
Security and Incremental Computation

Robustly Safe Compilation

Marco Patrignani1,2(B) and Deepak Garg3

1 Stanford University, Stanford, USA
mp@cs.stanford.edu

2 CISPA Helmholz Center for Information Security, Saarbrücken, Germany
3 Max Planck Institute for Software Systems, Saarbrücken, Germany

Abstract. Secure compilers generate compiled code that withstands
many target-level attacks such as alteration of control flow, data leaks
or memory corruption. Many existing secure compilers are proven to
be fully abstract, meaning that they reflect and preserve observational
equivalence. Fully abstract compilation is strong and useful but, in cer-
tain cases, comes at the cost of requiring expensive runtime constructs in
compiled code. These constructs may have no relevance for security, but
are needed to accommodate differences between the source and target
languages that fully abstract compilation necessarily needs.

As an alternative to fully abstract compilation, this paper explores a
different criterion for secure compilation called robustly safe compilation
or RSC. Briefly, this criterion means that the compiled code preserves
relevant safety properties of the source program against all adversarial
contexts interacting with the compiled program. We show that RSC can
be proved more easily than fully abstract compilation and also often
results in more efficient code. We also develop two illustrative robustly-
safe compilers and, through them, illustrate two different proof tech-
niques for establishing that a compiler attains RSC. Based on these, we
argue that proving RSC can be simpler than proving fully abstraction.

To better explain and clarify notions, this paper uses colours. For a
better experience, please print or view this paper in colours.1

1 Introduction

Low-level adversaries, such as those written in C or assembly can attack co-
linked code written in a high-level language in ways that may not be feasible in
the high-level language itself. For example, such an adversary may manipulate
or hijack control flow, cause buffer overflows, or directly access private memory,

1 Specifically, in this paper we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black , italic font for elements com-
mon to both languages (to avoid repeating similar definitions twice). Thus, C is a
source-level component, C is a target-level component and C is generic notation for
either a source-level or a target-level component.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 469–498, 2019.
https://doi.org/10.1007/978-3-030-17184-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_17

470 M. Patrignani and D. Garg

all in contravention to the abstractions of the high-level language. Specific coun-
termeasures such as Control Flow Integrity [3] or Code Pointer Integrity [41]
have been devised to address some of these attacks individually. An alterna-
tive approach is to devise a secure compiler, which seeks to defend against
entire classes of such attacks. Secure compilers often achieve security by relying
on different protection mechanisms, e.g., cryptographic primitives [4,5,22,26],
types [10,11], address space layout randomisation [6,37], protected module archi-
tectures [9,53,57,59] (also know as enclaves [46]), tagged architectures [7,39], etc.
Once designed, the question researchers face is how to formalise that such a com-
piler is indeed secure, and how to prove this. Basically, we want a criterion that
specifies secure compilation. A widely-used criterion for compiler security is fully
abstract compilation (FAC) [2,35,52], which has been shown to preserve many
interesting security properties like confidentiality, integrity, invariant definitions,
well-bracketed control flow and hiding of local state [9,37,53,54].

Informally, a compiler is fully abstract if it preserves and reflects observa-
tional equivalence of source-level components (i.e., partial programs) in their
compiled counterparts. Most existing work instantiates observational equivalence
with contextual equivalence: co-divergence of two components in any larger con-
text they interact with. Fully abstract compilation is a very strong property,
which preserves all source-level abstractions.

Unfortunately, preserving all source-level abstractions also has downsides. In
fact, while FAC preserves many relevant security properties, it also preserves a
plethora of other non-security ones, and the latter may force inefficient checks in
the compiled code. For example, when the target is assembly, two observationally
equivalent components must compile to code of the same size [9,53], else full
abstraction is trivially violated. This requirement is security-irrelevant in most
cases. Additionally, FAC is not well-suited for source languages with undefined
behaviour (e.g., C and LLVM) [39] and, if used naïvely, it can fail to preserve even
simple safety properties [60] (though, fortunately, no existing work falls prey to
this naïvety).

Motivated by this, recent work started investigating alternative secure com-
pilation criteria that overcome these limitations. These security-focussed criteria
take the form of preservation of hyperproperties or classes of hyperproperties,
such as hypersafety properties or safety properties [8,33]. This paper investigates
one of these criteria, namely, Robustly Safe Compilation (RSC) which has clear
security guarantees and can often be attained more efficiently than FAC.

Informally, a compiler attains RSC if it is correct and it preserves robust
safety of source components in the target components it produces. Robust safety
is an important security notion that has been widely adopted to formalize secu-
rity, e.g., of communication protocols [14,17,34]. Before explaining RSC, we
explain robust safety as a language property.

Robust Safety as a Language Property. Informally, a program property is a safety
property if it encodes that “bad” sequences of events do not happen when the
program executes [13,63]. A program is robustly safe if it has relevant (specified)

Robustly Safe Compilation 471

safety properties despite active attacks from adversaries. As the name suggests,
robust safety relies on the notions of safety and robustness which we now explain.

Safety. As mentioned, safety asserts that “no bad sequence of events happens”,
so we can specify a safety property by the set of finite observations which char-
acterise all bad sequences of events. A whole program has a safety property if
its behaviours exclude these bad observations. Many security properties can be
encoded as safety, including integrity, weak secrecy and functional correctness.

Example 1 (Integrity). Integrity ensures that an attacker does not tamper with
code invariants on state. For example, consider the function charge_account(n)
which deducts amount n from an account as part of an electronic card payment. A
card PIN is required if n is larger than 10 euros. So the function checks whether n
> 10, requests the PIN if this is the case, and then changes the account balance.
We expect this function to have a safety (integrity) property in the account
balance: A reduction of more than 10 euros in the account balance must be
preceded by a call to request_pin(). Here, the relevant observation is a trace
(sequence) of account balances and calls to request_pin(). Bad observations for
this safety property are those where an account balance is at least 10 euros less
than the previous one, without a call to request_pin() in between. Note that
this function seems to have this safety property, but it may not have the safety
property robustly : a target-level adversary may transfer control directly to the
“else” branch of the check n > 10 after setting n to more than 10, to violate the
safety property. �

Example 2 (Weak Secrecy). Weak secrecy asserts that a program secret never
flows explicitly to the attacker. For example, consider code that manages
network_h, a handler (socket descriptor) for a sensitive network interface. This
code does not expose network_h directly to external code but it provides an
API to use it. This API makes some security checks internally. If the handler
is directly accessible to outer code, then it can be misused in insecure ways
(since the security checks may not be made). If the code has weak secrecy wrt
network_h then we know that the handler is never passed to an attacker. In
this case we can define bad observations as those where network_h is passed to
external code (e.g., as a parameter, as a return value on or on the heap). �

Example 3 (Correctness). Program correctness can also be formalized as a safety
property. Consider a program that computes the nth Fibonacci number. The
program reads n from an input source and writes its output to an output source.
Correctness of this program is a safety property. Our observations are pairs of an
input (read by the program) and the corresponding output. A bad observation
is one where the input is n (for some n) but the output is different from the nth
Fibonacci number. �

These examples not only illustrate the expressiveness of safety properties, but
also show that safety properties are quite coarse-grained : they are only concerned
with (sequences of) relevant events like calls to specific functions, changes to

472 M. Patrignani and D. Garg

specific heap variables, inputs, and outputs. They do not specify or constrain how
the program computes between these events, leaving the programmer and the
compiler considerable flexibility in optimizations. However, safety properties are
not a panacea for security, and there are security properties that are not safety.
For example, noninterference [70,72], the standard information flow property,
is not safety. Nonetheless, many interesting security properties are safety. In
fact, many non-safety properties including noninterference can be conservatively
approximated as safety properties [20]. Hence, safety properties are a meaningful
goal to pursue for secure compilation.

Robustness. We often want to reason about properties of a component of inter-
est that hold irrespective of any other components the component interacts with.
These other components may be the libraries the component is linked against,
or the language runtime. Often, these surrounding components are modelled as
the program context whose hole the component of interest fills. From a security
perspective the context represents the attacker in the threat model. When the
component of interest links to a context, we have a whole program that can run.
A property holds robustly for a component if it holds in any context that the
component of interest can be linked to.

Robust Safety Preservation as a Compiler Property. A compiler attains robustly
safe compilation or RSC if it maps any source component that has a safety
property robustly to a compiled component that has the same safety property
robustly. Thus, safety has to hold robustly in the target language, which often
does not have the powerful abstractions (e.g., typing) that the source language
has. Hence, the compiler must insert enough defensive runtime checks into the
compiled code to prevent the more powerful target contexts from launching
attacks (violations of safety properties) that source contexts could not launch.
This is unlike correct compilation, which either considers only those target con-
texts that behave like source contexts [40,49,65] or considers only whole pro-
grams [43].

As mentioned, safety properties are usually quite coarse-grained. This means
that RSC still allows the compiler to optimise code internally, as long as the
sequence of observable events is not affected. For example, when compiling the
fibonacci function of Example 3, the compiler can do any internal optimisation
such as caching intermediate results, as long as the end result is correct. Cru-
cially, however, these intermediate results must be protected from tampering by
a (target-level) attacker, else the output can be incorrect, breaking RSC .

A RSC -attaining compiler focuses only on preserving security (as captured
by robust safety) instead of contextual equivalence (typically captured by full
abstraction). So, such a compiler can produce code that is more efficient than
code compiled with a fully abstract compiler as it does not have to preserve all
source abstractions (we illustrate this later).

Finally, robust safety scales naturally to thread-based concurrency [1,34,58].
Thus RSC also scales naturally to thread-based concurrency (we demonstrate

Robustly Safe Compilation 473

this too). This is unlike FAC, where thread-based concurrency can introduce
additional undesired abstractions that also need to be preserved.

RSC is a very recently proposed criterion for secure compilers. Recent
work [8,33] define RSC abstractly in terms of preservation of program
behaviours, but their development is limited to the definition only. Our goal
in this paper is to examine how RSC can be realized and established, and to
show that in certain cases it leads to compiled code that is more efficient than
what FAC leads to. To this end, we consider a specific setting where observa-
tions are values in specific (sensitive) heap locations at cross-component calls.
We define robust safety and RSC for this specific setting (Sect. 2). Unlike pre-
vious work [8,33] which assumed that the domain of traces (behaviours) is the
same in the source and target languages, our RSC definition allows for different
trace domains in the source and target languages, as long as they can be suit-
ably related. The second contribution of our paper is two proof techniques to
establish RSC.

– The first technique is an adaption of trace-based backtranslation, an existing
technique for proving FAC [7,9,59]. To illustrate this technique, we build a
compiler from an untyped source language to an untyped target language with
support for fine-grained memory protection via so-called capabilities [23,71]
(Sect. 3). Here, we guarantee that if a source program is robustly safe, then
so is its compilation.

– The second proof technique shows that if source programs are verified for
robust safety, then one can simplify the proof of RSC so that no backtrans-
lation is needed. In this case, we develop a compiler from a typed source
language where the types already enforce robust safety, to a target language
similar to that of the first compiler (Sect. 4). In this instance, both languages
also support shared-memory concurrency. Here, we guarantee that all com-
piled target programs are robustly safe.

To argue that RSC is general and is not limited to compilation targets based
on capabilities, we also develop a third compiler. This compiler starts from the
same source language as our second compiler but targets an untyped concurrent
language with support for coarse-grained memory isolation, modelling recent
hardware extensions such as Intel’s SGX [46]. Due to space constraints, we report
this result only in the companion technical report [61].

The final contribution of this paper is a comparison between RSC and FAC.
For this, we describe changes that would be needed to attain FAC for the first
compiler and argue that these changes make generated code inefficient and also
complicate the backtranslation proof significantly (Sect. 5).

Due to space constraints, we elide some technical details and limit proofs to
sketches. These are fully resolved in the companion technical report [61].

474 M. Patrignani and D. Garg

2 Robustly Safe Compilation

This section first discusses robust safety as a language (not a compiler) property
(Sect. 2.1) and then presents RSC as a compiler property along with an informal
discussion of techniques to prove it (Sect. 2.2).

2.1 Safety and Robust Safety

To explain robust safety, we first describe a general imperative programming
model that we use. Programmers write components on which they want to
enforce safety properties robustly. A component is a list of function definitions
that can be linked with other components (the context) in order to have a
runnable whole program (functions in “other” components are like extern func-
tions in C). Additionally, every component declares a set of “sensitive” locations
that contain all the data that is safety-relevant. For instance, in Example 1 this
set may contain the account balance and in Example 3 it may contain the I/O
buffers. We explain the relevance of this set after we define safety properties.

We want safety properties to specify that a component never executes a “bad”
sequence of events. For this, we first need to fix a notion of events. We have
several choices here, e.g., our events could be inputs and outputs, all syscalls,
all changes to the heap (as in CompCert [44]), etc. Here, we make a specific
choice motivated by our interest in robustness: We define events as calls/re-
turns that cross a component boundary, together with the state of the heap
at that point. Consequently, our safety properties can constrain the contents of
the heap at component boundaries. This choice of component boundaries as the
point of observation is meaningful because, in our programming model, control
transfers to/from an adversary happen only at component boundaries (more pre-
cisely, they happen at cross-component function call and returns). This allows
the compiler complete flexibility in optimizing code within a component, while
not reducing the ability of safety properties to constrain observations of the
adversary.

Concretely, a component behaviour is a trace, i.e., a sequence of actions
recording component boundary interactions and, in particular, the heap at these
points. Actions, the items on a trace, have the following grammar:

Actions α ::= call f v H ? | call f v H ! | ret H ! | ret H ?

These actions respectively capture call and callback to a function f with param-
eter v when the heap is H as well as return and returnback with a certain
heap H.2 We use ? and ! decorations to indicate whether the control flow of the
action goes from the context to the component (?) or from the component to the
context (!). Well-formed traces have alternations of ? and ! decorated actions,

2 A callback is a call from the component to the context, so it generates label
call f v H !. A returnback is a return from such a callback, i.e., the context returning
to the component, and it generates the label ret H ?.

Robustly Safe Compilation 475

starting with ? since execution starts in the context. For a sequence of actions
α, relevant(α) is the list of heaps H mentioned in the actions of α.

Next, we need a representation of safety properties. Generally, properties are
sets of traces, but safety properties specifically can be specified as automata (or
monitors in the sequel) [63]. We choose this representation since monitors are
less abstract than sets of traces and they are closer to enforcement mechanisms
used for safety properties, e.g., runtime monitors. Briefly, a safety property is a
monitor that transitions states in response to events of the program trace. At
any point, the monitor may refuse to transition (it gets stuck), which encodes
property violation. While a monitor can transition, the property has not been
violated. Schneider [63] argues that all properties codable this way are safety
properties and that all enforceable safety properties can be coded this way.

Formally, a monitor M in our setting consists of a set of abstract states
{σ · · · }, the transition relation �, an initial state σ0 , the set of heap locations
that matter for the monitor, {l · · · }, and the current state σc (we indicate a set of
elements of class e as {e · · · }). The transition relation � is a set of triples of the
form (σs ,H , σf) consisting of a starting state σs , a final state σf and a heap H .
The transition (σs ,H , σf) is interpreted as “state σs transitions to σf when the
heap is H ”. When determining the monitor transition in response to a program
action, we restrict the program’s heap to the location set {l · · · }, i.e., to the set
of locations the monitor cares about. This heap restriction is written H

∣
∣
{l··· }.

We assume determinism of the transition relation: for any σs and (restricted
heap) H , there is at most one σf such that (σs ,H , σf) ∈ �.

Given the behaviour of a program as a trace α and a monitor M specifying
a safety property, M � α denotes that the trace satisfies the safety property.
Intuitively, to satisfy a safety property, the sequence of heaps in the actions of
a trace must never get the monitor stuck (Rule Valid trace). Every single heap
must allow the monitor to step according to its transition relation (Rule Monitor
Step). Note that we overload the � notation here to also denote an auxiliary
relation, the monitor small-step semantics (Rule Monitor Step-base and Rule
Monitor Step-ind).

M ; relevant(α) � M ′

M � α M ; ∅ � M
M ;H � M ′′ M ′′;H � M ′

M ;H · H � M ′

(σc ,H
∣∣
{l··· }, σf) ∈ �

({σ · · · } , �, σ0 , {l · · · } , σc); H � ({σ · · · } , �, σ0 , {l · · · } , σf)

With this setup in place, we can formalise safety, attackers and robust safety.
In defining (robust) safety for a component, we only admit monitors (safety
properties) whose {l · · · } agrees with the sensitive locations declared by the
component. Making the set of safety-relevant locations explicit in the compo-
nent and the monitor gives the compiler more flexibility by telling it precisely
which locations need to be protected against target-level attacks (the compiler
may choose to not protect the rest). At the same time, it allows for expressive
modelling. For instance, in Example 3 the safety-relevant locations could be the

476 M. Patrignani and D. Garg

I/O buffers from which the program performs inputs and outputs, and the safety
property can constrain the input and output buffers at corresponding call and
return actions involving the Fibonacci function.

Definition 1 (Safety, attacker and robust safety).

M � C : safe def= if � C : whole then if Ω0 (C) α==⇒ _ then M � α

C � A : atk def= C = {l · · · } ,F and {l · · · } ∩ fn(A) = ∅

M � C : rs def= ∀A. if M �C and C � A : atk then M � A [C] : safe

A whole program C is safe for a monitor M , written M � C : safe, if the monitor
accepts any trace the program generates from its initial state (Ω0 (C)).

An attacker A is valid for a component C , written C � A : atk , if A’s free
names (denoted fn(A)) do not refer to the locations that the component cares
about. This is a basic sanity check: if we allow an attacker to mention heap
locations that the component cares about, the attacker will be able to modify
those locations, causing all but trivial safety properties to not hold robustly.

A component C is robustly safe wrt monitor M , written M � C : rs, if
C composed with any attacker is safe wrt M . As mentioned, for this setup to
make sense, the monitor and the component must agree on the locations that
are safety-relevant. This agreement is denoted M �C .

2.2 Robustly Safe Compilation

Robustly-safe compilation ensures that robust safety properties and their mean-
ings are preserved across compilation. But what does it means to preserve mean-
ings across languages? If a source safety property says never write 3 to a location,
and we compile to an assembly language by mapping numbers to binary, the
corresponding target property should say never write 0x11 to an address.

In order to relate properties across languages, we assume a relation ≈ :
v × v between source and target values that is total, so it maps any source
value v to a target value v : ∀v.∃v.v≈v. This value relation is used to define
a relation between heaps: H≈H, which intuitively holds when related locations
point to related values. This is then used to define a relation between actions:
α≈α, which holds when the two actions are the “same” modulo this relation,
i.e., call · · · ? only relates to call · · · ? and the arguments of the action
(values and heap) are related. Next, we require a relation M≈M between source
and target monitors, which means that the source monitor M and the target
monitor M code the same safety property, modulo the relation ≈ on values
assumed above. The precise definition of this relation depends on the source and
target languages; specific instances are shown in Sects. 3.3 and 4.3.3

3 Accounting for the difference in the representation of safety properties sets us apart
from recent work [8,33], which assumes that the source and target languages have
the same trace alphabet. The latter works only in some settings.

Robustly Safe Compilation 477

We denote a compiler from language S to language T by �·�S
T. A compiler

�·�S
T attains RSC, if it maps any component C that is robustly safe wrt M to a

component C that is robustly safe wrt M, provided that M≈M.

Definition 2 (Robustly Safe Compilation).

� �·�S
T : RSC def= ∀C,M,M. if M � C : rs and M≈M then M � �C�

S
T : rs

A consequence of the universal quantification over monitors here is that the
compiler cannot be property-sensitive. A robustly-safe compiler preserves all
robust safety properties, not just a specific one, e.g., it does not just enforce
that fibonacci is correct. This seemingly strong goal is sensible as compiler
writers will likely not know what safety properties individual programmers will
want to preserve.

Remark. Some readers may wonder why we do not follow existing work and
specify safety as “programmer-written assertions never fail” [31,34,45,68]. Unfor-
tunately, this approach does not yield a meaningful criterion for specifying a
compiler, since assertions in the compiled program (if any) are generated by the
compiler itself. Thus a compiler could just erase all assertions and the compiled
code it generates would be trivially (robustly) safe – no assertion can fail if there
are no assertions in the first place!

Proving RSC . Proving that a compiler attains RSC can be done either by
proving that a compiler satisfies Definition 2 or by proving something equivalent.
To this end, Definition 3 below presents an alternative, equivalent formulation of
RSC. We call this characterisation property-free as it does not mention monitors
explicitly (it mentions the relevant(·) function for reasons we explain below).

Definition 3 (Property-Free RSC).

� �·�S
T : PF -RSC def= ∀C,A, α.

if �C�
S
T � A : atk and � A

[

�C�
S
T

]

: whole and Ω0

(

A
[

�C�
S
T

])
α==⇒ _

then ∃A, α. C � A : atk and � A [C] : whole and Ω0 (A [C]) α==⇒ _
and relevant(α)≈ relevant(α)

Specifically, PF -RSC states that the compiled code produces behaviours that
refine source level behaviours robustly (taking contexts into account).

PF -RSC and RSC should, in general, be equivalent (Proposition 1).

Proposition 1 (PF -RSC and RSC are equivalent).

∀�·�S
T,� �·�S

T : PF -RSC ⇐⇒ � �·�S
T : RSC

Informally, a property is safety if and only if it implies programs not having any
trace prefix from a given set of bad prefixes (i.e., finite traces). Hence, not having

478 M. Patrignani and D. Garg

a safety property robustly amounts to some context being able to induce a bad
prefix. Consequently, preserving all robust safety properties (RSC) amounts to
ensuring that all target prefixes can be generated (by some context) in the source
too (PF -RSC). Formally, since Definition 2 relies on the monitor relation, we
can prove Proposition 1 only after such a relation is finalised. We give such a
monitor relation and proof in Sect. 3.3 (see Theorem 3). However, in general this
result should hold for any cross-language monitor relation that correctly relates
safety properties. If the proposition does not hold, then the relation does not
capture how safety in one language is represented in the other.

Assuming Proposition 1, we can prove PF -RSC for a compiler in place of
RSC. PF -RSC can be proved with a backtranslation technique. This technique
has been often used to prove full abstraction [7–9,33,39,50,53,54,59] and it aims
at building a source context starting from a target one. In fact PF -RSC , leads
directly to a backtranslation-based proof technique since it can be rewritten
(eliding irrelevant details) as:

If ∃A, α.Ω0

(

A
[

�C�
S
T

])
α==⇒ _

then ∃A, α.Ω0 (A [C]) α==⇒ _ and relevant(α)≈ relevant(α)

Essentially, given a target context A, a compiled program �C�
S
T and a target

trace α that A causes �C�
S
T to have, we need to construct, or backtranslate to,

a source context A that will cause the source program C to simulate α. Such
backtranslation based proofs can be quite difficult, depending on the features of
the languages and the compiler. However, backtranslation for RSC (as we show
in Sect. 3.3) is not as complex as backtranslation for FAC (Sect. 5.2).

A simpler proof strategy is also viable for RSC when we compile only those
source programs that have been verified to be robustly safe (e.g., using a type
system). The idea is this: from the verification of the source program, we can find
an invariant which is always maintained by the target code, and which, in turn,
implies the robust safety of the target code. For example, if the safety property
is that values in the heap always have their expected types, then the invariant
can simply be that values in the target heap are always related to the source
ones (which have their expected types). This is tantamount to proving type
preservation in the target in the presence of an active adversary. This is harder
than standard type preservation (because of the active adversary) but is still
much easier than backtranslation as there is no need to map target constructs
to source contexts syntactically. We illustrate this proof technique in Sect. 4.

RSC Implies Compiler Correctness. As stated in Sect. 1, RSC implies (a
form of) compiler correctness. While this may not be apparent from Definition 2,
it is more apparent from its equivalent characterization in Definition 3. We elab-
orate this here.

Whether concerned with whole programs or partial programs, compiler cor-
rectness states that the behaviour of compiled programs refines the behaviour
of source programs [18,36,40,44,49,65]. So, if {α · · · } and {α · · · } are the sets of

Robustly Safe Compilation 479

compiled and source behaviours, then a compiler should force {α · · · }⊂∼{α · · · },
where ⊂∼ is the composition of ⊆ and of the relation ≈−1.

If we consider a source component C that is whole, then it can only link
against empty contexts, both in the source and in the target. Hence, in this
special case, PF -RSC simplifies to standard refinement of traces, i.e., whole
program compiler correctness. Hence, assuming that the correctness criterion for
a compiler is concerned with the same observations as safety properties (values in
safety-relevant heap locations at component crossings in our illustrative setting),
PF -RSC implies whole program compiler correctness.

However, PF -RSC (or, equivalently, RSC) does not imply, nor is implied by,
any form of compositional compiler correctness (CCC) [40,49,65]. CCC requires
that the behaviours produced by a compiled component linked against a target
context that is related (in behaviour) to a source context can also be produced
by the source component linked against the related source context. In contrast,
PF -RSC allows picking any source context to simulate the behaviours. Hence,
PF -RSC does not imply CCC. On the other hand, PF -RSC universally quan-
tifies over all target contexts, while CCC only quantifies over target contexts
related to a source context, so CCC does not imply PF -RSC either. Hence,
compositional compiler correctness, if desirable, must be imposed in addition to
PF -RSC . Note that this lack of implications is unsurprising: PF -RSC and CCC
capture two very different aspects of compilation: security (against all contexts)
and compositional preservation of behaviour (against well-behaved contexts).

3 RSC via Trace-Based Backtranslation

This section illustrates how to prove that a compiler attains RSC by means of a
trace-based backtranslation technique [7,53,59]. To present such a proof, we first
introduce our source language LU, an untyped, first-order imperative language
with abstract references and hidden local state (Sect. 3.1). Then, we present
our target language LP, an untyped imperative target language with a concrete
heap, whose locations are natural numbers that the context can compute. LP

provides hidden local state via a fine-grained capability mechanism on heap
accesses (Sect. 3.2). Finally, we present the compiler �·�LU

LP and prove that it
attains RSC (Sect. 3.3) by means of a trace-based backtranslation. The section
conclude with an example detailing why RSC preserves security (Example 4).

To avoid focussing on mundane details, we deliberately use source and tar-
get languages that are fairly similar. However, they differ substantially in one
key point: the heap model. This affords the target-level adversary attacks like
guessing private locations and writing to them that do not obviously exist in the
source (and makes our proofs nontrivial). We believe that (with due effort) the
ideas here will generalize to languages with larger gaps and more features.

3.1 The Source Language LU

LU is an untyped imperative while language [51]. Components C are triples
of function definitions, interfaces and a special location written �root, so C ::=

480 M. Patrignani and D. Garg

�root;F; I. Each function definition maps a function name and a formal argument
to a body s: F ::= f(x) → s; return;. An interface is a list of functions that the
component relies on the context to provide (similar to C’s extern declarations).
The special location �root defines the locations that are monitored for safety, as
explained below. Attackers A (program contexts) are function definitions that
represent untrusted code that a component interacts with. A function’s body is a
statement, s. Statements are rather standard, so we omit a formal syntax. Briefly,
they can manipulate the heap (location creation let x = new e in s, assignment
x := e), do recursive function calls (call f e), condition (if-then-else), define local
variables (let-in) and loop. Statements use effect-free expressions, e, which con-
tain standard boolean expressions (e ⊗ e), arithmetic expressions (e ⊕ e), pairing
(〈e, e〉) and projections, and location dereference (!e). Heaps H are maps from
abstract locations � to values v.

As explained in Sect. 2.1, safety properties are specified by monitors. LU’s
monitors have the form: M ::= ({σ · · · } ,�, σ0, �root, σc). Note that in place of
the set {l · · · } of safety-relevant locations, the description of a monitor here (as
well as a component above) contains a single location �root. The interpretation is
that any location reachable in the heap starting from �root is relevant for safety.
This set of locations can change as the program executes, and hence this is more
flexible than statically specifying all of {l · · · } upfront. This representation of
the set by a single location is made explicit in the following monitor rule:

(LU-Monitor Step)
M = ({σ · · · } , �, σ0, �root, σc) M′ = ({σ · · · } , �, σ0, �root, σf)
(σc, H

′, σf) ∈ � H′ ⊆ H dom(H′) = reach(�root, H)

M; H � M′

Other than this small point, monitors, safety, robust safety and RSC are
defined as in Sect. 2. In particular, a monitor and a component agree if they
mention the same �root: M � C

def= (M = ({σ · · · } ,�, σ0, �root, σc)) and (C =
(�root;F; I))

A program state C,H � (s)f (denoted with Ω) includes the function bodies C,
the heap H, a statement s being executed and a stack of function calls f (often
omitted in the rules for simplicity). The latter is used to populate judgements of
the form I � f, f′ : internal/in/out. These determine whether calls and returns are
internal (within the attacker or within the component), directed from the attacker
to the component (in) or directed from the component to the attacker (out). This
information is used to determine whether the semantics should generate a label,
as in Rules ELU-return to ELU-retback, or no label, as in Rules ELU-ret-internal
and ELU-call-internal since internal calls should not be observable. LU has a big-
step semantics for expressions (H � e ↪→→ v) that relies on evaluation contexts, a
small-step semantics for statements (Ω λ−−→ Ω′) that has labels λ ::= ε | α and
a semantics that accumulates labels in traces (Ω α==⇒ Ω′) by omitting silent
actions ε and concatenating the rest. Unlike existing work on compositional
compiler correctness which only rely on having the component [40], the semantics
relies on having both the component and the context.

Robustly Safe Compilation 481

(ELU-alloc)
H � e ↪→→ v � /∈ dom(H)

C, H � let x = new e in s −→
C, H; � �→ v � s[� / x]

(ELU-return)

f′ = f′′; f′ C.intfs � f, f′ : out

C, H � (return;)f′;f
ret H!−−−−−→

C, H � (skip)f′

(ELU-call)

f′ = f′′; f′ f(x) �→ s; return; ∈ C.funs

C.intfs � f′, f : in H � e ↪→→ v

C, H � (call f e)f′
call f v H?−−−−−−−−−→

C, H � (s; return;[v / x])f′;f

(ELU-callback)

f′ = f′′; f′ f(x) �→ s; return; ∈ F

C.intfs � f′, f : out H � e ↪→→ v

C, H � (call f e)f′
call f v H!−−−−−−−−−→

C, H � (s; return;[v / x])f′;f
(ELU-retback)

f′ = f′′; f′ C.intfs � f, f′ : in

C, H � (return;)f′;f
ret H?−−−−−→

C, H � (skip)f′

(ELU-ret-internal)

f′ = f′′; f′ C.intfs � f, f′ : internal

C, H � (return;)f′;f
ε−−→

C, H � (skip)f′

(ELU-call-internal)

C.intfs � f, f′ : internal f′ = f′′; f′ f(x) �→ s; return; ∈ C.funs H � e ↪→→ v

C, H � (call f e)f′
ε−−→ C, H � (s; return;[v / x])f′;f

3.2 The Target Language LP

LP is an untyped, imperative language that follows the structure of LU and it
has similar expressions and statements. However, there are critical differences
(that make the compiler interesting). The main difference is that heap loca-
tions in LP are concrete natural numbers. Upfront, an adversarial context can
guess locations used as private state by a component and clobber them. To sup-
port hidden local state, a location can be “hidden” explicitly via the statement
let x = hide e in s, which allocates a new capability k, an abstract token that
grants access to the location n to which e points [64]. Subsequently, all reads and
writes to n must be authenticated with the capability, so reading and writing
a location take another parameter as follows: !e with e and x := e with e. In
both cases, the e after the with is the capability. Unlike locations, capabilities
cannot be guessed. To make a location private, the compiler can make the capa-
bility of the location private. To bootstrap this hiding process, we assume that
a component has one location that can only be accessed by it, a priori in the
semantics (in our formalization, we always focus on only one component and we
assume that, for this component, this special location is at address 0).

In detail, LP heaps H are maps from natural numbers (locations) n to values
v and a tag η as well as capabilities, so H ::= ∅ | H;n → v : η | H;k. The
tag η can be ⊥, which means that n is globally available (not protected) or a
capability k, which protects n. A globally available location can be freely read
and written but one that is protected by a capability requires the capability to
be supplied at the time of read/write (Rule ELP-assign, Rule ELP-deref).

LP also has a big-step semantics for expressions, a labelled small-step seman-
tics and a semantics that accumulates traces analogous to that of LU.

482 M. Patrignani and D. Garg

(ELP-deref)
n �→ v : η ∈ H (η = ⊥) or (η = k and v′ = k)

H � !n with v′ ↪→→ H � v
(ELP-new)

H = H1;n �→ (v, η) H � e ↪→→ v H′ = H;n + 1 �→ v : ⊥
C,H � let x = new e in s −→ C,H′ � s[n + 1 / x]

(ELP-hide)
H � e ↪→→ n k /∈ dom(H) H = H1;n �→ v : ⊥;H2 H′ = H1;n �→ v : k;H2;k

C,H � let x = hide e in s −→ C,H′ � s[k / x]

(ELP-assign)
H � e ↪→→ v H = H1;n �→ _ : η;H2 H′ = H1;n �→ v : η;H2

(η = ⊥) or (η = k and v′ = k)

C,H � n := e with v′ −→ C,H′ � skip

A second difference between LP and LU is that LP has no booleans, while
LU has them. This makes the compiler and the related proofs interesting, as
discussed in the proof of Theorem 1.

In LP, the locations of interest to a monitor are all those that can be reached
from the address 0. 0 itself is protected with a capability kroot that is assumed
to occur only in the code of the component in focus, so a component is defined
as C ::= kroot;F; I. We can now give a precise definition of component-monitor
agreement for LP as well as a precise definition of attacker, which must care
about the kroot capability.

M�C def= (M = ({σ · · · } ,�, σ0,kroot, σc)) and (C = (kroot;F; I))

C � A : atk def= C = (kroot;F; I),A = F′,kroot /∈ fn(F′)

3.3 Compiler from LU to LP

We now present �·�LU

LP , the compiler from LU to LP, detailing how it uses the
capabilities of LP to achieve RSC. Then, we prove that �·�LU

LP attains RSC.
Compiler �·�LU

LP takes as input a LU component C and returns a LP component
(excerpts of the translation are shown below). The compiler performs a simple
pass on the structure of functions, expressions and statements. Each LU location
is encoded as a pair of a LP location and the capability to access the location;
location update and dereference are compiled accordingly. The compiler codes
source booleans true to 0 and false to 1, and the source number n to the target
counterpart n.

�
�root; F; I

�LU

LP
= kroot;

�
F
�LU

LP
;
�
I
�LU

LP

�!e�LU

LP = !�e�LU

LP .1 with �e�LU

LP .2

�
let x = new e

in s

�LU

LP

=
let xloc = new �e�LU

LP in let xcap = hide xloc in

let x = 〈xloc,xcap〉 in �s�LU

LP

�
x := e′	LU

LP = let xloc = x.1 in let xcap = x.2 in xloc :=
�
e′	LU

LP with xcap

Robustly Safe Compilation 483

This compiler solely relies on the capability abstraction of the target lan-
guage as a defence mechanism to attain RSC. Unlike existing secure compilers,
�·�LU

LP needs neither dynamic checks nor other constructs that introduce runtime
overhead to attain RSC [9,32,39,53,59].

Proof of RSC . Compiler �·�LU

LP attains RSC (Theorem 1). In order to set up this
theorem, we need to instantiate the cross-language relation for values, which we
write as ≈β here. The relation is parametrised by a partial bijection β : �×n×η
from source heap locations to target heap locations which determines when a
source location and a target location (and its capability) are related. On values,
≈β is defined as follows: true≈β 0; false≈β n when n �= 0; n≈β n; �≈β 〈n,k〉
if (�,n,k) ∈ β; �≈β 〈n,_〉 if (�,n,⊥) ∈ β; 〈v1, v2〉≈β 〈v1,v2〉 if v1 ≈β v1 and
v2 ≈β v2. This relation is then used to define the heap, monitor state and action
relations. Heaps are related, written H≈β H, when locations related in β point
to related values. States are related, written Ω≈β Ω, when they have related
heaps. The action relation (α≈β α) is defined as in Sect. 2.2.

Monitor Relation. In Sect. 2.2, we left the monitor relation abstract. Here, we
define it for our two languages. Two monitors are related when they can sim-
ulate each other on related heaps. Given a monitor-specific relation σ ≈σ on
monitor states, we say that a relation R on source and target monitors is a
bisimulation if the following hold whenever M = ({σ · · · } ,�, σ0, �root, σc) and
M = ({σ · · · } ,�, σ0,kroot, σc) are related by R:

1. σ0 ≈σ0, and σc ≈σc, and
2. For all β containing (�root,0,kroot) and all H,H with H≈β H:

(a) (σc,H,_) ∈ � iff (σc,H,_) ∈ �, and
(b) (σc,H, σ′) ∈ � and (σc,H, σ′) ∈ � imply

({σ · · · } ,�, σ0, �root, σ
′)R({σ · · · } ,�, σ0,kroot, σ

′).

In words, R is a bisimulation only if MRM implies that M and M simulate each
other on heaps related by any β that relates �root to 0. In particular, this means
that neither M nor M can be sensitive to the specific addresses allocated during
the run of the program. However, they can be sensitive to the “shape” of the heap
or the values stored in the heap. Note that the union of any two bisimulations
is a bisimulation. Hence, there is a largest bisimulation, which we denote as ≈.
Intuitively, M≈M implies that M and M encode the same safety property (up to
the aforementioned relation on values ≈β). With all the boilerplate for RSC in
place, we state our main theorem.

Theorem 1 (�·�LU

LP attains RSC). � �·�LU

LP : RSC

We outline our proof of Theorem 1, which relies on a backtranslation 〈〈·〉〉LP

LU .
Intuitively, 〈〈·〉〉LP

LU takes a target trace α and builds a set of source contexts such
that one of them when linked with C, produces a related trace α in the source
(Theorem 2). In prior work, backtranslations return a single context [10,11,21,

484 M. Patrignani and D. Garg

(1) call f 0 (
︷ ︸︸ ︷
1 �→ 4 : ⊥,

︷ ︸︸ ︷
2 �→ 3 : ⊥)?

(2) ret (1 �→ 4 : ⊥,2 �→ 〈3,k〉 : ⊥,
︷ ︸︸ ︷
3 �→ 11 : k)!

(3) call f 2 (1 �→ 55 : ⊥︸ ︷︷ ︸,2 �→ 〈3,k〉 : ⊥,3 �→ 15 : k︸ ︷︷ ︸)?

main(z) �→
let x = new 4 in L :: 〈x, 1〉 ;

let x = new 3 in L :: 〈x, 2〉 ;

call f 0;

⎤
⎥⎦ (1)

let x =!L(2) in L :: 〈x, 3〉 ;] (2)

let x = new L(1) in x := 55;

let x = new L(3) in x := 15;

call f 2;

⎤
⎥⎦ (3)

Fig. 1. Example of a trace and its backtranslated code.

28,50,53,59]. This is because they all, explicitly or implicitly, assume that ≈ is
injective from source to target. Under this assumption, the backtranslation is
unique: a target value v will be related to at most one source value v. We do
away with this assumption (e.g., the target value 0 is related to both source
values 0 and true) and thus there can be multiple source values related to any
given target value. This results in a set of backtranslated contexts, of which at
least one will reproduce the trace as we need it.

We bypass the lengthy technical setup for this proof and provide an informal
description of why the backtranslation achieves what it is supposed to. As an
example, Fig. 1 contains a trace α and the the output of 〈〈α〉〉LP

LU .
〈〈·〉〉LP

LU first generates empty method bodies for all context methods called
by the compiled component. Then it backtranslates each action on the given
trace, generating code blocks that mimic that action and places that code inside
the appropriate method body. Figure 1 shows the code blocks generated for each
action. Backtranslated code maintains a support data structure at runtime, a
list of locations denoted L where locations are added (::) and they are looked up
(L(n)) based on their second field n, which is their target-level address. In order
to backtranslate the first call, we need to set up the heap with the right values
and then perform the call. In the diagram, dotted lines describe which source
statement generates which part of the heap. The return only generates code that
will update the list L to ensure that the context has access to all the locations
it knows in the target too. In order to backtranslate the last call we lookup the
locations to be updated in L so we can ensure that when the call f 2 statement
is executed, the heap is in the right state.

For the backtranslation to be used in the proof we need to prove its correct-
ness, i.e., that 〈〈α〉〉LP

LU generates a context A that, together with C, generates a
trace α related to the given target trace α.

Theorem 2 (〈〈·〉〉LP

LU is correct)

if A
[

�C�
LU

LP

]
α==⇒ Ω then ∃A ∈ 〈〈α〉〉LP

LU .A [C] α==⇒ Ω and α≈β α and Ω≈β Ω.

Robustly Safe Compilation 485

This theorem immediately implies that � �·�LU

LP : PF -RSC , which, by Theorem
3 below, implies that � �·�LU

LP : RSC .

Theorem 3 (PF -RSC and RSC are equivalent for �·�LU

LP).

� �·�LU

LP : PF -RSC ⇐⇒ � �·�LU

LP : RSC

Example 4 (Compiling a secure program). To illustrate RSC at work, let us
consider the following source component Ca, which manages an account whose
balance is security-relevant. Accordingly, the balance is stored in a location (�root

that is tracked by the monitor. Ca provides functions to deposit to the account
as well as to print the account balance.

deposit(x) → let q=abs(x) in let amt = !�root in �root := amt + q

balance() → !�root

Ca never leaks any sensitive location (�root) to an attacker. Additionally, an
attacker has no way to decrement the amount of the balance since deposit only
adds the absolute value abs(x) of its input x to the existing balance.

By compiling Ca with �·�LU

LP , we obtain the following target program.

deposit(x) → let q=abs(x) in

let amt=!0 with kroot in 0 := amt + q with kroot

balance() → !0 with kroot

Recall that location �root is mapped to location 0 and protected by the kroot

capability. In the compiled code, while location 0 is freely computable by a
target attacker, capability kroot is not. Since that capability is not leaked to
an attacker, an attacker will not be able to tamper with the balance stored in
location 0. �

4 RSC via Bisimulation

If the source language has a verification system that enforces robust safety,
proving that a compiler attains RSC can be simpler than that of Sect. 3—it
may not require a back translation. To demonstrate this, we consider a specific
class of monitors, namely those that enforce type invariants on a specific set of
locations. Our source language, Lτ , is similar to LU but it has a type system
that accepts only those source programs whose traces the source monitor never
rejects. Our compiler �·�Lτ

Lπ is directed by typing derivations, and its proof of RSC
establishes a specific cross-language invariant on program execution, rather than
a backtranslation. A second, independent goal of this section is to show that RSC
is compatible with concurrency. Consequently, our source and target languages
include constructs for forking threads.

486 M. Patrignani and D. Garg

4.1 The Source Language Lτ

Lτ extends LU with concurrency, so it has a fork statement (‖ s), processes and
process soups [19]. Components define a set of safety-relevant locations Δ, so
C ::= Δ;F; I and heaps carry type information, so H ::= ∅ | H; � → v : τ . Δ also
specifies a type for each safety-relevant location, so Δ ::= ∅ | Δ; (� : τ).

Lτ has an unconventional type system that enforces robust type safety [1,14,
31,34,45,58], which means that no context can cause the static types of sen-
sitive heap locations to be violated at runtime. Using a special type UN that
is described below, a program component statically partitions heap locations it
deals with into those it cares about (sensitive or “trusted” locations) and those
it does not care about (“untrusted” locations). Call a value shareable if only
untrusted locations can be extracted from it using the language’s elimination
constructs. The type system then ensures that a program component only ever
shares shareable values with the context. This ensures that the context cannot
violate any invariants (including static types) of the trusted locations, since it
can never gets direct access to them.

Technically, the type system considers the types τ ::= Bool | Nat | τ × τ |
Ref τ | UN and the following typing judgements (Γ maps variables to types).

Type UN stands for “untrusted” or “shareable” and contains all values that can
be passed to the context. Every type that is not a subtype of UN is implicitly
trusted and cannot be passed to the context. Untrusted locations are explic-
itly marked UN at their allocation points in the program. Other types are
deemed shareable via subtyping. Intuitively, a type is safe if values in it can only
yield locations of type UN by the language elimination constructs. For example,
UN × UN is a subtype of UN. We write τ � ◦ to mean that τ is a subtype of UN.

Further, Lτ contains an endorsement statement (endorse x = e as ϕ in s) that
dynamically checks the top-level constructor of a value of type UN and gives it
a more precise superficial type ϕ ::= Bool | Nat | UN × UN | Ref UN [24]. This
allows a program to safely inspect values coming from the context. It is similar
to existing type casts [48] but it only inspects one structural layer of the value
(this simplifies the compilation).

The operational semantics of Lτ updates that of LU to deal with concurrency
and endorsement. The latter performs a runtime check on the endorsed value [62].

Monitors M ::= ({σ · · · } ,�, σ0,Δ, σc) check at runtime that the set of
trusted heap locations Δ have values of their intended static types. Accord-
ingly, the description of the monitor includes a list of trusted locations and their
expected types (in the form of an environment Δ). The type τ of any location
in Δ must be trusted, so τ �� ◦. To facilitate checks of the monitor, every heap

Robustly Safe Compilation 487

location carries a type at runtime (in addition to a value). The monitor transi-
tions should therefore be of the form (σ,Δ, σ), but since Δ never changes, we
write the transitions as (σ, σ).

A monitor and a component agree if they have the same Δ: M � C
def=

({σ · · · } ,�, σ0,Δ, σc)�(Δ;F; I). Other definitions (safety, robust safety and
actions) are as in Sect. 2. Importantly, a well-typed component generates traces
that are always accepted, so every component typed at UN is robustly safe.

Theorem 4 (Typability Implies Robust Safety in Lτ)

If � C : UN and C� M then M � C : rs

Richer Source Monitors. In Lτ , source language monitors only enforce the prop-
erty of type safety on specific memory locations (robustly). This can be general-
ized substantially to enforce arbitrary invariants other than types on locations.
The only requirement is to find a type system (e.g., based on refinements or
Hoare logics) that can enforce robust safety in the source (cf. [68]). Our com-
pilation and proof strategy should work with little modification. Another easy
generalization is allowing the set of locations considered by the monitor to grow
over time, as in Sect. 3.

4.2 The Target Language Lπ

Our target language, Lπ, extends the previous target language LP,
with support for concurrency (forking, processes and process soups),
atomic co-creation of a protected location and its protecting capability
(let x = newhide e in s) and for examining the top-level construct of a value
(destruct x = e as B in s or s′) according to a pattern (B ::= nat | pair).

(ELπ-destruct-nat)
H � e ↪→→ n

C,H � destruct x = e as nat in s or s′ −→ C,H � s[n / x]
(ELπ-new)

H = H1;n �→ (v, η) H � e ↪→→ v k /∈ dom(H) s′ = s[〈n + 1,k〉 / x]

C,H � let x = newhide e in s −→ C,H;n + 1 �→ v : k;k � s′

Monitors are also updated to consider a fixed set of locations (a heap H0), so
M ::= ({σ · · · } ,�, σ0,H0, σc). The atomic creation of capabilities is provided
to match modern security architectures such as Cheri [71] (which implement
capabilities at the hardware level). This atomicity is not strictly necessary and
we prove that RSC is attained both by a compiler relying on it and by one that
allocates a location and then protects it non-atomically. The former compiler
(with this atomicity in the target) is a bit easier to describe, so for space reasons,
we only describe that here and defer the other one to the companion report [61].

488 M. Patrignani and D. Garg

4.3 Compiler from Lτ to Lπ

The high-level structure of the compiler, �·�Lτ

Lπ , is similar to that of our earlier
compiler �·�LU

LP (Sect. 3.3). However, �·�Lτ

Lπ is defined by induction on the type
derivation of the component to be compiled. The case for allocation (presented
below) explicitly uses type information to achieve security efficiently, protecting
only those locations whose type is not UN.

�

�

Δ, Γ � e : τ

C, Δ, Γ; x : Ref τ � s

C, Δ, Γ �
let x = newτ e in s

�

�

Lτ

Lπ

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

let xo = new �Δ, Γ � e : τ�
Lτ

Lπ

in let x = 〈xo,0〉
in �C,Δ, Γ; x : Ref τ � s�Lτ

Lπ

if τ = UN

let x = newhide �Δ, Γ � e : τ�
Lτ

Lπ

in �C,Δ, Γ; x : Ref τ � s�Lτ

Lπ

otherwise

New Monitor Relation. As monitors have changed, we also need a new monitor
relation M≈M. Informally, a source and a target monitor are related if the target
monitor can always step whenever the target heap satisfies the types specified
in the source monitor (up to renaming by the partial bijection β).

We write � H : Δ to mean that for each location � ∈ Δ, � H(�) : Δ(�). Given
a partial bijection β from source to target locations, we say that a target monitor
M = ({σ · · · } ,�, σ0,H0, σc) is good, written � M : β,Δ, if for all σ ∈ {σ · · · }
and all H≈β H such that � H : Δ, there is a σ′ such that (σ,H, σ′) ∈ �. For
a fixed partial bijection β0 between the domains of Δ and H0, we say that
the source monitor M and the target monitor M are related, written M≈M, if
� M : β0,Δ for the Δ in M. With this setup, we define RSC as in Sect. 2.

