
Specification, Design, and
Implementation of Particular Classes of

Systems

CLTestCheck: Measuring Test
Effectiveness for GPU Kernels

Chao Peng(B) and Ajitha Rajan

University of Edinburgh, Edinburgh, UK
{chao.peng,arajan}@ed.ac.uk

Abstract. Massive parallelism, and energy efficiency of GPUs, along
with advances in their programmability with OpenCL and CUDA pro-
gramming models have made them attractive for general-purpose com-
putations across many application domains. Techniques for testing GPU
kernels have emerged recently to aid the construction of correct GPU
software. However, there exists no means of measuring quality and effec-
tiveness of tests developed for GPU kernels. Traditional coverage criteria
over CPU programs is not adequate over GPU kernels as it uses a com-
pletely different programming model and the faults encountered may be
specific to the GPU architecture.

We address this need in this paper and present a framework,
CLTestCheck, for assessing quality of test suites developed for OpenCL
kernels. The framework has the following capabilities, 1. Measures ker-
nel code coverage using three different coverage metrics that are inspired
by faults found in real kernel code, 2. Seeds different types of faults in
kernel code and measures fault finding capability of test suite, 3. Simu-
lates different work-group schedules to check for potential deadlocks and
data races with a given test suite. We conducted empirical evaluation of
CLTestCheck on a collection of 82 publicly available GPU kernels and
test suites. We found that CLTestCheck is capable of automatically mea-
suring effectiveness of test suites, in terms of kernel code coverage, fault
finding and revealing data races in real OpenCL kernels.

Keywords: Testing · Code coverage · Fault finding · Data race ·
Mutation testing · GPU · OpenCL

1 Introduction

Recent advances in the programmability of Graphics Processing Units (GPUs),
accompanied by the advantages of massive parallelism and energy efficiency, have
made them attractive for general-purpose computations across many application
domains [19]. However, writing correct GPU programs is a challenge owing to
many reasons [13] – a program may spawn millions of threads, which are clustered
in multi-level hierarchies, making it difficult to analyse; programmer assumes
responsibility for ensuring concurrently executing threads do not conflict by
checking threads access disjoint parts of memory; complex striding patterns of
memory accesses are hard to reason about; GPU work-group execution model
and thread scheduling vary platform to platform and the assumptions are not
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 315–331, 2019.
https://doi.org/10.1007/978-3-030-16722-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_19

316 C. Peng and A. Rajan

explicit. As a consequence of these factors, GPU programs are difficult to analyse
with existing static or dynamic approaches [13]. Static techniques are thwarted
by the complexity of the sharing patterns. Dynamic techniques are challenged
by the combinatorial explosion of thread interleavings and space of possible data
inputs. Given these difficulties, it becomes important to understand the extent
to which a GPU program has been analysed and tested, and the code portions
that may need further attention.

In this paper, we focus on GPU program testing and address concerns with
respect to quality and adequacy of tests developed for GPU programs. We
present a framework, CLTestCheck, that measures test effectiveness over GPU
kernels written using OpenCL programming model [7]. The framework has three
main capabilities. The first capability is a technique called schedule amplifica-
tion to check execution of test inputs over several work-group schedules. Existing
GPU architecture and simulators do not provide a means to control work-group
schedules. The OpenCL specification provides no execution model for inter work-
group interactions [21]. As a result, the ordering of work-groups when a kernel
is launched is non-deterministic and there is, presently, no means for checking
the effect of schedules on test execution. We provide this monitoring capability.
For a test case Ti in test suite TS, instead of simply executing it once with
an arbitrary schedule of work-groups, we execute it many times with a differ-
ent work-group schedule in each execution. We build a simulator that can force
work-groups in a kernel execution to execute in a certain order. This is done in
an attempt to reveal test executions that produce different outputs for different
work-group schedules which inevitably point to problems in inter work-group
interactions.

The second capability of CLTestCheck is measuring code coverage for
OpenCL kernels. The structures we chose to cover were motivated by OpenCL
bugs found in public repositories like Github and research papers for GPU
testing. We define and measure coverage over synchronisation statements, loop
boundaries and branches in OpenCL kernels.

The final capability of the framework is creating mutations by seeding differ-
ent classes of faults relevant to GPU kernels. We assess the effectiveness of test
suites in uncovering the seeded faults.

We empirically evaluate CLTestCheck using 82 kernels and associated test
input workloads from industry standard benchmarks. The schedule ampli-
fier in CLTestCheck was able to detect deadlocks and inter work-group data
races in benchmarks. We were able to detect barrier divergence and kernel
code that requires further tests using the coverage measurement capabilities
of CLTestCheck. Finally, the fault seeding capability was able to expose unnec-
essary barriers and unsafe accesses in loops.

The CLTestCheck framework aims to help developers assess how well the
OpenCL kernels have been tested, kernel regions that require further testing,
uncover bugs sensitive to work-group schedules. In summary, the main contri-
butions in this paper are:

1. Schedule amplification to evaluate test executions using different work-group
schedules.

2. Definition and measurement of kernel code coverage considering synchronisa-
tion statements, loop boundaries and branch conditions.

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 317

3. Fault seeder for OpenCL kernels that seeds faults from different classes. The
seeded faults are used to assess the effectiveness of test suites with respect to
fault finding.

4. Empirical evaluation on a collection of 82 publicly available GPU kernels,
examining coverage, fault finding and inter work-group interactions.

The rest of this paper is organised as follows. We present background on the
OpenCL programming model in Sect. 2. Related work in GPU program testing
and verification is discussed in Sect. 3. CLTestCheck capabilities is discussed in
Sect. 4. Experiment setup and results of our empirical evaluation is discussed in
Sects. 5 and 6, respectively.

2 Background

The success of GPUs in the past few years has been due to the ease of pro-
gramming using the CUDA [17] and OpenCL [7] parallel programming models,
which abstract away details of the architecture. In these programming models,
the developer uses a C-like programming language to implement algorithms. The
parallelism in those algorithms has to be exposed explicitly. We now present a
brief overview of the core concepts of OpenCL, the programming model used in
this paper.

OpenCL is a programming framework and standard set from Khronos, for
heterogeneous parallel computing on cross-vendor and cross-platform hardware.
In the OpenCL architecture, CPU-based Host controls multiple Compute Devices
(for instance CPUs and GPUs are different compute devices). Each of these
coarse grained compute devices consists of multiple Compute Units which in
turn contain one or more processing elements (a.k.a streaming processors). The
processing elements execute groups of individual threads, referred to as work-
groups, concurrently. The functions executed by the GPU threads are called
kernels, parameterised by thread and group id variables. OpenCL has four types
of memory regions: global and constant memory shared by all threads in all
work-groups, local memory shared by threads within the same work-group and
private memory for each thread. Kernels cannot write to the constant memory.

GPUs have SIMT (single instruction, multiple thread) execution model that
executes batches of threads (warps) in lock-step, i.e all threads in a work-group
execute the same instruction but on different data. If the control flow of threads
within the same work-group diverges, the different execution paths are scheduled
sequentially until the control flows reconverge and lock-step execution resumes.
Sequential scheduling caused by divergence results in a performance penalty,
slowing down execution of the kernel.

Betts et al. [2] describe two specific classes of bugs that make GPU kernels
harder for verification than sequential code, data races and barrier divergence.
Inter work-group data race is referred to as a global memory location is written
by one or more threads from one work-group and accessed by one or more threads
from another work-group. Intra work-group data race is referred to as a global or
local memory location is written by one thread and accessed by another from the
same work-group. Barrier is a synchronisation mechanism for threads within a
work-group in OpenCL and is used to prevent intra work-group data race errors.

318 C. Peng and A. Rajan

Barrier divergence occurs if threads in the same group reach different barriers,
in which case kernel behaviour is undefined [2] and may lead to intra work-group
data race.

In this paper, we focus on covering barrier functions to help detect intra
work-group barrier divergence errors and revealing problems with inter work-
group interactions using work-group schedule amplification.

3 Related Work

We discuss related work in the context of work-group synchronisation, verifica-
tion and testing of GPU programs.

Inter Work-group Synchronisation for OpenCL Kernels. Barrier functions in the
OpenCL specification [7] help synchronise threads within the same work-group.
There is no mechanism, however, to synchronise threads belonging to different
work-groups. One solution for this problem is to split a program into multi-
ple kernels with the CPU executing the kernels in sequence providing implicit
synchronisation. The drawback with this method is the overhead incurred in
launching multiple kernels. Xiao et al. [24] proposed an implementation of inter
work-group barrier that relies on information on the number of work-groups.
This method is not portable as the number of launched work-groups depends on
the device. Sorensen et al. [22] extended it to be portable by discovering work-
group occupancy dynamically. Their implementation of inter work-group barrier
synchronisation is useful when the developer knows there is interaction between
work-groups that needs to be synchronised. Our contribution is in detecting
undesired inter work-group interactions, not intended by the developer.

GPU Kernel Verification. Verification of GPU kernels to detect data races and
barrier divergence bugs has been explored in the past. Li et al. [14] introduced a
Satisfiability Modulo Theories (SMT) based approach for analysing GPU kernels
and developed a tool called Prover of User GPU (PUG). The main drawback of
this approach is scalability. With an increasing number of threads, the number of
possible thread interleavings grows exponentially, making the analysis infeasible
for large number of threads. GRace [25] and GMRace [26] were developed for
CUDA programs to detect data races using both static and dynamic analysis.
However, they do not support detection of inter work-group data races.

GKLEE [15] and KLEE-CL [3], based on dynamic symbolic execution, pro-
vides data race checks for CUDA and OpenCL kernels, respectively. Both tools
are restricted by the need to specify a certain number of threads, and the lack
of support for custom synchronisation constructs. Scalability and general appli-
cability is a challenge with these tools.

Leung et al. [13] present a flow-based test amplification technique for verifying
race freedom and determinism of CUDA kernels. For a single test input under a
particular thread interleaving, they log the behaviour of the kernel and check the
property. They then amplify the result of the test to hold over all the inputs that
have the same values for the property integrity-inputs. The test amplification
approach in [13] can check the absence of data-races, not the presence. Addi-
tionally, their approach amplifies across the space of test inputs, not work-group

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 319

schedules as done in our schedule amplifier. GPUVerify [2] is a static analy-
sis tool that transforms a parallel GPU kernel into a two-threaded predicated
program with lock-step execution and checks data races over this transformed
model. The drawback of GPUVerify is that it may report false alarms and has
limited support for atomic operations.

Test Effectiveness Measurement. Measuring effectiveness of tests in terms of
code coverage and fault finding is common for CPU programs [6,18]. Support for
GPU programs is scarce. GKLEE is the only tool that provides support for code
coverage for CUDA GPU kernels. Given a kernel, it converts it into its sequential
C program version (using Perl scripts) and applies the Gcov utility supplied
with GCC for measuring code coverage. This form of coverage measurement
disregards the GPU programming model. In our approach, we measure coverage
conforming to the OpenCL programming model. With respect to fault seeder
and schedule amplification, we are not aware of any existing work that provides
these capabilities for GPU kernels to help measure effectiveness of test suites.
The CLTestCheck framework is discussed in the next Sect. 4.

4 Our Approach

In this Section, we present the CLTestCheck framework that provides capabilities
for kernel code coverage measurement, mutant generation and schedule amplifi-
cation. To understand the kinds of programming bugs1 encountered by OpenCL
developers, we surveyed several publicly available OpenCL kernels and associ-
ated bug fix commits. A summary of our findings is shown in Table 1. We found
bugs most commonly occur in the following OpenCL code constructs: barriers,
loops, branches, global memory accesses and arithmetic computations. We seek
to aid the developer in assessing quality of test suites in revealing these bug
types using CLTestCheck. A detailed discussion of CLTestCheck capabilities is
presented in the following sections.

4.1 Kernel Code Coverage

We define coverage over barriers, loops and branches in OpenCL code to check
rigour of test suites in exercising these code structures.

Branch Coverage. GPU programs are highly parallelised, executed by numerous
processing elements, each of them executing groups of threads in lock step, which
is very different from parallelism in CPU programs, where each thread executes
different instructions with no implicit synchronisation, as seen in lock-step exe-
cution. Kernel code for all the threads is the same, however, the threads may
diverge, following different branches based on the input data they process. As
seen in Table 1, uncovered branches and branch conditions are an important class
of OpenCL bugs. Lidbury et al. [16] report in their work that branch coverage

1 These are kernel bugs that violate the specification of the program or are associated
with executions that lead to undefined behaviour.

320 C. Peng and A. Rajan

Table 1. Summary of bug fixing commits we collected

Code Structure Bug Type Repository

1 Barrier Missing barriers Winograd-OpenCL [10],
histogram [13],
reduction [13], OP2 [3]

2 Removing unnecessary barriers Winograd-OpenCL [10]

3 Loop Incorrect condition mcxcl [5], particles [8]

4 Incorrect boundary value clSPARSE [1]

5 Missing loop boundary Pannotia [21]

6 Branch Missing else branch liboi [11]

7 Incorrect condition mcxcl [5],
ClGaussianPyramid [4]

8 Global memory access Inter work-group data race Parboil-spmv [16],
lonestar-bfs [21],
lonestar-sssp [21]

9 Arithmetic Computations Incorrect arithmetic operators mcxcl [5],
ClGaussianPyramid [4]

measurement is crucial for GPU programs but is currently lacking. To address
this need, we define branch coverage for GPU programs as follows,

branch coverage =
#covered branches

total #branches
× 100% (1)

Branch coverage measures adequacy of a test suite by checking if each branch
of each control structure in GPU code has been executed by at least one thread.

Loop Boundary Coverage. In our survey of kernel bugs shown in Table 1, we
found bugs related to loop boundary values and loop conditions were fairly
common. For instance, bug #3 found in the mcxcl program allowed the loop
index to access memory locations beyond the end of the array due to an erroneous
loop condition. We assess adequacy of test executions with respect to loops by
considering the following cases,

1. Loop body is not executed,
2. Loop body is executed exactly once,
3. Loop body is executed more than once
4. Loop boundary value is reached

Loop boundary coveragecase i =
#loops satisfying case i

total #loops
× 100% (2)

where casei refers to one of the four loop execution cases listed above.

Barrier Coverage. Barrier divergence occurs when the number of threads within
a work-group executing a barrier is not the same as the total number of threads in
that work-group. Kernel behaviour with barrier divergence is undefined. Barrier

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 321

related bugs, missing barriers and unnecessary barriers, is a common class of
GPU bugs according to our survey. We define barrier coverage as follows.

barrier coverage =
#covered barriers

total #barriers
× 100% (3)

Barrier coverage measures adequacy of a test suite by checking if each barrier
in GPU code is executed correctly. Correct execution of a barrier without barrier
divergence, covered barrier, is when it is executed by all threads in any given
work-group.

4.2 Fault Seeding

Mutation testing is known to be an effective means of estimating the fault finding
effectiveness of test suites for CPU programs [9]. We generate mutations using
traditional mutant operators, namely, arithmetic, relational, bitwise, logical and
assignment operator types. In Table 1, bug fixes #3, #7 and #8 show that
traditional arithmetic and relational operator mutations remain applicable to
GPU programs. In addition, we define three mutations specifically for OpenCL
kernels: barrier mutation, image access mutation and loop boundary mutation
inspired by bug fixes #1 to #5.

The barrier mutation operator we define is deletion of an existing barrier
function call, to reproduce bugs similar to #1 and #2 in Table 1. OpenCL pro-
vides 2D and 3D image data structures to facilitate access to images. Multi-
dimensional arrays are not supported in OpenCL. Image structures are accessed
using read and write functions that take the pixel coordinates in the image
as parameter. We perform image access mutations for 2D or 3D coordinates
by increasing or decreasing one of the coordinates or exchanging coordinates.
Finally, we define loop boundary mutations as either (1) skipping the loop, (2)
allowing n-1 iterations of the loop and (3) allowing n+1 iterations of the loop
where n is the number of iterations when the loop boundary is reached. The
mutant operators we use in this paper are summarised in Table 2.

Table 2. Summary of mutation operators

Type of Operator Mutants

Arithmetic Binary +, −, *, /, %

Unary -(negation), ++, --

Relational <, >, ==, <=, >=, ! =

Logical &&, ||, !
Bitwise &, |, ,̂ ,̃ <<, >>

Assignment =, +=, −=, ∗=, /=, %=, <<=, >>=, &=, |=,̂ =

Barrier Delete barrier function call

Image coordinates Change coordinates when accessing images

Loop boundary Change the boundary value in loop condition check

322 C. Peng and A. Rajan

4.3 Schedule Amplification

When a kernel execution is launched the GPU schedules work-groups on com-
pute units in a certain order. Presently, there is no provision for determining
this schedule or setting it in advance. The scheduler makes the decision on the
fly subject to availability of compute units and readiness of work-groups for exe-
cution. The order in which work-groups are executed with the same test input
can differ every time the kernel is executed. OpenCL specification has no execu-
tion model for inter work-group interactions and provides no guarantees on how
work-groups are mapped to compute units. In our approach, we execute each
test input over a set of schedules. In each schedule, we fix the work-group that
should execute first. All other work-groups wait till it has finished execution.
The work-group going first is picked so that we achieve a uniform distribution
over the entire range of work-groups in the set of schedules. The order of exe-
cution for the remaining work-groups is left to the scheduler. For a test case, T
over a kernel with G work-groups, we will generate N schedules, with N < G,
such that a different work-group is executed first in each of the N schedules.
The number of schedules, N , we generate is much lesser than the total num-
ber of schedules which is typically infeasible to check. The reason we only fix
the first work-group in the schedule is because, most data races or deadlocks
involve interactions between two work-groups. Fixing one of them and picking a
different work-group each time, significantly reduces the search space of possible
schedules. We cannot provide guarantees with this approach. However, with lit-
tle extra cost we are able to check significantly more number of schedules than is
currently possible. We believe this approach will be effective in revealing issues,
if any, in inter work-group interactions.

To illustrate this, we consider a kernel co running on four work-groups. The
CLTestCheck schedule amplifier will insert code on the host and GPU side,
shown in Listings 1.1 and 1.2, to generate different work-group schedules.

In this example, before the GPU kernel is launched, the host side generates a
random value in the range of available work-group ids. This value is the id of the
selected work-group to be executed first and is passed to the kernel code using a

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 323

macro definition. On the kernel side, each thread determines if it belongs to the
selected work-group. Threads in the selected work-group proceed with executing
the kernel code while threads belonging to other work-groups wait. After the
selected work-group completes execution, the remaining work-groups execute
the original kernel in an order based on mapping to available compute units
(occupancy bound execution model [22]). With different work-group schedules
generated by the schedule amplifier, we were able to detect the presence of inter
work-group data races using a single GPU platform. Betts et al. [2], on the other
hand, focus on intra work-group data races on different GPU platforms.

4.4 Implementation

CLTestCheck is implemented using Clang LibTooling [12]. We instrument
OpenCL kernel source code to measure coverage, generate mutations and mul-
tiple work-group schedules automatically. Our implementation is available at
https://github.com/chao-peng/CLTestCheck.
Coverage Measurement. To record branches, loops and barriers executed
within each kernel when running tests, we instrument the kernel code with data
structures and statements recording the execution of these code structures. For
each work-group, we introduce three local arrays, whose size is determined by the
number of branches, loops and barriers accessible by threads in that work-group.
To measure branch coverage, we add statements at the beginning of each then-
and else-branch to record whether that branch is enabled. Similarly, statements
to record the number of iterations of loops are added at the beginning of each loop
body. At the end of the kernel, the information contained in the data structures
is processed to compute coverage.
Fault Seeder and Mutant Execution. The CLTestCheck fault seeder gen-
erates mutants and executes them with each of the tests in the test suite to
compute mutation score, as the fraction of mutants killed. The CLTestCheck
fault seeder translates the target kernel source code into an intermediate form
where all the applicable operators are replaced by a template string containing
the original operator, its ID and type. The tool then generates mutants from this
intermediate form. Once mutants are generated, the tool executes each of the
mutant files and checks if the test suite kills the mutant. We term the mutant
as killed if one of the following occurs: program crashes, deadlocks or produces
a result different from the original kernel code.
Schedule Amplification. As mentioned earlier, we generate several schedules
for each test execution by requiring a target work-group to execute the kernel
code first and then allowing other work-groups to proceed. The target work-
group is selected uniformly across the input space of work-group ids. To achieve
coverage of this input space, we partition work-group ids into sets of 10 work-
groups. Thus if we have N work-groups, we partition them into N /10 sets. The
first set has work-group ids 0 to 9, the second set has ids 10 to 19 and so on.
We then randomly pick a target work-group, Wt, from each of these sets to go
first and generate a corresponding schedule of work-groups, {Wt, SN−1}, where
SN−1 refers to the schedule of remaining N − 1 work-groups generated by the
GPU execution model which is non-deterministic. For N /10 sets of work-groups,
we will have N /10 schedules of the form {Wt, SN−1} (a Wt first schedule). The
test input is executed using each of these N /10 Wt first schedules. Due to the

https://github.com/chao-peng/CLTestCheck

324 C. Peng and A. Rajan

non-deterministic nature of SN−1, we repeat the test execution with a chosen
Wt first schedule 20 times. This will enable us to check if the execution model
generates different SN−1 and evaluate executions with 20 such orderings.

5 Experiment

In our experiment, we evaluate the feasibility and effectiveness of the coverage
metrics, fault seeder and work-group schedule amplifier proposed in Sect. 4 using
OpenCL kernels from industry standard benchmark families and their associated
test suites. We investigate the following questions:

Q1. Coverage Achieved: What is the branch, barrier and loop coverage
achieved by test suites over OpenCL kernels in our subject benchmarks?
To answer this question, we use our implementation to instrument and anal-
yse kernel source code to record visited branches, barrier functions, loop
iterations along with information on executing work-group and threads.

Q2. Fault Finding: What is the mutation score of test suites associated with
the subject programs?
For each benchmark, we generate all possible mutants by analysing the
kernel source code and applying the mutation operators, discussed in Sect. 4,
to eligible locations. We then assess number of mutants killed by the tests
associated with each benchmark. To check if a mutant is killed, we compared
execution results between the original program and mutant.

Q3. Deadlocks and Data Races: Can the tests in the test suite give rise to
unusual behaviour in the form of deadlocks or data races? Deadlocks occur
when two or more work-groups are waiting on each other for a resource.
Inter work-group data races occur when test executions produce different
outputs for different work-group schedules. For each test execution in each
benchmark, we generate 20 ∗N/10 different work-group schedules, where N
is total number of work-groups for the kernel, and check if the outputs from
the execution change based on work-group schedule.

Subject Programs. We used the following benchmarks for our experiments, 1.
Nine scientific benchmarks with 23 OpenCL kernels from Parboil benchmark
suite [23], 2. scan benchmark [20], with 3 kernels, that computes parallel prefix
sum, 3. Five applications containing 13 kernels from Rodinia benchmark suite
for heterogeneous computing, 4. 20 benchmarks from PolyBench with 43 kernels
spanning linear algebra, data mining and stencil computations.

We ran our experiments on Intel CPU (i5-6500) and GPU (HD Graphics
530) using OpenCL SDK 2.0.

6 Results and Analysis

For each of the subject programs presented in Sect. 5, we ran the associated
test suites and report results in terms of coverage achieved, fault finding and
overhead incurred with CLTestCheck framework. We executed the test suites
20 times for each measurement. Our results in the context of the questions in
Sect. 5 is presented below.

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 325

6.1 Coverage Achieved

Branch and Loop coverage (with 0, exactly 1 and >1 iterations) for each of the
subject programs in the three benchmark suites2 is shown in the plots in Fig. 1.
The first row shows branch coverage, the second loop coverage. Mutation score
and surviving mutation types shown in the last two rows of Fig. 1 is discussed
in the next Sect. 6.2.

Fig. 1. Coverage achieved - Branch and Loop, mutation score and percentage of sur-
viving mutations by type for each subject program in the 3 benchmark suites.

2 20 applications in Parboil counting different test suites separately, 6 in Scan/Rodinia,
and 20 in PolyBench.

326 C. Peng and A. Rajan

Barrier Coverage is not shown in the plots since for all, except one, applica-
tions with barriers, the associated test suites achieved 100% barrier coverage.
The only subject program with less than 100% barrier coverage was scan, which
had 87.5% barrier coverage. The uncovered barrier is in a loop whose condition
does not allow some threads to enter the loop, resulting in barrier divergence
between threads. We find that less than 100% barrier coverage is a useful indi-
cator of barrier divergence in code.
Branch Coverage. For most subject programs in Parboil and Scan/Rodinia,
test suites achieve high branch coverage (>83%). The histo benchmark is an
outlier with a low branch coverage of 31.6%. Its kernel function, histo main,
contains 20 branches in a code block handling an exception condition (overflow).
The test suite provided with histo does not raise the overflow exception, and
as a result, these branches are never executed. We found uncovered branches in
other applications, with >80% coverage, in Parboil and Scan/Rodinia to also
result from exception handing code that is not exercised by the associated test
data.

Branch coverage achieved for 13 of the 20 applications in PolyBench is at
50%. This is very low compared with other benchmark suites. Upon investigat-
ing the kernel code, we found that all the uncovered branches reside within a
condition check for out of range array index. Tests associated with a majority of
the applications did not check out of range array index access, resulting in low
branch coverage.
Loop Coverage. Test suites for nearly all applications (with loops) execute
loops more than once. Thus, coverage for >1 iterations is 100% for all but one
of the applications, srad in Rodinia suite, that has 80%. The uncovered loop in
srad is in an uncovered then-branch that checks exception conditions. We also
checked if the boundary value in loop conditions is reached when >1 iterations
is covered by test executions. We found pathfinder in Rodinia to be the only
application to have full coverage for >1 iterations but not reach the boundary
value. The unusual scenario in pathfinder is because one of the loops is exited
using a break statement.

We find that test suites for most applications are unable to achieve any loop
coverage for 0 and exactly 1 iteration. The boundary condition for most loops
is based on the size of the work-groups which is typically much greater than
1. As a result, test suites have been unable skip the loop or execute it exactly
once. The only exceptions were applications in the Parboil suite - bfs, cutcp,
mri-gridding, spmv, and two applications in Rodinia - lud, srad, that have
boundary values dependent on variables that maybe set to 0 or 1.
Overhead. For each benchmark and associated test suite, we assessed over-
head introduced by our approach. We compared time needed for executing the
benchmark with instrumentation and additional data structures that we intro-
duced for coverage measurement against the original unchanged benchmark.
Overhead varied greatly across benchmarks and test suites. Overhead for Par-
boil and Rodinia benchmarks was in the range of 2% to 118%. Overhead was
lower for benchmarks that took longer to execute as the additional execution
time from instrumentation is a smaller fraction of the overall time. Overhead for
most programs in PolyBench ranges from 2% to 70%, which is similar to Parboil
and Rodinia benchmarks. The overhead for lu, fdtd-2d and jacobi-2d-imper
programs are >100%. The code for kernel computations in these benchmarks is

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 327

small with fast execution. Consequently, the relative increase in code size and
execution time after instrumentation with CLTestCheck is high.

6.2 Fault Finding

Fault finding for the subject programs is assessed using the mutants we generate
with the fault seeder, described in Sect. 4. The mutation score, percentage of
mutants killed, is used to estimate fault finding capability of test suites associated
with the subject programs. Each test suite associated with a benchmark is run
20 times to determine the killed mutants. A mutant is considered killed if the
test suite generates different outputs on the mutant than the original program
in all 20 repeated runs of the test suite. In addition to killed mutants, we also
report results on “Undecided Mutants”, that refers to mutants that are killed in
at least one of the executions of the test suite, but not all 20 repeated executions.
Changes in GPU thread scheduling between runs causes this uncertainty. We do
not count the undecided mutants towards killed mutants in the mutation score.
Mutation score for all subject programs in each benchmark suite is shown in the
third row of plots in Fig. 1.
Mutation Score. In general, we find that test suites for subject programs
achieving high branch, barrier and loop coverage also have high mutation score.
For instance, for spmv and stencil, their test suites achieving 100% coverage,
also achieved 100% mutation score. An instance of a program that does not
follow this trend is mri-gridding that has 100% branch, barrier, and loop (>1
iterations) coverage but only 82% mutation score. On analysing the survived
mutants, we found a significant fraction (160 out of 232) were arithmetic operator
mutations within a function named kernel value that contained variables defining
a fourteenth-order polynomial and a cubic polynomial. Effect of mutations on
the polynomials did not propagate to the output of the benchmark with the
given test suite. The histo program with low branch coverage, 100% barrier
and loop coverage has 65.9% mutation score. Nearly two thirds of the branches
in histo cannot be reached by the input data, as a result, all the mutations in
the untouched branches is not killed, resulting in a low mutation score. A few of
the programs in PolyBench have mutation scores that are between 60–70%. In
these programs, most surviving mutations are arithmetic operator mutations.

As seen in the last row of Fig. 1 showing surviving mutations by operator
type, arithmetic operators are the dominant surviving mutations in all three
benchmark suites. Control flow adequate tests can kill arithmetic operator muta-
tions only if they propagate to a control condition or the output. Data flow
coverage may be better suited for estimating these mutations. Around 20% of
relational operator mutations also survive in our evaluation. Most of the surviv-
ing relational operator mutations made slight changes to operators, such as < to
<=, or > to >= and vice versa. The test suites provided with the benchmarks
missed such boundary mutations.
Undecided mutants occur during executions of 9, out of the 46 subject pro-
grams and test suites across all three benchmark suites. Number of undecided
mutants during the 9 executions is generally small (<= 5). The only excep-
tion is tpacf in the Parboil benchmark suite, that resulted in 18 undecided
mutants when executing one of its test suite. Undecided mutants point to non-
deterministic behaviour in the kernel, that is dependent on GPU thread execu-

328 C. Peng and A. Rajan

tion model. A large number of undecided mutants is alarming and developers
should examine kernel code more closely to ensure that the behaviour observed
is as intended.
Barriers were not used in all benchmarks. Only 5 out of the 9 benchmarks in
Parboil, and 4 of the 6 in Scan/Rodinia had barriers. PolyBench programs did
not use any barriers. Mutations removed barrier function calls in these bench-
marks and we ecorded the number of mutants killed by test suites. Percentage
of killed barrier mutations is generally low across all benchmarks with barriers.
For instance, removing 2 out of 3 barriers in the histo program in Parboil,
and removing all barriers in the cutcp program had no effect on outputs of the
respective program executions. This may either mean that the test suites are
inadequate with respect to the barrier mutations or it could be an indication
that these barriers are superfluous with respect to program outputs, and the
need for synchronisation should be further justified. For the programs in our
experiment, we found barriers, whose mutations survived, to be unnecessary.
Coverage versus Mutation Score. The plots in Fig. 1 illustrate total muta-
tion score over all types of mutations for each subject program and test suite.
We also compute mutation scores specifically for branches, barriers, and loops
using mutations relevant to them. We do this to compare against branch, bar-
rier and loop coverage achieved for each of the subject programs. We found
that mutation score for branches closely follows branch coverage for most sub-
ject programs. Outliers include adi, nn, convolution-2d and convolution-3d.
Mutations that change < to <= are not killed in these kernels; these comprise
one third of all branch mutations.

Mutation score for barriers is quite different from barrier coverage. This is
because test suites are able to execute the barriers and achieve coverage. How-
ever, they are unable to produce different outputs when the barriers are removed.
This may be a problem with the superfluous manner in which barriers are used
in these programs.

Loop coverage with >1 iterations is 100% for all but one subject program
(srad in Rodinia). Mutation score for loops on the other hand is variable. In
general, tests achieving loop coverage are unable to reveal loop boundary muta-
tions. Histo and srad are worth noting with high loop coverage but low loop
mutation scores. We find that mutations to the loop boundary value in these
two benchmarks survive, which implies that access to loop indices outside the
boundary go unchecked in these programs. These unsafe values of loop indices
should be disallowed in these kernels and loop boundary mutations in our fault
seeder help reveal them.

6.3 Schedule Amplification: Deadlocks and Data Races

Kernel Deadlocks: When we used the CLTestCheck schedule amplifier on
our benchmarks, we found kernel executions deadlock when the work-group ID
selected to go first exceeds the number of available compute units. As there are
no guarantees on how work-groups are mapped to compute units, we allow work-
group IDs exceeding number of compute units to go first in some test executions
using our schedule amplifier. However, it appears that the GPU makes unstated
assumptions on what work-group IDs are allowed to go first. As noted by Soren-
son et al. [22], “execution of large number of work-groups is in any occupancy

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 329

bound fashion, by delaying the scheduling of some work-groups until others have
executed to completion”. They observed deadlocks in kernel execution due to
inter work-group barriers. However, in the benchmarks in our evaluation, there
is no explicit inter work-group barrier. It may be the case that developers made
implicit assumptions on inter work-group barriers using the occupancy bound
model and our schedule amplification approach violates this assumption. Nev-
ertheless, our finding exposes the need for an inter work-group execution model
that explicitly states the details and assumptions related to mapping of work-
groups to compute units for a given kernel on a given GPU platform.
Inter Work-group Data Races: We were able to reveal a data race in the
spmv application from the Parboil benchmark suite. We found that when work-
groups 0 or 1 are chosen to go first in our schedules, the kernels execution always
produces the same result. However, when we pick other work-group ids to go first,
the test output is not consistent. Among twenty executions for each schedule,
the frequency of producing correct output varies from 45% to 70%.

We observe similar behaviour in the tpacf application in Parboil when we
delete the last barrier function call in the kernel. The kernel execution produces
consistent outputs when we pick work-group 0 or 1 to go first. When we pick
other work-groups to go first using our schedule amplifier, the kernel execution
results are non-deterministic.

We observe no unusual behaviour in any of the PolyBench programs. These
programs split the computation into multiple kernels and the CPU program
launches GPU kernels one by one. The transfer of control from the GPU to the
CPU between kernels acts like a barrier as the CPU will wait until a kernel
finishes before launching the next kernel. In addition, care has been taken in
the kernel code to ensure threads do not access the same memory location. As
a result, we observe no data races in PolyBench with our schedule amplifier.

7 Conclusion

We have presented the CLTestCheck framework for measuring test effectiveness
over OpenCL kernels with capabilities to measure code coverage, fault seeding
and mutation score measurement, and finally amplify the execution of a test
input with multiple work-group schedules to check inter work-group interactions.
Our empirical evaluation of CLTestCheck capabilities with 82 publicly available
kernels revealed the following,

1. The schedule amplifier was able to detect deadlocks and inter work-group
data races in Parboil benchmarks when higher work-group ids were forced to
execute first. This finding emphasizes the need for transparency and clearly
stated assumptions on how work-groups are mapped to compute units.

2. Barrier coverage served as a useful measure in identifying barrier divergence
in benchmarks (scan).

3. Branch coverage pointed to inadequacies in existing test suites and found test
inputs for exercising error handling code were missing.

4. Across all benchmark suites, we found arithmetic operator and relational
operator mutations that changed < to <=, > to >= or vice versa were hard
to kill. More rigorous test suites to handle these mutations are needed.

330 C. Peng and A. Rajan

5. The use of barrier mutations revealed several instances of unnecessary barrier
use. Barrier usage and its implications is not well understood by developers.
Barrier mutations can help reveal incorrect barrier uses.

6. Loop boundary mutations helped reveal unsafe accesses to loop indices out-
side the loop boundary.

In sum, the CLTestCheck framework is an automated, effective and useful tool
that will help developers assess how well OpenCL kernels have been tested,
kernel regions that require further testing, uncover bugs with respect to work-
group schedules. In the future, we plan to add further metrics, like data flow
coverage with work-group schedule, to strengthen test adequacy measurement.

