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Preface

This volume summarizes the research done and results obtained in the second
funding phase of the Priority Program 1648 “Software for Exascale Computing”
(SPPEXA) of the German Research Foundation (DFG). In that respect, it both
provides an overview of SPPEXA’s achievements and represents a continuation
of Vol. 113 in Springer’s series “Lecture Notes in Computational Science and
Engineering”, the corresponding report of SPPEXA’s first funding phase.

For some general remarks on the uniqueness of SPPEXA—as the first strategic,
i.e. board-initiated Priority Program of DFG; as the first tri-national Priority
Program with synchronized collaborative research in Germany, France, and Japan;
as a multi-disciplinary endeavor involving informatics and mathematics, but also
various fields from engineering, the sciences, and the life sciences; and as the first
holistic approach to research on High-Performance Computing (HPC) software
at the level of fundamental research—we refer to the overview contribution of
Bungartz et al. (see chapter “Software for Exascale Computing: Some Remarks
on the Priority Program SPPEXA”) in this volume. There, also some statistics are
provided.

The spirit of the international collaboration, whether in a bi-lateral (German–
Japanese) or in a tri-lateral (French–Japanese–German) setting, can be found and
felt in several of the reports of 16 out of 17 SPPEXA consortia. This structured
and institutionalized collaboration was not easy to establish, and we are grateful
for the shared enthusiasm, commitment, and support of the three involved funding
agencies: the German Research Foundation (DFG), the Agence Nationale de la
Recherche (ANR), and the Japan Science and Technology Agency (JST). The
synergies emerging from bringing together the expertise of groups from three
countries did not only boost the respective project work itself, it also prepared
the ground for ongoing partnerships as well as for a topical extension towards the
interplay of HPC and Artificial Intelligence—a field that both benefits tremendously
from HPC and, at the same time, fosters HPC with new concepts.

As always, many people helped to make SPPEXA in general and this volume
in particular a great success. Concerning the first, our thanks go to the agencies
already mentioned and their responsible officers; then to all the SPPEXA researchers
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vi Preface

in 17 consortia who made SPPEXA such a wonderful and productive research
experience; and finally to all helping hands that supported SPPEXA in terms of
organizing and hosting events such as workshops, doctoral retreats, minisymposia,
gender workshops, annual plenary meetings, and so forth. Moreover, concerning the
preparation of this volume, we are grateful to Dr. Martin Peters and Leonie Kunz
from Springer for their support—as in previous cases, it was again a pleasure to
collaborate. Finally, we thank Mirco Troue, Tina Angerer, and Michael Obersteiner
for their support in proofreading and compiling this book.

The first exascale systems are expected to be available in about one year. For sure,
there is still a lot of work to be done to let cutting-edge science applications fully
exploit their potential. However, we are fully convinced that SPPEXA contributed
significantly to pave the way towards exascale computers and their usage.

Garching, Germany Hans-Joachim Bungartz
Garching, Germany Severin Reiz
Eindhoven, Netherlands Benjamin Uekermann
Hamburg, Germany Philipp Neumann
Dresden, Germany Wolfgang E. Nagel
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Software for Exascale Computing: Some
Remarks on the Priority Program
SPPEXA

Hans-Joachim Bungartz, Wolfgang E. Nagel, Philipp Neumann, Severin Reiz,
and Benjamin Uekermann

Abstract SPPEXA, the Priority Program 1648 “Software for Exa-scale Comput-
ing” of the German Research Foundation (DFG), was established in 2012. SPPEXA
was DFG’s first strategic Priority Program—strategic in the sense that it had been
the initiative of DFG’s board to suggest a larger and trans-disciplinary funding
scheme to support the development of software at all levels that would be able
to benefit from future exa-scale systems. A proposal had been formulated by a
team of scientists representing domains across the STEM fields, evaluated in the
standard format for Priority Programs, and financed via special funds. Operations
started in January 2013, and after two 3-year funding phases and a cost-neutral
extension, SPPEXA’s activities will come to an end by end of April, 2020. A final
international symposium took place on October 21–23, 2019, in Dresden, and this
volume of Springer’s Lecture Notes in Computational Science and Engineering—
the second SPPEXA-related one after the corresponding report of Phase 1 (see
Appendix 3 in [1])—contains reports of 16 out of 17 SPPEXA projects (the project
ExaSolvers will deliver its report as a special issue of Springer’s journal Computing
and Visualization in Science) and is, thus, a comprehensive overview of research
within SPPEXA.

While each single project report emphasizes the respective project’s individual
research outcomes and, thus, provides one perspective of research in SPPEXA,
this contribution, co-authored by the two scientific coordinators—Hans-Joachim

H.-J. Bungartz · S. Reiz (�)
Technical University of Munich, Garching, Germany
e-mail: bungartz@in.tum.de; reiz@in.tum.de

W. E. Nagel
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https://doi.org/10.1007/978-3-030-47956-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47956-5_1&domain=pdf
mailto:bungartz@in.tum.de
mailto:reiz@in.tum.de
mailto:philipp.neumann@hsu-hh.de
https://doi.org/10.1007/978-3-030-47956-5_1


4 H.-J. Bungartz et al.

Bungartz and Wolfgang E. Nagel—and by three of the four researchers that
have served as program coordinator over the years—Philipp Neumann, Benjamin
Uekermann, and Severin Reiz—emphasizes the program SPPEXA itself. It provides
an overview of the design and implementation of SPPEXA, it highlights its
accompanying and supporting activities (internationalization, in particular with
France and Japan; workshops; doctoral retreats; diversity-related measures), and it
provides some statistics. It, thus, complements the papers from SPPEXA’s research
consortia collected in this volume.

1 Preparation

While supercomputers were recognized early as an important research infrastructure
for German science and have been since then on the agenda (recommendations of
the German Science Council (Wissenschaftsrat), introduction of the performance
pyramid, Gauss Centre for Supercomputing, Gauss Alliance, NHR—Nationales
Hochleistungsrechnen), the situation for supercomputing has always been quite
different. First, the funds for HPC systems are typically limited to investments,
i.e. the machinery; the current NHR initiative takes a more comprehensive view.
Second, software development is frequently not considered as “science”, which
entails that neither typical projects in informatics or mathematics nor their coun-
terparts in fields of application cover more than prototype development. Recently,
BMBF’s HPC software program and DFG’s sustainable scientific software initiative,
fortunately, have acknowledged the crucial role of software for HPC and support
software development explicitly. Third, HPC software development has happened in
Collaborative Research Centers or similar formats before, but mostly in an isolated
way: an informatics initiative contained an HPC software project as an application,
or a physics initiative contained a simulation- or HPC-oriented project. But all this
hardly ever looked at more than one peculiar aspect at a time, and it was at most an
interdisciplinary endeavor of two fields.

However, when Moore’s law at least gets exhausted a bit and performance
gains are more and more achievable through a more and more massive parallelism
only, it is obvious that software and its performance and scalability play an
increasingly crucial part. Therefore, the challenges at the eve of the exa-scale era
required more—and that’s actually what happened elsewhere, for example in the
U.S. or in Japan: a significant, concerted initiative, bringing together informatics,
mathematics, and several domains of application, comprising all relevant aspects of
HPC software. That’s where SPPEXA entered the stage.

2 Design Principles

SPPEXA was designed to provide a holistic approach to HPC software, comprising
the aspects most relevant for ensuring the efficient use of current and upcoming
high-end supercomputers, and to do this via exploring both evolutionary and
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disruptive research threads. Six research directions were identified as crucial ones:
(1) Computational Algorithms, (2) Application Software, (3) System Software and
Runtime Libraries, (4) Programming, (5) Software Tools, and (6) Data Manage-
ment. Computational algorithms, such as fast linear solvers or eigensolvers, are a
core numerical component of many large-scale application codes—both classical
simulation-driven and recent data analytics-oriented ones. If scalability cannot be
ensured here, the battle is already almost lost. Application software is the “user” of
HPC systems, typically appearing as legacy codes that have been developed over
many years. Increasing their performance via a co-design that addresses both the
“systems—algorithms” and the “algorithms—applications/models” interfaces and
combines algorithm and performance engineering is vital. Performance engineering
can’t succeed without progress in compilers, monitoring, code optimization, verifi-
cation support, and parallelization support (such as auto-tuning)—which underlines
the importance of system software and runtime libraries as well as of tools.
Programming, including programming models, is probably the topic where the need
for a balance of evolutionary research (improve and extend existing programming
models, e.g.) and revolutionary approaches (explore new programming models,
new language concepts such as Domain-Specific Languages) gets most obvious.
Data management, finally, has always been HPC-relevant in terms of I/O or post-
processing and visualization, and it is of ever-increasing importance since more and
more HPC applications are on the data side.

To ensure the impact of this holistic idea, it was clear that having a set of
projects in our Priority Program where some address this issue and others that one,
and where they may collaborate or not, would not suffice. Therefore, SPPEXA’s
concept was to have a set of larger projects, or project consortia (research units—
Forschergruppen), that would all have to address at least two of the six big topics
with their research agenda; and that would all have to combine a relevant large-scale
application with HPC-methodical advancements. This means that neither a merely
domain-driven research (“improve my code, and this is a contribution to HPC in
itself”), as we see it frequently in domain-driven research initiatives (Collaborative
Research Centers in physics, life sciences, or engineering, e.g.), nor a generic purely
algorithmic research (“if I improve my solver, this will help everyone”), as we see
it frequently in mathematics- or informatics-driven research initiatives, would be
allowed to find their place in SPPEXA. This was somewhat challenging, since we
had to communicate this concept clearly and to convince potential applicants and
reviewers that everyone should really comply with this agenda.

Furthermore, there is one property better known from Collaborative Research
Centers than from Priority Programs: program-wide joint activities. For example,
we wanted to have a vivid collaboration framework of cross-project workshops;
networking with the big international programs; a focus on education also through
fostering novel teaching formats or coding weeks and doctoral retreats for the
doctoral candidates; gender-related activities to understand, evaluate and work
towards a more gender-balanced research community; etc. This allowed for sharing
mutual best practices in HPC for the mathematics- or informatics- or application-
driven areas. Therefore, there was more coordination than we see in typical Priority
Programs.
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3 Funded Projects and Internal Structure

In the first funding phase, the following thirteen projects or project consortia were
funded:1

CATWALK—A Quick Development Path for Performance Models. Felix Wolf
(Darmstadt), Christian Bischof (Darmstadt), Torsten Hoefler (Zürich), Bernd Mohr (Jülich),
and Gabriel Wittum (Frankfurt)

ESSEX—Equipping Sparse Solvers for Exa-scale. Gerhard Wellein (Erlangen), Achim
Basermann (Köln), Holger Fehske (Greifswald), Georg Hager (Erlangen), and Bruno Lang
(Wuppertal)

Exa-Dune—Flexible PDE Solvers, Numerical Methods, and Applications. Peter Bastian
(Heidelberg), Olaf Ippisch (Clausthal), Mario Ohlberger (Münster), Christian Engwer
(Münster), Stefan Turek (Dortmund), Dominik Göddeke (Stuttgart), and Oleg Iliev
(Kaiserslautern)

ExaFSA—Exa-scale Simulation of Fluid-Structure-Acoustics Interactions. Miriam Mehl
(Stuttgart), Hester Bijl (Delft), Sabine Roller (Siegen), Dörte Sternel (Darmstadt), and Thomas
Ertl (Stuttgart)

EXAHD—An Exa-Scalable 2-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond. Dirk Pflüger (Stuttgart), Hans-Joachim Bungartz
(München), Michael Griebel (Bonn), Markus Hegland (Canberra), Frank Jenko (Garching),
and Hermann Lederer (Garching)

EXAMAG—Exa-scale Simulations of the Evolution of the Universe Including Magnetic
Fields. Volker Springel (Heidelberg) and Christian Klingenberg (Würzburg)

ExaSolvers—Extreme-scale Solvers for Coupled Problems. Lars Grasedyck (Aachen),
Wolfgang Hackbusch (Leipzig), Rolf Krause (Lugano), Michael Resch (Stuttgart), Volker
Schulz (Trier), and Gabriel Wittum (Frankfurt)

EXASTEEL—Bridging Scales for Multiphase Steels. Daniel Balzani (Bochum), Axel
Klawonn (Köln), Oliver Rheinbach (Freiberg), Jörg Schröder (Duisburg-Essen), and Gerhard
Wellein (Erlangen)

ExaStencils—Advanced Stencil-Code Engineering. Christian Lengauer (Passau), Armin
Größlinger (Passau), Ulrich Rüde (Erlangen), Harald Köstler (Erlangen), Sven Apel
(Saarbrücken), Jürgen Teich (Erlangen), Frank Hannig (Erlangen), and Matthias Bolten
(Wuppertal)

FFMK—A Fast and Fault-tolerant Microkernel-Based System for Exa-scale Computing.
Hermann Härtig (Dresden), Alexander Reinefeld (Berlin), Amnon Barak (Jerusalem), and
Wolfgang E. Nagel (Dresden)

GROMEX—Unified Long-range Electrostatics and Dynamic Protonation for Realistic
Biomolecular Simulations on the Exa-scale. Helmut Grubmüller (Göttingen), Holger
Dachsel (Jülich), and Berk Hess (Stockholm)

DASH—Smart Data Structures and Algorithms with Support for Hierarchical Locality.
Karl Fürlinger (München), Colin W. Glass (Stuttgart), José Gracia (Stuttgart), and Andreas
Knüpfer (Dresden)

Terra-Neo—Integrated Co-Design of an Exa-scale Earth Mantle Modeling Framework.
Hans-Peter Bunge (München), Ulrich Rüde (Erlangen), Gerhard Wellein (Erlangen), and
Barbara Wohlmuth (München)

1Some Principal Investigators have changed affiliation during the SPPEXA program. We specified
the most recent main affiliation here.
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After 3 years, twelve of those got a prolongation for the second funding phase,
some with an “international extension” (bi-national with Japanese partners or tri-
national with French and Japanese partners):

ESSEX-2—Equipping Sparse Solvers for Exa-scale. Gerhard Wellein (Erlangen), Achim
Basermann (Köln), Holger Fehske (Greifswald), Georg Hager (Erlangen), Bruno Lang
(Wuppertal), Tetsuya Sakurai (Tsukuba; Japanese partner), and Kengo Nakajima (Tokyo;
Japanese partner)

Exa-Dune—Flexible PDE Solvers, Numerical Methods, and Applications. Peter Bastian
(Heidelberg), Olaf Ippisch (Clausthal), Mario Ohlberger (Münster), Christian Engwer
(Münster), Stefan Turek (Dortmund), Dominik Göddeke (Stuttgart), and Oleg Iliev
(Kaiserslautern)

ExaFSA—Exa-scale Simulation of Fluid-Structure-Acoustics Interactions. Miriam Mehl
(Stuttgart), Alexander van Zuijlen (Delft), Thomas Ertl (Stuttgart), Sabine Roller (Siegen),
Dörte Sternel (Darmstadt), and Hiroyuki Takizawa (Tohoku; Japanese partner)

EXAHD—An Exa-Scalable 2-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond. Dirk Pflüger (Stuttgart), Hans-Joachim Bungartz
(München), Michael Griebel (Bonn), Markus Hegland (Canberra), Frank Jenko (Garching),
and Tilman Dannert (Garching)

EXAMAG—Exa-scale Simulations of the Magnetic Universe. Volker Springel
(Heidelberg), Christian Klingenberg (Würzburg), Naoki Yoshida (Tokyo; Japanese partner),
and Philippe Helluy (Strasbourg; French partner)

ExaSolvers—Extreme-scale Solvers for Coupeld Problems. Lars Grasedyck (Aachen), Rolf
Krause (Lugano), Michael Resch (Stuttgart), Volker Schulz (Trier), Gabriel Wittum
(Frankfurt), Arne Nägel (Frankfurt), Hiroshi Kawai (Tokyo; Japanese partner), and Ryuji
Shioya (Toyo; Japanese partner)

EXASTEEL-2—Dual Phase Steels—From Micro to Macro Properties. Daniel Balzani
(Bochum), Axel Klawonn (Köln), Oliver Rheinbach (Freiberg), Jörg Schröder
(Duisburg-Essen), Olaf Schenk (Lugano), and Gerhard Wellein (Erlangen)

ExaStencils—Advanced Stencil-Code Engineering. Christian Lengauer (Passau), Ulrich
Rüde (Erlangen), Harald Köstler (Erlangen), Sven Apel (Saarbrücken), Jürgen Teich
(Erlangen), Frank Hannig (Erlangen), Matthias Bolten (Wuppertal), and Shigeru Chiba (Tokyo;
Japanese partner)

FFMK—A Fast and Fault-tolerant Microkernel-Based System for Exa-scale Computing.
Hermann Härtig (Dresden), Alexander Reinefeld (Berlin), Amnon Barak (Jerusalem), and
Wolfgang E. Nagel (Dresden)

GROMEX—Unified Long-range Electrostatics and Dynamic Protonation for Realistic
Biomolecular Simulations on the Exa-scale. Helmut Grubmüller (Göttingen), Holger
Dachsel (Jülich), and Berk Hess (Stockholm)

DASH—Smart Data Structures and Algorithms with Support for Hierarchical Locality.
Karl Fürlinger (München), Colin W. Glass (Stuttgart), José Gracia (Stuttgart), and Andreas
Knüpfer (Dresden)

Terra-Neo—Integrated Co-Design of an Exa-scale Earth Mantle Modeling Framework.
Hans-Peter Bunge (München), Ulrich Rüde (Erlangen), and Barbara Wohlmuth (München)
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Furthermore, four new project consortia joined SPPEXA:

ADA-FS—Advanced Data Placement via Ad-hoc File Systems at Extreme Scales.
Wolfgang E. Nagel (Dresden), André Brinkmann (Mainz), and Achim Streit (Karlsruhe)

AIMES—Advanced Computation and I/O Methods for Earth-System Simulations.
Thomas Ludwig (Hamburg), Thomas Dubos (Versailles; French partner), Naoya Maruyama
(RIKEN; Japanese partner), and Takayuki Aoki (Tokyo; Japanese partner)

ExaDG—High-order Discontinuous Galerkin for the Exa-scale. Guido Kanschat
(Heidelberg), Katharina Kormann (München), Martin Kronbichler (München), and Wolfgang
A. Wall (München)

MYX—MUST Correctness Checking for YML and XMP Programs. Matthias S. Müller
(Aachen), Serge Petiton (Lille; French partner), Nahid Emad (Versailles; French partner),
Taisuke Boku (Tsukuba; Japanese partner), and Hitoshi Murai (RIKEN; Japanese partner)

Finally, 1 year later, a seventeenth project joined SPPEXA as associated project:

ExtraPeak—Automatic Performance Modeling of HPC Applications. Felix Wolf
(Darmstadt) and Torsten Hoefler (Zürich)

Hence, overall, there have been four Japanese-German and three French-
Japanese-German consortia within SPPEXA. On the German side, an overall sum
of 57 principal investigators from 39 institutions have been involved, representing
informatics (25), mathematics (19), engineering (8), natural sciences (4), and life
sciences (1).

Concerning governance, SPPEXA was headed by its two Spokespersons Hans-
Joachim Bungartz (Technical University of Munich—TUM) and Wolfgang E.
Nagel (Technical University of Dresden). For the everyday organization, a Program
Coordinator (in chronological order: Benjamin Peherstorfer, now professor at New
York University; Philipp Neumann, now professor at Helmut-Schmidt-University
Hamburg; Benjamin Uekermann, now with Eindhoven University of Technology;
and Severin Reiz, TUM) as well as an Office were established (both at TUM).
Strategic decisions in SPPEXA were taken by the Steering Committee, consisting of
H.-J. Bungartz, W. E. Nagel, as well as Sabine Roller (Siegen), Christian Lengauer
(Passau), Hans-Peter Bunge (München), Dörte Sternel (Darmstadt), and—in the
second funding phase—Nahid Emad (France) and Takayuki Aoki (Japan). Finally,
a Scientific Advisory Board supported our activities and planning: George Biros
(University of Texas at Austin), Rupak Biswas (NASA), Klaus Becker (Airbus),
Rob Schreiber (at that time HP Labs), and Craig Stewart (University of Indiana at
Bloomington).
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4 SPPEXA Goes International

Extreme-scale HPC has always been an international endeavor. In 2010, as the
first call in the framework of the G8 Research Councils’ Initiative on Multilateral
Research Funding, the topic Application Software towards Exa-scale Computing
for Global Scale Issues had been selected. In the sequel of that initiative, the idea
arose to give SPPEXA in its second funding phase a more international flavor,
beyond the individual international partners present in some of the consortia. DFG’s
head office contacted several of their partner institutions in other countries. While
it turned out to be complicated to synchronize activities with the National Science
Foundation (NSF) in the U.S., the discussions with the French Agence Nationale
de la Recherche (ANR) and the Japan Science and Technology Agency (JST)
became very concrete. Finally, for the first time, a funding phase of a complete
DFG Priority Program was linked to funding formats from two other countries, and
the three agencies combined their forces in a joint call run by DFG. Due to formal
restrictions, two new types of SPPEXA consortia were open for application: bi-
national Japanese-German or tri-national French-Japanese-German ones.

Overall, the following French institutions participated in SPPEXA projects:
Université de Versailles, Université de Strasbourg, and Maison de la Simulation,
Saclay. From the Japanese side, the involved partner institutions involved were
RIKEN, Tokyo University of Technology, University of Tsukuba, University of
Tokyo, Tohoku University, Tokyo University of Science, and Toyo University.
Beyond research in the single consortia, one SPPEXA doctoral retreat was held in
France, and SPPEXA co-organized three French-Japanese-German workshops—the
first one 2017 in the French embassy in Tokyo, the second one in 2018 in the German
embassy in Tokyo, and the third one in 2019, again in the French embassy. The
first two focused on exa-scale computing, while the third one did a move towards
artificial intelligence (AI) and, in particular, addressed the convergence of AI and
HPC.

Further internationalization measures were the SPPEXA guest program, the
research stays for doctoral candidates (up to 3 months; overall 25 taken in funding
phase 2), and our PR activities at the big international meetings. For example,
SPPEXA organized panels or sessions at the Supercomputing Conference (SC) and
the International Supercomputing Conference (ISC HPC) and participated in the
session and poster exhibition on DFG-funded collaborative research at DATE 2019.

5 Joint Coordinated Activities

As mentioned above, SPPEXA featured a rich program of joint cross-consortium
activities (the following numbers refer to funding phase 2, 2016–2019):

Guests Overall, more than 85 guest researchers visited one or more SPPEXA
projects.
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Workshops Workshops were a particular format to foster exchange and collab-
oration across project consortia. Central funds had been established for that, and
each SPPEXA PI could hand in proposals (two calls per year). The proposal had to
depict how the cross-consortium effect was to be ensured (more than one organizing
consortium, etc.). Overall, 41 SPPEXA workshops, held at conferences or stand-
alone, were supported via this channel.

Doctoral Retreats The SPPEXA Doctoral Retreat had two main goals—first, to
offer an additional educational component to our doctoral candidates; second, to
overcome the sometimes narrow borders of research by connecting with interna-
tional researchers on a doctoral level (guest lectures, own contributions, hands-on
sessions, . . .). Overall, three doctoral retreats were organized: Strasbourg (2016),
Dresden (2017), and Wuppertal (2018).

Doctoral Research Stays Following the successful model of TUM Graduate
School, where each doctoral candidate university-wide can get funds for an
international research stay of up to 3 months, we encouraged our doctoral candidates
SPPEXA-wide to enrich their PhD phase with such an international component.
Overall, 25 such research interns were funded, examples for destinations being ETH
Zurich, NORCE Bergen, or University of Tennessee.

Gender Activities Looking at the gender situation in HPC, it is obvious that
the presence of women is even worse than in general in informatics. To improve
that situation and to provide a more open atmosphere, a couple of measures
were taken. At every Annual Plenary Meeting (2016, 2017, 2018, and 2019), we
organized gender trainings by external coaches to raise awareness of gender biases
in academia, each with 25 participants. Additionally, SPPEXA members organized
workshop-like events such as student MINT mentoring days (2016–2018) and
women’s networking events in 2019. Moreover, we connected to industry (Bosch
and IBM) via gender bias discussion days called “Equality at Exascale”. Exceptional
at this event was that not only women participated, but we had an ideal gender-parity
in participants.

Impact on Education As a side effect, HPC education also got a boost by
SPPEXA. Numerous lectures and lab courses were updated, and a lot of student
theses had topics directly related to SPPEXA projects.

Prizes During the second phase of SPPEXA, every year, the best student and
doctoral theses SPPEXA-wide were awarded a prize. Over the years, the winners
were:

2016: Klaudius Scheufele (Stuttgart, master’s thesis) and Benjamin Uekermann
(Munich, PhD thesis);

2017: Sebastian Schweikl (Passau, bachelor’s thesis), Simon Schwitanski (Aachen,
master’s thesis), and Moritz Kreutzer (Erlangen, PhD thesis);

2018/2019: Piet Jarmatz (Munich/Hamburg, master’s thesis) and Sebastian Kuckuk
and Christian Schmitt (Erlangen, PhD thesis).



Remarks on SPPEXA 11

Support of Young Researchers For sustainability in academia, supporting young
aspiring researchers is indispensable. We took measures by funding research stays
for doctoral candidates and awarding prizes for exceptional theses. Additionally, we
also supported bachelor and master students for the student cluster competition at
the (international) supercomputing conferences SC and ISC HPC 2016–2019.

Public Relations Dissemination of research becomes more and more important.
Continuing efforts from the first phase, SPPEXA featured articles in the InSiDE
magazine, published by the GAUSS Center for Supercomputing, twice per year in
2016, 2017, and 2018 introducing one project each time. Furthermore, starting 2018,
SPPEXA contributed five articles to the online platform Science Node.2 Last, in
2018, SPPEXA also featured an article in the EU Research magazine.

Internationalisation See previous Sect. 4.

6 HPC Goes Data

The computational revolution goes on! Computers and sophisticated computational
methods have shaped the “third paradigm”, the third path to insight in science,
complementing the classical approaches, theory and experiment, but also building
a bridge and providing the missing link between those two. An early incarna-
tion of “computational” were numerical simulations, later expanded by so-called
“outer-loop scenarios”, in which repeated simulations allow for enhanced results:
optimization, parameter identification, stochastics, or uncertainty quantification.
All of this, basically, was model-driven, following a deductive regime of model
hypotheses and derivations from them. The latest appearance of “computational”
can be characterized by the focus on data: data-enhanced simulation, data analytics,
machine learning, or artificial intelligence. Instead of being based on models, this
approach is much more data-driven, following an inductive regime of collecting
data and drawing conclusions from them. In simplified words, the “data from
models” turned into, or was complemented by, a “models from data”. Despite
that shift of focus, the basic underlying principle did not change: state-of-the-art
computer systems and state-of-the-art computational methods are combined and
used to advance the frontier of science. Something new is maybe the fact that the
club of scientific domains that benefit from the “third paradigm” has become bigger:
While numerical simulation was, more or less, driven by natural, engineering, and
life sciences, the data-centered approach comprises all domains, including social
sciences and humanities.

Of course, this development has a huge impact on HPC. In particular, new fields
and new types of applications popped up, as well as new lines of architectures
and systems. For example, in 2018, the majority of finalists for the Gordon Bell

2https://sciencenode.org/feature/the-race-to-exascale.php.

https://sciencenode.org/feature/the-race-to-exascale.php
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Award, the most renowned prize in HPC, already had a significant amount of
machine learning in their papers. World-wide, HPC centers observe an increasing
share of data-driven jobs on their machines. This is not surprising: as science
and science methodology evolve, the kind of studies done in that context also
does. Despite all those changes, the role of HPC is astonishingly stable: HPC is
a core enabling technology of “computational”. It was and still is an enabler of
numerical simulation, and it has become a crucial enabler of data analytics and
artificial intelligence. If artificial intelligence, machine learning, or deep learning
have become so popular recently, this is much more due to the fact that established
methodology can succeed due to HPC, than due to new AI/ML/DL methodology
itself.

These developments are also visible at the end of SPPEXA. Several consortia
already are on that “data-driven track”, as, for example, our third French-Japanese-
German workshop in Tokyo showed.

7 Shaping the Landscape

When SPPEXA started in 2013, the core idea was to significantly improve algo-
rithms, software, and tools, in order to be prepared for the exa-scale age. In the
meantime, we are at the eve of exa-scale systems, as the co-design developments
in the U.S. and in Japan (Fugaku) or the discussions in the European Union on
exa-scale and pre-exa-scale systems show. And research in SPPEXA has definitely
contributed to the application landscape in Germany being much closer to “exa-
scale-readiness” than before. Several leading application software packages were
involved, and significant progress in terms of scalability and parallel efficiency could
be achieved. Furthermore, and maybe even more important, the SPPEXA consortia
showed the advantages of the multi-disciplinary engagement, brought together a lot
of groups and ideas disconnected before, and, thus, justified the concept of larger,
cross-institutional, and cross-disciplinary teams instead of single-PI projects.

The visibility SPPEXA got is stunning. SPPEXA was present at the leading
international conferences (Euro-Par, Supercomputing, ISC HPC)—through individ-
ual presentations and special events, such as minisymposia or panels. But also at
“neighboring” events, such as the DATE 2019 (Design, Automation, and Test in
Europe), SPPEXA had a presentation slot and a booth. SPPEXA was involved in
the activities (workshops, white papers, etc.) of the BDEC Community (Big Data
and Extreme-Scale Computing) as well as in the organization of the Long Program
“Science at Extreme Scales: Where Big Data Meets Large-scale Computing” at the
Institute for Pure and Applied Mathematics (IPAM) in Los Angeles, and it co-
organized a French-Japanese-German workshop series in Tokyo (cf. the section
on internationalization). Thus, at an international scale, SPPEXA was generally
perceived as the “German player” in the HPC software concert.
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8 Concluding Remarks

Without any doubt, SPPEXA has written a success story: in terms of its research,
concerning the innovative funding format, with its multi-disciplinary approach, its
multi-national facets, and—last, but not least—its huge visibility. We are grateful for
all the support we got from the German Research Foundation (DFG): the funding,
but also for the encouragement during the preparation of SPPEXA and the continued
advice during its runtime.

Appendix 1: Qualification

The following achievements have been completed in the SPPEXA program within
1.1.2016 and 30.04.2020:

Projects Completed PhD theses Completed habilitations Calls to professorship

AIMES 0 0 1

ADA-FS 0 0 0

DASH 1 0 1

ESSEX 1 1 0

ExaDG 4 0 1

Exa-Dune 4 0 1

ExaFSA 2 0 0

EXAHD 3 0 0

EXAMAG 9 0 0

ExaSolvers 1 0 1

EXASTEEL 2 0 1

ExaStencils 5 2 4

ExtraPeak 3 0 0

FFMK 1 0 0

GROMEX 2 0 0

MYX 0 0 0

Terra-Neo 3 0 0

Coordination 1 1 2

Overall 43 3 12

The previous table follows the DFG requirements for final reports in priority
programs. At least 25 additional PhD candidates are close to being finished;
however, due to the lengthy defense procedure they are not counted here.

Also, please take into account that project consortia vary in size (regarding
Principal Investigators and PhD candidates) and their start/end date.
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Appendix 2: Software from Project Consortia

In the following, a table with links to software that has been developed by the project
consortia in SPPEXA Phase-II is given.

Project Software developed

AIMES SCIL

github.com/JulianKunkel/scil

ADA-FS GekkoFS

tu-dresden.de/zih/forschung/projekte/ada-fs

DASH DASH

www.dash-project.org/

ESSEX PHIST, GHOST, CRAFT, RACE, ScaMaC

bitbucket.org/essex/{PHIST, ..., RACE, matrixcollection}

ExaDG deal.II

github.com/dealii/dealii

EXA-Dune DUNE

gitlab.dune-project.org/exadune

ExaFSA preCICE

github.com/precice/precice

Ateles

apes.osdn.io/pages/ateles

EXAHD SG++
github.com/SGpp/SGpp

EXAMAG AREPO

arepo-code.org/

ExaSolvers utopia

bitbucket.org/zulianp/utopia/src/master/

EXASTEEL FE2TI

www.numerik.uni-koeln.de/14079.html

ExaStencils LFA Lab

hrittich.github.io/lfa-lab/

ExaSlang

i10git.cs.fau.de/exastencils/release

ExtraPeak Extra-P

www.scalasca.org/scalasca/software/extra-p/

FFMK FFMK

ffmk.tudos.org/

GROMEX GROMACS

www.gromacs.org

github.com/JulianKunkel/scil
tu-dresden.de/zih/forschung/projekte/ada-fs
www.dash-project.org/
bitbucket.org/essex/
github.com/dealii/dealii
gitlab.dune-project.org/exadune
github.com/precice/precice
apes.osdn.io/pages/ateles
github.com/SGpp/SGpp
arepo-code.org/
bitbucket.org/zulianp/utopia/src/master/
www.numerik.uni-koeln.de/14079.html
hrittich.github.io/lfa-lab/
i10git.cs.fau.de/exastencils/release
www.scalasca.org/scalasca/software/extra-p/
ffmk.tudos.org/
www.gromacs.org
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MYX MUST

doc.itc.rwth-aachen.de/display/CCP/Project+MUST

Terra-Neo HyTeG

i10git.cs.fau.de/hyteg/hyteg

waLBerla

www.walberla.net/

TerraNeo

terraneo.fau.de/

Appendix 3: Project Consortia Key Publications

This volume represents a continuation of the corresponding report in SPPEXA
Phase-I, which is referenced several times in the text above:

1. Bungartz, H.-J., Neumann, P., Nagel, W.E.: Software for Exascale Computing-
SPPEXA 2013–2015, vol. 113. Springer, Berlin (2016)

SPPEXA Phase-II showed visibility in the research community with numerous
publications. In the following we provide a list of two key publications for each
project consortium:3

AIMES
1. Jum’ah, N., Kunkel, J.: Performance portability of earth system models with

user-controlled GGDML code translation. In: International Conference on High
Performance Computing, pp. 693–710. Springer, Berlin (2018)

2. Kunkel, J., Novikova, A., Betke, E., Schaare, A.: Toward decoupling the
selection of compression algorithms from quality constraints. In: International
Conference on High Performance Computing, pp. 3–14. Springer, Berlin (2017)

ADA-FS
1. Vef, M.A., Moti, N., Süß, T., Tocci, T., Nou, R., Miranda, A., Cortes, T.,

Brinkmann, A.: GekkoFS—a temporary distributed file system for HPC appli-
cations. In: 2018 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 319–324. IEEE, Piscataway (2018)

2. Soysal, M., Berghoff, M., Klusáček, D., Streit, A.: On the quality of wall
time estimates for resource allocation prediction. In: Proceedings of the 48th
International Conference on Parallel Processing: Workshops, pp. 1–8. ACM,
New York (2019)

DASH
1. Kowalewski, R., Jungblut, P., Fürlinger, K.: Engineering a distributed histogram

sort. In: 2019 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 1–11. IEEE, Piscataway (2019)

3Following the DFG requirements for final reports in priority programs.

doc.itc.rwth-aachen.de/display/CCP/Project+MUST
i10git.cs.fau.de/hyteg/hyteg
www.walberla.net/
terraneo.fau.de/
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2. Fürlinger, K., Glass, C., Gracia, J., Knüpfer, A., Tao, J., HHünichnich, D.,
Idrees, K., Maiterth, M., Mhedheb, Y., Zhou, H.: DASH: data structures and
algorithms with support for hierarchical locality. In: European Conference on
Parallel Processing, pp. 542–552. Springer, Berlin (2014)

ESSEX
1. Pieper, A., Kreutzer, M., Alvermann, A., Galgon, M., Fehske, H., Hager, G.,

Lang, B., Wellein, G.: High-performance implementation of Chebyshev filter
diagonalization for interior eigenvalue computations. J. Comput. Phys. 325, 226–
243 (2016)

2. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Baser-
mann, A., Hager, G., Wellein, G., Fehske, H.: Increasing the performance of the
Jacobi–Davidson method by blocking. SIAM J. Sci. Comput. 37(6), C697–C722
(2015)

ExaDG
1. Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous

Galerkin finite element operators. ACM Trans. Math. Softw. 45(3), 1–40 (2019)
2. Fehn, N., Wall, W.A., Kronbichler, M.: Efficiency of high-performance dis-

continuous Galerkin spectral element methods for under-resolved turbulent
incompressible flows. Int. J. Numer. Methods Fluids 88(1), 32–54 (2018)

EXA-Dune
1. Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek,

S., Fahlke, J., Kaulmann, S., Steffen Müthing, S., et al.: EXA-DUNE: flexible
PDE solvers, numerical methods and applications. In: European Conference on
Parallel Processing, pp. 530–541. Springer, Berlin (2014)

2. Engwer, C., Altenbernd, M., Dreier, N.A., Göddeke, D.: A high-level C++
approach to manage local errors, asynchrony and faults in an MPI application.
In: 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pp. 714–721. IEEE, Piscataway (2018)

ExaFSA
1. Mehl, M., Uekermann, B., Bijl, H., Blom, D., Gatzhammer, B., Van Zuijlen,

A.: Parallel coupling numerics for partitioned fluid–structure interaction simula-
tions. Comput. Math. Appl. 71(4), 869–891 (2016)

2. Totounferoush, A., Pour, N.E., Schröder, J., Roller, S., Mehl, M.: A new load
balancing approach for coupled multi-physics simulations. In: 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 676–682. IEEE, Piscataway (2019)

EXAHD
1. Obersteiner, M., Hinojosa, A.P., Heene, M., Bungartz, H.J., Pflüger, D.: A

highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma
simulations. In: Proceedings of the 8th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, pp. 1–8 (2017)
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2. Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for
the numerical solution of high-dimensional PDEs. Parallel Comput. 52, 78–105
(2016)

ExaSolvers
1. Benedusi, P., Garoni, C., Krause, R., Li, X., Serra-Capizzano, S.: Space-time

FE-DG Discretization of the anisotropic diffusion equation in any dimension:
the spectral symbol. SIAM J. Matrix Anal. Appl. 39(3), 1383–1420 (2018)

2. Kreienbuehl, A., Benedusi, P., Ruprecht, D., Krause, R.: Time-parallel gravita-
tional collapse simulation. Commun. Appl. Math. Comput. Sci. 12(1), 109–128
(2015)

ExaStencils
1. Köstler, H., Schmitt, C., Kuckuk, S., Kronawitter, S., Hannig, F., Teich, J., Rüde,

U., Lengauer, C.: A scala prototype to generate multigrid solver implementations
for different problems and target multi-core platforms. Int. J. Comput. Sci. Eng.
14(2), 150–163 (2017). https://doi.org/10.1504/IJCSE.2017.082879

2. Schmitt, C., Kronawitter, S., Hannig, F., Teich, J., Lengauer, C.: Automating the
development of high-performance multigrid solvers. Proc. IEEE 106(11), 1969–
1984 (2018)

ExtraPeak
1. Shudler, S., Calotoiu, A., Hoefler, T., Wolf, F.: Isoefficiency in practice: config-

uring and understanding the performance of task-based applications. In: ACM
SIGPLAN Notices, vol. 52, pp. 131–143. ACM, New York (2017)

2. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance
modeling to find scalability bugs in complex codes. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, p. 45. IEEE, Piscataway (2013)

FFMK
1. Weinhold, C., Lackorzynski, A., Härtig, H.: FFMK: an HPC OS based on

the L4Re microkernel. In: Operating Systems for Supercomputers and High
Performance Computing, pp. 335–357. Springer, Berlin (2019)

2. Gholami, M., Schintke, F.: Multilevel checkpoint/restart for large computational
jobs on distributed computing resources. In: IEEE 38th Symposium on Reliable
Distributed System (SRDS) (2019)

GROMEX
1. Beckmann, A., Kabadshow, I.: Portable node-level performance optimization for

the fast multipole method. In: Recent Trends in Computational Engineering-
CE2014, pp. 29–46. Springer, Berlin (2015)

2. Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller,
H.: More bang for your buck: Improved use of GPU nodes for GROMACS 2018.
J. comput. chem. 40(27), 2418–2431 (2019)

https://doi.org/10.1504/IJCSE.2017.082879
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MYX
1. Protze, J., Tsuji, M., Terboven, C., Dufaud, T., Murai, H., Petiton, S., Emad, N.,

Müller, M., Boku, T.: Myx—runtime correctness analysis for multi-level parallel
programming paradigms. In: Software for Exascale Computing: SPPEXA 2016–
2019. Lecture Notes in Computational Science and Engineering. Springer, Berlin
(2020)

2. Protze, J., Schulz, M., Ahn, D.H., Müller, M.S.: Thread-local concurrency: a
technique to handle data race detection at programming model abstraction. In:
Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 144–155 (2018)

Terra-Neo
1. Bauer, S., Huber, M., Ghelichkhan, S., Mohr, M., Rüde, U., Wohlmuth, B.:

Large-scale simulation of mantle convection based on a new matrix-free
approach. J. Comput. Sci. 31, 60–76 (2019)

2. Huber, M., Gmeiner, B., Rüde, U., Wohlmuth, B.: Resilience for massively
parallel multigrid solvers. SIAM J. Sci. Comput. 38(5), S217–S239 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


A Perspective on the SPPEXA
Collaboration from France

Nahid Emad

As the French member of the Steering Committee of SPPEXA, it is my great
pleasure to give a short address to this volume from the perspective of the
French partners in this German-French-Japanese cooperation. To highlight the
types of software supported by SPPEXA, we first present a classification of high-
performance software types. We then take a look at the recent activities of HPC
software in France under the SPPEXA umbrella. Next, some local impacts of the
SPPEXA collaboration on the French HPC community is provided, and lastly, an
outlook to future collaborations.

1 HPC Software in Three Phases

High-performance numerical software targets at obtaining relevant scalability in
space and time for large-size applications by using a large number of cores/pro-
cessors/nodes of powerful computers. They can be classified into three phases:
pre-treatment, treatment, and post-treatment. Obviously, such a software often
belongs to more than one of the categories mentioned.

Pre-processing Software The precise definition of these phases depends on the
context, but the main role of pre-treatment software is the preparation of the
input data for the treatment phase. This preparation sometimes consists of a rather
complex parallel algorithmic and programming processing. Big data compression,
uniform data formatting, and conditioning improvement of data matrices are some
examples of the pre-treatment phase.
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Treatment Software The HPC software in the processing phase concerns mainly
high-performance numerical simulation of physical phenomena, social networks,
etc. These softwares could be classified as (1) “standard” libraries and (2) ad-hoc
libraries done by application field programmers, which implement their application
by making use of building blocks (partially or totally) of the libraries of class (1).
The latter implement numerical methods with the main parallel/distributed program-
ming methodologies, such as ScaLAPACK, PETSc, SLEPc, ATLAS, etc. In the
fields of application , HPC ad-hoc software targets epidemiology, electromagnetism,
gamma astronomy, safety, or health and nutrition. Some ad-hoc software examples
are CEDRE which targets simulation for energy and propulsion, CELESTIA and
STELLARIUM which is a space simulator and a planetarium for observing the solar
system and the rest of the universe in real time and in 3D, GAUSS, which is a flexible
platform for data analysis, and AREPO, which is a cosmological hydrodynamical
simulation code on a dynamic unstructured mesh.

Post-processing Software Post-processing software essentially involves the anal-
ysis, visualization, and performance evaluation of the treatment phase results.
Some examples of such software are ParaView (a multi-platform data analysis and
visualization application), VisIt (an interactive platform for visualization, animation
and data analysis), MAQAO (sets of software tools for code optimization in the
core or node level of a parallel architecture), and Maya (a software for modeling,
simulation, and 3D animation).

All these software packages generally translate a physical phenomenon, social
behaviour, etc. into mathematical equations. Their high-performance implementa-
tion on parallel and/or distributed systems is a delicate task and requires a huge
ecosystem with people having interdisciplinary skills. This makes the existence
and use of accompanying software necessary, which provides the logistics of high-
performance computing. These software frameworks provide the environment for
high-performance programming and often conceal the complexity of underlying
parallel and/or distributed architectures. As a consequence this allows the users to
focus on main objectives. MPI, OpenMP, Globus, Condor, XMP, YML, MUST, etc.
are very few examples of this kind of software.

2 Trilateral Projects in SPPEXA and Their Impact

SPPEXA targeted fundamental research on different aspects of HPC software and
covered software categories cited before with a co-design approach. Thanks to
ANR, DFG, and JST, the trilateral French/German/Japanese projects have been
funded within SPPEXA. Some of these projects, such as MYX, have benefited
from pre-existing bilateral collaborations. This allowed a dynamical and productive
work from the beginning and for a rapid progress towards the objectives set. In
addition to project meetings, the cross-project SPPEXA workshops have given a
new dynamic to the trilateral collaborations paving the way for the organization of
other conferences, workshops or seminars.
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The EXAMAG (Exascale Simulations of the Magnetic Universe) project is an
example of an SPPEXA trilateral French/German/Japanese project with the aim of
improving the astrophysical moving-mesh code AREPO and extending its range
of applicability for high scale computing platforms. EXAMAG is an ad-hoc HPC
software of the processing category of the classification given in the previous
section.

MYX (MUST Correctness Checking for YML and XMP Programs) also is a
trilateral French/German/Japanese project which aims to offer a guideline how to
limit the risk to introduce errors and how to best express the parallelism to catch
errors at runtime. From a practical viewpoint, MYX aims at the design and the
application of a scalable correctness checking tool MUST to YML and XMP. In
the MYX project, the main developed software packages (YML, XMP and MUST)
belong to the last category of HPC software; the ones providing the logistics of high-
performance application programs. However, in order to validate the design and
development of these softwares, many other benchmarks and/or real applications
are developed. Among them are the multiple restarted Krylov methods/HPCS ad-
hoc, matrix generator/pretreatment , epidemic HPCS ad-hoc, etc.

The SPPEXA funding of workshops with several projects involved added an
extra dimension of interdisciplinarity. In collaboration with the DASH and ESSEX-
II projects, MYX members organized four trilateral (German/Japanese/French)
workshops. Two of them have been hold at university of Paris Saclay/Versailles
in France. With the prominent invited speakers and the talks of SPPEXA-involved
project members, these workshops have been very attractive (40 and 60 attendees,
respectively). An important number of indirect outcomes of SPPEXA activities
(workshops, “open” trilateral meetings, doctoral retreats, etc.) generated new
connections between German and French colleagues and students. A few examples
are� the review of the PhD dissertation of a non-SPPEXA funded French student by
Sabine Roller, professor at Siegen University, Germany,� Xinzhe Wu, who finished
recently his PhD, funded by ANR part of ANR/DFG/JST MYX project and, who
is currently in a post-doctoral position at Jülich Research Centre in Germany, �
M.A. Diop, currently PhD student, funded by a French CIFRE followship (with
ATOS/EVIDIAN company), who participated in SPPEXA doctoral retreats as well
as several SPPEXA workshops, � a workhop organised by Sabine Roller and Nahid
Emad at HPC Asia, or a large number of BSc and MSc students benefiting from the
collaboration.

3 What Will Be Next?

The on-going convergence between machine learning, data analysis, and high-
performance computing is creating new algorithmic and co-design approaches that
need to be taken into account for the future. With the three tri-national workshops
in Tokyo, SPPEXA has contributed to this on-going development, and we are all
looking forward to a continued collaboration in the future.
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A Perspective on the SPPEXA
Collaboration from Japan

Takayuki Aoki

A national research project was running in Japan from 2010 to 2017 named “Devel-
opment of System Software Technologies for Post-Peta Scheme High Performance
Computing” (so called Post-Peta CREST) . It was supported by JST (Japan Science
and Technology Agency), which is the Japanese counterpart to DFG (“Deutsche
Forschungsgemeinschaft”). The Post-Peta CREST project was similar to the first
funding phase of SPPEXA in the sense that it had a primarily national scope.
Then, the Post-Peta CREST project opened up to international collaboration, and
some projects were extended for two more years, where they formed collaborative
research groups with SPPEXA phase-II projects. Projects with contributions from
Japan are ExaFSA, ExaStencils, EXAMAG, ESSEX-II, EXASOLVERS, AIMES, and
MYX, with more than 10 researchers in the second phase of SPPEXA. To highlight
the success of the Japanese collaboration with SPPEXA, we have a brief look at two
working groups.

ppOpen-HPC and ESSEX-II

As a part of Post-Peta CREST projects between 2011 and 2015, a group at the
University of Tokyo developed ppOpen-HPC, which is an open source infrastructure
for the development and execution of optimized and reliable simulation code on
post-peta-scale (pp) parallel computers based on many-core architectures. The
framework covers various types of procedures for scientific computations in various
types of computational models, such as FEM, FDM, FVM, BEM, and DEM.
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Automatic tuning (AT) technology enables automatic generation of optimized
libraries and applications under various types of environments. The most updated
version of ppOpen-HPC was released as open source software, which is available at
https://github.com/Post-Peta-Crest/ppOpenHPC.

In 2016, the team of ppOpen-HPC joined the SPPEXA phase-II project ESSEX-
II including members from the University of Erlangen-Nuremberg, which is funded
by JST-CREST and SPPEXA under Japan (JST)-Germany (DFG) collaboration
until 2018. ESSEX-II developed pK-Open-HPC (extended version of ppOpen-HPC,
a framework for exa-feasible applications), such as preconditioned iterative solvers
for quantum science.

Sparse coefficient matrices derived from applications in quantum science have
generally relatively very small diagonal components, and they are generally ill-
conditioned. Therefore, it is difficult to apply preconditioned iterative methods
developed in ppOpen-HPC directly to such applications. The ESSEX-II team
developed a regularization method for robustness based on blocking and diagonal
shifting, which provide efficient and robust convergence of ill-conditioned problems
in quantum science. Preconditioning methods with the regularization method are
implemented in GHOST/PHIST libraries for solving matrices, which integrates
all linear solvers and related methods developed in ESSEX/ESSEX-II projects.
Moreover, they proposed a new method for global parallel reordering, which
provides robust and efficient convergence of parallel iterative solvers with ILU-
based preconditioning for very ill-conditioned problems. The developed method
kept iteration number constant in strong scaling cases up to O(104) MPI processes
for very ill-conditioned problems. This is the first method for global parallel
reordering.

In the ESSEX-II project, CRAFT (A library for application-level Check-
point/Restart and Automatic Fault Tolerance) has been developed for fault resilience
on exascale systems by checkpointing. ESSEX-II integrated the dynamic load
balancing function and CRAFT, and developed a prototype of a fault-resilient
framework for parallel FEM applications. Parallel FEM codes can continue
computations by this framework, when some of the computing nodes fail. This
framework does not need spare nodes for fault resilience. This idea can be extended
to various types of procedures for dynamic scheduling on exascale systems.

Collaborations in ESSEX-II project have been continuing in the JHPCN projects
(“Numerical Library with High-Performance/Adaptive-Precision/High-Reliability”
(starting in 2018), “Innovative Multigrid Methods” (starting in 2018)), and in
“Innovative Methods for Scientific Computing in the Exascale Era by Integrations
of (Simulation+Data+Learning)” funded by “Grant-in-Aid for Scientific Research
(S) (KAKENHI S)” (2019-2023)
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Xevolver and ExaFSA

The so-called Xevolver project is one of the Post-Peta CREST projects from 2011
to 2017. A group at the Tohoku University discussed how they could help in legacy
code migration to future-generation extreme-scale computing systems that will be
massively parallel and heterogeneous. Even today an HPC application code is likely
optimized assuming a particular system configuration, and hence specialized only
for its target system. In general, such an application is not performance-portable
at all. As the HPC system architectures are now diverging and also getting more
complicated in terms of accelerators, it will require more time and effort to migrate
or re-optimize the code to another system in the future. To make matters worse,
system-specific code optimizations are tightly interwoven with the computation
and thereby degrade the code readability and maintainability, even though HPC
applications need to evolve not only for achieving high performance, but also for
advancing computational science. Therefore, in the project, our team has developed
a code transformation framework, Xevolver, so that users can define their own
code transformations and thus express system-specific code optimizations as code
transformation rules. Since code transformation rules can be defined separately from
application codes themselves, the Xevolver framework can contribute to separation
of system-specific performance concerns from application codes, and hence prevent
overcomplicating the codes.

In 2016, core members of the Xevolver research team joined the second phase of
the ExaFSA project in order to demonstrate that the Xevolver approach is effective
for optimizing real-world applications in practice. The Xevolver approach assumes
that an HPC application is developed by a team work of at least two kinds of
programmers. One is application developers and the other is performance engineers.
Application developers are interested in simulation results rather than performance,
while performance engineers are mainly focusing on sustained simulation perfor-
mance. Therefore, Japanese researchers have worked as performance engineers
using Xevolver by considering German research groups as application developers.

The ExaFSA project focused on engineering two solvers, FASTEST and Ateles,
which have been developed in the ExaFSA project as primary building blocks of a
practical coupled simulation. An incompressible flow solver, FASTEST, has a long
history of development and was once optimized for classic vector machines. Thus,
some of important kernels still have two versions, default version and its vector-
optimized version. In the ExaFSA project, hence, they used the Xevolver framework
to express the differences between the two versions, and demonstrated that the
vector-optimized version can be generated by transforming the default version.
That is, the Xevolver approach can express the system-specific code optimizations
as code transformation rules, and thus even simplify the code while achieving
high performance and portability. Ateles is based on based on Discontinuous
Galerkin (DG) discretization method, and a part of the simulation framework,
APES, was developed at the University of Siegen in Germany. Unlike FASTEST,
Ateles is written using modern Fortran language features to hide the implementation
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details. However, the kernel loops still need to be optimized in different ways for
individual system architectures to achieve high performance. For example, some
loop optimizations with compiler directives are mandatory for the NEC SX-ACE
vector computing system to properly vectorize and thus efficiently execute the
loops. In this project, Xevolver is used to apply the loop optimizations without
major modifications of the original code. Accordingly, the ExaFSA project was a
very good opportunity for us to demonstrate that the Xevolver approach can help
an appropriate division of labor between application developers and performance
engineers by achieving separation of concerns. This clarification of role-sharing will
be very helpful for long-term application development especially in an upcoming
extreme-scale computing era.

The Role of Japan in HPC Collaborations

The SPPEXA program was unique in the sense that it established sustainable
connections in the field of HPC between France, Germany, and Japan. With the
supercomputing infrastructure in Japan (and its upcoming flagship supercomputer
Fugaku), the three countries are suitable partners for portability and methodology
comparisons and, thus, synergistic research developments (such as within SPPEXA
connection).

A new field of interest in Japan, Germany, and France is data science and its
connection to HPC. SPPEXA participated in the tri-lateral workshop in Tokyo
“Convergence of HPC and Data Science for Future Extreme Scale Intelligent
Applications”, where we discussed new possible collaborations in the fields of HPC
and Big Data. Looking back at SPPEXA, we see many success stories, and hope for
a lot of continuing collaborations.
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ADA-FS—Advanced Data Placement via
Ad hoc File Systems at Extreme Scales

Sebastian Oeste, Marc-André Vef, Mehmet Soysal, Wolfgang E. Nagel,
André Brinkmann, and Achim Streit

Abstract Today’s High-Performance Computing (HPC) environments increasingly
have to manage relatively new access patterns (e.g., large numbers of metadata
operations) which general-purpose parallel file systems (PFS) were not optimized
for. Burst-buffer file systems aim to solve that challenge by spanning an ad hoc file
system across node-local flash storage at compute nodes to relief the PFS from such
access patterns. However, existing burst-buffer file systems still support many of the
traditional file system features, which are often not required in HPC applications, at
the cost of file system performance.

The ADA-FS project aims to solve that challenge by providing a temporary burst-
buffer file system—GekkoFS—which relaxes POSIX, based on previous usage
studies of how HPC applications use file systems. Due to a highly distributed and
decentralized design GekkoFS reaches scalable data and metadata performance with
tens of millions of metadata operations per second on a 512 node cluster. The
ADA-FS project further investigated the benefits of using ad hoc file systems and
how they can be integrated into the workflow of supercomputing environments. In
addition, we explored how to gather application-specific information to optimize the
file system for an individual application.
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1 Introduction

Application-imposed workloads on High-Performance computing (HPC) environ-
ments have considerably changed in the past decade. While traditional HPC applica-
tions have been compute-bound, large-scale simulations, today’s HPC applications
are also generating, processing, and analyzing massive amounts of experimen-
tal data—known as data-driven science applications—affecting several scientific
fields. Some of which have already made significant progress in previously unad-
dressable challenges due to newly discovered techniques [27, 55].

Many data-driven workloads are based on new algorithms and data structures
which impose new requirements on HPC file systems [45, 77]. Particularly, large
numbers of metadata operations, data synchronization, non-contiguous and random
access patterns, and small I/O requests [14, 45], used in data-driven science
applications, are challenging for today’s general-parallel file systems (PFSs) to
handle since past workloads mostly perform sequential I/O operations on large
files. Not only are such applications disruptive to the shared storage system but
also heavily interfere with other applications which access the same shared storage
system [18, 68]. As a result, many workloads which impose these new types of I/O
operations suffer from prolonged I/O latencies, reduced file system performance,
and occasional long wait times.

Software-based approaches, e.g., application modifications or middleware and
high-level libraries [21, 39], and hardware-based approaches, moving from mag-
netic disks to NAND-based solid-state drives (SSDs) within PFSs, are attempts to
mitigate the impact of these new access patterns on the HPC system. However,
software-based approaches often suffer from time-consuming adaptations within
applications and are sometimes (based on the underlying algorithms) even impos-
sible to adapt to. One of the hardware-based approaches leverages on, nowadays,
existing SSDs, installed within a compute node, in order to use them as node-
local burst buffers. To achieve high metadata performance, they can be deployed
in combination with a dynamic burst buffer file system [5, 78]. Nonetheless, existing
burst buffer file systems have been mostly POSIX compliant which can severely
reduce a file system’s peak performance [75].

The ADA-FS project, funded by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing”, aims
to further explore the possibilities of burst buffer file systems in this context while
investigating how they can be used in a modern HPC system. The developed burst
buffer file system—GekkoFS—acts as ADA-FS’ main component. GekkoFS is a
temporarily deployed, highly-scalable distributed file system for HPC applications
which aims to accelerate I/O operations of common HPC workloads that are
challenging for modern PFSs. As such, it can be used in several temporary use cases,
such as the lifetime of a compute job or in longer-term use cases, e.g., campaigns.
Unlike previous works on burst buffer file systems, it relaxes POSIX by removing
some of the semantics that most impair I/O performance in a distributed context
and takes previous studies on the behavior of HPC applications into account [37] to
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optimize the most used file system operations. As a result, GekkoFS reaches scalable
data and metadata performance with tens of millions of metadata operations per
second on a 512 node cluster while still providing strong consistency for file system
operations that target a specific file or directory. In fact, due to its highly distributed
and decentralized file system design, GekkoFS is built to perform on even bigger
supercomputers, as exascale environments are right around the corner.

While GekkoFS provides the core building block within ADA-FS, it relies and
benefits from further information of the application it is used with. Application-
specific information that we gather can then further optimize the file system (e.g.,
the used file system block size) and therefore may increase the file system’s
performance in terms of latency and throughput. In addition, the ADA-FS project
investigated how such a temporary and on demand burst buffer file system can be
integrated into the workflow of batch systems in supercomputing environments.
Although it is hard to reliably predict when compute jobs finish to prematurely
deploy GekkoFS for a following ADA-FS job, for instance, we investigated and
showed the benefits of on demand burst buffer file systems concerning both
application performance and the reduction of the PFS load as a result of using such
a file system.

The article is structured as follows: first, we describe GekkoFS’ design and its
evaluation of nowadays common and challenging HPC workloads on a 512 node
cluster in Sect. 2. Section 3 discusses the existing challenges when data is staged
in advance and how we solved the challenge, through implementing a plugin for
the batch system. Section 4 discusses how we can detect system resources like the
amount of node local storage or the NUMA configuration of a node which can be
used for the deployment of the GekkoFS file system even on heterogenous compute
nodes. In Sect. 5 we show how the option for an on demand file system, can be added
to an HPC system. We follow with an evaluation of the performance of GekkoFS
for new NVME based storage systems in Sect. 6. Finally, we conclude in Sect. 7.

2 GekkoFS—A Temporary Burst Buffer File System
for HPC

In this section, we present the main component of ADA-FS—GekkoFS. GekkoFS
is a temporarily deployed, highly-scalable burst buffer file system for HPC appli-
cations. In general, the goal of GekkoFS is to accelerate I/O operations in common
HPC workloads that are challenging for modern PFSs while offering the combined
storage capabilities of node-local storage devices. Further, it does not only aim for
providing scalable I/O performance, but, in particular, focuses on offering scalable
metadata performance by departing from traditional ways of handling metadata in
distributed file systems. To provide a single, global namespace, accessible to all file
system nodes, the file system pools together fast node-local storage resources of all
participating file system nodes.
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Based on previous studies [37] on the behavior of HPC applications, GekkoFS
relaxes or removes some of the POSIX semantics, known to heavily impact I/O
performance in a distributed environment. As a result, it is able to optimize for the
most used file system operations, achieving tens of millions of metadata operations
per second on a 512 node cluster. At the same time, GekkoFS is able to run complex
applications, such as OpenFOAM solvers [32], and since the file system runs in user-
space and it can be easily deployed in under 20 s on a 512 node cluster, it is usable
by any user. Consequently, GekkoFS can be used for several use cases which require
an ephemeral distributed file system, such as during the lifetime of a compute job or
campaigns where data is simultaneously accessed by many nodes in short bursts.

Parts of this section’s contents is build on the conference paper by the authors M.-
A. Vef et al. [72] and the journal article by the authors M.-A. Vef et al. [71] which
both discuss each of the system components of GekkoFS in more detail and provide
an in-depth investigation into the performance of GekkoFS compared to other file
systems in various HPC environments. First, Sect. 2.1 provides a background on
parallel and distributed file systems and discusses some of the related work in the
context of burst buffer file systems. Section 2.2 presents the file system’s core
architecture and design to achieve scalable data and metadata performance in a
distributed environment. Finally, in Sect. 2.3 we demonstrate GekkoFS data and
metadata performances.

2.1 Related Work

In this section, we give an overview over existing HPC file systems and discuss the
differences to GekkoFS.