Theorem 5 (Compiler �·�Lτ

Lπ attains RSC). � �·�Lτ

Lπ : RSC

To prove that �·�Lτ

Lπ attains RSC we do not rely on a backtranslation. Here,
we know statically which locations can be monitor-sensitive: they must all be
trusted, i.e., must have a type τ satisfying τ � ◦. Using this, we set up a simple
cross-language relation and show it to be an invariant on runs of source and
compiled target components. The relation captures the following:

– Heaps (both source and target) can be partitioned into two parts, a trusted
part and an untrusted part;

– The trusted source heap contains only locations whose type is trusted (τ � ◦);
– The trusted target heap contains only locations related to trusted source

locations and these point to related values; more importantly, every trusted
target location is protected by a capability;

– In the target, any capability protecting a trusted location does not occur in
attacker code, nor is it stored in an untrusted heap location.

Robustly Safe Compilation 489

We need to prove that this relation is preserved by reductions both in com-
piled and in attacker code. The former follows from source robust safety (Theo-
rem 4). The latter is simple since all trusted locations are protected with capabil-
ities, attackers have no access to trusted locations, and capabilities are unforge-
able and unguessable (by the semantics of Lπ). At this point, knowing that mon-
itors are related, and that source traces are always accepted by source monitors,
we can conclude that target traces are always accepted by target monitors too.
Note that this kind of an argument requires all compilable source programs to be
robustly safe and is, therefore, impossible for our first compiler �·�LU

LP . Avoiding
the backtranslation results in a proof much simpler than that of Sect. 3.

5 Fully Abstract Compilation

Our next goal is to compare RSC to FAC at an intuitive level. We first define
fully abstract compilation or FAC (Sect. 5.1). Then, we present an example of
how FAC may result in inefficient compiled code and use that to present in
Sect. 5.2 what would be needed to write a fully abstract compiler from LU to
LP (the languages of our first compiler). We use this example to compare RSC
and FAC concretely, showing that, at least on this example, RSC permits more
efficient code and affords simpler proofs that FAC .

However, this does not imply that one should always prefer RSC to FAC
blindly. In some cases, one may want to establish full abstraction for reasons
other than security. Also, when the target language is typed [10,11,21,50] or has
abstractions similar to those of the source, full abstraction may have no down-
sides (in terms of efficiency of compiled code and simplicity of proofs) relative to
RSC. However, in many settings, including those we consider, target languages
are not typed, and often differ significantly from the source in their abstractions.
In such cases, RSC is a worthy alternative.

5.1 Formalising Fully Abstract Compilation

As stated in Sect. 1, FAC requires the preservation and reflection of observa-
tional equivalence, and most existing work instantiates observational equivalence
with contextual equivalence (�ctx). Contextual equivalence and FAC are defined
below. Informally, two components C1 and C2 are contextually equivalent if no
context A interacting with them can tell them apart, i.e., they are indistinguish-
able. Contextual equivalence can encode security properties such as confidential-
ity, integrity, invariant maintenance and non-interference [6,9,53,60]. We do not
explain this well-known observation here, but refer the interested reader to the
survey of Patrignani et al. [54]. Informally, a compiler �·�S

T is fully abstract if it
translates (only) contextually-equivalent source components into contextually-
equivalent target ones.

490 M. Patrignani and D. Garg

Definition 4 (Contextual equivalence and fully abstract compilation).

C1 �ctx C2
def= ∀A.A [C1]⇑ ⇐⇒ A [C2]⇑, where ⇑ means execution divergence

� �·�S
T : FAC def= ∀C1,C2.C1 �ctx C2 ⇐⇒ �C1�

S
T �ctx �C2�

S
T

The security-relevant part of FAC is the ⇒ implication [29]. This part is
security-relevant because the proof thesis concerns target contextual equivalence
(�ctx). Unfolding the definition of �ctx on the right of the implication yields
a universal quantification over all possible target contexts A, which captures
malicious attackers. In fact, there may be target contexts A that can interact
with compiled code in ways that are impossible in the source language. Compilers
that attain FAC with untyped target languages often insert checks in compiled
code that detect such interactions and respond to them securely [60], often by
halting the execution [6,9,29,37,39,42,53,54]. These checks are often inefficient,
but must be performed even if the interactions are not security-relevant. We now
present an example of this.

Example 5 (Wrappers for heap resources). Consider a password manager written
in an object-oriented language that is compiled to an assembly-like language. The
password manager defines a private List object where it stores the passwords
locally. Shown below are two implementations of the newList method inside
List which we call Cone and Ctwo. The only difference between Cone and Ctwo is
that Ctwo allocates two lists internally; one of these (shadow) is used for internal
purposes only.

1 public newList(): List{
2

3 ell = new List();
4 return ell;
5 }

1 public newList(): List{
2 shadow = new List(); // diff
3 ell = new List();
4 return ell;
5 }

Cone and Ctwo are equivalent in a source language that does not allow pointer
comparison (like our source languages). To attain FAC when the target allows
pointer comparisons (as in our target languages), the pointers returned by
newList in the two implementations must be the same, but this is very diffi-
cult to ensure since the second implementation does more allocations. A sim-
ple solution to this problem is to wrap ell in a proxy object and return the
proxy [9,47,53,59]. Compiled code needs to maintain a lookup table mapping
the proxy to the original object and proxies must have allocation-independent
addresses. Proxies work but they are inefficient due to the need to look up the
table on every object access. �

In this example, FAC forces all privately allocated locations to be wrapped
in proxies. However, RSC does not require this. Our target languages LP and
Lπ support address comparison (addresses are natural numbers in their heaps)
but �·�LU

LP and �·�Lτ

Lπ just use capabilities to attain security efficiently while �·�Lτ

LI

relies on memory isolation. On the other hand, for attaining FAC, capabilities
alone would be insufficient since they do not hide addresses. We explain this in
detail in the next subsection.

Robustly Safe Compilation 491

Remarks. Our technical report lists many other cases of FAC forcing security-
irrelevant inefficiency in compiled code [61]. All of these can be avoided by just
replacing contextual equivalence with a different notion of equivalence in the
statement of FAC. However, it is not clear how this can be done generally for
any given kind of inefficiency, and what the security consequences of such instan-
tiations of the statement of FAC are. On the other hand, RSC is uniform and
it does not induce any of these inefficiencies.

A security issue that cannot be addressed just by tweaking equivalences
is information leaks on side channels, as side channels are, by definition, not
expressible in the language. Neither FAC nor RSC deals with side channels.

5.2 Towards a Fully Abstract Compiler from LU to LP

To further compare FAC and RSC, we now sketch what would be needed to
construct a fully abstract compiler from LU to LP. In particular, this compiler
should not suffer from the “attack” described in Example 5.

Inefficiency. We denote with
	 ·
LU

LP a (hypothetical) new compiler from LU

to LP that attains FAC. We describe informally what code generated by this
compiler would have to do. We know that fully abstract compilation preserves all
source abstractions in the target language. One abstraction that distinguishes
LP from LU is that locations are abstract in LP, but concrete natural numbers in
LU. Thus, locations allocated by compiled code must not be passed directly to the
context as this would reveal the allocation order. Instead of passing the location
〈n,k〉 to the context, the compiler arranges for an opaque handle 〈n′,kcom〉 (that
cannot be used to access any location directly) to be passed. Such an opaque
handle is often called a mask or seal in the literature [66].

To ensure that masking is done properly,
	 ·
LU

LP can insert code at entry
and exit points of compiled code, wrapping the compiled code in a way that
enforces masking [32,59]. The wrapper keeps a list L of component-allocated
locations that are shared with the context in order to know their masks. When a
component-allocated location is shared, it is added to the list L. The mask of a
location is its index in this list. If the same location is shared again it is not added
again but its previous index is used. To implement lookup in L we must compare
capabilities too, so we need to add that expression to the target language. To
ensure capabilities do not leak to the context, the second field of the pair is a
constant capability kcom which compiled code does not use otherwise. Clearly,
this wrapping can increase the cost of all cross-component calls and returns.

However, this wrapping is not sufficient to attain FAC. A component-
allocated location could be passed to the context on the heap, so before passing
control to the context the compiled code needs to scan the whole heap where
a location can be passed and mask all found component-allocated locations.
Dually, when receiving control the compiled code must scan the heap to unmask
any masked location so it can use the location. The problem now is determining
what parts of the heap to scan and how. Specifically, the compiled code needs to

492 M. Patrignani and D. Garg

keep track of all the locations (and related capabilities) that are shared, i.e., (i)
passed from the context to the component and (ii) passed from the component
to the context. Both keeping track of these locations as well as scanning them
on every cross-component control transfer is likely to be very expensive.

Finally, masked locations cannot be used directly by the context to be read
and written. Thus, compiled code must provide a read and a write function that
implement reading and writing to masked locations. The additional unmasking
in these functions (as opposed to native reads and writes) adds to the inefficiency.

It should be clear as opposed to the RSC compiler �·�LU

LP (Sect. 3), the FAC

compiler
	 ·
LU

LP just sketched is likely to generate far more inefficient code.

Proof Difficulty. Proving that
	 ·
LU

LP attains FAC can only be done by back-
translating traces, not contexts alone, since the newly-added target expressions
cannot be directly backtranslated to valid source ones [7,9,59]. For this, we need
a trace semantics that captures all information available to the context. This
is often called a fully abstract trace semantics [38,55,56]. However, the trace
semantics we defined for LP is not fully abstract, as its actions record the entire
heap in every action, including private parts of the heap. Hence, we cannot use
this trace semantics for proving FAC and so we design a new one. Building a
fully abstract trace semantics for LP is challenging because we have to keep
track of locations that have been shared with the context in the past. This sub-
stantially complicates both the definition of traces and the proofs that build on
the definition.

Finally, the source context that the backtranslation constructs from a target
trace must simulate the shared part of the heap at every context switch. Since
locations in the target may be masked, the source context has to maintain a
map from the source locations to the corresponding masked target ones, which
complicates the backtranslation and the proof substantially.

To summarize, it should be clear that the proof of FAC for
	 ·
LU

LP would be

much harder than the proof of RSC for �·�LU

LP , even though the source and target
languages are the same and so is the broad proof technique (backtranslation).

6 Related Work

Recent work [8,33] presents new criteria for secure compilation that ensure
preservation of subclasses of hyperproperties. Hyperproperties [25] are a for-
mal representation of predicates on programs, i.e., they are predicates on sets of
traces. Hyperproperties capture many security-relevant properties including not
just conventional safety and liveness, which are predicates on traces, but also
properties like non-interference, which is a predicate on pairs of traces. Modulo
technical differences, our definition of RSC coincides with the criterion of “robust
safety property preservation” in [8,33]. We show, through concrete instances,
that this criterion can be easily realized by compilers, and develop two proof

Robustly Safe Compilation 493

techniques for establishing it. We further show that the criterion leads to more
efficient compiled code than does FAC. Additionally, the criteria in [8,33] assume
that behaviours in the source and target are represented using the same alpha-
bet. Hence, the definitions (somewhat unrealistically or ideally) do not require
a translation of source properties to target properties. In contrast, we consider
differences in the representation of behaviour in the source and in the target and
this is accounted for in our monitor relation M≈M. A slightly different account
of this difference is presented by Patrignani and Garg [60] in the context of
reactive black-box programs.

Abate et al. [7] define a variant of robustly-safe compilation called RSCC
specifically tailored to the case where (source) components can perform unde-
fined behaviour. RSCC does not consider attacks from arbitrary target contexts
but from compiled components that can become compromised and behave in
arbitrary ways. To demonstrate RSCC, Abate et al. [7] rely on two backends
for their compiler: software fault isolation and tag-based monitors. On the other
hand, we rely on capability machines and memory isolation (the latter in the
companion report). RSCC also preserves (a form of) safety properties and can
be achieved by relying on a trace-based backtranslation; it is unclear whether
proofs can be simplified when the source is verified and concurrent, as in our
second compiler.

ASLR [6,37], protected module architectures [9,42,53,59], tagged architec-
tures [39], capability machines [69] and cryptographic primitives [4,5,22,26] have
been used as targets for FAC. We believe all of these can also be used as targets
of RSC -attaining compilers. In fact, some targets such as capability machines
seem to be better suited to RSC than FAC, as we demonstrated.

Ahmed et al. prove full abstraction for several compilers between typed lan-
guages [10,11,50]. As compiler intermediate languages are often typed, and as
these types often serve as the basis for complex static analyses, full abstraction
seems like a reasonable goal for (fully typed) intermediate compilation steps.
In the last few steps of compilation, where the target languages are unlikely to
be typed, one could establish robust safety preservation and combine the two
properties (vertically) to get an end-to-end security guarantee.

There are three other criteria for secure compilation that we would like to
mention: securely compartmentalised compilation (SCC) [39], trace-preserving
compilation (TPC) [60] and non-interference-preserving compilation (NIPC) [12,
15,16,27]. SCC is a re-statement of the “hard” part of full abstraction (the for-
ward implication), but adapted to languages with undefined behaviour and a
strict notion of components. Thus, SCC suffers from much of the same efficiency
drawbacks as FAC. TPC is a stronger criterion than FAC, that most existing
fully abstract compilers also attain. Again, compilers attaining TPC also suffer
from the drawbacks of compilers attaining FAC.

NIPC preserves a single property: noninterference (NI). However, this line of
work does not consider active target-level adversaries yet. Instead, the focus is
on compiling whole programs. Since noninterference is not a safety property, it
is difficult to compare NIPC to RSC directly. However, noninterference can also

494 M. Patrignani and D. Garg

be approximated as a safety property [20]. So, in principle, RSC (with adequate
massaging of observations) can be applied to stronger end-goals than NIPC.

Swamy et al. [67] embed an F∗ model of a gradually and robustly typed
variant of JavaScript into an F∗ model of JavaScript. Gradual typing supports
constructs similar to our endorsement construct in Lτ . Their type-directed com-
piler is proven to attain memory isolation as well as static and dynamic memory
safety. However, they do not consider general safety properties, nor a specific,
general criterion for compiler security.

Two of our target languages rely on capabilities for restricting access to sensi-
tive locations from the context. Although capabilities are not mainstream in any
processor, fully functional research prototypes such as Cheri exist [71]. Capa-
bility machines have previously been advocated as a target for efficient secure
compilation [30] and preliminary work on compiling C-like languages to them
exists, but the criterion applied is FAC [69].

7 Conclusion

This paper has examined robustly safe compilation (RSC), a soundness criterion
for compilers with direct relevance to security. We have shown that the criterion
is easily realizable and may lead to more efficient code than does fully abstract
compilation wrt contextual equivalence. We have also presented two techniques
for establishing that a compiler attains RSC. One is an adaptation of an existing
technique, backtranslation, and the other is based on inductive invariants.

Acknowledgements. The authors would like to thank Dominique Devriese, Akram
El-Korashy, Cătălin Hriţcu, Frank Piessens, David Swasey and the anonymous review-
ers for useful feedback and discussions on an earlier draft.

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) through funding for the CISPA-Stanford Center for Cyberse-
curity (FKZ: 13N1S0762).

References

1. Abadi, M.: Secrecy by typing in security protocols. In: Abadi, M., Ito, T. (eds.)
TACS 1997. LNCS, vol. 1281, pp. 611–638. Springer, Heidelberg (1997). https://
doi.org/10.1007/BFb0014571

2. Abadi, M.: Protection in programming-language translations. In: Vitek, J., Jensen,
C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603, pp. 19–34. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48749-2_2

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40
(2009)

4. Abadi, M., Fournet, C., Gonthier, G.: Authentication primitives and their com-
pilation. In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2000, pp. 302–315. ACM, New York
(2000)

https://doi.org/10.1007/BFb0014571
https://doi.org/10.1007/BFb0014571
https://doi.org/10.1007/3-540-48749-2_2

Robustly Safe Compilation 495

5. Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstrac-
tions. Inf. Comput. 174, 37–83 (2002)

6. Abadi, M., Plotkin, G.D.: On protection by layout randomization. ACM Trans.
Inf. Syst. Secur. 15, 8:1–8:29 (2012)

7. Abate, C., et al.: When good components go bad: formally secure compilation
despite dynamic compromise. In: CCS 2018 (2018)

8. Abate, C., Blanco, R., Garg, D., Hriţcu, C., Patrignani, M., Thibault, J.: Journey
beyond full abstraction: exploring robust property preservation for secure compi-
lation. arXiv:1807.04603, July 2018

9. Agten, P., Strackx, R., Jacobs, B., Piessens, F.: Secure compilation to modern
processors. In: 2012 IEEE 25th Computer Security Foundations Symposium, CSF
2012, pp. 171–185. IEEE (2012)

10. Ahmed, A., Blume, M.: Typed closure conversion preserves observational equiv-
alence. In: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2008, pp. 157–168. ACM, New York (2008)

11. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-
language semantics. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2011, pp. 431–444. ACM, New York
(2011)

12. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In:
ACM Conference on Computer and Communications Security, pp. 1807–1823.
ACM (2017)

13. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

14. Backes, M., Hritcu, C., Maffei, M.: Union, intersection and refinement types and
reasoning about type disjointness for secure protocol implementations. J. Comput.
Secur. 22(2), 301–353 (2014)

15. Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel counter-
measures: the case of cryptographic “constant-time”. In: CSF 2018 (2018)

16. Barthe, G., Rezk, T., Basu, A.: Security types preserving compilation. Comput.
Lang. Syst. Struct. 33, 35–59 (2007)

17. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8:1–
8:45 (2011)

18. Benton, N., Hur, C.-K.: Realizability and compositional compiler correctness for a
polymorphic language. Technical report, MSR (2010)

19. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

20. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-01465-9_2

21. Bowman, W.J., Ahmed, A.: Noninterference for free. In: Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
2015. ACM, New York (2015)

22. Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions. In:
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2007, pp. 251–262. ACM, New York (2007)

23. Carter, N.P., Keckler, S.W., Dally, W.J.: Hardware support for fast capability-
based addressing. SIGPLAN Not. 29, 319–327 (1994)

24. Chong, S.: Expressive and enforceable information security policies. Ph.D. thesis,
Cornell University, August 2008

http://arxiv.org/abs/1807.04603
https://doi.org/10.1007/978-3-642-01465-9_2

496 M. Patrignani and D. Garg

25. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

26. Corin, R., Deniélou, P.-M., Fournet, C., Bhargavan, K., Leifer, J.: A secure compiler
for session abstractions. J. Comput. Secur. 16, 573–636 (2008)

27. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow security
for C and assembly programs. In: PLDI, pp. 648–664. ACM (2016)

28. Devriese, D., Patrignani, M., Keuchel, S., Piessens, F.: Modular, fully-abstract
compilation by approximate back-translation. Log. Methods Comput. Sci. 13(4)
(2017). https://lmcs.episciences.org/4011

29. Devriese, D., Patrignani, M., Piessens, F.: Secure compilation by approximate back-
translation. In: POPL 2016 (2016)

30. El-Korashy, A.: A formal model for capability machines - an illustrative case study
towards secure compilation to CHERI. Master’s thesis, Universitat des Saarlandes
(2016)

31. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies.
ACM Trans. Program. Lang. Syst. 29(5), 141–156 (2007)

32. Fournet, C., Swamy, N., Chen, J., Dagand, P.-E., Strub, P.-Y., Livshits, B.: Fully
abstract compilation to JavaScript. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2013, pp. 371–384. ACM, New York (2013)

33. Garg, D., Hritcu, C., Patrignani, M., Stronati, M., Swasey, D.: Robust hyper-
property preservation for secure compilation (extended abstract). ArXiv e-prints,
October 2017

34. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. J. Comput.
Secur. 11(4), 451–519 (2003)

35. Gorla, D., Nestman, U.: Full abstraction for expressiveness: history, myths and
facts. Math. Struct. Comput. Sci. 26(4), 639–654 (2016)

36. Hur, C.-K., Dreyer, D.: A Kripke logical relation between ML and assembly. SIG-
PLAN Not. 46, 133–146 (2011)

37. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: Proceedings of the 2011 IEEE 24th Computer Security Founda-
tions Symposium, CSF 2011, Washington, DC, USA, pp. 161–174. IEEE Computer
Society (2011)

38. Jeffrey, A., Rathke, J.: Java JR: fully abstract trace semantics for a core Java
language. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_29

39. Juglaret, Y., Hriţcu, C., de Amorim, A.A., Pierce, B.C.: Beyond good and evil: for-
malizing the security guarantees of compartmentalizing compilation. In: 29th IEEE
Symposium on Computer Security Foundations (CSF). IEEE Computer Society
Press, July 2016. To appear

40. Kang, J., Kim, Y., Hur, C.-K., Dreyer, D., Vafeiadis, V.: Lightweight verification
of separate compilation. In: POPL 2016, pp. 178–190 (2016)

41. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2014, Berkeley, CA, USA, pp. 147–163.
USENIX Association (2014)

42. Larmuseau, A., Patrignani, M., Clarke, D.: A secure compiler for ML modules.
In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 29–48. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26529-2_3

43. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL, pp. 42–54 (2006)

https://lmcs.episciences.org/4011
https://doi.org/10.1007/978-3-540-31987-0_29
https://doi.org/10.1007/978-3-319-26529-2_3

Robustly Safe Compilation 497

44. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

45. Maffeis, S., Abadi, M., Fournet, C., Gordon, A.D.: Code-carrying authorization.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 563–579.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_36

46. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP 2013, pp. 10:1–10:1. ACM (2013)

47. Morris Jr., J.H.: Protection in programming languages. Commun. ACM 16, 15–21
(1973)

48. Neis, G., Dreyer, D., Rossberg, A.: Non-parametric parametricity. SIGPLAN Not.
44(9), 135–148 (2009)

49. Neis, G., Hur, C.-K., Kaiser, J.-O., McLaughlin, C., Dreyer, D., Vafeiadis, V.: Pil-
sner: a compositionally verified compiler for a higher-order imperative language. In:
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pp. 166–178. ACM (2015)

50. New, M.S., Bowman, W.J., Ahmed, A.: Fully abstract compilation via universal
embedding. In: Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, pp. 103–116. ACM, New York (2016)

51. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999). https://doi.org/10.1007/978-3-662-03811-6

52. Parrow, J.: General conditions for full abstraction. Math. Struct. Comput. Sci.
26(4), 655–657 (2014)

53. Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst.
37, 6:1–6:50 (2015)

54. Patrignani, M., Ahmed, A., Clarke, D.: Formal approaches to secure compilation a
survey of fully abstract compilation and related work. ACM Comput. Surv. 51(6),
125:1–125:36 (2019)

55. Patrignani, M., Clarke, D.: Fully abstract trace semantics of low-level isolation
mechanisms. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC 2014, pp. 1562–1569. ACM (2014)

56. Patrignani, M., Clarke, D.: Fully abstract trace semantics for protected module
architectures. Comput. Lang. Syst. Struct. 42(0), 22–45 (2015)

57. Patrignani, M., Clarke, D., Piessens, F.: Secure compilation of object-oriented com-
ponents to protected module architectures. In: Shan, C. (ed.) APLAS 2013. LNCS,
vol. 8301, pp. 176–191. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03542-0_13

58. Patrignani, M., Clarke, D., Sangiorgi, D.: Ownership types for the join calculus.
In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp.
289–303. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-
5_19

59. Patrignani, M., Devriese, D., Piessens, F.: On modular and fully abstract compi-
lation. In: Proceedings of the 29th IEEE Computer Security Foundations Sympo-
sium, CSF 2016 (2016)

60. Patrignani, M., Garg, D.: Secure compilation and hyperproperties preservation. In:
Proceedings of the 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, USA (2017)

61. Patrignani, M., Garg, D.: Robustly safe compilation or, efficient, provably secure
compilation. CoRR, abs/1804.00489 (2018)

62. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

https://doi.org/10.1007/978-3-540-88313-5_36
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1007/978-3-642-21461-5_19
https://doi.org/10.1007/978-3-642-21461-5_19

498 M. Patrignani and D. Garg

63. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

64. Stark, I.: Names and higher-order functions. Ph.D. thesis, University of Cambridge,
December 1994. Also available as Technical Report 363, University of Cambridge
Computer Laboratory

65. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional compcert. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2015, pp. 275–287. ACM, New York (2015)

66. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. In: Principles of Pro-
gramming Languages, pp. 161–172 (2004)

67. Swamy, N., Fournet, C., Rastogi, A., Bhargavan, K., Chen, J., Strub, P.-Y., Bier-
man, G.: Gradual typing embedded securely in Javascript. SIGPLAN Not. 49(1),
425–437 (2014)

68. Swasey, D., Garg, D., Dreyer, D.: Robust and compositional verification of object
capability patterns. In: Proceedings of the 2017 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2017, 22–27 October 2017 (2017)

69. Tsampas, S., El-Korashy, A., Patrignani, M., Devriese, D., Garg, D., Piessens, F.:
Towards automatic compartmentalization of C programs on capability machines.
In: 2017 Workshop on Foundations of Computer Security, FCS 2017, 21 August
2017 (2017)

70. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4, 167–187 (1996)

71. Woodruff, J., et al.: The CHERI capability model: revisiting RISC in an age of
risk. In: Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA 2014, Piscataway, NJ, USA, pp. 457–468. IEEE Press (2014)

72. Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis,
Cornell University (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Compiling Sandboxes: Formally Verified
Software Fault Isolation

Frédéric Besson1(B) , Sandrine Blazy1 , Alexandre Dang1, Thomas Jensen1,
and Pierre Wilke2

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France
frederic.besson@inria.fr

2 CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. Software Fault Isolation (SFI) is a security-enhancing pro-
gram transformation for instrumenting an untrusted binary module so
that it runs inside a dedicated isolated address space, called a sandbox.
To ensure that the untrusted module cannot escape its sandbox, exist-
ing approaches such as Google’s Native Client rely on a binary verifier
to check that all memory accesses are within the sandbox. Instead of
relying on a posteriori verification, we design, implement and prove cor-
rect a program instrumentation phase as part of the formally verified
compiler CompCert that enforces a sandboxing security property a pri-
ori. This eliminates the need for a binary verifier and, instead, leverages
the soundness proof of the compiler to prove the security of the sand-
boxing transformation. The technical contributions are a novel sandbox-
ing transformation that has a well-defined C semantics and which sup-
ports arbitrary function pointers, and a formally verified C compiler that
implements SFI. Experiments show that our formally verified technique
is a competitive way of implementing SFI.

1 Introduction

Isolating programs with various levels of trustworthiness is a fundamental secu-
rity concern, be it on a cloud computing platform running untrusted code pro-
vided by customers, or in a web browser running untrusted code coming from
different origins. In these contexts, it is of the utmost importance to provide
adequate isolation mechanisms so that a faulty or malicious computation can-
not compromise the host or neighbouring computations.

There exists a number of mechanisms for enforcing isolation that intervene at
various levels, from the hardware up to the operating system. Hypervisors [10],
virtual machines [2] but also system processes [17] can ensure strong isolation
properties, at the expense of costly context switches and limited flexibility in
the interaction between components. Language-based techniques such as strong
typing offer alternative techniques for ensuring memory safety, upon which access
control policies and isolation can be implemented. This approach is implemented
e.g. by the Java language for which it provides isolation guarantees, as proved
by Leroy and Rouaix [21]. The isolation is fined-grained and very flexible but
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 499–524, 2019.
https://doi.org/10.1007/978-3-030-17184-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_18&domain=pdf
http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0189-0223
http://orcid.org/0000-0001-9681-644X
https://doi.org/10.1007/978-3-030-17184-1_18

500 F. Besson et al.

the security mechanisms, e.g. stack inspection, may be hard to reason about [7].
In the web browser realm, JavaScript is dynamically typed and also ensures
memory safety upon which access control can be implemented [29].

1.1 Software Fault Isolation

Software Fault Isolation (SFI) is an alternative for unsafe languages, e.g. C,
where memory safety is not granted but needs to be enforced at runtime by
program instrumentation. Pioneered by Wahbe et al. [35] and popularised by
Google’s Native Client [30,37,38], SFI is a program transformation which con-
fines a software component to a memory sandbox. This is done by pre-fixing
every memory access with a carefully designed code sequence which efficiently
ensures that the memory access occurs within the sandbox. In practice, the sand-
box is aligned and the sandbox addresses are thus of the form 0xY Z where Y is a
fixed bit-pattern and Z is an arbitrary bit-pattern i.e., Z ∈ [0x0 . . . 0, 0xF . . . F].
Hence, enforcing that memory accesses are within the sandbox range of addresses
can be efficiently implemented by a masking operation which exploits the binary
representation of pointers: it retains the lowest bits Z and sets the highest bits
to the bit-pattern Y .

Traditionally, the SFI transformation is performed at the binary level and
is followed by an a posteriori verification by a trusted SFI verifier [23,31,35].
Because the verifier can assume that the code has undergone the SFI transforma-
tion, it can be kept simple (almost syntactic), thereby reducing both verification
time and the Trusted Computing Base (TCB). This approach to SFI can be
viewed as a simple instance of Proof Carrying Code [25] where the compiler is
untrusted and the binary verifier is either trusted or verified.

Traditional SFI is well suited for executing binary code from an untrusted
origin that must, for an adequate user experience, start running as soon as
possible. Google’s Native Client [30,37] is a state-of-the-art SFI implementation
which has been deployed in the Chrome web browser for isolating binary code in
untrusted pages. ARMor [39] features the first fully verified SFI implementation
where the TCB is reduced to the formal ARM semantics in the HOL proof-
assistant [9]. RockSalt [24] is a formally verified implementation of an SFI verifier
for the x86 architecture, demonstrating that an efficient binary verifier can be
obtained from a machine-checked specification.

1.2 Software Fault Isolation Through Compilation

A downside of the traditional SFI approach is that it hinders most compiler opti-
misations because the optimised code no longer respects the simple properties
that the SFI verifier is capable of checking. For example, the SFI verifier expects
that every memory access is immediately preceded by a specific syntactic code
pattern that implements the sandboxing operation. A semantically equivalent
but syntactically different code sequence would be rejected. An alternative to
the a posteriori binary verifier approach is Portable Software Fault Isolation
(PSFI), proposed by Kroll et al. [16]. In this methodology, there is no verifier

Compiling Sandboxes: Formally Verified Software Fault Isolation 501

to trust. Instead isolation is obtained by compilation with a machine-checked
compiler, such as CompCert [18]. Portability comes from the fact that PSFI
can reuse existing compiler back-ends and therefore target all the architectures
supported by the compiler without additional effort.

PSFI is applicable in scenarios where the source code is available or the
binary code is provided by a trusted third-party that controls the build process.
For example, the original motivation for Proof Carrying Code [25] was to pro-
vide safe kernel extensions [26] as binary code to replace scripts written in an
interpreted language. This falls within the scope of PSFI. Another PSFI scenario
is when the binary code is produced in a controlled environment and/or by a
trusted party. In this case, the primary goal is not to protect against an attacker
trying to insert malicious code but to prevent honest parties from exposing a
host platform to exploitable bugs. This is the case e.g. in the avionics industry,
where software from different third-parties is integrated on the same host that
needs to ensure strong isolation properties between tasks whose levels of criti-
cality differ. In those cases, PSFI can deliver both security and a performance
advantage. In Sect. 8, we provide experimental evidence that PSFI is competitive
and sometimes outperforms SFI in terms of efficiency of the binary code.

1.3 Challenges in Formally Verified SFI

PSFI inserts the masking operations during compilation and does away with
the a posteriori SFI verifier. The challenge is then to ensure that the security,
enforced at an intermediate representation of the code, still holds for the run-
ning code. Indeed, compiler optimisation often breaks such security [33]. The
insight of Kroll et al. is that a safety theorem of the compiled code (i.e., that its
behaviour is well-defined) can be exploited to obtain a security theorem for that
same compiled code, guaranteeing that it makes no memory accesses outside its
sandbox. We explain this in more detail in Sect. 2.2.

One challenge we face with this approach is that it is far from evident that
the sandboxing operations and hence the transformed program have well-defined
behaviour. An unsafe language such as C admits undefined behaviours (e.g. bit-
wise operations on pointers), which means that it is possible for the observational
behaviour of a program to differ depending on the level of optimisation. This is
not a compiler bug: compilers only guarantee semantics preservation if the code
to compile has a well-defined semantics [36]. Therefore, our SFI transformation
must turn any program into a program with a well-defined semantics.

The seminal paper of Kroll et al. emphasises that the absence of unde-
fined behaviour is a prerequisite but they do not provide a transformation that
enforces this property. More precisely, their transformation may produce a pro-
gram with undefined behaviours (e.g. because the input program had unde-
fined behaviours). This fact was one of the motivation for the present work, and
explains the need for a new PSFI technique. One difficulty is to remove unde-
fined behaviours due to restrictions on pointer arithmetic. For example, bitwise
operators on pointers have undefined C semantics, but traditional masking oper-
ations of SFI rely heavily on these operators. Another difficulty is to deal with

502 F. Besson et al.

indirect function calls and ensure that, as prescribed by the C standard, they
are resolved to valid function pointers. To tackle these problems, we propose an
original sandboxing transformation which unlike previous proposals is compliant
with the C standard [13] and therefore has well-defined behaviour.

1.4 Contributions

We have developed and proved correct CompCertSfi, the first full-fledged, fully
verified implementation of SFI inside a C compiler. The SFI transformation is
performed early in the compilation chain, thereby permitting the generated code
to benefit from existing optimisations that are performed by the back-end. The
technical contributions behind CompCertSfi can be summarised as follows.

– An original design and implementation of the SFI transformation based on
well-defined pointer arithmetic and which supports function pointers. This
novel design of the SFI transformation is necessary for the safety proof.

– A machine-checked proof of the security and safety of the SFI transforma-
tion. Our formal development is available online [1].

– A small, lightweight runtime system for managing the sandbox, built using a
standard program loader and configured by compiler-generated information.

– Experimental evidence demonstrating that the portable SFI approach is com-
petitive and sometimes even outperforms traditional SFI, in particular state-
of-the-art implementations of (P)Native Client.

The rest of the paper is organised as follows. In Sect. 2, we present background
information about the CompCert compiler (Sect. 2.1) and the PSFI approach
(Sect. 2.2). Section 3 provides an overview of the layout of the sandbox and the
masking operations implementing our SFI. In Sect. 4 we explain how to overcome
the problem with undefined pointer arithmetic and define masking operations
with a well-defined C semantics. Section 5 describes how control-flow integrity in
the presence of function pointers can be achieved by a sligthly more flexible SFI
policy which allows reads in well-defined areas outside the sandbox. Section 6
specifies the SFI policy in more detail, and describes the formal Coq proofs
of safety and security. Section 7 presents the design of our runtime library and
how it exploits compiler support. Experimental results are detailed in Sect. 8.
Section 9 presents related work and Sect. 10 concludes.

2 Background

This section presents background information about the CompCert compiler
[18] and the Portable Software Fault Isolation proposed by Kroll et al. [16].

2.1 CompCert

The CompCert compiler [18] is a machine-checked compiler programmed and
proved correct using the Coq proof-assistant [22]. It compiles C programs down

Compiling Sandboxes: Formally Verified Software Fault Isolation 503

Fig. 1. Cminor syntax

to assembly code through a succession of compiler passes which are shown to be
semantics preserving. CompCert features an architecture independent front-
end. The back-end supports four main architectures: x86, ARM, PowerPC and
RiscV. To target all the back-ends without additional effort, our secure trans-
formation is performed in the compiler front-end, at the level of the Cminor
language that is the last architecture-independent language of the CompCert
compiler chain. Our transformation can obviously be applied on C programs by
first compiling them into Cminor, and then applying the transformation itself.

The Cminor language is a minimal imperative language with explicit stack
allocation of certain local variables [19]. Its syntax is given in Fig. 1. Constants
range over 32-bit and 64-bit integers but also IEEE floating-point numbers.
It is possible to get the address of a global variable gl or the address of the
stack allocated local variables (i.e., stk denotes the address of the current stack
frame). In CompCert parlance, a memory chunk κ specifies how many bytes
need to be read (resp. written) from (resp. to) memory and whether the result
should be interpreted as a signed or unsigned quantity. For instance, the memory
chunk is16 denotes a 16-bit signed integer and f64 denotes a 64-bit floating-
point number. In Cminor, memory accesses, written [e]κ, are annotated with the
relevant memory chunk κ. Expressions are built from pseudo-registers, constants,
unary (�) and binary (�) operators. CompCert features the relevant unary and
binary operators needed to encode the semantics of C. Expressions are side-effect
free but may contain memory reads.

Instructions are fairly standard. Similarly to a memory read, a memory store
[e1]κ = e2 is annotated by a memory chunk κ. In Cminor, a function call such
as e(e1 . . . , en)σ represents an indirect function call through a function pointer
denoted by the expression e, σ is the signature of the function and e1 . . . , en are
the arguments. A direct call is a special case where the expression e is a constant
(function) pointer. Cminor is a structured language and features a conditional,
a block construct {s} and an infinite loop loop s. Exiting the nth enclosing loop
or block can be done using an exit n instruction. Cminor is structured but
gotos towards a symbolic label lb are also possible. Returning from a function is
done by a return instruction. Cminor is equipped with a small-step operational
semantics. The intra-procedural and inter-procedural control flows are modelled
using an explicit continuation which therefore contains a call stack.

CompCert Soundness Theorem. Each compiler pass is proved to be
semantics preserving using a simulation argument. Theorem 1 states semantics
preservation.

504 F. Besson et al.

Theorem 1 (Semantics Preservation). If the compilation of program p suc-
ceeds and generates a target program tp, then for any behaviour beh of program
tp there exists a behaviour of p, beh ′, such that beh improves beh ′.

In this statement, a behaviour is a trace of observable events that are typi-
cally generated when performing external function calls. CompCert classifies
behaviours depending on whether the program terminates normally, diverges or
goes wrong. A goes wrong behaviour corresponds to a situation where the pro-
gram semantics gets stuck (i.e., has an undefined behaviour). In this situation,
the compiler has the liberty to generate a program with an improved behaviour
i.e., the semantics of the transformed program may be more defined (i.e., it may
not get stuck at all or may get stuck later on).

The consequence is that Theorem 1 is not sufficient to preserve a safety prop-
erty because the target program tp may have behaviours that are not accounted
for in the program p and could therefore violate the property. Corollary 1 states
that in the absence of going-wrong behaviour, the behaviours of the target pro-
gram are a subset of the behaviours of the source program.

Corollary 1 (Safety preservation). Let p be a program and tp be a target
program. Consider that none of the behaviours of p is a going-wrong behaviour.
If the compilation of p succeeds and generates a target program tp, then any
behaviour of program tp is a behaviour of p.

As a consequence, any (safety) property of the behaviours of p is preserved by
the target program tp. In Sect. 2.2, we show how the PSFI approach leverages
Corollary 1 to transfer an isolation property obtained at the Cminor level to
the assembly code.

Going-wrong behaviours in CompCert. As safety is an essential property
of our PSFI transformation, we give below a detailed account of the going-wrong
behaviours of the CompCert languages with a focus on Cminor.

Undefined evaluation of expressions. CompCert’s runtime values are dynami-
cally typed and defined below:

values � v ::= undef | int(i32) | long(i64) | single(f32) | float(f64) | ptr(b, o)

Values are built from numeric values (32-bit and 64-bit integers and floating point
numbers), the undef value representing an indeterminate value, and pointer
values made of a pair (b, o) where b is a memory block identifier and o is an
offset which, depending on the architecture, is either a 32-bit or a 64-bit integer.

For Cminor, like all languages of CompCert, the unary (�) and binary
(�) operators are not total. They may directly produce going-wrong behaviours
e.g. in case of division by int(0). They may also return undef if (i) the argu-
ments are not in the right range e.g. the left-shift int(i) << int(32); or (ii)
the arguments are not well-typed e.g. int(i) +int float(f). Pointer arithmetic
is strictly conforming to the C standard [13] and any pointer operation that is
implementation-defined according to the standard returns undef .

Compiling Sandboxes: Formally Verified Software Fault Isolation 505

Fig. 2. Pointer arithmetic in CompCert

The precise semantics of pointer operations is given in Fig. 2. For simplicity,
we provide the semantics for a 64-bit architecture. Pointer operations are often
only defined provided that the pointers are valid, written V , or weakly valid,
written W . This validity condition requires that the offset o of a pointer ptr(b, o)
is strictly within the bounds of the block b. The weakly valid condition refers
to a pointer whose offset is either valid or one-past-the-end of the block b. Any
pointer arithmetic operation that is not listed in Fig. 2 returns undef . This is
in particular the case for bitwise operations which are typically used for the
masking operation needed to implement SFI.

The indeterminate value undef is not per se a going-wrong behaviour. Yet,
branching over a test evaluating to undef , performing a memory access over an
undef address and returning undef from the main function are going-wrong
behaviours.

Memory accesses are ruled by a unified memory model [20] that is used through-
out the whole compiler. The memory is made of a collection of separated blocks.
For a given block, each offset o below the block size is given a permission
p ∈ {r,w, . . . } and contains a memory value

mval � mv ::= undef | byte(b) | [ptr(b, o)]n

where b is a concrete byte value and [ptr(b, o)]n represents the nth byte of the
pointer ptr(b, o) for n ∈ {1 . . . 8}. A memory write storev(κ,m, a, v) is only
defined if the address a is a pointer ptr(b, o) to an existing block b such that
the memory locations (b, o), . . . , (b, o+ | κ | −1) have the permission w and the
offset o satisfies the alignment constraint of κ. A memory read loadv(κ,m, a)
is only defined under similar conditions with the additional restriction that not
reading all the consecutive fragments of a pointer returns undef .

Control-flow transfers may go-wrong if the target of the control-flow transfer is
not well-defined. Hence, a goto lb instruction goes wrong if, in the current func-
tion, there is no statement labelled by lb; and an exit n instruction goes wrong
if there are less than n enclosing blocks around the statement containing the
exit instruction. A conditional if e then s1 else s2 goes wrong if the expression
e does not evaluate to int(i) for some i. Also, the execution goes wrong if the

506 F. Besson et al.

last statement of a function is not a return instruction. Last but not least, a
function call x := e(e1 . . . , en)σ goes wrong if the expression e does not evaluate
to a pointer ptr(b, 0) where b is a function pointer with signature σ.

We show in Sect. 4 how our transformation ensures that pointer arithmetic
and memory accesses are always well-defined. Section 5 shows how we make sure
indirect calls are always correctly resolved. Section 6 shows that, together with
other statically checkable verifications, our PSFI transformation rules out all
possible going-wrong behaviours.

2.2 Portable Software Fault Isolation

Kroll, Stewart and Appel have pioneered the concept of Portable Software Fault
Isolation (PSFI) [16] whereby SFI is enforced by a pass of the compiler front-end
that is architecture independent. The main expected advantage is that isolation
is implemented, once and for all, for any target architecture. Moreover, the gen-
erated code is optimised by the back-end passes of the compiler. Compared to
traditional SFI, there is no architecture-specific binary verifier but instead the
compiler enters the TCB. The key insight of Kroll et al. is to leverage a formally
verified compiler, namely CompCert, to transfer a security proof of isolation
obtained at the Cminor level through the compiler back-end, with minimal
proof effort. In the following, we recall the only basic properties that a Cminor
SFI transformation needs to satisfy so that isolation holds at assembly level.

In CompCert’s terms, the sandbox is identified by a dedicated memory
block sb. A Cminor program is secure (Property 1) under the condition that all
its memory accesses are performed within the sandbox.

Property 1 (Program security). A Cminor program p is secure if all its memory
accesses are within the sandbox block sb.

After compilation, the assembly code is secure if its observable behaviours are
the same as the observable behaviours of the Cminor program. In order to
apply CompCert’s semantics preservation theorem (more precisely Corollary 1),
it remains to ensure that the Cminor program has a well-defined semantics
(Property 2).

Property 2 (Program safety). A Cminor program p is safe if all its behaviours
are well-defined, i.e., not wrong.

Kroll et al. state Property 1 by means of an instrumented Cminor seman-
tics which gets stuck in case of memory accesses outside the sandbox. They
prove formally that the additional semantic safeguards are never triggered for a
transformed program.

Kroll et al. also sketch some necessary steps to prove the Property 2 of safety
but do not propose a formal proof. This leaves open a number of challenging
issues such as whether it is feasible to define a masking operation that has a
defined Cminor semantics and how to deal with indirect function calls through
function pointers, More generally, the work leaves open whether a formal proof

Compiling Sandboxes: Formally Verified Software Fault Isolation 507

of Property 2 on safety is possible given the restrictions of CompCert’s semantics
(notably pointer arithmetic) and without relying on axioms asserting properties
of an external masking primitive. One of the central contributions of this work
is to provide a positive answer to this question and propose solutions to these
issues where neither the sandboxing of memory accesses nor the sandboxing
of function pointers is part of a TCB. The transformation that circumvents
the limitations imposed by pointer arithmetic is original and, we surmise, is
a necessary component to transfer security down to assembly. For a precise
comparison with Kroll et al. see Sect. 9).

3 A Thread-Aware Sandbox

The memory address space of a C program is partitioned into a runtime stack
of frames, a heap and a dedicated space for global variables. The address space
of a sandboxed program is re-organised to fit into a single global variable, sb,
where the global variables, the heap and the stack frames are relocated. Figure 3a
depicts the memory layout of the program after our SFI transformation. Each
global variable is relocated and allocated in the sandbox at a given offset, and
each global memory access of the program is translated into a memory access in
the sandbox. For managing the heap it suffices to use a sandbox-aware malloc
implementation that allocates memory inside the sandbox.

To prevent buffer overflows, a standard approach consists in introducing a so-called
shadow stack that is used to store the function stack frames. Our implementation
supports multi-threaded applications and therefore there are as many shadow stacks
as there are threads. Upon thread creation, we allocate a novel shadow stack in the
sandbox. The shadow-stack pointer is passed as an additional argument to each function
call. This is efficient when arguments are passed by register, with the only drawback
of reserving an additional register. Frames are allocated by incrementing the shadow-
stack pointer at function entry. All accesses to the original stack are then translated into
accesses to the sandbox shadow stack. The following Example 1 and the code snippet
in Fig. 3 illustrate the essence of the transformation.

Fig. 3. Sandbox transformation

508 F. Besson et al.

Example 1. The Cminor program of Fig. 3b declares a global variable g initialised to
the 64-bit integer 5. The function foo allocates a stack frame of 8 bytes that will be
used to store a 64-bit local variable. By convention, the current stack frame is called
stk. The function foo calls the function bar with as arguments the value of g and the
address of the local variable stk; and returns the value, presumably updated by bar,
of the local variable.

Syntactically, the program of Fig. 3c only performs memory accesses on the global
sandbox sb variable. The size of sb variable is 2k for some predefined k. At thread
creation, a shadow stack is allocated by our sandbox-aware malloc in the sandbox after
the statically allocated global variables. For our program, the unique global variable g
is stored at offset 0 and spans over 8 bytes. Therefore, the initial value of the shadow-
stack pointer sp is 8. After the transformation, the function foo reserves the space
for the local variable stk by incrementing the pseudo-register sp. The function bar
is called with the incremented shadow-stack pointer sp1, the value stored at offset 0
in the sandbox (i.e., the value of the global variable g) and the address of the local
variable stk which is given by the value of the stack pointer sp. At function exit, the
value of the local variable stk is returned by dereferencing the shadow-stack pointer sp.

Our SFI transformation enforces the isolation security policy stipulating that all
memory accesses are performed within the sandbox sb—at the Cminor level. However,
this holds because the semantics gets stuck (i.e., the semantics goes wrong) whenever
the program performs an access outside the bounds of the sandbox. As explained earlier,
the compiler is free to translate this into an insecure program that would escape the
sandbox at runtime. To get a formal security guarantee, it is necessary to transform
further the Cminor program to rule out any behaviour that goes wrong i.e., ensure
Property 2. Given the numerous undefined behaviours of the C language, ruling out any
going-wrong behaviour may seem a daunting task. In general, this requires to ensure
both memory safety and control-flow integrity. The following two sections describe how
we can exploit the SFI transformation and the knowledge that all memory accesses are
inside the sandbox to ensure both memory safety and control-flow integrity.

4 Memory-Safe Masking

For SFI, memory safety is obtained by making sure that every memory access is per-
formed inside the sandbox. Starting from an analysis of the standard SFI solution, we
present our own design which satisfies the additional requirements of being compliant
with the semantic restrictions of CompCert and with a strict interpretation of the C
standard.

4.1 Standard SFI Masking of Addresses

Standard SFI transformations ensure memory safety by masking memory accesses. The
gist of it is to allocate a sandbox sb of size 2k at a 2k aligned memory address, say &sb =
tag × 2k. Under those constraints, enforcing that an address A is within the bounds
of the sandbox can essentially be done by replacing the high-address bits by those of
tag . Using bitwise operations, this can be done by the expression (A&(2k−1))|tag×2k,
where & is the bitwise and and | is the bitwise or. More visually, this can be written
(A& 1 · · · 1

︸ ︷︷ ︸

k

)|tag 0 · · · 0
︸ ︷︷ ︸

k

.

Compiling Sandboxes: Formally Verified Software Fault Isolation 509

At binary level, this masking transformation is defined and the cost is modest: two
bitwise operations. However, this masking operation has no well-defined C semantics.
This is also the case for the semantics of CompCert and in particular for the Cminor
language. The reason is twofold: bitwise operations over pointer values return undef
and concrete addresses (e.g. tag × 2 k) are not pointers for CompCert where they are
represented by a block and an offset (see Fig. 2).