References

1. AMD Inc. and Vratis Ltd.: clSPARSE: a software library containing sparse func-
tions written in OpenCL (2016). https://github.com/clMathLibraries/clSPARSE

2. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA
2012, pp. 113–132. ACM, New York (2012)

3. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In:
Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203–218.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34188-5 18

4. Emonet, R.: Experiments on Gaussian pyramid implemented using OpenCL
(2010). https://github.com/twitwi/ClGaussianPyramid

5. Fang, Q.: Monte Carlo eXtreme for OpenCL (MCXCL) (2017). https://github.
com/fangq/mcxcl

6. Gay, G., Rajan, A., Staats, M., Whalen, M., Heimdahl, M.P.: The effect of program
and model structure on the effectiveness of MC/DC test adequacy coverage. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 25(3), 25 (2016)

7. Group, K.O.W.: The OpenCL specification version 2.2 (2017)
8. Horton, T.: Cinematic particle effects with OpenCL (2010). https://github.com/

hortont424/particles
9. Jia, Y., Harman, M.: An analysis and survey of the development of mutation

testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)
10. Kim, H.H.: Winograd-based convolution implementation in OpenCL (2017).

https://github.com/csehydrogen/Winograd-OpenCL
11. Kloppenborg, B., Baron, F.: LibOI: the OpenCL interferometry library (2012).

https://github.com/bkloppenborg/liboi
12. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-

ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, p.
75. IEEE Computer Society (2004)

13. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying
GPU kernels by test amplification. In: Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2012,
pp. 383–394. ACM, New York (2012)

14. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 187–196. ACM (2010)

https://github.com/clMathLibraries/clSPARSE
https://doi.org/10.1007/978-3-642-34188-5_18
https://github.com/twitwi/ClGaussianPyramid
https://github.com/fangq/mcxcl
https://github.com/fangq/mcxcl
https://github.com/hortont424/particles
https://github.com/hortont424/particles
https://github.com/csehydrogen/Winograd-OpenCL
https://github.com/bkloppenborg/liboi

CLTestCheck: Measuring Test Effectiveness for GPU Kernels 331

15. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2012, pp. 215–224. ACM, New York (2012)

16. Lidbury, C., Lascu, A., Chong, N., Donaldson, A.F.: Many-core compiler fuzzing.
ACM SIGPLAN Not. 50(6), 65–76 (2015)

17. NVIDIA Corporation: CUDA zone, September 2017. https://developer.nvidia.
com/cuda-zone

18. Rajan, A., Heimdahl, M.P.: Coverage metrics for requirements-based testing. Uni-
versity of Minnesota (2009)

19. Rajan, A., Sharma, S., Schrammel, P., Kroening, D.: Accelerated test execution
using GPUs. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, pp. 97–102. ACM (2014)

20. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU com-
puting. In: Graphics Hardware, vol. 2007, pp. 97–106 (2007)

21. Sorensen, T., Donaldson, A.F.: The Hitchhiker’s guide to cross-platform OpenCL
application development. In: Proceedings of the 4th International Workshop on
OpenCL, p. 2. ACM (2016)

22. Sorensen, T., Donaldson, A.F., Batty, M., Gopalakrishnan, G., Rakamarić, Z.:
Portable inter-workgroup barrier synchronisation for GPUs. In: Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, pp. 39–58. ACM, New York
(2016)

23. Stratton, J.A., et al.: Parboil: a revised benchmark suite for scientific and commer-
cial throughput computing. Center Reliable High-Perform. Comput. 127 (2012)

24. Xiao, S., Feng, W.C.: Inter-block GPU communication via fast barrier synchroniza-
tion. In: 2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), pp. 1–12. IEEE (2010)

25. Zheng, M., Ravi, V., Qin, F., Agrawal, G.: GRace: a low-overhead mechanism for
detecting data races in GPU programs. In: Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP, vol. 46,
pp. 135–146, August 2011

26. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: detecting data races in
GPU programs via a low-overhead scheme. IEEE Trans. Parallel Distrib. Syst.
25(1), 104–115 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://creativecommons.org/licenses/by/4.0/

Implementing SOS with Active Objects:
A Case Study of a Multicore

Memory System

Nikolaos Bezirgiannis1, Frank de Boer1, Einar Broch Johnsen2(B),
Ka I Pun2,3, and S. Lizeth Tapia Tarifa2

1 CWI, Amsterdam, The Netherlands
{n.bezirgiannis,f.s.de.boer}@cwi.nl

2 Department of Informatics, University of Oslo, Oslo, Norway
{einarj,violet,sltarifa}@ifi.uio.no

3 Western Norway University of Applied Sciences, Bergen, Norway

Abstract. This paper describes the development of a parallel simulator
of a multicore memory system from a model formalized as a structural
operational semantics (SOS). Our implementation uses the Abstract
Behavioral Specification (ABS) language, an executable, active object
modelling language with a formal semantics, targeting distributed sys-
tems. We develop general design patterns in ABS for implementing SOS,
and describe their application to the SOS model of multicore memory
systems. We show how these patterns allow a formal correctness proof
that the implementation simulates the formal operational model and dis-
cuss further parallelization and fairness of the simulator.

1 Introduction

Structural operational semantics (SOS) [1], introduced by Plotkin in 1981,
describes system behavior as transition relations in a syntax-oriented, compo-
sitional way, using inference rules for local transitions and their composition.
Process synchronization in SOS rules is expressed abstractly using, e.g., asser-
tions over system states and reachability conditions over transition relations as
premises, and label synchronization for parallel transitions. This high level of
abstraction greatly simplifies the verification of system properties, but not the
simulation of system behavior as execution quickly becomes a reachability prob-
lem with a lot of backtracking. In this paper, we study how to implement a
parallel simulator with a formal correctness proof from a SOS model, in terms
of a case study of a multicore memory system. Such a correctness proof requires
that the implementation language is also defined formally by an operational
semantics.

Supported by SIRIUS: Centre for Scalable Data Access (www.sirius-labs.no) and
ADAPt: Exploiting Abstract Data-Access Patterns for Better Data Locality in Parallel
Processing (www.mn.uio.no/ifi/english/research/projects/adapt/).

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 332–350, 2019.
https://doi.org/10.1007/978-3-030-16722-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_20&domain=pdf
http://www.sirius-labs.no
https://www.mn.uio.no/ifi/english/research/projects/adapt/
https://doi.org/10.1007/978-3-030-16722-6_20

Implementing SOS with Active Objects 333

A major challenge in software engineering is the exploitation of the computa-
tional power of multicore (and manycore) architectures. One important aspect of
this challenge is the memory systems of these architectures. These memory sys-
tems generally use caches to avoid bottlenecks in data access from main memory,
but caches introduce data duplication and require protocols to ensure coherence.
Although data duplication is usually not visible to the programmer, the way a
program interacts with these copies largely affects performance by moving data
around to maintain coherence. To develop, test and optimize software for multi-
core architectures, we need correct, executable models of the underlying memory
systems. A SOS model of multicore memory systems with correctness proofs for
cache coherency has been described in [2], together with a prototype imple-
mentation in the rewriting logic system Maude [3]. However, this fairly direct
implementation of the SOS model is not well suited to simulate large systems.

This paper considers an implementation of the SOS model in ABS [4], a lan-
guage tailored to the description of distributed systems based on active objects
[5]. ABS is formally defined by an operational semantics and supports parallel
execution on backends in Erlang, Haskell, and Java. The following features of
ABS allow a high-level, coarse-grained view of the execution of different method
invocations by different active objects: encapsulation of local state in active
objects, communication using asynchronous method calls and futures, and coop-
erative scheduling of the method invocations of an active object. Our case study
fully exploits these features and the resulting abstractions to correctly implement
the complex process synchronization of the original SOS model.

The main contributions of this paper are as follows:

– We provide general design patterns in ABS for implementing structural oper-
ational semantics with active objects, and apply these patterns to the imple-
mentation in ABS of a structural operational semantics of multicore memory
systems.

– We show how these patterns allow a formal correctness proof of this imple-
mentation by means of a simulation relation between the formal operational
semantics of the ABS implementation and the operational model of multicore
memory systems.

– We discuss how these ABS design patterns can be used to further parallelize
the implementation while preserving correctness.

– Finally, we show how the ABS modeling concepts of symbolic time and vir-
tual resources can be used to obtain a parallel implementation of the SOS
model which abstractly ensures fairness between the progress of different par-
allel components, independently of the number of cores that are used in the
simulation.

2 An Abstract Model of a Multicore Memory System

Design decisions for a program running on top of a multicore memory systems
can be explored using simulators based on abstract models. Bijo et al. [2,6]
developed a model which takes as input tasks (expressed as data access) to

334 N. Bezirgiannis et al.

be executed, the corresponding data layout in main memory (indicating where
data is allocated), and a parallel architecture consisting of cores with private
multi-level caches and shared memory (see Fig. 1). Additionally, the model is
configurable in the number of cores, the number and size of caches, and the
associativity and replacement policy. Memory is organized in blocks which move
between caches and main memory. For simplicity, the model assumes that the
size of cache lines and memory blocks in main memory coincide, abstracts from
the data content of memory blocks, and transfers memory blocks from the caches
of one core to the caches of another core via main memory.

Fig. 1. Abstract model of a multicore memory system.

Tasks from the pro-
gram are scheduled for
execution from a shared
task pool. Task execution
on a core requires mem-
ory blocks to be trans-
ferred from main mem-
ory to the closest cache.
Each cache has a pool
of fetch/flush instructions
to move blocks among
caches and between caches
and main memory. Con-
sistency between multiple
copies of a memory block
is ensured using the stan-
dard cache coherence protocol MSI (e.g., [7]), with which a cache line is either
modified, shared or invalid. A modified cache line has the most recent value of
the memory block, therefore all other copies are invalid (including the one in
main memory). A shared cache line indicates that all copies of the block are con-
sistent. The protocol’s messages are broadcast to the cores. The details of the
broadcast (e.g., on a mesh or a ring) can be abstracted into an abstract commu-
nication medium. Following standard nomenclature, Rd messages request read
access and RdX messages read exclusive access to a memory block. The latter
invalidates other copies of the same block in other caches to provide write access.

To access data from a block n, a core looks for n in its local caches. If n is not
found in shared or modified state, a read request !Rd(n) is broadcast to the other
cores and to main memory. The cache can fetch the block when it is available in
main memory. Eviction is required if the cache is full. Writing to block n requires
n to be in shared or modified state in the local cache; if it is in shared state, an
invalidation request !RdX (n) is broadcast to obtain exclusive access. If a cache
with block n in modified state receives a read request ?Rd(n), it flushes the block
to main memory; if a cache with block n in shared state receives an invalidation
request ?RdX (n), the cache line will be invalidated ; the requests are discarded
otherwise. Read and invalidation requests are broadcast instantaneously in the
abstract model, reflecting that signalling on the communication medium is order
of magnitude faster than moving data to or from main memory.

Implementing SOS with Active Objects 335

Fig. 2. Syntax of runtime configurations, where over-bar denotes sets (e.g., CR).

2.1 Formalization of the Multicore Memory System as an SOS
Model

An operational meaning for the abstract model described above has be defined
using structural operational semantics (SOS) [1] with labeled transitions to
model broadcast in the abstract communication medium. The resulting formal-
ization [2,6] is shown to guarantee standard correctness properties for data con-
sistency and cache coherence from the literature [8,9], including the preservation
of program order in each core, the absence of data races, and no access to stale
data. We briefly outline the main aspects of the formal model. The runtime syn-
tax is given in Fig. 2. A configuration cf consists of main memory M , cores CR,
caches Ca, and tasks dap to be scheduled. (We syntactically abuse set opera-
tions for multisets, including union ∪ and subtraction \.) A core cid • rst with
identifier cid executes runtime statements rst . A cache with identifier caid has a
local cache memory M and data instructions dst . We assume that caid encodes
the cid of the core to which the cache belongs and its level in the cache hierarchy.
We denote by Status ∪ {⊥} the extension of the set of status tags with the unde-
fined value ⊥. Thus, a memory M : Address → Status ∪ {⊥} maps addresses n
to either a status tags Status or to ⊥ if the memory block with address n is not
found in M .

Data access patterns dap model tasks consisting of read(r) and write(r)
operations to references r and control flow operations for sequential composition
dap1; dap2, non-deterministic choice dap1 � dap2, repetition dap∗, task creation
spawn(dap), and commit which flushes the entire cache after task execution.
The empty access pattern is denoted ε. Cores execute runtime statements rst ,
which extend dap with readBl(r) and writeBl(r) to block execution while
waiting for data. Caches execute data instructions dst to fetch and flush the
memory block with address n, here fetchBl(n) blocks execution while waiting
for data, and flush flushes the entire cache.

The abstract communication medium allows messages from one cache to be
transmitted to the other caches and to main memory in a parallel instantaneous
broadcast. Communication in the abstract communication medium is formalized
in terms of label matching on transitions. The formal syntax for this label mech-
anism is as follows:

336 N. Bezirgiannis et al.

S ::=!Rd(n) |!RdX (n) R ::=?Rd(n) |?RdX (n)

Here, for any address n, a request of the form !Rd(n) or !RdX (n) is sent by
one node and its dual of the form dual(!Rd(n)) =?Rd(n) or dual(!RdX (n)) =
?RdX (n) is broadcast to the rest of nodes and main memory. The syntax of the
model is further detailed in [2,6].

2.2 Local and Global SOS Rules

The semantics is divided into local and global rules. Local rules capture inter-
action inside a node containing a core and the hierarchy of caches. Global rules
capture synchronization and coordination between different nodes and main
memory. In an initial configuration cf0 , all blocks in main memory M have
status sh, all cores are idle, all caches are empty, and the task pool in dap has
a single task representing the main block of a program. Let cf ∗−→ cf ′ denote an
execution starting from cf and reaching cf ′ by applying global transition rules,
which in turn apply local transition rules for each core and its cache hierarchy.
In the rules, let the auxiliary function addr(r) return the address n of the block
containing reference r, cid(caid) the identity of the core associated with cache
caid, lid(caid) the cache level of caid, and status(M,n) the status of block n
in map M . Let the predicate first(caid) hold when caid is the first level and
last(caid) when caid is the last level cache. Note that unlabelled transitions →
can be executed asynchronously, while labelled transitions S−→ require synchro-
nization between all the nodes and main memory (see Figs. 3 and 4). We discuss
some representative rules for local and global level of the SOS model. The full
SOS formalization can be found in [6].

Local semantics. The first rules of Fig. 3 involve a core and its first level
cache. In PrRd1, reading reference r succeeds if the block containing r is avail-
able. Otherwise, in PrRd2 a fetch(n) instruction is added to the data instruc-
tions dst of the first level cache and further execution of the core is blocked by
readBl(r). Writing to r only succeeds if the associated memory block has mo
status in the first level cache. If the cache line is shared, the core broadcasts a
!RdX (n) request to acquire exclusive access, where the broadcast appears as a
label on the transition in PrWr2. Otherwise, the block must be fetched from
main memory in PrWr3 and writeBl(r) blocks execution.

For the remaining rules of Fig. 3, LC-Hit1 and LC-Miss1 capture interac-
tions between adjacent levels of caches, and LCC-Miss1 local state change in
a cache line. If cache caidi needs a block n that is sh or mo in the next level
cache, the address where block n should be placed is decided by a function
select(Mi, n) which reflects the cache associativity and the replacement policy.
If eviction is needed, block n in caidj will be swapped with the selected block
in caidi in LC-Hit1. LC-Miss1 shows how fetch(n)-instructions propagate to
lower cache levels: fetch(n) is replaced by fetchBl(n) in caidi and added to
the data instructions in caidj . If the block cannot be found in any local cache,
we have a cache miss: Execution is blocked by fetchBl(n) and a read request
!Rd(n) is broadcast, represented by the label in LLC-Miss1.

Implementing SOS with Active Objects 337

Fig. 3. Local transition rules.

Fig. 4. Global transition rules.

Global semantics. The global rules synchronize the cache hierarchies of dif-
ferent cores and main memory, and ensures coherence. Selected global rules are
given in Fig. 4. Rule Synch1 captures a global step with synchronization on a
label S, which can be either !Rd(n) or !RdX (n). The request will be broadcast to
other caches. To maintain data consistency, these caches must process the requests
at the same time. The receiving label R is the dual of S. For synchronization, the

338 N. Bezirgiannis et al.

transition is decomposed into a premise for main memory with label R and another
premise for the caches with label S. Rule Synch2 distributes the receiving label
to caches Ca2, which do not belong to the cache hierarchy of the sender core CR1.
The predicate belongs(Ca, CR) expresses that any cache in Ca belongs to exactly
one core in CR. Rule Asynch captures parallel transitions without label. These
transitions can be local to individual nodes and caches, parallel memory accesses,
or the parallel spawning and scheduling of new tasks.

3 The ABS Model of the Multicore Memory System

In this section we outline the translation of the formal model into an exe-
cutable object-oriented model using the ABS modeling language. We first briefly
introduce the language and later explain the structural and behavioural corre-
spondence between these two models, with a focus on the main challenges.

3.1 The ABS Language

ABS is a modeling language for designing, verifying, and executing concurrent
software [4]. The language combines the syntax and object-oriented style of Java
with the Actor model of concurrency [10] into active objects which decouple
communication and synchronization using asynchronous method calls, futures
and cooperative scheduling [5]. Although only one thread of control can execute
in an active object at any time, cooperative scheduling allows different threads
to interleave at explicitly declared points in the code. Access to an object’s
fields is encapsulated, so any non-local (outside of the object) read or write to
fields must happen explicitly via asynchronous method calls so as to mitigate
race-conditions or the need for mutual exclusion (locks).

Fig. 5. Bus lock implementation in ABS using await on
Booleans.

We explain the basic
mechanism of asynchronous
method calls and coopera-
tive scheduling in ABS by
the simple code example
of a class Bus. First, the
execution of a statement
res = await o!m(args) con-
sists of storing a message m(args) corresponding to the asynchronous call to the
message pool of the callee object o. This await statement releases the control
of the caller until the return value of that method has been received. Releas-
ing the control means that the caller can execute other messages from its own
message pool in the meantime. ABS supports the shorthand o.m(args) to make
an asynchronous call f=o!m(args) followed by the operation f.get which blocks
the caller object (does not release control) until the future f has received the
return value from the call. As a special case the statement this.m(args) models a
self-call, which corresponds to a standard subroutine call and avoids this block-
ing mechanism. The code in Fig. 5 illustrates the use of the await statement

Implementing SOS with Active Objects 339

Unit run()

IScheduler sched
ICache l1
SstList currentTask

Core

SstList getTask()
Unit putTask(SstList newTask)

List<SstList> q = Nil
RRScheduler()

1..*

1

Unit read(Reference r)
Unit write(Reference r)
Unit commit(Reference r)
Unit commitAll()
Unit fetch(Address a)

Maybe<Status> swap(Address a_out, Maybe<CacheLine> m_in)
Unit fetchFromMain(Address a, ICache sender)
Unit receiveRd(Address a, IBarrier start, IBarrier end, ICache sender)
Unit receiveRdX(Address a, IBarrier start, IBarrier end, ICache sender)

IBus bus
IMemory mainMemory
Maybe<ICache> nextLevel
MemMap cacheMemory

Cache

1

1

1

1

Status fetchM(Address b)

Unit receiveRdXM(Address a)

MemMap mainMemory
Memory

1..*

1

Unit lock_bus()
Unit release_bus()
Unit sendRd(Address b, ICache sender)
Unit sendRdX(Address b, ICache sender)

IMemory mainMemory
Bool unlocked
List<ICache> caches

Bus

1..*

1

1

1

Unit synchronize()
Int nbrOfCaches

Barrier

1..*

1..*

Fig. 6. Class diagram of the ABS model.

on a Boolean condition to model a binary semaphore, which is used to enforce
exclusive access to a communication medium implemented as a “bus”. Thus, the
statement await bus!lock bus() will suspend the calling method invocation (and
release control in the caller object) and will be resumed when the generated
invocation of the method lock bus of the “bus” itself has been resumed when the
local condition unlocked (of the “bus”) has become true.

3.2 The Structural View

The runtime syntax of the SOS is represented by ABS classes, as outlined in
Fig. 6. We briefly overview the translation. In ABS, object identifiers guarantee
unique names and object references are used to capture how cores and caches
are related. These references are encoded in a one-to-one correspondence with
the naming scheme of the SOS.

A core cid • rst is translated into a class Core with a field currentTask repre-
senting the current task rst . Each core holds a reference to the first level cache.
A cache memory caid •M • dst is translated into a class Cache with an interface
ICache and a class parameter nextLevel. In a cache, nextLevel holds a reference
to the next level cache. If this reference is Nothing, it is last level cache (in the
SOS, a predicate last is used to identify the last level). The field cacheMemory
models the cache’s memory M in SOS. The process pool of each cache object in
ABS represents the data instruction set dst .

An ABS configuration consists of a number of cores with their corresponding
cache hierarchies, the main memory, a scheduler with tasks waiting to be sched-
uled, and the ABS classes Bus and Barrier, which model the abstract communi-
cation medium and the global synchronization with labels !Rd(n) and !RdX (n)

340 N. Bezirgiannis et al.

s: IScheduler

c1: ICore cm: ICore

l1c1: ICache

lnc1: ICache

l1cm: ICache

lncm: ICache

b: IBus

mm: IMemory

br:IBarrierbr:IBarrierbr:IBarrierbr: IBarrier

Fig. 7. Object diagram of an initial configuration.

in the SOS. The object diagram in Fig. 7 shows an initial configuration corre-
sponding to the one depicted in Fig. 1.

3.3 The Behavioral View

We discuss in this section the design patterns in ABS that implement the syn-
chronization inherent in the SOS model. We observe here that the combination
of asynchronous method calls and cooperative scheduling is crucial because of
the multitasking inherent in the SOS model, which requires that objects need to
be able to process other requests; e.g., caches need to flush memory blocks while
waiting for a fetch to succeed.

Fig. 8. Local synchronization between
two ABS objects.

Local synchronization in the SOS model
between two structural entities (e.g., two
caches in rule LC-Hit1 of Fig. 3), is imple-
mented by the following synchronization
pattern in ABS (see Fig. 8). Given two
objects o1 and o2, let o1 execute method
m1, which checks the local conditions of o1

(highlighted as region A in Fig. 8). If these
local conditions hold, method m2 on o2 is
called asynchronously. Method m2 com-
pletes when the local conditions of o2 hold
(highlighted as region B in Fig. 8). How-
ever, when m2 has returned and object
o1 again schedules method m1, the con-
ditions on object o2 need no longer hold.
Therefore, o1 next calls the method m3

synchronously to check these conditions
again. If these condition still hold, method m3 returns successfully (in general,
having updated o2), and we can proceed to do the local changes in o1 (highlighted

Implementing SOS with Active Objects 341

Fig. 9. Extract of ABS method fetch. When this code is reached, the requested cache
line n has status invalid or it is not in the cache. The function select chooses a cache line
to be swapped with n. If there is still free space in the cache, select returns Nothing. If n
has either shared or modified status in the next level cache, the method swap removes
the cache line with address n, inserts the selected cache line and returns the current
status of n; otherwise, swap simply returns Nothing.

as region C in Fig. 8). Otherwise, the process needs to be repeated until we
succeed. Note that method m3 should not contain release points; because this
method is called synchronously from a different object, a release point will in
general have the potential of introducing deadlocks in the caller object.

To illustrate the above protocol, consider the code snippet in Fig. 9, which
corresponds to part of several rules in the SOS (in particular, rule LC-Hit1).
Here, the current object this corresponds to caidi in the SOS, running method
fetch, and the referenced object in nextCache corresponds to caidj . When fetch
from nextCache returns, all the required conditions in nextCache are True. How-
ever, since the call is asynchronous, (some of) the conditions may no longer hold
when execution continues in this. This is addressed by checking the return value
of method swap: If swap returns an address, it means the conditions still hold and
the necessary updates are performed both locally and in nextCache; otherwise
(when swap returns Nothing) fetch will be called again.

Global synchronization in the SOS (see Fig. 10a) is modelled by matching
labelled transitions. To simulate this instantaneous communication in ABS, we
introduced the classes Bus and Barrier. The synchronization protocol is activated
by asynchronous calls to the respective methods sendRd and sendRdX of the bus.
The bus subsequently asynchronously calls the corresponding methods receiveRd
and receiveRdX of the caches. Two barriers start and end are used by the caches
to synchronize the start, as well as the completion, of the local executions of
methods receiveRd and receiveRdX.

However, observe that objects in ABS are input enabled: it is always pos-
sible to call a method on an object. In our model, this scheme may give rise

342 N. Bezirgiannis et al.

!Rd()
caller

?Rd()implicit
bus

(a) State machine of the global synchro-
nization using labels in the SOS model.

receiveRd()

lock bus()

unlock bus()

start
barrier

end
barrier

sendRd()
buscallercaller

(b) State machine of the global synchronization
using a bus and barriers in the ABS model.

Fig. 10. Synchronization in SOS vs ABS. In the SOS model (a), circles represent
nodes in the memory system and shaded arrows labelled transitions. Note that the bus
is implicit in the SOS model, as synchronization is captured by label matching. In the
ABS model (b), circles represent the same nodes as in the SOS model, shaded arrows
method invocations, solid arrows mutual access to the bus object and dotted arrows
barrier synchronizations.

to inconsistent states: the local status of a memory location which triggers an
asynchronous call of one of the methods sendRd and sendRdX of the bus may
be invalidated by other bus synchronizations. Therefore, we add a lock to the
bus (see Figs. 5 and 6), which is used to ensure exclusive access to the message
pool of the bus when one of the methods read, write, and fetch are executed. The
lock is released in case bus synchronization is not needed. The overall scheme is
depicted in Fig. 10b. The exclusive access to the message pool of the bus guar-
antees that the message pool of the bus contains at most one call to one of
the methods sendRd and sendRdX. Consequently, the triggering condition of the
call cannot be invalidated before the call has been executed. This strict locking
strategy, however, decreases concurrency in the distributed system, but reduces
the complexity of the proof of equivalence between the SOS and the distributed
implementation. We discuss how to further enhance the parallelization in Sect. 5.

4 Correctness

In this section we discuss the correctness of the ABS model by means of a
simulation relation between the transition system describing the semantics of the
ABS model of the multicore memory system and the transition system described
by the SOS model.

The semantics of an ABS model can be described by a transition relation
between global configurations. A global configuration is a (finite) set of object
configurations. An object configuration is a tuple of the form 〈oid , σ, p,Q〉, where
oid denotes the unique identity of the object, σ assigns values to the instance
variables (fields) of the object, p denotes the currently executing process, and Q

Implementing SOS with Active Objects 343

denotes a set of (suspended) processes. A process is a closure (τ, S) consisting
of an assignment τ of values to the local variables of the statement S.

We refer to [4] for the details of the structural operational semantics for
deriving transitions G → G′ between global configurations in ABS. Since in ABS
concurrent objects only interact via asynchronous method calls and processes are
scheduled non-deterministically (which provides an abstraction from the order in
which the processes are generated by method calls), the ABS semantics satisfies
the following global confluence property that allows to commute consecutive
computations steps of independent processes which belong to different objects.
Two processes are independent if neither one is generated by the other by an
asynchronous call.

Lemma 1 (Global confluence). For any two transitions G → G1 and G →
G2 that describe execution steps of independent processes of different objects,
there exists a global configuration G′ such that G1 → G′ and G2 → G′.

An object configuration is stable if the statement S to be executed has termi-
nated or starts either with a get operation on a future or with an await statement
on a Boolean condition or a future. A global ABS configuration is stable if all its
object configurations are stable. Observe that our ABS model does not give rise
to local divergent computations without passing through stable configurations;
i.e., every local computation eventually enters a stable configuration. Together
with the global confluence property in Lemma1, this allows to restrict the seman-
tics of the ABS model in the simulation relation to stable global configurations;
i.e., transitions G ⇒ G′ between stable global configurations G and G′ which
result from a (non-empty) sequence of local execution steps of a single process
from one stable configuration to a next one.

Because of the global synchronization with the bus in ABS described above,
we may also represent without loss of generality the synchronization on the bus
by a single global transition G ⇒ G′ which involves a completed execution of
the method sendRd(...) (or sendRdX(...)) by the bus. This is justified because
the global confluence allows for a scheduling policy such that the execution of
the processes that are generated by these methods, i.e., the calls of the methods
receiveRd(...) (or receiveRd(...)) are not interleaved with any other processes.

The simulation relation. The structural correspondence between a global con-
figuration of the ABS model and a configuration of the SOS model is described
in Sect. 3.2. For each method we have constructed a table which, among oth-
ers, associates with some, so-called observable, occurrences of await statements
(appearing in the method body) a corresponding dst instruction. In general, the
execution of the remaining (occurrences of) await statements, for which there
does not exist a corresponding dst instruction, involves some asynchronous mes-
saging preparing for the corresponding synchronous exchange of information in
the SOS model. In some cases, the execution of these unobservable statements
(e.g., the read and write methods) also does not correspond to a change of the
SOS configuration. Let α map every stable global configuration G of the ABS
model to a structurally equivalent configuration α(G) of the SOS model, which

344 N. Bezirgiannis et al.

additionally maps every observable process (either queued or active) to the asso-
ciated dst instruction (a process is observable if its corresponding statement is
observable).

We arrive at the following theorem which expresses that the ABS model is a
correct implementation of the abstract model.

Theorem 1. Let G be a stable global configuration of the ABS model. If G ⇒ G′

then α(G) →∗ α(G′), where →∗ denotes the reflexive, transitive closure of →.

Proof. The proof proceeds by a case analysis of the given transition G ⇒ G′,
which, as discussed above, involves the local execution of some basic sequential
code by a single object. For example, for the case of a completed execution of
a method sendRd(...) (or sendRdX(...)) by the bus, a simple inspection of the
sequential code of the methods that have been executed, e.g., sendRd(...) and
receiveRd(...), suffices to establish the existence of a corresponding transition
α(G) → α(G′).

The remaining cases are captured by tables (as mentioned above) which pro-
vide for each method the following information. The statements in the Location
column of each table represent for the respective method all possible processes
generated by a call, i.e., a call to the method itself, and the processes which
correspond to the await statements appearing in its body. In each row the Next
release point statement indicates the next await statement or return state-
ment that can be reached (statically). The dst instruction in each row specifies
the instruction which corresponds to the Location statement in the simula-
tion. Finally, Enable condition in each row specifies the enabling conditions
(expressed in the abstract model) of the rule applications (of the abstract model)
specified in Rules. In general these rule applications involve the sequential appli-
cation of one or more rules. For unobservable statements, for which there is no
corresponding dst instruction, the latter two columns are left unspecified.

The case analysis then consists of checking statically for each row the local
structural correspondence between the resulting ABS process (the Next release
point) and the resulting SOS configuration described by the specified rule appli-
cations.

5 Parallelism and Fairness of the ABS Model

This section discusses how to relax the eager locking policy of the bus imple-
mentation, without generating inconsistent states. Instead of locking the bus
unconditionally when executing the read, write, and fetch methods in the ABS
model, and releasing the lock when no bus synchronization is required, we only
lock the bus when the triggering conditions of the bus synchronization may be
invalidated. For example, an optimistic write implementation (see Fig. 11) tries
to acquire the lock of the bus, and only after the acquisition checks if a race-
condition has happened and invalidated the shared status of the address n; in
this case, the write method will backtrack and retry (by calling itself); otherwise
the write operation can safely be performed.

Implementing SOS with Active Objects 345

Fig. 11. Alternative, optimistic implementation of the write method to detect a bus
race-condition and, in that case, retry the operation.

The strict and relaxed variations of the global synchronization bear strong
resemblance respectively to conservative [11,12] and optimistic [13] algorithms in
parallel and distributed discrete-event simulation (PDES) [14]. As with PDES,
there is no clear winner between the strict (conservative) and relaxed (optimistic)
versions of our cache simulator; certain computer programs (input-models) will
be simulated faster using one version or the other, depending on the inter-
dependency of the parallel components (for us, the caches). For the contrived
experiment, we implemented a penalty system in the ABS model. A cache
penalty is the cost (delay) incurred by failing to read or write to a particular level
of cache—set here to (L1, L2, L3) =cost (1, 10, 100) [15]. We compared the two
versions for a scenario with full inter-dependency (simultaneous write instruc-
tions on the same memory block) and a scenario with minimal inter-dependency
(write instructions on separate memory blocks) between 16 simulated cores. In
these experiments the strict version was slightly faster up to 2% for the first
case and losing out by up to 12% in the second case. The experiments were
executed using the ABS-Erlang backend [16] and Erlang version 21, running
on quad-socket 8-cores 16-hyperthreads Xeon R©L7555, which yielded in total 64
hardware threads.

Fairness. A concern that often arises in parallel execution is fairness: the degree
of variability when distributing the computing resources among different parallel
components—here, the simulated cores. Fairness of parallel execution can affect
the simulation’s accuracy in approximating the intended (or idealized) many-
core hardware. To ensure fairness of the simulation, we make use of deployment
components [17] in ABS.

A Deployment Component (DC) is an ABS execution location that is created
with a number of virtual resources (e.g., execution speed, memory use, network
bandwidth), which are shared among its deployed objects. Any annotated state-
ment [Cost: x] S decrements by x the resources of its DC and then completes, or

346 N. Bezirgiannis et al.

Table 1. Total cache penalties between strict/relaxed, with/without DC configurations.

Strict with DC Relaxed with DC Strict Relaxed
∑

penalty 43068 43290 39183 24956

it will stall its computation if there are currently not enough resources remain-
ing; the statement S may continue on the next passage of the global symbolic
time where all the resources of the DCs have been renewed, and will eventually
complete when its Cost has reached zero.

We make use of this resource modeling of ABS to assign equal (fair) resources
of virtual execution speed to the simulated cores of the system. Each Core object
is deployed onto a separate DC with fixed Speed(1) resources. The processing of
each instruction has the same cost [Cost: 1]—a generalization, since common pro-
cessor architectures execute different instructions in different speeds (cycles per
instruction); e.g., JUMP is faster than LOAD. The result is that all Cores can exe-
cute maximum one instruction in every time interval of the global symbolic clock,
and thus no Core can get too far ahead with processing its own instructions—a
problem that manifests upon the parallel simulation of N number of cores using
a physical machine of M cores, where N is vastly greater than M . To test this,
we performed a write-congested experiment with a configuration of 20 simulated
cores and 3 cache levels, comparing the strict and relaxed variations, with and
without the use of deployment components. The results (shown in Table 1) were
measured on a quad-core system running ABS-Erlang, counting the total cache
penalties of all the cores. With respect to the strict variation, the results with and
without DC have similar penalties; this can be attributed to the lock-step nature
of strict bus synchronization, where no cache (and thus core) can unfairly stride
forward. In the relaxed variation, however, where synchronization is less strict,
we see that without the fairness imposed by DC, the penalties are almost halved,
which means some cores are allowed to do multiple (successful) write operations
while other cores are still waiting on the “backlog” to be simulated. This gives
rise to less penalties, because of less runtime interleavings of the simulated cores
and thus less competition between them.

6 Related Work

There is in general a significant gap between a formal model and its implemen-
tation [18]. SOS [1] succinctly formalizes operational models and are well-suited
for proofs, but direct implementations of SOS quickly lead to very inefficient
implementations. Executable semantic frameworks such as Redex [19], rewrit-
ing logic [20,21], and K [22] reduce this gap, and have been used to develop
executable formal models of complex languages like C [23] and Java [24]. The
relationship between SOS and rewriting logic semantics has been studied [25]
without proposing a general solution for label matching. Bijo et al. implemented
their SOS multicore memory model [26] in the rewriting logic system Maude

Implementing SOS with Active Objects 347

[3] using an orchestrator for label matching, but do not provide a correctness
proof wrt. the SOS. Different semantic styles can be modeled and related inside
one framework; for example, the correctness of distributed implementations of
KLAIM systems in terms of simulation relations have been studied in rewrit-
ing logic [27]. Compared to these works on semantics, we implemented an SOS
model in a distributed active object setting, and proved the correctness of this
implementation.

Correctness-preserving compilation is related to correctness proofs for imple-
mentations, and ensures that the low-level representation of a program preserves
the properties of the high-level model. Examples of this line of work include type-
preserving translations into typed assembly languages [28] and formally verified
compilers [29,30], which proves the semantic preservation of a compiler from C
to assembler code, but leaves shared-variable concurrency for future work. In
contrast to this work which studies compilation from one language to another,
our work focuses on a specific model and its implementation and specifically
targets parallel systems.

Simulation tools for cache coherence protocols can evaluate performance and
efficiency on different architectures (e.g., gems [31] and gem5 [32]). These tools
perform evaluations of, e.g., the cache hit/miss ratio and response time, by run-
ning benchmark programs written as low-level read and write instructions to
memory. Advanced simulators such as Graphite [33] and Sniper [34] run pro-
grams on distributed clusters to simulate executions on multicore architectures
with thousands of cores. Unlike our work, these simulators are not based on a
formal semantics and correctness proofs. Our work complements these simulators
by supporting the executable exploration of design choices from a programmer
perspective rather from hardware design. Compared to worst-case response time
analysis for concurrent programs on multicore architectures [35], our focus is on
the underlying data movement rather than the response time.

7 Conclusion

We have introduced in this paper a methodology for implementing SOS mod-
els in the active object language ABS, and applied this methodology to the
implementation of a SOS model of an abstraction of multicore memory systems,
resulting in a parallel simulator for these systems. A challenge for this implemen-
tation is to correctly implement the synchronization patterns of the SOS rules,
which may cross encapsulation barriers in the active objects, and in particular
label synchronization on parallel transitions steps. We prove the correctness of
this particular implementation, exploiting that the ABS model allows for a high-
level coarse-grained semantics. We investigated the further parallelization and
fairness of the ABS model.

The results obtained in this paper provide a promising basis for further devel-
opment of the ABS model for simulating the execution of (object-oriented) pro-
grams on multicore architectures. A first such development concerns an extension
of the abstract memory model with data. In particular, having the addresses of

348 N. Bezirgiannis et al.

the memory locations themselves as data allows to model and simulate different
data layouts of the dynamically generated object structures.