2.1.1 General-Purpose Parallel File Systems

Most HPC systems are equipped with a backend storage system which is globally
accessible using a parallel file system (e.g., GPFS [57], Lustre [7, 53], BeeGFS [26],
or PVFS [56]). These file systems offer a POSIX-like interface and focus on data
consistency and long-term storage. However, due to the nature of the file system
being globally accessible, single applications can disrupt the I/O performance of
other applications as well. In addition, these file systems are not well suited for small
file accesses, in particular on shared files, often found in scientific applications [45].

The design of GekkoFS does not focus on long-term storage and aims for
temporary use cases, such as in the context of compute jobs or campaigns. In
addition, since GekkoFS relaxes POSIX semantics, it is able to provide a significant
increase in metadata performance.
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2.1.2 Node-Local Burst Buffers

Burst buffers are fast, intermediate storage systems that aim to reduce the load on
the global file system and on reducing an applications’ I/O overhead [38]. Such
burst buffers can be categorized into two groups [78]: remote-shared and node-
local. Remote-shared burst buffers are generally dedicated I/O nodes to forward
application I/O to the underlying PFS, e.g., DDN’s IME1 and Cray’s DataWarp.2

Node-local burst buffers, on the other hand, are collocated with compute nodes,
using existing node-local storage. This node-local storage is then used to create a
(distributed) file system which spans over a number of nodes for the lifetime of a
compute job, for example. Node-local burst buffers can also be dependent on the
PFS (e.g., PLFS [5]) or are sometimes even managed directly by the PFS [49].

BurstFS [78], perhaps the most related work to ours, is a standalone burst buffer
file system which does not require a centralized instance as well. However, GekkoFS
is not limited to writing data locally like BurstFS. Instead, all data is distributed
across all participating file system nodes to balance data workloads for write and
read operations without sacrificing scalability. BeeOND [26] can create a job-
temporal file system on a number of nodes similar to GekkoFS. BeeOND is, in
contrast to our file system, POSIX compliant and our GekkoFS measurements show
a much higher metadata throughput than offered by BeeOND [69, 71].

2.1.3 Metadata Scalability

The management of inodes (containing a file’s metadata) and related directory
blocks (containing data about which files belong to the directory) are the main
scalability limitations of file systems in a distributed environment [73]. Typically,
general-purpose PFSs distribute data across all available storage targets. While
this technique works well for data, it does not achieve the same throughput when
handling metadata [11, 54], although the file system community presented various
techniques to tackle this challenge [5, 22, 50, 51, 79, 80]. The performance limitation
can be attributed to the sequentialization enforced by underlying POSIX semantics
which is particularly degrading throughput when an extremely large number of files
is created in a single directory from multiple processes. This workload, common
to HPC environments [5, 49, 50, 74], can become an even bigger challenge for
upcoming data-science applications. GekkoFS handles directories and replaces
directory entries by objects, stored within a strongly consistent key-value store
which helps to achieve tens of millions of metadata operations for billions of files.

1IME: https://www.ddn.com/products/ime-flash-native-data-cache/.
2Datawarp: https://www.cray.com/datawarp.

https://www.ddn.com/products/ime-flash-native-data-cache/
https://www.cray.com/datawarp
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2.2 Design

In this section, we present goals, architecture, and general design of GekkoFS
which allows scalable data and metadata performance. In general, any user without
administrative access should be able to deploy GekkoFS. The user dictates on
how many compute nodes and at which path the mountpoint of GekkoFS and
its metadata and data is stored. The user is then presented with a single global
namespace, consisting of the aggregated node-local storage of each node. To provide
this functionality GekkoFS aims to achieve four core goals:

Scalability: GekkoFS should be able to scale with an arbitrary number of nodes
and efficiently use available hardware.

Consistency model: GekkoFS should provide the same strong consistency as
POSIX for common file system operations that access a specific data file.
However, the consistency of directory operations, for example, can be relaxed.

Fast deployment: To avoid wasting valuable and expensive resources in HPC
environments, the file system should startup within a minute and be ready for
usage immediately by applications after the startup succeeds.

Hardware independence: GekkoFS should be able to support networking hard-
ware that is commonly used in HPC environments, e.g., Omni-Path or Infiniband.
The file system should be able to use the native networking protocols to
efficiently move data between file system nodes. Finally, GekkoFS should work
with modern and future storage technologies that are accessible to a user at an
existing file system path.

2.2.1 POSIX Semantics

Similarly to PVFS [12] and OrangeFS [42], GekkoFS does not provide complex
global locking mechanisms. In this sense, applications should be responsible to
ensure that no conflicts occur, in particular, concerning overlapping file regions.
However, the lack of distributed locking has consequences for operations where the
number of affected file system objects is unknown beforehand, e.g., readdir()
called by the ls -l command. In these indirect file system operations, GekkoFS
does not guarantee to return the current state of the directory and follows the
eventual-consistency model. Furthermore, each file system operation is synchronous
without any form of caching to reduce file system complexity and to allow for an
evaluation of its raw performance capabilities.

Further, GekkoFS does not support move or rename operations or linking
functionality as HPC application studies have shown that these features are rarely
or not used at all during the execution of a parallel job [37]. Such unsupported file
system operations then trigger an I/O error to notify an application. Finally, security
management in the form of access permissions is not maintained by GekkoFS since
it already implicitly follows the security protocols of the node-local file system.
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Fig. 1 GekkoFS architecture

2.2.2 Architecture

The architecture of GekkoFS (see Fig. 1) consists of two main components: a client
library and a server process. An application that uses GekkoFS must first preload the
client interposition library which intercepts all file system operations and forwards
them to a server (GekkoFS daemon), if necessary. The GekkoFS daemon, which runs
on each file system node, receives forwarded file system operations from clients and
processes them independently, sending a response when finished. In the following
paragraphs, we describe the client and daemon in more detail.

2.2.3 GekkoFS Client

The client consists of three components: (1) An interception interface that catches
relevant calls to GekkoFS and forwards unrelated calls to the node-local file system;
(2) a file map that manages the file descriptors of open files and directories,
independently of the kernel; and (3) an RPC-based communication layer that
forwards file system requests to local/remote GekkoFS daemons.

Each file system operation is forwarded via an RPC message to a specific daemon
(determined by hashing of the file’s path, similar to Lustre DNE 23 ) where it is
directly executed. In other words, GekkoFS uses a pseudo-random distribution to
spread data and metadata across all nodes, also known as wide-striping. Because
each client is able to independently resolve the responsible node for a file system
operation, GekkoFS does not require central data structures that keep track of where
metadata or data is located. To achieve a balanced data distribution for large files,

3https://lustre.ornl.gov/ecosystem-2016/documents/papers/LustreEco2016-Simmons-DNE.pdf.

https://lustre.ornl.gov/ecosystem-2016/documents/papers/LustreEco2016-Simmons-DNE.pdf


36 S. Oeste et al.

data requests are split into equally sized chunks before they are distributed across
file system nodes (or GekkoFS daemons). The GekkoFS daemons then store each
received chunk in a separate file (so-called chunk files) in its underlying node-
local storage. If supported by the underlying network fabric protocol, the client
exposes the relevant chunk memory region to the daemon, accessed via remote-
direct-memory-access (RDMA).

2.2.4 GekkoFS Daemon

GekkoFS daemons consist of three parts: (1) A key-value store (KV store) used
for storing metadata; (2) an I/O persistence layer that reads/writes data from/to the
underlying local storage system; and (3) an RPC-based communication layer that
accepts local and remote connections to handle file system operations.

Each daemon operates a single local RocksDB KV store [17]. RocksDB is
optimized for NAND storage technologies with low latencies and fits GekkoFS’
needs as SSDs are primarily used as node-local storage in today’s HPC clusters.
While RocksDB fits this use case well, the component is replaceable by other
software or hardware solutions. Therefore, GekkoFS may introduce various choices
for backends in the future to, for example, support recent key-value SSDs4

For the communication layer, we leverage on the Mercury RPC framework [62].
It allows GekkoFS to be network-independent and to efficiently transfer large data
within the file system. Within GekkoFS, Mercury is interfaced indirectly through
the Margo library which provides Argobots-aware wrappers to Mercury’s API with
the goal to provide a simple multi-threaded execution model [13, 58]. Using Margo
allows GekkoFS daemons to minimize resource consumption of Margo’s progress
threads and handlers which accept and handle RPC requests [13].

Further, as indicated in Sect. 2.1.3, GekkoFS does not use a global locking man-
ager. Therefore, when multiple processes write to the same file region concurrently,
they may cause a shared write conflict with resulting undefined behavior with
regards to which data is written to the underlying node-local storage. Such conflicts
can, however, be handled locally by any GekkoFS daemon because it is using a
POSIX-compliant node-local file system to store the corresponding data chunks,
serializing access to the same chunk file. Note that such conflicts in a single file
only affect one chunk at a time since the file’s data is spread across many chunk
files in the file system. As a result, chunks of that file are not disrupted during such
a potential shared write conflict.

4https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables
_High_Performance_Scaling-0.pdf.

https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
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2.3 Evaluation

In this section, we evaluate the performance of GekkoFS based on various unmod-
ified microbenchmarks which catch access patterns that are common in HPC
applications. First, we describe the experimental setup and introduce the workloads
that we simulate with microbenchmark applications. Then, we investigate the startup
time of GekkoFS and compare metadata performance against a Lustre parallel
file system. Although GekkoFS and Lustre have different goals, we point out the
performances that can be gained by using GekkoFS as a burst buffer file system.
Finally, we evaluate the data performance of GekkoFS and discuss the measured
results.

2.3.1 Experimental Setup

We evaluated the performance of GekkoFS based on various unmodified
microbenchmarks which catch access patterns that are common in HPC
applications. Our experiments were conducted on the MOGON II supercomputer,
located at the Johannes Gutenberg University Mainz in Germany. All experiments
were performed on Intel 2630v4 Intel Broadwell processors (two sockets each).
The node main memory capacity ranges from 64 GiB up to 512 GiB. MOGON II
uses 100 Gbit/s Intel Omni-Path to establish a fat-tree network between all compute
nodes. In addition, each node provides a data center Intel SATA SSD DC S3700
Series as scratch-space (XFS formatted) usable within a compute job. We used these
SSDs for storing data and metadata of GekkoFS which uses an internal chunk size
of 512 KiB. All Lustre experiments were performed on a Lustre scratch file system
with 12 Object Storage Targets (OSTs), 2 Object Storage Servers (OSSs), and 1
Metadata Service (MDS) with a total of 1.2 PiB of storage.

Before each experiment iteration, GekkoFS daemons are restarted (requiring less
than 20 s for 512 nodes), all SSD content is removed, and kernel buffer, inode, and
dentry caches are flushed. The GekkoFS daemon and the application under test are
pinned to separate processor sockets to ensure that file system and application do
not interfere with each other.

2.3.2 Metadata Performance

We simulated common metadata intensive HPC workloads using the unmodified
mdtest microbenchmark [41] to evaluate GekkoFS’ metadata performance and
compare it against a Lustre parallel file system. Although GekkoFS and Lustre have
different goals, we point out the performances that can be gained by using GekkoFS
as a burst buffer file system. In our experiments, mdtest performs create, stat, and
remove operations in parallel in a single directory—an important workload in many
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Fig. 2 GekkoFS’ file create, stat, and remove throughput for an increasing number of nodes
compared to a Lustre file system

HPC applications and among the most difficult workloads for a general-purpose
PFS [74].

Each operation on GekkoFS was performed using 100,000 zero-byte files per
process (16 processes per node). From the user application’s perspective, all created
files are stored within a single directory. However, due to GekkoFS’ internally
kept flat namespace, there is conceptually no difference in which directory files
are created. This is in contrast to a traditional PFS that may perform better if the
workload is distributed among many directories instead of in a single directory.

Figure 2 compares GekkoFS with Lustre in three scenarios with up to 512
nodes: file creation, file stat, and file removal. The y-axis depicts the corresponding
operations per second that were achieved for a particular workload on a logarithmic
scale. Each experiment was run at least five times with each data point representing
the mean of all iterations. GekkoFS’ workload scaled with 100,000 files per process,
while Lustre’s workload was fixed to four million files for all experiments. We fixed
the number of files for Lustre’s metadata experiments because Lustre was otherwise
detecting hanging nodes when scaling to too many files.

Lustre experiments were run in two configurations: All processes operated in
a single directory (single dir) or each process worked in its own directory
(unique dir). Moreover, Lustre’s metadata performance was evaluated while the
system was accessible by other applications as well.

As seen in Fig. 2, GekkoFS outperforms Lustre by a large margin in all scenarios
and shows close to linear scaling, regardless of whether Lustre processes operated
in a single or in an isolated directory. Compared to Lustre, GekkoFS achieved
around 46 million creates/s (∼1405×), 44 million stats/s (∼359×), and 22 million
removes/s (∼453×) on 512 nodes. The standard deviation was less than 3.5%
which was computed as the percentage of the mean. Therefore, we achieve our
scalability goal, demonstrating the performance benefits of distributing metadata
and decoupling directory entries from non-scalable directory blocks (see Sect. 2.2).

Additional GekkoFS experiments were also run while Mogon II was used by
other users during production, revealing network interference within the cluster.
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With up to 128 nodes we were unable to measure a difference in metadata operation
throughput outside of the margin for error compared to the experiments in an
undisturbed environment (see Fig. 2). For 256 and 512, we measured a reduced
metadata operation throughput between 10 and 20% for create and stat operations.
Remove operation throughput remained unaffected.

Lustre’s metadata performance did not scale beyond approximately 32 nodes,
demonstrating the aforementioned metadata scalability challenges in such a general-
purpose PFS. Moreover, processes in Lustre experiments that operated within their
own directory achieved a higher performance in most cases, except for the remove
case where Lustre’s unique dir remove throughput is reduced by over 70% at
512 nodes compared to Lustre’s single dir throughput. This is because the time
required to remove the directory of each process (in which it creates its workload) is
included in the remove throughput and the number of created unique directories
increases with the number of used processes in an experiment. Similarly, the time to
create the process directories is also included in the create throughput but does not
show similar behavior to the case of the remove throughput, indicating optimizations
towards create operations.

2.3.3 Data Performance

We used the unmodified IOR [31] microbenchmark to evaluate GekkoFS’ I/O
performance for sequential and random access patterns in two scenarios: Each
process is accessing its own file (file-per-process) and all processes access a single
file (shared file). We used 8 KiB, 64 KiB, 1 MiB, and 64 MiB transfer sizes to assess
the performances for many small I/O accesses and for few large I/O requests. We
ran 16 processes on each client, each process writing and reading 4 GiB in total.

GekkoFS data performance is not compared with the Lustre scratch file system
as the peak performance of the used Lustre partition, around 12 GiB/s, is already
reached for ≤10 nodes for sequential I/O patterns. Moreover, Lustre has shown to
scale linearly in larger deployments with more OSSs and OSTs being available [48].

Figure 3 shows GekkoFS’ sequential I/O throughput in MiB/s, representing the
mean of at least five iterations, for an increasing number of nodes for different
transfer sizes. In addition, each data point is compared to the peak performance
that all aggregated SSDs could deliver for a given node configuration, visualized
as a white rectangle, indicating GekkoFS’ SSD usage efficiency. In general, every
result demonstrates GekkoFS’ close to linear scalability, achieving about 141 GiB/s
(∼80% of the aggregated SSD peak bandwidth) and 204 GiB/s (∼70% of the
aggregated SSD peak bandwidth) for write and read operations for a transfer size of
64 MiB for 512 nodes.

Figure 4 shows GekkoFS’ throughput for random accesses for an increasing
number of nodes, showing close to linear scalability in all cases. The file system
achieved up to 141 GiB/s write throughput and up to 204 GiB/s read throughput for
64 MiB transfer sizes at 512 nodes.



40 S. Oeste et al.

(a)

(b)

Fig. 3 GekkoFS’ sequential throughput for each process operating on its own file compared to the
plain SSD peak throughput. (a) Write throughput. (b) Read throughput

For the file-per-process cases, sequential and random access I/O throughput are
similar for transfer sizes larger than the file system’s chunk size (512 KiB). This is
due to transfer sizes larger than the chunk size internally access whole chunk files
while smaller transfer sizes access one chunk at a random offset. Consequently,
random accesses for large transfer sizes are conceptually the same as sequential
accesses. For smaller transfer sizes, e.g., 8 KiB, random write and read throughput
decreased by approximately 33 and 60%, respectively, for 512 nodes owing to the
resulting random access to positions within the chunks.

For the shared file cases, a drawback of GekkoFS’ synchronous and cache-
less design becomes visible. No more than approximately 150 K write operations
per second were achieved. This was due to network contention on the daemon
which maintains the shared file’s metadata whose size needs to be constantly
updated. To overcome this limitation, we added a rudimentary client cache to locally
buffer size updates of a number of write operations before they are sent to the
node that manages the file’s metadata. As a result, shared file I/O throughput for
sequential and random access were similar to file-per-process performances since
chunk management on the daemon is then conceptually indifferent in both cases.
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(a)

(b)

Fig. 4 GekkoFS’ random throughput for each process operating on its own file. (a) Write
throughput. (b) Read throughput

3 Scheduling and Deployment

In order to transfer the data to a previously generated on demand file system in
time, the nodes that will be allocated to a job must be known in advance. Today’s
schedulers plan the resources of a supercomputer. The schedule is based on user
requested wall times. Reality shows that the users requested wall times are very
inaccurate, and thus the scheduler’s predictions are unreliable.

Here two investigations were made and published. In the first work, we have
shown that we can improve wall time estimates based on simple job metadata. We
also used unconsidered metadata that is usually not publicly available [65].

Predicting the run times of jobs is only one aspect of the challenge. However,
the essential factor is the prediction of node allocation to a job. In this second
investigation, we have determined the influence of the wall-time on the node
prediction [64]. The question we wanted to answer—How good do wall time
predictions have to be to predict the allocated nodes accurately?
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3.1 Walltime Prediction

One of the challenges is to know which nodes are going to be allocated to a queued
job. The HPC scheduler predicts these nodes based on the user given wall times.
Therefore, we have decided to evaluate whether there is an easy way to predict such
wall time automatically. Our proposed approach for wall time prediction is to train
an individual model for every user. For this, we used methods from the machine
learning domain and added job metadata, which was in previous work unconsidered.
As historical data, we used workloads from two HPC-systems at the Karlsruhe
Institute for Technology/Steinbuch Centre for Computing [66], the ForHLR I +
II [34, 35] clusters. To train the model, we used automatic machine learning
(AUTOML). AUTOML automates the process of hyperparameter optimization and
selecting the correct model. We have chosen the auto ML library auto-sklearn [20],
which is based on scikit-learn [9, 52].

In Fig. 5 the comparison of the user given wall times and the wall time prediction
is shown. As a metric, the median absolute error (medAE) in hours is depicted as
cumulative distribution. A model trained with AUTOML shows for 60% of the users
a medAE of approximately 1 h on the ForHLR I and 1.4 h for the ForHLR II. The
user estimations show a medAE deviation of about 7.4 h on both clusters. So we
are able to reduce the median absolute deviation from 7.4 down to 1.4 h in average.
Considering the fact that simple methods were used and no insight was provided
into the job payload, this result is very good.

Fig. 5 Comparison of median absolute error (medAE) for ForHLR I+II. X-axis Median absolute
error in hours, Y-Axis cumulative distribution
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3.2 Node Prediction

As mentioned before predicting the run times of jobs is only one aspect of the
challenge. However, the decisive factor is the accuracy of node allocation prediction.
In this subsequent investigation, we have determined the impact on the node
allocation accuracy with improved wall times. Therefore the ALEA Simulator [2]
has been extended to simulate the time of the node allocation list [64].

We have conducted several simulations with subsequently improved job run time
estimates, from inaccurate wall times as provided by users to fully accurate job run
time estimates. For this purpose, we introduce T̃Req, the “refined” requested wall
time,

T̃Req = TRun + λ(TReq − TRun) with λ ∈ [0, 1], (1)

where TReq is the user requested wall time and TRun is the run time of the job.
To effectively simulate different precision of requested wall times, each job in the
workload is modified by the same λ.

The result of the simulation is shown in Fig. 6, each bar represents a simulation
with a different λ value. The bars are categorized into four groups based on the valid
node allocation prediction (TNAP). The blue part represents the jobs that are started
immediately (instant) execution after the job is submitted to the batch system. These
instantly started jobs offer of course no time to create a file system or even stage
data. The orange part represents queued jobs with a TNAP between 0 and 1 s. The
green part shows jobs with a TNAP from one second up to 10 min and red indicates
long term prediction with a valid node allocation prediction over 10 min. The class
of jobs with long-term predictions (red) is in our focus. This long-term predictions

Fig. 6 Job distributions of ForHLR II workload with back-filling (CONS). Blue color denotes
instant jobs, orange color means job having prediction ≤1 s, green color denotes jobs with 1 and
600 s and red color denotes long-term predictions(<600 s)
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increase significantly only at very small λ ≤ 0.1 which proves that very good run
time estimates are needed.

3.3 On Demand Burst Buffer Plugin

From both evaluations, it is clear, that advanced data staging based on the scheduler
prediction is not possible. Also, by using state-of-the-art methods such as machine
learning, the accuracy is not sufficient. Therefore we decided to extend the
functionality of the SLURM [15] scheduler. Slurm has a feature to manage burst
buffers [16]. However, the current implementation status only includes support
for the Cray DataWarp solution. Management of burst buffers using other storage
technologies is documented, but not yet implemented. With the developed plugin,
we extend the functionality of SLURM to create a file system on demand. For
the prototype implementation, we also developed tools which deploy BeeOND
(BeeGFS On Demand) as an on demand file system per job. Other parallel file
systems,e.g. Lustre [7] or GekkoFS, can be added easily. The user requests an on
demand file system by a job flag. He can also specify if data should be staged in
and out. The SLURM controller marks the jobs and then does the corresponding
operations [76].

3.4 Related Work

The requested wall times are unfortunately far away from the real used wall time.
Gibbons [23, 24], and Downey [19] used historical workloads to predict the wall
times of parallel applications. They predict wall times based on templates. These
templates are created by analyzing previously collected metadata and grouped
according to similarities. However, both approaches are restricted to simple defi-
nitions.

In the recent years, machine learning algorithms have been used to predict
resource consumption in several studies [33, 40, 43, 44, 61, 70].

Predicting the run-time of jobs is also important in different topics, like for
energy aware scheduling [3]. Here the applications’ power and performance char-
acteristics are considered to provide an optimized trade off between energy savings
and job execution time.

However, all of the above mentioned studies do not try to evaluate the accuracy
of the node allocation predictions. Most of the publications focus on observing the
utilization of the HPC system and the reliability of the scheduler estimated job start
times. In our work, we focus on the node allocation prediction and how good wall
time estimates have to be. This directly affects, whether a cross-node, on demand,
independent parallel FS can be deployed, and data can be pre-staged, or not.
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4 Resource and Topology Detection

Compute nodes of modern HPC systems tend to get more heterogeneous. To plan
a proper deployment of the GekkoFS file system on the compute nodes, knowledge
of the underlying storage components are vital. This section describes what kind
of resource information is of interest and shows possible ways to gather this
information. Further, we discuss the architecture of the sysmap tool that we build to
collect relevant information.

When thinking about the resources of a compute node, we distinguish between
static and dynamic resource usage. Static resource information describes compo-
nents that do not change frequently and are often similar between nodes. This
includes the number of CPU cores, the amount of main memory, the number and
capacity of node-local storage devices, or the type of file system. It is unlikely that
this kind of hardware is replaced frequently. Otherwise different parts of a Cluster
may have different configurations, e.g., one island of a Cluster may have more
RAM than another island. On the other hand, dynamic resource usage describes
the available resources at a certain point in time.

The goal is to hold a map of the resources available on a system. On the one hand,
this can be used as an input for the data staging. On the other hand, such information
is useful for the deployment of the file system. When the job scheduler has decided
on which set of nodes a job will run, available hardware resources can be queried
and an appropriate configuration to deploy the file system can be selected.

The sysmap tool can utilize existing hardware discovery libraries such as
hwloc [8, 25] by using their interface. While hwloc does an excellent job for
computing-related artifacts like the number of CPUs or cache sizes, it does not
focus on the storage subsystem. Therefore, we use information from the /proc
and /sys pseudo file systems to get information about the system. By reading
the system configuration, the sysmap tool gathers information about partitions,
mountpoints, file systems but also about available kernel modules and I/O-scheduler
configuration. Moreover, we gather network information for InfiniBand networks by
utilizing the well-known ibnetdiscover tool from the OFED distribution [47].

4.1 Design and Implementation

We have designed an extensible architecture for our sysmap tool. Each
resource of interest is captured by a so-called extractor. Figure 7 shows a
schematic UML-diagram of two extractors. Each extractor module consists
of an abstract part, which defines the structure of the data that will be
gathered and a specialized part which implements the logic to read the
data from a specific source, by overriding the abstract interface. In Fig. 7,
the Filesystem_Extractor and the Disk_Extractor are examples
of the abstract parts. The Linux::Filesystem_Extractor and the
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Fig. 7 Simple UML-Diagram for two example extractor modules of our system-map tool

AIX::Filesystem_Extractor are the specialized parts for extracting
information of mountpoints and partitions of a specific system [46]. This is useful
because the same information may be available on different systems through
different sources. On the one hand, the user has to define the abstract extractor he
wants, and the sysmap tool selects the source depending on what is available on the
target system. On the other hand, we can implement specialized extractor modules
for different sources resulting in an equivalent representation of the data for our
tool. After gathering the data, the sysmap tool provides a wide variety of output
formats presenting the data to the user. Since the tool is mentioned to be executed
on multiple compute nodes, the recommended way is to store the results in a central
database. Figure 8 depicts an overview of the general workflow of the resource
discovery process. The sysmap tool runs on the compute nodes and gathers the
resource information. Afterwards, the collected data is stored in a central resource
database. For our working prototype, we use a sqlite5 database. The information
can be queried by the sysquery tool, which queries the resource database and
outputs the selected data in JSON format. This way the querying component gets
a machine-readable section of the required data which can be easy post-processed
for they need. Further, the particular database query remains hidden from the user
inside the sysquery tool. The datamodel of the resource database is shown in Fig. 9
and consists of four simple tables. The HostTable and ExtractorTable are to map
the hostname or the extractor name to a numerical ID. Information extracted by an
extractor is stored as JSON string in the DataTable. Further, a DataID is maintained
to reference the data from an extractor. In the Host2Data table, the DataID is

5https://www.sqlite.org/index.html.

https://www.sqlite.org/index.html
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Fig. 8 Overview of resource discovery components, the blue components are part of the sysmap
tool suite, the resource database is highlighted as the yellow box, the red box represents the
querying component, in this case the Job-Scheduler
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Fig. 9 The datamodel of the resource database

mapped with the corresponding HostID. This way, data that is equal across multiple
nodes do not need to be stored multiple times but are easy to query. Since, the
output of a query is a JSON string, it makes further processing and output easy for
the calling script.

5 On Demand File System in HPC Environment

When using on demand file systems in HPC environments, the premise is that the
normal operation should not be affected by the use of on demand file systems. The
interference on other jobs should be avoided or even reduced. There should be also
no modifications, that have a negative impact on the performance or utilization, of
the system.
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5.1 Deploying on Demand File System

Usually HPC systems use a batch system, such as SLURM [60], MOAB [1], or
LSF [30]. The batch system manages the resources of the cluster and starts the user
jobs on allocated nodes. Before a job is started, a prologue script may be started on
one or all allocated nodes and, if necessary, an epilogue script at the end of a job.
These scripts are used to clean, prepare, or test the full functionality of the nodes. We
modified these scripts to start the on demand file system upon request. During job
submission, a user can request an on demand file system for the job. This solution
has minimal impact on the HPC system operation. Users without the need for an on
demand file system are not affected. An alternative way of deploying a on demand
file system we have described in Sect. 3.3

5.2 Benchmarks

As initial benchmarks we tested the startup and shutdown time of the on demand
file system (cf. Table 1). Comparing the startup time of BeeGFS on demand to the
startup time of GekkoFS (512 Nodes under 20 s) it is clear, that BeeGFS takes too
much time for startup and shutdown at larger scales. BeeGFS has a serial section in
its startup where a status file is created on every node sequentially. This was also
discussed on the mailing list [63] with a possible solution to improve the behavior
in future releases.

In Fig. 10 we show the IoZone [10] benchmark to measure the read and
write throughput of the on demand file system (solid line). The figure shows
that performance increases linearly with the number of used compute nodes. The
limiting factor here is the aggregate throughout of the used SATA-SSDs. A small
throughput variation can be observed due to normal performance scattering of
SSDs [36]. The dotted line indicates the theoretical throughput with NVMe devices.
Here we assumed the performance for today’s common PCIe ×4 NVM devices [29]
with a throughput of 3500/2000 MB/s of read/write performance.

In a further test, we evaluated the storage pooling feature of BeeGFS [4]. We
created a storage pool for each switch according to the network topology.In other
words, when writing to a storage pool, the data is distributed via the stripe count
and chunk size, but remains within the storage pool and thus on a switch. Figure 11
shows the write throughput for three scenarios. Each scenario uses a different
number of core switches with six being the full network capacity. In the first

Table 1 BeeGFS startup and shutwdown

Nodes 8 16 32 64 128 256

Startup (s) 10.2 16.7 29.3 56.5 152.1 222.4

Shutdown (s) 11.9 12.1 9.4 15.9 36.1 81.0
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Fig. 10 Solid line: Read/write throughput. Dashed line: extrapolation with the theoretical peak of
NVMe-SSDs

Fig. 11 IoZone write throughput with reduced number of core switches on 240 nodes

experiment, with all six core switches, there is only a minimal performance loss,
which indicates a small overhead when using storage pools. In the second case we
turned off three switches, and in the last case we turned off five switches. With
reduced number of core switches the write throughput drops due to the reduced
network capacity. If storage pools are created according to the topology, it is possible
to achieve the same performance as with all six switches.
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5.3 Concurrent Data Staging

We also considered the case of copying data back to the PFS while an application is
running. For this purpose, we evaluated NAStJA [6] with concurrent data staging. To
stage the data, during the NAStJA execution, we used the parallel copy tool dcp [59].
The configuration for this use-case:

• We used 24 nodes with 20 cores per node.
• NAStJA was executed on 23 nodes with 20 tasks per node.
• BeeOND was started on all 24 nodes using the idle node as metadata server.
• Three different scenarios were evaluated during the application execution:

– without data staging,
– data staging using every node with one task per node for data staging,
– data staging using the node, where only the meta-data server is running, with

4 tasks executed on this node.

Figure 12 shows the average execution time per time-step of five runs in our different
scenarios. In the beginning, the slowdown is significant (orange line) due to the high
amount of metadata operations. In this case, a portion of the data is indexed on every
node. This indexing is causing interference with the application. When using only
the MDS-server to copy the data (green line), the indexing is done only on the MDS-
server.

Fig. 12 Average execution time per time-step (5 runs). Without data staging(blue). Concurrent
data staging using the meta-data node (green) and using every node (orange)
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6 GekkoFS on NVME Based Storage Systems

Recently, new storage technologies such as NVME SSDs have been introduced to
modern HPC systems. To evaluate the GekkoFS file system, for future systems, we
performed some benchmarks using NVME SSDs. For demonstration we installed
GekkoFS on the cluster Taurus [67] of TU Dresden. Taurus consists of ca. 47,000
cores of different architectures. For the demonstration, we use 8 NVME nodes of
the HPC-DA [28] extension of Taurus. This extension consists of 90 nodes, and a
single node has 8 Intel SSD DC P4610 Series NVME storage with 3.2 TB capacity
and a peak bandwidth of 3.2 GB/s. Each node has 2 sockets Intel Xeon E5-2620
v4 with 32 cores and 64 GB main memory. Further, the NVME nodes are equipped
with two 100 Gbit/s EDR Infiniband links with a peak bandwidth of 25 GB/s each.
This experiment aims to investigate how well GekkoFS performs on new storage
architectures.

We installed GekkoFS on Taurus using the Infiniband network provider. For
our demonstration, we use 8 NVME nodes in this setup. The nodes are client
and server in one. We assign one NVME card per node as backing storage to the
GekkoFS daemon. This results in a distributed file system with a total capacity of
25.6 TB and a theoretical maximum bandwidth of 8 × 3.2 GB/s = 25.6 GB/s for
this configuration. To measure the data throughput of GekkoFS and investigate the
impact of different access patterns to the file system we utilize the IOR benchmark.

We perform strong scaling tests with 8, 16, 32 and 64 processes writing and
reading 1 TB of data. Therefore, we adjust the block size and transfer size for a
different number of processes. To avoid interference, we pin the IOR processes to
one socket while the GekkoFS daemon is pinned to the other. Before the creation
of the GekkoFS file system the NVME devices were cleared, and a new Ext4 file
system was created as an underlying file system on the block device. We measure
different access patterns, file per process with sequential and random accesses and
shared file with sequential access. To avoid measuring cache effects, we flush the
page, inode and dentry caches of the operating system before each run.

Figure 13 shows the sequential access pattern. In the figure, one can see that the
write bandwidth is stable at around 22 GB/s for all runs. The variation is small, and
the values are near to the peak bandwidth of 25 GB/s for this setup. The suitable
write bandwidths came from the relatively large transfer sizes of 64 MB to benefit
from RDMA. For the read bandwidth, we get values between 13 and 17 GB/s. Also
the read bandwidth first decreases when more processes are used and then increases
again at the 64 processes. Such a poor read bandwidth is a behavior which could
not be observed for the other measurements on MOGON II, where read and write
bandwidth are almost equal, and is certainly a point of further investigation.

Figure 14 depicts the random access case. The results are similar to the sequential
access pattern, which was expected because the internal handling of GekkoFS makes
no difference for these cases. The write bandwidth is stable between 22 and 23 GB/s



52 S. Oeste et al.

Fig. 13 IOR on GekkoFS on 8 NVME nodes performing a sequential file per process access
pattern

and saturates the NVME SSD quite well. For the read, the achieved bandwidth is
around 14 GB/s, the values are more stable than for the sequential case, which might
be some cache effects.

In Fig. 15 we can see, that even for shared access pattern the results are similar
to the file per process access pattern. The write bandwidth is again stable at 22 GB/s
and the read bandwidth is around 16 GB/s except for the configuration with 32
processes where the read bandwidth is lower. This is also similar to the sequential
file per process configuration in Fig. 13. As a result, we can see that GekkoFS
can utilize NVME SSDs and is, therefore, ready for the next generation of storage
systems. We could figure out that the different access patterns make no difference
for the write bandwidth. For the read bandwidth, there is some bottleneck which
needs further investigation. At the time of writing, multiple causes are imaginable;
for example, the network layer for Infiniband might be an issue. This could also
explain why this problem does not occur for the tests in Mainz because they have
other network types.



ADA-FS—Advanced Data Placement via Ad hoc File Systems at Extreme Scales 53

Fig. 14 IOR on GekkoFS on 8 NVME nodes performing a random file per process access pattern

Fig. 15 IOR on GekkoFS on 8 NVME nodes performing a sequential shared file access pattern
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7 Conclusion

The goal of the ADA-FS project was to improve I/O performance for parallel appli-
cations. Therefore, a distributed burst buffer file system, and several components
for deployment and data management were developed. The GekkoFS distributed
burst buffer file system as the central part of the project was presented as a
scalable and very flexible alternative to handle the challenging I/O patterns of
scientific applications. Primarily through the innovative metadata management, it
beats conservative shared parallel file systems for metadata intensive workloads by
a margin. Thanks to its flexibility, GekkoFS offers the user an exclusive file system
for his applications and eliminates several bottlenecks caused by the contention of
a shared resource. In addition, GekkoFS has become a basis in the EU-funded Next
Generation I/O for Exascale (NEXTGenIO) project where it will be continuously
and collaboratively developed to support future storage technologies as well, such
as persistent memory.

For successful data staging, investigations about the precision of the user-
provided wallclock time of jobs were made. We could show how to improve
wallclock estimates by considering the metadata of a job, and show a way to
integrate the process of deployment and data staging into the job scheduler. Further,
we present a tool suite to collect information about hardware resources of a compute
node to support the deployment in a flexible manner.

Another topic that was not covered here is the analysis of the required POSIX
semantics of parallel applications. These insights show during the design of the file
system which operations are required to run scientific workloads. Further, its results
can help the user to decide for a storage system that fits his needs best.

The evaluations showed that GekkoFS provides close to linear data and metadata
scalability up to 512 nodes with tens of millions of metadata operations. Due to the
decentralized and distributed design, the file system is set to be used in even larger
environments as exascale environments are in close reach. Even on the latest storage
infrastructure, GekkoFS can operate out of the box at the peak bandwidth at least
for write operations.

Following this project, we plan further improvements on GekkoFS, for example,
caching offers possibilities to gain even more performance. Another topic that we
want to keep working on is the integration of GekkoFS into the job schedulers of
the systems and the workflows of the user.

Conclusively, the project reached its goals by improving I/O performance of
parallel applications, especially in the field of metadata intensive workloads where
traditional parallel file systems are lacking performance.
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Abstract Dealing with extreme scale earth system models is challenging from the
computer science perspective, as the required computing power and storage capacity
are steadily increasing. Scientists perform runs with growing resolution or aggregate
results from many similar smaller-scale runs with slightly different initial conditions
(the so-called ensemble runs). In the fifth Coupled Model Intercomparison Project
(CMIP5), the produced datasets require more than three Petabytes of storage and
the compute and storage requirements are increasing significantly for CMIP6.
Climate scientists across the globe are developing next-generation models based on
improved numerical formulation leading to grids that are discretized in alternative
forms such as an icosahedral (geodesic) grid. The developers of these models face
similar problems in scaling, maintaining and optimizing code. Performance porta-
bility and the maintainability of code are key concerns of scientists as, compared to
industry projects, model code is continuously revised and extended to incorporate
further levels of detail. This leads to a rapidly growing code base that is rarely
refactored. However, code modernization is important to maintain productivity
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of the scientist working with the code and for utilizing performance provided
by modern and future architectures. The need for performance optimization is
motivated by the evolution of the parallel architecture landscape from homogeneous
flat machines to heterogeneous combinations of processors with deep memory
hierarchy. Notably, the rise of many-core, throughput-oriented accelerators, such
as GPUs, requires non-trivial code changes at minimum and, even worse, may
necessitate a substantial rewrite of the existing codebase. At the same time, the code
complexity increases the difficulty for computer scientists and vendors to understand
and optimize the code for a given system. Storing the products of climate predictions
requires a large storage and archival system which is expensive. Often, scientists
restrict the number of scientific variables and write interval to keep the costs
balanced. Compression algorithms can reduce the costs significantly but can also
increase the scientific yield of simulation runs. In the AIMES project, we addressed
the key issues of programmability, computational efficiency and I/O limitations
that are common in next-generation icosahedral earth-system models. The project
focused on the separation of concerns between domain scientist, computational
scientists, and computer scientists.The key outcomes of the project described in this
article are the design of a model-independent Domain-Specific Language (DSL) to
formulate scientific codes that can then be mapped to architecture specific code and
the integration of a compression library for lossy compression schemes that allow
scientists to specify the acceptable level of loss in precision according to various
metrics. Additional research covered the exploration of third-party DSL solutions
and the development of joint benchmarks (mini-applications) that represent the
icosahedral models. The resulting prototypes were run on several architectures at
different data centers.

1 Introduction

The problems on the frontier of science requires extreme computational resources
and data volumes across the disciplines. Examples of processes include the under-
standing of the earth mantle [10], plasma fusion [24], properties of steel [5], and the
simulation of weather and climate. The simulation of weather and climate requires
to model many physical processes such as the influence of radiation from the sun and
the transport of air and water in atmosphere and ocean [8]. As these processes are
complex, scientists from different fields collaborate to develop models for climate
and weather simulations.

The mathematical model of such processes is discretized and encoded as
computer model using numerical methods [53]. Different numerical methods can
be used to approximate the mathematical models. A range of different numerical
methods are used, including finite differences, finite volumes, and finite elements.
All of these methods partition the domain of interest into small regions and apply
stencil computations to approximate operations such as derivatives.
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The necessary computations include variables (fields) like temperature or pres-
sure distributed spatially over some surface or space—the problem domain. Simple
techniques divide a surface into rectangular smaller regions covering the whole
domain. Such rectangular grids have a simple regular structure. Those grids fit
computations well as the grid structure simply corresponds to the array notation
of the programming languages. However, applying this grid to the globe leads to
variable sizes of grid cells, e.g., the equator region has a coarse grid while the polar
regions are a singularity. With such a shortcoming, rectangular grids are well suited
for regional models but not for a global model.

Therefore, recent models targeting global simulations are developed using differ-
ent grids. Moving to such alternative grids allows to solve the cell area problem for
global models, but the formulation of the models is more complicated. Icosahedral
grids are examples of such alternatives. An icosahedral grid results from projecting
an icosahedron onto the surface of the globe. The surface of the globe is then
divided into twenty spherical triangles with equal areas. Grid refinement is achieved
with recursive division of the spherical arcs into halves. The resulting points of the
division form four smaller spherical triangles within each spherical triangle. Such
refinement is repeated until the needed resolution is reached. Icosahedral grids can
be used with the triangles as the basic cell, but also hexagons can be synthesized.

Icosahedral grids have approximately uniform cell area and can be used for
global models avoiding the cell area differences in contrast to the rectangular grids.
However, complications arise when thinking of the technical side, where we need
to know how to map the field data into data structures. Such technical details are
challenging with the performance demand for the models.

The values of a field in the simulation is localized with respect to the grid
cell depending on the numerical formulation. In one method, values of a field
are localized at the centers of the cells—this can be a single value or multiple
values with higher order methods. However, other methods localize values on the
vertices, while others reside on the edges separating the cells (see Fig. 1). How the
cells are connected to each other, i.e., the neighbors and orientation of the cells,
is defined in the connectivity. A problem domain can be organized in a regular

Fig. 1 Icosahedral grids and variables. (a) Triangular grid. (b) Hexagonal grid
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fashion into so-called structured grids—following an easy schema to identify (left,
right, . . . ) neighbors. Unstructured grids can follow a complex connectivity, e.g.,
using smaller and larger cells, or covering complex surfaces but require to store the
connectivity information explicitly. The modern models explore both schemes due
to their benefit; for instance, the structured grid can utilize compiler optimizations
more effectively, while unstructured grids allow local refinement around areas of
interest.

General-purpose languages (GPL), e.g., Fortran, are widely used to encode the
discretized computer model. The simulation of the earth with a high resolution like
1 km2 that is necessary to cover many smaller-scale physical processes, requires a
huge computation effort and likewise storage capacity to preserve the results for
later analysis. Due to uncertainty, scientists run a single experiment many times,
multiplying the demand for compute and storage resources. Thus, the optimization
of the codes for different architectures and efficiency is of prime importance to
enable the simulations.

With existing solutions, scientists rewrite some code sections repeatedly with dif-
ferent optimization techniques that utilize the capabilities of the different machines.
Hence, scientists must learn different optimization techniques for different archi-
tectures. The code duplication brings new issues and complexities concerning the
development and the maintainability of the code.

Thus, the effort from the maintainers and developers of the models, who are nor-
mally scientists and not computer scientists, is substantial. Scientists’ productivity
is an important point to consider as they do activities that should not be their focus.
Maintaining model codes throughout the lifecycle of the model is a demanding
effort under all the mentioned challenges.

The structure of the icosahedral grids brings complications not only to the
computation, but also to the storage of the field data. In contrast to regular grids,
where multi-dimensional array notation fits to hold the data, icosahedral grids do
not necessarily map directly to simple data structures. Besides the challenge of
file format support, modern models generate large amounts of data that impose
pressure on storage systems. Recent models are developed with higher-resolution
grids, and include more fields and processes. Simulations writing terabytes of data
to the storage system push towards optimizing the use of the storage by applying
data-reduction techniques.

The development of simulation models unfolds many challenges for the scientific
community. Relevant challenges for this project are:

• Long life: The lifecycle of earth system models is long in comparison to the
turnover of the computer technology mainly in terms of processor architectures.

• Performance and efficiency: The need for performance and the optimal use of
the hardware resources is an important issue.

• Performance-portability: Models are run on different machines and on different
architectures. They must use the available capabilities effectively.
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• Collaboration: Another point is the collaborative efforts to develop models—
involving PhD students to contribute pieces of science code to a large software
project—that complicates the maintenance and software engineering of the
models.

• Data volume: the large amounts of data must be handled efficiently.

1.1 The AIMES Project

To address challenges facing earth system modeling, especially for icosahedral
models, the project Advanced Computation and I/O Methods for Earth-System
Simulations (AIMES) investigated approaches to mitigate the aforementioned
programming and storage challenges.

The AIMES project is part of the SPPEXA program and consisted of the
consortium:

• Universität Hamburg, Germany
• Institut Pierre Simon Laplace (IPSL), Université Versailles Saint-Quentin-en-

Yvelines, France
• RIKEN Advanced Institute for Computational Science, Japan
• Global Scientific Information and Computing Center, Tokyo Institute of Technol-

ogy, Japan

The project started in March 2016 with plans for 3 years.
The main objectives of the project were: (1) enhance programmability; (2)

increase storage efficiency; (3) provide a common benchmark for icosahedral
models. The project was organized in three work packages covering these aspects
and a supplementary project management work package to achieve the three project
objectives. The strategy of the work packages is layed out in the following.

Under the first work package, higher-level scientific concepts are used to develop
a dialect for each of three icosahedral models: DYNAMICO [17], ICON [54],
and NICAM [47]. A domain-specific language (DSL) is the result of finding
commonalities in the three dialects. Also, a light weight source-to-source translation
tool is developed. Targeting different architectures to run the high-level code is
an important aspect of the translation process. Optimizations include applying
parallelization to the different architectures. Also, providing a memory layout that
fits the different architectures is considered.

Under the second work package, data formats for icosahedral models are
investigated to deal with the I/O limitations. Lossy compression methods are
developed to increase storage efficiency for icosahedral models. The compression
is guided with user-provided configuration to allow to use suitable compression
according to the required data properties.

Under the third work package, relevant kernels are selected from the three
icosahedral models. A mini-IGCM is developed based on each of the three models
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to offer a benchmark for icosahedral models. Developed code is used to evaluate the
DSL and the compression of icosahedral global modeling.

The key outcomes of the project described in this article are: (1) the design
of an effective light-weight DSL that is able to abstract the scientific formulation
from architecture-specific capabilities; (2) the development of a compression library
that separates the specification of various qualities that define the tolerable error
of data from the implementation. We provide some further large-scale results of
our compression library for large scale runs extending our papers about the library
[36, 37]; (3) the development of benchmarks for the icosahedral models that are
mini-applications of the models.

Various additional contributions were made that are summarized briefly with
citations to the respective papers:

• We researched the impact of lossless data compression on energy consumption in
[2]. In general, the energy consumption increases with the computational intensity
of the compression algorithm. However, there are algorithms that are efficient and
less computational intense that can improve the energy-efficiency.

• We researched compilation time of code that is generated from the DSL using
alternative optimization options on different compilers [20]. Different optimiza-
tion options for different files allow different levels of performance, however,
compilation time is also an important point to consider. Results show that
some files need less optimization focus while others need further care. Small
performance drops are measured with considerable reduction in compile times
when the suitable compilation options are chosen.

• We researched annotating code for instrumentation automatically by our transla-
tion tool, to identify resource consuming kernels [21]. Instrumentation allows to
better find where to focus the optimization efforts. We used the DSL translation
tool to annotate kernels and make generated code ready for instrumentation. As
a result performance measurements were recorded with reduced effort as manual
preparations are not needed anymore.

• We researched applying vector folding to icosahedral grid codes in a bachelor
thesis [49]. Vector folding allows to improve use of caches by structuring data in
a way accounting for caches and data dimensionality. Results show that vector
folding was difficult to apply manually to icosahedral grids. Performance was
raised but not significantly as a result of the needed effort that should be invested
to rewrite kernels with this kind of optimization.

• We involved ASUCA and the use of Hybrid Fortran [43] to port original CPU
code to GPUs, to look at a different model with different requirements.

This article is structured as follows: first, the scope of the state-of-the-art and
related work is sketched in Sect. 2. In Sect. 3, an alternative development approach
for code-modernization is introduced. Various experiments to evaluate the benefit of
the approach are shown in Sect. 4. The compression strategy is described in Sect. 5
and evaluated in Sect. 6. The benchmarks for the icosahedral models are discussed
in Sect. 7. Finally, the article is concluded in Sect. 8.



AIMES 67

2 Related Work

The related work covers research closely related to domain-specific languages in
climate and weather and the scientific data compression.

2.1 Domain-Specific Languages

DSLs represent an important approach to provide performance portability and
support model development. A DSL is always developed having a particular domain
in mind. Some approaches support multiple layers of abstraction. A high-level
abstraction for the finite element method is provided with Firedrake [44]. The
ExaStencils pipeline generally addresses stencil codes and their operations [18, 33]
and many research works introduce sophisticated schemes for the optimization of
stencils [7, 9].

One of the first DSLs which were developed to support atmospheric modeling
is Atmol [52]. Atmol provided a DSL to allow scientists to describe their models
using partial differential equations operators. Later, Liszt [14] provided a DSL for
constructing mesh-based PDE solvers targeting heterogeneous systems.

Multi-target support was also provided by Physis [42]. Physis is a C-based DSL
which allows developing models using structured grids.

Another form of DSL is Icon DSL [50]. Icon DSL was developed to apply index
interchanges based on described swapping on Fortran-based models.

Further work based on C++ constructs and generic programming to improve
performance portability is Stella [23] and later GridTools [13]. Computations are
specified with a C++-based DSL and the tools generate code for CPUs or GPUs.
GridTools are used to port some kernels from the NICAM model in our project
AIMES to evaluate existing DSLs.

Although C++ provides strong features through generic programming allowing
to avoid performance portability issues, scientists are reluctant to utilize alternative
programming languages as the existing codes are huge. Normally scientists prefer
to keep using preferred languages, e.g. Fortran, rather than moving to learning C++
features.

Other forms of DSLs used directives to drive code porting or optimization.
Hybrid Fortran [43], HMPP [16], Mint [51], CLAW [12] are examples of directive-
based approach. Such solutions allow adding directives to code to guide some
optimization. Scientists write code in some form and add directives that allow tools
to provide specific features, e.g., CLAW allows writing code for one column and
allows using directives to apply simulations over the set of columns in parallel.

In the MetOffice’s LFRic model [1], a DSL is embedded into the Fortran code
that provides an abstraction level suitable for the model. The model ships with
the PSyclone code-generator that is able to transform the code for different target
platforms. In contrast to our lightweight solution, these DSLs are statically defined
and require a big translation layer.
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2.2 Compression

Data-reduction techniques related to our work can be structured into: (1) algorithms
for the lossless data compression; (2) lossy algorithms designed for scientific
(floating-point) data and the HPC environment; (3) methods to identify necessary
data precision and for large-scale evaluation.

Lossless Algorithms There exist various lossless algorithms and tools, for exam-
ple, the LZ77 [55] algorithm which utilizes dictionaries. By using sliding windows,
it scans uncompressed data for two largest windows containing the same data
and replaces the second occurrence with a pointer to the compressed data of the
first. The different lossless algorithms vary in their performance characteristics and
ability to compress data depending on its characteristics. A key limitation is that
users have to pick an algorithm depending on the use case. In [25], we presented
compression results for the analysis of typical climate data. Within that work, the
lossless compression scheme MAFISC with preconditioners was introduced. With
MAFISC, we also explored the automatic selection of algorithms by compressing
each block with two algorithms, the best compression chain so far and one randomly
chosen. It compresses data 10% more than the second best algorithm (e.g., standard
compression tools).

Lossy Algorithms for Floating-Point Data SZ [15] and ZFP [41] are the de-
facto standard for compressing floating-point data in lossy mode. Both provide a
way of bounding the error (either bit precision or absolute error quantities) but
only one quantity can be selected at a time. ZFP [41] can be applied up to three
dimensions. SZ is a newer and effective HPC data compression method; it uses
a predictor and the lossless compression algorithm GZIP. Its compression ratio is
typically significantly better than the second-best solution of ZFP. In [26], two lossy
compression algorithms (GRIB2, APAX) were evaluated regarding the loss of data
precision, compression ratio, and processing time on synthetic and climate dataset.
These two algorithms have equivalent compression ratios and depending on the
dataset APAX signal quality may exceed GRIB2 and vice versa.

Methods The application of lossy techniques to scientific (floating-point) datasets
is discussed in [11, 22, 27, 38–40]. A statistical method to predict characteristics
(such as proportions of file types and compression ratio) of stored data based on
representative samples was introduced in [34] and the corresponding tool in [35]. It
can be used to determine compression ratio by scanning a fraction of the data, thus
reducing costs.

Efforts for determination of appropriate levels of precision for lossy compression
methods for climate and weather data were presented in [3] and in [4]. The basic
idea is to compare the statistics derived from the data before and after applying lossy
compression schemes; if the scientific conclusions drawn from the data are similar
and indistinguishable without the compression, the loss of precision is acceptable.



AIMES 69

3 Towards Higher-Level Code Design

Computations in earth system modeling run hundreds or thousands of stencil
computations over wide grids with huge numbers of points. Such computations are
time consuming and are sensitive to optimal use of computer resources. Compilers
usually apply a set of optimizations while compiling code. Semantical rules of
the general purpose language (GPL) can be applied to the source code and used
within compilers to translate the code to semantically equivalent code that runs
more efficiently. However, often the semantical information extracted from the
source code are not enough to apply all relevant optimizations as some high-
level optimizations would alter the semantics—and the rules of the GPL forbid
such changes. As mostly code from GPLs is at a lower semantical level than the
abstraction level of the developers, opportunity of optimization is lost. Such lost
opportunities are a main obstacle to develop software in a performance-portable
way in earth system modeling.

To address the lost opportunities of optimization, different techniques are applied
by the scientists directly to the source code. Thus, it is the responsibility of
the scientists who develop the models to write the code with those decisions
and guidelines on optimizations in mind. Drawbacks of this strategy include
pushing scientists to focus on machine details and optimal code design to use
hardware resources. Scientists need to learn the relevant optimization techniques
from computer science such as, e.g., cache blocking.

3.1 Our Approach

To solve the issues with the manual code optimization, we suggest using an addi-
tional set of language constructs which exhibit higher-level semantics. This way,
tools can be used to apply optimizations based on those semantics. Optimization
responsibilities are moved again from scientists to tools.

As usually, the source code is developed by scientists, however, in our approach,
instead of coding on low-level and caring for optimization strategies, a DSL is used
as abstraction. Machine-specific or computer scientific concepts are not needed to
write the source code of a model. This is enabled by increasing the abstraction level
of a GPL by providing a language extension with semantics based on the scientific
concepts from the domain science itself.

The DSL implements a template mechanism to simplify and abstract the code.
For the purpose of this project, it was designed to abstract climate and weather
scientific concepts but other domains and models could be supported. Therefore,
stencils and grids are used as the basis in the DSL. The language extensions hide
the memory access and array notations. They also hide the details of applying the
stencils and the traversal of the grids. The grid structure itself is hidden in the source
code. A model’s code uses the grid without specifying the locations of the grid
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points in memory or how neighbors are accessed. All such details are specified in
the configuration files. Lower details are neglected at the DSL level.

Translation tools handle the processing of the higher-level source code and
converting it to compatible GPL code. The semantics of the added language exten-
sions are extracted from the source code and are used to apply further high-level
transformations to the code. Applied transformations are guided by configuration
files that allow users to control the optimization process and may convert the
code to various back-end representations that, in-turn, can be converted to code
that is executed on a machine. A key benefit of this strategy is that it increases
the performance-portability: A configuration can apply optimization techniques
exploiting features of a specific architecture. Therefore, a single scientific code base
can be used to target multiple different machines with different architectures.

Model-specific configuration files are provided separately to guide the code
translation and optimization process. Those files are developed by scientific pro-
grammers rather than domain scientists. In contrast to domain scientists, the
scientific programmers must have an intermediate understanding of the scientific
domain but also understand the hardware architecture of a target machine. They use
their experience to generate code that uses the machine’s resources, and write the
configurations that serve the purpose of optimal use of that specific machine to run
the selected model.

Our approach offers separation of concerns between the parties. Scientific work
is done by scientists and optimization is done by scientific programmers. The
concept of the approach is illustrated in Fig. 2. For the icosahedral models, a single
intermediate domain language is derived that can be adjusted for the needs of each
model individually (dialects). From this single source various code representations
(back-ends) could be generated according to configuration, e.g., MPI+OpenMP or
GASPI.

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure
DSL tools &

infrastructure

CPUMPI+OpenMP

OpenACCOpenACC

PhysisGASPI

existing tools

Tools

Fig. 2 Separation of concerns
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3.2 Extending Modeling Language

An important point we consider in our approach is keeping the general-purpose
language, e.g. Fortran, that the scientists prefer to use to develop their model.
We add additional language constructs to the GPL. This simplifies the mission
to port existing models which could include hundreds of thousands of lines of
code. The majority of the code is kept, while porting some parts incrementally;
by providing templates in the configuration files, code can be simplified while it
still produces equivalent GPL constructs: Changes are replacements of loop details
and field access into alternative form using the added extensions. A drawback
of the incremental approach is that the full beauty of optimizations like memory
adjustments requires to have ported the complete model.

Our plan to develop such language extensions was to start with the three existing
modern icosahedral models of the project partners. In the first phase, special dialects
were proposed to support each model. Then, we identified common concepts and
defined a set of language extensions that support the domain with domain-specific
language constructs. We collected requirements, and worked in collaboration with
scientists from the three models to reach at the language extensions, in detail:

1. The domain scientists suggested compute-intensive and time-consuming code
parts.

2. We analyzed the chosen code parts to find out possibilities to use scientific terms
instead of existing code. We always kept in mind that finding a common repre-
sentation across the three models leads to domain-specific language extensions.

3. We replaced codes with suggested extensions.
4. We discussed the suggestions with the scientists. Discussions and improvements

were done iteratively. The result of those discussions lead to the GGDML
language extensions.

3.2.1 Extensions and Domain-Specific Concepts

The General Grid Definition and Manipulation Language (GGDML) language
extensions provide a set of constructs for:

• Grid definition
• Declaration of fields over grids
• Field access and update
• Grid traversal to apply stencils
• Stencil reduction expressions

GGDML code provides an abstraction including the order of the computation of
elementary operators. Therefore, optimizations can result in minor changes of the
computed result of floating-point operations; this is intentional as bit-reproducibility
constraints the optimization potential.
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In code that is written with GGDML, scientists can specify the name of the
grid that should be traversed when applying a stencil. The definitions of the grids
are provided globally through the configuration files. GGDML allows to specify
a modified set of grid points rather than the whole set of grid points as provided
through the grid definition grid, e.g., traversing a specific vertical level. Such
possibilities are offered through naming a grid and using operators that allow
adding, dropping, or modifying dimensions of that grid. Operators could change
the dimensionality of the grid or override the existing dimensions.

Fields are declared over different grids through declaration specifiers. GGDML
provides a flexible solution to support application requirements. A basic set of
declaration specifiers allows to control the dimensionality of the grid, and the
localization of the field with respect to the grid. Such declaration specifiers allow
applications to deal with surfaces and spaces, and also supports using staggered as
well as collocated grids.

Access specifiers provide tools the necessary information that will be used to
allocate/deallocate and access the fields. Field access is an important part of stencil
operations. GGDML provides an iterator statement to apply the stencil operations
over a set of grid points. The GGDML iterator statement replaces loops and the
necessary optimization to apply stencils. It provides the user an index that refers to
the current grid point. Using this index, scientists can write their stencils without
the need to deal with the actual data structures that hold the field data. The iterator
applies the body to each grid point that is specified in the grid expression, which is
one part of the iterator statement. This expression is composed from the name of a
grid, and possibly a set of modifications using operators as mentioned above.

The iterator’s index alone is not sufficient to write stencil operations, as stencils
include access to neighboring points. For this purpose, GGDML uses access
operators, which represent the spatial relationships between the grid points. This
allows to access the fields that need to be read or written within a stencil operation
using spatial terms instead of arrays and memory addresses. To support different
kinds of grids, GGDML allows users to define those access operators according to
the application needs.

Repetitions of the same mathematical expressions over different neighbors is
common in stencil operations. To simplify writing stencils, GGDML provides a
reduction expression. Reduction expressions apply a given sub-expression over
multiple neighbors along with a mathematical operator applied to the set of the
subexpressions.

3.3 Code Example

To demonstrate the code written with extensions, a sample code from the NICAM
model written with Fortran is given in Listing 1. As we can see from the original
NICAM code, a pattern is repeated in the code: the same field is accessed multiple
times over multiple indices. Optimization is limited as firstly, the memory layout
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is hardcoded in the fields cgrad and scl, secondly the iteration order is fixed.
Integrating blocking for cache optimization in this schema would increase the
complexity further.

Listing 1 NICAM Fortran code

do d = 1, ADM_nxyz
do l = 1, ADM_lall

!OCL PARALLEL
! support indices to address neighbors
do k = 1, ADM_kall

do n = OPRT_nstart, OPRT_nend
ij = n
ip1j = n + 1
ijp1 = n + ADM_gall_1d
ip1jp1 = n + 1 + ADM_gall_1d
im1j = n - 1
ijm1 = n - ADM_gall_1d
im1jm1 = n - 1 - ADM_gall_1d

grad(n,k,l,d) = cgrad(n,l,0,d) * scl(ij ,k,l) &
+ cgrad(n,l,1,d) * scl(ip1j ,k,l) &
+ cgrad(n,l,2,d) * scl(ip1jp1,k,l) &
+ cgrad(n,l,3,d) * scl(ijp1 ,k,l) &
+ cgrad(n,l,4,d) * scl(im1j ,k,l) &
+ cgrad(n,l,5,d) * scl(im1jm1,k,l) &
+ cgrad(n,l,6,d) * scl(ijm1 ,k,l)

enddo
grad( 1:OPRT_nstart-1,k,l,d) = 0.0_RP
grad(OPRT_nend+1:ADM_gall ,k,l,d) = 0.0_RP

enddo
enddo

enddo

The same semantics rewritten with the DSL is shown in Listing 2. Instead of
iterating across the grid explicitly, a FOREACH loop specifies to run on each
element of the grid, the coordinates are encoded in the new cell variable. We reduced
the repeated occurrences of the fields with the indices with a ‘REDUCE’ expression.
The Fortran indices are replaced with DSL indices that made it possible to simplify
the field access expressions.