4.2 Specialised Masking for 32-Bit Sandboxes

For 32-bit sandboxes, there exists a variant of the sandboxing primitive which has the
advantages (1) that the sandbox address does not need to be aligned; (2) that the cost
of masking may be reduced to a single instruction. In its simplest form, the masking
primitive is defined by

&sb + (A − &sb)64→32→64

where &sb is the symbolic address of the sandbox. The subtraction of &sb extracts
the offset of the pointer and the double (unsigned) cast 64 → 32 → 64 has the effect
of truncating the offset to a 32-bit quantity that is therefore within the bounds of a
32-bit sandbox. At first sight, this masking is less efficient than the standard masking
but it is efficient for typical address computations which require both displacement and
scaling (e.g. A = t + k + k′ ∗ i32→64 where t is a 64-bit address, k and k′ are constants
and i is a 32-bit integer). Assuming that each cast or arithmetic operation is mapped
to a single instruction1, the masked address A can be computed using 8 instructions:
4 instructions for computing the address A and 4 more for the sandboxing primitive.
Using simple properties of modular arithmetic, it is possible to distribute the 64 → 32
cast over addition and multiplication to obtain the following equivalent formulation of
the sandboxed address:

&sb + A′
32→64 with A′ = t64→32 + c1 + c2 ∗ i

where c1 and c2 are compile-time constants: c1 = (k − &sb)64→32 and c2 = k′
64→32.

Using this formulation, the address A′ still requires 4 instructions but the cost of the
sandboxing is reduced to 2 instructions making it on par with the standard sandboxing.
On x86, 32-bit registers are just zero-extended 64-bit registers. Therefore, the cast
A′

32→64 is actually redundant and the overhead induced by the sandboxing is reduced
to a single instruction. Our experiments (see Sect. 8.2) validate the practical advantage
of this encoding.

Still, as for the standard sandboxing, this sanboxing primitive has no semantics
in CompCert due to the limitations of pointer arithmetic. As a consequence, the
solution of Kroll et al. [16] does not give actual code for the masking primitive, but
rather axiomatise its behaviour as an external function. This prevents optimisations
such as common subexpression elimination or function inlining from happening and
induces the cost of a function call for each memory access.

4.3 Towards Well-Defined Pointer Arithmetic

To illustrate the limitations of pointer arithmetic, we examine the semantic behaviour
of the standard sandboxing primitive (the specialised sandboxing primitive has similar

1 Some architecture have rich addressing modes allowing for more compact encodings.

510 F. Besson et al.

issues). The standard sandboxing primitive can be written (A&(2k−1)) | &sb where &sb
is the address of the sandbox variable. If sb is allocated at runtime at address tag × 2 k

for some tag, this formulation is equivalent at binary level. Again, this heavily relies
on pointer arithmetic that is undefined and on information about where the sandbox
is linked at runtime.

Consider the alternative formulation (A&(2 k−1)) + &sb where the bitwise | is
replaced by a +. This formulation has the advantage that incrementing a pointer,
here sb, is well-defined (see Fig. 2). As on modern hardware, both addition and bitwise
operations take a single cycle, the difference in efficiency should be negligible. Moreover,
at least for x86, the addition can be compiled into the addressing mode.

Still, this does not solve our issue. To understand this, suppose that A is a pointer.
In this case, the bitwise &, whose purpose is to extract the pointer offset, is still unde-
fined. Therefore, the whole expression (A&(2k−1)) + &sb is undefined. Because deref-
erencing an undefined expression is a going-wrong behaviour, the compiled program
may have an arbitrary runtime behaviour and escape the sandbox. A prerequisite for
our masking primitive is therefore to ensure that the evaluation is defined i.e., different
from undef . As all the semantic operators of CompCert are strict in undef (if any
argument is undef , so is the result), a necessary condition is that A is not undef . As
A can be obtained from any expression, a challenge is to ensure that every expression
evaluates to a defined value. A particular difficulty is that the many undefined pointer
operations (see Fig. 2) cannot be detected by runtime checks.

4.4 Arithmetisation of the Heap

To tackle this challenge and ensure that every computation is defined, we propose
an original and radical approach which ensures syntactically that pointers are neither
stored in memory nor in local variables. As a result, the program is only manipulating
integer values and memory addresses are only constructed by the sandboxing primi-
tives. This approach implies, as a side-effect, that our previously undefined masking
primitives are defined. Let asb be the runtime address of the symbolic address &sb of
the sandbox. The masking of an address A can be written

A′ + &sb

where A′ is either defined by A′ = A&(2k−1) or A′ = (A − asb)64→32→64 . As A is
necessarily an integer, A′ is necessarily a defined integer and therefore A′ +&sb returns
a defined pointer ptr(sb, o) that is necessarily inside the sandbox.

An additional subtlety is that memory accesses are indexed by a memory chunk κ
which mandates an alignment constraint (e.g. the chunk i64 mandates an 8-byte aligned
address). As a result, the masking primitive is parameterised by the chunk κ and the
masking primitive for i64 is A′&mski64 + &sb where mski64 = (2 k−3−1) × 2 3 .

Only computing over numeric values is facilitated by the fact that the sandboxed
program is only manipulating pointers relative to a single object, the sandbox. There-
fore, a solution could be to only compute with pointer offsets. This is not totally
satisfactory because the null pointer (i.e., 0) would be undistinguishable from the base
pointer ptr(sb, 0). Instead, we use the integer asb that is the integer runtime address
of the sandbox (i.e., we have asb = &sb) and perform the following transformation t
over program expressions.

Compiling Sandboxes: Formally Verified Software Fault Isolation 511

t(&sb) = asb
t(c) = c for c ∈ {i32 , i64 , f32 , f64}
t(�e) = � t(e)
t(e1�e2) = t(e1) � t(e2)
t([e]κ) = [mskκ(t(e))]

The operators � and � ensure that, if the expressions are well-typed, they never return
the undef value. Typical examples include division, modulus, and bitwise shifts. We
transform expressions so that they evaluate to an arbitrary value when their original
semantics is undefined. For example, we transform the left-shift operations on 32-bit
integers so that the resulting expression always has a shift amount less than 32:

Similarly, we transform divisions and modulus in the following way, to rule out the
undefined cases of division by zero and signed division of MIN_SIGNED by -1:

a/b � (a+(a==MIN_SIGNED & b==-1))/(b+(b==0)).

We can prove that the resulting division expression is always defined. Most of the other
expressions are always defined and do not need further transformations.

5 Enforcement of Control-Flow Integrity

Correct sandboxing of code requires some degree of control-flow integrity. Existing
SFI implementations enforce a weak form of control-flow integrity which only ensures
that jumps are aligned and within a sandbox of code. This is achieved by inserting a
masking operation before indirect jumps, that will mask the target address to ensure
that the jump is within the sandbox. Additional padding with no-ops is inserted to
ensure that all the instructions are indeed aligned [30,37,38]. We enforce a stronger,
more traditional, form of control-flow integrity where any control-flow transfer has a
well-defined Cminor semantics.

5.1 Relaxation of the Cminor SFI Property

Intraprocedural control-flow integrity is ensured by simple syntactic checks. For
instance, they ensure that a goto lb has a corresponding label lb and that an exit n
has at least n enclosing blocks. The semantics of Cminor prescribes that function calls
and returns necessarily match. For this to still hold at the assembly level where the
return address is explicitly stored in the stack frame, it is sufficient to prove that the
Cminor program has no going-wrong behaviour. To ensure control-flow integrity, the
only remaining issue is due to indirect calls through function pointers. Our control-flow
integrity counter-measure implements software trampolines and ensures that an indi-
rect call with signature σ can only be resolved by a function pointer towards a function
with signature σ.

For this purpose, the existing Cminor SFI security policy i.e., Property 1, which
rules out any memory access outside the sandbox is too restrictive. As we shall see,
the implementation of trampolines necessitates controlled memory reads, outside the
sandbox, within compiler-generated variables. To accommodate for this extension, we
propose a slightly relaxed SFI security property which, in addition to memory accesses
inside the sandbox, authorises other memory reads in read-only regions.

512 F. Besson et al.

Property 3. A Cminor program is secure if all its memory accesses are within either
the sandbox block sb or some read-only memory.

This relaxed property still ensures the integrity of the runtime because all memory
writes are confined to the sandbox. Note that Property 3 and Property 1 are equivalent
if the trusted runtime library has no read-only memory. This can be achieved at modest
cost by modifying slightly the source code and remove the C type qualifier const which
instructs the compiler that the memory is read-only.

5.2 Control-Flow Integrity of Indirect Calls

In Sect. 4, we have eluded the presence of function pointers. They actually perfectly
fit our strategy of encoding pointers by integers. In this case, each function pointer is
encoded as an index and the trampoline code translates the index into a valid function
pointer.

Consider a function f of signature σ and suppose that the function pointer &f
is compiled into the index i. The reverse mapping from indexes to function point-
ers is obtained from a compiler-generated array variable Aσ such that Aσ[i] = &f .
The array variable Aσ is made of all the function pointers with signature σ. The
array variable is also padded with a default function pointer such that its length
is a power of two. At the call site, the instruction e(e1 . . . , en)σ is transformed into
[te&mskσ + &Aσ](te1 , . . . , ten)σ where te, te1 . . . , ten are transformed expressions such
that all memory accesses are masked and mskσ is the binary mask ensuring that the
index te is within the bounds of the variable Aσ. In our actual implementation, we opti-
mise direct calls and in this case bypass the trampoline. Therefore, when the expression
e is a constant pointer &f to an existing function with signature σ, we generate directly
(&f)(te1 . . . , ten). As a result, only C code using indirect calls goes through the tram-
poline code.

Though our implementation only exploits the relaxation of Property 3 for the sake of
trampolines, a more aggressive implementation could sometimes avoid to relocate read-
only memory inside the sandbox. This could have a positive impact on optimisations
which exploit the immutability of read-only memory.

6 Safety and Security Proofs

We next give an overview of our fully verified Coq proof of security and safety.

6.1 Security Proof

Property 3 is an informal formulation of our security property that is formally stated as
a Cminor instrumented semantics. This semantics mimics the Cminor semantics with
the exception that memory accesses are restricted: a memory read is either performed
within the sandbox or in a read-only memory region; a memory write is necessarily
performed within the sandbox.

The goal of the security proof is to show that all the memory accesses abide by
the restrictions of the instrumented semantics. This is stated by Theorem 2 which
establishes that for a transformed program tp, no behaviour of the standard Cminor
semantics gets stuck for the instrumented Cminor semantics.

Compiling Sandboxes: Formally Verified Software Fault Isolation 513

Theorem 2 (Security). For any transformed program tp, every behaviour of tp in the
standard semantics of Cminor is also a behaviour of tp in the instrumented semantics.

The proof is based on the standard technique of forward simulation that is used in
CompCert to ensure the preservation of semantics by compiler passes. Here, the for-
ward simulation has the distinctive feature of relating the same (transformed) program
equipped with a standard and an instrumented semantics. Since the only difference
between the two semantics is that memory accesses must be secure, the crux of the
proof lies in the correctness of the masking primitive, as stated in the following lemma.

Lemma 1. For any masked expression e, if e evaluates to some pointer ptr(b, o), then
b is the block of the sandbox i.e., sb.

The proof relies on the definition of the masking primitive: a masked expression e is
of the form e′ + &sb. Since &sb evaluates to the pointer ptr(sb, 0), then if the whole
expression evaluates to a pointer ptr(b, o), necessarily b = sb.

6.2 Safety Proof
In order to benefit from CompCert’s semantic preservation theorem and transport
our security proof to the compiled assembly program, we must also prove that the
sandboxed program is safe, i.e., it never gets stuck. We address all the going-wrong
behaviours that we enumerated in Sect. 2.1. The well-formedness properties of a pro-
gram (calling only defined functions, accessing only defined variables, jumping only
to defined labels, exiting from no more blocks than currently enclosed in) are checked
statically and make the transformation fail if they are violated. Next, the memory
accesses require the addresses to be valid and adequately aligned: our masking oper-
ation ensures that this is always the case. Then, the evaluation of expressions must
always be defined: this has mostly been dealt with the arithmetisation of the memory
(Sect. 4.4). Finally, function calls should always be performed with the appropriate
number of well-typed arguments. This is easy to check statically for direct function
calls, but requires trampolines (as described in Sect. 5.2) for indirect function calls.
The following sandbox invariant encapsulates all these conditions.

Definition 1 (Sandbox Invariant). A state S of program P satisfies the sandbox
invariant if the following conditions are satisfied:

1. indirect control-flow transfers are well-defined in P (e.g. goto instructions in the
functions of P only jump to defined labels);

2. every function of P ends with an explicit return;
3. every function of P is well-typed;
4. every function of P starts by explicitly initialising its local variables;
5. the global array Aσ for signature σ contains function pointers to functions of sig-

nature σ;
6. the environment for local variables and the memory in S only contain properly

initialised, numerical values.

Properties 1, 2, 3 are ensured by a set of syntactic checks over the bodies of all the
functions of the program. Property 4 is enforced by our function transformation which
inserts assignments that explicitly initialise all declared local variables. Property 5 is
ensured by construction of the arrays for function pointers. All these properties can
be established solely on the program body and do not change during the execution of
the program. By contrast, Property 6 cannot be checked statically and depends on the
state of the program at each point.

514 F. Besson et al.

Safe Evaluation of Expressions. A necessary condition for the safe evaluation of
expressions is that the program is well typed. CompCert does not generate these type
guarantees so we have integrated a verified (simple) type-inference algorithm for Cmi-
nor programs. Type-checking alone is not sufficient to rule out undefined behaviours
of C operators, but together with the transformations explained in Sect. 4.4, we prove
the following lemma about the evaluation of transformed expressions.

Lemma 2 (Safe evaluation of expressions). In a memory state and a well-typed
environment for local variables containing only defined numerical values, the transfor-
mation of any well-typed expression e evaluates to a defined numerical value.

Lemma 2 follows directly from the properties of our expression transformation.

Safety of Calls through Trampolines. As mentioned in Sect. 5, we implement
software trampolines to secure function calls through function pointers. To ensure the
safety of indirect function calls, we maintain a map smap from function signatures
to the corresponding array identifier and the length of this array. The proof of safety
relies on the fact that for every function f of signature σ present in a program, we
have smap(σ) = (Aσ, lσ) such that all offsets lower than lσ in Aσ contain a pointer
to a function of signature σ. The safety proof of indirect calls itself is not hard, but
we need to set up this signature map and establish invariants relating it to the global
environment of the program.

Safety Theorem. Considering the invariants defined in Definition 1, we prove
Lemma 3 which is our main technical result.

Lemma 3 (Safety). For any Cminor program state S that satisfies the invariants,
either S is a final state or there exists a sequence of steps from S to some S′ such that
S′ also satisfies the invariants.

A subtlety of the proof is that at function entry, the local variables carry the value
undef and therefore the sandbox invariant only holds after they have been initialised
by a sequence of assignments (see Property 4 of Definition 1).

Using Lemma 3, we can show Property 2, in the form of Theorem 3.

Theorem 3 (Safety of the transformation). All behaviours of the transformed
program are well-defined, i.e., not wrong.

Proof. A going-wrong behaviour occurs precisely when a state is reached, from which
no further step can be taken, though it is not a final state. Lemma3, together with a
proof that the initial state of the transformed prorgam satisfies the invariants, tells us
that no such reachable state exists, concluding the proof. ��

As a result, we benefit from CompCert’s semantic preservation theorem and can
transport the security proof down to the assembly program.

Theorem 4 (Security of the compiled program). Let p be a transformed Cminor
program. If p compiles into the assembly program tp, then tp is secure.

The proof uses Corollary 1 and Theorem 2 to conclude that the behaviours of tp are
the same as those of p, and hence secure.

Compiling Sandboxes: Formally Verified Software Fault Isolation 515

7 SFI Runtime and Library

Our modified CompCert compiler, CompCertSfi, takes as input a C program unit in
the form of a list of C files. Each C file is first compiled down to the Cminor language
using the existing passes of the CompCert compiler. Then, all the Cminor programs
are syntactically linked [14] together to form the program unit to be isolated inside the
sandbox. CompCertSfi comes with a lightweight runtime and a generic support for
interfacing with a trusted library (e.g. a libC). An originality of our approach is that
the runtime is using a standard program loader. Moreover, the runtime gets some of
its configuration through compiler-generated variables.

7.1 Loading the SFI Application

The sandboxed code is linked with our runtime library by a linker script which specifies
where to load at runtime the sb variable, viewed as the data segment. The compiler
also emits a sandbox configuration map which contains the symbolic address of the
sandbox, its numeric value at runtime, the total size of the sandbox and the range of
addresses reserved for global variables.

Our runtime code is executed before starting the sandboxed main function. It first
checks that the sandbox is properly linked according to the sandbox configuration map,
sets the shadow-stack pointer and initialises the sandbox heap using our sandbox-aware
implementation of malloc based on ptmalloc32.

By construction, our runtime stack is free of buffer overruns. Yet, if the recursion
is too deep, the stack may overflow. Therefore, the runtime inserts an unmapped page
guard at the bottom of the stack and intercepts the segmentation fault. This protection
suffices provided that the size of each function stack frame does not exceed a page;
which can be checked at compile-time. Eventually, after copying its arguments inside
the sandbox, the runtime calls the main function of the sandboxed application.

7.2 Monitoring Calls to the Runtime Library

The runtime library is trusted and therefore part of the TCB. To ensure isolation, each
call towards the runtime library is monitored to check the validity of the arguments.
For this purpose, a call to a library function, say foo, is renamed in the object file into a
call to a function sb_foo which sanitises its arguments before really calling the function
foo. The verifications are library specific but usually straightforward to implement. For
stdio, the FILE structures are allocated by the runtime outside of the sandbox. Hence,
the returned FILE* cannot be dereferenced to corrupt the FILE structure. To prevent
the sandboxed program to forge FILE* pointers, the runtime maintains at all time the
set of valid FILE*. For variadic functions e.g., printf, we statically compile the format
into a sequence of safe primitive calls. (We reject programs using formats computed
at runtime). For functions in string, we check beforehand that the range of memory
accesses is within the range of the sandbox. We also allow callbacks and therefore a
runtime function may take a function pointer as argument. To ensure that the function
is valid, the runtime is using the trampoline programming pattern presented in Sect. 5.2.

2 http://www.malloc.de/malloc/ptmalloc3-current.tar.gz.

http://www.malloc.de/malloc/ptmalloc3-current.tar.gz

516 F. Besson et al.

7.3 Communication via Global Variables

Programs may not only communicate via function calls but also directly via global
variables. For the libC, this includes e.g. stdout or errno. To ensure isolation, Com-
pCertSfi relocates those variables inside the sandbox but also generates a global
variable map which is an array variable of the form

{&n1, o1, . . . , &ni, oi, . . . , &nm, om}
where &ni is the symbolic address of a global variable and oi is its offset in the sandbox.
Using this information, the runtime has the ability to synchronise the values of the
variables inside and outside the sandbox. For example, at program startup, the value
of stdout (a stream pointer) is copied inside the sandbox at the relevant offset. This
allows the sandboxed program to call stdio functions but protects the integrity of the
stream. For errno, it is the responsibility of each runtime library call to synchronise
the value of errno in the sandbox.

8 Experiments

We have evaluated our PSFI approach over the CompCert benchmark suite and a port
of Quake. All the experiments have been carried over a quad-core Intel 6600U laptop
at 2.6 GHz with 16 GB of RAM running Linux Fedora 27. For Quake, we explain
how to adapt the code to our runtime library and verify the absence of noticeable
slowdown. For the other benchmarks, we make a more detailed performance evaluation
and compare CompCertSfi with CompCert, gcc, clang but also the state-of-the-
art (P)NaCl implementation of SFI. In our experiments, all the benchmarks are ordered
by increasing running time. Moreover, for computing a runtime overhead, the running
time is obtained by taking the harmonic mean of 3 consecutive runs.

8.1 Porting Quake

Quake engines come in various flavours and we use the tyr-quake3 implementation
linking with Xlib. The port requires the addition of several functions to our runtime
library from Xlib and the libC. Most of them are not problematic and require no or
little modification. For instance, the getopt function which is used to parse command-
line options is using the global variables optarg, optind, opterr, and optopt. As
explained in Sect. 7.3, the runtime library copies the values of these variables at reserved
places inside the sandbox.

Other functions, e.g. gethostbyname, allocate memory on their own and return a
pointer to this piece of data which is therefore not accessible to the sandboxed code. For
the specific case of gethostbyname, the library provides the function gethostbyname_r
which, instead of allocating memory, takes as argument a data-structure that is filled
by the function. In our case, we pass as argument a sandbox allocated piece of memory.
This does not solve our problem entirely as inner pointers may still point outside the
sandbox. To cope with this issue, we perform a deep copy of the relevant piece of data
inside the sandbox.

A last issue is that the video memory is shared between the application and the X
server using the system call shmat. Fortunately, the libC provides the relevant flags to

3 https://disenchant.net/git/tyrquake.git.

https://disenchant.net/git/tyrquake.git

Compiling Sandboxes: Formally Verified Software Fault Isolation 517

bind shared memory at a specific address. Hence, we were able to allocate it inside the
sandbox thus allowing a seamless communication with the X server. After these mod-
ifications, the sandboxed Quake runs without noticeable slowdown which is encour-
aging and an indication of the good overall performance of our sandboxing technique.
In the following, we complement this with a more precise runtime evaluation for the
CompCert benchmarks.

8.2 PSFI Overhead: Impact of Sandboxing Primitives

Next, we compare the efficiency of a standard masking primitive (Sect. 4.1) with a
specialised version for 32-bit sandboxes (Sect. 4.2).

Figure 4 shows the overhead of the standard sandboxing primitive with respect to
the specialised sandboxing primitive. There are 6 benchmarks for which the overhead
incurred by the standard sandboxing is above 10% reaching 40% for 2 benchmarks.
These cases illustrate the significant performance advantage that is sometime obtained
by the specialised sandboxing. For some benchmarks, the standard sandboxing outper-
forms our optimised sandboxing. Yet when it does it is by a very small margin (below
3%). Overall, for the vast majority of our benchmarks, the specialised sandboxing
primitive is very competitive.

In Sect. 4.1, we gave theoretical arguments for the advantage of the specialised
sandboxing. Another argument comes from the fact that the specialised sandboxing
is easier to optimise. First, note that the standard and the specialised sandboxing
primitives are both using a bitwise mask but for different purposes. For the standard
primitive, it is used to enforce that the pointer is within the sandbox bounds but
also to enforce alignment constraints. For the specialised primitive, it is only used to
enforce alignment constraints. Using the existing CompCert dataflow framework, we
have implemented an alignment analysis that is quite effective at removing redundant
alignment masks. To enable more optimisations, we explicit alignment constraints in
the Cminor code program (e.g. by specifying that function arguments of a pointer
type are necessarily aligned). Thus, our experimental results are explained by both the
theoretical advantages given in Sect. 4.2 and the effectiveness of our alignment analysis.

Fig. 4. Overhead of standard w.r.t specialised sandboxing

518 F. Besson et al.

8.3 PSFI Overhead: Impact of Compiler Back-End

As a second experiment, we evaluate the overhead of our PSFI transformation for various
compilers: CompCert, gcc and clang. CompCert is a moderately optimising com-
piler and the benchmarks run significantly faster using gcc and clang. In Fig. 5, the
baseline is given by the minimum of the execution times of the three compilers without
PSFI instrumentation. The black bar is the overhead of a compiler (e.g. CompCert),
with respect to the baseline and the grey bar is the overhead of the same compiler but
with the PSFI transformation (e.g. CompCertSfi). In order to use gcc and clang, we
implement a trusted decompiler from our secured Cminor programs to Clight, a subset
of C in CompCert. These Clight programs are then compiled with gcc or clang.

For a fair comparison, we should compare programs for which we actually have
a reasonable security guarantee. We have a formal proof of security and safety (see
Sect. 6) for the sandboxed Cminor program, and we are confident that our syntax-
directed decompiler preserves this property. For CompCert, this would suffice to pre-
serve the security of the compiled Clight code, but this is not the case for gcc and
clang because of semantic discrepancies between the compilers. To limit this risk,
we have set the compiler flags to instruct gcc and clang to adhere to the speci-
ficity of CompCert semantics: signed integer arithmetic is defined and so are wraps
around (flag -fwrapv), strict aliasing is irrelevant (flag -fno-strict-aliasing), and
floating-point arithmetic is strictly IEEE 754 compliant (flags -frounding-math and
-fsignaling-nans). We also instruct the compilers to ignore any knowledge about the
C library (-fno-builtin).

Our experimental results are shown in Fig. 5. In Fig. 5a, we have the overhead of
CompCert and CompCertSfi. The overhead of CompCert over gcc and clang is
expected and corroborates existing results4. For 10% of the benchmarks, the overhead
CompCertSfi over CompCert is negligible and sometimes the PSFI transformation
even improves performance. Those are programs for which the PSFI transformation
introduces few masking operations, if any. For 41% of the benchmarks, the overhead is
below 10% and can be considered, for most applications, a reasonable efficiency/security
trade-off. For all the other benchmarks except binarytrees and vmach, the overhead is
below 25%. The two remaining benchmarks have a significant overhead reaching 82%
for binarytrees. This corresponds to programs which are memory intensive and where
sandboxing cannot be optimised.

In Fig. 5b and c, we perform the same experiments but with gcc and clang. The
results have some similarities but also have visible differences. For about 60% of the
benchmarks the overhead is below 20%. Moreover, for both compilers, the average over-
head is similar: 22% for gccSfi and 24% for clangSfi. Yet, on average gccSfi makes
a better job at optimising our benchmarks and best clangSfi for about 75% of the
benchmarks. For the rest of the benchmarks, we observe a significant overhead, up to
20%, indicating that the PSFI transformation hinders certain aggressive optimisations.
The results also seem to indicate that optimisations are fragile as the overhead is not
always consistent across compilers. The case of the integr benchmark is particularly
striking because it runs with negligible overhead for clangSfi but exhibits the worst
case overhead for gccSfi. The integr program is using a function pointer inside a loop
and we suspect that gccSfi, unlike clangSfi, fails to optimise the program due to the
inserted trampoline code. Though less striking, the benchmarks fftw and raytracer
follow the opposite trend; these are programs where the overhead of clangSfi is much
higher than gccSfi.
4 http://compcert.inria.fr/compcert-C.html#perfs.

http://compcert.inria.fr/compcert-C.html#perfs

Compiling Sandboxes: Formally Verified Software Fault Isolation 519

Fig. 5. Overhead of PSFI:CompCert, clang, gcc, (P)NaCl

8.4 PSFI Versus (P)NaCl

We also compare our compiler-based SFI approach with (P)NaCl [30], which to our
knowledge is one of the most mature implementations of SFI. Figure 5d shows the
overhead of CompCertSfi, gccSfi, clangSfi with respect to (P)NaCl. The baseline
is given by the best among NaCl and PNaCl. The best of clangSfi and gccSfi is
given in dark gray and CompCertSfi is given in light grey.

We first analyse the results of CompCertSfi. Our benchmarks are ordered by
increasing runtime. The first 5 benchmarks have a runtime below one second. They are
not representative of the performance of both approaches but only illustrate the fact
that (P)NaCl has a startup penalty due to the verification of the binary and the setup
of the sandbox. The overhead peaks above 75% for two programs (i.e., fib and integr).
As the PSFI transformation keeps fib unmodified and only inserts a trampoline call in
integr, these programs only highlight the limited optimisations performed by Com-
pCert. Of the remaining benchmarks, 40% of them run faster or have similar speed
with CompCertSfi. For those benchmarks, the average overhead of CompCertSfi
w.r.t (P)NaCl is around 9%. Except for a few programs whose overhead skyrockets
due to CompCert not being specialised for speed, we can say that CompCertSfi
performance is comparable to (P)NaCl, having programs with better speed in both
sides and a large number having similar results.

520 F. Besson et al.

We also matched gccSfi/clangSfi against (P)NaCl to compare the impact on
performance of more aggressive optimisations. Here 60% of the programs are faster
with gccSfi/clangSfi. Among the remaining programs, lzw and chomp are programs
for which the (P)NaCl code runs faster than the optimised gcc clang code without
the PSFI transformation. As (P)NaCl is based on clang, more investigation is needed
to understand this paradox that may be explained by code running outside the sand-
box i.e. the trusted runtime library. Among the remaining benchmarks, binarytrees
and lists still show a noticeable overhead. Those are recursive micro-benchmarks for
which our PSFI is costly (see Fig. 5). For lists, 99% of the time is spent in a tight loop
where only a single address is masked. For binarytrees, 70% of the time is spent in the
runtime code of malloc and free and therefore this highlights the fact that our imple-
mentation is less efficient than the (P)NaCl counterpart. Overall these results indicate
that our implementation of SFI is competitive with (P)NaCl, given similar compilers.
Furthermore speed can be improved with more sandbox-dedicated optimisations; these
would be harder for (P)NaCl to check.

9 Related Work

Since Wahbe et al. [35] proposed their initial technique for SFI, there has been a number
of proposals for efficiently confining untrusted software to a memory sandbox (see [23,
24,31,32,34,37,39]). One of the most prominent is Google’s Native Client (NaCl) [37],
which provides an infrastructure for executing untrusted native code in a web browser.
NaCl was specifically targeted at executing computation-intensive applications without
incurring a performance penalty. Certain features (in particular self-modifying code)
were ruled out. These restrictions were addressed in a subsequent work [3].

RockSalt [24] is an SFI verifier for x86 code which has been developed and formally
verified with the proof assistant Coq. The major contribution of RockSalt is to provide a
formal model of the x86 architecture, from which it is possible to extract a decoder for a
subset of the very rich set of x86 instructions, and build a verifier for the NaCl sandbox
policy. Their experiments show that the formally verified checker performs marginally
better than the NaCl verifier. In comparison, our approach avoids the complexities of
the x86 instruction set by relying on the CompCert compiler back-end to produce
binaries whose adherence to the sandbox policy is guaranteed by a combination of
a sandbox verification at a higher level (Cminor) and the CompCert’s correctness
theorem.

ARMor [39] is using the binary rewriter Diablo [28] to implement SFI for ARM
processors. Using an untrusted program analysis, a proof of SFI safety is automatically
constructed using the HOL theorem prover. ARMor was tested with some programs
of the MiBench benchmark [11], namely BitCount and StringSearch. These programs
required 2.5 and 8 h respectively to prove the memory safety and control-flow integrity
of the executables, which means that the approach is not practically viable as it is.

Kroll et al. [16] proposed PSFI as an alternative methodology to the standard,
verification-based SFI. In PSFI, the sandbox is built by inserting the necessary mask-
ing instructions during compilation. This means that the correctness of the transfor-
mation can be argued at an intermediate stage in the compilation where the program
representation retains a high-level structure. Our work extends the seminal proposal in
a number of ways that we detail below. Unlike Kroll et al., we exclude from the TCB
the masking primitive and the trampoline mechanism for calling external functions.
In our implementation, these crucial components are written entirely in Cminor and

Compiling Sandboxes: Formally Verified Software Fault Isolation 521

proved correct without introducing trusted, unproved, code. Kroll et al. sketch a proof
of safety but do not identify the issue of pointer arithmetic. To sidestep the semantics
limitation of pointer arithmetic, we introduce a compile-time encoding of pointer as
integers. This transformation is instrumental for our Coq verified proof of safety, which
itself is mandatory to transfer security down to assembly.

Since the seminal work of Norrish [27], several works propose formal semantics of
the C language [8,12,15]. All these share the limitations of CompCert with respect to
pointer arithmetic. Recent works specifically aim at providing a more defined semantics
for pointers. The proposal of Besson et al. [4] is able to cope with most existing low-level
pointer manipulations and has been ported to CompCert [5,6]. Yet, it has nonetheless
limitations and the design of our PSFI transformation would not benefit from the
increased expressiveness. The semantics of Kang et al. [14] is more permissive because,
after a cast, a pointer is indistinguishable from an integer value. To our knowledge, their
semantics has not been ported to the CompCert compiler. Our SFI transformation
has the advantage of being compatible with the existing semantics of CompCert with
the caveat that pointers needs to be explicitly compiled into integers.

10 Conclusion

We have presented CompCertSfi, a formally verified implementation of Software Fault
Isolation based on the CompCert compiler. Our approach provides security guaran-
tees at runtime when the source code may be malicious or has security vulnerabilities
but the build process is trusted. This is typically the case when a final product is built
using code originating from multiple third parties. Our work shows that it is possible
to perform security-enhancing compilation that is both formally verified and competi-
tive with existing approaches in terms of efficiency. CompCertSfi does not rely on a
posteriori binary verification for guaranteeing security, and hence has a reduced TCB
compared to traditional SFI solutions. The reduction in TCB is obtained through a
formal, machine-checked proof of the fact that the security guaranteed by our SFI trans-
formation in the compiler front-end, still holds at the assembly level. Key to achieving
this property has been to fine-tune the transformation (and in particular its pointer
manipulations) to ensure that the secured program has a well-defined semantics.

The impact of SFI has been evaluated on a series of benchmarks, showing that the
transformed code can in a few cases be more efficient, and that the average runtime
overhead incurred is about 9%. We have evaluated the impact of back-end optimi-
sation on the transformed code on three different compilers. The gains vary, with
clang being more efficient than CompCert and gcc, and CompCert being slightly
more efficient than gcc. The experiments show that CompCertSfi combined with an
aggressive back-end optimiser can sometimes achieve performances superior to Native
Client implementations. In addition, there is still room for further optimisation of the
generated code. We have observed that existing optimisations are sometimes hindered
by our SFI transformation, so we gain by having more optimisation before the SFI
transformation. We also intend to investigate optimisations for removing redundant
sandboxing operations and in particular hoisting sandboxing outside loops.

522 F. Besson et al.

References

1. Supplementary material. https://www.irisa.fr/celtique/ext/compcertsfi
2. Andronick, J., Chetali, B., Ly, O.: Using Coq to verify Java CardTM applet isolation

properties. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 335–
351. Springer, Heidelberg (2003). https://doi.org/10.1007/10930755_22

3. Ansel, J., et al.: Language-independent sandboxing of just-in-time compilation and
self-modifying code. In: PLDI, pp. 355–366 (2011)

4. Besson, F., Blazy, S., Wilke, P.: A precise and abstract memory model for C using
symbolic values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 449–468.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1_24

5. Besson, F., Blazy, S., Wilke, P.: CompCertS: a memory-aware verified C compiler
using pointer as integer semantics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 81–97. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_6

6. Besson, F., Blazy, S., Wilke, P.: A verified CompCert front-end for a memory model
supporting pointer arithmetic and uninitialised data. J. Autom. Reasoning (2018,
accepted for publication)

7. Besson, F., de Grenier de Latour, T., Jensen, T.P.: Interfaces for stack inspection.
J. Funct. Program. 15(2), 179–217 (2005)

8. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
POPL. ACM (2012)

9. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5_18

10. Guanciale, R., Nemati, H., Dam, M., Baumann, C.: Provably secure memory iso-
lation for Linux on ARM. J. Comput. Secur. 24(6), 793–837 (2016)

11. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
MiBench: a free, commercially representative embedded benchmark suite, pp. 3–14.
Institute of Electrical and Electronics Engineers Inc., United States (2001)

12. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: PLDI,
pp. 336–345. ACM, June 2015

13. ISO: ISO C Standard 1999. Technical report (1999)
14. Kang, J., Kim, Y., Hur, C., Dreyer, D., Vafeiadis, V.: Lightweight verification of

separate compilation. In: POPL, pp. 178–190. ACM (2016)
15. Krebbers, R.: An operational and axiomatic semantics for non-determinism and

sequence points in C. In: POPL. ACM (2014)
16. Kroll, J.A., Stewart, G., Appel, A.W.: Portable software fault isolation. In: CSF,

pp. 18–32. IEEE (2014)
17. Larus, J.R., Hunt, G.C.: The singularity system. Commun. ACM 53(8), 72–79

(2010)
18. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–

115 (2009)
19. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446

(2009)
20. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In:

Program Logics for Certified Compilers. Cambridge University Press (2014)

https://www.irisa.fr/celtique/ext/compcertsfi
https://doi.org/10.1007/10930755_22
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18

Compiling Sandboxes: Formally Verified Software Fault Isolation 523

21. Leroy, X., Rouaix, F.: Security properties of typed applets. In: Vitek, J., Jensen,
C.D. (eds.) Secure Internet Programming, Security Issues for Mobile and Dis-
tributed Objects. LNCS, vol. 1603, pp. 147–182. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48749-2_7

22. The Coq development team: The Coq proof assistant reference manual (2017).
http://coq.inria.fr, version 8.7

23. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: Proceed-
ings of the 15th Conference on USENIX Security Symposium, USENIX-SS 2006,
vol. 15. USENIX Association (2006)

24. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: better,
faster, stronger SFI for the x86. In: PLDI, pp. 395–404. ACM (2012)

25. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM Press (1997)
26. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: OSDI,

pp. 229–243. ACM (1996)
27. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
28. Put, L.V., Chanet, D., Bus, B.D., Sutter, B.D., Bosschere, K.D.: DIABLO: a reli-

able, retargetable and extensible link-time rewriting framework. In: In IEEE Inter-
national Symposium On Signal Processing And Information Technology (2005)

29. Richards, G., Hammer, C., Nardelli, F.Z., Jagannathan, S., Vitek, J.: Flexible
access control for JavaScript. In: OOPSLA, pp. 305–322. ACM (2013)

30. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: 19th USENIX Security Symposium, pp. 1–12. USENIX Association
(2010)

31. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: Proceedings of the 19th USENIX Conference on Security, USENIX
Security 2010, p. 1. USENIX Association (2010)

32. Shu, R., et al.: A study of security isolation techniques. ACM Comput. Surv. 49(3),
50:1–50:37 (2016)

33. Simon, L., Chisnall, D., Anderson, R.J.: What you get is what you C: controlling
side effects in mainstream C compilers. In: EuroS&P, pp. 1–15. IEEE (2018)

34. Sinha, R., et al.: A design and verification methodology for secure isolated regions.
In: PLDI, pp. 665–681. ACM (2016)

35. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: SOSP, pp. 203–216. ACM (1993)

36. Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., Kaashoek, M.: Undefined
behavior: what happened to my code? In: APSYS (2012)

37. Yee, B., et al.: Native client: a sandbox for portable, untrusted x86 native code.
In: S&P, pp. 79–93. IEEE (2009)

38. Yee, B., et al.: Native client: a sandbox for portable, untrusted x86 native code.
Commun. ACM 53(1), 91–99 (2010)

39. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: fully verified software fault
isolation. In: EMSOFT, pp. 289–298. ACM (2011)

https://doi.org/10.1007/3-540-48749-2_7
http://coq.inria.fr

524 F. Besson et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Fixing Incremental Computation

Derivatives of Fixpoints, and the Recursive Semantics
of Datalog

Mario Alvarez-Picallo1(B), Alex Eyers-Taylor2, Michael Peyton Jones2(B),
and C.-H. Luke Ong1

1 University of Oxford, Oxford, UK
{mario.alvarez-picallo,luke.ong}@cs.ox.ac.uk

2 Semmle Ltd., Oxford, UK
alexet@semmle.com, me@michaelpj.com

Abstract. Incremental computation has recently been studied using the
concepts of change structures and derivatives of programs, where the
derivative of a function allows updating the output of the function based
on a change to its input. We generalise change structures to change
actions, and study their algebraic properties. We develop change actions
for common structures in computer science, including directed-complete
partial orders and Boolean algebras. We then show how to compute
derivatives of fixpoints. This allows us to perform incremental evaluation
and maintenance of recursively defined functions with particular applica-
tion generalised Datalog programs. Moreover, unlike previous results, our
techniques are modular in that they are easy to apply both to variants
of Datalog and to other programming languages.

Keywords: Incremental computation · Datalog · Semantics ·
Fixpoints

1 Introduction

Consider the following classic Datalog program1, which computes the transitive
closure of an edge relation e:

tc(x, y) ← e(x, y)
tc(x, y) ← e(x, z) ∧ tc(z, y)

The semantics of Datalog tells us that the denotation of this program is
the least fixpoint of the rule tc. Kleene’s fixpoint Theorem tells us that we can
compute this fixpoint by repeatedly applying the rule until the output stops
changing, starting from the empty relation. For example, supposing that e =
{(1, 2), (2, 3), (3, 4)}, we get the following evaluation trace:

1 See [1, part D] for an introduction to Datalog.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 525–552, 2019.
https://doi.org/10.1007/978-3-030-17184-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_19

526 M. Alvarez-Picallo et al.

Iteration Newly deduced facts Accumulated data in tc
0 {} {}
1 {(1, 2), (2, 3), (3, 4)} {(1, 2), (2, 3), (3, 4)}
2 {(1, 2), (2, 3), (3, 4),

(1, 3), (2, 4)}
{(1, 2), (2, 3), (3, 4),
(1, 3), (2, 4)}

3 {(1, 2), (2, 3), (3, 4),
(1, 3), (2, 4), (1, 4), (1, 4)}

{(1, 2), (2, 3), (3, 4),
(1, 3), (2, 4), (1, 4)}

4 (as above) (as above)

At this point we have reached a fixpoint, and so we are done.
However, this process is quite wasteful. We deduced the fact (1, 2) at every

iteration, even though we had already deduced it in the first iteration. Indeed,
for a chain of n such edges we will deduce O(n2) facts along the way.

The standard improvement to this evaluation strategy is known as “semi-
naive” evaluation (see [1, section 13.1]), where we transform the program into a
delta program with two parts:

– A delta rule that computes the new facts at each iteration.
– An accumulator rule that accumulates the delta at each iteration to compute

the final result.

In this case our delta rule is simple: we only get new transitive edges at iteration
n + 1 if we can deduce them from transitive edges we deduced at iteration n.

Δtc0(x, y) ← e(x, y)
Δtci+1(x, y) ← e(x, z) ∧ Δtci(z, y)

tc0(x, y) ← Δtc0(x, y)
tci+1(x, y) ← tci(x, y) ∨ Δtci+1(x, y)

Iteration Δtci tci

0 {(1, 2), (2, 3), (3, 4)} {(1, 2), (2, 3), (3, 4)}
1 {(1, 3), (2, 4)} {(1, 2), (2, 3), (3, 4),

(1, 3), (2, 4)}
2 {(1, 4)} {(1, 2), (2, 3), (3, 4),

(1, 3), (2, 4), (1, 4)}
3 {} (as above)

This is much better—we have turned a quadratic computation into a linear
one. The delta transformation is a kind of incremental computation: at each stage
we compute the changes in the rule given the previous changes to its inputs.

But the delta rule translation works only for traditional Datalog. It is com-
mon to liberalise the formula syntax with additional features, such as disjunc-
tion, existential quantification, negation, and aggregation.2 This allows us to
2 See, for example, LogiQL [26,32], Datomic [18], Souffle [38,42], and DES [36], which

between them have all of these features and more. We do not here explore supporting
extensions to the syntax of rule heads, although as long as this can be given a
denotational semantics in a similar style our techniques should be applicable.

Fixing Incremental Computation 527

write programs like the following, where we compute whether all the nodes in a
subtree given by child have some property p:

treeP (x) ← p(x) ∧ ¬∃y.(child(x, y) ∧ ¬treeP (y))

The body of this predicate amounts to recursion through an universal quan-
tifier (encoded as ¬∃¬). We would like to be able to use semi-naive evaluation
for this rule too, but the standard definition of semi-naive transformation is not
well defined for the extended program syntax, and it is unclear how to extend it
(and the correctness proof) to handle such cases.

It is possible, however, to write a delta program for treeP by hand; indeed,
here is a definition for the delta predicate (the accumulator is as before):3

Δi+1treeP (x) ←p(x)
∧ ∃y.(child(x, y) ∧ ΔitreeP (y))
∧ ¬∃y.(child(x, y) ∧ ¬treePi(y))

This is a correct delta program (in that using it to iteratively compute treeP
gives the right answer), but it is not precise because it derives some facts repeat-
edly. We will show how to construct correct delta programs generally using a
program transformation, and show how we have some freedom to optimize within
a range of possible alternatives to improve precision or ease evaluation.

Handling extended Datalog is of more than theoretical interest—the research
in this paper was carried out at Semmle, which makes heavy use of a commercial
Datalog implementation to implement large-scale static program analysis [7,37,
39,40]. Semmle’s implementation includes parity-stratified negation4, recursive
aggregates [34], and other non-standard features, so we are faced with a dilemma:
either abandon the new language features, or abandon incremental computation.

We can tell a similar story about maintenance of Datalog programs. Main-
tenance means updating the results of the program when its inputs change, for
example, updating the value of tc given a change to e. Again, this is a kind of
incremental computation, and there are known solutions for traditional Datalog
[25], but these break down when the language is extended.

There is a piece of folkloric knowledge in the Datalog community that hints
at a solution: the semi-naive translation of a rule corresponds to the derivative
of that rule [8,9, section 3.2.2]. The idea of performing incremental computation
using derivatives has been studied recently by Cai et al. [14], who give an account
using change structures. They use this to provide a framework for incrementally
evaluating lambda calculus programs.

3 This rule should be read as: we can newly deduce that x is in treeP if x satisfies the
predicate, and we have newly deduced that one of its children is in treeP , and we
currently believe that all of its children are in treeP .

4 Parity-stratified negation means that recursive calls must appear under an even
number of negations. This ensures that the rule remains monotone, so the least
fixpoint still exists.

528 M. Alvarez-Picallo et al.

However, Cai et al.’s work isn’t directly applicable to Datalog: the tricky part
of Datalog’s semantics are recursive definitions and the need for the fixpoints, so
we need some additional theory to tell us how to handle incremental evaluation
and maintenance of fixpoint computations.

This paper aims to bridge that gap by providing a solid semantic foundation
for the incremental computation of Datalog, and other recursive programs, in
terms of changes and differentiable functions.

Contributions. We start by generalizing change structures to change actions
(Sect. 2). Change actions are simpler and weaker than change structures, while
still providing enough structure to handle incremental computation, and have
fruitful interactions with a variety of structures (Sects. 3 and 6.1).

We then show how change actions can be used to perform incremental eval-
uation and maintenance of non-recursive program semantics, using the formula
semantics of generalized Datalog as our primary example (Sect. 4). Moreover, the
structure of the approach is modular, and can accommodate arbitrary additional
formula constructs (Sect. 4.3).

We also provide a method of incrementally computing and maintaining fix-
points (Sect. 6.2). We use this to perform incremental evaluation and mainte-
nance of recursive program semantics, including generalized recursive Datalog
(Sect. 7). This provides, to the best of our knowledge, the world’s first incremen-
tal evaluation and maintenance mechanism for Datalog that can handle negation,
disjunction, and existential quantification.

We have omitted the proofs from this paper. Most of the results have rou-
tine proofs, but the proofs of the more substantial results (especially those in
Sect. 6.2) are included in an extended report [3], along with some extended
worked examples, and additional material on the precision of derivatives.

2 Change Actions and Derivatives

Incremental computation requires understanding how values change. For exam-
ple, we can change an integer by adding a natural to it. Abstractly, we have a
set of values (the integers), and a set of changes (the naturals) which we can
“apply” to a value (by addition) to get a new value.

This kind of structure is well-known—it is a set action. It is also very natural
to want to combine changes sequentially, and if we do this then we find ourselves
with a monoid action.

Using monoid actions for changes gives us a reason to think that change
actions are an adequate representation of changes: any subset of A → A which
is closed under composition can be represented as a monoid action on A, so we
are able to capture all of these as change actions.

2.1 Change Actions

Definition 1. A change action is a tuple:

Â := (A,ΔA,⊕A)

Fixing Incremental Computation 529

where A is a set, ΔA is a monoid, and ⊕A : A × ΔA → A is a monoid action
on A.5

We will call A the base set, and ΔA the change set of the change action. We
will use · for the monoid operation of ΔA, and 0 for its identity element. When
there is no risk of confusion, we will simply write ⊕ for ⊕A.

Examples. A typical example of a change action is (A∗, A∗,++) where A∗ is the
set of finite words (or lists) of A. Here we represent changes to a word made by
concatenating another word onto it. The changes themselves can be combined
using ++ as the monoid operation with the empty word as the identity, and this
is a monoid action: (a ++ b) ++ c = a ++ (b ++ c).

This is a very common case: any monoid (A, ·,0) can be seen as a change
action (A, (A, ·,0), ·). Many practical change actions can be constructed in this
way. In particular, for any change action (A,ΔA,⊕), (ΔA,ΔA, ·) is also a change
action. This means that we do not have to do any extra work to talk about
changes to changes—we can always take ΔΔA = ΔA (although there may be
other change actions available).

Three examples of change actions are of particular interest to us. First, when-
ever L is a Boolean algebra, we can give it the change actions (L,L,∨) and
(L,L,∧), as well as a combination of these (see Sect. 3.2). Second, the natural
numbers with addition have a change action N̂ := (N, N,+), which will prove
useful during inductive proofs.

Another interesting example of change actions is semiautomata. A semiau-
tomaton is a triple (Q,Σ, T), where Q is a set of states, Σ is a (non-empty) finite
input alphabet and T : Q×Σ → Q is a transition function. Every semiautomaton
corresponds to a change action (Q,Σ∗, T ∗) on the free monoid over Σ∗, with T ∗

being the free extension of T . Conversely, every change action Â whose change
set ΔA is freely generated by a finite set corresponds to a semiautomaton.

Other recurring examples of change actions are:

– Â⊥ := (A,M, λ(a, δa).a), where M is any monoid, which we call the empty
change action on any base set, since it induces no changes at all.

– Â� := (A,A → A, ev), where A is an arbitrary set, A → A denotes the set
of all functions from A into itself, considered as a monoid under composition
and ev is the usual evaluation map. We will call this the “full” change action
on A since it contains every possible non-redundant change.

