262 give recommendations on the
use of testing and verification, it is not clear how to compose partial evidence or
how to use results of one analysis to support another. Focusing on how each tech-
nique reduces potential faults in the program, clearly documenting their context
of applicability (e.g., the small model hypothesis justifying partial unrolling of
loops, properties not affected by approximations of complex program operations
and datatypes often done by model-checkers, connections between the modeled
and the actual environment, etc.) and ultimately connecting them to reducing
uncertainties about whether the system satisfies the essential property are keys
to making tangible progress in this area.

Finally, in Sect. 6, we showed how the assurance case view could apply to new
development approaches such as ML. Although such new approaches provide
benefits over traditional software development, they also create challenges for
assurance. One challenge is that analysis techniques used for verification may
be immature. For example, while neural networks have been studied since the

18 M. Chechik et al.

1950’s, pragmatic approaches to their verification have been investigated only
recently [53]. Another issue is that prerequisites for assurance may not be met
by the development approach. For example, although they are expressive, neural
networks suffer from uninterpretability [41] – that is, it is not feasible for a human
to examine a trained network and understand what it is doing. This is a serious
obstacle to assurance because formal and automated methods account for only
part of the verification process, augmented by reviews. As a result, increasing
the interpretability of ML models is an active area of current research.

While all these challenges are significant, the benefit of addressing them is
worth the effort. As our world moves towards increasing automation, we must
develop approaches for assuring the dependability of the complex systems we
build. Without this, we either stall progress or run the risk of endangering our-
selves – neither alternative seems desirable.

References

1. Bandur, V., McDermid, J.: Informing assurance case review through a formal inter-
pretation of GSN core logic. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP
2015. LNCS, vol. 9338, pp. 3–14. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24249-1 1

2. Bell, T.E., Thayer, T.A.: Software requirements: are they really a problem? In:
Proceedings of the 2nd International Conference on Software Engineering, pp. 61–
68. IEEE Computer Society Press (1976)

3. Bennion, M., Habli, I.: A candid industrial evaluation of formal software verifica-
tion using model checking. In: Companion Proceedings of ICSE 2014, pp. 175–184
(2014)

4. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future - an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Safety-Critical
Systems: Problems, Process and Practice, pp. 51–67. Springer, London (2010).
https://doi.org/10.1007/978-1-84996-086-1 4

5. Brunel, J., Cazin, J.: Formal verification of a safety argumentation and application
to a complex UAV system. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012.
LNCS, vol. 7613, pp. 307–318. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33675-1 27

6. Carlan, C., Beyene, T.A., Ruess, H.: Integrated formal methods for constructing
assurance cases. In: Proceedings of ISSRE 2016 Workshops (2016)

7. Cârlan, C., Gallina, B., Kacianka, S., Breu, R.: Arguing on software-level verifi-
cation techniques appropriateness. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2017. LNCS, vol. 10488, pp. 39–54. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66266-4 3

8. Cârlan, C., Ratiu, D., Schätz, B.: On using results of code-level bounded model
checking in assurance cases. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch,
F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 30–42. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45480-1 3

9. Castaameda, V., Ballejos, L., Caliusco, M.L., Galli, M.R.: The use of ontologies in
requirements engineering. Glob. J. Res. Eng. 10(6) (2010)

10. Cooray, D., Malek, S., Roshandel, R., Kilgore, D.: RESISTing reliability degrada-
tion through proactive reconfiguration. In: Proceedings of ASE 2010, pp. 83–92.
ACM (2010)

https://doi.org/10.1007/978-3-319-24249-1_1
https://doi.org/10.1007/978-3-319-24249-1_1
https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-642-33675-1_27
https://doi.org/10.1007/978-3-642-33675-1_27
https://doi.org/10.1007/978-3-319-66266-4_3
https://doi.org/10.1007/978-3-319-66266-4_3
https://doi.org/10.1007/978-3-319-45480-1_3

Software Assurance in an Uncertain World 19

11. Cyra, L., Gorski, J.: Support for argument structures review and assessment. J.
Reliab. Eng. Syst. Saf. 96, 26–37 (2011)

12. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty
for safe automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99229-7 37

13. Davis, A., et al.: Identifying and measuring quality in a software requirements
specification. In: 1993 Proceedings First International Software Metrics Sympo-
sium, pp. 141–152. IEEE (1993)

14. de la Vara, J.L.: Current and necessary insights into SACM: an analysis based on
past publications. In: Proceedings of RELAW 2014, pp. 10–13. IEEE (2014)

15. Denney, E., Pai, G.: Evidence arguments for using formal methods in software
vertification. In: Proceedings of ISSRE 2013 Workshops (2013)

16. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases.
In: Proceedings of ESEM 2011 (2011)

17. Duan, L., Rayadurgam, S., Heimdahl, M.P.E., Sokolsky, O., Lee, I.: Representing
confidence in assurance case evidence. In: Koornneef, F., van Gulijk, C. (eds.)
SAFECOMP 2015. LNCS, vol. 9338, pp. 15–26. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24249-1 2

18. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of FSE 2010, pp. 7–16. ACM
(2010)

19. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

20. Famelis, M., Chechik, M.: Managing design-time uncertainty. J. Softw. Syst. Model.
(2017)

21. Fanmuy, G., Fraga, A., Llorens, J.: Requirements verification in the industry. In:
Hammami, O., Krob, D., Voirin, J.L. (eds.) Complex Systems Design & Manage-
ment, pp. 145–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-25203-7 10

22. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: Proceedings of ICML 2016, pp. 1050–1059
(2016)

23. Gallina, B., Andrews, A.: Deriving verification-related means of compliance for a
model-based testing process. In: Proceedings of DASC 2016 (2016)

24. Gehr, T., Milman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of IEEE S&P 2018 (2018)

25. Goodenough, J., Weinstock, C., Klein, A.: Eliminative induction: a basis for argu-
ing system confidence. In: Proceedings of ICSE 2013 (2013)

26. Gopinath, D., Wang, K., Zhang, M., Pasareanu, C., Khunshid, S.: Symbolic exe-
cution for deep neural networks. arXiv:1807.10439v1 (2018)

27. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quan-
tifying confidence in assurance arguments. J. Saf. Sci. 92, 53–65 (2017)

28. Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy of fallacies
in system safety arguments. In: Proceedings of ISSC 2006 (2006)

29. Grigorova, S., Maibaum, T.: Argument evaluation in the context of assurance case
confidence modeling. In: Proceedings of ISSRE Workshops (2014)

https://doi.org/10.1007/978-3-319-99229-7_37
https://doi.org/10.1007/978-3-319-24249-1_2
https://doi.org/10.1007/978-3-319-24249-1_2
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-25203-7_10
https://doi.org/10.1007/978-3-642-25203-7_10
http://arxiv.org/abs/1807.10439v1

20 M. Chechik et al.

30. GSN: Goal Structuring Notation Working Group, “GSN Community Standard
Version 1”, November 2011. http://www.goalstructuringnotation.info/

31. Guiochet, J., Hoang, Q.A.D., Kaaniche, M.: A model for safety case confidence
assessment. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9337, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24255-2 23

32. Habli, I., Kelly, T.: A generic goal-based certification argument for the justification
of formal analysis. ENTCS 238(4), 27–39 (2009)

33. Hawkins, R., Kelly, T.: A structured approach to selecting and justifying software
safety evidence. In: Proceedings of SAFECOMP 2010 (2010)

34. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

35. International Organization for Standardization: ISO 26262: Road Vehicles – Func-
tional Safety, 1st version (2011)

36. International Organization for Standardization: ISO/AWI PAS 21448: Road Vehi-
cles – Safety of the Intended Functionality (2019)

37. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

38. Kelly, T., Weaver, R.: The goal structuring notation – a safety argument notation.
In: Proceedings of Dependable Systems and Networks Workshop on Assurance
Cases (2004)

39. Kokaly, S., Salay, R., Cassano, V., Maibaum, T., Chechik, M.: A model manage-
ment approach for assurance case reuse due to system evolution. In: Proceedings
of MODELS 2016, pp. 196–206. ACM (2016)

40. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety case impact
assessment in automotive software systems: an improved model-based approach. In:
Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488,
pp. 69–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4 5

41. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018)

42. Lutz, R.R.: Analyzing software requirements errors in safety-critical, embedded
systems. In: Proceedings of IEEE International Symposium on Requirements Engi-
neering, pp. 126–133. IEEE (1993)

43. Maksimov, M., Fung, N.L.S., Kokaly, S., Chechik, M.: Two decades of assurance
case tools: a survey. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 49–59. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7 6

44. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessic, D.: Evidence management
for compliance of critical systems with safety standards: a survey on the state of
practice. Inf. Softw. Technol. 60, 1–15 (2015)

45. Nair, S., Walkinshaw, N., Kelly, T., de la Vara, J.L.: An evidential reasoning app-
roach for assessing confidence in safety evidence. In: Proceedings of ISSRE 2015
(2015)

46. Nikora, A., Hayes, J., Holbrook, E.: Experiments in automated identification of
ambiguous natural-language requirements. In: Proceedings 21st IEEE International
Symposium on Software Reliability Engineering. IEEE Computer Society, San Jose
(2010, to appear)

http://www.goalstructuringnotation.info/
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-66266-4_5
https://doi.org/10.1007/978-3-319-99229-7_6
https://doi.org/10.1007/978-3-319-99229-7_6

Software Assurance in an Uncertain World 21

47. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: Proceedings of SOSP 2017 (2017)

48. Ramirez, A.J., Jensen, A.C., Cheng, B.H.: A taxonomy of uncertainty for dynam-
ically adaptive systems. In: Proceedings of SEAMS 2012 (2012)

49. Ras, G., van Gerven, M., Haselager, P.: Explanation methods in deep learning:
users, values, concerns and challenges. In: Escalante, H.J., et al. (eds.) Explainable
and Interpretable Models in Computer Vision and Machine Learning. TSSCML,
pp. 19–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4 2

50. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

51. Rushby, J., Xu, X., Rangarajan, M., Weaver, T.L.: Understanding and evaluating
assurance cases. Technical report CR-2015-218802, NASA (2015)

52. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal
temporal logic. In: Proceedings of RSS 2016 (2016)

53. Seshia, S.A., Sadigh, D.: Towards verified artificial intelligence. CoRR,
abs/1606.08514 (2016)

54. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of ICSE 2018 (2018)

55. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of RE 2001, pp. 249–262. IEEE (2001)

56. Verheij, B.: Evaluating arguments based on Toulmin’s scheme. Argumentation
19(3), 347–371 (2005)

57. Ward, S., Chapman, C.: Transforming project risk management into project uncer-
tainty management. Int. J. Proj. Manag. 21(2), 97–105 (2003)

58. Wassyng, A.: Private Communication (2019)
59. Yamamoto, S.: Assuring security through attribute GSN. In: Proceedings of

ICITCS 2015 (2015)
60. Zeng, F., Lu, M., Zhong, D.: Using DS evidence theory to evaluation of confidence

in safety case. J. Theoret. Appl. Inf. Technol. 47(1) (2013)
61. Zhao, X., Zhang, D., Lu, M., Zeng, F.: A new approach to assessment of confidence

in assurance cases. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS,
vol. 7613, pp. 79–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33675-1 7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-98131-4_2
https://doi.org/10.1007/978-3-642-33675-1_7
https://doi.org/10.1007/978-3-642-33675-1_7
http://creativecommons.org/licenses/by/4.0/

Software Verification I

Tool Support
for Correctness-by-Construction

Tobias Runge1(B), Ina Schaefer1, Loek Cleophas2,3, Thomas Thüm1,
Derrick Kourie3,4, and Bruce W. Watson3,4

1 Software Engineering, TU Braunschweig, Braunschweig, Germany
{tobias.runge,i.schaefer,t.thuem}@tu-bs.de

2 Software Engineering Technology, TU Eindhoven, Eindhoven, The Netherlands
3 Information Science, Stellenbosch University, Stellenbosch, South Africa

{loek,derrick,bruce}@fastar.org
4 Centre for Artificial Intelligence Research, CSIR, Pretoria, South Africa

Abstract. Correctness-by-Construction (CbC) is an approach to incre-
mentally create formally correct programs guided by pre- and postcon-
dition specifications. A program is created using refinement rules that
guarantee the resulting implementation is correct with respect to the
specification. Although CbC is supposed to lead to code with a low defect
rate, it is not prevalent, especially because appropriate tool support is
missing. To promote CbC, we provide tool support for CbC-based pro-
gram development. We present CorC, a graphical and textual IDE to
create programs in a simple while-language following the CbC approach.
Starting with a specification, our open source tool supports CbC devel-
opers in refining a program by a sequence of refinement steps and in
verifying the correctness of these refinement steps using the theorem
prover KeY. We evaluated the tool with a set of standard examples on
CbC where we reveal errors in the provided specification. The evalua-
tion shows that our tool reduces the verification time in comparison to
post-hoc verification.

1 Introduction

Correctness-by-Construction (CbC) [12,13,19,23] is a methodology to construct
formally correct programs guided by a specification. CbC can improve program
development because every part of the program is designed to meet the corre-
sponding specification. With the CbC approach, source code is incrementally
constructed with a low defect rate [19] mainly based on three reasons. First,
introducing defects is hard because of the structured reasoning discipline that is
enforced by the refinement rules. Second, if defects occur, they can be tracked
through the refinement structure of specifications. Third, the trust in the pro-
gram is increased because the program is developed following a formal pro-
cess [14].

Despite these benefits, CbC is still not prevalent and not applied for large-
scale program development. We argue that one reason for this is missing tool
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 25–42, 2019.
https://doi.org/10.1007/978-3-030-16722-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_2

26 T. Runge et al.

support for a CbC-style development process. Another issue is that the pro-
grammer mindset is often tailored to the prevalent post-hoc verification app-
roach. CbC has been shown to be beneficial even in domains where post-hoc
verification is required [29]. In post-hoc verification, a method is verified against
pre- and postconditions. In the CbC approach, we refine the method stepwise,
and we can check the method partially after each step since every statement
is surrounded by a pair of pre- and postconditions. The verification of refine-
ment steps and Hoare triples reduces the proof complexity since the proof task
is split into smaller problems. The specifications and code developed using the
CbC approach can be used to bootstrap the post-hoc verification process and
allow for an easier post-hoc verification as the method constructed using CbC
generally is of a structure that is more amenable to verification [29].

In this paper, we present CorC,1 a tool designed to develop programs follow-
ing the CbC approach. We deliberately built our tool on the well-known post-hoc
verifier KeY [4] to profit from the KeY ecosystem and future extensions of the
verifier. We also add CbC as another application area to KeY, which opens the
possibility for KeY users to adopt the CbC approach. This could spread the
constructive CbC approach to areas where post-hoc verification is prevalent.

Our tool CorC offers a hybrid textual-graphical editor to develop programs
using CbC. The textual editor resembles a normal programming editor, but
is enriched with support for pre- and postcondition specifications. The graphi-
cal editor visualizes the code, its specification, and the program refinements in
a tree-like structure. The developers can switch back and forth between both
views. In order to support the correct application of the refinement rules, the
tool is integrated with KeY [4] such that proof obligations can be immediately
discharged during program development. In a preliminary evaluation, we found
benefits of CorC compared to paper-and-pencil-based application of CbC and
compared to post-hoc verification.

2 Foundations of Correctness-by-Construction

Classically, CbC [19] starts with the specification of a program as a Hoare triple
comprising a precondition, an abstract statement, and a postcondition. Such a
triple, say T , should be read as a total correctness assertion: if T is in a state
where the precondition holds and its abstract statement is executed, then the
execution will terminate and the postcondition will hold. T will be true for a
certain set of concrete program instantiations of the abstract program and false
for other instantiations. A refinement of T is a triple, say T ′, which is true for a
subset of concrete programs that render T to be true.

In our work, pre-/post-condition specifications for programs are written in
first-order logic (FOL). A formula in FOL consists of atomic formulas which are
logically connected. An atomic formula is a predicate which evaluates to true or

1 https://github.com/TUBS-ISF/CorC, CorC is an acronym for Correctness-by-
Construction.

https://github.com/TUBS-ISF/CorC

Tool Support for Correctness-by-Construction 27

Fig. 1. Refinement rules in CbC [19]

false. Programs in this work are written in the CorC language, which is inspired
by the Guarded Command Language (GCL) [11] and presented below.

For the concrete instantiation of conditions and assignments, our tool uses a
host language. We decided for Java, but other languages are also possible.

To create programs using CbC, we use refinement rules. A Hoare triple is
refined by applying rules, which introduce CorC language statements, so that
a concrete program is created. The concrete program obtained by refinement
is guaranteed to be correct by construction, provided that the correctness-
preserving refinement steps have been accurately applied. In Fig. 1, we present
the statements and refinement rules used in CbC and our tool.

Skip. A skip or empty statement is a statement that does not alter the state of
the program (i.e., it does nothing) [11,19]. This means a Hoare triple with a skip
statement evaluates to true if the precondition implies the postcondition.

Assignment. An assignment statement assigns an expression of type T to a vari-
able, also of type T. In the tool, we use a Java-like assignment (x = y). To refine
a Hoare triple {P} S {Q} with an assignment statement, the assignment rule is
used. This rule replaces the abstract statement S by an assignment {P} x = E {Q}
iff P implies Q[x := E].

Composition. A composition statement is a statement which splits one abstract
statement into two. A Hoare triple {P} S {Q} is split to {P} S1 {M} and {M} S2 {Q}
in which S is refined to S1 and S2. M is an intermediate condition which evaluates
to true after S1 and before S2 is executed [11].

Selection. Selection in our CorC language works as a switch statement. It refines
a Hoare triple {P} S {Q} to {P} if G1 → S1 elseif . . . Gn → Sn fi {Q}. The guards
Gi are evaluated, and the sub-statement Si of the first satisfied guard is executed.

28 T. Runge et al.

We use a switch-like statement so that every sub-statement has an associated
guard for further reasoning. The selection refinement rule can only be used if
the precondition P implies the disjunction of all guards so that at least one
sub-statement could be executed.

Repetition. The repetition statement {P} do [I, V] G → S od {Q} works like a
while loop in other languages. If the loop guard G evaluates to true, the associ-
ated loop statement S is executed. The repetition statement is specified with an
invariant I and a variant V. To refine a Hoare triple {P} S {Q} with a repetition
statement, (1) the precondition P has to imply the invariant I of the repetition
statement, (2) the conjunction of invariant and the negation of the loop guard
G have to imply the postcondition Q, and (3) the loop body has to preserve the
invariant by showing that {I ∧ G} S {I} holds. To verify termination, we have to
show that the variant V monotonically decreases in each loop iteration and has
0 as a lower bound.

Weaken precondition. The precondition of a Hoare triple can be weakened if
necessary. The weaken precondition rule replaces the precondition P with a new
one P′ only if P implies P′ [12].

Strengthen postcondition. To strengthen a postcondition, the strengthen post-
condition rule can be used. A postcondition Q is replaced by a new one Q′ only
if Q′ implies Q [12].

Subroutine. A subroutine can be used to split a program into smaller parts. We
use a simple subroutine call where we prohibit side effects and parameters. A
triple {P} S {Q} can be refined to a subroutine {P′} Sub {Q′}, if the precondition
P′ of the subroutine is equal to the precondition P of the refined statement and the
postcondition Q′ of the subroutine is equal to the postcondition Q of the refined
statement. The subroutine can be constructed as a separate CbC program to
verify that it satisfies the specification. The Hoare triple {P′} Sub {Q′} is the
starting point to construct a program using CbC.

3 Correctness-by-Construction by Example

To introduce the programming style of CbC, we demonstrate the construction
of a linear search algorithm using CbC [19]. The linear search problem is defined
as follows: We have an integer array a of some length, and an integer variable
x. We try to find an element in the array a which has the same value as the
variable x, and we return the index i where the (last) element x was found, or
−1 if the element is not in the array.

To construct the algorithm, we start with concretizing the pre- and postcon-
dition of the algorithm. Before the algorithm is executed, we know that we have
an integer array. Therefore, we specify a�=null ∧ a.length≥0 as precondition P.
The postcondition forces that if the index i is greater than or equal to zero, the
element is found on the returned index i (Q := (i≥0 =⇒ a[i]=x)).

Tool Support for Correctness-by-Construction 29

Fig. 2. Refinement steps for the linear search algorithm

Our algorithm traverses the array in reverse order and checks for each index
whether the value is equal to x. In this case, the index is returned. To create
this algorithm, we construct an invariant I for the loop:

I := ¬appears(a, x, i + 1, a.length) ∧ i≥−1 ∧ i<a.length

The invariant is used to split the array into two parts. A part from i + 1 to
a.length where x is not contained, and a part from zero to i which is not
checked yet. In every iteration, the next index of the array is checked. The
predicate appears(a, x, l, h) asserts that x occurs in array a inside the range
from l (included) to h (excluded). The predicate can be translated to FOL as
∃i : (i≥l ∧ i<h ∧ a[i]=x).

We can use the CbC refinement rules to implement linear search. The refine-
ment steps for the example are shown in Fig. 2 and numbered from 1© to 4©.
To create a loop in the program, we need to initialize a loop counter variable to
establish the invariant. Therefore, we split the program by introducing a compo-
sition statement (1© in Fig. 2). The invariant I is used as intermediate condition
(i.e., M := I), because it has to be true after the initialization, and before the
first loop step. The statement st1 is refined to an assignment statement 2©. We
initialize i with a.length − 1 to start at the end of the array. This assignment
satisfies the intermediate condition I where i is replaced by a.length − 1. The
range of appears is empty, and therefore the predicate evaluates to true. To
refine the second statement (st2), we use the repetition refinement rule 3©. As
long as x is not found, we iterate through the array. As guard of the repeti-
tion, we use (i≥0 ∧ a[i]�=x). The invariant of the repetition is the invariant I
introduced above. The variant V is i + 1. To verify that this refinement is valid,
we have to verify that the precondition of the repetition statement implies the
invariant, and that the invariant and the negated guard imply the postcondition
of the repetition (cf. Rule 5). Both are valid because the precondition is equal
to the invariant and the postcondition of the repetition statement (in this case
it is Q) is equal to the negated guard. The last step is to refine the abstract loop
statement (loopSt) 4©. We use an assignment to decrease i and get the final

30 T. Runge et al.

program. We can verify that the invariant holds after each loop iteration. The
program terminates because the variant decreases in every step and it is always
greater than or equal to zero.

4 Tool Support in CorC

CorC extends KeY’s application area by enabling CbC to spread the constructive
engineering to areas where post-hoc verification is prevalent. KeY programmers
can use both approaches to construct formally correct programs. By using CorC,
they develop specification and code that can bootstrap the post-hoc verification.
The CorC tool2 is realized as an Eclipse plug-in in Java. We use the Eclipse
Modeling Framework (EMF)3 to specify a CbC meta model. This meta model
is used by two editor views, a textual and a graphical editor. The Hoare triple
verification is implemented by the deductive program verification tool KeY [4].
In the following list, we summarize the features of CorC.

– Programs are written as Hoare triple specifications, including pre-/postcondi-
tion specifications and abstract statements or assignment/skip statements in
concrete triples.

– CorC has eight rules to construct programs: skip, assignment, composition,
selection, repetition, weakening precondition, strengthening postcondition,
and subroutine (cf. Sect. 2).

– Pre-/postconditions and invariant specification are automatically propagated
through the program.

– CorC comprises a graphical and a textual editor that can be used
interchangeably.

– Up to now, CorC supports integers, chars, strings, arrays, and subroutine
calls without side effects, I/O, and library calls.

– Hoare triples are typically verified by KeY automatically. If the proof cannot
be closed automatically, the user can interact with KeY.

– Helper methods written in Java 1.5 can be used in a specification.
– CorC comprises content assist and an automatic generation of intermediate

conditions.

4.1 Graphical Editor

The graphical editor represents CbC-based program refinement by a tree struc-
ture. A node represents the Hoare triple of a specific CorC language statement.
Figure 3 presents the linear search algorithm of Sect. 3 in the graphical editor.
The structure of the tree is the same as in Fig. 2. The additional nodes on the
right specify used program variables including their type and global invariant

2 https://github.com/TUBS-ISF/CorC.
3 https://eclipse.org/emf/.

https://github.com/TUBS-ISF/CorC
https://eclipse.org/emf/

Tool Support for Correctness-by-Construction 31

Fig. 3. Linear search example in the graphical editor

conditions. The global invariant conditions are added to every pre- and post-
condition of Hoare triples to simplify the construction of the program. In the
example, we specify the array a and the range of variable i to support the
verification, as KeY requires this range to be explicit for verification.

The root node of the tree shows the abstract Hoare triple for the overall
program with a symbolic name for the abstract statement. In every node, the
pre- and postcondition are specified on the left and right of the node under the
corresponding header. A composition statement node, the second statement of
the tree, contains the pre- and postcondition and additionally defines an inter-
mediate condition. The intermediate condition is the middle term in the bottom
line. Both abstract sub-statements of the composition have a symbolic name and
can be further refined by adding a connection to another node (i.e., creating a
parent-child relation). The repetition node contains fields to specify the invari-
ant, the guard and the variant of the repetition. These fields are in the middle
row. The pre- and postcondition are associated to the inner loop statement. An
assignment node (cf. both leaf nodes of the figure) contains the precondition,
the assignment, and the postcondition. The representations of the nodes for the
refinements not illustrated in this example are similar.

32 T. Runge et al.

Refinement steps are represented by edges. The pre- and postconditions are
propagated from parents to their children on drawing the parent/child relation.
We explicitly show the propagated conditions in a node to improve readability.
The propagated conditions from the parent are unmodifiable because refinement
rules determine explicitly how conditions are propagated. An exception are the
rules to weaken the precondition or strengthen the postcondition. Here, the
conditions can be overridden. At the repetition statement, we only depict the
pre-/postconditions of the inner loop statement to reduce the size of this node.
The pre-/postconditions of the parent node (in our example the composition
statement) are not shown explicitly, but they are propagated internally to verify
that the repetition refinement rule is satisfied. To visualize the verification status,
the nodes have a green border if proven, a red one otherwise.

By showing the Hoare triples explicitly, problems in the program can be local-
ized. If some leaf node cannot be proven, the user has to check the assignment
and the corresponding pre-/postcondition. If an error occurred, the conditions
on the refinement path up to pre-/postcondition of the starting Hoare triple can
be altered. Other paths do not need to be checked. To prove the program correct,
we have to prove that the refinement is correct. Aside from the side conditions
of refinement rules (cf. iff conditions in refinement rules), only the leaf nodes of
the refinement tree which contain basic Hoare triples with skip or assignment
statements need to be verified by a prover, while all composite statements are
correct by construction of their conditions.

To support the user in developing intermediate conditions for composition
statements, our tool can compute the weakest precondition from a postcondition
and a concrete assignment by using the KeY theorem prover. So, the user can
create a specific assignment statement and generate the intermediate conditions
afterwards. We also support modularization, to cover cases where algorithms
become too large. Sub-algorithms can be created using CbC in other CorC pro-
grams. We introduce a simple subroutine rule which can be used as a leaf node
in the editor. The subroutine has a name and it is connected to a second diagram
with the same name as the subroutine. This subroutine call is similar to a classic
method call. It can be used to decompose larger CbC developments to multiple
smaller programs.

4.2 Textual Editor

The textual editor is an editor for the CorC programming language described
above. The user writes code by using keywords for the specific statements and
enriches the code with conditions, such as invariants or intermediate conditions,
and assignments in our CorC syntax. The syntax of the composed statements
in the textual editor is shown in Fig. 4. In the GlobalConditions declaration,
we enumerate the needed global conditions separated with a comma. The used
variables are enumerated after the JavaVariables keyword.

The linear search example program presented in Sect. 3 is shown in the syntax
of CorC in Listing 1. The program starts with keyword Formula. The pre- and
postcondition of the abstract Hoare triple are written after the pre: and post:

Tool Support for Correctness-by-Construction 33

Fig. 4. Syntax of statements in textual editor

1 Formula "linearSearch"

2 pre: {"true"}

3 {

4 {

5 i=a.length -1;

6 }

7 intm: ["! appears(a, x, i+1, a.length)"]

8 {

9 while ("i>=0 & a[i]!=x")

10 inv: ["! appears(a, x, i+1, a.length)"]

11 var: ["i+1"] do

12 {

13 i=i-1;

14 } od

15 }

16 }

17 post: {"i>=0 -> a[i]=x"}

18
19 GlobalConditions

20 conditions {"a!=null", "a.length >=0",

21 "i>=-1", "i<a.length "}

22
23 JavaVariables

24 variables {"int[] a", "int x", "int i"}

Listing 1. Linear search example in the textual editor

keywords. The abstract statement of the Hoare triple is refined to a composition
statement in lines 3–16. The statements are surrounded by curly brackets to
establish the refinement structure. We have the first statement in lines 4–6, the
intermediate condition in line 7 and the second statement in lines 8–15. The
first statement is refined to an assignment (Line 5). The refinement is done
by introducing an assignment in Java syntax (i = a.length − 1;). The second
statement is refined to a repetition statement (cf. the syntax of a repetition
statement in Fig. 4). We specify the guard, the invariant, and the variant. Finally,
the single statement of the loop body is refined to an assignment in Line 13.

As in the graphical editor, pre-/postconditions are propagated top-down from
a parent to a child statement. For example, the intermediate condition of a

34 T. Runge et al.

1 \javaSource "src";

2 \include "helper.key";

3 \programVariables {int x;}

4 \problem {

5 (x = 0) -> \<{x=x+1;}\> (x = 1)

6 }

Listing 2. KeY problem file

composition statement which is the postcondition of the first sub-statement and
the precondition of the second, appears only once in the editor (e.g., Line 7). To
support the user, we implemented syntax highlighting and a content assist. When
starting to write a statement, a user may employ auto-completion where the
statements are inserted following the syntax in Fig. 4. The user can specify the
conditions, then the next statement can be refined. The editor also automatically
checks the syntax and highlights syntax errors. Information markers are used to
indicate statements which are not proven yet. For example, the Hoare triple of
the assignment statement (i = a.length − 1) in Listing 1 has to be verified, and
CorC marks the statement according to the proof completion results.

4.3 Verification of CorC Programs

To prove the refined program is correct, we have to prove side conditions of refine-
ments correct (e.g., prove that an assignment satiesfies the pre-/postcondition
specification). This reduces the proof complexity because the challenge to prove
a complete program is decomposed into smaller verification tasks. The interme-
diate Hoare triples are verified indirectly through the soundness of the refine-
ment rules and the propagation of the specifications from parent nodes to child
nodes [19]. Side conditions occur in all refinements (cf. iff conditions in refinement
rules). These side conditions, such as the termination of repetition statements
or that at least one guard in a selection has to evaluate to true, are proven in
separate KeY files.

For the proof of concrete Hoare triples, we use the deductive program verifier
KeY [4]. Hoare triples are transformed to KeY’s dynamic logic syntax. The syn-
tax of KeY problem files is shown in Listing 2. Using the keyword javaSource,
we specify the path to Java helper methods which are called in the specifi-
cations. These methods have to be verified independently with KeY. A KeY
helper file, where the users can define their own FOL predicates for the specifi-
cation, is included with the keyword include. For example, in CorC a predicate
appears(a, x, l, h) (cf. the linear search example) can be used which is specified
in the helper file as a FOL formula. The variables used in the program are listed
after the keyword programVariables. After problem, we define the Hoare triple
to be proven, which is translated to dynamic logic as used by KeY. KeY problem
files are verified by KeY. As we are only verifying simple Hoare triples with skip

Tool Support for Correctness-by-Construction 35

or assignment statements, KeY is usually able to close the proofs automatically
if the Hoare triple is valid.

To verify total correctness of the program, we have to prove that all repe-
tition statements terminate. The termination of repetition statements is shown
by proving that the variants in the program monotonically decrease and are
bounded. Without loss of generality, we assume this bound to equal 0, as this
is what KeY requires. This is done by specifying the problem in the KeY
file in the following way: (invariant & guard) -> {var0:=var} \<{std}\>
(invariant & var<var0 & var>=0). The code of the loop body is specified at
std to verify that after one iteration of the loop body the variant var is smaller
than before but greater than or equal to zero.

To verify Hoare triples in the graphical editor, we implemented a menu entry.
The user can right-click on a statement and start the automatic proof. If the
proof is not closed, the user can interact with the opened KeY interface. To
prove Hoare triples in the textual editor, we automatically generate all needed
problem files for KeY whenever the user saves the editor file. The proof of the
files is started using a menu button. The user gets feedback which triples are
not proven by means of markers in the editor.

4.4 Implementation as Eclipse Plugin

We extended the Eclipse modeling framework with plugins to implement the two
editors. We have created a meta model of the CbC language to represent the
required constructs (i.e., statements with specification). The statements can be
nested to create the CbC refinement hierarchy. The graphical and the textual
editor are projections on the same meta model. The graphical editor is imple-
mented using the framework Graphiti.4 It provides functionality to create nodes
and to associate them to domain elements, such as statements and specifications.
The nodes can be added from a palette at the side of the editor, so no incor-
rect statement with its associated specification can be created. We implemented
editing functionality to change the text in the node; the background model is
changed simultaneously. Graphiti also provides the possibility to update nodes
(e.g., to propagate pre- and postconditions), if we connect those nodes by refine-
ment edges. The refinement is checked for compliance with the CbC rules.

The textual editor is implemented using XText.5 We created a grammar
covering every statement and the associated specification. If the user writes a
program, the text is parsed and translated to an instance of the meta model. If a
program is created in one editor, a model (an instance of our meta model) of the
program is created in the background. We can easily transform one view into the
other. The transformation is a generation step and not a live synchronization
between both views, but it is carried out invisibly for the user when changing
the views.

4 https://eclipse.org/graphiti/.
5 https://eclipse.org/Xtext/.

https://eclipse.org/graphiti/
https://eclipse.org/Xtext/

36 T. Runge et al.

Table 1. Evaluation of the example programs

Algo-
rithm

#Nodes
in GE

#Lines
in TE

#Lines
with
JML

#Verified
CorC
triples

CbC
Total
Proof-
Nodes

CbC
Total
Proof-
Time

PhV
Total
Proof-
Nodes

PhV
Total
Proof-
Time

Linear
Search

5 12 10 5/5 285 0.4 s 589 1.2 s

Max.
Element

9 21 15 9/9 1023 1.2 s 993 1.8 s

Pattern
Matching

14 23 20 13/13 21131 54.9 s 201619 1479.3 s

Exponen-
tiation

7 21 17 7/7 6588 15.2 s 7303 20.4 s

Log.
Approx.

5 16 12 5/5 13756 42.7 s 18835 68.5 s

Dutch
Flag

8 26 24 8/8 4107 5.7 s 4993 13.4 s

Factorial 5 15 13 4/4 1554 3.6 s 1598 4.4 s

(GE) Grahical Editor, (TE) Textual Editor, (PhV) Post-hoc Verification

In implementing CorC, we considered the exchangeability of the host lan-
guage. The specifications and assignments are saved as strings in the meta
model. They are checked by a parser to comply with Java. This parser could
be exchanged to support a different language. The verification is done by gener-
ating KeY files which are then evaluated by KeY. Here, we have to exchange the
generation of the files if another theorem prover should be integrated. The infor-
mation of the meta model may have to be adopted to fit the needs of the other
prover. We also have to implement a programmatic call to the other prover.

5 Evaluation

The tool support offers new chances to evaluate CbC versus post-hoc verification.
We quantitatively compare the development and verification of programs with
CorC and with post-hoc verification. This is to check the hypothesis that the
verification of algorithms is faster with CorC than with post-hoc verification. We
created the first eight algorithms from the book by Kourie and Watson [19] in our
graphical editor. For comparison purposes, we also wrote each example as a plain
Java program with JML specifications in order to directly verify it with KeY.
The specifications are the same as in CorC. We measured the verification time
and the proof nodes that KeY needed to close the proofs for both approaches.
The results of the evaluation are presented in Table 1 (verification time rounded).

Tool Support for Correctness-by-Construction 37

176.08% 53.48%

2595.59%

34.48%
60.49%

136.53%
22.38%

1

10

100

1000

10000

100000

1000000

10000000

Ve
rifi

ca
on

 in
 m

s (
lo

ga
rit

hm
ic

 sc
al

e)

Correctness by Construc on Post-hoc Verifica on

Fig. 5. Proof time of CbC and post-hoc verification in logarithmic scale

The algorithms have 5 to 14 nodes in the graphical editor and 12 to 26 lines
of code in the textual editor. The Java version with a JML specification always
has fewer lines (between 8% and 29% smaller). The additional specifications,
such as the intermediate conditions of composition statements, and the global
invariant conditions and variables cause more lines of code in the CbC program.

The verification of the eight algorithms worked nearly without problems.
We verified 7 out of 8 examples within CorC. In the cases without problems,
every Hoare triple and the termination of the loops could be proven. We had to
prove fewer Hoare triples than nodes in the editor, as not every node has to be
proven separately. Composition nodes are proven indirectly through the refine-
ment structure. For exponentiation, logarithm, and factorial, we had to imple-
ment recursive helper methods which are used in the specification. Therefore,
the programs impose upper bounds for integers to shorten the proof. The binary
search algorithm could not be verified automatically in KeY using post-hoc ver-
ification or CorC. In each step, when the element is not found, the algorithm
halves the array. KeY could not prove that the searched element is in the new
boundaries because verification problems with arithmetic division are hard to
prove for KeY automatically.

In the case of measured proof nodes, maximum element needs slightly fewer
nodes proved with post-hoc verification than with CbC. In the other cases, the
proofs for the algorithms constructed with CbC are 3% to 854% smaller. The
largest difference was measured for the pattern matching algorithm. The proof
is reduced to a ninth of the nodes.

The verification time is visualized in Fig. 5. The time is measured in millisec-
onds and scaled logarithmically. The proofs for the CbC approach are always
faster showing lower proof complexity. For maximum element, exponentiation,

38 T. Runge et al.

logarithm and factorial, the post-hoc verification time requires between 22%
and 60% more time. The difference increases for Dutch flag and linear search to
137% and 176%, respectively. Algorithm pattern matching has the biggest differ-
ence. Here, the CbC approach needs nearly a minute, but the post-hoc approach
needs over 24 min. To verify our hypothesis, we apply the non-parametric paired
Wilcoxon-Test [30] with a significance level of 5%. We can reject the null hypoth-
esis that CbC verification and post-hoc verification have no significant difference
in verification time (p-value = 0.007813). This rejection of the null hypothesis
in an empirical evidence for our hypothesis that verification is faster with CorC
than with post-hoc verification.

With our tool support, we were able to compare the CbC approach with post-
hoc verification. For our examples, we evaluated that the verification effort is
reduced significantly which indicates a reduced proof complexity. It is worthwhile
to further investigate the CbC approach, also to profit from synergistic effects
in combination with post-hoc verification. As we built CorC on top of KeY, the
post-hoc verification of programs constructed with CorC is feasible.

An advantage of CorC is the overview on all Hoare triples during develop-
ment. In this way, we found some specifications where descriptions in the book
by Kourie and Watson [19] were not precise enough to verify the problem in
KeY. For example, in the pattern matching algorithm, we had to verify two
nested loops. At one point, we had to verify that the invariant of the inner loop
implies the invariant of the outer loop. This was not possible, so we extended the
invariant of the inner loop to be the conjunction of both invariants. In the book
of Kourie and Watson [19], this conjunction of both invariants was not explicitly
used.

6 Related Work

We compare CorC to other programming languages and tools using specification
or refinements. The programming language Eiffel is an object-oriented program-
ming language with a focus on design-by-contract [21,22]. Classes and methods
are annotated with pre-/postconditions and invariants. Programs written in Eif-
fel can be verified using AutoProof [18,28]. The verification tool translates the
program with assertions to a logic formula. An SMT-solver proves the correct-
ness and returns the result. Spec# is a similar tool for specifying C# programs
with pre-/postcondition contracts. These programs can be verified using Boogie.
The code and specification is translated to an intermediate language (BoogiePL)
and verified [5,6]. VCC [8] is a tool to annotate and verify C code. For this pur-
pose, it reuses the Spec# tool chain. VeriFast [16] is another tool to verify C
and Java programs with the help of contracts. The contracts are written in sep-
aration logic (a variant of Hoare logic). As in Eiffel, the focus of Spec#, VCC,
and VeriFast is on post-hoc verification and debugging failed proof attempts.

The Event-B framework [2] is a related CbC approach. Automata-based
systems including a specification are refined to a concrete implementation.

Tool Support for Correctness-by-Construction 39

Atelier B [1] implements the B method by providing an automatic and inter-
active prover. Rodin [3] is another tool implementing the Event-B method. The
main difference to CorC is that CorC works on code and specifications rather
than on automata-based systems.

ArcAngel [25] is a tool supporting Morgan’s refinement calculus. Rules are
applied to an initial specification to produce a correct implementation. The tool
implements a tactic language for refinements to apply a sequence of rules. In
comparison to our tool, ArcAngel does not offer a graphical editor to visualize
the refinement steps. Another difference is that ArcAngel creates a list of proof
obligations which have to be proven separately. CRefine [26] is a related tool for
the Circus refinement calculus, a calculus for state-rich reactive systems. Like
our tool, CRefine provides a GUI for the refinement process. The difference is
that we specify and implement source code, but they use a state-based language.
ArcAngelC [10] is an extension to CRefine which adds refinement tactics.

The tools iContract [20] and OpenJML [9] apply design-by-contract. They
use a special comment tag to insert conditions into Java code. These conditions
are translated to assertions and checked at runtime which is a difference to our
tool because no formal verification is done. DBC-Python is a similar approach
for the Python language which also checks assertions at runtime [27].

To verify the CbC program, we need a theorem prover for Hoare triples,
such as KeY [4]. There are other theorem provers which could be used (e.g.,
Coq [7] or Isabelle/HOL [24]). The Tecton Proof System [17] is a related tool
to structure and interactively prove Hoare logic specification. The proofs are
represented graphically as a set of linked trees. These interactive provers do not
fit our needs because we want to automate the verification process. KeY provides
a symbolic execution debugger (SED) that represents all execution paths with
specifications of the code to the verification [15]. This visualization is similar to
our tree representation of the graphical editor. The SED can be used to debug
a program if an error occur during the post-hoc verification process.

7 Conclusion and Future Work

We implemented CorC to support the Correctness-by-Construction process of
program development. We created a textual and a graphical editor that can be
used interchangeably to enable different styles of CbC-based program develop-
ment. The program and its specification are written in one of the editors and
can be verified using KeY. This reduces the proof complexity with respect to
post-hoc verification. We extended the KeY ecosystem with CorC. CorC opens
the possibility to utilize CbC in areas where post-hoc verification is used as pro-
grammers could benefit from synergistic effects of both approaches. With tool
support, CbC can be studied in experiments to determine the value of using
CbC in industry.

40 T. Runge et al.

For future work, we want to extend the tool support, and we want to evaluate
empirically the benefits and drawbacks of CorC. To extend the expressiveness,
we implement a rule for methods to use method calls in CorC. These methods
have to be verified independently by CorC/KeY. We could investigate whether
the method call rules of KeY can be used for our CbC approach. Another future
work is the inference of conditions to reduce the manual effort. Postconditions
can be generated automatically for known statements by using the strongest
postcondition calculus. Invariants could be generated by incorporating external
tools. As mentioned earlier, other host languages and other theorem provers can
be integrated in our IDE.