Listing 2 NICAM DSL code

FOREACH cell in grid | g{OPRT_nstart..OPRT_nend}
do d = 1, ADM_nxyz

grad(cell,d) = REDUCE(+,N={0..6},
cgrad(cell%g,cell%l,N,d) * scl(cell%neighbor(N))

↪→ )
enddo

END FOREACH
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FOREACH cell in GRID%cells | g{1..OPRT_nstart-1 , OPRT_nend+1
↪→ .. gall}

do d = 1, ADM_nxyz
grad(cell,d) = 0.0_PRECISION

enddo
END FOREACH

3.4 Workflow and Tool Design

Model code that is based on the DSL along with code of the model in general-
purpose language goes through a source-to-source translation process. This step is
essential to make the higher-level code ready for processing by the compilers. Our
tool is designed in a modular architecture. By applying a configuration, it translates
code in a file or a source tree and generates a version of the transformed code.
The generated code is the optimized version for a specific machine/architecture
according to the configuration. Inter-file optimizations in code trees can also be
detected and applied.

The tool is implemented with Python3. Users call the main module with
parameters that allow them to control the translation process, e.g. to specify a
language module. The code tree is provided to the main module also as an argument.

The main module loads the other necessary modules. The DSL handler module
constructs the necessary data structures according to the user-provided configuration
file. The source code tree is then parsed into abstract syntax trees (AST). The
generated ASTs can be analyzed for optimization among the source files. After all
the optimizations/transformations are applied, the resulting code tree is serialized to
the output file. Figure 3 shows the design of the translation process.

Fig. 3 Translation process. Yellow components are influenced by the user options



AIMES 75

3.5 Configuration

Configuration files include multiple sections, among which some are essential and
others can be added only if needed. Optimization procedures are driven by those
configuration sections. The translation tool uses defaults in case optional sections
are missing.

Blocking Among the important optimizations that help improve the performance
of stencil computations is the optimal use of the caches and memory access. Reusing
the data in the caches eliminates the need to read the same data elements repeatedly
from memory. Often, data locality can be exploited in stencil computations, allowing
for performance improvements.

Cache blocking is a technique to improve the data reuse in caches. Our
translation process can apply cache blocking based on the scientific programmer’s
recommendations. One configuration section is used to allow to specify cache
blocking information. The default when this section is missing in a configuration
file is to not apply cache blocking.

An example kernel using GGDML in the C programming language is shown in
Listing 3.

Listing 3 Example kernel using C with GGDML

foreach c in grid
{

float df=(f_F[c.east_edge()]-f_F[c.west_edge()])/dx;
float dg=(f_G[c.north_edge()]-f_G[c.south_edge()])/dy;
f_HT[c]=df+dg;

}

Applying cache blocking using a configuration file defining 10,000 elements per
block generates the loop code shown in Listing 4. The first loop handles completely
occupied blocks with 10 k elements and the second loop the remainder. In both
cases, the loop body (not shown) contains the generated stencil code.

Listing 4 Example loop structure for blocking

for (size_t blk_start = (0); blk_start < (GRIDX); blk_start
↪→ +=10000){
size_t blk_end = GRIDX;
if ((blk_end - blk_start) > 10000)

blk_end = blk_start + 10000;
// Generated loop body

}
#pragma omp simd
for (size_t XD_index = blk_start; XD_index < blk_end;

↪→ XD_index++) {
// Generated loop body

}
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Memory Layout Another important point to optimize memory bandwidth is to
optimize the data layout in memory. The temporal and spacial locality of data
should lead to access of data in complete cache lines such that it can be prefetched
and cached effectively. Thus, data that is accessed in short time frames should be
stored closer in memory. To exploit such possibilities, our translation tool provides
a flexible layout transformation procedure. The DSL itself abstracts from data
placement, however, the translation process generates the actual data accesses. This
layout specification is described in configuration files.

Besides to data layout control, the loop nests that access the field data are also
subject to user control. The order of the loops that form a nested loop is critical for
the optimal data access. Loop order of loops that apply the stencils is also controlled
by configuration files.

Listing 5 illustrates the resulting code after using a data layout transformation. In
this case, a 2D grid is stored in a single-dimensional array.

Listing 5 Example code generated with index transformation

[...]
#pragma omp for
for (size_t YD_index = (0); YD_index < (local_Y_Cregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++){

float df = (f_F[(YD_index + 1) * (GRIDX + 3) + (XD_index
↪→ + 1)+1]
- f_F[(YD_index + 1) * (GRIDX + 3) + (XD_index) + 1])

↪→ * invdx;
float dg = (f_G[((YD_index + 1)+1) * (GRIDX + 3) + (

↪→ XD_index)+1]
- f_G[(YD_index + 1) * (GRIDX + 3) + (XD_index) + 1])

↪→ * invdy;
f_HT[(YD_index + 1) * (GRIDX + 3) + (XD_index) + 1] = df

↪→ + dg;
}

}
[...]

Inter-Kernel Optimization Cache blocking and memory layout allow improving
the use of the caches and memory bandwidth at the level of the kernel. However,
the optimal code at the kernel level does not yet guarantee optimal use of caches
and memory bandwidth at the application level. Consider the example where two
kernels share most of their input data but compute different outputs independently
from each other. These kernels could be fused together and benefit from reusing
cached data. Note that the benefit is system specific, as the size of the cache and
application kernel determine the optimal size for blocking and fusion.
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The inter-kernel optimization allows exploiting such data reuse across kernels.
To exploit such potential, our translation tool can run an optimizer procedure to
detect such opportunities and to apply them according to user decision of whether
to apply any of those optimizations or not.

Therefore, the tool analyzes the calls among the code files within the code
tree. This analysis leads to a list of call inlining possibilities. The inlining could
lead to further optimization through loop fusions. The tool runs automatic analysis
including data dependency and code consistency. This analysis detects possible
loop fusions that still keep computations consistent. Such loop fusion may lead
to optimized use of memory bandwidth and caches. We tested the technique
experimentally (refer to Sect. 4.5) to merge kernels in the application. We could
improve the use of caches and hence the performance of the application with 30–
48% on different architectures.

The tool provides a list of possible inlining and loop fusion cases. Users choose
from the list which case to apply—we anticipate that scientific programmers will
make an informed choice for a target platform based on performance analysis tools.
According to the choice that the user makes, the tool applies the corresponding
transformations automatically.

Listing 6 shows two kernels to compute the two components of the flux.

Listing 6 Example code with two kernels to compute flux components

[...]
#pragma omp parallel for
for(size_t YD_index = (0); YD_index < (local_Y_Eregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
XD_index++) {
f_F[YD_index][XD_index] = f_U[YD_index][XD_index] *
(f_H[YD_index][XD_index] +f_H[YD_index][XD_index -1])

↪→ /2.0;
}

}
[...]
#pragma omp parallel for
for(size_t YD_index = (0); YD_index < (local_Y_Eregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++){
f_G[YD_index][XD_index] = f_V[YD_index][XD_index] *
(f_H[YD_index][(XD_index] + f_H[YD_index -1][XD_index])

↪→ /2.0;
}

}
[...]
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Listing 7 shows the resulting code when the two kernels are merged.

Listing 7 Merged version of the flux computation kernels

[...]
#pragma omp parallel for
for (size_t YD_index = 0; YD_index < (local_Y_Eregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++) {

f_F[YD_index][XD_index] = f_U[YD_index][XD_index] *
(f_H[YD_index][XD_index] + f_H[YD_index][(XD_index) +

↪→ (-1)])/2.0;

f_G[YD_index][XD_index] = f_V[YD_index][XD_index] *
(f_H[YD_index][(XD_index] + f_H[(YD_index) + (-1)][

↪→ XD_index])/2.0;
}

}
[...]

Utilizing Distributed Memory Beyond parallelization on the node resources, our
techniques allow scaling the same source code that uses GGDML over multiple
nodes utilizing distributed memory. This is essential to run modern models on
modern supercomputer machines.

The GGDML code is unaware of underlying hardware, and does not need to
be modified to run on multiple nodes. Rather, configuration files are prepared to
translate the GGDML code into code that is ready to be run on multiple nodes.
Configuration files allow domain decomposition to distribute the data and the
computation over the nodes. Necessary communication of halo regions is also
enabled through configuration files. Scientific programmers can generate simple
parallelization schemes, e.g., MPI using blocking communication or sophisticated
alternatives like non-blocking communication. When using non-blocking communi-
cation, a further optimization is to decouple the computation of the inner region that
can be calculated without needing updated halo data and outer regions that require
data from another process to be computed.

The translation tool extracts neighborhood information from the GGDML
extensions. Such extracted information is analyzed by the tool to decide which
halo regions should be exchanged between which nodes. Decisions and information
from configuration files allow to generate the necessary code that handles the
communication and the synchronization. This guarantees that the necessary data
are consistent on the node where the computation takes place.

The parallelization is a flexible technique. No single library is used to handle the
parallelization, rather, the communication library is provided through configuration
files. Thus, different libraries or library versions can be used for this purpose. We
have examined the use of MPI and GASPI as libraries for parallelization.
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Listing 8 shows the resulting communication code of halo regions between
multiple processes—in this case without decoupling of inner and outer area,
code with decoupled areas is longer. In this listing, dirty flags are generated to
communicate only necessary data. Flags are set global to all processes, and can
be checked by each process such that processes that need to do communication can
make use of them. This way we guarantee to handle communication properly.

Listing 8 Example generated code to handle communication of halo data

[...]
//part of the halo exchange code
if (f_G_dirty_flag[11] == 1) {

if (mpi_world_size > 1) {
comm_tag++;
int pp = mpi_rank != 0 ? mpi_rank - 1 : mpi_world_size -

↪→ 1;
int np = mpi_rank != mpi_world_size - 1 ? mpi_rank + 1 :

↪→ 0;
MPI_Isend(f_G[0], GRIDX + 1, MPI_FLOAT, pp,

comm_tag, MPI_COMM_WORLD, &mpi_requests[0]);
MPI_Irecv(f_G[local_Y_Eregion], GRIDX + 1, MPI_FLOAT, np,

comm_tag, MPI_COMM_WORLD, &mpi_requests[1]);
MPI_Waitall(2, mpi_requests, MPI_STATUSES_IGNORE);

[...]

#pragma omp parallel for
for(size_t YD_index = (0); YD_index < (local_Y_Cregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++){

float df = (f_F[YD_index][(XD_index) + (1)]
- f_F[YD_index][XD_index]) * invdx;

float dg = (f_G[(YD_index) + (1)][XD_index]
- f_G[YD_index][XD_index]) * invdy;

f_HT[YD_index][XD_index] = df + dg;
}

}
[...]

3.6 Estimating DSL Impact on Code Quality and Development
Costs

To estimate the impact of using the DSL on the quality of the code and the
costs of model development, we took two relevant kernels from each of the three
icosahedral models, and analyzed the achieved code reduction in terms of lines
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Fig. 4 GGDML impact on
the LOC on several scientific
kernels [32]
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of code (LOC) [32]. We rewrote the kernels (originally written in Fortran) using
GGDML + Fortran. Results are shown in Fig. 4.

The average reduction in terms of LOC is 70%, i.e. LOC in GGDML+Fortran
in comparison to original Fortran code is 30%. More reduction is noticed in some
stencils (NICAM example No.2, reduced to 12%).

Influence on readability and maintainability: Using COCOMO [6] as a model
to estimate complexity of development effort and costs, we estimated in Table 1
the benefits as a result of the code reductions when applying GGDML to develop a
model comparable to the ICON model. The table shows the effort in person month,
development time and average number of people (rounded) for three development
modes: the embedded model is typically for large project teams a big and complex
code base, the organic model for small code and the semi-detached mode for in-
between. We assume the semi-detached model is appropriate but as COCOMO
was developed for industry projects, we don’t want to restrict the development
model. The estimations are based on a code with 400KLOC, where 300KLOC of
the code are the scientific portion that allows for code reduction while 100KLOC
are infrastructure.

From the predicted developed effort, it is apparent that the code reductions
would be leading to a significant effort and cost reduction that would justify the
development and investment in DSL concepts and tools.

4 Evaluating Performance of our DSL

To illustrate the performance benefits of using the DSL for modeling, we present
some performance measurements that were measured for example codes written
with the DSL and translated considering different optimization aspects (configura-
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tions). Two different testcodes were used to evaluate the DSL’s support for different
types of grids: One application uses an unstructured triangular grid, and the other
uses a structured rectangular grid that could be applied for code in cubic sphere.
Both were written using GGDML (our DSL) in addition to C as the host modeling
language.

4.1 Test Applications

Laplacian Solver The first application code uses an unstructured triangular grid
covering the surface of the globe. The application was used in the experiments
to apply the Laplacian operator of a field at the cell centers based on field values
at neighboring cells. Generally, this code includes fields that are localized at the
cell centers, and on the edges of the cells. The horizontal grid of the globe surface
is mapped to a one dimensional array using Hilbert space-filling-curve. We used
1,048,576 grid points (and more points over multiple-node runs) to discretize the
surface of the globe. The code is written with 64 vertical levels. The surface is
divided into blocks. The kernels are organized into components, each of which
resembles a scientific process.

Shallow Water Model The other code is a shallow water equation solver. It is
developed with a structured grid. Structured grids are also important to study
for icosahedral modeling, as some icosahedral grids can be structured. Fields are
located at centers of cells and on edges between cells. This solver uses the finite
difference method. The test code is available online.1 As part of the testing, we
investigate performance portability of code developed using the DSL.

4.2 Test Systems

The experiments were executed in different times during the course of the project
and used different machines based on availability and architectural features.

• Mistral
The German Climate Computing Center provides nodes with Intel(R) Xeon(R)
E5-2695 v4 (Broadwell) @ 2.1 GHz processors.

• Piz Daint
The Swiss supercomputer provides nodes equipped with two Intel(R) Xeon(R)
CPU E5-2690 v3 @ 2.60 GHz processors and NVIDIA(R) Tesla(R) P100 GPUs.

1https://github.com/aimes-project/ShallowWaterEquations.

https://github.com/aimes-project/ShallowWaterEquations
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Fig. 5 Impact of blocking: Performance measurements with variable grid width. (a) Broadwell
CPU. (b) P100 GPU

• NEC test system
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz Broadwell processors with
Aurora vector engines.

4.3 Evaluating Blocking

To explore the benefit of organizing memory accesses efficiently across architec-
tures, experiments using the shallow water equation solver code were conducted
on Piz Daint. First, we generated code versions with and without blocking for the
Broadwell processor and the P100 GPU. An excerpt of results presented for different
size of grids is shown in [29] and in Fig. 5a. The experiment was done with grid
width of 200K. In the paper, we investigated the influence of the blocking factor on
the application kernel further revealing that modest block sizes are leading to best
performance (256 to 10 k for CPU and 2–10 k for GPU). On both architectures,
wider grids run less efficiently as a result of an inefficient use of caches. The
GPU implies additional overhead for the blocked version, requiring to run with a
sufficiently large grid to benefit from it. This also shows the need to dynamically
turn on/off blocking factors depending on the system capabilities.

4.4 Evaluating Vectorization and Memory Layout Optimization

As part of [28], we evaluated techniques to apply memory layout transformations.
The experiments were done on two architectures, the Broadwell multi-core proces-
sors and the Aurora vector engine on the NEC test platform using the shallow water
equation solver code.
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Table 2 Performance of memory layout variants on CPU and the NEC vector architec-
ture

Architecture Scattered
Short

distance
Contiguous

Broadwell 3 GFlops 13 GFlops 25 GFlops
NEC Aurora 80 GFlops 161 GFlops spolFG 2 23

We used alternative layouts with different distances between data elements to
investigate the impact of the data layout on the performance. The explored data
alternatives were data accesses to

• contiguous unit stride arrays,
• interleaved data with constant short distance separating data elements, 4 bytes

separating consecutive elements. This allowed to emulate array of structures
(AoS) layouts,

• scattered data elements separated with long distances.

The results are listed in brief in Table 2. Using memory profilers, we found that
the contiguous unit-stride code allowed to use the memory throughput efficiently
on both architectures. In the emulated AoS codes, the efficiency dropped on both
architectures. The worst measurements were taken for the scattered data elements.

Besides the impact of the optimization on the use of the memory bandwidth,
vectorization is also affected by those alternatives. AVX2 was used for all kernels
on Broadwell for the unit-stride code. Similarly, the vector units of the vector engine
showed best results with this layout. Again the use of the vectorization was degraded
with the emulated AoS, and was even worse with the scattered data elements.

4.5 Evaluating Inter-Kernel Optimization

To explore the benefit of kernel merging, experiments were done using the shallow
water equation solver code on the NEC test system (for vector engines) and Piz
Daint (for GPUs and CPUs) [29]. The performance of regular and merged kernels
are shown in Table 3. The code achieves near optimal use of the memory bandwidth
already before the merge and actually decreases slightly after the merge. Exploiting
the inter-kernel cache reuse allowed to reduce the data access in memory and
increased the total performance of the application by 30–50%.

4.6 Scaling with Multiple-Node Runs

To demonstrate the ability of the DSL to support global icosahedral models, we
carried out experiments using the two applications. Scalability experiments of
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Table 3 Performance and efficiency of the kernel fusioning on all three architectures

Before merge With Inter-Kernel Merging

Architecture

Theoretical
Memory

bandwidth
(GB/s)

Measured
memory

throughput
GFlops

Measured
memory

throughput
GFflops

Broadwell 77 62 (80%) 24 60 (78%) 31 (+30%)
P100 GPU 500 380 (76%) 149 389 (78%) 221 (+48%)
NEC Aurora 1,200 961 (80%) 322 911 (76%) 453 (+40%)

(GB/s) and peak (GB/s) and peak

Fig. 6 Scalability of the two different models (measured on Mistral; P100 on Piz Daint). (a)
Icosahedral code [30]. (b) Shallow water solver [31]

unstructured grid code were run on Mistral. Shallow water equation solver code
experiments were run on Mistral for CPU tests, and on Piz Daint for GPU tests.

In the experiment using the unstructured grid, we use the global grid of the
application and apply a three-dimensional Laplacian stencil. We varied the number
of nodes that we use to run the code up to 48 nodes. The minimum number of the
grid points we used is 1,048,576. We used this number of points for the strong-scale
analysis. Weak scalability experiments were based on this number of points for each
node. Figure 6a shows the results.

We could do further numbers of nodes, however, we found that the code was
scaling with the tested cases and further experiments needed resources and time to
get jobs to run on the test machine. For the measured cases, the weak scalability of
the code is close to optimal. Thus, increasing the resolution of the grids and running
the code on more nodes is achieved efficiently. This is an important point as higher
resolution grids are essential for recent and future global simulations.

We also carried out experiments to scale the shallow water equation solver on
both Broadwell multi-core processors and on the P100 GPUs at Piz Daint. We
generated code for Broadwell experiments with OpenMP as well as MPI, and for
the GPUs with OpenACC as well as MPI. Figure 6b shows the measured results of
scaling the code. On the Broadwell processor, we used 36 OpenMP threads on each
node.
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While the performance of the GPU code scaled well, it loses quite some
efficiency when running on two processes as the halo communication involves the
host code. In general, the code that the tools generate for multiple nodes shows to
be scalable, both on CPUs and GPUs. The DSL code does not include any details
regarding single or multiple node configuration, so users do not need to care about
multiple node parallelization. However, the parallelization can still be applied by
the tool and the users can still control the parallelization process.

4.7 Exploring the Use of Alternative DSLs: GridTools

The GridTools framework is a set of libraries and utilities to develop performance-
portable weather and climate applications. It is developed at The Swiss National
Supercomputing Center [13]. To achieve the goal of performance portability, the
user code is written in a generic form which is then optimized for a given archi-
tecture at compile time. The core of GridTools is the stencil composition module
which implements a DSL embedded in C++ for stencils and stencil-like patterns.
Further, GridTools provides modules for halo exchanges, boundary conditions, data
management and bindings to C and Fortran. GridTools is successfully used to
accelerate the dynamical core of the COSMO model with improved performance on
CUDA-GPUs compared to the current official version, demonstrating production
quality and feature-completeness of the library for models on lat-lon grids [48].
Although GridTools was developed for weather and climate applications it might be
applicable for other domains with a focus on stencil-like computations.

In the context of the AIMES project, we evaluated the viability of using
GridTools for the dynamical core of NICAM: namely NICAM-DC. Since NICAM-
DC is written in Fortan, we first had to port the code to C++, which includes
also changing the build systems. Figures 9 and 10 show simple example codes
extracted from NICAM-DC and ported to GridTools, respectively. We ported the
dynamical core using the following incremental approach. First, each operator was
ported individually to GridTools, i.e. re-written from Fortran to C++. Next, we used
a verification tool to assure that the same input to the C++ and Fortran version gives
the same output. Next we move on to the following operator. Table 4 shows results
from benchmarks extracted from NICAM-DC. It provides good speedup on GPU,
and speed on CPU (in OpenMP) comparable to the hand-written version. Figure 7
shows results for running all operators of NICAM-DC on 10 nodes. It is worth
mentioning that the most time consuming operator is more than 7x faster on GPU
versus CPU.

GridTools demonstrates good GPU performance and acceptable CPU perfor-
mance. The functionalities and features included in GridTools were enough to
support the regular mesh code of NICAM-DC without friction (i.e. no custom
features were required in GridTools to support the requirements of NICAM-DC).
In addition, GridTools are transparent in the sense that no information about the
platform is exposed to the end-user. On the other hand, following is a list of issues



AIMES 87

Table 4 Execution time (seconds) of different benchmarks extracted from NICAM-DC. This
includes the regular regions only, using 1 region, a single MPI rank for a 130 × 130 × 42 grid

Fig. 7 NICAM-DC operators. Running on 10 nodes with one MPI rank per node. P100 is running
GridTools generated kernels and Xeon uses the original Fortran code. Total grid is 32 × 32 × 10
using 40 vertical layers

that requires one’s consideration when using GridTools: first, the requirement of
rewriting the entire dynamical core in C++ is not a trivial task, especially since C++
templates make the code more convoluted, in comparison to Fortran. Second, while
GridTools as a stencil framework does a good job for the dynamical core, separate
solutions are required for the physics modules, the communicator module, and the
non-regular compute modules (e.g. polar regions). Using different solutions inside
the same code base typically increases the friction between code modules. Third,
the interfacing between Fortran and C++ is non-trivial and can be troublesome
considering that not all end-users are willing to change their build process.
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Listing 9 Example of the diffusion operator extracted from NICAM-DC

1 do d = XDIR, ZDIR
2 do j = jmin-1, jmax
3 do i = imin-1, imax
4 vt(i,j,d) = (( + 2.0_RP * coef(i,j,d,1) &
5 - 1.0_RP * coef(i,j,d,2) &
6 - 1.0_RP * coef(i,j,d,3) ) * scl(i,j,d) &
7 + ( - 1.0_RP * coef(i,j,d,1) &
8 + 2.0_RP * coef(i,j,d,2) &
9 - 1.0_RP * coef(i,j,d,3) ) * scl(i+1,j,d)

↪→ &
10 + ( - 1.0_RP * coef(i,j,d,1) &
11 - 1.0_RP * coef(i,j,d,2) &
12 + 2.0_RP * coef(i,j,d,3) ) * scl(i,j+1,d)

↪→ &
13 ) / 3.0_RP
14 enddo
15 enddo
16 enddo

Listing 10 Example of the diffusion operator ported to GridTools

1 template <typename evaluation>
2 GT_FUNCTION
3 static void Do(evaluation const & eval, x_interval) {
4 eval(vt{}) = (( + 2.0 * eval(coef{})
5 - 1.0 * eval(coef{a+1})
6 - 1.0 * eval(coef{a+2}) ) * eval(scl

↪→ {})
7 + ( - 1.0 * eval(coef{})
8 + 2.0 * eval(coef{a+1})
9 - 1.0 * eval(coef{a+2}) ) * eval(scl{

↪→ i+1})
10 + ( - 1.0 * eval(coef{})
11 - 1.0 * eval(coef{a+1})
12 + 2.0 * eval(coef{a+2}) ) * eval(scl{

↪→ j+1})
13 ) / 3.0;
14 }

5 Massive I/O and Compression

5.1 The Scientific Compression Library (SCIL)

The developed compression library SCIL [36] provides a framework to compress
structured and unstructured data using the best available (lossless or lossy) compres-
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Fig. 8 SCIL compression path and components (extended)[36]

sion algorithms according to the definition of tolerable loss of accuracy and required
performance. SCIL acts as a meta-compressor providing various backends such as
algorithms like LZ4, ZFP, SZ but also integrates some alternative algorithms.

The data path of SCIL is illustrated in Fig. 8. An application can either use
NetCDF4 [45],2 HDF5 [19] or directly the C-interface of SCIL. Based on the
defined quantities, the values and the characteristics of the data to compress, the
appropriate compression algorithm is chosen. SCIL also comes with a library to
generate various synthetic test patterns for compression studies, i.e., well-defined
multi-dimensional data patterns of any size. Further tools are provided to plot, to
add noise or to compress CSV and NetCDF3 files.

5.2 Supported Quantities

There are three types of quantities supported:

Accuracy Quantities define the tolerable error on lossy compression. When
compressing the value v to v̂ it bounds the residual error (r = v − v̂):

• absolute tolerance: v − abstol ≤ v̂ ≤ v + abstol
• relative tolerance: v/(1 + reltol) ≤ v̂ ≤ v · (1 + reltol)

2HDF5 and NetCDF4 are APIs and self-describing data formats for storing multi-dimensional data
with user-relevant metadata.
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• relative error finest tolerance: used together with relative tolerance; absolute
tolerable error for small v’s. If relfinest > |v · (1 ± reltol)|, then v − relfinest ≤
v̂ ≤ v + relfinest

• significant digits: number of significant decimal digits
• significant bits: number of significant digits in bits

SCIL must ensure that all the set accuracy quantities are honored regardless of
the algorithm chosen, meaning that one can set, e.g., absolute and relative tolerance
and the strictest of the criteria is satisfied.

Performance Quantities These quantities define the expected performance behav-
ior for both compression and decompression (on the same system). The value can
be defined according to: (1) absolute throughput in MiB or GiB; or (2) relative to
network or storage speed. It is considered to be the expected performance for SCIL
but it may not be as strictly handled as the qualities—there may be some cases in
which performance is lower. Thus, SCIL must estimate the compression rates for
the data.

Supplementary Quantities An orthogonal quantity that can be set is the so called
fill value, a value that scientists use to mark special data points. This value must be
preserved accurately and usually is a specific high or low value that may disturb a
smooth compression algorithm.

5.3 Compression Chain

Internally, SCIL creates a compression chain which can involve several compression
algorithms as illustrated in Fig. 9. Based on the basic datatype that is supplied, the
initial stage of the chain is entered. Algorithms may be preconditioners to optimize
data layout for subsequent compression algorithms, converters from one data format
to another, or, on the final stage, a lossless compressor. Floating-point data can be
first mapped to integer data and then to a byte stream. Intermediate steps can be
skipped.

Array of
Type-To-Type

Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compr.
data

process data process data

float float int any anydata

Fig. 9 SCIL compression chain. The data path depends on the input data type [36]
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5.4 Algorithms

SCIL comes with additional algorithms that are derived to support one or multiple
accuracy quantities set by the user. For example, the algorithms Abstol (for absolute
tolerance), Sigbits (for significant bits/digits), and Allquant. These algorithms aim to
pack the number of required bits as tightly as possible into the data buffer but operate
on each value independently. While Abstol and Sigbits just consider one quantity,
Allquant considers all quantities together and chooses the required operation for
a data point depending on the highest precision needed. We also consider these
algorithms to be useful baselines when comparing any other algorithm. ZFP and
SZ, for example, work on one quantity, too.

During the project, we explored the implementation for the automatic algorithm
selection but only integrated a trivial scheme for the following reasons: if only a
single quantity is set, we found out that the optimal parameter depends on many
factors (features); the resulting optimal choice is embedded in a multi-dimensional
space—this made it infeasible to identify the optimal algorithm. Once more than a
single quantity is set, only one of the newly integrated algorithms can perform the
compression, which eliminates any choice. As the decoupling of SCIL enables to
integrate algorithms in the future, we hope that more algorithms will be developed
that can then benefit from implementing the automatic selection.

6 Evaluation of the Compression Library SCIL

We evaluated the performance and compression ratio of SCIL against several
scientific data sets and the synthetic test patterns generated by SCIL itself [36].

6.1 Single Core Performance

In the following, an excerpt of the experiments conducted with SCIL on a single core
is shown. These results help to understand the performance behavior of compression
algorithms and their general characteristics.

Four data sets were used each with precision floating-point data (32 bit): (1) the
data created with the SCIL pattern library (10 data sets each with different random
seed numbers). The synthetic data has the dimensionality of (300 × 300 × 100 =
36 MB); (2) the output of the ECHAM atmospheric model [46] which stored 123
different scientific variables for a single timestep as NetCDF; (3) the output of the
hurricane Isabel model which stored 633 variables for a single timestep as binary;3
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Table 5 Harmonic mean
compression performance for
different scientific data sets

Compr. Decomp.

Algorithm Ratio MiB/s MiB/s

(a) 1% absolute tolerance

NICAM abstol 0.206 499 683

abstol,lz4 0.015 458 643

sz 0.008 122 313

zfp-abstol 0.129 302 503

ECHAM abstol 0.190 260 456

abstol,lz4 0.062 196 400

sz 0.078 81 169

zfp-abstol 0.239 185 301

Isabel abstol 0.190 352 403

abstol,lz4 0.029 279 356

sz 0.016 70 187

zfp-abstol 0.039 239 428

Random abstol 0.190 365 382

abstol,lz4 0.194 356 382

sz 0.242 54 125

zfp-abstol 0.355 145 241

(b) 9 bits precision

NICAM sigbits 0.439 257 414

sigbits,lz4 0.216 182 341

zfp-precision 0.302 126 182

ECHAM sigbits 0.448 462 615

sigbits,lz4 0.228 227 479

zfp-precision 0.299 155 252

Isabel sigbits 0.467 301 506

sigbits,lz4 0.329 197 366

zfp-precision 0.202 133 281

Random sigbits 0.346 358 511

sigbits,lz4 0.348 346 459

zfp-precision 0.252 151 251

(4) the output of the NICAM Icosahedral Global Atmospheric model which stored
83 variables as NetCDF.

The characteristics of the scientific data varies and so does data locality within
the data sets. For example, in the Isabel data many variables are between 0 and 0.02,
many between −80 and +80 and some are between −5000 and 3000.

We set only one quantity to allow using ZFP and SZ for comparison. Table 5
shows the harmonic mean compression ratio4 for setting an absolute error of 1% of

3http://vis.computer.org/vis2004contest/data.html.
4The ratio is the resulting file size divided by the original file size.

http://vis.computer.org/vis2004contest/data.html
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Fig. 10 Compressing various climate variables with absolute tolerance 1%

the maximum value or setting precision to 9 bit accuracy. The harmonic mean cor-
responds to the total reduction and performance when compressing/decompressing
all the data.

The results for compressing 11 variables of the whole NICAM model via the
NetCDF API are shown in Fig. 10. The x-axis represents the different data files, as
each file consists of several chunks, a point in the y-axis represents one chunk. It
can be observed that generally the SZ algorithm yields the best compression ratio
but Abstol+LZ4 yields the second best ratio providing much better and predictable
compression and decompression speeds.

Note that for some individual variables, one algorithm may supersede another in
terms of ratio. As expected there are cases in which one algorithm is outperforming
the other algorithms in terms of compression ratio which justifies the need for a
metacompressor like SCIL that can make smart choices on behalf of the users. Some
algorithms perform generally better than others in terms of performance. Since in
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our use cases, users define the tolerable error, we did not investigate metrics that
compare the precision for a fixed compression ratio (e.g., the signal to noise ratio).

While a performance of 200 MB/s may look insufficient for a single core, with
24 cores per node a good speed per node can be achieved that is still beneficial
for medium large runs on shared storage. For instance, consider a storage system
that can achieve 500 GB/s. Considering that one node with typical Infiniband
configuration can transfer at least 5 GB/s, 100 client nodes saturate the storage.
By compressing 5:1 (or ratio of 0.2), virtually, the storage could achieve a peak
performance of 2500 GB/s, and, thus, can serve up to 500 client nodes with
(theoretical) maximum performance.

Trading of storage capacity vs. space is an elementary issue to optimize bigger
workflows. By separating the concerns between the necessary data quality as defined
by scientists and compression library, site-specific policies could be employed that
depend also on the available hardware.

6.2 Compression in HDF5 and NetCDF

We tested the compression library SCIL using the icosahedral grid code. The code
can use NetCDF to output the generated data periodically. In this experiment, a
high-resolution grid with 268 million grid cells (single precision floating point) in
the horizontal times 64 vertical levels was used and executed on the supercomputer
Mistral. The code was run on 128 nodes, with one MPI process per node. It wrote
one field to the output file in one timestep. The field values range between −10 to
+55 which is important for understanding the impact of the compression.

The experiments varied the basic compression algorithms and parameters pro-
vided by SCIL. Compression is done with the algorithms

• memcopy: does not do any real compression, but allows to measure the overhead
of the usage of enabling HDF5 compression and SCIL.

• lz4: the well-known compression algorithm. It is unable to compress floating-
point data but slows down the execution.

• abstol,lz4: processes data elements based on the absolute value of each point, we
control the tolerance by the parameter absolute_tolerance, after quantization an
LZ4 compression step is added.

• sigbits,lz4: processes data elements based on a percentage of the value being pro-
cessed, we control the tolerance by the parameter relative_tolerance_percent ,
after quantization an LZ4 compression step is added.

The results of this selection of compression methods is shown in Table 6, it
shows the write time in seconds and resulting data size in GB, a virtual throughput
relative to the uncompressed file size, and the speedup. Without compression the
performance is quite poor: achieving only 432 MB/s on Mistral on 128 nodes,
while an optimal benchmark can achieve 100 GB/s. The HDF5 compression is
not yet optimally parallelized and requires certain collective operations to update
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Table 6 Compression results of 128 processes on Mistral

Write time Data size Throughput*

Compression method Parameter in s in GB in MB/s Speedup

No-compression 165.3 71.4 432 1.0

memcopy 570.1 71.4 125 0.3

lz4 795.3 71.9 90 0.2

absolute_tolerance=1 12.8 2.7 5578 12.9abstol,lz4

absolute_tolerance=.1 72.6 2.8 983 2.3

relative_tolerance_percent=1 12.9 2.9 5535 12.8sigbits,lz4

relative_tolerance_percent=.1 18.3 3.2 3902 9.0

the metadata. Internally, HDF5 requires additional data buffers. This leads to extra
overhead in the compression slowing down the I/O (see the memcopy and and LZ4
results which serve as baselines). By activating lossy compression and accepting an
accuracy of 1% or 0.1%, the performance can be improved in this example up to
13x.

Remember that these results serve as feasibility study. One of our goals was
to provide a NetCDF backwards compatible compression method not to optimize
the compression data path inside HDF5. The SCIL library can be used directly by
existing models avoiding the overhead and leading to the results as shown above.

7 Standardized Icosahedral Benchmarks

Our research on DSL and I/O is more practical. We started with real-world appli-
cations, namely three global atmospheric models developed by the participating
countries. The global atmospheric model with the icosahedral grid system is one
of the new generation global climate/weather models. The grid-point calculations,
which are less computational intense than the spherical harmonics transformation,
are used in the model. On the other hand, patterns of the data access in differential
operators are more complicated than the traditional limited-area atmospheric model
with the Cartesian grid system.

There are different implementations of the dynamical core on the icosahedral
grid: direct vs. indirect memory access, staggered vs. co-located data distribution,
and so on. The objective of standardization of benchmarks is to provide a variety
of computational patterns of the icosahedral atmospheric models. The kernels are
useful for evaluating the performance of new machines and new programming
models. Not only for our studies but also for the existing/future DSL studies, this
benchmark set provides various samples of the source code. The icosahedral grid
system is an unstructured grid coordinate, and there are a lot of challenging issues
about data decomposition, data layout, loop structures, cache blocking, threading,
offloading the accelerators, and so on. By applying DSLs or frameworks to the
kernels, the developers can try the detailed, practical evaluation of their software.
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Fig. 11 Overview of IcoAtmosBenchmark v1

The benchmarks were used in the final evaluation of SCIL and they steered the DSL
development by providing the relevant patterns.

7.1 IcoAtmosBenchmark v1: Kernels from Icosahedral
Atmospheric Models

IcoAtmosBenchmark v1 is the package of kernels extracted from three Icosahedral
Global Atmospheric models, NICAM, ICON, DYNAMICO. As shown in Fig. 11,
we prepared input data and reference output data for easy validation of results. We
also arranged documentation about the kernels. The package is available online.5

5https://aimes-project.github.io/IcoAtmosBenchmark_v1/.

https://aimes-project.github.io/IcoAtmosBenchmark_v1/
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7.1.1 Documentation

An excerpt to the NICAM kernel serves as an example. The icosahedral grid on the
sphere of NICAM is the unstructured grid system. In NICAM code, the complex
topology of the grid system is separated into the structured and unstructured part.
The grids are decomposed into tiles, and one or more tiles are allocated to each
MPI process. The horizontal grids in the tile are kept in a 2-dimensional structure.
On the other hand, a topology of the network of the tiles is complex. We selected
and extracted 6+1 computational kernels from the dynamical core of NICAM, as
samples of the stencil calculation on the structured grid system. We also extracted a
communication kernel, as a sample of halo exchange in the complex node topology.
The features of each kernel are documented on the GitHub page.

All kernels are single subroutines and almost the same as the source codes in
the original model, except for the ICON kernels. They are put into the wrapper
for the kernel program. Values of input variables in the argument list of the kernel
subroutine are stored as a data file, just before the call in the execution of the
original model. They are read and given to the subroutine in the kernel program.
Similarly, the values of output variables in the argument list are stored, just after
the call in execution. They are read and compared to the actual output values of
kernel subroutine. The differences are written to the standard output for validation.
For easy handling of the input/reference data by both the Fortran program and C
program, we prepared an I/O routine written in C.

We provided a user manual, which contains the brief introduction of each model,
the description of each kernel, usage of kernel programs, and sample results. This
information is helpful for users of this kernel suite in the future.

8 Summary and Conclusion

The numerical simulation of climate and weather is demanding for computational
and I/O resources. Within the AIMES project, we addressed those challenges and
researched approaches that foster the separation of concerns. This idea unites
our approaches for the DSL and the compression library. While a higher level
of abstraction can improve the productivity for scientists, most importantly the
decoupling of requirements from the implementation allows scientific programmers
to develop and improve architecture-specific optimizations.

Promising candidates for DSLs have been explored and with GGDML an alter-
native has been developed that covers the most relevant formulations of the three
icosahedral models: DYNAMICO, ICON, and NICAM. The DSL and toolchain we
developed integrates into existing code bases and suits for incremental reformulation
of the code. We estimated the benefit for code reduction and demonstrated several
optimizations for CPU, GPU, and vector architectures. Our DSL allows to reduce
code to around 30% of the LOC in comparison to code written with GPL code.



98 J. Kunkel et al.

With the semantics of GGDML, we could achieve near optimal use of memory
hierarchies and memory throughput which is critical for the family of computations
in hand. Our experiments show running codes with around 80% of achievable
memory throughput on different archiectures. Furthermore, we could scale models
to multiple nodes, which is essential for exascale computing, using the same code
that is used for a single node. The separation of concerns in our approach allowed us
to keep models code separate of underlying hardware changes. The single GGDML
source code is used to generate code for the different architectures and on single vs.
multiple nodes.

To address the I/O challenge, we developed the library SCIL, a metacompressor
supporting various lossy and lossless algorithms. It allows users to specify various
quantities for the tolerable error and expected performance, and allows the library
to chose a suitable algorithm. SCIL is a stand-alone library but also integrates
into NetCDF and HDF5 allowing users to explore the benefits of using alternative
compression algorithms with their existing middleware. We evaluated the perfor-
mance and compression ratio for various scientific data sets and on moderate scale.
The results show that the choice of the best algorithm depends on the data and
performance expectation which, in turn, motivates the need for the decoupling of
quantities from the selection of the algorithm. A blocker for applying parallel large-
scale compression in existing NetCDF workflows is the performance limitation of
the current HDF5 stack.

Finally, benchmarks and mini-applications were created that represent the key
features of the icosahedral applications.

Beside the achieved research in the AIMES project, the work done opens the door
for further research in the software engineering of climate and weather prediction
models. The performance portability, where we used the same code to run on
different architectures and machines, including single and multiple nodes, shows
that techniques are viable to continue the research in this direction. The code
reduction offered by DSLs promises to save millions in development cost that
can be used to contribute to the DSL development. During the runtime of the
project, it became apparent that the concurrently developed solutions GridTools and
PSYclone that also provide such features are preferred by most scientists as they are
developed by a bigger community and supported by national centers. We still believe
that the developed light-weight DSL solution provides more flexibility particularly
for smaller-sized models and can be maintained as part of the development of
the models itself. It also can be used in other contexts providing domain-specific
templates to arbitrary codes.

In the future, we aim to extend the DSL semantics to also address I/O relevant
specifications. This would allow to unify the effort towards optimal storage and
computation.
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DASH: Distributed Data Structures
and Parallel Algorithms in a Global
Address Space
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Pascal Jungblut, Roger Kowalewski, and Joseph Schuchart

Abstract DASH is a new programming approach offering distributed data struc-
tures and parallel algorithms in the form of a C++ template library. This article
describes recent developments in the context of DASH concerning the ability to exe-
cute tasks with remote dependencies, the exploitation of dynamic hardware locality,
smart data structures, and advanced algorithms. We also present a performance
and productivity study where we compare DASH with a set of established parallel
programming models.

1 Introduction

DASH is a parallel programming approach that realizes the PGAS (partitioned
global address space) model and is implemented as a C++ template library.
DASH tries to reconcile the productivity advantages of shared memory parallel
programming with the physical realities of distributed memory hardware. To achieve
this goal, DASH provides the abstraction of globally accessible memory that
spans multiple interconnected nodes. For performance reasons, this global memory
is partitioned and data locality is not hidden but explicitly exploitable by the
application developer.

DASH is realized as a C++ template library, obviating the need for a custom
language and compiler. By relying on modern C++ abstraction and implementation
techniques, a productive programming environment can be built solely based on

K. Fürlinger (�) · T. Fuchs · P. Jungblut · R. Kowalewski
Ludwig-Maximilians-Universität München, Munich, Germany
e-mail: Karl.Fuerlinger@ifi.lmu.de

J. Gracia · J. Schuchart
University of Stuttgart, Stuttgart, Germany

A. Knüpfer · D. Hünich
TU Dresden, Dresden, Germany

© The Author(s) 2020
H.-J. Bungartz et al. (eds.), Software for Exascale Computing - SPPEXA
2016–2019, Lecture Notes in Computational Science and Engineering 136,
https://doi.org/10.1007/978-3-030-47956-5_6

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47956-5_6&domain=pdf
mailto:Karl.Fuerlinger@ifi.lmu.de
https://doi.org/10.1007/978-3-030-47956-5_6


104 K. Fürlinger et al.

standard components. For many application developers in HPC and in general, a big
part of the appeal of the C++ programming language stems from the availability
of high performance generic data structures and algorithms in the C++ standard
template library (STL).

DASH can be seen as a generalization of concepts found in the STL to the
distributed memory case and efforts have been made to keep DASH compatible
with components of the STL. In many cases it is thus possible to mix and match
algorithms and data structures freely between DASH and the STL.

DASH is developed in the context of the SPPEXA priority programme for
Exascale computing since 2013. In this paper we give an overview of DASH and
report on activities within the project focusing on the second half of the funding
period. We first give an overview of the DASH Runtime System (DART) in Sect. 2,
focusing on features related to task execution with global dependencies and dynamic
hardware topology discovery. In Sect. 3 we describe two components of the DASH
C++ template library, a smart data structure that offers support for productive
development of stencil codes and an efficient implementation of parallel sorting.
In Sect. 4 we provide an evaluation of DASH testing the feasibility of our approach.
We provide an outlook on future developments in Sect. 5.

2 The DASH Runtime System

The DASH Runtime System (DART) is implemented in C and provides an abstrac-
tion layer on top of distributed computing hardware and one-sided communication
substrates. The main functionality provided by DART is memory allocation and
addressing as well as communication in a global address space. In DASH parlance
the individual participants in an application are called units mapped to MPI
processes in the MPI-3 remote memory access based implementation of DART.

Early versions of DASH/DART focused on data distribution and access and
offered no explicit compute model. This has changed with the support for tasks
in DASH and DART. We start with a discussion of these new features, followed by
a description of efforts to tackle increasing hardware complexity in Sect. 2.2.

2.1 Tasks with Global Dependencies

The benefit of decoupled transfer and synchronization in the PGAS programming
model promises to provide improved scalability and better exploit hardware capa-
bilities. However, proper synchronization of local and global memory accesses is
essential for the development of correct applications. So far, the synchronization
constructs in DASH were limited to collective synchronization using barriers and
reduction operations as well as an implementation of the MCS lock. Using atomic
RMA operations, users could also create custom synchronization schemes using
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point-to-point signaling, i.e., by setting a flag at the target after completion of a
transfer. While this approach might work for simple examples, it hardly scales to
more complex examples where reads and writes from multiple processes need to be
synchronized.

The need for a more fine-grained way of synchronization that allows to cre-
ate more complex synchronization patterns was thus imminent. The data-centric
programming model of DASH with the distributed data structure at its core lead
motivated us to create a synchronization that centers around these global data
structures, i.e., which is data-centric itself. At the same time, the essential property
of PGAS needed to be preserved: the synchronization had to remain decoupled
from data transfers, thus not forcing users to rely solely on the new synchronization
mechanism for data transfers.

At the same time, the rise of task-based programming models inspired us to
investigate the use of tasks as a synchronization vehicle, i.e., by encapsulating local
and global memory accesses into tasks that are synchronized using a data-centric
approach. Examples of widely known data-centric task-based synchronization
models are OpenMPI with its task data dependencies, OmpSs, and PaRSEC.
While PaRSEC uses data dependencies to express both synchronization and actual
data flow between tasks, OpenMP and OmpSs use data dependencies solely for
synchronization without affecting data movement. In contrast to PaRSEC, however,
OpenMP and OmpSs only support shared memory parallelization.

A different approach has been taken by HPX, which facilitates synchronization
through the use of future/promise pairs, which form a channel between two or
more tasks and are a concept that has been well established in the C++ community.
However, this synchronization concept with it’s inherent communication channel
hardly fits into the concept of a PGAS abstraction built around data structures in the
global memory space. Moreover, DASH provides a locality-aware programming,
in which processes know their location in the global address and can diverge their
control accordingly, whereas HPX is a locality-agnostic programming model.

We thus decided to focus our research efforts on distributed data dependencies,
extending the shared memory capabilities of task data dependencies into the global
memory space while keeping synchronization and data transfer decoupled.

2.1.1 Distributed Data Dependencies

Tasks in DASH are created using the async function call and passing it an action
that will be executed by a worker thread at a later point in time. Additionally, the
async function accepts an arbitrary number of dependency definitions of the form
in(memory_location) and out(memory_location) to define input and output
dependencies, respectively. In the DASH tasking model, each unit discovers it’s
local task graph by creating tasks operating mainly in the local portion of the
global memory space, i.e., tasks are never transferred to other units. This locality-
awareness limits the number of tasks to be discovered to only the tasks that will
eventually be executed in that unit: as depicted in Fig. 1.
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Fig. 1 Distributed task graph discovery: the unit in the middle only discovers its local tasks (green)
and should only be concerned with tasks on other units that have dependencies to its local tasks
(blue). All other tasks (gray) should not be considered

Time

B1 B3

C2 C4

Synchronization

Task Creation

C2 C4

Task Matching Task Execution

B1 B3

1

2

3 4

Fig. 2 Scheduler interaction required for handling remote task data dependencies

The discovery of the local task graphs thus happens in parallel and without
immediate synchronization between the units, i.e., only the bold edges in Fig. 1 are
immediately visible to the individual scheduler instances. In order to connect these
trimmed task graphs, the schedulers need to exchange information on dependencies
crossing its process boundary, i.e., dependencies referencing non-local global mem-
ory locations. The required interaction between the schedulers is depicted in Fig. 2.
During the discovery of the trimmed local task graphs, schedulers communicate
any encountered dependencies that reference non-local global memory to the
unit owning the referenced memory 1 . As soon as all dependencies have been
communicated, the schedulers extend their local task graphs with the dependency
information received from other units 2 . A synchronization across all units is
required to ensure that all relevant dependency information has been exchanged.

After the extension of the local task graphs, the units start the execution of the
tasks. As soon as a task with a dependency to a task on a remote unit, e.g., through
an input dependency previously communicated by the remote unit, has completed,
the dependency release is communicated to the remote unit 3 , where the task will
eventually be executed. The completion of the execution is then communicated
back to the first scheduler 4 to release any write-after-read dependency, e.g., the
dependency C2 → B3 in Fig. 1.
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2.1.2 Ordering of Dependencies

As described in Sect. 2.1.1, the local task graphs are discovered by each unit
separately. Local edges in the local task graph are discovered similar to the matching
rules of OpenMP, i.e., an input dependency refers to the previous output dependency
referencing the same memory location (read-after-write), which in turn match with
previous input and output dependencies on the same memory location (write-after-
read and write-after-write).

However, since the local task graphs are discovered in parallel, the sched-
ulers cannot infer any partial ordering of tasks and dependencies across process
boundaries. More specifically, the blue scheduler in Fig. 1 cannot determine the
relationship between the dependencies of tasks B1, B2, C2, C4. The schedulers thus
have to rely on additional information provided by the user in the form of phases (as
depicted in Fig. 1). A task and its output dependencies are assigned to the current
phase upon their discovery. Input dependencies always refer to the last matching
output dependency in any previous phase while output dependencies match with any
previous local input dependency in the same or earlier phase and any remote input
dependency in any earlier phase, up to and including the previous output dependency
on the same memory location.

As an example, the input dependency of C2 is assigned the phase N + 1 whereas
the input dependency of C4 is assigned the phase N + 3. This information can be
used to match the output dependency of B1 in phase N to the input dependency of
C2 and the output dependency of B2 in phase N + 2 to the input dependency of
C4, creating the edges B1 → C2 and B2 → C4. The handling of write-after-read
dependencies described in Sect. 2.1.1 creates the edge C2 → B2. The handling of
local dependencies happens independent of the phase.

In our model, conflicting remote dependencies in the same phase are erroneous
as the scheduler is unable to reliably match the dependencies. Two dependencies
are conflicting if at least one of them is non-local and at least one is an output
dependency. This restriction allows the schedulers to detect synchronization errors
such as underdefined phases and report them to the user. This is in contrast to the
collective synchronization through barriers traditionally used in DASH, in which
synchronization errors cannot be easily detected and often go unnoticed unless the
resulting non-deterministic behavior leads to deviations in the application’s results.

2.1.3 Implementation

A single task is created using the async function in DASH, which accepts both an
action to be performed when the task is executed and a set of dependencies that
describe the expected inputs and outputs of the task. In the example provided in
Listing 1, every call to async (lines 5, 11, 19, and 27) is passed a C++ lambda in
addition to input and output dependencies.

Instead of pure input dependencies, the example uses copyin dependencies,
which combine an input dependency with the transfer of the remote memory range
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into a local buffer. This allows for both a more precise expression of the algorithms
and allows the scheduler to map the transfer onto two-sided MPI communication
primitives, which may be beneficial on systems that do not efficiently support MPI
RMA. The action performed by the task could still access any global memory
location, keeping communication and synchronization decoupled in principle and
retaining a one-sided programming model while allowing the use of two-sided
communication in the background.
� �

1 das h : : Matr ix <2 , double > m a t r i x {N, N, das h : : TILE (NB) , das h : : TILE (NB) } ;
2

3 f o r ( i n t k = 0 ; k < num_blocks ; ++k ) {
4 i f ( mat . b l o c k ( k , k ) . i s _ l o c a l ( ) ) {
5 das h : : t a s k s : : a s ync ( [ & ] ( ) { p o t r f ( m a t r i x . b l o c k ( k , k ) ) ; } ,
6 das h : : t a s k s : : o u t ( mat . b l o c k ( k , k ) ) ) ;
7 }
8 das h : : t a s k s : : a s y n c _ f e n c e ( ) ; / / <− advance t o n e x t phas e
9 f o r ( i n t i = k +1 ; i < num_blocks ; ++ i )

10 i f ( mat . b l o c k ( k , i ) . i s _ l o c a l ( ) )
11 das h : : t a s k s : : a s ync ( [ & ] ( ) {
12 t r sm ( cache [ k ] , m a t r i x . b l o c k ( k , i ) ) ; } ,
13 das h : : t a s k s : : copy in ( mat . b l o c k ( k , k ) , cache [ k ] ) ,
14 das h : : t a s k s : : o u t ( mat . b l o c k ( k , i ) ) ) ;
15 das h : : t a s k s : : a s y n c _ f e n c e ( ) ; / / <− advance t o n e x t phas e
16 f o r ( i n t i = k +1 ; i < num_blocks ; ++ i ) {
17 f o r ( i n t j = k +1 ; j < i ; ++ j ) {
18 i f ( mat . b l o c k ( j , i ) . i s _ l o c a l ( ) ) {
19 das h : : t a s k s : : a s ync ( [ & ] ( ) {

↪→
20 gemm( cache [ i ] , c ache [ j ] , mat . b l o c k ( j , i ) ) ; } ,
21 das h : : t a s k s : : copy in ( mat . b l o c k ( k , i ) , c ache [ i ] ) ,
22 das h : : t a s k s : : copy in ( mat . b l o c k ( k , j ) , c ache [ j ] ) ,
23 das h : : t a s k s : : o u t ( mat . b l o c k ( j , i ) ) ) ;
24 }
25 }
26 i f ( mat . b l o c k ( i , i ) . i s _ l o c a l ( ) ) {
27 das h : : t a s k s : : a s ync ( [ & ] ( ) {
28 s y r k ( cache [ i ] , mat . b l o c k ( i , i ) ) ; } ,
29 das h : : t a s k s : : copy in ( mat . b l o c k ( k , i ) , c ache [ i ] ) ,
30 das h : : t a s k s : : o u t ( mat . b l o c k ( i , i ) ) ) ;
31 }
32 }
33 das h : : t a s k s : : a s y n c _ f e n c e ( ) ; / / <− advance t o n e x t phas e
34 }
35 das h : : t a s k s : : comple te ( ) ; / / <− w a i t f o r a l l t a s k s t o e x e c u t e

� �

Listing 1 Implementation of Blocked Cholesky Factorization using global task data dependencies
in DASH. Some optimizations omitted for clarity

The specification of phases is done through calls to the async_fence function
(lines 8, 15, and 33 in Listing 1). Similar to a barrier, it is the user’s responsibility
to ensure that all units advance phases in lock-step. However, the phase transition
triggered by async_fence does not incur any communication. Instead, the call
causes an increment of the phase counter, whose new value will be assigned to
all ensuing tasks.

Eventually, the application waits for the completion of the execution of the global
task graph in the call to complete(). Due to the required internal synchronization
and the matching of remote task dependencies, the execution of all but the tasks in
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the first phase has to be post-poned until all its dependencies in the global task-graph
are known. DASH, however, provides the option to trigger intermediate matching
steps triggered by a phase increment and allows the specification of a an upper
bound on the number of active phases1 to avoid the need for discovering the full
local task graph before execution starts. This way the worker threads executing
threads may be kept busy while the main thread continues discovering the next
window in the task graph.

In addition to the single task creation construct described above, DASH also
provides the taskloop() construct, for which an example is provided in Listing 2.
The taskloop function divides the iteration space [begin, end) into chunks that
are assigned to tasks, which perform the provided action on the assigned subrange
(lines 7–9). The user may control the size of each chunk (or the overall number of
chunks to be created) by passing an instance of chunk_size (or num_chunks) to the
call (Line 5). In addition, the call accepts a second lambda that is used to specify the
dependencies of each task assigned a chunk (lines 11–14), which allows a depth-
first scheduler to chain the execution of chunks of multiple data-dependent loops,
effectively improving cache locality without changing the structure of the loops.
� �

1 dash::Array<int> arr(N);
2

3 if (dash::myid() == 0) {
4 dash::tasks::taskloop(
5 arr.begin(), arr.end(), dash::tasks::chunk_size(10),
6 // task action
7 [&] (auto begin, auto end) {
8 // perform action on elements in [begin, end)
9 },

10 // generate out dependencies on elements in [begin, end)
11 [&] (auto begin, auto end, auto deps) {
12 for (auto it = begin; it != end; ++it)
13 *deps = dash::tasks::out(it);
14 });
15 }

� �

Listing 2 Example of using the dash::taskloop in combination with a dependency generator

2.1.4 Results: Blocked Cholesky Factorization

The implementation of the Blocked Cholesky Factorization discussed in Sect. 2.1.3
has been compared against two implementations in PaRSEC. The first implementa-
tion uses the parameterized task graph (PTG), in which the problem is described as
an directed acyclic graph in a domain-specific language called JDF. In this version,

1A phase is considered active while a task discovered in that phase has not completed execution.
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Fig. 3 Per-node
weak-scaling performance of
Blocked Cholesky
Factorization of a matrix with
leading dimension
N = 25k/node and block
size NB = 320 on a Cray
XC40 (higher is better)
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the task graph is not dynamically discovered but is instead inherently contained
within the resulting binary.

The second PaRSEC version uses the Dynamic Task Discovery (DTD) interface
of PaRSEC, in which problems are expressed with a global view, i.e., all processes
discover the global task graph to discover the dependencies to tasks executing on
remote processes.

For all runs, a background communication thread has been employed, each time
running on a dedicated core, leading to one main thread and 22 worker threads
executing the application tasks on the Cray XC40.

The results presented in Fig. 3 indicate that PaRSEC PTG outperforms both DTD
and DASH, due to the missing discovery of tasks and their dependencies. DTD
exhibits a drop in per-node performance above 64 nodes, which may be explained
with the global task graph discovery. Although the per-node performance of DASH
does not exhibit perfect scaling, it still achieves about 80% of the performance of
PaRSEC PTG at 144 nodes.

2.1.5 Related Work

HPX [18] is an implementation of the ParalleX [17] programming paradigm, in
which tasks are spawned dynamically and moved to the data, instead of the data
being moved to where the task is being executed. HPX is locality-agnostic in that
distributed parallelism capabilities are implicit in the programming model, rather
than explicitly exposed to the user. An Active Global Address Space (AGAS) is
used to transparently manage the locality of global objects. Synchronization of tasks
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is expressed using futures and continuations, which are also used to exchange data
between tasks.

In the Active Partitioned Global Address Space (APGAS) [27], in contrast, the
locality of so-called places is explicitly exposed to the user, who is responsible for
selecting the place at which a task is to be executed. Implementations of the APGAS
model can be found in the X10 [9] and Chapel [8] languages as well as part of UPC
and UPC++ [21].

The Charm++ programming system encapsulates computation in objects that
can communicate using message objects and can be migrated between localities
to achieve load balancing.

Several approaches have been proposed to facilitate dynamic synchronization
by waiting for events to occur. AsyncShmem is an extension of the OpenShmem
standard, which allows dynamic synchronization of tasks across process boundaries
by blocking tasks waiting for a state change in the global address space [14]. The
concept of phasers has been introduced into the X10 language to implement non-
blocking barrier-like synchronization, with the distinction of readers and writers
contributing to the phaser [29].

Tasklets have recently been introduced to the XcalableMP programming
model [35]. The synchronization is modeled to resemble message-based
communication, using data dependencies for tasks on the same location and notify-
wait with explicitly specified target and tags.

Regent is a region- and task-based programming language that is compiled
into C++ code using the Legion programming model to automatically partition the
computation into logical regions [4, 30].

The PaRSEC programming system uses a domain specific language called JDF
to express computational problems in the form of a parameterized task graph
(PTG) [7]. The PTG is implicitly contained in the application and not discovered
dynamically at runtime. In contrast to that, the dynamic task discovery (DTD)
frontend of PaRSEC dynamically discovers the global task-graph, i.e., each process
is aware of all nodes and edges in the graph.

A similar approach is taken by the sequential task flow (STF) frontend of StarPU,
which complements the explicit MPI send/recv tasks to encapsulate communication
in tasks and implicitly express dependencies across process boundaries [1].

Several task-based parallelization models have been proposed for shared memory
concurrency, including OpenMP [3, 24], Intel thread building blocks (TBB) [25] and
Cilk++ [26] as well as SuperGlue [34]. With ClusterSs, an approach has been made
to introduce the APGAS model into OmpSs [32].

2.2 Dynamic Hardware Topology

Portable applications for heterogeneous hosts adapt communication schemes and
virtual process topologies depending on system components and the algorithm
scenario. This involves concepts of vertical and horizontal locality that are not based
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Fig. 4 Strong scaling of matrix multiplication on single node for 4 to 32 cores with increasing
matrix size N × N on Cori phase 1, Cray MPICH

on latency and throughput as distance measure. For example in a typical accelerator-
offloading scenario, data distribution to processes optimizes for horizontal locality
to reduce communication distance between collaborating tasks. For communication
in the reduction phase, distance is measured based on vertical locality.

The goal to provide a domain-agnostic replacement for the C++ Standard
Template Library (STL) implies portability as a crucial criterion for every model
and implementation of the DASH library. This includes additional programming
abstractions provided in DASH, such as n-dimensional containers which are
commonly used in HPC. These are not part of the C++ standard specifications but
comply with its concepts. Achieving portable efficiency of PGAS algorithms and
containers that satisfy semantics of their conventional counterparts is a multivariate,
hard problem, even for the seemingly most simple use cases.