These are particularly relevant because they are, in a sense, the “smallest” and
“largest” change actions that can be imposed on an arbitrary set A.

Many other notions in computer science can be understood naturally in terms
of change actions, e.g. databases and database updates, files and diffs, Git repos-
itories and commits, even video compression algorithms that encode a frame as
a series of changes to the previous frame.
5 Why not just work with monoid actions? The reason is that while the category of

monoid actions and the category of change actions have the same objects, they have
different morphisms. See Sect. 8.1 for further discussion.

530 M. Alvarez-Picallo et al.

2.2 Derivatives

When we do incremental computation we are usually trying to save ourselves
some work. We have an expensive function f : A → B, which we’ve evaluated
at some point a. Now we are interested in evaluating f after some change δa to
a, but ideally we want to avoid actually computing f(a ⊕ δa) directly.

A solution to this problem is a function f ′ : A × ΔA → ΔB, which given a
and δa tells us how to change f(a) to f(a ⊕ δa). We call this a derivative of a
function.

Definition 2. Let Â and B̂ be change actions. A derivative of a function f :
A → B is a function f ′ : A × ΔA → ΔB such that

f(a ⊕A δa) = f(a) ⊕B f ′(a, δa)

A function which has a derivative is differentiable, and we will write Â → B̂ for
the set of differentiable functions between A and B.6

Derivatives need not be unique in general, so we will speak of “a” derivative.
Functions into “thin” change actions—where a ⊕ δa = a ⊕ δb implies δa = δb—
have unique derivatives, but many change actions are not thin. For example,
(P(N),P(N),∩) is not thin because {0} ∩ {1} = {0} ∩ {2}.

Derivatives capture the structure of incremental computation, but there are
important operational considerations that affect whether using them for compu-
tation actually saves us any work. As we will see in a moment (Proposition 1), for
many change actions we will have the option of picking the “worst” derivative,
which merely computes f(a ⊕ δa) directly and then works out the change that
maps f(a) to this new value. While this is formally a derivative, using it cer-
tainly does not save us any work! We will be concerned with both the possibility
of constructing correct derivatives (Sects. 3.2 and 6.2 in particular), and also in
giving ourselves a range of derivatives to choose from so that we can soundly
optimize for operational value.

For our Datalog case study, we aim to cash out the folkloric idea that incre-
mental computation functions via a derivative. We will construct a derivative
of the semantics of Datalog in stages: first the non-recursive formula semantics
(Sect. 4); and later the full, recursive, semantics (Sect. 7).

2.3 Useful Facts About Change Actions and Derivatives

The Chain Rule. The derivative of a function can be computed composition-
ally, because derivatives satisfy the standard chain rule.

6 Note that we do not require that f ′(a, δa · δb) = f ′(a, δa) · f ′(a ⊕ δa, δb) nor that
f ′(a,0) = 0. These are natural conditions, and all the derivatives we have studied
also satisfy them, but none of the results on this paper require them to hold.

Fixing Incremental Computation 531

Theorem 1 (The Chain Rule). Let f : Â → B̂, g : B̂ → Ĉ be differentiable
functions. Then g ◦ f is also differentiable, with a derivative given by

(g ◦ f)′(x, δx) = g′ (f(x), f ′(x, δx))

or, in curried form
(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x)

Complete change actions and minus operators. Complete change actions
are an important class of change actions, because they have changes between
any two values in the base set.

Definition 3. A change action is complete if for any a, b ∈ A, there is a change
δa ∈ ΔA such that a ⊕ δa = b.

Complete change actions have convenient “minus operators” that allow us to
compute the difference between two values.

Definition 4. A minus operator is a function � : A × A → ΔA such that
a ⊕ (b � a) = b for all a, b ∈ A.

Proposition 1. Given a minus operator �, and a function f , let

f ′
�(a, δa) := f(a ⊕ δa) � f(a)

Then f ′
� is a derivative for f .

Proposition 2. Let Â be a change action. Then the following are equivalent:

– Â is complete.
– There is a minus operator on Â.
– For any change action B̂ all functions f : B → A are differentiable.

This last property is of the utmost importance, since we are often concerned
with the differentiability of functions.

Products and sums. Given change actions on sets A and B, the question
immediately arises of whether there are change actions on their Cartesian prod-
uct A × B or disjoint union A + B. While there are many candidates, there is a
clear “natural” choice for both.

Proposition 3 (Products). Let Â = (A,ΔA,⊕A) and B̂ = (B,ΔB,⊕B) be
change actions.

Then Â × B̂ := (A × B,ΔA × ΔB,⊕×) is a change action, where ⊕× is
defined by:

(a, b) ⊕A×B (δa, δb) := (a ⊕A δa, b ⊕B δb)

532 M. Alvarez-Picallo et al.

The projection maps π1,π2 are differentiable with respect to it. Furthermore,
a function f : A × B → C is differentiable from Â × B̂ into Ĉ if and only if, for
every fixed a ∈ A and b ∈ B, the partially applied functions

f(a, ·) : B → C

f(·, b) : A → C

are differentiable.

Whenever f : A×B → C is differentiable, we will sometimes use ∂1f and ∂2f
to refer to derivatives of the partially applied versions, i.e. if f ′

a : B ×ΔB → ΔC
and f ′

b : A × ΔA → ΔC refer to derivatives for f(a, ·), f(·, b) respectively, then

∂1f : A × ΔA × B → ΔC

∂1f(a, δa, b) := f ′
b(a, δa)

∂2f : A × B × ΔB → ΔC

∂2f(a, b, δb) := f ′
a(b, δb)

Proposition 4 (Disjoint unions). Let Â = (A,ΔA,⊕A) and B̂ =
(B,ΔB,⊕B) be change actions.

Then Â + B̂ := (A + B,ΔA × ΔB,⊕+) is a change action, where ⊕+ is
defined as:

ι1a ⊕+ (δa, δb) := ι1(a ⊕A δa)
ι2b ⊕+ (δa, δb) := ι2(b ⊕B δb)

The injection maps ι1, ι2 are differentiable with respect to Â+B̂. Furthermore,
whenever Ĉ is a change action and f : A → C, g : B → C are differentiable,
then so is [f, g].

2.4 Comparing Change Actions

Much like topological spaces, we can compare change actions on the same base set
according to coarseness. This is useful since differentiability of functions between
change actions is characterized entirely by the coarseness of the actions.

Definition 5. Let Â1 and Â2 be change actions on A. We say that Â1 is coarser
than Â2 (or that Â2 is finer than Â1) whenever for every x ∈ A and change
δa1 ∈ ΔA1, there is a change δa2 ∈ ΔA2 such that x ⊕A1 δa1 = x ⊕A2 δa2.

We will write Â1 ≤ Â2 whenever Â1 is coarser than Â2. If Â1 is both finer
and coarser than Â2, we will say that Â1 and Â2 are equivalent.

The relation ≤ defines a preorder (but not a partial order) on the set of all
change actions over a fixed set A. Least and greatest elements do exist up to
equivalence, and correspond respectively to the empty change action Â⊥ and any
complete change action, such as the full change action Â�, defined in Sect. 2.1.

Fixing Incremental Computation 533

Proposition 5. Let Â2 ≤ Â1, B̂1 ≤ B̂2 be change actions, and suppose the
function f : A → B is differentiable as a function from Â1 into B̂1. Then f is
differentiable as a function from Â2 into B̂2.

A consequence of this fact is that whenever two change actions are equivalent
they can be used interchangeably without affecting which functions are differen-
tiable. One last parallel with topology is the following result, which establishes
a simple criterion for when a change action is coarser than another:

Proposition 6. Let Â1, Â2 be change actions on A. Then Â1 is coarser than
Â2 if and only if the identity function id : A → A is differentiable from Â1 to Â2.

3 Posets and Boolean Algebras

The semantic domain of Datalog is a complete Boolean algebra, and so our next
step is to construct a good change action for Boolean algebras. Along the way, we
will consider change actions over posets, which give us the ability to approximate
derivatives, which will turn out to be very important in practice.

3.1 Posets

Ordered sets give us a constrained class of functions: monotone functions. We
can define ordered change actions, which are those that are well-behaved with
respect to the order on the underlying set.7

Definition 6. A change action Â is ordered if

– A and ΔA are posets.
– ⊕ is monotone as a map from A × ΔA → A
– · is monotone as a map from ΔA × ΔA → ΔA

In fact, any change action whose base set is a poset induces a partial order
on the corresponding change set:

Definition 7. δa ≤Δ δb iff for all a ∈ A it is the case that a ⊕ δa ≤ a ⊕ δb.

Proposition 7. Let Â be a change action on a set A equipped with a partial
order ≤ such that ⊕ is monotone in its first argument. Then Â is an ordered
change action when ΔA is equipped with the partial order ≤Δ.

In what follows, we will extend the partial order ≤Δ on some change set
ΔB pointwise to functions from some A into ΔB. This pointwise order interacts
nicely with derivatives, in that it gives us the following lemma:

7 If we were giving a presentation that was generic in the base category, then this
would simply be the definition of being a change action in the category of posets
and monotone maps.

534 M. Alvarez-Picallo et al.

Theorem 2 (Sandwich lemma). Let Â be a change action, and B̂ be an
ordered change action, and let f : A → B and g : A × ΔA → ΔB be function. If
f↑ and f↓ are derivatives for f such that

f↓ ≤Δ g ≤Δ f↑

then g is a derivative for f .

If unique minimal and maximal derivatives exist, then this gives us a char-
acterisation of all the derivatives for a function.

Theorem 3. Let Â and B̂ be change actions, with B̂ ordered, and let f : A → B
be a function. If there exist f↓↓ and f↑↑ which are unique minimal and maximal
derivatives of f , respectively, then the derivatives of f are precisely the functions
f ′ such that

f↓↓ ≤Δ f ′ ≤Δ f↑↑

This theorem gives us the leeway that we need when trying to pick a deriva-
tive: we can pick out the bounds, and that tells us how much “wiggle room” we
have above and below.

3.2 Boolean Algebras

Complete Boolean algebras are a particularly nice domain for change actions
because they have a negation operator. This is very helpful for computing dif-
ferences, and indeed Boolean algebras have a complete change action.

Proposition 8 (Boolean algebra change actions). Let L be a complete
Boolean algebra. Define

L̂�� := (L,L 	
 L,⊕��)

where

L 	
 L := {(a, b) ∈ L × L | a ∧ b = ⊥}
a ⊕�� (p, q) := (a ∨ p) ∧ ¬q

(p, q) · (r, s) := ((p ∧ ¬s) ∨ r, (q ∧ ¬r) ∨ s)

with identity element (⊥,⊥).
Then L̂�� is a complete change action on L.

We can think of L̂�� as tracking changes as pairs of “upwards” and “down-
wards” changes, where the monoid action simply applies one after the other, with
an adjustment to make sure that the components remain disjoint.8 For example,

8 The intuition that L̂�� is made up of an “upwards” and a “downwards” change action
glued together can in fact be made precise, but the specifics are outside the scope
of this paper.

Fixing Incremental Computation 535

in the powerset Boolean algebra P(N), a change to {1, 2} might consist of adding
{3} and removing {1}, producing {2, 3}. In P(N)�� this would be represented as
({1, 2}) ⊕ ({3}, {1}) = {2, 3}.

Boolean algebras also have unique maximal and minimal derivatives, under
the usual partial order based on implication. The change set is, as usual, given
the change partial order, which in this case corresponds to the natural order on
L × Lop.

Proposition 9. Let L be a complete Boolean algebra with the L̂�� change action,
and f : A → L be a function. Then, the following are minus operators:

a �⊥ b = (a ∧ ¬b,¬a)
a �� b = (a, b ∧ ¬a)

Additionally, f ′
�⊥ and f ′

�� define unique least and greatest derivatives for f .

Theorem 3 then gives us bounds for all the derivatives on Boolean algebras:

Corollary 1. Let L be a complete Boolean algebra with the corresponding
change action L̂��, Â be an arbitrary change action, and f : A → L be a func-
tion. Then the derivatives of f are precisely those functions f ′ : A × ΔA → ΔA
such that

f ′
�⊥ ≤Δ f ′ ≤Δ f ′

��

This makes Theorem 3 actually usable in practice, since we have concrete
definitions for our bounds (which we will make use of in Sect. 4.2).

4 Derivatives for Non-recursive Datalog

We now want to apply the theory we have developed to the specific case of the
semantics of Datalog. Giving a differentiable semantics for Datalog will lead us
to a strategy for performing incremental evaluation and maintenance of Datalog
programs. To begin with, we will restrict ourselves to the non-recursive fragment
of the language—the formulae that make up the right hand sides of Datalog rules.
We will tackle the full program semantics in a later section, once we know how
to handle fixpoints.

Although the techniques we are using should work for any language, Datalog
provides a non-trivial case study where the need for incremental computation is
real and pressing, as we saw in Sect. 1.

4.1 Semantics of Datalog Formulae

Datalog is usually given a logical semantics where formulae are interpreted as
first-order logic predicates and the semantics of a program is the set of models of
its constituent predicates. We will instead give a simple denotational semantics
(as is typical when working with fixpoints, see e.g. [17]) that treats a Datalog
formula as directly denoting a relation, i.e. a set of named tuples, with variables
ranging over a finite schema.

536 M. Alvarez-Picallo et al.

Definition 8. A schema Γ is a finite set of names. A named tuple over Γ is
an assignment of a value vi for each name xi in Γ . Given disjoint schemata
Γ = {x1, . . . , xn} and Σ = {y1, . . . , ym}, the selection function σΓ is defined as

σΓ ({x1 �→ v1, . . . , xn �→ vn, y1 �→ w1, . . . , ym �→ wm}) := {x1 �→ v1, . . . , xn �→ vn}

i.e. σΓ restricts a named tuple over Γ ∪ Σ into a tuple over Γ with the same
values for the names in Γ . We denote the elementwise extension of σΓ to sets
of tuples also as σΓ .

We will adopt the usual closed-world assumption to give a denotation to
negation.

Definition 9. For any schema Γ , there exists a universal relation UΓ . Negation
on relations can then be defined as

¬R := UΓ \ R

This makes RelΓ , the set of all subsets of UΓ , a complete Boolean algebra.

Definition 10. A Datalog formula T whose free term variables are contained
in Γ denotes a function from RelnΓ to RelΓ .

� �Γ : Formula → RelnΓ → RelΓ

If R = (R1, . . . ,Rn) is a choice of a relation Ri for each of the variables Ri,
�T �(R) is inductively defined according to the rules in Fig. 1.

Fig. 1. Formula semantics for Datalog

Since RelΓ is a complete Boolean algebra, and so is RelnΓ , �T �Γ is a function
between complete Boolean algebras. For brevity, we will often leave the schema
implicit, as it is clear from the context.

4.2 Differentiability of Datalog Formula Semantics

In order to actually perform our incremental computation, we first need to pro-
vide a concrete derivative for the semantics of Datalog formulae. Of course, since
�T �Γ is a function between the complete Boolean algebras RelnΓ and RelΓ , and

Fixing Incremental Computation 537

Fig. 2. Upwards and downwards formula derivatives for Datalog

we know that the corresponding change actions ̂RelnΓ �� and ̂RelΓ �� are complete,
this guarantees the existence of a derivative for �T �.

Unfortunately, this does not necessarily provide us with an efficient derivative
for �T �. The derivatives that we know how to compute (Corollary 1) rely on
computing f(a ⊕ δa) itself, which is the very thing we were trying to avoid
computing!

Of course, given a concrete definition of a derivative we can simplify this
expression and hopefully make it easier to compute. But we also know from
Corollary 1 that any function bounded by f ′

�⊥ and f ′
�� is a valid derivative,

and we can therefore optimize anywhere within that range to make a trade-off
between ease of computation and precision.9

There is also the question of how to compute the derivative. Since the change
set for ̂Rel�� is a subset of Rel × Rel, it is possible and indeed very natural
to compute the two components via a pair of Datalog formulae, which allows
us to reuse an existing Datalog formula evaluator. Indeed, if this process is
occurring in an optimizing compiler, the derivative formulae can themselves be
optimized. This is very beneficial in practice, since the initial formulae may be
quite complex.

This does give us additional constraints that the derivative formulae must
satisfy: for example, we need to be able to evaluate them; and we may wish to
pick formulae that will be easy or cheap for our evaluation engine to compute,
even if they compute a less precise derivative.

The upshot of these considerations is that the optimal choice of derivatives
is likely to be quite dependent on the precise variant of Datalog being evaluated,
and the specifics of the evaluation engine. Here is one possibility, which is the
one used at Semmle.

9 The idea of using an approximation to the precise derivative, and a soundness con-
dition, appears in Bancilhon [9].

538 M. Alvarez-Picallo et al.

A concrete Datalog formula derivative. In Fig. 2, we define a “symbolic”
derivative operator as a pair of mutually recursive functions, Δ and ∇, which
turn a Datalog formula T into new formulae that compute the upwards and
downwards parts of the derivative, respectively. Our definition uses an auxiliary
function, X, which computes the “neXt” value of a term by applying the upwards
and downwards derivatives. As is typical for a derivative, the new formulae will
have additional free relation variables for the upwards and downwards deriva-
tives of the free relation variables of T , denoted as ΔR and ∇R respectively.
Evaluating the formula as a derivative means evaluating it as a normal Datalog
formula with the new relation variables set to the input relation changes.

While the definitions mostly exhibit the dualities we would expect between
corresponding operators, there are a few asymmetries to explain.

The asymmetry between the cases for Δ(T ∨ U) and ∇(T ∧ U) is for opera-
tional reasons. The symmetrical version of Δ(T ∨U) is (Δ(T)∧¬U)∨(Δ(U)∧¬T)
(which is also precise). The reason we omit the negated conjuncts is simply that
they are costly to compute and not especially helpful to our evaluation engine.

The asymmetry between the cases for ∃ is because our dialect of Datalog
does not have a primitive universal quantifier. If we did have one, the cases for
∃ would be dual to the corresponding cases for ∀.

Theorem 4 (Concrete Datalog formula derivatives). Let Δ, ∇, X :
Formula → Formula be mutually recursive functions defined by structural induc-
tion as in Fig. 2.

Then Δ(T) and ∇(T) are disjoint, and for any schema Γ and any Dat-
alog formula T whose free term variables are contained in Γ , �T �′

Γ :=
(�Δ(T)�Γ , �∇(T)�Γ) is a derivative for �T �Γ .

We can give a derivative for our treeP predicate by mechanically applying
the recursive functions defined in Fig. 2.

Δ(treeP (x))
= p(x) ∧ ∃y.(child(x, y) ∧ Δ(treeP (y))) ∧ ¬∃y.(child(x, y) ∧ ¬X(treeP (y)))

∇(treeP (x))
= p(x) ∧ ∃y.(child(x, y) ∧ ∇(treeP (y)))

The upwards difference in particular is not especially easy to compute. If we
naively compute it, the third conjunct requires us to recompute the whole of the
recursive part. However, the second conjunct gives us a guard: if it is empty we
then the whole formula will be, so we only need to evaluate the third conjunct
if the second conjunct is non-empty, i.e if there is some change in the body of
the existential.

This shows that our derivatives aren’t a panacea: it is simply hard to compute
downwards differences for ∃ (and, equivalently, upwards differences for ∀) because
we must check that there is no other way of deriving the same facts.10 However,
10 The “support” data structures introduced by [25] are an attempt to avoid this issue

by tracking the number of derivations of each tuple.

Fixing Incremental Computation 539

we can still avoid the re-evaluation in many cases, and the inefficiency is local
to this subformula.

4.3 Extensions to Datalog

Our formulation of Datalog formula semantics and derivatives is generic and
modular, so it is easy to extend the language with new formula constructs: all
we need to do is add cases for Δ and ∇.

In fact, because we are using a complete change action, we can always do
this by using the maximal or minimal derivative. This justifies our claim that
we can support arbitrary additional formula constructs: although the maximal
and minimal derivatives are likely to be impractical, having them available as
options means that we will never be completely stymied.

This is important in practice: here is a real example from Semmle’s variant
of Datalog. This includes a kind of aggregates which have well-defined recursive
semantics. Aggregates have the form

r = agg(p)(vs | T | U)

where agg refers to an aggregation function (such as “sum” or “min”), vs is a
sequence of variables, p and r are variables, T is a formula possibly mentioning
vs, and U is a formula possibly mentioning vs and p. The full details can been
found in Moor and Baars [34], but for example this allows us to write

height(n, h) ←¬∃c.(child(n, c)) ∧ h = 0
∨ ∃h′.(h′ = max(p)(c | child(n, c) | height(c, p)) ∧ h = h′ + 1)

which recursively computes the height of a node in a tree.
Here is an upwards derivative for an aggregate formula:

Δ(r = agg(p)(vs | T | U)) := ∃vs.(T ∧ ΔU) ∧ r = agg(p)(vs | T | U)

While this isn’t a precise derivative, it is still substantially cheaper than re-
evaluating the whole subformula, as the first conjunct acts as a guard, allowing
us to skip the second conjunct when U has not changed.

5 Changes on Functions

So far we have defined change actions for the kinds of things that typically make
up data, but we would also like to have change actions on functions. This would
allow us to define derivatives for higher-order languages (where functions are
first-class); and for semantic operators like fixpoint operators fix : (A → A) → A,
which also operate on functions.

Function spaces, however, differ from products and disjoint unions in that
there is no obvious “best” change action on A → B. Therefore instead of trying
to define a single choice of change action, we will instead pick out subsets of
function spaces which have “well-behaved” change actions.

540 M. Alvarez-Picallo et al.

Definition 11 (Functional Change Action). Given change actions Â and B̂
and a set U ⊆ A → B, a change action Û = (U,ΔU,⊕U) is functional whenever
the evaluation map ev : U × A → B is differentiable, that is to say, whenever
there exists a function ev′ : (U × A) × (ΔU × ΔA) → ΔB such that:

(f ⊕U δf)(a ⊕A δa) = f(a) ⊕B ev′((f, a), (δf, δa))

We will write Û ⊆ Â ⇒ B̂ whenever U ⊆ A → B and Û is functional.

There are two reasons why functional change actions are usually associated
with a subset of U ⊆ A → B. Firstly, it allows us to restrict ourselves to spaces
of monotone or continuous functions. But more importantly, functional change
actions are necessarily made up of differentiable functions, and thus a functional
change action may not exist for the entire function space A → B.

Proposition 10. Let Û ⊆ Â ⇒ B̂ be a functional change action. Then every
f ∈ U is differentiable, with a derivative f ′ given by:

f ′(x, δx) = ev′((f, x), (0, δx))

5.1 Pointwise Functional Change Actions

Even if we restrict ourselves to the differentiable functions between Â and B̂ it
is hard to find a concrete functional change action for this set. Fortunately, in
many important cases there is a simple change action on the set of differentiable
functions.

Definition 12 (Pointwise functional change action). Let Â and B̂ be
change actions. The pointwise functional change action Â ⇒pt B̂, when it
is defined, is given by (Â → B̂, A → ΔB,⊕→), with the monoid structure
(A → ΔB, ·→,0→) and the action ⊕→ defined by:

(f ⊕→ δf)(x) := f(x) ⊕B δf(x)
(δf ·→ δg)(x) := δf(x) ·B δg(x)

0→(x) := 0B

That is, a change is given pointwise, mapping each point in the domain to a
change in the codomain.

The above definition is not always well-typed, since given f : Â → B̂ and
δf : A → ΔB there is no guarantee that f ⊕→ δf is differentiable. We present
two sufficient criteria that guarantee this.

Theorem 5. Let Â and B̂ be change actions, and suppose that B̂ satisfies one
of the following conditions:

– B̂ is a complete change action.
– The change action ̂ΔB := (ΔB,ΔB, ·B) is complete and ⊕B : B × ΔB → B

is differentiable.

Fixing Incremental Computation 541

Then the pointwise functional change action (Â → B̂, A → ΔB,⊕→) is well
defined.11

As a direct consequence of this, it follows that whenever L is a Boolean algebra
(and hence has a complete change action), the pointwise functional change action
Â ⇒pt L̂�� is well-defined.

Pointwise functional change actions are functional in the sense of Defini-
tion 11. Moreover, the derivative of the evaluation map is quite easy to compute.

Proposition 11 (Derivatives of the evaluation map). Let Â and B̂ be
change actions such that the pointwise functional change action Â ⇒pt B̂ is well
defined, and let f : Â → B̂, a ∈ A, δa ∈ ΔA, δf ∈ A → ΔB.

Then the following are both derivatives of the evaluation map:

ev′
1((f, a), (δf, δa)) := f ′(a, δa) · δf(a ⊕ δa)

ev′
2((f, a), (δf, δa)) := δf(a) · (f ⊕ δf)′(a, δa)

A functional change action merely tells us that a derivative of the evaluation
map exists—a pointwise change action actually gives us a definition of it. In
practice, this means that we will only be able to use the results in Sect. 6.2
(incremental computation and derivatives of fixpoints) when we have pointwise
change actions, or where we have some other way of computing a derivative of
the evaluation map.

6 Directed-Complete Partial Orders and Fixpoints

Directed-complete partial orders (dcpos) equipped with a least element, are an
important class of posets. They allow us to take fixpoints of (Scott-)continuous
maps, which is important for interpreting recursion in program semantics.

6.1 Dcpos

As before, we can define change actions on dcpos, rather than sets, as change
actions whose base and change sets are endowed with a dcpo structure, and
where the monoid operation and action are (Scott-)continuous.

Definition 13. A change action Â is continuous if

– A and ΔA are dcpos.
– ⊕ is Scott-continuous as a map from A × ΔA → A.
– · is Scott-continuous as a map from ΔA × ΔA → ΔA.

11 Either of these conditions is enough to guarantee that the pointwise functional
change action is well defined, but it can be the case that B̂ satisfies neither and
yet pointwise change actions into B̂ do exist. A precise account of when pointwise
functional change actions exist is outside the scope of this paper.

542 M. Alvarez-Picallo et al.

Unlike posets, the change order ≤Δ does not, in general, induce a dcpo on
ΔA. As a counterexample, consider the change action (N, N,+), where N denotes
the dcpo of natural numbers extended with positive infinity.

A key example of a continuous change action is the L̂�� change action on
Boolean algebras.

Proposition 12 (Boolean algebra continuity). Let L be a Boolean algebra.
Then L̂�� is a continuous change action.

For a general overview of results in domain theory and dcpos, we refer the
reader to an introductory work such as [2], but we state here some specific results
that we shall be using, such as the following, whose proof can be found in [2,
Lemma 3.2.6]:

Proposition 13. A function f : A × B → C is continuous iff it is continuous
in each variable separately.

It is a well-known result in standard calculus that the limit of an absolutely
convergent sequence of differentiable functions {fi} is itself differentiable, and
its derivative is equal to the limit of the derivatives of the fi. A consequence of
Proposition 13 is the following analogous result:

Corollary 2. Let Â and B̂ be change actions, with B̂ continuous and let {fi}
and {f ′

i} be I-indexed directed sets of functions in A → B and A × ΔA → ΔB
respectively.

Then, if for every i ∈ I it is the case that f ′
i is a derivative of fi, then

⊔

i∈I f ′
i

is a derivative of
⊔

i∈I fi.

6.2 Fixpoints

Fixpoints appear frequently in the semantics of languages with recursion. If we
can give a generic account of how to compute fixpoints using change actions,
then this gives us a compositional way of extending a derivative for the non-
recursive semantics of a language to a derivative that can also handle recursion.
We will later apply this technique to create a derivative for the semantics of full
recursive Datalog (Sect. 7.2).

Iteration functions. Over directed-complete partial orders we can define a
least fixpoint operator lfp in terms of the iteration function iter:

iter : (A → A) × N → A

iter(f, 0) := ⊥
iter(f, n) := fn(⊥)
lfp : (A → A) → A

lfp(f) :=
⊔

n∈N

iter(f, n) (where f is continuous)

Fixing Incremental Computation 543

The iteration function is the basis for all the results in this section: we can
take a partial derivative with respect to n, and this will give us a way to get
to the next iteration incrementally; and we can take the partial derivative with
respect to f , and this will give us a way to get from iterating f to iterating
f ⊕ δf .

Incremental computation of fixpoints. The following theorems provide a
generalization of semi-naive evaluation to any differentiable function over a con-
tinuous change action. Throughout this section we will assume that we have a
continuous change action Â, and any reference to the change action N̂ will refer
to the monoidal change action on the naturals defined in Sect. 2.1.

Since we are trying to incrementalize the iterative step, we start by taking
the partial derivative of iter with respect to n.

Proposition 14 (Derivative of the iteration map with respect to n). Let
Â be a complete change action and let f : A → A be a differentiable function.
Then iter is differentiable with respect to its second argument, and a partial
derivative is given by:

∂2iter : (A → A) × N × ΔN → ΔA

∂2iter(f,0,m) := iter(f,m) � iter(f, 0)
∂2iter(f, n + 1,m) := f ′(iter(f, n), ∂2iter(f, n,m))

By using the following recurrence relation, we can then compute ∂2iter along
with iter simultaneously:

recurf : A × ΔA → A × ΔA

recurf (⊥,⊥) := (⊥, f(⊥) � ⊥)
recurf (a, δa) := (a ⊕ δa, f ′(a, δa))

Which has the property that

recurn
f (⊥,⊥) = (iter(f, n), ∂2iter(f, n, 1))

This gives us a way to compute a fixpoint incrementally, by adding succes-
sive changes to an accumulator until we reach it. This is exactly how semi-naive
evaluation works: you compute the delta relation and the accumulator simulta-
neously, adding the delta into the accumulator at each stage until it becomes
the final output.

Theorem 6 (Incremental computation of least fixpoints). Let Â be a
complete, continuous change action, f : Â → Â be continuous and differentiable.

Then lfp(f) =
⊔

n∈N
(π1(recurn

f (⊥,⊥))).12

12 Note that we have not taken the fixpoint of recurf , since it is not continuous.

544 M. Alvarez-Picallo et al.

Derivatives of fixpoints. In the previous section we have shown how to use
derivatives to compute fixpoints more efficiently, but we also want to take the
derivative of the fixpoint operator itself. A typical use case for this is where we
have calculated some fixpoint

FE := fix(λX.F (E,X))

then update the parameter E with some change δE and wish to compute the
new value of the fixpoint, i.e.

FE⊕δE := fix(λX.F (E ⊕ δE,X))

This can be seen as applying a change to the function whose fixpoint we are
taking. We go from computing the fixpoint of F (E,) to computing the fixpoint
of F (E ⊕ δE,). If we have a pointwise functional change action then we can
express this change as a function giving the change at each point, that is:

λX.F (E ⊕ δE,X) � F (E,X)

In Datalog this would allow us to update a recursively defined relation given
an update to one of its non-recursive dependencies, or the extensional database.
For example, we might want to take the transitive closure relation and update
it by changing the edge relation e.

However, to compute these examples would requires us to provide a derivative
for the fixpoint operator fix: we want to know how the resulting fixpoint changes
given a change to its input function.

Definition 14 (Derivatives of fixpoints). Let Â be a change action, let
Û ⊆ Â ⇒ Â be a functional change action (not necessarily pointwise) and
suppose fixU and fixΔA are fixpoint operators for endofunctions on U and ΔA
respectively.

Then we define

adjust : U × ΔU → (ΔA → ΔA)
adjust(f, δf) := λ δa. ev′((f,fixU (f)), (δf, δa))
fix′

U : U × ΔU → ΔA

fix′
U (f, δf) := fixΔA(adjust(f, δf))

The suggestively named fix′
U will in fact turn out to be a derivative—for

least fixpoints. The appearance of ev′, a derivative of the evaluation map, in
the definition of adjust is also no coincidence: as evaluating a fixpoint consists
of many steps of applying the evaluation map, so computing the derivative of
a fixpoint consists of many steps of applying the derivative of the evaluation
map.13

13 Perhaps surprisingly, the authors first discovered an expanded version of this formula,
and it was only later that we realised the remarkable connection to ev′.

Fixing Incremental Computation 545

Since lfp is characterized as the limit of a chain of functions, Corollary 2
suggests a way to compute its derivative. It suffices to find a derivative iter′

n of
each iteration map such that the resulting set {iter′

n | n ∈ N} is directed, which
will entail that

⊔

n∈N
iter′

n is a derivative of lfp.
These correspond to the first partial derivative of iter—this time with respect

to f . While we are differentiating with respect to f , we are still going to need
to define our derivatives inductively in terms of n.

Proposition 15 (Derivative of the iteration map with respect to f).
iter is differentiable with respect to its first argument and a derivative is given by:

∂1iter : (A → A) × Δ(A → A) × N → ΔA

∂1iter(f, δf,0) := ⊥ΔA

∂1iter(f, δf, n + 1) := ev′((f, iter(f, n)), (δf, ∂1iter(f, δf, n)))

As before, we can now compute ∂1iter together with iter by mutual
recursion.14

recurf,δf : A × ΔA → A × ΔA

recurf,δf (a, δa) := (f(a), ev′((f, a), (δf, δa)))

Which has the property that

recurn
f,δf (⊥,⊥) = (iter(f, n), ∂1iter(f, δf, n)).

This indeed provides us with a function whose limit we can take. If we do so
we will discover that it is exactly lfp′ (defined as in Definition 14), showing that
lfp′ is a true derivative.

Theorem 7 (Derivatives of least fixpoint operators). Let

– Â be a continuous change action
– U be the set of continuous functions f : A → A, with a functional change

action Û ⊆ Â ⇒ Â
– f ∈ U be a continuous, differentiable function
– δf ∈ ΔU be a function change
– ev′ be a derivative of the evaluation map which is continuous with respect to

a and δa.

Then lfp′ is a derivative of lfp.

Computing this derivative still requires computing a fixpoint—over the
change lattice—but this may still be significantly less expensive than recom-
puting the full new fixpoint.
14 In fact, the recursion here is not mutual : the first component does not depend on

the second. However, writing it in this way makes it amenable to computation by
fixpoint, and we will in fact be able to avoid the recomputation of itern when we
show that it is equivalent to lfp′.

546 M. Alvarez-Picallo et al.

7 Derivatives for Recursive Datalog

Given the non-recursive semantics for a language, we can extend it to handle
recursive definitions using fixpoints. Section 6.2 lets us extend our derivative for
the non-recursive semantics to a derivative for the recursive semantics, as well
as letting us compute the fixpoints themselves incrementally.

Again, we will demonstrate the technique with Datalog, although the app-
roach is generic.

7.1 Semantics of Datalog Programs

First of all, we define the usual “immediate consequence operator” which com-
putes “one step” of our program semantics.

Definition 15. Given a program P = (P1, . . . , Pn), where Pi is a predicate, with
schema Γi, the immediate consequence operator I : Reln → Reln is defined as
follows:

I(R1, . . . ,Rn) = (�P1�Γ1(R1, . . . ,Rn), . . . , �Pn�Γn
(R1, . . . ,Rn))

That is, given a value for the program, we pass in all the relations to the
denotation of each predicate, to get a new tuple of relations.

Definition 16. The semantics of a program P is defined to be

�P� := lfpReln(I)

and may be calculated by iterative application of I to ⊥ until fixpoint is reached.

Whether or not this program semantics exists will depend on whether the
fixpoint exists. Typically this is ensured by constraining the program such that I
is monotone (or, in the context of a dcpo, continuous). We do not require mono-
tonicity to apply Theorem6 (and hence we can incrementally compute fixpoints
that happen to exist even though the generating function is not monotonic), but
it is required to apply Theorem7.

7.2 Incremental Evaluation of Datalog

We can easily extend a derivative for the formula semantics to a derivative for the
immediate consequence operator I. Putting this together with the results from
Sect. 6.2, we have now created modular proofs for the two main results, which
allows us to preserve them in the face of changes to the underlying language.

Corollary 3. Datalog program semantics can be evaluated incrementally.

Corollary 4. Datalog program semantics can be incrementally maintained with
changes to relations.

Fixing Incremental Computation 547

Note that our approach makes no particular distinction between changes
to the extensional relations (adding or removing facts), and changes to the
intensional relations (changing the definition). The latter simply amounts to
a change to the denotation of that relation, which can be incrementally propa-
gated in exactly the same way as we would propagate a change to the extensional
relations.

8 Related Work

8.1 Change Actions and Incremental Computation

Change structures. The seminal paper in this area is Cai et al. [14]. We deviate
from that excellent paper in three regards: the inclusion of minus operators, the
nature of function changes, and the use of dependent types.

We have omitted minus operators from our definition because there are many
interesting change actions that are not complete and so cannot have a minus
operator. Where we can find a change structure with a minus operator, often
we are forced to use unwieldy representations for change sets, and Cai et al.
cite this as their reason for using a dependent type of changes. For example,
the monoidal change actions on sets and lists are clearly useful for incremental
computation on streams, yet they do not admit minus operators—instead, one
would be forced to work with e.g. multisets admitting negative arities, as Cai
et al. do.

Our function changes (when well behaved) correspond to what Cai et al.
call pointwise differences (see [14, section 2.2]). As they point out, you can
reconstruct their function changes from pointwise changes and derivatives, so
the two formulations are equivalent.

The equivalence of our presentations means that our work should be compati-
ble with their Incremental Lambda Calculus (see [14, section 3]). The derivatives
we give in Sect. 4.2 are more or less a “change semantics” for Datalog (see [14,
section 3.5]).

S-acts. S-acts (i.e the category of monoid actions on sets) and their categorical
structure have received a fair amount of attention over the years (Kilp, Knauer,
and Mikhalev [30] is a good overview). However, there is a key difference between
change actions considered as a category (CAct) and the category of S-acts
(SAct): the objects of SAct all maintain the same monoid structure, whereas
we are interested in changing both the base set and the structure of the action.

Derivatives of fixpoints. Arntzenius [5] gives a derivative operator for fix-
points based on the framework in Cai et al. [14]. However, since we have different
notions of function changes, the result is inapplicable as stated. In addition, we
require a somewhat different set of conditions; in particular, we do not require
our changes to always be increasing.

548 M. Alvarez-Picallo et al.

8.2 Datalog

Incremental evaluation. The earliest interpretation of semi-naive evaluation
as a derivative appears in Bancilhon [8]. The idea of using an approximate deriva-
tive and the requisite soundness condition appears as a throwaway comment in
Bancilhon and Ramakrishnan [9, section 3.2.2], and it would appear that nobody
has since developed that approach.

As far as we know, traditional semi-naive is the state of the art in incremental,
bottom-up, Datalog evaluation, and there are no strategies that accommodate
additional language features such as parity-stratified negation and aggregates.

Incremental maintenance. There is existing literature on incremental main-
tenance of relational algebra expressions.

Griffin, Libkin, and Trickey [24] following Qian and Wiederhold [35] compute
differences with both an “upwards” and a “downwards” component, and produce
a set of rules that look quite similar to those we derive in Theorem 4. However,
our presentation is significantly more generic, handles recursive expressions, and
works on set semantics rather than bag semantics.15

Several approaches [25,27]—most notably DReD—remove facts until one can
start applying the rules again to reach the new fixpoint. Given a good way of
deciding what facts to remove this can be quite efficient. However, such tech-
niques tend to be tightly coupled to the domain. Although we know of no theo-
retical reason why either approach should give superior performance when both
are applicable, an empirical investigation of this could prove interesting.

Other approaches [19,43] consider only restricted subsets of Datalog, or incur
other substantial constraints.

Embedding Datalog. Datafun (Arntzenius and Krishnaswami [6]) is a func-
tional programming language that embeds Datalog, allowing significant improve-
ments in genericity, such as the use of higher-order functions. Since we have
directly defined a change action and derivative operator for Datalog, our work
could be used as a “plugin” in the sense of Cai et al., allowing Datafun to com-
pute its internal fixpoints incrementally, but also allowing Datafun expressions
to be fully incrementally maintained.

In a different direction, Cathcart Burn, Ong, and Ramsay [15] have proposed
higher-order constrained Horn clauses (HoCHC), a new class of constraints for
the automatic verification of higher-order programs. HoCHC may be viewed as
a higher-order extension of Datalog. Change actions can be readily applied to
organise an efficient semi-naive method for solving HoCHC systems.

8.3 Differential λ-calculus

Another setting where derivatives of arbitrary higher-order programs have been
studied is the differential λ-calculus [20,21]. This is a higher-order, simply-typed
15 The same approach of finding derivatives would work with bag semantics, although

unfortunately the Boolean algebra structure is missing.

Fixing Incremental Computation 549

λ-calculus which allows for computing the derivative of a function, in a similar
way to the notion of derivative in Cai’s work and the present paper.

While there are clear similarities between the two systems, the most impor-
tant difference is the properties of the derivatives themselves: in the differential
λ-calculus, derivatives are guaranteed to be linear in their second argument,
whereas in our approach derivatives do not have this restriction but are instead
required to satisfy a strong relation to the function that is being differentiated
(see Definition 2).

Families of denotational models for the differential λ-calculus have been stud-
ied in depth [12,13,16,29], and the relationship between these and change actions
is the subject of ongoing work.

8.4 Higher-Order Automatic Differentiation

Automatic differentiation [23] is a technique that allows for efficiently computing
the derivative of arbitrary programs, with applications in probabilistic modeling
[31] and machine learning [10] among other areas. In recent times, this tech-
nique has been successfully applied to higher-order languages [11,41]. While
some approaches have been suggested [28,33], a general theoretical framework
for this technique is still a matter of open research.

To this purpose, some authors have proposed the incremental λ-calculus as
a foundational framework on which models of automatic differentiation can be
based [28]. We believe our change actions are better suited to this purpose than
the incremental λ-calculus, since one can easily give them a synthetic differential
geometric reading (by interpreting Â as an Euclidean module and ΔA as its
corresponding spectrum, for example).

9 Conclusions and Future Work

We have presented change actions and their properties, and used them to provide
novel, compositional, strategies for incrementally evaluating and maintaining
recursive functions, in particular the semantics of Datalog.

The main avenue for future theoretical work is the categorical structure of
change actions. This has begun to be explored by the authors in [4], where change
actions are generalized to arbitrary Cartesian base categories and a construction
is provided to obtain “canonical” Cartesian closed categories of change actions
and differentiable maps.

We hope that these generalizations would allow us to extend the theory of
change actions towards other classes of models, such as synthetic differential
geometry and domain theory. Some early results in [4] also indicate a connection
between 2-categories and change actions which has yet to be fully mapped.

The compositional nature of these techniques suggest that an approach like
that used in [22] could be used for an even more generic approach to automatic
differentiation.

In addition, there is plenty of scope for practical application of the techniques
given here to languages other than Datalog.

550 M. Alvarez-Picallo et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence. Oxford University Press, New York (1994)

3. Alvarez-Picallo, M., Eyers-Taylor, A., Jones, M.P., Ong, C.L.: Fixing incremental
computation: derivatives of fixpoints, and the recursive semantics of datalog. CoRR
abs/1811.06069 (2018). http://arxiv.org/abs/1811.06069

4. Alvarez-Picallo, M., Ong, C.H.L.: Change actions: models of generalised differ-
entiation. In: International Conference on Foundations of Software Science and
Computation Structures. Springer (2019, in press)

5. Arntzenius, M.: Static differentiation of monotone fixpoints (2017). http://www.
rntz.net/files/fixderiv.pdf

6. Arntzenius, M., Krishnaswami, N.R.: Datafun: a functional datalog. In: Proceed-
ings of the 21st ACM SIGPLAN International Conference on Functional Program-
ming, pp. 214–227. ACM (2016)

7. Avgustinov, P., de Moor, O., Jones, M.P., Schäfer, M.: QL: object-oriented queries
on relational data. In: LIPIcs-Leibniz International Proceedings in Informatics, vol.
56. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

8. Bancilhon, F.: Naive evaluation of recursively defined relations. In: Brodie, M.L.,
Mylopoulos, J. (eds.) On Knowledge Base Management Systems. TINF, pp. 165–
178. Springer, New York (1986). https://doi.org/10.1007/978-1-4612-4980-1 17

9. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query
processing strategies, vol. 15. ACM (1986)

10. Baydin, A.G., Pearlmutter, B.A.: Automatic differentiation of algorithms for
machine learning. arXiv preprint arXiv:1404.7456 (2014)

11. Baydin, A.G., Pearlmutter, B.A., Siskind, J.M.: DiffSharp: an AD library for .NET
languages. arXiv preprint arXiv:1611.03423 (2016)

12. Blute, R., Ehrhard, T., Tasson, C.: A convenient differential category. arXiv
preprint arXiv:1006.3140 (2010)

13. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for simply typed
resource calculi. Electron. Notes Theor. Comput. Sci. 265, 213–230 (2010)

14. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: incrementalizing λ-calculi by static differentiation. In: ACM SIG-
PLAN Notices, vol. 49, pp. 145–155. ACM (2014)

15. Cathcart Burn, T., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses
for verification. PACMPL 2(POPL), 11:1–11:28 (2018). https://doi.org/10.1145/
3158099

16. Cockett, J.R.B., Gallagher, J.: Categorical models of the differential λ-calculus
revisited. Electron. Notes Theor. Comput. Sci. 325, 63–83 (2016)

17. Compton, K.J.: Stratified least fixpoint logic. Theor. Comput. Sci. 131(1), 95–120
(1994)

18. Datomic website (2018). https://www.datomic.com. Accessed 01 Jan 2018
19. Dong, G., Su, J.: Incremental maintenance of recursive views using relational cal-

culus/SQL. ACM SIGMOD Rec. 29(1), 44–51 (2000)
20. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and

antiderivatives. Math. Struct. Comput. Sci. 1–66 (2017)
21. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.

309(1–3), 1–41 (2003)

http://arxiv.org/abs/1811.06069
http://www.rntz.net/files/fixderiv.pdf
http://www.rntz.net/files/fixderiv.pdf
https://doi.org/10.1007/978-1-4612-4980-1_17
http://arxiv.org/abs/1404.7456
http://arxiv.org/abs/1611.03423
http://arxiv.org/abs/1006.3140
https://doi.org/10.1145/3158099
https://doi.org/10.1145/3158099
https://www.datomic.com

Fixing Incremental Computation 551

22. Elliott, C.: The simple essence of automatic differentiation. Proc. ACM Program.
Lang. 2(ICFP), 70 (2018)

23. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, vol. 105. SIAM, Philadelphia (2008)

24. Griffin, T., Libkin, L., Trickey, H.: An improved algorithm for the incremental
recomputation of active relational expressions. IEEE Trans. Knowl. Data Eng. 3,
508–511 (1997)

25. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
ACM SIGMOD Rec. 22(2), 157–166 (1993)

26. Halpin, T., Rugaber, S.: LogiQL: A Query Language for Smart Databases. CRC
Press, Boca Raton (2014)

27. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive
database: an update propagation approach. In: Workshop on Deductive Databases,
JICSLP, pp. 56–65 (1992)

28. Kelly, R., Pearlmutter, B.A., Siskind, J.M.: Evolving the incremental λ cal-
culus into a model of forward automatic differentiation (AD). arXiv preprint
arXiv:1611.03429 (2016)

29. Kerjean, M., Tasson, C.: Mackey-complete spaces and power series-a topological
model of differential linear logic. Math. Struct. Comput. Sci. 1–36 (2016)

30. Kilp, M., Knauer, U., Mikhalev, A.V.: Monoids, Acts and Categories: With
Applications to Wreath Products and Graphs. A Handbook for Students and
Researchers, vol. 29. Walter de Gruyter, Berlin (2000)

31. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M.: Automatic dif-
ferentiation variational inference. J. Mach. Learn. Res. 18(1), 430–474 (2017)

32. LogicBlox Inc. website (2018). http://www.logicblox.com. Accessed 01 Jan 2018
33. Manzyuk, O.: A simply typed λ-calculus of forward automatic differentiation. Elec-

tron. Notes Theor. Comput. Sci. 286, 257–272 (2012)
34. de Moor, O., Baars, A.: Doing a doaitse: simple recursive aggregates in datalog.

In: Liber Amicorum for Doaitse Swierstra, pp. 207–216 (2013). http://www.staff.
science.uu.nl/∼hage0101/liberdoaitseswierstra.pdf. Accessed 01 Jan 2018

35. Qian, X., Wiederhold, G.: Incremental recomputation of active relational expres-
sions. IEEE Trans. Knowl. Data Eng. 3(3), 337–341 (1991)

36. Sáenz-Pérez, F.: DES: a deductive database system. Electron. Notes Theor. Com-
put. Sci. 271, 63–78 (2011)

37. Schäfer, M., de Moor, O.: Type inference for datalog with complex type hierarchies.
In: ACM SIGPLAN Notices, vol. 45, pp. 145–156. ACM (2010)

38. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program
analysis in datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction, pp. 196–206. ACM (2016)

39. Semmle Ltd. website (2018). https://semmle.com. Accessed 01 Jan 2018
40. Sereni, D., Avgustinov, P., de Moor, O.: Adding magic to an optimising datalog

compiler. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 553–566. ACM (2008)

41. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in a functional frame-
work. High.-Order Symb. Comput. 21(4), 361–376 (2008)

42. Souffle language website (2018). http://souffle-lang.org. Accessed 01 Jan 2018
43. Urpi, T., Olive, A.: A method for change computation in deductive databases. In:

VLDB, vol. 92, pp. 225–237 (1992)

http://arxiv.org/abs/1611.03429
http://www.logicblox.com
http://www.staff.science.uu.nl/~hage0101/liberdoaitseswierstra.pdf
http://www.staff.science.uu.nl/~hage0101/liberdoaitseswierstra.pdf
https://semmle.com
http://souffle-lang.org

552 M. Alvarez-Picallo et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Incremental λ-Calculus
in Cache-Transfer Style

Static Memoization by Program Transformation

Paolo G. Giarrusso1(B), Yann Régis-Gianas2, and Philipp Schuster3

1 LAMP—EPFL, Lausanne, Switzerland
2 IRIF, University of Paris Diderot, Inria, Paris, France

3 University of Tübingen, Tübingen, Germany

Abstract. Incremental computation requires propagating changes and
reusing intermediate results of base computations. Derivatives, as pro-
duced by static differentiation [7], propagate changes but do not reuse
intermediate results, leading to wasteful recomputation. As a solution,
we introduce conversion to Cache-Transfer-Style, an additional program
transformations producing purely incremental functional programs that
create and maintain nested tuples of intermediate results. To prove CTS
conversion correct, we extend the correctness proof of static differentia-
tion from STLC to untyped λ-calculus via step-indexed logical relations,
and prove sound the additional transformation via simulation theorems.