The second work package for future work comprise the evaluation with a
user study. We could compare the effort of creating and verifying algorithms
with post-hoc verification and with our tool support. The feedback can be used
to improve the usability of the tool.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

5. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

6. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

8. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

9. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35

Tool Support for Correctness-by-Construction 41

10. Conserva Filho, M., Oliveira, M.V.M.: Implementing tactics of refinement in CRe-
fine. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS,
vol. 7504, pp. 342–351. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33826-7 24

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

12. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

13. Gries, D.: The Science of Programming. Springer, Heidelberg (1987). https://doi.
org/10.1007/978-1-4612-5983-1

14. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

15. Hentschel, M.: Integrating symbolic execution, debugging and verification. Ph.D.
thesis, Technische Universität Darmstadt (2016)

16. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the verifast program verifier. In:
Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

17. Kapur, D., Nie, X., Musser, D.R.: An overview of the Tecton proof system. Theoret.
Comput. Sci. 133(2), 307–339 (1994)

18. Khazeev, M., Rivera, V., Mazzara, M., Johard, L.: Initial steps towards assessing
the usability of a verification tool. In: Ciancarini, P., Litvinov, S., Messina, A.,
Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC, vol. 717, pp. 31–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70578-1 4

19. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to
Programming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27919-5

20. Kramer, R.: iContract - the Java design by contract tool. In: Proceedings, Technol-
ogy of Object-Oriented Languages. TOOLS 26 (Cat. No. 98EX176), pp. 295–307.
IEEE, August 1998

21. Meyer, B.: Eiffel: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

22. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
23. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
24. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
25. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for

refinement. Formal Aspects Comput. 15(1), 28–47 (2003)
26. Oliveira, M.V.M., Gurgel, A.C., Castro, C.G.: CRefine: support for the circus

refinement calculus. In: 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods, pp. 281–290. IEEE, November 2008

27. Plosch, R.: Tool support for design by contract. In: Proceedings, Technology of
Object-Oriented Languages. TOOLS 26 (Cat. No. 98EX176), pp. 282–294. IEEE,
August 1998

28. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

https://doi.org/10.1007/978-3-642-33826-7_24
https://doi.org/10.1007/978-3-642-33826-7_24
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-319-70578-1_4
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53

42 T. Runge et al.

29. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-47166-2_52
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
http://creativecommons.org/licenses/by/4.0/

Automatic Modeling of Opaque Code
for JavaScript Static Analysis

Joonyoung Park1,2(B) , Alexander Jordan1(B) , and Sukyoung Ryu2(B)

1 Oracle Labs Australia, Brisbane, Australia
{joonyoung.p.park,alexander.jordan}@oracle.com

2 KAIST, Daejeon, Republic of Korea
{sryu.cs,gmb55}@kaist.ac.kr

Abstract. Static program analysis often encounters problems in analyz-
ing library code. Most real-world programs use library functions inten-
sively, and library functions are usually written in different languages.
For example, static analysis of JavaScript programs requires analysis of
the standard built-in library implemented in host environments. A com-
mon approach to analyze such opaque code is for analysis developers to
build models that provide the semantics of the code. Models can be built
either manually, which is time consuming and error prone, or automati-
cally, which may limit application to different languages or analyzers. In
this paper, we present a novel mechanism to support automatic modeling
of opaque code, which is applicable to various languages and analyzers.
For a given static analysis, our approach automatically computes anal-
ysis results of opaque code via dynamic testing during static analysis.
By using testing techniques, the mechanism does not guarantee sound
over-approximation of program behaviors in general. However, it is fully
automatic, is scalable in terms of the size of opaque code, and provides
more precise results than conventional over-approximation approaches.
Our evaluation shows that although not all functionalities in opaque code
can (or should) be modeled automatically using our technique, a large
number of JavaScript built-in functions are approximated soundly yet
more precisely than existing manual models.

Keywords: Automatic modeling · Static analysis · Opaque code ·
JavaScript

1 Introduction

Static analysis is widely used to optimize programs and to find bugs in them,
but it often faces difficulties in analyzing library code. Since most real-world pro-
grams use various libraries usually written in different programming languages,
analysis developers should provide analysis results for libraries as well. For exam-
ple, static analysis of JavaScript apps involves analysis of the builtin functions
implemented in host environments like the V8 runtime system written in C++.

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 43–60, 2019.
https://doi.org/10.1007/978-3-030-16722-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_3&domain=pdf
http://orcid.org/0000-0001-9368-7347
http://orcid.org/0000-0003-0763-0307
http://orcid.org/0000-0002-0019-9772
https://doi.org/10.1007/978-3-030-16722-6_3

44 J. Park et al.

A conventional approach to analyze such opaque code is for analysis devel-
opers to create models that provide the analysis results of the opaque code.
Models approximate the behaviors of opaque code, they are often tightly inte-
grated with specific static analyzers to support precise abstract semantics that
are compatible with the analyzers’ internals.

Developers can create models either manually or automatically. Manual mod-
eling is complex, time consuming, and error prone because developers need
to consider all the possible behaviors of the code they model. In the case of
JavaScript, the number of APIs to be modeled is large and ever-growing as
the language evolves. Thus, various approaches have been proposed to model
opaque code automatically. They create models either from specifications of the
code’s behaviors [2,26] or using dynamic information during execution of the
code [8,9,22]. The former approach heavily depends on the quality and format
of available specifications, and the latter approach is limited to the capability of
instrumentation or specific analyzers.

In this paper, we propose a novel mechanism to model the behaviors of
opaque code to be used by static analysis. While existing approaches aim to cre-
ate general models for the opaque code’s behaviors, which can produce analysis
results for all possible inputs, our approach computes specific results of opaque
code during static analysis. This on-demand modeling is specific to the abstract
states of a program being analyzed, and it consists of three steps: sampling,
run, and abstraction. When static analysis encounters opaque code with some
abstract state, our approach generates samples that are a subset of all possible
inputs of the opaque code by concretizing the abstract state. After evaluating the
code using the concretized values, it abstracts the results and uses it during anal-
ysis. Since the sampling generally covers only a small subset of infinitely many
possible inputs to opaque code, our approach does not guarantee the soundness
of the modeling results just like other automatic modeling techniques.

The sampling strategy should select well-distributed samples to explore the
opaque code’s behaviors as much as possible and to avoid redundant ones. Gen-
erating too few samples may miss too much behaviors, while redundant samples
can cause the performance overhead. As a simple yet effective way to control the
number of samples, we propose to use combinatorial testing [11].

We implemented the proposed automatic modeling as an extension of SAFE,
a JavaScript static analyzer [13,17]. For opaque code encountered during anal-
ysis, the extension generates concrete inputs from abstract states, and executes
the code dynamically using the concrete inputs via a JavaScript engine (Node.js
in our implementation). Then, it abstracts the execution results using the oper-
ations provided by SAFE such as lattice-join and our over-approximation, and
resumes the analysis.

Our paper makes the following contributions:

– We present a novel way to handle opaque code during static analysis by
computing a precise on-demand model of the code using (1) input samples
that represent analysis states, (2) dynamic execution, and (3) abstraction.

Automatic Modeling of Opaque Code for JavaScript Static Analysis 45

– We propose a combinatorial sampling strategy to efficiently generate well-
distributed input samples.

– We evaluate our tool against hand-written models for large parts of
JavaScript’s builtin functions in terms of precision, soundness, and
performance.

– Our tool revealed implementation errors in existing hand-written models,
demonstrating that it can be used for automatic testing of static analyzers.

In the remainder of this paper, we present our Sample-Run-Abstract app-
roach to model opaque code for static analysis (Sect. 2) and describe the sampling
strategy (Sect. 3) we use. We then discuss our implementation and experiences
of applying it to JavaScript analysis (Sect. 4), evaluate the implementation using
ECMAScript 5.1 builtin functions as benchmarks (Sect. 5), discuss related work
(Sect. 6), and conclude (Sect. 7).

2 Modeling via Sample-Run-Abstract

Our approach models opaque code by designing a universal model, which is able
to handle arbitrary opaque code. Rather than generating a specific model for
each opaque code statically, it produces a single general model, which produces
results for given states using concrete semantics via dynamic execution. We call
this universal model the SRA model.

In order to create the SRA model for a given static analyzer A and a dynamic
executor E , we assume the following:

– The static analyzer A is based on abstract interpretation [6]. It provides the
abstraction function α : ℘(S) → ̂S and the concretization function γ : ̂S →
℘(S) for a set of concrete states S and a set of abstract states ̂S.

– An abstract domain forms a complete lattice, which has a partial order among
its values from ⊥(bottom) to �(top).

– For a given program point c ∈ C, either A or E can identify the code corre-
sponding to the point.

Then, the SRA model consists of the following three steps:

– Sample : ̂S → ℘(S)
For a given abstract state ŝ ∈ ̂S, Sample chooses a finite set of elements from
γ(ŝ), a possible set of values for ŝ. Because it is, in the general case, impossible
to execute opaque code dynamically with all possible inputs, Sample should
select representative elements efficiently as we discuss in the next section.

– Run : C × S → S
For a given program point and a concrete state at this point, Run generates
executable code corresponding to the point and state, executes the code, and
returns the result state of the execution.

– Abstract : ℘(S) → ̂S
For a given set of concrete states, Abstract produces an abstract state that
encompasses the concrete states. One can apply α to each concrete state, join

46 J. Park et al.

OddEven

⊥
0 1 3

Int

2-2 -1

Fig. 1. An abstract domain for even and odd integers

all the resulting abstract states, and optionally apply an over-approximation
heuristic, comparable to widening Broaden : ̂S → ̂S to mitigate missing
behaviors of the opaque code due to the under-approximate sampling.

We write the SRA model as ⇓SRA: C × ̂S → ̂S and define it as follows:

⇓SRA (c, ŝ) = Abstract({Run(c, s) | s ∈ Sample(ŝ)})
= Broaden(

⊔{α({Run(c, s)}) | s ∈ Sample(ŝ)})

We now describe how ⇓SRA works using an example abstract domain for
even and odd integers as shown in Fig. 1. Let us consider the code snippet
x := abs(x) at a program point c where the library function abs is opaque.
We use maps from variables to their concrete values for concrete states, maps
from variables to their abstract values for abstract states, and the identity func-
tion for Broaden in this example.

Case ŝ1 ≡ [x : n] where n is a constant integer:

⇓SRA (c, ŝ1) =
⊔{α({Run(c, s)}) | s ∈ Sample(ŝ1)}

=
⊔{α({Run(c, s)}) | s ∈ {[x : n]}}

=
⊔{α({Run(c, [x : n])})}

=
⊔{α({[x : |n|]})}

= [x : |n|]

Because the given abstract state ŝ1 contains a single abstract value corresponding
to a single concrete value, Sample produces the set of all possible states, which
makes ⇓SRA provide a sound and also the most precise result.

Case ŝ2 ≡ [x : Even]:

⇓SRA (c, ŝ2) =
⊔{α({Run(c, s)}) | s ∈ Sample(ŝ2)}

=
⊔{α({Run(c, s)}) | s ∈ {[x : −2], [x : 0], [x : 2]}}

=
⊔{α({[x : 0], [x : 2]})}

= [x : Even]

When Sample selects three elements from the set of all possible states repre-
sented by ŝ2, executing abs results in {[x : 0], [x : 2]}. Since joining these two
abstract states produces Even, ⇓SRA models the correct behavior of abs by tak-
ing advantage of the abstract domain.

Automatic Modeling of Opaque Code for JavaScript Static Analysis 47

Case ŝ3 ≡ [x : Int] :

⇓SRA (c, ŝ3)
=

⊔{α({Run(c, s)}) | s ∈ Sample(ŝ3)}
=

⊔{α({Run(c, s)}) | s ∈ Sample(ŝ2) ∪ Sample([x : Odd])}
=

⊔{α({Run(c, s)}) | s ∈ {[x : −2], [x : −1], [x : 0], [x : 1], [x : 2], [x : 3]}}
=

⊔{α({[x : 0], [x : 1], [x : 2], [x : 3]})}
= [x : Int]

When an abstract value has a finite number of elements that are immediately
below it in the abstract domain lattice, our sampling strategy selects samples
from them recursively. Thus, in this example, Sample([x : Int]) becomes the
union of Sample([x : Even]) and Sample([x : Odd]). We explain this recursive
sampling strategy in Sect. 3.

Case ŝ4 ≡ [x : Odd]:

⇓SRA (c, ŝ4) =
⊔{α({Run(c, s)}) | s ∈ Sample(ŝ4)}

=
⊔{α({Run(c, s)}) | s ∈ {[x : −1], [x : 1]}}

=
⊔{α({[x : 1]})}

= [x : 1]

While ⇓SRA produces sound and precise results for the above three cases, it
does not guarantee soundness; it may miss some behaviors of opaque code due
to the limitations of the sampling strategy. Let us assume that Sample([x : Odd])
selects {[x : −1], [x : 1]} this time. Then, the model produces an unsound result
[x : 1], which does not cover odd integers, because the selected values explore
only partial behaviors of abs. When the number of possible states at a call site of
opaque code is infinite, the sampling strategy can lead to unsound results. A well-
designed sampling strategy is crucial for our modeling approach; it affects the
analysis performance and soundness significantly. The approach is precise thanks
to under-approximated results from sampling, but entails a tradeoff between the
analysis performance and soundness depending on the number of samples. In
the next section, we propose a strategy to generate samples for various abstract
domains and to control sample sizes effectively.

3 Combinatorial Sampling Strategy

We propose to use a combinatorial sampling strategy (inspired by combinatorial
testing) by the types of values that an abstract domain represents. The domains
represent either primitive values like number and string, or object values like
tuple, set, and map. Based on combinatorial testing, our strategy is recursively
defined on the hierarchy of abstract domains used to represent program states.
Assume that â,̂b ∈ ̂A are abstract values that we want to concretize using
Sample.

48 J. Park et al.

NUIntUInt

⊥
1 3.14

Number

0 -1
NaN

±Inf

-Inf +Inf

Fig. 2. The SAFE number domain for JavaScript

3.1 Abstract Domains for Primitive Values

To explain our sampling strategy for primitive abstract domains, we use the
DefaultNumber domain from SAFE as an example. DefaultNumber represents
JavaScript numbers with subcategories as shown in Fig. 2. The subcategories are
NaN (not a number), ±Inf (positive/negative infinity), UInt (unsigned integer),
and NUInt (not an unsigned integer, which is a negative integer or a floating
point number).

Case |γ(â)| = constant:

Sample(â) = γ(â)

When â represents a finite number of concrete values, Sample simply takes all the
values. For example, ±Inf has two possible values, +Inf and -Inf. Therefore,
Sample(±Inf) = {+Inf, -Inf}.

Case |γ(â)| = ∞ and |{̂b ∈ ̂A | ∀x̂ � â. ̂b �� x̂}| = constant:

Sample(â) =
⋃

̂b Sample(̂b)

When â represents an infinite number of concrete values, but it covers (that is,
is immediately preceded by) a finite number of abstract values in the lattice,
Sample applies to each predecessor recursively and merges the concrete results
by set union. Note that, “y covers x” holds whenever x � y and there is no
z such that x � z � y. The number of samples increases linearly in this step.
Number falls into this case. It represents infinitely many numbers, but it covers
four abstract values in the lattice: NaN, ±Inf, UInt, and NUInt.

Case |γ(â)| = ∞ and |{̂b ∈ A | ∀x̂ � â. ̂b �� x̂}| = ∞:

Sample(â) = H(γ(â))

When â represents infinitely many concrete values and also covers infinitely many
abstract values, we make the number of samples finite by applying a heuristic
injection H of seed samples. For seed samples, we propose the following guidelines
to manually select them:

– Use a small number of commonly used values. Our conjecture is that common
values will trigger the same behavior in opaque code repeatedly.

– Choose values that have special properties for known operators. For exam-
ple, for each operator, select the minimum, maximum, identity, and inverse
elements, if any.

Automatic Modeling of Opaque Code for JavaScript Static Analysis 49

In the DefaultNumber domain example, UInt and NUInt fall into this case. For
the evaluation of our modeling approach in Sect. 5, we selected seed samples
based on the guidelines as follows:

Sample(UInt) = {0, 1, 3, 10, 9999}
Sample(NUInt) = {−10,−3,−1,−0.5,−0, 0.5, 3.14}

We experimentally show that this simple heuristic works well for automatic
modeling of JavaScript builtin functions.

3.2 Abstract Domains for Object Values

Our sampling strategy for object abstract domains consists of four steps. To
sample from a given abstract object â ∈ ̂A, we assume the following:

– A concrete object a ∈ γ(â) is a map from fields to their values: Map[F, V].
– Abstract domains for fields and values are ̂F and ̂V , respectively.
– The abstract domain ̂A provides two helper functions: mustF : ̂A → ℘(F) and

mayF : ̂A → ̂F . The mustF (â) function returns a set of fields that ∀a ∈ γ(â)
must have, and mayF (â) returns an abstract value ̂f ∈ ̂F representing a set
of fields that ∃a ∈ γ(â) may have.

Then, the sampling strategy follows the next four steps:

1. Sampling fields
In order to construct sampled objects, it first samples a finite number of fields.
JavaScript provides open objects, where fields can be added and removed
dynamically, and fields can be referenced not only by string literals but also
by arbitrary expressions of string values. Thus, this step collects fields from a
finite set of fields that all possible objects should contain (Fmust) and samples
from a possibly infinite set of fields that some possible objects may (but not
must) contain (Fmay):

Fmust = mustF (â)
Fmay = Sample(mayF (â)) \ Fmust

2. Abstracting values for the sampled fields
For the fields in Fmust and Fmay sampled from the given abstract object â, it
constructs two maps from fields to their abstract values, Mmust and Mmay ,
respectively, of type Map[F, ̂V]:

Mmust = λf ∈ Fmust . α({a(f) | a ∈ γ(â)})
Mmay = λf ∈ Fmay . α({a(f) | a ∈ γ(â)})

3. Sampling values
From Mmust and Mmay , it constructs another map Ms : F → ℘(V�), where
V� = V ∪{�} denotes a set of values and the absence of a field �, by applying
Sample to the value of each field in Fmust and Fmay . The value of each field
in Fmay contains � to denote that the field may not exist in Ms:

50 J. Park et al.

Ms = λf ∈ Fmust ∪ Fmay .

{

Sample(Mmust(f)) if f ∈ Fmust

Sample(Mmay(f)) ∪ {�} if f ∈ Fmay

4. Choosing samples by combinatorial testing
Finally, since a number of all combinations from Ms,

∏

f∈Domain(Ms) |Ms(f)|,
grows exponentially, the last step limits the number selections. We solve this
selection problem by reducing it to a traditional testing problem with combi-
natorial testing [3]. Combinatorial testing is a well-studied problem and effi-
cient algorithms for generating test cases exist. It addresses a similar problem
to ours, increasing dynamic coverage of code under test, but in the context
of finding bugs:

“The most common bugs in a program are generally triggered by
either a single input parameter or an interaction between pairs of
parameters.”

Thus, we apply each-used or pair-wise testing (1 or 2-wise) as the last step.

Now, we demonstrate each step using an abstract array object â, whose length
is greater than or equal to 2 and the elements of which are true or false. We
write �b to denote an abstract value such that γ(�b) = {true, false}.

– Assumptions
• A concrete array object a is a map from indices to boolean values:

Map[UInt, Boolean].
• For given abstract object â, mustF (â) = {0, 1} and mayF (â) = UInt.
• From Sect. 3.1, we sample {0, 1, 3, 10, 9999} for UInt.
• k-wise(M) generates a set of minimum number of test cases satisfying

all the requirements of k-wise testing for a map M . It constructs a test
case by choosing one element from a set on each field.

– Step 1: Sampling fields

Fmust = {0, 1}
Fmay = Sample(UInt) \ {0, 1} = {3, 10, 9999}

– Step 2: Abstracting values for the sampled fields

Mmust = [0 → �b, 1 → �b]
Mmay = [3 → �b, 10 → �b, 9999 → �b]

– Step 3: Sampling values

Ms = [0 → {true, false}, 1 → {true, false},
3 → {true, false, �}, 10 → {true, false, �},

9999 → {true, false, �}]

– Step 4: Choosing samples by combinatorial testing
The number of all combinations

∏

f∈Domain(Ms) |Ms(f)| is 108 even after sam-
pling fields and values in an under-approximate manner. We can avoid such

Automatic Modeling of Opaque Code for JavaScript Static Analysis 51

explosion of samples and manage well-distributed samples by using combi-
natorial testing. With each-used testing, three combinations can cover every
element in a set on each field at least once:

1-wise(Ms) =
{ [0 → true, 1 → false, 3 → true, 10 → �, 9999 → �],

[0 → false, 1 → true, 3 → false, 10 → false, 9999 → true],
[0 → false, 1 → true, 3 → �, 10 → true, 9999 → false] }

With pair-wise testing, 12 samples can cover every pair of elements from
different sets at least once.

4 Implementation

We implemented our automatic modeling approach for JavaScript because of its
large number of builtin APIs and complex libraries, which are all opaque code
for static analysis. They include the functions in the ECMAScript language stan-
dard [1] and web standards such as DOM and browser APIs. We implemented
the modeling as an extension of SAFE [13,17], a JavaScript static analyzer.
When the analyzer encounters calls of opaque code during analysis, it uses the
SRA model of the code.

Sample. We applied the combinatorial sampling strategy for the SAFE abstract
domains. Of the abstract domains for primitive JavaScript values, UInt, NUInt,
and OtherStr represent an infinite number of concrete values (c.f. third case in
Sect. 3.1) and thus require the use of heuristics. We describe the details of our
heuristics and sample sets in Sect. 5.1.

We implemented the Sample step to use “each-used sample generation” for
object abstract domains by default. In order to generate more samples, we added
three options to apply pair-wise generation:

– ThisPair generates pairs between the values of this and heap,
– HeapPair among objects in the heap, and
– ArgPair among property values in an arguments object.

As an exception, we use the all-combination strategy for the DefaultDataProp
domain representing a JavaScript property, consisting of a value and three
booleans: writable, enumerable, and configurable. Note that field is used
for language-independent objects and property is for JavaScript objects. The
number of their combinations is limited to 23. We consider a linear increase of
samples as acceptable. The Sample step returns a finite set of concrete states,
and each element in the set, which in turn contains concrete values only, is passed
to the Run step.

52 J. Park et al.

Run. For each concrete input state, the Run step obtains a result state by
executing the corresponding opaque code in four steps:

1. Generation of executable code
First, Run populates object values from the concrete state. We currently omit
the JavaScript scope-chain information, because the library functions that we
analyze as opaque code are independent from the scope of user code. It derives
executable code to invoke the opaque code and adds argument values from
the static analysis context.

2. Execution of the code using a JavaScript engine
Run executes the generated code using the JavaScript eval function on
Node.js. Populating objects and their properties from sample values before
invoking the opaque function may throws an exception. In such cases, Run
executes the code once again with a different sample value. If the second sam-
ple value also throws an exception during population of the objects and their
properties, it dismisses the code.

3. Serialization of the result state
After execution, the result state contains the objects from the input state, the
return value of the opaque code, and all the values that it might refer to. Also,
any mutation of objects of the input state as well as newly created objects
are captured in this way. We use a snapshot module of SAFE to serialize the
result state into a JSON-like format.

4. Transfer of the state to the analyzer
The serialized snapshot is then passed to SAFE, where it is parsed, loaded,
and combined with other results as a set of concrete result states.

Abstract. To abstract result states, we mostly used existing operations in SAFE,
like lattice-join, and also implemented an over-approximation heuristic function,
Broaden, comparable to widening. We use Broaden for property name sets in
JavaScript objects, because mayF of a JavaScript abstract object can produce
an abstract value that denotes an infinite set of concrete strings, and because
⇓SRA cannot produce such an abstract value from simple sampling and join.
Thus, we regard all possibly absent properties as sampled properties. Then, we
implemented the Broaden function merging all possibly absent properties into
one abstract property representing any property, when the number of absent
properties is greater than a certain threshold proportional to a number of sam-
pled properties.

5 Evaluation

We evaluated the ⇓SRA model in two regards, (1) the feasibility of replacing
existing manual models (RQ1 and RQ2) and (2) the effects of our heuristic H
on the analysis soundness (RQ3). The research questions are as follow:

– RQ1: Analysis performance of ⇓SRA

Can ⇓SRA replace existing manual models for program analysis with decent
performance in terms of soundness, precision, and runtime overhead?

Automatic Modeling of Opaque Code for JavaScript Static Analysis 53

– RQ2: Applicability of ⇓SRA

Is ⇓SRA broadly applicable to various builtin functions of JavaScript?
– RQ3: Dependence on heuristic H

How much is the performance of ⇓SRA affected by the heuristics?

After describing the experimental setup for evaluation, we present our answers
to the research questions with quantitative results, and discuss the limitations
of our evaluation.

5.1 Experimental Setup

In order to evaluate the ⇓SRA model, we compared the analysis performance and
applicability of ⇓SRA with those of the existing manual models in SAFE. We
used two kinds of subjects: browser benchmark programs and builtin functions.
From 34 browser benchmarks included in the test suite of SAFE, a subset of
V8 Octane1, we collected 13 of them that invoke opaque code. Since browser
benchmark programs use a small number of opaque functions, we also generated
test cases for 134 functions in the ECMAScript 5.1 specification.

Each test case contains abstract values that represent two or more possible
values. Because SAFE uses a finite number of abstract domains for primitive
values, we used all of them in the test cases. We also generated 10 abstract
objects. Five of them are manually created to represent arbitrary objects:

OBJ1 has an arbitrary property whose value is an arbitrary primitive.
OBJ2 is a property descriptor whose "value" is an arbitrary primitive, and
the others are arbitrary booleans.
OBJ3 has an arbitrary property whose value is OBJ2.
OBJ4 is an empty array whose "length" is arbitrary.
OBJ5 is an arbitrary-length array with an arbitrary property

The other five objects were collected from SunSpider benchmark programs
by using Jalangi2 [20] to represent frequently used abstract objects. We counted
the number of function calls with object arguments and joined the most used
object arguments in each program. Out of 10 programs that have function
calls with object arguments, we discarded four programs that use the same
objects for every function call, and one program that uses an argument with
2500 properties, which makes manual inspection impossible. We joined the first
10 concrete objects for each argument of the following benchmark to obtain
abstract objects: 3d-cube.js, 3d-raytrace.js, access-binary-trees.js, regexp-dna.js,
and string-fasta.js. For 134 test functions, when a test function consumes two
or more arguments, we restricted each argument to have only an expected type
to manage the number of test cases. Also, we used one or minimum number of
arguments for functions with variable number of arguments.

In summary, we used 13 programs for RQ1, and 134 functions with 1565 test
cases for RQ2 and RQ3. All experiments were on a 2.9 GHz quad-core Intel Core
i7 with 16 GB memory machine.
1 https://github.com/chromium/octane.

https://github.com/chromium/octane

54 J. Park et al.

5.2 Answers to Research Questions

Answer to RQ1. We compared the precision, soundness, and analysis time of
the SAFE manual models and the ⇓SRA model. Table 1 shows the precision and
soundness for each opaque function call, and Table 2 presents the analysis time
and number of samples for each program.

As for the precision, Table 1 shows that ⇓SRA produced more precise results
than manual models for 9 (19.6%) cases. We manually checked whether each
result of a model is sound or not by using the partial order function (�) imple-
mented in SAFE. We found that all the results of the SAFE manual models for
the benchmarks were sound. The ⇓SRA model produced an unsound result for
only one function: Math.random. While it returns a floating-point value in the
range [0, 1), ⇓SRA modeled it as NUInt, instead of the expected Number, because
it missed 0.

As shown in Table 2, on average ⇓SRA took 1.35 times more analysis time
than the SAFE models. The table also shows the number of context-sensitive
opaque function calls during analysis (#Call), the maximum number of samples
(#Max), and the total number of samples (#Total). To understand the runtime
overhead better, we measured the proportion of elapsed time for each step. On
average, Sample took 59%, Run 7%, Abstract 17%, and the rest 17%. The exper-
imental results show that ⇓SRA provides high precision while slightly sacrificing
soundness with modest runtime overhead.

Answer to RQ2. Because the benchmark programs use only 15 opaque functions
as shown in Table 1, we generated abstracted arguments for 134 functions out
of 169 functions in the ECMAScript 5.1 builtin library, for which SAFE has
manual models. We semi-automatically checked the soundness and precision of
the ⇓SRA model by comparing the analysis results with their expected results.
Table 3 shows the results in terms of test cases (left half) and functions (right
half). The Equal column shows the number of test cases or functions, for which
both models provide equal results that are sound. The SRA Pre. column shows
the number of such cases where the ⇓SRA model provides sound and more precise
results than the manual model. The Man. Uns. column presents the number
of such cases where ⇓SRA provides sound results but the manual one provides
unsound results, and SRA Uns. shows the opposite case of Man. Uns. Finally,
Not Comp. shows the number of cases where the results of ⇓SRA and the
manual model are incomparable.

The ⇓SRA model produced sound results for 99.4% of test cases and 94.0%
of functions. Moreover, ⇓SRA produced more precise results than the manual
models for 33.7% of test cases and 50.0% of functions. Although ⇓SRA pro-
duced unsound results for 0.6% of test cases and 6.0% of functions, we found
soundness bugs in the manual models using 1.3% of test cases and 7.5% of func-
tions. Our experiments showed that the automatic ⇓SRA model produced less
unsound results than the manual models. We reported the manual models pro-
ducing unsound results to SAFE developers with the concrete examples that
were generated in the Run step, which revealed the bugs.

Automatic Modeling of Opaque Code for JavaScript Static Analysis 55

Table 1. Precision and soundness by functions in the benchmarks

Function Precision and Soundness

Equal Precise More Precise Unsound

Array, Array.prototype.join, Array.prototype.push 15 5 0

Date, Date.prototype.getTime 0 4 0

Error 5 0 0

Math.cos, Math.max, Math.pow, Math.sin, Math.sqrt 11 0 0

Math.random 0 0 1

Number.prototype.toString 1 0 0

String, String.prototype.substring 4 0 0

Total 36 9 1

Proportion 78.3% 19.6% 2.2%

Table 2. Analysis time overhead by programs in the benchmarks

Program Manual ⇓SRA Increased

Time(ms) #Call Time(ms) #Call #Max #Total Time Ratio

3d-morph.js 1,423 50 2,641 50 16 408 1.86

access-binary-trees.js 1,926,132 10 1,784,866 10 16 95 0.93

access-fannkuch.js 1,615 31 2,627 31 15 413 1.63

access-nbody.js 10,125 132 25,564 324 16 4,274 2.52

access-nsieve.js 1,019 6 1,126 6 16 54 1.10

bitops-nsieve-bits.js 282 1 343 1 2 2 1.22

math-cordic.js 574 2 662 2 2 4 1.15

math-partial-sums.js 1,613 99 4,703 99 16 916 2.92

math-spectral-norm.js 10,702 6 10,986 6 16 96 1.03

string-fasta.js 22,170 78 6,147 30 226 2,555 0.28

navier-stokes.js 4,662 20 5,104 20 2 40 1.09

richards.js 86,013 85 88,902 85 54 4,018 1.03

splay.js 259,073 423 217,863 422 56 11,492 0.84

Total 2,325,404 943 2,151,533 1,086 453 24,367 1.35

Answer to RQ3. The sampling strategy plays an important role in the per-
formance of ⇓SRA especially for soundness. Our sampling strategy depends on
two factors: (1) manually sampled sets via the heuristic H and (2) each-used or
pair-wise selection for object samples. We used manually sampled sets for three
abstract values: UInt, NUInt, and OtherStr. To sample concrete values from
them, we used three methods: Base simply follows the guidelines described in
Sect. 3.1, Random generates samples randomly, and Final denotes the heuristics
determined by our trials and errors to reach the highest ratio of sound results.
For object samples, we used three pair-wise options: HeapPair, ThisPair, and Arg-
Pair. For various sampling configurations, Table 4 summarizes the ratio of sound

56 J. Park et al.

Table 3. Precision and soundness for the builtin functions

Object

#Test Case #Function

Equal
SRA Man. Man. SRA Not

Total Equal
SRA Man. Man. SRA Not Total

Pre. Uns. Pre. Uns. Comp. Pre. Uns. Pre. Uns. Comp.

Array 59 144 1 0 0 0 174 8 7 1 0 0 0 16

Boolean 37 2 3 0 0 0 42 1 0 3 0 0 0 4

Date 74 241 0 2 1 1 319 8 35 0 2 1 1 47

Global 7 1 0 0 0 0 8 1 1 0 0 0 0 2

Math 106 5 0 0 6 0 117 11 2 0 0 5 1 18

Number 41 71 0 3 0 1 116 1 6 0 0 0 0 8

Object 370 24 7 1 3 5 410 12 2 5 0 2 0 21

String 300 70 9 0 0 0 379 3 14 1 0 0 0 18

Total 994 528 20 6 10 7 1565 45 67 10 2 8 2 134

Proportion 63.5% 33.7% 1.3% 0.4% 0.6% 0.4% 100% 33.6% 50.0% 7.5% 1.5% 6.0% 1.5% 100%

Table 4. Soundness and sampling cost for the builtin functions

Sampling Configuration Builtin Function

Set Heuristic Pair Option
Sound Result Ratio #Ave. #Max

UInt NUInt Other HeapPair ThisPair ArgPair

Base Base Base F F F 85.0% 17.4 41

Random Random Random F F F 84.9% 17.4 41

Final Final Final

F F F 92.1% 32.6 98

F F T 93.5% 38.1 226

F T F 95.0% 181.9 4312

F T T 95.5% 276.8 11752

T F F 96.2% 323.0 7220

T F T 97.4% 397.5 16498

T T F 99.2% 513.7 11988

T T T 99.4% 677.6 16498

results, the average and maximum numbers of samples for the test cases used in
RQ2.

The table shows that Base and Random produced sound results for 85.0%
and 84.9% (the worst case among 10 repetitions) of the test cases, respectively.
Even without any sophisticated heuristics or pair-wise options, ⇓SRA achieved
a decent amount of sound results. Using more samples collected by trials and
errors with Final and all three pair-wise options, ⇓SRA generated sound results
for 99.4% of the test cases by observing more behaviors of opaque code.

5.3 Limitations

A fundamental limitation of our approach is that the ⇓SRA model may produce
unsound results when the behavior of opaque code depends on values that ⇓SRA

does not support via sampling. For example, if a sampling strategy calls the Date
function without enough time intervals, it may not be able to sample different

Automatic Modeling of Opaque Code for JavaScript Static Analysis 57

results. Similarly, if a sampling strategy does not use 4-wise combinations for
property descriptor objects that have four components, it cannot produce all the
possible combinations. However, at the same time, simply applying more complex
strategies like 4-wise combinations may lead to an explosion of samples, which
is not scalable.

Our experimental evaluation is inherently limited to a specific use case, which
poses a threat to validity. While our approach itself is not dependent on a particu-
lar programming language or static analysis, the implementation of our approach
depends on the abstract domains of SAFE. Although the experiments used well-
known benchmark programs as analysis subjects, they may not be representative
of all common uses of opaque functions in JavaScript applications.

6 Related Work

When a textual specification or documentation is available for opaque code,
one can generate semantic models by mining them. Zhai et al. [26] showed that
natural language processing can successfully generate models for Java library
functions and used them in the context of taint analysis for Android applications.
Researchers also created models automatically from types written in WebIDL or
TypeScript declarations to detect Web API misuses [2,16].

Given an executable (e.g. binary) version of opaque code, researchers also
synthesized code by sampling the inputs and outputs of the code [7,10,12,19].
Heule et al. [8] collected partial execution traces, which capture the effects of
opaque code on user objects, followed by code synthesis to generate models from
these traces. This approach works in the absence of any specification and has
been demonstrated on array-manipulating builtins.

While all of these techniques are a-priori attempts to generate general-
purpose models of opaque code, to be usable for other analyses, researchers
also proposed to construct models during analysis. Madsen et al.’s approach [14]
infers models of opaque functions by combining pointer analysis and use anal-
ysis, which collects expected properties and their types from given application
code. Hirzel et al. [9] proposed an online pointer analysis for Java, which handles
native code and reflection via dynamic execution that ours also utilizes. While
both approaches use only a finite set of pointers as their abstract values, ignoring
primitive values, our technique generalizes such online approaches to be usable
for all kinds of values in a given language.

Opaque code does matter in other program analyses as well such as model
checking and symbolic execution. Shafiei and Breugel [22] proposed jpf-nhandler,
an extension of Java PathFinder (JPF), which transfers execution between JPF
and the host JVM by on-the-fly code generation. It does not need concretization
and abstraction since a JPF object represents a concrete value. In the context
of symbolic execution, concolic testing [21] and other hybrid techniques that
combine path solving with random testing [18] have been used to overcome the
problems posed by opaque code, albeit sacrificing completeness [4].

Even when source code of external libraries is available, substituting exter-
nal code with models rather than analyzing themselves is useful to reduce time

58 J. Park et al.

and memory that an analysis takes. Palepu et al. [15] generated summaries by
abstracting concrete data dependencies of library functions observed on a train-
ing execution to avoid heavy execution of instrumented code. In model check-
ing, Tkachuk et al. [24,25] generated over-approximated summaries of environ-
ments by points-to and side-effect analyses and presented a static analysis tool
OCSEGen [23]. Another tool Modgen [5] applies a program slicing technique to
reduce complexities of library classes.

7 Conclusion

Creating semantic models for static analysis by hand is complex, time-consuming
and error-prone. We present a Sample-Run-Abstract approach (⇓SRA) as a
promising way to perform static analysis in the presence of opaque code using
automated on-demand modeling. We show how ⇓SRA can be applied to the
abstract domains of an existing JavaScript static analyzer, SAFE. For bench-
mark programs and 134 builtin functions with 1565 abstracted inputs, a tuned
⇓SRA produced more sound results than the manual models and concrete exam-
ples revealing bugs in the manual models. Although not all opaque code may be
suitable for modeling with ⇓SRA, it reduces the amount of hand-written models
a static analyzer should provide. Future work on ⇓SRA could focus on orthogonal
testing techniques that can be used for sampling complex objects, and practical
optimizations, such as caching of computed model results.

Acknowledgment. This work has received funding from National Research Founda-
tion of Korea (NRF) (Grants NRF-2017R1A2B3012020 and 2017M3C4A7068177).

References

1. ECMAScript Language Specification. Edition 5.1. http://www.ecma-international.
org/publications/standards/Ecma-262.htm

2. Bae, S., Cho, H., Lim, I., Ryu, S.: SAFEWAPI: web API misuse detector for web
applications. In: Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pp. 507–517. ACM (2014)

3. Black, R.: Pragmatic Software Testing: Becoming an Effective and Efficient Test
Professional. Wiley, Hoboken (2007)

4. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

5. Ceccarello, M., Tkachuk, O.: Automated generation of model classes for Java
PathFinder. ACM SIGSOFT Softw. Eng. Notes 39(1), 1–5 (2014)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

7. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Commun. ACM 55(8), 97–105 (2012)

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Automatic Modeling of Opaque Code for JavaScript Static Analysis 59

8. Heule, S., Sridharan, M., Chandra, S.: Mimic: computing models for opaque code.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, pp. 710–720. ACM (2015)

9. Hirzel, M., Dincklage, D.V., Diwan, A., Hind, M.: Fast online pointer analysis.
ACM Trans. Program. Lang. Syst. (TOPLAS) 29(2), 11 (2007)

10. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, vol. 1, pp. 215–224. ACM (2010)

11. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

12. Lau, T., Domingos, P., Weld, D.S.: Learning programs from traces using version
space algebra. In: Proceedings of the 2nd International Conference on Knowledge
Capture, pp. 36–43. ACM (2003)

13. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: FOOL 2012: 19th
International Workshop on Foundations of Object-Oriented Languages, p. 96. Cite-
seer (2012)

14. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript appli-
cations in the presence of frameworks and libraries. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pp. 499–509. ACM (2013)

15. Palepu, V.K., Xu, G., Jones, J.A.: Improving efficiency of dynamic analysis with
dynamic dependence summaries. In: Proceedings of the 28th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 59–69. IEEE Press
(2013)

16. Park, J.: JavaScript API misuse detection by using TypeScript. In: Proceedings of
the Companion Publication of the 13th International Conference on Modularity,
pp. 11–12. ACM (2014)

17. Park, J., Ryou, Y., Park, J., Ryu, S.: Analysis of JavaScript web applications
using SAFE 2.0. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 59–62. IEEE (2017)

18. Păsăreanu, C.S., Rungta, N., Visser, W.: Symbolic execution with mixed concrete-
symbolic solving. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, pp. 34–44. ACM (2011)

19. Qi, D., Sumner, W.N., Qin, F., Zheng, M., Zhang, X., Roychoudhury, A.: Modeling
software execution environment. In: 2012 19th Working Conference on Reverse
Engineering (WCRE), pp. 415–424. IEEE (2012)

20. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: a selective record-replay and
dynamic analysis framework for JavaScript. In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pp. 488–498. ACM (2013)

21. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 263–272. ACM (2005)

22. Shafiei, N., Breugel, F.V.: Automatic handling of native methods in Java
PathFinder. In: Proceedings of the 2014 International SPIN Symposium on Model
Checking of Software, pp. 97–100. ACM (2014)

23. Tkachuk, O.: OCSEGen: open components and systems environment generator.
In: Proceedings of the 2nd ACM SIGPLAN International Workshop on State Of
the Art in Java Program Analysis, pp. 9–12. ACM (2013)

24. Tkachuk, O., Dwyer, M.B.: Adapting side effects analysis for modular program
model checking, vol. 28. ACM (2003)

60 J. Park et al.

25. Tkachuk, O., Dwyer, M.B., Pasareanu, C.S.: Automated environment generation
for software model checking. In: Proceedings of the 18th IEEE International Con-
ference on Automated Software Engineering, pp. 116–127. IEEE (2003)

26. Zhai, J., Huang, J., Ma, S., Zhang, X., Tan, L., Zhao, J., Qin, F.: Automatic
model generation from documentation for Java API functions. In: 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), pp. 380–391. IEEE
(2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

SMT-Based Bounded Schedulability
Analysis of the Clock Constraint

Specification Language

Min Zhang1, Fu Song2(B), Frédéric Mallet3, and Xiaohong Chen1

1 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
2 ShanghaiTech University, Shanghai, China

songfu@shanghaitech.edu.cn
3 Université Cote d’Azur, CNRS, Inria, I3S, Nice, France

Abstract. The Clock Constraint Specification Language (CCSL) is a
formalism for specifying logical-time constraints on events for the design
of real-time embedded systems. A central verification problem of CCSL
is to check whether events are schedulable under logical constraints.
Although many efforts have been made addressing this problem, the
problem is still open. In this paper, we show that the bounded schedul-
ing problem is NP-complete and then propose an efficient SMT-based
decision procedure which is sound and complete. Based on this deci-
sion procedure, we present a sound algorithm for the general scheduling
problem. We implement our algorithm in a prototype tool and illustrate
its utility in schedulability analysis in designing real-world systems and
automatic proving of algebraic properties of CCSL constraints. Experi-
mental results demonstrate its effectiveness and efficiency.

Keywords: SMT · CCSL · Schedulability · Logical time ·
Real-time system

1 Introduction

Model-based design has been widely used, particularly in the design of safety-
critical real-time embedded systems. It has achieved industrial successes through
languages such as SCADE [12], AADL [15] and UML MARTE [26]. For example,
UML MARTE provides syntactic annotations to implement, when the context
allows, classical real-time scheduling algorithms such as EDF (Earliest Deadline
First). It also provides a domain-specific language–Clock Constraint Specifica-
tion Language (CCSL) [3], to express the real-time behaviors of a system under
development as logical constraints on system events, but independently of any
physical time and classical real-time scheduling algorithms. CCSL has been used
on several industrial scenarios such as vehicle systems [16] and cyber-physical
systems [10,22].

This work is supported by NSFC grants 61872146, 61532019 and 61761136011.