Performance evaluation of the of the DASH NArray and dense matrix-matrix
multiplication abstractions on different system configurations substantiated the
portable efficiency of DASH. The comparison also revealed drastic performance
variance of the established solutions, for example node-local DGEMM of Intel
MKL on Cori phase 1 shown in Fig. 4 which apparently expected a power of two
amount of processing cores for multi-threaded scenarios.

The DASH variant of DGEMM internally uses the identical Intel MKL distribu-
tion for multiplication of partitioned matrix blocks but still achieves robust scaling.
This is because DASH implements a custom, adaptive variant of the SUMMA
algorithm for matrix-matrix multiplication and assigns one process per core, each
using MKL in sequential mode. This finding motivated to find abstractions that
allow expressions for domain decomposition and process placement depending on
machine component topology. In this case: to group processes by NUMA domains
with one process per physical core.

2.2.1 Locality-Aware Virtual Process Topology

In the DASH execution model, individual computation entities are called units. In
the MPI-based implementation of the DASH runtime, a unit corresponds to an MPI
rank but may occupy a locality domain containing several CPU cores or, in principle,
multiple compute nodes.
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Units are organized in hierarchical teams to match the logical structure of
algorithms and machine components. Each unit is an immediate member of exactly
one team at any time, initially in the predefined team ALL. Units in a team can be
partitioned into child teams using the team’s split operation which also supports
locality-aware parameters.

On systems with asymmetric or deep memory hierarchies, it is highly desirable
to split a team such that locality of units within every child team is optimized. A
locality-aware split at node level could group units by affinity to the same NUMA
domain, for example. For this, locality discovery has been added to the DASH
runtime. Local hardware information from hwloc, PAPI, libnuma, and LIKWID
of all nodes is collected into a global, uniform data structure that allows to query
locality information by process ID or scope in the memory hierarchy.

This query interface proved to be useful for static load balancing on heteroge-
neous systems where team are split depending on the machine component capacities
and capabilities. These are stored in a hierarchy of domains with two property maps:

Capabilities invariant hardware locality properties that do not depend on the
locality graph’s structure, like the number of threads per core, cache sizes, or
SIMD width

Capacities derivative properties that might become invalid when the graph
structure is modified, like memory in a NUMA domain available per unit

Figure 5 outlines the data structure and its concept of hardware abstraction in a
simplified example of a topology-aware split. Domain capacities are accumulated
from its subdomains and recalculated on restructuring. Team 1 and 2 both contain
twelve cores but a different number of units. A specific unit’s maximum number of
threads is determined by the number of cores assigned to the unit and the number of
threads per core.

Fig. 5 Domains in a locality hierarchy with domain attributes in dynamically accumulated
capacities and invariant capabilities
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2.2.2 Locality Domain Graph

The machine component topology of the DASH runtime to support queries and
topology-aware restructuring extends the tree-based hwloc topology model to
represent properties and relations of machine components in a graph structure. It
evolved to the Locality Domain Graph (LDG) concept which is available as the
standalone library dyloc.2

In formal terms, a locality domain graph models hardware topology as directed,
multi-indexed multigraph. In this, nodes represent Locality Domains that refer
to any physical or logical component of a distributed system with memory and
computation capabilities, corresponding to places in X10 or Chapel’s locales [8].
Edges in the graph are directed and denote the following relationships, for example:

• Containment indicating that the target domain is logically or physically contained
in the source domain

• Alias source and target domains are only logically separated and refer to the same
physical domain; this is relevant when searching for a shortest path, for example

• Leader the source domain is restricted to communication with the target domain

2.2.3 Dynamic Hardware Locality

Dynamic locality support requires means to specify transformations on the physical
topology graph as views. Views realize a projection but must not actually modify the
original graph data. Invariant properties are therefore stored separately and assigned
to domains by reference only.

Conceptually, multi-index graph algebra can express any operation on a locality
domain graph, but complex to formulate. When a topology is projected to an acyclic
hierarchy, transformations like partitioning, selection and grouping of domains can
be expressed in conventional relational or set semantics. A partition or contraction
of a topology graph can be projected to a tree data structure and converted to a hwloc
topology object (Fig. 6).

A locality domain topology is specific to a team and only contains domains that
are populated by the team’s units. At initialization, the runtime initializes the default
team ALL as root of the team hierarchy with all units and associates the team with
the global locality graph containing all domains of the machine topology. When a
team is split, its locality graph is partitioned among child teams such that a single
partition is coherent and only contains domains with at least one leaf occupied by a
unit in the child team.

In a map-reduce scenario, dynamic views on machine topology to express for
domain decomposition and process placement depending on machine component

2https://github.com/dash-project/dyloc.

https://github.com/dash-project/dyloc
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Fig. 6 Illustration of a hardware locality domain graph as a model of node-level system architec-
tures that cannot be correctly or unambiguously represented in a single tree structure. (a) Cluster
in Intel Knights Landing, configured in Sub-NUMA clustering, Hybrid mode. Contains a quarter
of the processor’s cores, MCDRAM local memory, affine to DDR NUMA domain. (b) Exemplary
graph representation of Knights Landing topology in (a). Vertex categories model different aspects
of component relationships, like cache-coherence and adjacency

Fig. 7 Illustration of the domain grouping algorithm to define a leader group for vertical
communication. One core is selected as leader in domains 100 and 110 and separated into a group.
To preserve the original topology structure, the group includes their parent domains and is added
as a subdomain of their lowest common ancestor

topology and improve portable efficiency. In the map phase, the algorithm is
mostly concerned with horizontal locality in domain decomposition to distribute
data according to the physical arrangement of cooperating processes. In the reduce
phase, vertical locality of processes in the component topology determines efficient
upwards communication of partial results. The locality domain graph can be used to
project hardware topology to tree views for both cases. Figure 7 illustrates a locality-
aware split of units in two modules such that one unit per module is selected for
upwards communication. This principle is known as leader communication scheme.
Partial results of units are then first reduced at the unit in the respective leader team.
This drastically reduces communication overhead as the physical bus between the
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Fig. 8 Using dyloc as intermediate process in locality discovery

modules and their NUMA node is only shared by two leader processes instead of all
processes in the modules (Fig. 8).

2.2.4 Supporting Portable Efficiency

As an example of both increased depth of the machine hierarchy and heterogeneous
node-level architecture, the SuperMIC system3 consists of 32 compute nodes with
symmetric hardware configuration of two NUMA domains, each containing an Ivy
Bridge (8 cores) host processor and a Xeon Phi “Knights Corner” coprocessors
(Intel MIC 5110P) as illustrated in Fig. 9.

For portable work load balancing on heterogeneous systems, domain decomposi-
tion and virtual process topology must dynamically adapt the machine components’
inter-connectivity, capacities and capabilities.

Capacities: Total memory capacity on MIC modules is 8 GB for 60 cores,
significantly less than 64 GB for 32 cores on host level

Capabilities: MIC cores have a base clock frequency of 1.1 GHz and 4 SMT
threads, with 2.8 GHz and 2 SMT threads on host level

To illustrate the benefit of dynamic locality, we briefly discuss the implementa-
tion of the min_element algorithm in DASH. Its original variant is implemented
as follows: domain decomposition divides the element range into contiguous blocks
of identical size. All units then run a thread-parallel scan on their local block for a
local minimum and enter a collective barrier once it has been found. Once all units
finished their local work load, local results are reduced to the global minimum.

Listing 3 contains the abbreviated implementation of the min_element sce-
nario utilizing runtime support based on a dynamic hardware locality graph.

3https://www.lrz.de/services/compute/supermuc/supermic.

https://www.lrz.de/services/compute/supermuc/supermic
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Fig. 9 SuperMIC node

Dynamic topology queries are utilized in three essential ways to improve overall
load-balance: In domain decomposition (lines 3–6), to determine the number of
threads available to the respective unit (line 19) and for a simple leader-based
communication scheme (lines 8–10, 26).

This implementation achieves portable efficiency across systems with different
memory hierarchies and hardware component properties, and dynamically adapts to
runtime-specific team size, range size, and available hardware components assigned
to the team. Figure 10 shows timeline plots comparing time to completion and
process idle time from a benchmark run executed on SuperMIC.
� �

1 // Dynamic topology-aware domain decomposition depending on
2 // machine component properties and number of units in team:
3 TeamLocality tloc(dash::Team::All());
4 LocBalancedPattern pattern(array_size, tloc);
5 dash::Array<T> array(pattern);
6

7 GlobIt min_element(GlobIt first, GlobIt last) {
8 auto uloc = UnitLocality(myid());
9 auto leader = uloc.at_scope(scope::MODULE)

10 .unit_ids()[0];
11 auto loc_min = first;
12

13 // Allocate shared variable for reduction result at leader:
14 dash::Shared<GlobIt> glob_min(leader);
15 // Allocate shared array for local minimum values:
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16 dash::Array<GlobIt>(dash::Team::All().size()) loc_mins;
17

18 // Dynamic query of locality runtime for number of threads:
19 auto nthreads = uloc.num_threads();
20 #pragma omp parallel for num_threads(nthreads)
21 for (...) { /* ... find local result ... */ }
22 // Local write, no communication
23 loc_mins[my_id] = loc_min;
24 dash::barrier();
25

26 if (myid() == leader) {
27 // leader reduces local results (instead of all-to-all
28 // reduction)
29 glob_min = std::min_element(loc_mins.begin(),
30 loc_mins.end());
31

32 }
33 // ...
34 }

� �

Listing 3 Code excerpt of the modified min_element algorithm

Fig. 10 Trace of process activities in the min_element algorithm exposing the effect of load
balancing based on dynamic hardware locality
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3 DASH C++ Data Structures and Algorithms

The core of DASH is formed by data structures and algorithms implemented as
C++ templates. These components are conceptually modeled after their equivalents
in the C++ standard template library, shortening learning curves and increasing
programmer productivity. A basic DASH data structure is the distributed array
with configurable data distribution (dash::Array) which closely follows the
functionality of a STL vector except for the lack of runtime resizing. DASH
also offers a multidimensional array and supports a rich variety of data distribution
patterns [11]. A focus of the second half of the funding period was placed on smart
data structures which are more specialized and support users in the development
of certain types of applications. One such data structures for the development of
stencil-based applications is described in Sect. 3.1.

Similar to data structures, DASH also offers generalized parallel algorithms.
Many of the over 100 generic algorithms contained in the STL have an equivalent
in DASH (e.g., dash::fill). One of the most useful but also challenging algo-
rithms is sorting and Sect. 3.2 describes our implementation of scalable distributed
sorting in the DASH library.

3.1 Smart Data Structures: Halo

Typical data structure used in ODE/PDE solvers or 2D/3D image analyzers
are multi-dimensional arrays. The DASH NArray distributes data elements of a
structured data grid and can be used similar to STL containers. But PDE solvers
use stencil operations, not using the current data elements (center), but surrounding
data elements (neighbors) as well. The use of the NArray it self is highly inefficient
with stencil operations, because neighbors located in another sub-arrays may require
remote access (via RDMA or otherwise). A more efficient approach is the use of so
called “halo areas”. These areas contain copies of all required neighbor elements
located on other compute nodes. The halo area width depends on the shape of the
stencils and is determined by the largest distance from the center (per dimension).
The stencil shape defines all participating data elements—center and neighbors.
Figure 11 shows two 9-point stencils with different shapes. The first stencil shape (a)
accesses ±2 data elements in both horizontal and vertical direction and the second
one (b) accesses ±1 stencil point in each direction. While the stencil shape Fig. 11a
needs four halo areas with a width of two data elements. The other stencil shape
requires eight halo areas with a width one data elements. Using halo areas ensures
local data access for all stencil operations used on each sub-array.

The Dash NArray Halo Wrapper wraps the local part of the NArray and
automatically sets up a halo environment for stencil codes and halo accesses.
Figure 12 shows an overview about all main components, which are explained in
the following.
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Fig. 11 Two shapes of a 9-point stencil. (a) ±2 center stencil in horizontal and vertical directions.
(b) Center ±1 stencil point in each direction

Fig. 12 Architecture of the DASH Halo NArray Wrapper
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3.1.1 Stencil Specification

The discretization of the problem to be solved always determines the stencil shape
to be applied on the structured grid. For a DASH based code this has to be specified
as a stencil specification (StencilSpec), which is a collection of stencil points
(StencilPoint). A StencilPoint consists of coordinates relative to the center and an
optional weight (coefficient). The StencilSpec specified in Listing 4 describes the
stencil shown in Fig. 11b. The center doesn’t have to be declared directly.

1 using PointT = dash::halo::StencilPoint<2>;
2 dash::halo::StencilSpec<PointT,6> stencil_spec(
3 PointT(-1,-1), PointT(-1, 0), PointT(-1,1),
4 PointT( 0,-1), , PointT( 0,1),
5 PointT( 1,-1), PointT( 1, 0), PointT( 1,1));

Listing 4 Stencil specification for an 9-point stencil

3.1.2 Region and Halo Specifications

The region specification (RegionSpec) defines the location of all neighboring
partitions. Every unit keeps 3n regions representing neighbor partitions for “left”,
“middle”, and “right” in each of the n dimensions. All regions are identified by a
region index and a corresponding region coordinate. Indexing are done with the Row
Major linearization (last index grows fastest). Figure 13 shows all possible regions
with its indexes and coordinates for a two dimensional scenario. Region 4 with the
coordinates (1,1) is mapped to the center region and represents the local partition.
Region 6 (2,0) points to a remote partition located in the south west.

Fig. 13 Mapping of region
coordinates and indexes
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The halo specification (HaloSpec) uses the RegionSpec to map neighbor par-
titions which are the origins for halo copies to the local halo areas. From one or
multiple StencilSpecs it infers which neighbor partitions are necessary. In case no
StencilPoint has a negative offset from the center in horizontal direction, no halo
regions for the ‘NW’, ‘W’, and ‘SW’ (Fig. 13) need to be created. If no StencilPoint
has diagonal offsets (i.e. only one non-zero coordinate in the offsets) the diagonal
regions ‘NW’,‘NE’, ‘SW’, and ‘SE’ can be omitted.

3.1.3 Global Boundary Specification

Additionally, the global boundary specification (GlobalBoundarySpec) allows to
control the behavior at the outside of the global grid. For convenience, three different
scenarios are supported. The default setting is NONE meaning that there are no
halo areas in this direction. Therefore, the stencil operations are not applied in
the respective boundary region where the stencil would require the halo to be
present. As an alternative, the setting CYCLIC can be set. This will wrap around
the simulation grid, so that logically the minimum coordinate becomes a neighbor
to the maximum coordinate. Furthermore, the setting CUSTOM creates a halo area
but never performs automatic update of its elements from any neighbors. Instead,
this special halo area can be written by the simulation (initially only or updated
regularly). This offers a convenient way to provide boundary conditions to a PDE
solver. The GlobalBoundarySpec can be defined separately per dimension.

3.1.4 Halo Wrapper

Finally, using the aforementioned specifications as inputs, the halo wrapper
(HaloWrapper) creates HaloBlocks for all local sub-arrays. The halo area extension
is derived from all declared StencilSpecs by determining the maximum offset of
any StencilPoint in the given direction.

The mapping between the local HaloBlocks and the halo regions pointing to
the remote neighbor data elements is subjected to the HaloWrapper, as well as
the orchestration of efficient data transfers for halo data element updates. The
data transfer has to be done block-wise instead of element-wise to gain decent
performance. While the HaloBlock can access contiguous memory, the part of the
neighbor partition marked as halo area, usually can’t be accessed contiguously—
compare Fig. 14. Therefore, the HaloWrapper relies on DART’s support for efficient
strided data transfers.

The halo data exchange can be done per region or for all regions at once. It can be
called asynchronously and operates independent between all processes and doesn’t
use process synchronization. The required subsequent wait operation waits for local
completion only.
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Fig. 14 Halo data exchange of remote strided data to contiguous memory: (a) in 2D a corner halo
region has a fixed stride, whereas (b) in 3D the corner halo region has two different strides

3.1.5 Stencil Operator and Stencil Iterator

So far, the HaloWrapper was used to create HaloBlocks to fit all given StencilSpecs.
Besides that, the HaloWrapper also provides specific views and operations for each
StencilSpec.

First, for every StencilSpec the HaloWrapper provides a StencilOperator with
adapted inner and boundary views. The inner view contains all data elements
that don’t need a halo area when using the given stencil operation. All other data
elements are marked via the boundary view. These two kind of views are necessary
to overlap the halo data transfer with the inner computation. The individual view per
StencilSpec allows to make the inner view as large as possible, regardless of other
StencilSpecs.

Second, the HaloWrapper offers StencilSpec specific StencilIterators. They
iterate over all elements assigned by a given view (inner) or a set of views
(boundary). With these iterators center elements can be accessed—equivalent to
STL iterators—via the dereference operator. Neighboring data elements can be
accessed with a provided method. Stencil points pointing to elements within a
halo area, are resolved automatically without conditionals in the surrounding code.
StencilIterators can be used with random access, but are optimized for the increment
operator.
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3.1.6 Performance Comparison

A code abstraction hiding complexity is useful only, if no or minor performance
impact is added. Therefore, a plain MPI implementation of a heat equation was
compared to a DASH based one regarding weak and strong scaling behavior. All
measurements were performed on the Bull HPC-Cluster “Taurus” at ZIH, TU
Dresden. Each compute node has two Haswell E5-2680 v3 CPUs at 2.50 GHz with
12 physical cores each and 64 GB memory. Both implementations were built with
gcc 7.1.0 and OpenMPI 3.0.0.

The weak scaling scenario increases the number of grid elements proportional
to the number of compute nodes. The accumulated main memory is almost entirely
used up by each compute grid. Figure 15 shows that both implementations almost
have identical and perfect weak scaling behavior. Note that the accumulated waiting
times differ significantly. This is due to two effects. One is contiguous halo areas
(north and south) vs. strided halo areas (east and west). The other is intra node vs.
inter node communication.

The strong scaling scenario uses 55,0002 grid elements to fit into the main
memory of a single compute node. It is solved with 1 to 768 CPU cores (== MPI
ranks), where 24 cores equals to one full compute node and 768 cores to 32 compute
nodes. Figure 16 shows again an almost identical performance behavior between
DASH and MPI for the total runtime. Notably, both show the same performance
artifact around 16 to 24 cores. This can be ascribed to an increased number of
last level cache load misses which indicates that both implementations are memory
bound at this number of cores per node.

Fig. 15 Weak scaling in DASH vs. MPI
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Fig. 16 Strong scaling for 55,000 × 55,000 elements in DASH vs. MPI. Effective wait time for
asynchronous halo exchanges is shown in addition

3.2 Parallel Algorithms: Sort

Sorting is one of the most important and well studied non-numerical algorithms
in computer science and serves as a basic building block in a wide spectrum of
applications. A notable example in the scientific domain are N-Body particle simu-
lations which are inherently communication bound due to load imbalance. Common
strategies to mitigate this problem include redistributing particles according to a
space filling curve (e.g., Morton Order) which can be achieved with sorting. Other
interesting use cases which can be addressed using DASH are Big Data applications,
e.g., Google PageRank.

Key to achieve performance is obviously to minimize communication. This
applies not only to distributed memory machines but to shared memory architectures
as well. Current supercomputers facilitate nodes with large memory hierarchies
organized in a growing number of NUMA domains. Depending on the data
distribution, sorting is subject to a high fraction of data movement and the more we
communicate across NUMA boundaries the more negative the result performance
impact becomes.

In the remainder of this section we briefly describe the problem of sorting in
a more formal manner and summarize the basic approaches in related work. It
follows a more detailed elaboration of our sorting algorithm [20]. Case studies
on both distributed and shared memory demonstrate our performance efficiency.
Results reveal that we can outperform state of the art implementations with our
PGAS algorithm.
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3.2.1 Preliminaries

Let X be a set of N keys evenly partitioned among P processors, thus, each
processor contributes ni ∼ N/P keys. We further assume there are no duplicate
keys which can technically be achieved in a straightforward manner. Sorting
permutes all keys by a predicate which is a binary relation in set X. Recursively
applying this predicate to any ordered pair (x, y) drawn from X enables to determine
the rank of an element I (x) = k with x as the k-th order statistic in X. Assuming
our predicate is less than (i.e., <) the output invariant after sorting guarantees that
for any two subsequent elements x, y ∈ X

x < y ⇔ I (x) < I (y).

Scientific applications usually require a balanced load to maximize performance.
Given a load balance threshold ε, local balancing means that in the sorted sequence
each processor Pi owns at most N(1 + ε)/P keys. This does not always result in a
globally balanced load which is an even stronger guarantee.

Definition 1 For all i ∈ {1..P } we have to determine splitter Si to partition the
input sequence into P subsequences such that

Ni

P
− Nε

2P
≤ I (si ) ≤ Ni

P
+ Nε

2P

Determining these splitters boils down to the k-way selection problem which is a
core algorithm in this work. If ε = 0 we need to perfectly partition the input which
increases communication complexity. However, it often is the easiest solution in
terms of programming productivity which is a major goal of the DASH library.

3.2.2 Related Work

Sorting large inputs can be achieved through parallel sample sort which is a
generalization of Quicksort with multiple pivots [5]. Each processor partitions local
elements into p pieces which are obtained out of a sufficiently large sample of
the input. Then, all processors exchange elements among each other such that
piece i is copied to processor i. In a final step, all processors sort received pieces
locally, resulting in a globally sorted sequence. Perfect partitioning can be difficult
to achieve as splitter selection is based only on a sample of the input.

In parallel p-way mergesort each processor first sorts the local data portion and
subsequently partitions it, similar to sample sort, into p pieces. Using an ALL-
TO-ALL exchange all pieces are copied to the destination processors which finally
merge them to obtain a globally sorted sequence. Although this algorithm has worse
isoefficiency due to the partitioning overhead compared to sample sort, perfect
partitioning becomes feasible since data is locally sorted.
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Scalable sorting algorithms are compromises between these two extremes and
apply various strategies to mitigate negative performance impacts of splitter selec-
tion (partitioning) and ALL-TO-ALL communication [2, 15, 16, 31]. Instead of
communicating data only once, partitioning is done recursively from a coarse-
grained to a more fine-grained solution. Each recursion leads to independent
subpartitions until the solution is found. Ideally, the level of recursion maps to the
underlying hardware resources and network topology.

This work presents two contributions. First, we generalize a distributed selection
algorithm to achieve scalable partitioning [28]. Second, we address the problem
of communication-computation overlap in the ALL-TO-ALL exchange, which is
conceptually limited in MPI as the underlying communication substrate.

3.2.3 Histogram Sort

The presented sorting algorithm consists of four supersteps as delineated in Fig. 17.

Local Sort Sorts the local portion using a fast shared memory algorithm.
Splitting Each processor partitions the local array into p pieces. We generalize

distributed selection to a p-way multiselect.
Data Exchange Each processor exchanges piece i with processor i according to

the splitter boundaries.
Local Merge Each processor merges the received sorted pieces.

Splitting is based on distributed selection [28]. Instead of finding one pivot we
collect multiple pivots (splitters) in a single iteration, one for each active range. If
a pivot matches a specific rank we do not consider this range anymore and discard
it from the set of active ranges. Otherwise, we examine each of the two resulting

Ex
ec

ut
io

n

Fig. 17 Algorithmic schema of dash::sort with four processors (P = 4)
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subranges whether they need to be considered in future iterations and add them to
the set of active ranges. The vector of splitters follows from Definition 1 (page 126)
and is the result of a prefix sum over the local capacities of all processors.

Another difference compared to the original algorithm [28] is that in our case
we replace the local partition with binary search which is possible due to our
initial sorting step in all processors. Thus, to determine a local histogram over p

pieces requires logarithmic computation complexity instead of linear complexity.
A global histogram to determine if all splitters are valid (or if we need to refine
the boundaries) requires a single REDUCE over all processors with logarithmic
communication complexity.

The question how many iterations we need is answered as follows. We know
that for the base case with only two processors (i.e., only one splitter) distributed
selection has a recursive depth of O(log p). This follows from the weighted median
for the pivot selection which guarantees a reduction of the working set by at least
one quarter each iteration. As described earlier instead of a single pivot we collect
multiple pivots in a single iteration which we achieve by a list of active ranges.
Although the local computation complexity increases by a factor of O(log p) the
recursion depth does not change. Hence, the overall communication complexity is
O(log2 p) including the REDUCE call each iteration.

After successfully determining the splitters all processors communicate the
locally partitioned pieces with an ALL-TO-ALL exchange. Merging all received
pieces leads to a globally sorted sequence over all processors. Due to the high
communication volume communication-computation overlap is required to achieve
good scaling efficiency. However, for collective operations MPI provides a very
limited interface. While we can use a non-blocking ALL-TO-ALL we cannot
operate on partially received pieces. For this reason we designed our own ALL-
TO-ALL algorithm to pipeline communication and merging. Similar to the Butterfly
algorithm processor i sends to destination (i + r) (mod p) and receives from
(i − r) (mod p) in round r [33]. However we schedule communication requests
only as long as a communication buffer of a fixed length is not completely allocated.
As soon as some communication requests complete we schedule new requests
while merging the received chunks. PGAS provides additional optimizations. For
communication within a shared memory node we use a cache-efficient ALL-TO-
ALL algorithm to minimize negative cache effects among the involved processors.
Instead of scheduling send receive pairs processor ranks are reordered according
to a Morton order. Data transfer is performed using one-sided communication
mechanisms. Similar optimizations can be applied to processor pairs running on
nearby nodes. We are preparing a paper to describe the involved optimizations in
more detail. First experimental evaluations reveal that we can achieve up to 22%
speedup compared to a single ALL-TO-ALL followed by a p-way local merge.

In the next section we demonstrate our performance scalability against a state-
of-the-art implementation in Charm++.
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Fig. 18 Strong scaling study with Charm++ and DASH. (a) Median execution time. (b) Strong
scaling behavior of dash::sort

3.2.4 Evaluation and Conclusion

We conducted the experiments on SuperMUC Phase 2 hosted at the Leibnitz Super-
computing Center. This system is an island-based computing cluster, each equipped
with 512 nodes. Each node has two Intel Xeon E5-2697v3 14-core processors with
a nominal frequency of 2.6 GHZ and 64 GB of memory, although only 56 GB are
usable due to the operating system. Computation nodes are interconnected in a non-
blocking fat tree with Infiniband FDR14 which achieves a peak bisection bandwidth
of 5.1 TB/s. We compiled our binaries with Intel ICC 18.0.2 and linked the Intel MPI
2018.2 library for communication. The Charm++ implementation was executed
using the most recent stable release.4 On each node we scheduled only 16 MPI ranks
(28 cores available) because the Charm++ implementation requires the number of
ranks to be a power of two. We emphasize that our implementation in DASH does
not rely on such constraints.

The strong scaling performance results are depicted in Fig. 18a. We sort 28
GBytes of uniformly distributed 64-bit signed integers. This is the maximum
memory capacity on a single node because our algorithm is not in-place. We always
report the median time out of 10 executions along with the 95% confidence interval,
excluding an initial warmup run. For Charm++ we can see wider confidence
intervals. We attribute this to a volatile histogramming phase which we can see after
analyzing generated log files in the Charm++ experiments. Overall, we observe that
both implementations achieve nearly linear speedup with a low number of cores.
Starting from 32–64 nodes scalability gets worse. DASH still achieves a scaling
efficiency of ≈0.6 on 3500 cores while Charm++ is slightly below. Figure 18b
visualizes the relative fraction of the most relevant algorithm phases in a single run.
It clearly identifies histogramming as the bottleneck if we scale up the number of
processors. This is not surprising because with 128 nodes (2048 ranks) each rank
operates on only 8 MB of memory.

4v6.9.0, http://charmplusplus.org/download/.

http://charmplusplus.org/download/
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Fig. 19 Weak scaling study with Charm++ and DASH. (a) Weak scaling efficiency. (b) Weak
scaling behavior of dash::sort

Figure 19a depicts the weak scaling efficiency. The absolute median execution
time for DASH started from 2.3 s on one node and ended with 4.6 s if we
scale to 128 nodes (3584 cores). As expected, the largest fraction of time is
consumed in local sorting and the ALL-TO-ALL data exchange because we have to
communicate 256 GB across the network. Figure 19b confirms this. The collective
ALLREDUCE of P − 1 splitters among all processors in histogramming overhead is
almost amortized from the data exchange which gives an overall good scalability for
DASH. The Charm++ histogramming algorithm again shows high volatility with
running times from 5–25 s, resulting in drastic performance degradation.

Our implementation shows good scalability on parallel machines with a large
processor count. Compared to other algorithms we do not pose any assumptions on
the number of ranks, the globally allocated memory volume or the key distribution.
Performance measurements reveal that our general purpose approach does not
result in performance degradation compare to other state-of-the-art algorithms. Our
optimized MPI ALL-TO-ALL exchange with advanced PGAS techniques shows
how we can significantly improve communication-computation overlap. Finally, the
STL compliant interface enables programmers to easily integrate a scalable sorting
algorithm into scientific implementations.

4 Use Cases and Applications

4.1 A Productivity Study: The Cowichan Benchmarks

In this section we present an evaluation of DASH focusing on productivity and
performance by comparison with four established parallel programming approaches
(Go, Chapel, Cilk, TBB) using the Cowichan set of benchmark kernels.
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4.1.1 The Cowichan Problems

The Cowichan problems [36], named after a tribal area in the Canadian Northwest,
is a set of small benchmark kernels that have been developed primarily for the
purpose of assessing the usability of parallel programming systems. There are two
versions of the Cowichan problems and here we restrict ourselves to a subset of the
problems found in the second set. The comparison presented in this section is based
on previous work by Nanz et al. [23] as we use their publicly available code5 to
compare with our own implementation of the Cowichan benchmarks using DASH.
The code developed as part of a study by Nanz et al. has been created by expert
programmers in Go, Chapel, Cilk and TBB and can thus be regarded as idiomatic
for each approach and free of obvious performance defects.

The five (plus one) problems we consider in our comparison are the following:

randmat: Generate a (nrows × ncols) matrix mat of random integers in the
range 0, . . . ,max − 1 using a deterministic pseudo-random number generator
(PRNG).

thresh: Given an integer matrix mat, and a thresholding percentage p, compute
a boolean matrix mask of similar size, such that mask selects p percent of the
largest values of mat.

winnow: Given an integer matrix mat, a boolean matrix mask, and a desired
number of target elements nelem, perform a weighted point selection operation
using sorting and selection.

outer: Given a vector of nelem (row, col) points, compute an (nelem ×
nelem) outer product matrix omat and a vector vec of floating point values
based on the Euclidean distance between the points and the origin, respectively.

matvec: Given an nelem × nelem matrix mat and a vector vec, compute the
matrix-vector product (row-by-row inner product) res.

chain: Combine the kernels in a sequence such that the output of one becomes
the input for the next. I.e., chain = randmat ◦ thresh ◦ winnow ◦ outer ◦ matvec.

4.1.2 The Parallel Programming Approaches Compared

We compare our implementation of the Cowichan problems with existing solutions
in the following four programming approaches.

Chapel [8] is an object-oriented partitioned global address space (PGAS)
programming language developed since the early 2000s by Cray, originally as part
of DARPA’s High Productivity Computing Systems (HPCS) program. We have used
Chapel version 1.15.0 in our experiments.

Go [10] is a general-purpose systems-level programming language developed
at Google in the late 2000s that focuses on concurrency as a first-class concern.
Go supports lightweight threads called goroutines which are invoked by prefixing

5https://bitbucket.org/nanzs/multicore-languages/src.

https://bitbucket.org/nanzs/multicore-languages/src
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a function call with the go keyword. Channels provide the idiomatic way for
communication between goroutines but since all goroutines share a single address
space, pointers can also be used for data sharing. We have used Go version 1.8 in
our experiments.

Cilk [6] started as an academic project at MIT in the 1990s. Since the late 2000s
the technology has been extended and integrated as Cilk Plus into the commercial
compiler offerings from Intel and more recently open source implementations for
the GNU Compiler Collection (GCC) and LLVM became available. Cilk’s initial
focus was on lightweight tasks invoked using the spawn keyword and dynamic
workstealing. Later a parallel loop construct (cilk_for) was added. We have used
Cilk as integrated in Intel C/C++ compilers version 18.0.2.

Intel Threading Building Blocks (TBB) [25] is a C++ template library for
parallel programming that provides tasks, parallel algorithms and containers using
a work-stealing approach that was inspired by the early work on Cilk. We have used
TBB version 2018.0 in our experiments, which is part of Intel Parallel Studio XE
2018.

4.1.3 Implementation Challenges and DASH Features Used

In this section we briefly describe the challenges encountered when implementing
the Cowichan problems, a more detailed discussion can be found in a recent
publication [13]. Naturally this small set of benchmarks only exercises a limited
set of the features offered by either programming approach. However, we believe
that the requirements embedded in the Cowichan problems are relevant to a wide
set of other uses cases, including the classic HPC application areas.

Memory Allocation and Data Structure Instantiation The Cowichan problems
use one- and two-dimensional arrays as the main data structures. 1D arrays are
widely supported by all programming systems. True multidimensional arrays, how-
ever, are not universally available and as a consequence workarounds are commonly
used. The Cilk and TBB implementation both adopt a linearized representation of
the 2D matrix and use a single malloc call to allocate the whole matrix. Element-
wise access is performed by explicitly computing the offset of the element in the
linearized representation by mat[i ∗ ncols + j ]. Go uses a similar approach but
bundles the dimensions together with the allocated memory in a custom type. In
contrast, Chapel and DASH support a concise and elegant syntax for the allocation
and direct element-wise access of their built-in multidimensional arrays. In the case
of DASH, the distributed multidimensional array is realized as a C++ template
class that follows the container concept of the standard template library (STL) [11].

Work Sharing In all benchmarks, work has to be distributed between multiple
processes or threads, for example when computing the random values in randmat in
parallel. randmat requires that the result be independent of the degree of parallelism
used and all implementations solve this issue by using a separate deterministic seed
value for each row of the matrix. A whole matrix row is the unit of work that is
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distributed among the processes or threads. The same strategy is also used for outer
and product.

Cilk uses cilk_for to automatically partition the matrix rows and TBB uses
C++ template mechanisms to achieve a similar goal. Go does not offer built-
in constructs for simple work sharing and the functionality has to be laboriously
created manually using goroutines, channels, and ranges.

In Chapel this type of work distribution can simply be expressed as a parallel
loop (forall).

In DASH, the work distribution follows the data distribution. I.e., each unit is
responsible for computing on the data that is locally resident, the owner computes
model. Each unit determines its locally stored portion of the matrix (guaranteed to
be a set of rows by the data distribution pattern used) and works on it independently.

Global Max Reduction In thresh, the largest matrix entry has to be determined to
initialize other data structures to their correct size. The Go reference implementation
doesn’t actually perform this step and instead just uses a default size of 100, Go is
thus not discussed further in this section.

In Cilk a reducer_max object together with a parallel loop over the rows is
employed to find the maximum. Local maximal values are computed in parallel
and then the global maximum is found using the reducer object. In TBB a similar
construct is used (tbb::parallel_reduce). In these approaches finding the
local maximum and computing the global maximum are separate steps that require
a considerable amount of code (several 10s of lines of code).

Chapel again has the most concise syntax of all approaches, the maximum value
is found simply by nmax = max reduce matrix. The code in the DASH
solution is nearly as compact, by using the max_element() algorithm to find
the maximum. Instead of specifying the matrix object directly, in DASH we have
to couple the algorithm and the container using the iterator interface by passing
mat.begin() and mat.end() to denote the range of elements to be processed.

Parallel Histogramming thresh requires the computation of a global cumulative
histogram over an integer matrix. Thus, for each integer value 0, . . . ,nmax− 1 we
need to determine the number of occurrences in the given matrix in parallel. The
strategy used by all implementations is to compute one or multiple histograms by
each thread in parallel and to later combine them into a single global histogram.

In DASH we use a distributed array to compute the histogram. First, each
unit computes the histogram for the locally stored data, by simply iterating over
all local matrix elements and updating the local histogram (histo.local).
Then dash::transform is used to combine the local histograms into a sin-
gle global histogram located at unit 0. dash::transform is modeled after
std::transform, a mutating sequence algorithm. Like the STL variant, the
algorithm works with two input ranges that are combined using the specified
operation into an output range.

Parallel Sorting winnow requires the sorting of 3-tuples using a custom compar-
ison operator. Cilk and TBB use a parallel shared memory sort. Go and Chapel
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call their respective internal sort implementations (quicksort in the case of Chapel)
which appears to be unparallelized. DASH can take advantage of a parallel and
distributed sort implementation based on histogram sort cf. 3.2.

4.1.4 Evaluation

We first compare the productivity of DASH compared to the other parallel program-
ming approaches before analyzing the performance differences.

Productivity We evaluate programmer productivity by analyzing source code
complexity. Table 1 shows the lines of code (LOC) used in the implementation
for each kernel, counting only lines that are not empty or comments. Of course,
LOC is a crude approximation for source code complexity but few other metrics
are universally accepted or available for different programming languages. LOC
at least gives a rough idea for source code size, and, as a proxy, development
time, likelihood for programming errors and productivity. The overall winners in
the productivity category are Chapel and Cilk, which achieve the smallest source
code size for three benchmark kernels. For most kernels, DASH also achieves a
remarkably small source code size considering that the same source code can run
on shared memory as well as on distributed memory machines.

Performance As the hardware platform for our experiments we have used one
or more nodes of SuperMUC Phase 2 (SuperMUC-HW) with Intel Xeon E5-2697
(Haswell) CPUs with 2.6 GHz, 28 cores and 64 GB of main memory per node.

Single Node Comparison We first investigate the performance differences between
DASH and the four established parallel programming models on a single Haswell
node. We select a problem size of nrows= ncols = 30,000 because this is the largest
size that successfully ran with all programming approaches.

Table 2 shows the absolute performance (runtime in seconds) and relative
runtime (compared to DASH) when using all 28 cores of a single node. Evidently,
DASH is the fastest implementation, followed by Cilk and TBB. Chapel and
especially Go can not deliver competitive performance in this setting.

Analyzing the scaling behavior in more detail (not shown graphically due to
space restrictions) by increasing the number of cores used on the system from 1
to 28 reveals a few interesting trends. For outer and randmat, DASH, Cilk and TBB

Table 1 Lines-of-code
(LOC) measure for each
kernel and programming
approach, counting
non-empty and non-comment
lines only

DASH Go Chapel TBB Cilk

Randmat 18 29 14 15 12

Thresh 31 63 30 56 52

Winnow 67 94 31 74 78

Outer 23 38 15 19 15

Product 19 27 11 14 10
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Table 2 Performance comparison for each kernel and programming approach using all cores on
one node of SuperMUC-HW

Absolute runtime (sec.) Relative runtime

DASH Go Chapel TBB Cilk DASH Go Chapel TBB Cilk

Randmat 0.12 5.84 0.36 0.15 0.19 1.00 48.69 3.03 1.26 1.58

Thresh 0.20 0.64 0.53 0.41 0.40 1.00 3.19 2.64 2.06 2.00

Winnow 2.99 366.13 256.40 9.45 4.28 1.00 122.45 85.75 3.16 1.43

Outer 0.25 1.18 0.39 0.27 0.31 1.00 4.70 1.56 1.06 1.24

Product 0.06 0.46 0.19 0.12 0.13 1.00 7.66 3.15 2.01 2.16

behave nearly identical in terms of absolute performance and scaling behavior. The
small performance advantage of DASH can be attributed to better NUMA locality of
DASH, where all work is done on process-local data. For thresh and winnow DASH
can take advantage of optimized parallel algorithms (for global max reduction and
sorting, respectively) whereas these operations are performed sequentially in some
of the other approaches. For product the DASH implementation takes advantage of
a local copy optimization to improve data locality. The scaling study reveals that
this optimization at first costs performance but pays off at larger core counts.

Multinode Scaling We next investigate the scaling of the DASH implementation on
up to 16 nodes (448 total cores) of SuperMUC-HW. None of the other approaches
can be compared with DASH in this scenario. Cilk and TBB are naturally restricted
to shared memory systems by their threading-based nature. Go realizes the CSP
(communicating sequential processes) model that would, in principle, allow for a
distributed memory implementation but since data sharing via pointers is allowed,
Go is also restricted to a single shared memory node. Finally, Chapel targets both
shared and distributed memory systems, but the implementation of the Cowichan
problems available in this study is not prepared to be used with multiple locales
and cannot make use of multiple nodes (it lacks the dmapped specification for data
distribution).

The scaling results are shown in Fig. 20 for two data set sizes. In Fig. 20
(left) we show the speedup relative to one node for a small problem size
(nrows= ncols = 30,000) and in Fig. 20 (right) we show the speedup of a larger
problem size (nrows= ncols = 80,000) relative to two nodes, since this problem is
too big to fit into the memory of a single node.

Evidently for the smaller problem size, the benchmark implementations reach
their scaling limit at about 10 nodes, whereas the larger problem sizes manage to
scale well even to 16 nodes, with the exception of the product benchmark which
shows the worst scaling behavior. This behavior can be explained by the relatively
large communication requirement of the product benchmark kernel.
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Fig. 20 Scaling behavior of the Cowichan benchmarks with up to 16 nodes on SuperMUC-HW.
(a) Multinode Scaling, 30 × 30 k Matrix. (b) Multinode Scaling: 80k × 80k Matrix

4.1.5 Summary

In this section we have evaluated DASH, a new realization of the PGAS approach
in the form of a C++ template library by comparing our implementation of the
Cowichan problems with those developed by expert programmers in Cilk, TBB,
Chapel, and Go. We were able to show that DASH achieves both remarkable
performance and productivity that is comparable with established shared memory
programming approaches. DASH is also the only approach in our study where the
same source code can be used both on shared memory systems and on scalable
distributed memory systems. This step, from shared memory to distributed memory
systems is often the most difficult for parallel programmers because it frequently
goes hand in hand with a re-structuring of the entire data distribution layout of the
application. With DASH the same application can seamlessly scale from a single
shared memory node to multiple interconnecting nodes.

4.2 Task-Based Application Study: LULESH

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) is part of the Department of Energy’s Coral proxy application
benchmark suite [19]. The domain typically scales with the number of processes and
is divided into a grid of nodes, elements, and regions of elements. The distribution
and data exchange follows a 27-point stencil with three communication steps per
timestep.

The reference implementation of LULESH uses MPI send/recv communication
to facilitate the boundary exchange between neighboring processes and OpenMP
worksharing constructs are used for shared memory parallelization. Instead, we
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Fig. 21 Lulesh reference implementation and Lulesh using DASH tasks running on a Cray XC40

iteratively ported LULESH to use DASH distributed data structures for neighbor
communication and DASH tasks for shared memory parallelization, with the ability
to partially overlap communication and computation.

The first step was to adapt the communication to use DASH distributed data
structures instead of MPI [12]. In order to gradually introduce tasks, we started
by porting the OpenMP worksharing loop constructs with to use the DASH task-
loop construct discussed in Sect. 2.1.3. In a second step, the iteration chunks of the
taskloops were connected through dependencies, allowing a breadth-first scheduler
to execute tasks from different task-loop statements concurrently. In a last step, a
set of high-level tasks has been introduced that encapsulate the task-loop statements
and coordinate the computation and communication tasks.

The resulting performance at scale on a Cray XC40 is shown in Fig. 21. For
larger problem sizes (s = 3003 elements per node), the speedup at scale of the
DASH port over the reference implementation is about 25%. For smaller problem
sizes (s = 2003), the speedup is significantly smaller at about 5%. We believe that
further optimizations in the tasking scheduler may yield improvements even for
smaller problem sizes.

5 Outlook and Conclusion

We have presented an overview of our parallel programming approach DASH,
focusing on recent activities in the areas of support for task-based execution,
dynamic locality, parallel algorithms, and smart data structures. Our results show
that DASH offers a productive programming environment that also allows program-
mers to write highly efficient and scalable programs with performance on-par or
exceeding solutions relying on established programming systems.



138 K. Fürlinger et al.

Work on DASH is not finished. The hardware landscape in high performance
computing is getting still more complex, while the application areas are getting
more diverse. Heterogeneous compute resources are common, nonvolatile memories
are making their appearance and domain specific architectures are on the horizon.
These and other challenges must be addressed by DASH to be a viable parallel
programming approach for many users.

The challenge of utilizing heterogeneous computing resources, primarily in the
form of graphics processing units (GPUs) used in high performance computing
systems, is addressed in a project building on DASH funded by the German Federal
Ministry of Education and Research (BMBF) called MEPHISTO. We close our
report on DASH with a short discussion of MEPHISTO.

5.1 MEPHISTO

The PGAS model simplifies the implementation of programs for distributed memory
plattforms, but data locality plays an important role for performance critical
applications. The owner-computes paradigm aims to maximize the performance by
minimizing the intra-node data movement. This focus on locality also encourages
the usage of shared memory parallelism. During the DASH project the partners
already experimented with shared memory parallelism and how it can be integrated
into the DASH ecosystem. OpenMP was integrated into suitable algorithms,
experiments with Intel’s Thread Building Blocks as well as conventional POSIX-
thread-based parallelism were conducted. These, however, had to be fixed for a
given algorithm: a user had no control over the acceleration and the library authors
had to find sensible configurations (e.g. level of parallelism, striding, scheduling).
Giving users of the DASH library more possibilities and flexibility is a focus of the
MEPHISTO project.

The MEPHISTO project partly builds on the work that has been done in DASH.
One of its goal is to integrate abstractions for better data locality and heterogeneous
programming with DASH. Within the scope of MEPHISTO two further projects are
being integrated with DASH:

• Abstraction Library for Parallel Kernel Acceleration (ALPAKA) [22]
• Low Level Abstraction of Memory Access6 (LLAMA)

ALPAKA is a library that adds abstractions for node-level parallelism for C++
programs. Once a kernel is written with ALPAKA, it can be easily ported to
different accelerators and setups. For example a kernel written with ALPAKA can
be executed in a multi-threaded CPU environment as well as on a GPU, for example
using the CUDA backend. ALPAKA provides optimized code for each accelerator
that can be further customized by developers. To switch from one back end to

6https://github.com/mephisto-hpc/llama.

https://github.com/mephisto-hpc/llama
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another requires just the change of one type definition in the code so that the code
is portable.

Integrating ALPAKA and DASH brings flexibility for node-level parallelism
within a PGAS environment: switching an algorithm from a multi threaded CPU
implementation to an accelerator now only requires passing one more param-
eter to the function call. It also gives the developer an interface to control
how and where the computation should happen. The kernels of algorithms like
dash::transform_reduce are currently extended to work with external
executors like ALPAKA. Listing 5 shows how executors are used to offload
computation using ALPAKA. Note that the interface allows offloading to other
implementations as well. In the future DASH will support any accelerator that
implements a simple standard interface for node-level parallelism.
� �

1 policy.executor().bulk_twoway_execute(
2 [=](size_t block_index,
3 size_t element_index,
4 T* res,
5 value_type* block_first) {
6 res[block_index] = binary_op(
7 res[block_index],
8 unary_op(block_first[element_index])

↪→ );
9 },

10 in_first, // a "shape"
11 [&]() -> std::vector<std::future<T>>& {
12 return results;
13 },
14 std::ignore); // shared state (unused)

� �

Listing 5 Offloading using an executor inside dash::transform_reduce. The executor can
be provided by MEPHISTO

LLAMA on the other hand focuses solely on the format of data in memory.
DASH already provides a flexible Pattern Concept to define the data placement for
a distributed container. However, LLAMA gives developers finer grained control
over the data layout. DASH’s patterns map elements of a container to locations in
memory, but the layout of the elements itself is fixed. With LLAMA, developers
can specify the data layout with a C++ Domain Specific Language (DSL) to
fit the application’s needs. A typical example is a conversion from Structure of
Arrays (SoA) to Array of Structures (AoS) and vice versa. But also more complex
transformations like projections are being evaluated.

Additionally to the integration of LLAMA, a more flexible, hierarchical and
context-sensitive pattern concept is being evaluated. Since the current patterns map
elements to memory locations in terms of units (i.e., MPI processes), using other
sources for parallelism can be a complex task. Mapping elements to (possibly
multiple) accelerators was not easily possible. Local patterns extend the existing
patterns. By matching elements with entities (e.g. a GPU), the node-local data may
be assigned to other compute units beside processes.
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Both projects are currently evaluated in the context of DASH to explore how the
PGAS programming model can be used more flexibly and efficiently.
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Abstract The ESSEX project has investigated programming concepts, data struc-
tures, and numerical algorithms for scalable, efficient, and robust sparse eigenvalue
solvers on future heterogeneous exascale systems. Starting without the burden
of legacy code, a holistic performance engineering process could be deployed
across the traditional software layers to identify efficient implementations and guide
sustainable software development. At the basic building blocks level, a flexible
MPI+X programming approach was implemented together with a new sparse data
structure (SELL-C-σ ) to support heterogeneous architectures by design. Further-
more, ESSEX focused on hardware-efficient kernels for all relevant architectures
and efficient data structures for block vector formulations of the eigensolvers.
The algorithm layer addressed standard, generalized, and nonlinear eigenvalue
problems and provided some widely usable solver implementations including a
block Jacobi–Davidson algorithm, contour-based integration schemes, and filter
polynomial approaches. Adding to the highly efficient kernel implementations,
algorithmic advances such as adaptive precision, optimized filtering coefficients,
and preconditioning have further improved time to solution. These developments
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were guided by quantum physics applications, especially from the field of topo-
logical insulator- or graphene-based systems. For these, ScaMaC, a scalable matrix
generation framework for a broad set of quantum physics problems, was developed.
As the central software core of ESSEX, the PHIST library for sparse systems
of linear equations and eigenvalue problems has been established. It abstracts
algorithmic developments from low-level optimization. Finally, central ESSEX
software components and solvers have demonstrated scalability and hardware
efficiency on up to 256 K cores using million-way process/thread-level parallelism.

1 Introduction

The efficient solution of linear systems or eigenvalue problems involving large
sparse matrices has been an active research field in parallel and high performance
computing for many decades. Software packages like Trilinos [33] or PETSc [9]
have been developed to great maturity, and algorithmic improvements were accom-
panied by advances in programming abstractions addressing, e.g., node-level
heterogeneity (cf. Kokkos [19]). Completely new developments such as Ginkgo1

are rare and do not focus on large-scale applications or node-level efficiency.
Despite projections from the late 2000s, hardware architectures have not devel-

oped away from traditional clustered multicore systems. However, a clear trend of
increased node-level parallelism and heterogeneity has been observed. Although
several new architectures entered the field (and some vanished again), the basic
concepts of core-level code execution and data parallelism have not changed. This
is why the MPI+X concept is still a viable response to the challenge of hardware
diversity.

Performance analysis of highly parallel code typically concentrated on scalabil-
ity, but provably optimal node-level performance was rarely an issue. Moreover,
strong abstraction boundaries between linear algebra building blocks, solvers, and
applications made it hard to get a holistic view on a minimization of time to solution,
encompassing optimizations in the algorithmic and implementation dimensions.

In this setting, the ESSEX project took the opportunity to start from a clean
slate, deliberately breaking said abstraction boundaries to investigate performance
bottlenecks together with algorithmic improvements from the core to the highly
parallel level. Driven by the targeted application fields, bespoke solutions were
developed for selected algorithms and applications. The experience gained in the
development process will lead the way towards more generic approaches rather
than compete with established libraries in terms of generality. The overarching motif
was a consistent performance engineering process that coordinated all performance-
relevant activities across the different software layers [1, 3, 4, 20, 52–54, 56, 62, 64].

1https://github.com/ginkgo-project/ginkgo.

https://github.com/ginkgo-project/ginkgo
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Consequently, the ESSEX parallel building blocks layer implemented in the
GHOST library [55] supports MPI+X, with X being a combination of node-
level programming models able to fully exploit hardware heterogeneity, functional
parallelism, and data parallelism. Despite fluctuations in hardware architectures and
new programming models hitting the market every year, OpenMP or CUDA is still
the most promising and probably most sustainable choice for X, and ESSEX-II
adhered to it. In addition, engineering highly specialized kernels including sparse-
matrix multiple-vector operations and appropriate data structures for all relevant
compute architectures provided the foundation for hardware- and energy-efficient
large-scale computations.

Building on these high-performance building blocks, one focus of the algorithm
layer was put on the block formulation of Jacobi–Davidson [64] and filter diago-
nalization [56] methods, the hardware efficiency of preconditioners [46–48], and
the development of hardware-aware coloring schemes [1]. In terms of scalability,
the project has investigated new contour-based integration eigensolvers [23, 24]
that can exploit additional parallelism layers beyond the usual data parallelism.
The solvers developed in ESSEX can tackle standard, generalized, and nonlinear
eigenvalue problems and may also be used to extract large bulks of extremal and
inner eigenvalues.

The applications layer applies the algorithms and building blocks to deliver
scalable solutions for topical quantum materials like graphene, topological insu-
lators, or superconductors, and nonlinear dynamical systems like reaction-diffusion
systems. A key issue for large-scale simulations is the scalable (in terms of size and
parallelism) generation of the sparse matrix representing the model Hamiltonian.
Our matrix generation framework ScaMaC can be integrated into application code to
allow the on-the-fly, in-place construction of the sparse matrix. Beyond the ESSEX
application fields, matrices from many other relevant areas can be produced by
ScaMaC.

The PHIST library [78] is the sustainable outcome of the performance-centric
efforts in ESSEX. It is built on a rigorous software and performance engineering
process, comprises diverse solver components, and supports multiple backends (e.g.,
Trilinos, PETSc, ESSEX kernels). It also interfaces to multiple languages such as
C, C++, Fortran 2003, and Python. The CRAFT library [73] provides user-friendly
access to fault tolerance via checkpoint/restart and automatic recovery for iterative
codes using standard C++.

Scalabilty, performance, and portability have been tested on three top-10 super-
computers covering the full range of architecures available during the ESSEX
project time frame: Piz Daint2 (heterogeneous CPU-GPU), OakForest-PACS3

(many-core), and SuperMUC-NG4 (standard multi-core).

2https://www.cscs.ch/computers/piz-daint/.
3https://www.cc.u-tokyo.ac.jp/en/supercomputer/ofp/service/.
4https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

https://www.cscs.ch/computers/piz-daint/
https://www.cc.u-tokyo.ac.jp/en/supercomputer/ofp/service/
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG


146 C. L. Alappat et al.

This review focuses on important developments in ESSEX-II. After presenting a
brief overview of the most relevant achievements in the first project phase ESSEX-I
in Sects. 2 and 3 details algorithmic developments in ESSEX-II, notably with respect
to preconditioners and projection-based methods for obtaining inner eigenvalues.
Moreover, we present the RACE (Recursive Algebraic Coloring Engine) method,
which delivers hardware-efficient graph colorings for parallelization of algorithms
and kernels with data dependencies. In Sect. 4 we showcase performance and
parallel efficiency numbers for library components developed in ESSEX-II that are
of paramount importance for the application work packages: GPGPU-based tall and
skinny matrix-matrix multiplication and the computation of inner eigenvalues using
polynomial filter techniques. Section 5 describes the software packages that were
developed to a usable and sustainable state, together with their areas of applicability.
In Sect. 6 we show application results from the important areas of quantum physics
and nonlinear dynamical systems. Finally, in Sect. 7 we highlight the collaborations
sparked and supported by SPPEXA through the ESSEX-II project.

2 Summary of the ESSEX-I Software Structure

The Exascale-enabled Sparse Solver Repository (ESSR) was developed along the
requirements of the algorithms and applications under investigation in ESSEX. It
was not intended as a full-fledged replacement of existing libraries like Trilinos5

[33], but rather as a toolbox that can supply developers with blueprints as a starting
point for their own developments. In ESSEX-I, the foundations for a sustainable
software framework were laid. See Sect. 5 for developments in ESSEX-II.

The initial version of the ESSR [77] comprised four components:

• GHOST (General, Hybrid and Optimized Sparse Toolkit) [55], a library of basic
sparse and dense linear algebra building blocks that are not available in this form
in other software packages. The development of GHOST was strictly guided by
performance engineering techniques; implementations of standard kernels such as
sparse matrix-vector multiplication (spMVM) and sparse matrix-multiple-vector
multiplication (spMMVM) as well as tailor-made fused kernels, for instance
those employed in the Kernel Polynomial Method (KPM) [81], were modeled
using the roofline model. GHOST supports, by design, strongly heterogeneous
environments using the MPI+X approach. See [51] for a comprehensive overview
of GHOST and its building blocks.

• ESSEX-Physics, a collection of prototype implementations of polynomial eigen-
solvers such as the KPM and Chebyshev Filter Diagonalization (ChebFD). These
were implemented on top of GHOST using tailored kernels and were shown to
perform well on heterogeneous CPU-GPU systems [53].

5https://trilinos.org/.

https://trilinos.org/
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• PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit), which comprises
Jacobi–Davidson type eigensolvers and Krylov methods for linear systems. One
important component is a test framework that allows for continuous integration
(CI) throughout the development cycle. PHIST can not only use plain GHOST as
its basic linear algebra layer; it is also equipped with fallback kernel implemen-
tations and adapters for the Trilinos and Anasazi libraries. A major achievement
in the development of PHIST was an efficient block Jacobi–Davidson eigenvalue
solver, which could be shown to have significant performance advantages over
nonblocked versions when using optimized building blocks from GHOST [64].

• BEAST (Beyond fEAST), which implements innovative projection-based eigen-
solvers motivated by the contour integration-based FEAST method [23]. The
ESSEX-I project has contributed to improving FEAST in two ways: by proposing
techniques for solving or avoiding the linear systems that arise, and by improving
robustness and performance of the algorithmic scheme.

A pivotal choice for any sparse algorithm implementation is the sparse matrix
storage format. In order to avoid data conversion and the need to support mul-
tiple hardware-specific formats in a single code, we developed the SELL-C-
σ format [52]. It shows competitive performance on the dominating processor
architectures in HPC: standard multicore server CPUs with short-vector single
instruction multiple data (SIMD) capabilities, general-purpose graphics processing
units (GPGPUs), and many-core designs with rather weak cores such as the Intel
Xeon Phi. SELL-C-σ circumvents the performance penalties of matrices with few
nonzero entries per row on architectures on which SIMD vectorization is a key
element for performance even with memory-bound workloads.

In order to convert a sparse matrix to SELL-C-σ , its rows are first sorted
according to their respective numbers of nonzeros. This sorting is performed across
row blocks of length σ . After that, the matrix is cut into row blocks of length C.
Within each block, rows are padded with zeros to equal length and then stored
in column-major order. See Fig. 1 for visualizations of SELL-C-σ with C = 6
and σ ∈ {1, 12, 24}. Incidentally, known and popular formats can be recovered as
corner cases: SELL-1-1 is the well-known CSR storage format and SELL-N-1 is
ELLPACK. The particular choice of C and σ influences the performance of the
spMVM operation; optimal values are typically matrix- and hardware-dependent.
However, in practice one can usually find parameters that yield good performance
across architectures for a particular matrix. A roofline performance model was
constructed in [52] that sets an upper limit for the spMVM performance for any
combination of matrix and architecture. This way, “bad” performance is easily
identified. SELL-C-σ was quickly adopted by the community and is in use, in pure
or adapted form, in many performance-oriented projects [5, 6, 28, 60, 80].
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Fig. 1 Variants of the SELL-C-σ storage format. Arrows indicate the storage order of matrix
values and column indices. Image from [52]. (a) SELL-6-1, β = 0.51. (b) SELL-6-12, β = 0.66.
(c) SELL-6-24, β = 0.84

3 Algorithmic Developments

In this section we describe selected developments within ESSEX-II on the algo-
rithmic level, in particular preconditioners for the solution of linear systems that
occur in the eigensolvers, a versatile framework for computing inner eigenvalues,
and a nonlinear eigensolver. We also cover a systematic comparison of contour-
based methods. We close the section with the introduction of RACE, which is an
algorithmic development for graph coloring guided by the constraints of hardware
efficiency.

3.1 Preconditioners (ppOpen-SOL)

Two kinds of solvers have been developed: a preconditioner targeting the ill-
conditioned large scale problems arising in the BEAST-C method (cf. Sect. 3.2) and
a multigrid solver targeting problems arising from finite difference discretizations
of partial differential equations (PDEs).
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3.1.1 Regularization

The BEAST-C method leads to a large number of ill-conditioned linear systems with
complex diagonal shifts [24]. Furthermore, in many of our quantum physics applica-
tions, the system matrices have small (and sometimes random) diagonal elements. In
order to apply a classic incomplete Cholesky (IC) factorization preconditioner, we
used two types of regularization to achieve robustness: a blocking technique (BIC)
and an additional diagonal shift [47]. Using this approach, we solved a set of 120
prototypical linear systems from this context (e.g., BEAST-C applied to quantum
physics applications). Due to the complex shift, the system matrix is symmetric but
not Hermitian. Hence we use an adaptation of the Conjugate Gradient (CG) method
for complex symmetric matrices called COCG (conjugate orthogonal conjugate
gradient [79]).

The blocking technique is a well-known approach for improving the convergence
rate. In this study, we apply the technique not only for better convergence but also
for more robustness. The diagonal entries in the target equations are small. By
applying the blocking technique, the diagonal blocks to be inverted include larger
off-diagonal entries.

The diagonal shifting is a direct measure for transforming the ill-conditioned
matrices to be more diagonally dominant before performing the incomplete fac-
torization. On the other hand, this may deteriorate the convergence of the overall
method. We therefore investigate the best value for the diagonal shifting for our
applications.

Figure 2 shows the effect of the regularized IC preconditioner with the COCG
method. By using the diagonal shifted block IC-COCG (BIC-COCG), we solve all
target linear systems.

Fig. 2 Effect of the regularized IC preconditioner with the COCG method. By using the diagonal
shifted block IC-COCG (BIC-COCG), we can solve all test problems from our benchmark set



150 C. L. Alappat et al.

3.1.2 Hierarchical Parallel Reordering

In this section, we present scalability results for the BIC preconditioner parallelized
by a hierarchical parallel graph coloring algorithm. This approach yields an almost
constant convergence rate with respect to the number of compute nodes, and good
parallel performance.