References

1. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

2. Bijo, S., Johnsen, E.B., Pun, K.I, Tapia Tarifa, S.L.: A formal model of paral-
lel execution on multicore architectures with multilevel caches. In: Proença, J.,
Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 58–77. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68034-7 4

3. Clavel, M., et al. (eds.): All About Maude - A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

4. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

5. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

6. Bijo, S., Johnsen, E.B., Pun, K.I, Tapia Tarifa, S.L.: A formal model of parallel
execution in multicore architectures with multilevel caches (long version). Research
report, Department of Informatics, University of Oslo (2018). Under revision for
journal publication. http://violet.at.ifi.uio.no/papers/mc-rr.pdf

7. Solihin, Y.: Fundamentals of Parallel Multicore Architecture, 1st edn. Chapman
& Hall/CRC, Boca Raton (2015)

8. Culler, D.E., Gupta, A., Singh, J.P.: Parallel Computer Architecture: A Hard-
ware/Software Approach, 1st edn. Morgan Kaufmann Publishers Inc., Los Altos
(1997)

9. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence, 1st edn. Morgan & Claypool Publishers, San Francisco (2011)

10. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI 1973, pp. 235–245. Morgan Kaufmann Publishers
Inc., San Francisco (1973)

11. Bryant, R.E.: Simulation of packet communication architecture computer systems.
Technical report MIT/LCS/TR-188, MIT, Lab for Computer Science, November
1977

12. Chandy, K.M., Misra, J.: Distributed simulation: a case study in design and verifi-
cation of distributed programs. IEEE Trans. Softw. Eng. SE–5(5), 440–452 (1979)

13. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404–425
(1985)

14. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. Wiley, Hoboken
(2000)

15. Schmidl, D., Vesterkjær, A., Müller, M.S.: Evaluating OpenMP performance on
thousands of cores on the numascale architecture. In: Parallel Computing: On
the Road to Exascale, Proceedings of the International Conference on Parallel
Computing (ParCo 2015). Advances in Parallel Computing, vol. 27, pp. 83–92.
IOS Press (2016)

https://doi.org/10.1007/978-3-319-68034-7_4
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-25271-6_8
http://violet.at.ifi.uio.no/papers/mc-rr.pdf

Implementing SOS with Active Objects 349

16. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567–588 (2012)

17. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebr.
Methods Program. 84(1), 67–91 (2015)

18. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: when formal methods meet real world data. In: de Boer, F., Bonsangue,
M., Rutten, J. (eds.) It’s All About Coordination. LNCS, vol. 10865, pp. 107–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90089-6 8

19. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press, Cambridge (2009)

20. Meseguer, J., Rosu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

21. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

22. Rosu, G.: K: a semantic framework for programming languages and formal analysis
tools. In: Dependable Software Systems Engineering, pp. 186–206. IOS Press (2017)

23. Ellison, C., Rosu, G.: An executable formal semantics of C with applications.
In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2012), pp. 533–544.
ACM (2012)

24. Bogdanas, D., Rosu, G.: K-Java: a complete semantics of Java. In: Rajamani,
S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2015), pp. 445–456.
ACM (2015)

25. Serbanuta, T., Rosu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2), 305–340 (2009)

26. Bijo, S., Johnsen, E.B., Pun, K.I, Tapia Tarifa, S.L.: A maude framework for
cache coherent multicore architectures. In: Lucanu, D. (ed.) WRLA 2016. LNCS,
vol. 9942, pp. 47–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44802-2 3

27. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Semantics, distributed
implementation, and formal analysis of KLAIM models in Maude. Sci. Comput.
Program. 99, 24–74 (2015)

28. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999)

29. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

30. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

31. Martin, M.M.K., et al.: Multifacet’s general execution-driven multiprocessor sim-
ulator (GEMS) toolset. SIGARCH Comput. Arch. News 33(4), 92–99 (2005)

32. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Arch. News 39(2),
1–7 (2011)

33. Miller, J.E., et al.: Graphite: a distributed parallel simulator for multicores. In:
Proceedings of the 16th International Symposium on High-Performance Computer
Architecture (HPCA), pp. 1–12. IEEE Computer Society (2010)

https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-319-44802-2_3
https://doi.org/10.1007/978-3-319-44802-2_3

350 N. Bezirgiannis et al.

34. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation. In: Proceedings of
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 52:1–52:12. ACM (2011)

35. Li, Y., Suhendra, V., Liang, Y., Mitra, T., Roychoudhury, A.: Timing analysis of
concurrent programs running on shared cache multi-cores. In: Proceedings of the
30th IEEE Real-Time Systems Symposium (RTSS), pp. 57–67. IEEE Computer
Society (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Optimal and Automated Deployment
for Microservices

Mario Bravetti1, Saverio Giallorenzo2(B), Jacopo Mauro2, Iacopo Talevi1,
and Gianluigi Zavattaro1

1 FOCUS Research Team, University of Bologna/Inria, Bologna, Italy
2 University of Southern Denmark, Odense, Denmark

saverio@imada.sdu.dk

Abstract. Microservices are highly modular and scalable Service Ori-
ented Architectures. They underpin automated deployment practices like
Continuous Deployment and Autoscaling. In this paper we formalize
these practices and show that automated deployment — proven undecid-
able in the general case — is algorithmically treatable for microservices.
Our key assumption is that the configuration life-cycle of a microservice
is split into two phases: (i) creation, which entails establishing initial con-
nections with already available microservices, and (ii) subsequent bind-
ing/unbinding with other microservices. To illustrate the applicability
of our approach, we implement an automatic optimal deployment tool
and compute deployment plans for a realistic microservice architecture,
modeled in the Abstract Behavioral Specification (ABS) language.

1 Introduction

Inspired by service-oriented computing, Microservices structure software appli-
cations as highly modular and scalable compositions of fine-grained and loosely-
coupled services [18]. These features support modern software engineering prac-
tices, like continuous delivery/deployment [30] and application autoscaling [3].
Currently, these practices focus on single microservices and do not take advan-
tage of the information on the interdependencies within an architecture. On
the contrary, architecture-level deployment supports the global optimization of
resource usage and avoids “domino” effects due to unstructured scaling actions
that may cause cascading slowdowns or outages [27,35,39].

In this paper, we formalize the problem of automatic deployment and recon-
figuration (at the architectural level) of microservice systems, proving formal
properties and presenting an implemented solution.

In our work, we follow the approach taken by the Aeolus component
model [13–15], which was used to formally define the problem of deploying
component-based software systems and to prove that, in the general case, such
problem is undecidable [15]. The basic idea of Aeolus is to enrich the specification
of components with a finite state automaton that describes their deployment life
cycle. Previous work identified decidable fragments of the Aeolus model: e.g.,

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 351–368, 2019.
https://doi.org/10.1007/978-3-030-16722-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_21

352 M. Bravetti et al.

removing from Aeolus replication constraints (e.g., used to specify a minimal
amount of services connected to a load balancer) makes the deployment problem
decidable, but non-primitive recursive [14]; removing also conflicts (e.g., used to
express the impossibility to deploy in the same system two types of components)
makes the problem PSpace-complete [34] or even poly-time [15], but under the
assumption that every required component can be (re)deployed from scratch.

Our intuition is that the Aeolus model can be adapted to formally reason on
the deployment of microservices. To achieve our goal, we significantly revisit the
formalization of the deployment problem, replacing Aeolus components with a
model of microservices. The main difference between our model of microservices
and Aeolus components lies in the specification of their deployment life cycle.
Here, instead of using the full power of finite state automata (like in Aeolus and
other TOSCA-compliant deployment models [10]), we assume microservices to
have two states: (i) creation and (ii) binding/unbinding. Concerning creation,
we use strong dependencies to express which microservices must be immediately
connected to newly created ones. After creation, we use weak dependencies to
indicate additional microservices that can be bound/unbound. The principle
that guided this modification comes from state-of-the-art microservice deploy-
ment technologies like Docker [36] and Kubernetes [29]. In particular, the weak
and strong dependencies have been inspired by Docker Compose [16] (a lan-
guage for defining multi-container Docker applications) where it is possible to
specify different relationships among microservices using, e.g., the depends on
(resp. external links) modalities that force (resp. do not force) a specific startup
order similarly to our strong (resp. weak) dependencies. Weak dependencies are
also useful to model horizontal scaling, e.g., a load balancer that is bound to/un-
bound from many microservice instances during its life cycle.

In addition, w.r.t. the Aeolus model, we also consider resource/cost-aware
deployments, taking inspiration from the memory and CPU resources found
in Kubernetes. Microservice specifications are enriched with the amount of
resources they need to run. In a deployment, a system of microservices runs
within a set of computation nodes. Nodes represent computational units (e.g.,
virtual machines in an Infrastructure-as-a-Service Cloud deployment). Each node
has a cost and a set of resources available to the microservices it hosts.

On the model above, we define the optimal deployment problem as follows:
given an initial microservice system, a set of available nodes, and a new target
microservice to be deployed, find a sequence of reconfiguration actions that, once
applied to the initial system, leads to a new deployment that includes the target
microservice. Such a deployment is expected to be optimal, meaning that the
total cost (i.e., the sum of the costs) of the nodes used is minimal. We show that
this problem is decidable by presenting an algorithm working in three phases:
(1) generate a set of constraints whose solution indicates the microservices to be
deployed and their distribution over the nodes; (2) generate another set of con-
straints whose solution indicates the connections to be established; (3) synthesize
the corresponding deployment plan. The set of constraints includes optimization
metrics that minimize the overall cost of the computed deployment.

Optimal and Automated Deployment for Microservices 353

Legend

Message
Receiver

Cost: CPU: 2 RAM: 4

Node1_large - CPU: 2, RAM: 4, cost: 100

Message
Analyzer

Cost: CPU: 2 RAM: 3

Attachment
Analyzer

Cost: CPU: 2 RAM: 3

Node2_xlarge - CPU: 4, RAM: 8, cost: 199

 3

 2

Message
Analyzer

Cost: CPU: 2 RAM: 3

Node4_large - CPU: 2, RAM: 4, cost: 100

Message
Analyzer

Cost: CPU: 2 RAM: 3

Attachment
Analyzer

Cost: CPU: 2 RAM: 3

Node3_xlarge - CPU: 4, RAM: 8, cost: 199

provided interface

strong required interface

weak required interface

MR MA

AA

AA

AA

AA

AAMA

MA

MA

 1

 1

 2 1

8

8
8

8

Fig. 1. Example of microservice deployment (blue boxes: nodes; green boxes: microser-
vices; continuous lines: the initial configuration; dashed lines: full configuration). (Color
figure online)

The algorithm has NEXPTIME complexity because, in the worst-case, the
length of the deployment plan could be exponential in the size of the input.
However, we consider this worst-case unfeasible in practice, as the number
of microservices deployable on one node is limited by the available resources.
Under the assumption that each node can host at most a polynomial amount
of microservices, the deployment problem is NP-complete and the problem of
deploying a system minimizing its total cost is an NP-optimization problem.
Moreover, having reduced the deployment problem in terms of constraints, we
can exploit state-of-the-art constraint solvers [12,23,24] that are frequently used
in practice to cope with NP-hard problems.

To concretely evaluate our approach, we consider a real-world microservice
architecture, inspired by the reference email processing pipeline from Iron.io [22].
We model that architecture in the Abstract Behavioral Specification (ABS) lan-
guage, a high-level object-oriented language that supports deployment model-
ing [31]. We use our technique to compute two types of deployments: an initial
one, with one instance for each microservice, and a set of deployments to hor-
izontally scale the system depending on small, medium or large increments in
the number of emails to be processed. The experimental results are encouraging
in that we were able to compute deployment plans that add more than 30 new
microservice instances, assuming availability of hundreds of machines of three
different types, and guaranteeing optimality.

2 The Microservice Optimal Deployment Problem

We model microservice systems as aggregations of components with ports.
Each port exposes provided and required interfaces. Interfaces describe offered
and required functionalities. Microservices are connected by means of bindings
indicating which port provides the functionality required by another port. As
discussed in the Introduction, we consider two kinds of requirements: strong
required interfaces, that need to be already fulfilled when the microservice is
created, and weak required interfaces, that must be fulfilled at the end of a

354 M. Bravetti et al.

deployment (or reconfiguration) plan. Microservices are enriched with the spec-
ification of the resources they need to properly run; such resources are provided
to the microservices by nodes. Nodes can be seen as the unit of computation
executing the tasks associated to each microservice.

As an example, in Fig. 1 we have reported the representation of the deploy-
ment of a microservice system inspired by the email processing pipeline that
we will discuss in Sect. 3. Here, we consider a simplified pipeline. A Message
Receiver microservice handles inbound requests, passing them to a Message Ana-
lyzer that checks the email content and sends the attachments for inspection to
an Attachment Analyzer. The Message Receiver has a port with a weak required
interface that can be fulfilled by Message Analyzer instances. This requirement is
weak, meaning that the Message Receiver can be initially deployed without any
connection to instances of Message Analyzer. These connections can be estab-
lished afterwards and reflect the possibility to horizontally scale the application
by adding/removing instances of Message Analyzer. This last microservice has
instead a port with a strong required interface that can be fulfilled by Attachment
Analyzer instances. This requirement is strong to reflect the need to immediately
connect a Message Analyzer to its Attachment Analyzer.

Figure 1 presents a reconfiguration that, starting from the initial deploy-
ment depicted in continuous lines, adds the elements depicted with dashed lines.
Namely, a couple of new instances of Message Analyzer and a new instance of
Attachment Analyzer are deployed. This is done in order to satisfy numerical
constraints associated to both required and provided interfaces. For required
interfaces, the numerical constraints indicate lower bounds to the outgoing bind-
ings, while for provided interfaces they specify upper bounds to the incoming
connections. Notice that the constraint ≥ 3 associated to the weak required
interface of Message Receiver is not initially satisfied; this is not problematic
because constraints on weak interfaces are relevant only at the end of a recon-
figuration. In the final deployment, such a constraint is satisfied thanks to the
two new instances of Message Analyzer. These two instances need to be immedi-
ately connected to an Attachment Analyzer: only one of them can use the initially
available Attachment Analyzer, because of the constraint ≤ 2 associated to the
corresponding provided interface. Hence, a new instance of Attachment Analyzer
is added.

We also model resources: each microservice has associated resources that it
consumes (see the CPU and RAM quantities associated to the microservices in
Fig. 1). Resources are provided by nodes, that we represent as containers for the
microservice instances, providing them the resources they require. Notice that
nodes have also costs: the total cost of a deployment is the sum of the costs
of the used nodes (e.g., in the example the total cost is 598 cents per hour,
corresponding to the cost of 4 nodes: 2 C4 large and 2 C4 xlarge virtual machine
instances of the Amazon public Cloud).

We now move to the formal definitions. We assume the following disjoint sets:
I for interfaces, Z for microservices, and a finite set R for kinds of resources.
We use N to denote natural numbers, N

+ for N \ {0}, and N
+
∞ for N

+ ∪ {∞}.

Optimal and Automated Deployment for Microservices 355

Definition 1 (Microservice type). The set Γ of microservice types, ranged
over by T1, T2, . . ., contains 5-ples 〈P,Ds,Dw, C,R〉 where:

– P = (I �→ N
+
∞) are the provided interfaces, defined as a partial function from

interfaces to corresponding numerical constraints (indicating the maximum
number of connected microservices);

– Ds = (I �→ N
+) are the strong required interfaces, defined as a partial func-

tion from interfaces to corresponding numerical constraints (indicating the
minimum number of connected microservices);

– Dw = (I �→ N) are the weak required interfaces (defined as the strong ones,
with the difference that also the constraint 0 can be used indicating that it is
not strictly necessary to connect microservices);

– C ⊆ I are the conflicting interfaces;
– R = (R → N) specifies resource consumption, defined as a total function

from resources to corresponding quantities indicating the amount of required
resources.

We assume sets dom(Ds), dom(Dw) and C to be pairwise disjoint.1

Notation: given a microservice type T = 〈P,Ds,Dw, C,R〉, we use the following
postfix projections .prov, .reqs, .reqw, .conf and .res to decompose it; e.g., T .reqw
returns the partial function associating arities to weak required interfaces. In
our example, for instance, the Message Receiver microservice type is such that
Message Receiver.reqw(MA) = 3 and Message Receiver.res(RAM) = 4. When the
numerical constraints are not explicitly indicated, we assume as default value
∞ for provided interfaces (i.e., they can satisfy an unlimited amount of ports
requiring the same interface) and 1 for required interfaces (i.e., one connection
with a port providing the same interface is sufficient).

Inspired by [14], we allow a microservice to specify a conflicting interface
that, intuitively, forbids the deployment of other microservices providing the
same interface. Conflicting interfaces can be used to express conflicts among
microservices, preventing both of them to be present at the same time, or cases
in which only one microservice instance can be deployed (e.g., a consistent and
available microservice that can not be replicated).

Since the requirements associated with strong interfaces must be immediately
satisfied, it is possible to deploy a configuration with circular dependencies only
if at least one weak required interface is involved in the cycle. In fact, having a
cycle with only strong required interfaces would mean to deploy all the microser-
vices involved in the cycle simultaneously. We now formalize a well-formedness
condition on microservice types to guarantee the absence of such configurations.

Definition 2 (Well-formed Universe). Given a finite set of microservice
types U (that we also call universe), the strong dependency graph of U is
as follows: G(U) = (U, V) with V = {(T , T ′)|T , T ′ ∈ U ∧ ∃p ∈ I.p ∈
dom(T .reqs) ∩ dom(T ′.prov)}. The universe U is well-formed if G(U) is acyclic.
1 Given a partial function f , we use dom(f) to denote the domain of f , i.e., the set

{e | ∃e′ : (e, e′) ∈ f}.

356 M. Bravetti et al.

In the following, we always assume universes to be well-formed. Well-formedness
does not prevent the specification of microservice systems with circular depen-
dencies, which are captured by cycles with at least one weak required interface.

Definition 3 (Nodes). The set N of nodes is ranged over by o1, o2, . . . We
assume the following information to be associated to each node o in N .

– A function R = (R → N) that specifies node resource availability: we use
o.res to denote such a function.

– A value in N that specifies node cost: we use o.cost to denote such a value.

As example, in Fig. 1, the node Node1 large is such that Node1 large.res(RAM) =
4 and Node1 large.cost = 100.

We now define configurations that describe systems composed of microservice
instances and bindings that interconnect them. A configuration, ranged over by
C1, C2, . . ., is given by a set of microservice types, a set of deployed microservices
(with their associated type), and a set of bindings. Formally:

Definition 4 (Configuration). A configuration C is a 4-ple 〈Z, T,N,B〉
where:

– Z ⊆ Z is the set of the currently deployed microservices;
– T = (Z → T) are the microservice types, defined as a function from deployed

microservices to microservice types;
– N = (Z → N) are the microservice nodes, defined as a function from deployed

microservices to nodes that host them;
– B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed of an inter-

face, the microservice that requires that interface, and the microservice that
provides it; we assume that, for (p, z1, z2) ∈ B, the two microservices z1 and
z2 are distinct and p ∈ (dom(T (z1).reqs)∪dom(T (z1).reqw))∩dom(T (z2).prov).

In our example, if we use mr to refer to the instance of Message Receiver, and
ma for the initially available Message Analyzer, we will have the binding (MA,
mr, ma). Moreover, concerning the microservice placement function N , we have
N(mr) = Node1 large and N(ma) = Node2 xlarge.

We are now ready to formalize the notion of correctness of configuration.
We first define a provisional correctness, considering only constraints on strong
required and provided interfaces, and then we define a general notion of config-
uration correctness, considering also weak required interfaces and conflicts. The
former is intended for transient configurations traversed during the execution of
a reconfiguration, while the latter for the final configuration.

Definition 5 (Provisionally correct configuration). A configuration C =
〈Z, T,N,B〉 is provisionally correct if, for each node o∈ran(N), it holds2

∀ r∈R. o.res(r) ≥
∑

z∈Z,N(z)=o

T (z).res(r)

and, for each microservice z ∈ Z, both following conditions hold:
2 Given a (partial) function f , we use ran(f) to denote the range of f , i.e., the function

image set {f(e) | e ∈ dom(f)}.

Optimal and Automated Deployment for Microservices 357

– (p �→ n) ∈ T (z).reqs implies that there exist n distinct microservices
z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

– (p �→ n) ∈ T (z).prov implies that there exist no m distinct microservices
z1, . . . , zm ∈ Z \{z}, with m > n, such that, for every 1 ≤ i ≤ m, we have
〈p, zi, z〉 ∈ B.

Definition 6 (Correct configuration). A configuration C = 〈Z, T,N,B〉 is
correct if C is provisionally correct and, for each microservice z ∈ Z, both fol-
lowing conditions hold:

– (p �→ n) ∈ T (z).reqw implies that there exist n distinct microservices
z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

– p∈T (z).conf implies that, for each z′ ∈ Z\{z}, we have p /∈ dom(T (z′).prov).

Notice that, in the example in Fig. 1, the initial configuration (in continuous
lines) is only provisionally correct in that the weak required interface MA (with
arity 3) of the Message Receiver is not satisfied (because there is only one outgoing
binding). The full configuration — including also the elements in dotted lines —
is instead correct: all the constraints associated to the interfaces are satisfied.

We now formalize how configurations evolve by means of atomic actions.

Definition 7 (Actions). The set A contains the following actions:

– bind(p, z1, z2) where z1, z2 ∈Z, with z1 �=z2, and p∈I: add a binding between
z1 and z2 on port p (which is supposed to be a weak-require port of z1 and a
provide port of z2);

– unbind(p, z1, z2) where z1, z2 ∈Z, with z1 �=z2, and p∈I: remove the specified
binding on p (which is supposed to be a weak required interface of z1 and a
provide port of z2);

– new(z, T , o, Bs) where z∈Z, T ∈Γ, o∈N and Bs =(dom(T .reqs)→2Z−{z});
with Bs (representing bindings from strong required interfaces in T to sets of
microservices) being such that, for each p ∈ dom(T .reqs), it holds |Bs(p)| ≥
T .reqs(p): add a new microservice z of type T hosted in o and bind each of
its strong required interfaces to a set of microservices as described by Bs;3

– del(z) where z∈Z: remove the microservice z from the configuration and all
bindings involving it.

In our example, assuming that the initially available Attachment Analyzer
is named aa, we have that the action to create the initial instance of Message
Analyzer is new(ma,MessageAnalyzer,Node2 xlarge, (AA �→ {aa})). Notice that it
is necessary to establish the binding with the Attachment Analyzer because of
the corresponding strong required interface.

The execution of actions can now be formalized using a labeled transition
system on configurations, which uses actions as labels.

3 Given sets S and S′ we use: 2S to denote the power set of S, i.e., the set {S′ | S′ ⊆ S};
S − S′ to denote set difference; and |S| to denote the cardinality of S.

358 M. Bravetti et al.

Definition 8 (Reconfigurations). Reconfigurations are denoted by transitions
C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈Z, T,N,B〉 are
defined as follows:

C bind(p,z1,z2)−−−−−−−−→ 〈Z, T, N, B ∪ 〈p, z1, z2〉〉
if 〈p, z1, z2〉 	∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C unbind(p,z1,z2)−−−−−−−−−−→ 〈Z, T, N, B\〈p, z1, z2〉〉
if 〈p, z1, z2〉 ∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C new(z,T ,o,Bs)−−−−−−−−−→ 〈Z ∪ {z}, T ′, N ′, B′〉
if z 	∈ Z and
∀ p ∈ dom(T .reqs). ∀z′ ∈ Bs(p).

p ∈ dom(T (z′).prov) and
T ′ = T ∪ {(z �→ T)} and
N ′ = N ∪ {(z �→ o)} and
B′ = B ∪ {〈p, z, z′〉 | z′ ∈ Bs(p)}

C del(z)−−−−→ 〈Z\{z}, T ′, N ′, B′〉
if T ′ = {(z′ �→ T) ∈ T | z 	= z′} and
N ′ = {(z′ �→ o) ∈ N | z 	= z′} and
B′ = {〈p, z1, z2〉 ∈ B | z 	∈ {z1, z2}}

A deployment plan is simply a sequence of actions that transform a pro-
visionally correct configuration (without violating provisional correctness along
the way) and, finally, reach a correct configuration.

Definition 9 (Deployment plan). A deployment plan P from a provisionally
correct configuration C0 is a sequence of actions α1, . . . , αm such that:

– there exist C1, . . . , Cm provisionally correct configurations, with Ci−1
αi−→ Ci

for 1 ≤ i ≤ m, and
– Cm is a correct configuration.

Deployment plans are also denoted with C0
α1−→ C1

α2−→ · · · αm−−→ Cm.

In our example, a deployment plan that reconfigures the initial provisionally
correct configuration into the final correct one is as follows: a new action to
create the new instance of Attachment Analyzer, followed by two new actions
for the new Message Analyzers (as commented above, the connection with the
Attachment Analyzer is part of these new actions), and finally two bind actions
to connect the Message Receiver to the two new instances of Message Analyzer.

We now have all the ingredients to define the optimal deployment problem,
that is our main concern: given a universe of microservice types, a set of available
nodes and an initial configuration, we want to know whether and how it is
possible to deploy at least one microservice of a given microservice type T by
optimizing the overall cost of nodes hosting the deployed microservices.

Definition 10 (Optimal deployment problem). The optimal deployment
problem has, as input, a finite well-formed universe U of microservice types, a
finite set of available nodes O, an initial provisionally correct configuration C0

and a microservice type Tt ∈ U . The output is:

Optimal and Automated Deployment for Microservices 359

– A deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm such that
• for all Ci = 〈Zi, Ti, Ni, Bi〉, with 1 ≤ i ≤ m, it holds ∀z ∈ Zi. Ti(z) ∈

U ∧ Ni(z) ∈ O, and
• Cm = 〈Zm, Tm, Nm, Bm〉 satisfies ∃z ∈ Zm : Ti(z) = Tt;

if there exists one. In particular, among all deployment plans satisfying
the constraints above, one that minimizes

∑
o∈O.(∃z.Nm(z)=o) o.cost (i.e., the

overall cost of nodes in the last configuration Cm), is outputted.
– no (stating that no such plan exists); otherwise.

We are finally ready to state our main result on the decidability of the opti-
mal deployment problem. To prove the result we describe an approach that splits
the problem in three incremental phases: (1) the first phase checks if there is a
possible solution and assigns microservices to deployment nodes, (2) the inter-
mediate phase computes how the microservices need to be connected to each
other, and (3) the final phase synthesizes the corresponding deployment plan.

Theorem 1. The optimal deployment problem is decidable.

Proof. The proof is in the form of an algorithm that solves the optimal deploy-
ment problem. We assume that the input to the problem to be solved is given
by U (the microservice types), O (the set of available nodes), C0 (the initial
provisionally correct configuration), and Tt ∈ U (the target microservice type).
We use I(U) to denote the set of interfaces used in the considered microservice
types, namely I(U) =

⋃
T ∈U dom(T .reqs) ∪ dom(T .reqw) ∪ dom(T .prov) ∪ T .conf.

The algorithm is based on three phases.
Phase 1 The first phase consists of the generation of a set of constraints that,

once solved, indicates how many instances should be created for each microser-
vice type T (denoted with inst(T)), how many of them should be deployed on
node o (denoted with inst(T , o)), and how many bindings should be established
for each interface p from instances of type T — considering both weak and strong
required interfaces — and instances of type T ′ (denoted with bind(p, T , T ′)).
We also generate an optimization function that guarantees that the generated
configuration is minimal w.r.t. its total cost.

We now incrementally report the generated constraints. The first group of
constraints deals with the number of bindings:

∧

p∈I(U)

∧

T ∈U, p∈dom(T .reqs)

T .reqs(p) · inst(T) ≤
∑

T ′∈U

bind(p, T , T ′) (1a)

∧

p∈I(U)

∧

T ∈U, p∈dom(T .reqw)

T .reqw(p) · inst(T) ≤
∑

T ′∈U

bind(p, T , T ′) (1b)

∧

p∈I(U)

∧

T ∈U, T .prov(p)<∞

T .prov(p) · inst(T) ≥
∑

T ′∈U

bind(p, T ′, T) (1c)

∧

p∈I(U)

∧

T ∈U, T .prov(p)=∞

inst(T) = 0 ⇒
∑

T ′∈U

bind(p, T ′, T) = 0 (1d)

∧

p∈I(U)

∧

T ∈U, p/∈dom(T .prov)

∑

T ′∈U

bind(p, T ′, T) = 0 (1e)

360 M. Bravetti et al.

Constraint 1a and 1b guarantee that there are enough bindings to satisfy all the
required interfaces, considering both strong and weak requirements. Symmetri-
cally, constraint 1c guarantees that the number of bindings is not greater than
the total available capacity, computed as the sum of the single capacities of each
provided interface. In case the capacity is unbounded (i.e., ∞), it is sufficient
to have at least one instance that activates such port to support any possible
requirement (see constraint 1d). Finally, constraint 1e guarantees that no bind-
ing is established connected to provided interfaces of microservice types that are
not deployed.

The second group of constraints deals with the number of instances of
microservices to be deployed.

inst(Tt) ≥ 1 (2a)
∧

p∈I(U)

∧

T ∈U,

p∈T .conf

∧

T ′∈U−{T },

p∈dom(T ′.prov)

inst(T) > 0 ⇒ inst(T ′) = 0 (2b)

∧

p∈I(U)

∧

T ∈U, p∈T .conf ∧
p∈dom(T .prov)

inst(T) ≤ 1 (2c)

∧

p∈I(U)

∧

T ∈U

∧

T ′∈U−{T }

bind(p, T , T ′) ≤ inst(T) · inst(T ′) (2d)

∧

p∈I(U)

∧

T ∈U

bind(p, T , T) ≤ inst(T) · (inst(T) − 1) (2e)

The first constraint 2a guarantees the presence of at least one instance of
the target microservice. Constraint 2b guarantees that no two instances of dif-
ferent types will be created if one activates a conflict on an interface provided
by the other one. Constraint 2c, consider the other case in which a type acti-
vates the same interface both in conflicting and provided modality: in this case,
at most one instance of such type can be created. Finally, the constraints 2d
and 2e guarantee that there are enough pairs of distinct instances to establish
all the necessary bindings. Two distinct constraints are used: the first one deals
with bindings between microservices of two different types, the second one with
bindings between microservices of the same type.

The last group of constraints deals with the distribution of microservice
instances over the available nodes O.

inst(T) =
∑

o∈O

inst(T , o) (3a)

∧

r∈R

∧

o∈O

∑

T ∈U

inst(T , o) · T .res(r) ≤ o.res(r) (3b)

∧

o∈O

(∑

T ∈U

inst(T , o) > 0
)

⇔ used(o) (3c)

min
∑

o∈O, used(o)

o.cost (3d)

Optimal and Automated Deployment for Microservices 361

Constraint 3a simply formalizes the relationship among the variables inst(T)
and inst(T , o) (the total amount of all instances of a microservice type, should
correspond to the sum of the instances locally deployed on each node). Con-
straint 3b checks that each node has enough resources to satisfy the requirements
of all the hosted microservices. The last two constraints define the optimization
function used to minimize the total cost: constraint 3c introduces the boolean
variable used(o) which is true if and only if node o contains at least one microser-
vice instance; constraint 3d is the function to be minimized, i.e., the sum of the
costs of the used nodes.

These constraints, and the optimization function, are expected to be given
in input to a constraint/optimization solver. If a solution is not found it is not
possible to deploy the required microservice system; otherwise, the next phases
of the algorithm are executed to synthesize the optimal deployment plan.

Phase 2 The second phase consists of the generation of another set of con-
straints that, once solved, indicates the bindings to be established between any
pair of microservices to be deployed. More precisely, for each type T such that
inst(T) > 0, we use sT

i , with 1 ≤ i ≤ inst(T), to identify the microservices of
type T to be deployed. We also assume a function N that associates microser-
vices to available nodes O, which is compliant with the values inst(T , o) already
computed in Phase 1, i.e., given a type T and a node o, the number of sT

i , with
1 ≤ i ≤ inst(T), such that N(sT

i) = o coincides with inst(T , o).
In the constraints below we use the variables b(p, sT

i , sT ′
j) (with i �= j, if

T = T ′): its value is 1 if there is a connection between the required inter-
face p of sT

i and the provided interface p of sT ′
j , 0 otherwise. We use n and

m to denote inst(T) and inst(T ′), respectively, and an auxiliary total func-
tion limProv(T ′, p) that extends T ′.prov associating 0 to interfaces outside its
domain.

∧

T ∈U

∧

p∈I(U)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j) ≤ limProv(T ′, p) (4a)

∧

T ∈U

∧

p∈dom(T .reqs)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j) ≥ T .reqs(p) (4b)

∧

T ∈U

∧

p∈dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j) ≥ T .reqw(p) (4c)

∧

T ∈U

∧

p/∈dom(T .reqs)∪dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j) = 0 (4d)

Constraint 4a considers the provided interface capacities to fix upper bounds
to the bindings to be established, while constraints 4b and 4c fix lower bounds
based on the required interface capacities, considering both the weak (see 4b) and
the strong (see 4c) ones. Finally, constraint 4d indicates that it is not possible
to establish connections on interfaces that are not required.

A solution for these constraints exists because, as also shown in [13], the
constraints 1a . . . 2e (already solved during Phase 1) guarantee that the config-

362 M. Bravetti et al.

uration to be synthesized contains enough capacity on the provided interfaces
to satisfy all the required interfaces.

Phase 3 In this last phase we synthesize the deployment plan that, when
applied to the initial configuration C0, reaches a new configuration Ct with nodes,
microservices and bindings as computed in the first two phases of the algorithm.
Without loss of generality, in this decidability proof we show the existence of
a simple plan that first removes the elements in the initial configuration and
then deploys the target configuration from scratch. However, as also discussed
in Sect. 3, in practice it is possible to define more complex planning mechanisms
that re-use microservices already deployed.

Reaching an empty configuration is a trivial task since it is always possible
to perform in the initial configuration unbind actions for all the bindings con-
nected to weak required interfaces. Then, the microservices can be safely deleted.
Thanks to the well-formedness assumption (Definition 2) and using a topological
sort, it is possible to order the microservices to be removed without violating
any strong required interface (e.g., first remove the microservice not requiring
anything and repeat until all the microservices have been deleted).

The deployment of the target configuration follows a similar pattern. Given
the distribution of microservices over nodes (computed in the first phase) and the
corresponding bindings (computed in the second phase), the microservices can be
created by following a topological sort considering the microservices dependen-
cies following from the strong required interfaces. When all the microservices are
deployed on the corresponding nodes, the remaining bindings (on weak required
ports) may be added in any possible order. ��

Remark 1. The constraints generated during Phase 2 of the algorithm, in order
to establish the microservice bindings, are expected to be given in input to a
constraint/optimization solver. One can enrich such constraints with metrics
to optimize, e.g., the number of local bindings (i.e., give a preference to the
connections among microservices hosted in the same node):

min
∑

T ,T ′∈U,i∈1...inst(T),j∈1...inst(T ′),p∈I(U),N(sT
i) �=N(sT ′

j)

b(p, sT
i , sT ′

j)

Another example, used in the case study discussed in Sect. 3, is the following
metric that maximizes the number of bindings4:

max
∑

sT
i ,sT ′

j ,p∈I(U)

b(p, sT
i , sT ′

j)

From the complexity point of view, it is possible to show that the decision
versions of the optimization problem solved in Phase 1 is NP-complete, in Phase
4 We model a load balancer as a microservice having a weak required interface, with

arity 0, that can be provided by its back-end service. By adopting the above maxi-
mization metric, the synthesized configuration connects all possible services to such
required interface, thus allowing the load balancer to forward requests to all of them.

Optimal and Automated Deployment for Microservices 363

Message Parseremail

Header Analyzer

Link Analyzer

Text Analyzer

Sentiment Analyzer

Attachment Manager

Virus Scanner

Image Analyzer

Image Recognizer

NSFW Detector

headers

links

text

attachments

Message Analyzer

header analysis

link analysis

tags

virus scan report
tags

image

processed
email

Legend

Microservice

message content

Message Receiver

email

Fig. 2. Microservice architecture for email processing.

2 is in NP, while the planning in Phase 3 is synthesized in polynomial time.
Unfortunately, due to the fact that numeric constraints can be represented in
log space, the output of Phase 2 requiring the enumeration of all the microser-
vices to deploy can be exponential in the size of the output of Phase 1 (indi-
cating only the total number of instances for each type). For this reason, the
optimal deployment problem is in NEXPTIME. However, we consider unfeasi-
ble in practice the deployment of an exponential number of microservices on one
node having limited resources. If at most a polynomial number of microservices
can be deployed on each node, we have that the optimal deployment problem
becomes an NP-optimization problem and its decision version is NP-complete.
See the companion technical report [8] for the formal proofs of complexity.

3 Application of the Technique to the Case-Study

Given the asymptotic complexity of our solution (NP under the assumption
of polynomial size of the target configuration) we have decided to evaluate its
applicability in practice by considering a real-world microservice architecture,
namely the email processing pipeline described in [22]. The considered archi-
tecture separates and routes the components found in an email (headers, links,
text, attachments) into distinct, parallel sub-pipelines with specific tasks (e.g.,
remove malicious attachments, tag the content of the mail). We report in Fig. 2
a depiction of the architecture. When an email reaches the Message Receiver it
is forwarded to the Message Parser, which sends each component into a specific
sub-pipeline. In the sub-pipelines, some microservices — e.g., Text Analyzer and
Attachment Analyzer — coordinate with other microservices — e.g., Sentiment
Analyzer and Virus Scanner — to process their inputs. Each microservice in the
architecture has a given resource consumption (expressed in terms of CPU and
memory). As expected, the processing of each email component entails a specific
load. Some microservices can handle large inputs, e.g., in the range of 40K simul-
taneous requests (e.g., Header Analyzer that processes short and uniform inputs).
Other microservices sustain heavier computations (e.g., Image Recognizer) and
can handle smaller simultaneous inputs, e.g., in the range of 10K requests.