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 61–78, 2019.
https://doi.org/10.1007/978-3-030-16722-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_4

62 M. Zhang et al.

Model-based design usually starts with coarse-grained logical models that are
progressively refined into more concrete ones until the final code deployment. It
is well-known that the earlier one can detect and fix bugs in the refinement pro-
cess, the better [7]. Therefore, it is critical to provide efficient methods and tools
to check safety, liveness and schedulability on the logical models and not only
on the definite deployed system. This has motivated a large body of works on
verifying whether events are schedulable under a set of constraints expressed in
CCSL [11,21,28,33,35,36,38], though its decidability is still open. These works
first transform CCSL constraints into other formal representations such as tran-
sition systems [21], Promela [35], Büchi automata [36], timed automata [33],
rewriting logics [38], instant relations [28], or timed-interval logics [11], and then
apply existing tools. However, their approaches usually suffer from the state
explosion problem. Moreover, most of these works only deal with the so-called
safe subset of CCSL and the other ones only provide semi-algorithms. In our
earlier work [39], we proposed an SMT-based verification approach to CCSL and
demonstrated several applications of the approach to finding schedules, verifying
temporal properties, proving constraint entailment, and analyzing the validity
of system traces. Based on the approach, we implemented an efficient tool for
verifying LTL properties of CCSL [40].

In this work we are focused on the scheduling problem of CCSL, a funda-
mental problem to which the aforementioned verification problems of CCSL can
be reduced. We first prove that the bounded scheduling problem of CCSL with
fixed bounds is NP-complete. To our knowledge, this is the first result regard-
ing the complexity of the scheduling problem with CCSL. Then, we propose a
decision procedure for the bounded scheduling problem with a given bound. The
decision procedure is based on the transformation of CCSL into SMT formulas
[39]. Our decision procedure is sound, complete, and efficient in practice. Based
on this decision procedure, we turn to the general (i.e. unbounded) scheduling
problem and present a binary-search based algorithm. Our algorithm is sound,
i.e., if it proves either schedulable or unschedulable, then the result is conclusive.
We implemented our algorithms in a prototype tool. The tool was used to ana-
lyze a real-world interlocking system in a rail transit system. Using the proposed
approach, we also prove some algebraic properties of CCSL. The experimental
results demonstrate the effectiveness and efficiency of the SMT-based approach.

The rest of this paper is organised as follows: Section 2 introduces CCSL.
Section 3 defines the (bounded) scheduling problem of CCSL and shows that the
bounded case is NP-complete. Section 4 presents an SMT-based decision proce-
dure for the bounded scheduling problem and a sound algorithm for the gen-
eral scheduling problem. Section 5 shows a case study and experimental results.
Section 6 discusses related work, and Section 7 concludes the paper.

2 The Clock Constraint Specification Language

2.1 Logical Clock, History and Schedule

In CCSL, clocks are used to model occurrences of events, where a clock ticks
when the corresponding event occurs. For instance, a clock may represent an

SMT-Based Bounded Schedulability Analysis of the CCSL 63

event that is dispatch of a task, communications between tasks or acquisition of
a shared resource by a task. Constraints over clocks are used to specify causal
and temporal relations between system events. No global physical time is pre-
sumed for the clocks and their constraints. This feature allows CCSL to define
a polychronous specification of a system at a logical level.

Definition 1 (Logical clock). A (logical) clock c is an infinite sequence of
ticks (ci)i∈N+ with each ci being tick or idle, where N

+ denotes the set of all the
non-zero natural numbers.

The value of ci denotes whether an event associated with c occurs or not at
step i. If ci is tick, then the event occurs, otherwise not. In particular, we denote
by 1 a global reference logical clock that always ticks at each step.

Definition 2 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ : N

+ → 2C such that ∀i ∈ N
+, δ(i) = {c ∈ C | ci = tick} and δ(i) �= ∅.

Intuitively, a schedule δ defines a partial order between the ticks of the clocks.
δ(i) is a subset of C such that c ∈ δ(i) iff c ticks at step i. The condition
δ(i) �= ∅ expresses that step i cannot be empty. This forbids stuttering steps in
schedules. As one can add or remove finite number of empty steps without effect
on schedulability, we exclude them from schedules for succinctness.

A clock can memorize the number of ticks that it has made. We use history
to represent the memorization.

Definition 3 (History). Given a schedule δ for a set C of clocks, a history of
δ is a function χδ : C × N

+ → N such that for each c ∈ C and i ∈ N
+:

χδ(c, i) =

⎧
⎨

⎩

0, if i = 1;
χδ(c, i − 1), if i > 1 ∧ c �∈ δ(i − 1);
χδ(c, i − 1) + 1, if i > 1 ∧ c ∈ δ(i − 1).

χδ(c, i) represents the number of the ticks that the clock c has made immediately
before step i. (Note that the tick of c at step i is excluded in χδ(c, i).) For
simplicity, we may write χ for χδ if it is clear from the context.

2.2 Syntax and Semantics of CCSL

CCSL consists of 11 kinds of constraints, 4 of them are binary relations for
specifying the precedence, causality, subclocking, and exclusion relations between
clocks, and the others are used to define clocks from existing ones. Clocks defined
by constraints may correspond to system events or are just introduced as auxil-
iary clocks without corresponding to any events.

64 M. Zhang et al.

Table 1. Semantics of CCSL with respect to schedules

φ δ |= φ

Precedence c1 [b]≺ c2 ∀n ∈ N
+.χ(c2, n) − χ(c1, n) = b ⇒ c2 /∈ δ(n)

Causality c1 � c2 ∀n ∈ N
+.χ(c1, n) ≥ χ(c2, n)

Subclock c1 ⊆ c2 ∀n ∈ N
+.c1 ∈ δ(n) ⇒ c2 ∈ δ(n)

Exclusion c1 # c2 ∀n ∈ N
+.c1 �∈ δ(n) ∨ c2 �∈ δ(n)

Union c1 � c2 + c3 ∀n ∈ N
+.c1 ∈ δ(n) ⇔ c2 ∈ δ(n) ∨ c3 ∈ δ(n)

Intersection c1 � c2 ∗ c3 ∀n ∈ N
+.c1 ∈ δ(n) ⇔ c2 ∈ δ(n) ∧ c3 ∈ δ(n)

Infimum c1 � c2 ∧ c3 ∀n ∈ N
+.χ(c1, n) = max(χ(c2, n), χ(c3, n))

Supremum c1 � c2 ∨ c3 ∀n ∈ N
+.χ(c1, n) = min(χ(c2, n), χ(c3, n))

Periodicity c1 � c2 ∝ p ∀n ∈ N
+.c1 ∈ δ(n) ⇔ (c2 ∈ δ(n) ∧ ∃m ∈ N

+.χ(c2, n) =
m × p − 1)

Filtering c1 � c2 � w ∀n ∈ N
+.c1 ∈ δ(n) ⇔ (c2 ∈ δ(n) ∧ w[n])

DelayFor c1 � c2 $ d on c3 ∀n ∈ N
+.c1 ∈ δ(n) ⇔ (c3 ∈ δ(n) ∧ ∃m ∈ N

+.(c2 ∈
δ(m) ∧ χ(c3, n) − χ(c3, m) = d))

Definition 4 (Syntax). A CCSL constraint φ is defined by the following form:

Precedence: c1 [b]≺ c2 | Causality: c1 � c2

Subclock: c1 ⊆ c2 | Exclusion: c1 # c2

Union: c1 � c2 + c3 | Intersection: c1 � c2 ∗ c3

Infimum: c1 � c2 ∧ c3 | Supremum: c1 � c2 ∨ c3

Periodicity: c1 � c2 ∝ p | Filtering: c1 � c2 � w

DelayFor: c1 � c2 $ d on c3

where b ≥ 0, d ≥ 0 and p > 0 are natural numbers, c1, c2, c3 are logical clocks and
w is a (possibly infinite) word over {0, 1} expressed as a (ω-)regular expression.

For simplifying presentation, we denote by c1 ≺ c2 the constraint c1 [0]≺ c2,
and c1 � c2 $ d the constraint c1 � c2 $ d on c3 such that c2 = c3.

The semantics of CCSL constraints is defined over schedules. Given a CCSL
constraint φ and a schedule δ, the satisfiability relation δ |= φ (i.e., δ satisfies
constraint φ) is defined in Table 1.

The precedence constraint c1 ≺ c2 (i.e., c1 [0]≺ c2) expresses that the clock
c1 precedes the clock c2. Suppose there is an unbounded buffer with two opera-
tions fetch and store, which respectively fetch data from and store data into the
buffer. Fetch is only allowed when the buffer is nonempty. If the buffer is initially
empty, store operation must strictly precede fetch operation. This behavior can
be expressed by the constraint: store ≺ fetch. Likewise, the precedence con-
straint can be used to represent reentrant tasks by replacing store with start
and fetch with finish.

The general precedence constraint c1 [b]≺ c2 that can specify the differences
b between the number of occurrences of two clocks before the precedence takes
effect. Hence, it is able to express more complicated relations. For instance, if
the buffer initially is nonempty, fetch operations can be performed prior to any

SMT-Based Bounded Schedulability Analysis of the CCSL 65

store operation. Figure 1 shows such a scenario where 4 elements are initially
presented in the buffer. This behavior can be represented as: store [4]≺ fetch.

store
store fetch

buffer

Fig. 1. Example for store [4]≺ fetch

The causality, subclock and exclu-
sion constraints are straightforward.
The causality constraint c1 � c2

specifies that the occurrence of c2

must be caused by the occurrence of
c1, namely at any moment c1 must
have ticked at least as many times as
c2 has. The subclock constraint c1 ⊆ c2 expresses that c1 occurs at some step
only if c2 occur at this step as well. The exclusion constraint c1 # c2 specifies
that two clocks c1 and c2 are exclusive, i.e., they cannot occur simultaneously
at the same step.

The union and intersection constraints are used to define clocks. c1 � c2 + c3

defines a clock c1 such that c1 ticks iff c2 or c3 ticks. Similarly, c1 � c2 ∗ c3 defines
a clock c1 such that c1 ticks iff both c2 and c3 tick. The infimum (resp. supremum)
constraint c1 � c2 ∧ c3 (resp. c1 � c2 ∨ c3) is used to define a clock c1 that is
the slowest (resp. fastest) clock that is faster (resp. slower) than both c2 and c3.
These two constraints are useful for expressing delay requirements between two
events. Remark that clocks c1 defined by constraints may correspond to system
events, otherwise are auxiliary clocks. In the former case, these constraints can
be seen as constraints specifying relations between clocks c1, c2 and c3.

The periodicity constraint c1 � c2 ∝ p defines a clock c1 such that c1 has to
be performed once every p occurrences of clock c2. It is worth mentioning that
the periodicity constraint defined in such a way is relative because of the logical
nature of CCSL clocks. That is, clock c1 is relatively periodic with respect to
clock c2. CCSL does not assume the existence of a global reference clock, most
relations are defined relative to other clocks. These notions extend the equivalent
behaviors which are usually defined relative to physical time. If c2 represents a
sensor that measures physical time, then c1 becomes physically periodic.

The filtering constraint c1 � c2 � w is used to define a clock c1 which can
be seen as snapshots of the clock c2 at some steps according to the (ω-)regular
expression w. For instance, c1 � c2 � (01)ω expresses that c1 simulates c2 at
every even step. It defines a logically periodic behavior of c1 with respect to c2.

The delayFor constraint c1 � c2 $ d (i.e., c1 � c2 $ d on c2) defines a new
clock c1 that is delayed by the clock c2 with d steps. The general form c1 �
c2 $ d on c3 defines a new clock c1 that is delayed by c2 with d times of the ticks
of c3. c1 can be seen as a sampled clock of c2 on the basis of c3. For instance,
c1 � c2 $ 1 on c3, denotes that whenever c2 ticks at least once between two
successive ticks of c3 at steps m and n, c1 must tick at step n.

3 Scheduling Problem of CCSL

3.1 Schedulability

Given a set Φ of CCSL constraints, a schedule δ satisfies Φ, denoted by δ |= Φ,
iff δ |= φ for all constraints φ ∈ Φ.

66 M. Zhang et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

tmp

red

green

Time

Clocks

Fig. 2. The unique schedule that satisfies the three constraints in the example

Definition 5 (Logical time scheduling problem). Given a set Φ of CCSL
constraints, the (logical time) scheduling problem of CCSL is to determine
whether there exists a schedule δ such that δ |= Φ.

We illustrate the scheduling problem by a simple example. Consider alter-
native flickering between the green and red light using CCSL. We assume that
green light starts first. The timing requirements can be formalized by the fol-
lowing three constraints:

green ≺ red, tmp � green $ 1, red ≺ tmp,

where green and red are clocks respectively representing whether the green (resp.
red) light is turned on, the clock tmp is an auxiliary clock used to help specify
the constraints on clocks.

There exists exactly one schedule satisfying the three constraints, as shown
in Fig. 2. In this schedule, the clock tmp has the same behavior as green from
step 2, while the clock red has the opposite behavior to green. Namely, red and
green operates in an alternative manner. For simplicity, we also write green ∼ red
to denote the alternation relation of the two clocks.

Although one may be able to find one or more schedules for some simple
constraints, to our knowledge, there is no generally applicable decision procedure
solving the scheduling problem of full CCSL. There are two main challenges.
First, schedules are essentially infinite, i.e., defined on all the natural numbers.
Second, the precedence is stateful, i.e., it depends on the history, and there is no
upper bound on how far in the history one must go back. It may then require
an infinite memory to store the history. As a first step to tackle this challenging
problem, in this work, we first consider the bounded scheduling problem.

3.2 Bounded Scheduling Problem

Given a bound k ∈ N
+, let σ : N

+
≤k → 2C be a function. σ is an k-bounded

schedule of a set Φ of CCSL constraints, denoted by σ |=k Φ, iff there exists a
schedule δ such that δ(i) = σ(i) for every i ∈ N

+
≤k and δ |= Φ from step 1 up to

k, where N
+
≤k := {1, · · · , k}.

SMT-Based Bounded Schedulability Analysis of the CCSL 67

Definition 6 (Bounded scheduling problem). The bounded scheduling
problem is to determine, for a given set Φ of CCSL constraints and a bound k,
whether there is an k-bounded schedule σ for Φ, i.e., σ |=k Φ.

Theorem 1 (Sufficient condition of unschedulability). If a set Φ of con-
straints has no k-bounded schedule for some k ∈ N

+, then Φ is unschedulable.

The proof is straightforward by contradiction.
It is easy to see that the bounded scheduling problem is decidable, as there are

finitely many potential k-bounded schedules, i.e., (2|C| − 1)k, where |C| denotes
the number of clocks. Furthermore, the satisfiability problem of Boolean formulas
can be reduced to the bounded scheduling problem in polynomial time.

Theorem 2. The k-bounded scheduling problem of CCSL is NP-complete, even
if k = 1.

Proof. The NP upper bound can be proved easily based on the facts that the
number of possible k-bounded schedules is finite and the universal quantification
∀n ∈ N

+
≤k can be eliminated by enumerating all the possible values in N

+
≤k.

We prove the NP-hardness by a reduction from the satisfiability problem of
Boolean formulas which is known NP-complete. Consider the Boolean formula
φ =

∧m
i=1(l

1
i ∨ l2i ∨ l3i), where m ∈ N

+ and lji for j ∈ {1, 2, 3} is either a Boolean
variable x or its negation ¬x. Let Var(φ) denote the set of Boolean variables
appearing in φ. We construct a set of CCSL constraints Φ as follows.

For each x ∈ Var(φ), we have two clocks x+ and x−. Let enc(x) = x+ and
enc(¬x) = x−. Each clause l1i ∨l2i ∨l3i in φ is encoded as the CCSL constraint ci �
enc(l1i)+enc(l2i)+enc(l3i), denoted by ψi. Note that ci � enc(l1i)+enc(l2i)+enc(l3i)
can be transformed into CCSL constraints by introducing one auxiliary clock c,
i.e., {ci � enc(l1i) + enc(l2i) + enc(l3i)} ≡ {ci � enc(l1i) + c, c � enc(l2i) + enc(l3i)}.

Let enc(φ) denote the following set of CCSL constraints

{1 � ∗m
i=1ci, ψ1, ..., ψm, x+ # x−,1 � x+ + x− | x ∈ Var(φ)}

where x+ # x− and 1 � x+ + x− enforce that either x+ or x− ticks at each
step, but not both. This encodes that either x is true or ¬x is true. Note that
τ � ∗m

i=1ci is a shorthand of τ � c1 ∗ · · · ∗ cm, and can also be expressed in
CCSL constraints by introducing polynomial number of auxiliary clocks. For
instance, {c � c1 ∗ c2 ∗ c3} ≡ {c � c1 ∗ c′, c′ � c2 ∗ c3}. We can show that
φ is satisfiable iff enc(φ) is 1-bounded schedulable. The satisfiability problem of
Boolean formulas is NP-complete, we get that the 1-bounded scheduling problem
of CCSL is NP-hard. The k-bounded scheduling problem for k > 1 immediately
follows by repeating the ticks of clocks at the first step. ��

Theorem 2 indicates the time complexity of the bounded scheduling problem.
Thus, we need to find practical solutions that are algorithmically efficient for
it. In the next section, we propose an SMT-based decision procedure for the
bounded scheduling problem and a sound algorithm for the scheduling problem.
Thanks to advances in state-of-the-art SMT solvers such as Z3 [25], our approach
is usually efficient in practice.

68 M. Zhang et al.

4 Decision Procedure for the Scheduling Problem

4.1 Transformation from CCSL into SMT

Let us fix a set of CCSL constraints Φ defined over a set C of clocks. Each clock
c ∈ C is interpreted as a predicate tc : N

+ → Bool such that for all i ∈ N
+, tc(i)

is true iff the clock c ticks at i, where Bool denotes Boolean sort. A schedule δ
of Φ is encoded as a set of predicates TC = {tc|c ∈ C} such that the following
condition holds: for all tc ∈ TC ,

∀i ∈ N
+.tc(i) ⇔ c ∈ δ(i).

Recalling that schedules forbid stuttering steps, this condition is enforced by
restricting the predicates tc in TC to satisfy the following condition:

∀i ∈ N
+. ∨c∈C tc(i) (F1)

Formula F1 specifies that at each step i at least one clock c ticks, i.e., tc(i) holds.
For each clock c ∈ C, we introduce an auxiliary function hc : N

+ → N to
encode its history. For each i ∈ N

+,

hc(i) :=

⎧
⎨

⎩

0, if i = 1;
hc(i − 1), if i > 1 ∧ ¬tc(i − 1);
hc(i − 1) + 1, if i > 1 ∧ tc(i − 1).

(F2)

Intuitively, hc(i) is equivalent to χ(c, i) for each i ∈ N
+. The set of all the

auxiliary functions is denoted by HC .
By replacing each occurrence of clock c in δ(n) (resp. c �∈ δ(n)) with tc(n)

(resp. ¬tc(n)) and χ(c, n) with hc(n) in the definition of each CCSL constraint,
each CCSL constraint φ can be encoded as an SMT formula �φ�.

We use �Φ� to denote the conjunction of Formulas F1, F2 and the SMT
encodings of CCSL constraints in Φ. Formally,

�Φ� := F1 ∧ F2 ∧ (∧φ∈Φ�φ�).

Finding a schedule for Φ amounts to finding a solution, i.e., definitions of
predicates in TC , which satisfies �Φ�.

Proposition 1. Φ has a schedule iff �Φ� is satisfiable.

The scheduling problem of Φ is transformed into the satisfiability problem of
the formula �Φ�. However, according to the SMT-LIB standard [4], �Φ� belongs to
the logic of UFLIA (formulas with Uninterpreted Functions and Linear Integer
Arithmetic), whose satisfiability problem is undecidable in general. Nevertheless,
the SMT encoding is still useful to solve the bounded scheduling problem, which
we will present in the next subsection.

SMT-Based Bounded Schedulability Analysis of the CCSL 69

4.2 Decision Procedure for the Bounded Scheduling Problem

For k-bounded scheduling problem, it suffices to consider schedules δ : N
+
≤k →

2C . Moreover, the quantifiers in �Φ� can be eliminated once the bound k is fixed.
Hence, we can resort to state-of-the-art SMT solvers. Formally, let �Φ�k be the
formula obtained from �Φ� = F1 ∧ F2 ∧ (

∧
φ∈Φ�φ�) by

– restricting the domain of predicates tc ∈ TC and functions hc ∈ HC to N
+
≤k;

– replacing quantifications ∀n ∈ N
+ and ∃m ∈ N

+ with ∀n ∈ N
+
≤k and ∃m ∈

N
+
≤k in (

∧
φ∈Φ�φ�).

Proposition 2. Φ is k-bounded schedulable iff �Φ�k is satisfiable.
Moreover, if �Φ�k is satisfiable, then �Φ�k′ is satisfiable for all k′ ≤ k.

4.3 A Sound Algorithm for the Scheduling Problem

According to Theorem 1, Propositions 1 and 2, (1) if �Φ� is satisfiable, then Φ is
schedulable, and (2) if �Φ�k for some k ∈ N

+ is unsatisfiable, then Φ is unschedu-
lable. We can deduce a sound algorithm for checking the general scheduling
problem. However, randomly choosing a bound k and checking whether or not
�Φ�k is unsatisfiable may be inefficient, as the k-bounded scheduling problem is
NP-hard (cf. Theorem 2), and larger bound k may result in time out, but smaller
bound k may result in that �Φ�k is satisfiable. Indeed, if we consider the maxi-
mal bound B, then the random approach may have to call SMT solving O(B)
times. Alternatively, we propose a binary-search based approach as shown in
Algorithm 1 for a given maximal bound B, which invokes SMT solving at most
O(| log2 B|) times.

Algorithm 1: A sound algorithm for the scheduling problem
Input : a set of constraints Φ, a timeout threshold T , a maximal bound B
Output: {SAT, UNSAT, Timeout} × N

+

1 result1 ← SMTSolver(�Φ�, T);
2 if result1 = SAT then /* Schedulable */

3 return (SAT, 0)

4 l ← 0; u ← B;
5 while l ≤ u do /* Binary search */

6 k ← � l+u
2

�;
7 result2 ← SMTSolver(�Φ�k, T);
8 if result2 = SAT then l ← k + 1; /* Upper half */

9 else /* Lower half */

10 u ← k − 1;
11 if result1 = UNSAT ∨ result2 = UNSAT then
12 result1 ← UNSAT;

13 if result2 �= SAT then k ← k − 1;
14 return (result1, k);

70 M. Zhang et al.

Given a set Φ of constraints in CCSL, a timeout threshold T and a maxi-
mal bound B, Algorithm 1 first invokes an SMTSolver to decide whether �Φ� is
satisfiable or not within T time. If �Φ� is satisfiable, then Algorithm 1 returns
(SAT,0), meaning that Φ is schedulable. Otherwise, it binary searches a bound
k ≤ B such that �Φ�k is satisfiable while �Φ�k+1 (if k + 1 ≤ B) is unsatisfiable
or cannot be verified in time T.

Theorem 3. Algorithm1 has the following three properties:

1. If it returns (SAT, 0), then Φ is schedulable.
2. If it returns (UNSAT, k), then Φ is unschedulable. If k �= 0, then Φ has k-

bounded schedulable, otherwise does not have any bounded schedulable.
3. If it returns (Timeout, k), then Φ is k-bounded schedulable if k �= 0, otherwise

no bounded schedule is found for Φ.

5 Case Study and Performance Evaluation

We implemented our approach in a prototype tool with Z3 [25] as its underlying
SMT solver. We conduct a case study on expressing requirements of an inter-
locking system in CCSL constraints and analyzing its schedulability. Then, we
prove 12 algebraic properties of CCSL constraints using the tool. Finally, we
evaluate the performance of the tool using 9 sets of CCSL constraints.

5.1 Schedulability of an Interlocking System

The interlocking system is a subsystem of a rail transit system. It is used to
prevent trains from collisions and derailments when they are moving under the
control of signal lights. As shown in Fig. 3, the interlocking system monitors

Fig. 3. Interlocking system

the occupancy status of the individ-
ual track section, and sends signals
to inform drivers whether they are
allowed to enter the route or not. The
railway tracks are divided into sec-
tions. Each section is associated with
a track circuit for detecting whether
it is occupied by a train or not. Sig-
nal lights are placed between track
sections. They can be red and green
to indicate proceeding and stopping,
respectively.

The mechanism and operation procedure of the interlocking system are sum-
marized as follows.

1. To enter a track, a train first sends a request to the control center.
2. On receiving the request, the control center sends an inquiry to the track

circuit to detect the status of the track.

SMT-Based Bounded Schedulability Analysis of the CCSL 71

Table 2. CCSL constraints of the interlocking system

request ≺ inquiry responseOfTrack � checkSucc + checkFail

checkFail ≺ redPulse responseOfTrain � enter + wait

redPulse � showRed inquiry ≺ responseOfTrack

showRed ≺ wait getOccupied ∼ getUnoccupied

checkSucc ≺ greenPulse getOccupied # getUnoccupied

greenPulse � showGreen request ∼ responseOfTrain

showGreen ≺ enter inquiry − responseOfTrack ≤ 40

enter ≺ leave greenPulse − showGreen ≤ 30

enter ⊆ getOccupied redPulse − showRed ≤ 30

leave ⊆ getUnoccupied request − responseOfTrain ≤ 50

������������������
getOccupied ∼ tmp1 checkFail − showRed ≤ 40

��������������������
getUnoccupied ∼ tmp1 checkSucc − showGreen ≤ 40

���������������
checkFail ⊆ tmp1 ������������������

getUnoccupied ≺ tmp2

����������������
tmp2 ≺ getOccupied

���������������
checkSucc ⊆ tmp2

3. If the track is occupied, it sends checkFail to the control center, and otherwise
checkSucc.

4. On receiving the message checkFail (resp. checkSucc), the control center sends
a red (resp. green) signal pulse to the signal light.

5. The signal light turns red (resp. green) on receiving the red (resp. green)
signal pulse.

6. The train will enter after seeing the light is green, and the track becomes
occupied. In case of the red light, the train must stop and wait.

7. The track becomes unoccupied after the train leaves. If the train is waiting,
it must send a request again after some time.

There are time constraints on the above operations. For instance, the control
center needs to get a response from the track circuit within 30 ms after sending
an inquiry to it. The train must make decision within 50 ms after it sends a
request to the control center. The light should turn to the corresponding color
within 30 ms after it receives a pulse. After the track becomes occupied (resp.
unoccupied), the light must turn red (resp. green) within 40 ms.

Table 2 shows the main logical constraints on the operations in the system
and their timing constraints. We use some non-standard constraint expressions
for the sake of compactness. Constraint a − b ≤ n denotes that b must tick
within n steps after a ticks. It equals the set of the following three constraints:

a ≺ b, t � a $ n on 1, b � t.

Note that in this example the unit of time is millisecond (ms). Thus, there is an
implicit assumption in the constraints that every tick of a logic clock means the
elapse of one millisecond.

72 M. Zhang et al.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

wait
showGreen

request

inquiry

responseOfTrack

checkSucc

checkFail
getUnoccupied

getOccupied

enter

leave

redPulse
greenPulse

showRed

Clocks

Fig. 4. A bounded schedule for the CCSL constraints in the case study

Most constraints in Table 2 are straightforward, except the six con-
straints marked with waved underlines. The first three constraints specify that
checkFail only can occur between the occurrences of getUnoccupied and
getOccupied. The others specify the following two requirements:

1. checkSucc only can occur after getUnoccupied and before getOccupied;
2. getUnoccupied precedes getOccupied.

Given these constraints, our tool found a bounded schedule as depicted in
Fig. 4. From step 1 to step 7, one complete process is finished. Initially, the
track gets unoccupied. At step 2, a request is made, which causes subsequent
operations to occur from step 3 to step 7. At step 29, a fail case occurs because
another train enters (step 26) but has not left (step 31). The train that made
the request has to wait (step 33).

If we extend the bounded schedule by infinitely repeating the behaviors of all
the clocks between step 51 and 69 from step 70, we obtain an infinite schedule.
The extended schedule satisfies all the constraints, and thus it is a witness of
the schedulability of designed mechanism for the interlocking system.

In this paper, we are only concerned with the schedulability of the constraints
in the example. Some other kinds of temporal properties also need to verify. For
instance, we must guarantee that whenever a train requests to enter the station,
it must eventually enter. We also need to verify the system is deadlock-free. Such
temporal properties can be verified by LTL model checking of CCSL constraints
using SMT technique [40]. We omit it because it is beyond the scope of this paper.

5.2 Automatic Proof of CCSL Algebraic Properties

Using the proposed approach, we can also prove automatically algebraic prop-
erties of CCSL constraints such as the commutativity of exclusion and transi-
tivity of causality. Algebraic properties of CCSL constraints can be represented
as Φ ⇒ φ, where Φ is a set of CCSL constraints and φ is a constraint derived
from Φ. Proving Φ ⇒ φ is valid equals proving the unsatisfiability of �Φ�∧ ¬�φ�,
which can be solved by Algorithm1.

SMT-Based Bounded Schedulability Analysis of the CCSL 73

Table 3. Proved algebraic properties of CCSL constraints

Algebraic property Definition

Commutativity of exclusion c1 # c2 ⇒ c2 # c1

Transitivity of causality c1 � c2 , c2 � c3 ⇒ c1 � c3

Antisymmetry of causality c1 � c2 , c2 � c1 ⇒ c1 = c2

Fastness of infimum c1 � c2 ∧ c3 ⇒ c1 � c2, c1 � c3

Slowestness of infimum c1 � c2 ∧ c3, c4 � c2, c4 � c3 ⇒ c4 � c1

Slowness of supremum c1 � c2 ∨ c3 ⇒ c2 � c1, c3 � c1

Fastestness of supremum c1 � c2 ∨ c3, c2 � c4, c3 � c4 ⇒ c1 � c4

Causality of subclock c1 ⊆ c2 ⇒ c2 � c1

Causality of union c1 � c2 + c3 ⇒ c1 � c2, c1 � c3

Causality of intersection c1 � c2 ∗ c3 ⇒ c2 � c1, c3 � c1

Subclocking of sampling c1 � c2 � c3 ⇒ c1 ⊆ c3

Subclocking of union c1 � c2 + c3 ⇒ c2 ⊆ c1, c3 ⊆ c1

Subclocking of intersection c1 � c2 ∗ c3 ⇒ c1 ⊆ c2, c1 ⊆ c3

Let us consider the proof of the slowestness of infimum as an example. The
slowestness of infimum means that an infimum constraint c1 � c2 ∧ c3 defines
the slowest clock c1 among those that are faster than both c2 and c3.

Proposition 3 (Slowestness of infimum). Given two clocks c2, c3, let c1 �
c2 ∧ c3 and c4 be an arbitrary clock such that c4 � c2 and c4 � c3, then c4 � c1.

This is proved by transforming CCSL constraints into the following SMT for-
mula according the SMT encoding method:

�c1 � c2 ∧ c3� ∧ �c4 � c2� ∧ �c4 � c3� ∧ ¬�c4 � c1�.

Algorithm 1 returns (UNSAT, 0), which means that the formula is proved unsat-
isfiable. The proposition is proved.

Table 3 lists the algebraic properties that have been successfully proved in
our approach. Algebraic properties are useful to help understand the relation
among CCSL constraints. Using them we can also verify whether some CCSL
constraints are redundant or inconsistent for a given set of CCSL constraints.

5.3 Performance Evaluation

To evaluate the performance our tool, we collected 9 sets of CCSL constraints
from the literature and real-world applications, and analyzed their schedulability
using our tool. Under different time thresholds, we calculate the maximal bounds
under which the constraints are schedulable.

Table 4 shows all the experimental results including the corresponding exe-
cution time. All the experiments were conducted on a Win 10 running on an
i7 CPU with 2.70 GHz and 16 GB memory. The numbers followed by asterisks

74 M. Zhang et al.

Table 4. Experimental results of bounded schedulability analysis

CS Clks. Cons. THD: 10 s THD: 20 s THD: 30 s THD: 40 s

BD TM BD TM BD TM BD TM

CS1 3 3 8 0.06 8 0.06 8 0.06 8 0.06

CS2 3 4 2∗ 0.06 2∗ 0.06 2∗ 0.06 2∗ 0.06

CS3 8 9 48 6.20 59 15.88 70 28.72 75 39.82

CS4 8 7 70 7.12 70 7.12 70 7.12 70 7.12

CS5 9 9 80 8.29 90 19.95 110 26.81 111 39.84

CS6 10 6 95 9.40 113 14.26 113 14.26 113 14.26

CS7 12 9 69 8.80 76 19.42 89 27.69 95 40.00

CS8 17 20 16 0.81 16 0.81 16∗ 27.36 16∗ 27.36

CS9 27 51 30 9.94 41 17.19 45 29.78 45 29.78

Remarks: CS: constraint set, Cons: the number of constraints,
Clks: the number of clocks, THD: timeout threshold, TM: Time
(second), BD: upper bound.

are the maximal bounds such that the corresponding constraints are bounded
schedulable, but unschedulable in the next step. It is interesting to observe from
Table 4 that time cost is loosely related to size (the number of clocks and con-
straints), thanks to efficient search strategies of SMT solvers. This is in striking
contrasts to automata-based [29,35] and the rewriting-based approaches [38],
whose scalability suffers from both the numbers of clocks and constraints.

6 Related Work

CCSL is directly derived from the family of synchronous languages, such as
Lustre [9], Esterel [6] and Signal [5], and its the scheduling problem of CCSL
is akin to what synchronous languages call clock calculus. The main differences
are: CCSL is a specification language, while others are programming languages;
and CCSL partially describes what is expected to happen in a declarative way
and does not give a direct operational deterministic description of what must
happen. Furthermore, CCSL only deals with pure clocks while the others deal
with signals and extract the clocks when needed.

The Esterel compiler [31] applies a constructive approach to decide when a
signal must occur (compute its clock) and what its value should be. This requires
a detection of causality cycles, or intra-cycle data dependencies, which are also
naturally addressed by our approach. However, the Esterel compiler compiles an
imperative program into a Boolean circuit, or equivalently a finite state machine.
Consequently, it cannot deal with CCSL unbounded schedules.

The clock calculus in Signal attempts to detect whether the specification is
endochronous [30], in which case it can generate some efficient code. This analysis
is mainly based on the subclock relationship that also exists in CCSL. In CCSL,
we consider the problem whether there is at least one possible schedule or not.

SMT-Based Bounded Schedulability Analysis of the CCSL 75

In Lustre and its extensions, clocks are regarded as abstract types [13] and the
clock calculus computes the relative rates of clocks while rejecting the program
when computing the rates is not possible. In most cases, the compiler attempts
to build bounded buffers and to ensure that the functional determinism can be
preserved with a finite memory. In our case, we do not seek to reach a finite
representation, as in the first specification steps this is not a primary goal for
the designers. Indeed, this might lead to an over-specification of the problem.

Classical real-time scheduling problem [32] usually relies on task models,
arrival patterns and constraints (e.g., precedence, resources) to propose algo-
rithms for the scheduling problem with analytical results [19] or heuristics
depending on the specific model (e.g., priorities, preemptive). Other solutions,
based on timed automata [1,2,17] or timed Petri nets [8,18], propose a general
framework for describing all the relevant aspects without assuming a specific task
model. CCSL offers an alternative method based on logical time. It is believed
that logical time and multiform time bases offer some flexibility to unify func-
tional requirements and performance constraints. We rely on CCSL and we
claim that after encoding a task model in CCSL, finding a schedule for the
CCSL model also gives a schedule for the encoded task model [24].

There have been many efforts made towards the scheduling problem of
CCSL, though no conclusion is drawn on its decidability. TimeSquare [14]
is a simulation tool for CCSL which can produce a possible schedule for a given
set of CCSL, up to a given user-defined bound. It also supports different sim-
ulation strategies for producing desired execution traces. Some earlier work [20]
define the notion of safe CCSL specifications that can be encoded with a finite-
state machine. The scheduling problem is decidable for safe specifications, as one
can merely enumerate all the (finite) solutions. A semi-algorithm can build the
finite representation when the specification is safe [21]. In [37], Zhang et al. pro-
posed a state-based approach and a sufficient condition to decide whether safe
and unsafe specifications accept a so-called periodic schedule [39]. This allows to
build a finite solution for unsafe specifications, while there may also exist infi-
nite solutions. Xu et al. proposed a notion of divergence of CCSL to study the
schedulability of CCSL, and proved that a set of CCSL constraints is schedula-
ble if all the constraints are divergent [34]. They resorted to the theorem prover
PVS [27] to assist the divergence proof.

The scheduling problem of CCSL constraints in this work resorts to SMT
solving to deal with the bounded and unbounded schedules. Using SMT solving
has two advantages: (1) it is usually efficient in practice, and (2) it can deal with
unsafe CCSL constraints such as infimum and supremum [21].

Some basic algebraic properties on CCSL relations have been established
manually before [23] but we provide here an automatic framework to do so.

7 Conclusion and Future Work

In this work, we proved that the bounded scheduling problem of CCSL is
NP-complete, and proposed an SMT-based decision procedure for the bounded

76 M. Zhang et al.

scheduling problem. The procedure is sound and complete. The experimental
results also show its efficiency in practice. Based on this decision procedure, we
devised a sound algorithm for the general scheduling problem. We evaluated the
effectiveness of the proposed approach on an interlocking system. We also showed
our approach can be used to prove algebraic properties of CCSL constraints.

Our approach to the bounded scheduling problem of CCSL makes us one
step closer to tackling the general (i.e. unbounded) scheduling problem. As
the case study demonstrates, one may find an infinite schedule by extending
a bounded one such that the extended infinite schedule still satisfies the con-
straints. This observation inspires future work to investigate mechanisms of
finding such bounded schedules, hopefully with SMT solvers by extending our
algorithm. In our earlier work [37], we proposed a similar approach to search
for periodical schedules in bounded steps. In that approach, CCSL constraints
are transformed into finite state machine and consequently suffers from the state
explosion problem. We believe our SMT-based approach can be extended to their
work while still avoiding state explosion. We leave it to future work.

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006)

2. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool
for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8 6

3. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75209-7 38

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard (2016)
5. Benveniste, A., Guernic, P.L., Jacquemot, C.: Synchronous programming with

events and relations: the SIGNAL language and its semantics. Sci. Comput. Pro-
gram. 16(2), 103–149 (1991)

6. Berry, G., Gonthier, G.: The esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

7. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34(1),
135–137 (2001)

8. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Modeling flexible real time systems
with preemptive time petri nets. In: Proceedings of the 15th ECRTS, Porto, Por-
tugal, pp. 279–286. IEEE (2003)

9. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Proceedings of 14th POPL, Tucson,
USA, pp. 178–188. ACM Press (1987)

10. Chen, X., Yin, L., Yu, Y., Jin, Z.: Transforming timing requirements into CCSL
constraints to verify cyber-physical systems. In: Duan, Z., Ong, L. (eds.) ICFEM
2017. LNCS, vol. 10610, pp. 54–70. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68690-5 4

11. Chen, Y., Chen, Y., Madelaine, E.: Timed-pNets: a communication behavioural
semantic model for distributed systems. Front. Comput. Sci. 9(1), 87–110 (2015)

https://doi.org/10.1007/978-3-540-40903-8_6
https://doi.org/10.1007/978-3-540-75209-7_38
https://doi.org/10.1007/978-3-319-68690-5_4
https://doi.org/10.1007/978-3-319-68690-5_4

SMT-Based Bounded Schedulability Analysis of the CCSL 77

12. Colaço, J., Pagano, B., Pouzet, M.: SCADE 6: a formal language for embedded
critical software development. In: Proceedings of the 11th TASE, Sophia Antipolis,
France, pp. 1–11. IEEE (2017)

13. Colaço, J.-L., Pouzet, M.: Clocks as first class abstract types. In: Alur, R., Lee, I.
(eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 134–155. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45212-6 10

14. Deantoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In:
Proceedings of the 50th TOOLS, Prague, Czech Republic, pp. 34–41. IEEE (2012)

15. Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL - an introduction
to the SAE architecture analysis and design language. SEI, Addison-Wesley (2012)

16. Kang, E., Schobbens, P.: Schedulability analysis support for automotive systems:
from requirement to implementation. In: Proceedings of the 29th SAC, Gyeongju,
Korea, pp. 1080–1085. ACM (2014)

17. Krčál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 236–250. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24730-2 20

18. Lime, D., Roux, O.: A translation based method for the timed analysis of scheduling
extended time petri nets. In: Proceedings of the 25th RTSS, pp. 187–196. IEEE
(2004)

19. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

20. Mallet, F., Millo, J.-V.: Boundness issues in CCSL specifications. In: Groves, L.,
Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 20–35. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41202-8 3

21. Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.
Comput. Program. 106, 78–92 (2015)

22. Mallet, F., Villar, E., Herrera, F.: MARTE for CPS and CPSoS. In: Nakajima, S.,
Talpin, J.-P., Toyoshima, M., Yu, H. (eds.) Cyber-Physical System Design from an
Architecture Analysis Viewpoint, pp. 81–108. Springer, Singapore (2017). https://
doi.org/10.1007/978-981-10-4436-6 4

23. Mallet, F., Millo, J., de Simone, R.: Safe CCSL specifications and marked graphs.
In: Proceedings of the 11th MEMOCODE, Portland, OR, USA, pp. 157–166. IEEE
(2013)

24. Mallet, F., Zhang, M.: Work-in-progress: from logical time scheduling to real-time
scheduling. In: Proceedings of the 39th RTSS, Nashville, USA, pp. 143–146. IEEE
(2018)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. OMG: UML profile for MARTE: modeling and analysis of real-time embedded
systems (2015)

27. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

28. Peters, J., Przigoda, N., Wille, R., Drechsler, R.: Clocks vs. instants relations:
verifying CCSL time constraints in UML/MARTE models. In: Proceedings of the
14th MEMOCODE, Kanpur, India, pp. 78–84. IEEE (2016)

29. Peters, J., Wille, R., Przigoda, N., Kühne, U., Drechsler, R.: A generic represen-
tation of CCSL time constraints for UML/MARTE models. In: Proceedings of the
52nd DAC, pp. 122:1–122:6. ACM (2015)

https://doi.org/10.1007/978-3-540-45212-6_10
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/978-3-642-41202-8_3
https://doi.org/10.1007/978-981-10-4436-6_4
https://doi.org/10.1007/978-981-10-4436-6_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-55602-8_217

78 M. Zhang et al.

30. Potop-Butucaru, D., Caillaud, B., Benveniste, A.: Concurrency in synchronous
systems. Formal Methods Syst. Des. 28(2), 111–130 (2006)

31. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-70628-3

32. Sha, L., et al.: Real time scheduling theory: a historical perspective. Real-Time
Syst. 28(2–3), 101–155 (2004)

33. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40561-7 1

34. Xu, Q., de Simone, R., DeAntoni, J.: Divergence detection for CCSL specification
via clock causality chain. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016.
LNCS, vol. 9984, pp. 18–37. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-47677-3 2

35. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: Proceedings of the 16th ICECCS, USA, pp. 65–74. IEEE (2011)

36. Yu, H., Talpin, J., Besnard, L., et al.: Polychronous controller synthesis from
MARTE/CCSL timing specifications. In: Proceedings of the 9th MEMOCODE,
Cambridge, UK, pp. 21–30. IEEE (2011)

37. Zhang, M., Dai, F., Mallet, F.: Periodic scheduling for MARTE/CCSL: theory and
practice. Sci. Comput. Program. 154, 42–60 (2018)

38. Zhang, M., Mallet, F.: An executable semantics of clock constraint specification
language and its applications. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015.
CCIS, vol. 596, pp. 37–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-29510-7 2

39. Zhang, M., Mallet, F., Zhu, H.: An SMT-based approach to the formal analysis of
MARTE/CCSL. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 433–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-47846-3 27

40. Zhang, M., Ying, Y.: Towards SMT-based LTL model checking of clock constraint
specification language for real-time and embedded systems. In: Proceedings of the
18th LCTES, Barcelona, Spain, pp. 61–70. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-0-387-70628-3
https://doi.org/10.1007/978-3-642-40561-7_1
https://doi.org/10.1007/978-3-642-40561-7_1
https://doi.org/10.1007/978-3-319-47677-3_2
https://doi.org/10.1007/978-3-319-47677-3_2
https://doi.org/10.1007/978-3-319-29510-7_2
https://doi.org/10.1007/978-3-319-29510-7_2
https://doi.org/10.1007/978-3-319-47846-3_27
https://doi.org/10.1007/978-3-319-47846-3_27
http://creativecommons.org/licenses/by/4.0/

A Hybrid Dynamic Logic
for Event/Data-Based Systems

Rolf Hennicker1, Alexandre Madeira2,3(B), and Alexander Knapp4

1 Ludwig-Maximilians-Universität München, Munich, Germany
hennicke@pst.ifi.lmu.de

2 CIDMA, University of Aveiro, Aveiro, Portugal
madeira@ua.pt

3 QuantaLab, University of Minho, Braga, Portugal
4 Universität Augsburg, Augsburg, Germany

knapp@informatik.uni-augsburg.de

Abstract. We propose E↓-logic as a formal foundation for the specifica-
tion and development of event-based systems with local data states. The
logic is intended to cover a broad range of abstraction levels from abstract
requirements specifications up to constructive specifications. Our logic
uses diamond and box modalities over structured actions adopted from
dynamic logic. Atomic actions are pairs e� ψ where e is an event and ψ
a state transition predicate capturing the allowed reactions to the event.
To write concrete specifications of recursive process structures we inte-
grate (control) state variables and binders of hybrid logic. The seman-
tic interpretation relies on event/data transition systems; specification
refinement is defined by model class inclusion. For the presentation of
constructive specifications we propose operational event/data specifica-
tions allowing for familiar, diagrammatic representations by state transi-
tion graphs. We show that E↓-logic is powerful enough to characterise the
semantics of an operational specification by a single E↓-sentence. Thus
the whole development process can rely on E↓-logic and its semantics as
a common basis. This includes also a variety of implementation construc-
tors to support, among others, event refinement and parallel composition.