Node-wise multi-coloring (with domain decomposition between nodes) is widely
used for parallelizing IC preconditioners on clusters of shared memory CPUs. Such
“localized” multi-coloring leads to a loss of robustness of the regularized IC-COCG
method, and the convergence rate decreases at high levels of parallelism. To solve
this problem, we parallelize the block IC preconditioner for the hybrid-parallel
cluster system. In addition, we proposed the hierarchical parallelization for the
multi-coloring algorithms [46]. This versatile scheme allows us to parallelize almost
any multi-coloring algorithm.

Figure 3 shows the number of iterations and computational time of the BIC-
COCG method on the Oakleaf-FX cluster, using up to 4,800 nodes. The benchmark
matrix is the Hamiltonian of a graphene sheet simulation with more than 500 million
linear equations, for which interior eigenvalues are of interest [24]. Hierarchical
parallelization yields almost constant convergence with respect to the number of
nodes. The computational time with 4,600 nodes is 30 times smaller than with 128
nodes, amounting to a parallel efficiency of 83.5% if the 128-node case is taken as
the baseline.

3.1.3 Multiplicative Schwarz-Type Block Red-Black Gauß–Seidel
Smoother

Multigrid methods are among the most useful preconditioners for elliptic PDEs.
In [45] we proposed a multiplicative Schwarz block red/black Gauß–Seidel (MS-

Fig. 3 Computational time and convergence of BIC-COCG for a graphene benchmark problem
(strong scaling)
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Fig. 4 Computational time and number of iterations of a geometric multigrid solver with the MS-
BRB-GS(α) smoother

BRB-GS) smoother for geometric multigrid methods. It is a modified version of the
block red-black Gauß–Seidel (BRB-GS) smoother that improves convergence rate
and data locality by applying multiple consecutive Gauß–Seidel sweeps on each
block.

The unknowns are divided into blocks so that the amount of data for processing
each block fits into the cache, and α Gauß–Seidel iterations are applied to the block
per smoother step. The computational cost for the additional iterations is much lower
than for the first iteration because of data locality.

Figure 4 shows the effect of the MS-BRB-GS(α) smoother on a single node of
the ITO system (Intel Xeon Gold 6154 (Skylake-SP) Cluster at Kyushu University).
By increasing the number of both pre- and post-smoothing steps, the number of
iterations is decreased. In the best case, MS-BRB-GS is 1.64× faster than BRB-GS.

3.2 The BEAST Framework for Interior Definite Generalized
Eigenproblems

The BEAST framework targets the solution of interior definite eigenproblems

AX = BX� ,

i.e., for finding all eigenvectors and eigenvalues of a definite matrix pair (A,B),
with A and B Hermitian and B additionally positive definite, within a given interval
[λ, λ]. The framework is based on the Rayleigh–Ritz subspace iteration procedure,
in particular the spectral filtering approach: Arbitrary continuous portions of the
spectrum may be selected for computation with appropriate filtering functions that
are applied via an implicit approximate projector to compute a suitable subspace
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basis. Starting with an initial subspace Y , the following three main steps are repeated
until a suitable convergence criterion is met:

Compute a subspace U by approximately projecting Y

Rayleigh–Ritz extraction: solve the reduced eigenproblem AUV = BUV �,

where AU = UH AU,BU = UH BU, and let X = UV

Obtain new Y from X or U

In the following we highlight some of BEAST’s algorithmic features, skipping
other topics such as locking converged eigenpairs, adjusting the dimension of the
subspace, and others.

3.2.1 Projector Types

BEAST provides three variants of approximate projectors. First, polynomial approx-
imation (BEAST-P) using Chebyshev polynomials, which only requires matrix
vector multiplications but is restricted to standard eigenproblems. Second, Cauchy
integral-based contour integration (BEAST-C), as in the FEAST method [63]. As
a third method, an iterative implementation of the Sakurai–Sugiura method [65] is
available (BEAST-M), which shares algorithmic similarities with FEAST. In the
following we briefly elaborate on the algorithmic ideas.

• In BEAST-P, we have U = p(A) · Y with a polynomial p(z) = ∑d
k=0 ckTk(z) of

suitable degree d . Here, Tk denotes the kth Chebyshev polynomial,

T0(z) ≡ 1, T1(z) = z, Tk(z) = 2z · Tk−1(z) − Tk−2(z), k ≥ 2.

Due to the use of the Tk , this method is also known as Chebyshev filter
diagonalization.
In addition to well-known methods for computing the coefficients ck [18, 62],
BEAST also provides the option of using new, improved coefficients [25]. Their
computation depends on two parameters, μ and σ , and for suitable combinations
of these, the filtering quality of the polynomial can be improved significantly;
see Fig. 5, which shows the “gain,” i.e., the reduction of the width of those
λ values outside the search interval, for which a damping of corresponding
eigenvectors by at least a factor 100 cannot be guaranteed. For some combinations
(σ, μ), marked red in the picture, this “no guarantee” area can be reduced by
a factor of more than 2, which in turn allows using lower-degree polynomials
to achieve comparable overall convergence. A parallelized method for finding
suitable parameter combinations and computing the ck is included with BEAST.
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• In BEAST-C, the exact projection

1

2π i

∫




dz (zB − A)−1BY

(integration is over a contour 
 in the complex plane that encloses the eigenvalues
λ ∈ [λ, λ], but no others) is approximated using an N-point quadrature rule,

U =
N∑

j=1

ωj (zjB − A)−1BY,

leading to N linear systems, where the number of right-hand sides (RHS)
corresponds to the dimension of the current subspace U (and Y ).

• BEAST-M is also based on contour integration, but moments are used to reduce
the number of RHS in the linear systems. Taking M moments, we have

U = [U0, . . . , UM−1] with Uk =
N∑

j=1

ωj z
k
j (zjB − A)−1BY,

and thus an M times smaller number of RHS (dimension of Y ) is sufficient to
achieve the same dimension of U .

The linear systems in the contour-based schemes may be ill-conditioned if the
integration points zj are close to the spectrum (this happens, e.g., for narrow search
intervals [λ, λ]); cf. also Sects. 3.1 and 3.4 for approaches to address this issue.

3.2.2 Flexibility, Adaptivity and Auto-Tuning

The BEAST framework provides flexibility at the algorithmic, parameter, and
working precision levels, which we describe in detail in the following.

Algorithmic Level

The projector can be chosen from the three types described above, and the type
may even be changed between iterations. In particular, an innovative subspace-
iterative version of Sakurai–Sugiura methods (SSM) has been investigated for
possible cost savings in the solution of linear systems via a limited subspace size
and the overall reduction of number of right hand sides over iterations by using
moments. Given, however, the potentially reduced convergence threshold with a
constrained subspace size, we support switching from the multi-moment method,
BEAST-M, to a single-moment method, BEAST-C. The efficiency, robustness, and
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Fig. 5 Base-2 log of the “gain” from using modified coefficients with parameters (σ, μ) for the
interval [λ, λ] = [−0.584,−0.560] (matrix scaled such that spec(A) = [−1,+1]) and degree
d = 1600

accuracy of this approach in comparison with traditional SSM and FEAST has been
explored [35].

We further studied this scheme along with another performance-based imple-
mentation of SSM, z-PARES [65, 67]. These investigations considered the scaling
and computational cost of the libraries as well as heuristics for parameter choice,
in particular with respect to the number of quadrature nodes. We observed that the
scaling behavior improved when the number of quadrature nodes increased, as seen
in Fig. 6. As the linear systems solved at each quadrature node are independent
and the quality of numerical integration improves with increased quadrature degree,
exploiting this property makes sense, particularly within the context of exascale
computations. However, it is a slightly surprising result, as previous experiments
with FEAST showed diminishing returns for convergence with increased quadrature
degree [23], something we do not observe here.

Parameter Level

In addition to the projector type, several algorithmic parameters determine the
efficiency of the overall method, most notably the dimension of the subspace and the
degree of the polynomial (BEAST-P) or the number of integration nodes (BEAST-C
and BEAST-M).

With certain assumptions on the overall distribution of the eigenvalues, clear
recommendations for optimum subspace size (as a multiple of the number of
expected eigenvalues) and the degree can be given, in the sense that overall work
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Fig. 6 Strong scaling of BEAST and z-Pares for a 1M × 1M standard eigenproblem based on
a graphene sheet of dimension 2000 × 500. Both solvers found 260 eigenpairs in the interval
[−0.01, 0.01] to a tolerance of 1 × 10−8. Both methods used 4 moments and began with random
initial block vector Y . For BEAST, Y contained 100 columns; for z-Pares, 130. Testing performed
on the Emmy HPC cluster at RRZE. MUMPS was used for the direct solution of all linear systems.
N refers to the number of quadrature nodes along a circular contour, NP to the number of
processes

is minimized. For more details, together with a description of a performance-tuned
kernel for the evaluation of p(A) · Y , the reader is referred to [62].

If such information is not available, or for the contour integration-type projectors,
a heuristic has been developed that automatically adjusts the degree (or number of
integration nodes) during successive iterations in order to achieve a damping of
the unwanted components by a factor of 100 per iteration, which leads to close-to-
optimum overall effort; cf. [26].

Working Precision Level

Given the iterative nature of BEAST, with one iteration being comparatively
expensive, the possibility to reduce the cost of at least some of these iterations is
attractive. We have observed that before a given residual tolerance is surpassed,
systematic errors in the computation of the projector and other operations do not
impair convergence speed per se, but impose a limit on what residual can be
reached before progress stagnates. One such systematic error is the finite accuracy
of floating-point computations, which typically are available in single and double
precision. In the light of the aforementioned behavior, it seems natural to perform
initial iterations in single precision and thereby save on computation time before a
switch to double precision becomes inevitable; cf. Fig. 7.
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double 420 s 305 s
mixed(7) 333 s 265 s
mixed(9) 316 s 257 s
mixed(11) 301 s 245 s
single 266 s 225 s

Fig. 7 Left: average residual over the BEAST iterations for using double or single precision
throughout, and for switching from single to double precision in the 7th, 9th, or 11th iteration,
respectively. Right: time (in seconds) to convergence for a size 1,048,576 topological insulator
(complex values) with a search space size of 256 and a polynomial degree of 135 on 8 nodes of
the Emmy-cluster at RRZE. Convergence is reached after identical numbers of iterations (with
the exception of pure single precision, of course). The timings can vary for different ratios of
polynomial degree and search space size and depend on the single precision performance of the
underlying libraries

Therefore, mixed precision has been implemented in all BEAST schemes
mentioned above, allowing an adaptive strategy to automatically switch from single
to double precision after a given residual tolerance is reached. A comprehensive
description and results are presented in [4]. These results and our initial investi-
gations also suggest that increased precision beyond double precision (i.e., quad
precision) will have no benefit for the convergence rate until a certain double
precision specific threshold is reached; convergence beyond this point would require
all operations to be carried out with increased precision.

3.2.3 Levels of Parallelism

The BEAST framework exploits multiple levels of parallelism using an MPI+X par-
adigm. We rely on the GHOST and PHIST libraries for efficient sparse matrix/dense
vector storage and computation; cf. Sect. 5. The operations implemented therein are
themselves hybrid parallel and constitute the lowest level of parallelism in BEAST.
Additional levels are addressed by parallelizing over blocks of vectors in Y and,
for BEAST-C and BEAST-M, over integration nodes during the application of the
approximate projector. A final level is added by exploiting the ability of the method
to subdivide the search interval [λ, λ] and to process the subintervals independently
and in parallel. Making use of these properties, however, may lead to non-orthogonal
eigenvectors, which necessitates postprocessing as explained in the following.
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3.2.4 A Posteriori Cross-Interval Orthogonalization

Rayleigh–Ritz-based subspace iteration algorithms naturally produce a B-
orthogonal set of eigenvectors X, i.e., orth(X) is small, where

orth(X) = max
{
orth(xi, xj )|i �= j

}
with orth(x, y) = 〈y, x〉

‖x‖‖y‖ .

By contrast, the orthogonality

orth(X, Y ) = max
{
orth(xi, yj )

}

between two or more independently computed sets of eigenvectors may suffer if
the distance between the involved eigenvalues is small [49, 50]. Simultaneous re-
orthogonalization of evolving approximate eigenvectors during subspace iteration
has proven ineffective unless the vectors have advanced reasonably far. A large scale
re-orthogonalization of finished eigenvector blocks, on the other hand, requires a
careful choice of methodology in order to not diminish the quality of the previously
established residual.

Orthogonalization of multiple vector blocks implies Gram–Schmidt style propa-
gation of orthogonality, assuming orth(X, Y ) can be arbitrarily poor. In practice, the
independently computed eigenvectors will exhibit multiple grades of orthogonality,
but rarely will there be no orthogonality (in the sense above) at all. This, in turn,
allows for the use of less strict orthogonalization methods. While, in theory, the
orthogonalization of p blocks requires at least p(p − 1)/2 + (p− 1) block-block or
intra-block orthogonalizations and ensures global orthogonality, an iterative scheme
allows for more educated choices on the ordering of orthogonalizations in order
to reduce losses in residual and improve the communication pattern, eliminating
the need for broadcasts of vector blocks at the cost of additional orthogonalization
operations in the form of multiple sweeps. In practice, very few sweeps (∼2) are
sufficient in most cases.

Every block-block orthogonalization X = X − Y (YHBX) disturbs the
orthogonality orth(X) of the modified block, as well as its residual. Local
re-orthogonalization of X disturbs the residual further. We have identified
orthogonalization patterns and selected orthogonalization algorithms that reduce
the loss of residual accuracy to a degree that essentially eliminates the need for
additional post-iteration.

The implementation of an all-to-all interaction of many participating vector
blocks can be performed in multiple ways with different requirements regarding
storage, communication, runtime, and with different implications on accuracy and
loss of residual. Among several such strategies and algorithms that have been
implemented and tested, the most promising is a purely iterative scheme, both
for global and local orthogonalization operations. It is based on a comparison of
interval properties, most notably the achieved residual from the subspace iteration.
We are continuing to explore the possibility to detect certain orthogonalizations as
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unnecessary without computing the associated inner products in order to further
reduce the workload without sacrificing orthogonality.

3.2.5 Robustness and Resilience

In the advent of large scale HPC clusters, hardware faults, both detectable an
undetectable, have to be expected.

Detectable hardware faults, e.g., the outage of a component that violently halts
execution, can typically only be mitigated by frequent on-the-fly storage of the most
vital information. In the case of subspace iteration, as is used in BEAST, almost
all required information for being able to resume computation is encoded in the
iterated subspace basis in form of the approximate eigenvectors, besides runtime
information about the general program flow. Relying on the CRAFT library [73], a
per-iteration checkpointing mechanism has been implemented in BEAST.

Additionally, for also being able to react to “silent” computation errors that
merely distort the results but do not halt execution, the most expensive operation
(application of the approximate projector) has been augmented to monitor the sanity
of the results. This can be done in two ways: A checksum-style entrainment of
additional vectors, linear combinations of the right-hand sides, can be checked
during and after the application of the projector to detect errors and allow for
the re-computation of the incorrect parts. The comparison of approximate filter
values obtained from the computed basis and the expected values obtained from
the scalar representation of the filter function, on the other hand, gives an additional
a posteriori test for the overall plausibility of the basis.

Practical tests have shown that small distortions of the subspace basis have not
enough impact on the overall process in order to justify expensive measures. If the
error is not recurring, just continuing the subspace iteration is often the best and
most cost-efficient option. This is particularly true in early iterations, where small
errors have no effect at all.

3.3 Further Progress on Contour Integral-Based Eigensolvers

3.3.1 Relationship Among Contour Integral-Based Eigensolvers

The complex moment-based eigensolvers such as the Sakurai–Sugiura method can
be regarded as projection methods using a subspace constructed by the contour
integral

1

2π i

∫




dz zk(zB − A)−1BY.
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Fig. 8 A map of the relationships among the contour integral-based eigensolvers

The property of the subspace is well analyzed by using a filter function

f (λ) :=
d∑

j=1

ωj

zj − λ
,

which approximates a band-pass filter for the target region where the wanted
eigenvalues are located. Using the filter function, error analyses of the complex
moment-based eigensolvers were shown in [30, 41, 42, 66, 76]. By using the results
of the error analyses, an error resilience technique and an accuracy deterioration
technique have also been given in [32, 43].

The relationship between typical complex moment-based eigensolvers was also
analyzed in [42] focusing on the subspace. The block SS-RR method [36] and the
FEAST algorithm [76] are projection methods for solving the target generalized
eigenvalue problem, whereas the block SS-Hankel method [37], Beyn [12], the
block SS-Arnoldi methods [40] and its improvements [38] are projection methods
for solving an implicitly constructed standard eigenvalue problem; see [42] for
details. Figure 8 shows a map of the relationships among the contour integral-based
eigensolvers.

3.3.2 Extension to Nonlinear Eigenvalue Problems

The complex moment-based eigensolvers were extended to nonlinear eigenvalue
problems (NEPs):

T (λi)xi = 0, xi ∈ Cn \ {0}, λi ∈ � ⊂ C,
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where the matrix-valued function T : � → C
n×n is holomorphic in an open domain

�. The projection for a nonlinear matrix function T (λ) is given by

1

2π i

∫




dz zkT (z)−1Y.

This projection is approximated by

Uk =
N∑

j=1

ωj z
k
jT (zj )

−1Y, k = 0, 1, . . . ,m − 1.

The block SS-Hankel [7, 8], block SS-RR [83], and block SS-CAA methods [39]
are simple extensions of the GEP solvers. A technique for improving the numerical
stability of the block SS-RR method for NEP was developed in [15, 16].

Beyn proposed a method using Keldysh’s theorem and the singular value
decomposition [12]. Van Barel and Kravanja proposed an improvement of the Beyn
method using the canonical polyadic (CP) decomposition [10].

3.4 Recursive Algebraic Coloring Engine (RACE)

The standard approach to solve the ill-conditioned linear systems arising in BEAST-
C or FEAST is to use direct solvers. However, in [24] it was shown that the
Kaczmarz iterative solver accelerated by a Conjugate Gradient (CG) method (the
so-called CGMN solver [29]) is a robust alternative to direct solvers. Standard
multicoloring (MC) was used in [29] for the parallelization of the CGMN kernels.
After analyzing the shortcomings of this strategy in view of hardware efficiency, we
developed in collaboration with the EXASTEEL-II project the Recursive Algebraic
Coloring Engine (RACE) [1]. It is an alternative to the well-known MC and
algebraic block multicoloring (ABMC) algorithms [44], which have the problem
that their matrix reordering can adversely affect data access locality. RACE aims
at improving data locality, reducing synchronization, and generating sufficient
parallelism while still retaining simple matrix storage formats such as compressed
row storage (CRS). We further identified distance-2 coloring of the underlying
graph as an opportunity for parallelization of the symmetric spMVM (SymmSpMV)
kernel.

RACE is a sequential, recursive, level-based algorithm that is applicable to
general distance-k dependencies. It is currently limited to matrices with symmetric
structure (undirected graph), but possibly nonsymmetric entries. The algorithm
comprises four steps: level construction, permutation, distance-k coloring, and load
balancing. If these steps do not generate sufficient parallelism, recursion on sub-
graphs can be applied. Using RACE implies a pre-processing and a processing
phase. In pre-processing, the user supplies the matrix, the kernel requirements
(e.g., distance-1 or distance-2) and hardware settings (number of threads, affinity
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strategy). The library generates a permutation and stores the recursive coloring
information in a level tree. It also creates a pool of pinned threads to be used later.
In the processing phase, the user provides a sequential kernel function which the
library executes in parallel as a callback using the thread pool.

Figure 9 shows the performance of SymmSpMV on a 24-core Intel Xeon
Skylake CPU for a range of sparse symmetric matrices. In Fig. 9a we compare
RACE against Intel’s implementation in the MKL library, and with roofline limits
obtained via bandwidth measurements using array copy and read-only kernels,
respectively. RACE outperforms MKL by far. In Fig. 9b we compare against
standard multicoloring (MC) and algebraic block multicoloring (ABMC). The
advantage of RACE is especially pronounced with large matrices, where data traffic
and locality of access is pivotal. One has to be aware that some algorithms may
exhibit a change in convergence behavior due to the reordering. This has to be taken
into account when benchmarking whole program performance instead of kernels.
Details can be found in [1].

In order to show the advantages of RACE in the context of a relevant algorithm,
we chose FEAST [63] for computing inner eigenvalues. The hot spot of the
algorithm (more than 95%) is a solver for shifted linear systems (A−σI = b). These
systems are, however, highly ill-conditioned, posing severe convergence problems
for most linear iterative solvers. We use the FEAST implementation of Intel
MKL, which by default employs the PARDISO direct solver [69], but its Reverse
Communication Interface (RCI) allows us to plug our CGMN implementation
instead. In the following experiment we find ten inner eigenvalues of a simple
discrete Laplacian matrix to an accuracy of 10−8. Figure 10 shows the measured
time and memory footprint of the default MKL version (using PARDISO) and the
CGMN versions parallelized using both RACE and ABMC for different matrix
sizes. ABMC is a factor of 4× slower than RACE. The time required by the default
MKL with PARDISO is smaller than with CGMN using RACE for small sizes;
however, the gap gets smaller as the size grows due to the direct solvers having a
higher time complexity (here ≈ O(n2)) compared to iterative methods (≈ O(n1.56)).
Moreover, the direct solver requires more memory, and the memory requirement
grows much faster (see Fig. 10b) than with CGMN. In our experiment the direct
solver ran out of memory at problem sizes beyond 1403, while CGMN using RACE
used less than 10% of space at this point. Thus, CGMN with RACE can solve much
larger problems compared to direct solvers, which is a major advantage in fields like
quantum physics.

4 Hardware Efficiency and Scalability

In this section we showcase performance and parallel efficiency numbers for
library components developed in ESSEX-II that are of paramount importance
for the application work packages: GPGPU-based tall and skinny matrix-matrix
multiplication and the computation of inner eigenvalues using polynomial filter
techniques.
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Fig. 9 SymmSpMV performance of RACE compared to other methods. The roofline model
for SymmSpMV is shown in Fig. 9a for reference. Representative matrices from [17] and
ScaMaC (see Sect. 5.5) were used. Note that the matrices are ordered according to increasing
number of rows. (One Skylake Platinum 8160 CPU [24 threads]). (a) Performance of RACE
compared with MKL. (b) Performance of RACE compared to other coloring approaches
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Fig. 10 Comparison of FEAST with default MKL direct solver and iterative solver CGMN,
parallelized using RACE. (One Skylake Platinum 8160 CPU [24 threads]). (a) Time to solution.
(b) Memory requirement

4.1 Tall and Skinny Matrix-Matrix Multiplication (TSMM) on
GPGPUs

Orthogonalization algorithms frequently require the multiplication of matrices that
are strongly nonsquare. Vendor-supplied optimized BLAS libraries often yield sub-
optimal performance in this case. “Sub-optimal” is a well-defined term here since
the multiplication of an M×K matrix A with a K×N matrix B with K � M,N and
small M,N is a memory-bound operation: At M = N , its computational intensity is
just M/8 flop/byte. In ESSEX-I, efficient implementations of TSMM on multicore
CPUs were developed [51].

The naive roofline model predicts memory-bound execution for M � 64 on
a modern Volta-class GPGPU. See Fig. 11 for a comparison of optimal (roofline)
performance and measured performance for TSMM on an Nvidia Tesla V100
GPGPU using the cuBLAS library.6 We have developed an implementation of
TSMM for GPGPUs [20], investigating various optimization techniques such as
different thread mappings, overlapping long-latency loads with computation via
leapfrogging7 and unrolling, options for global reductions, and register tiling. Due

6https://docs.nvidia.com/cuda/cublas (May 2019).
7Leapfrogging in this context means that memory loads to operands are initiated one loop iteration
before the data is actually needed, allowing for improved overlap between data transfers and
computations.

https://docs.nvidia.com/cuda/cublas
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Fig. 11 Percentage of roofline predicted performance achieved by cuBLAS for the range M =
N ∈ [1, 64] on a Tesla V100 with 16 GB of memory. (From [20])

Fig. 12 Best achieved performance for each matrix size with M = N in comparison with the
roofline limit, cuBLAS and CUTLASS, with K = 223. (From [20])

to the large and multi-dimensional parameter space, the kernel code is generated
using a python script.

Figure 12 shows a comparison between our best implementations obtained
via parameter search (labeled “leap frog” and “no leap frog,” respectively) with
cuBLAS and CUTLASS,8 which is a collection of CUDA C++ template abstrac-
tions for high-performance matrix multiplications. Up to M = N = 36, our
implementation stays within 95% of the bandwidth limit. Although the performance

8https://github.com/NVIDIA/cutlass (May 2019).

https://github.com/NVIDIA/cutlass


ESSEX: Equipping Sparse Solvers For Exascale 165

levels off at larger M,N , which is due to insufficient memory parallelism, it is still
significantly better than with cuBLAS or CUTLASS.

4.2 BEAST Performance and Scalability on Modern Hardware

4.2.1 Node-Level Performance

Single-device benchmark tests for BEAST-P were performed on an Intel Knights
Landing (KNL), an Nvidia Tesla P100, and an Nvidia Tesla V100 accelerator, com-
paring implementations based on vendor libraries (MKL and cuBLAS/cuSPARSE,
respectively) with two versions based on GHOST: one with and one without tailored
fused kernels. The GPGPUs showed performance levels expected from a bandwidth-
limited code, while on KNL the bottleneck was located in the core (see Fig. 13a).
Overall, the concept of fused optimized kernels provided speedups of up to 2×
compared to baseline versions. Details can be found in [56].
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Fig. 13 BEAST-P performance for a topological insulator problem of dimensions 128×64×64
with np = 500 using different implementations on KNL, P100, and V100. Performance of a dual
Xeon E5-2697v3 node (Haswell) is shown for reference. Note the different y axis scaling of the
V100 results. (From [56]; for details see therein). (a) KNL. (b) P100. (c) V100
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4.2.2 Massively Parallel Performance

Scaling tests for BEAST-P were performed on the “Oakforest-PACS” (OFP) at the
University of Tokyo, “Piz Daint” at CSCS in Lugano, and on the “SuperMUC-
NG” (SNG) at Leibniz Supercomputing Centre (LRZ) in Garching.9 While the
OFP nodes comprise Intel “Knights Landing” (KNL) many-core CPUs, SNG has
CPU-only dual-socket nodes with Intel Skylake-SP, and Piz Daint is equipped with
single-socket Xeon “Haswell” nodes, each of which has an Nvidia Tesla P100
accelerator attached. Weak and strong scaling tests were done with topological
insulator (TI) matrices generated by the ScaMaC library. Flops were calculated for
the computation of the approximate eigenspace, U , averaged over the four BEAST
iterations it took to find the 148 eigenvalues in each interval to a tolerance of
1 × 10−10. The subspace contained 256 columns, and spMMVs were performed
in blocks of size 32 for best performance. Optimized coefficients [25] were used
for the Chebyshev polynomial approximation, resulting in a lower overall required
polynomial degree. Weak and strong scaling results are shown in Fig. 14a through d.

OFP and SNG show similar weak scaling efficiency due to comparable single-
node performance and network characteristics. Piz Daint, owing to its superior
single-node performance of beyond 400 Gflop/s, achieves only 60% of parallel
efficiency at 2048 nodes. A peculiar observation was made on the CPU-only
SNG system: Although the code runs fastest with pure OpenMP on a single node
(223 Gflop/s), scaled performance was observed to be better with one MPI process
per socket. The ideal scaling and efficiency numbers in Fig. 14a–c use the best value
on the smallest number of nodes in the set as a reference. The largest matrix on SNG
had 6.6 × 109 rows.

5 Scalable and Sustainable Software

It was a central goal of the ESSEX-II project to consolidate our software efforts and
provide a library of solvers for sparse eigenvalue problems on extreme-scale HPC
systems. This section gives an overview of the status of our software, most of which
is now publicly available under a three-clause BSD license. Many of the efforts
have been integrated in the PHIST library so that they can easily be used together,
and we made part of the software available in larger contexts like Spack [27] and
the extreme-scale scientific software development kit xSDK [11]. The xSDK is an
effort to define common standards for high-performance, scientific software in terms
of software engineering and interoperability.

9Runs on OFP and SNG were made possible during the “Large-scale HPC Challenge” Project on
OFP and the “Friendly-User Phase” of SNG.



ESSEX: Equipping Sparse Solvers For Exascale 167

2 8 32 128 512 2048
Number of nodes

10
2

10
3

10
4

10
5

G
FL

O
PS

ε = 0.88

(a)

1 2 8 32 128 512 2048
Number of nodes

10
2

10
3

10
4

10
5

G
FL

O
PS

ε = 0.6

(b)

1 2 8 32 128 512 2048
Number of nodes

10
2

10
3

10
4

10
5

G
FL

O
PS

ε = 0.8

(c)

128 256 512 1024 2048
Number of nodes

10
4

10
5

G
FL

O
PS

ε = 0.79

ε = 0.75

(d)

Fig. 14 Weak scaling of BEAST-P on OFP, Piz Daint, and SNG, and strong scaling on SNG.
Dashed lines denote ideal scaling with respect to the smallest number of nodes in the set. (a) Weak
scaling of BEAST-P on OFP for problems of size 220 (2 nodes) to 230 (2048 nodes, about one
quarter of the full machine). (b) Weak scaling of BEAST-P on Piz Daint for problems of size 221

(1 node) to 232 (2048 nodes). (From [56]). (c) Weak scaling of BEAST-P on SNG for problems of
size 221 (1 node) to 1.53 × 232 (3136 nodes, about half of the full machine). (d) Strong scaling of
BEAST-P on SNG for problems of size 228 (crosses) and 230 (triangles)

The current status of the software developed in the ESSEX-II project is summa-
rized as follows.

• BEAST is available via bitbucket,10 and can be compiled either using the PHIST
kernel interface or the GHOST library directly. The former allows using it with
any backend supported by PHIST.

• CRAFT is available stand-alone11 or (in a fixed version) as part of PHIST.
• ScaMaC is available stand-alone12 or (in a fixed version) as part of PHIST.

10https://bitbucket.org/essex/beast/.
11https://bitbucket.org/essex/craft/.
12https://bitbucket.org/essex/matrixcollection/.

https://bitbucket.org/essex/beast/
https://bitbucket.org/essex/craft/
https://bitbucket.org/essex/matrixcollection/
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• GHOST is available via bitbucket.13 The functionality which is required to
provide the PHIST interface can be tested via PHIST. Achieving full (or even
substantial) test coverage of the GHOST-functionality would require a very large
number of tests (in addition to what the PHIST interface provides, GHOST allows
mixing data types, and it uses automatic code generation, which leads to an
exponentially growing number of possible code paths with every new kernel,
supported processor and data type). It is, however, possible to create a basic
GHOST installation via the Spack package manager (since March 2018, commit
bcde376).

• PHIST is available via bitbucket14 and Spack (since commit 2e4378b).
Furthermore, PHIST 1.7.5 is part of xSDK 0.4.0. The version distributed with
the xSDK is restricted to use the Tpetra kernels to maximize the interoperability
of the package.

5.1 PHIST and the Block-ILU

In ESSEX-I we addressed mostly node-level performance [77] on multi-core CPUs.
The main publication of ESSEX-II concerning the PHIST library [78] presents
performance results for the block Jacobi–Davidson QR (BJDQR) solver on various
platforms, including recent CPUs, many-core processors and GPUs. It was also
shown in this work that the block variant has a clear performance advantage over
the single-vector algorithm in the strong scaling limit. The reason is that, while
the number of matrix-vector multiplications increases with the block size (see
also [64]), the total number of reductions decreases. In order to demonstrate the
performance portability of PHIST, we show in Fig. 15 a weak scaling experiment
on the recent SuperMUC-NG machine.

For the block size 4, we roughly match the performance it achieves in the
memory-bounded HPCCG benchmark (207 TFlop/s),15 but using only half of the
machine. This gives a clear indication that our node-level performance engineering
and multi-node implementation are highly successful: after all, we do not optimize
for the specific operator application (a simple structured grid, 3D Laplace operator),
which the HPCCG code does. On the other hand, we have an increased compu-
tational intensity for some of the operations due to the blocking, which increases
the performance over a single-vector CG solver. The single-vector BJDQR solver
achieves 98 TFlop/s on half of the machine.

13https://bitbucket.org/essex/ghost/.
14https://bitbucket.org/essex/phist.
15See https://www.top500.org/system/179566.

https://bitbucket.org/essex/ghost/
https://bitbucket.org/essex/phist
https://www.top500.org/system/179566
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Fig. 15 Weak scaling behavior of the PHIST BJDQR solver for a symmetric PDE benchmark
problem and different block sizes

5.1.1 Integration of the Block-ILU Preconditioning Technique

Initial steps have been taken to make the Block-ILU preconditioner (cf. Sect. 3.1)
available via the PHIST preconditioning interface. At the time of writing, there is
an experimental implementation of a block CRS sparse matrix format in the PHIST
builtin kernel library, including parallel conversion and matrix-vector product rou-
tines and the possibility to construct and apply the block Cholesky preconditioner.
Furthermore, the interfaces necessary to allow using the preconditioner within
the BJDQR eigensolver have been implemented. These features are available for
experimenting in a branch of the PHIST git repository because they do not yet meet
the high demands on maintainability (especially unit testing) and documentation of
a publicly available library. Integration of the method with the BEAST eigensolver
is not yet possible because the builtin kernel library does not support complex
arithmetic. As mentioned in Sect. 3.2, the complex version will be integrated directly
into the BEAST software, instead.

5.2 BEAST

BEAST combines implementations of spectral filtering methods for Rayleigh–
Ritz type subspace iteration in a generalized framework to provide facilities for
improving performance and robustness. The algorithmic foundation allows for the
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solution of interior Hermitian definite eigenproblems of standard and generalized
form via an iterative eigensolver, unveiling all eigenpairs in one or many specified
intervals. The software is designed as hybrid parallel library, written in C/C++,
and relying on GHOST and PHIST to provide basic operations, parallelism, and
data types. Beyond the excellent scalability of the underlying kernel libraries,
multiple additional levels of parallelism allow for computing larger portions of the
spectrum and/or utilizing a larger number of computing cores. The inherent ability
of the underlying algorithm to compute separate intervals independently offers wide
potential but requires careful handling of cross-interval interactions to ensure the
desired quality of results, which is well supported by BEAST.

The BEAST library interface comes in variations for the common floating point
formats (real and complex, single and double precision) for standard and gener-
alized eigenproblems. Additionally, the software offers the possibility to switch
precisions on-the-fly, from single to double precision, in order to further improve
performance. While BEAST offers an algorithm for standard eigenproblems that
completely bypasses the need for linear system solves, other setups typically require
a suitable linear solver. Besides a builtin parallel sparse direct solver for banded
systems, BEAST includes interfaces to MUMPS and Strumpack, as well as a
flexible callback-driven interface for the inclusion of arbitrary linear solvers. It also
interfaces with CRAFT and ScaMaC, which provide fault tolerance and dynamic
matrix generation, respectively. While working out of the box for many problems,
BEAST offers a vast amount of options to tweak the software for the specific
problem at hand. A builtin command line parser allows for easy modification. The
included application bundles the several capabilities of BEAST in form of a stand-
alone tool that reads or generates matrices and solves the specified eigenproblem.
As such, it acts as comprehensive example for the usage of BEAST.

The library is still in a development state, and interface and option sets may
change. A more comprehensive overview over a selection of features is provided in
Sect. 3.2.

5.3 CRAFT

The CRAFT library [73] covers two essential aspects of fault tolerance namely
communication, and data recovery of an MPI application in case of process-failures.

In the Checkpoint/Restart part of the library, it provides an easier and extensible
interface for making application-level checkpoint/restart. A CRAFT checkpoint
can be defined simply by defining a Checkpoint object and adding the restart-
relevant data in it, as shown in Listing 1. By default, the Checkpoint::add()
function supports the most frequently used data formats, e.g., “plain old data”
(POD), i.e., int, double, float, etc., POD 1D- and 2D-arrays, MPI data-types,
etc.. However, it can be easily extended to support any user defined data-types.
The Checkpoint::read(), write() and update() methods can then be
used to read/write all added checkpoint’s data. The library supports asynchronous-



ESSEX: Equipping Sparse Solvers For Exascale 171

1 # i n c l u d e <mpi . h>
2 # i n c l u d e < c r a f t . h>
3 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {
4 . . .
5 s i z e _ t n =5 , myrank , i t e r a t i o n =1 , cpFreq =10;
6 doub le d b l = 0 . 0 ;
7 i n t ∗ d a t a A r r = new i n t [ n ] ;
8 MPI_Comm FT_Comm;
9 MPI_Comm_dup (MPI_COMM_WORLD, &FT_Comm) ;

10 AFT_BEGIN (FT_Comm, &myrank , a rgv ) ;
11 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 Checkpo in t myCP ( "myCP" , FT_Comm) ; ∗ / / d e f i n e c h e c k p o i n t
13 myCP . add ( " d b l " , &d b l ) ; ∗
14 myCP . add ( " i t e r a t i o n " , &i t e r a t i o n ) ; ∗
15 myCP . add ( " d a t a A r r " , da taArr , &n ) ; AFT Zone
16 myCP . commit ( ) ; ∗
17 myCP . r e s t a r t I f N e e d e d (& i t e r a t i o n ) ; ∗
18 f o r ( ; i t e r a t i o n <= 100 ; i t e r a t i o n ++) { ∗
19 Computa t ion_communica t ion ( ) ; ∗
20 modifyData (& dbl , d a t a A r r ) ; ∗
21 myCP . upda teAndWri t e ( i t e r a t i o n , cpFreq ) ; ∗
22 } ∗
23 . . . ∗
24 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
25 AFT_END ( ) ;
26 }

Listing 1 A toy-code that demonstrates the simplicity of CRAFT’s checkpoint/restart and
automatic fault tolerace features in a typical iterative-style scientific application

checkpointing as well as node-level checkpointing using the SCR library [68].
Moreover it supports multi-staged, nested-, and signal-checkpointing.

The Automatic Fault Tolerance (AFT) part of CRAFT provides an easier
interface for a dynamic process-failure recovery and management. CRAFT uses
the ULFM-MPI implementation for process-failure detection, propagation, and
communication recovery procedures, however it considerably reduces the user’s
effort by hiding these details behind AFT_BEGIN() and AFT_END() functions
as shown in Listing 1. After a process failure, the library recovers the broken
communicator (shrinking or non-shrinking by process-spawning), and returns the
control back to the program at AFT_BEGIN(), where the data can be recovered.
Both of these CRAFT functionalities are designed to complement each other,
however they can be used independently as well. For detailed explanation of the
features included in CRAFT, check [73]. Moreover, the library is available at [72].

5.4 CRAFT Benchmark Application

Within the scope of ESSEX, we have integrated CRAFT in the GHOST and PHIST
libraries, and the BEAST algorithm.

Figure 16 shows a benchmark comparing the overhead of three different check-
pointing strategies for the Lanczos algorithm (GHOST-based eigensolver), Jacobi–
Davidson (PHIST-based eigensolver), and the BEAST algorithm. The important
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Fig. 16 CRAFT checkpointing overhead comparison for the Lanczos, Jacobi–Davidson, and
BEAST eigenvalue solvers using three checkpointing methods of CRAFT, namely, node-level
checkpointing with SCR, asynchronous PFS, and synchronous PFS checkpoints. The overhead for
each checkpoint case is shown as a percentage. (Number of nodes=128, number of processes=256,
Intel MPI)

parameters for these benchmarks are listed in Table 1. The benchmark shows that
the node-level and asynchronous checkpointing significantly reduces the checkpoint
overhead despite a very high checkpoint frequency.

The benchmark presented in Fig. 17 demonstrates the overhead caused by
checkpoint/restart as well as by the communication recovery after process failures
for the Lanczos application. The first two bars, namely ‘No CP Intel MPI’ and
‘No CP ULFM-MPI’ show the runtime between non-fault-tolerant (Intel-MPI) vs. a
fault-tolerant MPI implementation (ULFM-MPI), and creates a baseline for ULFM-
MPI implementation without any failures. The next two groups of bars show the
application runtime with 0-,1-, and 2-failures with checkpoints taken on PFS- and
node-level. The failures are triggered at the mid-point of two successive checkpoints
from within the application to have a deterministic re-computation time, where
each failure simulates a complete node-crash (2 simultaneous process failures)
and recovery is performed in a non-shrinking fashion on spare nodes. The largest
contribution to the overhead is caused by the re-computation part, whereas the
communication repair overhead takes an average of ≈ 2.6 s only.

Besides ESSEX, CRAFT has been utilized in [22] to create a process-level fault
tolerant FEM code based on the shrinking recovery style. Moreover, CRAFT has
been recently integrated in the EXASTEEL [21] project.
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Table 1 The parameter values for Lanczos, JD, and Beast benchmarks

Lanczos parameters

Matrix Graphene-3000-
3000

Number of rows and
columns

9.0 · 108

Number of non-zeros 11.7 · 109 Global checkpoint size ≈14.4 GB

Number of iterations 3000 Checkpoint frequency 500

Jacobi–Davidson parameters (using Phist)

Matrix spinSZ30 Number of rows and
columns

1.6 · 108

Number of non-zeros 2.6 · 109 Number of sought
eigenvalues

20

Number of checkpoints 10

Global checkpoint size ≈32 GB Backend support library GHOST

Beast parameters

Matrix tgraphene: 12000,
12000, 0

Number rows and
columns

1.44 · 108

Beast iterations 9 Checkpoint frequency 2

Global checkpoint size ≈65 GB Backend support library GHOST

Fig. 17 Lanczos application with various checkpoint/restart and process failure recovery scenarios
using 128 nodes (256 processes) on the RRZE Emmy cluster. On average the communication
recovery time is 2.6 s (ULFM-MPI v1.1)
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5.5 ScaMaC

Sparse matrices are central objects in the ESSEX project because of its focus on
large-scale numerical linear algebra problems. A sparse matrix, whether derived
from the Hamiltonian of a quantum mechanical system, from the Laplacian in a
partial differential equation, or simply given as an abstract entity with unknown
properties, defines a problem to be solved. The solution may then consist of a set
of eigenvalues and eigenvectors computed with the BEAST or Jacobi–Davidson
algorithms or, more moderately, of an estimate of some matrix norm or the spectral
radius.

Testing and benchmarking of linear algebra algorithms, but also of computational
kernels such as spMVM, requires matrices of different type and different size.
Standard collections such as the Matrix Market [58] or Florida Sparse Matrix
Collection [17] cover a wide range of examples, but mainly provide matrices of
fixed moderate size. As algorithms and implementations improve, such matrices
become readily too small and limited to serve as realistic test and benchmark cases.

We therefore decided in the ESSEX project to establish a collection of scalable
matrices—the ScaMaC. Every matrix in ScaMaC is parameterized by individual
parameters that allow the user to scale up the matrix dimension and to modify
other, for example spectral, properties of the matrix. ScaMaC includes simple
test and benchmark matrices but also ‘real-world’ matrices from research studies
and applications. A major goal of ScaMaC is to provide a flexible yet generic
interface for matrix generation, together with the necessary infrastructure to allow
for immediate access to the collection irrespective of the concrete usage case.

The ScaMaC approach to matrix generation is straightforward and simple:
Matrices are generated row-by-row (or column-by-column). The entire complexity
of the actual generation technique, which depends on the specific matrix example,
is encapsulated in a ScamacGenerator type and hidden from the user. ScaMaC
provides routines to create and destroy such a matrix generator, to query matrix
parameters prior to the actual matrix generation, and to obtain each row of the
matrix. The ScaMaC interface is entirely generic and identical for all matrices in
the collection.

A minimal code example is given in Fig. 18. In this example, the matrix and
its parameters are set by parsing an argument string of the form "MatrixName,
parameter=...,..." in line 3, before all rows are generated in the loop in
lines 12–17. As this examples shows, parallelization of matrix generation is not
part of the ScaMaC, but lies within the responsibility of the calling program. All
ScaMaC routines are thread-safe and can be embedded directly into MPI processes
and OpenMP threads. This approach guarantees full flexibility for the user and is
easily integrated into existing parallel matrix frameworks such as PETSc or Trilinos.
Both BEAST and PHIST provide direct access to the ScaMaC, therefore freeing the
user from any additional considerations when using ESSEX software.
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1 // step 1: obtain a generator - per process
2 ScamacGenerator * my_gen;
3 err = scamac_parse_argstr("Hubbard,n_sites=20", &my_gen, &errstr);
4 err = scamac_generator_finalize(my_gen);
5 ................
6 // step 2: allocate workspace - per thread
7 ScamacWorkspace * my_ws;
8 err = scamac_workspace_alloc(my_gen, &my_ws);
9 ................

10 // step 3: generate the matrix row by row
11 ScamacIdx nrow = scamac_generator_query_nrow(my_gen);
12 for (idx=0; idx<nrow; idx++) { // parallelize loop with OpenMP, MPI, ...
13 // obtain the column indices and values of one row
14 err = scamac_generate_row(my_gen, my_ws, idx, SCAMAC_DEFAULT, &nz, cind, val);
15 // store or process the row
16 ................
17 }
18 // step 4: clean up
19 err = scamac_workspace_free(my_ws); // in each thread
20 err = scamac_generator_destroy(my_gen); // in each process
21 // step 5: use matrix
22 ................

Fig. 18 Code example for row-by-row matrix generation with the generic ScaMaC generators

ScaMaC is written in plain C. Auto-generated code is included already in the
release, such that requirements at compile time are minimal. Interoperability with
other programming languages is straightforward, e.g., by using the ISO C bindings
of the FORTRAN 2003 standard. Runtime requirements are equally minimal.
Matrix generation has negligible memory overhead, requiring only a few KiB
workspace to store lookup tables and similar information.

The key feature of ScaMaC is scalability, since the matrix rows (or columns) can
be generated independently and in arbitrary order. For example at Oakforest-PACS
(see Sect. 4.2.2), a Hubbard matrix (see below) with dimension ≥9 × 109 and
≥1.5 × 1011 non-zeros is generated in less than a minute, using 210 MPI processes
each of which generates an average of 1.5 × 105 rows per second. As explained, the
task of efficiently storing or using the matrix is left to the calling program.

ScaMaC is accompanied by a small toolkit for exploration of the collection. The
toolkit addresses some basic tasks such as querying matrix information or plotting
the sparsity pattern, but is not intended to compete with production-level code
or full-fledged solver libraries, which the ESSEX project provides with BEAST,
GHOST, and PHIST.

At the moment,16 the matrix generators included in ScaMaC strongly reflect
our personal research interests in quantum physics, but the ScaMaC framework is
entirely flexible and allows for easy inclusion of new types of matrices, provided
that they can be generated in a scalable way. The next update (scheduled for 2020)
will extend ScaMaC primarily with matrix generators for standard partial differ-

16In version 0.8.2, ScaMaC contains 15 different matrix generators with a total of 95 parameters.
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ential equations, including stencil matrices and finite element discretizations for
advection-diffusion and elasticity problems, wave propagation, and the Schrödinger
equation. Additional examples that are well suited for scalable generation are
regular and irregular graph Laplacians, which have gained renewed interest in the
context of machine learning [14, 59].

To obtain an idea of the ‘real-world’ application matrices already contained in
ScaMaC, consider two examples: The celebrated Hubbard model of condensed
matter physics (Hubbard) [34] and a theoretical model for excitons in the cuprous
oxide from our own research in this field (Exciton) [2]. These matrices appear
as Hamiltonians in the Schrödinger equation, and thus are either symmetric real
(Hubbard) or Hermitian complex (Exciton). The respective application requires
a moderate number (typically, 10–1000) of extremal or interior eigenpairs, which
is less than 0.1% of the spectrum. Other ScaMaC generators provide general
(non-symmetric or non-Hermitian) matrices, with a variety of sparsity patterns,
spectral properties, etc. All generators depend on a number of application-specific
parameters,17 which are partly listed in Table 2 for the Hubbard and Exciton
generator.

For the Hubbard example, two parameters determine the matrix dimension and
sparsity pattern: n_fermions gives the number electrons per spin orientation (up or
down), n_sites the number of orbitals occupied by the electrons. In terms of these

parameters, the matrix dimension is D = ( n_sites
n_fermions

)2
. This dependency results in

the rapid growth of D shown in Table 3. In the physically very interesting case of
half-filling (n_fermions = n_sites/2 = n) we have asymptotically D � 2n/

√
(π/2)n,

that is, exponential growth of D.
The Exciton example has the more moderate dependence D = 3(2L + 1)3

(see Table 3). Here, the parameter L is a geometric cutoff that limits the maximal
distance between the electron and hole that constitute the exciton. This example has
a number of other parameters that are adapted literally from [2]. These parameters
enter into the matrix entries, and thus affect the matrix spectrum and, finally, the
algorithmic hardness of computing the eigenvalues of interest that determine the
physical properties of the exciton.

Both Hubbard and Exciton are examples of difficult matrices, albeit for
different reasons. For Hubbard, one unresolved challenge is to compute multiple
interior eigenvalues for large n_fermions, n_sites, which becomes extremely diffi-
cult because of the rapid growth of the matrix dimension (specialized techniques for
the Hubbard model such as the density-matrix renormalization group [70] cannot
compute interior eigenvalues). Due to the irregular sparsity pattern of the Hubbard
matrices (see Fig. 19 below), already the communication overhead of spMVM
poses a serious obstacle to scalability and parallel efficiency. For Exciton, which
are essentially stencil-like matrices of moderate size, the challenge is to compute
some hundred eigenvalues out of a strongly clustered spectrum. Here, it is the

17For a full list of generators and parameters, consult the ScaMaC documentation included with
the code, or at https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html.

https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html
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Table 2 Parameters of the Hubbard and Exciton matrix generator in the ScaMaC

Table 3 Matrix dimension D for the Hubbard and Exciton exam-
ple, as a function of the respective parameter n_sites (and default value
n_fermions = 5) or L

Fig. 19 Sparsity pattern of the Hubbard (Hubbard,n_sites=40,n_fermions=20) and
spin chain (SpinChainXXZ,n_sites=32,n_up=8) example

poor convergence of iterative eigenvalue solvers for nearly degenerate eigenvalues
that renders this problem hard. Thanks to the algorithmic advances in the ESSEX
project, we now have reached a position that allows for future progress on these
problems.

ScaMaC comes with several convenient features. For example, the Hubbard
matrix includes the parameter ranpot to switch on a random potential. Random
numbers in ScaMaC are entirely reproducible, and independent of the number of
threads or processes that call the ScaMaC routines, or of the order in which the
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matrix rows are generated. An identical random seed gives the same matrix under
all circumstances. In particular, individual matrix rows can be reconstructed at
any time, which simplifies a fault-tolerant program design (see Sect. 5.3). Another
feature is the possibility to effortlessly generate the (conjugate) transpose of non-
symmetric (non-Hermitian) matrices, which is considerably easier than constructing
the transpose of a (distributed) sparse matrix after generation.

6 Application Results

6.1 Eigensolvers in Quantum Physics: Graphene, Topological
Insulators, and Beyond

Because of the linearity of the Schrödinger equation, quantum physics is a paradigm
for numerical linear algebra applications. Historically, some application cases, such
as the computation of the ground state (i.e. of the eigenvector to the minimal
eigenvalue), have received so much attention that only gradual progress remains
possible nowadays. In the ESSEX project we instead address two major cases
where novel algorithmic improvements and systematic utilization of large-scale
computing resources through state-of-the-art implementations still result in sub-
stantial qualitative progress. These two cases are the computation of (i) extreme
eigenvalues with high degeneracy, which is addressed with a block Jacobi–Davidson
algorithm, (ii) multiple interior eigenvalues, which is addressed by various filter
diagonalization techniques. Application case (i) has been documented in [64],
including the example of spin chain matrices (SpinChainXXZ in the ScaMaC).
For application case (ii) the primary quantum physics example are graphene [13]
and topological insulators [31] (Graphene and TopIns in the ScaMaC). For these
examples, eigenvalues towards the center of the spectrum, near the Fermi energy of
the material, are those of interest. This situation is similar to applications in quantum
chemistry and density functional theory, but in our case the matrices represent a full
(disordered or structured) two or three-dimensional domain, and are usually larger
than those considered elsewhere [57].

Starting with the paper [62] on Chebyshev filter diagonalization (ChebFD) and
culminating in the BEAST software package (see Sect. 3.2), the computation of
interior eigenvalues of large-to-huge graphene and topological insulator matrices
has been successfully demonstrated with ESSEX algorithms, using polynomial
filters derived from Chebyshev polynomials. Already with the simple ChebFD
algorithm we could compute NT � 100 eigenvectors from the center of the
spectrum of a matrix with dimension D � 109 (i.e. an effective problem size
NT × D � 1011), in order to understand the electronic properties of a structured
topological insulator (see Figure 13 in [62]). With improved filter coefficients and
a more sophisticated implementation, the polynomial filters in the (P-) BEAST
package deal with such problems at reduced computational cost (see Sect. 3.2).
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Such large-scale computations heavily rely on the optimized spMMVM and TSMM
kernels of the GHOST library (see Sect. 5).

To appreciate the numerical progress reflected in these numbers one should
note the different scaling of the numerical effort NMVM (measured in terms of
the dominant operation of spMVM) for the computation of extreme and interior
eigenvalues (cf. the discussion in [62]). In an idealized situation with equidistant
eigenvalues, we have roughly NMVM ∼ D1/2 for extreme but NMVM ∼ D for
interior eigenvalues. For the D � 109 example, we have to compensate for a factor
104–105 to enable computation of interior instead of extreme eigenvalues.

Algorithm and software development in ESSEX has been to a large degree
application-driven. Now, at the end of the ESSEX project, where the algorithms
for our main application cases have become available, we follow two ways to go
beyond the initial quantum physics applications. First, entirely new applications
can now be addressed with ESSEX software, extending our efforts to non-linear
and non-Hermitian problems (see Sect. 6.2). Second, relevant applications such
as the Hubbard and Exciton examples (see Sect. 5.5) still fit into the two
major application areas already addressed in ESSEX, but further increase the
computational complexity. For Exciton, the strongly clustered spectrum with
many nearly-degenerate eigenvalues leads to a numerical effort NMVM � D1/2

already for extreme eigenvalues. For Hubbard, the huge matrix dimension D is a
serious obstacle for the computation of interior eigenvalues.

The Hubbard matrices also hint at an application-specific issue of general
interest that we encountered but could not solve within ESSEX. Specifically, it is
the complicated sparsity pattern of many of our quantum physics matrices (see
Fig. 19) that adversely affects the parallel efficiency of distributed spMVM, and thus
of our entire software solutions. Node-level performance engineering is here easily
overcompensated by communication overhead. Unfortunately, the communication
overhead is not reduced by standard matrix reordering strategies [61, 71, 84].
This problem can be partially alleviated by overlapping communication with
computation, as in the spMMVM (see Sect. 2), but a full solution to restore
parallel efficiency is not yet available. Clearly, our different application scenarios
still provide enough incentive to think about future numerical, algorithmic, and
computational developments beyond the ESSEX project.

6.2 New Applications in Nonlinear Dynamical Systems

The block Jacobi–Davidson QR eigensolver in PHIST is capable of solving non-
symmetric and generalized eigenvalue problems of the form

Ax = λBx, (1)

where B should be symmetric and positive definite. In [75], we exploited sev-
eral unique features of this implementation to study the linear stability of a
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three-dimensional reaction-diffusion equation: the Jacobian is non-symmetric, the
preconditioner was implemented in Epetra (which can be used directly as a backend
for PHIST), and the high degree of symmetry in the model yields eigenvalues with
high geometric multiplicity (up to 24). We therefore use a relatively large block size
of 8 for these computations to achieve convergence to the desired 20–50 eigenpairs
(λi , xi ), with the real part of λi near 0. In a recent Ph.D. thesis [74], the solver was
also used for studying the linear stability of incompressible flow problems. Here B is
in fact only semi-definite, and the preconditioner has to make sure that the solution
stays in the ‘divergence-free space’, in which the velocity field satisfies ∇ · u = 0
and B induces a norm.

Another ongoing effort concerning dynamical systems is the use of PHIST to
parallelize the dynamical systems analysis tool PyNCT, which has as its main
application the study of superconductors [82]. We have taken first steps to use
PHIST as backend for the Python-based algorithms in PyNCT. Furthermore, it
is possible to solve the eigenvalue problems arising in PyNCT directly by the
BJDQR method in PHIST. Our goal here is the scalable parallel and fully automatic
computation of bifurcation diagrams using PyNCT and any backend supported by
PHIST.

The Statistical Learning Lab led by Dr. Marina Meila at the University of
Washington started to use the PHIST eigensolver to compute spectral gaps for
Laplacian matrices obtained from conformation trajectories in molecular dynamics
simulations, and other scientific data [14, 59]. These are symmetric positive definite
matrices whose dimensions equal the number of simulation steps, typically of the
order of n = 106. When the data intrinsic dimension d is fixed, and much smaller
than n (in our examples d < 10 ), the Laplacian is a sparse matrix. The sparsity
pattern is not regular, and it is data dependent, as it reflects the neighborhood
relationships in the data. Hence, in densely sampled regions rows will have many
more non-zeros than in the sparsely populated regions of the data. In a manifold
embedding algorithm, the eigengaps identify the optimal number of coordinates in
which to embed the data. Furthermore, for data sizes n � 106, PHIST is used to
compute the diffusion map embedding itself for the higher frequency coordinates
for which existing methods are prohibitively slow.

7 International Collaborations

The internationalisation effort in the second phase of SPPEXA has fostered the
ESSEX-II activities in several directions. First and foremost it amplified the sci-
entific expertise in the project. Soon it became clear that complementing knowledge
and developments could be leveraged across the partners. A specific benefit of
the collaboration between German and Japanese partners is their very different
background in terms of HPC infrastructures.Through close personal collaboration
within the project all partners could easily access and use latest supercomputers on
either side (see Sect. 4.2 and note that the BEAST framework has also been ported
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to the K-computer). Together with the joint collaboration on scientific problems and
software development a steady exchange evolved with many personal research visits
which also opened up collaboration with partners not involved directly in ESSEX-II.

The results described in Sect. 3.1 on preconditioners are a direct result of the
collaboration of ESSEX-II with the ppOpen-HPC18 project led by Univ. of Tokyo.
On the other hand, the CRAFT library developed at Univ. of Erlangen is utilized in
an FEM code of Univ. of Tokyo and is part of a follow on JHPCN project with the
German partner involved as associated partner.

Collaboration between Japanese and German working groups made possible the
expansion of the BEAST framework for projection based eigensolvers to include
Sakurai–Sugiura methods. Various numerical and theoretical issues associated with
the implementation of the solver within an iterative framework were resolved, and
new ideas explored during research visits. Results based on this collaboration have
so far been presented in multiple conferences and a paper in preparation [35].

The linear systems arising from numerical quadrature in the BEAST-C and
BEAST-M framework were used in the testing and development of a Block
Cholesky-based ILU preconditioner. The integration of an interface to this solver
into BEAST has begun. Examining strategies and expectations for solving these
extreme ill-conditioned problems was a point of intense discussion and collab-
oration between working groups. One results was the development of RACE
(see Sect. 3.4). Beyond the discussion between several Japanese and German
ESSEX-II partners also a strong collaboration with the Swiss partner (O. Schenk) of
EXASTEEL-II evolved, who is an expert on direct solvers and graph partitioning.
In this context also a collaboration with T. Iwashita (Hokkaido Univ., Japan) started
in terms of hardware efficient coloring.

Throughout the project, the variety of large matrices continuously added to
the ScaMaC library allowed for testing with a variety of realistically challenging
problems of both real and complex types in all ESSEX-II working groups.
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Abstract This text presents contributions to efficient high-order finite element
solvers in the context of the project ExaDG, part of the DFG priority program 1648
Software for Exascale Computing (SPPEXA). The main algorithmic components
are the matrix-free evaluation of finite element and discontinuous Galerkin operators
with sum factorization to reach a high node-level performance and parallel scalabil-
ity, a massively parallel multigrid framework, and efficient multigrid smoothers.
The algorithms have been applied in a computational fluid dynamics context. The
software contributions of the project have led to a speedup by a factor 3 − 4
depending on the hardware. Our implementations are available via the deal.II finite
element library.
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1 Introduction

Exa-scale performance of numerical algorithms is determined by two factors, node-
level performance and distributed-memory scalability to thousands of nodes over an
Infiniband-type fabric. Additionally, the final application efficiency in terms of time-
to-solution is strongly influenced by the choice of numerical methods, where a high
sequential efficiency is essential. The project ExaDG aims to bring together these
three pillars to create an algorithmic framework for the next generation of solvers
for partial differential equations (PDEs). The guiding principles of the project are as
follows:

ExaDG – PDE Solvers at Exascale

:Efficient discretization
few spatial unknowns,

few time steps

:Efficient solvers
few iterations, i.e., few

operator evaluations

Efficient implementation:
fast operator evaluation

If we define the overall goal to be a minimum of computational cost to reach
a predefined accuracy, this aim can be split into three components, namely the
efficiency of the discretization in terms of the number of degrees of freedom (DoFs)
and time steps, the efficiency of the solvers in terms of iteration counts, and the
efficiency of the implementation [22]:

E = accuracy

computational cost

= accuracy

DoFs · timesteps
︸ ︷︷ ︸

discretization

· 1

iterations︸ ︷︷ ︸
solvers/preconditioners

· DoFs · timesteps · iterations

computational cost
︸ ︷︷ ︸

implementation

.

(1)

We define computational cost as the product of compute resources (cores, nodes)
times the wall time resulting in the metric of CPUh, the typical currency of
supercomputing facilities.

Regarding the first metric, the type of discretizations in space and time are often
the first decision to be made. Numerical schemes that involve as few unknowns
and as few time steps as possible to reach the desired accuracy will be more
efficient. This goal can be reached by using higher order methods which have a
higher resolution capability, especially for problems with a large range of scales
and some regularity in the solution [19]. However several possibilities and profound
knowledge regarding the performance capability of potential algorithms on modern
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hardware are still required to select those algorithms and implementations that are
optimal with respect to the guiding metric of accuracy versus time-to-solution.
High-order (dis-)continuous finite element methods are the basic building block of
the ExaDG project due to their generality and geometric flexibility.