To show ILC-based languages can improve performance relative to
from-scratch recomputation, and that CTS conversion can extend its
applicability, we perform an initial performance case study. We provide
derivatives of primitives for operations on collections and incrementalize
selected example programs using those primitives, confirming expected
asymptotic speedups.

1 Introduction

After computing a base output from some base input, we often need to pro-
duce updated outputs corresponding to updated inputs. Instead of rerunning
the same base program on the updated input, incremental computation trans-
forms the input change to an output change, potentially reducing asymptotic
time complexity and significantly improving efficiency, especially for computa-
tions running on large data sets.

Incremental λ-Calculus (ILC) [7] is a recent framework for higher-order incre-
mental computation. ILC represents changes from a base value v1 to an updated
value v2 as a first-class change value dv . Since functions are first-class values,
change values include function changes.

ILC also statically transforms base programs to incremental programs or
derivatives, that are functions mapping input changes to output changes. Incre-
mental language designers can then provide their language with (higher-order)
primitives (with their derivatives) that efficiently encapsulate incrementalizable
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 553–580, 2019.
https://doi.org/10.1007/978-3-030-17184-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_20

554 P. G. Giarrusso et al.

computation skeletons (such as tree-shaped folds), and ILC will incrementalize
higher-order programs written in terms of these primitives.

Alas, ILC only incrementalizes efficiently self-maintainable computations [7,
Sect. 4.3], that is, computations whose output changes can be computed using
only input changes, but not the inputs themselves [11]. Few computations are self-
maintainable: for instance, mapping self-maintainable functions on a sequence is
self-maintainable, but dividing numbers is not! We elaborate on this problem in
Sect. 2.1. In this paper, we extend ILC to non-self-maintainable computations.
To this end, we must enable derivatives to reuse intermediate results created by
the base computation.

Many incrementalization approaches remember intermediate results through
dynamic memoization: they typically use hashtables to memoize function results,
or dynamic dependence graphs [1] to remember a computation trace. However,
looking up intermediate results in such dynamic data structure has a runtime
cost that is hard to optimize; and reasoning on dynamic dependence graphs and
computation traces is often complex. Instead, ILC produces purely functional
programs, suitable for further optimizations and equational reasoning.

To that end, we replace dynamic memoization with static memoization: fol-
lowing Liu and Teitelbaum [20], we transform programs to cache-transfer style
(CTS). A CTS function outputs their primary result along with caches of inter-
mediate results. These caches are just nested tuples whose structure is derived
from code, and accessing them does not involve looking up keys depending on
inputs. Instead, intermediate results can be fetched from these tuples using stat-
ically known locations. To integrate CTS with ILC, we extend differentiation to
produce CTS derivatives: these can extract from caches any intermediate results
they need, and produce updated caches for the next computation step.

The correctness proof of static differentiation in CTS is challenging. First, we
must show a forward simulation relation between two triples of reduction traces
(the first triple being made of the source base evaluation, the source updated eval-
uation and the source derivative evaluation; the second triple being made of the
corresponding CTS-translated evaluations). Dealing with six distinct evaluation
environments at the same time was error prone on paper and for this reason,
we conducted the proof using Coq [26]. Second, the simulation relation must
not only track values but also caches, which are only partially updated while in
the middle of the evaluation of derivatives. Finally, we study the translation for
an untyped λ-calculus, while previous ILC correctness proofs were restricted to
simply-typed λ-calculus. Hence, we define which changes are valid via a logical
relation and show its fundamental property. Being in an untyped setting, our
logical relation is not indexed by types, but step-indexed. We study an untyped
language, but our work also applies to the erasure of typed languages. Formal-
izing a type-preserving translation is left for future work because giving a type
to CTS programs is challenging, as we shall explain.

In addition to the correctness proof, we present preliminary experimental
results from three case studies. We obtain efficient incremental programs even
on non self-maintainable functions.

Incremental λ-Calculus in Cache-Transfer Style 555

We present our contributions as follows. First, we summarize ILC and illus-
trate the need to extend it to remember intermediate results via CTS (Sect. 2).
Second, in our mechanized formalization (Sect. 3), we give a novel proof of cor-
rectness for ILC differentiation for untyped λ-calculus, based on step-indexed
logical relations (Sect. 3.4). Third, building on top of ILC differentiation, we
show how to transform untyped higher-order programs to CTS (Sect. 3.5) and
we show that CTS functions and derivatives simulate correctly their non-CTS
counterparts (Sect. 3.7). Finally, in our case studies (Sect. 4), we compare the
performance of the generated code to the base programs. Section 4.4 discusses
limitations and future work. Section 5 discusses related work and Sect. 6 con-
cludes. Our mechanized proof in Coq, the case study material, and the extended
version of this paper with appendixes are available online at https://github.com/
yurug/cts.

2 ILC and CTS Primer

In this section we exemplify ILC by applying it on an average function, show
why the resulting incremental program is asymptotically inefficient, and use CTS
conversion and differentiation to incrementalize our example efficiently and speed
it up asymptotically (as confirmed by benchmarks in Sect. 4.1). Further examples
in Sect. 4 apply CTS to higher-order programs and suggest that CTS enables
incrementalizing efficiently some core database primitives such as joins.

2.1 Incrementalizing average via ILC

Our example computes the average of a bag of numbers. After computing the
base output y1 of the average function on the base input bag xs1, we want to
update the output in response to a stream of updates to the input bag. Here
and throughout the paper, we contrast base vs updated inputs, outputs, values,
computations, and so on. For simplicity, we assume we have two updated inputs
xs2 and xs3 and want to compute two updated outputs y2 and y3. We express
this program in Haskell as follows:

average :: Bag Z → Z

average xs = let s = sum xs;n = length xs; r = div s n in r

average3 = let y1 = average xs1; y2 = average xs2; y3 = average xs3

in (y1, y2, y3)

To compute the updated outputs y2 and y3 in average3 faster, we try using
ILC. For that, we assume that we receive not only updated inputs xs2 and xs3

but also input change dxs1 from xs1 to xs2 and input change dxs2 from xs2 to xs3.
A change dx from x1 to x2 describes the changes from base value x1 to updated
value x2, so that x2 can be computed via the update operator ⊕ as x1 ⊕ dx . A
nil change 0x is a change from base value x to updated value x itself.

https://github.com/yurug/cts
https://github.com/yurug/cts

556 P. G. Giarrusso et al.

ILC differentiation automatically transforms the average function to its
derivative daverage :: Bag Z → Δ(Bag Z) → ΔZ. A derivative maps input
changes to output changes: here, dy1 = daverage xs1 dxs1 is a change from
base output y1 = average xs1 to updated output y2 = average xs2, hence
y2 = y1 ⊕ dy1.

Thanks to daverage’s correctness, we can rewrite average3 to avoid expensive
calls to average on updated inputs and use daverage instead:

incrementalAverage3 :: (Z, Z, Z)
incrementalAverage3 =

let y1 = average xs1; dy1 = daverage xs1 dxs1

y2 = y1 ⊕ dy1; dy2 = daverage xs2 dxs2

y3 = y2 ⊕ dy2

in (y1, y2, y3)

In general, also the value of a function f :: A → B can change from a base
value f1 to an updated value f2, mainly when f is a closure over changing data.
In that case, the change from base output f1 x1 to updated output f2 x2 is given
by df x1 dx , where df :: A → ΔA → ΔB is now a function change from f1
to f2. Above, average exemplifies the special case where f1 = f2 = f : then the
function change df is a nil change, and df x1 dx is a change from f1 x1 = f x1

and f2 x2 = f x2. That is, a nil function change for f is a derivative of f .

2.2 Self-maintainability and Efficiency of Derivatives

Alas, derivatives are efficient only if they are self-maintainable, and daverage is
not, so incrementalAverage3 is no faster than average3! Consider the result of
differentiating average:

daverage :: Bag Z → Δ(Bag Z) → ΔZ

daverage xs dxs = let s = sum xs; ds = dsum xs dxs;
n = length xs; dn = dlength xs dxs;
r = div s n; dr = ddiv s ds n dn

in dr

Just like average combines sum, length, and div , its derivative daverage combines
those functions and their derivatives. daverage recomputes base intermediate
results s, n and r exactly as done in average, because they might be needed as
base inputs of derivatives. Since r is unused, its recomputation can be dropped
during later optimizations, but expensive intermediate results s and n are used
by ddiv :

ddiv :: Z → ΔZ → Z → ΔZ → ΔZ

ddiv a da b db = div (a ⊕ da) (b ⊕ db) − div a b

Incremental λ-Calculus in Cache-Transfer Style 557

Function ddiv computes the difference between the updated and the original
result, so it needs its base inputs a and b. Hence, daverage must recompute s
and n and will be slower than average!

Typically, ILC derivatives are only efficient if they are self-maintainable: a
self-maintainable derivative does not inspect its base inputs, but only its change
inputs, so recomputation of its base inputs can be elided. Cai et al. [7] leave
efficient support for non-self-maintainable derivatives for future work.

But this problem is fixable: executing daverage xs dxs will compute exactly
the same s and n as executing average xs, so to avoid recomputation we must
simply save s and n and reuse them. Hence, we CTS-convert each function f
to a CTS function fC and a CTS derivative dfC : CTS function fC produces,
together with its final result, a cache containing intermediate results, that the
caller must pass to CTS derivative dfC .

CTS-converting our example produces the following code, which requires no
wasteful recomputation.

type AverageC = (Z,SumC , Z,LengthC , Z,DivC)

averageC :: Bag Z → (Z,AverageC)
averageC xs =

let (s, cs1) = sumC xs; (n, cn1) = lengthC xs; (r , cr1) = divC s n
in (r , (s, cs1,n, cn1, r , cr1))

daverageC :: Bag Z → Δ(Bag Z) → AverageC → (ΔZ,AverageC)
daverageC xs dxs (s, cs1,n, cn1, r , cr1) =

let (ds, cs2) = dsumC xs dxs cs1

(dn, cn2) = dlengthC xs dxs cn1

(dr , cr2) = ddivC s ds n dn cr1

in (dr , ((s ⊕ ds), cs2, (n ⊕ dn), cn2, (r ⊕ dr), cr2))

For each function f , we introduce a type FC for its cache, such that a CTS
function fC has type A → (B ,FC) and CTS derivative dfC has type A →
ΔA → FC → (ΔB ,FC). Crucially, CTS derivatives like daverageC must return
an updated cache to ensure correct incrementalization, so that application of
further changes works correctly. In general, if (y1, c1) = fC x1 and (dy , c2) =
dfC x1 dx c1, then (y1 ⊕ dy , c2) must equal the result of the base function fC
applied to the updated input x1 ⊕ dx , that is (y1 ⊕ dy , c2) = fC (x1 ⊕ dx).

For CTS-converted functions, the cache type FC is a tuple of intermedi-
ate results and caches of subcalls. For primitive functions like div , the cache
type DivC could contain information needed for efficient computation of output
changes. In the case of div , no additional information is needed. The definition of
divC uses div and produces an empty cache, and the definition of ddivC follows
the earlier definition for ddiv , except that we now pass along an empty cache.

data DivC = DivC

divC :: Z → Z → (Z,DivC)
divC a b = (div a b,DivC)

ddivC :: Z → ΔZ → Z → ΔZ → DivC → (ΔZ,DivC)
ddivC a da b db DivC = (div (a ⊕ da) (b ⊕ db) − div a b,DivC)

558 P. G. Giarrusso et al.

Finally, we can rewrite average3 to incrementally compute y2 and y3:

ctsIncrementalAverage3 :: (Z, Z, Z)
ctsIncrementalAverage3 =

let (y1, c1) = averageC xs1; (dy1, c2) = daverageC xs1 dxs1 c1

y2 = y1 ⊕ dy1; (dy2, c3) = daverageC xs2 dxs2 c2

y3 = y2 ⊕ dy2

in (y1, y2, y3)

Since functions of the same type translate to CTS functions of different types,
in a higher-order language CTS translation is not always type-preserving; how-
ever, this is not a problem for our case studies (Sect. 4); Sect. 4.1 shows how to
map such functions, and we return to this problem in Sect. 4.4.

3 Formalization

We now formalize CTS-differentiation for an untyped Turing-complete λ-
calculus, and formally prove it sound with respect to differentiation. We also
give a novel proof of correctness for differentiation itself, since we cannot sim-
ply adapt Cai et al. [7]’s proof to the new syntax: Our language is untyped
and Turing-complete, while Cai et al. [7]’s proof assumed a strongly normalizing
simply-typed λ-calculus and relied on its naive set-theoretic denotational seman-
tics. Our entire formalization is mechanized using Coq [26]. For reasons of space,
some details are deferred to the appendix.

Fig. 1. Our language λL of lambda-lifted programs. Tuples can be nullary.

Transformations. We introduce and prove sound three term transformations,
namely differentiation, CTS translation and CTS differentiation, that take a
function to its corresponding (non-CTS) derivative, CTS function and CTS
derivative. Each CTS function produces a base output and a cache from a base
input, while each CTS derivative produces an output change and an updated
cache from an input, an input change and a base cache.

Incremental λ-Calculus in Cache-Transfer Style 559

Proof technique. To show soundness, we prove that CTS functions and deriva-
tives simulate respectively non-CTS functions and derivatives. In turn, we for-
malize (non-CTS) differentiation as well, and we prove differentiation sound with
respect to non-incremental evaluation. Overall, this shows that CTS functions
and derivatives are sound relatively to non-incremental evaluation. Our presenta-
tion proceeds in the converse order: first, we present differentiation, formulated
as a variant of Cai et al. [7]’s definition; then, we study CTS differentiation.

By using logical relations, we simplify significantly the setup of Cai et al. [7].
To handle an untyped language, we employ step-indexed logical relations.
Besides, we conduct our development with big-step operational semantics
because that choice simplifies the correctness proof for CTS conversion. Using
big-step semantics for a Turing complete language restricts us to terminating
computations. But that is not a problem: to show incrementalization is correct,
we need only consider computations that terminate on both old and new inputs,
following Acar et al. [3] (compared with in Sect. 5).

Structure of the formalization. Section 3.1 introduces the syntax of the language
λL we consider in this development, and introduces its four sublanguages λAL,
λIAL, λCAL and λICAL. Section 3.2 presents the syntax and the semantics of
λAL, the source language for our transformations. Section 3.3 defines differenti-
ation and its target language λIAL, and Sect. 3.4 proves differentiation correct.
Section 3.5 defines CTS conversion, comprising CTS translation and CTS differ-
entiation, and their target languages λCAL and λICAL. Section 3.6 presents the
semantics of λCAL. Finally, Sect. 3.7 proves CTS conversion correct.

Notations. We write X for a sequence of X of some unspecified length
X1, . . . , Xm.

3.1 Syntax for λL

A superlanguage. To simplify our transformations, we require input programs to
have been lambda-lifted [15] and converted to A’-normal form (A’NF). Lambda-
lifted programs are convenient because they allow us to avoid a specific treatment
for free variables in transformations. A’NF is a minor variant of ANF [24], where
every result is bound to a variable before use; unlike ANF, we also bind the result
of the tail call. Thus, every result can thus be stored in a cache by CTS conversion
and reused later (as described in Sect. 2). This requirement is not onerous: A’NF
is a minimal variant of ANF, and lambda-lifting and ANF conversion are routine
in compilers for functional languages. Most examples we show are in this form.

In contrast, our transformation’s outputs are lambda-lifted but not in A’NF.
For instance, we restrict base functions to take exactly one argument—a base
input. As shown in Sect. 2.1, CTS functions take instead two arguments—a base
input and a cache—and CTS derivatives take three arguments—an input, an
input change, and a cache. We could normalize transformation outputs to inhabit
the source language and follow the same invariants, but this would complicate
our proofs for little benefit. Hence, we do not prescribe transformation outputs

560 P. G. Giarrusso et al.

to satisfy the same invariants, and we rather describe transformation outputs
through separate grammars.

As a result of this design choice, we consider languages for base programs,
derivatives, CTS programs and CTS derivatives. In our Coq mechanization, we
formalize those as four separate languages, saving us many proof steps to check
the validity of required structural invariants. For simplicity, in this paper we
define a single language called λL (for λ-Lifted). This language satisfies invariants
common to all these languages (including some of the A’NF invariants). Then,
we define sublanguages of λL. We describe the semantics of λL informally, and
we only formalize the semantics of its sublanguages.

Syntax for terms. The λL language is a relatively conventional lambda-lifted λ-
calculus with a limited form of pattern matching on tuples. The syntax for terms
and values is presented in Fig. 1. We separate terms and values in two distinct
syntactic classes because we use big-step operational semantics. Our let-bindings
are non-recursive as usual, and support shadowing. Terms cannot contain λ-
expressions directly, but only refer to closures through the environment, and
similarly for literals and primitives; we elaborate on this in Sect. 3.2. We do
not introduce case expressions, but only bindings that destructure tuples, both
in let-bindings and λ-expressions of closures. Our semantics does not assign
meaning to match failures, but pattern-matchings are only used in generated
programs and our correctness proofs ensure that the matches always succeed.
We allow tuples to contain terms of form x ⊕ dx , which update base values x
with changes in dx , because A’NF-converting these updates is not necessary to
the transformations. We often inspect the result of a function call “f x ”, which
is not a valid term in our syntax. Hence, we write “@(f , x)” as a syntactic sugar
for “let y = f x in y” with y chosen fresh.

Syntax for closed values. A closed value is either a closure, a tuple of values,
a literal, a primitive, a nil change for a primitive or a replacement change. A
closure is a pair of an evaluation environment E and a λ-abstraction closed
with respect to E. The set of available literals � is left abstract. It may contain
usual first-order literals like integers. We also leave abstract the primitives p like
if-then-else or projections of tuple components. Each primitive p comes with
a nil change, which is its derivative as explained in Sect. 2. A change value can
also represent a replacement by some closed value av. Replacement changes are
not produced by static differentiation but are useful for clients of derivatives: we
include them in the formalization to make sure that they are not incompatible
with our system. As usual, environments E map variables to closed values.

Sublanguages of λL. The source language for all our transformations is a sublan-
guage of λL named λAL, where A stands for A’NF. To each transformation we
associate a target language, which matches the transformation image. The target
language for CTS conversion is named λCAL, where “C” stands for CTS. The tar-
get languages of differentiation and CTS differentiation are called, respectively,
λIAL and λICAL, where the “I” stands for incremental.

Incremental λ-Calculus in Cache-Transfer Style 561

3.2 The Source Language λAL

We show the syntax of λAL in Fig. 2. As said above, λAL is a sublanguage of
λL denoting lambda-lifted base terms in A’NF. With no loss of generality, we
assume that all bound variables in λAL programs and closures are distinct. The
step-indexed big-step semantics (Fig. 3) for base terms is defined by the judg-
ment written E � t ⇓n v (where n can be omitted) and pronounced “Under
environment E, base term t evaluates to closed value v in n steps.” Intuitively,
our step-indexes count the number of “nodes” of a big-step derivation.1 As they
are relatively standard, we defer the explanations of these rules to Appendix B.

Fig. 2. Static differentiation Dι(–); syntax of its target language λIAL, tailored to the
output of differentiation; syntax of its source language λAL. We assume that in λIAL the
same let binds both y and dy and that α-renaming preserves this invariant. We also
define the base environment �dE�1 and the updated environment �dE�2 of a change
environment dE .

Expressiveness. A closure in the base environment can be used to represent a
top-level definition. Since environment entries can point to primitives, we need
no syntax to directly represent calls of primitives in the syntax of base terms.
To encode in our syntax a program with top-level definitions and a term to be
evaluated representing the entry point, one can produce a term t representing the

1 It is more common to count instead small-step evaluation steps [3,4], but our choice
simplifies some proofs and makes a minor difference in others.

562 P. G. Giarrusso et al.

Fig. 3. Step-indexed big-step semantics for base terms of source language λAL.

entry point together with an environment E containing as values any top-level
definitions, primitives and literals used in the program. Semi-formally, given an
environment E0 mentioning needed primitives and literals, and a list of top-level
function definitions D = f = λx . t defined in terms of E0, we can produce a base
environment E = L(D), with L defined by:

L(•) = E0 and L(D, f = λx . t) = E, f = E[λx . t] where L(D) = E

Correspondingly, we extend all our term transformations to values and environ-
ments to transform such encoded top-level definitions.

Our mechanization can encode n-ary functions “λ(x1, x2, . . . , xn). t” through
unary functions that accept tuples; we encode partial application using a curry
primitive such that, essentially, curry f x y = f (x, y); suspended partial appli-
cations are represented as closures. This encoding does not support currying
efficiently, we further discuss this limitation in Sect. 4.4.

Control operators, like recursion combinators or branching, can be introduced
as primitive operations as well. If the branching condition changes, expressing the
output change in general requires replacement changes. Similarly to branching
we can add tagged unions.

To check the assertions of the last two paragraphs, the Coq development
contains the definition of a curry primitive as well as a primitive for a fixpoint
combinator, allowing general recursion and recursive data structures as well.

3.3 Static Differentiation from λAL to λIAL

Previous work [7] defines static differentiation for simply-typed λ-calculus terms.
Figure 2 transposes differentiation as a transformation from λAL to λIAL and
defines λIAL’s syntax.

Differentiating a base term t produces a change term Dι(t), its derivative.
Differentiating final result variable x produces its change variable dx . Differenti-
ation copies each binding of an intermediate result y to the output and adds a
new binding for its change dy . If y is bound to tuple (x), then dy will be bound
to the change tuple (dx). If y is bound to function application “f x ”, then dy will
be bound to the application of function change df to input x and its change dx .
We explain differentiation of environments Dι(E) later in this section.

Incremental λ-Calculus in Cache-Transfer Style 563

Fig. 4. Step-indexed big-step semantics for the change terms of λIAL.

Evaluating Dι(t) recomputes all intermediate results computed by t. This
recomputation will be avoided through cache-transfer style in Sect. 3.5. A com-
parison with the original static differentiation [7] can be found in Appendix A.

Semantics for λIAL. We move on to define how λIAL change terms evaluate
to change values. We start by defining necessary definitions and operations on
changes, such as define change values dv , change environments dE , and the
update operator ⊕.

Closed change values dv are particular λL values av. They are either a closure
change, a tuple change, a literal change, a replacement change or a primitive nil
change. A closure change is a closure containing a change environment dE and
a λ-abstraction expecting a value and a change value as arguments to evaluate a
change term into an output change value. An evaluation environment dE follows
the same structure as let-bindings of change terms: it binds variables to closed
values and each variable x is immediately followed by a binding for its associated
change variable dx . As with let-bindings of change terms, α-renamings in an
environment dE must rename dx into dy if x is renamed into y . We define the
update operator ⊕ to update a value with a change. This operator is a partial
function written “v ⊕ dv ”, defined as follows:

564 P. G. Giarrusso et al.

v1 ⊕ !v2 = v2

� ⊕ d� = δ⊕(�, d�)
E[λx . t] ⊕ dE [λx dx . dt] = (E ⊕ dE)[λx . t]

(v1, . . . , vn) ⊕ (dv1, . . . , dvn) = (v1 ⊕ dv1, . . . , vn ⊕ dvn)
p ⊕ 0p = p

where (E; x = v) ⊕ (dE ; x = v ; dx = dv) = ((E ⊕ dE); x = (v ⊕ dv)).
Replacement changes can be used to update all values (literals, tuples, prim-

itives and closures), while tuple changes can only update tuples, literal changes
can only update literals, primitive nil can only update primitives and closure
changes can only update closures. A replacement change overrides the current
value v with a new one v ′. On literals, ⊕ is defined via some interpretation
function δ⊕, which takes a literal and a literal change to produce an updated
literal. Change update for a closure ignores dt instead of computing something
like dE[t ⊕ dt]. This may seem surprising, but we only need ⊕ to behave well
for valid changes (as shown by Theorem 3.1): for valid closure changes, dt must
behave anyway similarly to Dι(t), which Cai et al. [7] show to be a nil change.
Hence, t ⊕ Dι(t) and t ⊕ dt both behave like t, so ⊕ can ignore dt and only con-
sider environment updates. This definition also avoids having to modify terms at
runtime, which would be difficult to implement safely. We could also implement
f ⊕ df as a function that invokes both f and df on its argument, as done by Cai
et al. [7], but we believe that would be less efficient when ⊕ is used at runtime.
As we discuss in Sect. 3.4, we restrict validity to avoid this runtime overhead.

Having given these definitions, we show in Fig. 4 a step-indexed big-step
semantics for change terms, defined through judgment dE � dt ⇓n dv (where n
can be omitted). This judgment is pronounced “Under the environment dE , the
change term dt evaluates into the closed change value dv in n steps.” Rules
[SDVar] and [SDTuple] are unsurprising. To evaluate function calls in let-
bindings “let y = f x , dy = df x dx in dt” we have three rules, depending on
the shape of dE (df). These rules all recompute the value vy of y in the original
environment, but compute differently the change dy to y . If dE (df) replaces
the value of f , [SDReplaceCall] recomputes v ′

y = f x from scratch in the new
environment, and bind dy to !v ′

y when evaluating the let body. If dE (df) is the
nil change for primitive p, [SDPrimitiveNil] computes dy by running p’s deriva-
tive through function Δp(–). If dE (df) is a closure change, [SDClosureChange]
invokes it normally to compute its change dvy . As we show, if the closure change
is valid, its body behaves like f ’s derivative, hence incrementalizes f correctly.

Closure changes with non-nil environment changes represent partial applica-
tion of derivatives to non-nil changes; for instance, if f takes a pair and dx is a
non-nil change, 0curry f df x dx constructs a closure change containing dx , using
the derivative of curry mentioned in Sect. 3.2. In general, such closure changes
do not arise from the rules we show, only from derivatives of primitives.

Incremental λ-Calculus in Cache-Transfer Style 565

3.4 A New Soundness Proof for Static Differentiation

In this section, we show that static differentiation is sound (Theorem 3.3) and
that Eq. (1) holds:

f a2 = f a1 ⊕ Dι(f) a1 da (1)

whenever da is a valid change from a1 to a2 (as defined later). One might want to
prove this equation assuming only that a1 ⊕ da = a2, but this is false in general.
A direct proof by induction on terms fails in the case for application (ultimately
because f1 ⊕ df = f2 and a1 ⊕ da = a2 do not imply that f1 a1 ⊕ df a1 da =
f2 a2). As usual, this can be fixed by introducing a logical relation. We call
ours validity : a function change is valid if it turns valid input changes into valid
output changes.

Fig. 5. Step-indexed validity, through judgments for values and for terms.

Static differentiation is only sound on input changes that are valid. Cai
et al. [7] show soundness for a strongly normalizing simply-typed λ-calculus using
denotational semantics. Using an operational semantics, we generalize this result
to an untyped and Turing-complete language, so we must turn to a step-indexed
logical relation [3,4].

Validity as a step-indexed logical relation. We say that “dv is a valid change
from v1 to v2, up to k steps” and write

dv �k v1 ↪→ v2

to mean that dv is a change from v1 to v2 and that dv is a valid description of
the differences between v1 and v2, with validity tested with up to k steps. This
relation approximates validity; if a change dv is valid at all approximations, it
is simply valid (between v1 and v2); we write then dv � v1 ↪→ v2 (omitting the
step-index k) to mean that validity holds at all step-indexes. We similarly omit
step-indexes k from other step-indexed relations when they hold for all k.

566 P. G. Giarrusso et al.

To justify this intuition of validity, we show that a valid change from v1

to v2 goes indeed from v1 to v2 (Theorem 3.1), and that if a change is valid up
to k steps, it is also valid up to fewer steps (Lemma 3.2).

Theorem 3.1 (⊕ agrees with validity)
If dv �k v1 ↪→ v2 holds for all k > 0, then v1 ⊕ dv = v2.

Lemma 3.2 (Downward-closure)
If N ≥ n, then dv �N v1 ↪→ v2 implies dv �n v1 ↪→ v2.

Crucially, Theorem3.1 enables (a) computing v2 from a valid change and its
source, and (b) showing Eq. (1) through validity. As discussed, ⊕ ignores changes
to closure bodies to be faster, which is only sound if those changes are nil; to
ensure Theorem 3.1 still holds, validity on closure changes must be adapted
accordingly and forbid non-nil changes to closure bodies. This choice, while
unusual, does not affect our results: if input changes do not modify closure bod-
ies, intermediate changes will not modify closure bodies either. Logical relation
experts might regard this as a domain-specific invariant we add to our relation.
Alternatives are discussed by Giarrusso [10, Appendix C].

As usual with step-indexing, validity is defined by well-founded induction
over naturals ordered by <; to show well-foundedness we observe that evaluation
always takes at least one step.

Validity for values, terms and environments is formally defined by cases in
Fig. 5. First, a literal change d� is a valid change from � to � ⊕ d� = δ⊕(�, d�).
Since the function δ⊕ is partial, the relation only holds for the literal changes
d� which are valid changes for �. Second, a replacement change !v2 is always a
valid change from any value v1 to v2. Third, a primitive nil change is a valid
change between any primitive and itself. Fourth, a tuple change is valid up to
step n, if each of its components is valid up to any step strictly less than n.
Fifth, we define validity for closure changes. Roughly speaking, this statement
means that a closure change is valid if (i) its environment change dE is valid
for the original closure environment E1 and for the new closure environment E2;
and (ii) when applied to related values, the closure bodies t are related by dt ,
as defined by the auxiliary judgment (dE � dt) �n (E1 � t1) ↪→ (E2 � t2)
for validity between terms under related environments (defined in Appendix C).
As usual with step-indexed logical relations, in the definition for this judgment
about terms, the number k of steps required to evaluate the term t1 is subtracted
from the number of steps n that can be used to relate the outcomes of the term
evaluations.

Soundness of differentiation. We can state a soundness theorem for differentia-
tion without mentioning step-indexes; thanks to this theorem, we can compute
the updated result v2 not by rerunning a computation, but by updating the base
result v1 with the result change dv that we compute through a derivative on the
input change. A corollary shows Eq. (1).

Incremental λ-Calculus in Cache-Transfer Style 567

Theorem 3.3 (Soundness of differentiation in λAL). If dE is a valid
change environment from base environment E1 to updated environment E2, that
is dE � E1 ↪→ E2, and if t converges both in the base and updated environment,
that is E1 � t ⇓ v1 and E2 � t ⇓ v2, then Dι(t) evaluates under the change
environment dE to a valid change dv between base result v1 and updated result
v2, that is dE � Dι(t) ⇓ dv , dv � v1 ↪→ v2 and v1 ⊕ dv = v2.

We must first show that derivatives map input changes valid up to k steps
to output changes valid up to k steps, that is, the fundamental property of our
step-indexed logical relation:

Lemma 3.4 (Fundamental Property)
For each n, if dE �n E1 ↪→ E2 then (dE � Dι(t)) �n (E1 � t) ↪→ (E2 � t).

Fig. 6. Cache-Transfer Style translation and syntax of its target language λCAL.

3.5 CTS Conversion

Figures 6 and 7 define both the syntax of λCAL and λICAL and CTS conversion.
The latter comprises CTS differentiation D(–), from λAL to λICAL, and CTS
translation T (–), from λAL to λCAL.

Syntax definitions for the target languages λCAL and λICAL. Terms of λCAL

follow again λ-lifted A’NF, like λAL, except that a let-binding for a function
application “f x ” now binds an extra cache identifier cyfx besides output y . Cache
identifiers have non-standard syntax: it can be seen as a triple that refers to
the value identifiers f , x and y . Hence, an α-renaming of one of these three
identifiers must refresh the cache identifier accordingly. Result terms explicitly

568 P. G. Giarrusso et al.

return cache C through syntax (x , C). Caches are encoded through nested tuples,
but they are in fact a tree-like data structure that is isomorphic to an execution
trace. This trace contains both immediate values and the execution traces of
nested function calls.

The syntax for λICAL matches the image of the CTS derivative and witnesses
the CTS discipline followed by the derivatives: to determine dy , the derivative
of f evaluated at point x with change dx expects the cache produced by evaluat-
ing y in the base term. The derivative returns the updated cache which contains
the intermediate results that would be gathered by the evaluation of f (x ⊕ dx).
The result term of every change term returns the computed change and a cache
update dC , where each value identifier x of the input cache is updated with its
corresponding change dx .

Fig. 7. CTS differentiation and syntax of its target language λICAL. Beware
T (dE [λx dx . Dι(t)]) applies a left-inverse of Dι(t) during pattern matching.

CTS conversion and differentiation. These translations use two auxiliary func-
tions: C(t) which computes the cache term of a λAL term t, and U (t), which
computes the cache update of t’s derivative.

CTS translation on terms, Tt(t′), accepts as inputs a global term t and a
subterm t′ of t. In tail position (t′ = x), the translation generates code to return
both the result x and the cache C(t) of the global term t. When the transforma-
tion visits let-bindings, it outputs extra bindings for caches cyfx on function calls
and visits the let-body.

Similarly to Tt(t′), CTS derivation Dt(t′) accepts a global term t and a
subterm t′ of t. In tail position, the translation returns both the result change dx
and the cache update U (t). On let-bindings, it does not output bindings for y
but for dy , it outputs extra bindings for cyfx as in the previous case and visits
the let-body.

Incremental λ-Calculus in Cache-Transfer Style 569

To handle function definitions, we transform the base environment E through
T (E) and T (Dι(E)) (translations of environments are done pointwise, see
Appendix D). Since Dι(E) includes E, we describe T (Dι(E)) to also cover T (E).
Overall, T (Dι(E)) CTS-converts each source closure f = E[λx . t] to a CTS-
translated function, with body Tt(t), and to the CTS derivative df of f . This
CTS derivative pattern matches on its input cache using cache pattern C(t). That
way, we make sure that the shape of the cache expected by df is consistent with
the shape of the cache produced by f . The body of derivative df is computed by
CTS-deriving f ’s body via Dt(t).

3.6 Semantics of λCAL and λICAL

An evaluation environment F of λCAL contains both values and cache values.
Values V resemble λAL values v , cache values Vc match cache terms C and
change values dV match λIAL change values dv . Evaluation environments dF
for change terms must also bind change values, so functions in change closures
take not just a base input x and an input change dx , like in λIAL, but also
an input cache C. By abuse of notation, we reuse the same syntax C to both
deconstruct and construct caches.

Base terms of the language are evaluated using a conventional big-step seman-
tics, consisting of two judgments. Judgment “F � M ⇓ (V, Vc)” is read “Under
evaluation environment F , base term M evaluates to value V and cache Vc”. The
semantics follows the one of λAL; since terms include extra code to produce and
carry caches along the computation, the semantics evaluates that code as well.
For space reasons, we defer semantic rules to Appendix E. Auxiliary judgment
“F � C ⇓ Vc” evaluates cache terms into cache values: It traverses a cache term
and looks up the environment for the values to be cached.

Change terms of λICAL are also evaluated using a big-step semantics, which
resembles the semantics of λIAL and λCAL. Unlike those semantics, evaluating
cache updates (dC , x ⊕ dx) is evaluated using the ⊕ operator (overloaded on
λCAL values and λICAL changes). By lack of space, its rules are deferred to
Appendix E. This semantics relies on three judgments. Judgment “dF � dM ⇓
(dV , Vc)” is read “Under evaluation environment F , change term dM evaluates
to change value dV and updated cache Vc”. The first auxiliary judgment “dF �
dC ⇓ Vc” defines evaluation of cache update terms. The final auxiliary judgment
“Vc ∼ C → dF ” describes a limited form of pattern matching used by CTS
derivatives: namely, how a cache pattern C matches a cache value Vc to produce
a change environment dF .

3.7 Soundness of CTS Conversion

The proof is based on a simulation in lock-step, but two subtle points emerge.
First, we must relate λAL environments that do not contain caches, with λCAL

environments that do. Second, while evaluating CTS derivatives, the evaluation
environment mixes caches from the base computation and updated caches com-
puted by the derivatives.

570 P. G. Giarrusso et al.

Theorem 3.7 follows because differentiation is sound (Theorem 3.3) and evalu-
ation commutes with CTS conversion; this last point requires two lemmas. First,
CTS translation of base terms commutes with our semantics:

Lemma 3.5 (Commutation for base evaluations)
For all E, t and v , if E � t ⇓ v , there exists Vc, T (E) � Tt(t) ⇓ (T (v), Vc).

Second, we need a corresponding lemma for CTS translation of differentiation
results: intuitively, evaluating a derivative and CTS translating the resulting
change value must give the same result as evaluating the CTS derivative. But to
formalize this, we must specify which environments are used for evaluation, and
this requires two technicalities.

Assume derivative Dι(t) evaluates correctly in some environment dE . Evalu-
ating CTS derivative Dt(t) requires cache values from the base computation, but
they are not in T (dE)! Therefore, we must introduce a judgment to complete a
CTS-translated environment with the appropriate caches (see Appendix F).

Next, consider evaluating a change term of the form dM = C[dM ′], where C

is a standard single-hole change-term context—that is, for λICAL, a sequence
of let-bindings. When evaluating dM , we eventually evaluate dM ′ in a change
environment dF updated by C: the change environment dF contains both the
updated caches coming from the evaluation of C and the caches coming from
the base computation (which will be updated by the evaluation of dM). Again,
a new judgment, given in Appendix F, is required to model this process.

With these two judgments, the second key Lemma stating the commutation
between evaluation of derivatives and evaluation of CTS derivatives can be stated.
We give here an informal version of this Lemma, the actual formal version can
be found in Appendix F.

Lemma 3.6 (Commutation for derivatives evaluation)
If the evaluation of Dι(t) leads to an environment dE 0 when it reaches the

differentiated context Dι(C) where t = C[t′], and if the CTS conversion of t
under this environment completed with base (resp. changed) caches evaluates
into a base value T (v) (resp. a changed value T (v ′)) and a base cache value
Vc (resp. an updated cache value V ′

c), then under an environment containing
the caches already updated by the evaluation of Dι(C) and the base caches to be
updated, the CTS derivative of t′ evaluates to T (dv) such that v ⊕ dv = v ′ and
to the updated cache V ′

c .

Finally, we can state soundness of CTS differentiation. This theorem says
that CTS derivatives not only produce valid changes for incrementalization but
that they also correctly consume and update caches.

Theorem 3.7 (Soundness of CTS differentiation)
If the following hypotheses hold:

1. dE � E ↪→ E′

2. E � t ⇓ v
3. E′ � t ⇓ v ′

Incremental λ-Calculus in Cache-Transfer Style 571

then there exists dv , Vc, V ′
c and F0 such that:

1. T (E) � T (t) ⇓ (T (v), Vc)
2. T (E′) � T (t) ⇓ (T (v ′), V ′

c)
3. C(t) ∼ Vc → F0

4. T (dE);F0 � Dt(t) ⇓ (T (dv), V ′
c)

5. v ⊕ dv = v ′

4 Incrementalization Case Studies

In this section, we investigate two questions: whether our transformations can
target a typed language like Haskell and whether automatically transformed
programs can perform well. We implement by hand primitives on sequences,
bags and maps in Haskell. The input terms in all case studies are written in a
deep embedding of λAL into Haskell. The transformations generate Haskell code
that uses our primitives and their derivatives.

We run the transformations on three case studies: a computation of the aver-
age value of a bag of integers, a nested loop over two sequences and a more
involved example inspired by Koch et al. [17]’s work on incrementalizing database
queries. For each case study, we make sure that results are consistent between
from scratch recomputation and incremental evaluation; we measure the execu-
tion time for from scratch recomputation and incremental computation as well
as the space consumption of caches. We obtain efficient incremental programs,
that is ones for which incremental computation is faster than from scratch recom-
putation. The measurements indicate that we do get the expected asymptotic
improvement in time of incremental computation over from scratch recomputa-
tion by a linear factor while the caches grows in a similar linear factor.

Our benchmarks were compiled by GHC 8.2.2 and run on a 2.20GHz hexa
core Intel(R) Xeon(R) CPU E5-2420 v2 with 32GB of RAM running Ubuntu
14.04. We use the criterion [21] benchmarking library.

4.1 Averaging Bags of Integers

Section 2.1 motivates our transformation with a running example of computing
the average over a bag of integers. We represent bags as maps from elements to
(possibly negative) multiplicities. Earlier work [7,17] represents bag changes as
bags of removed and added elements. We use a different representation of bag
changes that takes advantage of the changes to elements and provide primitives
on bags and their derivatives. The CTS variant of map, that we call mapC , takes
a function fC in CTS and a bag as and produces a bag and a cache. The cache
stores for each invocation of fC , and therefore for each distinct element in as,
the result of fC of type b and the cache of type c.

Inspired by Rossberg et al. [23], all higher-order functions (and typically, also
their caches) are parametric over cache types of their function arguments. Here,
functions mapC and dmapC and cache type MapC are parametric over the cache
type c of fC and dfC .

572 P. G. Giarrusso et al.

map :: (a → b) → Bag a → Bag b

data MapC a b c = MapC (Map a (b, c))
mapC :: (a → (b, c)) → Bag a → (Bag b,MapC a b c)
dmapC :: (a → (b, c)) → (a → Δa → c → (Δb, c)) → Bag a → Δ(Bag a) →

MapC a b c → (Δ(Bag b),MapC a b c)

We wrote the length and sum functions used in our benchmarks in terms of
primitives map and foldGroup and had their CTS function and CTS derivative
generated automatically.

We evaluate whether we can produce an updated result with daverageC
shown in Sect. 2.1 faster than by from scratch recomputation with average. We
expect the speedup of daverageC to depend on the size of the input bag n. We
fix an input bag of size n as the bag containing the numbers from 1 to n. We
define a change that inserts the integer 1 into the bag. To measure execution
time of from scratch recomputation, we apply average to the input bag updated
with the change. To measure execution time of the CTS function averageC , we
apply averageC to the input bag updated with the change. To measure execution
time of the CTS derivative daverageC , we apply daverageC to the input bag,
the change and the cache produced by averageC when applied to the input bag.
In all three cases we ensure that all results and caches are fully forced so as to
not hide any computational cost behind laziness.

0 50 100

0

0.02

0.04

0 50 100

0

0.2

0.4

Fig. 8. Benchmark results for average and totalPrice

The plot in Fig. 8a shows execution time versus the size n of the base input.
To produce the base result and cache, the CTS transformed function averageC
takes longer than the original average function takes to produce just the result.
Producing the updated result incrementally is slower than from scratch recom-
putation for small input sizes, but because of the difference in time complexity
becomes faster as the input size grows. The size of the cache grows linearly with
the size of the input, which is not optimal for this example. We leave optimizing
the space usage of examples like this to future work.

Incremental λ-Calculus in Cache-Transfer Style 573

4.2 Nested Loops over Two Sequences

Next, we consider CTS differentiation on a higher-order example. To incremen-
talize this example efficiently, we have to enable detecting nil function changes
at runtime by representing function changes as closures that can be inspected
by incremental programs. Our example here is the Cartesian product of two
sequences computed in terms of functions map and concat .

cartesianProduct :: Sequence a → Sequence b → Sequence (a, b)
cartesianProduct xs ys = concatMap (λx → map (λy → (x , y)) ys) xs

concatMap :: (a → Sequence b) → Sequence a → Sequence b
concatMap f xs = concat (map f xs)

We implemented incremental sequences and related primitives following
Firsov and Jeltsch [9]: our change operations and first-order operations (such as
concat) reuse their implementation. On the other hand, we must extend higher-
order operations such as map to handle non-nil function changes and caching. A
correct and efficient CTS derivative dmapC has to work differently depending
on whether the given function change is nil or not: For a non-nil function change
it has to go over the input sequence; for a nil function change it has to avoid
that.

Cai et al. [7] use static analysis to conservatively approximate nil function
changes as changes to terms that are closed in the original program. But in this
example the function argument (λy → (x , y)) to map in cartesianProduct is not
a closed term. It is, however, crucial for the asymptotic improvement that we
avoid looping over the inner sequence when the change to the free variable x in
the change environment is 0x .

To enable runtime nil change detection, we apply closure conversion to the
original program and explicitly construct closures and changes to closures. While
the only valid change for closed functions is their nil change, for closures we can
have non-nil function changes. A function change df , represented as a closure
change, is nil exactly when all changes it closes over are nil.

We represent closed functions and closures as variants of the same type. Cor-
respondingly we represent changes to a closed function and changes to a closure
as variants of the same type of function changes. We inspect this representation
at runtime to find out if a function change is a nil change.

data Fun a b c where
Closed :: (a → (b, c)) → Fun a b c
Closure :: (e → a → (b, c)) → e → Fun a b c

data Δ(Fun a b c) where
DClosed :: (a → Δa → c → (Δb, c)) → Δ(Fun a b c)
DClosure :: (e → Δe → a → Δa → c → (Δb, c)) → e → Δe → Δ(Fun a b c)

We use the same benchmark setup as in the benchmark for the average compu-
tation on bags. The input of size n is a pair of sequences (xs, ys). Each sequence

574 P. G. Giarrusso et al.

initially contains the integers from 1 to n. Updating the result in reaction to a
change dxs to the outer sequence xs takes less time than updating the result in
reaction to a change dys to the inner sequence ys. While a change to the outer
sequence xs results in an easily located change in the output sequence, a change
for the inner sequence ys results in a change that needs a lot more calculation
to find the elements it affects. We benchmark changes to the outer sequence xs
and the inner sequence ys separately where the change to one sequence is the
insertion of a single integer 1 at position 1 and the change for the other one is
the nil change.

0 50 100

0

1

2

3

0 50 100

0

1

2

3

Fig. 9. Benchmark results for cartesianProduct

Figure 9 shows execution time versus input size. In this example again prepar-
ing the cache takes longer than from scratch recomputation alone. The speedup
of incremental computation over from scratch recomputation increases with the
size of the base input sequences because of the difference in time complexity.
Eventually we do get speedups for both kinds of changes (to the inner and to
the outer sequence), but for changes to the outer sequence we get a speedup
earlier, at a smaller input size. The size of the cache grows super linearly in this
example.

4.3 Indexed Joins of Two Bags

Our goal is to show that we can compose primitive functions into larger and
more complex programs and apply CTS differentiation to get a fast incremental
program. We use an example inspired from the DBToaster literature [17]. In this
example we have a bag of orders and a bag of line items. An order is a pair of an
order key and an exchange rate. A line item is a pair of an order key and a price.
We build an index mapping each order key to the sum of all exchange rates of
the orders with this key and an index from order key to the sum of the prices
of all line items with this key. We then merge the two maps by key, multiplying
corresponding sums of exchange rates and sums of prices. We compute the total
price of the orders and line items as the sum of those products.

Incremental λ-Calculus in Cache-Transfer Style 575

type Order = (Z, Z)
type LineItem = (Z, Z)

totalPrice :: Bag Order → Bag LineItem → Z

totalPrice orders lineItems = let
orderIndex = groupBy fst orders
orderSumIndex = Map.map (Bag .foldMapGroup snd) orderIndex
lineItemIndex = groupBy fst lineItems
lineItemSumIndex = Map.map (Bag .foldMapGroup snd) lineItemIndex
merged = Map.merge orderSumIndex lineItemSumIndex
total = Map.foldMapGroup multiply merged
in total

groupBy :: (a → k) → Bag a → Map k (Bag a)
groupBy keyOf bag =

Bag .foldMapGroup (λa → Map.singleton (keyOf a) (Bag .singleton a)) bag

Unlike DBToaster, we assume our program is already transformed to explicitly
use indexes, as above. Because our indexes are maps, we implemented a change
structure, CTS primitives and their CTS derivatives for maps.

To build the indexes, we use a groupBy function built from primitive func-
tions foldMapGroup on bags and singleton for bags and maps respectively. The
CTS function groupByC and the CTS derivative dgroupByC are automatically
generated. While computing the indexes with groupBy is self-maintainable, merg-
ing them is not. We need to cache and incrementally update the intermediately
created indexes to avoid recomputing them.

We evaluate the performance in the same way we did in the other case studies.
The input of size n is a pair of bags where both contain the pairs (i , i) for i
between 1 and n. The change is an insertion of the order (1, 1) into the orders
bag. For sufficiently large inputs, our CTS derivative of the original program
produces updated results much faster than from scratch recomputation, again
because of a difference in time complexity as indicated by Fig. 8b. The size of
the cache grows linearly with the size of the input in this example. This is
unavoidable, because we need to keep the indexes.

4.4 Limitations and Future Work

Typing of CTS programs. Functions of the same type f1, f2 :: A → B can be
transformed to CTS functions f1 :: A → (B ,C1), f2 :: A → (B ,C2) with different
cache types C1,C2, since cache types depend on the implementation. This het-
erogeneous typing of translated functions poses difficult typing issues, e.g. what
is the translated type of a list (A → B)? We cannot hide cache types behind exis-
tential quantifiers because they would be too abstract for derivatives, which only
work on very specific cache types. We can fix this problem with some runtime
overhead by using a single type Cache, defined as a tagged union of all cache
types or, maybe with more sophisticated type systems—like first-class translu-
cent sums, open existentials or Typed Adapton’s refinement types [12]—that
could be able to correctly track down cache types properly.