1 Introduction

Event-based systems are an important kind of software systems which are open
to the environment to react to certain events. A crucial characteristics of such
systems is that not any event can (or should) be expected at any time. Hence the
control flow of the system is significant and should be modelled by appropriate
means. On the other hand components administrate data which may change
upon the occurrence of an event. Thus also the specification of admissible data
changes caused by events plays a major role.

A. Madeira—Supported by ERDF through COMPETE 2020 and by National Funds
through FCT with POCI-01-0145-FEDER-016692 and UID/MAT/04106/2019, in a
contract foreseen in nos. 4–6 of art. 23 of the DL 57/2016, changed by DL 57/2017.

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 79–97, 2019.
https://doi.org/10.1007/978-3-030-16722-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_5

80 R. Hennicker et al.

There is quite a lot of literature on modelling and specification of event-based
systems. Many approaches, often underpinned by graphical notations, provide
formalisms aiming at being constructive enough to suggest particular designs
or implementations, like e.g., Event-B [1,7], symbolic transition systems [17],
and UML behavioural and protocol state machines [12,16]. On the other hand,
there are logical formalisms to express desired properties of event-based systems.
Among them are temporal logics integrating state and event-based styles [4], and
various kinds of modal logics involving data, like first-order dynamic logic [10]
or the modal μ-calculus with data and time [9]. The gap between logics and
constructive specification is usually filled by checking whether the model of a
constructive specification satisfies certain logical formulae.

In this paper we are interested in investigating a logic which is capable to
express properties of event/data-based systems on various abstraction levels in
a common formalism. For this purpose we follow ideas of [15], but there data
states, effects of events on them and constructive operational specifications (see
below) were not considered. The advantage of an expressive logic is that we can
split the transition from system requirements to system implementation into a
series of gradual refinement steps which are more easy to understand, to verify,
and to adjust when certain aspects of the system are to be changed or when a
product line of similar products has to be developed.

To that end we propose E↓-logic, a dynamic logic enriched with features of
hybrid logic. The dynamic part uses diamond and box modalities over structured
actions. Atomic actions are of the form e�ψ with e an event and ψ a state transi-
tion predicate specifying the admissible effects of e on the data. Using sequential
composition, union, and iteration we obtain complex actions that, in connection
with the modalities, can be used to specify required and forbidden behaviour. In
particular, if E is a finite set of events, though data is infinite we are able to
capture all reachable states of the system and to express safety and liveness prop-
erties. But E↓-logic is also powerful enough to specify concrete, recursive process
structures by integrating state variables and binders from hybrid logic [6] with
the subtle difference that our state variables are used to denote control states
only. We show that the dynamic part of the logic is bisimulation invariant while
the hybrid part, due to the ability to bind names to states, is not.

An axiomatic specification Sp = (Σ,Ax) in E↓ is given by an event/data
signature Σ = (E,A), with a set E of events and a set A of attributes to
model local data states, and a set of E↓-sentences Ax , called axioms, express-
ing requirements. For the semantic interpretation we use event/data transition
systems (edts). Their states are reachable configurations γ = (c, ω) where c is
a control state, recording the current state of execution, and ω is a local data
state, i.e., a valuation of the attributes. Transitions between configurations are
labelled by events. The semantics of a specification Sp is “loose” in the sense that
it consists of all edts satisfying the axioms of the specification. Such structures
are called models of Sp. Loose semantics allows us to define a simple refinement
notion: Sp1 refines to Sp2 if the model class of Sp2 is included in the model class
of Sp1. We may also say that Sp2 is an implementation of Sp1.

A Hybrid Dynamic Logic for Event/Data-Based Systems 81

Our refinement process starts typically with axiomatic specifications whose
axioms involve only the dynamic part of the logic. Hybrid features will succes-
sively be added in refinements when specifying more concrete behaviours, like
loops. Aiming at a concrete design, the use of an axiomatic specification style
may, however, become cumbersome since we have to state explicitly also all
negative cases, what the system should not do. For a convenient presentation
of constructive specifications we propose operational event/data specifications,
which are a kind of symbolic transition systems equipped again with a model
class semantics in terms of edts. We will show that E↓-logic, by use of the hybrid
binder, is powerful enough to characterise the semantics of an operational spec-
ification. Therefore we have not really left E↓-logic when refining axiomatic by
operational specifications. Moreover, since several constructive notations in the
literature, including (essential parts of) Event-B, symbolic transition systems,
and UML protocol state machines, can be expressed as operational specifications,
E↓-logic provides a logical umbrella under which event/data-based systems can
be developed.

In order to consider more complex refinements we take up an idea of Sannella
and Tarlecki [18,19] who have proposed the notion of constructor implementa-
tion. This is a generic notion applicable to specification formalisms based on
signatures and semantic structures for signatures. As both are available in the
context of E↓-logic, we complement our approach by introducing a couple of
constructors, among them event refinement and parallel composition. For the
latter we provide a useful refinement criterion relying on a relationship between
syntactic and semantic parallel composition. The logic and the use of the imple-
mentation constructors will be illustrated by a running example.

Hereafter, in Sect. 2, we introduce syntax and semantics of E↓-logic. In Sect. 3,
we consider axiomatic as well as operational specifications and demonstrate the
expressiveness of E↓-logic. Refinement of both types of specifications using sev-
eral implementation constructors is considered in Sect. 4. Section 5 provides some
concluding remarks. Proofs of theorems and facts can be found in [11].

2 A Hybrid Dynamic Logic for Event/Data Systems

We propose the logic E↓ to specify and reason about event/data-based systems.
E↓-logic is an extension of the hybrid dynamic logic considered in [15] by taking
into account changing data. Therefore, we first summarise our underlying notions
used for the treatment of data. We then introduce the syntax and semantics of
E↓ with its hybrid and dynamic logic features applied to events and data.

2.1 Data States

We assume given a universe D of data values. A data signature is given by a set
A of attributes. An A-data state ω is a function ω : A → D. We denote by Ω(A)
the set of all A-data states. For any data signature A, we assume given a set
Φ(A) of state predicates to be interpreted over single A-data states, and a set

82 R. Hennicker et al.

Ψ(A) of transition predicates to be interpreted over pairs of pre- and post-A-data
states. The concrete syntax of state and transition predicates is of no particular
importance for the following. For an attribute a ∈ A, a state predicate may be
a > 0; and a transition predicate e.g. a′ = a + 1, where a refers to the value of
attribute a in the pre-data state and a′ to its value in the post-data state. Still,
both types of predicates are assumed to contain true and to be closed under
negation (written ¬) and disjunction (written ∨); as usual, we will then also use
false, ∧, etc. Furthermore, we assume for each A0 ⊆ A a transition predicate
idA0 ∈ Ψ(A) expressing that the values of attributes in A0 are the same in pre-
and post-A-data states.

We write ω |=D
A ϕ if ϕ ∈ Φ(A) is satisfied in data state ω; and (ω1, ω2) |=D

A ψ
if ψ ∈ Ψ(A) is satisfied in the pre-data state ω1 and post-data state ω2. In
particular, (ω1, ω2) |=D

A idA0 if, and only if, ω1(a0) = ω2(a0) for all a0 ∈ A0.

2.2 E↓-Logic

Definition 1. An event/data signature (ed signature, for short) Σ = (E,A)
consists of a finite set of events E and a data signature A. We write E(Σ) for
E and A(Σ) for A. We also write Ω(Σ) for Ω(A(Σ)), Φ(Σ) for Φ(A(Σ)), and
Ψ(Σ) for Ψ(A(Σ)). The class of ed signatures is denoted by SigE↓

.

Any ed signature Σ determines a class of semantic structures, the event/data
transition systems which are reachable transition systems with sets of initial
states and events as labels on transitions. The states are pairs γ = (c, ω), called
configurations, where c is a control state recording the current execution state
and ω is an A(Σ)-data state; we write c(γ) for c and ω(γ) for ω.

Definition 2. A Σ-event/data transition system (Σ-edts, for short) M =
(Γ,R, Γ0) over an ed signature Σ consists of a set of configurations Γ ⊆
C × Ω(Σ) for a set of control states C; a family of transition relations
R = (Re ⊆ Γ × Γ)e∈E(Σ); and a non-empty set of initial configurations
Γ0 ⊆ {c0} × Ω0 for an initial control state c0 ∈ C and a set of initial data
states Ω0 ⊆ Ω(Σ) such that Γ is reachable via R, i.e., for all γ ∈ Γ there are
γ0 ∈ Γ0, n ≥ 0, e1, . . . , en ∈ E(Σ), and (γi, γi+1) ∈ Rei+1 for all 0 ≤ i < n with
γn = γ. We write Γ (M) for Γ , C(M) for C, R(M) for R, c0(M) for c0, Ω0(M)
for Ω0, and Γ0(M) for Γ0. The class of Σ-edts is denoted by EdtsE↓

(Σ).

Atomic actions are given by expressions of the form e�ψ with e an event and
ψ a state transition predicate. The intuition is that the occurrence of the event
e causes a state transition in accordance with ψ, i.e., the pre- and post-data
states satisfy ψ, and ψ specifies the possible effects of e. Following the ideas
of dynamic logic we also use complex, structured actions formed over atomic
actions by union, sequential composition and iteration. All kinds of actions over
an ed signature Σ are called Σ-event/data actions (Σ-ed actions, for short). The
set Λ(Σ) of Σ-ed actions is defined by the grammar

λ ::= e� ψ | λ1 + λ2 | λ1;λ2 | λ∗

A Hybrid Dynamic Logic for Event/Data-Based Systems 83

where e ∈ E(Σ) and ψ ∈ Ψ(Σ). We use the following shorthand notations
for actions: For a subset F = {e1, . . . , ek} ⊆ E(Σ), we use the notation F
to denote the complex action e1� true + . . . + ek� true and −F to denote the
action E(Σ) \ F . For the action E(Σ) we will write E. For e ∈ E(Σ), we
use the notation e to denote the action e� true and −e to denote the action
E \ {e}. Hence, if E(Σ) = {e1, . . . , en} and ei ∈ E(Σ), the action −ei stands for
e1� true + . . . + ei−1� true + ei+1� true + . . . + en� true.

The actions Λ(Σ) are interpreted over a Σ-edts M as the family of relations
(R(M)λ ⊆ Γ (M) × Γ (M))λ∈Λ(Σ) defined by

– R(M)e�ψ = {(γ, γ′) ∈ R(M)e | (ω(γ), ω(γ′)) |=D
A(Σ) ψ},

– R(M)λ1+λ2 = R(M)λ1 ∪ R(M)λ2 , i.e., union of relations,
– R(M)λ1;λ2 = R(M)λ1 ;R(M)λ2 , i.e., sequential composition of relations,
– R(M)λ∗ = (R(M)λ)∗, i.e., reflexive-transitive closure of relations.

To define the event/data formulae of E↓ we assume given a countably infinite
set X of control state variables which are used in formulae to denote the control
part of a configuration. They can be bound by the binder operator ↓x and
accessed by the jump operator @x of hybrid logic. The dynamic part of our logic
is due to the modalities which can be formed over any ed action over a given ed
signature. E↓ thus retains from hybrid logic the use of binders, but omits free
nominals. Thus sentences of the logic become restricted to express properties of
configurations reachable from the initial ones.

Definition 3. The set FrmE↓
(Σ) of Σ-ed formulae over an ed signature Σ is

given by

 ::= ϕ | x | ↓x . | @x . | 〈λ〉 | true | ¬ | 1 ∨ 2

where ϕ ∈ Φ(Σ), x ∈ X, and λ ∈ Λ(Σ). We write [λ] for ¬〈λ〉¬ and we
use the usual boolean connectives as well as the constant false to denote ¬true.1

The set SenE↓
(Σ) of Σ-ed sentences consists of all Σ-ed formulae without free

variables, where the free variables are defined as usual with ↓x being the unique
operator binding variables.

Given an ed signature Σ and a Σ-edts M , the satisfaction of a Σ-ed formula
 is inductively defined w.r.t. valuations v : X → C(M), mapping variables to
control states, and configurations γ ∈ Γ (M):

– M,v, γ |=E↓
Σ ϕ iff ω(γ) |=D

A(Σ) ϕ;

– M,v, γ |=E↓
Σ x iff c(γ) = v(x);

– M,v, γ |=E↓
Σ ↓x . iff M,v{x → c(γ)}, γ |=E↓

Σ ;
– M,v, γ |=E↓

Σ @x . iff M,v, γ′ |=E↓
Σ for all γ′ ∈ Γ (M) with c(γ′) = v(x);

– M,v, γ |=E↓
Σ 〈λ〉 iff M,v, γ′ |=E↓

Σ for some γ′ ∈ Γ (M) with (γ, γ′) ∈ R(M)λ;

1 We use true and false for predicates and formulae; their meaning will always be clear
from the context. For boolean values we will use instead the notations tt and ff .

84 R. Hennicker et al.

– M,v, γ |=E↓
Σ true always holds;

– M,v, γ |=E↓
Σ ¬ iff M,v, γ �|=E↓

Σ ;
– M,v, γ |=E↓

Σ 1 ∨ 2 iff M,v, γ |=E↓
Σ 1 or M,v, γ |=E↓

Σ 2.

If is a sentence then the valuation is irrelevant. M satisfies a sentence ∈
SenE↓

(Σ), denoted by M |=E↓
Σ , if M,γ0 |=E↓

Σ for all γ0 ∈ Γ0(M).
By borrowing the modalities from dynamic logic [9,10], E↓ is able to express

liveness and safety requirements as illustrated in our running ATM example
below. There we use the fact that we can state properties over all reachable
states by sentences of the form [E∗]ϕ. In particular, deadlock-freedom can be
expressed by [E∗]〈E〉true. The logic E↓, however, is also suited to directly express
process structures and, thus, the implementation of abstract requirements. The
binder operator is essential for this. For example, we can specify a process which
switches a boolean value, denoted by the attribute val, from tt to ff and back
by the following sentence:

↓x0 . val = tt ∧ 〈switch� val′ = ff 〉〈switch� val′ = tt〉x0.

2.3 Bisimulation and Invariance

Bisimulation is a crucial notion in both behavioural systems specification and
in modal logics. On the specification side, it provides a standard way to identify
systems with the same behaviour by abstracting the internal specifics of the
systems; this is also reflected at the logic side, where bisimulation frequently
relates states that satisfy the same formulae. We explore some properties of E↓

w.r.t. bisimilarity. Let us first introduce the notion of bisimilarity in the context
of E↓:

Definition 4. Let M1,M2 be Σ-edts. A relation B ⊆ Γ (M1) × Γ (M2) is a
bisimulation relation between M1 and M2 if for all (γ1, γ2) ∈ B the following
conditions hold:
(atom) for all ϕ ∈ Φ(Σ), ω(γ1) |=D

A(Σ) ϕ iff ω(γ2) |=D
A(Σ) ϕ;

(zig) for all e� ψ ∈ Λ(Σ) and for all γ′
1 ∈ Γ (M1) with (γ1, γ

′
1) ∈ R(M1)e�ψ,

there is a γ′
2 ∈ Γ (M2) such that (γ2, γ

′
2) ∈ R(M2)e�ψ and (γ′

1, γ
′
2) ∈ B;

(zag) for all e� ψ ∈ Λ(Σ) and for all γ′
2 ∈ Γ (M2) with (γ2, γ

′
2) ∈ R(M2)e�ψ,

there is a γ′
1 ∈ Γ (M1) such that (γ1, γ

′
1) ∈ R(M1)e�ψ and (γ′

1, γ
′
2) ∈ B.

M1 and M2 are bisimilar, in symbols M1 ∼ M2, if there exists a bisimulation
relation B ⊆ Γ (M1) × Γ (M2) between M1 and M2 such that

(init) for any γ1 ∈ Γ0(M1), there is a γ2 ∈ Γ0(M2) such that (γ1, γ2) ∈ B and
for any γ2 ∈ Γ0(M2), there is a γ1 ∈ Γ0(M1) such that (γ1, γ2) ∈ B.

Now we are able to establish a Hennessy-Milner like correspondence for a
fragment of E↓. Let us call hybrid-free sentences of E↓ the formulae obtained by
the grammar

 ::= ϕ | 〈λ〉 | true | ¬ | 1 ∨ 2.

A Hybrid Dynamic Logic for Event/Data-Based Systems 85

Theorem 1. Let M1,M2 be bisimilar Σ-edts. Then M1 |=E↓
Σ iff M2 |=E↓

Σ for
all hybrid-free sentences .

The converse of Theorem 1 does not hold, in general, and the usual image-
finiteness assumption has to be imposed: A Σ-edts M is image-finite if, for all
γ ∈ Γ (M) and all e ∈ E(Σ), the set {γ′ | (γ, γ′) ∈ R(M)e} is finite. Then:

Theorem 2. Let M1,M2 be image-finite Σ-edts and γ1 ∈ Γ (M1), γ2 ∈ Γ (M2)
such that M1, γ1 |=E↓

Σ iff M2, γ2 |=E↓
Σ for all hybrid-free sentences . Then

there exists a bisimulation B between M1 and M2 such that (γ1, γ2) ∈ B.

3 Specifications of Event/Data Systems

3.1 Axiomatic Specifications

Sentences of E↓-logic can be used to specify properties of event/data systems
and thus to write system specifications in an axiomatic way.

Definition 5. An axiomatic ed specification Sp = (Σ(Sp),Ax (Sp)) in E↓

consists of an ed signature Σ(Sp) ∈ SigE↓
and a set of axioms Ax (Sp) ⊆

SenE↓
(Σ(Sp)).

The semantics of Sp is given by the pair (Σ(Sp),Mod(Sp)) where Mod(Sp) =
{M ∈ EdtsE↓

(Σ(Sp)) | M |=E↓
Σ(Sp) Ax (Sp)}. The edts in Mod(Sp) are called

models of Sp and Mod(Sp) is the model class of Sp.

As a direct consequence of Theorem 1 we have:

Corollary 1. The model class of an axiomatic ed specification exclusively
expressed by hybrid-free sentences is closed under bisimulation.

This result does not hold for sentences with hybrid features. For instance,
consider the specification Sp =

(
({e}, {a}), {↓x . 〈e� a′ = a〉x}): An edts with

a single control state c0 and a loop transition Re = {(γ0, γ0)} for c(γ0) = c0

is a model of Sp. However, this is obviously not the case for its bisimilar edts
with two control states c0 and c and the relation R′

e = {(γ0, γ), (γ, γ0)} with
c(γ0) = c0, c(γ) = c and ω(γ0) = ω(γ).

Example 1. As a running example we consider an ATM. We start with an
abstract specification Sp0 of fundamental requirements for its interaction
behaviour based on the set of events E0 = {insertCard, enterPIN, ejectCard,
cancel}2 and on the singleton set of attributes A0 = {chk} where chk is boolean
valued and records the correctness of an entered PIN. Hence our first ed signa-
ture is Σ0 = (E0, A0) and Sp0 = (Σ0,Ax 0) where Ax 0 requires the following
properties expressed by corresponding axioms (0.1–0.3):

2 For shortening the presentation we omit further events like withdrawing money, etc.

86 R. Hennicker et al.

– “Whenever a card has been inserted, a correct PIN can eventually be entered
and also the transaction can eventually be cancelled.”

[E∗; insertCard](〈E∗; enterPIN� chk′ = tt〉true ∧ 〈E∗; cancel〉true) (0.1)

– “Whenever either a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected.”

[E∗; (enterPIN� chk′ = tt) + cancel]〈E∗; ejectCard〉true (0.2)

– “Whenever an incorrect PIN has been entered three times in a row, the current
card is not returned.” This means that the card is kept by the ATM which is
not modelled by an extra event. It may, however, still be possible that another
card is inserted afterwards. So an ejectCard can only be forbidden as long as
no next card is inserted.

[E∗; (enterPIN� chk′ = ff)3; (−insertCard)∗; ejectCard]false (0.3)

where λn abbreviates the n-fold sequential composition λ; . . . ;λ.

The semantics of an axiomatic ed specification is loose allowing usually for
many different realisations. A refinement step is therefore understood as a restric-
tion of the model class of an abstract specification. Following the terminology
of Sannella and Tarlecki [18,19], we call a specification refining another one
an implementation. Formally, a specification Sp′ is a simple implementation of
a specification Sp over the same signature, in symbols Sp � Sp′, whenever
Mod(Sp) ⊇ Mod(Sp′). Transitivity of the inclusion relation ensures gradual
step-by-step development by a series of refinements.

Example 2. We provide a refinement Sp0 � Sp1 where Sp1 = (Σ0,Ax 1) has the
same signature as Sp0 and Ax 1 are the sentences (1.1–1.4) below; the last two
use binders to specify a loop. As is easily seen, all models of Sp1 must satisfy
the axioms of Sp0.

– “At the beginning a card can be inserted with the effect that chk is set to ff ;
nothing else is possible at the beginning.”

〈insertCard� chk′ = ff 〉true ∧ (1.1)
[insertCard� ¬(chk′ = ff)]false ∧ [−insertCard]false

– “Whenever a card has been inserted, a PIN can be entered (directly after-
wards) and also the transaction can be cancelled; but nothing else.”

[E∗; insertCard](〈enterPIN〉true ∧ 〈cancel〉true ∧ (1.2)
[−{enterPIN, cancel}]false)

A Hybrid Dynamic Logic for Event/Data-Based Systems 87

– “Whenever either a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected and the ATM starts from the
beginning.”

↓x0 . [E∗; (enterPIN� chk′ = tt) + cancel]〈E∗; ejectCard〉x0 (1.3)

– “Whenever an incorrect PIN has been entered three times in a row the ATM
starts from the beginning.” Hence the current card is kept.

↓x0 . [E∗; (enterPIN� chk′ = ff)3]x0 (1.4)

3.2 Operational Specifications

Operational event/data specifications are introduced as a means to specify in a
more constructive style the properties of event/data systems. They are not appro-
priate for writing abstract requirements for which axiomatic specifications are
recommended. Though E↓-logic is able to specify concrete models, as discussed
in Sect. 2, the use of operational specifications allows a graphic representation
close to familiar formalisms in the literature, like UML protocol state machines,
cf. [12,16]. As will be shown in Sect. 3.3, finite operational specifications can be
characterised by a sentence in E↓-logic. Therefore, E↓-logic is still the common
basis of our development approach. Transitions in an operational specification
are tuples (c, ϕ, e, ψ, c′) with c a source control state, ϕ a precondition, e an event,
ψ a state transition predicate specifying the possible effects of the event e, and
c′ a target control state. In the semantic models an event must be enabled when-
ever the respective source data state satisfies the precondition. Thus isolating
preconditions has a semantic consequence that is not expressible by transition
predicates only. The effect of the event must respect ψ; no other transitions are
allowed.

Definition 6. An operational ed specification O = (Σ,C, T, (c0, ϕ0)) is given
by an ed signature Σ, a set of control states C, a transition relation specification
T ⊆ C ×Φ(Σ)×E(Σ)×Ψ(Σ)×C, an initial control state c0 ∈ C, and an initial
state predicate ϕ0 ∈ Φ(Σ), such that C is syntactically reachable, i.e., for every
c ∈ C \{c0} there are (c0, ϕ1, e1, ψ1, c1), . . . , (cn−1, ϕn, en, ψn, cn) ∈ T with n > 0
such that cn = c. We write Σ(O) for Σ, etc.

A Σ-edts M is a model of O if C(M) = C up to a bijective renaming,
c0(M) = c0, Ω0(M) ⊆ {ω | ω |=D

A(Σ) ϕ0}, and if the following conditions hold:

– for all (c, ϕ, e, ψ, c′) ∈ T and ω ∈ Ω(A(Σ)) with ω |=D
A(Σ) ϕ, there is a ((c, ω),

(c′, ω′)) ∈ R(M)e with (ω, ω′) |=D
A(Σ) ψ;

88 R. Hennicker et al.

Fig. 1. Operational ed specification ATM

– for all ((c, ω), (c′, ω′)) ∈ R(M)e there is a (c, ϕ, e, ψ, c′) ∈ T with ω |=D
A(Σ) ϕ

and (ω, ω′) |=D
A(Σ) ψ.

The class of all models of O is denoted by Mod(O). The semantics of O is given
by the pair (Σ(O),Mod(O)) where Σ(O) = Σ.

Example 3. We construct an operational ed specification, called ATM , for the
ATM example. The signature of ATM extends the one of Sp1 (and Sp0) by an
additional integer-valued attribute trls which counts the number of attempts to
enter a correct PIN (with the same card). ATM is graphically presented in Fig. 1.
The initial control state is Card , and the initial state predicate is true. Precondi-
tions are written before the symbol →. If no precondition is explicitly indicated
it is assumed to be true. Due to the extended signature, ATM is not a simple
implementation of Sp1, and we will only formally justify the implementation
relationship in Example 5.

Operational specifications can be composed by a syntactic parallel composi-
tion operator which synchronises shared events. Two ed signatures Σ1 and Σ2

are composable if A(Σ1) ∩ A(Σ2) = ∅. Their parallel composition is given by
Σ1 ⊗ Σ2 = (E(Σ1) ∪ E(Σ2), A(Σ1) ∪ A(Σ2)).

Definition 7. Let Σ1 and Σ2 be composable ed signatures and let O1 and O2

be operational ed specifications with Σ(O1) = Σ1 and Σ(O2) = Σ2. The parallel
composition of O1 and O2 is given by the operational ed specification O1 ‖ O2 =
(Σ1 ⊗ Σ2, C, T, (c0, ϕ0)) with c0 = (c0(O1), c0(O2)), ϕ0 = ϕ0(O1) ∧ ϕ0(O2), and
C and T are inductively defined by c0 ∈ C and

– for e1 ∈ E(Σ1) \ E(Σ2), c1, c
′
1 ∈ C(O1), and c2 ∈ C(O2), if (c1, c2) ∈ C and

(c1, ϕ1, e1, ψ1, c
′
1) ∈ T (O1), then (c′

1, c2) ∈ C and ((c1, c2), ϕ1, e1, ψ1 ∧ idA(Σ2),
(c′

1, c2)) ∈ T ;
– for e2 ∈ E(Σ2) \ E(Σ1), c2, c

′
2 ∈ C(O2), and c1 ∈ C(O1), if (c1, c2) ∈ C and

(c2, ϕ2, e2, ψ2, c
′
2) ∈ T (O2), then (c1, c

′
2) ∈ C and ((c1, c2), ϕ2, e2, ψ2 ∧ idA(Σ1),

(c1, c
′
2)) ∈ T ;

A Hybrid Dynamic Logic for Event/Data-Based Systems 89

– for e ∈ E(Σ1) ∩ E(Σ2), c1, c
′
1 ∈ C(O1), and c2, c

′
2 ∈ C(O2), if (c1, c2) ∈ C,

(c1, ϕ1, e, ψ1, c
′
1) ∈ T (O1), and (c2, ϕ2, e, ψ2, c

′
2) ∈ T (O2), then (c′

1, c
′
2) ∈ C

and ((c1, c2), ϕ1 ∧ ϕ2, e, ψ1 ∧ ψ2, (c′
1, c

′
2)) ∈ T .3

3.3 Expressiveness of E↓-Logic

We show that the semantics of an operational ed specification O with finitely
many control states can be characterised by a single E↓-sentence O, i.e., an edts
M is a model of O iff M |=E↓

Σ(O) O. Using Algorithm 1, such a characterising
sentence is

O = ↓c0 . ϕ0 ∧ sen(c0, ImO(c0), C(O), {c0}) ,

where c0 = c0(O) and ϕ0 = ϕ0(O). Algorithm 1 closely follows the procedure
in [15] for characterising a finite structure by a sentence of D↓-logic. A call sen(c,
I, V,B) performs a recursive breadth-first traversal through O starting from c,
where I holds the unprocessed quadruples (ϕ, e, ψ, c′) of transitions outgoing
from c, V the remaining states to visit, and B the set of already bound states.
The function first requires the existence of each outgoing transition of I, provided
its precondition holds, in the resulting formula, binding any newly reached state.
Then it requires that no other transitions with source state c exist using calls
to fin. Having visited all states in V , it finally requires all states in C(O) to be
pairwise different.

Algorithm 1. Constructing a sentence from an operational ed specification
Require: O ≡ finite operational ed specification

ImO(c) = {(ϕ, e, ψ, c′) | (c, ϕ, e, ψ, c′) ∈ T (O)} for c ∈ C(O)
ImO(c, e) = {(ϕ, ψ, c′) | (c, ϕ, e, ψ, c′) ∈ T (O)} for c ∈ C(O), e ∈ E(Σ(O))

1 function sen(c, I, V, B) � c: state, I: image to visit, V : states to visit, B: bound states
2 if I �= ∅ then
3 (ϕ, e, ψ, c′) ← choose I
4 if c′ ∈ B then

5 return @c . ϕ → 〈e� ψ〉(c′ ∧ sen(c, I \ {(ϕ, e, ψ, c′)}, V, B))

6 else
7 return @c . ϕ → 〈e� ψ〉(↓c′ . sen(c, I \ {(ϕ, e, ψ, c′)}, V, B ∪ {c′}))

8 V ← V \ {c}
9 if V �= ∅ then

10 c′ ← choose B ∩ V

11 return fin(c) ∧ sen(c′, ImO(c′), V, B)

12 return fin(c) ∧ ∧
c1∈C(O),c2∈C(O)\{c1} ¬@c1 . c2

13 function fin(c)
14 return @c .

∧
e∈E(Σ(O))

∧
P⊆ImO(c,e)

[e�
(∧

(ϕ,ψ,c′)∈P (ϕ ∧ ψ)
) ∧

¬(∨
(ϕ,ψ,c′)∈ImO(c,e)\P (ϕ ∧ ψ)

)
]
(∨

(ϕ,ψ,c′)∈P c′)

3 Note that joint moves with e cannot become inconsistent due to composability of ed
signatures.

90 R. Hennicker et al.

It is fin(c) where this algorithm mainly deviates from [15]: To ensure that
no other transitions from c exist than those specified in O, fin(c) produces the
requirement that at state c, for every event e and for every subset P of the
transitions outgoing from c, whenever an e-transition can be done with the com-
bined effect of P but not adhering to any of the effects of the currently not
selected transitions, the e-transition must have one of the states as its target
that are target states of P . The rather complicated formulation is due to possi-
bly overlapping preconditions where for a single event e the preconditions of two
different transitions may be satisfied simultaneously. For a state c, where all out-
going transitions for the same event have disjoint preconditions, the E↓-formula
returned by fin(c) is equivalent to

@c .
∧

e∈E(Σ(O))

∧
(ϕ,ψ,c′)∈ImO(c,e)[e� ϕ ∧ ψ]c′ ∧

[e� ¬(∨
(ϕ,ψ,c′)∈ImO(c,e)(ϕ ∧ ψ)

)
]false.

Example 4. We show the first few steps of representing the operational ed spec-
ification ATM of Fig. 1 as an E↓-sentence ATM . This top-level sentence is

↓Card . true ∧ sen(Card , {(true, insertCard, chk′ = ff ∧ trls′ = 0,PIN)},
{Card ,PIN ,Return}, {Card}).

The first call of sen(Card , . . .) explores the single outgoing transition from Card
to PIN , adds PIN to the bound states, and hence expands to

@Card . true → 〈insertCard� chk′ = ff ∧ trls′ = 0〉↓PIN .
sen(Card , ∅, {Card ,PIN ,Return}, {Card ,PIN }).

Now all outgoing transitions from Card have been explored and the next call of
sen(Card , ∅, . . .) removes Card from the set of states to be visited, resulting in

fin(Card) ∧ sen(PIN , {(trls < 2, enterPIN, . . .), (trls = 2, enterPIN, . . .),
(trls ≤ 2, enterPIN, . . .), (true, cancel, . . .)},

{PIN ,Return}, {Card ,PIN }).

As there is only a single outgoing transition from Card , the special case of disjoint
preconditions applies for the finalisation call, and fin(Card) results in

@Card . [insertCard� chk′ = ff ∧ trls′ = 0]PIN ∧
[insertCard� chk′ = tt ∨ trls′ �= 0]false ∧
[enterPIN� true]false ∧ [cancel� true]false ∧ [ejectCard� true]false.

4 Constructor Implementations

The implementation notion defined in Sect. 3.1 is too simple for many practical
applications. It requires the same signature for specification and implementation
and does not support the process of constructing an implementation. Therefore,

A Hybrid Dynamic Logic for Event/Data-Based Systems 91

Sannella and Tarlecki [18,19] have proposed the notion of constructor implemen-
tation which is a generic notion applicable to specification formalisms which are
based on signatures and semantic structures for signatures. We will reuse the
ideas in the context of E↓-logic.

The notion of constructor is the basis: for signatures Σ1, . . . , Σn, Σ ∈ SigE↓
,

a constructor κ from (Σ1, . . . , Σn) to Σ is a (total) function κ : EdtsE↓
(Σ1) ×

. . . × EdtsE↓
(Σn) → EdtsE↓

(Σ). Given a constructor κ from (Σ1, . . . , Σn) to Σ
and a set of constructors κi from (Σ1

i , . . . , Σki
i) to Σi, 1 ≤ i ≤ n, the constructor

(κ1, . . . , κn);κ from (Σ1
1 , . . . , Σk1

1 , . . . , Σ1
n, . . . , Σkn

n) to Σ is obtained by the usual
composition of functions. The following definitions apply to both axiomatic and
operational ed specifications since the semantics of both is given in terms of ed
signatures and model classes of edts. In particular, the implementation notion
allows to implement axiomatic specifications by operational specifications.

Definition 8. Given specifications Sp,Sp1, . . . ,Spn and a constructor κ from
(Σ(Sp1), . . . , Σ(Spn)) to Σ(Sp), the tuple 〈Sp1, . . . ,Spn〉 is a constructor imple-
mentation via κ of Sp, in symbols Sp �κ 〈Sp1, . . . ,Spn〉, if for all Mi ∈
Mod(Spi) we have κ(M1, . . . , Mn) ∈ Mod(Sp). The implementation involves a
decomposition if n > 1.

The notion of simple implementation in Sect. 3.1 is captured by choosing the
identity. We now introduce a set of more advanced constructors in the context of
ed signatures and edts. Let us first consider two central notions for constructors:
signature morphisms and reducts. For data signatures A,A′ a data signature
morphism σ : A → A′ is a function from A to A′. The σ-reduct of an A′-data
state ω′ : A′ → D is given by the A-data state ω′|σ : A → D defined by
(ω′|σ)(a) = ω′(σ(a)) for every a ∈ A. If A ⊆ A′, the injection of A into A′ is a
particular data signature morphism and we denote the reduct of an A′-data state
ω′ to A by ω′�A. If A = A1 ∪ A2 is the disjoint union of A1 and A2 and ωi are
Ai-data states for i ∈ {1, 2} then ω1+ω2 denotes the unique A-data state ω with
ω�Ai = ωi for i ∈ {1, 2}. The σ-reduct γ|σ of a configuration γ = (c, ω′) is given
by (c, ω′|σ), and is lifted to a set of configurations Γ ′ by Γ ′|σ = {γ′|σ | γ′ ∈ Γ ′}.

Definition 9. An ed signature morphism σ = (σE , σA) : Σ → Σ′ is given by
a function σE : E(Σ) → E(Σ′) and a data signature morphism σA : A(Σ) →
A(Σ′). We abbreviate both σE and σA by σ.

Definition 10. Let σ : Σ → Σ′ be an ed signature morphism and M ′ a Σ′-edts.
The σ-reduct of M ′ is the Σ-edts M ′|σ = (Γ,R, Γ0) such that Γ0 = Γ0(M ′)|σ,
and Γ and R = (Re)e∈E(Σ) are inductively defined by Γ0 ⊆ Γ and for all e ∈
E(Σ), γ′, γ′′ ∈ Γ (M ′): if γ′|σ ∈ Γ and (γ′, γ′′) ∈ R(M ′)σ(e), then γ′′|σ ∈ Γ and
(γ′|σ, γ′′|σ) ∈ Re.

Definition 11. Let σ : Σ → Σ′ be an ed signature morphism. The reduct con-
structor κσ from Σ′ to Σ maps any M ′ ∈ EdtsE↓

(Σ′) to its reduct κσ(M ′) =
M ′|σ. Whenever σA and σE are bijective functions, κσ is a relabelling construc-
tor. If σE and σA are injective, κσ is a restriction constructor.

92 R. Hennicker et al.

Example 5. The operational specification ATM is a constructor implementation
of Sp1 via the restriction constructor κι determined by the inclusion signature
morphism ι : Σ(Sp1) → Σ(ATM), i.e., Sp1 �κι

ATM .

A further refinement technique for reactive systems (see, e.g., [8]), is the
implementation of simple events by complex events, like their sequential compo-
sition. To formalise this as a constructor we use composite events Θ(E) over a
given set of events E, given by the grammar θ ::= e | θ + θ | θ; θ | θ∗ with e ∈ E.
They are interpreted over an (E,A)-edts M by R(M)θ1+θ2 = R(M)θ1 ∪R(M)θ2 ,
R(M)θ1;θ2 = R(M)θ1 ;R(M)θ2 , and R(M)θ∗ = (R(M)θ)∗. Then we can intro-
duce the intended constructor by means of reducts over signature morphisms
mapping atomic to composite events:

Definition 12. Let Σ,Σ′ be ed signatures, D′ a finite subset of Θ(E(Σ′)), Δ′ =
(D′, A(Σ′)), and α : Σ → Δ′ an ed signature morphism. The event refinement
constructor κα from Δ′ to Σ maps any M ′ ∈ EdtsE↓

(Δ′) to its reduct M ′|α ∈
EdtsE↓

(Σ).

Finally, we consider a semantic, synchronous parallel composition construc-
tor that allows for decomposition of implementations into components which
synchronise on shared events. Given two composable signatures Σ1 and Σ2, the
parallel composition γ1 ⊗ γ2 of two configurations γ1 = (c1, ω1), γ2 = (c2, ω2)
with ω1 ∈ Ω(A(Σ1)), ω2 ∈ Ω(A(Σ2)) is given by ((c1, c2), ω1 +ω2), and lifted to
two sets of configurations Γ1 and Γ2 by Γ1 ⊗ Γ2 = {γ1 ⊗ γ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}.

Definition 13. Let Σ1, Σ2 be composable ed signatures. The parallel compo-
sition constructor κ⊗ from (Σ1, Σ2) to Σ1 ⊗ Σ2 maps any M1 ∈ EdtsE↓

(Σ1),
M2 ∈ EdtsE↓

(Σ2) to M1 ⊗ M2 = (Γ,R, Γ0) ∈ EdtsE↓
(Σ1 ⊗ Σ2), where

Γ0 = Γ0(M1)⊗Γ0(M2), and Γ and R = (Re)E(Σ1)∪E(Σ2) are inductively defined
by Γ0 ⊆ Γ and

– for all e1 ∈ E(Σ1) \ E(Σ2), γ1, γ
′
1 ∈ Γ (M1), and γ2 ∈ Γ (M2), if γ1 ⊗ γ2 ∈ Γ

and (γ1, γ
′
1) ∈ R(M1)e1 , then γ′

1 ⊗ γ2 ∈ Γ and (γ1 ⊗ γ2, γ
′
1 ⊗ γ2) ∈ Re1 ;

– for all e2 ∈ E(Σ2) \ E(Σ1), γ2, γ
′
2 ∈ Γ (M2), and γ1 ∈ Γ (M1), if γ1 ⊗ γ2 ∈ Γ

and (γ2, γ
′
2) ∈ R(M2)e2 , then γ1 ⊗ γ′

2 ∈ Γ and (γ1 ⊗ γ2, γ1 ⊗ γ′
2) ∈ Re2 ;

– for all e ∈ E(Σ1) ∩ E(Σ2), γ1, γ
′
1 ∈ Γ (M1), and γ2, γ

′
2 ∈ Γ (M2), if γ1 ⊗

γ2 ∈ Γ , (γ1, γ
′
1) ∈ R(M1)e1 , and (γ2, γ

′
2) ∈ R(M2)e2 , then γ′

1 ⊗ γ′
2 ∈ Γ and

(γ1 ⊗ γ2, γ
′
1 ⊗ γ′

2) ∈ Re.

An obvious question is how the semantic parallel composition constructor is
related to the syntactic parallel composition of operational ed specifications.

Proposition 1. Let O1, O2 be operational ed specifications with composable sig-
natures. Then Mod(O1)⊗Mod(O2) ⊆ Mod(O1 ‖ O2), where Mod(O1)⊗Mod(O2)
denotes κ⊗(Mod(O1),Mod(O2)).

A Hybrid Dynamic Logic for Event/Data-Based Systems 93

The converse Mod(O1 ‖ O2) ⊆ Mod(O1)⊗Mod(O2) does not hold: Consider
the ed signature Σ = (E,A) with E = {e}, A = ∅, and the operational ed
specifications Oi = (Σ,Ci, Ti, (ci,0, ϕi,0)) for i ∈ {1, 2} with C1 = {c1,0}, T1 =
{(c1,0, true, e, false, c1,0)}, ϕ1,0 = true; and C2 = {c2,0}, T2 = ∅, ϕ2,0 = true.
Then Mod(O1) = ∅, but Mod(O1 ‖ O2) = {M} with M showing just the initial
configuration.

The next theorem shows the usefulness of the syntactic parallel composi-
tion operator for proving implementation correctness when a (semantic) parallel
composition constructor is involved. The theorem is a direct consequence of
Proposition 1 and Definition 8.