364 M. Bravetti et al.

To model the system above, we use the Abstract Behavioral Specification
(ABS) language, a high-level object-oriented language that supports deploy-
ment modeling [31]. ABS is agnostic w.r.t. deployment platforms (Amazon AWS,
Microsoft Azure) and technologies (e.g., Docker or Kubernetes) and it offers
high-level deployment primitives for the creation of new deployment components
and the instantiation of objects inside them. Here, we use ABS deployment
components as computation nodes, ABS objects as microservice instances, and
ABS object references as bindings. Finally, to describe the requirements in our
model, we use ABS with SmartDepl [25], an extension that supports deployment
annotations. Strong required interfaces are modeled as class annotations indi-
cating mandatory parameters for the class constructor: such parameters contain
the references to the objects corresponding to the microservices providing the
strongly required interfaces. Weak required interfaces are expressed as anno-
tations concerning specific methods used to pass, to an already instantiated
object, the references to the objects providing the weakly required interfaces. We
define a class for each microservice type, plus one load balancer class for each
microservice type. A load balancer distributes requests over a set of instances
that can scale horizontally. Finally, we model nodes corresponding to Amazon
EC2 instances: c4 large, c4 xlarge, and c4 2xlarge (with the corresponding
provided resources and costs).

Microservice (max computational load) Initial (10K) +20K +50K +80K

MessageReceiver(∞) 1 - - -

MessageParser(40K) 1 - +1 -

HeaderAnalyzer(40K) 1 - +1 -

LinkAnalyzer(40K) 1 - +1 -

TextAnalyzer(15K) 1 +1 +2 +2

SentimentAnalyzer(15K) 1 +3 +4 +6

AttachmentsManager(30K) 1 +1 +2 +2

VirusScanner(13K) 1 +3 +4 +6

ImageAnalyzer(30K) 1 +1 +2 +2

NSFWDetector(13K) 1 +3 +4 +6

ImageRecognizer(13K) 1 +3 +4 +6

MessageAnalyzer(70K) 1 +1 +2 +2

In the table above, we report the result of our algorithm w.r.t. four incre-
mental deployments: the initial in column 2 and under incremental loads in
3–5. We also consider an availability of 40 nodes for each of the three node
types. In the first column of the Table, next to a microservice type, we report
its corresponding maximum computational load, i.e., the maximal number of
simultaneous requests that it can manage. As visible in columns 2–5, differ-
ent maximal computational loads imply different scaling factors w.r.t. a given

Optimal and Automated Deployment for Microservices 365

number of simultaneous requests. In the initial configuration we consider 10K
simultaneous requests and we have one instance of each microservice type (and
of the corresponding load balancer). The other deployment configurations deal
with three scenarios of horizontal scaling, assuming three increasing increments
of inbound messages (20K, 50K, and 80K). In the three scaling scenarios, we
do not implement the planning algorithm described in Phase 3 of the proof of
Theorem 1. Contrarily, we take advantage of the presence of the load balancers
and, as described in Remark 1, we achieve a similar result with an optimiza-
tion function that maximizes the number of bindings of the load balancers. For
every scenario, we use SmartDepl [33] to generate the ABS code for the plan that
deploys an optimal configuration, setting a timeout of 30 min for the computa-
tion of every deployment scenario.5 The ABS code modeling the system and the
generated code are publicly available at [7]. A graphical representation of the
initial configuration is available in the companion technical report [8].

4 Related Work and Conclusion

In this work, we consider a fundamental building block of modern Cloud sys-
tems, microservices, and prove that the generation of a deployment plan for an
architecture of microservices is decidable and fully automatable; spanning from
the synthesis of the optimal configuration to the generation of the deployment
actions. To illustrate our technique, we model a real-world microservice archi-
tecture in the ABS [31] language and we compute a set of deployment plans.

The context of our work regards automating Cloud application deployment,
for which there exist many specification languages [5,11], reconfiguration proto-
cols [6,19], and system management tools [26,32,37,38]. Those tools support the
specification of deployment plans but they do not support the automatic distri-
bution of software instances over the available machines. The proposals closest to
ours are those by Feinerer [20] and by Fischer et al. [21]. Both proposals rely on
a solver to plan deployments. The first is based on the UML component model,
which includes conflicts and dependencies, but lacks the modeling of nodes. The
second does not support conflicts in the specification language. Neither proposals
support the computation of optimal deployments.

Three projects inspire our proposal: Aeolus [13,14], Zephyrus [1], and Conf-
Solve [28]. The Aeolus model paved the way to reason on deployment and recon-
figuration, proving some decidability results. Zephyrus is a configuration tool
based on Aeolus and it constitutes the first phase of our approach. ConfSolve is
a tool for the optimal allocation of virtual machines to servers and of applications
to virtual machines. Both tools do not synthesize deployment plans.

5 Here, 30min are a reasonable timeout since we predict different system loads and
we compute in advance a different deployment plan for each of them. An interesting
future work would aim at shortening the computation to a few minutes (e.g., around
the average start-up time of a virtual machine in a public Cloud) to obtain on-the-fly
deployment plans tailored to unpredictable system loads.

366 M. Bravetti et al.

Regarding autoscaling, existing solutions [2,4,17,29] support the automatic
increase or decrease of the number of instances of a service/container, when some
conditions (e.g., CPU average load greater than 80%) are met. Our work is an
example of how we can go beyond single-component horizontal scaling policies
(as analyzed, e.g., in [9]).

As future work, we want to investigate local search approaches to speed-up
the solution of the optimization problems behind the computation of a deploy-
ment plan. Shorter computation times would open our approach to contexts
where it is unfeasible to compute plans ahead of time, e.g., due to unpredictable
loads.

References

1. Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on
the fly deployment optimization using SMT and CP technologies. In: Fränzle, M.,
Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 229–245. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47677-3 15

2. Amazon: Amazon CloudWatch. https://aws.amazon.com/cloudwatch/. Accessed
Jan 2019

3. Amazon: AWS auto scaling. https://aws.amazon.com/autoscaling/. Accessed Jan
2019

4. Apache: Apache Mesos. http://mesos.apache.org/. Accessed Jan 2019
5. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-

put. Surv. 51(1), 22:1–22:38 (2018)
6. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of component assemblies.

In: ICSE, pp. 13–22. IEEE Computer Society (2013)
7. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: Code repository

for the email processing example. https://github.com/IacopoTalevi/SmartDeploy-
ABS-ExampleCode. Accessed Jan 2019

8. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: Optimal and
automated deployment for microservices. Technical Report (2019). https://arxiv.
org/abs/1901.09782

9. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
204–221. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 15

10. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS,
vol. 9306, pp. 19–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24072-5 2

11. Chardet, M., Coullon, H., Pertin, D., Pérez, C.: Madeus: a formal deployment
model. In: HPCS, pp. 724–731. IEEE (2018)

12. Chuffed Team: The CP solver. https://github.com/geoffchu/chuffed. Accessed Jan
2019

13. Di Cosmo, R., Lienhardt, M., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski,
J.: Automatic application deployment in the cloud: from practice to theory and
back (invited paper). In: CONCUR. LIPIcs, vol. 42, pp. 1–16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015)

https://doi.org/10.1007/978-3-319-47677-3_15
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/autoscaling/
http://mesos.apache.org/
https://github.com/IacopoTalevi/SmartDeploy-ABS-ExampleCode
https://github.com/IacopoTalevi/SmartDeploy-ABS-ExampleCode
https://arxiv.org/abs/1901.09782
https://arxiv.org/abs/1901.09782
https://doi.org/10.1007/978-3-540-78663-4_15
https://doi.org/10.1007/978-3-540-78663-4_15
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-24072-5_2
https://github.com/geoffchu/chuffed

Optimal and Automated Deployment for Microservices 367

14. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

15. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model
for the cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 11

16. Docker: Docker compose documentation. https://docs.docker.com/compose/.
Accessed Jan 2019

17. Docker: Docker swarm. https://docs.docker.com/engine/swarm/. Accessed Jan
2019

18. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

19. Durán, F., Salaün, G.: Robust and reliable reconfiguration of cloud applications.
J. Syst. Softw. 122, 524–537 (2016)

20. Feinerer, I.: Efficient large-scale configuration via integer linear programming. AI
EDAM 27(1), 37–49 (2013)

21. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: PLDI (2012)

22. Fromm, K.: Thinking Serverless! How New Approaches Address Modern Data Pro-
cessing Needs. https://read.acloud.guru/thinking-serverless-how-new-approaches-
address-modern-data-processing-needs-part-1-af6a158a3af1. Accessed Jan 2019

23. GECODE: an open, free, efficient constraint solving toolkit. http://www.gecode.
org. Accessed Jan 2019

24. Google: Optimization tools. https://developers.google.com/optimization/.
Accessed Jan 2019

25. de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Declarative elasticity in ABS.
In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016.
LNCS, vol. 9846, pp. 118–134. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44482-6 8

26. Red Hat Ansible. https://www.ansible.com/. Accessed Jan 2019
27. Hellerstein, J.M., et al.: Serverless computing: one step forward, two steps back.

arXiv preprint arXiv:1812.03651 (2018)
28. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated

configuration. In: LISA (2012)
29. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the

Future of Infrastructure, 1st edn. O’Reilly Media, Inc., Sebastopol (2017)
30. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston
(2010)

31. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

32. Kanies, L.: Puppet: next-generation configuration management. ;login: USENIX
Mag. 31(1), 19–25 (2006)

33. Mauro, J.: Smartdepl. https://github.com/jacopoMauro/abs deployer. Accessed
Jan 2019

https://doi.org/10.1007/978-3-642-33826-7_11
https://doi.org/10.1007/978-3-642-33826-7_11
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://doi.org/10.1007/978-3-319-67425-4_12
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
http://www.gecode.org
http://www.gecode.org
https://developers.google.com/optimization/
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-44482-6_8
https://www.ansible.com/
http://arxiv.org/abs/1812.03651
https://doi.org/10.1007/978-3-642-25271-6_8
https://github.com/jacopoMauro/abs_deployer

368 M. Bravetti et al.

34. Mauro, J., Zavattaro, G.: On the complexity of reconfiguration in systems with
legacy components. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9234, pp. 382–393. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48057-1 30

35. Mccombs, S.: Outages? Downtime? https://sethmccombs.github.io/work/2018/
12/03/Outages.html. Accessed Jan 2019

36. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

37. Opscode: Chef. https://www.chef.io/chef/. Accessed Jan 2019
38. Puppet Labs: Marionette collective. http://docs.puppetlabs.com/mcollective/.

Accessed Jan 2019
39. Woods, D.: On infrastructure at scale: a cascading failure of distributed systems.

https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-
failure-of-distributed-systems-7cff2a3cd2df. Accessed Jan 2019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-48057-1_30
https://doi.org/10.1007/978-3-662-48057-1_30
https://sethmccombs.github.io/work/2018/12/03/Outages.html
https://sethmccombs.github.io/work/2018/12/03/Outages.html
https://www.chef.io/chef/
http://docs.puppetlabs.com/mcollective/
https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
http://creativecommons.org/licenses/by/4.0/

A Data Flow Model with Frequency
Arithmetic

Paul Dubrulle(B) , Christophe Gaston , Nikolai Kosmatov ,
Arnault Lapitre , and Stéphane Louise

CEA, List, 91191 Gif-sur-Yvette, France
{paul.dubrulle,christophe.gaston,nikolai.kosmatov,

arnault.lapitre,stephane.louise}@cea.fr

Abstract. Data flow formalisms are commonly used to model systems
in order to solve problems of buffer sizing and task scheduling. A pre-
requisite for static analysis of a modeled system is the existence of a
periodic schedule in which the sizes of communication channels can be
bounded for an unbounded execution (consistency), and that communi-
cation dependencies do not introduce a deadlock in such an execution
(liveness). In the context of Cyber-Physical Systems, components are
often interfaced with the physical world and have frequency constraints.
The existing data flow formalisms lack expressiveness to fully cover the
expected behavior of these components. We propose an extension to Syn-
chronous Data Flow (SDF) formalism, called Polygraph, that includes
frequency constraints and adjustable communication rates. We show that
with these extensions, the conditions for a model to be consistent and live
are no longer sufficient, and we extend the corresponding theorems with
necessary and sufficient conditions to preserve these properties. We also
introduce a framework to check the liveness of a Polygraph model, imple-
mented in the tool DIVERSITY, along with preliminary experiments to
validate this approach.

1 Introduction

Context. Cyber-Physical Systems (CPS) are increasingly present in everyday
life. In these systems, the components require a certain amount of input data
to produce a known amount of output data, and some of them must do so
in synchrony with a reference time scale. For example, the next generation of
autonomous vehicles will heavily rely on sensor fusion systems to operate the
car. Sensors and actuators have specified frequencies. To produce its output, the
fusion kernel requires a certain number of samples from several sources, with a
temporal correlation between them.

Often, when implementing this kind of system, the prediction of its perfor-
mance is important to the system designer. The performance prediction covers
different characteristics of the system, including its throughput, memory foot-
print, and latency. In distributed implementations of such systems, an analysis of

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 369–385, 2019.
https://doi.org/10.1007/978-3-030-16722-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_22&domain=pdf
http://orcid.org/0000-0002-1158-6348
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0003-1557-2813
http://orcid.org/0000-0002-2185-4051
http://orcid.org/0000-0003-4604-6453
https://doi.org/10.1007/978-3-030-16722-6_22

370 P. Dubrulle et al.

the communications between the components is necessary to configure a network
capable to respect the application’s real-time requirements.

Data flow formalisms [3,14] can be used to perform this kind of performance
analysis [4,5,10–12]. A prerequisite to analyze a model is the existence of a
periodic schedule with two properties. The first property, consistency, requires
that the sizes of the communication buffers remain bounded for an unbounded
execution of the periodic schedule. In practice, if a model is not consistent, it
is not possible to implement the communications without losing data samples.
The second property, liveness, requires the absence of deadlocks in the schedule.

Motivation and Goals. The limitation of the existing data flow formalisms to
model the considered systems is the lack of expressiveness regarding the syn-
chronization on a common time scale for different components. Overcoming this
limitation is the subject of recent research work [6]. Our goal is to extend an
existing data flow formalism for which the consistency and liveness properties of
a given model are decidable. In doing so, we want to ensure that the expressive-
ness extension does not impact the decidability of these properties. With this
extension, all applicative constraints are taken into account when checking the
prerequisites for a performance analysis. The verification can be performed in
abstraction of a particular implementation’s characteristics (like execution times
or mapping), and the results are the same for different implementations. More-
over, the performance analysis can benefit from the additional information on
the system provided by the extension.

Approach and Main Results. This paper introduces Polygraph, an extension to
Synchronous Data Flow (SDF) [14] for specification of frequency constraints on
the components. We use an arithmetic based on rational numbers to reason on
data exchanges between components. We show that the theorems that provide
a theoretical foundation for practical verification of consistency and liveness for
an SDF model can be generalized to this new formalism. Finally, we propose
a symbolic execution framework to decide the liveness of models expressed in
Polygraph, in a way similar to [11,14].

The contributions of this work include:

– a data flow formalism, called Polygraph, extending the well-known SDF [14]
formalism, to support the synchronization of data production and consump-
tion on a reference time scale;

– a demonstration that the decidability of two classical properties of dataflow
models, namely consistency and liveness, is preserved for this new formalism;

– an adaptation to the new formalism of an existing symbolic execution tech-
nique for evaluation of liveness in the DIVERSITY tool and initial experi-
ments to validate this approach.

Outline. The remainder of this paper is organized as follows. Section 2 gives an
informal introduction to the proposed modeling approach, with a step-by-step
explanation relying on an illustrative system. In Sect. 3, we formalize Polygraph

A Data Flow Model with Frequency Arithmetic 371

Fig. 1. Motivating example: a data fusion system modeled as a data flow graph. The
upper indexes “a” to “d” denote an amount of data exchanged by the components in
different variants of the model. The rates denoted by upper index “d” are those of
Polygraph, and initial conditions for this configuration are denoted by (i) and (ii).

and provide extended statements and a sketch of proof for the consistency and
liveness theorems. Section 4 presents a framework to check the liveness property
for Polygraph and a preliminary evaluation. In Sect. 5, we discuss related work,
while Sect. 6 presents conclusion and perspectives.

2 Motivation and Running Example

Running Example. To introduce the modeling approach behind Polygraph, we
use a toy example of a data fusion system that could be integrated into the
cockpit display of a car, depicted in Fig. 1. The system is composed of three
sensors producing data samples to be used by a data fusion component, and a
display component. The function of the sensor components is to read the data
from their sensors, while the function of the data fusion component is to compute
a result based on this data. The function of the display component is to render
the fusion result on a screen. To do so, the sensor components send the data to
the fusion component, and the fusion component sends the result to the display
component. The first sensor component is a video camera producing frames. The
other two sensor components analyze radar and lidar based samples to produce
a descriptor of the closest detected obstacles. The fusion component uses this
information to draw the obstacle descriptors on the corresponding frame.

The first step to model this system is to build a graph capturing data depen-
dencies between the components. Each vertex of this graph models an actor, an
abstract entity representing the function of a component. Each directed edge of

372 P. Dubrulle et al.

the graph models a communication channel, the source actor being the producer
of data consumed by the destination actor. The structure of the graph in Fig. 1
illustrates the dependencies in our example. The communication policy on the
channels is First-In First-Out (FIFO), the write operation is non-blocking, and
the read operation is blocking. On each channel, the atomic amount of data
exchanged by the connected actors is called a token, and all write and read oper-
ations are measured in tokens. An actor produces (resp. consumes) a certain
number of tokens on a channel when it writes (resp. reads) the corresponding
amount of data. With this policy, the graph can be assimilated to a Kahn Pro-
cess Network (KPN) [13]. In a KPN, the communications are determinate, but
in general it is not possible to decide if the sizes of the channels can be bounded
for an unbounded execution of the system.

Synchronous and Asynchronous Constraints. In practice, sensors and actuators
have a fixed sampling rate, and the production of each data sample occurs at
that specified frequency. To model these constraints, we propose to label some
actors with frequencies, corresponding to the real-life constraint. An actor with a
frequency label must fire at that frequency. We further detail this notion of firing
below, but for now it is sufficient to say that the firing of an actor is an atomic
process, during which it performs the actions and communications expected from
the modeled component. A global clock provides ticks to synchronize the firing
of frequency labeled actors. For our example, we consider the frequency labeling
illustrated by Fig. 1.

Generally, in real-life systems, computation kernels compute when input data
is available and do not have frequency constraints. In our frequency labeling, the
actors modeling such components can be left without a frequency label. In our
example, this is the case for the fusion actor.

The possibility to have unlabeled actors is an important part of our app-
roach, as further discussed in Sect. 5. It allows to mix a synchronous firing policy
for labeled actors, and an asynchronous firing policy for unlabeled actors. This
means that the scheduling of firings has periodic constraints only where needed,
which offers more options for optimization algorithms.

Static Rates. Another characteristic of real-life software components in our con-
text is that they require a fixed number of input samples from each different
source. Also, there must be a correlation between the production time of the
samples consumed from different sources. In our example, the fusion component
requires one token from each sensor, and these samples must have a close-enough
production time. This constraint can be captured by KPN restrictions, such
as Synchronous Data Flow (SDF) [14]. In SDF, both ends of each channel are
assigned a communication rate, denoting the fixed number of tokens produced or
consumed by the connected actors’ firings. This characteristic allows to decide
whether the sizes of the channels are bounded for an unbounded execution.
Graphs respecting this property are said to be consistent.

Without taking frequencies into account, the communication rates denoted
by an upper index “a” in Fig. 1 match the description of the system. Indeed, the

A Data Flow Model with Frequency Arithmetic 373

sensor actors produce one token each, the fusion actor consumes these tokens,
and in turn produces one token to be consumed by the display actor. With these
rates, considering a marking of the graph with any number of tokens stored in
the channels, if firing all the actors once, the same number of tokens remains in
the channels. Hence, the SDF graph is consistent. But when taking frequencies
into account, the graph is no longer consistent. In this example, the camera
produces 30 tokens per second, the radar produces 120 tokens per second, and
the lidar produces 10 tokens per second. This means that per second, because
of the production rate and frequency of the lidar, the fusion actor will be able
to fire only 10 times. It will consume only 10 tokens from the camera and radar
actors, leaving 20 and 110 unconsumed tokens per second on their respective
channels. Hence, it is no longer possible to bound the size of these channels for
an unbounded execution of the graph. This shows that to achieve consistency, for
any frequency labeled actor, the number of asynchronous firings of its unlabeled
predecessors and successors should be limited.

A possible adaptation of communication rates, denoted by upper index “b”
in Fig. 1, takes frequency inheritance into account and restores the consistency
property. With the production and consumption rates both set to 1 on the
channel connecting the camera and the fusion actors, the fusion actor basically
inherits a frequency constraint of 30 Hz. It inherits the same frequency constraint
from the radar and lidar actors since it now consumes 4 × 30 = 1 × 120 tokens
per second from the radar, and 1 × 30 = 3 × 10 tokens per second from the
lidar. The rates on the channel connecting the fusion and display actors are also
balanced. But with these rates, the number of tokens does not reflect accurately
the expected behavior of the modeled components. For example, the fusion actor
would consume 4 tokens per activation from the radar actor, while in reality the
component only requires 1.

Cyclo-Static Rates. It is possible to use Cyclo-Static Data Flow (CSDF) [3]
to get closer to the real communication requirements. In CSDF, the rates of
the actors are fixed as in SDF, but the successive firings of an actor cyclically
consume and produce a different number of tokens on every connected channel.
The successive rates on each channel are expressed as a sequence of natural
numbers. For example, an actor with a cyclo-static sequence of output rates
[1, 2] produces 1 token for its first firing, 2 tokens for the second, 1 for the third
and so on. A zero rate may occur in the sequence, meaning that the actor does
not push or pull tokens on the channel for the corresponding firing.

A cyclo-static sequence is necessary on a channel if the connected actors have
frequency constraints conflicting with the expected communication behavior.
In this case, we propose that one of the actors must be chosen as having the
reference frequency for the communication, and the other actor must adapt its
communication rate to a cyclo-static sequence accordingly. Back to our example
(see variant “c” in Fig. 1), the fusion actor requires one token from each sensor
every firing. Since the component is synchronized on camera frames, we decide
that the actor’s reference frequency should be 30 Hz. In this case, the frequency
constraints do not conflict with the expected communication behavior, and we

374 P. Dubrulle et al.

Fig. 2. Firings of actors of the motivating example: the firings are identified by the
initial letter of the corresponding actor and the rank of the firing, arrows show data
dependencies between firings, and a reference time scale constrains the firing of timed
actors. The data dependencies marked by a cross in (a) introduce a causality issue.

assign production and consumption rates of 1 on the channel connecting the
fusion and camera actors. Now, considering the radar actor, the fusion actor
only requires 30 tokens per second out of 120. Considering this ratio, we assign
the sequence [0, 0, 0, 1] as production rates for the radar actor, and the rate 1
for the fusion actor. The same logic applies for the lidar actor, the fusion actor
requires 30 tokens per second, but only 10 tokens per second are produced. We
then assign the cyclo-static sequence [1, 0, 0] as consumption rates for the fusion
actor, and the rate 1 for the lidar actor. A similar logic is applied for the display
actor. The consequence on the stream of actual data values highly depends on
the implemented function, and is therefore out of the scope of the data flow
modeling. In the particular case of the radar actor in our example, the software
implementation could perform a downsampling of the sensed data, or just send
the latest sample.

The corresponding communication rates, denoted by upper index “c” in
Fig. 1, give a graph where only the required tokens are exchanged on the chan-
nels, and the consistency property is preserved. But in all generality, choosing
the appropriate cyclic rate sequences for all the channels in a graph is time
consuming and error prone.

Rational Rates. We propose instead to extend the SDF model with rational com-
munication rates. A rational communication rate r = p/q specifies that the actor
produces or consumes p tokens every q firings, and the natural number of tokens
produced or consumed by any firing is r rounded either up or down, denoted �r�
and �r� respectively. With the semantic formalized in the next section, there is
a unique default cyclo-static sequence that corresponds to a given rational rate.
The default sequences for the rates denoted by an upper index “d” in Fig. 1 are
those denoted by upper index “c”. As explained earlier when assigning cyclo-
static sequences, in this extension, only one rate on a given channel can be a
rational number with denominator greater than one. The methodology remains
the same, for any channel, one actor’s frequency is considered as a reference, and
the other one adapts its rates according to that reference.

A Data Flow Model with Frequency Arithmetic 375

Initial Conditions. With the frequency labeling and rational communication
rates, we obtain a model that describes as closely as possible the communication
and timing requirements of our illustrative example. But there are causality
issues in this model. Figure 2(a) illustrates the timing of actor firings in our
example, and the data dependencies between them, according to the semantic
defined in the next section. It is obvious that the data dependencies marked by
a cross are not satisfied in time.

This kind of causality issue can also appear in SDF: in the case of cyclic
graphs, the firings of the actors in a cycle all depend on each other. To prevent
this, it is possible to mark the channels with an initial number of tokens, allowing
sufficient initial firings to complete the firing of all actors in the cycle. The
liveness property of an SDF graph is verified when all the cycles in the graph are
marked with enough tokens to prevent a deadlock [14]. With the SDF extensions
we propose, this condition is no longer sufficient. We need to be able to shift the
production or consumption of tokens in order to make sure that when a firing
requires input tokens, they are produced at an earlier tick of the global clock.

One way to achieve this is to rotate the default sequences defined by the
rational rates. For this, we propose a rational initial marking of the graph. Each
channel with natural rates at both ends can be marked with an initial number
of tokens as in SDF. Each other channel with rational rate r = p/q on either
end can be initially marked with a rational number n + k/q with k < q, which
denotes that the channel initially holds n tokens (as in SDF), and the default
sequence is rotated by k. If the rational rate is on the producer, the default
sequence is rotated left, otherwise it is rotated right. In Fig. 1, considering the
default sequences denoted by “c”, the corresponding rational rates denoted by
upper index “d”, and the initial marking (ii), the marking of 3/4 on the channel
connecting the radar and fusion actors rotates the default sequence [0, 0, 0, 1] by
3 elements to the right, yielding the sequence [1, 0, 0, 0].

Another way to prevent unsatisfied data dependencies is to shift the first
tick on which a frequency labeled actor must fire. We propose to add a phase to
each of these actors, giving the offset from the first tick at which it must fire.
With the semantic formalized in the next section, that phase is constrained in
order to have a periodic global clock. Figure 2(b) takes into account the marking
and phase denoted (ii) in Fig. 1. With the rational marking, the dependencies
between the radar and fusion firings are now satisfied, and with the phase on
the display actor, the dependencies between the camera and display firings are
also satisfied.

3 Formalization of the Polygraph Model

We denote by B the set {0, 1}, by Z the set of integers, by N = {n ∈ Z |n � 0}
the set of natural integers, and by Q the set of rational numbers. For any set S,
the free semigroup on S is denoted S+.

System graph. A system graph is a structure used to represent the topology of
the communications. Formally, it is a connected finite directed graph G = (V,E)

376 P. Dubrulle et al.

with set of vertices V and set of edges E ⊆ V × V such that V is the set
of actors and E is the set of channels. We use an index notation to identify
elements with respect to a given actor or channel, considering that E and V
are sets indexed respectively in {1, · · · , |E|} and {1, · · · , |V |}. We denote vi

(resp. ej) the actor (resp. channel) of index i (resp. j). For an actor v ∈ V ,
let in(v) = {〈v′, v〉 ∈ E | v′ ∈ V } denote the set of input channels of v and
out(v) = {〈v, v′〉 ∈ E | v′ ∈ V } the set of output channels of v.

Topology matrix and channel states. As for SDF and its derivations [3,14], the
communication rates are defined by a topology matrix with one row per channel
and one column per actor. The only difference in this definition is that we rely
on rational numbers. The absolute value of a rate in the matrix defines how
many tokens are produced or consumed per firing of the corresponding actor
on the corresponding channel, and the sign of that rate indicates if the tokens
are produced (positive rate) or consumed (negative rate). For a given actor and
channel, the rate must be 0 if the actor is not connected to the channel, or if the
actor is connected to both ends of the channel.

Definition 1 (Topology matrix). A matrix Γ = (γij) ∈ Q
|E|×|V | is a topol-

ogy matrix of a system graph G if for every channel ei = 〈vj , vk〉 ∈ E we have:

– γil = 0 for all l
= j, k;
– if j
= k, then γij > 0 and γik < 0 are irreducible fractions, and at most one

of them has a denominator greater than 1;
– if j = k, then γij = 0.

We also use a rational number per channel to track the communication state
of the system during an execution. A channel state is a vector with one row per
channel. Each coordinate in the vector tracks the respective number of firings
of the connected actors, by addition of their rates when they fire, and that
coordinate rounded down is the number of tokens in the channel.

Definition 2 (Channel state). A vector c ∈ Q
|E|×1 is a channel state of a

system graph G with topology matrix Γ if for every channel ei = 〈vj , vk〉 ∈ E,
the denominator of ci is the maximum between the denominators of γij and γik,
and �ci� is the number of tokens in the channel. We denote C ⊆ Q

|E|×1 the set
of all these possible states.

Timed actors and global clock. A subset VF ⊆ V of timed actors are constrained
by a frequency, expressed as a strictly positive natural number. We use a fre-
quency mapping ω : VF −→ N

>0 in order to map the timed actors to their
frequency. There is an implicit system time unit, and each timed actor vi ∈ VF

is supposed to be fired exactly ωi := ω(vi) times per system time unit. In order
to have a minimal system time unit, we consider that the greatest common divi-
sor of all the frequencies is gcd(ω[VF]) = 1. This is not limiting, since any set of
frequencies and system time unit can be adjusted to fit this constraint.

In addition, the timed actors must fire synchronously with respect to a global
clock. The resolution of that global clock is a sufficient number of ticks per system

A Data Flow Model with Frequency Arithmetic 377

time unit to associate to each tick the set of timed actors that must fire at the
corresponding date. For this, we consider the ticks 0, 1, . . . , π − 1 per system
time unit, where π is the least common multiple of all the actor frequencies
π = lcm({ωi|vi ∈ VF }). Note that if VF is empty, π = 1, and the global clock
does not constrain the firing of any actor.

Given a timed actor vi ∈ VF , there should be ωi out of π ticks associated
with that actor’s firings. To reflect the periodic nature of the firing of timed
actors, for a timed actor vi of period pi = π/ωi, it fires every pi-th tick.

As mentioned in Sect. 2, all the timed actors have a phase. We use a phase
mapping ϕ : VF −→ N to map the timed actors to their phase. The first firing
of each timed actor vi ∈ VF occurs at the tick ϕi := ϕ(vi). The only con-
straint to respect the expected frequency of the firings is that ∀vi ∈ VF we have
0 � ϕi < π/ωi.

Definition 3 (Global clock, firing ticks). For a system graph G with fre-
quency mapping ω, resolution π, and phase mapping ϕ, the global clock is a set
T = {0, 1, . . . , π − 1} and for each timed actor vi ∈ VF there is a subset of firing
ticks Ti = {τ ∈ T | τ ≡ ϕi (mod π/ωi)}.

Polygraphs. We now define the notion of polygraph which introduces a basic
communication topology, a topology matrix, a frequency and phase mapping for
all timed actors, and an initial marking of the graph.

Definition 4 (Polygraph, initial marking). A polygraph is a tuple P =
〈G,Γ, ω, ϕ,m〉 where G is a system graph, Γ is a topology matrix, ω is a frequency
mapping, ϕ is a phase mapping and m ∈ C is an initial marking such that
∀ei ∈ E we have mi � 0.

In the following, we consider that a polygraph P = 〈G,Γ, ω, ϕ,m〉 is given,
with its global clock T and sets of firing ticks Ti for all the timed actors vi ∈ VF .

States and transitions. The state of a polygraph is composed of a channel state,
the current tick of the global clock, and a vector with one row per actor used
to track the number of firings of the timed actors since the last change in the
current tick. This tracking vector is used to check that the timed actors respect
their synchronous firing constraints.

Definition 5 (State). A state of a polygraph P is a tuple s = 〈c, τ,a〉 where
c ∈ C is a channel state, τ ∈ T is a tick, and a ∈ N

|V |×1 is a tracking vector.
We denote S ⊆ C × T × N

|V |×1 the set of all possible states for P.

The effect of the firing of an actor on the channel state is to add its rates to
the respective coordinate of all the channels. For an actor vi, the i-th column
of Γ gives all the rates per channel. Therefore, to extract that column from the
matrix for each actor vi ∈ V , we use a unitary firing vector u ∈ B

|V |×1, such
that ui = 1, and for all j
= i we have uj = 0. We denote U ⊂ B

|V |×1 the set
of these vectors, and for convenience we denote the unitary activation vector of
actor vi by ui. With the unitary firing vector of any actor vi, the product Γui

378 P. Dubrulle et al.

gives a vector holding for each channel ej the rate of vi on ej . For any channel
state c, the channel state after the atomic firing of vi is then c + Γui. Also,
the firing of a timed actor is tracked by adding its unitary firing vector to the
tracking vector. The firing of an actor has no effect on the current tick.

Definition 6 (Fire). For a polygraph P, the mapping fire : U × S −→ S maps
a unitary activation vector ui and a state s = 〈c, τ,a〉 to the state s′ = 〈c′, τ ′,a′〉
such that we have c′ = c+Γui, τ ′ = τ , and if vi ∈ VF then a′ = a+ui, otherwise
a′ = a.

Remark 1. For two consecutive firings of any actors vi and vj from a state s =
〈c, τ,a〉, the resulting state s′′ = 〈c′′, τ ′′,a′′〉 does not depend on the order of
the firings, and c′′ = c + Γ(ui + uj). This property can be generalized to any
finite number of consecutive firings.

The other possible transition between two states occurs when the global clock
ticks. When the global clock ticks, the channel state is not changed, the current
tick is adjusted, and the tracking vector is reset.

Definition 7 (Tick). For a polygraph P, the mapping tick : S −→ S maps
a state s = 〈c, τ,a〉 to the state s′ = 〈c′, τ ′,a′〉 such that we have c′ = c,
τ ′ = (τ + 1) mod π, and a′ = 0.

Executions. The state of P can evolve by successive application of either fire or
tick. An execution of P is a sequence of such applications starting from a state
s1 ∈ S and leading to states e = s1 · · · sn ∈ S+. However, with the frequency
constraints, there are some conditions for the applications.

Consider the firing fire(ui, s) of a timed actor vi in a state s = 〈c, τ,a〉. In
this case, vi may fire only if the current tick τ is one of its firing ticks, i.e. τ ∈ Ti.
Since it must fire exactly once on such a tick, an additional constraint to fire a
timed actor vi is that it has not fired yet, i.e. its coordinate in the tracking vector
a is ai = 0. To capture this constraint, we define a tick firing vector tτ ∈ B

|V |×1

for each tick τ ∈ T, in which a coordinate is set to one if the corresponding
actor is expected to fire at tick τ . More formally, for any vi ∈ V \ VF we have
tτi = 0, and for any vj ∈ VF we have tτj = 1 if τ ∈ Tj , and tτj = 0 otherwise. The
constraint to fire vi ∈ VF in a state with current tick τ and tracking vector a is
then ai < tτi .

The clock update tick(s) in a state s = 〈c, τ,a〉 is also subject to a constraint:
the timed actors that were supposed to fire synchronously with the current tick
have done so exactly once, i.e. a = tτ .

Definition 8 (Synchronous execution). An execution e = s1 · · · sn ∈ S+ of
a polygraph P is synchronous if ∀1 � k < n, we have sk = 〈c, τ,a〉 such that:

– either sk+1 = fire(ui, sk) for some vi ∈ V , and in addition, if vi ∈ VF , then
ai < tτi ,

– or sk+1 = tick(sk), and in addition, a = tτ .

A Data Flow Model with Frequency Arithmetic 379

Until now, we considered executions of a polygraph where the order of the
firings is constrained only by the frequencies. However, for an actor to fire, there
must be enough tokens on its input channels, or its rational communication rate
must allow firings consuming 0 tokens. In order to fire an actor vi in a state
s = 〈c, τ,a〉, we require that for each input channel ej of vi, since the rate γji is
negative, the channel state cj must be large enough to avoid reaching a negative
state, i.e. cj + γji � 0, or equivalently cj � |γji|. This constraint requires an
ordering of the actor firings such that a producer is fired a sufficient number of
times for a consumer to be able to fire in turn.

Definition 9 (Non-blocking execution). An execution e = s1 · · · sn ∈ S+ of
a polygraph P is non-blocking if ∀1 � k < n, we have sk = 〈c, τ,a〉 such that:

– either sk+1 = fire(ui, sk) for some vi ∈ V , and in addition, ∀ej ∈ in(vi),
cj � |γji|,

– or sk+1 = tick(sk).

Consistency property. If verified, the consistency property of P guarantees that
it is possible to build a synchronous execution e = s1 · · · sn ∈ S+ such that
s1 = 〈m, 0,0〉 and s1 = sn. Such an execution is called a consistent execution
of P, and can obviously be repeated an indefinite number of times to build a
consistent execution of arbitrary length. [14, Theorem 1] states that a necessary
and sufficient condition for a given SDF graph to be consistent is that there is a
non-trivial solution x to Γx = 0.

To extend this result to polygraphs, as explained in the previous section, we
need to take into account the frequencies of the timed actors. In other words, we
need to make sure that it is possible to have a synchronous execution with xi

firings per actor vi. The additional constraint due to the frequencies is that the
number of firings xi of all the timed actors vi corresponds to a number r ∈ N of
repetitions of the global clock period.

To state the conditions for a polygraph to be consistent, we thus want to
separate the number of firings of the timed actors from the others. We define the
vector t =

∑
∀τ∈T tτ giving for each timed actor vi the number ti of expected

firings per period of the global clock. We then define the set Y ⊂ N
|V |×1 of

vectors y such that we have a number of firings yi
= 0 only for vi ∈ V \ VF .