Regarding the second metric, solvers are deemed efficient if they keep the
number of iterations minimal. We emphasize that “iterations” are defined in a
low-level way as the number of operator evaluations, which is also accurate when
nesting several iterative schemes within each other. Note that we assume that large-
scale systems must be addressed by iterative solvers; in a finite element context
sparse direct solvers are not scalable due to fill-in and complex dependencies
during factorizations. One class of efficient solvers of particular interest to ExaDG
are multigrid methods with suitable smoothers, which have developed to be the
gold standard of solvers for elliptic and parabolic differential equations over the
last decades. Here, the concept of iterations would accumulate several matrix-
vector products within a multigrid cycle that in turn is applied in an outer Krylov
subspace solver. Due to the grid transfer and the coarse grid solver, such methods
are inherently challenging for highly parallel environments. As part of our efforts
in ExaDG, we have developed an efficient yet flexible implementation in the deal.II
finite element library [1, 15].

Third, the evaluation of discretized operators and smoothers remains the key
component determining computational efficiency of a PDE solver. The relevant
metric in this context is the throughput measured as the number of degrees of
freedom (unknowns) processed per second (DoFs/s). An important contribution of
our efforts is to both tune the implementation of a specific algorithm, but more
importantly to also adapt algorithms towards a higher throughput. This means that
an algorithm is preferred if it increases the DoFs/s metric, even if it leads to lower
arithmetic performance in GFlop/s or lower memory throughput in GB/s. Operator
evaluation in PDE solvers only involves communication with the nearest neighbors
in terms of a domain decomposition of the mesh, which makes the node-level
performance the primary concern in this regard. Since iterative solvers only require
the action of the matrix on a vector (and a preconditioner), they are amenable to
matrix-free evaluation where the final matrix entries are neither computed nor stored
globally in memory in some generic sparse matrix format (e.g., compressed row
storage). While matrix-free methods were historically often considered because they
lower main memory requirements and allow to fit larger problems in memory [8],
their popularity is currently increasing because they need to move less memory:
Sparse matrix-vector products are limited by the memory bandwidth on all major
computing platforms, so a matrix-free alternative promises to deliver a (much)
higher performance.

The outline of this article is as follows. We begin with an introduction of matrix-
free algorithms and a presentation of node-level performance results in Sect. 2. In
Sect. 3, we describe optimizations of the conjugate gradient method for efficient
memory access and communication. Next, we detail our multigrid developments,
focusing on performance numbers and the massively parallel setup in Sect. 4 and
on the development of better smoothers in Sect. 5. Application results in the field
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of computational fluid dynamics are presented in Sect. 6, where the efficiency and
parallel scalability of our discontinuous Galerkin incompressbile turbulent flow
solver are shown. An extension of the kernels to up to 6D PDEs is briefly presented
in Sect. 7. We conclude with an outlook in Sect. 8.

2 Node-Level Performance Through Matrix-Free
Implementation

An intuitive example of a matrix-free implementation is a finite difference method
implemented by its stencil rather than an assembled sparse matrix [33]. For finite
element discretizations with sufficient structure of the underlying mesh and low-
order shape functions, a small number of stencils allows to represent the operator of
a large-scale problem [8]. Such methods are used in the German exascale project
TerraNeo, utilizing the regular data structures in hierarchical hybrid grids and
embedded into a highly scalable multigrid solver for Stokes systems [31, 32]. By
suitable interpolations, the stencils can be extended from the affine coarse grid
assumption to also treat smoothly deformed geometries and variable coefficients [7].

For higher-order methods, finite element discretizations lead to fat stencils,
making the direct evaluation inefficient even when done through stencils. An
alternative matrix-free scheme used in ExaDG is to not compute the explicit DoF
coupling and instead turn to integrals underlying the finite element scheme. As an
example, we consider the constant-coefficient Laplacian

− ∇2u = f in �, u = g on ∂�, (2)

whose weak form in a finite-dimensional setting is

(∇ϕi,∇uh)�h
= (ϕi, f )�h, (3)

where uh(x) = ∑
j=1:n ϕj (x)uj is the finite element interpolant of the solution

with n degrees of freedom, ϕi denotes the test functions with i = 1, . . . , n,
f is some right hand side, and �h is the finite element representation of the
computational domain �. The left-hand side of this equation represents a finite
element operator, mapping a vector of coefficients u = [ui]i to an output vector
v = [vi ]i by evaluating the weak form for all test functions ϕi separately. A matrix-
free implementation is obtained by evaluating the element-wise integrals

[
(∇ϕi, ∇uh)�h

]
i=1:n =

∑

K

∫

K̂

(
J−T

K ∇̂ϕi

)T

⎛

⎝J−T
K

ndof,ele∑
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∇̂ϕju
(K)
j

⎞

⎠ det(JK) dx̂

≈
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K

IT
K

[ nq∑

q=1

(∇̂ϕiK (x̂q))T J−1
K J

−T
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ndof,ele∑

j=1

∇̂ϕj (x̂q)u
(K)
j

]

iK=1:ndof,ele

(4)
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by quadrature on nq points per cell K . Here, K denotes the elements in the mesh,
x̂ the coordinates of the reference element K̂ = (0, 1)d , JK denotes the Jacobian
of the mapping from the reference to the real cell, and wq the quadrature weight.
The operator IK denotes the index mapping from ndof,ele element-local to global
unknowns and defines the element-related unknowns u(K) = IKu.

On element K , the formulation of Eq. (4) consists of two nested sums over the
elemental unknowns u

(K)
j , j ∈ ndof,ele, and the quadrature points q . The result is

tested against all test functions ϕiK on the reference element, which are related to
the global test functions ϕi through IK . Since the metric terms do not depend on
the shape function indices iK and j , and the sum over j does not depend on iK ,
the summations in the equation can be broken up into (1) an dnq × ndof,ele matrix
operation to evaluate the reference element derivative of u(K) at the quadrature
points, (2) the application of metric terms as well as other physics terms at nq

quadrature points, and (3) an ndof,ele × dnq matrix operation to test by all ndof,ele
test functions and perform the summation over the quadrature points. The separation
of point-wise physics evaluation at quadrature points is a common abstraction in
integration-based matrix-free methods [29, 41, 49, 50].

For high-order finite element methods, the naive evaluation would involve
all shape functions at all quadrature points, which is of complexity O(k2d) for
polynomials of degree k in d dimensions per element, or O(kd) per unknown,
similarly to the fat stencil of the final matrix.

At this point, the structure in the reference-cell shape function and quadra-
ture points can be utilized to lower the computational complexity. If the multi-
dimensional shape functions are the tensor product of 1D shape functions, and
if the quadrature formula is a tensor product of 1D formulas, the so-called sum-
factorization algorithm can be used to group common factors along the various
dimensions and break down the work into one-dimensional interpolations. Figure 1
visualizes the process of computing the interpolation of nodal values, visualized
by black disks, to the values at the quadrature points. Rather than using a naive
interpolation of cost 2(k+1)2d operations, it can be done in 2d(k+1)d+1 operations
instead. In matrix-vector notation, the interpolation of the gradient with respect to

Vector values on nodes at quadrature points
•
•
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•
•

•
•

•
•

•
•

•
•
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• •
• •

Fig. 1 Illustration of sum factorization for interpolation from node values on the left to the values
in quadrature points (right)
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x̂, evaluated at quadrature points, can be written as

⎡

⎢
⎢
⎢
⎣

∂uh/∂x̂1

∂uh/∂x̂2

...

∂uh/∂x̂d

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

I ⊗ . . . ⊗ I ⊗ D1

I ⊗ . . . ⊗ D2 ⊗ I
...

Dd ⊗ I ⊗ . . . ⊗ I

⎤

⎥
⎥
⎥
⎦

[
Sd ⊗ . . . ⊗ S2 ⊗ S1

]
u(K). (5)

Here, S1, . . . , Sd denote the n1D
q × (k + 1) interpolation matrices from the nodal

values to the quadrature points, obtained by evaluating the 1D basis at all 1D
quadrature points, and D1, . . . ,Dd the n1D

q × n1D
q matrices of the derivatives of the

Lagrangian basis in quadrature points. In this form, the multiplication by Kronecker
matrices is implemented by small matrix-matrix multiplications.

Sum factorization was initially developed in the context of spectral element
methods by Orszag [61], see [19] for an overview of the developments. In [12],
sum factorization was compared against assembled matrices with the goal to find
the best evaluation strategy among assembled matrices and matrix-free schemes.
For hexahedral elements considered in this work, the memory consumption and
arithmetic complexity indicate that this is the case already for quadratic basis
functions [11, 49], with a growing gap for higher polynomial degrees.

2.1 Implementation of Sum Factorization in the deal.II Library

As part of the ExaDG project, we have developed efficient implementations in the
deal.II finite element library [1, 4] with the following main features, see [50] for a
detailed performance analysis:

• support for both continuous [49] and discontinuous finite elements on uniform
and adaptively refined meshes with hanging nodes and deformed elements,

• support for arbitrary polynomial expansions on quadrilateral and hexahedral
element shapes as well as tensor product quadrature rules,

• minimization of arithmetic operations by using available symmetries, such as the
even-odd decomposition [69] and a switch between the collocation derivative (5)
for n1D

q ≈ k + 1 quadrature points or an alternative variant based on derivatives
of the original polynomials as used in [49] and discussed in [29],

• flexible implementation of operations at quadrature points,
• vectorization across several elements to optimally use SIMD units (AVX, AVX-

512, AltiVec) of modern processors,
• applicability to modern multi-core CPUs as well as GPUs [51, 57],
• data access optimizations such as element-based loops for DG elements [50, 56],
• and MPI implementation with tight data exchange as well as MPI-only and

shared-memory models [43, 48, 54].
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The concept of matrix-free evaluation with sum factorization has been widely
adopted by now, like in the deal.II [1], DUNE [5, 40, 60], Firedrake [63], mfem [2],
Nek5000 [28] or Nektar++ [13] projects. These fast evaluation techniques are
directly applicable to explicit time stepping schemes, as we have demonstrated
for wave propagation in [42, 53, 65–68] and the compressible Navier–Stokes
equations [24]. The proposed developments make matrix-free evaluation of high-
order DG operators reach a throughput in unknowns per second almost as high as for
optimized 5-wide finite difference stencils in a CFD context [75], despite delivering
much higher accuracy.

2.2 Efficiency of Matrix-Free Implementation

In Fig. 2, we give an overview of the achieved performance with our framework
applied to the discontinuous Galerkin interior penalty (IPDG) discretization of the
3D Laplacian on an affine geometry. The most advanced implementation presented
in [50] is used, namely a cell-based loop with a Hermite-like basis for minimal
data access [56]. The figure lists the throughput, which is measured by recording
the run time of the matrix-vector product in an experiment with around 50 million
DoFs (too large to fit into caches), and reporting the normalized quantity DoFs/s
obtained by dividing the number of DoFs by the measured run time. The code is
run on a single node of six dual-socket HPC systems from the last decade with a
shared-memory parallelization with OpenMP, threads pinned to logical cores with
the close affinity rule, and using streaming stores to avoid the read-for-ownership
data transfer [33] on the result vector. As systems, we consider a 2 × 8 core AMD
Opteron 6128 system from 2010, a 2 × 8 core Intel Xeon 2680 Sandy Bridge from
2012 (as used in the SuperMUC phase 1 installation in Garching, Germany), a 2×8
core Intel Xeon 2630 v3 (Haswell) representing a medium-core count chip from
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Fig. 2 Throughput of matrix-free evaluation of the IPDG discretization of the 3D Laplacian on an
affine grid
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2014, a 2 × 14 core Intel Xeon 2697 v3 (Haswell) representing a high-core count
chip of the same generation (as used in the SuperMUC phase 2 installation), a 2 ×
20 core Intel Xeon 2698 v4 (Broadwell) system from 2016, and a 2 × 24 core
Intel Xeon Platinum 8174 from 2017, labeled ‘Skylake’ in the remainder of this
work, and installed in the SuperMUC-NG supercomputer. The chips are operated
at 2.0 GHz, 2.7 GHz, 2.4 GHz, 2.6 GHz, 2.2 GHz, and 2.3 GHz, respectively, and all
run with fully populated memory interfaces. The Intel machines are run with 2-way
hyperthreading, e.g. with 96 threads for the Xeon Platinum Skylake.

The throughput results in Fig. 2 demonstrate the advancements of hardware
during the last decade. In particular the increased width of vectorization, from 2 to 4
doubles with Sandy Bridge and from 4 to 8 doubles with Skylake, are clearly visible.
Furthermore, the comparison between Sandy Bridge and the smaller Haswell system
reveals the benefit of fused multiply-add (FMA) instructions and higher L1 cache
bandwidth of the latter: For low polynomial degrees with a modest number of
FMA instructions, Sandy Bridge with its higher frequency can approximately
deliver the same performance as Haswell. As the polynomial degree is increased,
the arithmetic work is increasingly dominated by FMAs in the sum factorization
sweeps similar to (5) as shown in [50], and Haswell pulls ahead. Finally, while
we observe a throughput of up to 5.7 billion DoFs/s on Skylake (with up to 1.35
TFlop/s for k = 8), we observe a relatively strong decrease of performance for
polynomial degrees k ≥ 13: This is because the vectorization across elements
leads to an excessive size of the temporary data within sum factorization—here,
a different vectorization strategy could lead to better results. However, we consider
the polynomial degrees 3 ≤ k ≤ 8 most interesting for practical simulations, where
almost constant throughput in terms of DoFs/s is reached. This somewhat surprising
result, given the expectedO(1/k) complexity of throughput for sum factorization, is
because face integrals and memory access with an O(1) complexity are dominant.
Compared to our initial implementation in 2015, which achieved a throughput of
0.32 billion DoFs/s on Sandy Bridge with degree k = 3, the progress in software
technologies allowed us to reach 1.02 billion DoFs/s on the same system. For Intel
Skylake, where memory access is more important, the software progress of our
project is more than 4×.

Figure 3 shows the throughput normalized by the number of cores for polynomial
degree k = 4 over the different hardware generations. For operator evaluation
with discontinuous elements and face integrals, approximately 200 floating point
operations per unknown are involved with our optimized implementations [50]. At
the same time, we must access at least 16 byte (read one double, write one double)
plus some neighbors that are not cached, so the arithmetic intensity is around 8–12
Flop/Byte, close to the machine balance of the Skylake Xeon. This means that both
memory bandwidth and arithmetic performance are relevant for performance (on
one Skylake node, we measured memory throughput of around 160 GB/s, compared
to the STREAM limit of 205 GB/s). Likewise, continuous elements evaluated on
an affine mesh have seen a considerable increase in throughput per core (arithmetic
intensity of 7 Flop/Byte). However, the improvement has been much more modest
for continuous elements evaluated on curved elements. In this setting, separate
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metric terms for all quadrature points and all elements are needed (as opposed to
a single term per element in the affine mesh case), reducing the arithmetic intensity
to around 1.2 Flop/Byte.1

Figure 3 also contains the evolution of performance of a sparse matrix-vector
product for tri-linear continuous finite elements. The performance is much lower
due to the aforementioned memory bandwidth limit, and has hardly improved per
core on Skylake over the dated Opteron architecture. This illustrates the effect of
the so-called memory wall. We emphasize that the sparse matrix-vector product for
k = 1 is more than three times slower than even the matrix-free evaluation for k = 4
on curved elements. Hence, high-order methods with matrix-free implementations
are faster per unknown on newer hardware, in addition to their higher accuracy.

3 Performance-Optimized Conjugate Gradient Methods

The developments of matrix-free implementations presented in the previous section
result in a throughput for evaluation of the IPDG operator in Fig. 2 of up to 5.7
billion DoFs/s on Skylake. This is equivalent in time to the mere access of 4.5
doubles per DoF (either reading or writing). In other words, our developments
have made the operator evaluation so fast that the matrix-vector product may no
longer be the dominant operation in algorithms like the conjugate gradient (CG)
method preconditioned by the diagonal, or Chebyshev smoothers. These algorithms

1The merged final coefficient tensor J−1
K J

−T
K det(JK)wq is used for the present results, i.e., 6

doubles per quadrature point [29, 51].
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involve access to between 6 and 18 vectors for vector updates, the application of the
diagonal preconditioner, and inner products. For optimal application performance
it is therefore necessary to look into the access to vectors. As proposed in our
work [51, 56, 65], merging the vector operations can improve throughput by up
to a factor of two, and in particular for the DG case with cell-based loops which
allow for a single pass through data [48, 56]. Fusion of different steps of a scheme
has also been proposed for explicit time integrators in [14].

For the assessment of optimization opportunities on the algorithm level that
goes beyond the matrix-vector product, we consider a high-order finite element
benchmark problem suggested by the US exascale initiative “Center for Efficient
Exascale Discretization” (CEED). The benchmark involves a continuous finite
element discretization of the Laplacian (3), using matrix-free operator evaluation
within a conjugate gradient solver preconditioned by the matrix diagonal. In this
study, we consider the case BP5 [29], see also https://ceed.exascaleproject.org/bps/,
which integrates the weak form (4) of polynomial degree k using a Gauss–Lobatto
quadrature formula with n1D

q = k + 1 quadrature points on a cube with deformed
elements. While this integration is not exact, it is the typical spectral element setup
with an identity interpolation matrix Si = I in Eq. (5).

Figure 4 lists the contributors to run time for the plain conjugate gradient method
preconditioned by the point-Jacobi method as a function of the problem size for
the polynomial degree k = 6. Here, the metric terms JK are computed on the
fly from a tri-linear representation of the geometry. Three different performance
regimes can be distinguished in the graph: To the left, there is not enough parallelism
given the domain decomposition on 48 MPI ranks and batches of 8 elements due to
vectorization—indeed, at least 85,000 DoFs are needed to saturate all cores and
SIMD lanes. Furthermore, the synchronization barriers due to the inner products in
the conjugate gradient method also lead to a slowdown. As the problem size and
parallelism increase, the run times decrease significantly and reach a minimum for
a problem size around one million DoFs. Here, all data involved in the algorithm
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fits into the approximately 110 MB of L2+L3 cache on the processors. As the size
is further increased, caches are exhausted and most data must be fetched from slow
main memory. As a consequence, the run time of the solver increases significantly,
and the vector updates, the diagonal preconditioner, and the inner products take a
significant share. Note that all vector operations use the hardware optimally with a
memory throughput of 205 GB/s.

In order to improve performance, we have therefore developed conjugate gradient
implementations with merged vector operations by loop fusion. Figure 5 compares
three variants of the conjugate gradient solver: the plain conjugate gradient method
runs all vector operations through high-level vector interfaces with separate loops
for addition and inner products. In the “merged dot products”, we have merged
the dot product pTAp following the matrix-vector product into the loop over the
elements, and merged the vector updates to the residual and solution with the dot
product for rTP−1r . Here, r denotes the residual vector, p the search direction of
the conjugate gradient method, A the matrix operator (represented in a matrix-free
way), and P−1 the diagonal preconditioner. However, the improvements with this
algorithm are relatively modest.

Much more performance can be gained by creating a conjugate gradient variant
we call “fully merged”: Here, each CG iteration performs a single loop through
all vector entries and ideally reads 5 vectors (solution, residual, search direction,
temporary vector to hold the matrix-vector product, and diagonal of preconditioner)
and writes four (solution, residual, search direction, temporary vector). All vector
updates of the previous CG iteration are scheduled before the matrix-vector product
and all inner products are scheduled after the matrix-vector product. The vector
operations are interleaved with the loop over elements, ensuring that dependencies
due to the access pattern of the loop and the MPI communication are fulfilled (this
leads to slightly more access in practice). This approach applies the preconditioner
several times with partial sums to construct the inner products with a single
MPI_Allreduce, trading some local computations for the decreased memory
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access. Of course, fusing the preconditioner into the loop assumes that it is both
cheap to apply and does not involve long-range coupling between the DoFs. The
results in Fig. 5 show that performance in the saturated limit, i.e., for large sizes
beyond 107 DoFs, is 2.5 times faster than with the plain CG iteration. Interestingly,
this also improves performance for the sizes fitting into caches, which is due to less
synchronization and reducing access to the slower L3 cache.

To put the performance of the fully merged case on Intel Skylake into perspective,
we compare with executing the plain CG method on an Nvidia V100 GPU using the
implementation from [51, 57]: even though the GPU runs with around 700 GB/s of
memory throughput, the performance is higher on Intel Skylake with only 200 GB/s
from RAM memory because the merged loops significantly increase data locality.
Furthermore, on the GPU we do not compute the metric terms on the fly, but
load a precomputed tensor J−1

K J
−T
K det(JK)wq which is faster due to reduced

register pressure, see also the analysis for BP5 in [71]. We also note that the
GPU results with our implementation are faster than an implementation with the
OCCA library described in [29] with up to 0.6 billion DoFs/s on a V100 of the
Summit supercomputer. The reason is that our implementation uses a continuous
finite element storage that does not duplicate the unknowns at shared vertices, edges
and faces, which reduces the memory access by about a factor of two. Furthermore,
the results from [29] involve a separate gather/scatter step with additional memory
transfer to enforce continuity, while this is part of the operator evaluation within a
single loop in our code.

Figure 6 lists the achieved throughput with a fully merged conjugate gradient
solver for polynomial degrees k = 2, . . . , 8, the most interesting regime for our
solvers. We use a tri-linear representation of geometry and compute the geometric
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factors on the fly. Throughput is somewhat lower for quadratic and cubic elements
because the geometry data located in the vertices is still noticable.

The results in Fig. 3 motivate the analysis of the representation of the geometry
in the matrix-vector product, with results presented in Fig. 7. The figure lists both
the throughput of the matrix-vector product in the left panel and the throughput
of the complete CG iteration with merged vector operations. Highest performance
is obtained for the affine mesh case where our implementation can compress the
memory access of the Jacobian. While this case is excluded from the CEED BP5
specification that requires a deformed geometry [29], it is an interesting baseline
to compare against. Using separate tensors for each quadrature point, “variable
tensor cached”, is equally fast as the affine case as long as data fits into caches.
However, performance drops once the big geometric arrays must be fetched from
main memory. For the case the geometry is computed on the fly from a tri-linear
representation of the mesh, i.e., the vertices, the matrix-vector product is slower
than the affine variant. For the conjugate gradient solver, however, we observe that
the two reach essentially the same performance for five million and more DoFs,
as they are both limited by the memory bandwidth from vector access. The “tri-
linear compute” case involves a higher Flop/s rate with almost 700 GFlop/s, as
compared to the throughput of 330 GFlop/s for the affine mesh case. This means
that the merged vector operations allow us to fit additional computations behind the
unavoidable memory transfer without affecting application performance. Finally,
an isoparametric representation of the geometry (labeled “isopara compute” in
Fig. 7) can also be computed on the fly by sum factorization from a kth degree
polynomial [50]. While this case is obviously slower than the precomputed variable-
tensor case from caches, it leverages higher performance when data must be fetched
from main memory.
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The tri-linear and isoparametric cases are not equivalent, as only the latter
represents higher order curved boundaries. Intermediate polynomial degrees for the
geometry are conceivable, which would land between the two in terms of application
throughput. To combine the higher performance of the former, we plan to investigate
the tradeoffs in more detail in the future, e.g. by using a k-degree representation on
a single layer of elements at the boundary and a tri-quadratic representation in the
domain’s interior.

Finally, Fig. 8 shows the weak scaling of the BP5 benchmark problem up to the
full size of the SuperMUC-NG machine with 6336 nodes and 304,128 cores. The
data is normalized by reporting the number of DoF per node, so ideal weak scaling
would correspond to coinciding lines. While the saturated performance is scaling
well, giving a sustained performance of up to 4.4 PFlop/s,2 most of the in-cache
performance advantage is lost due to the communication latency over MPI, see
also [62] for limits with MPI in PDE solvers. Defining the strong scaling limit as the
point where throughput reduces to 80% of saturated performance [29], it is reached
for wall times of 56 μs on 1 node. On 512 nodes, the strong scaling limit is already
around 180 μs, whereas it is 245 μs on the full SuperMUC-NG machine. Note that
even though most optimizations presented in this section have addressed the node-
level performance, we have also considered the strong scaling in our work—indeed,
the strong scaling on SuperMUC-NG is excellent with a limit around 5 times lower
than the BlueGene-Q results presented in [29].

2The LINPACK performance of SuperMUC-NG according to the top500 list is 19.4 PFlop/s.
Considering that we use an iterative solver for PDE with optimization of throughput, this is an
extremely good value.
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4 Geometric Multigrid Methods in Distributed
Environments

Multigrid methods are efficient solvers for the linear systems arising from the
discretization of elliptic problems, see [30] for a recent efficiency evaluation
and [35] for a projection of elliptic solver performance to the exascale setting. They
apply simple iterative schemes called smoothers on a hierarchy of coarser problem
representations. On each level of the hierarchy, the smoothers address the high-
frequency content of the solution by smoothening the error. On a sufficiently coarse
level with a small number of unknowns, a direct solver can be applied. The multigrid
algorithm can be realized by a V-cycle as illustrated in Fig. 9 or some related cycle
(W-cycle or F-cycle). In the matrix-free high-order finite element context, variants
of the Chebyshev iteration around a simple additive scheme, such as point-Jacobi or
approximate block-Jacobi with some rank-d approximation of the cell matrix, are
state of the art. The results in this section are based on this selection. Overlapping
Schwarz schemes are a new development detailed in Sect. 5 below.

In terms of finding the coarser representations for the multigrid hierarchy, high-
order finite element and discontinuous Galerkin methods permit a range of options.
The hierarchy can both be constructed by coarser meshes (h-multigrid), by lowering
the polynomial degree (p-multigrid), by a discontinuous-continuous transfer as well
as algebraically based on the matrix entries only (algebraic multigrid). The latter do
not fit into a matrix-free context, since they explicitly rely on a sparse matrix and
also often are not robust enough as the degree increases. As it has been shown by
the work [70], scalability to the largest supercomputers is much more favorable if
knowledge about coarsening by a mesh can be provided. In other words, geometric
multigrid is to be preferred over algebraic multigrid in case there is such structure
in the problem.

smoothen

smoothen smoothen

smoothen

coarse solve

restrict

restrict

prolongate

prolongate

active cells level = 2

level = 1

level = 0

Fig. 9 Illustration of multigrid V-cycle with smoothing on each level and restriction/prolongation
between the levels (left) and exemplary partitioning of a grid with adaptive refinement partitioned
among 3 processors. The partitioning of the active cells is shown in the mid panel and on the
various multigrid levels on the right panel
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For these reasons, we have developed a comprehensive geometric multigrid
framework with deal.II. In [27], a hybrid multigrid solver with all possibilities of h-,
p-, and algebraic coarsening has been combined in a flexible framework, with the
possibility to perform an additional c-transfer from discontinuous to continuous
function spaces for the DG case. In terms of the h-MG method on adaptive meshes,
the deal.II library implements the local smoothing algorithm [9, 36, 37] where
smoothing is done level by level. Our work [15] developed a communication-
efficient coarsening strategy for this setup, at the cost of a load imbalance for
smoothing on the multigrid levels with adaptively refined meshes. The tradeoffs
in this choice and the associated costs have been quantified by a performance model
in [15].

Figure 10 shows the results of two strong scaling experiments of the multigrid
V-cycle with the h-multigrid infrastructure of the deal.II library. The uniform grid
and a typical adaptively refined case are compared for the same problem size of 137
million and 46 billion DoFs, respectively, see [15] for details on the experiment.
Differences in run time are primarily due to the load imbalance for the level
operations. The results demonstrate optimal parallel scaling of both the uniform
and adaptively refined cases down to around 10−2 s, with a slightly better strong
scaling of the adaptive case due to the slower baseline. This performance barrier—
typical for strong scaling of multigrid schemes in general—can be explained by
the specific type of global communication in this algorithm: from the fine mesh
level with many unknowns distributed among a large number of cores, we transfer
residuals to coarser meshes with restriction operators until the coarse grid solver is
either run on a single core or with few cores in a tightly coupled manner. Then, the
coarse-grid corrections are broadcast during prolongation, involving all processors
again. The communication pattern of a multigrid V-cycle thus relates to a tree-based
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Fig. 10 Strong scaling of geometric multigrid V-cycle for 3D Laplacian on uniform and adaptively
refined mesh using continuous Q2 elements with matrix-free evaluation on up to 4096 nodes (64k
cores) of 2 × 8 core Intel Sandy Bridge (SuperMUC phase 1). Adapted from [15]
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implementation of MPI_Allreduce, with the difference that the communication
tree is induced by the grid and substantial operations, namely smoothing and level
transfer, are intermixed with the communication. In this particular case, nine matrix-
vector products with nearest-neighbor communication are performed per level (eight
in the smoother and one for the residual before restriction). In addition, two vertical
nearest-neighbor exchange operations are done in restriction and prolongation. A
typical matrix-vector product with up to 26 neighbors takes around 10−4 s on the
chosen Intel Sandy Bridge system when run on a few thousands of nodes [52]. When
done on seven levels plus the coarse mesh for the uniformly refined 137 million
DoFs case, the expected saturated limit of around 8 ms is exactly seen in the figure.
On the newer SuperMUC-NG machine, a latency barrier per V-cycle of around 2–
4 ms per V-cycle has been measured, depending on the number of matrix-vector
products for the level smoothers. This limit is attractive compared to alternative
solvers for elliptic problems such as the fast multipole method or the fast Fourier
transform [30, 35].

Multigrid schemes are at the heart of incompressible flow solvers through the
pressure Poisson equation, as detailed in Sect. 6 below. Applications of matrix-
free geometric multigrid to continuum mechanics were presented in [18] and to
electronic calculations with sparse multivectors in [16, 17].

As an example of the large-scale suitability of the developed multigrid frame-
work, Fig. 11 shows two scaling experiments on the SuperMUC-NG supercomputer
with up to 304,128 cores of Intel Skylake. Black dashed lines denote ideal strong
scaling along a line and weak scaling with a factor of 8 between the lines. The com-
putational domain is a cube meshed by hexahedral elements, using the affine mesh
code path for matrix-free algorithms discussed in Sect. 2. A consistent Gaussian
quadrature with n1D

q = k + 1 points is chosen. We run a conjugate gradient solver

to a relative tolerance of 10−3 compared to the initial unpreconditioned residual.
This setup is motivated by applications where a very good initial guess is already
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Fig. 11 Multigrid strong scaling analysis for tolerance 10−3 with 2 CG iterations
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available, e.g. by extrapolation of solutions from the old time step [22, 45], and only
a correction is needed. More accurate solves are obtained by tighter tolerances or
by full multigrid setups [51]. The multigrid V-cycle is run in single precision to
increase throughput, together with a double precision correction through the outer
CG solver. This setup has been shown in [51] to increase throughput by around 1.8×
without affecting the multigrid convergence.

In the left panel of Fig. 11, we present results for a continuous Galerkin
discretization with a polynomial degree k = 4. A pure geometric coarsening
down to a single mesh element is used. A Chebyshev iteration of degree five
based on the matrix diagonal, i.e., point Jacobi, is used on all levels for pre- and
post-smoothing. The maximal eigenvalue λ̃max is estimated by 15 iterations of a
conjugate gradient solver and the Chebyshev parameters are set to smoothen in a
range [0.06λ̃max , 1.2λ̃max ]. As a coarse solver, we use a Chebyshev iteration with
the degree set to reduce the residual by 103 in terms of the Chebyshev a-priori error
estimate [74]. We observe ideal weak scaling and strong scaling to around 10−2 s.
More importantly, the absolute run time is excellent: For instance, the 8.6 billion
DoF case on 1536 cores is solved in 1.4 s, i.e., 4.0 million DoFs are solved per core
per second.

The right panel of Fig. 11 shows the result for multigrid applied to an IPDG
discretization with k = 5. Here, we use a transfer from the discontinuous space to
the associated continuous finite element space with k = 5 on the finest mesh level
(see [3] for the theoretical background and [27] for the multigrid context) and then
progress by h-coarsening to a single element. On the DG level, we use a Chebyshev
smoother around a block-Jacobi method, with the block-Jacobi problems inverted
by the fast diagonalization method [58]. On all continuous finite element levels,
a Chebyshev iteration around the point-Jacobi method is used. The degree of the
Chebyshev polynomial is six. This solver setup achieves a multigrid convergence
rate of about 0.025, i.e., reduces the residual by 3 orders of magnitude with two
V-cycles. If used in a full multigrid setting [51], a single V-cycle on the finest
level would suffice to solve the problem to discretization accuracy. Merged vector
operations with a Hermite-like basis for the Chebyshev iteration are used according
to [56]. The final application performance of the largest computation on 1.9 trillion
DoFs is 5.9 PFlop/s, with 5.6 PFlop/s done in single precision and 0.27 PFlop/s
in double precision. The limiting factor is mostly memory transfer, however, with
an application throughput of around 175 GB/s per node (the STREAM limit of one
node is 205 GB/s).

5 Fast Tensor Product Schwarz Smoothers

In Sect. 4, we have discussed a scalable implementation of geometric multigrid
methods, obtaining an efficient solver in the sense of cost per iteration. It employs
the matrix-free operator implementation from Sect. 2 in order to reduce the compu-
tational cost for residuals and grid transfer. The missing building block for our cost
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model in Eq. (1) is an efficient implementation (in terms of computational cost per
DoF) of an efficient smoother (in terms of number of multigrid iterations).

The main challenge consists of finding preconditioners whose cost is similar to
operator evaluation. So far, we have discussed Chebyshev smoothers, which can be
implemented matrix-free in a straight-forward fashion. Alas, their performance is
not robust for higher order elements. Likewise, from an arithmetic cost point of view
sparse matrices can be competitive at most for moderate polynomial degrees k =
2, 3 [55] or when done via auxiliary spaces of linear elements on a subdivided grid
using some matrix-based preconditioner. However, Fig. 3 shows that even sparse
matrices for linear elements are up to 10 times slower than the matrix-free operator
evaluation. It seems that only the two SPPEXA projects ExaDUNE and ExaDG
have addressed this question in [6, 76]. While [6] focuses on iterative solution of
cell problems for multigrid smoothing, we consider domain decomposition based
smoothers in the form of multilevel additive and multiplicative Schwarz methods
based on low-rank tensor approximations. They consist of a subdivision of the mesh
on each level into small subdomains consisting either of a single cell, or of the patch
of cells sharing a common vertex. On each of these subdomains, local finite element
problems are solved. Comparing with operator application, these smoothers share
the structural property of evaluation of local operators on mesh cells or on a patch
of cells. They differ by the fact that the smoothers involve local inverses instead of
local forward operators, and that these local inverses in general are not amenable
to a tensor decomposition like sum factorization. There is one exception though,
namely separable differential operators. In d dimensions these can be written in the
form

L = Id ⊗ · · · ⊗ I2 ⊗ L1 + · · · + Ld ⊗ Id−1 ⊗ · · · ⊗ I1, (6)

where Lk are one-dimensional differential operators and Ik are identity operators
in directions k = 1, . . . , d . This representation transfers to finite element operators
with tensor product shape functions in a straight-forward way, reading Ik as one-
dimensional mass matrices Mk .

Due to [58], the inverse of L can be represented as the product

L−1 = Q�−1QT, (7)

with the diagonal matrix � = Id ⊗ · · · ⊗ I2 ⊗ �1 + · · · + �d ⊗ Id−1 ⊗ · · · ⊗ I1,
where Ik denote identity matrices, and a rank-1 decomposition Q = Qd ⊗· · ·⊗Q1.
The tensor factors are obtained by solving d generalized eigenvalue problems

�k = QT
k LkQk,

Ik = QT
k MkQk, k = 1, . . . , d.

(8)

Thus, the computational effort for computing the inverse has been reduced from
O(k3d) to O(dk3) and for the application of local solvers from O(k2d) to O(dkd+1)
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by exploiting sum factorization. Based on this technique, we have implemented a
geometric multigrid method in [76] based on earlier work in [37–39].

5.1 The Laplacian on Cartesian Meshes

In order to test our concept and to obtain a performance baseline for more
complicated cases, we first attend to the case where the decomposition described
above can be applied in a straightforward way, namely the additive Schwarz method
with subdomains equal to mesh cells. As Table 1 shows, it yields an efficient
preconditioner with less than 25 conjugate gradient steps for a gain of accuracy
of 108. While it is uniform in the mesh level, it is not uniform in the polynomial
degree due to the increasing penalty parameter of the interior penalty method. The
computational effort for a smoothing step based on local solvers in the form (7)
is below the effort for a matrix-free operator application for polynomial degrees
between 3 and 15 in three dimensions because it only involves operations on cells.
The setup time for computing Q and � is even less. Thus, in the context of the
performance analysis of the conjugate gradient method in Sect. 2, it barely adds to
the cost per iteration step, but reduces the number of matrix-vector products when
comparing to the accumulated numbers within a Chebyshev/point Jacobi method,
and almost independently of polynomial degree.

In view of application to incompressible flow, we also study vertex patches as
typical subdomains for smoothing. First, we observe that a regular vertex patch with
2d cells attached to a vertex inherits the low-rank tensor product structure from
its cells, possibly after renumbering due to changes in orientation. Thus, we can
apply the same method as on a single cell, resulting effectively in a factor 2d in the
complexity estimates above. Patches around vertices with irregular topology like 3
or 5 cells in two dimensions do not possess a tensor product structure. Fortunately,

Table 1 Fractional CG
iterations, preconditioned by
h-MG with additive Schwarz
smoother on cells

Levels Convergence steps

2D k = 3 k = 4 k = 7 k = 10

7 14.5 14.3 18.8 20.9

8 14.5 14.3 18.8 20.9

9 14.5 14.3 18.8 20.9

10 14.5 14.3 18.8 20.9

3D k = 3 k = 4 k = 7 k = 10

3 16.7 16.8 22.0 24.5

4 17.1 17.0 22.0 24.5

5 17.2 17.0 22.1 24.6

6 17.1 17.0 22.1 24.7

Relative solver tolerance of 10−8 and relax-
ation parameter ω̂ = 0.7
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on meshes obtained by refinement of a coarse mesh, they are all determined by
irregularities of the coarse mesh and thus small in number.

Vertex patches lead to overlapping decompositions with overlap of at least 4
and 8 in two and three dimensions, respectively. From the analysis of Schwarz
methods, it becomes clear that a multiplicative method is required for highest
multigrid convergence rates. In order to parallelize such a smoother and to avoid
race conditions, mesh cells are colorized, that is, they are separated into “colors”
such that patches of the same “color” do not share any common face or cell.
As a consequence, the multiplicative method coincides with an additive method
within each color, such that we can execute the local solvers in parallel within each
color, and the colors sequentially. Typical convergence results for the Laplacian are
reported in Table 2, suggesting that this scheme is almost a direct solver.

The vertex patch has 4 and 8 times as many unknowns as a single mesh cell
in two and three dimensions, respectively. Thus, the effort for a smoothing step
with 16 colors and the optimizations described above turns out to be about 20 to
24 times the effort of a matrix-free operator application, measured over polynomial
degrees from 3 to 15. This seems excessive at first glance, but it must be kept in mind
that the Chebyshev smoother of degree 6 used in Fig. 11 also involves 12 matrix-
vector products for pre- and post-smooting. Futhermore, the current scheme comes
with a reduction of the number of steps by a factor 10 compared to the additive
cell smoother for the Laplacian, which makes it almost competitive [76]. Finally,
the iteration counts are independent of the polynomial degree, making the scheme
attractive for higher degrees. Moreover, we point out that this smoother also allows
for the solution of a Stokes problem in four iteration steps [39].

Table 2 Fractional GMRES iterations, preconditioned by h-MG with multiplicative Schwarz
smoothers on vertex patches

Levels Convergence steps Colors

2D k = 3 k = 4 k = 7 k = 10

7 2.5 2.5 2.1 2.1 8

8 2.5 2.5 2.1 2.0 8

9 2.5 2.4 2.1 2.0 8

10 2.5 2.4 2.0 2.0 8

3D k = 3 k = 4 k = 7 k = 10

3 2.4 2.5 2.1 1.8 16

4 2.4 2.5 2.1 1.9 16

5 2.4 2.5 2.1 1.9 16

6 2.4 2.5 2.1 1.9 16

Levels Convergence steps Colors

2D k = 3 k = 4 k = 7 k = 10

7 2.9 2.9 2.6 2.5 17

8 2.9 2.9 2.6 2.5 17

9 2.9 2.9 2.6 2.5 17

10 2.9 2.9 2.6 2.4 17

3D k = 3 k = 4 k = 7 k = 10

3 2.6 2.7 2.4 2.4 35

4 2.8 2.8 2.5 2.4 49

5 2.8 2.8 2.5 2.4 51

6 2.8 2.8 2.5 2.4 52

Based on minimal coloring (left) and graph coloring (right) with a relative solver tolerance of 10−8
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5.2 General Geometry

As soon as the mesh cells are not Cartesian anymore, the special structure of
separable operators in (6) is lost and the inverse cannot be computed according
to (7). In this case, we have two options: solving the local problems iteratively,
as in [6], or approximately. A possible approximation which recovers the situation
of the previous subsection consists of replacing a non-Cartesian mesh cell by an
approximating (hyper-)rectangle, then inverting the separable differential operator
on the rectangle (omitting the prefix hyper from here on).

Such a surrogate rectangle can be obtained from the following procedure: first,
we compute the arc length of all edges. From these, we obtain the length of the
rectangle in each of its natural directions by averaging over all parallel edges (in
a topological sense). Thus, the geometry of the rectangle is determined up to its
position and orientation in space. Given the fact that the Laplacian is invariant under
translation and rotation, these do not matter and we can choose a rectangle centered
at the origin with edges parallel to the coordinate directions. Different differential
operators may require different approximations here.

The convergence theory of Schwarz methods allows for inexact local solvers as
long as they are spectrally equivalent. Naturally, the deviation from exactness enters
into the convergence speed of the method. Additionally, inexact local solvers can
amplify the solution, such that a smaller relaxation parameter may be necessary.
This is exhibited in Table 3, where we compare the efficiency of multigrid with
exact local solvers and the method with surrogate rectangles as described above.
We see that a reduction of the relaxation parameter ω̂ = 0.7 for exact local solvers
to ω̂ = 0.49 is necessary for robust convergence. We point out though, that while
the inexact methods need more iteration steps, they are much faster than exact
inverses, since they use the Kronecker representation (7) of the approximate inverse.
For instance, the setup cost is 3000 times higher, with a growing gap for higher
polynomial degrees.

Table 3 Fractional CG iterations with addditive cell-based Schwarz smoothers, exact as well as
inexact local solution with varying damping factors ω̂

Levels Convergence steps to 10−8

2D exact (ω̂ = 0.7) ω̂ = 0.35 ω̂ = 0.42 ω̂ = 0.49 ω̂ = 0.56 ω̂ = 0.63

4 17.8 28.4 24.8 24.3 30.8 >100

5 17.3 27.1 23.9 23.8 40.7 >100

6 17.2 26.8 23.7 23.9 58.1 >100

3D exact (ω̂ = 0.7) ω̂ = 0.35 ω̂ = 0.42 ω̂ = 0.49 ω̂ = 0.56 ω̂ = 0.63

2 20.6 31.8 28.5 25.8 25.0 28.5

3 20.6 33.3 29.1 26.5 27.4 74.8

4 20.6 32.4 28.6 26.6 47.0 >100

Two pre- and post-smoothing steps are used, respectively, and the polynomial degree is k = 4
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5.3 Linear Elasticitiy

In order to provide an outlook on how to apply this concept to more general
problems, we consider linear elasticity, namely the Lamé-Navier equations, with
the bilinear form

a(u, v) = 2μ
(
ε(u), ε(v)

) + λ
(∇ · u,∇ · v). (9)

Here, ε(u) = 1
2 (∇u + ∇uT) is the strain tensor of the displacement field u and

(·, ·)
denote the appropriate DG discretization with interior penalty terms.

Consider a Cartesian vertex patch, that is, a patch with all faces aligned with
the coordinate planes and with tensor product shape functions on each cell. As
before, let Mk be the one-dimensional mass matrix in direction k and Lk the matrix
representing the Laplacian including all face terms introduced by the interior penalty
formulation. Furthermore, let Gk be the matrix associated to the first derivative,
again including the DG interface terms which arise in products of the form GT

k ⊗Gl .
With these notions and the three-dimensional Laplacian

L = M3 ⊗ M2 ⊗ L1 + M3 ⊗ L2 ⊗ M1 + L3 ⊗ M2 ⊗ M1, (10)

we can write the bilinear form a(., .) on the patch in matrix form

Ap = μ

⎡

⎣
L + M3 ⊗ M2 ⊗ L1 M3 ⊗ GT

2 ⊗ G1 GT
3 ⊗ M2 ⊗ G1

M3 ⊗ G2 ⊗ GT
1 L + M3 ⊗ L2 ⊗ M1 GT

3 ⊗ G2 ⊗ M1

G3 ⊗ M2 ⊗ GT
1 G3 ⊗ GT

2 ⊗ M1 L + L3 ⊗ M2 ⊗ M1

⎤

⎦

+ λ

⎡

⎣
M3 ⊗ M2 ⊗ L1 M3 ⊗ G2 ⊗ GT

1 G3 ⊗ M2 ⊗ GT
1

M3 ⊗ GT
2 ⊗ G1 M3 ⊗ L2 ⊗ M1 G3 ⊗ GT

2 ⊗ M1

GT
3 ⊗ M2 ⊗ G1 GT

3 ⊗ G2 ⊗ M1 L3 ⊗ M2 ⊗ M1

⎤

⎦ (11)

Clearly, this matrix lacks the simple structure of Kronecker products we
employed in the previous subsections. Nevertheless, we have Korn’s inequality [10],
and thus the block diagonal of the left matrix is spectrally equivalent to the matrix
itself. Consequently, we expect that

Ãp = μ

⎡

⎣
L + M3 ⊗ M2 ⊗ L1

L + M3 ⊗ L2 ⊗ M1

L + L3 ⊗ M2 ⊗ M1

⎤

⎦ ,

(12)

which has the desired Kronecker product structure, is a good local solver. Indeed,
Table 4 confirms this expectation. Iteration counts remain almost constant over a
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Table 4 Solver performance depending on level and polynomial degree k

Levels k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

3 – – – – – – – 4.0 4.1

4 – – – 3.7 3.9 3.9 4.0 4.1 4.1

5 – 3.7 3.7 3.7 3.8 3.9 3.9 3.9 3.9

6 5.1 3.7 3.8 3.6 3.8 3.9 3.9 3.9 3.9

7 5.2 3.8 3.9 3.7 3.7 3.8 3.7 3.8 3.8

8 5.5 3.9 3.9 3.8 3.8 3.7 3.8 – –

9 5.4 3.9 4.0 – – – – – –

CG iterations to reduce the residual by 108 preconditioned by h-MG with multiplicative vertex
patch smoother and approximate local solvers Ã−1

p . Only levels with 104 to 107 degrees of freedom
are shown. μ = 1, λ = 1 and the coarse grid consists of 2 × 2 cells

Table 5 Solver performance depending on Lamé parameters μ and λ

(μ, λ)

Levels (100, 1) (10, 1) (1, 1) (1, 5) (1, 10) (1, 25)

6 3.4 3.4 3.6 6.3 19.5 >200

7 3.6 3.6 3.7 6.2 19.9 >200

8 3.7 3.7 3.8 6.0 20.2 >200

9 3.8 3.8 3.9 5.9 20.2 >200

10 3.8 3.8 3.9 5.9 20.3 >200

11 3.8 3.8 3.9 5.8 19.9 >200

CG iterations to reduce the residual by 108 preconditioned by h-MG with block-diagonal smoother.
Shape functions of degree k = 4 are used. The coarse grid consists of 2 × 2 cells

wide range of mesh levels and polynomial degrees. Comparing to Table 2, we lose
less than a factor two, typically requiring 4 steps instead of 3.

While Korn’s inequality helped us with the left matrix in (11), the matrix
corresponding to the “grad-div” term in the Lamé–Navier equations has a nontrivial
kernel and thus its inverse cannot be approximated by a block diagonal. We confirm
this in Table 5. After augmenting Ãp by the diagonal terms of the grad-div matrix,
we vary μ and λ. As expected, iteration counts increase when λ � μ to the point,
where the method becomes infeasible.

The case λ � μ corresponds to an almost incompressible material. Thus,
this behavior has to be addressed from two sides. First, the discretization must
be suitable [34]. Then, the local solvers must be able to reduce the divergence
sufficiently. Here, we have to find ways to implement a smoother like in [39] in an
efficient way. Its structure prevents us from utilizing the tensor product techniques,
namely the fast diagonalization method, used so far.
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As an outlook, we describe a solution approach for two dimensions, which has
been developed in a recent bachelor’s thesis [64]. The diagonal blocks of the matrix
Ap are

A1 = (2μ + λ) M2 ⊗L1 +μL2 ⊗M1, A2 = μM2 ⊗L1 + (2μ + λ) L2 ⊗M1. (13)

Both A1 and A2 admit a fast diagonalization, for instance

A−1
2 = (

Q2 ⊗ Q1
)(

I2 ⊗ �1 + �2 ⊗ I1
)−1(

Q2 ⊗ Q1
)T

. (14)

Given the off-diagonal block B = μGT
2 ⊗ G1 + λG2 ⊗ GT

1 , the Schur complement
of Ap is

S = A1 − BTA−1
2 B. (15)

While this is not a sum of Kronecker products, Kronecker singular value decom-
position (KSVD), see [72, 73], can be utilized to construct an approximation of the
Schur complement which is fast diagonalizable. We proceed as follows:

A.1 compute the fast diagonalizations of A1 and A2
A.2 compute the rank-ρ� KSVD of the inverse diagonal matrix in Eq. 14

(
I ⊗ �(1) + �(2) ⊗ I

)−1 ≈
ρ�∑

i=1

Ci ⊗ Di (16)

A.3 compute the rank-2 KSVD

Ŝ := E1 ⊗ F1 + E2 ⊗ F2 ≈ S̃ (17)

of the approximate Schur complement

S̃ := A1 − BT

[
ρ�∑

i=1

Q2C
−1
i QT

2 ⊗ Q1D
−1
i QT

1

]

B (18)

A.4 compute the fast diagonalization of Ŝ.

Then, Gaussian block elimination provides an approximate inverse

A−1
p ≈

[
I −A−1

1 B

0 I

] [
A−1

1 0
0 Ŝ−1

] [
I 0

−BTA−1
1 I

]

. (19)



214 D. Arndt et al.

Implementation and evaluation of these smoothers are still work in progress, but
the thesis [64] suggests fast and robust convergence at least in a finite difference
context.

The take-home message from this section is that an efficient approximate solution
of the local problems in Schwarz smoothers is possible using low-rank tensor
representations and can be achieved with effort similar to a matrix-free operator
application in the best case. Finding such low-rank representations is nevertheless
highly dependent on the differential equation and geometry. Further investigation
will be directed in particular at dealing with the grad-div operator.

6 High-performance Simulations of Incompressible Flows

Computational fluid dynamics (CFD) simulations of turbulent flows at large
Reynolds number, e.g., Re > 106, are among those problems that typically require
a huge amount of computational resources in order to resolve the turbulent flow
structures in space and time, and have been addressed as an application by the
ExaDG project. The underlying model problem is given by the incompressible
Navier–Stokes equations

∂u

∂t
+ ∇ · (u ⊗ u) − ν∇2u + ∇p = f , (20)

∇ · u = 0 . (21)

Scale-resolving simulations for engineering applications typically involve beyond
O(1010 − 1011) unknowns (DoFs) and O(105 − 107) time steps. High-performance
implementations for this type of problem are therefore of paramount importance for
the CFD community. It is important to stress that implementing a given algorithm
optimally for a given hardware, i.e., an implementation that performs close to
the hardware limits, is only one step to achieve the goal of providing efficient
flow solvers for engineering problems as emphasized in the introduction. While
the previous sections discussed the second and third term in Eq. (1), namely the
performance of matrix-free evaluation routines and fast multigrid solvers for high-
order discretizations, we now also include discretization aspects into the discussion.
The implementation makes use of the fast matrix-free evaluation routines and
multigrid solvers discussed in previous sections.

We use a method of lines approach with high-order DG discretizations in space
and splitting methods with BDF time integration. Splitting methods separate the
solution of the incompressible Navier–Stokes equations into sub-problems such
as a Poisson equation for the pressure and a (convection–)diffusion equation
for the velocity and are among the most efficient solvers currently known. In a
first contribution [45], we highlighted that previous discretization methods lack
robustness, on the one hand in the limit of small time step sizes, and on the other
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hand in under-resolved scenarios where the spatial discretization only resolves the
largest scales of the flow. The stability problem for small time step sizes has been
addressed in detail in [21] where we found that a proper DG discretization of
velocity-pressure coupling terms is essential to achieve robustness at small time
steps. In [23], we presented the first high-order DG incompressible flow solver
that is robust in the under-resolved regime and that relies completely on efficient
matrix-free evaluation routines. The developed discretization approach is attractive
as it provides a generic solver for turbulent flow simulations that is robust and
accurate without the use of explicit turbulence models. Such a technique is known
as implicit large-eddy simulation in the literature and has the advantage that it
does not require turbulence model parameters. While this property of high-order
DG discretizations is already known from discontinuous Galerkin discretizations
of the compressible Navier–Stokes equations, the work [23] has been the first
demonstrating this property for DG discretizations of the incompressible Navier–
Stokes equations. The key ingredient for a robust high-order, L2-conforming
DG discretization for incompressible flows turns out to be the use of consistent
stabilization terms that enforce the divergence-free constraint and inter-element
mass conservation in a weak sense. These requirements can also be included into
the finite element function spaces by using so-called H(div)-conforming (normal-
continuous) discretizations that are exactly (pointwise) divergence-free by using
Raviart–Thomas elements. As investigated in detail in [26], such an approach has
indeed very similar discretization properties when compared with the stabilized L2-
conforming approach in practically relevant, under-resolved application scenarios.
The model has been extended to moving meshes in [20].

A detailed performance analysis has been undertaken in [22] where we discuss
the incompressible flow solver w.r.t. its efficiency according to Eq. (1). Based
on this efficiency model, we have then compared matrix-free solvers based on
incompressible and compressible Navier–Stokes formulations in [24] for under-
resolved turbulent incompressible flows. The compressible solver uses explicit time
integration and therefore only requires one operator evaluation in every Runge–
Kutta stage as opposed to the incompressible solver involving the solution of
linear system of equations such as a pressure Poisson equation within every
time step. Simple explicit solvers are often considered efficient due to better
parallel scalability since implicit Krylov solvers with multigrid preconditioning
involve global communication. However, our work shows a significant performance
advantage of the incompressible formulation over the compressible one on the node-
level for sufficient workload. Albeit speed-up factors are higher, it is difficult to
achieve a performance advantage for the algorithmically simple, explicit-in-time
compressible solver in the strong-scaling limit in terms of absolute run time. In
our experience, the potential to outperform an implicit solver at some point in the
strong-scaling limit has not materialized. We see it as a future challenge to devise
optimal PDE solvers providing good performance over a wide range of problems
and hardware platforms due to this high degree of interdisciplinarity.

We have applied this solver framework to conduct direct numerical simulations of
turbulent channel flow in [45], the first direct numerical simulation of the turbulent
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flow over a periodic hill at Re ≈ 104 in [46], and to large-eddy simulation of
the FDA benchmark nozzle problem in [25]. Furthermore, we have developed
multiscale wall modeling approaches that allow to use the proposed highly efficient
schemes also for industrial cases with even higher Reynolds numbers than what is
feasible for wall-resolved large eddy simulation [47].

Here, we show performance results obtained on SuperMUC-NG with Intel
Skylake CPUs. We study the three-dimensional Taylor–Green vortex problem as
a standard benchmark to assess the accuracy and computational efficiency of
incompressible turbulent flow solvers. Regarding discretization accuracy and from
a physical point of view, the quantity of interest is the kinetic energy dissipation
rate shown in Fig. 12 as a function of time 0 ≤ t ≤ T = 20 for increasing
Reynolds numbers Re = 100, 200, 400, 800, 1600, 3000, 10,000,∞. The first
direct numerical simulation for the Re = 1600 case with a high-order DG scheme
of the incompressible Navier–Stokes equations with a resolution of 10243 and
polynomial degrees k = 3, 7 has been shown in [22]. Here, we show results
for effective resolutions up to 30723 (corresponding to 0.99 · 1011 DoFs) for the
highest Reynolds number cases. Despite these fine resolutions, grid-converged
results are achieved only up to Re = 3000. The inviscid problem (Re = ∞) is
most challenging, and the results in Fig. 12 suggest that even finer resolutions are
required for grid-convergence, a goal that might be achievable in the foreseeable
future. The largest problem with 0.99 · 1011 DoFs involved 6.6 · 104 time steps and
required 11.4 h of wall time on 152,064 cores. In terms of degrees of freedom solved
per time step per core, this results in a throughput of 1.05 MDoFs/s/core.

Fig. 12 Taylor–Green vortex: Kinetic energy dissipation rates for two different problem sizes (fine
mesh as solid line and coarse mesh as dashed-dotted line) for each Re number: The polynomial
degree is k = 3 and the effective resolutions Neff = (Nele,1d(k + 1))3 considered are Neff =
643, 1283 for Re = 100, Neff = 1283, 2563 for Re = 200, 400, Neff = 2563, 5123 for Re =
800, Neff = 10243, 20483 for Re = 1600, and Neff = 20483, 30723 for Re = 3000, 10000,∞
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Fig. 13 Scaling analysis for incompressible flow solver on 3D Taylor–Green vortex with polyno-
mial degree k = 3 at Re = 1600 and spatial resolutions of 1283, 2563, 5123, 10243, 20483

Figure 13 shows strong scaling results for the TGV problem at Re = 1600 for
effective resolutions of 1283, 2563, 10243, 20483 and polynomial degree k = 3. We
assess strong scalability in terms of absolute run times for the whole application
(including mesh-generation, setup of data structures, solvers, preconditioners, and
postprocessing) rather than normalized speed-up factors as the aim of strong scala-
bility is not only reducing but also minimizing time-to-solution, i.e., demonstrating
strong-scalability of a code with poor serial performance is meaningless. The results
in Fig. 13 reveal that we are able to perform the TGV simulations in realtime (twall ≤
T = 20s) for spatial resolutions up to 1283. These numbers can be considered
outstanding and we are not aware of other high-order DG solvers achieving this
performance, see also the discussions in [22, 24]. The minimum wall time in the
strong-scaling limit increases on finer meshes due to more time steps (the time step
size is restricted according to the CFL condition, �t ∼ 1/h, for the mixed explicit–
implicit splitting solver used here). For this reason, we also show strong scalability
in terms of the wall time per time step, to allow extrapolations of how many time
steps can be solved within a given wall time limit which is the typical use case for
large-eddy and direct numerical simulations of turbulent flows. In this metric, the
curves level off around 0.02 − 0.03 s of wall time per time step, independently of
the spatial resolution. The SuperMUC-NG machine with 3 · 105 cores is too small
to show the strong scaling limit for the largest problem size with 20483 resolution
considered here. A parallel efficiency of 80.6% is achieved with a speed-up factor
of 79.8 when scaling from 3072 cores to 304,128 cores.
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7 hyper.deal: Extending the Matrix-Free Kernels to Higher
Dimensions

The matrix-free kernels developed within the ExaDG project have been imple-
mented in a recursive manner which enables compilation with arbitrary spatial
dimension. In order to be compatible with the mesh infrastructure of deal.II which
is restricted to dimensions up to 3, we have developed schemes working on a
tensor product of two deal.II meshes. This allows extension to 2+2, 2+3, and 3+3
dimensions. The corresponding framework is currently under development as the
deal.II-extension hyper.deal [59].

The major application that we have in mind are kinetic problems in phase space
where we use the tensor product of a spatial and a velocity mesh. However, other
applications might arise such as parameter-dependent flow problems. Table 6 gives
an overview of computational times on a six-dimensional Vlasov–Poisson problem,
which involves an advection in the 6D space of the particle density in x and v space
and the solution of a 3D Poisson equation for finding the electric potential that in
turn specifies the electric field that transports the density field (cf. [44] for the same
application tackled with a semi-Lagrangian solver).

Figure 14 lists the throughput of the matrix-free evaluation of cell integrals for
the multi-dimensional advection in three to six spatial dimensions for polynomial
degrees k = 2, 3, 4, 5 for AVX2 and AVX-512 vectorization over elements,
respectively, without any application-specific tuning at this stage. While throughput
is very good in 3D and 4D as well as 5D up to k = 4, performance drops
significantly in 6D because the local arrays in sum factorization exhaust caches,

Table 6 Contributions to run time on 6D Vlasov–Poisson system on 320 cores with 8.6 billion
spatial DoFs over 42 time steps

Category 6D advect total (of which MPI exchange) integrate v 3D Poisson + electric field

time [s] 560 (130) 13.0 35.9
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Fig. 14 Throughput of cell term for advection as a function of the spatial dimension on Intel
Skylake with 4-wide vectorization (left) and 8-wide vectorization (right)
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especially with AVX-512. Vectorization strategies within an element [50] are
currently under development.

8 Outlook

Our work in the ExaDG project presented in this text has resulted in a highly
competitive finite element framework. We have demonstrated excellent performance
both for the pure operator evaluation, demonstrated e.g. by the CEED benchmark
problems, as well as on an application level in computational fluid dynamics. We
plan to engage in benchmarking also in the future to establish best-practices for the
high-order finite element community. Furthermore, the evolving hardware landscape
requires a continued effort, with increasing pressure to additional performance
improvements on throughput architectures such as GPUs and FPGAs. In addition,
we plan to extend our hybrid hp-multigrid framework to also handle hp-adaptive
meshes. Finally, while the results from the Schwarz-based multigrid smoothers are
very promising from a mathematical point of view, further steps are necessary to
make them perform optimally on massively parallel hardware, and it is not yet clear
how an optimal implementation compares in time-to-solution against the simpler
Chebyshev-based ingredients we have considered on the large scale so far.
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1 Introduction

In the EXA-DUNE project we extend the Distributed and Unified Numerics Envi-
ronment (DUNE)1 [6, 7] by hardware-oriented numerical methods and hardware-
aware implementation techniques developed in the (now) FEAT32 [55] project to
provide an exascale-ready software framework for the numerical solution of a large
variety of partial differential equation (PDE) systems with state-of-the-art numerical
methods including higher-order discretisation schemes, multi-level iterative solvers,
unstructured and locally-refined meshes, multiscale methods and uncertainty quan-
tification, while achieving close-to-peak performance and exploiting the underlying
hardware.