Theorem 3. Let Sp be an (axiomatic or operational) ed specification, O1, O2

operational ed specifications with composable signatures, and κ an implemen-
tation constructor from Σ(O1) ⊗ Σ(O2) to Σ(Sp): If Sp �κ O1 ‖ O2, then
Sp �κ⊗;κ 〈O1, O2〉.

Example 6. We finish the refinement chain for the ATM specifications by apply-
ing a decomposition into two parallel components. The operational specifica-
tion ATM of Example 3 (and Example 5) describes the interface behaviour
of an ATM interacting with a user. For a concrete realisation, however, an
ATM will also interact internally with other components, like, e.g., a clear-
ing company which supports the ATM for verifying PINs. Our last refinement
step hence realises the ATM specification by two parallel components, repre-
sented by the operational specification ATM ′ in Fig. 2a and the operational
specification CC of a clearing company in Fig. 2b. Both communicate (via
shared events) when an ATM sends a verification request, modelled by the
event verifyPIN, to the clearing company. The clearing company may answer
with correctPIN or wrongPIN and then the ATM continues following its speci-
fication. For the implementation construction we use the parallel composition
constructor κ⊗ from (Σ(ATM ′), Σ(CC)) to Σ(ATM ′) ⊗ Σ(CC). The signa-
ture of CC consists of the events shown on the transitions in Fig. 2b. More-
over, there is one integer-valued attribute cnt counting the number of verifica-
tion tasks performed. The signature of ATM ′ extends Σ(ATM) by the events
verifyPIN, correctPIN and wrongPIN. To fit the signature and the behaviour
of the parallel composition of ATM ′ and CC to the specification ATM we
must therefore compose κ⊗ with an event refinement constructor κα such that
α(enterPIN) = (enterPIN; verifyPIN; (correctPIN+wrongPIN)); for the other events
α is the identity and for the attributes the inclusion. The idea is therefore that
the refinement looks like ATM �κ⊗; κα

〈ATM ′,CC 〉. To prove this refinement
relation we rely on the syntactic parallel composition ATM ′ ‖ CC shown in
Fig. 2c, and on Theorem3. It is easy to see that ATM �κα

ATM ′ ‖ CC . In
fact, all transitions for event enterPIN in Fig. 1 are split into several transitions
in Fig. 2c according to the event refinement defined by α. For instance, the loop
transition from PIN to PIN with precondition trls < 2 in Fig. 1 is split into

94 R. Hennicker et al.

Fig. 2. Operational ed specifications ATM ′, CC and their parallel composition

the cycle from (PIN , Idle) via (PINEntered , Idle) and (Verifying ,Busy) back to
(PIN , Idle) in Fig. 2c. Thus, we have ATM �κα

ATM ′ ‖ CC and can apply
Theorem 3 such that we get ATM �κ⊗; κα

〈ATM ′,CC 〉.

A Hybrid Dynamic Logic for Event/Data-Based Systems 95

5 Conclusions

We have presented a novel logic, called E↓-logic, for the rigorous formal devel-
opment of event-based systems incorporating changing data states. To the best
of our knowledge, no other logic supports the full development process for this
kind of systems ranging from abstract requirements specifications, expressible
by the dynamic logic features, to the concrete specification of implementations,
expressible by the hybrid part of the logic.

The temporal logic of actions (TLA [13]) supports also stepwise refinement
where state transition predicates are considered as actions. In contrast to TLA
we model also the events which cause data state transitions. For writing con-
crete specifications we have proposed an operational specification format captur-
ing (at least parts of) similar formalisms, like Event-B [1], symbolic transition
systems [17], and UML protocol state machines [16]. A significant difference to
Event-B machines is that we distinguish between control and data states, the
former being encoded as data in Event-B. On the other hand, Event-B sup-
ports parameters of events which could be integrated in our logic as well. An
institution-based semantics of Event-B has been proposed in [7] which coincides
with our semantics of operational specifications for the special case of determin-
istic state transition predicates. Similarly, our semantics of operational specifi-
cations coincides with the unfolding of symbolic transition systems in [17] if we
instantiate our generic data domain with algebraic specifications of data types
(and consider again only deterministic state transition predicates). The syntax
of UML protocol state machines is about the same as the one of operational
event/data specifications. As a consequence, all of the aforementioned concrete
specification formalisms (and several others) would be appropriate candidates
for integration into a development process based on E↓-logic.

There remain several interesting tasks for future research. First, our logic is
not yet equipped with a proof system for deriving consequences of specifications.
This would also support the proof of refinement steps which is currently achieved
by purely semantic reasoning. A proof system for E↓-logic must cover dynamic
and hybrid logic parts at the same time, like the proof system in [15], which,
however, does not consider data states, and the recent calculus of [5], which
extends differential dynamic logic but does not deal with events and reactions to
events. Both proof systems could be appropriate candidates for incorporating the
features of E↓-logic. Another issue concerns the separation of events into input
and output as in I/O-automata [14]. Then also communication compatibility
(see [2] for interface automata without data and [3] for interface theories with
data) would become relevant when applying a parallel composition constructor.

96 R. Hennicker et al.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2013)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.)
Proceedings 8th European Software Engineering Conference & 9th ACM SIGSOFT
International Symposium Foundations of Software Engineering, pp. 109–120. ACM
(2001)

3. Bauer, S.S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and
data. Theoret. Comput. Sci. 412(28), 3101–3121 (2011)

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–
148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-4 11

5. Bohrer, B., Platzer, A.: A hybrid, dynamic logic for hybrid-dynamic information
flow. In: Dawar, A., Grädel, E. (eds.) Proceedings of 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, pp. 115–124. ACM (2018)

6. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-94-007-0002-4

7. Farrell, M., Monahan, R., Power, J.F.: An institution for Event-B. In: James, P.,
Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 104–119. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 8

8. Gorrieri, R., Rensink, A.: Action refinement. In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 1047–1147. Elsevier, Amsterdam
(2000)

9. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
11. Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-

based systems (2019). https://arxiv.org/abs/1902.03074
12. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple

UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 1

13. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2003)

14. Lynch, N.A.: Input/output automata: basic, timed, hybrid, probabilistic, dynamic,
. . .. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 191–
192. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7 12

15. Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: A logic for the stepwise
development of reactive systems. Theoret. Comput. Sci. 744, 78–96 (2018)

16. Object Management Group: Unified Modeling Language 2.5. Standard
formal/2015-03-01, OMG (2015)

17. Poizat, P., Royer, J.C.: A formal architectural description language based on sym-
bolic transition systems and modal logic. J. Univ. Comp. Sci. 12(12), 1741–1782
(2006)

https://doi.org/10.1007/978-3-540-79707-4_11
https://doi.org/10.1007/978-94-007-0002-4
https://doi.org/10.1007/978-3-319-72044-9_8
https://arxiv.org/abs/1902.03074
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-540-45187-7_12

A Hybrid Dynamic Logic for Event/Data-Based Systems 97

18. Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Inf. 25(3), 233–281 (1988)

19. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal
Software Development. EATCS Monographs in Theoretical Computer Science.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-17336-3
http://creativecommons.org/licenses/by/4.0/

Model-Driven Development and Model
Transformation

Pyro: Generating Domain-Specific
Collaborative Online Modeling

Environments

Philip Zweihoff(B), Stefan Naujokat, and Bernhard Steffen

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{philip.zweihoff,stefan.naujokat,bernhard.steffen}@tu-dortmund.de

Abstract. We present Pyro, a framework for enabling domain-specific
modeling via the internet. Provided with an adequate metamodel spec-
ification, Pyro turns your browser into a collaborative, domain-specific,
graphical development environment with features reminiscent of desktop
IDEs for textual programming languages. The required metamodeling
is supported in a high-level, simplicity-driven fashion, and the entire
ready-to-run browser-based domain-specific development environment is
generated fully automatically. We will illustrate the steps of this devel-
opment along the realization of a graphical IDE for the Architecture
Analysis and Design Language (AADL).

1 Introduction

Domain-specific languages (DSLs) aim at closing the gap between domain knowl-
edge and software development by explicitly supporting the required domain
concepts. Graphical domain-specific languages have turned out to be particu-
larly suitable for domain experts without any programming background. The
bottleneck in practice is the enormous effort to develop the required domain-
specific graphical modeling tools. The Cinco SCCE Meta Tooling Suite [26] has
been designed to overcome this bottleneck by providing a holistic, simplicity-
driven [22] approach for the creation of such domain-specific graphical modeling
tools. A key feature of Cinco is that it generates the entire graphical modeling
environment (referred to as ‘Cinco Products’ in the remainder of the paper)
from high-level specifications of the defined model structures and functionali-
ties. The (translational) semantics of the specified modeling language is defined
in terms of code generation, model transformation, evaluation, and/or interpre-
tation [20]. Cinco Products are Eclipse-based, graphical modeling tools that are
realized via a number of Eclipse plug-ins [13]. Thus, setting up a Cinco Prod-
uct involves some technical aspects that are beyond the competence of typical
domain experts, and it becomes even more tedious when one wants to enable a
cooperative development.

In this paper, we present Pyro, a tool that enables one to generate Cinco
Products for collaborative modeling that run in a web browser. Conceptually,
Pyro borrows from modern online editors for collaborative work, like Google
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 101–115, 2019.
https://doi.org/10.1007/978-3-030-16722-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_6

102 P. Zweihoff et al.

Fig. 1. Cinco generation architecture.

Docs, Microsoft Office 365, or solutions like ShareLaTeX/Overleaf that even
free one from maintaining a corresponding build and runtime environment.

Key to the realization of Pyro is that Cinco follows a fully generative app-
roach on the meta level, which allows one to modularly ‘retarget’ the Cinco
Product Generation for the web (cf. Fig. 1). Technically, Pyro web modeling
environments utilize DyWA [27] (Dynamic Web Application) for data modeling,
empowering prototype-driven application development.

In order to achieve this retargeting and to enable collaborative work, Pyro
needs to, in particular, compensate for all the required functionality provided
by the Eclipse platform, like the EMF framework with GMF or Graphiti for
graphical editors. Altogether, this poses the following three key challenges:

– Developing an adequate web solution for the metamodel-based model han-
dling (API, persistence, event system, etc.) that in the Eclipse world is pro-
vided by the EMF framework [33] (see Architecture Backend, Sect. 3.1).

– Developing a frontend on top of these model structures that feels like a modern
integrated development environment with a graphical editor for the models,
which in the Eclipse world is provided by the Rich Client Platform (RCP) [24]
and the Graphiti editor framework [2] (see Architecture Frontend, Sect. 3.2).

– Enabling real-time live collaborative working on models, which is not foreseen
in an offline client like Eclipse (see Collaborative Editing, Sect. 4).

In the course of this tool paper, Pyro is illustrated along the development of a
graphical modeling environment for the Architecture Analysis and Design Lan-
guage (AADL), an SAE standard for modeling the architecture of embedded
real-time systems [29]. Cinco was used to develop a graphical AADL modeling
tool supporting a subset of AADL’s features tailored to be used in teaching [28],

Pyro: Generating Domain-Specific Collaborative Online Modeling 103

Fig. 2. Pyro web-based modeling environment for the AADL language.

where it replaces the graphical editor of the OSATE tool [8] (AADL’s refer-
ence implementation). Furthermore, a dedicated code generator was developed
to support verification with behavior specified with the BLESS language [17].
Another example for Pyro realizing a DSL for point and click adventures can be
found in [21].

Figure 2 shows the web-based graphical AADL editor in Pyro1. We will use
this editor in the remainder of this paper to illustrate Cinco’s and Pyro’s core
ideas and concepts. The user interface is designed after commonly known con-
cepts from integrated development environments, like Eclipse or IntelliJ. The
main area in the center is covered by the modeling canvas showing the currently
edited model. On the right, there is the palette showing the available types of
modeling elements. They can be placed onto the canvas just by drag&drop. The
attributes of the currently selected element in the editor can be set via the prop-
erties view at the bottom. The validation view (bottom right corner) constantly
checks for the syntax and static semantics of the model in the canvas and pro-
vides appropriate error or warning messages. Finally, a project explorer and a
menu bar complete the IDE-like appearance.

The remainder of the paper is organized as follows: While Sect. 2 briefly describes
the use of Cinco’s specification languages to define a sophisticated graphical

1 The editor is available for experimentation on the Pyro website: https://pyro.scce.info.

https://pyro.scce.info

104 P. Zweihoff et al.

modeling language, the generation to a web-based environment and the resulting
architecture is explained in Sect. 3. The mechanisms and techniques used to
enable simultaneous collaboration are explained in Sect. 4. The paper closes with
a summary, related work, and an outlook of the future development in Sect. 5.

2 DSL Development with Cinco

Cinco is a language workbench [11] for the simplicity-driven development of
graphical modeling environments that are domain-specific [12], support full code
generation [10,15], and easily integrate existing solutions in the form of ser-
vices [23]. As Cinco is itself a meta-level application of these principles [25], it
is specialized to the domain of ‘graph-based graphical modeling tools’ and fully
generates such tools from meta-level descriptions (models) – the key enabling
factor for the whole Pyro approach. Primarily relevant in this regard are two
Cinco metamodeling languages:2

1. The Meta Graph Language (MGL) allows for the definition of the abstract
syntax of the developed language, i.e., which types of language elements exist
and how they can be related. In the context of AADL, this means, for instance,
that a system model consists of devices, processes and threads, and that all
of them have ports (of different types) that can be connected with data/in-
formation flow edges.

2. The Meta Style Language (MSL) is used to specify the concrete graphical
syntax of those MGL-defined concepts by means of simple hierarchical shapes
and their appearance (such as color, line type/width, etc.). As can be seen in
Fig. 2, for instance, devices are depicted by a black thick line rectangle, while
threads appear as a grey dashed line parallelogram.

With these meta-level specification files, the Cinco Product Generator
(which is part of Cinco) generates plug-ins for the Eclipse Rich Client Plat-
form (RCP) that realize the editor based on the Eclipse Modeling Framework
(EMF) and the Graphiti graphical editor framework. Further additions to the
editor, which are not covered by these two specification files, can be injected in
an aspect-oriented fashion [16]: Cinco provides a so-called mechanism of hooks
that are triggered on the occurrence of certain events, for instance, when a node
is created, moved, or deleted. Hooks are inserted into the MGL file with anno-
tations on the model elements defined therein. The effect of a hook can either
be modeled in a transformation language [20] or directly be written as Java
code using the generated model API. In the context of the AADL editor, e.g., a
postMoveHook is used to move a port to the nearest border within its container
after it has been moved by the user. This results in a very natural ‘snapping to
the border’ effect during modeling.

As Cinco follows a fully generative approach, the very same specification
files are utilized by Pyro to generate a web-based modeling editor that runs in
2 For a more elaborate introduction on how to define a graphical editor with Cinco,

as well as other case studies and exemplary modeling languages, please refer to [26].

Pyro: Generating Domain-Specific Collaborative Online Modeling 105

the browser (cf. Fig. 1). Of course, in this context, the running platform won’t be
based on Eclipse anymore, but based on common web frameworks like Angular
for the frontend and Java EE for the backend. The aspects of a Cinco Product
included in a service-oriented fashion via native components written in Java (for
instance a code generator or editor-assisting features like the hooks discussed
above) can thus directly be run also in the backend of the Pyro editor.

In the following, we will focus on two particularly important aspects of Pyro:
After discussing the frontend/backend architecture of the generated Pyro mod-
eling environments in Sect. 3, we will take a deeper look at the communication
pattern between the involved components that facilitates synchronous collabo-
rative modeling (cf. Sect. 4).

3 Architecture

In contrast to developing an Eclipse-based modeling environment, for the real-
ization of a web-based solution one nearly has to start from scratch. Eclipse
itself is built on a huge amount of plug-ins, developed over the past seventeen
years. In particular, the Eclipse Modeling Project provides many frameworks for
developing modeling languages based on metamodels and bundling them into
a rich IDE. In the context of the web, development of integrated environments
has just started, so that only a few best practices, plug-ins, and frameworks are
available. This means, even fundamental features often have to be implemented
to enable basic functionalities. The main difference between local desktop IDEs
and a web-based environment like Pyro is the opportunity to provide distributed
access to a centralized instance by multiple users at the same time. This results
in new challenges and requirements regarding the synchronization between mul-
tiple users and conflict resolution for oppositional modifications.

Thus, the Pyro architecture must be built in a way that adequately substi-
tutes what Eclipse already provides in the desktop application context, but also
be prepared for the distributed setting with multiple users – in particular for
supporting live collaborative editing on the same models. In this section, the
generation of Pyro web-based modeling environments is described in a way that
shows how the needed information is collected from Cinco’s high-level specifi-
cation metamodels and where the generated code is placed and distributed in
the overall context to build the Pyro architecture.

The previously introduced specification of the AADL modeling language con-
stitutes the source for the tool generation step. After the Pyro generator is trig-
gered, all MGL and MSL files for a Cinco-based modeling tool are collected to
gather the required information. At this point, all modeling languages, including
their available node and edge types, are visible for the generator.

In the next step, a template of the modeling environment web application
is created. The gray parts with dotted borders in Fig. 3 show the static ele-
ments independent of the given language specification, whereas the blue parts
with solid borders are specifically generated from this specification. The tem-
plate consists of a DyWA-based backend, extended by a specific Domain Layer

106 P. Zweihoff et al.

Fig. 3. Overall architecture of the generated web-based modeling environment.

for communication. On the client side, some general parts provide Registration,
Login, and Project Management, but the main component is the specific Editor
generated to handle instances of the graphical modeling language. The underly-
ing single-page web application framework Angular Dart [1] is utilized to enable
the required features of a rich internet application, like versatile user interaction
and asynchronous communication.

Essentially, in the backend, the challenge of providing the metamodel-based
model handling (persistence, API, event handling, etc.) is solved, which in the
Cinco desktop client world is provided by the EMF framework. The frontend,
on the other hand, realizes the rich IDE-like frame application with the graph-
ical editor for the models. In the following, these two parts are explained in
more detail to show how the different layers are connected and which parts are
generated to establish the entire integrated environment.

3.1 Backend

The backend of a modeling environment generated using Pyro consists of two
main layers: One is responsible for the centralized persistence of model instances,
the other for receiving and distributing modifications. The lowest level of the
web application is the database to store information in a centralized fashion.
This layer handles the representation of predefined metamodels for the given
domain-specific languages. Pyro modeling environments utilize the DyWA as
an abstraction layer of a database to store types and objects in a dynamic
and loosely coupled fashion [27]. Based on the specified languages’ node and
edge types, a Domain Data Plug-in (see Fig. 4) is generated by Pyro which
declares types, associations, attributes, and inheritance. The main reason for
using the DyWA as model layer is its Domain Generator, which generates a
specific DyWA API providing entities and controllers for the previously given
types to handle their instances on a simplified layer above the database. This
closely resembles the APIs generated by EMF in the Eclipse world, so that
the effort of generating the required CINCO API adapters is greatly reduced,
which provides functionalities with identical signatures as EMF, so that already

Pyro: Generating Domain-Specific Collaborative Online Modeling 107

Fig. 4. Backend component architecture and interaction.

existing code can directly be applied (see below). Beyond that, DyWA is prepared
for dynamic change of the metamodel, which becomes necessary during modeling
language evolution (see [19]).

Since Cinco supports to extend the definition of graphical modeling lan-
guages by user-written Java code for hooks, actions, validation checks, and code
generators, a holistic reuse mechanism has to be provided in the context of
Pyro. To meet this goal, the same Cinco interfaces are rebuilt in the generated
web-based modeling environment, providing the same structure and identical
signatures. As a result of this, the domain-specific interfaces (see Fig. 4, CINCO

API) generated by Pyro are compatible to the one Cinco generates for Eclipse
and EMF to be used identically by these extensions. In contrast to the desktop-
based Cinco Product, a Pyro graph model instance is not persisted in a file on
the local system. The Pyro web modeling environment as a distributed system
utilizes the DyWA database for storage and centralized access as a server. Thus,
the CINCO API is internally connected to the corresponding generated DyWA
API to persist changes in the database, which is hidden from the extensions.

Multi-user collaborative editing with the generated domain-specific modeling
languages is one of the main challenges for Pyro. All changes to a centrally held
instance of a graph model have to be shared with all participants. For the distri-
bution of the changes performed on a graph model by calling the CINCO API)
methods, a Command Stack is used, to store each individual modification. Since
Cinco provides hooks for aspect-oriented extensions, a single action like the
movement of a node on the canvas can result in multiple successive commands.
As a result, all modifications on a model or any of their elements at runtime are
encoded in commands and sequentially stored in the stack. The recorded com-
mands during the CINCO API usage are used to synchronize between different

108 P. Zweihoff et al.

clients looking at the same model as well as the realization of redo and undo
functionalities. This synchronization mechanism is described in more detail in
Sect. 4.

To use the web modeling environment in a desktop application fashion, an
uninterruptible user interaction is necessary. Thus, Pyro utilizes REST-based
asynchronous communication for non-blocking data exchange. As a result of
this, the outermost component of the generated web application is a REST
Interface. The interface consists of Static Endpoints for project, file, and user
management, which are independent from the given modeling languages. These
parts are supplemented by generated Endpoints, which are based on the Cinco
specification and provide methods to create, read, update, and delete (CRUD)
a single graph model. In addition to this, the interface contains the central
endpoint for commands sent from a client’s frontend to the backend. Depending
on the used Extensions, additional Endpoints are generated to fetch and trigger
user-written actions or a generator.

3.2 Frontend

To mimic the look and feel of a local desktop modeling environment, the web-
based variant generated by Pyro has to provide versatile user interactions. As a
result of this, the Frontend of the generated web application (see Fig. 5), which
realizes the interface for the user, is focused on quick responses and familiar input
behavior. To achieve this goal, the frontend part of a web modeling environment
is built upon the Angular Dart [1] framework, which is used to realize single-
page web applications with built-in cross-platform support and comprises an
architecture focused on reusable components. In addition to this, it is tailored
to asynchronous user interaction and client-side routing, so that it can be used
to build rich internet applications, like, for instance, ones resembling integrated
development environments (IDEs).

In contrast to a local desktop application, a web application requires addi-
tional multi-user focused interfaces. Therefore, the template for the frontend,
which is initially created, consists of static user interfaces for Registration and
Login as well as a Project Management area to create, edit, and share projects.
The specifically generated parts are used by the Editor, which comprises domain-
specific components. Its user interface is similar to the known Eclipse IDE used
by regular Cinco Products (see Fig. 2).

The challenge of preventing delays in the system’s response on a user input
to enable fluent interaction can be met by avoiding synchronized communication
with the backend. The editor facilitates this frontend-side computation by two
layers used to interact with instances of the graph models. The Mirror Layer
stores a snapshot of the model present in the database, whereas the Interaction
Layer is a direct representation of a visible graph which can be modified by
the user. This separation enables a delta between the last valid graph, stored
in the Mirror Layer and the currently visible graph. Thanks to this, generated
syntactical validators (e.g., for ensuring lower bounds of given cardinalities) can

Pyro: Generating Domain-Specific Collaborative Online Modeling 109

Fig. 5. Front end architecture.

raise errors and the appropriate rollback operation works immediately on the
client side without additional communication with the backend.

Pyro specifically aims at supporting users switching from already existing
Cinco Products to the web-based modeling environment. Thus, the Editor,
which is the main part of the frontend, provides multiple components similar
to the Eclipse IDE. To not confuse users, functions, behavior and arrangement
are recreated. Besides common user interface parts like a project explorer and a
menu, specific components for the modeling environment are generated, like the
Canvas, a Properties View, and the Palette.

The Canvas is based on the JointJS framework [9], which in general renders
SVGs and adds versatile user interaction for manipulation of nodes and edges
via drag&drop functionalities. Using this, it was possible that the web modeling
environment running in a browser provides very similar handling to the Eclipse-
based desktop application with its Graphiti editor. The exact replication of the
node and edge appearance is a central goal of the generated Canvas. Ideally,
a user cannot distinguish between a Pyro and Cinco visualization of a graph
model. This requires the same hierarchical shape structure for the web as in
the Graphiti editor, which can be realized by scalable vector graphics (SVGs).
The SVG Markup, which defines the shapes and styling information of the nodes
and edges, is generated based on the concrete syntax specified in the MSL files
of Cinco. The JointJS framework and SVG Markup files are observed by a
domain-specific User Event Controller, which realizes the listeners and stream
handling mechanisms for a single graph model to modify the underlying layers.

Besides the distinct and visible modifications available directly in the Can-
vas, attributes of an edge, node or the graph model (as defined in the MGL
metamodel) can be modified using the Properties View. It has a generic frame
based on a tree view to recursively walk through associated types of the currently

110 P. Zweihoff et al.

selected element. For every type present in an MGL file, a form for editing the
primitive attributes (e.g string, Boolean or integer) is generated. The single fields
are tailored to the specified data type of the attribute, to give as much support as
possible. Thanks to the two-way data binding of the underlying Angular frame-
work, every change to an attribute is immediately propagated to the underlying
layer.

The Palette is generated based on the given MGL specifications. It lists all
node types available for modeling. In addition to this, the optional annotations
of the MGL, e.g. for grouping nodes and dedicated icons for visual support, are
considered as well.

4 Collaborative Editing

One of the main features of modeling environments generated by Pyro is the
simultaneous editing of graph models by multiple clients at the same time.
The continuous synchronization between clients avoids classical revision control
repositories for distributed access and instead enables immediate collaboration.
To reach the goal of simultaneous synchronization, different aspects have been
considered to maintain consistency, scalability and achieve a real-time effect.

In this section, the mechanism used for Pyro web-based modeling environ-
ments to communicate is presented and explained. The first part discusses the
different challenges of a distributed system with respect to the domain of graph-
ical modeling environments, whereas the second part describes the realization of
the command pattern used to exchange modifications on a graph model.

4.1 Simultaneous Synchronization Mechanism

The main communication concept of a generated modeling environment by Pyro
as a distributed system is the optimistic replication strategy [30]. This concept
replicates data and allows the single replicas to diverge, which in the context of
Pyro is realized by the separated graph model replicas held in each client. The
optimistic replication belongs to the eventually consistent consistency model
and is furthermore classified as basically available, soft state and eventually con-
sistent (BASE) [36]. It benefits from high availability, since it only exchanges
updates on given items. In the context of a web-based modeling environment,
the updates are based on the modifications a client can do to a node or edge.
To enable conflict resolution and maintain consistency regarding commutativity
and idempotency, conflict-free replicated data types (CRDTs) are represented
by commands. CRDT was originally used for text-based synchronization as a
simplification of operational transformation [34]. It utilizes an additional data
structure, based on an identifier of the client, the changed value and the position
to create a unique identifier for each changed character of the text. Regarding
the graph models handled by Pyro, CRDTs are realized by commands for each
type of possible model element modification, which store a unique identifier and
the changed properties of the relevant element. In addition to this, the previous

Pyro: Generating Domain-Specific Collaborative Online Modeling 111

values of the updated properties are stored as well, to enable rollback, undo, and
redo functionalities. Thus, Pyro uses operation-based and state-based CRDTs.
Thanks to the CRDTs, conflicts of simultaneously editing the same model ele-
ment at the same time can be detected. In the context of graphical DSLs, conflicts
can arise by violating the given static semantics defined in the metamodel. If
a conflict is detected, the corresponding command is flagged for rollback and
returned to its sender. The client then inverts the modification encoded by the
command and applies it to revert the conflicting change.

4.2 Distributed Command Pattern

The distribution of modifications made to a graph model in the Pyro web model-
ing environment is realized by a command pattern [14]. It belongs to the behav-
ioral design pattern, which is used to encapsulate all information needed to per-
form an update on an object. The commands are sent as HTTP POST requests,
combining the graph model and client identifier. An exemplified collaboration of
two clients (red and green) modifying the same graph model simultaneously is
presented in Fig. 6.

After the initial read from the database, a client only calculates, exchanges
and receives commands when a modification is done (see Fig. 6(1)). For every
possible change on nodes and edges (e.g., moving a node or bending an edge), a
dedicated command encoding the modification is created and sent to the server,
extended with a unique identifier of the sender. Thanks to this assignment, all
commands can be differentiated (see red commands by client A and green com-
mands by client B in Fig. 6). As an example, the command for the creation of
a node consists of the node type, the position and an identifier of the container
where it should be instantiated. Other commands, e.g., the move node com-
mands, contain information of the previous as well as the new position, so that
they store the delta of the modification.

The Serializer (see Fig. 6(2)) is used to parse the received payload and assign
the commands to the associated Command Applier. Thanks to additional reflec-
tive type annotations, the received payload can be parsed to recreate the correct
command type. The assignment depends on the given graph model type the
command belongs to.

The Command Applier (see Fig. 6(3)) is the main component of the web
server, since it receives, validates and executes the commands. Every modifica-
tion encoded by a command is initially validated against the syntactical con-
straints defined by the graph model type. In the case of a constraint violation,
the command is inverted based on the given delta, and returned to undo the
invalid operation sent from a client. After a successful validation, the modifica-
tion encoded by the command is applied to the generated domain-specific API,
which also triggers the annotated hooks and finally modify the node or edge
instances in the central database. Modifications performed on the API itself
(e.g., performed by a hook implementation) are again internally encoded as
commands for further distribution to other clients. The updates resulting from
the hook execution inside the API are combined with the initial command to be

112 P. Zweihoff et al.

Fig. 6. Concept of the distributed command pattern. (Color figure online)

interpreted as a single transaction shown by the packages of Fig. 6. To ensure the
consistency between the sender of a command and the other clients, the initiator
is also informed about internally arisen modification based on hook execution.
All commands, collected during the execution of the initial modification, are
broadcast to other listening clients (see Fig. 6(4)). This mechanism uses bidirec-
tional ongoing connections, so that clients can request to listen on changes made
to their currently open graph model.

The commands received by a client (see Fig. 6(5)) are parsed and inspected,
to ensure that commands initiated by the client itself are neglected. New changes
from other clients are applied to all layers and displayed on the canvas. In addi-
tion to this, the client is notified about received changes. Updates caused as a
result of self-sent commands (e.g., a modification performed during a hook exe-
cution), are only partially applied to guarantee that nodes and edges will not be
modified twice.

The command pattern applied to the generated modeling environments is
tailored to enable real-time collaborative editing. The main design decisions are
focused on scalability and high availability by BASE and CRDT. The operational
approach realized with this command pattern is more suitable than a textual
language protocol like the Language Server Protocol (LSP) [3]. The main dif-
ference between the command pattern and the LSP is the way of distributing
modifications on the model. In contrast to the presented communication protocol
of Pyro, the LSP uses changed regions of a text document for propagation. The
intention of the modification has to be evaluated afterwards, whereas in graph-
ical DSLs the commands are used for a direct representation of the occurred
change.

Pyro: Generating Domain-Specific Collaborative Online Modeling 113

5 Conclusion and Perspectives

We have presented Pyro, a framework for enabling domain-specific modeling via
the internet. Provided with an adequate metamodel specification, Pyro turns
a browser into a collaborative, domain-specific, graphical development envi-
ronment with features reminiscent of desktop IDEs for programming textual
languages. The required metamodeling is supported in a high-level, simplicity-
driven fashion: The MGL describes the available node types, edge types, and
syntactical constraints, whereas the MSL defines the visual appearance of the
modeling artifacts defined in the MGL. Based on these specifications, the entire
ready-to-run browser-based domain-specific development environment is gener-
ated fully automatically, as has been illustrated along the construction of a
graphical development environment for the Architecture Analysis and Design
Language (AADL).

The field of web-based development environments is still quite young, so
that not many related solutions exist yet. There are the aforementioned collab-
orative online text editors like Google Docs, Microsoft Office 365 and ShareLa-
TeX/Overleaf, but in the area of DSLs and modeling, so far we only encountered
WebGME [5], an (early stage) online adaption of Vanderbilt University’s Generic
Modeling Environment [18] and Theia [4], a cross-platform web and desktop IDE
for textual DSLs. In addition, itemis (the German company who significantly
contributed to the well-known Xtext [6] DSL framework) is currently working
on a platform called ‘Convecton’, which aims at bringing modeling with and
execution of domain-specific languages online into the cloud [35]. However, none
of these solutions provide a Pyro-like, graphical, collaborative modeling support.

Pyro is still in an early stage of development, and there is a lot of room for
improvement, like further enhancing and easing the graphical modeling features,
or improving the performance of collaborative modeling by taking advantage
of peer-to-peer communication. Pyro is envisioned to enable cross-competence
collaboration on a single project in a domain/purpose-specific fashion according
to the Language-Driven Engineering (LDE) paradigm [31]. LDE aims at allowing
the different stakeholders to formulate their intents in they way they are used to,
i.e., in their domain language, and restricted in a fashion that the efforts of the
other involved stakeholders are maintained, or as we say, constitute Archimedean
points [32] of the considered domain-specific language. Currently, we are starting
to explore the impact of the Pyro technology on a larger scale for DIME [7], our
framework for developing Web applications.

References

1. About AngularDart. https://webdev.dartlang.org/angular. Accessed 13 Feb 2019
2. Graphiti - A Graphical Tooling Infrastructure. http://www.eclipse.org/graphiti/.

Accessed 13 Feb 2019
3. Official page for Language Server Protocol. https://microsoft.github.io/language-

server-protocol/. Accessed 12 Feb 2019
4. Theia - Cloud and Desktop IDE. https://www.theia-ide.org. Accessed 12 Feb 2019

https://webdev.dartlang.org/angular
http://www.eclipse.org/graphiti/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://www.theia-ide.org

114 P. Zweihoff et al.

5. WebGME. https://webgme.org/. Accessed 13 Feb 2019
6. Xtext - Language Engineering Made Easy! http://www.eclipse.org/Xtext/.

Accessed 13 Feb 2019
7. Boßelmann, S., et al.: DIME: a programming-less modeling environment for web

applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
809–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 60

8. Carnegie Mellon University: Welcome to OSATE. http://osate.org/. Accessed 13
Feb 2019

9. client IO: Joint API. http://www.jointjs.com/api. Accessed 13 Feb 2019
10. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and

Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)
11. Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Lan-

guages? June 2005. http://martinfowler.com/articles/languageWorkbench.html.
Accessed 13 Feb 2019

12. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley/ACM Press
(2011). http://books.google.de/books?id=ri1muolw YwC

13. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Boston (2008)

14. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2002). ACM SIG-
PLAN Notices, vol. 37, pp. 161–173. ACM (2002)

15. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley/IEEE Computer Society Press, Hoboken (2008)

16. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

17. Larson, B.R., Chalin, P., Hatcliff, J.: BLESS: formal specification and verification
of behaviors for embedded systems with software. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 276–290. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4 19

18. Ledeczi, A., et al.: The generic modeling environment. In: Workshop on Intelligent
Signal Processing (WISP 2001) (2001)

19. Lybecait, M., Kopetzki, D., Naujokat, S., Steffen, B.: Towards Language-to-
Language Transformation (2019, to appear)

20. Lybecait, M., Kopetzki, D., Steffen, B.: Design for ‘X’ through model transfor-
mation. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp.
381–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 23

21. Lybecait, M., Kopetzki, D., Zweihoff, P., Fuhge, A., Naujokat, S., Steffen, B.:
A tutorial introduction to graphical modeling and metamodeling with CINCO.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 519–538.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 31

22. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

23. Margaria, T., Steffen, B.: Service-orientation: conquering complexity with XMDD.
In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2297-5 10

24. McAffer, J., Lemieux, J.M., Aniszczyk, C.: Eclipse Rich Client Platform, 2nd edn.
Addison-Wesley Professional (2010)

https://webgme.org/
http://www.eclipse.org/Xtext/
https://doi.org/10.1007/978-3-319-47169-3_60
http://osate.org/
http://www.jointjs.com/api
http://martinfowler.com/articles/languageWorkbench.html
http://books.google.de/books?id=ri1muolw_YwC
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-642-38088-4_19
https://doi.org/10.1007/978-3-030-03418-4_23
https://doi.org/10.1007/978-3-030-03418-4_31
https://doi.org/10.1007/978-1-4471-2297-5_10

Pyro: Generating Domain-Specific Collaborative Online Modeling 115

25. Naujokat, S.: Heavy Meta. Model-Driven Domain-Specific Generation of Gener-
ative Domain-Specific Modeling Tools. Dissertation, TU Dortmund, Dortmund,
Germany, August 2017. http://hdl.handle.net/2003/36060

26. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transf. 20(3), 327–354 (2017)

27. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-driven development
of web applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014.
LNCS, vol. 8802, pp. 56–72. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45234-9 5

28. Robby, Hatcliff, J., Belt, J.: Model-based development for high-assurance embed-
ded systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp.
539–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 32

29. SAE International: Architecture Analysis & Design Language (AADL), January
2017. https://www.sae.org/standards/content/as5506c/. SAE Standard AS5506C

30. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. (CSUR) 37(1),
42–81 (2005)

31. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering:
from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science: State of the Art and Perspectives. LNCS,
vol. 10000. Springer, Heidelberg (2019, to appear)

32. Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change.
LNCS Trans. Found. Mastering Change (FoMaC) 1(1), 22–46 (2016)

33. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

34. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW 1998), pp. 59–68. ACM (1998)

35. Voelter, M.: Convecton Presentation at LangDev Meetup at CWI 8–
9 March 2018. https://github.com/cwi-swat/langdev/blob/gh-pages/slides/
Convecton@LangDev.pdf. Accessed 13 Feb 2019

36. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://hdl.handle.net/2003/36060
https://doi.org/10.1007/978-3-662-45234-9_5
https://doi.org/10.1007/978-3-662-45234-9_5
https://doi.org/10.1007/978-3-030-03418-4_32
https://www.sae.org/standards/content/as5506c/
https://github.com/cwi-swat/langdev/blob/gh-pages/slides/Convecton@LangDev.pdf
https://github.com/cwi-swat/langdev/blob/gh-pages/slides/Convecton@LangDev.pdf
http://creativecommons.org/licenses/by/4.0/

Efficient Model Synchronization
by Automatically Constructed

Repair Processes

Lars Fritsche1(B) , Jens Kosiol2 , Andy Schürr1 , and Gabriele Taentzer2

1 TU Darmstadt, Darmstadt, Germany
{lars.fritsche,andy.schuerr}@es.tu-darmstadt.de
2 Philipps-Universität Marburg, Marburg, Germany
{kosiolje,taentzer}@mathematik.uni-marburg.de

Abstract. Model synchronization, i.e., the task of restoring consistency
between two interrelated models after a model change, is a challeng-
ing task. Triple Graph Grammars (TGGs) specify model consistency
by means of rules. They can be used to automatically derive specifica-
tions of edit operations for single models and repair rules that propagate
model changes to related models. model (re-)synchronization activities
more effectively, a construction mechanism for short-cut rules has been
recently developed. They describe consistency-preserving complex edit
operations across model boundaries. We show that edit and repair rules
can be derived from short-cut rules. As proof of concept, we implemented
the construction and application of short-cut edit and repair rules in
eMoflon. Our evaluation shows that short-cut-rule-based repair processes
have considerably decreased data loss and improved runtime compared
to former model synchronization processes in eMoflon.

Keywords: Model synchronization · Triple Graph Grammars ·
Short-cut rule

1 Introduction

Model-driven engineering has become an important technique to cope with the
increasing complexity of modern software systems. In the field of Concurrent
Engineering [7], for example, products are no longer realized in series but allow
parallel tasks. Each of these tasks has its view onto the product and, as a view
evolves, it may become inconsistent with the other ones. Keeping views synchro-
nized by checking and preserving their consistency can be a challenging problem
which is not only subject to ongoing research but also of practical interest for
industrial applications such as stated above.

Triple Graph Grammars (TGGs) [24] are a declarative, rule-based bidirec-
tional transformation approach that aims to synchronize models stemming from
different views (usually called domains in the TGG literature). Their purpose

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 116–133, 2019.
https://doi.org/10.1007/978-3-030-16722-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_7&domain=pdf
http://orcid.org/0000-0003-4996-4639
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0001-8100-1109
http://orcid.org/0000-0002-3975-5238
https://doi.org/10.1007/978-3-030-16722-6_7

Efficient Model Synchronization 117

is to define a consistency relationship between pairs of models in a rule-based
manner by defining traces between their elements. Given a finite set of rules that
define how both models co-evolve, a TGG can be automatically operationalized
into source and forward rules. The source rules of an operationalized TGG can
be used to build up models of one domain while forward rules translate them to
models of the other domain, thereby establishing traces between their elements.
From a synchronization point of view, source rules specify edit operations to
change one model while forward rules specify repair operations to synchronize
model changes with one another [16,19,24]. Even though both, the translation
and the synchronization process, are formally defined and sound, there are in
fact several practical issues that arise for model synchronization from (poten-
tially transitive) dependencies between rule applications: To synchronize changed
models, popular TGG approaches do not always fix inconsistencies locally but
revert all dependent rule applications and start a retranslation process. However,
this kind of synchronization often deletes and recreates a lot of model elements
to reestablish model consistency, potentially losing information that is local to
just one model and wasting processing time. Existing solutions for this problem
are rather ad hoc and come without any guarantee to reestablish the consistency
of modified models [12,14].

As a new solution to this synchronization problem, we derive repair rules from
short-cut rules [8] that we recently introduced to handle complex consistency-
preserving model updates more effectively and efficiently. The construction of
short-cut rules is a kind of sequential rule composition that allows to replace
a rule application with another one while preserving involved model elements
(instead of deleting and re-creating them). We used short-cut rules to describe
model changes exchanging one edit step by another one. Since in this paper we
want to use short-cut rules for model synchronization as well, they have to be
operationalized into source and forward rules.

Our formal contributions (in Sect. 4) are two-fold: As short-cut rules may
be non-monotonic, i.e., may be deleting, we formalize the operationalization of
non-monotonic TGG rules which decomposes short-cut rules into (semantically
equivalent sequences of) source (edit) and forward (repair) rules. Moreover, we
obtain sufficient conditions under which an application of a short-cut rule pre-
serves the consistency of related pairs of models. This was left to future work
in [8]. Together, this constitutes the correctness of our approach using opera-
tionalized short-cut rules for model synchronization.

Practically, we implement our synchronization approach in eMoflon [21], a
state-of-the-art bidirectional graph transformation tool, and evaluate it (Sect. 5).
The results show that the construction of short-cut repair rules enables us to react
to model changes in a less invasive way by preserving information and increasing
the performance. We thus contribute to a more comprehensive research trend in
the bx-community towards Least Change synchronization [5]. Before presenting
these results in detail, we illustrate our approach using an example in (Sect. 2)
and recall some preliminaries in (Sect. 3). Finally, we discuss related work in
(Sect. 6) and conclude with pointers to future work in (Sect. 7). A technical

118 L. Fritsche et al.

report that includes additional preliminaries, all proofs, and the rule set used
for our evaluation (including more complex examples) is available online [9].

2 Introductory Example

We motivate the use of short-cut repair processes by synchronizing a Java AST
(abstract syntax tree) model and a custom documentation model. For model
synchronization, we consider a Java AST model as source model and its doc-
umentation model as target model, i.e., changes in a Java AST model have to
be transferred to its documentation model. There are correspondence links in
between such that both models become correlated.

FolderPackage

FolderPackage

Doc-FileClass

Doc-File

Root-Rule

Sub-Rule

Leaf-Rule

(++)

(++)
(++)

(++)

(++)

(++)
(++)(++)

(++)
(++)

(++)

(++)

(++)
(++)

(++)

Package

Package

Folder

Folder

Fig. 1. Example: TGG rules (Color
figure online)

FolderPackage

FolderPackage

Doc-FileClass

Doc-File

Root-FWD-Rule

Sub-FWD-Rule

Leaf-FWD-Rule

(++)
(++)

(++)

(++)
(++)(++)

(++)
(++)

(++)
(++)

Package

Package

Folder

Folder

(++)

(++)

Fig. 2. Example: TGG forward rules

TGG rules. Figure 1 shows the rule set of our running example consisting of
three TGG rules: Root-Rule creates a root Package together with a root Folder
and a correspondence link in between. This rule has an empty precondition
and only creates elements which are depicted in green and with the annotation
(++). Sub-Rule creates a Package and Folder hierarchy given that an already
correlated Package and Folder pair exists. Finally, Leaf-Rule creates a Class and
a Doc-File under the same precondition as Sub-Rule.