576 P. G. Giarrusso et al.

In any case, we believe that these machineries would add a lot of complexity
without helping much with the proof of correctness. Indeed, the simulation rela-
tion is more handy here because it maintains a global invariant about the whole
evaluations (typically the consistency of cache types between base computations
and derivatives), not many local invariants about values as types would.

One might wonder why caches could not be totally hidden from the pro-
grammer by embedding them in the derivatives themselves; or in other words,
why we did not simply translate functions of type A → B into functions of
type A → B × (ΔA → ΔB). We tried this as well; but unlike automatic dif-
ferentiation, we must remember and update caches according to input changes
(especially when receiving a sequence of such changes as in Sect. 2.1). Returning
the updated cache to the caller works; we tried closing over the caches in the
derivative, but this ultimately fails (because we could receive function changes
to the original function, but those would need access to such caches).

Comprehensive performance evaluation. This paper focuses on theory and we
leave benchmarking in comparison to other implementations of incremental com-
putation to future work. The examples in our case study were rather simple
(except perhaps for the indexed join). Nevertheless, the results were encouraging
and we expect them to carry over to more complex examples, but not to all
programs. A comparison to other work would also include a comparison of space
usage for auxiliary data structure, in our case the caches.

Cache pruning via absence analysis. To reduce memory usage and runtime over-
head, it should be possible to automatically remove from transformed programs
any caches or cache fragments that are not used (directly or indirectly) to com-
pute outputs. Liu [19] performs this transformation on CTS programs by using
absence analysis, which was later extended to higher-order languages by Sergey
et al. [25]. In lazy languages, absence analysis removes thunks that are not needed
to compute the output. We conjecture that the analysis could remove unused
caches or inputs, if it is extended to not treat caches as part of the output.

Unary vs n-ary abstraction. We only show our transformation correct for
unary functions and tuples. But many languages provide efficient support for
applying curried functions such as div :: Z → Z → Z. Naively transform-
ing such a curried function to CTS would produce a function divC of type
Z → (Z → (Z,DivC 2)),DivC 1 with DivC 1 = (), which adds excessive overhead.
In Sect. 2 and our evaluation we use curried functions and never need to use this
naive encoding, but only because we always invoke functions of known arity.

5 Related Work

Cache-transfer-style. Liu [19]’s work has been the fundamental inspiration to this
work, but her approach has no correctness proof and is restricted to a first-order
untyped language. Moreover, while the idea of cache-transfer-style is similar,

Incremental λ-Calculus in Cache-Transfer Style 577

it’s unclear if her approach to incrementalization would extend to higher-order
programs. Firsov and Jeltsch [9] also approach incrementalization by code trans-
formation, but their approach does not deal with changes to functions. Instead of
transforming functions written in terms of primitives, they provide combinators
to write CTS functions and derivatives together. On the other hand, they extend
their approach to support mutable caches, while restricting to immutable ones
as we do might lead to a logarithmic slowdown.

Finite differencing. Incremental computation on collections or databases by
finite differencing has a long tradition [6,22]. The most recent and impressive
line of work is the one on DBToaster [16,17], which is a highly efficient app-
roach to incrementalize queries over bags by combining iterated finite differenc-
ing with other program transformations. They show asymptotic speedups both
in theory and through experimental evaluations. Changes are only allowed for
datatypes that form groups (such as bags or certain maps), but not for instance
for lists or sets. Similar ideas were recently extended to higher-order and nested
computation [18], though only for datatypes that can be turned into groups.
Koch et al. [18] emphasize that iterated differentiation is necessary to obtain
efficient derivatives; however, ANF conversion and remembering intermediate
results appear to address the same problem, similarly to the field of automatic
differentiation [27].

Logical relations. To study correctness of incremental programs we use a logical
relation among base values v1, updated values v2 and changes dv . To define a
logical relation for an untyped λ-calculus we use a step-indexed logical relation,
following Ahmed [4], Appel and McAllester [5]; in particular, our definitions are
closest to the ones by Acar et al. [3], who also work with an untyped language,
big-step semantics and (a different form of) incremental computation. However,
they do not consider first-class changes. Technically, we use environments rather
than substitution, and index our big-step semantics differently.

Dynamic incrementalization. The approaches to incremental computation with
the widest applicability are in the family of self-adjusting computation [1,2],
including its descendant Adapton [14]. These approaches incrementalize pro-
grams by combining memoization and change propagation: after creating a trace
of base computations, updated inputs are compared with old ones in O(1) to
find corresponding outputs, which are updated to account for input modifica-
tions. Compared to self-adjusting computation, Adapton only updates results
that are demanded. As usual, incrementalization is not efficient on arbitrary
programs, but only on programs designed so that input changes produce small
changes to the computation trace; refinement type systems have been designed
to assist in this task [8,12]. To identify matching inputs, Nominal Adapton [13]
replaces input comparisons by pointer equality with first-class labels, enabling
more reuse.

578 P. G. Giarrusso et al.

6 Conclusion

We have presented a program transformation which turns a functional program
into its derivative and efficiently shares redundant computations between them
thanks to a statically computed cache.

Although our first practical case studies show promising results, this paper
focused on putting CTS differentiation on solid theoretical ground. For the
moment, we only have scratched the surface of the incrementalization oppor-
tunities opened by CTS primitives and their CTS derivatives: in our opinion,
exploring the design space for cache data structures will lead to interesting new
results in purely functional incremental programming.

Acknowledgments. We are grateful to anonymous reviewers: they made important
suggestions to help us improve our technical presentation. We also thank Cai Yufei,
Tillmann Rendel, Lourdes del Carmen González Huesca, Klaus Ostermann, Sebastian
Erdweg for helpful discussions on this project. This work was partially supported by
DFG project 282458149 and by SNF grant No. 200021_166154.

References

1. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Carnegie Mellon University
(2005)

2. Acar, U.A.: Self-adjusting computation: (an overview). In: PEPM, pp. 1–6. ACM
(2009)

3. Acar, U.A., Ahmed, A., Blume, M.: Imperative self-adjusting computation. In: Pro-
ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, pp. 309–322. ACM, New York (2008).
https://doi.acm.org/10.1145/1328438.1328476

4. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified
types. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 69–83. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11693024_6

5. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (2001).
https://doi.acm.org/10.1145/504709.504712

6. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views.
In: SIGMOD, pp. 61–71. ACM (1986)

7. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages—incrementalizing λ-calculi by static differentiation. In: Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2014, pp. 145–155. ACM, New York (2014). https://
doi.acm.org/10.1145/2594291.2594304

8. Çiçek, E., Paraskevopoulou, Z., Garg, D.: A type theory for incremental compu-
tational complexity with control flow changes. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, pp.
132–145. ACM, New York (2016)

https://doi.acm.org/10.1145/1328438.1328476
https://doi.org/10.1007/11693024_6
https://doi.acm.org/10.1145/504709.504712
https://doi.acm.org/10.1145/2594291.2594304
https://doi.acm.org/10.1145/2594291.2594304

Incremental λ-Calculus in Cache-Transfer Style 579

9. Firsov, D., Jeltsch, W.: Purely functional incremental computing. In: Castor, F.,
Liu, Y.D. (eds.) SBLP 2016. LNCS, vol. 9889, pp. 62–77. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45279-1_5

10. Giarrusso, P.G.: Optimizing and incrementalizing higher-order collection queries
by AST transformation. Ph.D. thesis, University of Tübingen (2018). Defended.
http://inc-lc.github.io/

11. Gupta, A., Mumick, I.S.: Maintenance of materialized views: problems, techniques,
and applications. In: Gupta, A., Mumick, I.S. (eds.) Materialized Views, pp. 145–
157. MIT Press (1999)

12. Hammer, M.A., Dunfield, J., Economou, D.J., Narasimhamurthy, M.: Typed adap-
ton: refinement types for incremental computations with precise names. October
2016 arXiv:1610.00097 [cs]

13. Hammer, M.A., et al.: Incremental computation with names. In: Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, pp. 748–766. ACM, New
York (2015). https://doi.acm.org/10.1145/2814270.2814305

14. Hammer, M.A., Phang, K.Y., Hicks, M., Foster, J.S.: Adapton: composable,
demand-driven incremental computation. In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2014, pp. 156–166. ACM, New York (2014)

15. Johnsson, T.: Lambda lifting: transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer, Heidel-
berg (1985). https://doi.org/10.1007/3-540-15975-4_37

16. Koch, C.: Incremental query evaluation in a ring of databases. In: Symposium
Principles of Database Systems (PODS), pp. 87–98. ACM (2010)

17. Koch, C., et al.: DBToaster: higher-order delta processing for dynamic, frequently
fresh views. VLDB J. 23(2), 253–278 (2014). https://doi.org/10.1007/s00778-013-
0348-4

18. Koch, C., Lupei, D., Tannen, V.: Incremental view maintenance for collection pro-
gramming. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2016, pp. 75–90. ACM, New York
(2016)

19. Liu, Y.A.: Efficiency by incrementalization: an introduction. HOSC 13(4), 289–313
(2000)

20. Liu, Y.A., Teitelbaum, T.: Caching intermediate results for program improvement.
In: Proceedings of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, PEPM 1995, pp. 190–201. ACM, New
York (1995). https://doi.acm.org/10.1145/215465.215590

21. O’Sullivan, B.: criterion: a Haskell microbenchmarking library (2014). http://www.
serpentine.com/criterion/

22. Paige, R., Koenig, S.: Finite differencing of computable expressions. TOPLAS 4(3),
402–454 (1982)

23. Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. In: Proceedings of the 5th
ACM SIGPLAN Workshop on Types in Language Design and Implementation,
TLDI 2010, pp. 89–102. ACM, New York (2010)

24. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LISP Symb. Comput. 6(3–4), 289–360 (1993)

25. Sergey, I., Vytiniotis, D., Peyton Jones, S.: Modular, higher-order cardinality anal-
ysis in theory and practice. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, pp. 335–347.
ACM, New York (2014)

https://doi.org/10.1007/978-3-319-45279-1_5
http://inc-lc.github.io/
http://arxiv.org/abs/1610.00097
https://doi.acm.org/10.1145/2814270.2814305
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1007/s00778-013-0348-4
https://doi.acm.org/10.1145/215465.215590
http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/

580 P. G. Giarrusso et al.

26. The Coq Development Team: The Coq proof assistant reference manual, version
8.8 (2018). http://coq.inria.fr

27. Wang, F., Wu, X., Essertel, G., Decker, J., Rompf, T.: Demystifying differentiable
programming: shift/reset the penultimate backpropagator. Technical report (2018).
https://arxiv.org/abs/1803.10228

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://coq.inria.fr
https://arxiv.org/abs/1803.10228
http://creativecommons.org/licenses/by/4.0/

Concurrency and Distribution

Asynchronous Timed Session Types

From Duality to Time-Sensitive Processes

Laura Bocchi1(B), Maurizio Murgia1,4, Vasco Thudichum Vasconcelos2,
and Nobuko Yoshida3

1 University of Kent, Canterbury, UK
l.bocchi@kent.ac.uk

2 LASIGE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
3 Imperial College London, London, UK
4 University of Cagliari, Cagliari, Italy

Abstract. We present a behavioural typing system for a higher-order
timed calculus using session types to model timed protocols. Behavioural
typing ensures that processes in the calculus perform actions in the time-
windows prescribed by their protocols. We introduce duality and subtyp-
ing for timed asynchronous session types. Our notion of duality allows
typing a larger class of processes with respect to previous proposals.
Subtyping is critical for the precision of our typing system, especially in
the presence of session delegation. The composition of dual (timed asyn-
chronous) types enjoys progress when using an urgent receive semantics,
in which receive actions are executed as soon as the expected message
is available. Our calculus increases the modelling power of extant calculi
on timed sessions, adding a blocking receive primitive with timeout and
a primitive that consumes an arbitrary amount of time in a given range.

Keywords: Session types · Timers · Duality · π-calculus

1 Introduction

Time is at the basis of many real-life protocols. These include common client-
server interactions as for example, “An SMTP server SHOULD have a timeout
of at least 5minutes while it is awaiting the next command from the sender” [22].
By protocol, we intend application-level specifications of interaction patterns (via
message passing) among distributed applications. An extensive literature offers
theories and tools for formal analysis of timed protocols, modelled for instance
as timed automata [3,26,34] or Message Sequence Charts [2]. These works allow
to reason on the properties of protocols, defined as formal models. Recent work,

This work has been partially supported by EPSRC EP/N035372/1, EP/K011715/1,
EP/N027833/1, EP/K034413/1, EP/L00058X/1, EP/N028201/1, Aut. Reg. of
Sardinia projects Sardcoin and Smart collaborative engineering, FCT through
project Confident PTDC/EEI-CTP/4503/2014 and the LASIGE Research Unit
UID/CEC/00408/2019. We thank Julien Lange for his advise and comments.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 583–610, 2019.
https://doi.org/10.1007/978-3-030-17184-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_21

584 L. Bocchi et al.

based on session types, focus on the relationship between time-sensitive proto-
cols, modelled as timed extensions of session types, and their implementations
abstracted as processes in some timed calculus. The relationship between pro-
tocols and processes is given in terms of static behavioural typing [12,15] or
run-time monitoring [6,7,30] of processes against types. Existing work on timed
session types [7,12,15,30] is based on simple abstractions for processes which do
not capture time sensitive primitives such as blocking (as well as non-blocking)
receive primitives with timeout and time consuming actions with variable, yet
bound, duration. This paper provides a theory of asynchronous timed session
types for a calculus that features these two primitives. We focus on the asyn-
chronous scenario, as modern distributed systems (e.g., web) are often based
on asynchronous communications via FIFO channels [4,33]. The link between
protocols and processes is given in terms of static behavioural typing, checking
for punctuality of interactions with respect to protocols prescriptions. Unlike
previous work on asynchronous timed session types [12], our type system can
check processes against protocols that are not wait-free. In wait-free protocols,
the time-windows for corresponding send and receive actions have an empty
intersection. We illustrate wait-freedom using a protocol modelled as two timed
session types, each owning a set of clocks (with no shared clocks between types).

SC =!Command(x < 5, {x}).S′
C SS =?Command(y < 5, {y}).S′

S (1)

The protocol in (1) involves a client SC with a clock x, and a server SS with a
clock y (with both x and y initially set to 0). Following the protocol, the client
must send a message of type Command within 5 min, reset x, and continue as S′

C.
Dually, the server must be ready to receive a command with a timeout of 5 min,
reset y, and continue as S′

S. The model in (1) is not wait-free: the intersection
of the time-windows for the send and receive actions is non-empty (the time-
windows actually coincide). The protocol in (2), where the server must wait until
after the client’s deadline to read the message, is wait-free.

!Command(x < 5, {x}).S′′
C ?Command(y = 5, {y}).S′′

S (2)

Patterns like the one in (1) are common (e.g., the SMPT fragment mentioned
at the beginning of this introduction) but, unfortunately, they are not wait-free,
hence ruled out in previous work [12]. Arguably, (2) is an unpractical wait-free
variant of (1): the client must always wait for at least 5 min to have the message
read, no matter how early this message was sent. The definition of protocols
for our typing system (which allows for not wait-free protocols) is based on a
notion of asynchronous timed duality, and on a subtyping relation that provides
accuracy of typing, especially in the case of channel passing.

Asynchronous timed duality. In the untimed scenario, each session type has one
unique dual that is obtained by changing the polarities of the actions (send vs.
receive, and selection vs. branching). For example, the dual of a session type S

Asynchronous Timed Session Types 585

that sends an integer and then receives a string is a session type S that receives
an integer and then sends a string.

S =!Int.?String S =?Int.!String

Duality characterises well-behaved systems: the behaviour described by the com-
position of dual types has no communication mismatches (e.g., unexpected mes-
sages, or messages with values of unexpected types) nor deadlocks. In the timed
scenario, this is no longer true. Consider a timed extension of session types (using
the model of time in timed automata [3]), and of (untimed) duality so that dual
send/receive actions have equivalent time constraints and resets. The example
below shows a timed type S with its dual S, where S owns clock x, and S owns
clock y (with x and y initially set to 0):

S =!Int(x � 1, x).?String(x � 2) S =?Int(y � 1, y).!String(y � 2)

Here S sends an integer at any time satisfying x � 1, and then resets x. After
that, S receives a string at any time satisfying x � 2. The timed dual of S
is obtained by keeping the same time constraints (and renaming the clock—
to make it clear that clocks are not shared). To illustrate our point, we use
the semantics from timed session types [12], borrowed from Communicating
Timed automata [23]. This semantics is separated, in the sense that only time
actions may ‘take time’, while all other actions (e.g., communications) are
instantaneous.1 The aforementioned semantics allows for the following execu-
tion of S | S:

S | S
0.4−→ Int−→ ?String(x � 2) | S (clocks values: x = 0, y = 0.4)
0.6−→ Int−→ ?String(x � 2) |!String(x � 2) (clocks values: x = 0.6, y = 0)
2−→!String−→ ?String(x � 2) (clocks values: x = 2.6, y = 2)

where: (i) the system makes a time step of 0.4, then S sends the integer and
resets x, yielding a state where x = 0 and y = 0.4; (ii) the system makes a
time step of 0.6, then S receives the integer and resets y, yielding a state where
x = 0.6 and y = 0; (iii) the system makes a time step of 2, then the continuation
of S sends the string, when y = 2 and x = 2.6. In (iii), the string was sent too
late: constraint x � 2 of the receiving endpoint is now unsatisfiable. The system
cannot do any further legal step, and is stuck.

Urgent receive semantics. The example above shows that, in the timed asyn-
chronous scenario, the straightforward extension of duality to the timed scenario
does not necessarily characterise well-behaved communications. We argue, how-
ever, that the execution of S | S, in particular the time reduction with label
0.6, does not reflect the semantics of most common receive primitives. In fact,
most mainstream programming languages implement urgent receive semantics
1 Separated semantics can describe situations where actions have an associated

duration.

586 L. Bocchi et al.

for receive actions. We call a semantics urgent receive when receive actions are
executed as soon as the expected message is available, given that the guard of
that action is satisfied. Conversely, non-urgent receive semantics allows receive
actions to fire at any time satisfying the time constraint, as long as the message
is in the queue. The aforementioned reduction with label 0.6 is permitted by
non-urgent receive semantics such as the one in [23], since it defers the reception
of the integer despite the integer being ready for reception and the guard (y � 2)
being satisfied, but not by urgent receive semantics. Urgent receive semantics
allows, instead, the following execution for S | S:

S | S
0.4−→ !int−→ ?String(x � 2) | S (clocks values: x = 0, y = 0.4)
?int−→ ?String(x � 2) |!String(x � 2) (clocks values: x = 0, y = 0)

2−→!String−→ ?String(x � 2) (clocks values: x = 2, y = 2)

If S sends the integer when x = 0.4, then S must receive the integer imme-
diately, when y = 0.4. At this point, both endpoints reset their respective
clocks, and the communication will continue in sync. Urgent receive primitives
are common; some examples are the non-blocking WaitFreeReadQueue.read()
and blocking WaitFreeReadQueue.waitForData() of Real-Time Java [13], and
the receive primitives in Erlang and Golang. Urgent receive semantics make
interactions “more synchronous” but still as asynchronous as real-life programs.

A calculus for timed asynchronous processes. Our calculus features two time-
sensitive primitives. The first is a parametric receive operation an(b). P on a
channel a, with a timeout n that can be ∞ or any number in R�0. The para-
metric receive captures a range of receive primitives: non-blocking (n = 0),
blocking without timeout (n = ∞), or blocking with timeout (n ∈ R>0). The
second primitive is a time-consuming action, delay(δ). P , where δ is a constraint
expressing the time-window for the time consumed by that action. Delay pro-
cesses model primitives like Thread.sleep(n) in real-time Java [13] or, more
generally, any time-consuming action, with δ being an estimation of the delay of
computation.

Processes in our calculus abstract implementations of protocols given as pairs
of dual types. Consider the processes below.

PC = delay(x < 3). a HELO.P ′
C PS = delay(x = 5). a0(b).P ′

S QS = a5(b).Q′
S

Processes abiding the protocols in (2) could be as follows: PC for the client SC ,
and PS for the server SS . The client process PC performs a time consuming action
for up to 3 min, then sends command HELO to the server, and continues as P ′

C .
The server process PS sleeps for exactly 5 min, receives the message immediately
(without blocking), and continues as P ′

S . A process for the protocol in (1) could,
instead be the parallel composition of PC , again for the client, and QS for the
server. Process QS uses a blocking primitive with timeout; the server now blocks
on the receive action with a timeout of 5 min, and continues as Q′

S as soon as
a message is received. The blocking receive primitive with timeout is crucial

Asynchronous Timed Session Types 587

to model processes typed against protocols one can express with asynchronous
timed duality, in particular those that are not wait-free.

A type system for timed asynchronous processes. The relationship between types
and processes in our calculus is given as a typing system. Well-typed processes
are ensured to communicate at the times prescribed by their types. This result
is given via Subject Reduction (Theorem 4), establishing that well-typedness is
preserved by reduction. In our timed scenario, Subject Reduction holds under
receive liveness, an assumption on the interaction structure of processes. This
assumption is orthogonal to time. To characterise the interaction structures of a
timed process we erase timing information from that processes (time erasure).
Receive liveness requires that, whenever a time-erased processes is waiting for
a message, the corresponding message is eventually provided by the rest of the
system. While receive liveness is not needed for Subject Reduction in untimed
systems [21], it is required for timed processes. This reflects the natural intuition
that if an untimed-process violates progress, then its timed counterpart may miss
deadlines. Notably, we can rely on existing behavioural checking techniques from
the untimed setting to ensure receive liveness [17].

Receive liveness is not required for Subject Reduction in a related work on
asynchronous timed session types [12]. The dissimilarity in the assumptions is
only apparent; it derives from differences in the two semantics for processes.
When our processes cannot proceed correctly (e.g., in case of missed deadlines)
they reduce to a failed state, whereas the processes in [12] become stuck (indi-
cating violation of progress).

Synopsis. In Sect. 2 we introduce the syntax and the formation rules for asyn-
chronous timed session types. In Sect. 3, we give a modular Labelled Transition
System (LTS) for types in isolation (Sect. 3.1) and for compositions of types
(Sect. 3.3). The subtyping relation is given in Sect. 3.2 and motivated in Example
8, after introducing the typing rules. We introduce timed asynchronous duality
and its properties in Sect. 4. Remarkably, the composition of dual timed asyn-
chronous types enjoys progress when using an urgent receive semantics (Theo-
rem 1). Section 5 presents a calculus for timed processes and Sect. 6 introduces its
typing system. The properties of our typing system—Subject Reduction (The-
orem 4) and Time Safety (Theorem 5)—are introduced in Sect. 7. Conclusions
and related works are in Sect. 8. Proofs and additional material can be found in
the online report [11].

2 Asynchronous Timed Session Types

Clocks and predicates. We use the model of time from timed automata [3]. Let
X be a finite set of clocks, let x1, . . . , xn range over clocks, and let each clock
take values in R�0. Let t1, . . . , tn range over non-negative real numbers and
n1, . . . , nn range over non-negative rationals. The set G(X) of predicates over X

is defined by the following grammar.

δ :: = true | x > n | x = n | x − y > n | x − y = n | ¬δ | δ1 ∧ δ2 where x, y ∈ X

588 L. Bocchi et al.

We derive false, <, �, � in the standard way. Predicates in the form x−y > n
and x − y = n are called diagonal predicates; in these cases we assume x �= y.
Notation cn(δ) stands for the set of clocks in δ.

Clock valuation and resets. A clock valuation ν : X �→ R�0 returns the time of
the clocks in X. We write ν + t for the valuation mapping all x ∈ X to ν(x) + t,
ν0 for the initial valuation (mapping all clocks to 0), and, more generally, νt for
the valuation mapping all clocks to t. Let ν |= δ denote that δ is satisfied by ν.
A reset predicate λ over X is a subset of X. When λ is H then no reset occurs,
otherwise the assignment for each x ∈ λ is set to 0. We write ν [λ �→ 0] for the
clock assignment that is like ν everywhere except that its assigns 0 to all clocks
in λ.

Types. Timed session types, hereafter just types, have the following syntax:

T :: = (δ, S) | Nat | Bool | . . .

S :: = !T (δ, λ).S | ?T (δ, λ).S | ⊕ {li(δi, λi) : Si}i∈I | &{li(δi, λi) : Si}i∈I |
μα.S | α | end

Sorts T include base types (Nat, Bool, etc.), and sessions (δ, S). Messages of
type (δ, S) allow a participant involved in a session to delegate the remaining
behaviour S; upon delegation the sender will no longer participate in the dele-
gated session and receiver will execute the protocol described by S under any
clock assignment satisfying δ. We denote the set of types with T.

Type !T (δ, λ).S models a send action of a payload with sort T . The sending
action is allowed at any time that satisfies the guard δ. The clocks in λ are
reset upon sending. Type ?T (δ, λ).S models the dual receive action of a payload
with sort T . The receiving types require the endpoint to be ready to receive the
message in the precise time window specified by the guard.

Type ⊕{li(δi, λi) : Si}i∈I is a select action: the party chooses a branch i ∈ I,
where I is a finite set of indices, selects the label li, and continues as prescribed
by Si. Each branch is annotated with a guard δ and reset λ. A branch j can
be selected at any time allowed by δj . The dual type is &{li(δi, λi) : Si}i∈I

for branching actions. Each branch is annotated with a guard and a reset. The
endpoint must be ready to receive the label for j at any time allowed by δj (or
until another branch is selected).

Recursive type μα.S associates a type variable α to a recursion body S. We
assume that type variables are guarded in the standard way (i.e., they only occur
under actions or branches). We let A denote the set of type variables.

Type end models successful termination.

2.1 Type Formation

The grammar for types allow to generate types that are not implementable in
practice, as the one shown in Example 1.

Asynchronous Timed Session Types 589

Example 1 (Junk-types). Consider S in (3) under initial clock valuation ν0.

S =?T (x < 5, H).!T (x < 2, H).end (3)

The specified endpoint must be ready to receive a message in the time-window
between 0 and 5 time units, as we evaluate x < 5 in ν0. Assume that this
receive action happens when x = 3, yielding a new state in which: (i) the clock
valuation maps x to 3, and (ii) the endpoint must perform a send action while
x < 2. Evidently, (ii) is no longer possible in the new clock valuation, as the
x < 2 is now unsatisfiable. We could amend (3) in several ways: (a) by resetting
x after the receive action; (b) by restricting the guard of the receive action (e.g.,
x < 2 instead of x < 5); or (c) by relaxing the guard of the send action. All
these amendments would, however, yield a different type.

In the remainder of this section we introduce formation rules to rule out
junk types as the one in Example 1 and characterise types that are well-formed.
Intuitively, well-formed types allow, at any point, to perform some action in the
present time or at some point in the future, unless the type is end.

Judgments. The formation rules for types are defined on judgments of the form

A; δ $ S

where A is an environment assigning type variables to guards, and δ is a guard
in G(X). A is used as an invariant to form recursive types. Guard δ collects the
possible ‘pasts’ from which the next action in S could be executed (unless S is
end). We use notation ↓ δ (the past of δ) for a guard δ′ such that ν |= δ′ if and
only if ∃t : ν + t |= δ. For example, ↓ (1 � x � 2) = x � 2 and ↓ (x � 3) = true.
Similarly, we use the notation δ[λ �→ 0] to denote a guard in which all clocks in
λ are reset. For example, (x � 3 ∧ y � 2)[x �→ 0] = (x = 0 ∧ y � 2). We use the
notation δ1 Ď δ2 whenever, for all ν, ν |= δ1 =⇒ ν |= δ2. The past and reset of
a guard can be inferred algorithmically, and Ď is decidable [8].

A; true $ end
[end]

�� ∈ {!, ?} A; γ $ S δ[λ �→ 0] Ď γ T base type

A; ↓ δ $ �� T (δ, λ).S
[interact]

�� ∈ {!, ?} A; γ $ S δ[λ �→ 0] Ď γ T = (δ′, S′)
H; γ′ $ S′ δ′ Ď γ′

A; ↓ δ $ �� T (δ, λ).S
[delegate]

�� ∈ {⊕,&} ∀i ∈ I A; γi $ Si δi[λi �→ 0] Ď γi

A; ↓
∨

i∈I
δi $ �� {li(δi, λi) : Si}i∈I

[choice]

A,α : δ; δ $ S

A; δ $ μα.S
[rec]

A,α : δ; δ $ α
[var]

590 L. Bocchi et al.

Rule [end] states that the terminated type is well-formed against any A.
The guard of the judgement is true since end is a final state (as end has no
continuation, morally, the constraint of its continuation is always satisfiable).
Rule [interact] ensures that the past of the current action δ entails the past
of the subsequent action γ (considering resets if necessary): this rules out types
in which the subsequent action can only be performed in the past. Rules [end]
and [interact] are illustrated by the three examples below.

Example 2. The judgment below shows a type being discarded after an applica-
tion of rule [interact] :

H; x � 3 $\ ?Nat(1 � x � 3, H).!Nat(1 � x � 2, H).end (4)

The premise of [interact] would be δ Ď ↓ γ, which does not hold for δ = 1 �
x � 3 and ↓ γ = x � 2. This means that guard (1 � x � 3, H) of the first
action may lead to a state in which guard 1 � x � 2 for the subsequent action
is unsatisfiable. If we amend the type in (4) by adding a reset in the first action,
we obtain a well-formed type. We show its formation below, where for simplicity
we omit obvious preconditions like Nat base type, etc.

[end]H; true $ end 1 � x � 2 Ď true
[interact]H; x � 2 $!Nat(1 � x � 2, H).end x = 0 Ď x � 2
[interact]H; x � 3 $?Nat(1 � x � 3, {x}).!Nat(1 � x � 2, H).end

Rule [delegate] behaves as [interact] , with two additional premises on
the delegated session: (1) S′ needs to be well-formed, and (2) the guard of the
next action in S′ needs to be satisfiable with respect to δ′. Guard δ′ is used to
ensure a correspondence between the state of the delegating endpoint and that
of the receiving endpoint. Rule [choice] is similar to [interact] but requires
that there is at least one viable branch (this is accomplished by considering the
weaker past ↓ ∨

i∈Iδi) and checking each branch for formation. Rules [rec] and
[var] are for recursive types and variables, respectively. In [rec] the guard δ
can be easily computed by taking the past of the next action of the in S (or
the disjunction if S is a branching or selection). An algorithm for deciding type
formation can be found in [11].

Definition 1 (Well-formed types). We say that S is well-formed against
clock valuation ν if H; δ $ S and ν |= δ, for some guard δ. We say that S is
well-formed if it is well formed against ν0.

We will tacitly assume types are well-formed, unless otherwise specified. The
intuition of well-formedness is that if A; δ $ S then S can be run (using the
types semantics given in Sect. 3) under any clock valuation ν such that ν |= δ.
In the sequel, we take (well-formed) types equi-recursively [31].

Asynchronous Timed Session Types 591

3 Asynchronous Session Types Semantics and Subtyping

We give a compositional semantics of types. First, we focus on types in isolation
from their environment and from their queues, which we call simple type con-
figurations. Next we define subtyping for simple type configurations. Finally, we
consider systems (i.e., composition of types communicating via queues).

Fig. 1. LTS for simple type configurations

3.1 Types in Isolation

The behaviour of simple type configurations is described by the Labelled Transi-
tion System (LTS) on pairs (ν, S) over (V×S), where clock valuation ν gives the
values of clocks in a specific state. The LTS is defined over the following labels

� :: = !m | ?m | t | τ m :: = d | l

Label !m denotes an output action of message m and ?m an input action of m.
A message m can be a sort T (that can be either a higher order message (δ, S)
or base type), or a branching label l. The LTS for single types is defined as the
least relation satisfying the rules in Fig. 1. Rules [snd], [rcv], [sel], and [bra] can
only happen if the constraint of the next action is satisfied in the current clock
valuation. Rule [rec] unfolds recursive types, and [time] always lets time elapse.

Let s, s′, si (i ∈ N) range over simple type configurations (ν, S). We write
s �−→ when there exists s′ such that s �−→ s′, and write s t �−→ for s t−→ �−→.

3.2 Asynchronous Timed Subtyping

We define subtyping as a partial relation on simple type configurations. As in
other subtyping relations for session types we consider send and receive actions
dually [14,16,19]. Our subtyping relation is covariant on output actions and
contra-variant on input actions, similarly to that of [14]. In this way, our sub-
typing S < : S′ captures the intuition that a process well-typed against S can be
safely substituted with a process well-typed against S′. Definition 2, introduces
a notation that is useful in the rest of this section.

592 L. Bocchi et al.

Definition 2 (Future enabled send/receive). Action � is future enabled in
s if ∃t : s t �−→. We write s !⇒ (resp. s ?⇒) if there exists a sending action !m
(resp. a receiving action ?m) that is future enabled in s.

As common in session types, the communication structure does not allow for
mixed choices: the grammar of types enforces choices to be either all input
(branching actions), or output (selection actions). From this fact it follows that,
given s, reductions s !⇒ and s ?⇒ cannot hold simultaneously.

Definition 3 (Timed Type Simulation). Fix s1 = (ν1, S1) and s2 =
(ν2, S2). A relation R ∈ (V × S)2 is a timed type simulation if (s1, s2) ∈ R
implies the following conditions:

1. S1 = end implies S2 = end

2. s1
t !m1−→ s′1 implies ∃s′2,m2 : s2

t !m2−→ s′2, (m2,m1) ∈ S, (s′1, s
′
2) ∈ R

3. s2
t ?m2−→ s′2 implies ∃s′1,m1 : s1

t ?m1−→ s′1, (m1,m2) ∈ S, (s′1, s
′
2) ∈ R

4. s1
?⇒ implies s2

?⇒ and s2
!⇒ implies s1

!⇒
where S is the following extension of R to messages: (1) (T, T ′) ∈ S if T
and T ′ are base types, and T ′ is a subtype of T by sorts subtyping, e.g.,
(int, nat) ∈ S; (2) (l, l) ∈ S; (3) ((δ1, S1), (δ2, S2)) ∈ S, if ∀ν1 |= δ1 ∃ν2 |=
δ2 : ((ν1, S1), (ν2, S2)) ∈ R and ∀ν2 |= δ2 ∃ν1 |= δ1 : ((ν1, S1), (ν2, S2)) ∈ R.

Intuitively, if (s1, s2) ∈ R then any environment that can safely interact with
s2, can do so with s1. We write that s2 simulates s1 whenever s1 and s2 are in
a timed type simulation. Below, s2 simulates s1:

s1 = (ν0, !nat(x < 5, H).end) s2 = (ν0, !int(x � 10, H).end)

Conversely, s1 does not simulate s2 because of condition (2). Precisely, s2 can
make a transition s2

10 !int−→ that cannot be matched by s1 for two reasons: guard
x < 5 is no longer satisfiable when x = 10, and (nat, int) �∈ S since int is not
a subtype of nat. For receive actions, instead, we could substitute s with s′ if
s′ had at least the receiving capabilities of s. Condition (4) in Definition 3 rules
out relations that include, e.g., ((ν, ?T (true, H).end), (ν, !T (true, H).end)).

Live simple type configurations. In our subtyping definition we are interested in
simple type configurations that are not stuck. Consider the example below:

(ν, !Int(x � 10, H).end) (5)

The simple type configuration in (5) would not be stuck if ν = ν0, but would
be stuck for any ν = ν′[x �→ 10]. Definition 4 gives a formal definition of simple
type configurations that are not stuck, i.e., that are live.

Definition 4 (Live simple type configuration). A simple configuration
(ν, S) is said live if:

S = end or ∃t, � : (ν, S) t ◦m−→ (◦ ∈ {!, ?})

Observe that for all well-formed S, (ν0, S) is live.

Asynchronous Timed Session Types 593

Subtyping for simple type configurations. We can now define subtyping for simple
type configurations and state its decidability.

Definition 5 (Subtyping). s1 is a subtype of s2, written s1 < : s2, if there
exists a timed type simulation R on live simple type configurations such that
(s1, s2) ∈ R. We write S1 < : S2 when (ν0, S1) < : (ν0, S2). Abusing the notation,
we write m < : m′ iff there exists S such that (m,m′) ∈ S.

Subtyping has been shown to be decidable in the untimed setting [19] and
in the timed first order setting [6]. In [6], decidability is shown through a reduc-
tion to model checking of timed automata networks. The result in [6] can be
extended to higher-order messages using the techniques in [3], based on finite
representations (called regions) of possibly infinite sets of clock valuations.

Proposition 1 (Decidability of subtyping). Checking if (δ1, S1) < : (δ2, S2)
is decidable.

3.3 Types with Queues, and Their Composition

As interactions are asynchronous, the behaviour of types must capture the states
in which messages are in transit. To do this, we extend simple type configurations
with queues. A configuration S is a triple (ν, S, M) where ν is clock valuation, S
is a type and M a FIFO unbounded queue of the following form:

M :: = H | m; M

M contains the messages sent by the co-party of S and not yet received by S. We
write M for M; H, and call (ν, S, M) initial if ν = ν0 and M = H.

Composing types. Configurations are composed into systems. We denote S | S′

as the parallel composition of the two configurations S and S′.
The labelled transition rules for systems are given in Fig. 2. Rule (snd) is

for send actions. A send action can occur only if the time constraint of S is
satisfied (by the premise, which uses either rule [snd] or [sel] in Fig. 1). Rule
(que) models actions on queues. A queue is always ready to receive any message
m. Rule (rcv) is for receive actions, where a message is read from the queue. A
receiving action can only occur if the time constraint of S is satisfied (by the
premise, which uses either rule [rcv] or [bra] in Fig. 1). The message is removed
from the head of the queue of the receiving configuration. The third clause in
the premise uses the notion of subtyping (Definition 3) for basic sorts, labels,
and higher order messages. Rule (crcv) is the action of a configuration pulling a
message of its queue. Rule (com) is for communication between a sending con-
figuration and a buffer. Rule (ctime) lets time elapse in the same way for all
configurations in a system. Rule (time) models time passing for single configu-
rations. Time passing is subject to two constrains, expressed by the second and
third conditions in the premise. Condition (ν, S) !⇒ requires the time action t
to preserve the satisfiability of some send action. For example, in configuration

594 L. Bocchi et al.

Fig. 2. LTS for systems. We omit the symmetric rules of (crcv), and (csnd).

(ν0, !T (x < 2, H).S, H), a transition with label 2 would not preserve any send
action (hence would not be allowed), while a transition with label 1.8 would
be allowed by condition (ν, S) !⇒. Condition ∀t′ < t : (ν + t′, S, M) τÛ in the
premise of rule (time) checks that there is no ready message to be received in
the queue. This is to model urgency: when a configuration is in a receiving state
and a message is in the queue then the receiving action must happen without
delay. For example, (ν0, ?T (x < 2, H).S, H) can make a transition with label 1,
but (ν0, ?T (x < 2, H).S,m) cannot make any time transition. Below we show
two examples of system executions. Example 3 illustrates a good communica-
tion, thanks to urgency. We also illustrate in Example 4 that without an urgent
semantics the system in Example 3 gets stuck.

Example 3 (A good communication). Consider the following types:

S1 =!T (x � 1, x).?T (x � 2).end S2 =?T (y � 1, y).!T (y � 2).end

System (ν[x �→ 0], S1, H) | (ν[x �→ 0], S2, H) can make a time step with label
0.5 by (ctime), yielding the system in (6)

(ν[x �→ 0.5], S1, H) | (ν[x �→ 0.5], S2, H) (6)

The system in (6) can move by a τ step thanks to (com): the left-hand side
configuration makes a step with label !T by (snd) while the right-hand side
configuration makes a step ?T by (que), yielding system (7) below.

(ν[x �→ 0], ?T (x � 2).end, H) | (ν[y �→ 0.5], S2, T) (7)

The right-hand side configuration in the system in (7) must urgently receive
message T due to the third clause in the premise of rule (time). Hence, the only
possible step forward for (7) is by (crcv) yielding the system in (8).

(ν[x �→ 0], ?T (x � 2).end, H) | (ν[y �→ 0], !T (y � 2).end, H) (8)

Asynchronous Timed Session Types 595

Example 4 (In absence of urgency). Without urgency, the system in (7) from
Example 3 may get stuck. Assume the third clause of rule (time) was removed:
this would allow (7) to make a time step with label 0.5, followed by a step by
(rcv) yielding the system in (9), where clock y is reset after the receive action.

(ν[x �→ 0.5], ?T (x � 2).end, H) | (ν[y �→ 0], !T (y � 2).end, H) (9)

followed by a τ step by (com) reaching the following state:

(ν[x �→ 2.5], ?T (x � 2).end, T) | (ν[y �→ 0], end, H) (10)

The message in the queue in (10) will never be received as the guard x � 2 is not
satisfiable now or at any point in the future. This system is stuck. Instead, thanks
to urgency, the clocks of the configurations of system (8) have been ‘synchronised’
after the receive action, preventing the system from getting stuck.

4 Timed Asynchronous Duality

We introduce a timed extension of duality. As in untimed duality, we let
each send/select action be complemented by a corresponding receive/branching
action. Moreover, we require time constraints and resets to match.

Definition 6 (Timed duality). The dual type S of S is defined as follows:

!T (δ, λ).S =?T (δ, λ).S ?T (δ, λ).S =!T (δ, λ).S μα.S = μα.S

⊕{li(δi, λi) : Si}i∈I = &{li(δi, λi) : Si}i∈I α = α

&{li(δi, λi) : Si}i∈I = ⊕{li(δi, λi) : Si}i∈I end = end

Duality with urgent receive semantics enjoys the following properties: sys-
tems with dual types fulfil progress (Theorem 1); behaviour (resp. progress) of
a system is preserved by the substitution of a type with a subtype (Theorem 2)
(resp. Theorem 3). A system enjoys progress if it reaches states that are either
final or that allow further communications, possibly after a delay. Recall that
we assume types to be well-formed (cf. Definition 1): Theorems 1, 2, and 3 rely
on this assumption.

Definition 7 (Type progress). We say that a system (ν, S, M) is a success if
S = end and M = H. We say that S1 | S2 satisfies progress if:

S1 | S2 −→∗ S′
1 | S′

2 =⇒ S′
1 and S′

2 are success or ∃t : S′
1 | S′

2
t τ−→

Theorem 1 (Duality progress). System (ν0, S, H) | (ν0, S, H) enjoys
progress.

We show that subtyping does not introduce new behaviour, via the usual
notion of timed simulation [1]. Let c, c1, c2 range over systems. Fix c1 =
(ν1

1 , S1
1 , M1

1) | (ν1
2 , S1

2 , M1
2), and c2 = (ν2

1 , S2
1 , M2

1) | (ν2
2 , S2

2 , M2
2). We say that a binary

relation over systems preserves end if: Si
1 = end∧ Mi

1 = H iff Si
2 = end∧ Mi

2 = H
for all i ∈ {1, 2}. Write c1 � c2 if (c1, c2) are in a timed simulation that preserves
end.

596 L. Bocchi et al.

Theorem 2 (Safe substitution). If S′ < : S, then (ν0, S, H) | (ν0, S
′, H) �

(ν0, S, H) | (ν0, S, H).

Theorem 3 (Progressing substitution). If S′ < : S, then (ν0, S, H) |
(ν0, S

′, H) satisfies progress.

5 A Calculus for Asynchronous Timed Processes

We introduce our asynchronous calculus for timed processes. The calculus
abstracts implementations that execute one or more sessions. We let P, P ′, Q, . . .
range over processes, X range over process variables, and define n ∈ R�0 ∪{∞}.
We use the notation a for ordered sequences of channels or variables.

P :: = a v.P
| a 	 l. P
| if v then P else P
| P | P
| 0
| def D in P
| X〈a ; a〉
| (νab)P
| ab : h

| delay(δ). P (time-consuming)
| an(b). P
| an Ź {li : Pi}i∈I

| failed (run-time)
| delay(t). P

D :: = X(a ; a) = P

h :: = H | h · v | h · a

a v.P sends a value v on channel a and continues as P . Similarly, a 	 l. P
sends a label l on channel a and continue as P . Process if v then P else Q
behaves as either P or Q depending on the boolean value v. Process P | Q is
for parallel composition of P and Q, and 0 is the idle process. def D in P is
the standard recursive process: D is a declaration, and P is a process that may
contain recursive calls. In recursive calls X〈a ; a〉 the first list of parameters has
to be instantiated with values of ground types, while the second with channels.
Recursive calls are instantiated with equations X(a ; a) in D. Process (νab)P
is for scope restriction of endpoints a and b. Process ab : h is a queue with name
ab (colloquially used to indicate that it contains messages in transit from a to
b) and content h. (νab) binds endpoints a and b, and queues ab and ba in P .

There are two kind of time-consuming processes: those performing a time-
consuming action (e.g., method invocation, sleep), and those waiting to receive a
message. We model the first kind of processes with delay(δ). P , and the second
kind of processes with an(b). P (receive) and an Ź {li : Pi}i∈I (branching). In
delay(δ). P , δ is a constraints as those defined for types, but on one single clock
x. The name of the clock here is immaterial: clock x is used as a syntactic tool
to define intervals for the time-consuming (delay) action. In this sense, assume
x is bound in delay(δ). P . Process delay(δ). P consumes any amount of time t
such that t is a solution of δ. For example delay(x � 3). P consumes any value
between 0 to 3 time units, then behaves as P . Process an(b). P receive a message
on channel a, instantiates b and continue as P . Parameter n models different
receive primitives: non-blocking (n = 0), blocking (n = ∞), and blocking with

Asynchronous Timed Session Types 597

timeout (n ∈ R
�0). If n ∈ R

�0 and no message is in the queue, the process
waits n time units before moving into a failed state. If n is set to ∞ the process
models a blocking primitive without timeout. Branching process an Ź{li : Pi}i∈I

is similar, but receives a label li and continues as Pi.
Run-time processes are not written by programmers and only appear upon

execution. Process failed is the process that has violated a time constraint.
We say that P is a failed state if it has failed as a syntactic sub-term. Process
delay(t). P delays for exactly t time units.

Well-formed processes. Sessions are modelled as processes of the following form

(νab)(P | ab : h | ba : h ′)

where P is the process for endpoints a and b, ab is the queue for messages from a
to b, and ba is the queues for messages from b to a. A process can have more than
one ongoing session. For each, we expect that all necessary queues are present
and well-placed. We ensure that queues are well-placed via a well-formedness
property for processes (see [11] for an inductive definition). Well-formedness
rules out processes of the following form:

(νab) (an(c). (ba : h ′ | P) | Q | ab : h) (11)

The process in (11) in not well-formed since queue ba for communications to
endpoint a is not usable as it is in the continuation of the receive action.
Well-formedness of processes is necessary to our safety results. We check well-
formedness orthogonally to the typing system for the sake of simpler typing rules.
While well-formedness ensures the absence of misplaced queues, the presence of
an appropriate pair of queues for every session is ensured by the typing rules.

Session creation. Usually well-formedness is ensured by construction, as sessions
are created by a specific (synchronous) reduction rule [10,21]. This kind of session
creation is cumbersome in the timed setting as it allows delays that are not
captured by protocols, hence well-typed processes may miss deadlines. Other
work on timed session types [12] avoids this problem by requiring that all session
creations occur before any delay action. Our calculus allows session to be created
at any point, even after delays. In (12) a session with endpoints c and d is created
after a send action (assume P includes the queues for this new session).

(νab) (a v.delay(x � 3). (νcd)(P) | Q | ab : h | ba : h ′) (12)

A process like the one in (12) may be thought as a dynamic session creation
that happens synchronously (as in [10,21]), but assuming that all participants
are ready to engage without delays. Our approach yields a simplification to
the calculus (syntax and reduction rules) and, yet, a more general treatment of
session initiation than the work in [12].

598 L. Bocchi et al.

Fig. 3. Reduction for processes (rule [IfF], symmetric for [IfT] is omitted).

Fig. 4. Time-passing function Φt(P). Rule for at′ Ź {li : Pi}i∈I is omitted for brevity.
φt(P) is undefined in the remaining cases.

Asynchronous Timed Session Types 599

Reduction for processes. Processes are considered modulo structural equivalence,
denoted by ≡, and defined by adding the following rule for delays to the standard
ones [28]: delay(0). P ≡ P . Reduction rules for processes are given in Fig. 3. A
reduction step −→ can happen because of either an instantaneous step ⇀ by
[Red1] or time-consuming step ù by [Red2]. Rules [Send], [Rcv], [Sel], and [Bra]
are the usual asynchronous communication rules. Rule [Det] models the random
occurrence of a precise delay t, with t being a solution of δ. The other untimed
rules, [IfT], [Par], [Def], [Rec], [AStr], and [AScope] are standard. Note that rule
[Par] does not allow time passing, which is handled by rule [Delay]. Rule [TStr]
is the timed version of [AStr]. Rule [Delay] applies a time-passing function Φt

(defined in Fig. 4) which distributes the delay t across all the parts of a process.
Φt(P) is a partial function: it is undefined if P can immediately make an urgent
action, such as evaluation of expressions or output actions. If Φt(P) is defined,
it returns the process resulting from letting t time units elapse in P . Φt(P) may
return a failed state, if delay t makes a deadline in P expire. The definition
of Φt(P1 | P2) relies on two auxiliary functions: Wait(P) and NEQueue(P) (see
[11] for the full definition). Wait(P) returns the set of channels on which P (or
some syntactic sub-term of P) is waiting to receive a message/label. NEQueue(P)
returns the set of endpoints with a non-empty inbound queue. For example,
Wait(at(b). Q) = Wait(at Ź {li : Pi}i∈I) = {a} and NEQueue(ba : h) = {a} given
that h = H. Φt(P1 | P2) is defined only if no urgent action could immediately
happen in P1 | P2. For example, Φt(P1 | P2) is undefined for P1 = at(b). Q and
P2 = ba : v.