In the first funding period we concentrated on the node-level performance as the
framework and in particular its algebraic multigrid solver already show very good
scalability in MPI-only mode as documented by the inclusion of DUNE’s solver
library in the High-Q-Club, the codes scaling to the full machine in Jülich at the
time, with close to half a million cores. Improving the node-level performance
in light of future exascale hardware involved multithreading (“MPI+X”) and in
particular exploiting SIMD parallelism (vector extensions of modern CPUs and
accelerator architectures). These aspects were addressed within the finite element
assembly and iterative solution phases. Matrix-free methods evaluate the discrete
operator without storing a matrix, as the name implies, and promise to be able to
achieve a substantial fraction of peak performance. Matrix-based approaches on the
other hand are limited by memory bandwidth (at least) in the solution phase and
thus typically exhibit only a small fraction of the peak (GFLOP/s) performance of
a node, but decades of research have led to robust and efficient (in terms of number
of iterations) iterative linear solvers for practically relevant systems. Importantly, a
consideration of matrix-free and matrix-based methods needs to take the order of
the method into account. For low-order methods it is imperative that a matrix entry
can be recomputed in less time than it takes to read it from memory, to counteract
the memory wall problem. This requires to exploit the problem structure as much
as possible, i.e., to rely on constant coefficients, (locally) regular mesh structure and
linear element transformations [28, 37]. In these cases it is even possible to apply
stencil type techniques, like developed in the EXA-STENCIL project [40]. On the
other hand, for high-order methods with tensor-product structure the complexity
of matrix-free operator evaluation can be much less than that of matrix-vector
multiplication, meaning that less floating-point operations have to be performed
which at the same time can be executed at a higher rate due to reduced memory
pressure and better suitability for vectorization [12, 39, 50]. This makes high-order
methods extremely attractive for exascale machines [48, 51].

1http://www.dune-project.org/.
2http://feast.tu-dortmund.de/.

http://www.dune-project.org/
http://feast.tu-dortmund.de/
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In the second funding phase we have mostly concentrated on the following
aspects:

1. Asynchronicity and fault tolerance: High-level C++ abstractions form the
basis of transparent error handling using exceptions in a parallel environment,
fault-tolerant multigrid solvers as well as communication hiding Krylov methods.

2. Hardware-aware solvers for PDEs: We investigated matrix-based sparse-
approximate inverse preconditioners including novel machine-learning
approaches, vectorization through multiple right-hand sides as well as matrix-
free high-order Discontinous Galerkin (DG) methods and partially matrix-free
robust preconditioners based on algebraic multigrid (AMG).

3. Multiscale (MS) and uncertainty quantification (UQ) methods: These meth-
ods provide an additional layer of embarrassingly parallel tasks on top of the
efficiently parallelized forward solvers. A challenge here is load balancing of the
asynchronous tasks which has been investigated in the context of the localized
reduced basis multiscale method and multilevel Monte Carlo methods.

4. Applications: We have considered large-scale water transport in the subsurface
coupled to surface flow as an application where the discretization and solver
components can be applied.

In the community, there is broad consensus on the assumptions about exascale
systems that did not change much during the course of this 6 year project. A
report by the Exascale Mathematics Working Group to the U.S. Department of
Energy’s Advanced Scientific Computing Research Program [16] summarises these
challenges as follows, in line with [35] and more recently the Exascale Computing
Project:3 (1) The anticipated power envelope of 20 MW implies strong limitations
on the amount and organisation of the hardware components, an even stronger
necessity to fully exploit them, and eventually even power-awareness in algorithms
and software. (2) The main performance difference from peta- to exascale will
be through a 100–1000 fold increase in parallelism at the node level, leading to
extreme levels of concurrency and increasing heterogeneity through specialised
accelerator cores and wide vector instructions. (3) The amount of memory per
‘core’ and the memory and interconnect bandwidth/latency will only increase at
a much smaller rate, hence increasing the demand for lower memory footprints and
higher data locality. (4) Finally, hardware failures, and thus the mean-time-between-
failure (MTBF), were expected to increase proportionally (or worse) corresponding
to the increasing number of components. Recent studies have indeed confirmed
this expectation [30], although not at the projected rate. First exascale systems are
scheduled for 2020 in China [42], 2021 in the US and 2023 [25] in Europe. Although
the details are not yet fully disclosed, it seems that the number of nodes will not be
larger than 105 and will thus remain in the range of previous machines such as the

3https://www.exascaleproject.org/.

https://www.exascaleproject.org/
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BlueGene. The major challenge will thus be to exploit the node level performance
of more than 10 TFLOP/s.

The rest of this paper is organized as follows. In Sect. 2 we lay the foundations of
asynchronicity and resilience, while Sect. 3 discusses several aspects of hardware-
aware and scalable iterative linear solvers. These building blocks will then be used in
Sects. 4 and 5 to drive localized reduced basis and multilevel Monte-Carlo methods.
Finally, Sect. 6 covers our surface-subsurface flow application.

2 Asynchronicity and Fault Tolerance

As predicted in the first funding period, latency has indeed become a major issue,
both within a single node as well as between different MPI ranks. The core concept
underlying all latency- and communication-hiding techniques is asynchronicity.
This is also crucial to efficiently implement certain local-failure local-recovery
methods. Following the DUNE philosophy, we have designed a generic layer that
abstracts the use of asynchronicity in MPI from the user. In the following, we first
describe this layer and its implementation, followed by representative examples
on how to build middleware infrastructure on it, and on its use for s-step Krylov
methods and fault tolerance beyond global checkpoint-restart techniques.

2.1 Abstract Layer for Asynchronicity

We first introduce a general abstraction for asynchronicity in parallel MPI appli-
cations, which we developed for DUNE. While we integrated these abstractions
with the DUNE framework, most of the code can easily be imported into other
applications, and is available as a standalone library.

The C++ API for MPI was dropped from MPI-3 since it offered no real
advantage over the C bindings, beyond being a simple wrapper layer. Most MPI
users coding in C++ are still using the C bindings, writing their own C++
interface/layer, in particular in more generic software frameworks. At the same time
the C++11 standard introduced high-level concurrency concepts, in particular the
future/promise construct to enable an asynchronous program flow while maintaining
value semantics. We adopt this approach as a first principle in our MPI layer to
handle asynchronous MPI operations and propose a high-level C++ MPI interface,
which we provide in DUNE under the generic interface of Dune::Communication
and a specific implementation Dune::MPICommunication.

An additional issue of the concrete MPI library in conjunction with C++ is the
error handling concept. In C++, exceptions are the advocated approach to handle
error propagation. As exceptions change the local code path on the, e.g., failing
process in a hard fault scenario, exceptions can easily lead to a deadlock. As we
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discuss later, the introduction of our asynchronous abstraction layer enables global
error handling in an exception friendly manner.

In concurrent environments a C++ future decouples values from the actual
computation (promise). The program flow can continue while a thread is computing
the actual result and promotes this via promise to the future. The MPI C and Fortran
interfaces offer asynchronous operations, but in contrast to thread parallel, the user
does not specify the operation within the concurrent operation. Actually, MPI on
its own does not offer any real concurrency at all, and provides instead a handle-
based programming interface to avoid certain cases of deadlocks: the control flow is
allowed to continue without finishing the communication, while the communication
usually only proceeds when calls into the MPI library are executed.

We developed a C++ layer on top of the asynchronous MPI operations, which
follows the design of the C++11 future. Note that the actual std::future class
cannot be used for this purpose.
� �

template<typename T>
class Future{
void wait();
bool ready() const;
bool valid() const;
T get();

};
� �

As different implementations like thread-based std::future, task-based TBB

::future, and our new MPIFuture are available, usability greatly benefits from
a dynamically typed interface. This is a reasonable approach, as std::future

is using a dynamical interface already and also the MPI operations are coarse
grained, so that the additional overhead of virtual function calls is negligible. At the
same time the user expects a future to offer value semantics, which contradicts the
usual pointer semantics used for dynamic polymorphism. In EXA-DUNE we decided
to implement type-erasure to offer a clean and still flexible user interface. An
MPIFuture is responsible for handling all states associated with an MPI operation.
� �

class MPIFuture{
private:
mutable MPI_Request req_;
mutable MPI_Status status_;
impl::Buffer<R> data_;
impl::Buffer<S> send_data_;

public:
...

};
� �

The future holds a mutable MPI_Request and MPI_Status to access information
on the current operation and it holds buffer objects, which manage the actual data.
These buffers offer a great additional value, as we do not access the raw data
directly, but can include data transformation and varying ownership. For example
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it is now possible to directly send an std::vector<double>, where the receiver
automatically resizes the std::vector according to the incoming data stream.

This abstraction layer enables different use cases, highlighted below:

1. Parallel C++ exception handling: Exceptions are the recommended way to
handle faults in C++ programs. As exceptions alter the execution path of a single
node, they are not suitable for parallel programs. As asynchronicity allows for
moderately diverging execution paths, we can use it to implement parallel error
propagation using exceptions.

2. Solvers and preconditioners tolerant to hard and soft faults: This functional-
ity is used for failure propagation, restoration of MPI in case of a hard fault, and
asynchronous in-memory checkpointing.

3. Asynchronous Krylov solvers: Scalar products in Krylov methods require
global communication. Asynchronicity can be used to hide the latency and
improve strong scalability.

4. Asynchronous parallel IO: The layer allows to transform any non-blocking
MPI operation into a really asynchronous operation. This allows also to support
asynchronous IO, to hide the latency of write operations and overlap with the
computation of the next iteration or time step.

5. Parallel localized reduced basis methods: Asynchronicity will be used to
mitigate the load-imbalance inherent in the error estimator guided adaptive online
enrichment of local reduced bases.

2.2 Parallel C++ Exception Handling

In parallel numerical algorithms, unexpected behaviour can occur quite frequently:
a solver could diverge, the input of a component (e.g., the mesher) could be
inappropriate for another component (e.g., the discretiser), etc. A well-written code
should detect unexpected behaviour and provide users with a possibility to react
appropriately in their own programs, instead of simply terminating with some error
code. For C++, exceptions are the recommended method to handle this. With well
placed exceptions and corresponding try-catch blocks, it is possible to accomplish
a more robust program behaviour. However, the current MPI specification [44]
does not define any way to propagate exceptions from one rank (process) to
another. In the case of unexpected behaviour within the MPI layer itself, MPI
programs simply terminate, maybe after a time-out. This is a design decision that
unfortunately implies a severe disadvantage in C++, when combined with the
ideally asynchronous progress of computation and communication: an exception
that is thrown locally by some rank can currently lead to a communication deadlock,
or ultimately even to undesired program termination. Even though exceptions are
technically an illegal use of the MPI standard (a peer no longer participates in a
communication), it undesirably conflicts with the C++ concept of error handling.

Building on top of the asynchronicity layer, we have developed an approach to
enable parallel C++ exceptions. We follow C++11 techniques, e.g., use future-like
abstractions to handle asynchronous communication. Our currently implemented
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interface requires ULFM [11], an MPI extension to restore communicators after
rank losses, which is scheduled for inclusion into MPI-4. We also provide a fallback
solution for non-ULFM MPI installations, that employs an additional communicator
for propagation and can, by construction, not handle hard faults, i.e., the loss of a
node resulting in the loss of rank(s) in some communicator.

To detect exceptions in the code we have extended the Dune::MPIGuard,
that previously only implemented the scope guard concept to detect and react
on local exceptions. Our extension revokes the MPI communicator using the
ULFM functionality if an exception is detected, so that it is now possible to use
communication inside a block with scope guard. This makes it superfluous to call
the finalize and reactivate methods of the MPIGuard before and after each
communication.
� �

try{
MPIGuard guard(comm);
do_something();
communicate(comm);

}catch(...){
comm.shrink();
recover(comm);

}
� �

Listing 1 MPIGuard

Listing 1 shows an example how to use the MPIGuard and recover the communicator
in a node loss scenario. In this example, an exception that is thrown only on a
few ranks in do_something() will not lead to a deadlock, since the MPIGuard

would revoke the communicator. Details of the implementation and further
descriptions are available in a previous publication [18]. We provide the “black-
channel” fallback implementation as a standalone version.4 This library uses
the P-interface of the MPI standard, which makes it possible to redefine MPI
functions. At the initialization of the MPI setting the library creates an opaque
communicator, called blackchannel, on which a pending MPI_Irecv request is
waiting. Once a communicator is revoked, the revoking rank sends messages to
the pending blackchannel request. To avoid deadlocks, we use MPI_Waitany to
wait for a request, which listens also for the blackchannel request. All blocking
communication is redirected to non-blocking calls using the P-interface. The library
is linked via LD_PRELOAD which makes it usable without recompilation and could
be removed easily once a proper ULFM implementation is available in MPI.

Figure 1 shows a benchmark comparing the time which is used for duplicating a
communicator, revoking it and restore a valid state. The benchmark was performed
on PALMA2, the HPC cluster of the University of Muenster. Three implementations
are compared; OpenMPI_BC and IntelMPI_BC are using the blackchannel library
based on OpenMPI and IntelMPI, respectively. OpenMPI_ULFM uses the ULFM

4https://gitlab.dune-project.org/exadune/blackchannel-ulfm.

https://gitlab.dune-project.org/exadune/blackchannel-ulfm
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Fig. 1 Benchmark of different MPI implementations: 12 nodes with 36 processes (left), 48 nodes
with 36 processes (right), cf. [18]

implementation provided by fault-tolerance.org, which is based on OpenMPI.
We performed 100 measurements for each implementation. The blackchannel
implementation is competitive to the ULFM implementation. As OpenMPI is in
this configuration not optimized and does not use the RDMA capabilities of the
interconnect, it is slower than the IntelMPI implementation. The speed up of the
OpenMPI_ULFM version compared to the OpenMPI_BC version is due to the better
communication strategy.

2.3 Compressed in-Memory Checkpointing for Linear Solvers

The previously described parallel exception propagation, rank loss detection and
communicator restoration by using the ULFM extension, allow us to implement a
flexible in-memory checkpointing technique which has the potential to recover from
hard faults on-the-fly without any user interaction. Our implementation establishes a
backup and recovery strategy which in part is based on a local-failure local-recovery
(LFLR) [54] approach, and involves lossy compression techniques to reduce the
memory footprint as well as bandwidth pressure. The contents of this subsection
have not been published previously.

Modified Solver Interface To enable the use of exception propagation as
illustrated in the previous section and to implement different backup recovery
approaches we kept all necessary modifications to DUNE-ISTL, the linear solver
library. We embed the solver initialisation and the iterative loop in a try-catch block,
and provide additional entry and execution points for recovery and backup, see
Listing 2 for details. Default settings are provided on the user level, i.e., DUNE-
PDELAB.

http://fault-tolerance.org
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� �

1 init_variables();
2 done = false;
3 while (!done) try {
4 MPIGuard guard(comm);
5 if (this->processRecovery(...))
6 reinit_execution();
7 } else {
8 init_execution();
9 }

10 for (i=0 ; i<=maxit; i++ ) {
11 do_iteration();
12 if (converged) {
13 done = true;
14 break;
15 }
16 this->processBackup(...);
17 }
18 } catch(Exception & e) {
19 done = false;
20 comm.reconstitute();
21 if (!this->processOnException(...))
22 throw;
23 }

� �

Listing 2 Solver modifications

This implementation ensures that the iterative solving process is active until the
convergence criterion is reached. An exception inside the try-block on any rank is
detected by the MPIGuard and propagated to all other ranks, so that all ranks will
jump to the catch-block.

This catch-block can be specialised for different kind of exceptions, e.g., if a
solver has diverged and a corresponding exception is thrown it could define some
specific routine to define a modified restart with a possibly more robust setting
and/or initial guess. The catch-block in Listing 2 exemplarily shows a possible
solution in the scenario of a communicator failure, e.g., a node loss which is
detected by using the ULFM extension to MPI, encapsulated by our wrapper for
MPI exceptions. Following the detection and propagation, all still valid ranks end
up in the catch-block and the communicator must be re-established in some way
(Listing 2, line 20). This can be done by shrinking the communicator or replacing
lost nodes by some previously allocated spare ones. After the communicator
reconstitution a user-provided stack of functions can be executed (Listing 2, line 21)
to react on the exception. If there is no on-exception-function or neither of them
returns true the exception is re-thrown to the next higher level, e.g., from the linear
solver to the application level, or in case of nested solvers, e.g. in optimisation or
uncertainty quantification.

Furthermore, there are two additional entry points for user provided function
stacks: In line 5 of Listing 2 a stack of recovery functions is executed and if it
returns true, the solver expects that some modification, i.e., recovery, has been done.
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In this case it could be necessary that the other participating ranks have to update
some data, like resetting their local right hand side to the initial values. The backup
function stack in line 16 allows the user to provide functions for backup creation
etc., after an iteration finished successfully.

Recovery Approaches First, regardless of these solver modifications, we describe
the recovery concepts which are implemented into an exemplary recovery inter-
face class providing functions that can be passed to the entry points within the
modified solver. The interoperability of these components and the available backup
techniques are described later. Our recovery class supports three different methods
to recover from a data loss. The first approach is a global rollback to a backup,
potentially involving lossy compression: progress on non-faulty ranks may be lost
but the restored data originate from the same state, i.e., iteration. This means there
is no asynchronous progression in the recovered iterative process but possibly
just an error introduced through the used backup technique, e.g., through lossy
compression. This compression error can reduce the quality of the recovery and
lead to additional iterations of the solver, but is still superior to a restart, as seen
later. For the second and third approaches, we follow the local-failure local-recovery
strategy and re-initialize the data which are lost on the faulty rank by using a
backup. The second, slightly simpler strategy uses these data to continue with solver
iterations. The third method additionally smoothes out the probably deteriorated
(because of compression) data by solving a local auxiliary problem [29, 31]. This
problem is set up by restricting the global operator to its purely local degrees of
freedom with indices F ⊂ N and a Dirichlet boundary layer. The boundary layer
can be obtained by extending F to some set J using the ghost layer, or possibly
the connectivity pattern of the operator A. The Dirichlet values on the boundary
layer are set to their corresponding values xN on the neighbouring ranks and thus
additional communication is necessary:

A(F,F)x̃(F) = b(F) in F

x̃ = xN on J\F

If this problem is solved iteratively and backup data are available, the computa-
tion speed can be improved by initializing x̃ with the data from the backup.

Backup Techniques Our current implementation provides two different techniques
for compressed backups as well as a basic class which allows ‘zero’-recovery
(zeroeing of lost data) if the user wants to use the auxiliary solver in case of data
loss without storing any additional data during the iterative procedure.

The next backup class uses a multigrid hierarchy for lossy data compression.
Thus it should only be used if a multigrid operator is already in use within
the solving process because otherwise the hierarchy has to be built beforehand
and introduces additional overhead. Compressing the iterative vector with the
multigrid hierarchy currently involves a global communication. In addition there
is no adaptive control of the compression depth (i.e., hierarchy level where the
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backup is stored), but it has to be specified by the user, see a previous publication
for details [29].

We also implemented a compressed backup technique based on SZ compres-
sion [41]. SZ allows compression to a specified accuracy target and can yield better
compression rates than multigrid compression. The compression itself is purely
local and does not involve any additional communication. We provide an SZ backup
with a fixed user-specified compression target as well as a fully adaptive one which
couples the compression target to the residual norm within the iterative solver. For
the first we achieve an increased rate while we approach the approximate solution,
as seen in Fig. 2 (top, pink lines), at the price of an increased overhead in case of a
data loss (cf. Fig. 3). The backup with adaptive compression target (blue lines) gives
more constant compression rates, and a better recovery in case of faults in particular
in the second half of the iterative procedure of the solver.

The increased compression rate for the fixed SZ backup is obtained because, dur-
ing the iterative process, the solution gets more smooth and thus can be compressed
better by the algorithm. For the adaptive method this gain is counteracted by the
demand of a higher compression accuracy.

All backup techniques require to communicate a data volume smaller than the
volume of four full checkpoints, see Fig. 2 (bottom). Furthermore this bandwidth
requirement is distributed over all 68 iterations (in the fault-free scenario) and could
be decreased further by a lower checkpoint frequency.

The chosen backup technique is initiated before the recovery class and passed to
it. Further backup techniques can be implemented by using the provided base class
and overloading the virtual functions.

Bringing the Approaches Together The recovery class provides three functions
which are added to the function stacks within the modified solver interface. The

Fig. 2 Compression rate in the iterative solution for an anisotropic Poisson problem on 52 cores
with approximately 480 K DOF per core



236 P. Bastian et al.

backup routine is added to the stack of backup functions of the specified iterative
solver and generates backups of the current iterative solution by using the provided
backup class.
� �

SomeSolver solver;
SomeBackup backup;
Recovery recovery(backup);
solver.addBackupFunction(&Recovery::backup, &recovery);

� �

To adapt numerical as well as communication overhead for different fault
scenarios and machine characteristics, the backup creation frequency can be varied.
After the creation of the backup it is sent to a remote rank where it is kept in memory
but never written to disk. In the following this is called ‘remote backup’. Currently
the backup propagation happens circular by rank. It is also possible to trigger writing
a backup to disk.

In the near future we will implement an on-the-fly recovery if an exception
is thrown. These will be provided to the other two function stacks and will
differ depending on the availability of the ULFM extensions: if the extension
is not available we can only detect and propagate exceptions but not recover a
communicator in case of hard faults, i.e., node losses (cf. Sect. 2.2). In this scenario
the function provided to the on-exception stack will only write out the global state.
Fault-free nodes will write the data of the current iterative vector, whereas for
faulty nodes the corresponding remote backup is written. In the following the user
will be able to provide a flag to the executable which modifies the backup object
initiation to read in the stored checkpoint data. Afterwards the recovery function of
our interface will overwrite the initial values of the solver with the checkpointed and
possibly smoothed data like described above. If the ULFM extensions are available,
the recovery can be realised without any user interaction: during the backup class
initiation a global communication ensures that it is the first and therefore fault-free
start of the parallel execution. If the process is a respawned one which replaces a
lost rank, this communication is matched by a send communication created from
the rank which holds the corresponding remote backup. This communication will
be initiated by the on-exception function. In addition to this message the remote
backup rank sends the stored compressed backup so that the respawned rank can
use this backup to recover the lost data.

So far, we have not fully implemented rebuilding the solver and preconditioner
hierarchy, and the re-assembly of the local systems, in case of a node loss.
This can be done with, e.g., message logging [13], or similar techniques which
allow recomputing the individual data on the respawned rank without additional
communication.

Figure 3 shows the effect of various combinations of different backup and
recovery techniques in case of a data loss on one rank after iteration 60. The problem
is an anisotropic Poisson problem with zero Dirichlet boundary conditions which
reaches the convergence criterion after 68 iterations in a fault-free scenario (black
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Fig. 3 Convergence history in case of data loss and recovery on one rank, same setting as in Fig. 2.
Bottom left: number of iterations to solve the auxiliary problem when using the backups as initial
guess. Note that the groups of the same colour are important, not the individual graphs

line). It is executed in parallel on 52 ranks with approximately 480,000 degrees of
freedom per rank. Thus one rank loss corresponds to a loss of around 2% of data.
For solving a conjugate gradient solver with an algebraic multigrid preconditioner
is applied. In addition to the residual norm we show the number of iterations which
are needed to solve the auxiliary problem when using different backups as initial
guess at the bottom left.

The different backup techniques are colour-coded (multigrid: red; adaptive SZ
compression: blue; fixed SZ compression: pink; no backup: green). For the SZ
techniques we consider two cases, each with a different compression accuracy
(fixed compression), respectively a different additional scaling coefficient (SZ).
Recovery techniques are coded with different line styles: global roll-back recovery
is indicated by straight lines; simple local recovery is shown with dotted lines
and if an auxiliary problem is solved to improve the quality of the recovery it
is drawn with a dashed line style. We observe that a zero recovery, multigrid
compression and a fixed SZ backup with a low accuracy target are not competitive if
no auxiliary problem is solved. The number of iterations needed until convergence
then increases significantly. By applying an auxiliary solver the convergence can be
almost fully restored (one additional global iteration) but the auxiliary solver needs
a high amount of iterations (multigrid: 28; sz: 70; no backup: 132). Other backup
techniques only need 8 auxiliary solver iterations. When using adaptive or very
accurate fixed SZ compression the convergence behaviour can be nearly preserved
even when only a local recovery or a global roll-back is applied. The adaptive
compression technique has similar data overhead as the fixed SZ compression
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(cf. Fig. 2, bottom) but gives slightly better results: both adaptive SZ compression
approaches introduce only one additional iteration for all recovery approaches.
For the accurate fixed SZ compression (SZfixed_*_1e-7) we have two additional
iterations when using local or global recovery but if we apply the auxiliary solver
we also have only one additional iteration until convergence.

2.4 Communication Aware Krylov Solvers

In Krylov methods multiple scalar products per iteration must be computed. This
involves global sums in a parallel setting. As a first improvement we merged the
evaluation of the convergence criterion to the computation of a scalar product.
Obviously this does not effect the computed values, but the iteration terminates one
iteration later. However this reduces the number of global reductions per iteration
from 3 to 2 and thus already saves communication overhead.

As a second step we modify the algorithm, such that only one global com-
munication is performed per iteration. This algorithm can also be found in the
paper of Chronopoulos and Gear [15]. Another optimization is to overlap the two
scalar products with the application of the operator and preconditioner, respectively.
This algorithm was first proposed by Gropp [27]. A fully elaborate version was
then presented by Ghysels and Vanroose [27]. This version only needs one global
reduction per iteration, which is overlapped with both the application of the
preconditioner and operator. This algorithm is shown in Algorithm 2.

Algorithm 1 PCG
r0 = b − Ax0
p1 = Mr0

ρ1 = 〈p1, r0〉
for i = 1, . . . do

qi = Api

αi = 〈pi, qi〉
xi = xi−1 + ρi

αi
pi

ri = ri−1 − ρi

αi
qi

zi+1 = Mri
break if ‖ri‖ < ε

ρi+1 = 〈zi+1, ri〉
pi+1 = ρi+1

ρi
pi + zi+1
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Algorithm 2 Pipelined CG
r0 = b − Ax0
p1 = Mr0
q1 = Ap1
ρ1 = 〈p1, r0〉
α1 = 〈p1, q1〉
s1 = Mq1
t1 = As1
for i = 1, . . . do

xi = xi−1 + ρi

αi
pi

ri = ri−1 − ρi

αi
qi

break if ‖ri‖ < ε

zi+1 = zi − ρi

αi
si

wi+1 = wi − ρi

αi
ti

ρi+1 = 〈zi+1, ri〉
α̃i+1 = 〈zi+1, wi+1〉
αi+1 = αiρ

2
i+1

ρ2
i

+ α̃i+1

vi+1 = Mwi+1
ui+1 = Avi+1
si+1 = ρi+1

ρi
si + vi+1

ti+1 = ρi+1
ρi

ti + ui+1

pi+1 = ρi+1
ρi

pi + zi+1

qi+1 = ρi+1
ρi

qi + wi+1

With the new communication interface, described above, we are able to compute
multiple sums in one reduction pattern and overlap the communication with
computation. To apply these improvements in Krylov solvers the algorithm must
be adapted, such that the communication is independent of the overlapping com-
putation. For this adaption we extend the ScalarProduct interface by a function
which can be passed multiple pairs of vectors for which the scalar product should
be computed. The function returns a Future which contains a std::vector<

field_type>, once it has finished.
� �

Future<vector<field_type>>
dots(initializer_list<tuple<X&, X&>> pairs);

� �

The function can be used in the Krylov methods like this:
� �

scalarproduct_future = sp.dot_norm({{p,q}, {z, b}, {b,b}});
// compute while communicate
auto result = scalarproduct_future.get();
field_type p_dot_q = result[0];
field_type z_dot_b = result[1];
field_type norm_b = std::sqrt(result[2]);

� �

The runtime improvement of the algorithm strongly depends on the problem size
and on the hardware. On large systems the communication overhead makes up a
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Table 1 Memory requirement, computational effort and global reductions per iteration for
different versions of the preconditioned conjugate gradients method

Required memory Additional computational effort Global reductions

PCG 4N – 2

Chronopoulos and Gear 6N 1N 1

Gropp 6N 2N 2 overlapped

Ghysels and Vanroose 10N 5N 1 overlapped

Fig. 4 Strong scaling for (pipelined) Krylov subspace methods

large part of the runtime. However, the maximum speedup is 3 for reducing the
number of global reductions and 2 for overlapping communication and computation,
compared to the standard version, so that a maximum speedup of 6 is possible.
The optimization also increases the memory requirements and vector operations per
iteration. An overview of runtime and memory requirements of the methods can be
found in Table 1.

Figure 4 shows strong scaling for different methods. The shown speedup is
per iteration and with respect to the Dune::CGSolver, which is the current CG
implementation in DUNE. We use an SSOR preconditoner in an additive overlapping
Schwarz setup. The problem matrix is generated from a 5-star Finite Difference
model problem. With less cores the current implementation is faster than our
optimized one. But with higher core count our optimized version outperforms it.
The test was executed on the helics3 cluster of the University on Heidelberg,
with 5600 cores on 350 nodes. We expect that on larger systems the speedup
will further increase, since the communication is more expensive. The overlap of
communication and computation does not really come into play, since the currently
used MPI version does not support it completely.
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3 Hardware-Aware, Robust and Scalable Linear Solvers

In this section we highlight improved concepts for high-performance iterative
solvers. We provide matrix-based robust solvers on GPUs using sparse approximate
inverses and optimize algorithm parameters using machine learning. On CPUs
we significantly improve the node-level performance by using optimal matrix-
free operators for Discontinous Galerkin methods, specialized partially matrix-free
preconditioners as well as vectorized linear solvers.

3.1 Strong Smoothers on the GPU: Fast Approximate Inverses
with Conventional and Machine Learning Approaches

In continuation of the first project phase, we enhanced the assembly of sparse
approximate inverses (SPAI), a kind of preconditioner that we had shown to be
very effective within the DUNE solver before [9, 26]. Concerning the assembly
of such matrices we have investigated three strategies regarding their numerical
efficacy (that is their quality in approximating A−1), the computational complexity
of the actual assembly and ultimately, the total efficiency of the amortised assembly
combined with all applications during a system solution. For both strategies, this
includes a decisive performance engineering for different hardware architectures
with focus on the exploitation of GPUs.

SPAI-1 As a starting point we have developed, implemented and tuned a fast
SPAI-1 assembly routine based on MKL/LAPACK routines (CPU) and on the
cuBlas/cuSparse libraries, performing up to four times faster on the GPU. This
implementation is based on the batched solution of QR decompositions that arise in
Householder transformations during the SPAI minimisation process. In many cases,
we observe that the resulting preconditioner features a high quality comparable to
Gauss–Seidel methods. Most importantly, this result still holds true when taking
into account the total time-to-solution, which includes the assembly time of the
SPAI, even on a single core where the advantages of SPAI preconditioning over
forward/backward substitution during the iterative solution process are not yet
exploited. More systematic experiments with respect to these statements as well
as their extension to larger test architectures are currently being conducted.

SAINV This preconditioner creates an approximation of the factorised inverse
A−1 = ZDR of a matrix A ∈ R

N×N with D being a diagonal, Z an upper triangular
and R a lower triangular Matrix.

To describe our new GPU implementation, we write the row-wise updates in
the right-looking, outer product form of the A-biconjugation-process of the SAINV
factorisation as follows: The assembly of the preconditioner is based on a loop over
the existing rows i ∈ {1, . . . , N} of Z (initialised as unit matrix IN ), where in every
iteration the loop generally calls three operations, namely a sparse-matrix vector
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Algorithm 3 Algorithm of the row-wise updates
for (j = i + 1, . . . , N) do

if Djj �= 0 then � check if the fraction is unequal to zero

α ← −Djj

Dii
zzz
(i−1)
i

for n = 1, . . . ,nnz(α) do
if αn > ε ∗ maxi,j (Aij ) then � here αn is the n-th entry of the vector α

if check(zn
i ,zn

j ) then � Has zj already an entry at the columnindex of the n-th entry of α ?

add(zn
j ,αn)

update_minimum(zj ) � get new min. value of j-th row

else if nnz(zj ) < ω × nnz(A)
dim(A)

then � maximum number of rowentries already reached?

insert(zj ,αn) � insert the value αn at the fitting position

update_minimum(zj )
else if αn > min(zj ) then � check if the value of αn is bigger than the minimum of zj

replace(min(zj ),αn) � replace the old minimum with the value of αn

update_minimum(zj )

multiplication, a dot product and an update of the remaining rows i + 1, . . . , N

based on a drop-parameter ε.
In our implementation we use the ELLPACK and CSR formats, pre-allocating

a fixed amount of nonzeros of the matrix Z using ω times the average number of
nonzeros per row of A. Having a fixed row size, no reallocation of the arrays of the
matrix format is needed and the row-wise update can be computed in parallel. This
idea is based on the observation that while the density ω for typical drop tolerances
is not strictly limited, it generally falls into the interval ]0, 3[. As the SpMV and
the dot kernels are well established, we take a closer look at the row-wise update,
which is described more detailed in Algorithm 3. We first compute the values to be
added and store them in a variable α. Then we iterate over all nonzero entries of α

(which of course has the same sparsity pattern as zi ) and check if the computed value
exceeds a certain drop-tolerance. If this condition is met, we have three conditions
for an insertion into the matrix Z:

1. Check if there is already an existing nonzero value in the j -th row at the column
index of the value αn and search for the new minimal entry of this row.

2. Else check if there is still place in the j -th row, so we can simply insert the value
αn into that row and search for the new minimal entry of this row.

3. Else check if the value αn is greater than the current minimum. If this condition
is satisfied, then switch the old minimal value with αn and search for the new
minimal entry of this row.

If none of these conditions is met, we drop the computed value without updating
the current column and repeat these steps for the next values unequal to zero of the
current row. This cap of values for each row also has the following disadvantages: by
having a too small maximum of nonzeros per row, a qualitative A-orthogonalization
cannot be performed. To avoid this case we only take values of ω greater than one,
which seems to be sufficient. Also, if a row has already reached the maximum
number of nonzeros, additional but relatively small values may be dropped. This
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Fig. 5 GPU smoother comparison, isotropic and anisotropic Poisson benchmarks

can become an issue if the sum of these small numbers leads to a relevant entry
in a later iteration. For a comparison, Fig. 5 depicts the time-to-solution for V-
cycle multigrid using different strong smoothers on a P100 GPU. All smoothers are
constructed using 8 Richardson iterations with (reasonably damped if necessary)
preconditioners such as Jacobi, Gauss–Seidel, ILU-0, SPAI-1, SPAI-ε and SAINV.
We set up the benchmark case from a 2D Poisson problem in the isotropic case and
with two-sided anisotropies in the grid to harden the problem even for well-ordered
ILU approaches. The SPAI approaches are the best choice for the smoother on the
GPU.

Machine Learning Finally we started investigating how to construct approximate
inverses using methods from Machine Learning [53]. The basic idea here is to
treat A−1 as a discrete function in the course of a function regression process. The
neural network therefore learns how to deduct (extrapolate) an approximation of
the inverse. Once trained with many data pairs of matrices and their inverse (a
sparse representation of it) a neural network like a multilayer perceptron can be
able to approximate inverses rapidly. As a starting point we have employed the
finite element method for the Poisson equation on different domains with linear
basis functions and have used it to generate expedient systems of equations to solve.
Problems of this kind are usually based on sparse M-matrices with characteristics
that can be used to reduce the calculation time and effort of the neural network
training and evaluation. Our results show that given the pre-defined quality of the
preconditioner (equivalent to the ε in a SPAI-ε method), we can by far numerically
outperform even Gauss–Seidel. Using Tensorflow [1] and numpy [4], the learning
algorithm can even be performed on the GPU. Here we have used a three-layered
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fully-connected perceptron with fifty neurons in each layer plus input and output
layers, and employed the resulting preconditioners in a Richardson method to solve
the mentioned problem on a three times refined L-domain with a fixed number of
degrees of freedom. The numerical effort of each evaluation of the neural network
is basically the effort of a matrix-vector-multiplication for each layer in which the
matrix size depends on the number of neurons per layer (M) and the non zero
entries (N) of the input matrix, like O(NM) for the first layer. The inner layers’
effort, without input and output layer, just depends on the number of neurons. The
crucial task now is to balance the quality of the resulting approximation and the
effort to evaluate the network. We use fully connected feed-forward multilayer
perceptrons as a starting point. Fully connected means that every neuron in the
network is connected to each neuron of the next layer. Moreover there are no
backward connections between the different layers (feed-forward). The evaluation
of such neural networks is a sequence of chained matrix-vector products.

The entries of the system matrix are represented vector-wise in the input layer
(cf. Fig. 6). In the same way, our output layer contains the entries of the approximate
inverse. Between these layers we can add a number of hidden layers consisting of
hidden neurons. How many hidden neurons we need to create strong approximate
inverses is a key design decision and we discuss this below. In general our
supervised training algorithm is a backward propagation with random initialisation.
Alongside a linear propagation function itotal = W · ototal + b with the total (layer)
net input itotal, the weight matrix W, the vector for the bias weights b and the total
output of the previous layer ototal, we use the rectified linear unit (ReLu) function as
activation function α(x) and thus we can calculate the output y of each neuron as
y := α(

∑
j oj · wij). Here oj is the output of the preceding sending units and wij are

the corresponding weights between the neurons.
For the optimization we use the L2 error function and update the weights with

w
(t+1)
ij = w

(t)
ij + γ · oi · δj, with the output oi of the sending unit and learning rate

γ . δj symbolises the gradient decent method:

δj =
{

f ′(ij) · (ôj − oj) if neuron j is an output neuron
f ′(ij) ·∑k∈S(δk · wkj ) if neuron j is a hidden neuron.

Fig. 6 Model of a neural network for matrix inversion, cf. [53]
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Fig. 7 Results for the defect correction with the neural network, cf. [53]

For details concerning the test/training algorithm we refer to a previous publica-
tion [53]. For the defect correction prototype, we find a significant speedup for a
moderately anisotropic Poisson problem, see Fig. 7.

3.2 Autotuning with Artificial Neural Networks

Inspired by our usage of Approximate Inverses generated by artificial neural
networks (ANNs), we exploit (Feed Forward-) neural networks (FNN) for the
automatic tuning of solver parameters. We were able to show that it is possible to
use such an approach to provide much better a-priori choices for the parametrisation
of iterative linear solvers. In detailed studies for 2D Poisson problems we conducted
benchmarks for many test matrices and autotuning systems using FNNs as well as
convolutionary neural networks (CNNs) to predict the ω parameter in a SOR solver.
In Fig. 8 we depict 100 randomly choosen samples of this study. It can be seen that
even for good a-priori choices of ω the NN-driven system can compete whilst ‘bad’
choices (labeled constant) might lead to a stalling solver.

3.3 Further Development of Sum-Factorized Matrix-Free DG
Methods

While we were able to achieve good node-level performance with our matrix-free
DG methods in the first funding period, our initial implementations still did not
utilize more than about 10% of the theoretical peak FLOP throughput. In the second
funding period, we systematically improved on those results by focusing on several
aspects of our implementation:
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Fig. 8 Result for 100 samples of the FNN-based autotuning system for the ω parameter in SOR

Introduction of Block-Based DOF Processing Our implementation is based
on DUNE-PDELAB, a very flexible discretization framework for both continuous
and discontinuous discretizations of PDEs. In order to support a wide range of
discretizations, PDELab has a powerful system for mapping DOFs to vector and
matrix entries. Due to this flexibility, the mapping process is rather expensive. On
the other hand, Discontinuous Galerkin values will always be blocked in a cell-wise
manner. This can be exploited by only ever mapping the first degree of freedom
associated with each cell and then assuming that all subsequent values for this cell
are directly adjacent to the first entry. We have added a special ‘DG codepath’ to
DUNE-PDELAB which implements this optimization.

Avoiding Unnecessary Memory Transfers As all of the values for each cell are
stored in consecutive locations in memory, we can further optimize the framework
behavior by skipping the customary gather/scatter steps before and after the
assembly of each cell and facet integral. This is implemented by replacing the
data buffer normally passed to the integration kernels with a dummy buffer that
stores a pointer to the first entry in the global vector/matrix and directly operates on
the global values. This is completely transparent to the integration kernels, as they
only ever access the global data through a well-defined interface on these buffer
objects. Together with the previous optimization, these two changes have allowed
us to reduce the overhead of the framework infrastructure on assembly times from
more than 100% to less than 5%.

Explicit Vectorization The DG implementation used in the first phase of the
project was written as scalar code and relied on the compiler’s auto vectorization
support to utilize the SIMD instruction set of the processor, which we tried to
facilitate by providing compile time loop bounds and aligned data structures. In
the second phase, we have switched to explicit vectorization with a focus on AVX2,
which is a common foundation instruction set across all current ×86-based HPC
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processors. We exploit the possibilities of our C++ code base and use a well-
abstracted library which wraps the underlying compiler intrinsic calls [23]. In a
separate project [34], we are extending this functionality to other SIMD instruction
sets like AVX512.

Loop Reordering and Fusion While vectorization is required to fully utilize
modern CPU architectures, it is not sufficient. We also have to feed the execution
units with a substantial number of mutually independent chains of computation
(≈40–50 on current CPUs). This amount of parallelism can only be extracted from
typical DG integration kernels by fusing and reordering computational loops. In
contrast to other implementations of matrix-free DG assembly [22, 43], we do not
group computations across multiple cells or facets, but instead across quadrature
points and multiple input/output variables. In 3D, this works very well for scalar
PDEs that contain both the solution itself and its gradient, which adds up to four
quantities that exactly fit into an AVX2 register.

Results Table 2 compares the throughput and the hardware efficiency of our
matrix-free code for two diffusion-reaction problems A (axis-parallel grid, constant
coefficients per cell) and B (affine geometries, variable coefficients per cell) with
a matrix-based implementation. Figure 9 compares throughput and floating point
performance of our implementation for these problems as well as an additional
problem C with multi-linear geometries, demonstrating that we are able to achieve
more than 50% of theoretical peak FLOP rate on this machine as well as a good
computational processing rate as measured in DOFs/s.

While our work in this project was mostly focused on scalar diffusion-advection-
reaction problems, we have also applied the techniques shown here to projection-
based Navier–Stokes solvers [51]. One important lesson learned was the unsustain-
able amount of work required to extend our approach to different problems and/or
hardware architectures. This led us to develop a Python-based code generator in
a new project [34], which provides powerful abstractions for the building blocks
listed above. This toolbox can be extended and combined in new ways to achieve
performance comparable to hand-optimized code. Especially for more complex
problems involving systems of equations, there are a large number of possible ways
to group variables and their derivatives into sum factorization kernels due to our
approach of vectorizing over multiple quantities within a single cell. The resulting
search space is too large for manual exploration, which the above project solved by
the addition of benchmark-driven automatic comparison of those variants. Finally,
initial results show good scalability of our code as shown by the strong scaling
results in Fig. 10. Our implementation shows good scalability until we reach a local
problem size of just 18 cells, where we still need to improve the asynchronicity of
ghost data communication and assembly.
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Fig. 9 Floating point performance in GFLOPs/s and throughput in MDOFs/s for full operator
application, 2× Intel Xeon E5-2698v3 2.3 GHz for all model problems
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Fig. 10 Runtimes for strong scalability on IWR compute cluster (416 nodes with 2× E5-2630 v3
each, 64 GiB/node, QDR Infiniband)

3.4 Hybrid Solvers for Discontinuous Galerkin Schemes

In Sect. 3.3 we concentrated on the performance of matrix-free operator appli-
cation. This is sufficient for instationary problems with explicit time integration,
but in case of stationary problems or implicit time integration, (linear) algebraic
systems need to be solved. This requires operator application and robust, scalable
preconditioners.

For this we extended hybrid AMG-DG preconditioners [8] in a joint work with
Eike Müller from Bath University, UK, [10]. In a solver for matrices arising from
higher order DG discretizations the basic idea is to perform all computations on
the DG system in a matrix-free fashion and to explicitly assemble only a matrix
in a low-order subspace which is significantly smaller. In the sense of subspace
correction methods [58] we employ a splitting

V
p
DG =

∑

T ∈Th

V
p
T + Vc
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where V
p
T is the finite element space of polynomial degree p on element T and the

coarse space Vc is either the lowest-order conforming finite element space V 1
h on the

mesh Th, or the space of piecewise constants V 0
h . Note that the symmetric weighted

interior penalty DG method from [21] reduces to the cell-centered finite volume
method with two-point flux approximation on V 0

h . Note also, that the system on Vc

can be assembled without assembling the large DG system.
For solving the blocks related to V

p
T , two approaches have been implemented.

In the first (named partially matrix-free), these diagonal blocks are factorized using
LAPACK and each iteration uses a backsolve. In the second approach the diagonal
blocks are solved iteratively to low accuracy using matrix-free sum factorization.
Both variants can be used in additive and multiplicative fashion. Figure 11 shows
that the partially matrix-free variant is optimal for polynomial degree p ≤ 5, but
starting from p = 6, the fully matrix-free version starts to outperform all other
options.

In order to demonstrate the robustness of our hybrid AMG-DG method we use
the permeability field of the SPE10 benchmark problem [14] within a heterogeneous
elliptic problem. This is considered to be a hard test problem in the porous media
community. The DG method from [21] is employed. Figure 12 depicts results for
different variants and polynomial degrees run in parallel on 20 cores. A moderate
increase with the polynomial degree can be observed. With respect to time-to-
solution (not reported) the additive (block Jacobi) partially matrix-free variant is
to be preferred for polynomial degree larger than one.

Fig. 11 Total solution time for different implementations and a range of block-solver tolerances ε

for the Poisson problem (left) and the diffusion problem with spatially varying coefficients (right),
cf. [10]
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10

Fig. 12 Convergence history for SPE10 benchmark. The relative energy norm is shown for
polynomial degrees 1 (red squares), 2 (blue upward triangles) and 3 (green downward triangles).
Results for the block-SSOR smoother are marked by filled symbols and results for the block-Jacobi
smoother by empty symbols. cf. [10]

3.5 Horizontal Vectorization of Block Krylov Methods

Methods like Multiscale FEM (see Sect. 4), optimization and inverse problems need
to invert the same operator for many right-hand-side vectors. This leads to a block
problem, by the following conceptual reformulation:

foreach i ∈ [0, N] : solve Axi = bi → solve AX = B,

with matrices X = (x0, . . . xN), B = (b0, . . . bN). Such problems can be solved
using Block Krylov solvers. The benefit is that the approximation space can grow
faster, as the solver orthogonalizes the updates for all right-hand-sides. Even for a
single right-hand-side Block Krylov based enriched Krylov methods can be used to
accelerate the solution process.

Preconditioners and the actual Krylov solver can be sped up using horizontal
vectorization. Assuming k right-hand-sides we observe that the scalar product
yields a k × k dense matrix and has O(k2) complexity. While the mentioned
larger approximation space should improve the convergence rate, this is only
true for weaker preconditioners, therefore we pursued a different strategy and
approximate the scalar product matrix by a sparse matrix, so that we again retain
O(k) complexity. In particular we consider the case of a diagonal or block-diagonal
matrix. The diagonal matrix basically results in k independent solvers running in
parallel, so that the performance gain is solely based on SIMD vectorization and the
associated favorable memory layout.
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Fig. 13 Horizontal vectorization of a linear solver for 256 right-hand-side vectors. Timings on a
Haswell-EP (E5-2698v3, 16 cores, AVX2, 4 lanes). Comparison with 1–16 cores and no SIMD,
AVX (4 lanes), AVX (4 × 4 lanes)

For the implementation in DUNE-ISTL we use platform portable C++ abstrac-
tions of SIMD intrinsics, building on the VC library[38] and some DUNE specific
extensions. We use this to exchange the underlying data type of the right-hand-side
and the solution vector, so that we no longer store scalars, but SIMD vectors. This
is possible when using generic programming techniques, like C++ templates, and
yields a row-wise storage of the dense matrices X and B. This row-wise storage is
optimal and ensures a high arithmetic intensity. The implementations of the Krylov
solvers have to be adapted to the SIMD data types, since some operations, like casts
and branches, are not available generically for SIMD data types. As a side effect, all
preconditioners, including the AMG, are now fully vectorized.

Performance tests using 256 right-hand-side vectors for a 3D Poisson problem
show nearly optimal speedup on a 64 core system (see Fig. 13). The tests are carried
out on a Haswell-EP (E5-2698v3, 16 cores, AVX2, 4 lanes). We observe a speedup
of 50, while the theoretical speedup is 64.

4 Adaptive Multiscale Methods

The main goal in the second funding phase was a distributed adaptive multilevel
implementation of the localized reduced basis multi-scale method (LRBMS [49]).
Like Multiscale FEM (MsFEM), LRBMS is designed to work on heterogenous
multiscale or large scale problems. It performs particularly well for problems that
exhibit scale separation with effects on both a fine and a coarse scale contributing
to the global behavior. Unlike MsFEM, LRBMS is best applied in multi-query
settings in which a parameterized PDE needs to be solved many times for different
parameters. As an amalgam of domain decomposition and model order reduction
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techniques, the computational domain is partitioned into a coarse grid with each
macroscopic grid cell representing a subdomain for which, in an offline pre-compute
stage, local reduced bases are constructed. Appropriate coupling is then applied
to produce a global solution approximation from localized data. For increased
approximation fidelity we can integrate localized global solution snapshots into the
bases, or the local bases can adaptively be enriched in the online stage, controlled
by a localized a-posteriori error estimator.

4.1 Continuous Problem and Discretization

We consider elliptic parametric multi-scale problems on a domain � ⊂ R
d where

we look for p(μ) ∈ Q that satisfy

b(p(μ), q; μ) = l(q) for all q ∈ H 1
0 (�), (1)

μ are parameters with μ ∈ P ⊂ R
p, p ∈ N. We let ε > 0 be the multi-scale

parameter associated with the fine scale. For demonstration purposes we consider
a particular linear elliptic problem setup in � ⊂ R

d (d = 2, 3) that exhibits a
multiplicative splitting in the quantities affected by the multi-scale parameter ε. It
is a model for the so called global pressure p(μ) ∈ H 1

0 (�) in two phase flow in
porous media, where the total scalar mobility λ(μ) is parameterized. κε denotes the
heterogenous permeability tensor and f the external forces. Hence, we seek p that
satisfies weakly in H 1

0 (�),

−∇ · (λ(μ)κε∇p(μ)) = f in �. (2)

With A(x; μ) := λ(μ)κε(x) this gives rise to the following definition of the forms
in (1)

b(p(μ), q; μ) :=
∫

�

A(μ)∇p · ∇q, l(q) :=
∫

�

f q.

For the discretization we first require a triangulation TH of � for the macro
level. We call the elements T ∈ TH subdomains. We then require each subdomain
be covered with a fine partition τh(T ) in a way that TH and τh := �T ∈TH

τh(T ) are
nested. We denote by FH the faces of the coarse triangulation and by Fh the faces
of the fine triangulation.

Let V (τh) ⊂ H 2(τh) denote any approximate subset of the broken Sobolev space
H 2(τh) := {q ∈ L2(�) | q|t ∈ H 2(t) ∀t ∈ τh}. We call ph(μ) ∈ V (τh) an
approximate solution of (1), if

bh

(
ph(μ), v; μ

) = lh(v; μ) for all v ∈ V (τh). (3)
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Here, the DG bilinear form bh and the right hand side lh are chosen according to the
SWIPDG method [20], i.e.

bh(v,w; μ) :=
∑

t∈τh

∫

t

A(μ)∇v · ∇w +
∑

e∈F(τh)

be
h(v,w; μ)

lh(v; μ) :=
∑

t∈τh

∫

t

f v,

where the DG coupling bilinear forms be
h for a face e is given by

be
h(v,w; μ) :=

∫

e

〈
A(μ)∇v · ne

〉[w] + 〈
A(μ)∇w · ne

〉[v] + σe(μ)

|e|β [v][w].

The LRBMS method allows for a variety of discretizations, i.e. approximation
spaces V (τh). As a particular choice of an underlying high dimensional approxima-
tion space we choose V (τh) = Qk

h := ⊕
T ∈TH

Q
k,T
h , where the discontinuous local

spaces are defined as

Q
k,T
h := Q

k,T
h (τh(T )) := {q ∈ L2(T ) | q|t ∈ Pk(t) ∀t ∈ τh(T )}.

4.2 Model Reduction

For model order reduction in the LRBMS method we choose the reduced space
Qred := ⊕

T ∈TH
QT

red ⊂ Qk
h with local reduced approximation spaces QT

red ⊂
Q

k,T
h . We denote pred(μ) to be the reduced solution of (3) in Qred. This formulation

naturally leads to solving a sparse blocked linear system similar to a DG approxi-
mation with high polynomial degree on the coarse subdomain grid.

The construction of subdomain reduced spaces QT
red is again very flexible.

Initialization with shape functions on T up to order k ensures a minimum fidelity.
Basis extensions can be driven by a discrete weak greedy approach which incor-
porates localized solutions of the global system. Depending on available com-
putational resources, and given a suitable localizable a-posteriori error estimator
η(pred(μ),μ), we can forego computing global high-dimensional solutions alto-
gether and only rely on online enrichment to extend QT

red ‘on the fly’. With online
enrichment, given a reduced solution pred(μ) for some arbitrary μ ∈ P, we first
compute local error indicators ηT (pred(μ),μ) for all T ∈ TH . If ηT (pred(μ),μ)

is greater than some prescribed bound δtol > 0, we solve on a overlay region
N(T ) ⊃ T and extend QT

red with pN(T )(μ)|T . Inspired by results in [17] we set
the overlay region’s diameter diam(N(T )) of the orderO(diam(T )|log(diam(T ))|).
In practice we use the completely on-line/off-line decomposable error estimator
developed in [49, Sec. 4] which in turn is based on the idea of producing a
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conforming reconstruction of the diffusive flux λ(μ)κε∇hph(μ) in some Raviart-
Thomas-Nédélec space V l

h(τh) ⊂ Hdiv(�) presented in [21, 56].
This process is then repeated until either a maximum number of enrichment steps

occur or ηT (pred(μ),μ) ≤ δtol.

Algorithm 4 Schematic representation of the LRBMS pipeline
Require: Ptrain ⊂ P
Require: Reconstruction operator Rh(pred(μ)) : Qred(TH ) → Qk

h(τh)

1: function GREEDYBASISGENERATION(δgrdy, η(pred(μ),μ)=None )
2: if η(pred(μ),μ) is not None then
3: E ← {η(pred(μi), μi ) | μi ∈ Ptrain}
4: else
5: E ← {||Rh(pred(μi )) − ph(μi )|| | μi ∈ Ptrain}
6: while E �= ∅ AND max(E) ≥ δgrdy do
7: i ← argmax(E)

8: compute ph(μi)

9: for all T ∈ TH do
10: extend QT

red with ph(μ)|T
11: E ← E \ Ei

12: Generate TH � Offline Phase
13: for all T ∈ TH do
14: create τh(T )

15: init QT
red with DG shape functions of order k

16: GREEDYBASISGENERATION(· · ·) � Optional
17: compute pred(μ) for arbitraryμ � Online phase
18: for all T ∈ TH do � Optional Adaptive Enrichment
19: η ← ηT (pred(μ),μ)

20: while η ≥ δtol do
21: compute pN(T )(μ)

22: QT
red ← pN(T )(μ)|T

4.3 Implementation

We base our MPI-parallel implementation of LRBMS on the serial version devel-
oped previously. In this setup the high-dimensional quantities and all grid structures
are implemented in DUNE. The model order reduction as such is implemented in
Python using pyMOR [45]. The model reduction algorithms in pyMOR follow a
solver agnostic design principle. Abstract interfaces allow for example projections,
greedy algorithms or reduced data reconstruction to be written without knowing
details of the PDE solver backend. The global macro grid TH can be any
MPI-enabled DUNE grid manager with adjustable overlap size for the domain
decomposition, we currently use DUNE-YASPGRID. The fine grids τh(T ) are
constructed using the same grid manager as on the macro scale, with MPI subcom-
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municators.These are currently limited to a size of one (rank-local), however the
overall scalability could benefit from dynamically sizing these subcommunicators
to balance communication overhead and computational intensity as demonstrated in
[36, Sec. 2.2]. The assembly of the local (coupling) bilinear forms is done in DUNE-
GDT [24], with pyMOR/Python bindings facilitated through DUNE-XT [46], where
DUNE-GRID-GLUE [19] generates necessary grid views for the SWIPDG coupling
between otherwise unrelated grids. Switching to DUNE-GRID-GLUE constitutes a
major step forward in robustness of the overall algorithm, compared to our previous
manually implemented approach to matching independent local grids for coupling
matrices assembly.

We have identified three major challenges in parallelizing all the steps in
LRBMS:

1. Global solutions ph(μ) of the blocked system in Eq. (3) with an appropriate
MPI-parallel iterative solver. With the serial implementation already using
DUNE-ISTL as the backend for matrix and vector data, we only had to generate
an appropriate communication configuration for the blocked SWIPDG matrix
structure to make the BiCGStab solver usable in our context. We tested this setup
on the SuperMUC Petascale System in Garching. The results in Fig. 14 show very
near ideal speedup from 64 nodes with 1792 MPI ranks up to a full island with
512 nodes and 14336 ranks.

2000 4000 6000 8000 10000 12000 14000
# Cores

2

4

6

8

Sp
ee

du
p

Overall
Assembly
BiCGStab
Ideal

Fig. 14 Localized Reduced Basis Method: Block-SWIPDG speedup results; linear system solve
(green), discretization and system assembly (blue), theoretic ideal speedup (violet) and actual
achieved speedup for the overall run time (red). Simulation on ∼7.9 · 106 cubical cells shows
minimum 94% parallel efficiency, scaling from 64 to 512 nodes (SuperMUC Phase 2)
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2. (Global) Reduced systems also need a distributed solver. By design all
reduced quantities in pyMOR are, at the basic, unabstracted level, NumPy
arrays [57]. Therefore we cannot easily re-use the DUNE-ISTL based solvers for
the high-dimensional systems. Our current implementation gathers these reduced
system matrices from all MPI-ranks to rank 0, recombines them, solves the
system with a direct solver and scatters the solution. There is great potential in
making this step more scalable by either using a distributed sparse direct solver
like Mumps [3] or translating the data into the DUNE-ISTL backend.

3. Adaptive online enrichment is inherently load imbalanced due to its local-
ized error estimator guidance. The load imbalance results from one rank idling
while waiting to receive updates to a basis on a subdomain in its overlap region
from another rank. This idle time can be minimized by encapsulating the update
in a MPIFuture described in Sect. 2.1. This will allow the rank to continue in its
own enrichment process until the updated basis is actually needed in a subsequent
step.

5 Uncertainty Quantification

The solution of stochastic partial differential equations (SPDEs) is characterized by
extremely high dimensions and poses great (computational) challenges. Multilevel
Monte Carlo (MLMC) algorithms attract great interest due to their superiority over
the standard Monte Carlo approach. Based on Monte Carlo (MC), MLMC retains
the properties of independent sampling. To overcome the slow convergence of MC,
where many computationally expensive PDEs have to be solved, MLMC combines
in a proper way cheap MC estimators and expensive MC estimators, achieving
(much) faster convergence. One of the critical components of the MLMC algorithms
is the way in which the coarser levels are selected. The exact definition of the
levels is an open question and different approaches exist. In the first funding phase,
Multiscale FEM was used as a coarser level in MLMC. During the second phase,
the developed parallel MLMC algorithms for uncertainty quantification were further
enhanced. The main focus was on exploring the capabilities of the renormalization
approach for defining the coarser levels in the MLMC algorithm, and on using
MLMC as a coarse grained parallelization approach.

Here, we employ MLMC to exemplarily compute the mean flux through
saturated porous media with prescribed pressure drop and known distribution of
the random coefficients.

Mathematical Problem As a model problem in R
2 or R3, we consider steady state

single phase flow in random porous media:

−∇ · [k(x, ω)∇p(x, ω)] = 0 for x ∈ D = (0, 1)d, ω ∈ �
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subject to the boundary conditions px=0 = 1 and px=1 = 0 and zero flux on
other boundaries. Here p is pressure, k is scalar permeability, and ω is a random
vector. The quantity of interest is the mean (expected value) E[Q] of the total flux
Q through the inlet of the unit cube i.e., Q(x,ω) := ∫

x=0 k(x, ω)∂np(x, ω)dx.
Both the coefficient k(x, ω) and the solution p(x, ω) are subject to uncertainty,
characterized by the random vector ω in a properly defined random space �. For
generating permeability fields we consider the practical covariance C(x, y) =
σ 2exp(−||x−y||2/λ). An algorithm based on forward and inverse Fourier transform
over the circulant covariance matrix is used to generate the permeability field. For
solving the deterministic PDEs a Finite Volume method on a cell centered grid is
used [32]. More details and further references can be found in a previous paper [47].

Monte Carlo Simulations To quantify the uncertainty, and compute the mean of
the flux we use a MLMC algorithm. Let ωM be a random vector over a properly
defined probability space, and QM be the corresponding flux. It is known that
E[QM ] can be made arbitrarily close to E[Q] by choosing M sufficiently large. The
standard MC algorithm convergences very slowly, proportionally to the variance
over the square root of the number of samples, which makes it often unfeasible.
MLMC introduces L levels with the L-th level coinciding with the considered
problem, and exploits the telescopic sum identity:

E[QL
M(ω)] = E[Q0

M(ω)] + E[Q1
M(ω) − Q0

M(ω)] + . . . E[QL
M(ω) − QL−1

M (ω)]

The notation Y l = Q1 − Ql−1 is also used. The main idea of MLMC is to
properly define levels, and combine a large number of cheap simulations, that are
able to approximate the variance well, with a small number of expensive correction
simulations providing the needed accuracy. For details on Monte Carlo and MLMC
we refer to previous publications [32, 47] and the references therein. Here, the target
is to estimate the mean flux on a fine grid, and we define the levels as discretizations
on coarser grids. In order to define the permeability at the coarser levels we use the
renormalization approach.