These rules can be used to generate consistent triple graphs in a synchronized
way consisting of source, correspondence, and target graph. A more general
scenario of model synchronization is, however, to restore the consistency of a
triple graph that has been altered on just one side. For this purpose, each TGG
rule has to be operationalized to two kinds of rules: source rules enable changes
of source models which is followed by translating this model to the target domain
with forward rules. As source rules for single models are just projections of TGG
rules to one domain, we do not show them explicitly.

Forward translation rules. Figure 2 depicts the forward rules. Using these rules,
we can translate the Java AST model depicted on the source side of the triple
graph in Fig. 3(a) to a documentation model such that the result is the complete
graph in Fig. 3(a). To obtain this result we apply Root-FWD-Rule at the root

Efficient Model Synchronization 119

Package, Sub-FWD-Rule at Packages p and subP, and finally Leaf-FWD-Rule
at Class c. To guide the translation process, context elements that have already
been translated are annotated with �� in forward rules. A formerly created source
element gets the marking � → �� to indicate that applying the rule will mark
this element as translated; a formalization of this marking is given in [20]. Note
that Root-FWD-Rule can always be applied when Sub-FWD-Rule is applicable
which can lead to untranslated edges. For simplicity, we assume that the correct
rule is applied which in praxis can be achieved through negative application
conditions [15].

rootF :
Folder

rootP:
Package

f :
Folder

p :
Package

pDoc :
Doc-File

subF :
Folder

subP :
Package

subPDoc :
Doc-File

cDoc :
Doc-File

c :
Class

rootF :
Folder

rootP:
Package

rootF :
Folder

rootP:
Package

f :
Folder

p :
Package

subF :
Folder

subP :
Package

subPDoc :
Doc-File

cDoc :
Doc-File

c :
Class

p :
Package

subP :
Package

c :
Class

(a) (b) (c)

Fig. 3. Exemplary synchronization scenario

Model synchronization. Given the triple graph in Fig. 3(a), a user might want
to change a sub Package such as p to be a root Package, e.g., as could be the
case when the project is split up into multiple projects. Since p was created and
translated as a sub Package rather than a root element, this change introduces
an inconsistency. To resolve this issue, one approach is to revert the transla-
tion of p into f and re-translate p with an appropriate translation rule such
as Root-FWD-Rule. Reverting the former translation step may lead to further
inconsistencies as we remove elements that were needed as context elements by
other rule applications. The result is a reversion of all translation steps except
for the first one which translated the original root element. The result is shown
in Fig. 3(b). Now, we can re-translate the unmarked elements yielding the result
graph in (c). This example shows that this synchronization approach may delete
and re-create a lot of similar structures which appears to be inefficient. Sec-
ond, it may lose information that exists on the target side only, e.g., a use case
may be assigned to a document which does not have a representation in the
corresponding Java project.

Model synchronization with short-cut repair. In [8] we introduced short-cut rules
as a kind of rule composition mechanism that allows to replace a rule applica-
tion by another one while preserving elements (instead of deleting and re-creating
them). In our example, Root-Rule and Sub-Rule overlap in elements as the first
rule can be completely embedded into the latter one. Figure 4 depicts two possi-
ble short-cut rules based on Root-Rule and Sub-Rule. While the upper short-cut

120 L. Fritsche et al.

FolderPackage

FolderPackage Doc-File

Root-To-Sub-SC-Rule

(++)
(++)

FolderPackage

FolderPackage Doc-File

Sub-To-Root-SC-Rule

(--)

(++)

(--)
(--)(--)

(++)

Fig. 4. Short-cut rules (Color figure
online)

FolderPackage

FolderPackage Doc-File

Root-To-Sub-Repair-Rule

(++)
(++)

FolderPackage

FolderPackage Doc-File

Sub-To-Root-Repair-Rule

(--)

(++)

(--)
(--)

Fig. 5. Repair rules

rule replaces Root-Rule with Sub-Rule, the lower short-cut rule replaces Sub-
Rule with Root-Rule. Both short-cut rules preserve the model elements on both
sides and solely create elements that do not yet exist (++), or delete those
depicted in red and annotated with (−−). They are constructed by overlapping
both original rules such that each created element that can be mapped to the
other rule becomes context and as such, is not touched. When a created element
cannot be mapped because it only appears in the replacing rule, it is created.
Consequently, an element is deleted if the created element only appears in the
replaced rule. Finally, context elements occurring in both rules appear also in
the short-cut rule while overlapped context elements appear only once. Using
Sub-To-Root-SC-Rule enables the user to transform the triple graph in Fig. 3(a)
directly to the one in (c).

Yet, these rules can still not cope with the change of a single model since
short-cut rules transform both models at once as TGG rules usually do. Hence,
in order to be able to handle the deleted edge between rootP and p, we have to
forward operationalize short-cut rules, thereby obtaining short-cut repair rules.
Figure 5 depicts the resulting short-cut repair rules derived from short-cut rules
in Fig. 4. A non-monotonic TGG-rule is forward operationalized by removing
deleted elements from the rule’s source graphs as they should not be present after
a source rule application. Short-cut repair rules allow to propagate source graph
changes directly to target graphs to restore consistency. In our example, after
having transformed Package p into a root element, the rule of choice is Sub-To-
Root-Repair-Rule which transforms Folder f in Fig. 3(a) into a root element and
deletes the superfluous Doc-File. The result is again the consistent triple graph
depicted in Fig. 3(c). This repair allows to skip the costly reversion process with
the intermediate result in Fig. 3(b). Note that applying Sub-To-Root-Repair-Rule
at arbitrary matches may have undesired consequences: One could, e.g., delete
the edge between two Folders even if the matched Packages are still connected.
Our Theorem8 characterizes matches where such violations of the language of
the grammar cannot happen. In our implementation, we exploit an incremental
pattern matcher to identify valid matches. Using suitable negative application
conditions [6] would be an alternative approach.

Efficient Model Synchronization 121

3 Preliminaries

To understand our formal contributions, we assume familiarity with the basics of
double-pushout rewriting in graph transformation and, more generally in adhe-
sive categories [6,18] as well as the definition of TGGs and in particular, their
operationalizations [24]. Here, we recall non-basic preliminaries for our work
which are the construction of short-cut rules, the notion of sequential indepen-
dence, and a (simple) categorical definition of partial maps.

In [8], we introduced short-cut rules as a new way of sequential composition
for monotonic rules. Given an inverse rule of a monotonic rule (i.e., a rule that
only deletes) and a monotonic rule, a short-cut rule combines their respective
actions into a single rule. Its construction allows to identify elements that are
deleted by the first rule as re-created by the second one. These elements are pre-
served in the resulting short-cut rule. A common kernel, i.e., a common subrule
of both, serves to identify how the two rules overlap and which elements are
preserved instead of being deleted and re-created. We recall their construction
since our construction of repair rules is based on it. Examples are depicted in
Fig. 4.

Definition 1 (Short-cut rule). In an adhesive category C, given two mono-
tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the Short-cut rule r−1
1 �k r2 := (L

l←−↩ K
r

↪−→ R) is computed by executing
the following steps depicted in Figs. 6 and 7:

1. The union L∪ of L1 and L2 along L∩ is computed as pushout (2).
2. The LHS L of the short-cut rule r−1

1 �k r2 is computed as pushout (3a).
3. The RHS R of the short-cut rule r−1

1 �k r2 is computed as pushout (3b).
4. The interface K of the short-cut rule r−1

1 �k r2 is computed as pushout (4).
5. Morphisms l : K → L and r : K → R are obtained by the universal property

of K.

Fig. 6. Construction of LHS and RHS
of short-cut rule r−1

1 �k r2

Fig. 7. Construction of interface K of
r−1
1 �k r2

122 L. Fritsche et al.

Sequential independence of two rule applications intuitively means that none
of these applications enables the other one. This implies that the order of their
application may be switched. The definition of sequential independence can be
extended to a sequence of rule applications longer than 2. In Theorem 8, we will
use this to identify language-preserving applications of short-cut rules.

Definition 2 (Sequential independence). Given two rules pi = (Li
li←−↩

Ki
ri

↪−→ Ri) with i = 1, 2, two direct transformations G ⇒p1,m1 H1 and
H1 ⇒p2,m2 H2 via the rules r1 and r2 are sequentially independent if there
exist two morphisms d1 : R1 → D2 and d2 : L2 → D1 as depicted below such
that n1 = f2 ◦ d1 and m2 = f1 ◦ d2.

L1 K1 R1 L2 K2 R2

G D1 H1 D2 H2

m1 n2

l1 r1

n1 m2

l2 r2

f1
e1 f2 e2

d1d2

Given rules p = (L ←↩ K ↪→ R) and pi = (Li ←↩ Ki ↪→ Ri) with 1 ≤ i ≤ t, a
transformation Gt ⇒p,m H is sequentially independent from a sequence of trans-
formations G0 ⇒p1,m1 G1 ⇒p2,m2 · · · ⇒pt,mt

Gt, t ≥ 2 if first, Gt ⇒p,m H and
Gt−1 ⇒pt,mt

Gt are sequentially independent and then, the arising transforma-
tions Gt−1 ⇒p,et◦dt

2
G′

t and Gt−2 ⇒pt−1,mt−1 Gt−1 are sequentially independent
and so forth back to the transformations G0 ⇒p1,m1 G1 and G1 ⇒p,e2◦d2

2
G′

2

(where ei : Di ↪→ Gi−1 is given by the transformation and di
2 : L ↪→ Di exists by

sequential independence as in the figure above).

To formalize the application of non-monotonic TGG rules, we need to con-
sider triple graphs with partial morphisms from correspondence to source (or
target) graphs. For expressing such triple graphs categorically, we recall a sim-
ple definition of partial morphisms [23] to be used in Sect. 4.1. An elaborated
theory of triple graphs with partial morphisms is out of scope of this paper.

Definition 3 (Partial morphism. Commuting square with partial mor-
phisms). A partial morphism a from an object A to an object B is a(n equiva-
lence class of) span(s) A

ιA←−↩ A′ a−→ B where ιA is a monomorphism (denoted by
↪→). A partial morphism is denoted as a : A ��� B; A′ is called the domain of
a. A diagram with two partial morphisms a and c as depicted as square (1) in
Fig. 8 is said to be commuting if there exists a (necessarily unique) morphism
x : A′ → C ′ such that both arising squares (2) and (3) in Fig. 9 commute.

Efficient Model Synchronization 123

Fig. 8. Square of partial morphisms Fig. 9. Commuting square of partial
morphisms

4 Constructing Language-Preserving Repair Rules

The general idea of this paper is to use short-cut repair rules allowing an opti-
mized model synchronization process based on TGGs. To this end, we opera-
tionalize short-cut rules being constructed from the rules of a given TGG. Since
those rules are not necessarily monotonic, we generalize the well-known opera-
tionalization of TGG rules to the non-monotonic case and show that the basic
property is still valid: An application of a source rule followed by an applica-
tion of the corresponding forward rule is equivalent to applying the original rule
instead. This is the content of Sect. 4.1. Constructing shortspscut rules in [8], we
identified the following problem: Applying a short-cut rule derived from rules
of a given grammar might lead to an instance that is not part of the language
defined by that grammar. Therefore, in Sect. 4.2, we provide sufficient conditions
for applications of short-cut rules leading to instances of the grammar-defined
language only. Combining both results ensures the correctness of our approach,
i.e., a shortspscut repair rule actually propagates a model change from the source
to the target model if it is correctly matched.

4.1 Operationalization of Generalized TGG Rules

Since the operationalization of TGG rules has been introduced for monotonic
rules only, we extend the theory to general triple rules and, moreover, allow
for partial morphisms from correspondence to source and target graph in triple
graphs. We split a rule on triple graphs into a source rule that only affects the
source part and a forward rule that affects correspondence and target part.

Definition 4 (TGG rule). Let the category of triple graphs and graph mor-
phisms be given. A triple rule p is a span of triple graph morphisms

p = ((LS

σL←−−LC

τL−→LT)
(lS,lC ,lT)←−−−−−−↩(KS

σK←−−KC

τK−−→KT)
(rS,rC ,rT)

↪−−−−−−−→(RS

σR←−−RC

τR−−→RT))

which, wherever possible, are abbreviated by

p = (LSCT

(lS,lC,lT)←−−−−−−↩KSCT

(rS,rC,rT)
↪−−−−−−−→RSCT).

Rules pS and pF are called source rule and forward rule of p.

pS = ((LS←∅→∅)
(lS,id∅,id∅)←−−−−−−−↩(KS←∅→∅)

(rS,id∅,id∅)

↪−−−−−−−→(RS←∅→∅)),

124 L. Fritsche et al.

pF = (RSLCT

(idRS
,lC ,lT)←−−−−−−−−RSKCT

(idRS
,rC,rT)−−−−−−−−→RSCT)

with ∅ being the empty graph. In RSLCT = (RS ��� LC
τL

↪−→ LT), the morphism

from LC to RS may be partial and is defined by the span (LC
lC←−↩ KC

rS◦σK
↪−−−−→

RS) with σK : KC ↪−→ RC . Target and backward rules pT and pB are defined
symmetrically in the other direction.

Given a TGG, a short-cut repair rule is a forward rule pF of a short-cut rule
p = r−1

1 �k r2 where r1, r2 are (monotonic) rules of the TGG, i.e., a repair rule
is an operationalized short-cut rule.

The above definition is motivated by our application scenario, i.e., the case where
a user edits the source (or target) model independently of the other parts. The
partial morphism in the forward rule reflects that a model change may introduce
a situation where the result is no longer a triple graph. A deleted source element
may have a preimage in the correspondence graph that is not deleted as well.
In the example short-cut rules in Fig. 4, this problem does not occur since edges
are deleted only. But in general, this definition of pS has the disadvantage that
often, pS is not applicable to any triple graph since the result would not be one.

In practical applications, however, the source rule specifies a user edit action
that is performed on the source part only, ignoring correspondence and target
graphs. The fact that the result is not a triple graph any longer is not a technical
problem. A missing source element that should be referenced by a correspondence
element gives information about a location that needs some repair. Therefore,
we define the application of a source rule such that the resulting triple graph
is allowed to be partial. Furthermore, forward rules may be applied to partial
triple graphs allowing for dangling correspondence relations.

Definition 5 (Constructing an operationalized rule application). Let a

triple graph rule p = (LSCT
(lS ,lC ,lT)←−−−−−− KSCT

(rS ,rC ,rT)−−−−−−−→ RSCT) with source rule
pS and forward rule pF be given. An operationalized rule application G ⇒pS ,mS

G′ ⇒pF ,mF
H is constructed as follows:

1. The rule ppr
S = LS

lS←− KS
rS−→ RS is the projection of pS to its source part.

2. Given a match mpr
S for ppr

S , construct the transformation tpr
S : GS ⇒ppr

S ,mpr
S

HS, called source application and inducing the span GS
fS←−↩ DS

gS
↪−→ HS.

3. The transformation tpr
S can be extended to the transformation tS : G =

(GS
σG←−− GC

τG−−→ GT) ⇒pS ,mS
G′ = (HS ��� GC

τG−−→ GT) via pS at match
mS. The partial morphism GC ��� HS is given as the span GC ←↩ G′

C → HS

that arises as pullback of the co-span GC → GS ←↩ DS as depicted in Fig. 10,
i.e., as morphism gS ◦ pD : GC ��� HS with domain G′

C .
4. Given co-match nS : RS ↪→ HS and matches mX : LX ↪→ GX with

X ∈ {C, T} such that both arising squares are commuting, i.e., mF =
(nS ,mC ,mT) is a morphism of partial triple graphs, construct transforma-
tion tF : G′ ⇒pF ,mF

H = (HS
σH←−− HC

τH−−→ HT), called forward applica-
tion, using transformations GX ⇒pX ,mX

HX for X ∈ {C, T} if they exist

Efficient Model Synchronization 125

and if there are morphisms σ′
D : DC → HS and τD : DC → DT such that

HSDCDT ↪→ HSGCGT and RSKCKT ↪→ HSDCDT are triple morphisms.

Fig. 10. Retrieval of partial morphism GC ��� HS

In the setting of this paper, it is enough to allow for partial morphisms only
in the input graph and not in the output graph of a forward rule application.
Intuitively this means that such an application deletes those elements from the
correspondence graph that could not be mapped to elements in the source graph
any longer and additionally deletes the preimages in the correspondence graph
of all deleted elements from the target graph as well (if there are any). The next
lemma states that the application of a source rule is well-defined, i.e., that the
mentioned partial morphism actually exists.

Lemma 6 (Correctness of application of source rules). Let a (non-
monotonic) triple graph rule

p = (LSCT

(lS,lC ,lT)←−−−−−−KSCT

(rS,rC,rT)−−−−−−−→RSCT)

with source rule pS and projection ppr
S to the source part be given. Given a match

mS for pS to a triple graph G = (GS
σG←−− GC

τG−−→ GT) such that GS ⇒ppr
S ,mS

HS,
the partial morphism DC ��� HS as described in Definition 5 exists.

The next theorem states that a sequential application of a source and a
forward rule indeed coincides with an application of the original rule as long
as the matches are consistent. This means that the forward rule has to match
the RHS RS of the source rule again and the LHS LC of the correspondence
rule needs to be matched in such a way that all elements not belonging to the
domain of the partial morphism from correspondence to source part in the input
model are deleted. The forward rule application defined in Definition 5 fulfills
this condition by construction.

Theorem 7 (Synthesis of rule applications). Let a triple graph rule p with
source and forward rules pS and pF be given. If there are applications G ⇒pS ,mS

G′ with co-match nS and G′ ⇒pF ,mF
H with mF = (nS ,mC ,mT) as constructed

above, then there is an application G ⇒p,m H with m = (mS ,mC ,mT).

126 L. Fritsche et al.

4.2 Language-Preserving Short-Cut Rules

In this section we identify sufficient conditions for an application of a short-cut
rule that guarantee the result to be an element of the language of the original
grammar. Since our conditions apply to arbitrary adhesive categories and are
not specific for TGGs, we present the result in its general form.

Theorem 8 (Characterization of valid applications). In an adhesive cat-
egory C, given a sequence of transformations

G ⇒r,m G0 ⇒p1,m1 G1 ⇒p2,m2 · · · ⇒pt,mt
Gt ⇒r−1

�kr′,msc
H

with rules p1, . . . , pt and r−1
�k r′ being the short-cut rule of monotonic rules

r : L ↪→ R and r′ : L′ ↪→ R′ along a common kernel k, there is a match m′ for
r′ in G and a transformation sequence

G ⇒r′,m′ G′
1 ⇒p1,m′

1
. . . G′

t−1 ⇒pt,m′
t
H,

provided that

1. the application of r−1
�k r′ with match msc is sequentially independent of the

sequence of transformations G0 ⇒p1,m1 G1 ⇒p2,m2 · · · ⇒pt,mt
Gt and

2. the thereby implied match m′
sc for r−1

�k r′ in G0, restricted to the RHS R
of r, equals the co-match n : R ↪→ G0 of the transformation G ⇒r,m G0 (i.e.,
m′

sc ◦ jR = n where jR embeds R into the LHS of r−1
�k r′ as in Fig. 6).

In particular, given a grammar GG = (R, S) such that r, r′, p1, . . . , pt ∈ R and
G ∈ L(GG), then H ∈ L(GG).

Independence of the short-cut rule application tsc : Gt ⇒r−1
�kr′,msc

H from
the preceding transformation sequence t : G ⇒ Gt requires the existence of mor-
phisms in two directions: morphisms di

2 from the LHS of the short-cut rule to
the context objects Di arising in t and morphisms di

1 from the right-hand sides
Ri of the rules pi to the context object of tsc (shifted further and further to the
beginning of the sequence). In the case of (typed triple) graphs, the existence of
morphisms di

2 ensures that none of the rule applications in t enabled the trans-
formation tsc. The existence of morphisms di

1 ensures that the transformation
tsc does not delete structure needed to perform the transformation sequence t.

Application to model synchronization. The results in Theorems 7 and 8 are the
formal basis for an automatic construction of repair rules. Theorem7 ensures that
a suitable edit action followed by application of a repair rule at the right match is
equivalent to the application of a short-cut rule. Thus, whenever an edit action
on the source model (or symmetrically the target model) corresponds to the
source-action (target-action) of a short-cut rule, application of the corresponding
forward (backward) rule synchronizes the model again. Since the language of a
TGG is defined by its rules, every valid model can be reached from every other
valid model by inverse application of some of the rules of the grammar followed
by normal application of some rules. Often, edit actions are rather small steps

Efficient Model Synchronization 127

(or at least consist of those). Thus, it is not unreasonable to expect that many
typical edit actions can be realized as short-cut rules as these formalize the
inverse application of a rule followed by application of a normal one. Theorem8
characterizes the matches for short-cut rules at which application stays in the
language of the TGG. For operational short-cut rules, this can either be used
for detecting invalid edit actions or determining valid matches for synchronizing
forward rules.

5 Implementation and Evaluation

Implementation. Our implementation1 of an optimized model synchronizer is
based on the existing EMF-based general purpose graph and model transforma-
tion tool eMoflon [21]. It offers support for rule-based unidirectional and bidirec-
tional graph transformations where the latter is based on TGGs. To support an
effective model synchronizer, we automatically calculate a small but useful subset
of all possible short-cut rules. This is done by overlapping as many created ele-
ments as possible and only varying in the way that context elements are mapped
onto each other. These selected short-cut rules are operationalized to get repair
rules that allow us to repair broken links similar to our example in Sect. 2. The
model synchronization process is based on an incremental graph pattern matcher
that tracks all matches that dis-/appear due to model changes. Thus, it offers the
ability to react to model changes without the need to recompute matches from
scratch. Our implementation uses this technique by processing all those matches
marked as broken by the pattern matcher after a model change. A broken match
is the starting point to find a repair match as it is defined by the co-match of
the performed model change and has to be extended. If the pattern matcher can
extend a broken match to a repair match, the corresponding short-cut repair rule
can be applied. Otherwise, we fall back to the old synchronization strategy of
revoking the current step. This completely automatized synchronization process
ensures that we are able to restore consistency as long as the edited domain
model still resides in the language of our TGG.

Evaluation. Our experimental setup consists of 23 TGG rules (shown in our
technical report [9]) that specify consistency between Java AST and custom
documentation models and 37 short-cut rules derived from our TGG rule set. A
small modified excerpt of this rule set was given in Sect. 2. For this evaluation,
however, we define consistency not only between Package and Folder hierarchies
but also between type definitions, e.g., Classes and Interfaces, and Methods
with their corresponding documentation entries. We extracted five models from
Java projects hosted on Github using the tool MoDisco [4] and translated them
into our own documentation structure. Also, we generated five synthetic models
consisting of n-level Package hierarchies with each non-leafPackage containing
five sub-Packages and each leaf Package containing five Classes. Given such Java
1 Both the implementation and evaluation workspace can be accessed via https://

github.com/Arikae00/FASE19 eMoflon-evaluation.

https://github.com/Arikae00/FASE19_eMoflon-evaluation
https://github.com/Arikae00/FASE19_eMoflon-evaluation

128 L. Fritsche et al.

models, we refactored each model in three different scenarios such as by moving
a Class from one Package to another or completely relocating a Package. Then
we used eMoflon to synchronize these changes in order to restore consistency to
the documentation model, with and without repair rules.

These synchronization steps are subject to our evaluation and we pose the
following research questions: (RQ1) For different kinds of changes, how many
elements can be preserved that would otherwise be deleted and recreated? (RQ2)
How does our new approach affect the runtime performance? (RQ3) Are there
specific scenarios in which our approach performs especially good or bad?

Repair rules were developed to avoid unnecessary deletions of elements by
reverting too many rule applications in order to restore consistency as shown
exemplary in Sect. 2. This means that model changes where our approach should
perform especially good, have to target rule applications close to the beginning
of a rule sequence as this possibly renders many rule applications invalid. This
means that altering a root Package by creating a new Package as root would
imply that many rule applications have to be reverted to synchronize the changes
correctly (Scenario 1). In contrast, our approach might perform poorly when a
model change does not inflict a large cascade of invalid rule applications. Hence,
we move Classes between Packages to measure if the effort of applying repair
rules does infer a performance loss when both the new and old algorithm do not
have to repair many broken rule applications (Scenario 2). Finally, we simulate
a scenario between the first two by relocating leaf Packages (Scenario 3).

Table 1. Legacy vs. new synchronizer – Time in sec. and number of created elements

Both Legacy Synchronization Synchro. by Repair Rules

Trans. Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

Models Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts

lang.List 0.3 25 0.2 20 – – 0.06 5 0.2 0 – – 0.03 0

tgg.core 6.4 1.6k 39 1.6k 3.8 99 0.64 17 0.8 0 0.11 0 0.05 0

modisco.java 9.9 3.2k 228 3.3k 18.6 192 3.6 33 2.5 0 0.2 0 0.09 0

eclipse.graphiti 20.7 6.5k 704 6.5k 63.9 490 5.65 25 6.1 0 0.21 0 0.09 0

eclipse.compare 10.74 3.8k 83 3.7k 3.1 76 2.36 47 0.7 0 0.08 0 0.04 0

synthetic n = 1 0.3 35 0.32 30 0.2 30 0.03 1 0.1 0 0.05 0 0.03 0

synthetic n = 2 0.9 160 1.03 155 0.3 30 0.03 1 0.1 0 0.05 0 0.02 0

synthetic n = 3 2.8 785 6 780 0.4 30 0.04 1 0.1 0 0.07 0 0.02 0

synthetic n = 4 13.5 3.9k 86.3 3.9k 1.2 30 0.08 1 0.4 0 0.14 0 0.04 0

synthetic n = 5 91.5 20k 2731 20k 17.4 30 0.14 1 1.5 0 0.37 0 0.09 0

Table 1 depicts the measured times (Sec) and the number of created elements
(Elts) in each scenario. Each created element also represents a deleted element,
e.g., through revoking and reapplying a rule or applying a repair rule that creates
and deletes elements. In more detail, the table shows measurements for the
initial translation of the MoDisco model into the documentation structure and

Efficient Model Synchronization 129

synchronization steps for each scenario using the legacy synchronizer without
repair rules and the new synchronizer with repair rules.

W.r.t. our research questions stated above, we interpret this table as follows:
The right columns of the table show clearly that using repair rules preserves all
those elements in our scenarios that would otherwise be deleted and recreated by
the legacy algorithm2 (RQ1). The runtime shows a significant performance gain
for Scenario 1 including a worst-case model change (RQ2). Repair rules do not
introduce an overhead compared to the legacy algorithm as can be seen for the
synthetic time measurements in Scenario 3 where only one rule application has
to be repaired or reapplied. (RQ2). Our new approach excels when the cascade
of invalidated rule applications is long. Even if this is not the case, it does not
introduce any measurable overhead compared to the legacy algorithm as shown
in Scenarios 2 and 3 (RQ3).

Threats to validity. Our evaluation is based on five real world and five synthetic
models. Of course, there exists a wide range of projects that differ significantly
from each other due to their size, purpose, and developer styles. Thus, the results
may probably differ for other projects. Nonetheless, we argue that the four larger
projects extracted from Github are representative since they are part of estab-
lished tools from the Eclipse community. In this evaluation, we selected three
edit operations that are representative w.r.t. their dependency on other edit
operations. They may not be representative w.r.t. other aspects such as size or
kind of change, which seems to be of minor importance in this context. Also
we limited our evaluation to one TGG rule set due to space issues. However, in
our experience the approach shows similar results for a broader range of TGGs
which can be accessed through eMoflon.

6 Related Work

Reuse in existing work on TGGs. Several approaches to model synchronization
based on TGGs suffer from the fact that the revocation of a certain rule applica-
tion triggers the revocation of all dependent rule applications as well [12,16,19].
Especially from a practical point of view such cascades of deletions shall be
avoided: In [10], Giese and Hildebrandt propose rules that save nodes instead
of deleting and then re-creating them. Their examples can be realized by our
construction of repair rules. But they do not present a general construction or
proof of correctness. This is left as future work in [11] again, where other aspects
of [10] are formalized and proven to be correct.

In [3], Blouin et al. added a specially designed repair rule to the rules of their
case study to avoid information loss. Greenyer et al. [14] also propose to not
directly delete elements but to mark them for deletion and allow for reuse of these
marked elements in other rule applications. But this approach comes without
any formalization or proof of correctness as well. Again, the given example can
be realized as short-cut repair. These uncontrolled and informal approaches are
2 Scenario 1: We expect the new root element to already be translated.

130 L. Fritsche et al.

potentially harmful. Re-using elements wrongly may lead to, e.g., containment
cycles or unconnected data. Hence, providing precise and sufficient conditions
for correct re-use of data is highly desirable as re-use may improve scalability
and decrease data-loss. Our short-cut rules formalize when data can be correctly
reused. In summary, we do not only offer a unifying principle behind different
practically used improvements of TGGs but also give a precise formalization
that allows for automatic construction of the rules needed. Thereby, we present
conditions under which rule applications lead to valid outputs.

Comparison to other bx approaches. Anjorin et al. [2] compared three state-of-
the-art bx tools, namely eMoflon [21] (rule-based), mediniQVT [1] (constraint-
based) and BiGUL [17] (bx programming language) w.r.t. model synchroniza-
tion. They point out that synchronization with eMoflon is faster than with both
other tools as the runtime of these tools correlates with the overall model size
while the runtime of eMoflon correlates with the size of the changes done by
edit operations. Furthermore, eMoflon was the only tool able to solve all but one
synchronization scenario. One scenario was not solved because it deleted more
model elements than absolutely necessary in that case. Using short-cut repair
rules, we can solve the remaining scenario and moreover, can further increase
eMoflons model synchronization performance.

Change-preserving model repair. Change-preserving model repair as presented
in [22,25] is closely related to our approach. Assuming a set of consistency-
preserving rules and a set of edit rules to be given, each edit rule is accompanied
by one or more repair rules completing the edit step, if possible. Such a com-
plement rule is considered as repair rule of an edit rule w.r.t. an overarching
consistency-preserving rule. Operationalized TGG rules fit into that approach
but provide more structure: As graphs and rules are structured in triples, a source
rule is also an edit rule being complemented by a forward rule. In contrast to
that approach, source and forward rules can be automatically deduced from a
given TGG rule. By our use of short-cut rules we introduce a pre-processing step
to first enlarge the sets of consistency-preserving rules and edit rules.

Generalization of correspondence relation. Golas et al. provide a formalization of
TGGs in [13] which allows to generalize correspondence relations between source
and target graphs as well. They use special typings for the source, target, and
correspondence parts of a TGG and for edges between a correspondence part and
source and target part instead of using graph morphisms. That approach also
allows for partial correspondence relations. But it makes the deletion of elements
more complex as it becomes important how many incident edges a node has (at
least in the double-pushout approach). We therefore opted for introducing triple
graphs with partial morphisms. They allow us to just delete a node without
caring if it is needed within an existing correspondence relation.

Efficient Model Synchronization 131

7 Conclusion

Model synchronization, i.e., the task of restoring consistency between two mod-
els after a model change, poses challenges to modern bx approaches and tools:
We expect them to synchronize changes without losing data in the process, thus,
preserving information and furthermore, we expect them to show a reasonable
performance. While Triple Graph Grammars (TGGs) provide the means to per-
form model synchronization tasks in general, both requirements cannot always
be fulfilled since basic TGG rules do not define the adequate means to support
intermediate model editing. Therefore, we propose additional edit operations
being short-cut rules, a special form of generalized TGG rules that allow to take
back one edit action and to perform an alternative one. In our evaluation, we
show that operationalized short-cut rules allow for a model synchronization with
considerably decreased data loss and improved runtime.

To better cope with practical application scenarios, we like to extend our
approach by formally incorporating type inheritance, application conditions and
attributes in the model synchronization process. Since all of these have been
formalized in the setting of (M-)adhesive categories and our present work uses
that framework as well, these extensions are prepared but up to future work.
Propagating changes from one domain to another is basically done here by oper-
ationalizing short-cut rules. A more challenging task is what we call model inte-
gration where related pairs of models are edited concurrently and have to be
synchronized. These model edits may be in conflict across model boundaries. It
is up to future work to allow short-cut rules in model integration. Our hope is
to decrease data loss and to improve runtime of model integration tasks as well.

References

1. Ikv++: Medini QVT. http://projects.ikv.de/qvt
2. Anjorin, A., Diskin, Z., Jouault, F., Ko, H., Leblebici, E., Westfechtel, B.: Bench-

marx reloaded: a practical benchmark framework for bidirectional transformations.
In: Proceedings of the 6th International Workshop on Bidirectional Transforma-
tions co-located with The European Joint Conferences on Theory and Practice of
Software, BX@ETAPS 2017, Uppsala, Sweden, 29 April 2017, pp. 15–30 (2017).
http://ceur-ws.org/Vol-1827/paper6.pdf

3. Blouin, D., Plantec, A., Dissaux, P., Singhoff, F., Diguet, J.-P.: Synchronization of
models of rich languages with triple graph grammars: an experience report. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 106–121. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 8

4. Bruneliàre, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014). https://doi.
org/10.1016/j.infsof.2014.04.007

5. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: On principles of least change and
least surprise for bidirectional transformations. J. Object Technol. 16(1), 3:1–3:31
(2017). https://doi.org/10.5381/jot.2017.16.1.a3

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

http://projects.ikv.de/qvt
http://ceur-ws.org/Vol-1827/paper6.pdf
https://doi.org/10.1007/978-3-319-08789-4_8
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.5381/jot.2017.16.1.a3
https://doi.org/10.1007/3-540-31188-2

132 L. Fritsche et al.

7. Eppinger, S.D.: Model-based approaches to managing concurrent engineering. J.
Eng. Des. 2(4), 283–290 (1991). https://doi.org/10.1080/09544829108901686

8. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-cut rules. Sequential compo-
sition of rules avoiding unnecessary deletions. In: Mazzara, M., Ober, I., Salaün, G.
(eds.) STAF 2018. LNCS, vol. 11176, pp. 415–430. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-04771-9 30

9. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Optimizing TGG-based model
synchronization by automatic short-cut repair processes: extended version. Tech-
nical report, Philipps-Universität Marburg (2019). https://www.uni-marburg.de/
fb12/arbeitsgruppen/swt/forschung/publikationen/2019/FKST19-TR.pdf

10. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models.
Technical report 28, Hasso-Plattner-Institut (2009)

11. Giese, H., Hildebrandt, S., Lambers, L.: Bridging the gap between formal semantics
and implementation of triple graph grammars. Softw. Syst. Model. 13(1), 273–299
(2014). https://doi.org/10.1007/s10270-012-0247-y

12. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Softw. Syst. Model. 8(1), 21–43 (2009). https://doi.org/
10.1007/s10270-008-0089-9

13. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between
formal foundations and current practice for triple graph grammars. In: Ehrig, H.,
Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
141–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-
6 10

14. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21470-7 11

15. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Proceedings of the First International Workshop on Model-Driven Interoperability.
pp. 22–31. MDI 2010. ACM, New York (2010). https://doi.org/10.1145/1866272.
1866277

16. Hermann, F., et al.: Model synchronization based on triple graph grammars: cor-
rectness, completeness and invertibility. Softw. Syst. Model. 14(1), 241–269 (2015).
https://doi.org/10.1007/s10270-012-0309-1

17. Ko, H., Zan, T., Hu, Z.: BiGUL: a formally verified core language for putback-based
bidirectional programming. In: Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg,
FL, USA, 20–22 January 2016, pp. 61–72 (2016). https://doi.org/10.1145/2847538.
2847544

18. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inform.
Appl. 39(3), 511–545 (2005). https://doi.org/10.1051/ita:2005028

19. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33654-6 27

20. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incre-
mental pattern matching techniques for model synchronisation. In: de Lara, J.,
Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 179–195. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61470-0 11

https://doi.org/10.1080/09544829108901686
https://doi.org/10.1007/978-3-030-04771-9_30
https://doi.org/10.1007/978-3-030-04771-9_30
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/FKST19-TR.pdf
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2019/FKST19-TR.pdf
https://doi.org/10.1007/s10270-012-0247-y
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1145/1866272.1866277
https://doi.org/10.1145/1866272.1866277
https://doi.org/10.1007/s10270-012-0309-1
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-642-33654-6_27
https://doi.org/10.1007/978-3-319-61470-0_11

Efficient Model Synchronization 133

21. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 10

22. Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: Revision: a tool for history-based
model repair recommendations. In: Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg,
Sweden, 27 May–03 June 2018, pp. 105–108. ACM (2018). https://doi.org/10.1145/
3183440.3183498

23. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130
(1988). https://doi.org/10.1016/0890-5401(88)90034-X

24. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

25. Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-preserving model repair.
In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 283–299.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 16

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1145/3183440.3183498
https://doi.org/10.1145/3183440.3183498
https://doi.org/10.1016/0890-5401(88)90034-X
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-662-54494-5_16
http://creativecommons.org/licenses/by/4.0/

Offline Delta-Driven Model
Transformation with Dependency

Injection

Artur Boronat(B)

Department of Informatics,
University of Leicester, Leicester, UK

aboronat@le.ac.uk

Abstract. When model transformations are used to implement consis-
tency relations between very large models (VLMs), incrementality plays
a cornerstone role in the realization of practical consistency maintainers.
State-of-the-art model transformation engines with support for incre-
mentality normally rely on a publish-subscribe model for linking model
updates − deltas − to the application of model transformation rules,
in so called dependencies, at run time. These deltas can then be propa-
gated along an already executed model transformation. A small number
of such engines use domain-specific languages (DSLs) for representing
model deltas offline in order to enable their use in asynchronous, event-
based execution environments.

The principal contribution of this work is the design of a forward
delta propagation mechanism for incremental execution of model trans-
formations, which decouples dependency tracking from delta propagation
using two innovations. First, the publish-subscribe model is replaced with
dependency injection, physically decoupling domain models from consis-
tency maintainers. Second, a standardized representation of model deltas
is reused, facilitating interoperability with EMF-compliant tools, both for
defining deltas and for processing them asynchronously. This procedure
has been implemented in a model transformation engine, whose perfor-
mance has been evaluated empirically using the VIATRA CPS bench-
mark. In the experiments performed, the new transformation engine
shows gains in the form of several orders of magnitude in the initial
phase of the incremental execution of the benchmark model transforma-
tion and delta propagation is performed in real time, independently of
the size of the models involved, whereas the up-to-now best-performant
approach is dependent.

Keywords: Mappings between languages · Traceability ·
Incremental model transformation · Performance benchmark

1 Introduction

Significant issues in the application of Model-Driven Engineering (MDE) in
large-scale industrial problems stem from interoperability and scalability of
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 134–150, 2019.
https://doi.org/10.1007/978-3-030-16722-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_8&domain=pdf
http://orcid.org/0000-0003-2024-1736
https://doi.org/10.1007/978-3-030-16722-6_8

Offline Delta-Driven Model Transformation with Dependency Injection 135

current MDE tools [1,16,17]. Model transformation, widely accepted as the heart
and soul of MDE [23], deals with model manipulation either by translating mod-
els or by synchronizing them. Current tool support for model transformation is a
key root cause for many of the bottlenecks hampering scalability in MDE [2,8].
This is particularly crucial when transformations are used to implement consis-
tency maintainers between very large models (VLMs), consisting of milions of
elements. In this context, incrementality ensures that only those parts of the
model that are inconsistent or that have been modified − a model delta − are
transformed or, more precisely, propagated along an already executed transfor-
mation [11,12].

Current state-of-the-art approaches that support incremental execution of
model transformations share common features: the delta propagation mecha-
nism is usually decoupled from the delta detection mechanism in order to facil-
itate maintainability of the consistency maintainer; and deltas are represented
either in memory for synchronous notification or offline, with dedicated domain-
specific languages, for asynchronous notification. The most mature tools rely
on a publish/subscribe mechanism, where model deltas are notified at run time
whenever a model is updated. This notification mechanism is synchronous and
loosely couples model updates with the delta propagation mechanism, facilitat-
ing maintainability of the underlying transformation engine after fixing the type
of notification. However, it usually requires an observer for each object that can
be modified, with a consequent impact on performance, and the model transfor-
mation must be live, in memory, in order to listen for changes. These problems
can be avoided by using offline deltas. The publish/subscribe mechanism can be
extended to enable asynchronous delta notification but this is normally achieved
by using dedicated domain-specific languages to represent deltas offline, which do
not involve standardized formats, hindering the interoperability of those trans-
formation engines in existing modeling tool ecosystems.

In this paper, the design of a forward delta propagation procedure is pre-
sented for executing model transformations in incremental mode that can handle
documented change scenarios [4], i.e. documents representing a change to a given
source model. Such documents are defined with the EMF change model [24],
both conceptually and implementation-wise, guaranteeing interoperability with
EMF-compliant tools. This design decision replaces a publish/subscribe notifi-
cation with dependency injection: each notification is directly performed by the
implementation of the domain model at run time by injecting the dependency
corresponding to the model update that has been performed. Aspect-oriented
programming is used to weave code into an already existing implementation of a
domain model totally decoupling domain models from the consistency maintainer
at design time. The proposed forward delta propagation procedure has been
implemented in YAMTL [6], a model transformation engine for VLMs, enabling
the execution of model transformations both in batch mode and in incremental
mode without additional user specification overhead. This new extension dra-
matically improves the performance of the batch execution mode when dealing
with sparse model deltas, which can be propagated in real time (i.e. in μs.).

136 A. Boronat

This work is structured as follows: Sect. 2 provides a self-contained descrip-
tion of the class of model transformations supported using a class diagram to
relational schema model transformation; Sect. 3 presents the forward propaga-
tion procedure implemented in the model transformation engine together with
the main innovations; Sect. 4 discusses the performance of the transformation
engine with an adaptation of the VIATRA CPS benchmark; Sect. 5 discusses
related work from reactive and bidirectional model transformation.

2 Model Transformation: A Running Example

The type of model transformations that are considered in this work are classified
as unidirectional and out-place. For example, when considering the well-known
example that maps class diagrams to relational schemas, a class diagram is used
by queries to extract information and a relational schema is built from scratch. If
we consider a graph transformation perspective, both models are considered to
form part of the same graph in order to enable transformation by rewriting. In
that case, we are only considering transformations where the two models are two
clearly disjoint subgraphs and where rewriting is performed deterministically.

In this work, model transformations are represented using an implementation-
agnostic graphical syntax, quite close to that used in the graph transformation
literature. In this representation, metamodels are given as class diagrams, the
abstract syntax of models is given as object diagrams and model transformations
are represented as a collection of rules, where each rule is defined as a pair of
model patterns, called left-hand side (LHS) and right-hand side (RHS). The
notion of metamodel, model and model pattern correspond to those of type
graph, attributed graph with containments and node inheritance, and graph
pattern in the graph transformation literature [5,10]. For example, the rules
A->C and R->FK of Fig. 1 map attributes to columns. The $ before a variable
denotes string interpolation.