Theorem 1. A polygraph P has a consistent execution if and only if there exists
a non-trivial solution x ∈ N

|V |×1 to Γx = 0 such that x = y+rt for some y ∈ Y
and r ∈ N. Any such solution is called a repetition vector of P. Moreover, there
exists a minimal repetition vector x such that for any other repetition vector x′

we have x′ = kx for some k ∈ N.

Sketch of proof. First, we prove that the condition is sufficient, and suppose that
there exists such a solution x. Then we can decompose:

x = y + (t0 + . . . + tπ−1)
︸ ︷︷ ︸

=t

+ . . . + (t0 + . . . + tπ−1)
︸ ︷︷ ︸

=t
︸ ︷︷ ︸

=rt

380 P. Dubrulle et al.

The required consistent execution can be obtained by constructing sub-
executions corresponding to this decomposition, relying on Definition 8 and
Remark 1.

Claim (1). There exists a synchronous execution e1 ∈ S+ with starting state
s = 〈m, 0,0〉 and ending state s′ = 〈m + Γy, 0,0〉.
The execution e1 is constructed by applying yi firings of each actor vi ∈ V \ VF

(in any order). Since the fired actors are not timed actors, any such sequence is
synchronous. The resulting channel state is m + Γy as per Remark 1.

Claim (2). For any starting state s = 〈c, τ,0〉, there exists a synchronous execu-
tion e2 ∈ S+ starting from s with ending state s′ = 〈c + Γtτ , (τ + 1) mod π,0〉.
The execution e2 for τ is constructed by firing exactly once each timed actor
supposed to do so at tick τ , and then applying the tick mapping.

Claim (3). For any starting state s = 〈c, 0,0〉, there exists a synchronous exe-
cution e3 ∈ S+ starting from s with ending state s′ = 〈c + Γt, 0,0〉.
The execution e3 is obtained by successively executing e2 for τ = 0, . . . , π − 1.

Claim (4). There exists a synchronous execution e4 ∈ S+ with starting state
s = 〈m, 0,0〉 and ending state s′ = 〈m + Γ(y + rt), 0,0〉.
The sequence e4 is constructed by executing e1, followed by e3 repeated r times.
Hence, given that Γx = 0 and x = y+rt, it can be easily checked that the ending
state of e4 is the same as its starting state, and e4 is consistent. The fact that
the condition is also necessary follows from the definitions. Since the current tick
must return to 0 after a consistent execution, such an execution must perform a
number r of periods of the global clock for some r ∈ N, in other words it must
contain rπ applications of the tick mapping and rti firings of each timed actor
vi. The existence of a minimal solution immediately follows from the fact that
in this case rank(Γ) = |V | − 1 according to [14, Corollary of Lemma 2].

Due to lack of space, a detailed proof is left to the reader. ��
Liveness property. If verified, the liveness property of P guarantees that it is
possible to build a consistent execution e = s1 · · · sn ∈ S+ such that e is also a
non-blocking execution. Such an execution e is called a live execution.

In a way similar to [14, Theorem 3], we define the notion of a scheduler
building only synchronous and non-blocking executions. Our goal is to show that
P has a live execution if and only if any such scheduler can build a consistent
execution.

From now on, we consider that P is consistent with minimal repetition vector
x. We define the mapping count : V × S+ −→ N that given an actor vi and an
execution e = s1 · · · sn ∈ S+ returns the number of firings of vi in e, i.e. the
number of k such that 1 � k < n and sk+1 = fire(ui, sk). Notice that since a live
execution e of P is also consistent, by definition we have ∀vi ∈ V, count(vi, e) =
xi. Also, we say that an actor vi ∈ V is runnable after an execution e ∈ S+

with ending state s if count(vi, e) < xi and the one-step execution ss′ ∈ S+ with
s′ = fire(ui, s) is synchronous and non-blocking.

A Data Flow Model with Frequency Arithmetic 381

Definition 10 (Scheduler). A scheduler of P is a mapping σ : S+ −→ S+

that maps an execution e = s1 · · · sn ∈ S+ to an execution e′ ∈ S+ such that if
we denote sn = 〈c, τ,a〉 we have:

– either e′ = s1 · · · sns′ ∈ S+ with s′ = fire(ui, sn) for some actor vi runnable
after e;

– or e′ = s1 · · · sns′ ∈ S+ with s′ = tick(sn) and a = tτ ;
– or e′ = e if there is no runnable actor after e and a
= tτ .

An execution defined by a scheduler σ is the fixed point constructed by
recursive application1 of σ starting from an initial execution e = (〈m, 0,0〉).
Theorem 2. Let P be a consistent polygraph with minimal repetition vector x,
σ a scheduler of P, and e the execution defined by σ. Then P has a live execution
if and only if ∀vi ∈ V, count(vi, e) = xi.

Sketch of proof. The condition is obviously sufficient. The proof that it is also
necessary can be easily made by induction. If e is a live execution and e′ is a
synchronous and non-blocking execution constructed by σ so far, with |e′| < |e|,
we can show that e′ can be extended by one more step (e.g. by taking the first
step present in e but not in e′, since its preconditions are necessarily satisfied).

��

4 Tool Support for Liveness Checking

DIVERSITY is a customizable model analysis tool based on symbolic execution,
available in the Eclipse Formal Modeling Project [17]. DIVERSITY provides a
pivot language called xLIA (eXecutable Language for Interaction and Archi-
tecture) introducing a set of communication and execution primitives allowing
one to encode a wide class of dynamic model semantics [2,9], Communicating
STS [1], and abstractions of hybrid systems [15]. In this work, we use it to ana-
lyze Polygraph models, to check their liveness in a similar way to that defined
by a scheduler as per Definition 10.

The root entity in an xLIA model is a so-called system. A system is an
executable entity that can be atomic (state-machine) or compositional or hier-
archical. A Polygraph model translated to xLIA is a system where the actors are
state-machines with input/output ports associated with the ends of the channels.
They communicate asynchronously over FIFO queues, bounded or not, using
xLIA connectors. Variables are used to store received tokens on input instruc-
tions in transitions, with guards conditioning their firing, and output statements
to model their token productions.

Figure 3 represents such a state machine for any actor of the polygraph in
Fig. 1. Each transition is labeled with xLIA macros representing the actions per-
formed. The init macro moves the initial marking from the input queues to the

1 Hence, a scheduler can be also defined as a partial mapping on σ∗(〈m, 0,0〉).

382 P. Dubrulle et al.

Fig. 3. xLIA state machine pattern for an actor of a polygraph

counter of available input tokens, canFire() tests if enough tokens are present
for a non-blocking firing, consumption decrements the counter of available input
tokens, production sends the production rate on the successor’s queue, and recep-
tion reads that rate and adds it to the number of available tokens. Regarding
state machine semantics, all the states are pseudo-states, except idle which is
stable. This means that any fired transition must be completed until returning
to the idle state. The else transition will be evaluated if there is no possible
reception.

The xLIA language allows a fine-grained definition of an execution model for
the actors of a polygraph. Some instructions associate a sequence of actors to
fire with each tick of a clock. When attempting to fire a timed actor, only one
firing is triggered if possible, and when attempting the same for other actors, as
many firings as possible are triggered. Hence, the timed actors are only fired at
the expected tick, and cause a deadlock result if it’s not possible. For the other
actors, a counter limits their number of firings to their coordinate in the minimal
repetition vector, as required by Theorem2. With this setup, for a polygraph P
with minimal repetition vector x = y + rt, the length of a live execution path
is rπ, plus one for the initialization step handling the initial marking. Any path
with less steps leads to a deadlock.

We tested this technique using DIVERSITY on an Intel core i7. For the poly-
graph of Fig. 1 with initial marking (ii), the tool finds that the liveness property
is verified. We also tested the initial marking (i), and the tool correctly identified
a deadlock in less than 200 ms. This example is extracted from a more complex
polygraph modeling an Advanced Driver-Assistance System (ADAS), that we
also used to evaluate the liveness checking tool. The considered polygraph has
18 actors (5 of which are timed actors), 32 channels (6 of which have an initial
marking), where 10 actors have rational communication rates. For a correctly
marked model, we find a live execution sequence in 4s.

5 Discussion and Related Work

In [16], an extension to SDF is proposed to add a single throughput constraint on
a channel of a consistent graph. From this constraint, a firing frequency is derived
for the actors by transitivity. This approach, while preserving the consistency
property by construction, does not allow the expression of a frequency constraint

A Data Flow Model with Frequency Arithmetic 383

per actor, based on a real-life constraint on the modeled component, nor the
explicit synchronization of the firings on a reference time scale.

The programming model PTIDES [18] combines a real-time semantic for
sensors and actuators, and a discrete event semantic for other components like
computation kernels. These other components have an awareness of the real time
through a logical time abstraction. The resulting execution semantic has simi-
larities with Polygraph, since some components are constrained by real-time and
others only react to their stimuli. The semantic of PTIDES is much more flex-
ible than Polygraph, since it does not require fixed production or consumption
rates. On the other hand, and as opposed to Polygraph, there is no way to derive
a consistent and live periodic schedule in PTIDES, which makes static perfor-
mance prediction more difficult. Nevertheless, since the semantics are similar,
we believe that the notion of logical time as defined in PTIDES is applicable to
practical distributed implementations of polygraphs.

Synchronous programming languages [7,8] can be used to express a data flow
between synchronous periodic nodes, in order to generate correct-by-construction
programs. In these approaches, all the nodes are synchronous, while in Poly-
graph, some actors fire asynchronously when enabled. Also, the goal of our app-
roach is to be able to reason formally on the modeled systems, and automate as
many tasks as possible in its design, implementation and validation. Such a task
could be the association of the asynchronous firings to ticks of the global clock,
and the generation of a synchronous program for automatic code generation.

Recently published research [6] follows a similar approach to ours. By mixing
elements from two existing formalisms, one allowing the specification of time-
triggered tasks and the other the specification of data flow actors, the expressive-
ness of the resulting modeling framework is comparable to that of Polygraph. The
main difference is that Polygraph is a single formalism with decidable properties
and algorithms to check them in practice. In [6], the impact of the combination
of constraints from two different formalisms on their respective properties is not
discussed, as the proposed approach is more focused on the performance evalua-
tion. The experimental results the authors obtained are in favor of the modeling
approach we have in common.

6 Conclusion

We have introduced Polygraph, a data flow formalism extending SDF with syn-
chronous firing semantics for the actors. We have shown that with this extension,
the existing conditions to decide of a given SDF graph’s consistency and liveness
were no longer sufficient. We have extended the corresponding theorems and
shown that the expressiveness extensions we proposed do not impact the decid-
ability of these properties. Finally, as a first step towards tool assisted modeling
of polygraphs, we have introduced a framework relying on DIVERSITY to verify
their liveness.

Our next step is to further extend Polygraph to add flexibility in the exe-
cution semantic, with the same objective to preserve the capability to perform

384 P. Dubrulle et al.

accurate static analysis of a system’s performance. Still, with this first extension,
there are already interesting research perspectives regarding the applicability of
existing static performance analysis techniques, and their potential extensions
to take into account the specifics of a polygraph’s scheduling.

Acknowledgement. Part of this work has been realized in the FACE project, involv-
ing CEA List and Renault. The Polygraph formalism has been used as a theoretical
foundation for the software methodology in the project.

References

1. Arnaud, M., Bannour, B., Lapitre, A.: An illustrative use case of the DIVERSITY
platform based on UML interaction scenarios. Electr. Notes Theor. Comput. Sci.
320, 21–34 (2016)

2. Bannour, B., Escobedo, J.P., Gaston, C., Le Gall, P.: Off-line test case generation
for timed symbolic model-based conformance testing. In: Nielsen, B., Weise, C.
(eds.) ICTSS 2012. LNCS, vol. 7641, pp. 119–135. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34691-0 10

3. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static data flow.
In: Proceedings of the 1995 International Conference on Acoustics, Speech, and
Signal Processing, vol. 5, pp. 3255–3258 (1995)

4. Bodin, B., Munier-Kordon, A., de Dinechin, B.D.: K-periodic schedules for evalu-
ating the maximum throughput of a synchronous dataflow graph. In: Proceedings
of the 2012 International Conference on Embedded Computer Systems (SAMOS),
pp. 152–159 (2012)

5. Bouakaz, A., Fradet, P., Girault, A.: Symbolic buffer sizing for throughput-optimal
scheduling of dataflow graphs. In: Proceedings of the 22nd IEEE Real-Time
Embedded Technology and Applications Symposium (RTAS 2016) (2016)

6. Breaban, G., Stuijk, S., Goossens, K.: Efficient synchronization methods for LET-
based applications on a multi-processor system on chip. In: Design, Automation
Test in Europe Conference Exhibition (DATE) 2017, pp. 1721–1726 (2017)

7. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-
synchronous Kahn networks: a relaxed model of synchrony for real-time systems.
SIGPLAN Not. 41(1), 180–193 (2006)

8. Forget, J., Boniol, F., Lesens, D., Pagetti, C.: A multi-periodic synchronous data-
flow language. In: 2008 11th IEEE High Assurance Systems Engineering Sympo-
sium, pp. 251–260 (2008)

9. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006). https://doi.org/10.
1007/11754008 1

10. Geilen, M., Basten, T., Stuijk, S.: Minimising buffer requirements of synchronous
dataflow graphs with model checking. In: Proceedings of the 42nd Design Automa-
tion Conference, pp. 819–824. IEEE (2005)

11. Ghamarian, A.H., et al.: Throughput analysis of synchronous data flow graphs. In:
Proceedings of the Sixth International Conference on Application of Concurrency
to System Design (ACSD 2006), pp. 25–36 (2006)

https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/11754008_1

A Data Flow Model with Frequency Arithmetic 385

12. Ghamarian, A.H., Stuijk, S., Basten, T., Geilen, M.C.W., Theelen, B.D.: Latency
minimization for synchronous data flow graphs. In: Proceedings of the 10th Euromi-
cro Conference on Digital System Design Architectures, Methods and Tools (DSD
2007), pp. 189–196 (2007)

13. Kahn, G., MacQueen, D., Laboria, I.: Coroutines and Networks of Parallel Pro-
cesses. IRIA Research Report, IRIA laboria (1976)

14. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987)

15. Medimegh, S., Pierron, J.Y., Gallois, J., Boulanger, F.: A new approach of quali-
tative simulation for the validation of hybrid systems. In: Proceedings of the work-
shop on Model Driven Engineering Languages and Systems (MODELS). ACM
(2016)

16. Selva, M.: Performance monitoring of throughput constrained dataflow programs
executed on shared-memory multi-core architectures. Theses, INSA de Lyon (2015)

17. The List Institute: CEA Tech: The DIVERSITY Tool. http://projects.eclipse.org/
proposals/eclipse-formal-modeling-project/

18. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized dis-
tributed real-time systems. In: Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS 2007), pp. 259–268.
IEEE (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://projects.eclipse.org/proposals/eclipse-formal-modeling-project/
http://projects.eclipse.org/proposals/eclipse-formal-modeling-project/
http://creativecommons.org/licenses/by/4.0/

Software Testing

CoVeriTest: Cooperative Verifier-Based Testing

Dirk Beyer and Marie-Christine Jakobs

LMU Munich, Munich, Germany

Abstract. Testing is a widely used method to assess software quality.
Coverage criteria and coverage measurements are used to ensure that
the constructed test suites adequately test the given software. Since
manually developing such test suites is too expensive in practice, various
automatic test-generation approaches were proposed. Since all approaches
come with different strengths, combinations are necessary in order to
achieve stronger tools. We study cooperative combinations of verification
approaches for test generation, with high-level information exchange.
We present CoVeriTest, a hybrid approach for test-case generation, which
iteratively applies different conditional model checkers. Thereby, it allows
to adjust the level of cooperation and to assign individual time budgets
per verifier. In our experiments, we combine explicit-state model checking
and predicate abstraction (from CPAchecker) to systematically study
differentCoVeriTest configurations.Moreover,CoVeriTestachieves higher
coverage than state-of-the-art test-generation tools for some programs.

Keywords: Test-case generation · Software testing · Test coverage ·
Conditional model checking · Cooperative verification · Model checking

1 Introduction

Testing is a commonly used technique to measure the quality of software. Since
manually creating such test suites is laborious, automatic techniques are used: e.g.,
model-based techniques for black-box testing and techniques based on control-flow
coverage for white-box testing. Many automatic techniques have been proposed,
ranging from random testing [36,57] and fuzzing [26,52,53], over search-based
testing [55] to symbolic execution [23,24,58] and reachability analyses [5,12,45,46].
The latter are well-suited to find bugs and derive test suites that achieve high
coverage, and several verification tools support test generation (e.g., Blast [5],
PathFinder [61],CPAchecker [12]). The reachability checks for all test goals seem
too expensive, but in practice, those approaches can be made pretty efficient.

Encouraged by tremendous advances in software verification [3] and a recent
case study that compared model checkers with test tools w.r.t. bug finding [17],
we study a new kind of combination of reachability analyses for test generation.
Combinations are necessary because different analysis techniques have different
strength and weaknesses. For example, consider function foo in Listing 1. Explicit
state model checking [18,33] tracks the values of variables i and s and easily

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 389–408, 2019.
https://doi.org/10.1007/978-3-030-16722-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_23&domain=pdf
http://orcid.org/0000-0003-4832-7662
https://doi.org/10.1007/978-3-030-16722-6_23

390 D. Beyer and M.-C. Jakobs

Fig. 1. Example program foo

detects the reachability of the
statements in the outermost if
branch (lines 3–6), while it has
difficulties with the complex
condition in the else-branch
(line 8). In contrast, predicate
abstraction [33,39] can easily
derive test values for the complex
condition in line 8, but to handle
the if branch (lines 3–6) it must
spent effort on the detection
of the predicates s = 0, s = 1,
and i = 0. Independently of each
other, test approaches [1,34,47,54] and verification approaches [9,10,29,37]
employ combinations to tackle such problems. However, there are no approaches
yet that combine different reachability analyses for test generation.

Inspired by abstraction-driven concolic testing [32], which interleaves concolic
execution and predicate abstraction, we propose CoVeriTest, which stands
for cooperative verifier-based testing. CoVeriTest iteratively executes a given
sequence of reachability analyses. In each iteration, the analyses are run in
sequence and each analysis is limited by its individual, but configurable time limit.
Furthermore, CoVeriTest allows the analysis to share various types of analysis
information, e.g., which paths are infeasible, have already been explored, or which
abstraction level to use. To get access to a large set of reachability analyses,
we implemented CoVeriTest in the configurable software-analysis framework
CPAchecker [15]. We used our implementation to evaluate different CoVeriTest

configurations on a large set of well-established benchmark programs and to com-
pare CoVeriTest with existing state-of-the-art test-generation techniques. Our
experiments confirm that reachability analyses are valuable for test generation.
Contributions. In summary, we make the following contributions:

• We introduce CoVeriTest, a flexible approach for high-level interleaving of
reachability analyses with information exchange for test generation.

• We perform an extensive evaluation of CoVeriTest studying 54 different
configurations and two state-of-the-art test-generation tools1.

• CoVeriTest and all our experimental data are publically available2 [13].

2 Testing with Verifiers

The basic idea behind testing with verifiers is to derive test cases from counter-
examples [5,61]. Thus, meeting a test goal during verification has to trigger a
specification violation. First, we remind the reader of some basic notations.

1 We choose the best two tools VeriFuzz and Klee from the international competition
on software testing (Test-Comp 2019) [4]. https://test-comp.sosy-lab.org/2019/

2 https://www.sosy-lab.org/research/coop-testgen/

https://test-comp.sosy-lab.org/2019/
https://www.sosy-lab.org/research/coop-testgen/

CoVeriTest: Cooperative Verifier-Based Testing 391

Programs. Following literature [9], we represent programs by control-flow
automata (CFAs). A CFA P = (L, �0, G) consists of a set L of program locations
(the program-counter values), an initial program location �0 ∈ L, and a set of
control-flow edges G ⊆ L×Ops×L. The set Ops describes all possible operations,
e.g., assume statements (resulting from conditions in if or while statements) and
assignments. For the program semantics, we rely on an operational semantics,
which we do not further specify.
Abstract Reachability Graph (ARG). ARGs record the work done by reach-
ability analyses. An ARG is constructed for a program P = (L, �0, G) and stores
(a) the abstract state space that has been explored so far, (b) which abstract states
must still be explored, and (c) what abstraction level (tracked variables, considered
predicates, etc.) is used. Technically, an ARG is a five-tuple (N, succ, root , F, π)
that consists of a set N of abstract states, a special node root ∈ N that represents
the initial states of program P , a relation succ ⊆ N × G × N that records already
explored successor relations, a set F ⊆ N of frontier nodes, which remembers
all nodes that have not been fully explored, and a precision π describing the
abstraction level. Every ARG must ensure that a node n is either contained in F
or completely explored, i.e., all abstract successors have been explored. We use
ARGs for information exchange between reachability analyses.

Fig. 2. Encoding test goals as speci-
fication violation

Test Goals. In this paper, we are interested
in structural coverage, e.g., branch coverage.
Transferred to our notion of programs, this
means that our test goals are a subset of the
program’s control-flow edges. For using a
verifier to generate tests, we have to encode
the test goals as a specification violation. Figure 2 shows a possible encoding,
which uses a protocol automaton. Whenever a test goal is executed, the automaton
transits from the initial, safe state q0 to the accepting state qe, which marks a
property violation. Note that reachability analyses, which we consider for test
generation, can easily monitor such specifications during exploration.

Now, we have everything at hand to describe how reachability analyses
generate tests. Algorithm1 shows the test-generation process. The algorithm gets
as input a program, a set of test goals, and a time limit for test generation. For
cooperative test generation, we need to guide state-space explorations. To this
end, we also provide an initial ARG and a condition. A condition is a concept
known from conditional model checking [10] and describes which parts of the state
space have already been explored by other verifiers. A verifier, e.g., a reachability
analysis, can use a condition to ignore the already explored parts of the state
space. Verifiers that do not understand conditions can safely ignore them.

At the beginning, Alg. 1 sets up the data structures for the test suite and the
set of covered goals. To set up the specification, it follows the idea of Fig. 2. As
long as not all test goals are covered, there exist abstract states that must be
explored, and the time limit has not elapsed, the algorithm tries to generate new
tests. Therefore, it resumes the exploration of the current ARG [5] taking into

392 D. Beyer and M.-C. Jakobs

Algorithm 1. Generating tests with a (conditional) reachability analysis
Input: prog = (L, �0, G), goals ⊆ G, limit ∈ N, arg =(N,succ, root, F, π),

condition ψ
Output: generated test_suite, covered goals, updated arg

1: test_suite=∅; covered=∅;
2: ϕ=generate_specification(goals);

3: while (goals �= ∅ and arg.F �= ∅ and elapsed_time<limit) do
4: arg = explore(prog, ϕ, arg, ψ, limit − elapsed_time);

5: if (arg.F �= ∅ and elapsed_time<limit) then
6: τ = extract_counterexample_trace(arg);
7: test_suite = test_suite ∪ generate_test_from_trace(τ);

8: goals = goals\{last_edge(τ)}; covered = covered ∪ {last_edge(τ)}

9: ϕ=generate_specification(goals);
10: return (test_suite, covered, arg);

account program prog, specification ϕ, and (if understood) the condition ψ.
If the exploration stops, then it returns an updated ARG. Exploration stops
due to one of three reasons: (1) the state space is explored completely (F = ∅),
(2) the time limit is reached, or (3) a counterexample has been found.3 In the
latter case, a new test is generated. First, a counterexample trace is extracted
from the ARG. The trace describes a path through the ARG that starts at the
root and its last edge is a test goal (the reason for the specification violation).
Next, a test is constructed from the path and added to the test suite. Basically,
the path is converted into a formula and a satisfying assignment4 is used as
the test case. For the details, we refer the reader to the work that defined the
method [5]. Additionally, the covered goal (last edge on the counterexample path)
is removed from the set of open test goals and added to the set of covered goals.
Finally, the specification is updated to no longer consider the covered goal. When
the algorithm finishes, it returns the generated test suite, the set of covered goals
and the last ARG considered. The ARG is returned to enable cooperation.

3 CoVeriTest

The previous section described how to use a single reachability analysis to pro-
duce tests for covering a set of test goals. Due to different strengths and weak-
nesses, some test goals are harder to cover for one analysis than for another. To

3 We assume that an exploration is only complete if no counterexample exists.
4 We assume that only feasible counterexamples are contained and infeasible counter-

examples were eliminated by the reachability analysis during exploration.

CoVeriTest: Cooperative Verifier-Based Testing 393

Algorithm 2. CoVeriTest: alternating reachability analyses to generate tests
Input: prog = (L, �0, G), goals ⊆ G, total_limit ∈ N, configs ∈ (analysis × N)+

Output: test_suite
1: test_suite=∅; args=〈〉; current=0;
2: while (goals �= ∅ and elapsed_time<total_limit) do
3: analysis = configs[current].first; limit = configs[current].second;

4: (arg,ψ) = cooperateAndInit(prog, args, configs.length);
5: (tests, covered, arg) = analysis(prog, goals, limit, arg, ψ);

6: test_suite=test_suite ∪ tests; goals=goals\covered; args=args ◦〈arg〉;
7: if (arg.F=∅) then
8: return test_suite;
9: current = (current+1) % configs.length;

10: return test_suite;

maximize the number of covered goals, different analyses should be combined. In
CoVeriTest, we rotate analyses for test generation. Thus, we avoid that analyses
try to cover the same goal in parallel and we do not need to know in advance
which analysis can cover which goals. Moreover, analyses that get stuck trying to
cover goals that other analyses handle later, get a chance to recover. Additionally,
CoVeriTest supports cooperation among analyses. More concrete: analyses may
extract and use information from ARGs constructed by previous analysis runs.

Algorithm2 describes the CoVeriTest workflow. It gets four inputs. Program,
test goals, and time limit are already known from Alg. 1 (test generation with
a single analysis). Additionally, CoVeriTest gets a sequence of configurations,
namely pairs of reachability analysis and time limit. The time limit accompanied
with the analysis restricts the runtime of the respective analysis per call (see
line 5). In contrast to Alg. 1, CoVeriTest does not get an ARG or condition. To
enable cooperation between analyses, CoVeriTest constructs these two elements
individually for each analysis run. During construction, it may extract and use
information from results of previous analysis runs.

After initializing the test suite and the data structure to store analysis
results (args), CoVeriTest repeatedly iterates over the configurations. It starts
with the first pair in the sequence and finishes iterating when its time limit
exceeded or all goals are covered. In each iteration, CoVeriTest first extracts the
analysis to execute and its accompanied time limit (line 3). Then, it constructs
the remaining inputs of the analysis: ARG and condition. Details regarding the
construction are explained later in Alg. 3. Next,CoVeriTest executes the current
analysis with the given program, the remaining test goals, the accompanied time
limit, and the constructed ARG and condition. When the analysis has finished,
CoVeriTest adds the returned tests to its test suite, removes all test goals
covered by the analysis run from the set of goals, and stores the analysis result for
cooperation (concatenates arg to the sequence of ARGs). If the analysis finished
its exploration (arg.F=∅), any remaining test goal should be unreachable and

394 D. Beyer and M.-C. Jakobs

Algorithm 3. cooperateAndInit: set up start point for analysis exploration,
possibly transferring knowledge from previous analysis runs
Input: prog = (L, �0, G), args ∈ (arg)+, numAnalyses ∈ N

Output: ARG for program prog, condition describing explored state space
1: ψ=false; π = ∅; root = (�0,
);
2: if (length(args)≥numAnalyses) then
3: if (reuse-arg) then
4: return (last_arg_of_analysis(numAnalyses, args), ψ);
5: if (reuse-precision) then
6: π = last_arg_of_analysis(numAnalyses, args).π;
7: if (use-condition ∧ length(args)>0) then
8: ψ = extract_condition(args[length(args)-1]);
9: return (({root}, ∅, root, {root}, π), ψ);

CoVeriTest returns its test suite. Otherwise, CoVeriTest determines how to
continue in the next iteration (i.e., which configuration to consider). At the end
of all iterations, CoVeriTest returns its generated test suite.

Next, we explain how to construct the ARG and the condition input for
an analysis. The ARG describes the level of abstraction and where to con-
tinue exploration while the condition describes which parts of the state space
have already been explored. Both guide the exploration of an analysis, which
makes them well-suited for cooperation. While there are plenty of possibilities for
cooperation, we currently only support three basic options: continue exploration
of the previous ARG of the analysis (reuse-arg), reuse the analysis’ abstraction
level (reuse-precision), and restrict the exploration to the state space left out
by the previous analysis (use-condition). The first two options only ensure that
an analysis does not loose too much information due to switching. The last option,
which is inspired by abstraction-driven concolic execution [32], indeed realizes
cooperation between different analyses. Note that the last two options can also
be combined.5 If all options are turned off, no information will be exchanged.

Algorithm3 shows the cooperative initialization of ARG and condition dis-
cussed above. It gets three inputs: the program, a sequence of args needed to
realize cooperation, and the number of analyses used. At the beginning, it ini-
tializes the ARG components and the condition assuming no cooperation should
be done. The condition states that nothing has been explored, the abstraction
level becomes the coarsest available, and the ARG root considers the start of all
program executions (initial program location and arbitrary variable values). If
no cooperation is configured or the ARG required for cooperation is not available
(e.g., in the first round), the returned ARG and condition tell the analysis to
explore the complete state space from scratch. In all other cases, the analysis
will be guided by information obtained in previous iterations. Option reuse-arg

5 In contrast, the options reuse-arg and use-conditions cannot be combined because
they are incompatible. The existing ARG does not fit to the constructed condition.
Since reuse-arg subsumes reuse-precision, a combination makes no sense.

CoVeriTest: Cooperative Verifier-Based Testing 395

looks up the last ARG of the analysis stored in args. Reuse-precision con-
siders the same ARG as reuse-arg, but only provides the ARG’s precision π. For
use-condition, a condition is constructed from the last ARG in args. For the
details of the condition construction, we refer to conditional model checking [10].

Next, we study the effectiveness of different CoVeriTest configurations and
compare CoVeriTest with existing test-generation tools.

4 Evaluation

We systematically evaluate CoVeriTest along the following claims:
Claim 1. For analyses that discard their own results from previous iterations
(i.e., reuse-arg and reuse-precision turned off), CoVeriTest achieves higher
coverage if switches between analyses happen rarely. Evaluation Plan: We look
at CoVeriTest configurations in which analyses discard their own, previous
results and compare the number of covered test goals reported by configurations
that only differ in the analyses’ time limits.
Claim 2. For analyses that reuse knowledge from their own, previous exe-
cution (i.e., reuse-arg or reuse-precision turned on), CoVeriTest achieves
higher coverage if favoring more powerful analyses. Evaluation Plan: We look at
CoVeriTest configurations in which analyses reuse their own, previous knowledge
and compare the number of covered test goals reported by configurations that
only differ in the analyses’ time limits.
Claim 3. CoVeriTest performs better if analyses reuse knowledge from their
own, previous execution (i.e., reuse-arg or reuse-precision turned on). Eval-
uation Plan: From all sets of CoVeriTest configurations that only differ in the
analyses’ time limits, we select the best and compare these.
Claim 4. Interleaving multiple analyses with CoVeriTest often achieves better
results than using only one of the analyses for test generation. Evaluation Plan:
We compare the number of covered goals reported by the best CoVeriTest

configuration with those numbers achieved when running only one analysis of
the CoVeriTest configuration for the total time limit.
Claim 5. Interleaving verifiers for test generation is often better than running
them in parallel. Evaluation Plan: We compare the number of covered goals
reported by the best CoVeriTest configuration with the number achieved when
running all analyses of the CoVeriTest configuration in parallel.
Claim 6. CoVeriTest complements existing test-generation tools. Evaluation
Plan: We use the same infrastructure and resources as used by the International
Competition on Software Testing (Test-Comp’19)6 and let the best CoVeriTest

configuration construct test suites. These test suites are executed by the Test-
Comp’19 validator to measure the achieved branch coverage. Then, we compare
the coverage achieved by CoVeriTest with the coverage of the best two
test-generation tools from Test-Comp’19.

6 https://test-comp.sosy-lab.org/2019/

https://test-comp.sosy-lab.org/2019/

396 D. Beyer and M.-C. Jakobs

4.1 Setup

COVERITEST Configurations. We implemented CoVeriTest in the software
analysis framework CPAchecker [15]. Basically, we implemented Algs. 1, 2 and
integrated Alg. 3 into Alg. 2. For condition construction, we reuse the code from
conditional model checking [10]. For our experiments, we combine value [18] and
predicate analysis [16]. Both have been used in cooperative verification [10,11,21].

Value analysis. CPAchecker’s value analysis [18] tracks the values of variables
stored in its current precision explicitly while assuming that the remaining
variables may have any possible value. It iteratively increases its precision, i.e.,
the variables to track, combining counterexample-guided abstraction [28] with
path-prefix slicing [22], and refinement selection [21]. Value analysis is efficient
if few variable values need to be tracked, but it may get stuck in loops or suffers
from a large state space in case variables are assigned many different values.

Predicate analysis. CPAchecker’s predicate analysis uses predicate ab-
stractionwithadjustable-block encoding (ABE) [16].ABE is configured toabstract
at loop heads and uses the strongest postcondition at all remaining locations. To
compute the set of predicates—its precision—, it uses counterexample-guided ab-
straction refinement [28] combined with lazy refinement [43] and interpolation [41].
While the predicate analysis is powerful and often summarizes loops easily, succes-
sor computation may require expensive SMT solver calls.

For both analyses, a CoVeriTest configuration specifies how Alg. 3 reuses
the ARGs returned by previous analysis runs to set up the initial ARG and
condition. In our experiments, we consider the following types of reuses.

plain Ignores all ARGs returned by previous analysis runs, i.e., reuse-arg,
reuse-prec, and use-condition are turned off.

condv The value analysis does not obtain information from previous ARGs and
the predicate analysis is only steered by the condition extracted from the
ARG returned by the previous value analysis.

condp The value analysis is steered by the condition extracted from the ARG
returned by the previous run of the predicate analysis and the predicate
analysis ignores all previous ARGs.

condv,p Value and predicate analysis are steered by the condition extracted from
the last ARG returned, i.e., only use-condition turned on.

reuse-prec In each round, each analysis resumes its precision from the previous
round, but restarts exploration, i.e., only reuse-prec is turned on.

reuse-arg In each round, each analysis continues to explore the ARG it returned
in the previous round, i.e., only reuse-arg is turned on.

condv+r Similar to condv, but additionally the value analysis continues to
explore the ARG it returned in the previous round and the predicate analysis
restarts exploration with its precision from the previous round.

condp+r Similar to condp, but additionally the value analysis restarts explo-
ration with its precision from the previous round and the predicate analysis
continues to explore the ARG it returned in the previous round.

condv,p+r Like condv,p, but additionally the value and predicate analysis reuse
their previous precision, i.e., reuse-prec and use-condition are turned on.

CoVeriTest: Cooperative Verifier-Based Testing 397

Finally, we need to fix the time limit for each analysis. We want to find out
whether switches between analyses are important to the CoVeriTest approach.
Therefore, we chose four limits (10 s, 50 s, 100 s, 250 s) that are applied to both
analyses and trigger switches often, sometimes, or rarely. Additionally, we want
to study whether it is advantageous if the time CoVeriTest spends in a round
is not equally spread among the analyses. Thus, we come up with two additional
time limit pairs: (20 s, 80 s) and (80 s, 20 s).

We combine all nine reuse types with the six time limit pairs, which results
in 54 CoVeriTest configurations. All 54 configurations aim at generating tests
to cover the assume edges of a program.

Tools. For CoVeriTest, we used the implementation in CPAchecker

version 29 347. Moreover, we compare CoVeriTest against the two best tools
VeriFuzz [26] and Klee [23] from Test-Comp’19 (in the versions submitted to
Test-Comp’197). The tool VeriFuzz is based on the evolutionary fuzzer AFL
and uses verification techniques to compute initial input values and parameters
for AFL. Klee applies symbolic execution. To compare CoVeriTest against
Klee and VeriFuzz, we use the validator TBF Test-Suite Validator v1.28 to
measure branch coverage. TBF Test-Suite Validator is based on gcov9.

Programs. CoVeriTest, Klee, and VeriFuzz produce tests for C programs.
All three tools participated in TestComp’19. Thus, for comparison of the three
tools, we consider all 1 720 tasks of the TestComp’19 benchmark set10 that
support the branch-coverage property. Since we do not need to execute tests
for the comparison of the different CoVeriTest configurations, we evaluated
them on a larger benchmark set, which contains all 6 703 C programs from the
well-established SV-benchmark set11 in the version tagged svcomp18.

Computing Resources. We run our experiments on machines with 33GB
of memory and an Intel Xeon E3-1230 v5 CPU with 8 processing units and a
frequency of 3.4GHz. The underlying operating system is Ubuntu 18.04 with
Linux kernel 4.15. As in TestComp’19, for test generation we grant each run a
maximum of 8 processing units, 15min of CPU time, and 15GB of memory, and
for test-suite execution (required to compare against Klee and VeriFuzz), the
TBF Test-Suite Validator is granted 2 processing units, 3 h of CPU time, and
7GB of memory per run. We use BenchExec [20] to enforce the limits of a run.

Availability. Our experimental data are available online12 [13].