MLMC has previously run the computations at each level with the same
tolerance. However, in order to evaluate the number of samples needed per level,
one has to know the variance at each level. Because the exact variance is not known
in advance, MLMC starts by performing simulations with a prescribed, moderate
number of samples per level. The results are used to evaluate the variance at each
level, and thus to evaluate the number of samples needed per level. This procedure
can be repeated several times in an Estimate–Solve cycle. At each estimation step,
information from all levels is needed, which leads to a synchronization point in the
parallel realization of the algorithm. This may require dynamic redistribution of the
resources after each new evaluation.

MLMC can provide a coarse graining in the parallelization. A well balanced
algorithm has to account for several factors: (1) How many processes should be
allocated per level; (2) how many processes should be allocated per deterministic
problem including permeability generation; (3) how to parallelize the permeability
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generation; (4) which of the parallelization algorithms for deterministic problems
available in EXA-DUNE should be used; (5) should each level be parallelized
separately and if not, how to group the levels for efficient parallelization. The last
factor is the one giving coarse grain parallelization opportunities. For the generation
of the permeability, we use the parallel MPI implementation of the FFTW library.
As deterministic solver, we use a parallel implementation of the conjugate gradient
scheme preconditioned with AMG, provided by DUNE-ISTL. Both of them have
their own internal domain decomposition.

We shortly discuss one Estimate-Solve cycle of the MLMC algorithm. Without
loss of generality we assume 3-level MLMC. Suppose that we have already
computed the required number of samples per level (i.e., we are after Estimate
and before Solve). Let us denote by Ni, i = {0, 1, 2} the number of required
realizations per level for Ŷl , by pi the number of processes allocated per Ŷi , by
p

g
li

the respective group size of processes working on a single realization, by n

the number of realizations for each group of levels, with ti the respective time for
solving a single problem once, and finally with ptotal the total number of available
processes. Then we can compute the total CPU time for the current Estimate-Solve
cycle as

T total
CPU = N0t0 + N1t1 + N2t2.

Ideally each process should take T
p

CPU = T total
CPU/ptotal. Dividing the CPU time

needed for one Ŷi by T
p

CPU, we get a continuous value for the number of processes on
a given level pideal

i = Niti/T
p

CPU for i = {0, 1, 2}. Then we can take pi = ⌊
pideal

i

⌋
.

To obtain an integer value for the number of processes allocated per level, first we
construct a set of all possible splits of the original problem as a combination of
subproblems (e.g., parallelize level 2 separately and the combination of levels 0 and
1, or parallelize all levels simultaneously, etc.). Each element of this set is evaluated
independently, and all combinations of upper and lower bounds are calculated,
such that pideal

i is divisible by p
g

li
,
∑2

l=0 pi < ptotal and pi ≤ Nip
g

li
. Traversing,

computing and summing the computational time needed for each element gives us
a time estimation. Then we select the element (grouping of levels) with minimal
computational time. To tackle the distribution of the work on a single level, a similar
approach can be employed. Due to the large dimension of the search tree a heuristic
technique can be employed. Here we consider a simple predefined group size for
each deterministic problem, having in mind that when using AMG the work for a
single realization at the different levels is proportional to the unknowns at this level.

Numerical Experiments Results for a typical example are shown in Fig. 15. The
parameters are σ = 2.75, λ = 0.3. The tests are done on SuperMUC-NG, LRZ
Munich on a dual Intel Skylake Xeon Platinum 8174 node. Due to the stochasticity
of the problem, we plot the speedup multiplied with the proportion of the tolerance.
The renormalization has shown to be a very good approach for defining the coarser
levels in MLMC. The proposed parallelization algorithm gives promising scalability
results. It is weakly coupled to the number of samples that MLMC estimates.
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Fig. 15 Scalability of the MLMC approach

Although the search for an optimal solution is an NP-hard problem, the small
number of levels enables a full traversing of the search tree. It can be further
improved by automatically selecting the number of processes per group that solves
a single problem. One also may consider introducing interrupts between the MPI
communicators on a level to further improve the performance.

6 Land-Surface Flow Application

To test some of the approaches developed in the EXA-DUNE project, especially
the usage of sum-factorized operator evaluation with more complex problems,
we developed an application to simulate coupled surface-subsurface flow for
larger geographical areas. This is a topic with high relevance for a number of
environmental questions from soil protection and groundwater quality up to weather
and climate prediction.

One of the central aims of the new approach developed in the project is to
be able to relate a physical meaning to the parameter functions used in each
grid cell. This is not possible with the traditional structured grid approaches as
the necessary resolution would be prohibitive. To avoid the excessive memory
requirements of completely unstructured grids we build on previous results for
block-structured meshes and use a two-dimensional unstructured grid on the surface
which is extruded in a structured way in vertical direction. However, more flexible
discretization schemes are needed for such grids, compared to the usual cell-
centered Finite-Volume approaches.
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6.1 Modelling and Numerical Approach

To describe subsurface flow we use the Richards equation [52]

∂θ(ψ)

∂t
− ∇ · [k(ψ)

(∇ψ + eg

)]+ qw = 0

where θ is the volumetric water content, ψ the soil water potential, k the hydraulic
conductivity, eg the unit vector pointing in the direction of gravity and qw a
volumetric source or sink term.

In nearly all existing models for coupled surface-subsurface flow, the kinematic-
wave approximation is used for surface flow, which only considers surface slope
as driving force and does not even provide a correct approximation of the steady-
state solution. The physically more realistic shallow-water-equations are used rarely,
as they are computationally expensive. We use the diffusive-wave approximation,
which still retains the effects of water height on run-off, yields a realistic steady-
state solution and is a realistic approximation for flow on vegetation covered ground
[2]:

∂h

∂t
− ∇ · [D(h,∇h)∇(h + z)] = fc, (4)

where h is the height of water over the surface level z, fc is a source-sink term
(which is used for the coupling) and the diffusion coefficient D is given by

D(h,∇h) = hα

C · ‖∇(h + z)‖1−γ

with ‖ · ‖ refering to the Euclidean norm and α, γ and C are empirical constants. In
the following we use α = 5

3 and γ = 1
2 to obtain Manning’s formula and a friction

coefficient of C = 1.
Both equations are discretised with a cell-centered Finite-Volume scheme and

alternatively with a SWIPDG scheme in space (see Sect. 3) and an appropriate
diagonally implicit Runge–Kutta scheme in time for the subsurface and an explicit
Runge–Kutta scheme for the surface flow. Upwinding is used for the calculation of
conductivity in subsurface flow [5] and for the water height in the diffusion term in
surface flow.

First tests have shown that the formulation of the diffusive-wave approximation
from the literature as given by Eq. (4) does not result in a numerically stable solution
if the gradient becomes very small, as then a gradient approaching zero is multiplied
by a diffusion coefficient going to infinity. A much better behaviour is achieved by
rewriting the equation as

∂h

∂t
− ∇ ·

[
hα

C
· ∇(h + z)

‖∇(h + z)‖1−γ

]

= fc,
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where the rescaled gradient ∇(h+z)

‖∇(h+z)‖1−γ is always going to zero when ∇(h + z) is
going to zero as long as γ < 1 and the new diffusion coefficient hα/C is bounded.

Due to the very different time-scales for surface and subsurface flow, an operator-
splitting approach is used for the coupled system. A new coupling condition has
been implemented, which is a kind of Dirichlet-Neumann coupling, but guarantees
a mass-conservative solution. With a given height of water on the surface (from the
initial condition or the last time step modified by precipitation and evaporation),
subsurface flow is calculated with a kind of Signorini boundary condition, where
all surface water is infiltrated in one time step as long as the necessary gradient
is not larger than the pressure resulting from the water ponding on the surface (in
infiltration) and potential evaporation rates are maintained as long as the pressure
at the surface is not below a given minimal pressure (during evaporation). The
advantage of the new approach is that it does not require a tracking of the sometimes
complicated boundary between wet and dry surface elements, that it yields no
unphysical results and that the solution is mass-conservative even if not iterated
until convergence.

Parallelisation is obtained by an overlapping or non-overlapping domain-decom-
position (depending on the grid). However, only the two-dimensional surface grid
is partitioned whereas the vertical direction is kept on one process due to the strong
coupling. Thus there is also no need for communication of surface water height
for the coupling, as the relevant data is always stored in the same process. The
linear equation systems are solved with the BiCGstab-solver from DUNE-ISTL with
Block-ILU0 as preconditioner. The much larger mesh size in horizontal direction
compared to the vertical direction results in strong coupling of the unknowns in the
vertical direction. The Block-ILU0 scheme provides an almost exact solver of the
strongly coupled blocks in the vertical direction and is thus a very effective scheme.
Furthermore, one generally has a limited number of cells in the vertical direction
and extends the mesh in horizontal direction to simulate larger regions. Thus the
good properties of the solver are retained when scaling up the size of the system.

6.2 Performance Optimisations

As the time steps in the explicit scheme for surface flow can get very small due to
the stability limit, a significant speedup can be achieved by using a semi-implicit
scheme, where the non-linear coefficients are calculated with the solution from the
previous time step or iteration. However, if the surface is nearly completely dry, this
could lead to numerical problems, thus an explicit scheme is still used under nearly
dry conditions with an automatic switching between both.

While matrix-free DG solvers with sum-factorization can yield excellent per
node performance (Sect. 3.3), it is a rather tedious task to implement them for new
partial differential equations. Therefore, a code-generation framework is currently
being developed in a project related to EXA-DUNE [33]. The framework is used to
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implement an alternative optimized version of the solver for the Richards equation
as this is the computationally most expensive part of the computations. Expensive
material functions like the van Genuchten model including several power functions
are replaced by cubic spline approximations, which allow a fast vectorized incor-
poration of flexible material functions to simulate strongly heterogeneous systems.
Sum-factorisation is used in the operator evaluations for the DG-discretization with
a selectable polynomial degree.

A special pillar grid has been developed as a first realisation of a 2.5D grid
[33]. It adds a vertical dimension to a two-dimensional grid (which is either
structured or unstructured). However, as the current version still produces a full
three-dimensional mesh at the moment, future developments are necessary to exploit
the full possibilities of the approach.

6.3 Scalability and Performance Tests

Extensive tests covering infiltration as well as exfiltration have been performed (e.g.
Fig. 16) to test the implementation and the new coupling condition. Good scalability
is achieved in strong as well as in weak scaling experiments on up to 256 nodes
and 4096 cores of the bwForCluster in Heidelberg (Fig. 17). Simulations for a large
region with topographical data taken from a digital elevation model (Fig. 18) have
been conducted as well.

With the generated code-based solver for the Richards equation a substantial
fraction of the system’s peak performance (up to 60% on a Haswell-CPU) can be

Fig. 16 Surface runoff and infiltration of 5 cm water into a dry coarse sand (top) and the
unstructured 2.5D mesh used for the simulations (bottom)
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Fig. 17 Results of a strong (left) and weak (right) scalability test with a coupled run-off and
infiltration experiment on 1 to 256 nodes (16 to 4096 Intel Xeon E5-2630 v3 2.4 GHz CPU cores)
of the bwForCluster at IWR in Heidelberg

Fig. 18 Pressure distribution with an overlay of the landscape taken from Google Earth calculated
in a simulation of water transport in a real landscape south of Brunswick simulated on 30 nodes
with 1200 cores of HLRN-IV in Göttingen (2× Intel Skylake Gold 6148 2.4 GHz CPUs)

utilized due to the combination of sum factorization and vectorisation (Fig. 19).
For the Richards equation (as for other PDEs before) the number of millions of
degrees of freedom per second is independent of the polynomial degree with this
approach. We measure a total speedup of 3 compared to the naive implementation
in test simulations on a Intel Haswell Core i7-5600U 2.6 GHz CPU with first order
DG base functions on a structured 32 × 32 × 32 mesh for subsurface and 32 × 32
grid for surface flow. Even higher speedups are expected with higher-order base
functions and matrix-free iterative solvers. The fully-coupled combination of the
Richards solver obtained with the code generation framework and surface-runoff is
tested with DG up to fourth order on structured as well as on unstructured grids.
Parallel simulations are possible as well.
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Fig. 19 Performance of the Richards solver implemented with the code generation framework for
EXA-DUNE

7 Conclusion

In EXA-DUNE we extended the DUNE software framework in several directions
to make it ready for the exascale architectures of the future which will exhibit a
significant increase in node level performance through massive parallelism in form
of cores and vector instructions. Software abstractions are now available that enable
asynchronicity as well as parallel exception handling and several use cases for these
abstractions have been demonstrated in this paper: resilience in multigrid solvers
and several variants of asynchronous Krylov methods. Significant progress has been
achieved in hardware-aware iterative linear solvers: we developed preconditioners
for the GPU based on approximate sparse inverses, developed matrix-free operator
application and preconditioners for higher-order DG methods and our solvers are
now able to vectorize over multiple right hand sides. These building blocks have
then been used to implement adaptive localized reduced basis methods, multilevel
Monte-Carlo methods and a coupled surface-subsurface flow solver on up to 14k
cores. The EXA-DUNE project has spawned a multitude of research projects, running
and planned, as well as further collaborations in each of the participating groups. We
conclude that the DUNE framework has made a major leap forward due to the EXA-
DUNE project and work on the methods investigated here will continue in future
research projects.
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Abstract In this paper, we present results of the second phase of the project
ExaFSA within the priority program SPP1648—Software for Exascale Computing.
Our task was to establish a simulation environment consisting of specialized
highly efficient and scalable solvers for the involved physical aspects with a
particular focus on the computationally challenging simulation of turbulent flow and
propagation of the induced acoustic perturbations. These solvers are then coupled
in a modular, robust, numerically efficient and fully parallel way, via the open
source coupling library preCICE. Whereas we made a first proof of concept for
a three-field simulation (elastic structure, surrounding turbulent acoustic flow in the
near-field, and pure acoustic wave propagation in the far-field) in the first phase,
we removed several scalability limits in the second phase. In particular, we present
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the involved independent solvers, (b) optimization of the parallelization of data
mapping, (c) solver-specific white-box data mapping providing higher efficiency
but less flexibility, (d) portability and scalability of the flow and acoustic solvers
FASTEST and Ateles on vector architectures by means of code transformation,
(e) physically correct information transfer between near-field acoustic flow and far-
field acoustic propagation.

1 Introduction

The simulation of fluid-structure-acoustic interactions is a typical example for multi-
physics simulations. Two fundamentally different physical sound sources can be
distinguished: structural noise and flow-induced noise. As we are interested in
accurate results for the resulting sound emissions induced from the turbulent flow, it
is decisive to include not only the turbulent flow, but also the structure deformation
and the interaction between both. High accuracy requires the use of highly resolved
grids. As a consequence, the use of massively parallel supercomputers is inevitable.
When we are interested in the sound effects far away from a flow induced
fluttering structure, the simulation becomes too expensive, even for supercomputing
architectures. Hence, we introduce an assumption, we call it the “far-field”. Far from
the structure and, thus, the noise generation, we assume a homogeneous background
flow and restrict the simulation in this part of the domain to the propagation
of acoustic waves. This results in an overall setup with two coupling surfaces—
between the elastic structure and the surrounding flow, and between the near-field
and the far-field in the flow domain (see Fig. 1 for an illustrative example). Such
a complex simulation environment implies several new challenges compared to

Far-Field Acoustics ΩFA

Coupling Interface Γ FA

Fluid Flow ΩF & Near-Field Accoustics ΩNA

Γ SF

S
tr

u
ct

u
re

Ω
S

Displacements

Forces

Velocity, Pressure, Density

Inflow Outflow

Fig. 1 Multiphysics fluid-structure-acoustic scenario as used in our simulations in Sect. 6. The
domain is decomposed into a near-field ‘incompressible flow region’ �F = �NA, a far-field
‘acoustic only region’ �FA, and an ‘elastic structure region’ �S. Note that the geometry is not
scaled correctly for better illustration
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“single-physics” simulations: (a) multi-scale properties in space and time (small-
scale processes around the structure, multi-scale turbulent flow in the near-field, and
large-scale processes in the acoustic far-field), (b) different optimal discretization
and solver choices for the three fields, (c) highly ill-conditioned problem, if
formulated and discretized as a single large system of equations, (d) challenging
load-balancing due to different computational load per grid unit depending on the
local physics.

Application examples for fluid-structure-acoustic simulations can be found in
several technical systems: wind power plants, fans in air conditioning systems of
buildings, cars or airplanes, car mirrors and other design details of a car frame,
turbines, airfoil design, etc.

Fluid-structure interaction simulations as a sub-problem of our target system
have been in the focus of research in computational engineering for many years,
mainly aiming at capturing stresses in the structure more realistically than with
a pure flow simulation. A main point of discussion in this field is the question
whether monolithic approaches—treating the coupled problem as a single large
system of equations—or partitioned methods—glueing together separate simulation
modules for structures and fluid flow by means of suitable coupling numerics and
tools—are more appropriate and efficient. Monolithic approaches require a new
implementation of the simulation code as well as the development of specialized
iterative solvers for the ill-conditioned overall system of equations, but can achieve
very high efficiency and accuracy [3, 12, 19, 23, 38]. Partitioned approaches, on the
other hand, offer large flexibility in choosing optimal solvers for each field, adding
additional fields, or exchanging solvers. The difficulty here lies in both a stable,
accurate, and efficient coupling between independent solvers applying different
numerical methods and in establishing efficient communication and load balancing
between the used parallel codes. For numerical coupling, numerous efficient data
mapping methods [5, 26, 27, 32] have been published along with efficient iterative
solvers [2, 7, 13, 20, 29, 35, 39, 41]. In [6], various monolithic and partitioned
approaches have been proposed and evaluated in terms of a common benchmark
problem. Three-field fluid-structure-acoustic interaction in the literature has so far
been restricted to near-field simulations due to the intense computational load
[28, 33].

To realize a three-field fluid-structure-acoustic interaction including the far-field,
we use a partitioned approach and couple existing established “single-physics”
solvers in a black-box fashion. We couple the finite volume solver FASTEST [18],
the discontinuous Galerkin solver Ateles [42], and the finite element solver CalculiX
[14] by means of the coupling library preCICE [8]. We compare this approach to
a less flexible white-box coupling implemented in APESmate [15] as part of the
APES framework and make use of the common data-structure within APES [31].
The assumption which is confirmed in this paper is, that the white-box approach is
more efficient, but puts some strict requirements on the codes to be coupled, while
the black-box approach is a bit less efficient, but much more flexible with respect to
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the codes that can be used. Our contributions to the field of fluid-structure-acoustic
interaction, which we summarize in this paper, include:

1. For the near-field flow, we introduce a volume coupling between background
flow and acoustic perturbations in FASTEST accounting for the multi-scale
properties in space and time by means of different spatial and time resolution.

2. For both near-field flow and far-field acoustics, we achieved portability and
performance optimization of Ateles and FASTEST for vector machines by means
of code transformation.

3. In terms of inter-field coupling, we

(a) increased the efficiency of inter-code communication by means of a new
hierarchical implementation of communication initialization and a modified
communicator concept,

(b) we improved the robustness and efficiency of radial basis function mapping,
(c) we identified correct interface conditions between near-field and far-field,

optimized the position of the interface, and ensured correct boundary
conditions by overlapping near-field and far-field,

(d) we developed and implemented implicit quasi-Newton coupling numerics
that allow for a simultaneous execution of all involved solvers.

4. For a substantially improved inter-code load balancing, we use a regression-
based performance model for all involved solvers and perform an optimization
of assigned cores.

5. We present a comparison of our black-box and to the white-box approach for
multi-physics coupling.

These contributions have been achieved as a result of the project ExaFSA—
a cooperation between the Technische Universität Darmstadt, the University of
Siegen, the University of Stuttgart, and the Tohoku University (Japan) in the
Priority Program SPP 1648—Software for Exascale Computing of the German
Research Foundation (DFG) in close collaboration with the Technical University
of Munich. In the first funding phase (2013–2016), we showed that efficient
yet robust coupled simulations are feasible and can be enhanced with an in-situ
visualization component as an additional software part, but we still reached limits
in terms of scalability and load balancing [4, 9]. This paper focuses on results of
the second funding phase (2016–2019) and demonstrates significant improvements
in scalability and accuracy as well as robustness based on the above-mentioned
contributions.

In the following, we introduce the underlying model equations of our target
scenarios in Sect. 2 and present our solvers and their optimization in Sect. 3 as well
as the black-box coupling approach and new contributions in terms of coupling in
Sect. 4. In Sect. 5, we compare black-box coupling to an alternative, efficient, but
solver-specific and, thus, less flexible white-box coupling for uni-directional flow-
acoustic coupling. Finally, results for a turbulent flow over a fence scenario are
presented in Sect. 6.
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2 Model

In this section, we shortly introduce the underlying flow, acoustic and structure
models of our target application. We use the Einstein summation convention
throughout this section.

2.1 Governing Equations

The multi-physics scenario we investigate describes an elastic structure embedded
in a turbulent flow field. The latter is artificially decomposed into a near-field and a
far-field. See Fig. 1 for an example.

Near-Field Flow In the near-field region �F = �NA, the compressible fluid flow is
modeled by means of the density ρ, the velocity ui and the pressure p. As we focus
on a low Mach number regime, we can split these variables into an incompressible
part ρ, ui, p, and acoustic perturbations ρ′, u′

i , p
′:

ρ = ρ + ρ′, ui = ui + u′
i , p = p + p′ . (1)

The incompressible flow is described by the Navier-Stokes equations1

∂ui

∂xi

= 0, (2a)

∂

∂t
(ρui) + ∂

∂xj

(
ρuiuj − τij

) = ρfi , (2b)

where ρ is the density of the fluid, and fi summarizes external force density terms.
The incompressible stress tensor τij for a Newtonian fluid is described by

τij = −pδij + μ

(
∂ui

∂xj

+ ∂uj

∂xi

)

, (3)

with μ representing the dynamic viscosity and δij the Kronecker-Delta.

1To capture the moving structure within the near-field, we actually formulate all near-field
equations in an arbitrary Lagrian-Eulerian perspective. For the relative mesh velocity, we use
a block-wise elliptic mesh movement as described in [30]. As we do not show fluid-structure
interaction in this contribution, however, we formulate all near-field equations in a pure Eulerian
perspective for the sake of simplicity.
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Acoustic Wave Propagation The propagation of acoustic perturbations in both the
near-field and the far-field is modeled by the linearized Euler equations, where in
the far-field a constant background state is assumed (which implies ∂p

∂t
= 0).

∂ρ′

∂t
+ ρ

∂u′
i

∂xi

+ ui

∂ρ′

∂xi

= 0 (4a)

ρ
∂u′

i

∂t
+ ρuj

∂u′
i

∂xj

+ ∂p′

∂xi

= 0 (4b)

∂p′

∂t
+ ρc2 ∂u′

i

∂xi

+ ui
∂p′

∂xi

= −∂p

∂t
(4c)

Here c is the speed of sound. In the near-field, the background flow quantities ui

and p are calculated from (2), whereas they are assumed to be constant in the
acoustic far-field. The respective constant value is read from the coupling interface
with the near-field, which implies that the interface has to be chosen such that the
background flow values are (almost) constant at the coupling interface. In both
cases, the coupling between background-flow and acoustic perturbations is uni-
directional from the background flow to the acoustic equations (4) by means of
p and ui .

Elastic Structure The structural subdomain �S is governed by the equations of
motion, here in Lagrangian description:

ρS ∂2ϑi

∂t2 = ∂SjkFik

∂XS
j

+ ρSf S
i . (5)

With xS
i = XS

i + ϑi being the position of a particle in the current configuration, XS
i

is the position of a particle in the reference configuration, and ϑi the displacement.
Fij is the deformation gradient. Sij is the second Piola-Kirchhoff tensor, and ρS

describes the structural density. The Cauchy stress tensor τS
ij relates to Sij via

τS
ij = 1

det
(
Fij

)FikSklFjl . (6)

We assume linear elasticity to describe the stress-strain relation.
The coupling between fluid and structure is bi-directional by means of dynamic

and kinematic conditions, i.e., equality of interface displacements/velocities and
stresses, i.e.,

u
F

i = ∂ϑ
S

i

∂t
, τ
F

ij = τ
S

ij (7)

at 
I = 
S ∩ 
F with 
F = ∂�F and 
S = ∂�S.
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3 Solvers and Their Optimization

Following a partitioned approach, the respective subdomains of the multi-physics
model as described in Sect. 2 (elastic structure domain, near-field, and far-field)
are treated by different solvers. We employ the flow solver FASTEST presented
in Sect. 3.1 to solve for the incompressible flow equations, Eq. (2), and near-field
acoustics equations, Eq. (4), the Ateles solver described in Sect. 3.2 for the far-field
acoustics equations, Eq. (4), and finally the structural solver CalculiX introduced in
Sect. 3.3 for the deformation of the obstacle, Eq. (5). For performance optimization
of FASTEST and Ateles, we make use of the Xevolver framework, which has
been developed to separate system-specific performance concerns from application
codes. We report on the optimization of both solvers further below.

3.1 FASTEST

FASTEST is used to solve both the incompressible Navier-Stokes equations (2) and
the linearized Euler equations (4) in the near-field.

Capabilities and Numerical Methods The flow solver FASTEST [24] solves
the three-dimensional incompressible Navier-Stokes equations. The equations are
discretized utilizing a second-order finite-volume approach with implicit time-
stepping, which is also second order accurate. Field data are evaluated on a
non-staggered, body-fitted, and block-structured grid. The equations are solved
according to the SIMPLE scheme [11], and the resulting linear equation system
is solved by ILU factorization [36]. Geometrical multi-grid is employed for con-
vergence acceleration. The code generally follows a hybrid parallelization strategy
employing MPI and OpenMP. FASTEST can account for different flow phenomena,
and has the capability to model turbulent flow with different approaches. In our test
case example, we employ a detached-eddy simulation (DES) based on the ζ − f
turbulence model [30].

In addition, FASTEST contains a module to solve the linearized Euler equations
to describe low Mach number aeroacoustic scenarios, which are solved by a second
order Lax-Wendroff scheme with various limiters.

Since all equation sets are discretized on the same numerical grid, advantage can
be taken from the multi-grid capabilities to account for the scale discrepancies of the
fluid flow and the acoustics. Since the spatial scales of the acoustics are considerably
larger than those of the flow, a coarser grid level can be used for them. In return, the
finer temporal scales can be considered by sub-cycling a CFD time step with various
CAA time steps. This way a very efficient implementation of the viscous/acoustic
splitting approach can be realized.
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Performance Optimization Concerning performance optimization, one interest-
ing point of FASTEST is that some of its kernels were once optimized for old vector
machines, and thus important kernels have their vector versions in addition to the
default ones. The main difference between the two versions is that nested loops in
the default version are collapsed into one loop in the vector version. Since the loops
skip accessing halo regions, the compiler is not able to automatically collapse the
loops, resulting in short vector lengths even if the compiler can vectorize them. To
efficiently run the solver on a vector system, performance engineers usually need to
manually change the loop structures. In this project, Xevolver is used to express
the differences between the vector and default versions as code transformation
rules. In other words, vectorization-aware loop optimizations are expressed as code
transformations. As a result, the default version can be transformed to its vector
version, and the vector version does not need to be maintained any longer to
achieve high performance on vector systems. That is, the FASTEST code can be
simplified without reducing the vector performance by using the Xevolver approach.
Ten rules are defined to transform the default kernels in FASTEST to their vector
kernels. Those code transformations plus some system-independent minor code
modifications for removing vectorization obstacles can reduce the execution time
on the NEC SX-ACE vector system by about 85%, when executing a simple test
case that models a three-dimensional Poiseuille flow through a channel based on the
Navier-Stokes equations, in which the mesh contains two blocks with 426,000 cells
each. The code execution on the SX-ACE vector processor works about 2.7 times
faster than on the Xeon E5-2695v2 processor, since the kernel is memory-intensive
and the memory bandwidth of SX-ACE is 4× higher than that of Xeon. Therefore, it
is clearly demonstrated that the Xevolver approach is effective to achieve both high
performance portability and high code maintainability for FASTEST.

3.2 Ateles

In our project, Ateles is used for the simulation of the acoustic far-field. Since
acoustics scales need to be transported over a large distance, Ateles’ high-order DG
scheme can show its particular advantages of low dissipation and dispersion error in
this test case.

Capabilities and Numerical Methods The solver Ateles is integrated in the
simulation framework APES [31]. Ateles is based on the Discontinuous Galerkin
(DG) discretization method, which can be seen as a hybrid method, combining
the finite-volume and finite-element methods. DG is well suited for parallelization
and the simulation of aero-acoustic problems, due to its inherent dissipation and
dispersion properties. This method has several outstanding advantages, that are
among others the high-order accuracy, the faster convergence of the solution with
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increasing scheme order and fewer elements compared to a low order scheme
with a higher number of elements, the local h-p refinement as well as orthogonal
hierarchical bases. The DG solver Ateles includes different equation systems,
among others the compressible Navier-Stokes equations, the compressible inviscid
Euler equations and the linearized Euler equations (used in this work for the
acoustics far-field). For the time discretization, Ateles makes use of the explicit
Runge-Kutta time stepping scheme, which can be either second or fourth order.

Performance Optimization Analyzing the performance of Ateles, originally
developed assuming x86 systems, we found out that four kinds of code optimization
techniques are needed for a total of 18 locations of the code in order to migrate
the code to the SX-ACE system. Those techniques are mostly for collapsing the
kernel loop and also for directing the NEC compiler to vectorize the loop. In this
project, all the techniques are expressed as one common code transformation rule.
The rule can take the option to change its transformation behaviors appropriately
for each code location. This means that, to achieve performance portability between
SX-ACE and x86 systems, only one rule needs to be maintained in addition to the
Ateles application code. We executed a small testcase solving Maxwell equations
with an 8th order DG scheme on 64 grid cells. The code transformation leads to
7.5× higher performance. The significant performance improvement is attributed
to loop collapse and insertion of appropriate compiler directives, which increases
the vectorization length by a factor of 2 and the vectorization ratio from 71.35%
to 96.72%. Finally, in terms of the execution time, the SX-ACE performance is
19% the performance of Xeon E5-2695v2. The code optimizations for SX-ACE
reduce the performances of Xeon and Power8 by 14% and 6%, respectively. In this
way, code optimizations for a specific system are often harmful to other systems.
However, by using Xevolver, such a system-specific code optimization is expressed
separately from the application code. Therefore, the Xevolver approach is obviously
useful for achieving high performance portability across various systems without
complicating the application code.

3.3 CalculiX

As structure solver, we use the well-established finite element solver CalculiX[14],
developed by Guido Dhont und Klaus Wittig.2 While CalculiX also supports static
and thermal analysis, we only use it for dynamic non-linear structural mechanics.
As our main research focus is not the structural computation per se, but the coupling
within a fluid-structure-acoustic framework, we merely regard CalculiX as a black
box. The preCICE adapter of CalculiX has been developed in [40].

2www.calculix.de.

www.calculix.de
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4 A Black-Box Partitioned Coupling Approach Using
preCICE

Our first and general coupling approach for the three-field simulation comprising
(a) the elastic structure, (b) the near-field flow with acoustic equations, and (c) the
far-field acoustic propagation follows a black-box idea, i.e., we only use input
and output data of dedicated solvers at the interfaces between the respective
domains for numerical coupling. Such a black-box coupling requires three main
functional coupling components: intercode-communication, data-mapping between
non-matching grids of independent solvers, and iterative coupling in cases with
strong bi-directional coupling. preCICE is an open source library3 that provides
software modules for all three components. In the first phase of the ExaFSA project,
we ported preCICE from a server-based to a fully peer-to-peer communication
architecture [9, 39], increasing the scalability of the software from moderately to
massively parallel. To this end, all coupling numerics needed to be parallelized on
distributed data. During the second phase of the ExaFSA project, we focused on
several costly initialization steps and further necessary algorithmic optimizations.
In the following, we shortly sketch all components of preCICE with a particular
focus on innovations introduced in the second phase of the ExaFSA project and on
the actual realization of the fluid-acoustic coupling between near-field and far-field
and the fluid-structure coupling.

4.1 (Iterative) Coupling

To simulate fluid-structure-acoustic interactions such as in the scenario shown in
Fig. 1, two coupling interfaces have to be considered with different numerical and
physical properties: (a) the coupling between fluid flow and the elastic structure
requires an implicit bi-directional coupling, i.e., we exchange data in both directions
and iterate in each time step until convergence; (b) the coupling between fluid flow
and the acoustic far-field is uni-directional (neglecting reflections back into the near-
field domain), i.e., results of the near-field fluid flow simulation are propagated to the
far-field solver as boundary values once per time step. In order to fulfil the coupling
conditions at the fluid-structure interface as given in Sect. 2, we iteratively solve the
fixed-point equation

(
S(f )

F (u)

)

=
(

u

f

)

, (8)

3www.precice.org.

www.precice.org
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where f represents the stresses, u the velocities at the interface 
FS , S the effects
of the structure solver on the interface (with stresses as an input and velocities as an
output), F the effects of the fluid solver on the interface (with interface velocities as
an input and stresses as an output). preCICE provides a choice of iterative methods
accelerating the plain fixed-point iteration on Eq. (8). The most efficient and robust
schemes are our quasi-Newton methods that are provided in a linear complexity (in
terms of interface degrees of freedom) and fully parallel optimized versions [35].
As most of our achievements concerning iterative methods fall within the first phase
of the ExaFSA project, we omit a more detailed description and refer to previous
reports instead [9].

For the uni-directional coupling between the fluid flow in the near-field and the
acoustic far-field, we transfer perturbation in density, pressure, and velocity from
the flow domain to the far-field as boundary conditions at the interface. We do this
once per acoustic time step, which is chosen to be the same for near-field and far-
field acoustics, but which is much smaller than the fluid time step size (and the
fluid-structure coupling), as described in Sect. 3.1.

Both domains are time-dependent and subject to mutual influence.
In an aeroacoustic setting, the near-field subdomain �NA and far-field subdomain

�FA, with boundaries 
NA = ∂�NA and 
FA = ∂�FA are fixed, which means, all
background information in the far-field are fixed to a certain value. Therefore there
is only influence of �NA onto �FA, as backward propagation can be neglected. Then
the continuity of shared state variables on the interface boundary 
IA = 
NA ∩
FA

is

ρ′
FA

i = ρ′
NA

i , u′
FA

i = u′
NA

i , p′
FA

i = p′
NA

i . (9)

4.2 Data Mapping

Our three solvers use different meshes adapted to their specific problem domain.
To map data between the meshes, preCICE offers three different interpolation
algorithms: (a) Nearest-neighbor interpolation is based on finding the geometrically
nearest neighbor, i.e. the vertex with the shortest distance from the target or
source vertex. It excels in its ease of implementation, perfect parallelizability, and
low memory consumption. (b) Nearest-projection mapping can be regarded as an
extension to the nearest-neighbor interpolation, working on nearest mesh elements
(such as edges, triangles or quads) instead of merely vertices and interpolating
values to the projection points. The method requires a suitable triangulation to
be provided by the solver. (c) Interpolation by radial-basis functions is provided.
This method works purely on vertex data and is a flexible choice for arbitrary mesh
combinations with overlaps and gaps alike.

In the second phase of the ExaFSA project, we improved the performance of the
data mapping schemes in various ways. All three interpolation algorithms contain
a lookup-phase which searches for vertices or mesh elements near a given set of
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positions. As there is no guarantee regarding ordering of vertices, this resulted in
O (n · m) lookup operations, n,m ∈ N being the size of the respective meshes. In
the second phase, we introduced a tree-based data structure to facilitate efficient
spatial queries. The implementation utilizes the library Boost Geometry4 and
uses an rtree in conjunction with the r-star insertion algorithm. The integration
of the tree is designed to fit seamlessly into preCICE and avoids expensive copy
operations for vertices and mesh elements of higher dimensionality. Consequently,
the complexity of the lookup-phase was reduced to O

(
loga n

) · m with a being a
parameter of the tree, set to ≈5. The tree index is used by nearest-neighbor, nearest-
projection, and RBF interpolation as well as other parts in preCICE and provides a
tremendous speedup in the initialization phase of the simulation.

In the course of integrating the index, the RBF interpolation profited from a
second performance improvement. In contrast to the nearest-neighbor and nearest-
projection schemes it creates an explicit interpolation matrix. Setting values one by
one results in a large number of small memory allocations with a relatively large per-
call overhead. To remedy this, a preallocation pattern is computed with the help of
the tree index. This results in a single memory allocation, speeding up the process
of filling the matrix. A comparison of the accuracy and runtime of the latter two
interpolation methods is provided in Sect. 5.

4.3 Communication

Smart and efficient communication is paramount in a partitioned multi-physics
scenario. As preCICE is targeted at HPC systems, a central communication instance
would constitute a bottleneck and has to be avoided. At the end of phase one,
we implemented a distributed application architecture. The main objective in its
design is not a classical speed-up (as it is for parallelism) but not to deteriorate
the scalability of the solvers and rendering a central instance unnecessary. Still,
a so-called master process exists, which has a special purpose mainly during the
initialization phase.

At initialization time, each solver gives its local portion of the interface mesh to
preCICE. By a process called re-partitioning, the mesh is transferred to the coupling
partner and partitioned there, i.e., the coupling partner’s processes select interface
data portions that are relevant for their own calculations. The partitioning pattern is
determined by the requirements of the selected mapping scheme. The outcome of
this process is a sparse communication graph, where only links between participants
exist that share a common portion of the interface. While this process was basically
in place at the end of phase one, it was refined in several ways.

MPI connections are managed by means of a communicator which represents an
n-to-m connection including an arbitrary number of participants. The first imple-

4www.boost.org.

www.boost.org
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mentation used only one communication partner per communicator, essentially
creating only 1-to-1 connections. To establish the connections, every connected
pair of ranks had to exchange a connection token generated by the accepting side.
This exchange is performed using the network file system, as the only a-priori
existing communication space common to both participants. However, network file
systems tend to perform badly with many files written to a single directory. To
reduce the load on the file system, a hash-based scheme was introduced as part of
the optimizations in phase two. With that, writing of the files is distributed among
several directories, as presented in [26]. This scheme features a uniform distribution
of files over different directories and, thus, minimizes the files per directory.

However, this obviously resulted in a large number of communicators to be
created. As a consequence, large runs hit system limits regarding the number of
communicators. Therefore, a new MPI communication scheme was created as an
alternative. It uses only one communicator for an all-to-all communication, resulting
in significant performance improvements for the generation of the connections.
This approach also solves the problem of the high number of connection tokens
to be published, though only for MPI. As MPI is not always available or the
implementation is lacking, the hash-based scheme of publishing connection tokens
is still required for TCP based connections.

4.4 Load Balancing

In a partitioned coupled simulation solvers need to exchange boundary data at the
beginning of each iteration, which implies a synchronization point. If computational
cores are not distributed in an optimal way among solvers, one solver will have to
wait for the other one to finish its time step. Thus, the load imbalance reduces the
computational performance. In addition, in a one way coupling scenario, if the data
receiving solver is much slower than the other one, the sending partner has to wait
until the other one is ready to receive (in synchronized communication) or store the
data in a buffer (in asynchronous communication). In the first phase, the distribution
of cores over solvers was adjusted manually and only synchronized communication
was implemented, resulting in idle times.

Regression Based Load Balancing We use the load balancing approach proposed
in [37] to find the optimal core distribution among solvers: we first model the solver
performance against the number of cores for each domain and then optimize the
core distribution to minimize the waiting time. Since mathematical modeling of the
solvers’ performance can be very complicated, we use an empirical approach as
proposed in [37], first introduced in [10], to find an appropriate model.

Assuming we have a given set of m data points, consisting of pairs (p, fp)

mapping the number of ranks p to the run-time fp, we want to find a function f (p)

which predicts the run-time against p. Therefore, we use the Performance Model
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Normal Form (PMNF) [10] as a basis for our prediction model:

f i(p) =
n∑

k=1

ckp
ik logjk

2 (p), (10)

where the superscript i denotes the respective solver, n is a a-priori chosen number
of terms, ik, jk ∈ N0 and ck is the coefficient for the kth regression term. The next
step is to optimize the core distribution such that we achieve minimal overall run
time which can be expressed by the following optimization problem:

minimize
p1,...,pl

F (p1, . . . , pl) with F(p1, . . . pl) = max
i

(f i(pi))

subject to
l∑

i=1

pi ≤ P.

This optimization problem is a nonlinear, possibly non-convex integer program.
It can be solved by the use of branch and bound techniques. But, if we assume that
the f i are all monotonically decreasing, i.e., assigning more cores to a solver never
increases the run-time, we can simplify the constraints to P = ∑l

i=0 pi and solve
the problem by brute-forcing all possible choices for pi . That is, we iterate over all
possible combinations of core numbers and choose the pair that minimizes the total
run-time. For more details, please refer to [37].

Asynchronous Communication and Buffering For our fluid-structure-acoustic
scenario shown in Fig. 1, we perform an implicitly coupled simulation of the elastic
structure interacting with the incompressible flow over a given discrete time step
(marked simply as ‘Fluid’ in Fig. 2). This is followed by many small time steps for
the acoustic wave propagation in the near-field, which are coupled in a loose, uni-
directional way to the far-field acoustic solver (executing the same small time steps).
To avoid waiting times of the far-field solver while we compute the fluid-structure
interactions in the near-field, we would like to ‘stretch’ the far-field calculations
such that they consume the same time as the sum of fluid-structure time steps and
acoustic steps in the near-field (see Fig. 2). To achieve this, we introduced a fully
asynchronous buffer layer, by which the sending participant was decoupled from
the receiving participant, as shown in Fig. 2. Special challenges to tackle were the
preservation of the correct ordering of messages, especially for TCP communication
which does not implement such guarantees in the protocol.

4.5 Isolated Performance of preCICE

In this section, we show numerical results for preCICE only. This isolated approach
is used to show the efficiency of the communication initialization. In addition,
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Fig. 2 Coupling scenario between participant A (performing a time step for the incompressible
fluid (or fluid-structure interaction) followed by many time steps of the near-field acoustic
simulation (NFA)) and participant B (performing the same small acoustic steps for the far-field
(FFA) after receiving acoustic data from the near-field solver). Without buffering, inevitable idle
times for participant B are created. NFA is linked to FFA through send operations. Therefore, the
runtimes of NFA and FFA are matched through careful load-balancing. Shown here: A send buffer
decouples NFA and FFA solver for send operations, prevents idle times, and allows for a more
flexible processor assignment

we show stand-alone upscaling results. Other aspects are considered elsewhere:
(a) the mapping accuracy is analyzed in Sect. 5, (b) the effectiveness of our load
balancing approach as well as the buffering for uni-directional coupling are covered
in Sect. 6. If not denoted otherwise, the following measurements are performed on
the supercomputing systems SuperMUC5 and HazelHen.6

Mapping Initialization: Preallocation and Matrix Filling As described previ-
ously, one of the key components of mapping initialization is the spatial tree
which allows for performance improvements by accelerating the interpolation
matrix construction. Figure 3 compares different approaches to matrix filling and
preallocation: (a) no preallocation: using no preallocation at all, i.e., allocating each
entry separately, (b) explicitly computed: calculate matrix sparsity pattern in a first
mesh traversal, allocate entries afterwards, and finally fill the matrix in a second
mesh traversal, (c) computed and saved: additionally cache mesh element/data point
relations from the first mesh traversal and use them in the second traversal to fill
the matrix with less computation, (d) spatial tree: use the spatial tree instead of
brute-force pairwaise comparisons to determine mesh components relevant for the

528× Intel-Xeon-E5-2697 cores, 64 GB memory per node.
624× Intel Xeon-E5-2680 cores, 128 GB memory per node.
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Fig. 3 Mapping initialization. Comparison of different preallocations methods for mesh sizes
6400 (left sub-figure) and 10,000 (right sub-figure) on two ranks per participant. The plot compares
times spent in the stages of preallocation and filling of matrices for both the evaluation matrix and
the interpolation matrix of an RBF mapping with localized Gaussian basis functions including 6
vertices of the mesh. The total time required is the sum of all bars of one measurement. Note the
logarithmic scaling of the y-axis. The measurements were performed on one node of the sgscl1
cluster, using 4× Intel Xeon E3-1585 CPUs

mapping. Each method can be considered as an enhancement of the previous one.
As it becomes obvious from Fig. 3, the spatial tree was able to provide us a with an
acceleration of more than two orders of magnitude.

Communication For communication and its initialization, we only present results
for the new single-communicator MPI based solution. For TCP socket communica-
tion that still requires the exchange of many connection tokens by means of the file
system, we only give a rough factor of 2.5 that we observed in terms of acceleration
of communication initialization. Note that this factor can be potentially higher as
the number of processes and, thus, connections grows larger, and that the hash-
based approach removed the hard limit of ranks per participant inherent to the old
approach.

In Figs. 4, 5 and 6, we compare performance results for establishing an MPI
connection among different ranks using many-communicators for 1-to-1 connec-
tions with using a single communicator representing an n-to-m connection. In our
academic setting, both Artificial Solver Testing Environment (ASTE) participants
run on n cores. On SuperMUC, each rank connects to 0.4n ranks, on HazelHen, with
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Fig. 4 Communication. Publishing of MPI connection information from participant A for the
many-communicator approach. The timings of the new single-communicator approach are not
shown, as they are almost negligible with a maximum of 2 ms
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Fig. 5 Communication. Runtime for establishing the connection between the participants using
MPI_Comm_accept and MPI_Comm_connect

a higher number of ranks per node, each rank connects to 0.3n ranks. The amount
of data transferred between each connected pair of ranks is held constant with 1000
rounds of transfer of an array of 500, and 4000 double values from participant B
to participant A. Each measurement is performed five times of which the fastest
and the slowest runs are ignored and the remaining three are averaged. We present
timings from rank zero, which is synchronized with all other ranks by a barrier,
making the measurements from each rank identical. Note, that the measurements
are not directly comparable between SuperMUC and HazelHen due to the different
number of cores per node and that the test case is even more challenging than actual
coupled simulations. In an actual simulation, the number of partner ranks per rank
of a participant is constant with increasing number of cores on both sides.

Figure 4 shows the time to publish the connection token. The old approach
requires to publish many tokens, which obviously becomes a performance bottle-
neck as the simulation setup moves to higher number of ranks. The new approach,
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Fig. 6 Communication. Times for 1000 rounds of data transfer of a vector of 500 or 4000 doubles,
respectively, from participant B to A. For the transfer, the synchronous MPI routines (MPI_Send
and MPI_Recv) have been used

on the other hand, only publishes one token. It is omitted in the plot, as the times are
negligible (<2 ms). In Fig. 5, the time for the actual creation of the communicator
is presented. The total number of communication partners per communicator is
smaller with the old many-communicator concept (as the communication topology
is sparse). However, the creation of many 1-to-1 communicators is substantially
slower than the creation of one all-to-all communicator for both HPC systems.
Finally, in Fig. 6 the performance for an exchange of data sets of two different
sizes is presented. The results for single- and many-communicator approaches are
mostly on par with the notable exception of the SuperMUC system. There, the new
approach suffers a small but systematic slow-down for small message sizes. We
argue that this is a result of vendor specific settings of the MPI implementation.

Data Mapping As described above, we have further improved the mapping
initialization, in particular by applying a tree-based approach to identify data
dependencies induced by the mapping between grid points of the non-matching
solver grids and to assemble the interpolation matrix for RBF mapping. Accord-
ingly, we show both the reduction of the matrix assembly runtime (Fig. 3) and the
scalability of the mapping, including setting up the interpolation system and the
communication initialization.

These performance tests of preCICE are measured using a special testing
application called ASTE.7 This application behaves like a solver to preCICE but
provides artificial data. It is used to quickly generate input data and decompose it
for upscaling tests. ASTE generates uniform, rectangular, two-dimensional meshes
on [0, 1]×[0, 1] embedded in three-dimensional space with the z-dimension always

7https://github.com/precice/aste.

https://github.com/precice/aste
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Fig. 7 Data mapping initialization. Strong scaling of the initialization of the interpolation matrix
C and the evaluation matrix A for RBF interpolation on mesh sizes 12002 and 20002 with Gaussian
(m = 6) basis functions on up to 4224 processors on the HazelHen HPC system

set to zero. The mesh is then decomposed using a uniform approach, thus producing
partitions of same size as far as possible. Since we mainly look at the mapping part
which is only executed as one of the participants, we limit the upscaling to this
participant. The other participant always uses one node (28 resp. 24 processors).
The mesh size is kept constant, i.e., we perform a strong scaling. The upscaling of
an RBF mapping with Gaussian basis functions is shown in Fig. 7.

5 Black-Box Coupling Versus White-Box Coupling
with APESMate

In the above section, we have evaluated the performance of the black-box coupling
tool preCICE. In this section, we introduce an alternative approach that allows
to couple different solvers provided within the framework APES [31]. Black-
box data mapping in preCICE only requires point values (nearest neighbor and
RBF mapping), and in some cases (nearest projection) connectivity information on
the coupling interface. The white-box coupling approach of APESmate [25] has
knowledge about the numerical schemes within the domain, since it is integrated
in the APES suite, and has access to the common data-structure TreELM [22].
APESmate can directly evaluate the high order polynomials of the underlying
Discontinuous Galerkin scheme. Thus, the mapping in preCICE is more generally
applicable, while the approach in APESmate is more efficient in the context of
high order scheme. Furthermore, APESmate allows the coupling of all solvers of
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the APES framework, both in terms of surface and in terms of volume coupling.
The communication between solvers can be done in a straightforward way as all
coupling participants can be compiled as modules into one single application. Each
subdomain defines its own MPI sub-communicator, a global communicator is used
for the communication between the subdomains. During the initialization process,
coupling requests are locally gathered from all subdomains and exchanged in a
round-robin fashion. As all solvers in APES are based on an octree data-structure
and a space-filling curve for partitioning, it is rather easy to get information about
the location of each coupling point on the involved MPI ranks. In the following, we
compare both accuracy and runtime of the two coupling approaches for a simple
academic test case that allows to control the ‘difficulty’ of the mapping by adjusting
order and resolution of the two participants.

Test Case Setup We consider the spreading of a Gaussian pressure pulse over a
cubic domain of size 5 × 5 × 5 unit length, with an ambient pressure of 100,000 Pa
and a density of 1.0 kg/m3. The velocity vector is set to 0.0 for all spatial directions.
To generate a reference solution, this test case is computed monolithically using the
inviscid Euler equations.

For the coupled simulations, we decompose the monolithic test case domain into
an inner and an outer domain. The resolution and the discretization order of the
inner domain are kept unchanged. In the outer domain, we choose the resolution
and the order such that the error is balanced with that of the inner domain. See
[15] for the respective convergence study. To be able to determine the mapping
error at the coupling interface between inner and outer domain, we choose the time
horizon such that the pressure pulse reaches the outer domain, but is still away from
the outer boundaries to avoid any influences from the outer boundaries. The test
case is chosen in a way, that the differences between the meshes at the coupling
interface increase, thus increasing the difficulty to maintain the overall accuracy in
a black-box coupling approach. Table 1 provides an overview of all combinations of
resolution and order in the outer domain used for our numerical experiments, where
the total number of elements per subdomain is given as nElements, the number
of coupling points with nCoupling points and the scheme order by nScheme order,
respectively. For time discretization, we consider the explicit two stage Runge-Kutta
scheme with a time step size of 10−6 for all simulations.

Table 1 White-box coupling test scenario with Gaussian pressure pulse combinations of orders
and resolution used for the evaluation of the mapping methods

Test case a Test case b Test case c Test case d

Inner Outer Inner Outer Inner Outer Inner Outer

nElements 32,768 124,000 32,768 7936 32,768 992 32,768 124

nCoupling points 55,296 9600 55,296 3456 55,296 1536 55,296 1176

nScheme order 3 4 3 6 3 8 3 14
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Fig. 8 Mapping accuracy black-box (APESmate) versus white-box (preCICE) approach. Com-
parison of the L2 error (with the analytical solution as reference) for the Gaussian pressure
pulse test case variants and exemplary illustration of the coupling point distribution when using
DG for test case (right figure). We compare the black-box data mapping methods Radial-Basis
Functions (RBF) interpolation and Nearest Projection (NP) with the direct white-box evaluation of
APESmate. The RBF mapping uses local Gaussian basis functions covering three mesh points in
every direction

Mapping Accuracy In terms of mapping accuracy, it is expected, that the APES-
mate coupling is order-preserving, and by that not (much) affected by the increasing
differences between the non-matching grids at the coupling interface, while pre-
CICE should show an increasing accuracy drop when the points become less and
less matching. This is the case for increasing order of the discretization in the
outer domain. Figure 8 illustrates first results. As can be clearly seen, the white-
box coupling approach APESmate provides outstanding results by maintaining
the overall accuracy of the monolithic solution for all different variations of the
coupled simulations, independent of the degree to which the grids are non-matching
(increasing with increasing order used in the outer domain). For the interpolation
methods provided by preCICE, the error increases considerably with increasing
differences between the grids at the interface. As the error of the interpolation
methods depends on the distances of the points (see Fig. 8), the error is dominated
by the large distance of the integration points in the middle of the surface of an
octree grid cell in the High Order Discontinuous Galerkin discretization.

Accuracy Improvement by Regular Subsampling We can decrease the L2 error
of NP and RBF and improve the solution of the coupled simulation by providing
values at equidistant points on the Ateles side as interpolation support points. The
number of equidistant points is equal to the number of coupling points, hence
as high as the scheme order. With this new implementation, the error shown in
Fig. 9a decreases considerably compared to the results in Fig. 8. We achieve an
acceptable accuracy for all discretization order combinations. However, the regular
subsampling of values in the Ateles solver increases the overall computational time
substantially as can be seen in Fig. 9b.
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Fig. 9 Mapping accuracy and runtime of black-box with equidistant subsampling versus white-
box approach. L2 error behavior (a) and computational time (b) for the RBF interpolation, when
using equidistant (RBFEQ) and non-equidistant (RBF) point distributions for data mapping

To improve the NP interpolation, it turned out that in addition to providing
equidistant points, oversampling was required to increase the accuracy. Our inves-
tigation showed, that an oversampling factor of 3 is needed to achieve almost the
same accuracy as APESmate. In spite of the additional cost of many newly generated
support points, the runtime does not increase as much as for RBF, since for the RBF
a linear equation system has to be computed, while for NP a simple projection needs
to be done.

Summary and Runtime Comparison Figure 10 shows a summary of all tested
methods for the interpolation/evaluation before and after improvements. The inte-
grated coupling approach APESmate provides not just very accurate results, but also
low runtimes. At this point, we want to recall that this is as expected—the white-
box approach makes use of all internal knowledge, which gives it advantages in
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Fig. 10 Mapping accuracy and runtime summary of black-box versus white-box approach. L2
error and computational time for all methods
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terms of accuracy and efficiency. On the other hand, this internal knowledge binds
it to the solvers available in the framework, while preCICE can be applied to almost
all available solvers. Further details regarding this investigation can be found in
[15, 16].

6 Results

This section presents a more realistic test case, the turbulent flow over a fence, to
assess the overall performance of our approach. Analyses for accuracy and specific
isolated aspects are integrated in the sections above.

6.1 Flow over a Fence Test Case Setup

As a test case to assess the overall scalability, we simulate the turbulent flow over
a (flexible) fence and the induced acoustic far-field as already shown schematically
in Fig. 1. The FSI functionality of FASTEST has been demonstrated earlier many
times, e.g. in [34]. Thus we focus on the acoustic coupling.

As boundary conditions, we use a no-slip wall at the bottom and the fence
surface, an inflow on the left with ubulk, outflow convective boundary conditions
on the right, periodic boundary conditions in y-directions, and slip conditions at
the upper boundary for the near-field flow. For the acoustic perturbation, we apply
reflection conditions at the bottom and the fence surface, zero-gradient condition at
all other boundaries. The acoustic far-field solver uses Dirichlet boundary conditions
at its lower boundary (see also Eq. (9)). Therefore, the upper near-field boundary is
not the coupling interface, but we instead overlap near-field and far-field as shown in
Fig. 11. Figures 12 and 13 show a snapshot of the near-field flow and the near-field
and far-field acoustic pressure, respectively.

6.2 Fluid-Acoustics Coupling with FASTEST and Ateles

To demonstrate the computational performance of our framework using FASTEST
for the flow simulation in the near-field, the high-order DG solver Ateles for the
far-field acoustic wave propagation, and preCICE for coupling, we show weak
scalability measurements for the interaction between near-field flow simulation and
far-field acoustics. We keep both the mesh and the number of MPI ranks in the
near-field flow simulation fixed. In the far-field computed with Ateles, we refine the
mesh to better capture the acoustic wave propagation. We use a multi-level mesh
with a fine mesh at the coupling interface to allow a smooth solution at the coupling
interface between the near-field and the far-field. We refine the far-field mesh in
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Fig. 11 Flow over a fence test case. Schematic view of the computational domain (left) and
applied parameters (right). Colors indicate spatial discretization order in the various regions: The
FV domain is completely second order, while the DG domain has second order at the coupling
interface for reduced coupling interpolation errors, and subsequently increases the order in various
layers for the far-field transport

Fig. 12 Flow over a fence test case with FASTEST. Snapshot of the flow in the recirculation area
behind the fence. Red/blue indicate acoustic pressure, grey shades show the modelled turbulent
kinetic energy (for a ζ − f DES model)

two main steps: in the first step, we only refine the mesh at the coupling interface.
In the next step, we first refine the whole mesh, and again the mesh at the coupling
interface in the third and fourth step. Due to the refinement at the coupling interface,
the number of Ateles ranks participating in the interface increases such that this
study also shows that the preCICE communication does not deteriorate scalability.
Table 2 gives an overview of the configurations used for the weak scaling study.

To find the optimal core distribution for all setups, the load balancing approach
proposed in Sect. 4 is used. This analysis shows that for the smallest mesh resolution
with 24,864 elements in the far-field, the optimal core distribution is 424 cores for
the near-field domain and 196 cores for the far-field. For all other setups, we assume
perfect scalability, i.e., we choose the number of cores proportional to the number
of degrees of freedom in the weak scaling study and increase the number of cores
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Fig. 13 Flow over a fence test case. Snapshot of the acoustic pressure in a coupled simplified
setup

Table 2 Flow over a fence test case

Cores in FASTEST/Ateles Ateles degrees of freedom Ateles elements

424/196 16,116,480 24,864

424/756 62,535,840 89,376

424/1428 116,524,800 177,408

424/3136 254,150,400 607,488

424/15,372 1,245,054,720 3,704,064

Scalability study for the interaction between the near-field flow simulation and the far-field
acoustics: Summary of mesh details and core numbers for weak scaling. In the FASTEST
simulation of the near-field flow simulation, we use 52,822,016 elements. In the far-field, Ateles
uses discretization order 9

simultaneously by a factor of two in both fields for strong scaling. The scalability
measurements are shown in Fig. 14. The results show that the framework scales
almost perfectly up to 6528 cores.

6.3 Fluid-Acoustics Coupling with Only Ateles

In Sect. 5 we investigated the suitability of different interpolation methods for our
simulations. In this section, we present a strong scaling study for an Ateles-Ateles
coupled simulation of the flow over a fence test case. The fence is modelled in
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Fig. 14 Flow over a fence test case. Weak scalability measurement of the fluid-acoustic interaction
simulation for the fence test case

Ateles using the newly implemented immersed boundary method, enabling high-
order representation of complex geometries in Ateles [1]. We solve the compressible
Navier-Stokes equations in the flow domain with a scheme order of 4 and a four step
mixed implicit-explicit Runge-Kutta time stepping scheme, with a time step size of
10−7. The total number of elements in the flow domain is 192,000. For the far-field,
we use the same setup as for the FASTEST-Ateles coupling.

The linearized Euler equations in the far-field can be solved in a DG setting in
the modal formulation, which makes the solver very cheap even for very high order.
In the near-field domain, the non-linear Navier-Stokes equations are solved with a
more expensive hybrid nodal-modal approach. Due to this, and the different spatial
discretizations and scheme orders, both domains have different computational load,
which requires load balancing. We use static load balancing, since neither the mesh
nor the scheme order vary during runtime. As both solvers are instances of Ateles,
we apply the SpartA algorithm [21], which allows re-partitioning of the workload
according to weights per elements, which are computed during runtime. Those
weights are then used to re-distribute the elements according to the workload among
available processes (see [17] for more details). The total number of processes used
for this test case are 14,336 processes, which is equal to one island on the system. As
mentioned previously, the total workload per subdomain does not change, therefore
we start our measurements by providing the lower subdomain 100 processes and
the upper subdomain 12 processes, which is equal to 4 nodes on the system. This
number per subdomain is then doubled for each run, the ratio is kept the same.

Figure 15 shows the strong scaling measurements for both coupling approaches
(APESmate and preCICE) executed on the SuperMUC Phase2 system. As can be
clearly seen, both coupling setups Ateles-APESmate-Ateles and Ateles-preCICE-
Ateles scale almost ideally, however with a lower absolute runtime for the APES-
mate coupling as expected.
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Fig. 15 Flow over a fence test case. Strong scaling measurement for Ateles-Ateles coupling using
both APESmate and preCICE—and the ideal linear scaling as reference

7 Summary and Conclusion

We have presented a partitioned simulation environment for the massively parallel
simulation of fluid-structure-acoustic interactions. Our setup uses the flow and
acoustic solvers in the finite volume software FASTEST, the acoustic solvers in
the discontinuous Galerkin framework Ateles as well as the black-box fully parallel
coupling library preCICE. In particular, we could show that with a careful design
of the coupling tool as well as of solver details, we can achieve a bottleneck-free
numerically and technically highly scalable solution. It turned out that efficient ini-
tialization of point-to-point communication relations and mapping matrices between
the involved participants, sophisticated inter-code load balancing and asynchronous
communication using message buffering are crucial for large-scale scenarios. With
these improvements, we advanced the limits of scalability of partitioned multi-
physics simulations from less than a hundred cores to more than 10,000 cores.
Beyond that, we reach a problem size that is not required by the given problem
as well as scalability limits of the solvers. The coupling itself is not the limiting
factor for the given problem size and degree of parallelism. To be able to use also
vector architectures in an efficient sustainable way, we adapted our solvers with a
highly effective code transformation approach.
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