Graph patterns in rules can be augmented with universally quantified vari-
ables (represented by an overlaid box). Moreover, rules are augmented with a
when clause to express conditions that must be satisfied by the variables in LHS,
and with a where clause to indicate how variables from LHS and from RHS
are related via the application of other rules, expressed as two graph patterns.
Formulas in a when clause may be expressed in conjunctive form, as all filter
conditions must be satisfied in order for the rule to be applied, whereas formu-
las in a where clause may be expressed in disjunctive form (assuming mutually
exclusive conditions), as all the side effects expressed in a where clause must be
evaluated. The variables of RHS of the main rule must appear either in the LHS
of the main rule or in the RHS of a where transformation step. The rule C->T of
Fig. 1 illustrates how to map a class to a table with a primary key column PK COL

and for each attribute A whose type is a DataType, the corresponding column is
obtained by applying a rule, with the rule A->C, and for each attribute OTHER

whose type is the class C, matched in LHS of the main rule, a new foreign key
column is added to the table T, with the rule R->FK.

Offline Delta-Driven Model Transformation with Dependency Injection 137

name: String

NamedElt

DataType

Package

isAbstract: Boolean

Class

*
owner

attr
*

type

*super

*

name: String

Named

Type

Database

Column

Table

*
owner

col*

type

*
types

*

tables
keyOf

key
*

0..1

name = "Item"

1:Class

multiValued: Boolean

Attribute

name = "product"
multiValued=false

2:Attribute

name = "Order"

4:Class

name = "date"
multiValued=false

3:Attribute

name = "items"
multiValued=true

5:Attribute

attr attr attr

attr

name = "Item"

1:Table

name = "product"

2:Column
name = "Order"

6:Table

name = "date"

3:Column

name = "pk_Order"

7:Column

col

col col

name =
"pk_Item"

4:Columncol

name = "fk_Item--items-->Order"

5:Column

col

T : Table
col

PK_COL : Column
col

typename = "String"

0:DataType

typetype

Source metamodel (class diagrams) Target metamodel (database schemas)

Initial source model

rule C->T

Ms MtInitial target model

COL : ColumnA : Attribute

where

type
COL : ColumnA : Attribute D : DataType ∨

C : Class

rule A->C

type

name = AN

COL : Column

name = AN

A : Attribute

name = "String"

D : DataType

rule R->FK

type

COL : Column

name = AN

OTHER : Attribute

name = CN1

C1 : Class

attr

name = CN2

C2 : Class

type
COL : ColumnOTHER : Attribute C : Class

attr
C2 : Class

Fig. 1. Metamodels, example and transformation rules.

From an operational point of view, transformation rules are applied unidi-
rectionally from LHS to RHS performing an out-place transformation following
two steps. First, during the matching phase, matches for the rules in the model
transformation are found as long as they are not shared by different rules and
these are included in a set matchPool . A match is formally defined as a graph
morphism from LHS to the source graph, which satisfies the when conditions,
but it is represented as a map from variables to object identifiers for the sake of
presentation in this paper.

Second, during the execution phase, each match is processed by triggering the
application of a transformation rule, which is represented as a transformation
step, denoted by r :

−−−−→
in �→ ς → −−−−−→

out �→ ς, which consists of a labelled pair of
two matches, the match for the input pattern of the rule, which enables its
application, and the match for the output pattern of the rule, with the objects
that result from applying the rule. When a rule is applied, the source model is
only used for query purposes but the target model is constructed by adding the
pattern of the RHS instantiated with values from the variables both in the LHS
and in the RHS of where transformation steps. In addition, where transformation
steps may further expand the structure of the target model. This execution
model resembles the application of forward rules used in triple graph grammars
(TGGs) [22], where the source graph is annotated as rules are applied and only
the target graph is constructed together with a link in a correspondence graph,
where each link denotes a transformation step.

138 A. Boronat

3 Delta-Driven Model Transformations

This section presents the mechanism to propagate documented deltas δt from a
source model Ms to a target model Mt in an incremental way, when the (unidirec-
tional) synchronization correspondence between these two models is represented
with a model transformation t as described in the previous section. This has
been implemented in the YAMTL transformation engine [6], which has been
extended with two modes of execution: initialization, the transformation is exe-
cuted in batch mode but, additionally, tracks those parts of the source model
involved in transformation steps as dependencies; propagation, the transforma-
tion is executed incrementally for a given source delta.

In order for a model transformation to be executed in propagation mode, it
first needs to be executed in initialization mode in order both to create trans-
formation steps and to inject the dependencies that facilitate the analysis of the
impact of changes in the already executed model transformation. Therefore, the
transformation t is applied to Ms using the original batch semantics [6] while
injecting dependencies in the transformation engine. Once the initialization is
done, any number of source forward deltas δs can be propagated.

Given a source documented delta δs between a source model Ms, already
synchronized with a target model Mt via a model transformation t : Ms

∗−→ Mt

(where ∗−→ denotes a sequence of transformation steps), and an updated source
model M ′

s, the transformation engine propagates the model update δs along t.
The effect of this forward propagation is the application of an update δt on the
target model Mt.

In the following subsections, we explain the different phases of the new exe-
cution modes, initialization and propagation, in more detail. As the initialization
mode faithfully corresponds to the batch execution of a model transformation,
the discussion of this mode focuses on the type of dependencies that are injected
in the transformation engine in Sect. 3.1. The discussion on the propagation
mode focuses on how deltas are represented in Sect. 3.2. Then, the two main
phases of the propagation execution mode, namely impact analysis and delta
propagation, are explained in Sects. 3.3 and 3.4, respectively.

3.1 Dependency Injection

When running a model transformation in initialization mode, the engine mon-
itors the source model and whenever an object ς is matched or a feature call,
represented as a pair (ς, f) of an EMF object ς and a feature name f , is per-
formed, a dependency is injected into the dependency registry. A dependency
thereby links either an object ς or a feature call (ς, f) to transformation steps
r :

−−−−→
in �→ ς → −−−−−→

out �→ ς in which it is used. Such dependencies are detected both
during the matching phase and during the execution phase.

In the matching phase, while finding a match for a rule, the engine keeps track
of all of the feature calls used in both element and rule when conditions. When
a match is found to be valid, the collection of dependencies is injected into the
dependency registry for the transformation step that uses that match. Otherwise,

Offline Delta-Driven Model Transformation with Dependency Injection 139

Table 1. Analysis of dependencies for the initial MT t : Ms
∗−→ Mt of Fig. 2.

Rule Source Match Target Match Dependencies from Ms

C->T c �→ 1 t �→ 1, (1,name), (1,att),

pk col �→ 4 (5, type), (5, multiValued)

C->T c �→ 4 t �→ 6, pk col �→ 7 (4, name), (4, attr)

A->C att �→ 2 col �→ 2 (2, name)

A->C att �→ 3 col �→ 3 (3, name)

R->FK ref �→ 5 fk col �→ 5 (5,name), (5,type),

fk col �→ 5 (1, name), (4,name)

when the match is not valid, the collected dependencies are discarded. Addition-
ally, when inserting a match in the matchPool , the transformation engine also
records reverse matches as injected dependencies between matched objects ς and
the transformation step in which they are matched.

Dependencies may also be found when executing a transformation step, e.g.,
while executing initialization expressions associated with attributes in model
patterns in RHS and in where clauses. In such cases, the transformation engine
injects a dependency for the transformation step every time a feature call in
the source model is detected. As a result, note that several transformation steps
may depend on the same object ς, when rules have more than one single input
element, or on the same feature call (ς, f).

Table 1 shows the dependencies that are found when executing the transfor-
mation of Fig. 1 in initialization mode from model Ms. Each row in the table
represents a transformation step, where: the source match indicates where the
rule has been applied, the target match indicates what objects were created, and
dependencies refers to the set of feature calls associated with a transformation
step. Reverse matches are extracted from source matches, by reading them in
the opposite direction.

Dependency injection is configured with an aspect whose pointcut matches
feature calls under a user-defined namespace. Hence, the model transformation
engine is entirely decoupled from the domain model at design time. They become
tightly coupled at compilation time and, hence, at run time.

3.2 Representable Deltas

The EMF change model [24] is used to represent deltas to an instance of any
other EMF model. It is built-in in EMF and, therefore, available for any EMF-
compliant tool. In this section, we describe how a documented delta is repre-
sented with the EMF change model and how it can be automatically defined
given any potentially live atomic update.

A delta consists of a ChangeDescription which contains a map of
objectChanges, which refer to those objects that are updated and, for each
such object, it contains a list of FeatureChanges. A FeatureChange (FC) refers

140 A. Boronat

to the structural feature that needs to be updated and provides the new
value. For single-valued attributes, a FeatureChange contains the new dataValue

if the feature is an attribute. For references and multi-valued attributes,
a FeatureChange includes a containment reference listChanges pointing to
ListChange. ListChanges are used to represent addition to, removal from, or
movement within the given feature values. In particular, movement only cap-
tures when an object changes to a different index within the collection. However,
it does not capture structural changes, e.g. change of container, which are rep-
resented as a removal from and an addition to the corresponding containment
references. When a FeatureChange refers to a containment reference, objects to
be added are pointed by objectsToAttach and objects to be removed are pointed
by objectsToDetach.

FeatureChanges capture when a feature value is updated for an object but
EMF also permits adding and removing root objects to a resource, representing
the model in memory, which need not be contained by any other object. Such
changes are considered to be performed on the resource itself and are represented
with ResourceChanges, one for each changed resource. A ResourceChange (RC)
contains the ListChanges for the root objects of the corresponding resource,
similarly to multi-valued features. For a more detailed explanation of the EMF
change model, we refer the reader to [24].

Table 2 shows a classification of atomic model updates that are representable
with the EMF change model as explained above. Note that moving and object
structurally, case 12 − move (inter.), − is represented in a composite delta by
two opposite actions, removing the object either from the root contents of the
resource − if it is a root object (case 2) − or from a containment reference − if it
is a contained object (case 10) − and adding it either to the root contents of the
resource − if it is to become a root object (case 1) − or to another containment
reference in another container object (case 9). This case is not captured by the
EMF change model explicitly but the transformation engine is able to infer it,
as explained in the following section.

Table 2. Summary of model update types, with their representation in EMF.

Cases Granularity Level Feature Delta action Delta representation DO DFC

1,2 atomic root add/remove RC::listChanges �
3 atomic root move (intra.) RC::listChanges

4,5 atomic any single-valued att add/remove FC �
6,7 atomic any multi-valued att add/remove FC::listChanges � �
8 atomic any multi-valued att move (intra.) FC::listChanges �
9,10 atomic any ref add/remove FC::listChanges �
11 atomic any ref move (intra.) FC::listChanges �
12 composite any containment ref move (inter.) opposite remove �

and add actions

in cases {2, 10}/{1, 9}

Offline Delta-Driven Model Transformation with Dependency Injection 141

A delta, which may represent atomic and composite changes, is defined as
an instance of the EMF change model and can be serialized. EMF also provides
facilities for applying them and reversing them. Furthermore, EMF provides a
change recorder, which enables recording live updates as a ChangeDescription for
either a root object, a collection of root objects, a resource or a resource set.
The resulting ChangeDescription is the representation of a history scenario [4],
from the updated model to the original one, which is optimized. That is, atomic
changes for the same feature of the same object may be discarded or merged,
as long as the optimization process preserves reversibility. Hence, reversing the
recorded delta may yield less changes than were originally made. Reversed deltas
represent documented scenarios and can be propagated along a model transfor-
mation, as discussed in subsequent sections.

Fig. 2. Source/target metamodels, initial synchronized models and forward delta prop-
agation (a–e).

142 A. Boronat

The EMF change recorder enables the possibility of deferring the observation
of updates to the point in which they occur, saving memory resources, and
interoperability. Furthermore, recorded (history) deltas can be regarded as a
rollback mechanism for implementing transactional model updates, which may
be performed live.

Figure 2 shows examples of documented deltas, defined over the source model
Ms of the running example. Such deltas are representable as EMF model changes,
i.e. operationally, but are graphically depicted using the abstract syntax of Ms,
using their state-based representation for the sake of presentation. Additions and
updates, including moves, are highlighted in grey colour. Objects that are added,
and thus created, have a new identifier. Objects that are updated and/or moved
preserve their identifier. Removals are highlighted by using dashed lines for the
contour lines of the corresponding shapes. The given deltas are instantiations of
case 4 (delta a), changing the name of the class Order to Invoice; case 1 (delta
b), adding a root class Product; case 9 (delta c), adding a single-valued attribute
amount to class Item; case 10 (delta d), removing the attribute date from class
Item; and case 11 (delta e), structurally moving the attribute date from class
Item to class Order.

In the following subsections, the different phases of the procedure for forward
propagation of source deltas is discussed and the aforementioned examples will
be used for illustrating them.

3.3 Impact Analysis

In this subsection, we discuss how source documented deltas are analyzed in
order to determine which transformation steps are affected by source changes.
This analysis is comprised of three main steps: identification of atomic model
updates from a documented delta, initialization of locations for newly enabled
rules, and marking of transformation steps impacted by changes.

Identification of atomic model updates. In the first step, the transformation
engine infers which objects and which feature calls have been impacted by
changes. For objects, it also infers whether an object has been added or removed,
ignoring if the object is moved, either within the same collection or structurally.

For affected objects, such information is recorded in the set DO of dirty
objects of the form (ς, ctype), where ς is the affected object and ctype is the type
of change from the set { ADD, DEL}. To obtain a dirty object from the delta,
FeatureChanges and ResourceChanges are traversed considering two cases: when
an object ς is added either to a containment feature (for a FeatureChange) or to
the root contents of the resource (for a ResourceChange) and such object is not
removed elsewhere in the delta, either from a containment reference or from the
root contents of the resource; and, similarly, when an object is deleted and it
is not added elsewhere in the delta. DO is augmented with (ς, ADD) in the first
case and with (ς, DEL) in the second case.

For affected feature calls, such information is recorded in the set DFC of
dirty feature calls of the form (ς, f), where ς is an object and f is a feature

Offline Delta-Driven Model Transformation with Dependency Injection 143

Table 3. Impact analysis of source deltas a–e.

Case DO DFC Rule Source Match Target Match matchPoolΔ dirty?

a 4 − (4, name) C->T c �→ 4 t �→ 6, pk col �→ 7 � �
b 1 (6, ADD) − C->T c �→ 6 �
c 9 (1, attr) C->T c �→ 1 t �→ 1, pk col �→ 4 � �

(6, ADD) A->C att �→ 6 �
d 10 (1, attr) C->T c �→ 1 t �→ 1, pk col �→ 4 � �

(3, DEL) A->C att �→ 3 col �→ 3 �
e 11 − (1, attr), C->T c �→ 1 t �→ 1, pk col �→ 4 � �

(4, attr) C->T c �→ 4 t �→ 6, pk col �→ 7 � �

name. For each FeatureChange of an ObjectChange, the dirty feature call (ς, f)
with the object ς referred by the ObjectChange and the feature name f referred
to by the FeatureChange is added to DFC .

Table 2 shows how atomic model update types are represented using the EMF
change model (column delta representation), internally, using the sets DO and
DFC . Table 3 shows the sets DO of dirty objects and DFC of dirty feature calls
for the source deltas of Fig. 2. Note that the sets DO and DFC decouple the
transformation engine from the EMF change model and provide another entry
point for defining deltas programmatically, which can be used for capturing
atomic live changes received via EMF adapters.

Initialization of delta locations. For each dirty object (ς, ADD), the object ς
is added to the extent associated with type(o) in the location map used for
delta propagation. This potentially enables new matches when rules are matched
during the delta propagation phase.

Marking of impacted transformation steps. In this step, transformation steps
that are affected by the atomic changes in the source delta are marked as dirty.
For each dirty object (ς, ADD) ∈ DO , the extent of type type(ς) is augmented
with ς. This will potentially enable new matches for some rule during the change
propagation phase. For each dirty object (ς, DEL) ∈ DO , we obtain the list of
transformation steps that are affected from the map of reverse matches. Such
transformation steps will then remain transient and the objects in their target
match will not be linked to other objects in the target models. In particular,
note that when processing root objects or a containment reference, an object
that is removed in the delta is not present in the updated source model and,
therefore, it does not trigger the transformation step that had been executed in
the initial transformation.

For each dirty feature call (ς, f) ∈ DFC we obtain the list of transformation
steps that are affected from the registry of dependencies. For each such transfor-
mation step, the satisfaction of its source match is checked. If such source match
is still valid, then it is inserted into matchPoolΔ, the pool of matches that are
used to schedule rule applications during the change propagation phase.

144 A. Boronat

For each atomic change in Fig. 2, Table 3 shows the marking of transforma-
tion steps that are (re-)scheduled according to the dependencies of Table 1. In
particular, if a transformation step is re-scheduled, its current source and target
matches are included, it is marked as dirty and included in matchPoolΔ. If a
transformation step is not to be re-executed, it is simply marked as dirty. New
transformation steps, with fresh matches due to new objects, are scheduled in
matchPoolΔ. This last step is actually achieved by augmenting the correspond-
ing type extent with the new objects and the matches are scheduled during the
change propagation phase, explained in the next subsection.

3.4 Change Propagation

After the impact analysis phase, delta propagation proceeds by executing a
model transformation using the matching and execution phases, as outlined in
Sect. 2. Figure 2 illustrates the propagation of source deltas according to the
model transformation of Fig. 1. We highlight how incrementality has been con-
sidered in these two phases below.

Matching Phase. During the matching phase (in batch/initialization execution
mode), matches for a given rule are found by traversing objects from the extent
of the types associated with the elements of the source pattern of the rule,
with the constraints specified in the form of graphical patterns and when condi-
tions. In propagation mode, the transformation engine employs the same pattern
matching algorithm but it fetches objects from the location map used for delta
propagation, initialized during the change impact analysis phase. Therefore, new
matches may be found for objects that have been created by the source delta.
Those matches are inserted both into matchPool and matchPoolΔ, scheduling
new transformation steps. Table 3 shows that two new transformation steps are
scheduled, one for rule C->T in delta b, and one for rule A->C in delta c.

Execution Phase. During the execution phase, transformation steps determined
by the matches in matchPoolΔ are executed. Such matches originate from the
impact analysis phase, corresponding to transformation steps that are dirty and
need to be re-executed, and from the matching phase above, corresponding to
new transformation steps.

The re-execution of a transformation step is performed as in the
batch/initialization mode but for the creation of transformation steps. Whereas
a newly scheduled transformation step needs to get its output objects initialized
(instantiated for output elements), a dirty transformation step reuses the objects
of the target match and unsets their features. This avoids loss of contextual
information, which is not affected by changes, when re-executing a transforma-
tion step. In particular, those references to output objects that emerge from the
external context are preserved. On the other hand, references from those output
objects are re-calculated by re-executing the transformation step. It is worth
noting that the transformation engine uses where clauses to define references to
objects that are created by other rules, which in turn uses a cache mechanism

Offline Delta-Driven Model Transformation with Dependency Injection 145

to avoid re-executing the transformation step that produced it. Therefore, when
a dirty transformation rule is re-executed, the initialization of output element
bindings are performed again. However, those bindings that are initialized in a
where clause are also initialized incrementally. That is, only those objects that
belong to a match of a new scheduled transformation step will be transformed
from scratch. References to already initialized objects will be simply fetched.
Hence, the granularity of the target delta is as fine grained (at binding level) as
the source delta for the underlying graph structure of the model.

4 Performance Analysis

For the empirical analysis of the incremental execution of model transformations
in YAMTL using the propagation procedure presented above, we have used the
VIATRA CPS benchmark [27]. The transformation YAMTL-incr implemented
for our model transformation engine passes the sanity checks of the benchmark.
The software artifacts used in this section and the results obtained are publicly
available in a GitHub repository [7] and YAMTL is available at https://yamtl.
github.io/.

This evaluation is an extension of the one performed for the batch com-
ponent of the VIATRA CPS benchmark in [6]. From the original VIATRA
CPS benchmark, two incremental variants of the transformation implemented
with EMF-IncQuery have been selected: ExplicitTraceability (EXPL) [25] and
QueryResultTraceability (QRT) [26], out of which the first one is the best per-
forming solution up to now. These transformations have been extracted as inde-
pendent Java projects. Classes implementing them have been kept intact in the
new projects, including their namespaces, so that errors are not introduced due
to lack of expertise. Although these two transformations produce results that
are different from the other transformations, the main differences are due to
reordering of multi-valued references and we have considered them valid for this
evaluation. On the other hand, a benchmark measurement harness considering
the best practices recommended by the VIATRA team [13] was developed in
order both to fine-tune measurements and to crosscheck results. This harness
removes dependencies to other components of the VIATRA CPS benchmark so
that experiments can be run locally.

In the present work, we aimed at answering the following research questions:
(RQ1) Does YAMTL-incr show any performance penalty w.r.t. its execution in
batch mode (YAMTL-batch)? (RQ2) Does YAMTL-incr show any improvement
in performance w.r.t EXPL or QRT during initialization phase? (RQ3) And
during propagation phase?

From the scenarios provided in the original benchmark, the scenarios client-
server and statistic based [29] were considered. The CPS model generator [28]
was used to obtain the input models to be used for the analysis so that their size
depends on a logarithmic factor. The biggest models considered, in the client
server scenario, consist of millions of nodes (10.16M) and edges (27.53M) and
are, hence, VLMs.

https://yamtl.github.io/
https://yamtl.github.io/

146 A. Boronat

For each tool and scenario, the experiments are run in isolation, i.e. in a
separate Java process. For each of the input models, an initial experiment is
performed to warm up the JVM and, then, twelve more experiments to measure
performance. Each experiment consists of four phases: model load and engine
initialization, initial transformation, delta propagation and model storage. In
between each execution phase, the harness sends hints to the JVM to run garbage
collection and waits for one second before proceeding on to the next phase. The
first phase includes the instantiation of a fresh engine instance, avoiding interfer-
ence between experiments as caches are not reused. The delta propagation phase
includes the application of the delta to the source model and its propagation.
Only initial transformation and delta propagation times have been considered in
the quantitative analysis. For the results the median obtained for each of these
two phases out of ten experiments is used, after removing the minimum and the
maximum results.

In both solutions EXPL [25] and QRT [26], the delta is applied to the source
model by directly modifying the resource containing the model. In the solution
with YAMTL such delta was recorded and persisted using the EMF change
model as described in Sect. 3.2. To analyze whether this feature could become
a threat to validity, a separate experiment was run by excluding the query part
of the model update (searching for the objects to be updated) in the solution
EXPL but this change did not affect performance results perceptibly and the
original solutions provided by the authors of the VIATRA CPS benchmark were
considered. Therefore, the actions performed during the propagation phase are
equivalent in all of the evaluated solutions.

Fig. 3. Performance of initialization (top) and delta propagation (bottom).

Offline Delta-Driven Model Transformation with Dependency Injection 147

Figure 3 shows the performance results obtained both for the initial model
transformation and for forward delta propagation for the models generated for
the client-server scenario. Scales both for time (ms.) along Y axis and for model
size factors along X axis are logarithmic allowing us to compare the scalability
of the different approaches. In the initialization phase, we have included the
execution of YAMTL in batch mode (YAMTL-batch) over the source model,
and it can be seen that tracking dependencies incurs a small penalty. However,
the other two solutions (EXPL and QRT) operate several orders of magnitude
slower. In the propagation phase, it can be observed that while YAMTL-incr
exhibits a constant propagation time (in μs.) for the source delta, the cost of
the other solutions depends on the size of the input model. Furthermore, for
the other incremental approaches, when both initial and propagation time are
combined their performance worsens due to their costly initialization phase.

5 Related Work

In this section, we discuss techniques used in related work for achieving incre-
mentality in both reactive and bidirectional model transformation.

Reactive model transformation [3,21] enable the propagation of model
updates from source models to target models on demand. State-of-the-art tool
support relies on notification mechanisms, enabling live detection of source model
updates either for immediate processing, as in VIATRA [3], or for deferred pro-
cessing, as in ReactiveATL [21]. In these approaches, source model update notifi-
cations are usually fine-grained and kept in memory. Such notifications can only
be detected when the transformation engine is in memory (live) as well. The use
of a notification mechanism means that models are loosely coupled to the trans-
formation engine. Working with offline model updates, as in the proposed delta
propagation procedure, completely decouples detection of deltas from the trans-
formation engine, freeing model update developers from the overhead of hav-
ing the transformation infrastructure in memory. The latter is only needed for
propagating changes but not for defining them. In reactive approaches, when an
observer receives an update notification, information about the intent of the over-
all model delta, i.e. the contextual information relating different atomic updates,
is lost. This problem is avoided using documented deltas, which may be serial-
ized, enabling their processing − e.g. aggregating composite changes like the
move operation − and optimization − reduction of atomic operations that are
cancelled when composed. We refer the reader to [9] for an additional discussion
of delta-based model updates against state-based model updates.

Among bidirectional model transformation approaches, Triple Graph Gram-
mars (TGG), introduced in [22], are a declarative approach for specifying bidi-
rectional consistency relations between models. Although our approach is not
bidirectional, it is worth comparing how incrementality is supported in opera-
tional TGG rules. Incrementality was first introduced in TGG synchronization
in [11,12]. Efficient approaches for TGG synchronization [18–20] avoid analyzing
the whole model by relying on dependencies which hint at the impact of a model

148 A. Boronat

update directly. Precedence-based approaches [18,20] keep a binary precedence
relation over the set of model elements in order to determine when creation or
deletion of a model element affects another one. While [18] overestimates the
actual dependencies by defining them at the type level, others underestimate
them relying on user feedback [20] or on special correspondences [12]. [19] decou-
ples impact analysis of model updates from consistency restoration by delegat-
ing the former to VIATRA’s incremental pattern matcher, which has a built-in
dependency tracker, and by defining operational rules using a reactive model
transformation approach. However, these two phases are still tightly coupled
using a synchronous communication mechanism between the incremental pattern
matcher and the synchronization procedure since the pattern matcher may trig-
ger revocations/applications of forward marking rules after revoking/applying
one of them. That is, the model synchronization procedure uses the pattern
matcher to know when synchronization terminates. In the delta propagation
mechanism proposed in the present work, either the revocation of applied trans-
formation steps or the creation of new transformation steps cannot trigger fur-
ther applications because rule matches are computed against the source model
and they are unique, that is the same match cannot enable two different rules.
A new transformation step may be found when new elements are inserted in the
source model. On the other hand, when a transformation step is revoked, no
other rule can be applied or a conflict would have been detected when the rule
was applied the first time.

Some transformation engines with support for bidirectional transformations,
like NMF [14,15], support the offline representation of model deltas. However,
to the best of our knowledge, none of the aforementioned approaches uses a
standardized notation for them, such as the EMF model change, which can be
regarded as the de-facto standard for representing model deltas in the EMF
modeling tool ecosystem.

6 Concluding Remarks

The main contribution of this work is the design of a delta propagation procedure
for executing delta-driven model transformations, which has been implemented
in YAMTL. The novelty of the approach consists in the use of a standard-
ized representation of model deltas, which facilitates interoperability with EMF-
compliant tools, and in the use of dependency injection mechanism, which allows
the transformation engine to be aware of model updates without having to rely
on a publish-subscribe infrastructure. The VIATRA CPS benchmark has been
used to justify that (1) the initialization transformation in YAMTL is several
orders of magnitude faster than the up-to-now fastest incremental solutions and
that (2) propagation of sparse deltas can be performed in real time for VLMs,
independently of their size, whereas other solutions show a clear dependence on
their size. Hence, YAMTL shows satisfactory scalability in incremental execu-
tion of model transformations on VLMs. Additional studies with larger classes
of models will be considered in future work.

Offline Delta-Driven Model Transformation with Dependency Injection 149

References

1. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial con-
text — Motorola case study. In: Briand, L., Williams, C. (eds.) MODELS 2005.
LNCS, vol. 3713, pp. 476–491. Springer, Heidelberg (2005). https://doi.org/10.
1007/11557432 36

2. Benelallam, A., Gómez, A., Tisi, M., Cabot, J.: Distributing relational model trans-
formation on mapreduce. J. Syst. Softw. 142, 1–20 (2018)

3. Bergmann, G., et al.: Viatra 3: a reactive model transformation platform. In:
Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 101–110.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21155-8 8

4. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transformations
- change (in) the rule to rule the change. Softw. Syst. Model. 11(3), 431–461 (2012)

5. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Softw. Syst. Model. 11(2), 227–
250 (2012)

6. Boronat, A.: Expressive and efficient model transformation with an internal DSL
of Xtend. In: MODELS 2018, pp. 78–88. ACM (2018)

7. Boronat, A.: YAMTL evaluation repository with the incremental component of
the VIATRA CPS benchmark (2018). https://github.com/yamtl/viatra-cps-incr-
benchmark

8. Daniel, G., Jouault, F., Sunyé, G., Cabot, J.: Gremlin-ATL: a scalable model
transformation framework. In: ASE, pp. 462–472. IEEE Computer Society (2017)

9. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–
318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 22

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

11. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006.
LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006). https://doi.org/10.
1007/11880240 38

12. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Softw. Syst. Model. 8(1), 21–43 (2009)

13. Harmath, D., Ráth, I.: VIATRA/query/FAQ: performance optimization guidelines
(2016). https://wiki.eclipse.org/VIATRA/Query/FAQ#Performance optimization
guidelines

14. Hinkel, G.: Change propagation in an internal model transformation language. In:
Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 3–17. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21155-8 1

15. Hinkel, G., Burger, E.: Change propagation and bidirectionality in internal trans-
formation DSLs. Softw. Syst. Model. 18(1), 249–278 (2017)

16. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: ICSE, pp. 471–480. ACM (2011)

17. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The grand challenge of scalability for
model driven engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol.
5421, pp. 48–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01648-6 5

https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/978-3-319-21155-8_8
https://github.com/yamtl/viatra-cps-incr-benchmark
https://github.com/yamtl/viatra-cps-incr-benchmark
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/11880240_38
https://doi.org/10.1007/11880240_38
https://wiki.eclipse.org/VIATRA/Query/FAQ#Performance_optimization _guidelines
https://wiki.eclipse.org/VIATRA/Query/FAQ#Performance_optimization_guidelines
https://doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/978-3-642-01648-6_5
https://doi.org/10.1007/978-3-642-01648-6_5

150 A. Boronat

18. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33654-6 27

19. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incre-
mental pattern matching techniques for model synchronisation. In: de Lara, J.,
Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 179–195. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61470-0 11

20. Orejas, F., Pino, E.: Correctness of incremental model synchronization with triple
graph grammars. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 74–90. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 6

21. Perez, S.M., Tisi, M., Douence, R.: Reactive model transformation with ATL. Sci.
Comput. Program. 136, 1–16 (2017)

22. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

23. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0., 2nd edn. Addison-Wesley Professional (2009)

25. VIATRA Team: Explicit traceability M2M transformation (2016). https://
github.com/viatra/viatra-docs/blob/master/cps/Explicit-traceability-M2M-
transformation.adoc

26. VIATRA Team: Query result traceability M2M transformation (2016). https://
github.com/viatra/viatra-docs/blob/master/cps/Query-result-traceability-M2M-
transformation.adoc

27. VIATRA Team: VIATRA CPS benchmark (cps to deployment transfor-
mation) (2016). https://github.com/viatra/viatra-docs/blob/master/cps/CPS-to-
Deployment-Transformation.adoc

28. VIATRA Team: VIATRA CPS benchmark (model generator) (2016). https://
github.com/viatra/viatra-docs/blob/master/cps/Model-Generator.adoc

29. VIATRA Team: VIATRA CPS benchmark (scenario specification) (2016). https://
github.com/viatra/viatra-cps-benchmark/wiki/Benchmark-specification#cases

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-33654-6_27
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-319-08789-4_6
https://doi.org/10.1007/3-540-59071-4_45
https://github.com/viatra/viatra-docs/blob/master/cps/Explicit-traceability-M2M-transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Explicit-traceability-M2M-transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Explicit-traceability-M2M-transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Query-result-traceability-M2M-transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Query-result-traceability-M2M-transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Query-result-traceability-M2M-transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/CPS-to-Deployment-Transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/CPS-to-Deployment-Transformation.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Model-Generator.adoc
https://github.com/viatra/viatra-docs/blob/master/cps/Model-Generator.adoc
https://github.com/viatra/viatra-cps-benchmark/wiki/Benchmark-specification#cases
https://github.com/viatra/viatra-cps-benchmark/wiki/Benchmark-specification#cases
http://creativecommons.org/licenses/by/4.0/

A Logic-Based Incremental Approach
to Graph Repair

Sven Schneider1(B), Leen Lambers1, and Fernando Orejas2

1 Hasso Plattner Institut, University of Potsdam, Potsdam, Germany
Sven.Schneider@HPI.de

2 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Graph repair, restoring consistency of a graph, plays a promi-
nent role in several areas of computer science and beyond: For example,
in model-driven engineering, the abstract syntax of models is usually
encoded using graphs. Flexible edit operations temporarily create incon-
sistent graphs not representing a valid model, thus requiring graph repair.
Similarly, in graph databases—managing the storage and manipulation
of graph data—updates may cause that a given database does not satisfy
some integrity constraints, requiring also graph repair.

We present a logic-based incremental approach to graph repair, gen-
erating a sound and complete (upon termination) overview of least-
changing repairs. In our context, we formalize consistency by so-called
graph conditions being equivalent to first-order logic on graphs. We
present two kind of repair algorithms: State-based repair restores consis-
tency independent of the graph update history, whereas delta-based (or
incremental) repair takes this history explicitly into account. Technically,
our algorithms rely on an existing model generation algorithm for graph
conditions implemented in AutoGraph. Moreover, the delta-based app-
roach uses the new concept of satisfaction (ST) trees for encoding if and
how a graph satisfies a graph condition. We then demonstrate how to
manipulate these STs incrementally with respect to a graph update.

1 Introduction

Graph repair, restoring consistency of a graph, plays a prominent role in several
areas of computer science and beyond. For example, in model-driven engineering,
models are typically represented using graphs and the use of flexible edit opera-
tions may temporarily create inconsistent graphs not representing a valid model,
thus requiring graph repair. This includes the situation where different views of
an artifact are represented by a different model, i.e., the artifact is described by a
multi-model, see, e.g. [6], and updates in some models may cause a global incon-
sistency in the multimodel. Similarly, in graph databases—managing the storage

F. Orejas has been supported by the Salvador de Madariaga grant PRX18/00308 and
by funds from the Spanish Research Agency (AEI) and the European Union (FEDER
funds) under grant GRAMM (ref. TIN2017-86727-C2-1-R).
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 151–167, 2019.
https://doi.org/10.1007/978-3-030-16722-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_9

152 S. Schneider et al.

and manipulation of graph data—updates may cause that a given database does
not satisfy some integrity constraints [1], requiring also graph repair.

Numerous approaches on model inconsistency and repair (see [12] for an
excellent recent survey) operate in varying frameworks with diverse assumptions.
In our framework, we consider a typed directed graph (cf. [7]) to be inconsistent
if it does not satisfy a given finite set of constraints, which are expressed by
graph conditions [8], a formalism with the expressive power of first-order logic
on graphs. A graph repair is, then, a description of an update that, if applied
to the given graph, makes it consistent. Our algorithms do not just provide
one repair, but a set of them from which the user must select the right repair
to be applied. Moreover, we derive only least changing repairs, which do not
include other smaller viable repairs. Our approach uses techniques (and the tool
AutoGraph) [17] designed for model generation of graph conditions.

We consider two scenarios: In the first one, the aim is to repair a given graph
(state-based repair). In the second one, a consistent graph is given together with
an update that may make it inconsistent. In this case, the aim is to repair the
graph in an incremental way (delta-based repair).

The main contributions of the paper are the following ones:

– A precise definition of what an update is, together with the definition of some
properties, like e.g. least changing, that a repair update may satisfy.

– Two kind of graph repair algorithms: state-based and incremental (for the
delta-based case). Moreover, we demonstrate for all algorithms soundness
(the repair result provided by the algorithms is consistent) and completeness
(upon termination, our algorithms will find all possible desired repairs)1.

Summarizing, most repair techniques do not provide guarantees for the func-
tional semantics of the repair and suffer from lack of information for the deploy-
ment of the techniques (see conclusion of the survey [12]). With our logic-based
graph repair approach we aim at alleviating this weakness by presenting formally
its functional semantics and describing the details of the underlying algorithms.

The paper is organized as follows: After introducing preliminaries in Sect. 2,
we proceed in Sect. 3 with defining graph updates and repairs. In Sect. 4, we
present the state-based scenario. We continue with introducing satisfaction trees
in Sect. 5 that are needed for the delta-based scenario in Sect. 6. We close with a
comparison with related work in Sect. 7 and conclusion with outlook in Sect. 8.
For proofs of theorems and example details we refer to our technical report [18].

2 Preliminaries on Graph Conditions

We recall graph conditions (GCs), defined here over typed directed graphs, used
for representing properties on such graphs. In our running example2, we employ
1 Note that completeness implies totality (if the given set of constraints is satisfiable

by a finite graph, then the algorithms will find a repair for any inconsistent graph).
2 We refer to Sect. 1 with pointers to related work including diverse use cases in Soft-

ware Engineering for graph repair with more complex and motivating examples.

A Logic-Based Incremental Approach to Graph Repair 153

:A :B
:E2

:E1 ¬∃(a, ¬(∃(a be , true) ∧ ¬∃(a e, true)))

Fig. 1. The type graph TG (left) and the GC ψ (right) for our running example

the type graph TG from Fig. 1 and we use nodes with names ai and bi to indicate
that they are of type :A and :B, respectively.

GCs state facts about the existence of graph patterns in a given graph, called
a host graph. For example, in the syntax used in our running example, the GC
∃(a, true) means that the host graph must include a node of type :A. Also,
∃(a b, true) means that the host graph must include a node of type :A,
another node of type :B, and an edge from the :A-node to the :B-node.

In general, in the syntax that we use in our running example, an atomic
GC is of the form ∃(H,φ) (or ¬∃(H,φ)) where H is a graph that must be (or
must not be) included in the host graph and where φ is a condition expressing
more restrictions on how this graph is found (or not found) in the host graph.
For instance, ∃(a,¬∃(a be , true)) states that the host graph must include
an :A-node such that it has no outgoing edge e to a :B-node. Moreover, we use
the standard boolean operators to combine atomic GCs to form more complex
ones. For instance, ∃(a,¬(∃(a be , true) ∧ ¬∃(a e, true))) states that the
host graph must include an :A-node, such that it does not hold that there is
an outgoing edge e to a :B-node and node a has no loop. In addition, as an
abbreviation for readability, we may use the universal quantifier with the mean-
ing ∀(H,φ) = ¬∃(H,¬φ). In this sense, the condition φ from Fig. 1, used in our
running example, states that every node of type :A must have an outgoing edge
to a node of type :B and that such an :A-node must have no loop.

Formally, the syntax of GCs [8], expressively equivalent to first-order logic on
graphs [5], is given subsequently. This logic encodes properties of graph exten-
sions, which must be explicitly mentioned as graph inclusions. For instance, the
GC ∃(a,¬∃(a be , true)) in simplified notation is formally given in the syn-
tax of GCs as ∃(iH ,¬∃(a ↪−→ (a be), true)), where iH denotes the inclusion
∅ ↪−→ H with H the graph consisting of node a. This is because it expresses a
property of the extension iH . Moreover, therein the GC ¬∃(a ↪−→ (a be), true)
is actually a property of the extension a ↪−→ (a be).

Definition 1 (Graph Conditions (GCs) [8]). The class of graph condi-
tions ΦGC

H for the graph H is defined inductively:

– ∧S ∈ ΦGC
H if S ⊆fin ΦGC

H .
– ¬φ ∈ ΦGC

H if φ ∈ ΦGC
H .

– ∃(a : H ↪−→ H ′, φ) ∈ ΦGC
H if φ ∈ ΦGC

H′ .

In addition true, false, ∨S, φ1 ⇒ φ2, and ∀(a, φ) can be used as abbreviations,
with their obvious replacement.

A mono m : H ↪−→ G satisfies a GC ψ ∈ ΦGC
H , written m |=GC ψ, if one of

the following cases applies.

154 S. Schneider et al.

– ψ = ∧S and m |=GC φ for each φ ∈ S.
– ψ = ¬φ and not m |=GC φ.
– ψ = ∃(a : H ↪−→ H ′, φ) and ∃q : H ′ ↪−→ G. q ◦ a = m ∧ q |=GC φ.

A graph G satisfies a GC ψ ∈ ΦGC
∅ , written G |=GC ψ or G ∈ �ψ�, if iG |=GC ψ.

3 Graph Updates and Repairs

In this section, we define graph updates to formalize arbitrary modifications of
graphs, graph repairs as the desired graph updates resulting in repaired graphs,
as well as further desireable properties of graph updates.

In particular, it is well known that a modification or update of G1 resulting
in a graph G2 can be represented by two inclusions or, in general two monos,
which we denote by (l : I ↪−→ G1, r : I ↪−→ G2), where I represents the part of G1

that is preserved by this update. Intuitively, l : I ↪−→ G1 describes the deletion
of elements from G1 (i.e., all elements in G1 \ l(I) are deleted) and r : I ↪−→ G2

describes the addition of elements to I to obtain G2 (i.e., all elements in G2\r(I)
are added).

Definition 2 (Graph Update). A (graph) update u is a pair (l : I ↪−→ G1, r :
I ↪−→ G2) of monos. The class of all updates is denoted by U .

Graph updates such as (iG : ∅ ↪−→ G, iG : ∅ ↪−→ G) where G is not the empty
graph delete all the elements in G that are added by r afterwards. To rule out
such updates, we define an update (l : I ↪−→ G1, r : I ↪−→ G2) to be canonical
when the graph I is as large as possible, i.e. intuitively I = G1 ∩ G2. Formally:

Definition 3 (Canonical Graph Update). If (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U
and every (l′ : I ′ ↪−→ G1, r

′ : I ′ ↪−→ G2) ∈ U and mono i : I ↪−→ I ′ with l′ ◦ i = l
and r′ ◦ i = r satisfies that i is an isomorphism then (l, r) is canonical, written
(l, r) ∈ Ucan.

G1 I G2

I ′

l r

l′ r′
i

An update u1 is a sub-update (see [14]) of u whenever the modifications defined
by u1 are fully contained in the modifications defined by u. Intuitively, this is the
case when u1 can be composed with another update u2 such that (a) the resulting
update has the same effect as u and (b) u2 does not delete any element that was
added before by u1. This is stated, informally speaking, by requiring that I is
the intersection (pullback) of I1 and I2 and that G2 is its union (pushout).

Definition 4 (Sub-update [14]). If u = (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U ,
u1 = (l1 : I1 ↪−→ G1, r1 : I1 ↪−→ G3) ∈ U , u2 = (l2 : I2 ↪−→ G3, r2 : I2 ↪−→ G2) ∈ U ,

A Logic-Based Incremental Approach to Graph Repair 155

(r′
1 : I ↪−→ I1, l

′
2 : I ↪−→ I2) is the pullback of (r1, l2), and (r1, l2) is the pushout of

(r′
1, l

′
2) then u1 is a sub-update of u, written u1 ≤u2 u or simply u1 ≤ u.

G1 I1 G2 I2 G3

I

l1 r1 l2 r2

r′
1 l′2

l r

Moreover, we write u1 <u2 u or u1 < u when u1 ≤u2 u and not u ≤ u1.

We now define graph repairs as graph updates where the result graph satisfies
the given consistency constraint ψ.

Definition 5 (Graph Repair). If u = (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U , ψ ∈
ΦGC

∅ , and G2 |=GC ψ then u is a graph repair or simply repair of G1 with respect
to ψ, written u ∈ U(G1, ψ).

To define a finite set of desirable repairs, we introduce the notion of least chang-
ing repairs that are repairs for which no sub-updates exist that are also repairs.

Definition 6 (Least Changing Graph Repair). If ψ ∈ ΦGC
∅ , u = (l : I ↪−→

G1, r : I ↪−→ G2) ∈ U(G1, ψ), and there is no u′ ∈ U(G1, ψ) such that u′ < u then
u is a least changing graph repair of G1 with respect to ψ, written u ∈ Ulc(G1, ψ).