7 https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
8 https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/

tbf-testsuite-validator.zip
9 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

10 https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19
11 https://github.com/sosy-lab/sv-benchmarks
12 https://www.sosy-lab.org/research/coop-testgen/

https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/tbf-testsuite-validator.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/tbf-testsuite-validator.zip
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19
https://github.com/sosy-lab/sv-benchmarks
https://www.sosy-lab.org/research/coop-testgen/

398 D. Beyer and M.-C. Jakobs

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(a) Reuse type plain

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(b) Reuse type condv,p

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(c) Reuse type condv

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(d) Reuse type condp

Fig. 3. Comparing relative coverage (number of covered goals divided by maximal
number of covered goals) achieved by CoVeriTest configurations with different time
limits. All configurations let analyses discard their own knowledge gained in previous
executions.

4.2 Experiments

Claim 1 (Reduce switching when discarding own results). Four types of
reuse (namely, plain, condv, condp, and condv,p) let the analyses discard their own
knowledge from their previous executions. For each of these types, we compare
the coverage achieved by all six CoVeriTest configurations that use this type13.
More concrete, for all six CoVeriTest configurations applying the same reuse
type, we first compute for each program the maximum over the number of covered
goals achieved by each of these six configurations for that program. Then, for
each of the six CoVeriTest configurations that use that reuse type, we divide
the number of covered goals achieved for a program by the respective maximum
computed. We call this measure relative coverage because the value is relative
to the maximum and not the total number of goals. Figure 3 shows box plots
per reuse type. The box plots show the distribution of the relative coverage. The
closer the bottom border of a box is to value one, the higher coverage is achieved.
For all four reuse types, the fourth box plot has the bottom border closest to
value one. Since the fourth box plot is a configuration that grants each analysis
250 s per round (highest limit considered, only three switches), the claim holds.
Claim 2 (Favor powerful analysis when reusing own results). Five types
of reuse (namely, reuse-prec, reuse-arg, condv+r, condp+r, and condv,p+r) let
analyses reuse knowledge from their own, previous execution. Similar to the
previous claim, we compute for each of these types the relative coverage of
all six configurations using this particular type of reuse. For each reuse type,

13 Note that those six configurations only differ in the analyses’ time limits.

CoVeriTest: Cooperative Verifier-Based Testing 399

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(a) Reuse type reuse-prec

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(b) Reuse type reuse-arg

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(c) Reuse type condv+r

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(d) Reuse type condp+r

0

0.2

0.4

0.6

0.8

1

10_10 50_50 100_100 250_250 80_20 20_80

Re
la

ve
 c

ov
er

ag
e

Time limits

(e) Reuse type condv,p+r

Fig. 4. Comparing relative coverage (number of covered goals divided by maximal
number of covered goals) achieved by CoVeriTest configurations when using different
time limits and a fixed reuse type. All considered configurations let analyses reuse
knowledge from their own, previous execution.

Fig. 4 shows box plots of the distributions of the relative coverage. As before, a
bottom border closer to value one reflects higher coverage. In all five cases, the last
box plot has the bottom border closest to value one. The last box plots represent
CoVeriTest configurations that grant the value analysis 20 s and the predicate
analysis 80 s in each round. Since the predicate analysis, which gets more time per
round, is more powerful than the value analysis, our claim is valid.14
Claim 3 (Better reuse own results). So far, we know how to configure
time limits. Now, we want to find out how to reuse information from previous
analysis runs. For each reuse type, we select from the six available configurations
the configuration that performed best. Again, we use the relative coverage to
compare the resulting nine configurations. Figure 5 shows box plots of the
distributions of the relative coverage. The first four box plots show configurations
in which analyses discard their own results, while the last five box plots refer
to configurations in which analyses reuse knowledge from their own, previous
executions. Since the last five boxes are smaller than the first four and their
bottom borders are closer to one, the last five configurations achieve higher
coverage. Hence, our claim holds. Moreover, from Fig. 5 we conclude that it is
best to reuse the ARG (although condv+r and condp+r are close by).
Claim 4 (Interleave multiple analyses rather than use one of them).
To evaluate whether CoVeriTest benefits from interleaving, we compare
CoVeriTest against the analyses used by it. CoVeriTest interleaves value and
predicate analysis. Figure 6(a) and 6(b) show scatter plots that compare for each
program the coverage, i.e., number of covered goals divided by number of total
goals, achieved by the best CoVeriTest configuration (x-axis) with the coverage
achieved when only using either value or predicate analysis for test generation.
Note that we excluded those programs from the scatter plots, for which we miss

14 This insight is independently partially backed by a sequential combination of explicit-
value analysis and predicate analysis that performed well in SV-COMP 2013 [62].

400 D. Beyer and M.-C. Jakobs

0.5

0.6

0.7

0.8

0.9

1

1.1

plain cond v cond p cond v,p reuse-prec reuse-arg cond v+r cond p+r cond v,p+r

Re
la

ve
 c

ov
er

ag
e

Best CoVeriTest configura on per reuse type

Fig. 5. Comparing relative coverage achieved by CoVeriTest configurations applying
different strategies to reuse information gained by previous verifier runs.

0

20

40

60

80

100

0 20 40 60 80 100

Co
ve

ra
ge

 o
f V

al
ue

 [%
]

Coverage of CoVeriTest [%]

(a) CoVeriTest (x-axis) vs.
value analysis

0

20

40

60

80

100

0 20 40 60 80 100

Co
ve

ra
ge

 o
f P

re
di

ca
te

 [%
]

Coverage of CoVeriTest [%]

(b) CoVeriTest (x-axis) vs.
predicate analysis

0

20

40

60

80

100

0 20 40 60 80 100

Co
ve

ra
ge

 o
f V

al
.|

|
Pr

ed
. [

%
]

Coverage of CoVeriTest [%]

(c) CoVeriTest (x-axis)
vs. value and predicate
analysis in parallel

Fig. 6. Compares the coverage achieved by CoVeriTest (best configuration) with the
coverage achieved when running CoVeriTest’s analyses alone or in parallel

the number of covered goals for at least one test generator, e.g., due to timeout of
the analysis. Figure 6(a) compares CoVeriTest and value analysis; we see that
almost all points are in the lower right half. Thus, CoVeriTest typically achieves
higher coverage than value analysis alone. Figure 6(b), comparing CoVeriTest

with predicate analysis, is more diverse. About 54% of the points are on the
diagonal, i.e., CoVeriTest and predicate analysis cover the same number of
goals. The upper left half contains 19% of the points, i.e., predicate analysis
alone achieves higher coverage. These points for example reflect float programs
and ECA programs without arithmetic computations. In contrast, CoVeriTest

achieves higher coverage in 27% of the programs. CoVeriTest is beneficial for
programs that only need few variable values to trigger the branches, like ssh
programs or programs from the product-lines subcategory. CoVeriTest also
profits from the value analysis when considering ECA programs with arithmetic
computations, since the variables have a fixed value in each loop iteration. All
in all, CoVeriTest performs slightly better than predicate analysis alone.
Claim 5 (Interleave rather than parallelize). Figure 6(c) shows a
scatter plot that compares for each program the coverage achieved by
CoVeriTest (x-axis) and a test generator that runs the value analysis and
the predicate analysis in parallel15. As before, we exclude programs for which

15 The test generator uses CPAchecker’s parallel algorithm and lets the two analyses
share information about covered test goals.

CoVeriTest: Cooperative Verifier-Based Testing 401

0

20

40

60

80

100

0 20 40 60 80 100

Co
ve

ra
ge

 o
f V

er
iF

uz
z [

%
]

Coverage of CoVeriTest [%]

(a) COVERITEST VS. VERIFUZZ

0

20

40

60

80

100

0 20 40 60 80 100

Co
ve

ra
ge

 o
f K

LE
E

[%
]

Coverage of CoVeriTest [%]

(b) COVERITEST VS. KLEE

Fig. 7. Compares the branch coverage achieved by CoVeriTest (best configuration)
with the branch coverage achieved by existing state-of-the-art test-generation tools

we could not get the number of covered goals for at least one of the analyses.
Looking at Fig. 6(c), we observe that many points (60%) are on the diagonal, i.e.,
the achieved coverage is identical. Moreover, CoVeriTest performs better for
30% (lower right half), while approximately 10% of the points are in the upper
left half. Since CoVeriTest achieves the same or better coverage results in about
90% of the cases, it should be preferred over parallelization. This is no surprise
since we showed that a test generator should favor the more powerful analysis
(which CoVeriTest does, but parallelization evenly distributes CPU time).
Claim 6 (COVERITEST complementary). Our goal is to compare
CoVeriTest and the two best tools of Test-Comp’19 [4]: VeriFuzz and Klee.
All three tools aim at constructing test suites with high branch coverage. Thus, we
use branch coverage as comparison criterion. We measure branch coverage with
TBF Test-Suite Validator. Figure 7 shows two scatter plots. Each plot compares
branch coverage achieved by CoVeriTest and by one of the other techniques.16
Points in the lower right half indicate that CoVeriTest achieved higher coverage.
Looking at the two scatter plots, we observe that there exist programs for
which CoVeriTest performs better and vice versa. Generally, we observed that
CoVeriTest has problems with array tasks and ECA tasks. We already know
from verification that CPAchecker sometimes lacks refinement support for array
tasks. Moreover, the problem with the ECA tasks is that CPAchecker splits
conditions with conjunctions or disjunctions—which ECA tasks contain a lot—
into multiple assume edges. Thus, the number of test goals is much larger than
the actual branches to be covered. However, CoVeriTest seems to benefit from
splitting for some of the float tasks. Additionally, CoVeriTest is often better on
tasks of the sequentialized subcategory. We think that CoVeriTest benefits from
the value analysis since the tasks of the sequentialized subcategory contain lots of
branch conditions checking for a specific value or interpreting variable values as
booleans. All in all, CoVeriTest is not always best, but is also not dominated.
Thus, CoVeriTest complements the existing approaches.

16 Note that the scatter plots only contain points that have a positive x and y value
because there exist different reasons (timeout, out of memory, tool failure, etc.) why
we might get no or a zero coverage value from the test validator. The plots contain
points for about 98% of the 1 720 programs.

402 D. Beyer and M.-C. Jakobs

4.3 Threats to Validity

All our CoVeriTest configurations consider the same two analyses. Our results
might not apply if using CoVeriTest with a different set of analyses. In our
experiments, we used benchmark programs instead of real-world applications.
Although the benchmark set is diverse and well-established, our results may not
carry over into practice.

The validator TBF Test-Suite Validator might contain bugs that result
in wrong coverage numbers. However, the validator was used in Test-Comp’19
already, and is based on the well-established coverage-measurement tool gcov.

For the comparison of theCoVeriTest configurations aswell as the comparison
of CoVeriTest with the single analyses and the parallel approach, we relied
on the number of covered goals reported by CoVeriTest. Invalid counterexamples
could be used to cover test goals. The analyses used by CoVeriTest apply
CEGAR approaches and should detect spurious counterexamples. Moreover, these
analyses run in the SV-COMP configuration of CPAchecker and are tuned to
not report false results. Another problem is that whenever CPAchecker does not
output statistics (due to timeout, out of memory, etc.), we use the last number of
covered goals reported in the log. However, this might be an underapproximation
of the number of covered goals. All these problems do not occur in the comparison
of CoVeriTest with Klee and VeriFuzz, in which the coverage is measured by
the validator. Thus, this comparison still supports the value of CoVeriTest.

5 Related Work

CoVeriTest interleaves reachability analyses to construct tests for C programs.
To enable cooperation, CoVeriTest extracts information from ARGs constructed
by previous analysis runs.

A few tools use reachability analyses for test generation. Blast [5] considers
a target predicate p and generates a test for each program location that can be
reached with a state fulfilling the predicate p. For test generation, Blast uses
predicate abstraction. FShell [44–46] and CPA/Tiger [12] generate tests for
a coverage criterion specified in the FShell query language (FQL) [46]. Both
transform the FQL specification into a set of test-goal automata and check for
each automaton whether its final state can be reached. FShell uses CBMC to
answer those reachability queries and CPA/Tiger uses predicate abstraction.

Various combinations have been proposed for verification [2,10,11,14,25,27,
29–31,35,37,40,50,64] and test-suite generation [1,32,34,36,38,47,51,54,56,59,
60,63]. We focus on combinations that interleave approaches. SYNERGY [40]
and DASH [2] alternate test generation and proof construction to (dis)prove a
property. Similarly, SMASH [37] combines underapproximation with overapproxi-
mation. Interleaving is also used in test generation. Hybrid concolic testing [54]
interleaves random testing with symbolic execution. When random testing gets
stuck, symbolic execution is started from the current state. As soon as a new goal
is covered, symbolic execution hands over to random testing providing the values
used to cover the goal. Similarly, Driller [60] and Badger [56] combine fuzzing

CoVeriTest: Cooperative Verifier-Based Testing 403

with concolic execution. However, they only exchange inputs. Xu et al. [51,63]
interleave different approaches to augment test suites. The approach closest to
CoVeriTest is abstraction-driven concolic testing [32]. Abstraction-driven con-
colic testing interleaves concolic execution and predicate analysis. Furthermore,
it uses conditions extracted from the ARGs generated by the predicate analysis to
direct the concolic execution towards feasible paths. Abstraction-driven concolic
testing can be seen as one particular configuration of CoVeriTest.

Also, ARG information has been reused in different contexts. Precision
reuse [19] uses the precision determined in a previous analysis run to reverify
a modified program. Similarly, extreme model checking [42] adapts an ARG
constructed in a previous analysis to fit to the modified program. CPA/Tiger [12]
transforms an ARG that was constructed for one test goal such that it fits to a
new test goal. Lazy abstraction refinement [43] adapts an ARG to continue ex-
ploration after abstraction refinement. Configurable program certification [48,49]
constructs a certificate from an ARG, which can be used to reverify a program.
Similarly, reachability tools like CPAchecker construct witnesses [6,7] from
ARGs. Conditional model checking [10,14] constructs a condition from an ARG
when a verifier gives up. The condition describes the remaining verification task
and is used by a subsequent verifier to restrict its exploration.

6 Conclusion

Testing is a standard technique for software quality assurance. But state-of-
the-art techniques still miss many bugs that involve sophisticated branching
conditions [17]. It turns out that techniques performing abstract reachability
analyses are well-suited for this task. They simply need to check the reach-
ability of every branch and generate a test for each positive check. However, in
practice, for every such technique there exist reachability queries on which the
technique is inefficient or fails [8]. We propose CoVeriTest to overcome these
practical limitations. CoVeriTest interleaves different reachability analyses for
test generation. We experimented with various configurations of CoVeriTest,
which vary in the time limits of the analyses and the type of information
exchanged between different analysis runs. CoVeriTest works best when each
analysis resumes its exploration, different analyses only share test goals, and more
powerful analyses get larger time budgets. Moreover, a comparison of CoVeriTest

with (a) the reachability analyses used by CoVeriTest and (b) state-of-the-art
test-generation tools witness the benefits of the new CoVeriTest approach.

CoVeriTest participated in Test-Comp 2019 [4] and achieved rank 3 (out of 9)
in both categories, bug finding and branch coverage.17

In future, we plan to integrate further analyses, e.g., bounded model
checking or symbolic execution, into CoVeriTest and to evaluate CoVeriTest

on real-world applications.

17 https://test-comp.sosy-lab.org/2019/results/

https://test-comp.sosy-lab.org/2019/results/

404 D. Beyer and M.-C. Jakobs

References

1. Baars, A.I., Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Tonella, P., Vos,
T.E.J.: Symbolic search-based testing. In: Proc. ASE, pp. 53–62. IEEE (2011).
https://doi.org/10.1109/ASE.2011.6100119

2. Beckman, N., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proc. ISSTA, pp. 3–14. ACM (2008). https://doi.org/10.1145/1390630.1390634

3. Beyer, D.: Software verification with validation of results (Report on
SV-COMP 2017). In: Proc. TACAS, LNCS, vol. 10206, pp. 331–349. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_20

4. Beyer, D.: International competition on software testing (Test-Comp). In: Proc.
TACAS, Part 3, LNCS, vol. 11429, pp. 167–175. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17502-3_11

5. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE, pp. 326–335. IEEE (2004). https://
doi.org/10.1109/ICSE.2004.1317455

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Ex-
changing verification results between verifiers. In: Proc. FSE, pp. 326–337.
ACM (2016). https://doi.org/10.1145/2950290.2950351

7. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

8. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software
verification. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

9. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook on
Model Checking, pp. 493–540. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_16

10. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE,
pp. 57:1–57:11. ACM (2012). https://doi.org/10.1145/2393596.2393664

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic
precision adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008). http://dx.doi.org/
10.1109/ASE.2008.13

12. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Information reuse for multi-goal
reachability analyses. In: Proc. ESOP, LNCS, vol. 7792, pp. 472–491. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_26

13. Beyer, D., Jakobs, M.C.: Replication package for article “CoVeriTest: Cooperative
verifier-based testing” in Proc. FASE 2019. Zenodo (2019). https://doi.org/
10.5281/zenodo.2566735

14. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construc-
tion of conditional verifiers. In: Proc. ICSE, pp. 1182–1193. ACM (2018). https://
doi.org/10.1145/3180155.3180259

15. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Proc. CAV, LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

https://doi.org/10.1109/ASE.2011.6100119
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1109/ASE.2008.13
http://dx.doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.5281/zenodo.2566735
https://doi.org/10.5281/zenodo.2566735
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16

CoVeriTest: Cooperative Verifier-Based Testing 405

16. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010). http://
ieeexplore.ieee.org/document/5770949/

17. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking.
In: Proc. HVC, LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70389-3_7

18. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE, LNCS, vol. 7793, pp. 146–162. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-1_11

19. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. FSE, pp. 389–399. ACM (2013). https://
doi.org/10.1145/2491411.2491429

20. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement.
In: Proc. SPIN, LNCS, vol. 9232, pp. 160–178. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23404-5_12

21. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Proc. SPIN, LNCS,
vol. 9232, pp. 20–38. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23404-5_3

22. Beyer, D., Löwe, S., Wendler, P.: Sliced path prefixes: An effective method to enable
refinement selection. In: Proc. FORTE, LNCS, vol. 9039, pp. 228–243. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19195-9_15

23. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: Proc. OSDI,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf

24. Chalupa, M., Vitovská, M., Strejcek, J.: SYMBIOTIC 5: Boosted instrumentation
(competition contribution). In: Proc. TACAS, LNCS, vol. 10806, pp. 442–446.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_29

25. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: Proc. SAC,
pp. 1284–1291. ACM (2012). http://doi.acm.org/10.1145/2245276.2231980

26. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program aware
fuzzing. In: Proc. TACAS, Part 3, LNCS, vol. 11429, pp. 244–249. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17502-3_22

27. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proc. ICSE, pp. 144–155. ACM (2016).
http://doi.acm.org/10.1145/2884781.2884843

28. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
http://doi.acm.org/10.1145/876638.876643

29. Cousot, P., Cousot, R.: Systematic design of program-analysis frameworks. In: Proc.
POPL, pp. 269–282. ACM (1979). http://doi.acm.org/10.1145/567752.567778

30. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: Combining static checking and
testing. In: Proc. ICSE, pp. 422–431. ACM (2005). http://doi.acm.org/10.1145/
1062455.1062533

31. Czech, M., Jakobs, M.C., Wehrheim, H.: Just test what you cannot verify! In:
Proc. FASE, LNCS, vol. 9033, pp. 100–114. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46675-9_7

http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-19195-9_15
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-319-89963-3_29
http://doi.acm.org/10.1145/2245276.2231980
https://doi.org/10.1007/978-3-030-17502-3_22
http://doi.acm.org/10.1145/2884781.2884843
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/567752.567778
http://doi.acm.org/10.1145/1062455.1062533
http://doi.acm.org/10.1145/1062455.1062533
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7

406 D. Beyer and M.-C. Jakobs

32. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Proc.
VMCAI,LNCS,vol. 9583, pp. 328–347. Springer,Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49122-5_16

33. D’Silva, V., Kröning, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. CAD Integr. Circ. Syst. 27(7),
1165–1178 (2008). https://doi.org/10.1109/TCAD.2008.923410

34. Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite generation
with dynamic symbolic execution. In: Proc. ISSRE, pp. 360–369. IEEE (2013).
https://doi.org/10.1109/ISSRE.2013.6698889

35. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: Dynamic symbolic execution
guided with static verification results. In: Proc. ICSE, pp. 992–994. ACM (2011).
http://doi.acm.org/10.1145/1985793.1985971

36. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random
testing. In: Proc. PLDI, pp. 213–223. ACM (2005). http://doi.acm.org/10.1145/
1065010.1065036

37. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: Unleashing the power of alternation. In: Proc. POPL, pp. 43–56.
ACM (2010). http://doi.acm.org/10.1145/1706299.1706307

38. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proc. NDSS. The Internet Society (2008)

39. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Proc. CAV,
LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63166-6_10

40. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.:
Synergy: A new algorithm for property checking. In: Proc. FSE, pp. 117–127.
ACM (2006). https://doi.org/10.1145/1181775.1181790

41. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL, pp. 232–244. ACM (2004). http://doi.acm.org/10.1145/
964001.964021

42. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: Verification: Theory and Practice, pp. 332–358. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39910-0_16

43. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

44. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
Proc. CAV, LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70545-1_20

45. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Proc. VMCAI, LNCS, vol. 5403, pp. 151–166. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-93900-9_15

46. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your
test suite. In: Proc. ASE, pp. 407–416. ACM (2010). https://doi.org/10.1145/
1858996.1859084

47. Inkumsah, K., Xie, T.: Improving structural testing of object-oriented programs
via integrating evolutionary testing and symbolic execution. In: Proc. ASE,
pp. 297–306. IEEE (2008). https://doi.org/10.1109/ASE.2008.40

https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/ISSRE.2013.6698889
http://doi.acm.org/10.1145/1985793.1985971
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1706299.1706307
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/1181775.1181790
http://doi.acm.org/10.1145/964001.964021
http://doi.acm.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-540-70545-1_20
https://doi.org/10.1007/978-3-540-70545-1_20
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1109/ASE.2008.40

CoVeriTest: Cooperative Verifier-Based Testing 407

48. Jakobs, M.C.: Speed up configurable certificate validation by certificate reduction
and partitioning. In: Proc. SEFM, LNCS, vol. 9276, pp. 159–174. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_12

49. Jakobs, M.C., Wehrheim, H.: Certification for configurable program analysis. In:
Proc. SPIN, pp. 30–39. ACM (2014). https://doi.org/10.1145/2632362.2632372

50. Jalote, P., Vangala, V., Singh, T., Jain, P.: Program partitioning: A framework for
combining static and dynamic analysis. In: Proc. WODA, pp. 11–16. ACM (2006).
http://doi.acm.org/10.1145/1138912.1138916

51. Kim, Y., Xu, Z., Kim, M., Cohen, M.B., Rothermel, G.: Hybrid directed test suite
augmentation:An interleaving framework. In:Proc. ICST,pp. 263–272. IEEE(2014).
https://doi.org/10.1109/ICST.2014.39

52. Lemieux, C., Sen, K.: FairFuzz: A targeted mutation strategy for increasing grey-
box fuzz testing coverage. In: Proc. ASE, pp. 475–485. ACM (2018). https://doi.org/
10.1145/3238147.3238176

53. Li, J., Zhao, B., Zhang, C.: Fuzzing: A survey. Cybersecurity 1(1), 6 (2018).
https://doi.org/10.1186/s42400-018-0002-y

54. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proc. ICSE, pp. 416–426.
IEEE (2007). https://doi.org/10.1109/ICSE.2007.41

55. McMinn, P.: Search-based software test data generation: A survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004). https://doi.org/10.1002/stvr.294

56. Noller, Y., Kersten, R., Pasareanu, C.S.: Badger: Complexity analysis with fuzzing
and symbolic execution. In: Proc. ISSTA, pp. 322–332. ACM (2018). http://
doi.acm.org/10.1145/3213846.3213868

57. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proc. ICSE, pp. 75–84. IEEE (2007). https://doi.org/10.1109/
ICSE.2007.37

58. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. STTT 11(4), 339–353 (2009). https://doi.org/10.1007/
s10009-009-0118-1

59. Sakti, A., Guéhéneuc, Y., Pesant, G.: Boosting search based testing by using con-
straint based testing. In: Proc. SSBSE, LNCS, vol. 7515, pp. 213–227. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-0_16

60. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through
selective symbolic execution. In: Proc. NDSS. The Internet Society (2016).
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

61. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In:Proc. ISSTA, pp. 97–107.ACM(2004). http://doi.acm.org/10.1145/
1007512.1007526

62. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis
and predicate analysis (competition contribution). In: Proc. TACAS, LNCS,
vol. 7795, pp. 613–615. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36742-7_45

https://doi.org/10.1007/978-3-319-22969-0_12
https://doi.org/10.1145/2632362.2632372
http://doi.acm.org/10.1145/1138912.1138916
https://doi.org/10.1109/ICST.2014.39
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1002/stvr.294
http://doi.acm.org/10.1145/3213846.3213868
http://doi.acm.org/10.1145/3213846.3213868
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/978-3-642-33119-0_16
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://doi.acm.org/10.1145/1007512.1007526
http://doi.acm.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/978-3-642-36742-7_45

408 D. Beyer and M.-C. Jakobs

63. Xu, Z., Kim, Y., Kim, M., Rothermel, G.: A hybrid directed test suite augmentation
technique. In: Proc. ISSRE, pp. 150–159. IEEE (2011). https://doi.org/10.1109/
ISSRE.2011.21

64. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: Better
together! In: Proc. ISSTA, pp. 145–156. ACM (2006). http://doi.acm.org/10.1145/
1146238.1146255

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ISSRE.2011.21
https://doi.org/10.1109/ISSRE.2011.21
http://doi.acm.org/10.1145/1146238.1146255
http://doi.acm.org/10.1145/1146238.1146255
http://creativecommons.org/licenses/by/4.0/

Pardis: Priority Aware Test Case
Reduction

Golnaz Gharachorlu(B) and Nick Sumner

Simon Fraser University, Burnaby, BC, Canada
{ggharach,wsumner}@sfu.ca

Abstract. Test cases play an important role in testing and debugging
software. Smaller tests are easier to understand and use for these tasks.
Given a test that demonstrates a bug, test case reduction finds a smaller
variant of the test case that exhibits the same bug. Classically, one of the
challenges for test case reduction is that the process is slow, often taking
hours. For hierarchically structured inputs like source code, the state of
the art is Perses, a recent grammar aware and queue driven approach for
test case reduction. Perses traverses nodes in the abstract syntax tree
(AST) of a program (test case) based on a priority order and tries to
reduce them while preserving syntactic validity.

In this paper, we show that Perses’ reduction strategy suffers from pri-
ority inversion, where significant time may be spent trying to perform
reduction operations on lower priority portions of the AST. We show that
this adversely affects the reduction speed. We propose Pardis, a tech-
nique for priority aware test case reduction that avoids priority inversion.
We implemented Pardis and evaluated it on the same set of benchmarks
used in the Perses evaluation. Our results indicate that compared to
Perses, Pardis is able to reduce test cases 1.3x to 7.8x faster and with
46% to 80% fewer queries.

Keywords: Test case reduction · Automated debugging ·
Priority aware reduction

1 Introduction

Test case reduction is a technique that aids in testing and debugging software.
When an input for a program causes the program to exhibit a property of interest,
like a bug, finding a smaller input that also exhibits the property can help to
explain the behavior [1–3]. Given an input I ∈ I and an oracle ψ : I → B that
performs a test and returns true iff a property holds, test case reduction aims to
find a smaller input I ′ such that ψ(I ′) = true. Often, this problem is approached
through Delta Debugging (DD), a longstanding and effective algorithm for test
case reduction that essentially generalizes binary search [2]. However, for inputs
with significant structure, generic DD can perform poorly, requiring significant
time and not performing much reduction [3,4]. For compilers in particular, where

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 409–426, 2019.
https://doi.org/10.1007/978-3-030-16722-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_24&domain=pdf
http://orcid.org/0000-0002-9891-2811
http://orcid.org/0000-0001-8592-033X
https://doi.org/10.1007/978-3-030-16722-6_24

410 G. Gharachorlu and N. Sumner

the inputs must be valid programs, this has led to specialized techniques like
Hierarchical Delta Debugging [3,4], language specific reducers like C-Reduce [5],
and most recently to Syntax Guided Program Reduction as seen in Perses [6].

Syntax Guided Program Reduction (SGPR) is the present state of the art
for compiler targeted test case reduction. The intuition behind SGPR is that the
grammar defining the language of inputs eliminates many invalid sub-inputs from
the search space. For example, when an input must adhere to the C programming
language [7], removing the return type of a function declaration would not be
valid because the C grammar specifies that the return type is required. Such
syntactically invalid inputs are removed from the search space by SGPR.

Perses, a form of SGPR, takes as arguments not only a program p and oracle
ψ, but also the context free grammar G of valid inputs [6]. It transforms the
grammar so that removable parts of the input can be identified by the names
of the grammar rules used to parse them. This also normalizes the grammar so
that all removable components are expressed through quantifiers in an extended
context free grammar [8], i.e. optionality (?) and lists (*, +). This transformation
is illustrated in Fig. 1. Notice, for instance, that the recursive rule BAR denoting
a list is transformed (=⇒) into a Kleene-+ quantified list. Individual elements of
the list may be removed while preserving syntactic validity. Perses then parses
the input of interest into an abstract syntax tree (AST) and traverses the AST
while trying to (1) remove optional nodes and (2) perform DD to minimize
the children of nodes representing lists. The grammar transformations have the
benefit of making many syntactically correct removals easy and efficient to locate.

Fig. 1. Overview of Perses grammar transformations for SGPR.

Perses has significantly improved the speed of program reduction. However,
it still takes several hours to reduce some inputs. Consider the code in Listing 1.1
along with its AST in Fig. 3. This example is similar to a C program generated
by the compiler testing tool CSmith [9]. In this example, Perses first considers
the root node with ID 1 of the AST. Since the rule for this node ends in star,
it is a list node, and its children are the elements of the list. Thus, Perses applies
DD to the list of children for node 1 to minimize the number of children. When
such lists are long, significant time can be devoted to this task. We show in
Sect. 4 that this can lead to substantial stalls in reduction, where no progress
is made while a list is being processed. However, most of the children of this
node have low token weight, the number of tokens beneath a given node that
is denoted by w: in Fig. 3. Indeed, greater value would be found by focusing

Pardis: Priority Aware Test Case Reduction 411

on just one of its children, node 5 , which contains the majority of the input
beneath it. By spending greater effort up front on portions of the AST of lesser
value, Perses suffers from a form of priority inversion. Priority inversion occurs
when a low priority task is scheduled instead of a high priority task. In this case,
Perses focuses on removing low token weight nodes instead of high token weight
nodes. Indeed, Perses may even fail to remove elements that would enable better
reduction success overall. In this case, the declarations of foo, S, and d are used
within the code beneath node 5 . Thus, those uses need to be eliminated before
any of the declarations can be removed successfully. In practice, we find that
priority inversion has a significant impact on reduction time in SGPR.

To address priority inversion, we have developed priority aware reduction
strategies for program reduction. By focusing the reduction effort on the nodes
of the AST that cover the greatest number of tokens, we prioritize reduction
of the most complex parts of the input first. This has multiple important ben-
efits: (1) Dependencies between program elements are more likely to be broken
by eliminating the complex uses first. (2) Stalls in reduction from unsuccessful
rounds of DD can be mitigated. (3) By removing large portions of an input ear-
lier on, each oracle query to ψ can take less time because smaller inputs tend to
be faster to check. We have designed and evaluated a tool, Pardis, that makes
use of these techniques and found that it leads to consistent and significant
performance improvements over Perses on the Perses benchmarks [6].

In summary, this paper makes the following contributions:

1. Priority awareness. We identify priority inversion as a key problem facing
SGPR techniques and develop priority aware reduction strategies as a poten-
tial solution. Priority aware reduction strategies focus the reduction effort on
the complex portions of an input first, enabling earlier and thus faster test
case reduction (Sects. 3, 4.1).

2. Optimization. We identify redundancies in the reduction process when using
Perses’ transformed grammars and develop a solution to prune them from the
candidate search space (Sect. 3.2).

3. Significant performance improvement. We implemented our strategies
in a tool, Pardis, and evaluated it on the same benchmarks used by Perses.
Experimental results show that Pardis both removes more of the input earlier
on and is faster overall. Compared to Perses, Pardis reduces test cases 1.3x
to 7.8x faster and with 46% to 80% fewer oracle queries (Sect. 4.1).

2 Background and Motivation

Consider again the example in Fig. 3 and suppose that the oracle (ψ) checks that
this program p should print "Hello World!" on line 24 (marked with ∗). Thus,
the smallest subprogram for which ψ returns true is the main function with the
desired print statement.

To search for this smaller input inside the original input, Perses traverses the
AST using a priority queue ordered by the token weight. In each trial, the node

412 G. Gharachorlu and N. Sumner

Fig. 2. One round of removal trials in
Perses, Pardis and Pardis Hybrid for
the AST in Fig. 3. Numbers are node IDs.

Fig. 3. AST of the program in Listing 1.1. w denotes the token weight of each node.

with the maximum weight is removed from the work queue and traversed. In
our example, the queue starts out containing only the root of the AST, node 1 .
Perses performs specific reduction operations on different types of nodes during
traversal. For instance, on optional nodes, Perses tries to remove the optional
child node. For list nodes, Perses minimizes the list of children using DD. Any

Pardis: Priority Aware Test Case Reduction 413

remaining children of the traversed node are then added to the priority queue
in order to be traversed in the future.

Observe that in this example, Perses will first examine node 1 and remove
it from the queue. Because 1 is a list node, DD is applied to the children of 1 .
Different combinations of children are removed from 1 and the result is checked
by ψ to find a smaller input. First, all children are removed and ψ is checked.
After this fails, the first half of the children (2 and 3) are removed, but ψ
returns false again because this removes required declarations. Since removing
the second half of the children (4 and 5) also fails, the process continues
recursively. First DD tries shrinking the list by removing each individual child,
and next it tries only keeping each individual child. Ultimately none of the trials
succeed, so all children are added to the queue, and reduction continues with
node 5 . The intervening node 6 is not tested by SGPR because it is not
syntactically removable. The next node removed from the work queue is node
7 . This continues until the queue is empty. The precise trials exercised in this

process are illustrated in Fig. 2(a). Note that 16 steps elapse until a successful
trial occurs.

While the priorities used by Perses are controlled by the token weight, they
determine how the children of the traversed nodes are removed. Thus, any node
whose parent in the AST is a list is given the same priority as all other elements
in the list. This is because DD recursively tries to minimize the entire list until
no single element can be removed, regardless of the priorities of individual list
elements. As a result, Perses must employ DD on the entirety of the children of
1 even though it would be more beneficial to focus on just one child, node 5 .

Instead, Pardis more directly models the priorities. We note that in an
optional or list node, such as 1 , each child may be removed in a syntactically
valid fashion. We call such removable nodes nullable. When traversing a nullable
node in the AST, we can simply try directly to remove it, adding its children
if the removal fails. For instance, in the running example, we would visit 1
first. Because 1 cannot get removed, we would simply add its children to the
priority queue. Note that all children of 1 are nullable, but 5 has the highest
token weight. Thus, we next select 5 to traverse but removing 5 also fails.
From the given token weights, we next traverse 6 , which is syntactically not
removable, and then 7 , which we attempt to remove but is unsuccessful. Next
11 is visited and successfully removed. Removing 11 enables the removal of 4 ,
3 and 2 . Thus, they are removed in a single pass of the tree using Pardis,

whereas Perses would require multiple traversals of the AST to remove them.
This process continues until the desired output is achieved. As seen in Fig. 2(b),
just 4 steps elapse until the first successful trial removes node 11.

Note that in this example, Pardis is able to reduce to the desired output in
a single pass, while Perses requires multiple passes of the AST. In practice, all
program reduction techniques continue until a fixed point is reached, including
Pardis, however Pardis can achieve greater reduction in a single traversal of
the AST, accelerating convergence on the fixed point.

This priority aware approach can still have drawbacks, however. After focus-
ing on the highest priority nodes, there may be many lower priority nodes remain-
ing. For example, there are multiple remaining nodes of weight 7 in the tree after

414 G. Gharachorlu and N. Sumner

performing the reduction by Pardis as described above. We also show experi-
mentally that these lower priority nodes occur in practice in Sect. 5. The above
approach of Pardis considers each node one at a time, which can have poor per-
formance when reducing such long lists. In addition, we thus propose a hybrid
approach that still prioritizes nodes by maximum token weight but also uses a list
based reduction technique for spans of nodes that have the same token weight.
This hybrid approach is able to achieve the benefits of being priority aware while
still avoiding the cost of considering each node of the AST individually.

Section 3 presents the algorithms behind these techniques in detail.

3 Approach

Recall that the core of Pardis, similar to Perses, maintains a priority queue of
the nodes in an AST and traverses the nodes in order to process them. It also
makes use of Perses Normal Form, the result of the grammar transformations
that Perses introduced [6]. The key difference is that instead of using the token
weight of a parent node to determine when its nullable children may be removed,
Pardis identifies all nullable nodes (see Sect. 3.2) and uses their token weights
directly to prioritize the search. The core algorithm for this process is quite
straightforward and presented in Algorithm 1.