In the rest of this section we show the reductions of two processes: one with
urgent actions (Example 5), and one to a failed state (Example 6). We omit
processes that are immaterial for the illustration (e.g., unused queues).

Example 5 (Urgency and undefined Φt). We show the reduction of process P =
(νab)(a ‘Hi’.Q | ab : H | b10(c). P ′) that has an urgent action. Process P can
make the following reduction by [Send]:

P ⇀ (νab)(Q | ab : ‘Hi’ | b10(c). P ′)

At this point, to apply rule [Delay], say with t = 5, we need to apply the time-
passing function as shown below:

Φ5((νab)(a ‘Hi’.Q | ab : ‘Hi’ | b10(c). P ′)) = (νab)(a ‘Hi’.Q | Φ5(ab : ‘Hi’ | b10(c). P ′))

which is undefined. Φ5(ab : H | b10(c). P ′) is undefined because Wait(b10(c). P)X
NEQueue(ab : ‘Hi’) = {b} = H. Since Φ5(P ′) is undefined. Instead, the message
in queue ab can be received by rule [Rcv]:

(νab)(Q | ab : ‘Hi’ | b10(c). P ′) ⇀ (νab)(Q | ab : H | P [‘Hi’/c])

Example 6 (An execution with failure). We show a reduction to a failing state of
a process with a non-blocking receive action (expecting a message immediately)
composed with another process that sends a message after a delay.

600 L. Bocchi et al.

delay(x = 3). a ‘Hi’.Q | ab : H | b0(c). P apply [Det]
⇀ delay(3). a ‘Hi’.Q | ab : H | b0(c). P = P ′ apply [Delay] with t = 3
⇀ Φ3(P ′)

The application of the time-passing function to P ′ yields a failing state (a mes-
sage is not received in time) as shown below, where the second equality holds
since Wait(b0(c). P) X NEQueue(ab : H) = H:

Φ3(delay(3). a ‘Hi’.Q | b0(c). P | ab : H) =
Φ3(delay(3). a ‘Hi’.Q) | Φ3(b0(c). P | Φ3(ab : H)) =
delay(0). a ‘Hi’.Q | failed | ab : H

6 Typing for Asynchronous Timed Processes

We validate programs against specifications using judgements of the form Γ $
P Ź Δ. Environments are defined as follows:

Δ :: = H | Δ, a : (ν, S) | Δ, ab : M Θ :: = H | Θ ∪ {Δ}
Γ :: = H | Γ, a : T | Γ,X : (T ;Θ)

Environment Δ is a session environment, used to keep track of the ongoing
sessions. When Δ(a) = (ν, S) it means that the process being validated is acting
as a role in session a specified by S, and ν is the clock valuation describing a
(virtual) time in which the next action in S may be executed. We write dom(Δ)
for the set of variables and channels in Δ. Environment Γ maps variables a to
sorts T and process variables X to pairs (T ;Θ), where T is a vector of sorts
and Θ is a set of session environments. The mapping of process variable is used
to type recursive processes: T is used to ensure well-typed instantiation of the
recursion parameters, and Θ is used to model the set of possible scenarios when
a new iteration begins.

Notation, assumptions, and auxiliary definitions. We write Δ+ t for the session
environment obtained by incrementing all clock valuations in the codomain of
Δ by t.

Definition 8. We define the disjoint union A�B of sets of clocks A and B as:

A � B = {inl(x) | x ∈ A} ∪ {inr(x) | x ∈ B}

where inl and inr are one to one endofunctions on clocks and, for all x ∈ A and
y ∈ B, inl(x) �= inr(y). With an abuse of notation, we define the disjoint union
of clock valuations ν1, ν2, in symbols ν1 � ν2, as a clock valuation satisfying:

ν1 � ν2(inl(x)) = ν1(x) ν1 � ν2(inr(x)) = ν2(x)

We use the symbol
⊎

for the iterate disjoint union.

Asynchronous Timed Session Types 601

For a configuration (ν, S) we define val((ν, S)) = ν, and type((ν, S)) = S. We
overload function val to session environments Δ as follows:

val(Δ) =
⊎

a∈dom(Δ)

val(Δ(a))

We require Θ to satisfy the following three conditions:

1. If Δ ∈ Θ and Δ(a) = (ν, S), then S is well-formed (Definition 1) against ν;
2. For all Δ1 ∈ Θ, Δ2 ∈ Θ: type(Δ1(a)) = S iff type(Δ2(a)) = S;
3. There is guard δ such that:

{ν | ν |= δ} =
⋃

Δ∈Θ

val(Δ).

The last condition ensures that Θ is finitely representable, and is key for decid-
ability of type checking.

Example 7. We show some examples of Θ that do or do not satisfy the last
requirement above. Let S1 =!T (x � 2).end and S2 =!T (y � 2).end, and let:

Θ1 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) � 2 ∧ ν1(x) = ν2(y)};
Θ2 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) �

√
2 ∧ ν1(x) = ν2(y)};

Θ3 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) + ν2(y) = 2}.

We have that Θ1 satisfies condition (3): let δ1 = x � 2 ∧ y − x = 0. It is easy to
see that {ν | ν |= δ1} =

⋃
Δ∈Θ val(Δ). For Θ2, a candidate proposition would

be δ2 = x �
√

2 ∧ y − x = 0. However, δ2 can not be derived with the syntax of
propositions, as

√
2 is irrational. Indeed, Θ2 does not satisfy the condition. For

Θ3, let δ3 = x + y = 2. Again, δ3 is not a guard, as additive constraints in the
form x + y = n are not allowed. Indeed, also Θ3 does not satisfy the condition.

In the following, we write a : T for a1 : T1, . . . , an : Tn when a = a1, . . . , an and
T = T1, . . . , Tn (assuming a and T have the same number of elements). Similarly
for b : (ν, S). In the typing rules, we use a few auxiliary definitions: Definition 9
(t-reading Δ) checks if any ongoing sessions in a Δ can perform an input action
within a given timespan, and Definition 10 (Compatibility of configurations)
extends the notion of duality to systems that are not in an initial state.

Definition 9 (t-reading Δ). Session environment Δ is t-reading if there exist
some a ∈ dom(Δ), t′ < t and m such that: Δ(a) = (ν, S) ∧ (ν + t′, S) ?m−→.

Namely, Δ is t-reading if any of the open sessions in the mapping prescribe a
read action within the time-frame between ν and ν + t. Definition 9 is used in
the typing rules for time-consuming processes – [Vrcv], [Drcv], and [Delt] – to
‘disallow’ derivations when a (urgent) receive may happen.

Definition 10 (Compatibility of configurations). Configuration (ν1,
S1, M1) is compatible with (ν2, S2, M2), written (ν1, S1, M1)⊥(ν2, S2, M2), if:

602 L. Bocchi et al.

1. M1 = H ∨ M2 = H,

2. ∀i = j ∈ {1, 2} : Mi = m; M′i ⇒ ∃ν′
i, S

′
i,m

′ : (νi, Si)
?m′
−→ (ν′

i, S
′
i) ∧ m < :

m′ ∧ (ν′
i, S

′
i, M

′
i)⊥(νj , Sj , Mj),

3. M1 = H ∧ M2 = H ⇒ ν1 = ν2 ∧ S1 = S2.

By condition (3) initial configurations are compatible when they include dual
types, i.e., (ν0, S, H)⊥(ν0, S, H). By condition (2) two configurations may tem-
porarily misalign as execution proceeds: one may have read a message from
its queue, while the other has not, as long as the former is ready to receive it
immediately. Thanks to the particular shape of type’s interactions, initial con-
figurations – of the form (ν0, S, H)⊥(ν0, S, H) – will only reach systems, say
(ν1, S1, M1)⊥(ν2, S2, M2), in which at least one between M1 and M2 is empty. Con-
dition (1) requires compatible configurations to satisfy this basic property.

Typing rules. The typing rules are given in Fig. 5. Rule [Vrcv] is for input
processes. The first premise consists of two conditions requiring the time-span
[ν, ν + n] in which the process can receive the message to coincide with δ:

– ν + t |= δ ⇒ t � n rules out processes that are not ready to receive a message
when prescribed by the type.

– t � n ⇒ ν + t |= δ requires that an(b). P can read only at times that satisfy
the type prescription δ.2

The second premise of [Vrcv] requires the continuation P to be well-typed against
the continuation of the type, for all possible session environments where the
virtual time is somewhere between [ν, ν +n], where the virtual valuation ν in the
mapping of session a is reset according to λ. Rule [Drcv], for processes receiving
delegated sessions, is like [Vrcv] except: (a) the continuation P is typed against
a session environment extended with the received session S′, and (b) the clock
valuation ν′ of the receiving session must satisfy δ′. Recall that by formation
rules (Sect. 2.1) S′ is well-formed against all ν′ that satisfy δ′.

Rule [Vsend] is for output processes. Send actions are instantaneous, hence
the type current ν needs to satisfy δ. As customary, the continuation of the
process needs to be well-typed against the continuation of the type (with ν
being reset according to λ, and Γ extended with information on the sort of
b). [Dsend] for delegation is similar but: (a) the delegated session is removed
from the session environment (the process can no longer engage in the delegated
session), and (b) valuation ν′ of the delegated session must satisfy guard δ′.

Rule [Delδ] checks that P is well-typed against all possible solutions of δ.
Rule [Delt] shifts the virtual valuations in the session environment of t. This is
as the corresponding rule in [12] but with the addition of the check that Δ is
not t-reading, needed because of urgent semantics.

Rule [Res] is for processes with scopes.

2 While not necessary for our safety results, this constraint simplifies our theory. Tim-
ing variations between types and programs are all handled in one place: rule [Subt].

Asynchronous Timed Session Types 603

Rule [Rec] is for recursive processes. The rule is as usual [21] except that
we use a set of session environments Θ (instead of a single Δ) to capture a set
of possible scenarios in which a recursion instance may start, which may have
different clock valuations. Rule [Var] is also as expected except for the use of Θ.

Rules [Par] and [Subt] straightforward.

Example 8 (Typing with subtyping). Subtyping substantially increases the
power of our type system, in particular in the presence of channel passing. Intu-
itively, without subtyping, the type of any higher-order send action should be an
equality constraint (e.g., x = 1) rather than more general timeout (e.g., x < 1).
We illustrate our point using P defined below:

P = (νa1b1)(νa2b2)(P1 | P2 | P3 | Q) P1 = delay(x � 1). a1 a2

P2 = b1
1(c). c

2(d) P3 = delay(1 � x ∧ x � 2). b2 true

where Q contains empty queues of the involved endpoints. Intuitively, P proceeds
as follows: (1) P1 sends channel a2 to P2 within one time unit, and terminates;
(2) P2 reads the message as soon as it arrives, and listens for a message across the
received channel (a2) for two time units; (3) P3 sends value true through channel
b2 at a time in between 1 and 2, unaware that now she is communicating with
P2, and then terminates; (4) P2 reads the message immediately and terminates.
See below for one possible reduction:

P −→∗ (νa1b1)(νa2b2)(a1 a2 | b0
1(c). c

2(d) | delay(0 � x ∧ x � 1). b2 true) | Q)
−→∗ (νa1b1)(νa2b2)(0 | a2

2(d) | delay(0.5). b2 true | Q)
−→ (νa1b1)(νa2b2)(0 | a1.5

2 (d) | b2 true | Q)
−→∗ (νa1b1)(νa2b2)(0 | 0 | 0 | Q)

Although P executes correctly, the involved processes are well-typed against
types that are not dual:

$ P1 Ź a1 : (ν0, S1), a2 : (ν0, S2) $ P2 Ź b1 : (ν0, S
′
1) $ P3 Ź b2 : (ν0, S2)

for S1 =!(y � 1, S2)(x � 1), S2 =?Bool(1 � y ∧ y � 2), S′
1 =?(y = 0, S′

2)(x � 1).
In order to type-check P , we need to apply rule [Res], requiring endpoints of the
same session to have dual types. But clearly: S′

1 = S1. Without subtyping, P
would not be well-typed. By subtyping, however, (y � 1, S2) < : (y = 0, S′

2) with
S′

2 =?Bool(y � 2).end, and then S′
1 < : S′

1. Thanks to the subtyping rule [subt]
we can derive $ P2 Ź b1 : (ν0, S1) and, in turn, $ P Ź H.

7 Subject Reduction and Time Safety

The main properties of our typing system are Subject Reduction and Time
Safety. Time Safety ensures that the execution of well-typed processes will only

604 L. Bocchi et al.

Fig. 5. Selected typing rules for processes

reach fail-free states. Recall, P is fail-free when none of its sub-terms is the
process failed. Time Safety builds on a condition that is not related with time,
but with the structure of the process interactions. If an untimed process gets
stuck due to mismatches in its communication structure, a timed process with
the same communication structure may move to a failed state. Consider P below:

P = (νab)(νcd)Q R = ab : H | ba : H | cd : H | dc : H
Q = a5(e). d e.0 | c5(e). b e.0 | R

(13)

P is well-typed: H $ P Ź a : (ν0, S), b : (ν0, S), c : (ν0, S), d : (ν0, S) with S =
?Int(x � 5, H).end. However, P can only make time steps, and when, overall,
more than 5 time units elapse (e.g., 6 in the reduction below) P reaches a failed
state due to a circular dependency between actions of sessions (νab) and (νcd):

P −→ Φ6(Q) = (νab)(νcd) (failed | failed | R)

Asynchronous Timed Session Types 605

Our typing system does not check against such circularities across different inter-
leaved sessions. This is common in work on untimed [21] and timed [12] session
types. However, in the untimed scenario, progress for interleaved sessions can be
guaranteed by means of additional checks on processes [17]. Time Safety builds
on the results in [17] by using an assumption (receive liveness) on the under-
neath structure of the timed processes. This assumptions is formally captured
in Definition 11, which is based on an untimed variant of our calculus.

The untimed calculus. We define untimed processes, denoted by P̂ , as processes
obtained from the grammar given for timed processes (Sect. 5) without delays
and failed processes. In untimed processes, time annotations of branching/receive
processes are immaterial, hence omitted in the rest of the paper.

Given a (timed) process P , one can obtain its untimed counter-part by eras-
ing delays and failed processes; we denoted the result of such erasure on P by
erase(P). The semantics of untimed processes is defined as the one for timed
processes (Sect. 5) except that reduction rules [Delay], [TStr], and [Red2], are
removed. Abusing the notation, we write P̂ −→ P̂ ′ when an untimed process P̂
moves to a state P̂ ′ using the semantics for untimed processes. The definitions of
Wait(P̂) and NEQueue(P̂) can be derived from the definitions for timed processes
in the straightforward way.

Definition 11 (receive liveness) formalises our assumption on the interaction
structures of a process.

Definition 11 (Receive liveness). P̂ is said to satisfy receive liveness (or is
live, for short) if, for all P̂ ′ such that P̂ −→∗ P̂ ′:

P̂ ′ ≡ (νab)Q̂ ∧ a ∈ Wait(Q̂) =⇒ ∃Q̂′ : Q̂ −→∗ Q̂′ ∧ a ∈ NEQueue(Q̂′)

In any reachable state P̂ ′ of a live untimed process P̂ , if any endpoint a in P̂ ′ is
waiting to receive a message (a ∈ Wait(Q̂)), then the overall process is able to
reach a state Q̂′ where a can perform the receive action (a ∈ NEQueue(Q̂′)).

Consider process P in (13). The untimed process erase(P) is not live
because Wait(erase(P)) = {a, c} and a, c �∈ NEQueue(erase(P)), since
NEQueue(erase(P)) is the empty set. Syntactically, erase(P) is as P , but it
does not have the same behaviour. P can only make time steps, reaching a failed
process, while erase(P) is stuck, as untimed processes only make communication
steps.

Properties. Time safety relies on Subject Reduction Theorem 4, which estab-
lishes a relation (preserved by reduction) of well-typed processes and their types.

Theorem 4 (Subject reduction for closed systems). Let erase(P) be
live. If H $ P Ź H and P −→ P ′ then H $ P ′ Ź H.

Note that Subject Reduction assumes erase(P) to be live. For instance, the
example of P in (13) is well-typed, but erase(P) is not live. The process can
reduce to a failed state (as illustrated earlier in this section) that cannot be
typed (failed processes are not well-typed). Time Safety establishes that well-
typed processes only reduce to fail-free states.

606 L. Bocchi et al.

Theorem 5 (Time safety). If erase(P) is live, $ P ŹH and P −→∗ P ′,
then P ′ is fail-free.

Typing is decidable if one uses processes annotated with the following informa-
tion: (1) scope restrictions (νab : S)P are annotated with the type S of the
session for endpoint a (the type of b is implicitly assumed to be S and both
endpoints are type checked in the initial clock valuation ν0); (2) receive actions
an(b : T). P are annotated with the type T of the received message; (3) recur-
sion X(a : T ; a : S, δ) = P are annotated with types for each parameter, and
a guard modelling the state of the clocks. We call annotated programs those
annotated processes derived without using productions marked as run-time (i.e.,
failed and delay(t). P), and where n in an(b : T). P ranges over Q�0 ∪ {∞}.

Proposition 2. Type checking for annotated programs is decidable.

8 Conclusion and Related Work

We introduced duality and subtyping relations for asynchronous timed session
types. Unlike for untimed and timed synchronous [6] dualities, the composition
of dual types does not enjoy progress in general. Compositions of asynchronous
timed dual types enjoy progress when using an urgent receive semantics. We
propose a behavioural typing system for a timed calculus that features non-
blocking and blocking receive primitives (with and without timeout), and time
consuming primitives of arbitrary but constrained delays. The main properties
of the typing system are Subject Reduction and Time Safety; both results rely
on an assumption (receive liveness) of the underneath interaction structure of
processes. In related work on timed session types [12], receive liveness is not
required for Subject Reduction; this is because the processes in [12] block (rather
than reaching a failed state) whenever they cannot progress correctly, hence
e.g., missed deadline are regarded as progress violations. By explicitly capturing
failures, our calculus paves the way for future work on combining static checking
with run-time instrumentation to prevent or handle failures.

Asynchronous timed session types have been introduced in [12], in a multi-
party setting, together with a timed π-calculus, and a type system. The direct
extension of session types with time introduces unfeasible executions (i.e., types
may get stuck), as we have shown in Example 1. [12] features a notion of fea-
sibility for choreographies, which ensures that types enjoy progress. We ensure
progress of types by formation and duality. The semantics of types in [12] is
different from ours in that receive actions are not urgent. The work in [12] gives
one extra condition on types (wait-freedom), because feasible types may still
yield undesirable executions in well-typed processes. Thanks to our duality, sub-
typing, and calculus (in particular the blocking receive primitive with timeout)
this condition is unnecessary in this work. As a result, our typing system allows
for types that are not wait-free. By dropping wait-freedom, we can type a class
of common real-world protocols in which processes may be ready to receive mes-
sages even before the final deadline of the corresponding senders. Remarkably,

Asynchronous Timed Session Types 607

SMTP mentioned in the introduction is not wait-free. For some other aspects,
our work is less general than the one in [12], as we consider binary sessions rather
than multiparty sessions. A theory of timed multiparty asynchronous protocols
that encompasses the protocols in [12] and those considered here is an interesting
future direction. The work in [6] introduces a theory of synchronous timed ses-
sion types, based on a decidable notion of compatibility, called compliance, that
ensures progress of types, and is equivalent to synchronous timed duality and
subtyping in a precise sense [6]. Our duality and subtyping are similar to those
in [6], but apply to the asynchronous scenario. The work in [15] introduces a
typed calculus based on temporal session types. The temporal modalities in [15]
can be used as a discrete model of time. Timed session types, thanks to clocks
and resets, are able to model complex timed dependencies that temporal session
types do not seem able to capture. Other work studies models for asynchronous
timed interactions, e.g., Communicating Timed Automata [23] (CTA), timed
Message Sequence Charts [2], but not their relationships with processes. The
work in [5] introduces a refinement for CTA, and presents a notion of urgency
similar to the one used in this paper, preliminary studied also in [29].

Several timed calculi have been introduced outside the context of behavioural
types. The work in [32] extends the π- calculus with time primitives inspired in
CTA and is closer, in principle, to our types than our processes. Another timed
extension of the π-calculus with time-consuming actions has been applied to the
analysis the active times of processes [18]. Some works focus on specific aspects
of timed behaviour, such as timeouts [9], transactions [24,27], and services [25].
Our calculus does not feature exception handlers, nor timed transactions. Our
focus in on detecting time violations via static typing, so that a process only
moves to fail-free states.

The calculi in [7,12,15] have been used in combination with session types.
The calculus in [12] features a non-blocking receive primitive similar to our
a0(b). P , but that never fails (i.e., time is not allowed to flow if a process tries
to read from an empty buffer—possibly leading to a stuck process rather than
a failed state). The calculus in [7] features a blocking receive primitive without
timeout, equivalent to our a∞(b). P . The calculus in [15], seems able to encode
a non-blocking receive primitive like the one of [12] and a blocking receive prim-
itive without timeout like our a∞(b). P . None of these works features blocking
receive primitives with timeouts. Furthermore, existing works feature [7,12] or
can encode [15] only precise delays, equivalent to delay(x = n). P . Such punc-
tual predictions are often difficult to achieve. Arbitrary but constrained delays
are closer abstractions of time-consuming programming primitives (and possibly,
of predictions one can derive by cost analysis, e.g., [20]).

As to applications, timed session types have been used for run-time mon-
itoring [7,30] and static checking [12]. A promising future direction is that of
integrating static typing with run-time verification and enforcement, towards a
theory of hybrid timed session types. In this context, extending our calculus with
exception handlers [9,24,27] could allow an extension of the typing system, that
introduces run-time instrumentation to handle unexpected time failures.

608 L. Bocchi et al.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007).
https://doi.org/10.1017/CBO9780511814105

2. Akshay, S., Gastin, P., Mukund, M., Kumar, K.N.: Model checking time-
constrained scenario-based specifications. In: FSTTCS. LIPIcs, vol. 8, pp. 204–
215. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010). https://doi.org/
10.4230/LIPIcs.FSTTCS.2010.204

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Advanced Message Queuing Protocols (AMQP). https://www.amqp.org/
5. Bartoletti, M., Bocchi, L., Murgia, M.: Progress-preserving refinements of CTA.

In: CONCUR. LIPIcs, vol. 118, pp. 40:1–40:19. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.40

6. Bartoletti, M., Cimoli, T., Murgia, M.: Timed session types. Log. Methods Comput.
Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:25)2017

7. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS,
vol. 9539, pp. 86–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
28934-2 5

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. In:
Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 158–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76637-7 11

10. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

11. Bocchi, L., Murgia, M., Vasconcelos, V., Yoshida, N.: Asynchronous timed session
types: from duality to time-sensitive processes (2018). https://www.cs.kent.ac.uk/
people/staff/lb514/tstp.html

12. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 29

13. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS, 1st edn.
Prentice Hall PTR, Upper Saddle River (2009)

14. Chen, T.C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping
in session types. In: PPDP, pp. 135–146. ACM (2014). https://doi.org/10.1145/
2643135.2643138

15. Das, A., Hoffmann, J., Pfenning, F.: Parallel complexity analysis with temporal
session types. Proc. ACM Program. Lang. 2(ICFP), 91:1–91:30 (2018). https://
doi.org/10.1145/3236786

16. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-
6 19

https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.204
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.204
https://www.amqp.org/
https://doi.org/10.4230/LIPIcs.CONCUR.2018.40
https://doi.org/10.23638/LMCS-13(4:25)2017
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1007/978-3-540-85361-9_33
https://www.cs.kent.ac.uk/people/staff/lb514/tstp.html
https://www.cs.kent.ac.uk/people/staff/lb514/tstp.html
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3236786
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-642-23217-6_19

Asynchronous Timed Session Types 609

17. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 18

18. Fischer, M., Förster, S., Windisch, A., Monjau, D., Balser, B.: A new time extension
to π-calculus based on time consuming transition semanticss. In: Grimm, C. (ed.)
Languages for System Specification, pp. 271–283. Springer, Boston (2004). https://
doi.org/10.1007/1-4020-7991-5 17

19. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

20. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 6

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

22. Klensin, J.: Simple mail transfer protocol. RFC 5321, October 2008. https://tools.
ietf.org/html/rfc5321

23. Krcal, P., Yi, W.: Communicating timed automata: the more synchronous, the
more difficult to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 249–262. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 24

24. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31982-5 18

25. Lapadula, A., Pugliese, R., Tiezzi, F.: CWS: a timed service-oriented calculus. In:
Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 275–
290. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9 19

26. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technolo. Transf. 1, 134–152 (1997)

27. López, H.A., Pérez, J.A.: Time and exceptional behavior in multiparty structured
interactions. In: Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176,
pp. 48–63. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29834-
9 5

28. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, New York (1999)

29. Murgia, M.: On urgency in asynchronous timed session types. In: ICE. EPTCS,
vol. 279, pp. 85–94 (2018). https://doi.org/10.4204/EPTCS.279.9

30. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017). https://doi.org/10.
1007/s00165-017-0420-8

31. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
32. Saeedloei, N., Gupta, G.: Timed π-calculus. In: Abadi, M., Lluch Lafuente, A.

(eds.) TGC 2013. LNCS, vol. 8358, pp. 119–135. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05119-2 8

33. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Comput. 10(6),
87–89 (2006). https://doi.org/10.1109/MIC.2006.116

34. Yovine, S.: Kronos: a verification tool for real-time systems. (Kronos user’s manual
release 2.2). Int. J. Softw. Tools Technol. Transf. 1, 123–133 (1997)

https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/1-4020-7991-5_17
https://doi.org/10.1007/1-4020-7991-5_17
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/978-3-662-46669-8_6
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
https://doi.org/10.1007/11817963_24
https://doi.org/10.1007/978-3-540-31982-5_18
https://doi.org/10.1007/978-3-540-31982-5_18
https://doi.org/10.1007/978-3-540-75292-9_19
https://doi.org/10.1007/978-3-642-29834-9_5
https://doi.org/10.1007/978-3-642-29834-9_5
https://doi.org/10.4204/EPTCS.279.9
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1109/MIC.2006.116

610 L. Bocchi et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Manifest Deadlock-Freedom for Shared
Session Types

Stephanie Balzer1(B), Bernardo Toninho2(B), and Frank Pfenning1

1 Carnegie Mellon University, Pittsburgh, USA
balzers@cs.cmu.edu

2 NOVA LINCS, Universidade Nova de Lisboa, Lisbon, Portugal
btoninho@fct.unl.pt

Abstract. Shared session types generalize the Curry-Howard correspon-
dence between intuitionistic linear logic and the session-typed π-calculus
with adjoint modalities that mediate between linear and shared session
types, giving rise to a programming model where shared channels must
be used according to a locking discipline of acquire-release. While this
generalization greatly increases the range of programs that can be writ-
ten, the gain in expressiveness comes at the cost of deadlock-freedom, a
property which holds for many linear session type systems. In this paper,
we develop a type system for logically-shared sessions in which types cap-
ture not only the interactive behavior of processes but also constrain the
order of resources (i.e., shared processes) they may acquire. This type-
level information is then used to rule out cyclic dependencies among
acquires and synchronization points, resulting in a system that ensures
deadlock-free communication for well-typed processes in the presence of
shared sessions, higher-order channel passing, and recursive processes.
We illustrate our approach on a series of examples, showing that it rules
out deadlocks in circular networks of both shared and linear recursive
processes, while still being permissive enough to type concurrent imple-
mentations of shared imperative data structures as processes.

Keywords: Linear and shared session types · Deadlock-freedom

1 Introduction

Session types [25–27] naturally describe the interaction protocols that arise
amongst concurrent processes that communicate via message-passing. This typ-
ing discipline has been integrated (with varying static safety guarantees) into
several mainstream language such as Java [28,29], F# [43], Scala [49,50],
Go [11] and Rust [33]. Session types moreover enjoy a logical correspon-
dence between linear logic and the session-typed π-calculus [8,9,51,55]. Lan-
guages building on this correspondence [24,52,55] not only guarantee session

Supported by NSF Grant No. CCF-1718267: “Enriching Session Types for Practical
Concurrent Programming” and NOVA LINCS (Ref. UID/CEC/04516/2019).

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 611–639, 2019.
https://doi.org/10.1007/978-3-030-17184-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_22

612 S. Balzer et al.

fidelity (i.e., type preservation) but also deadlock-freedom (i.e., global progress).
The latter is guaranteed even in the presence of interleaved sessions, which
are often excluded from the deadlock-free fragments of traditional session-typed
frameworks [20,26,27,53]. These logical session types, however, exclude program-
ming scenarios that demand sharing of mutable resources (e.g., shared databases
or shared output devices) instead of functional resource replication.

To increase their practicality, logical session types have been extended with
manifest sharing [2]. In the resulting language, linear and shared sessions coex-
ist, but the type system enforces that clients of shared sessions run in mutual
exclusion of each other. This separation is achieved by enforcing an acquire-
release policy, where a client of a shared session must first acquire the session
before it can participate in it along a private linear channel. Conversely, when a
client releases a session, it gives up its linear channel and only retains a shared
reference to the session. Thus, sessions in the presence of manifest sharing can
change, or shift, between shared and linear execution modes. At the type-level,
the acquire-release policy manifests in a stratification of session types into linear
and shared with adjoint modalities [5,47,48], connecting the two strata. Opera-
tionally, the modality shifting up from the linear to the shared layer translates
into an acquire and the one shifting down from shared to linear into a release.

Manifest sharing greatly increases the range of programs that can be written
because it recovers the expressiveness of the untyped asynchronous π-calculus [3]
while maintaining session fidelity. As in the π-calculus, however, the gain in
expressiveness comes at the cost of deadlock-freedom. An illustrative example is
an implementation of the classical dining philosophers problem, shown in Fig. 1,
using the language SILLS [2] that supports manifest sharing (in this setting we
often equate a process with the session it offers along a distinguished channel).
The code shows the process fork proc, implementing a session of type sfork, and
the processes thinking and eating , implementing sessions of type philosopher. We
defer the details of the typing and the definition of the session types sfork and
philosopher to Sect. 2 and focus on the programmatic working of the processes for
now. For ease of reading, we typeset shared session types and variables denoting
shared channel references in red.

A fork proc process represents a fork that can be perpetually acquired and
released. The actions accept and detach are the duals of acquire and release,
respectively, allowing a process to accept an acquire by a client and to initi-
ate a release by a client, respectively. Process thinking has two shared channel
references as arguments, for the forks to the left and right of the philosopher,
which the process tries to acquire. If the acquire succeeds, the process recurs
as an eating philosopher with two (now) linear channel references of type lfork.
Once a philosopher is done eating, it releases both forks and recurs as a thinking
philosopher. Let’s set a table for three philosopher that share three forks, all
spawned as processes executing in parallel:

f0 ← fork proc ; f1 ← fork proc ; f2 ← fork proc ;
p0 ← thinking ← f0 , f1 ; p1 ← thinking ← f1 , f2 ; p2 ← thinking ← f2 , f0 ;

Manifest Deadlock-Freedom for Shared Session Types 613

fork proc : {sfork}
c fork proc =

c′ accept c ;
c detach c′ ;
c fork proc

thinking : {phil sfork, sfork}
c thinking left , right =

left ′ acquire left ;
right ′ acquire right ;
c eating left ′, right ′ ;

eating : {phil lfork, lfork}
c eating left ′, right ′ =

right release right ′ ;
left release left ′ ;
c thinking left , right

Fig. 1. Dining philosophers in SILLS [2].

Infamously, this configuration may deadlock because of the circular dependency
between the acquires. We can break this cycle by changing the last line to p2 ←
thinking ← f0 , f2 , ensuring that forks are acquired in increasing order.

Perhaps surprisingly, cyclic dependencies between acquire requests are not
the only source of deadlocks. Fig. 2 gives an example, defining the processes
owner and contester , which both have a shared channel reference to a common
resource that can be perpetually acquired and released. Both processes acquire
the shared resource, but additionally exchange the message ping. More pre-
cisely, process owner spawns the process contester , acquires the shared resource,
and only releases the resource after having received the message ping from the
contester . Process contester , on the other hand, first attempts to acquire the
resource and then sends the message ping to the owner. The program deadlocks
if process owner acquires the resource first. In that case, process owner waits
for process contester to send the message ping while process contester waits to
acquire the resource held by process owner . We note that this deadlock arises
in both synchronous and asynchronous semantics.

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping wait c ;

sr release lr ; close o

contester : {⊕{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Fig. 2. Circular dependencies among acquire and synchronization actions.

In this paper, we develop a type system for manifest sharing that rules out
cycles between acquire requests and interdependencies between acquire requests
and synchronization actions, detecting the two kinds of deadlocks explained
above. In our type system, session types not only prescribe when resources must
be acquired and released, but also the range of resources that may be acquired. To
this end, we equip the type system with the notion of a world, an abstract value
at which a process resides, and type processes relative to an acyclic ordering on
worlds, akin to the partial-order based approaches of [34,37]. The contributions
of this paper are:

614 S. Balzer et al.

– a characterization of the possible forms of deadlocks that can arise in shared
session types;

– the introduction of manifest deadlock-freedom, where resource dependencies
are manifest in the type structure via world modalities;

– its elaboration in the programming language SILLS+ , resulting in a type
system, a synchronous operational semantics, and proofs of session fidelity
(preservation) and a strong form of progress that excludes all deadlocks;

– the novel abstraction of green and red arrows to reason about the interde-
pendencies between processes;

– an illustration of the concepts on various examples, including an extensive
comparison with related work.

This paper is structured as follows: Sect. 2 provides a short introduction
to manifest sharing. Sect. 3 develops the type system and dynamics of the lan-
guage SILLS+ . Sect. 4 illustrates the introduced concepts on an extended example.
Sect. 5 discusses the meta-theoretical properties of SILLS+ , emphasizing progress.
Sect. 6 compares with examples of related work and identifies future work. Sect. 7
discusses related work, and Sect. 8 concludes this paper.

2 Manifest Sharing

In the previous section, we have already explored the programmatic workings of
manifest sharing [2], which enforces an acquire-release policy on shared channel
references. In this section, we clarify the typing of shared processes.

A key contribution of manifest sharing is not only to support acquire-release
as a programming primitive but also to make it manifest in the type system.
Generalizing the idea of type stratification [5,47,48], session types are partitioned
into a linear and shared layer with two adjoint modalities connecting the layers:

AS � ↑S
LAL

AL,BL � AL ⊗ BL | ⊕{l : AL} | �{l : AL} | AL � BL | ∃x :AS.BL | Πx :AS.BL | 1 | ↓S
LAS

In the linear layer, we get the standard connectives of intuitionistic linear logic
(AL ⊗BL, AL � BL, ⊕{l : AL}, �{l : AL}, and 1). These connectives are extended
with the modal operator ↓S

LAS, shifting down from the shared to the linear layer.
Similarly, in the shared layer, we have the operator ↑S

LAL, shifting up from the
linear to the shared layer. The former translates into a release (and, dually,
detach), the latter into an acquire (and, dually, accept). As a result, we obtain
a system in which session types prescribe all forms of communication, including
the acquisition and release of shared processes.

Table 1 provides an overview of SILLS’s session types and their operational
reading. Since SILLS is based on an intuitionistic interpretation of linear logic
session types [8], types are expressed from the point of view of the providing pro-
cess with the channel along which the process provides the session behavior being
characterized by its session type. This choice avoids the explicit duality opera-
tion present in original presentations of session types [25,26] and in those based

Manifest Deadlock-Freedom for Shared Session Types 615

Table 1. Session types in SILLS and their operational meaning.

on classical linear logic [55]. Table 1 lists the points of view of the provider and
client of a given connective in the first and second lines, respectively. Moreover,
Table 1 gives for each connective its session type before and after the message
exchange, along with their respective process terms. We can see that the process
terms of a provider and a client for a given connective come in matching pairs,
indicating that the participants’ views of the session change consistently. We
use the subscripts L and S to distinguish between linear and shared channels,
respectively.

We are now able to give the session types of the processes fork proc, thinking ,
and eating defined in the previous section:

lfork = ↓S

L sfork
sfork = ↑S

L lfork
phil = 1

The mutually recursive session types lfork and sfork represent a fork that can per-
petually be acquired and released. We adopt an equi-recursive [14] interpretation
for recursive session types, silently equating a recursive type with its unfolding
and requiring types to be contractive [19].

We briefly discuss the typing and the dynamics of acquire-release. The typing
and the dynamics of the residual linear connectives are standard, and we detail
them in the context of SILLS+ (see Sect. 3). As is usual for an intuitionistic

616 S. Balzer et al.

interpretation, each connective gives rise to a left and a right rule, denoting the
use and provision, respectively, of a session of the given type:

(T-↑S

LR)
Γ ; · � PxL :: (xL : AL)

Γ � xL ← accept xS; PxL :: (xS : ↑S
LAL)

(T-↑S

LL)
Γ, xS : ↑S

LAL; Δ, xL : AL � QxL :: (zL : CL)

Γ, xS : ↑S
LAL; Δ � xL ← acquire xS; QxL :: (zL : CL)

(T-↓S

LR)
Γ � PxS :: (xS : AS)

Γ ; · � xS ← detach xL; PxS :: (xL : ↓S
LAS)

(T-↓S

LL)
Γ, xS : AS; Δ � QxS :: (zL : CL)

Γ ; Δ, xL : ↓S
LAS � xS ← release xL; QxS :: (zL : CL)

The typing judgments Γ � P :: (xS : AS) and Γ ;Δ � P :: (xL : AL) indicate that
process P provides a session of type A along channel x, given the typing of the
channels specified in typing contexts Γ (and Δ). Γ and Δ consist of hypotheses
on the typing of shared and linear channels, respectively, where Γ is a structural
and Δ a linear context. To allow for recursive process definitions, the typing
judgment depends on a signature Σ that is populated with all process defini-
tions prior to type-checking. The adjoint formulation precludes shared processes
from depending on linear channel references [2,47], a restriction motivated from
logic referred to as the independence principle [47]. Thus, when a shared session
accepts an acquire and shifts to linear, it starts with an empty linear context.

Operationally, the dynamics of SILLS is captured by multiset rewriting
rules [12], which denote computation in terms of state transitions between con-
figurations of processes. Multiset rewriting rules are local in that they only men-
tion the parts of a configuration they rewrite. For acquire-release we have the
following:

(D-↑S
L)

proc(aS, xL ← accept aS ;PxL), proc(cL, xL ← acquire aS ;QxL)
−→ proc(aL, [aL/xL]PxL), proc(cL, [aL/xL]QxL), unavail(aS)

(D-↓S
L)

proc(aL, xS ← detach aL ;PxS), proc(cL, xS ← release aL ;QxS), unavail(aS)
−→ proc(aS, [aS/xS]PxS), proc(cL, [aS/xS]QxS)

Configuration states are defined by the predicates proc(cm , P) and unavail(aS).
The former denotes a running process with process term P providing along
channel cm , the latter acts as a placeholder for a shared process providing along
channel aS that is currently not available. The above rule exploits the invariant
that a process’ providing channel a can appear at one of two modes, a linear
one, aL, and a shared one, aS. While the process (i.e. the session) is linear, it
provides along aL, while it is shared, along aS. When a process shifts between
modes, it switches between the two modes of its offering channel. The channel at
the appropriate mode is substituted for the variables occurring in process terms.

3 Manifest Deadlock-Freedom

In this section, we introduce our language SILLS+ , a session-typed language
that supports sharing without deadlock. We focus on SILLS+ ’s type system and
dynamics in this section and discuss its meta-theoretical properties in Sect. 5.

Manifest Deadlock-Freedom for Shared Session Types 617

3.1 Competition and Collaboration

The introduction of acquire-release, to ensure that the multiple clients of a shared
process interact with the process in mutual exclusion from each other, gives rise
to an obvious source of deadlocks, as acquire-release effectively amounts to a
locking discipline. The typical approach to prevent deadlocks in that case is to
impose a partial order on the resources and to “lock-up”, i.e., to lock the resources
in ascending order. We adopted this strategy in Sect. 1 (Fig. 1) to break the cyclic
dependencies among the acquires in the dining philosophers.

In Sect. 1, however, we also considered another example (Fig. 2) and discov-
ered that cyclic acquisitions are not the only source of deadlocks, but deadlocks
can also arise from interdependent acquisitions and synchronizations. In that
example, we can prevent the deadlock by moving the acquire past the synchro-
nization, in either of the two processes. Whereas in a purely linear session-typed
system the sequencing of actions within a process do not affect other processes,
the relative placement of acquire requests and synchronizations become relevant
in a shared session-typed system.

Based on this observation, we can divide the processes in a shared-session
discipline into competitors and collaborators. The former compete for a set of
resources, whereas the latter do not overlap in the set of resources they acquire.
For example, in the dining philosophers (Fig. 1), the philosophers p0 , p1 , and p2

compete with each other for the set of forks f0 , f1 , and f2 , whereas the process
that spawns the philosophers and the forks collaborates with either of them.

Transferring this idea to the process graph that emerges at run-time, we note
that competitors are siblings whereas collaborators stand in a parent-descendant
relationship. We illustrate this outcome on Fig. 3 that shows a possible run-
time process graph for the dining philosophers. Linear processes are depicted as
solid black circles with a white identifier and shared processes are depicted as
dotted filled violet circles with a black identifier. Linear channels are depicted as
black lines, shared channel references as dotted violet lines with the arrow head
pointing to the shared process being acquired1. The identifiers P0, P1, and P2

stand for the three philosophers, F0, F1, and F2 for the three forks, and T for
the process that sets the table. The current run-time graph depicts the scenario
in which P1 is eating, while the other two philosophers are still thinking.

Embedded in the graph is a tree that arises from the linear processes and the
linear channels connecting them. For any two nodes in this tree, the parent node
denotes the client process and the child node the providing process. We note
that the independence principle (see Sect. 2), which precludes shared processes
from depending on linear channel references, guarantees that there exists exactly
one tree in the process graph, with the linear main process as its root. The shape
of the tree changes when new processes are spawned, linear channels exchanged
(through ⊗ and �), or shared processes acquired. For example, process P2 could
acquire the shared fork F0, which then becomes a linear child process of P2,
should the acquire succeed. As indicated by the shared channel references, the

1 We have made sure to make the different concepts distinguishable in greyscale mode.

618 S. Balzer et al.

P0 P1 P2

T

F1 F2

F0

Legend:

linear process (child: provider, parent: client)

shared process

linear channel

shared channel reference

Fig. 3. Run-time process graph for dining philosophers (see Fig. 1).

sibling nodes P0, P1, and P2 compete with each other for the nodes F0, F1, and
F2, whereas the node T does not compete for any of the resources acquired by
its descendants (including F1 and F2). Our type system enforces this paradigm,
as we discuss in the next section.

3.2 Type System

Invariants. Having identified the notions of collaborators and competitors, our
type system must guarantee: (i) that collaborators acquire mutually disjoint sets
of resources; (ii) that competitors employ a locking-up strategy for the resources
they share; and, (iii) that competitors have released all acquired resources when
synchronizing with other competitors. Invariant (ii) rules out cyclic acquisitions
and invariants (i) and (iii) combined rule out interdependent acquisitions and
synchronizations.

To express the high-level invariants above in our type system, we introduce
the notion of a world – an abstract value that is equipped with a partial order –
and associate such a world with every process. Programmers can create worlds,
indicate the world at which a process resides at spawn time, and define an order
on worlds. Moreover, we associate with each process a range of worlds that
indicates the worlds of resources that the process may acquire. As a result, we
obtain the following typing judgments:

Ψ ; Γ � P :: (xS : AS[ωk �ωn
ωl

]) (where Ψ+ irreflexive)

Ψ ; Γ ; Φ; Δ � P :: (xL : AL[ωk �ωn
ωl

]) (where Ψ+ irreflexive)

The typing judgments reveal that we impose worlds at the judgmental level,
resulting in a hybrid system, in which the adjoint modalities for acquire-release
are complemented with world modalities that occur as syntactic objects in propo-
sitions [7]. We use the notation xm : Am[ωk �ωn

ωl
] (where m stands for S or L)

to associate worlds ωk, ωl, and ωn with a process that offers a session of type
Am along channel x. World ωk denotes the world at which the process resides.

Manifest Deadlock-Freedom for Shared Session Types 619

We refer to this world as the self world. Worlds ωl and ωn indicate the range of
worlds of resources that the process may acquire, with ωl denoting the minimal
(min) world in this range and ωn the maximal (max) one.

Process terms are typed relative to the order specified in Ψ and the contexts
Γ , Φ, and Δ. As in Sect. 2, Γ is a structural context consisting of hypotheses
on the typing of variables bound to shared channel references, augmented with
world annotations. We find it necessary to split the linear context “Δ” from
Sect. 2 into the two disjoint contexts Φ and Δ, allowing us to separate channels
that are possibly aliased (due to sharing) from those that are not, respectively.
Both Φ and Δ consist of hypotheses on the typing of variables that are bound
to linear channels, augmented with world annotations. Ψ is presupposed to be
acyclic and defined as: Ψ � · | Ψ ′, ωk < ωl | Ψ ′, ωo , where ω stands for a
concrete world w or a world variable δ. We allow Ψ to contain single worlds,
to support singletons as well as to accommodate world creation prior to order
declaration. We define the transitive closure Ψ+, yielding a strict partial order,
and the reflexive transitive closure Ψ∗, yielding a partial order.

The high-level invariants (i), (ii), and (iii) identified earlier naturally tran-
scribe into the following invariants, which we impose on the typing judgments
above. We use the notation 〈xm〉;P to denote a process term that currently
executes an action along channel xm.

1. min(parent) ≤ self(acquired child) ≤ max(parent):
∀yL : BL[ωo�ωr

ωp
] ∈ Φ : Ψ∗ � ωl ≤ ωo ≤ ωn

2. max(parent) < min(child):
∀yL : BL[ωo�ωr

ωp
] ∈ Δ ∪ Φ : Ψ+ � ωn < ωp

3. If Ψ ; Γ, xS : A[ωt �ωv
ωu

]; Φ; Δ � xL ← acquire xS; QxS
:: (zL : CL[ωk �ωn

ωl
]), then

∀yL : BL[ωo�ωr
ωp

] ∈ Φ : Ψ+ � ωo < ωt.
4. If Ψ ; Γ ; Φ; Δ � 〈xm〉;P :: (xL : AL[ωk �ωn

ωl
]), then Φ = (·).

Invariants 1 and 2 ensure that, for any node in the tree, the acquired resources
reside at smaller worlds than those acquired by any descendant. As a result, the
two invariants guarantee high-level invariant (i). Invariant 3, on the other hand,
imposes a lock-up strategy on acquires and thus guarantees high-level invariant
(ii). To guarantee high-level invariant (iii), we impose Invariant 4, which forces a
process to release any acquired resources before communicating along its offering
channel. Since sibling nodes cannot be directly connected by a linear channel,
the only way for them to synchronize is through a common parent. Finally, to
guarantee that world annotations are internally consistent, we require for each
annotation [ωk �ωn

ωl
] that ωk < ωl ≤ ωn.

Rules. We now present select process typing rules, a complete listing is provided
in the companion technical report [4]. The only new rules with respect to the
language SILLS [2] are those pertaining to world creation and order determina-
tion. These are extra-logical judgmental rules. We allow both linear and shared
processes to create and relate worlds. Rules (T-NewL) and (T-NewS) create a
new world w and make it available to the continuation Qw. Rules (T-OrdL) and
(T-OrdS) relate two existing worlds, while preserving acyclicity of the order.

620 S. Balzer et al.

Ψ, w; Γ ; Φ; Δ 	 Qw :: (xL : AL[ωm
ωv
ωu

])

Ψ ; Γ ; Φ; Δ 	 w ← new world; Qw :: (xL : AL[ωm
ωv
ωu

])
(T-NewL)

Ψ, w; Γ 	 Qw :: (xS : AS[ωm
ωv
ωu

])

Ψ ; Γ 	 w ← new world; Qw :: (xS : AS[ωm
ωv
ωu

])
(T-NewS)

ωp, ωr ∈ Ψ (Ψ, ωp < ωr)
+ irreflexive

Ψ, ωp < ωr; Γ ; Φ; Δ 	 Q :: (xL : AL[ωm
ωv
ωu

])

Ψ ; Γ ; Φ; Δ 	 ωp < ωr; Q :: (xL : AL[ωm
ωv
ωu

])
(T-OrdL)

ωp, ωr ∈ Ψ (Ψ, ωp < ωr)
+ irreflexive

Ψ, ωp < ωr; Γ 	 Q :: (xS : AS[ωm
ωv
ωu

])

Ψ ; Γ 	 ωp < ωr; Q :: (xS : AS[ωm
ωv
ωu

])
(T-OrdS)

We now consider the typing rule for acquire, which must explicitly enforce the
various low-level invariants above. Since an acquire results in the addition of a
new child node to the executing process, the rule can interfere with Invariants 1
and 2. The first two premises of the rule ensure that the two invariants are
preserved. Moreover, the rule has to ensure that the acquiring process is locking-
up (Invariant 3), which is achieved by the third premise.