Note that every least changing repair is canonical according to this definition.
Moreover, the notion of least changing repairs is unrelated to other notions of
repairs such as the set of all repairs that require a smallest amount of atomic
modifications of the graph at hand to result in a graph satisfying the consistency
constraint. For instance, a repair u1 adding two nodes of type :A may be a least
changing repair even if there is a repair u2 adding only one node of type :B.

A graph repair algorithm is stable [12], if the repair procedure returns the
identity update (idG : G ↪−→ G, idG : G ↪−→ G) when graph G is already consistent.
Obviously, a graph repair algorithm that only returns least changing repairs is
stable, since the identity update is a sub-update of any other repair.

4 State-Based Repair

In this section, we introduce two state-based graph repair algorithms (see [18]
for additional technical detail), which compute a set of graph repairs restoring
consistency for a given graph.

Definition 7 (State-Based Graph Repair Algorithm). A state-based
graph repair algorithm takes a graph G and a GC ψ ∈ ΦGC

∅ as inputs and returns
a set of graph repairs in U(G,ψ).

Note that the tool AutoGraph [17] can be used to verify this condition as
follows: It determines the operation A that constructs a finite set of all minimal
graphs satisfying a given GC ψ. Formally, A(ψ) = ∩{S ⊆ �ψ� | ∀G′ ∈ �ψ�.∃G ∈

156 S. Schneider et al.

S.∃m : G ↪−→ G′.true}. While AutoGraph may not terminate when comput-
ing this operation due to the inherent expressiveness of GCs, it is known that
AutoGraph terminates whenever ψ is not satisfied by any graph.

The state-based algorithm Repairsb,1 uses A to obtain repairs. Repairsb,1

computes the set A(ψ ∧ ∃(iG, true)) that contains all minimal graphs that (a)
satisfy ψ and (b) include a copy of G. All these extensions of G correspond
to a graph repair. For our running example, we do not obtain any repair for
graph G′

u from Fig. 2 and GC ψ from Fig. 1 because the loop on node a2 would
invalidate any graph including G′

u. We state that Repairsb,1 indeed computes
the non-deleting least changing graph repairs.

Theorem 1 (Functional Semantics of Repairsb,1). Repairsb,1 is sound, i.e.,
Repairsb,1(G,ψ) ⊆ Ulc(G,ψ), and complete (upon termination) with respect to
non-deleting repairs in Ulc(G,ψ).

The second state-based algorithm Repairsb,2 computes all least changing graph
repairs. In this algorithm we use the approach of Repairsb,1 but compute A(ψ ∧
∃(iGc

, true)) whenever an inclusion l : Gc ↪−→ G describes how G can be restricted
to one of its subgraphs Gc. Every graph G′ obtained from the application of A
for one of these graphs Gc then results in one graph repair returned by Repairsb,2

except for those that are not least changing.
To this extent we introduce the notion of a restriction tree (see example in

Fig. 2) having all subgraphs Gc of a given graph G as nodes as long as they
include the graph Gmin , which is the empty graph in the state-based algorithm
Repairsb,2 but not in the algorithm Repairdb in Sect. 6, and where edges are
given in this tree by inclusions that add precisely one node or edge.

Definition 8 (Restriction Tree RT). If G and Gmin are graphs and S = {l :
Gc ↪−→ Gp | Gmin ⊆ Gc ⊂ Gp ⊆ G, l is an inclusion}, S′ is the least subset of S
such that the closure of S′ under ◦ equals S then a restriction tree RT(G,Gmin)
is a least subset of S′ such that for all two inclusions l1 : G ↪−→ G1 ∈ S′ and
l2 : G ↪−→ G2 ∈ S′ one of them is in RT(G,Gmin).

Considering our running example, the restriction tree in Fig. 2 is traversed
entirely except for the four graphs without a border, which are not traversed
as they have the supergraph marked 9 satisfying ψ and therefore traversing
those would generate repairs that are not least changing. The resulting graph
repairs for the condition ψ are given by the graphs marked by 3–6.

Our second state-based graph repair algorithm is indeed sound and complete
whenever the calls to AutoGraph using A terminate.

Theorem 2 (Functional Semantics of Repairsb,2). Repairsb,2 is sound, i.e.,
Repairsb,2(G,ψ) ⊆ Ulc(G,ψ), and complete, i.e., Ulc(G,ψ) ⊆ Repairsb,2(G,ψ),
upon termination.

5 Satisfaction Trees

The state-based algorithms introduced in the previous section are inefficient
when used in a scenario where a graph needs repair after a sequence of updates

A Logic-Based Incremental Approach to Graph Repair 157

Fig. 2. The restriction tree RT(G′
u, ∅) (enclosed by the polygon) and four graph repairs

(marked 3–6) generated using Repairsb,2

that all need repair. We thus present in Sect. 6 an incremental algorithm reducing
the computational cost for a repair when an update is provided. This algorithm
uses an additional data structure, called satisfaction tree or ST, which stores
information on if and how a graph G satisfies a GC ψ (according to Definition 1).
In this section, given ψ and G, we define how such an ST γ is constructed and
how it is updated once the graph G is updated.

If ψ is a conjunction of conditions, its associated ST γ is a conjunction of STs
and if ψ is a negation of a conditions, its associated γ is a negation of an ST. In
the case when ψ is a ∃(a : H ↪−→ H ′, φ), recall that a match m : H ↪−→ G satisfies
ψ if there exists a q : H ′ ↪−→ G such that m = q◦a and q |=GC φ. For this case, we
keep in ST each q satisfying these two conditions and also each q that satisfies
the first condition, but not the second. More precisely, for the case of existential
quantification, the corresponding ST is of the form ∃(a : H ↪−→ H ′, φ,mt,mf),
where mt and mf are partial mappings (we use sup(f) to denoted the elements
actually mapped by a partial map f) that map matches q : H ′ ↪−→ G that satisfy
m = q ◦ a (for a previously known m : H ↪−→ G) to an ST for the subcondition
φ. The difference between both partial functions is that mt maps matches q to
STs for which q |=GC φ while mf maps matches q to STs for which q �|=GC φ.
Consider Fig. 3b for an example of an ST γu.

The following definition describes the syntax of STs. The STs are defined
over matches into a graph G to allow for the basic well-formedness condition
that every mapped match q satisfies q ◦ a = m.

Definition 9 (Satisfaction Trees (STs)). The class of all Satisfaction Trees
ΓST

m for a mono m : H ↪−→ G contains γ if one of the following cases applies.

– γ = ∧S and S ⊆fin ΓST
m .

– γ = ¬χ and χ ∈ ΓST
m .

– γ = ∃(a, φ,mt,mf), a : H ↪−→ H ′, φ ∈ ΦGC
H′ , mt,mf ⊆fin {(q : H ′ ↪−→ G, γ̄) |

q ◦ a = m, γ̄ ∈ ΓST
q }, and mt,mf are partial maps.

158 S. Schneider et al.

Fig. 3. A graph update and an ST with its propagation over the graph update where
GCs are underlined in STs for readability

The following satisfaction predicate |=GC for STs defines when an ST γ for
a mono m states that the contained GC ψ is satisfied by the morphism m.

Definition 10 (ST Satisfaction). An ST γ ∈ ΓST
m:H↪−→G is satisfied, written

|=ST γ, if one of the following cases applies.

– γ = ∧S and |=ST χ (for each χ ∈ S)
– γ = ¬χ and �|=ST χ.
– γ = ∃(a, φ,mt,mf) and mt �= ∅.
The following recursive operation constructs an ST γ for a graph G and a con-
dition ψ so that γ represents how G satisfies (or not satisfies) ψ. Note that the
match m in the definition of STs above and the construction of an ST below

A Logic-Based Incremental Approach to Graph Repair 159

corresponds to the match m : H ↪−→ G from Definition 1 that we operationalize
in the following definition. For conjunction and negation, we construct the STs
from the STs for the subconditions. For the case of existential quantification,
we consider all morphisms q : H ′ ↪−→ G for which the triangle q ◦ a = m com-
mutes and construct the STs for the subcondition φ under this extended match
q. The resulting STs are inserted into mt and mf according to whether they are
satisfied.

Definition 11 (Construct ST (cst)). Given m : H ↪−→ G and ψ ∈ ΦGC
H , we

define cst(ψ,m) = γ, with γ ∈ ΓST
m as follows.

– If ψ = ∧S then γ = ∧{cst(φ,m) | φ ∈ S}.
– If ψ = ¬φ then γ = ¬ cst(φ,m).
– If ψ = ∃(a : H ↪−→ H ′, φ), mall = {(q : H ′ ↪−→ G,χ) | q ◦ a = m, cst(φ, q) = χ},

mt = {(q, χ) ∈ mall ||=ST χ}, mf = mall \ mt, then γ = ∃(a, φ,mt,mf).

If G is a graph and ψ ∈ ΦGC
∅ , then cst(ψ,G) = cst(ψ, iG).

This construction of STs then ensures that |=ST γ if and only if G |=GC ψ. Note
that |=ST γu holds for the ST γu from Fig. 3b, the GC ψ from Fig. 1, and the
graph Gu from Fig. 3.

Theorem 3 (Sound Construction of STs). Given m : H ↪−→ G, ψ ∈ ΦGC
H ,

and cst(ψ,m) = γ then |=ST γ iff m |=GC ψ.

Subsequently, we define a propagation operation ppgU of an ST γ for a graph
update u = (l : I ↪−→ G, r : I ↪−→ G′) to obtain an ST γ′ such that γ′ =
cst(ψ,G′) whenever γ = cst(ψ,G). This overall propagation is performed by a
backward propagation of γ for l using the operation ppgB followed by a forward
propagation of the resulting ST for r using the operation ppgF.

For backward propagation, we describe how the deletion of elements in G by
l : I ↪→ G affect its associated ST γ. To this end, we preserve those matches
q : H ↪−→ G for which no matched elements are deleted. This is formalized by
requiring a mono q′ : H ↪−→ I such that l ◦ q′ = q. The matches q with deleted
matched elements can not be preserved and are therefore removed.

Definition 12 (Propagate Match (ppgMatch)). If q :H ↪−→ G and l : I ↪−→ G
are monos, then ppgMatch(q, l) is the unique q′ : H ↪−→ I such that l ◦ q′ = q if
it exists and ⊥ otherwise.

The following recursive backward propagation defines how deletions affect the
maps mt and mf of the given ST. That is, when γ = ∃(a, φ,mt,mf), we (a)
entirely remove a mapping (m,χ) from mt or mf if ppgMatch(q, l) = ⊥ and
(b) construct for a mapping (m,χ) from mt or mf the pair (ppgMatch(q, l), χ′)
where χ′ is obtained from recursively applying the backward propagation on
χ when ppgMatch(q, l) �= ⊥. The updated pair (ppgMatch(q, l), χ′) must be
rechecked to decide to which partial map this pair must be added to ensure that
the resulting ST corresponds to the ST that would be constructed for G′ directly.

160 S. Schneider et al.

Definition 13 (Backward Propagation (ppgB)). If m : H ↪−→ G, γ ∈ ΓST
m ,

l : I ↪−→ G, ppgMatch(m, l) = m′ : H ↪−→ I, and γ′ ∈ ΓST
m′ then ppgB(γ, l) = γ′ if

one of the following cases applies.

– γ = ∧S and γ′ = ∧{ppgB(χ, l) | χ ∈ S}.
– γ = ¬χ and γ′ = ¬ppgB(χ, l).
– γ = ∃(a, φ,mt,mf), mall = {(q′, χ′) | (q, χ) ∈ mt ∪ mf ∧ ppgMatch(q, l) =

q′ �= ⊥ ∧ ppgB(χ, l) = χ′}, m′
t = {(q, χ) ∈ mall ||=ST χ}, m′

f = mall \ m′
t,

and γ′ = ∃(a, φ,m′
t,m

′
f).

Note that ppgMatch(iG, l) = iG and, hence, the operation ppgB is applicable
for all ST γ ∈ ΓST

iG
, which is sufficient as we define consistency constraints using

GCs over the empty graph as well.
In the case of forward propagation where additions are given by r : I ↪−→ G′

we can preserve all matches using an adaptation. But the addition of further
elements may result in additional matches as well that may satisfy the conditions
to be included in the corresponding mt and mf from the ST at hand.

Definition 14 (Forward Propagation (ppgF)). If γ ∈ ΓST
m:H↪−→I , r : I ↪−→ G′,

and γ′ ∈ ΓST
r◦m then ppgF(γ, r) = γ′ if one of the following cases applies.

– γ = ∧S and γ′ = ∧{ppgF(χ, r) | χ ∈ S}.
– γ = ¬χ and γ′ = ¬ppgF(χ, r).
– γ = ∃(a, φ,mt,mf), mall = {(r ◦ q, γ′) | (q, χ) ∈ mt ∪mf ∧ppgF(χ, r) = γ′}∪

{(q, γq) | q ◦ a = r ◦ m, (�q′ ∈ sup(mt) ∪ sup(mf). r ◦ q′ = q), cst(φ, q) = γq},
m′

t = {(q, χ) ∈ mall ||=ST χ}, m′
f = mall \ m′

t, and γ′ = ∃(a, φ,m′
t,m

′
f).

We now define the composition of both propagations to obtain the operation
ppgU that updates an ST for an entire graph update.

Definition 15 (Update Propagation (ppgU)). If m : H ↪−→ G, γ ∈ ΓST
m , l :

I ↪−→ G, ppgMatch(m, l) = m′ : H ↪−→ G′, and r : I ↪−→ G′ then ppgU(γ, (l, r)) =
ppgF(ppgB(γ, l), r) ∈ ΓST

m′ .

The overall propagation given by this operation is incremental, in the sense that
the operation cst is only used in the forward propagation on parts of the graph
G′, where the addition of graph elements by r from the graph update results in
additional matches q according to the satisfaction relation for GCs. Finally, we
state that ppgU incrementally computes the ST obtained using cst. The proof of
this theorem relies on the fact that this property also holds for ppgB and ppgF.

Theorem 4 (ppgU is Compatible with cst). If G is a graph, ψ ∈ ΦGC
∅ ,

l : I ↪−→ G, and r : I ↪−→ G′ then ppgU(cst(ψ,G), (l, r)) = cst(ψ,G′).

6 Delta-Based Repair

The local states of delta-based graph repair algorithms may contain, besides the
current graph as in state-based graph repair algorithms, an additional value. In
our delta-based graph repair algorithm this will be an ST.

A Logic-Based Incremental Approach to Graph Repair 161

Fig. 4. An example for delta-based graph repair using Repairdb

Definition 16 (Delta-Based Graph Repair Algorithm). Delta-based
graph repair algorithms take a graph G, a GC ψ ∈ ΦGC

∅ , and a value q as inputs
and return a set of pairs (u, q′) where u ∈ U(G,ψ) is a graph repair and q′ is a
value.

Our delta-based graph repair algorithm Repairdb will be based on the single step
operation Repairdb1. Given a graph G, a GC ψ ∈ ΦGC

∅ , the ST γ that equals
cst(ψ,G), and a graph update u = (l : I ↪−→ G, r : I ↪−→ G′), the single step
operation Repairdb first updates γ using ppgU for the graph update u and then
determines using Repairdb1, if necessary, graph repairs for the resulting ST γ′

according to the repair rules described in the following. The algorithm Repairdb

then uses Repairdb1 in a breadth first manner to obtain multi-step repairs.
For our example from Fig. 3a, such a multi-step repair of G′

u is given in
Fig. 4 where the graph updates are obtained resulting in the graphs marked 1–3,
of which only the graph marked 1 satisfies ψ. The algorithm Repairdb then com-
putes further graph updates resulting in the graph marked 4 also satisfying ψ.

The operation Repairdb1 for deriving single-step repairs depends on two local
modifications. Firstly, a GC ∃(a : H ↪−→ H ′, φ) occurring as a subcondition in
the consistency constraint ψ may be violated because, for the match m : H ↪−→
G that locates a copy of H in the graph G under repair, no suitable match
q : H ′ ↪−→ G can be found for which q ◦ a = m and q |=GC φ are satisfied.
The operation Repairadd resolves this violation by (a) using AutoGraph to
construct a suitable graph Hs and by (b) integrating this graph Hs into G
resulting in G′ such that a suitable match q : H ′ ↪−→ G′ can be found.

Definition 17 (Local Addition Operation Repairadd). If a : H ↪−→ H ′, φ ∈
ΦGC

H′ , m : H ↪−→ G, Hs ∈ A(∃(iH ,∃(a, φ))), k : H ↪−→ Hs, and (m̄ : Hs ↪−→ G′, r :
G ↪−→ G′) is the pushout of (m, k) then r ∈ Repairadd(a, φ,m).

G G′

HH ′ Hs
a

m

k

m̄
r

In our running example, Repairadd determines a graph repair resulting in the
graph marked 2 in Fig. 4. For this repair, we considered the sub-ST marked by
(R2) in Fig. 3d, where the morphism m matches the node a from ψ to the node
a2 in G′

u, but where no extension of m can also match a node :B and an edge
between these two nodes. The repair performed then uses a be for the graph
Hs, resulting in the addition of the node b2 and the edge from a2 to b2.

162 S. Schneider et al.

Secondly, a GC ∃(a : H ↪−→ H ′, φ) occurring as a subcondition in the consis-
tency constraint ψ may be satisfied even though it should not when occurring
underneath some negation. Such a violation is determined, again for a given
match m : H ↪−→ G, by some match q : H ′ ↪−→ G satisfying q ◦ a = m and
q |=GC φ. The local repair operation Repairdel repairs such an undesired satis-
faction by selecting a graph Hp such that H ⊆ Hp ⊂ H ′ using a restriction tree
(see Definition 8) and deleting Gdel = q(H ′) \ q(Hp) from G. Technically, we can
not use the pushout complement of a′ and q as it does not exists when edges
from G \ Gdel are attached to nodes in Gdel . Hence, we determine the pushout
complement of a′′ and k′, which must be constructed for this purpose suitably.

Definition 18 (Local Deletion Operation Repairdel). If a : H ↪−→ H ′, q :
H ′ ↪−→ G, a′ : Hp ↪−→ H ′ ∈ RT(H ′,H), m1 : H ′ ↪−→ X2 where X2 is obtained
from q(H ′) by adding all edges (with their nodes) that are connected to nodes in
q(H ′)\ q(a′(Hp)), k′ : X2 ↪−→ G is obtained such that k′ ◦m1 = q, m2 : Hp ↪−→ X1

where X1 is obtained from Hp by adding all nodes in X2 \ q(H ′), a′′ : X1 ↪−→ X2

is obtained such that a′′ ◦ m2 = m1 ◦ a′, and (l : G′ ↪−→ G,m′ : X1 ↪−→ G′) is the
pushout complement of (a′′, k′) then l ∈ Repairdel(a, q).

G G′

X2

H ′H Hp

X1

m1 m2

a

m
q

a′

a′′

k′ m′
l

In our example, Repairdel determines a repair resulting in the graph marked 1
in Fig. 4. For this repair, we considered the sub-ST marked by (R1) in Fig. 3d
where the mono m matches the node a from ψ to the node a2 in G′

u. The
repair performed then uses Hp = ∅ for the removal of the node a2 along with its
adjacent loop (for which the technical handling in Repairdel is required).

The recursive operation Repairdb1 below derives updates from an ST γ that
corresponds to the current graph G (for our running example, these are γ′

u

and G′
u from Fig. 3d). In the algorithm Repairdb, we apply Repairdb1 for the

initial match iG, γ, and true where this boolean indicates that we want γ to be
satisfied. This boolean is changed in Rule 3 whenever the recursion is applied
to an ST ¬γ′ because we expect that γ′ is not to be satisfied iff we expect that
¬γ′ is to be satisfied. For conjunction, we either attempt to repair a sub-ST
for b = true in Rule 1 or we attempt to break one sub-ST for b = false. For
existential quantification and b = true, we use Repairadd as discussed before in
Rule 4 or we attempt to repair one existing match contained in mf in Rule 5.
Also, for existential quantification and b = false, we use Repairdel as discussed
before in Rule 6 or we attempt to break one existing match contained in mt in
Rule 7.

Definition 19 (Single-Step Delta-Based Repair Algorithm Repairdb1).
If m : H ↪−→ G, γ ∈ ΓST

m , and b ∈ B then (l : I ↪−→ G, r : I ↪−→ G′) ∈
Repairdb1(m, γ, b) if one of the following cases applies.

A Logic-Based Incremental Approach to Graph Repair 163

– Rule 1 (repair one subcondition of a conjunction):
b = true,γ = ∧S, χ ∈ S, �|=ST χ, (l, r) ∈ Repairdb1(m,χ, b).

– Rule 2 (break one subcondition of a conjunction):
b = false,γ = ∧S, χ ∈ S, |=ST χ, (l, r) ∈ Repairdb1(m,χ, b).

– Rule 3 (repair/break the subcondition of a negation):
γ = ¬χ, (l, r) ∈ Repairdb1(m,χ,¬b).

– Rule 4 (repair an existential quantification by local extension):
b = true,γ = ∃(a, φ,mt,mf), mt = ∅, r ∈ Repairadd(a, φ,m), l = idG.

– Rule 5 (repair an existential quantification recursively):
b = true,γ = ∃(a, φ,mt,mf), mt = ∅, mf (k) = χ, (l, r) ∈ Repairdb1(k, χ, b).

– Rule 6 (break an existential quantification by local removal):
b = false,γ = ∃(a, φ,mt,mf), mt(k) �= ⊥, l ∈ Repairdel(a, k), r = idG′ .

– Rule 7 (break an existential quantification recursively):
b = false,γ = ∃(a, φ,mt,mf), mt(k) = χ, (l, r) ∈ Repairdb1(k, χ, b).

We define the recursive algorithm Repairdb to apply Repairdb1 to obtain repairs
as iterated applications of single-step repairs computed by Repairdb1.

Definition 20 (Delta-Based Repair Algorithm Repairdb). If u = (l : I ↪−→
G, r : I ↪−→ G′) ∈ U , γ ∈ ΓST

iG
, and γ′ = ppgU(γ, u) then Repairdb(u, γ) = S if

one of the following cases applies.

– |=ST γ′ and S = {((idG′ , idG′), γ′)}.
– �|=ST γ′, S′ = {(u′,ppgU(γ′, u′)) | u′ ∈ Repairdb1(iG, γ′, true)}, and

S = {(u′, γ′) ∈ S′ ||=ST γ′} ∪ ⋃{(u′′ ◦ u′, γ′′) | (u′, γ′) ∈ S′, �|=ST γ′, (u′′, γ′′) ∈
Repairdb(u′, γ′), u′′ ◦ u′ �= ⊥}.3

This computation does not terminate when repairs trigger each other ad
infinitum. However, a breadth-first-computation of Repairdb gradually computes
a set of sound repairs. Obviously, GCs that trigger such nonterminating compu-
tations should be avoided but machinery for detecting such GCs is called for.

Note that the algorithm Repairdb computes fewer graph repairs compared to
Repairsb,2 because repairs are applied locally in the scope defined by the GC ψ.
For example, no repair would be constructed resulting in the graph marked 4
in Fig. 2. In general, explicitly also using bigger contexts in ψ results in the
additional computation of less–local graph repairs. For example, the condition
ψ may be rephrased into ψ′ = ψ∧¬∃(a b,¬∃(a be , true)) to also obtain the
graph repair marked 4 in Fig. 2. We now define the updates, which we expect
to be computed by Repairdb1, as those that repair a single violation of the GC
ψ by defining a local update to be embeddable into the resulting update via a
double pushout diagram as in the DPO approach to graph transformation [16].

Definition 21 (Locally Least Changing Graph Update). If G1 is a graph,
ψ ∈ ΦGC

∅ , G1 �|=GC ψ, (l : I ↪−→ G1, r : I ↪−→ G2) ∈ Ulc(G1, ψ), G2 |=GC ψ, X1 is
a minimal subgraph of G1 with a violation of ψ that is also a violation of ψ in

3 If u1 and u2 are updates then u1 ◦ u2 = u if u1 ≤u2 u or u = ⊥ otherwise (see
Definition 4).

164 S. Schneider et al.

G, and the diagram below exists and the right part of it is a DPO diagram then
(l, r) is a locally least changing graph update.

X1 I ′ X2

G1 I G2
l r

Repairdb1 indeed generates such locally least changing graph updates because
the graph X1 in this definition corresponds to the H1 and the H2 from an
ST ∃(a : H1 ↪−→ H2, φ,mt,mf) that is subject to Repairadd and Repairdel,
respectively. For example, for Repairadd, the graph H1 in the ST determines a
subgraph in G1 that is a violation of the overall consistency condition given by
a GC ψ as its match can not be extended to the graph H2.

We now define the locally least changing graph repairs (which are to be
computed by Repairdb such as for example the graphs marked 1 and 4 in Fig. 4)
as the composition of a sequence of locally least changing updates where precisely
the last graph update results in a graph satisfying the GC ψ.

Definition 22 (Locally Least Changing Graph Repair). If G1 is a graph,
ψ ∈ ΦGC

∅ , π = (l1 : I1 ↪−→ G1, r1 : I1 ↪−→ G2) . . . (ln : In ↪−→ Gn, rn : In ↪−→ Gn+1) is
a sequence of locally least changing graph updates, G1 ∈ �ψ� implies n = 0 and
l1 = r1 = idG1 , Gi /∈ �ψ� (for each 2 ≤ i ≤ n), Gn+1 ∈ �ψ�, (l, r) is the iterated
composition of the updates in π, and (l, r) ∈ U(G1, ψ) is a least changing graph
repair then (l, r) is a locally least changing graph repair.

We now state that our delta-based graph repair algorithm Repairdb returns all
desired locally least changing graph repairs upon termination.

Theorem 5 (Functional Semantics of Repairdb). Repairdb is sound (i.e.,
it generates only locally least changing graph repairs) and complete (upon termi-
nation) with respect to locally least changing graph repairs.

The state-based algorithms Repairsb,1 and Repairsb,2 are inappropriate in envi-
ronments where numerous updates that may invalidate consistency are applied
to a large graph because the procedure of AutoGraph has exponential cost. The
incremental delta-based algorithm Repairdb is a viable alternative when addi-
tional memory requirements for storing the ST are acceptable. The AutoGraph
applications for this algorithm have negligible costs because they may be per-
formed a priori and must only be performed for subconditions of the consistency
constraint, which can be assumed to feature reasonably small graphs only.

Finally, a classification of locally least changing repairs is useful for user-
based repair selection. Delta preserving repairs defined below represent such a
basic class, containing only those repairs that preserve the update resulting in a
graph not satisfying GC ψ, i.e., it may be desirable to avoid repairs that revert
additions or deletions of this update. In our example, the repair related to the
graph marked 4 in Fig. 4 is not delta preserving w.r.t. u from Fig. 3a.

Definition 23 (Delta Preserving Graph Repair). If ψ ∈ ΦGC
∅ , u2 = (l2 :

I2 ↪−→ G2, r2 : I2 ↪−→ G3) ∈ U(G2, ψ) is a graph repair, u1 = (l1 : I1 ↪−→ G1, r1 :

A Logic-Based Incremental Approach to Graph Repair 165

I1 ↪−→ G2) is a graph update, and there exists a graph update u such that u1 <u2 u
then u2 is a delta preserving graph repair with respect to u1.

7 Related Work

According to the recent survey on model repair [12], and the corresponding
exhaustive classification of primary studies selected in the literature review,
published online [11], we can see that the amount and wide variety of exist-
ing approaches makes a detailed comparison with all of them infeasible.

We consider our approach to be innovative, not only because of the proposed
solutions, but because it addresses the issues of completeness and least changing
for incremental graph repair in a precise and formal way. From the survey [11,12]
we can see that only two other approaches [10,19] address completeness and
least changing, relying also on constraint-solving technology. The main differ-
ence with our approach is that they are not incremental. In particular, the work
of Schoenboeck et al. [19] proposes a logic programming approach allowing the
exploration of model repair solutions ranked according to some quality crite-
ria, re-establishing conformance of a model with its metamodel. Soundness and
completeness of these repair actions is not formally proven. Moreover, the least
changing bidirectional model transformation approach of Macedo et al. [10] has
only a bounded search for repairs, relying on a bounded constraint solver.

Some recent work on rule-based graph repair [9] (not covered by the survey)
addresses the least-changing principle by developing so-called maximally preserv-
ing (items are preserved whenever possible) repair programs. This state-based
approach considers a subset of consistency constraints (up to nesting depth 2)
handled by our approach, and is not complete, since it produces repairs including
only a minimal amount of deletions. Some other recent rule-based graph repair
approach [13,20] (also not covered by the survey) proposes so-called change
preserving repairs (similar to what we define as delta-preserving). The main dif-
ference with our work is that we do not require the user to specify consistency-
preserving operations from which repairs are generated, since we derive repairs
using constraint solving techniques directly from the consistency constraints.

Finally, there is a variety of work on incremental evaluation of graph queries
(see e.g. [2,4]), developed with the aim of efficiently re-evaluating a graph query
after an update has been performed. Although not employed with the specific aim
of complete and least changing graph repair, this work is related to our newly
introduced concept of satisfaction trees, also using specific data structures to
record with some detail the set of answers to a given query (as described for
graph conditions, for example, also in [3]). It is part of ongoing work to evaluate
how STs can be employed similarly in this field of incremental query evaluation.

8 Conclusion and Future Work

We presented a logic-based incremental approach to graph repair. It is the first
approach to graph repair returning a sound and complete overview of least

166 S. Schneider et al.

changing repairs with respect to graph conditions equivalent to first-order logic
on graphs. Technically, it relies on an existing model generation procedure for
graph conditions together with the newly introduced concept of satisfaction
trees, encoding if and how a graph satisfies a graph condition.

As future work, we aim at supporting partial consistency and gradually
improving it. We are confident that we can extend our work to support attributes,
since our underlying model generation procedure supports it. Ongoing work is
the support of more expressive consistency constraints, allowing path-related
properties. Moreover, we are in the process of implementing the algorithms pre-
sented here and evaluating them on a variety of case studies. The evaluation also
pertains to the overall efficiency (for which we employ techniques for localized
pattern matching) and includes a comparison with other approaches for graph
repair. Finally, we aim at presenting new and refined properties distinguishing
between all possible repairs supporting the implementation of interactive repair
selection procedures.

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1–1:39 (2008). https://doi.org/10.1145/1322432.1322433

2. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the viatra model transformation system. In: GRaMoT, pp. 25–32.
ACM (2008). https://doi.org/10.1145/1402947.1402953

3. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the operationalization of graph
queries with generalized discrimination networks. In: Echahed, R., Minas, M. (eds.)
ICGT 2016. LNCS, vol. 9761, pp. 170–186. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40530-8_11

4. Beyhl, T., Giese, H.: Incremental view maintenance for deductive graph databases
using generalized discrimination networks. In: GaM@ETAPS, EPTCS, vol. 231,
pp. 57–71 (2016). https://doi.org/10.4204/EPTCS.231.5

5. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg [16], pp. 313–400

6. Diskin, Z., König, H., Lawford, M.: Multiple model synchronization with multiary
delta lenses. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp.
21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1_2

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

8. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. MSCS 19(2), 245–296 (2009). https://doi.org/10.1017/
S0960129508007202

9. Habel, A., Sandmann, C.: Graph repair by graph programs. In: Mazzara, M., Ober,
I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 431–446. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9_31

10. Macedo, N., Cunha, A.: Least-change bidirectional model transformation with
QVT-R and ATL. Softw. Syst. Model. 15(3), 783–810 (2016). https://doi.org/
10.1007/s10270-014-0437-x

https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1402947.1402953
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.4204/EPTCS.231.5
https://doi.org/10.1007/978-3-319-89363-1_2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1007/978-3-030-04771-9_31
https://doi.org/10.1007/s10270-014-0437-x
https://doi.org/10.1007/s10270-014-0437-x

A Logic-Based Incremental Approach to Graph Repair 167

11. Macedo, N., Tiago, J., Cunha, A.: Systematic literature review of model repair
approaches. http://tinyurl.com/hv7eh6h. Accessed 14 Nov 2018

12. Macedo, N., Tiago, J., Cunha, A.: A feature-based classification of model repair
approaches. IEEE Trans. Softw. Eng. 43(7), 615–640 (2017). https://doi.org/10.
1109/TSE.2016.2620145

13. Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: Revision: a tool for history-based
model repair recommendations. In: ICSE, pp. 105–108. ACM (2018). https://doi.
org/10.1145/3183440.3183498

14. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On propagation-
based concurrent model synchronization. ECEASST 57 (2013). http://journal.ub.
tu-berlin.de/eceasst/article/view/871

15. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2_23

16. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific (1997)

17. Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for attributed graph
properties. STTT 20(6), 705–737 (2018). https://doi.org/10.1007/s10009-018-
0496-3

18. Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental approach to graph
repair. Technical report, 126, Hasso Plattner Institute at the University of Pots-
dam, Potsdam, Germany (2019)

19. Schoenboeck, J., et al.: CARE - A constraint-based approach for re-establishing
conformance-relationships. In: APCCM 2014, vol. 154, pp. 19–28. Australian Com-
puter Society (2014). http://crpit.com/abstracts/CRPITV154Schoenboeck.html

20. Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-preserving model repair.
In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 283–299.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_16

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://tinyurl.com/hv7eh6h
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1145/3183440.3183498
https://doi.org/10.1145/3183440.3183498
http://journal.ub.tu-berlin.de/eceasst/article/view/871
http://journal.ub.tu-berlin.de/eceasst/article/view/871
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3
http://crpit.com/abstracts/CRPITV154Schoenboeck.html
https://doi.org/10.1007/978-3-662-54494-5_16
http://creativecommons.org/licenses/by/4.0/

	ETAPS Foreword
	Preface
	Organization
	Contents
	FASE Invited Talk
	Software Assurance in an Uncertain World
	1 Introduction
	2 Background on Assurance Case Modeling Notation
	3 Sources of Uncertainty in Software Development
	4 Formality in Assurance Cases
	5 Combining Evidence
	6 Assurance Cases for ML Systems
	7 Summary and Future Outlook
	References

	Software Verification I
	Tool Support for Correctness-by-Construction
	1 Introduction
	2 Foundations of Correctness-by-Construction
	3 Correctness-by-Construction by Example
	4 Tool Support in CorC
	4.1 Graphical Editor
	4.2 Textual Editor
	4.3 Verification of CorC Programs
	4.4 Implementation as Eclipse Plugin

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Automatic Modeling of Opaque Code for JavaScript Static Analysis
	1 Introduction
	2 Modeling via Sample-Run-Abstract
	3 Combinatorial Sampling Strategy
	3.1 Abstract Domains for Primitive Values
	3.2 Abstract Domains for Object Values

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Answers to Research Questions
	5.3 Limitations

	6 Related Work
	7 Conclusion
	References

	SMT-Based Bounded Schedulability Analysis of the Clock Constraint Specification Language
	1 Introduction
	2 The Clock Constraint Specification Language
	2.1 Logical Clock, History and Schedule
	2.2 Syntax and Semantics of CCSL

	3 Scheduling Problem of CCSL
	3.1 Schedulability
	3.2 Bounded Scheduling Problem

	4 Decision Procedure for the Scheduling Problem
	4.1 Transformation from CCSL into SMT
	4.2 Decision Procedure for the Bounded Scheduling Problem
	4.3 A Sound Algorithm for the Scheduling Problem

	5 Case Study and Performance Evaluation
	5.1 Schedulability of an Interlocking System
	5.2 Automatic Proof of CCSL Algebraic Properties
	5.3 Performance Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	A Hybrid Dynamic Logic for Event/Data-Based Systems
	1 Introduction
	2 A Hybrid Dynamic Logic for Event/Data Systems
	2.1 Data States
	2.2 E"3223379 -Logic
	2.3 Bisimulation and Invariance

	3 Specifications of Event/Data Systems
	3.1 Axiomatic Specifications
	3.2 Operational Specifications
	3.3 Expressiveness of E"3223379 -Logic

	4 Constructor Implementations
	5 Conclusions
	References

	Model-Driven Development and Model Transformation
	Pyro: Generating Domain-Specific Collaborative Online Modeling Environments
	1 Introduction
	2 DSL Development with Cinco
	3 Architecture
	3.1 Backend
	3.2 Frontend

	4 Collaborative Editing
	4.1 Simultaneous Synchronization Mechanism
	4.2 Distributed Command Pattern

	5 Conclusion and Perspectives
	References

	Efficient Model Synchronization by Automatically Constructed Repair Processes
	1 Introduction
	2 Introductory Example
	3 Preliminaries
	4 Constructing Language-Preserving Repair Rules
	4.1 Operationalization of Generalized TGG Rules
	4.2 Language-Preserving Short-Cut Rules

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	Offline Delta-Driven Model Transformation with Dependency Injection
	1 Introduction
	2 Model Transformation: A Running Example
	3 Delta-Driven Model Transformations
	3.1 Dependency Injection
	3.2 Representable Deltas
	3.3 Impact Analysis
	3.4 Change Propagation

	4 Performance Analysis
	5 Related Work
	6 Concluding Remarks
	References

	A Logic-Based Incremental Approach to Graph Repair
	1 Introduction
	2 Preliminaries on Graph Conditions
	3 Graph Updates and Repairs
	4 State-Based Repair
	5 Satisfaction Trees
	6 Delta-Based Repair
	7 Related Work
	8 Conclusion and Future Work
	References

	Software Verification II
	DeepFault: Fault Localization for Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Software Fault Localization

	3 DeepFault
	3.1 Neuron Spectrum Analysis
	3.2 Suspicious Neurons Identification
	3.3 Suspiciousness-Guided Input Synthesis

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Research Questions
	5.3 Results and Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Variability Abstraction and Refinement for Game-Based Lifted Model Checking of Full CTL
	1 Introduction
	2 Background
	3 Abstraction of FTSs
	4 Game-Based Abstract Lifted Model Checking
	5 Incremental Refinement Framework
	6 Evaluation
	7 Related Work and Conclusion
	References

	Formal Verification of Safety & Security Related Timing Constraints for a Cooperative Automotive System
	1 Introduction
	2 Preliminary
	2.1 Probabilistic Extension of Clock Constraint Specification Language (PrCCSL)
	2.2 UPPAAL-SMC

	3 Running Example
	4 Modeling and Refinement of CAS in UPPAAL-SMC
	4.1 Modeling of RAISE Protocol in UPPAAL-SMC
	4.2 Modeling of Attacks in UPPAAL-SMC

	5 Representation of S/S Related Timing Constraints in UPPAAL-SMC
	5.1 Specifications of S/S Related Timing Constraints in PrCCSL
	5.2 Translation of PrCCSL into STA

	6 Experiment
	7 Related Work
	8 Conclusion
	References

	Checking Observational Purity of Procedures
	1 Introduction
	2 Language Syntax
	3 A Semantic Definition of Purity
	4 Checking Purity Using a Theorem Prover
	4.1 Verification Condition Generation
	4.2 Approach 1: Existential Approach
	4.3 Approach 2: Impurity Witness Approach

	5 Generating the Invariant
	6 Evaluation
	7 Related Work
	References

	Software Evolution and Requirements Engineering
	Structural and Nominal Cross-Language Clone Detection
	1 Introduction
	2 Background and Related Work
	2.1 What Exactly Is a Cross-Language Clone?
	2.2 Structural Program Similarity
	2.3 Nominal Program Similarity
	2.4 Hybrid Program Similarity
	2.5 CLCMiner

	3 Overview
	4 Structural Clone Detection
	4.1 Precedence Woes
	4.2 Abstracting Parse Tree Nonterminals
	4.3 Sequence Alignment for Clone Detection

	5 Hybrid Algorithm
	5.1 Our Nominal Algorithm
	5.2 Full Algorithm

	6 Evaluation
	6.1 Implementation and Environment
	6.2 Methodology
	6.3 Results

	7 Conclusion
	References

	SL2SF: Refactoring Simulink to Stateflow
	1 Introduction
	2 Background: Modelling Systems and Their Combinations
	2.1 Mealy Machines: Modelling Stateful Systems
	2.2 Tabular Expressions: Representing Conditional Behaviours
	2.3 Categorical Framework: Combining Systems

	3 Translation Strategy
	4 Block Diagrams to HCTs: Mealy Composition
	4.1 Mealy Machines and Their Combinations via Functions
	4.2 Functional Embedding and Wiring Morphisms
	4.3 Block Diagrams to Horizontal Condition Tables

	5 HCTs to STTs: Modes via Tables
	5.1 Defining Modes
	5.2 Converting to State Charts and Simplifying

	6 Prototype, Evaluation, and Future Work
	7 Related Work
	8 Conclusion
	References

	Metric Temporal Graph Logic over Typed Attributed Graphs
	1 Introduction
	2 Related Work
	3 Typed Attributed Graphs and Graph Conditions
	4 Metric Temporal Graph Logic
	5 Mapping of TGSs to Graphs with History
	6 Reduction of MTGL to GCs
	7 Tool Support
	8 Conclusion and Future Work
	References

	KUPC: A Formal Tool for Modeling and Verifying Dynamic Updating of C Programs
	1 Introduction
	2 KUPC Design
	3 KUPC Usage
	4 Concluding Remarks and Ongoing Work
	References

	Business Process Privacy Analysis in PLEAK
	1 Introduction
	2 PE-BPMN Editor and Simple Disclosure Analysis
	3 Qualitative Leaks-When Analysis
	4 Sensitivity Analysis and Differential Privacy
	5 Attacker's Guessing Advantage
	References

	Specification, Design, and Implementation of Particular Classes of Systems
	CLTestCheck: Measuring Test Effectiveness for GPU Kernels
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach
	4.1 Kernel Code Coverage
	4.2 Fault Seeding
	4.3 Schedule Amplification
	4.4 Implementation

	5 Experiment
	6 Results and Analysis
	6.1 Coverage Achieved
	6.2 Fault Finding
	6.3 Schedule Amplification: Deadlocks and Data Races

	7 Conclusion
	References

	Implementing SOS with Active Objects: A Case Study of a Multicore Memory System
	1 Introduction
	2 An Abstract Model of a Multicore Memory System
	2.1 Formalization of the Multicore Memory System as an SOS Model
	2.2 Local and Global SOS Rules

	3 The ABS Model of the Multicore Memory System
	3.1 The ABS Language
	3.2 The Structural View
	3.3 The Behavioral View

	4 Correctness
	5 Parallelism and Fairness of the ABS Model
	6 Related Work
	7 Conclusion
	References

	Optimal and Automated Deployment for Microservices
	1 Introduction
	2 The Microservice Optimal Deployment Problem
	3 Application of the Technique to the Case-Study
	4 Related Work and Conclusion
	References

	A Data Flow Model with Frequency Arithmetic
	1 Introduction
	2 Motivation and Running Example
	3 Formalization of the Polygraph Model
	4 Tool Support for Liveness Checking
	5 Discussion and Related Work
	6 Conclusion
	References

	Software Testing
	CoVeriTest: Cooperative Verifier-Based Testing
	1 Introduction
	2 Testing with Verifiers
	3 CoVeriTest
	4 Evaluation
	4.1 Setup
	4.2 Experiments
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Pardis: Priority Aware Test Case Reduction
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Pardis Hybrid
	3.2 Nullability Pruning

	4 Evaluation
	4.1 RQ1. Performance: Pardis vs. Perses
	4.2 RQ2. The Impact of Priority Inversion

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Automatically Identifying Sufficient Object Builders from Module APIs
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Field Extensions
	3.2 Random Test Case Generation

	4 An Evolutionary Algorithm for Identifying Sufficient Object Builders
	4.1 Chromosome Representation
	4.2 Fitness Function
	4.3 Overall Structure of the Genetic Algorithm
	4.4 Reducing the Search Space by Observers Classification

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Author Index