Line 1 of the algorithm constructs the priority queue (a max-heap), initial-
izing it with the root of the AST and using a parameterizable priority ρ. ρ is
simply a function that takes a node and returns its priority as a tuple. The
priority queue selects the element with a lexicographically maximal priority, so
ties on the first element of the priority tuple are broken by the second element
and so on. As seen in Fig. 4, for Pardis, ρPardis returns a pair of numbers, the
token weight of the node and the position of the node in a decreasing, right-to-
left, breadth first search. The specific breadth first order means that for an AST
with n nodes, bfsOrder(p.root)=n, the last child c of p.root has bfsOrder(c)=n-1,
and so on. Thus, if several nodes have the same token weight, the one highest in
the AST and furthest to the right is selected next. This ordering decreases the
chances of trying to remove a declaration before its uses [10].

Line 2 starts the core of the algorithm. While there are more nodes to explore
in the queue, the node with the next highest priority is considered. If it is nullable

Pardis: Priority Aware Test Case Reduction 415

and can be successfully removed, we remove it from the AST, otherwise we add
its children to the queue so that they will also be traversed.

While the algorithm is surprisingly simple, we have found it to perform sig-
nificantly better than the state of the art in practice. As we explore in Sect. 4.2,
this results from prioritizing the search toward those portions of the input where
reduction can have the greatest impact. To more closely compare with Perses,
consider a version of Perses that upon visiting a list or optional node only tries
removing each child of that node once1. This “one node at a time” variant of
Perses can also be implemented using Algorithm 1 by carefully choosing the pri-
ority formula ρ. Because Perses considers removing the children of the nodes it
traverses, it actually prioritizes the work queue using the token weight of the par-
ent rather than the token weight of nullable nodes being considered for removal.
This leads to the alternative prioritizer ρperses presented in Fig. 4. Observe that
all children of a list node receive the same token weight, that of the entire list.
This can inflate the priority of some nodes in the work queue and leads to poor
performance.

Fig. 4. Prioritizers used for Pardis, node at a time Perses, and Pardis Hybrid.

Like other program reduction algorithms [3,5,6,11,12], Algorithm 1 is used
to compute a fixed point. That is, in practice the algorithm is repeated until
no further reductions can be made. As in prior work, we omit this from our
presentation for clarity. In theory, this means that the worst case complexity of
the technique is O(n2) where n is the number of nodes in the AST. This arises
when only one leaf of the AST is removed in each pass through the algorithm.
In practice, most nodes are not syntactically nullable, and we show in Sect. 4.1
that performance of Pardis exceeds the state of the art.

In addition, while we focus on removing nodes of the AST, Perses also tries
to replace non-list and -optional nodes with compatible nodes in their subtrees.
We do not focus on this aspect of the algorithm. In practice, we found it to

1 We compare against both versions of Perses in Sect. 4.1.

416 G. Gharachorlu and N. Sumner

significantly hurt performance (see Sect. 4.1) and we consider efficient replace-
ment strategies to be orthogonal to and outside the scope of this work.

3.1 Pardis Hybrid

The initial priority aware technique from Algorithm 1 can also encounter perfor-
mance bottlenecks, however. The original motivation for using DD on lists of
children in the AST was that its best case behavior is O(log(n)) where n is the
number of children in the list. This is because it tries removing multiple children
at the same time. Processing one node at a time, however, requires that every
list element is considered individually, guaranteeing O(n) time for one round of
Algorithm 1. Priority aware reduction that proceeds one node at a time faces a
different set of inefficiencies that can still cause stalls in the reduction process.

Thus, we desire a means of removing multiple elements from lists at the
same time while still preserving priority awareness. In order to achieve this, we
developed Pardis Hybrid, as presented in Algorithm 2. This approach uses a
modified prioritizer as presented in Fig. 4 that first orders by token weight, then
by parent traversal order, then by node traversal order. The effect this has is
that all children of the same parent with the same weight are grouped together.
As a result, we can remove them from the priority queue together and perform
list based reduction (like DD) to more efficiently remove groups of elements in
a list that have the same priority (for instance, nodes 9 and 10 get removed as
a group in one trial using Pardis Hybrid as shown in Fig. 2(c)). Because the
search is still primarily directed by the token weights of the removed nodes, the
technique still fully respects the priorities of the removed nodes.

Similar to the previous approach, line 1 of Algorithm 2 starts by creating the
priority queue. Note that it specifically uses the prioritizer ρPardis Hybrid, which
groups children having the same token weight in the priority queue. As long as
there are more nodes to consider, line 3 takes all nodes from the queue with the
same weight and parent. If the weight of a node is unique, this simply returns
a list of length 1. Line 4 filters out non-nullable nodes from the trial, and line
5 just applies list based reduction to any nullable nodes. Lines 6 and 7 then
remove the eliminated nodes from the tree and add the children of remaining
nodes to the work queue. Again, this algorithm actually runs to a fixed point.

Pardis: Priority Aware Test Case Reduction 417

While the worst case behavior of DD is O(n2) [2], this can be improved
to O(n) by giving up hard guarantees on minimality [13]. Since this reduction
process is performed to a fixed point anyway, minimize on line 5 makes use of this
O(n) approach to list based reduction (OPDD) without losing 1-minimality. As
a result, the theoretical complexity of Pardis Hybrid is the same as Pardis.

3.2 Nullability Pruning

Finally, we observed that many oracle queries were simply unnecessary. Specif-
ically, recall that a node can be tagged nullable because it is an element of a
list or a child of an optional node, as previously defined by Perses grammar
transformations [6]. The complete algorithm for this tagging is in TagNullable of
Algorithm 3. However, for example, a list of one element could contain another
list of one element. In the AST, this appears as a chain of nodes, at least two of
which are nullable. Removing any one of these nodes removes the same tokens
from the AST. Thus, it is only necessary to select a single nullable node from
any chain of nodes, and the others can be disregarded.

We exploit this through an optimization called nullability pruning. We tra-
verse every chain of nodes in the AST, preserving the nullability of the highest
node in the chain and removing nullability from those below it. The complete
algorithm is presented in PruneNullable of Algorithm 3. In effect, it is just a
depth first search that removes redundant nullability from nodes along the way
instantaneously.

In practice, we find that this can statically (ahead of time) prune most of the
AST from the search space. Specifically, in the benchmarks we examine in Sect. 4,
we find that of 1,593,875 total nullable nodes, 17% are redundant optional nodes
and 44% are redundant list element nodes. We observe the impact of this pruning
on the actual reduction process in Sect. 4.1.

418 G. Gharachorlu and N. Sumner

4 Evaluation

We evaluate Pardis’s performance and examine the impact of priority inversion
on reduction by answering the following research questions:

• RQ1. How does Pardis perform compared to Perses in terms of reduction
time and speed, number of oracle queries, and size of the reduced test case?

• RQ2. Does priority inversion adversely affect the reduction efficiency? In
particular, does reduction require more work with a traversal order suffering
from priority inversion?

4.1 RQ1. Performance: Pardis vs. Perses

Experimental Set-Up. We evaluate Pardis on the set of C test cases used
in the evaluation of Perses, including the oracle scripts provided by authors of
Perses. While using these, we observed that they still allowed for some unde-
fined behavior [5,14], so we updated all oracles to reject test case variants with
undefined behavior. As a result, we were able to reproduce bugs for 14 out of
20 original test cases. The remaining benchmarks that could not reproduce their
original failures were elided for this study. Since the implementation of Perses’
components is not publicly available, we implemented the Perses grammar trans-
formations and reduction based on the algorithms available in the paper [6] using
the C++ bindings of ANTLR [15]. All of our implementations have been made
available2. Our experiments were conducted on an Intel Xeon E5-2630 CPU and
64 GB memory running Ubuntu.

Variants of Reduction Techniques. To better explain performance dif-
ferences, we benchmark several algorithms that each add one difference. All
approaches compute fixed points as previously described.

• Perses DD- The removal-based algorithm of Perses that applies DD on chil-
dren of list nodes [6].

• Perses OPDD- The same as Perses DD but using the O(n) reduction algo-
rithm of OPDD [13]. It is faster than Perses DD in practice.

• Perses N - The one node at a time Perses that does not apply DD on list
elements but removes them one by one using Perses’ parent oriented priorities.

• Pardis w/o Pruning- This uses the Pardis algorithm but does not apply
nullability pruning optimization proposed in Sect. 3.2.

• Pardis- Our proposed removal algorithm that also applies nullability
pruning.

• Pardis Hybrid- The hybrid version of Pardis with nullability pruning and
OPDD as its version of DD.

2 https://github.com/golnazgh/PARDIS.

https://github.com/golnazgh/PARDIS

Pardis: Priority Aware Test Case Reduction 419

Table 1. Original and reduced test case size and number of oracle queries.

Reduction Performance. We compare these techniques in terms of the number
of oracle queries (Q), reduction quality or size of the final reduced test case (R),
reduction time (T), and reduction speed or the average number of tokens removed
per second (E). Results are presented in Tables 1 and 2. The best values of queries,
time, and speed are highlighted for each test case. As can be seen, in all cases,
either Pardis or Pardis Hybrid outperform all variants of Perses. Compared to
the full removal-based Perses algorithm (Perses DD), our proposed algorithms
reduce 1.3x to 7.8x faster and with 46% to 80% fewer queries. The results
across variants suggest that these benefits arise from priority awareness and
nullability pruning. Due to fixed point computation, all approaches produce test

Table 2. Reduction time and speed for different variants of reduction techniques.

420 G. Gharachorlu and N. Sumner

cases from which no one token can be removed while satisfying ψ (1-minimal) [2],
but they can produce different final reduced test cases [2]. On average, Pardis
yields reduced test cases with 574 tokens compared to Perses DD with 609 tokens.

In addition, we graphed the reduction progress of each test case for the
different variants. Fig. 5 shows the percentage of remaining tokens over time
during reduction. For sake of space, we only include graphs for six of the test
cases. Note that the y-axis is log scaled. Pardis and Pardis Hybrid show much
faster convergence to a reduced test case compared to Perses variants. Recall that
the only factor differentiating Perses N from Pardis w/o Pruning is the order
in which the queue of nodes is traversed. Unlike Perses N, Pardis w/o Pruning
does not suffer from priority inversion and guides the reduction process based
on token weights of the nodes to remove. As can be seen, this advantage leads
to faster convergence to a reduced test case. We examine the impact of priority
inversion on reduction speed more rigorously in Sect. 4.2.

Replacement. As mentioned in Sect. 3, Perses also considers a replacement
strategy for non-list or -optional nodes in addition to removal for other nodes. For
instance, in Fig. 3, Perses will attempt to replace node 6 with node 14 because
they both match the same grammar rule (compound stmt). This replacement
fails since required declarations will get removed and ψ will return false.

Including replacement significantly increases the work done by reduction. For
completeness, we implemented Perses DD with replacement as described in their
paper [6] and defined a four-hour timeout for the reduction process. In 11 out
of 14 cases, Perses DD with replacement could not finish the reduction process
before reaching the timeout. In the remaining three, it generated reduced test
cases with the same size or slightly smaller while performing a significantly larger
number of oracle queries (more than 3× over Perses DD without replacement).

4.2 RQ2. The Impact of Priority Inversion

As shown in Fig. 5, avoiding priority inversion leads to faster convergence. One
explanation for this is that priority awareness may decrease the amount of work
required to remove a token (as seen in the motivating example). We explore
this in a case study on gcc-64990 with 148,931 tokens. The number of removal
attempts for a token is number of times a single token is considered for removal.
Removing any ancestor of a token in the AST will remove that token, so if a
first attempt fails, a deeper ancestor may be attempted. We compute this for
every token of the test case to get a sense of the work required for each token.
A better traversal order of the AST should cause fewer overall token removal
attempts. To measure only the impact of different traversal orders, we compare
Pardis w/o Pruning with Perses N. As described in Sect. 4.1, they follow the
exact same reduction rules and differ only in their traversal orders.

Figure 6 depicts histograms of the distributions of token removal attempts for
Pardis w/o Pruning and Perses N. For clearer visualization, we show only the
distributions for the number of attempts less than or equal to 20. We can see how
Perses N distribution is inclined toward a larger number of removal attempts,

Pardis: Priority Aware Test Case Reduction 421

Fig. 5. Converging to a reduced test case in six variants of reduction techniques.

an indicator of more work required in order to remove individual tokens. In
addition, we statically measure that the difference between the removal attempt
distributions is significant. We use a one sided Wilcoxon rank-sum test [16] to
determine whether the distribution of Perses N is indeed greater than that of
Pardis w/o Pruning. The p-value computed for our data was less than 2.2e−16

which strongly supports this observation.

422 G. Gharachorlu and N. Sumner

Fig. 6. Distributions of token removal attempts for Pardis w/o Pruning and
Perses N.

5 Discussion

Pardis Hybrid as a sweet spot in reducing test cases: As discussed earlier,
unlike Perses, Pardis Hybrid does not suffer from priority inversion because it
prioritizes the search primarily on the token weight of nodes being considered
for removal. Moreover, unlike Pardis, it does not strictly remove one node at a
time and allows the removal of nodes with the same weight and the same parent
as a group. Hence, it can be considered a sweet spot in reducing test cases. We
conduct two studies that can further explore this idea.

(1) Oracle Verification Time. The number of oracle queries is a common met-
ric used in similar studies to reason about reduction efficiency since it directly
impacts the total reduction time [2,3,6,13,17]. For instance, both Pardis and
Pardis Hybrid perform fewer oracle queries and take less time than Perses.
However, the number of oracle queries is not the only factor involved. The time
required to run each of these queries, or oracle verification time, also affects
the total running time. For instance, as presented in Sect. 4.1, Pardis has the
smallest number of oracle queries in 12 out of 14 test cases. However, in terms
of total reduction time and speed, Pardis Hybrid is the fastest in 8 out of 14
cases, even while performing more queries compared to Pardis in 6 of them.
Oracle verification time can depend on multiple elements such as the size and
complexity of the test case. Since Pardis Hybrid takes advantage of the possi-
bility to remove more than one node at a time, it may try variants of the test
case that are smaller and may be faster to verify compared to Pardis. To check
this hypothesis, we conducted a case study on gcc-64990 and recorded the run-
ning time of each oracle query during reduction. As shown in Tables 1 and 2,
Pardis reduces this test case in 932 s with 2,632 queries, and Pardis Hybrid

Pardis: Priority Aware Test Case Reduction 423

has a total reduction time of 916 s (16 s shorter) while performing 3,148 oracle
queries (516 more queries). Both techniques yield the same final test case.

Figure 7 depicts the distribution of oracle verification times in Pardis and
Pardis Hybrid, showing that Pardis has more queries that take longer com-
pared to Pardis Hybrid. The shorter queries in Pardis Hybrid directly
decrease its overall reduction time making it reduce test cases with fewer queries
compared to Perses and shorter queries compared to Pardis.

Fig. 7. Distribution of oracle verification
time for Pardis and Pardis Hybrid.

Fig. 8. Distribution of token weights of
nodes visited during Pardis reduction.

(2) Distribution of Token Weights. The motivation behind proposing
Pardis Hybrid as discussed in Sect. 3.1 was that if lists in a test case shrink
after removing nodes with large unique token weights, applying DD on list ele-
ments with the same weight can be beneficial. In fact, the more of the remaining
nodes that share token weights, the more beneficial using DD becomes since it
provides the opportunity to remove those nodes in just one trial. This can avoid
the possibly time-consuming process of visiting nodes one by one. To understand
the distribution of token weights in practice, we perform Pardis (the one node
at a time removal) on gcc-64990 and record token weights of nodes visited dur-
ing the removal process. Figure 8 shows the distribution with 5 as the median of
token weights of nodes visited during the reduction. The small median motivates
the use of Pardis Hybrid in practice since it indicates that half of the nodes
have one of only five different token weights and can benefit from the grouped
removals.
Syntactic vs Semantic Validity: Perses and Pardis discard syntactically
invalid variants of the test case during reduction. However, there are also seman-
tically invalid queries such as removing the declaration of a variable before remov-
ing its use. SGPR techniques cannot entirely avoid these queries since they guide
the reduction process based on the syntax of the grammar. However, the priority
order of Pardis can mitigate this problem. By prioritizing by token weight, it
is more likely to visit and remove uses before spending effort on declarations.
One reason for this is that a higher token weight tends to mean that there are
more uses beneath that node. For instance, in Fig. 3, uses of variables a, b and

424 G. Gharachorlu and N. Sumner

c are descendants of node 11 with nodes 8 , 9 and 10 as their declarations.
Pardis removes the uses by first removing 11 while Perses tries to remove the
declarations first due to priority inversion. Hence, Pardis prunes nodes in one
pass of the AST that Perses may require a fixed point mode to remove.
Threats to Validity: We evaluated Pardis on the same set of C test cases
used in the evaluation of Perses. The implementation of Perses’ grammar trans-
formations and reduction is not publicly available, so we reimplemented Perses
as described in its paper. Our implementation has been made available to pro-
vide a consistent platform for future work. However, the exact implementations,
environmental settings and the scripts to check the property of interest can
all impact the final results. For instance, the final sizes of the reduced test
cases reported for the original Perses’ implementation [6] are smaller than those
using our reimplemented version of Perses. As discussed in Sect. 4.1, this may be
because Perses’ oracles allowed for undefined behavior, which can lead through
smaller but invalid reduced test cases. To mitigate this problem, we made the
oracles strictly prevent undefined behavior for both Pardis and Perses. Note
that Pardis significantly outperforms both Perses’ original implementation [6]
and our reimplementation in terms of number of oracle queries.

While the techniques presented in Pardis are general in ability, our eval-
uation focuses on C in order to compare with Perses. Further investigation is
required to claim that the performance benefits extend to other languages.

6 Related Work

The closest work to this paper is Perses [6]. Unlike Pardis, it suffers from
priority inversion that adversely affects the reduction speed. Other generic
test case reduction techniques are Delta Debugging (DD) [2], its O(n) vari-
ant [13], and Berkeley Delta [18]. These face challenges when reducing hier-
archical inputs. Several techniques focus on reducing hierarchically structured
test cases [3,4,6,11,12,19,20]. Among these, only Perses is priority aware, in
spite of its priority inversion. Indeed, most techniques process the input level by
level. Like Pardis, Perses and Simp [20] are notable exceptions in that they can
search across levels when deciding how to reduce. However, Simp is specific to
SQL Queries. GTR [12] is notable in that it is trained when to apply different
reduction operations. Finally, C-Reduce [5] is a tool for reducing C/C++ test
cases that requires extensive domain-specific knowledge.

7 Conclusions

We have shown that the prior state of the art for test case reduction suffers from
priority inversion and that this causes a significant increase in reduction time.
We proposed priority aware reduction techniques, Pardis and Pardis Hybrid,
that focus reduction effort where they can have the most impact. These tech-
niques can speed reduction by 1.3× to 7.8× over the prior state of the art.

Pardis: Priority Aware Test Case Reduction 425

Acknowledgements. This research was partially supported by the Natural Sciences
and Engineering Research Council of Canada.

References

1. Clapp, L., Bastani, O., Anand, S., Aiken, A.: Minimizing GUI event traces. In:
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp.
422–434 (2016)

2. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

3. Misherghi, G., Su, Z.: HDD: hierarchical delta debugging. In: 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, 20–28 May
2006, pp. 142–151 (2006)

4. Misherghi, G.S.: Hierarchical delta debugging. Master’s thesis, University of Cali-
fornia Davis (2007, Approved)

5. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction
for C compiler bugs. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2012, Beijing, China, 11–16 June 2012, pp. 335–
346 (2012)

6. Sun, C., Li, Y., Zhang, Q., Gu, T., Su, Z.: Perses: syntax-guided program reduc-
tion. In: Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, 27 May–03 June 2018, pp. 361–371 (2018)

7. Kernighan, B.W., Ritchie, D.: The C Programming Language, 2nd edn. Prentice-
Hall, Upper Saddle River (1988)

8. Albert, J., Giammaressi, D., Wood, D.: Extended context-free grammars and nor-
mal form algorithms. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA
1998. LNCS, vol. 1660, pp. 1–12. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48057-9 1

9. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, 4–8
June 2011, pp. 283–294 (2011)

10. IBM Support, Test Case Reduction Techniques. http://www-01.ibm.com/support/
docview.wss?uid=swg21084174

11. Hodován, R., Kiss, Á.: Coarse hierarchical delta debugging. In: Proceedings of
the 33rd IEEE International Conference on Software Maintenance and Evolution,
ICSME 2017, Shanghai, China, 20–22 September 2017, pp. 194–203 (2017)

12. Herfert, S., Patra, J., Pradel, M.: Automatically reducing tree-structured test
inputs. In: Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, Urbana, IL, USA, 30 October–03 Novem-
ber 2017, pp. 861–871 (2017)

13. Gharachorlu, G., Sumner, N.: Avoiding the familiar to speed up test case reduc-
tion. In: 2018 IEEE International Conference on Software Quality, Reliability and
Security, QRS 2018, Lisbon, Portugal, 16–20 July 2018, pp. 426–437 (2018)

14. Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 336–345 (2015)

15. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf,
Raleigh (2013)

https://doi.org/10.1007/3-540-48057-9_1
https://doi.org/10.1007/3-540-48057-9_1
http://www-01.ibm.com/support/docview.wss?uid=swg21084174
http://www-01.ibm.com/support/docview.wss?uid=swg21084174

426 G. Gharachorlu and N. Sumner

16. Wild, C., Seber, G.: Chance Encounters: A First Course in Data Analysis and
Inference, 1st edn. Wiley, New York (1999)

17. Hodován, R., Kiss, Á.: Practical improvements to the minimizing delta debugging
algorithm. In: Proceedings of the 11th International Joint Conference on Software
Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, Lisbon, Portugal, 24–26
July 2016, pp. 241–248 (2016)

18. McPeak, S., Wilkerson, D.S., Goldsmith, S.: Delta, July 2003. http://delta.stage.
tigris.org/

19. Kiss, Á., Hodován, R., Gyimóthy, T.: HDDr: a recursive variant of the hierarchical
delta debugging algorithm. In: Proceedings of the 9th ACM SIGSOFT Interna-
tional Workshop on Automating TEST Case Design, Selection, and Evaluation,
A-TEST 2018, pp. 16–22 (2018)

20. Bruno, N.: Minimizing database repros using language grammars. In: Proceedings
of 13th International Conference on Extending Database Technology, EDBT 2010,
Lausanne, Switzerland, 22–26 March 2010, pp. 382–393, 2010

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://delta.stage.tigris.org/
http://delta.stage.tigris.org/
http://creativecommons.org/licenses/by/4.0/

Automatically Identifying Sufficient
Object Builders from Module APIs

Pablo Ponzio1,3(B), Valeria S. Bengolea1, Mariano Politano1,3,
Nazareno Aguirre1,3, and Marcelo F. Frias2,3

1 Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Argentina
{pponzio,vbengolea,mpolitano,naguirre}@dc.exa.unrc.edu.ar

2 Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
mfrias@itba.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),
Buenos Aires, Argentina

Abstract. Various approaches to software analysis (e.g. test input gen-
eration, software model checking) require engineers to (manually) iden-
tify a subset of a module’s methods in order to drive the analysis. Given a
module to be analyzed, engineers typically select a subset of its methods
to be considered as object builders to define a so-called driver, that will
be used to automatically build objects for analysis, e.g., combining them
non-deterministically, randomly, etc. This requires a careful inspection
of the module and its API, since both the relative exhaustiveness of the
analysis (leaving important methods out may systematically avoid gen-
erating different objects), as well as its efficiency (the different bounded
combinations of methods grows exponentially as the number of methods
increases), are affected by the selection.

We propose an approach for automatically selecting a set of builders
from a module’s API, based on an evolutionary algorithm that favors sets
of methods whose combinations lead to producing larger sets of objects.
The algorithm also takes into account other characteristics of these sets
of methods, trying to prioritize the selection of methods with less and
simpler parameters. As the implementation of this evolutionary mecha-
nism requires in principle handling and comparing large sets of objects,
and this grows very quickly both in terms of space and running times,
we employ an abstraction of sets of objects, called field extensions, that
involves using the field values of the objects in the set instead of the
actual objects, and enables us to effectively implement our mechanism.
An experimental assessment on a benchmark of stateful classes shows
that our approach can automatically identify sets of builders that are
sufficient (can be used to create any instance of the module) and mini-
mal (do not contain superfluous methods), in a reasonable time.

1 Introduction

As software is becoming more ubiquitous thanks to the rapid advances in tech-
nology, guaranteeing the functional correctness of software is more crucial than
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 427–444, 2019.
https://doi.org/10.1007/978-3-030-16722-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_25

428 P. Ponzio et al.

ever. Thus, a research area of growing importance is that of automated software
analysis, whose goal is to assist engineers, through the provision of tools for
automated analysis, in finding deficiencies both in software and software related
models. Automated test generation [1,11,13,17,24,25,28,29,32], software model
checking [9,34,35], and static analyses [6,16], among many others, are prominent
approaches in this line of research.

While these techniques involve in many cases fully automated analyses, their
application often requires some effort from the engineers. Software model check-
ers rely on the definition of drivers, programs that allow one to build inputs for
the code under analysis. Similarly, in parameterized-unit testing approaches [33]
a mechanism for building inputs is mandatory. Some symbolic execution based
tools require the so-called “object factories” to build tests cases involving inputs
with non-primitive types [32]. Automated test generation techniques based on
a module’s API can be used for building inputs for non-primitive types [11,24],
thus automating the above-mentioned input-generation issues. But they usually
present difficulties in generating a good set of diverse inputs for stateful, complex
structures. This is even more difficult for structures with rich APIs [26]. Many
authors have addressed this problem by defining different approaches for guiding
test generation, to create more diverse sets of inputs [7,26].

In this paper, we take a different approach to address the problem of gener-
ating better inputs for stateful modules. We observe that the selection of rou-
tines from a module API, to feed an input generation tool so as to build input
structures for program analysis (drivers for model checking, input structures
for parameterized unit tests, etc.), has a crucial impact on the analysis. We
call builders a set of routines B, drawn from a module’s M API, that can be
employed to create input structures in an automated program analysis for M
(e.g. a driver for model checking). Clearly, the higher the number of different
structures that can be created with B, the better the chances to find bugs in M .
As the number of instances of a software module is potentially infinite, and the
program analyses we target are also limited in the number of structures they can
employ, we limit ourselves to a bounded-exhaustive set of structures for M [4]
(e.g. all the instances of a linked list with up to k nodes). We denote this set by
BE(M,k). We say that a builders are sufficient if they can combined to build all
the instances in BE(M,k). Thus, sufficient builders are the best possible choice
for bug finding (in a bounded setting). Notice that B can contain superfluous
routines. A superfluous routine s is such that BE(M,k) can be built using rou-
tines in B − {s} (the simplest example being routines that never change the
state of their parameters). These routines provide no benefits in terms of bug
finding capabilities of the analysis. We call minimal a set of builders with no
superfluous routines. Minimality is important because providing an analysis tool
with superfluous routines often negatively impacts its efficiency (the number of
ways k routines can be combined usually increases exponentially with k).

Manually selecting sufficient and minimal builders is not an easy task: it
requires a thorough analysis of the available routines and a deep understanding
of the program semantics. This is especially hard for programs with rich APIs,

Automatically Identifying Sufficient Object Builders from Module APIs 429

where there are many routines and a lot of redundancy in the API (see Sect. 2).
We propose an automated approach for identifying such a sufficient and minimal
set of builders, based on an evolutionary algorithm that searches for a minimal
set of routines that is capable of generating the maximum number of different
(bounded) objects (i.e., BE(M,k)). Moreover, our evolutionary approach also
takes into account other characteristics of the builders, such as the number
and complexity of their parameters, so that “simpler” routines are favored in
the search. The goal is to choose builders that can be more easily and more
efficiently used by the subsequent program analyses.

The fitness value for a set of routines R is based on the number of bounded
structures that can be generated using combinations of these routines. To com-
pute the fitness we use a modified version of a random test case generation tool
(Randoop [24]) to generate as many bounded structures as possible from R,
allowing at most k of objects of each type in the structures (a parameter to our
algorithm). As sets of objects are very expensive to maintain and manipulate,
both in terms of space and running time, we employ an efficient abstraction of a
set of objects, called field extensions, defined as the set of field values appearing
in any of the objects in the set [25]. Thus, instead of counting the number of
different objects achieved by a candidate, the fitness function will compute the
field extensions as objects are generated, and return the number of field values in
the extensions. Intuitively, a higher number of field values in the field extensions
means that the builders can be used to construct a more diverse set of objects,
and therefore they should be preferred over other sets of builders.

We assess our approach experimentally on a benchmark of stateful Java
classes drawn from the literature. The results show that in our case studies our
approach identifies sets of routines that are sufficient and minimal, in a reason-
able time. We also assess the impact of our approach in an automated analysis,
namely, in the generation of test cases for parameterized tests. We compare how
the random test case generation tool Randoop behaves when fed with the full
module API, against providing the tool with only the builders identified by our
approach. The results indicate that in the latter case Randoop generated more
(and larger) objects, within a fixed time budget.

2 Motivating Example

In this section, we motivate our approach by means of a running example. The
Apache NodeCachingLinkedList (NCL for short) [36] consists of a main circular
doubly linked list, that holds the elements of the collection, and a secondary
singly linked list that acts as a cache for nodes that have been removed from
the main list. Nodes stored in the cache can be reused, and added again to
the main list when inserting elements in the main list. Thanks to its cache, in
applications where insertions and removals from the list are very frequent, NCL
can significantly reduce the overhead needed for memory allocation and garbage
collection of nodes. As an illustration, Fig. 1 shows the three NCL instances that
can be built with exactly two nodes.

430 P. Ponzio et al.

Fig. 1. Three NodeCachingLinkedList instances with exactly two nodes

Table 1. Apache’s NodeCachingLinkedList API

NCL has a very rich API, as shown in Table 1. However, for building any
feasible NCL object only a few methods from the API suffice. For example,
combinations of the methods in Fig. 1.1, when instantiated with appropriate
parameters, can be used to build any desired (finite) NCL object. Thus, the
methods therein are an example of a sufficient set of builders. Notice that, after
using the constructor, the main list of NCL can be populated just by using the
addFirst method. However, if we want to generate instances where the cache is
not empty, we can do so through the removeFirst method, as the sufficient set
of builders suggests. For most automated analyses, we would like to consider as
varying scenarios (inputs) as possible, hence the motivation to build sufficient
sets of builders. Furthermore, the builders in Fig. 1.1 are also minimal, since
the lack of any one of them would imply that some NCL’s objects cannot be
constructed anymore with the routines.

Automatically Identifying Sufficient Object Builders from Module APIs 431

(0) NodeCachingLinkedList ()
(7) addFirs t (Object)
(25) removeFirst ()

Figure 1.1. A sufficient set of builders for NCL

(3) add (Object)
(4) add (int , Object)
(7) addFirs t (Object)
(8) addLast (Object)

Figure 1.2. Add variants that can be used to populate NCL’s main list

Notice that there can be many sets of sufficient and minimal builders. For
example, we get sufficient and minimal builders by replacing addFirst in Fig. 1.1
with any of the other add variants shown in Fig. 1.2, as for any way of filling up
NCL’s main list with addFirst there exists a different way to build the same
object using another add variant (perhaps invoked with different parameters and
changing the execution order).

We also observe that the simpler the parameters of a routine, the eas-
ier to use the routine is for generating inputs in the context of a program
analysis. For instance, among the alternative add routines for NCL (Fig. 1.2),
add(int,Object) receives more parameters than the other three methods, there-
fore it is harder to generate parameters for it when generating inputs. This
makes the other three alternatives preferred over it. Thus, our approach takes
into account the number of parameters and their complexities for selecting the
best possible builders.

Many methods in Table 1 are marked as observers (column Obs?), meaning
that they do not modify the objects they operate on, nor they are useful for
creating non-primitive objects. Hence, observers are always superfluous, and
should never be included in a set of minimal builders. Our approach tries to
recognize them beforehand, and discards them from the search to significantly
reduce the search space.

To conclude this section we remark that, when fed with the whole NCL’s API,
our approach automatically identified the sufficient and minimal set of builders
for NCL shown in Fig. 1.1.

3 Background

3.1 Field Extensions

The idea behind field extensions [25] is to define a representation for a set of
objects that is smaller in size and easier to manipulate algorithmically. This
representation implies some loss of information, but for certain applications (like
the one in this paper) they are precise enough to be useful in practice [1,12,25,
26,29].

432 P. Ponzio et al.

head = (L0, null), (L0, N0)
cache = (L0, null), (L0, N1), (L0, N0)
next = (N0, N1), (N1, N0), (N0, N0), (N1, null)
prev = (N0, N1), (N0, N0), (N1, null), (N0, null)

Figure 1.3. Field extensions for the set of instances in Fig. 1

Given a set S of objects, its field extensions representation consist of a set
of pairs for each field f, such that (obj,val) belongs to the field extensions of f if
obj.f = val (i.e., the value of f for obj equals to val), for some object obj in S.
As an example, consider the instances displayed in Fig. 1. Its corresponding field
extensions are shown in Fig. 1.3. We omit the values stored in the nodes for the
sake of clarity. Notice that structure (a) in Fig. 1 can be built using only add
methods, whereas for (b) and (c) we have to also employ some kind of remove
operation, to move nodes from the main list to the cache. Notice that values
(L0, N0) and (L0, N1) for the cache field only appear in the field extensions when
the structures have nodes in the cache, like (b) and (c). In addition, prev fields of
nodes in the cache are always null, but prev fields can never be null in the main
list (due to its circularity). This means that field extensions for structures that
have non-empty caches have the potential of having a larger number of values
than those for structures with no caches.

It is important to canonicalize structures before computing field exten-
sions [12]. Canonicalization involves assigning unique identifiers N0, N1, ... to
each of its nodes during a traversal of the structure (we employ a breadth first
traversal), starting at the root. Nodes visited first receive smaller identifiers than
those visited afterwards during the traversal. Fields must be visited in a fixed
order. Note that structures in Fig. 1 are all in canonical breadth-first form.

3.2 Random Test Case Generation

Random test generation consists of randomly producing inputs in order to test
software [8,21,24]. Random input generation is straightforward when consider-
ing basic (numeric) data types, but producing inputs of other more complex
types, in particular instances of stateful classes, is less obvious and calls for a
more complex mechanism, other than just using random number generators. One
such mechanism, that has been implemented by various tools for random test
generation for object-oriented code, is based on randomly combining method
sequences, that produce inputs of different types [8,21,24]. The process associ-
ated with the Randoop tool [24] that we use here, works essentially as follows.
For every datatype, a set of sequences that produce inputs of such datatype, is
maintained. To start with, for basic data types, a set of initial values is consid-
ered, and for class types, only null is considered at first (these can be considered
test sequences of size one). The procedure to build a new test sequence starts
by randomly selecting a method m, among all methods in the software under
test. For example, one could randomly choose one of the methods for the NCL’s
API (Table 1), say add(Object). To actually build the test sequence, values for

Automatically Identifying Sufficient Object Builders from Module APIs 433

each of the parameters of the method m, of the corresponding types, have to
be provided. These are obtained by randomly selecting test sequences, from the
sets of sequences of the corresponding types, and sequentially composing them,
with method m as a last statement. As an example, say that a sequence con-
taining only the constructor of NCL is randomly selected, from the available
sequences for the NCL type, and for the parameter of add, an Integer with value
0 is randomly chosen. Combining all these sequences together results in:

NodeCachingLinkedList l = NodeCachingLinkedList () ;
l . add (new In t eg e r (0)) ;

This new sequence can now be stored for later use a as parameter for other
methods that operate on NCL objects.

This process is repeated until either a time budget is exhausted, or the desired
number of tests (set by the user) is generated. Randoop uses guidance from the
execution of tests to avoid generating illegal tests. We refer the interested reader
to the article introducing Randoop [24], for further details.

An important issue to remark here is that the execution of each test sequence
generated by Randoop produces a number of objects for the given type (NCL in
the example). We exploit this characteristic of Randoop to compute the fitness
function for a set of methods, although instead of storing actual objects we will
maintain field extensions, as we explain in more detail in Sect. 4.

4 An Evolutionary Algorithm for Identifying Sufficient
Object Builders

As mentioned before, to find a sufficient set of builders from a program API we
design a genetic algorithm, that we describe below. Genetic algorithms [14] are
non-exhaustive guided search algorithms, based on a hill climbing strategy [30].
The search space is composed of a generally very large set of individuals (the
candidates), and the search objective is to find an individual with sought-for
features. As opposed to classic search algorithms, genetic algorithms maintain
a set of individuals, called the population, and search progresses by iteratively
selecting a number of individuals in the population, using these for evolution
(building new individuals out of these), and leaving out some individuals of the
whole set (the “old” ones and the “new” ones). Selection of individuals for popu-
lation evolution, as well as individuals’ removal, are guided by a fitness function,
the heuristic function used to guide the search. This function applies to individ-
uals, and its result is generalizable to the population too (e.g., the fitness of the
population may be taken as the fitness of its “fittest” individual). This function
captures the features sought for in the search, and thus can be used as a halting
criterion (e.g., algorithm stops after finding an individual with fitness above a
certain threshold). Finally, individuals are often called chromosomes, and repre-
sented as vectors of genes that capture their characteristics. This idea is strongly
related to how new individuals are constructed: by representing candidates as

434 P. Ponzio et al.

vectors of independent characteristics, one can build new candidates by combin-
ing part of the characteristics of an individual with part of the characteristics of
another, or by arbitrarily changing a characteristic of a given individual. These
two forms of evolution are called crossover and mutation, respectively, and are
the traditional mechanism to build new candidates out of existing ones in genetic
algorithms. For further details, we refer the reader to [22].

4.1 Chromosome Representation

In the context of our problem, candidate solutions represent sets of methods
from the API of the module being analyzed. We then employ vectors of boolean
values as chromosome representation. Let n be the number of methods in the
API; the chromosomes in our algorithm will be vectors of size n. For any vector,
the i-th position is true if and only if the chromosome contains the i-th method
of the API. For example, there are 34 methods in the NCL’s API (Table 1),
and we enumerated them from 0 to 33. The sufficient set of builders in Fig. 1.1
is characterized by the vector with positions 0, 7 and 25 set to true, and the
remaining positions set to false. In this case, the whole search space consists of
the 234 possible chromosomes.

4.2 Fitness Function

Given a chromosome representing a set of methods M , our fitness function com-
putes an approximation of the number of bounded objects that can be built
using combinations of methods in M . Chromosomes with higher fitness values
are estimated to build more objects than those that have smaller fitness values.

Ideally, we would like to explore all the feasible objects within a small
bound k, that can be built using the methods of the current chromosome, i.e.,
BE(M,k). In other words, we need a bounded exhaustive generator for the set
of methods. The bound k represents the maximum number of objects that can
be created for each class (in Fig. 1, the number of nodes in the NCL objects
are bounded by k = 2), and the maximum number of primitive values available
(for example, integers from 0 to k − 1). For this purpose, we developed a proto-
type modifying the Randoop tool, discussed briefly in Sect. 3.2. First, we altered
Randoop to work with a fixed set of primitive values (integers from 0 to k − 1).
(Normally, Randoop would save primitive values that are returned by the execu-
tion of tests, and reuse these values in future tests.) Second, we make Randoop
drop sequences of methods that create objects with more than k objects (of any
type), to stop it from building objects larger than needed. To achieve this, we
canonicalize the objects generated by the execution of each sequence, and we
discard the sequence if some object has an index equal or larger than k. Third,
we extend Randoop with “global” field extensions, and when the execution of a
sequence terminates all the field values of the objects generated by the sequence
are added to the field extensions. For example, if Randoop had generated the
objects in Fig. 1, then the global field extensions would have the values shown
in Fig. 1.3. Our goal is that, given a bound k, when our modified version of

Automatically Identifying Sufficient Object Builders from Module APIs 435

(0) NodeCachingLinkedList ()
(7) addFirs t (Object)
(8) addLast (Object)
(25) removeFirst ()

Figure 1.4. A set of sufficient but not minimal builders for NCL

(0) NodeCachingLinkedList ()
(4) add (int , Object)
(23) remove (Object)

Figure 1.5. Sufficient and minimal builders for NCL with more complex parameters
than the ones in Fig. 1.1

Randoop terminates the global field extensions contain all the field values of the
bounded exhaustive set of structures with up to k nodes, BE(M,k). The result
of the fitness function for the chromosome is the number of field values in the
global extensions computed by the tool.

Our rationale for using bounded sets of objects is akin to the small scope
hypothesis for bug finding [2]: if one set of methods cannot be used to build
small objects that allow to differentiate it from another set of methods, then
it is unlikely that these two sets can be distinguished with larger objects. This
hypothesis held during our empirical evaluation across all our case studies.

We found that, besides being affected by chance, our tool rarely misses build-
ing objects that should add relevant values to the global extensions, when small
values for k are employed.

Choosing Better Sets of Builders. In this section, we propose two ways to
improve our evolutionary algorithm by tailoring the fitness function to obtain
better sets of builders. This is strongly motivated by the way builders are used
to build inputs in program analysis. On the one hand, if we have two sufficient
set of builders, the set with the smaller number of methods should always be
preferred. In this context, there is no reason to include superfluous methods in
builders. For example, the builders in Fig. 1.4 can be used to create the same
NCL objects as the builders in Fig. 1.1 of Sect. 2 (both sets are sufficient), but
they are not minimal since addLast is superfluous.

On the other hand, builders with more parameters, or more complex ones,
are more taxing on program analysis, as they require more effort to be ade-
quately instantiated. Thus, we define a simple criterion of parameter complexity
and adapt our fitness to favor builders with simpler parameters over the more
complex ones. For example, both sets of builders in Figs. 1.1 and 1.5 are sufficient
and minimal (with 3 routines each), but builders in Fig. 1.5 have more param-
eters that need to be instantiated. Comparing Figs. 1.1 and 1.5 we can observe
that addFirst has been replaced by add, which has an additional integer param-
eter, and that removeFirst was interchanged with remove, which possesses a

436 P. Ponzio et al.

non-primitive parameter of type Object. Following the criteria explained above,
we would like our algorithm to choose the set in Fig. 1.1 over that of Fig. 1.5.

Incorporating these ideas, the fitness function of our approach is defined by:

f (M) = #fieldExt (M)+
⎛
⎝w1 ∗

(
1 − #M

#MT

)
+ w2 ∗

(
1 − (#PP (M)+w3∗RP (M))

(#PP (MT)+w3∗RP (MT))

)

w1 + w2

⎞
⎠

For a chromosome representing a set M of methods, drawn from the whole set
of available methods of the API, MT , the most important part of the fitness for
M , is the number of values in the field extensions, #fieldExt(M), that can be
generated using our custom Randoop tool as explained in the previous section.
The summand on the right implements the ideas presented in this section. It
returns a real value in the interval [0, 1] that is useful to break ties for sets
of methods that generate field extensions with the same number of values. In
the dividend, the first summand penalizes sets with larger numbers of methods,
by computing the quotient of the number of methods in M to the number of
methods in MT , and subtracting the result to 1. Constant w1 (w1 ≥ 1) allows
us to increase/decrease the weight of this summand with respect to the other
summand. The second summand in the dividend penalizes sets of methods with
more complex parameters. Similarly to w1, constant w2 (w2 ≥ 1) serves the pur-
pose of increasing/decreasing the weight of this factor in the sum. Notice that
we sum up the parameters differently depending on their types: each primitive
parameter adds 1 (PP (M) is the number of primitive parameters in the methods
of M), and each reference parameter adds a constant w3 (w3 ≥ 1, RP (M) is the
number of reference-typed parameters in the methods of M), which allows us to
increase the weight of reference parameters with respect to primitive ones. Intu-
itively, the whole right-hand summand computes the ratio between the number
of parameters of M (with added weight for reference parameters) to the number
of (weighted) parameters for MT . The result is then subtracted from 1. Finally,
we divide by w1 + w2 to obtain the desired number in the interval [0, 1].

In our experimental assessment we set w1 = 2, w2 = 1, w3 = 2. These values
were good enough for our approach to produce sufficient and minimal sets of
builders in all our case studies.

It is important to remark that the presented criteria for choosing better
builders is based on the kind of program analyses we target (generation of tests
cases for parameterized tests, software model checking). New criteria can be
defined with other goals in mind, and our approach can be adapted to support
them by modifying the fitness function as we did in this section.

4.3 Overall Structure of the Genetic Algorithm

The previously described elements are the constituting parts of the genetic algo-
rithm implementing our approach. A pseudocode of the genetic algorithm is
shown in Algorithm 1. Notice that Algorithm 1 follows the general structure of

Automatically Identifying Sufficient Object Builders from Module APIs 437

Algorithm 1. Genetic Algorithm implementing our approach
1: pop ← chromosomes with exactly one true gene
2: for i = 1...numEvo do
3: pop ← keep the popSize fittest chromosomes from pop
4: for j = 1...cRate ∗ popSize do
5: c1, c2 ← select two random chromosomes from pop
6: new ← single point crossover c1, c2
7: add new to pop
8: end for
9: for c ∈ pop do

10: new ← mutate each gene of c with probability mRate
11: if new �= c then
12: add new to pop
13: end if
14: end for
15: end for
16: result ← fittest chromosome of pop

a genetic algorithm. The initial population is generated by producing all the
feasible chromosomes with only one available method (vectors with false in all
positions except one, set to true) (line 3). Then, it starts to iteratively evolve
the population (lines 4–15). At the beginning of each evolution iteration, the
algorithm discards some individuals to control population size, by keeping the
popSize fittest individuals of the current population and discarding the rest (line
5). Then, the algorithm performs single-point crossover on randomly selected
individuals (lines 6–10). Crossover is applied a number of times that is propor-
tional to the population size popSize, determined by the product of popSize
and the crossover rate parameter cRate (0 ≤ cRate ≤ 1). Then, the algorithm
mutates individuals (lines 11–15) by changing the value of each of its genes
with probability mRate (0 ≤ mRate ≤ 1). Any newly created individual by the
crossover and mutation operations are added to the population.

The algorithm stops after numEvo evolutions, with numEvo a parameter of
the algorithm. Notice that, we don’t have a target value for our fitness, since an
untried set of methods might produce a larger number of field extensions than
the algorithm has currently seen. Again, there is a compromise to be made for
choosing a good value for numEvo: a larger number increases the precision of
the algorithm but increases its running time, whereas a smaller number makes
it run faster but it might not result in the best set of builders.

As usual, we found a number for the parameters of our algorithm that seems
to work well in practice. In our experimental evaluation, we set numEvo =
20, popSize = 30, cRate = 0.35,mRate = 0.08 (the last two are the default for
the JGap library).

Most of Algorithm 1 is a default evolutionary implementation of the JGap
Java library [37]. Notice that, if we take away the complexity of the fitness func-
tion, our evolutionary algorithm is rather standard, so it is not surprising that

438 P. Ponzio et al.

an existing implementation works well for our purposes. Of course, improve-
ments to the evolutionary algorithm, and fine tuning for its parameters (e.g.,
crossover/mutation rate) might yield faster execution times.

We also implemented a simple multi-threaded version of our approach, that
helps improving its performance. Basically, at each iteration we make t copies of
the current population, where t is the number of available threads, and evolve
each of the population replicas independently of the others. After all the threads
have finished, we keep the 100/t fittest individuals of the population evolved by
each thread, and use them to build the population for the next iteration of the
algorithm.

4.4 Reducing the Search Space by Observers Classification

We say a routine is an observer if it never modifies the parameters it takes,
and never generates a non-primitive value as a result of its execution. Column
Obs? in Table 1 (Sect. 2) indicates whether each NCL method is an observer
or not. Clearly, an observer cannot be used to modify nor build new objects,
and therefore can never belong to a minimal set of builders. Hence, if we can
classify them correctly beforehand, we can remove the observers from the search
to significantly reduce the search space, without losing precision. For example, in
the NCL API (Table 1) there are 13 observers out of 34 methods, so by removing
observers we prune more than one third of the search space.

To detect observers we run another customized Randoop version before our
evolutionary algorithm. This time, we check for each method whether it modifies
its inputs at each test sequence generated by Randoop involving the method,
by canonicalizing the objects before and after execution of the method, and
checking if the field values of the objects change after execution. If this is the
case, the method is marked as a builder (not an observer). For return values, if
in any test sequence generated by Randoop the method returns a non-primitive
value, then we mark it as a builder as well. We run this custom Randoop until
it generates a large number of scenarios for each method. Ten to twenty seconds
was enough for our case studies. At the end of the Randoop execution, methods
not marked as builders are considered observers and discarded before invoking
the evolutionary algorithm.

Other approaches exist for the detection of pure methods [15,31] (similar to
our observers). Note that our evolutionary algorithm is not dependent on the
method classification algorithm, so any of them could be useful for our purposes.

5 Experimental Results

In this section, we experimentally assess our approach. The evaluation is based on
a benchmark of data structure implementations, including: NCL from Apache Col-
lections [36]; BinaryTree, BinomialHeap, FibonacciHeap, RedBlackTree taken
from [35]; UnionFind, an implementation of disjoint sets taken from JGrapht
[38]. We also evaluate our technique on components of real software projects

Automatically Identifying Sufficient Object Builders from Module APIs 439

such as Lits from the implementation of Sat4j [3], taken from [20], which con-
sists of a variable store that monitors when a guess was last made about a value
of a variable, and whether listeners are watching the state of that variable; and
Scheduler, an implementation of a process scheduler taken from [10]. All the
experiments were run on 3.4 GHz quad-core Intel Core i7-6700 machines with
8 GB of RAM, running GNU/Linux.

The evaluation consists of two parts. First, we ran our approach (Algorithm 1)
on the whole module APIs of the aforementioned classes, to compute sets of
builders for each case study. The goal is to assess how good are the builders
identified, and the time it takes our approach to compute them. For each case
study we ran our approach 5 times. The results are shown in Table 2, includ-
ing the number of routines in the whole API (#API), a sample of identified
builders (some methods might be interchanged in different runs, e.g., addFirst
and addLast in NCL), and the average running time (in seconds) of the 5 runs.
We manually inspected the results, and found that the automatically identi-
fied sets of builders were in all cases sufficient (all the feasible objects for the
structure can be constructed using the builders) and minimal (do not contain
superfluous methods). The approach is reasonably efficient, taking about 30 min
in the worst case.

The second part of the evaluation regards how helpful are the identified
builders in the context of a program analysis, namely, the automated generation
of test cases. These objects might be used, for example, as inputs in parameter-
ized unit tests. For the case studies that provide mechanisms to measure the size
of objects and to compare objects by equality (i.e., the size and equals methods
of data structures), we generated tests with Randoop using all the methods avail-
able in the API (API), and then we generated tests with Randoop using only the
builder methods (BLD) identified by our approach in the previous experiment
(Table 2). We then compare the number of different objects (No. of Objs.), and
the size of the largest object (Max Obj. Size) created by the tests generated from
the API, against the tests generated using methods from BLD only. We set three
different test generation budgets: 60, 120 and 180 seconds (Budget). The results
are summarized in Table 3. In addition, we consider another approach, API+,
that involves the generation of tests using the API for a budget that encom-
passes the test generation budget (Budget) plus the time it takes our approach
to identify builders for the corresponding case study. The results show that in
the same test budget BLD generates in average 1280% more objects than API.
Furthermore, when builders identification time is added to the test generation
budget for API (API+), BLD can generate 568% more objects in average (w.r.t
API+). In all cases, BLD also generates significantly larger objects than API and
API+. In view of these results, it is clear that automated builders identification
pays off for the automated generation of structures for stateful classes.

The experiments can be reproduced by following the instructions in the paper
website [27]. Furthermore, in the site we experimentally show that the builders
identified by our approach can be employed to build efficient drivers for software
model checking. We don’t show these results here due to space constraints.

440 P. Ponzio et al.

Table 2. Builders computation
results

Sample Builders Time

NCL NCLinkedList(int)

addFirst(Object) 1744

#API: 34 removeFirst()

UFind UnionFind()

addElement(int) 215

#API: 9 union(int,int)

FHeap FibonacciHeap()

insert(int) 72

#API: 7 removeMin()

RBT TreeMap()

#API: 8 put(int) 73

BTree BinTree()

#API: 7 add(int) 73

BHeap BinomialHeap()

#API: 10 insert(int) 121

Lits Lits()

#API: 26 getFromPool(int)

forgets(int) 1229

setLevel(int,int)

setReason(int)

Sched. Schedule()

#API: 10 addProcess(int)

blockProcess() 377

quantumExpire()

Table 3. Assessment of using the identified
builders (BLD) vs the whole API (API) in test case
generation. API+ involves test case generation with
the whole API, with budget = (Budget + builders
computation time)

Budget Max Obj. Size No. of Objs.

API BLD API+ API BLD API+

NCL 60 8 16 11 1442 42021 13119

#API: 34 120 8 18 11 2423 69017 13247

#BLD: 3 180 9 18 11 3166 91647 13505

UFind 60 8 13 9 3388 34250 8351

#API: 9 120 9 13 9 5180 56418 8574

#BLD: 3 180 9 13 9 6695 74425 9387

FHeap 60 11 15 12 6989 32639 11499

#API: 7 120 12 17 13 11447 54264 17202

#BLD: 3 180 12 17 13 15344 72413 20775

RBT 60 8 15 8 1812 23034 3041

#API: 8 120 8 15 8 2678 35635 3698

#BLD: 2 180 8 15 8 3358 44807 3940

BTree 60 8 15 8 3600 24908 6019

#API: 7 120 8 15 8 5471 39239 7387

#BLD: 2 180 8 15 9 6975 50671 9247

BHeap 60 9 26 10 3874 65915 8076

#API: 10 120 10 29 10 5970 111402 9708

#BLD: 2 180 10 29 11 7638 147260 10606

6 Related Work

As mentioned throughout the paper, the problem of identifying sufficient builders
is recurrent in various program analyses, including but not limited to software
model checking and test generation. In works like [18,23], in the context of
software model checking, and [5,24,32,33], in the context of automated test
generation, and just to cite a few, the problem of identifying part of an API and
provide it for analysis is present. Typically the problem is dealt with manually.

The use of search-based techniques to solve challenging software engineering
problems is an increasingly popular strategy, which has been applied successfully
to a number of problems, including test input generation [11], program repair
[19], and many others. As far as we are aware of, this is a novel application of
evolutionary computation in software engineering. An approach that tackles a
related, but different, problem, is that associated with the SUSHI tool [5]. The
aim with SUSHI is to feed a genetic algorithm with a path condition, produced
by a symbolic execution engine, so that an input satisfying the provided path
condition can be reproduced using a module’s API. This approach assumes that
the API (or the subset of relevant methods) is provided, as opposed to our work,
that precisely tackles the provision of the restricted API.

Our technique requires a mechanism for identifying observers, which we
have solved within the work in the paper, resorting to random test generation,

Automatically Identifying Sufficient Object Builders from Module APIs 441

and instrumentation for state monitoring. Approaches to the identification of
observers, or more precisely pure methods, exist in the literature [15,31]. Regard-
ing these lines of work, notice that the focus of our evolutionary algorithm is not
the identification of observers, but the construction of minimal and sufficient set
of builders. Moreover, our approach is in fact independent of the mechanism used
to identify observers/pure methods, and thus could be combined with the works
just cited (i.e., replacing our random testing based approach by an alternative
one).

7 Conclusions

In this work, we presented an evolutionary algorithm for automatically detecting
sets of builders from a module’s API. We assessed our algorithm over several case
studies from the literature, and found that it is capable of precisely identifying
sets of builders that are sufficient and minimal, within reasonable running times.
To the best of our knowledge, this is the first work that addresses this problem,
which is typically dealt with manually.

We also showed preliminary results indicating that our approach can be
exploited by test case generation tools to yield larger and more diverse objects.
Other techniques, like software model checking, can benefit as well by using the
identified set of builders to automatically construct efficient drivers. More exper-
imentation needs to be done, but given the results in this paper our approach
looks very promising.

One of the biggest challenges of this work was the construction of a tool to
allow us to generate all the bounded structures, for a given maximum number k
of objects, from the methods of the program API. The proposed solution worked
well enough for our case studies, but avoiding randomness in the process would
be desirable. Using bounded exhaustive generation tools rather than random
generation would better fit our purposes [4], but unfortunately none of the tools
for bounded exhaustive test generation produce inputs from a module’s API.
We believe that a promising research direction, that we plan to further explore
in future work, is to adapt our presented approach for bounded exhaustive test
generation.

Some aspects of our genetic algorithm can be further improved. For instance,
a more powerful classification for argument types, in the prioritization of meth-
ods according to their complexities, can be defined. Moreover, one may also
incorporate other dimensions, such as code complexity, to favor simpler meth-
ods. We will explore this direction as future work. Also, our genetic algorithm
implementation is, for most parts, a default evolutionary implementation of the
JGap Java library [37]. Of course, improvements to the evolutionary algorithm,
and fine tuning for its parameters (e.g., crossover/mutation rate) might yield
faster execution times, so we plan to investigate this further in future work.

442 P. Ponzio et al.

References

1. Abad, P., et al.: Improving test generation under rich contracts by tight bounds
and incremental SAT solving. In: Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg, 18–22
March 2013, pp. 21–30 (2013)

2. Andoni, A., Daniliuc, D., Khurshid, S.: Evaluating the small scope hypothesis.
Technical report, MIT Laboratory for Computer Science (2003)

3. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2, system description. J. Satisf.
Boolean Model. Comput. 7, 59–64 (2010)

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: Proceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2002, pp. 123–133. ACM, New York
(2002)

5. Braione, P., Denaro, G., Mattavelli, A., Pezzè, M.: SUSHI: a test generator for
programs with complex structured inputs. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, 27 May–03 June 2018, pp. 21–24. ACM (2018)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

7. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: adaptive random testing for
object-oriented software. In: Proceedings of the 30th International Conference on
Software Engineering, ICSE 2008, pp. 71–80. ACM, New York (2008)

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2000, pp. 268–279. ACM, New
York(2000)

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empirical Softw.
Eng. 10(4), 405–435 (2005)

11. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 416–419. ACM, New York (2011)

12. Galeotti, J.P., Rosner, N., López Pombo, C.G., Frias, M.F.: Analysis of invariants
for efficient bounded verification. In: Proceedings of the 19th International Sympo-
sium on Software Testing and Analysis, ISSTA 2010, pp. 25–36. ACM, New York
(2010)

13. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.:
Test generation through programming in UDITA. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE
2010, pp. 225–234. ACM, New York (2010)

14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

15. Huang, W., Milanova, A., Dietl, W., Ernst, M.D.: Reim & ReImInfer: checking and
inference of reference immutability and method purity. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA 2012, pp. 879–896. ACM, New York (2012)

https://doi.org/10.1007/978-3-540-24730-2_15

Automatically Identifying Sufficient Object Builders from Module APIs 443

16. Itzhaky, S., Bjørner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape
analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35–51.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 3

17. Khalek, S.A., Yang, G., Zhang, L., Marinov, D., Khurshid, S.: TestEra: a tool for
testing Java programs using alloy specifications. In: Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2011, pp. 608–611. IEEE Computer Society, Washington, DC (2011)

18. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 40

19. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

20. Loncaric, C., Ernst, M.D., Torlak, E.: Generalized data structure synthesis. In:
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, 27 May–03 June 2018, pp. 958–968 (2018)

21. Meyer, B., Ciupa, I., Leitner, A., Liu, L.L.: Automatic testing of object-oriented
software. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack,
H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 114–129. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-69507-3 9

22. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

23. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software
property checking via static analysis and testing. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 17

24. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java. In:
Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications Companion, OOPSLA 2007, pp. 815–816. ACM,
New York (2007)

25. Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing. In: Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, pp. 908–919. ACM, New York (2016)

26. Ponzio, P., Bengolea, V., Brida, S.G., Scilingo, G., Aguirre, N., Frias, M.: On the
effect of object redundancy elimination in randomly testing collection classes. In:
Proceedings of the 11th International Workshop on Search-Based Software Testing,
SBST 2018, pp. 67–70. ACM, New York (2018)

27. Ponzio, P., Bengolea, V.S., Politano, M., Aguirre, N., Frias, M.F.: Replication
package of the article: automatically identifying sufficient object builders from
module APIs. https://sites.google.com/view/objectbuildergeneration/

28. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of Java byte-
code. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, ASE 2010, pp. 179–180. ACM, New York (2010)

29. Rosner, N., Geldenhuys, J., Aguirre, N., Visser, W., Frias, M.F.: BLISS: improved
symbolic execution by bounded lazy initialization with SAT support. IEEE Trans.
Softw. Eng. 41(7), 639–660 (2015)

30. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall Press, Upper Saddle River (2009)

31. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 14

https://doi.org/10.1007/978-3-319-08867-9_3
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/978-3-540-69507-3_9
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-642-00768-2_17
https://sites.google.com/view/objectbuildergeneration/
https://doi.org/10.1007/978-3-540-30579-8_14

444 P. Ponzio et al.

32. Tillmann, N., De Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

33. Tillmann, N., de Halleux, J., Xie, T.: Parameterized unit testing: theory and prac-
tice. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE 2010, pp. 483–484. ACM, New York (2010)

34. Visser, W., Mehlitz, P.: Model checking programs with Java PathFinder. In: Gode-
froid, P. (ed.) SPIN 2005. LNCS, vol. 3639, p. 27. Springer, Heidelberg (2005).
https://doi.org/10.1007/11537328 5

35. Visser, W., Pǎsǎreanu, C.S., Pelánek, R.: Test input generation for Java containers
using state matching. In: Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ISSTA 2006, pp. 37–48. ACM, New York (2006)

36. Website of the Apache Collections library. https://commons.apache.org/proper/
commons-collections/

37. Website of the Java Genetic Algorithms Package. http://jgap.sourceforge.net
38. Website of the JGrapht library. https://jgrapht.org/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/11537328_5
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
http://jgap.sourceforge.net
https://jgrapht.org/
http://creativecommons.org/licenses/by/4.0/

Author Index

Aguirre, Nazareno 427
Arora, Himanshu 228

Bengolea, Valeria S. 427
Beyer, Dirk 389
Bezirgiannis, Nikolaos 332
Boronat, Artur 134
Bravetti, Mario 351

Chechik, Marsha 3
Chen, Xiaohong 61
Cleophas, Loek 25

de Boer, Frank 332
Diab, Moustapha 264
Dimovski, Aleksandar S. 192
Diskin, Zinovy 264
Dubrulle, Paul 369
Dumas, Marlon 306

Emre, Mehmet 247
Eniser, Hasan Ferit 171

Frias, Marcelo F. 427
Fritsche, Lars 116

García-Bañuelos, Luciano 306
Gaston, Christophe 369
Gerasimou, Simos 171
Gharachorlu, Golnaz 409
Giallorenzo, Saverio 351
Giese, Holger 282

Hardekopf, Ben 247
Hennicker, Rolf 79
Huang, Li 210

Jakobs, Marie-Christine 389
Johnsen, Einar Broch 332
Jordan, Alexander 43

Kang, Eun-Young 210
Knapp, Alexander 79

Kokaly, Sahar 3
Komondoor, Raghavan 228
Kosiol, Jens 116
Kosmatov, Nikolai 369
Kourie, Derrick 25

Lambers, Leen 151
Lapitre, Arnault 369
Laud, Peeter 306
Lawford, Mark 264
Legay, Axel 192
Louise, Stéphane 369

Madeira, Alexandre 79
Mallet, Frédéric 61
Matulevičius, Raimundas 306
Mauro, Jacopo 351
Maximova, Maria 282
Milo, Curtis 264

Naujokat, Stefan 101
Nichols, Lawton 247

Ogata, Kazuhiro 299
Orejas, Fernando 151

Pankova, Alisa 306
Pantelic, Vera 264
Park, Joonyoung 43
Peng, Chao 315
Pettai, Martin 306
Politano, Mariano 427
Ponzio, Pablo 427
Pullonen, Pille 306
Pun, Ka I 332

Qian, Jiaqi 299

Rahimi, Mona 3
Rajan, Ajitha 315
Ramalingam, G. 228
Runge, Tobias 25
Ryu, Sukyoung 43

Sakizloglou, Lucas 282
Salay, Rick 3
Schaefer, Ina 25
Schneider, Sven 151, 282
Schürr, Andy 116
Selim, Gehan 264
Sen, Alper 171
Song, Fu 61
Steffen, Bernhard 101
Sumner, Nick 409

Taentzer, Gabriele 116
Talevi, Iacopo 351
Tapia Tarifa, S. Lizeth 332
Thüm, Thomas 25
Tom, Jake 306

Toots, Aivo 306
Tuuling, Reedik 306

Viger, Torin 3

Wang, Yi 299
Wasowski, Andrzej 192
Watson, Bruce W. 25
Weslati, Feisel 264
Wynn-Williams, Stephen 264

Yerokhin, Maksym 306

Zavattaro, Gianluigi 351
Zhang, Min 61, 299
Zweihoff, Philip 101

446 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	FASE Invited Talk
	Software Assurance in an Uncertain World
	1 Introduction
	2 Background on Assurance Case Modeling Notation
	3 Sources of Uncertainty in Software Development
	4 Formality in Assurance Cases
	5 Combining Evidence
	6 Assurance Cases for ML Systems
	7 Summary and Future Outlook
	References

	Software Verification I
	Tool Support for Correctness-by-Construction
	1 Introduction
	2 Foundations of Correctness-by-Construction
	3 Correctness-by-Construction by Example
	4 Tool Support in CorC
	4.1 Graphical Editor
	4.2 Textual Editor
	4.3 Verification of CorC Programs
	4.4 Implementation as Eclipse Plugin

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Automatic Modeling of Opaque Code for JavaScript Static Analysis
	1 Introduction
	2 Modeling via Sample-Run-Abstract
	3 Combinatorial Sampling Strategy
	3.1 Abstract Domains for Primitive Values
	3.2 Abstract Domains for Object Values

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Answers to Research Questions
	5.3 Limitations

	6 Related Work
	7 Conclusion
	References

	SMT-Based Bounded Schedulability Analysis of the Clock Constraint Specification Language
	1 Introduction
	2 The Clock Constraint Specification Language
	2.1 Logical Clock, History and Schedule
	2.2 Syntax and Semantics of CCSL

	3 Scheduling Problem of CCSL
	3.1 Schedulability
	3.2 Bounded Scheduling Problem

	4 Decision Procedure for the Scheduling Problem
	4.1 Transformation from CCSL into SMT
	4.2 Decision Procedure for the Bounded Scheduling Problem
	4.3 A Sound Algorithm for the Scheduling Problem

	5 Case Study and Performance Evaluation
	5.1 Schedulability of an Interlocking System
	5.2 Automatic Proof of CCSL Algebraic Properties
	5.3 Performance Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	A Hybrid Dynamic Logic for Event/Data-Based Systems
	1 Introduction
	2 A Hybrid Dynamic Logic for Event/Data Systems
	2.1 Data States
	2.2 E"3223379 -Logic
	2.3 Bisimulation and Invariance

	3 Specifications of Event/Data Systems
	3.1 Axiomatic Specifications
	3.2 Operational Specifications
	3.3 Expressiveness of E"3223379 -Logic

	4 Constructor Implementations
	5 Conclusions
	References

	Model-Driven Development and Model Transformation
	Pyro: Generating Domain-Specific Collaborative Online Modeling Environments
	1 Introduction
	2 DSL Development with Cinco
	3 Architecture
	3.1 Backend
	3.2 Frontend

	4 Collaborative Editing
	4.1 Simultaneous Synchronization Mechanism
	4.2 Distributed Command Pattern

	5 Conclusion and Perspectives
	References

	Efficient Model Synchronization by Automatically Constructed Repair Processes
	1 Introduction
	2 Introductory Example
	3 Preliminaries
	4 Constructing Language-Preserving Repair Rules
	4.1 Operationalization of Generalized TGG Rules
	4.2 Language-Preserving Short-Cut Rules

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	Offline Delta-Driven Model Transformation with Dependency Injection
	1 Introduction
	2 Model Transformation: A Running Example
	3 Delta-Driven Model Transformations
	3.1 Dependency Injection
	3.2 Representable Deltas
	3.3 Impact Analysis
	3.4 Change Propagation

	4 Performance Analysis
	5 Related Work
	6 Concluding Remarks
	References

	A Logic-Based Incremental Approach to Graph Repair
	1 Introduction
	2 Preliminaries on Graph Conditions
	3 Graph Updates and Repairs
	4 State-Based Repair
	5 Satisfaction Trees
	6 Delta-Based Repair
	7 Related Work
	8 Conclusion and Future Work
	References

	Software Verification II
	DeepFault: Fault Localization for Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Software Fault Localization

	3 DeepFault
	3.1 Neuron Spectrum Analysis
	3.2 Suspicious Neurons Identification
	3.3 Suspiciousness-Guided Input Synthesis

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Research Questions
	5.3 Results and Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Variability Abstraction and Refinement for Game-Based Lifted Model Checking of Full CTL
	1 Introduction
	2 Background
	3 Abstraction of FTSs
	4 Game-Based Abstract Lifted Model Checking
	5 Incremental Refinement Framework
	6 Evaluation
	7 Related Work and Conclusion
	References

	Formal Verification of Safety & Security Related Timing Constraints for a Cooperative Automotive System
	1 Introduction
	2 Preliminary
	2.1 Probabilistic Extension of Clock Constraint Specification Language (PrCCSL)
	2.2 UPPAAL-SMC

	3 Running Example
	4 Modeling and Refinement of CAS in UPPAAL-SMC
	4.1 Modeling of RAISE Protocol in UPPAAL-SMC
	4.2 Modeling of Attacks in UPPAAL-SMC

	5 Representation of S/S Related Timing Constraints in UPPAAL-SMC
	5.1 Specifications of S/S Related Timing Constraints in PrCCSL
	5.2 Translation of PrCCSL into STA

	6 Experiment
	7 Related Work
	8 Conclusion
	References

	Checking Observational Purity of Procedures
	1 Introduction
	2 Language Syntax
	3 A Semantic Definition of Purity
	4 Checking Purity Using a Theorem Prover
	4.1 Verification Condition Generation
	4.2 Approach 1: Existential Approach
	4.3 Approach 2: Impurity Witness Approach

	5 Generating the Invariant
	6 Evaluation
	7 Related Work
	References

	Software Evolution and Requirements Engineering
	Structural and Nominal Cross-Language Clone Detection
	1 Introduction
	2 Background and Related Work
	2.1 What Exactly Is a Cross-Language Clone?
	2.2 Structural Program Similarity
	2.3 Nominal Program Similarity
	2.4 Hybrid Program Similarity
	2.5 CLCMiner

	3 Overview
	4 Structural Clone Detection
	4.1 Precedence Woes
	4.2 Abstracting Parse Tree Nonterminals
	4.3 Sequence Alignment for Clone Detection

	5 Hybrid Algorithm
	5.1 Our Nominal Algorithm
	5.2 Full Algorithm

	6 Evaluation
	6.1 Implementation and Environment
	6.2 Methodology
	6.3 Results

	7 Conclusion
	References

	SL2SF: Refactoring Simulink to Stateflow
	1 Introduction
	2 Background: Modelling Systems and Their Combinations
	2.1 Mealy Machines: Modelling Stateful Systems
	2.2 Tabular Expressions: Representing Conditional Behaviours
	2.3 Categorical Framework: Combining Systems

	3 Translation Strategy
	4 Block Diagrams to HCTs: Mealy Composition
	4.1 Mealy Machines and Their Combinations via Functions
	4.2 Functional Embedding and Wiring Morphisms
	4.3 Block Diagrams to Horizontal Condition Tables

	5 HCTs to STTs: Modes via Tables
	5.1 Defining Modes
	5.2 Converting to State Charts and Simplifying

	6 Prototype, Evaluation, and Future Work
	7 Related Work
	8 Conclusion
	References

	Metric Temporal Graph Logic over Typed Attributed Graphs
	1 Introduction
	2 Related Work
	3 Typed Attributed Graphs and Graph Conditions
	4 Metric Temporal Graph Logic
	5 Mapping of TGSs to Graphs with History
	6 Reduction of MTGL to GCs
	7 Tool Support
	8 Conclusion and Future Work
	References

	KUPC: A Formal Tool for Modeling and Verifying Dynamic Updating of C Programs
	1 Introduction
	2 KUPC Design
	3 KUPC Usage
	4 Concluding Remarks and Ongoing Work
	References

	Business Process Privacy Analysis in PLEAK
	1 Introduction
	2 PE-BPMN Editor and Simple Disclosure Analysis
	3 Qualitative Leaks-When Analysis
	4 Sensitivity Analysis and Differential Privacy
	5 Attacker's Guessing Advantage
	References

	Specification, Design, and Implementation of Particular Classes of Systems
	CLTestCheck: Measuring Test Effectiveness for GPU Kernels
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach
	4.1 Kernel Code Coverage
	4.2 Fault Seeding
	4.3 Schedule Amplification
	4.4 Implementation

	5 Experiment
	6 Results and Analysis
	6.1 Coverage Achieved
	6.2 Fault Finding
	6.3 Schedule Amplification: Deadlocks and Data Races

	7 Conclusion
	References

	Implementing SOS with Active Objects: A Case Study of a Multicore Memory System
	1 Introduction
	2 An Abstract Model of a Multicore Memory System
	2.1 Formalization of the Multicore Memory System as an SOS Model
	2.2 Local and Global SOS Rules

	3 The ABS Model of the Multicore Memory System
	3.1 The ABS Language
	3.2 The Structural View
	3.3 The Behavioral View

	4 Correctness
	5 Parallelism and Fairness of the ABS Model
	6 Related Work
	7 Conclusion
	References

	Optimal and Automated Deployment for Microservices
	1 Introduction
	2 The Microservice Optimal Deployment Problem
	3 Application of the Technique to the Case-Study
	4 Related Work and Conclusion
	References

	A Data Flow Model with Frequency Arithmetic
	1 Introduction
	2 Motivation and Running Example
	3 Formalization of the Polygraph Model
	4 Tool Support for Liveness Checking
	5 Discussion and Related Work
	6 Conclusion
	References

	Software Testing
	CoVeriTest: Cooperative Verifier-Based Testing
	1 Introduction
	2 Testing with Verifiers
	3 CoVeriTest
	4 Evaluation
	4.1 Setup
	4.2 Experiments
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Pardis: Priority Aware Test Case Reduction
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Pardis Hybrid
	3.2 Nullability Pruning

	4 Evaluation
	4.1 RQ1. Performance: Pardis vs. Perses
	4.2 RQ2. The Impact of Priority Inversion

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Automatically Identifying Sufficient Object Builders from Module APIs
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Field Extensions
	3.2 Random Test Case Generation

	4 An Evolutionary Algorithm for Identifying Sufficient Object Builders
	4.1 Chromosome Representation
	4.2 Fitness Function
	4.3 Overall Structure of the Genetic Algorithm
	4.4 Reducing the Search Space by Observers Classification

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Author Index