Ψ∗ 	 ωk ≤ ωm ≤ ωn Ψ+ 	 ωn < ωu ∀yL : BL[ωl
ωr
ωp

] ∈ Φ : ωl < ωm

Ψ ; Γ, xS : ↑S
LAL[ωm
ωv

ωu
]; Φ, xL : AL[ωm
ωv

ωu
]; Δ 	 QxL :: (zL : CL[ωj
ωn

ωk
])

Ψ ; Γ, xS : ↑S
LAL[ωm
ωv

ωu
]; Φ; Δ 	 xL ← acquire xS ; QxL :: (zL : CL[ωj
ωn

ωk
])

(T-↑S
LL)

The remaining shift rules are actually unchanged with respect to SILLS, mod-
ulo the world annotations. In particular, low-level Invariant 4 is already satisfied
because the conclusion of rule (T-↑S

LR) does not have a context Φ and because
the independence principle forces Φ to be empty in rule (T-↓S

LR).

Ψ ; Γ ; · ; · 	 PxL :: (xL : AL[ωm
ωv
ωu

])

Ψ ; Γ 	 xL ← accept xS ; PxL :: (xS : ↑S
LAL[ωm
ωv

ωu
])

(T-↑S
LR)

Ψ ; Γ, xS : AS[ωm
ωv
ωu

]; Φ; Δ 	 QxS :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ, xL : ↓S
LAS[ωm
ωv

ωu
]; Δ 	 xS ← release xL ; QxS :: (zL : CL[ωj
ωn

ωk
])

(T-↓S
LL)

Ψ ; Γ 	 PxS :: (xS : AS[ωm
ωv
ωu

])

Ψ ; Γ ; · ; · 	 xS ← detach xL ; PxS :: (xL : ↓S
LAS[ωm
ωv

ωu
])

(T-↓S
LR)

We now consider the linear connectives, starting with 1. Rule (T-1L) reveals
that only processes that have never been acquired may be terminated. This
restriction is important to guarantee progress because existing clients of a shared
process may wait indefinitely otherwise. We impose the restriction as a well-
formedness condition on a session type, giving rise to a strictly equi-synchronizing
session type. The notion of an equi-synchronizing session type [2] has been
defined for SILLS and guarantees that a process that has been acquired at a
type AS is released back to the type AS, should it ever be released. A strictly
equi-synchronizing session type additionally requires that an acquired resource
must be released. The corresponding rules can be found in [4]. Linearity enforces
Invariant 4 in rule (T-1R), making sure that no linear channels are left behind.

Manifest Deadlock-Freedom for Shared Session Types 621

Ψ ; Γ ; Φ; Δ 	 Q :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : 1[ωm
ωv
ωu

] 	 wait xL ; Q :: (zL : CL[ωj
ωn
ωk

])
(T-1L)

Ψ ; Γ ; · ; · 	 close xL :: (xL : 1[ωm
ωv
ωu

])
(T-1R)

Next, we consider internal and external choice. Since internal and external
choice cannot alter the linear process tree of a process graph, the rules are very
similar to the ones in SILLS. The only differences are that we get two left rules
for each connective and that the Φ-context of each right rule must be empty to
satisfy Invariant 4. The former is merely due to the tracking of possibly aliased
sessions in the Φ context. We only list rules for internal choice, those for external
choice are dual and can be found in [4].

(∀i) Ψ ; Γ ; Φ; Δ, xL : ALi [ωm
ωv
ωu

] 	 Qi :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : ⊕{l : AL}[ωm
ωv
ωu

] 	 case xL of l ⇒ Q :: (zL : CL[ωj
ωn
ωk

])
(T-⊕L1)

(∀i) Ψ ; Γ ; Φ, xL : ALi [ωm
ωv
ωu

]; Δ 	 Qi :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ, xL : ⊕{l : AL}[ωm
ωv
ωu

]; Δ 	 case xL of l ⇒ Q :: (zL : CL[ωj
ωn
ωk

])
(T-⊕L2)

Ψ ; Γ ; · ; Δ 	 P :: (xL : AL h [ωm
ωv
ωu

])

Ψ ; Γ ; · ; Δ 	 xL.lh ; P :: (xL : ⊕{l : AL}[ωm
ωv
ωu

])
(T-⊕R)

More interesting are linear channel output and input, since these alter the
linear process tree of a process graph. Moreover, additional world annotations
are needed to indicate the worlds of the channel that is exchanged. For the
latter we use the notation @ωl �ωr

ωp
, indicating that the exchanged channel has

the worlds ωl, ωp, and ωr for self, min, and max, respectively. To account for
induced changes in the process graph, the rules that type an input of a linear
channel must guard against any disturbance of Invariants 1 and 2. Because the
two invariants guarantee that parents do not overlap with their descendants in
terms of acquired resources, they prevent any exchange of acquired channels.
We thus restrict ⊗ and � to the exchange of channels that have not yet been
acquired. This is not a limitation since, as we will see below, shared channel
output and input are unrestricted.

Even with the above restriction in place, we still have to make sure that a
received channel satisfies Invariant 2. If we were to state a corresponding premise
on the receiving rules, invertibility of the rules would be disturbed. To uphold
invertibility, we impose a well-formedness condition on session types that ensures
for a session of type AL@ωl �ωr

ωp
⊗BL[ωm �ωv

ωu
] that ωv < ωp and, analogously, for

a session of type AL@ωl �ωr
ωp

� BL[ωm �ωv
ωu

] that ωv < ωp. Session types are
checked to be well-formed upon process definition. Given type well-formedness,
we obtain the following rules for �, noting that the right rule enforces Invariant 4
by requiring an empty Φ-context. The rules for ⊗ are dual.

622 S. Balzer et al.

Ψ ; Γ ; Φ; Δ, xL : BL[ωm�ωv
ωu

] � Q :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : AL@ωl�ωr
ωp

� BL[ωm�ωv
ωu

], yL : AL[ωl�ωr
ωp

] � send xL yL ; Q :: (zL : CL[ωj �ωn
ωk

])
(T-�L1)

Ψ ; Γ ; Φ, xL : BL[ωm�ωv
ωu

]; Δ � Q :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ; Φ, xL : AL@ωl�ωr
ωp

� BL[ωm�ωv
ωu

]; Δ, yL : AL[ωl�ωr
ωp

] � send xL yL ; Q :: (zL : CL[ωj �ωn
ωk

])
(T-�L2)

Ψ ; Γ ; · ; Δ, yL : AL[ωl�ωr
ωp

] � PyL
:: (xL : BL[ωm�ωv

ωu
])

Ψ ; Γ ; · ; Δ � yL ← recv xL ; PyL
:: (xL : AL@ωl�ωr

ωp
� BL[ωm�ωv

ωu
])

(T-�R)

Since there are no invariants imposed on the shared context Γ , the rules
for shared channel output and input are identical to those in SILLS. The only
differences are that we have two left rules and that the Φ-context of the right rule
must be empty to satisfy Invariant 4. The former is merely due to the tracking
of possibly aliased sessions in the Φ context.

Ψ ; Γ, yS : AS[ωl�ωr
ωp]; Φ; Δ, xL : BL[ωm�ωv

ωu] � QyS :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : ∃x:AS@ωl�ωr
ωp . BL[ωm�ωv

ωu] � yS ← recv xL ; QyS :: (zL : CL[ωj �ωn
ωk

])
(T-∃L1)

Ψ ; Γ, yS : AS[ωl�ωr
ωp]; Φ, xL : BL[ωm�ωv

ωu]; Δ � QyS :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ; Φ, xL : ∃x:AS@ωl�ωr
ωp . BL[ωm�ωv

ωu]; Δ � yS ← recv xL ; QyS :: (zL : CL[ωj �ωn
ωk

])
(T-∃L2)

Ψ ; Γ, yS : AS[ωl�ωr
ωp]; · ; Δ � P :: (xL : BL[ωm�ωv

ωu])

Ψ ; Γ, yS : AS[ωl�ωr
ωp]; · ; Δ � send xL yS ; P :: (xL : ∃x:AS@ωl�ωr

ωp . BL[ωm�ωv
ωu])

(T-∃R)

We finally consider the rules for forwarding and spawning. We allow a shared
forward between processes that offer the same session at the same worlds.
Because forwards have to be world-invariant, however, no well-typed program
could ever have a linear forward. The process being forwarded to must be in
either of the contexts Φ or Δ, and thus satisfies Invariant 2, making it impossible
for the world annotations of the forwarder and forwardee to match. We omit
linear forwarding and discuss possible future extensions in Sect. 6.

Ψ ; Γ, yS : AS[ωj
ωn
ωk

] 	 fwd xS yS :: (xS : AS[ωj
ωn
ωk

])
(T-IdS)

The rules for spawning depend on the possible modes of the spawning
and spawned processes: (T-SpawnLL) specifies how a linear process can spawn
another linear process; (T-SpawnSS) specifies how a shared processes can spawn
another shared process. The rules are checked relative to a process definition
found in the signature Σ and to a world substitution mapping γ : |Ψ | → |Ψ ′|,
such that for each δ ∈ Ψ ′ we have Ψ � γ(δ), where |Ψ | denotes the field of
Ψ (i.e., the union of its domain and range). As usual, we lift substitution to
types γ̂(Am), contexts γ̂(Γ), and orders γ̂(Ψ). Both rules ensure that, given the
mapping γ, the order Ψ of the spawning process entails the one of the process
definition (Ψ � γ̂(Ψ ′)). The linear spawn rule (T-SpawnLL) further enforces
Invariant 2 for the spawned child. We note that the spawned child enters the
linear context Δ in the spawning process’ continuation since no aliases to such
a process can exist at this point.

Manifest Deadlock-Freedom for Shared Session Types 623

Δ1 = yL : BL[ωm�ωv
ωu] Φ1 = ỹL : B̃L[ω̃m�ω̃v

ω̃u
] Γ1 = zS : CS[ωl�ωr

ωp]

(Ψ ′ � x′
L : A′

L[δj �δn
δk

] ← XL ← Δ′, Φ′, Γ ′ = Px′
L

,dom(Δ′),dom(Φ′),dom(Γ ′),Ψ′′) ∈ Σ

γ̂(A′
L[δj �δn

δk
]) = AL[ωj �ωn

ωk
] γ̂(Δ′) = Δ1 γ̂(Φ′) = Φ1 γ̂(Γ ′) = Γ1 Ψ � γ̂(Ψ ′)

Ψ+ � ωt < ωk

Ψ ; Γ1, Γ2; Φ2; Δ2, xL : AL[ωj �ωn
ωk

] � QxL
:: (z′′

L : DL[ωi�ωt
ωq])

Ψ ; Γ1, Γ2; Φ1, Φ2; Δ1, Δ2 � xL : AL[ωj �ωn
ωk

] ← XL ← yL, ỹL, zS ; QxL
:: (z′′

L : DL[ωi�ωt
ωq])

(T-SpawnLL)

Γ1 = zS : CS[ωl�ωr
ωp] (Ψ ′ � x′

S : A′
S[δj �δn

δk
] ← XS ← Γ ′ = Px′

S
,dom(Γ ′),Ψ′′) ∈ Σ

γ̂(A′
S[δj �δn

δk
]) = AS[ωj �ωn

ωk
] γ̂(Γ ′) = Γ1 Ψ � γ̂(Ψ ′)

Ψ ; Γ1, Γ2, xS : AS[ωj �ωn
ωk

] � QxS
:: (z′′

S : DS[ωi�ωt
ωq])

Ψ ; Γ1, Γ2 � xS : AS[ωj �ωn
ωk

] ← XS ← zS ; QxS
:: (z′′

S : DS[ωi�ωt
ωq])

(T-SpawnSS)

In the companion technical report [4], we provide a variant of rule
(T-SpawnLL) for the case of a linear recursive tail call. Without linear forward-
ing, a linear tail call can no longer be implicitly “de-sugared” into a spawn and
a linear forward [2,22,52], but must be accounted for explicitly. In the report,
we also provide the rules for checking process definitions. Those rules make sure
that the process’ world order is acyclic, that the types of the providing session
and argument sessions are well-formed, and that the process satisfies Invariants 1
and 2.

3.3 Dining Philosophers in SILLS+

Having introduced our type system, we revisit the dining philosophers from
Sect. 1 and show how to program the example in SILLS+ , ensuring that the
program will run without deadlocks. The code is given in Fig. 4. We note the
world annotations in the signature of the process definitions. For instance,

thinking : {δ0 < δ1, δ1 < δ2, δ2 < δ3 � phil[δ0�δ2
δ1

] ← sfork[δ1�δ3
δ3

], sfork[δ2�δ3
δ3

]; ·; ·}

indicates that, given the order δ0 < δ1 < δ2 < δ3, process thinking provides
a session of type phil[δ0 �δ2

δ1
] and uses two shared channel references of type

sfork[δ1 �δ3
δ3

] and sfork[δ2 �δ3
δ3

]. The two · signify that neither acquired nor linear
channel references are given as arguments. The signature indicates that the two
shared fork references reside at different worlds, such that the world of the first
one is smaller than the one of the second.

Let’s briefly convince ourselves that the two acquires in process thinking in
Fig. 4 are type-correct. For each acquire we have to show that: the world of the
resource to be acquired is within the acquiring process’ range; the max of the
acquiring process is smaller than the min of the acquired resource; and, that
the self of the acquired resource is larger than those of all already acquired
resources. We can convince ourselves that all those conditions are readily met.

624 S. Balzer et al.

Fig. 4. Deadlock-free version of dining philosophers in SILLS+ .

We note, however, that if we were to swap the two acquires, the program would
not type-check.

Let us once more set the table for three philosophers and three forks. We
execute this code in a process with world annotations [δa�δb

δb
] such that δa < δb.

We first create new worlds and define their order:

w1 ← new world; w2 ← new world; w3 ← new world; w4 ← new world;
δa < w1; δa < w2; δb < w1; w1 < w2; w1 < w3; w1 < w4; w2 < w3; w2 < w4; w3 < w4;

We then spawn the forks, each residing at a different world, such that the max
world of a fork is higher than the self of the highest fork, ensuring Invariant 2
for the philosopher processes that we spawn afterwards:

f1 : sfork[w1�w4
w4

] ← fork proc ; f2 : sfork[w2�w4
w4

] ← fork proc ;
f3 : sfork[w3�w4

w4
] ← fork proc ;

When we spawn the philosophers, we ensure that P0 is going to pick up fork F1

and then F2, P1 is going to pick up F2 and then F3, and P2 is going to pick up
F1 and then F3.

p0 : phil[δa
w2
w1

] ← thinking ← ·; ·; f1 , f2 ; p1 : phil[δa
w3
w2

] ← thinking ← ·; ·; f2 , f3 ;
p2 : phil[δa
w3

w1
] ← thinking ← ·; ·; f1 , f3 ;

We note that the deadlocking spawn

p2 : phil[δa�w3
w1

] ← thinking ← ·; ·; f3 , f1 ;

is type-incorrect since we would substitute both w1 and w3 for δ1 and w3 and w1

for δ2, which violates the ordering constraints put in place by typing.

Manifest Deadlock-Freedom for Shared Session Types 625

3.4 Dynamics

We now give the dynamics of SILLS+ . Our current system is based on a syn-
chronous dynamics. While this choice is more conservative, it allows us to narrow
the complexity of the problem at hand.

As in SILLS, we use multiset rewriting rules [12] to capture the dynam-
ics of SILLS+ (see Sect. 2). Multiset rewriting rules represent computation
in terms of local state transitions between configurations of processes, only
mentioning the parts of a configuration they rewrite. We use the predicates
proc(am , wa1 �wa3

wa2
, Pam

) and unavail(aS, wa1 �wa3
wa2

) to define the states of a con-
figuration (see Sect. 5.1). The former denotes a process executing term P that
provides along channel am at mode m with worlds wa1 , wa2 , and wa3 for self,
min, and max, respectively. The latter acts as a placeholder for a shared process
providing along channel aS with worlds wa1 , wa2 , and wa3 for self, min, and max,
respectively, that is currently unavailable. We note that since worlds are also
run-time artifacts, they must occur as part of the state-defining predicates.

Fig. 5 lists selected rules of the dynamics. Since the rules remain largely the
same as those of SILLS, apart from the world annotations that are “threaded
through” unchanged, we only discuss the rules that actually differ from the
SILLS rules. The interested reader can find the remaining rules in the companion
technical report [4].

(D-SpawnLL)
proc(aL, wa1

wa3
wa2

, xL : AL[wb1

wb3
wb2

] XL cL, c̃L, dS ; QxL),
!def(Ψ ′ � x ′

L : A′
L[δj

δn
δk

] XL Δ′,Φ′,Γ ′ = Px ′
L
,dom(Δ′),dom(Φ′),dom(Γ ′),Ψ′′)

proc(bL, wb1

wb3
wb2

, [bL/x ′
L , cL/dom(Δ′), c̃L/dom(Φ′), dS/dom(Γ ′)]γ̂(Px ′

L
,dom(Δ′),dom(Φ′),dom(Γ ′),Ψ′′)),

proc(aL, wa1

wa3
wa2

, [bL/xL]QxL),
unavail(bS, wb1

wb3
wb2

) (b fresh)

(D-New)
proc(a, wa1

wa3
wa2

, w new world; Qw) proc(a, wa1

wa3
wa2

, Qw) (w fresh)

(D-Ord)
proc(a, wa1

wa3
wa2

, w < w′; Q) proc(a, wa1

wa3
wa2

, Q)

Fig. 5. Selected multiset rewriting rules of SILLS+ .

Noteworthy are the rules D-New and D-Ord for creating and relating
worlds, respectively. Rule D-New creates a fresh world, which will be glob-
ally available in the configuration. Rule D-Ord, on the other hand, updates the
configuration’s order with the pair w < w′. Rule D-SpawnLL, lastly, substitutes
actual worlds for world variables in the body of the spawned process, using the
substitution mapping γ defined earlier. It relies on the existence of a correspond-
ing definition predicate for each process definition contained in the signature Σ.
We note that the substitution γ in rule D-SpawnLL instantiates the appropriate
world variables in the spawned process P .

626 S. Balzer et al.

4 Extended Example: An Imperative Shared Queue

We now develop a typical imperative-style implementation of a queue that uses
a list data structure internally to store the queue’s elements and has shared
references to the front and the back of the list for concurrent dequeueing and
enqueueing, respectively. The session types for the queue and the list are2

queue AS = ↑S

L�{enq : Πx:AS. ↓S

Lqueue AS,
deq : ⊕{none : ↓S

Lqueue AS, some : ∃x:AS. ↓S

Lqueue AS}}

list AS = ↑S

L�{ins : Πx:AS.∃y:list AS. ↓S

Llist AS,
del : ⊕{none : ↓S

Llist AS, some : ∃x:AS. ↓S

Llist AS}
The list is implemented in terms of processes empty and elem, denoting the

empty list and a cons cell, respectively. We show the more interesting case of a
cons cell (Fig. 6). The queue is defined by processes head (Fig. 7) and queue proc
(Fig. 8), the latter being the queue’s interface to its clients.

Fig. 6. Imperative queue – elem process.

We can now define a client (Fig. 8) for the queue, assuming existence of a
corresponding shared session type item and a process item proc offering a session
of type item[δ3�δ4

δ4
]. The client instantiates the queue at world δb, allowing it

to acquire resources at world w1, which is exactly the world at which process
queue proc instantiates the list. Given that the client itself resides at world δa,
which is smaller than the queue’s world δb, the client is allowed to acquire the
queue, which in turn will acquire the list to satisfy any requests by the client.

The example showcases a paradigmatic use of several collaborators, where
collaborators can hold resources while they “talk down” in the tree. In particular,
as illustrated in Fig. 9, the clients C1, C2, and C3 compete for resources at
world δb, i.e., the queue Q. On the other hand, a client Ci collaborates with the
queue Q, the list elements Li, and the items Ii, since they do not overlap in
2 We adopt polymorphism for the example without formal treatment since it is orthog-

onal and has been studied for session types in [23,46].

Manifest Deadlock-Freedom for Shared Session Types 627

Fig. 7. Imperative queue – head process.

Fig. 8. Imperative queue – queue proc process and client process.

the set of resources they may acquire: a client acquires resources at δb, a queue
resources at w1, a list resources at w2, and an item resources at w4, and we have
δa < δb < w1 < w2 < w3 < w4. We note in particular that the setup prevents a
list element from acquiring its successor, forcing linear access through the queue.

5 Semantics

In this section, we discuss the meta-theoretical properties of SILLS+ , focusing on
deadlock-freedom. The companion technical report [4] provides further details.

628 S. Balzer et al.

Fig. 9. Run-time process graph for imperative queue (see Fig. 3 for legend).

5.1 Configuration Typing and Preservation

Given the hierarchy between mode S and L and the fact that shared processes
cannot depend on linear processes, we divide a configuration into a shared part
Λ and a linear part Θ. We use the typing judgment Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ to
type configurations. The judgment expresses that a well-formed configuration
Λ;Θ provides the shared channels in Γ and the linear channels in Φ and Δ.
A configuration is type-checked relative to all shared channel references and a
global order Ψ . While type-checking is compositional insofar as each process
definition can be type-checked separately, solely relying on the process’ local
Ψ (and Γ), at run-time, the entire order that a configuration relies upon is
considered. We give the configuration typing rules in Fig. 10.

Our progress theorem crucially depends on the guarantee that the Invari-
ants 1 and 2 from Sect. 3 hold for every linear process in a configura-
tion’s tree. This is expressed by the premises Inv1(proc(aL, wa1 �wa3

wa2
, PaL

)) and
Inv2(proc(aL, wa1 �wa3

wa2
, PaL

)) in rule (T-Θ2), based on the Definitions 1 and 2
below that restate Invariants 1 and 2 for an entire configuration. We note that
Invariant 2 is based on the set of all transitive children (i.e., descendants) of a
process. We formally define the notion of a descendant inductively over a well-
typed linear configuration. The interested reader can find the definition in the
companion technical report [4].

Invariant 1 (min(parent) ≤ self(acquired child) ≤ max(parent)). If Ψ ; Γ � Θ ::
Φ,Δ and for any proc(aL, wa1 �wa3

wa2
, PaL

) ∈ Θ such that Ψ ; Γ ; Φ1; Δ1 � PaL
:: (aL :

AL[wa1 �wa3
wa2

]), Inv1(proc(aL, wa1 �wa3
wa2

, PaL
)) holds if an only if for every acquired

resource bL : BL[wb1 �wb3
wb2

] ∈ Φ1 it holds that Ψ∗ � wa2 ≤ wb1 ≤ wa3 . Moreover,
if PaL

= xL ← acquire cS ;QxL
, for a (cS : ↑S

LCL[wc1 �wc3
wc2

]) ∈ Γ , then, for every
acquired resource bL : BL[wb1 �wb3

wb2
] ∈ Φ1, it holds that Ψ+ � wb1 < wc1 and that

Ψ∗ � wa2 ≤ wc1 ≤ wa3 .

Manifest Deadlock-Freedom for Shared Session Types 629

Fig. 10. Configuration typing

Invariant 2 (max(parent) < minima(descendants)). If Ψ ; Γ � Θ :: Φ,Δ
and for any proc(aL, wa1 �wa3

wa2
, PaL

) ∈ Θ and that process’ descendants (Ψ ; Γ �
Θ :: Φ,Δ) � aL = (Φ′,Δ′), Inv2(proc(aL, wa1 �wa3

wa2
, PaL

)) holds iff for every
descendant bL : BL[wb1 �wb3

wb2
] ∈ (Φ′,Δ′) it holds that Ψ+ � wa3 < wb2 .

Our preservation theorem states that Invariants 1 and 2 are preserved for
every linear process in the configuration along transitions. Moreover, the theorem
expresses that the types of the providing linear channels Φ and Δ are maintained
along transitions and that new shared channels and worlds may be allocated.
The proof relies, in particular, on session types being strictly equi-synchronizing,
on a process’ type well-formedness and assurance that the process’ min world is
less than or equal to its max world.

Theorem 5.1 (Preservation). If Ψ ; Γ � Λ; Θ :: Γ ; Φ,Δ and Λ;Θ −→ Λ′;Θ′,
then Ψ ′; Γ ′ � Λ′; Θ′ :: Γ ′; Φ,Δ, for some Λ′, Θ′, Ψ ′, and Γ ′.

5.2 Progress

In our development so far we have distilled the two scenarios of interdepen-
dencies between processes that can lead to deadlocks: cyclic acquisitions and
interdependent acquisitions and synchronizations. This has lead to the develop-
ment of a type system that ingrains the notions of competitors and collaborators,
such that the former compete for a set of resources whereas the latter do not
overlap in the set of resources they acquire. Our type system then ties these
notions to a configuration’s linear process tree such that collaborators stand in a
parent-descendant relationship to each other and competitors in a sibling/cousin
relationship. In this section, we prove that this orchestration is sufficient to rule
out any of the aforementioned interdependencies.

630 S. Balzer et al.

To this end we introduce the notions of red and green arrows that allow us
to reason about process interdependencies in a configuration’s tree. A red arrow
points from a linear proc(aL, wa1 �wa3

wa2
, Q) to a linear proc(bL, wb1 �wb3

wb2
, P), if the

former is attempting to acquire a resource held by the latter and, consequently, is
waiting for the latter to release that resource. A green arrow points from a linear
proc(aL, wa1 �wa3

wa2
, Q) to a linear proc(bL, wb1 �wb3

wb2
, P), if the former is waiting to

synchronize with the latter. We define these arrows formally as follows:

Definition 5.2 (Acquire Dependency — “Red Arrow”). Given a well-
formed and well-typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ, there exists a waiting-
due-to-acquire relation A(Θ) among linear processes in Θ at run-time such that

proc(aL, wa1 �wa3
wa2

, xL ← acquire cS; QxL
) <A proc(bL, wb1 �wb3

wb2
, P〈cL〉)

where P 〈cL〉 denotes a process term with an occurrence of channel cL.

Definition 5.3 (Synchronization Dependency — “Green Arrow”).
Given a well-formed and well-typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ, there
exists a waiting-due-to-synchronization relation S(Θ) among linear processes in
Θ at run-time such that

proc(aL, wa1 �wa3
wa2

, 〈bL〉;Q) <S proc(bL, wb1 �wb3
wb2

, 〈¬bL〉;P)

proc(bL, wb1 �wb3
wb2

, 〈bL〉;P) <S proc(aL, wa1 �wa3
wa2

, 〈¬bL〉;Q〈bL〉)
where P 〈aL〉 denotes a process term with an occurrence of channel bL, 〈a〉; P a
process term that currently executes an action along channel a, and 〈¬a〉; P a
process term whose currently executing action does not involve the channel a.

It may be helpful to consult Fig. 3 at this point and note the semantic dif-
ference between the violet arrows in that figure and the red arrows discussed
here. Whereas violet arrows point from the acquiring process to the resource
being acquired, red arrows point from the acquiring process to the process that
is holding the resource. Thus, violet arrows can go out of the tree, while red
arrows stay within. Given the definitions of red and green arrows, we can define
the relation W(Θ) on the configuration’s tree, which contains all process pairs
that are in some way waiting for each other:

Definition 5.4 (Waiting Dependency). Given a well-formed and well-
typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ, there exists a waiting relation
W(Θ) among processes in Θ at run-time such that proc(aL, wa1 �wa3

wa2
, P) <W

proc(bL, wb1 �wb3
wb2

, Q),

– if proc(aL, wa1 �wa3
wa2

, P) <A proc(bL, wb1 �wb3
wb2

, Q), or
– if proc(aL, wa1 �wa3

wa2
, P) <S proc(bL, wb1 �wb3

wb2
, Q).

Having defined the relation W(Θ), we can now state the key lemma underly-
ing our progress theorem, indicating that W(Θ) is acyclic in a well-formed and
well-typed configuration.

Manifest Deadlock-Freedom for Shared Session Types 631

Lemma 5.5 (Acyclicity of W(Θ)). If Ψ ; Γ � Λ; Θ :: Γ ; Φ,Δ, then W(Θ) is
acyclic.

We focus on explaining the main idea of the proof here. The proof proceeds
by induction on Ψ ;Γ � Θ :: Φ,Δ, assuming for the non-empty case Ψ ;Γ �
Θ, proc(aL, wa1 �wa3

wa2
, PaL

) :: (Φ,Δ, aL : AL[wa1 �wa3
wa2

]) that W(Θ) is acyclic, by the
inductive hypothesis. We then know that there cannot exist any paths of green
and red arrows in Θ that form a cycle, and we have to show that there is no
way of introducing such a cyclic path by adding node proc(aL, wa1 �wa3

wa2
, PaL

) to
the configuration Θ. In particular, the proof considers all possible new arrows
that may be introduced by adding the node and that are necessary for creating a
cycle, showing that such arrows cannot come about in a well-typed configuration.

We illustrate the reasoning for the two selected cases shown in Fig. 11. Case
(a) represents a case in which process PaL

is waiting to synchronize with its child
PbL

while holding a resource a descendant of PbL
or PbL

itself wants to acquire.
However, this scenario cannot come about in a well-typed configuration because
PaL

and PbL
are collaborators and thus cannot overlap in resources they acquire.

Case (b) represents a case in which process PaL
is waiting to synchronize with

its child PbL
while another child, process PcL

, is waiting to synchronize with PaL
.

Given acyclicity of W(Θ), a necessary condition for a cycle to form is that there
already must exist a red arrow C in the configuration that connects the subtrees
in which the siblings PbL

and PcL
reside. However, this scenario cannot come

about in a well-typed configuration because PbL
and PcL

are competitors, forcing
PcL

or any of its descendant to release a resource before synchronizing with PaL
.

These arguments are made precise in various lemmas in [4].

PaLA B

C

PbL PcL

(b)
PaLA

B

C

PbL PcL

(a)

Fig. 11. Two prototypical cases in proof of acyclicty of W(Θ).

Given acyclicity of W(Θ), we can state and prove the following strong
progress theorem. The theorem relies on the notion of a poised process, a pro-
cess currently executing an action along its offering channel, and distinguishes
a configuration only consisting of the top-level, linear “main” process from one
that consists of several linear processes. We use |Θ| to denote the cardinality
of Θ:

632 S. Balzer et al.

Theorem 5.6 (Progress). If Ψ ;Γ � Λ;Θ :: (Γ ; cL : 1[wc1 �wc3
wc2

]), then either

– Λ −→ Λ′, for some Λ′, or
– Λ is poised and

• if |Θ| = 1, then either Λ;Θ −→ Λ′;Θ′, for some Λ′ and Θ′, or Θ is poised,
or

• if |Θ| > 1, then Λ;Θ −→ Λ′;Θ′, for some Λ′ and Θ′.

The theorem indicates that, as long as there exist at least two linear processes
in the configuration, the configuration can always step. If the configuration only
consists of the main process, then this process will become poised (i.e., ready to
close), once all sub-computations are finished. The proof of the theorem relies
on the acyclicity of W(Θ) and the fact that all sessions must be strictly equi-
synchronizing.

6 Additional Discussion

Linear Forwarding. Our current formalization does not include linear for-
warding because a forward changes the process tree and thus endangers the
invariants imposed on it. This means that certain programs from the purely lin-
ear fragment may not type-check in our system. However, the correspondingly
η-expanded versions of these programs should be expressible and type-checkable
in SILLS+ . As part of future work, we want to explore the addition of the linear
forward

Ψ+ � ωn < ωu

Ψ ; Γ ; · ; yL : AL[ωm�ωv
ωu

] � fwd xL yL :: (xL : AL[ωj �ωn
ωk

])
(T-IdL)

which allows forwarding to processes that are known to not yet be aliased and
whose world annotations meet the premise Ψ+ � ωn < ωu. Restricting to pro-
cesses in Δ should uphold Invariant 1, while the premise of the rule should uphold
Invariant 2. However, this change will affect the inner working of the proofs, the
use of inversion in particular, which might have far-reaching consequences that
need to be carefully explored.

Unbounded Process Networks and World Polymorphism. The typing
discipline presented in the previous sections, while rich enough to account for
a wide range of interesting programs, cannot type programs that spawn a stat-
ically undetermined number of shared sessions that are then to be used. For
instance, while we can easily type a configuration of any given number of dining
philosophers (Sect. 3.3), we cannot type a recursive process in which the number
of philosophers (and forks) is potentially unbounded (as done in [21,38]), due to
the way worlds are created and propagated across processes.

The general issue lies in implementing a statically unbounded network of pro-
cesses that interact with each other. These interactions require the processes to
be spawned at different worlds which must be generated dynamically as needed.

Manifest Deadlock-Freedom for Shared Session Types 633

To interact with such a statically unknown number of processes uniformly, their
offering channels must be stored in a list-like structure for later use. However,
in our system, recursive types have to be invariant with respect to worlds. For
instance, in a recursive type such as T = AL@ωl �ωr

ωp
⊗T , the worlds ωl, ωp, ωr

are fixed in the unfoldings of T . Thus, we cannot type a world-heterogeneous
list and cannot form such process networks.

Given that the issues preventing us from typing such unbounded networks
lie in problems of world invariance, the natural solution is to explore some form
of world polymorphism, where types can be parameterized by worlds which are
instantiated at a later stage. Such techniques have been studied in the context of
hybrid logical processes in [7] by considering session types of the form ∀δ.A and
∃δ.A, sessions that are parametric in the world variable δ, that is instantiated
by a concrete reachable world at runtime. While their development cannot be
mapped directly to our setting, it is a promising avenue of future work.

7 Related Work

Behavioral Type Analysis of Deadlocks. The addition of channel usage
information to types in a concurrent, message-passing setting was pioneered by
Kobayashi and Igarashi [30,34], who applied the idea to deadlock prevention
in the π-calculus and later to more general properties [31,32], giving rise to a
generic system that can be instantiated to produce a variety of concrete typing
disciplines for the π-calculus (e.g., race detection, deadlock detection, etc.).

This line of work types π-calculus processes with a simplified form of pro-
cess (akin to CCS [42] terms without name restriction) that characterizes the
input/output behavior of processes. These types are augmented with abstract
data that pertain to the relative ordering of channel actions, with the type sys-
tem ensuring that the transitive closure of such orderings forms a strict partial
order, ensuring deadlock-freedom (i.e., communication succeeds unless a process
diverges). Building on this, Kobayashi et al. proposed type systems that ensure
a stronger property dubbed lock-freedom [35] (i.e., communication always suc-
ceeds), and variants that are amenable to type inference [36,39]. Kobayashi [37]
extended this latter system to more accurately account for recursive processes
while preserving the existence of a type inference algorithm.

Our system draws significant inspiration from this line of work, insofar as we
also equip types with abstract ordering data on certain communication actions,
which is then statically enforced to form a strict partial order. We note that
our SILLS+ language differs sufficiently from the pure π-calculus in terms of its
constructs and semantics to make the formulation of a direct comparison or an
immediate application of their work unclear (e.g., [37] uses replication to encode
recursive processes). Moreover, we integrate this style of order-based reasoning
with both linear and shared session typing, which interact in non-trivial ways
(especially in the presence of recursive types and recursive process definitions).

In terms of typability, enforcing session fidelity can be a double-edged sword:
some examples of the works above can be transposed to SILLS+ with mostly

634 S. Balzer et al.

cosmetic changes and without making use of shared sessions (e.g., a parallel
implementation of factorial that recurses via replication but always answers on
a private channel); others are incompatible with linear sessions and require the
use of shared sessions via the acquire-release discipline, which entails a more
indirect but still arguably faithful modelling of the original π-calculus behavior;
some examples, however, cannot be easily adapted to the shared session disci-
pline (e.g., ∗c?(x, y).x?(z).y?(z) | ∗c?(x, y).y?(z).x?(z) is typable in [37], where
x?(z) denotes input on x and ∗c?(x, y) denotes replicated input) and their tran-
scription, while possible, would be too far removed from the original term to
be deemed a faithful representation. Recursive processes are known to produce
patterns that can be challenging to analyze using such order-based techniques.
The work of [21,38] specializes Kobayashi’s system to account for potentially
unbounded process networks with non-trivial forms of sharing. Such systems are
not typable in our work (see Sect. 6 for additional discussion on this topic).

The work of Padovani [44] develops techniques inspired by [35,37] to develop
a typing system for deadlock (and lock) freedom for the linear π-calculus where
(linear) channels must be used exactly once. By enforcing this form of linearity,
the resulting system uses only one piece of ordering data per channel usage and
can easily integrate a form of channel polymorphism that accounts for intricate
cyclic interleavings of recursive processes. The combination of manifest sharing
and linear session typing does not seem possible without the use of additional
ordering data, and the lack of single-use linear channels make the robust channel
polymorphism of [44] not feasible in our setting.

Dardha and Gay [15] recently integrated a system of Kobayashi-style order-
ings in a logical session π-calculus based on classical linear logic, extended with
the ability to form cyclic dependencies of actions on linear session channels
(Atkey et al. [1] study similar cycles but do not consider deadlock-freedom),
without the need for new process constructs or an acquire-release discipline.
Their work considers only a restricted form of replication common in linear logic-
based works, not including recursive types nor recursive process definitions. This
reduces the complexity of their system, at the cost of expressiveness. We also
note that the cycles enabled by their system are produced by processes sharing
multiple linear names. Since linearity is still enforced, they cannot represent the
more general form of cycles that exploit shared channels, as we do.

A comparative study of session typing and Kobayashi-style systems in terms
of sharing was developed by Dardha and Pérez [16], showing that such order-
based techniques can account for sharing in ways that are out of reach of both
classical session typing and pure logic-based session typing. Our system (and
that of [15]) aims to combine the heightened power of Kobayashi-style systems
with the benefits of session typing, which seems to be better suited as a typing
discipline for a high-level programming language [18].

Progress and Session Typing. To address limitations of classical binary ses-
sion types, Honda et al. [27] introduced multiparty session types, where sessions
are described by so-called global types that capture the interactions between
an arbitrary number of session participants. Under some well-formedness

Manifest Deadlock-Freedom for Shared Session Types 635

constraints, global types can be used to ensure that a collection of processes
correctly implements the global behavior in a deadlock-free way. However, these
global type-based approaches do not ensure deadlock freedom in the presence of
higher-order channel passing or interleaved multiparty sessions. Coppo et al. [13]
and Bettini et al. [6] develop systems that track usage orders among interleaved
multiparty sessions, ruling out cyclic dependencies that can lead to deadlocks.
The resulting system is quite intricate, since it combines the full multiparty ses-
sion theory with the order tracking mechanism, interacts negatively with recur-
sion (essentially disallowing interleaving with recursion) and, by tracking order
at the multiparty session-level, ends up rejecting various benign configurations
that can be accounted for by our more fine-grained analysis. We also highlight
the analyses of Vieira and Vasconcelos [54] and Padovani et al. [45] that are more
powerful than the approaches above, at the cost of a more complex analysis based
on conversation types [10] (themselves a partial-order based technique).

Static Analysis of Concurrent Programs. Lange et al. [40,41] develop a
deadlock detection framework applied to the Go programming language. Their
work distills CCS processes from programs which are then checked for deadlocks
by a form of symbolic execution [40] and model-checked against modal μ-calculus
formulae [41] which encode deadlock-freedom of the abstracted process (among
other properties of interest). Their abstraction introduces some distance between
the original program and the analysed process and so the analysis is sound only
for certain restricted program fragments, excluding any combination of recursion
and process spawning. Our direct approach does not suffer from this limitation.

de’Liguoro and Padovani [17] develop a typing discipline for deadlock-freedom
in a setting where processes exchange messages via unordered mailboxes. Their
calculus subsumes the actor model and their analysis combines both so-called
mailbox types and specialized dependency graphs to track potential cycles
between mailboxes in actor-based systems. The unordered nature of actor-based
communication introduces significant differences wrt our work, which crucially
exploits the ordering of exchanged messages.

8 Concluding Remarks

In this paper we have developed the concept of manifest deadlock-freedom in
the context of the language SILLS+ , a shared session-typed language, showcasing
both the programming methodology and the expressiveness of our framework
with a series of examples. Deadlock-freedom of well-typed programs is estab-
lished by a novel abstraction of so-called green and red arrows to reason about
the interdependencies between processes in terms of linear and shared channel
references.

In future work, we plan to address some of the limitations of the interactions
of deadlock-free shared sessions with recursion, by considering promising notions
of world polymorphism and world communication. We also plan to study the
problem of world inference and the inclusion of a linear forwarding construct.

636 S. Balzer et al.

References

1. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30936-1 2

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. (PACMPL) 1(ICEP), 37:1–37:29 (2017)

3. Balzer, S., Pfenning, F., Toninho, B.: A universal session type for untyped asyn-
chronous communication. In: 29th International Conference on Concurrency The-
ory (CONCUR). LIPIcs, pp. 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018)

4. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. Technical report CMU-CS-19-102, Carnegie Mellon University (2019)

5. Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

6. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

7. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Logic-based domain-aware ses-
sion types, unpublished draft

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

9. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016)

10. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51–52),
4399–4440 (2010)

11. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

12. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Inf. Comput. 207(10), 1044–1077 (2009)

13. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

14. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
50–63 (1999)

15. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

16. Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In:
EXPRESS/SOS, pp. 1–15 (2015)

17. de’Liguoro, U., Padovani, L.: Mailbox types for unordered interactions. In: 32nd
European Conference on Object-Oriented Programming, ECOOP 2018, pp. 15:1–
15:28 (2018)

https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-319-89366-2_5

Manifest Deadlock-Freedom for Shared Session Types 637

18. Gay, S.J., Gesbert, N., Ravara, A.: Session types as generic process types. In: 21st
International Workshop on Expressiveness in Concurrency and 11th Workshop on
Structural Operational Semantics, EXPRESS/SOS 2014, pp. 94–110 (2014)

19. Gay, S.J., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica
42(2–3), 191–225 (2005)

20. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pp. 299–
312 (2010)

21. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 6

22. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 771–798. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 27

23. Griffith, D.: Polarized substructural session types. Ph.D. thesis, University of Illi-
nois at Urbana-Champaign (2016)

24. Griffith, D., Pfenning, F.: SILL (2015). https://github.com/ISANobody/sill
25. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

26. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

27. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pp. 273–284. ACM (2008)

28. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

29. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 7

30. Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent
programming languages. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302,
pp. 187–201. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032742

31. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. In: Confer-
ence Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 128–141 (2001)

32. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theor.
Comput. Sci. 311(1–3), 121–163 (2004)

33. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: 11th
ACM SIGPLAN Workshop on Generic Programming, WGP 2015, pp. 13–22 (2015)

34. Kobayashi, N.: A partially deadlock-free typed process calculus. In: Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 128–139
(1997)

35. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

36. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Inf.
42(4–5), 291–347 (2005)

https://doi.org/10.1007/978-3-662-44584-6_6
https://doi.org/10.1007/978-3-319-89884-1_27
https://github.com/ISANobody/sill
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/BFb0032742

638 S. Balzer et al.

37. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817949 16

38. Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks. Inf.
Comput. 252, 48–70 (2017)

39. Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process cal-
culus. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 489–504.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 35

40. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety
for channel-based programming. In: 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pp. 748–761. ACM (2017)

41. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, 27
May–03 June 2018, pp. 1137–1148 (2018)

42. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

43. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: Proceed-
ings of the 27th International Conference on Compiler Construction, CC 2018, pp.
128–138 (2018)

44. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: Computer
Science Logic - Logic in Computer Science (CSL-LICS), pp. 72:1–72:10 (2014)

45. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 147–162. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43376-8 10

46. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and
observational equivalences for session-based concurrency. Inf. Comput. 239, 254–
302 (2014)

47. Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 1

48. Reed, J.: A judgmental deconstruction of modal logic, January 2009. http://www.
cs.cmu.edu/∼jcreed/papers/jdml.pdf, unpublished manuscript

49. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: 31st European Conference on Object-
Oriented Programming, ECOOP 2017, pp. 24:1–24:31 (2017)

50. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: 30th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2016, pp. 21:1–21:28
(2016)

51. Toninho, B.: A logical foundation for session-based concurrent computation. Ph.D.
thesis, Carnegie Mellon University and New University of Lisbon (2015)

52. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/3-540-44618-4_35
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20

Manifest Deadlock-Freedom for Shared Session Types 639

53. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
54. Vieira, H.T., Vasconcelos, V.T.: Typing progress in communication-centred sys-

tems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol.
7890, pp. 236–250. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38493-6 17

55. Wadler, P.: Propositions as sessions. In: 17th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), pp. 273–286. ACM (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-642-38493-6_17
http://creativecommons.org/licenses/by/4.0/

A Categorical Model of an i/o-typed
π-calculus

Ken Sakayori(B) and Takeshi Tsukada

The University of Tokyo, Tokyo, Japan
sakayori@kb.is.s.u-tokyo.ac.jp

Abstract. This paper introduces a new categorical structure that is a
model of a variant of the i/o-typed π-calculus, in the same way that a
cartesian closed category is a model of the λ-calculus. To the best of
our knowledge, no categorical model has been given for the i/o-typed π-
calculus, in contrast to session-typed calculi, to which corresponding logic
and categorical structure were given. The categorical structure intro-
duced in this paper has a simple definition, combining two well-known
structures, namely, closed Freyd category and compact closed category.
The former is a model of effectful computation in a general setting, and
the latter describes connections via channels, which cause the effect we
focus on in this paper. To demonstrate the relevance of the categori-
cal model, we show by a semantic consideration that the π-calculus is
equivalent to a core calculus of Concurrent ML.

Keywords: π-calculus · Categorical type theory ·
Compact closed category · Closed Freyd category

1 Introduction

The Curry-Howard-Lambek correspondence reveals the trinity of the simply-
typed λ-calculus, propositional intuitionistic logic and cartesian closed category.
Via the correspondence, a type of the calculus can be seen as a formula of the
logic, and as an object of a category; a term can be seen as a proof and as a
morphism (see, e.g., [23]). Since its discovery, a number of variations have been
proposed and studied.

In concurrency theory, a correspondence between a process calculus and logic
was established by Caires, Pfenning and Toninho [8,9] and later by Wadler [48].
What they found is that session types [18,20] can be seen as formulas of linear
logic [14], and processes as proofs. This remarkable result has inspired lots of
work (e.g. [3,4,10,25,45,46]).

This correspondence is, however, not completely satisfactory as pointed out
in [3,26], as well as by Wadler himself [48]. The session-typed calculi in [9,48] cor-
responding to linear logic have only well-behaved processes, because the session
type systems guarantee deadlock-freedom and race-freedom of well-typed pro-
cesses. This strong guarantee is often useful for programmers writing processes
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 640–667, 2019.
https://doi.org/10.1007/978-3-030-17184-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_23

A Categorical Model of an i/o-typed π-calculus 641

in the typed calculus, but can be seen as a significant limitation of expressive
power. For example, it prevents us from modelling wild concurrent systems or
programs that might fall into deadlocks or race conditions.

This paper describes an approach to a Curry-Howard-Lambek correspon-
dence for concurrency in the presence of deadlocks and race conditions, from the
viewpoint of categorical type theory.

What Is the Categorical Model of the π-calculus? We focus on the π-
calculus [30,31] in this paper. This is not only because the π-calculus is widely
used and powerful, but also because of a classical result by Sangiorgi [39,42],
which is the starting point of our development.

Sangiorgi, in the early 90s, gave translations between the conventional, first-
order π-calculus and its higher-order variant [39,42]. This translation allows us
to regard the π-calculus as a higher-order programming language.

Let us review the observation by Sangiorgi, using a core of the asynchronous
π-calculus: P ::=0 | (P |Q) | ā〈x〉 | a(x).P .1 The idea is to decompose the input-
prefixing a(x).P into a and (x).P . Let us write a[(x).P] for a(x).P to emphasise
the decomposition. Then a reduction can also be decomposed as

ā〈x〉 | a[(y).P] | Q −→ [(y).P]〈x〉 | Q −→ P{x/y} | Q,

where the first step is the communication and the second step is the β-reduction
(i.e. (λy.P)x −→ P{x/y} in the λ-calculus notation). Hence we regard

– an output ā〈x〉 as an application of a function ā to x, and
– an input a(x).P as an abstraction (x).P (or λx.P) “located” at a[−].

Now, ignoring the mysterious operator a[−], what we had are the core oper-
ations of functional programming languages (i.e. abstraction and application).
This functional programming language is effectful; in fact, communication via
channels is a side effect.

This observation leads us to base our categorical model for the π-calculus
on a model for effectful functional programs. Among several models, we choose
closed Freyd category [37] for modelling the functional part.

Then what is the categorical counterpart of a[−]? As this operation seems
responsible for communication, this question can be rephrased as: what is the
categorical structure for communication? An observation by Abramsky et al. [2]
answered this question. They pointed out the importance of compact closed cate-
gory [21] in concurrency theory, which nicely describes CCS-like processes inter-
connected via ports.

By combining the two structures described above, this paper introduces a
categorical structure, which we call compact closed Freyd category, as a cate-
gorical model of the π-calculus.2 Despite its simplicity, compact closed Freyd
1 This calculus slightly differs from the calculus we shall introduce in Sect. 2, but the

differences are not important here.
2 Here is the reason why we do not use a monad for modelling the effect: it is unclear

for us how to integrate a monad with the compact closed structure. On the contrary,
a Freyd category has a (pre)monoidal category as its component; we can simply
require that it is compact closed.

642 K. Sakayori and T. Tsukada

category captures the strong expressive power of the π-calculus. The compact
closed structure allows us to connect ports in an arbitrary way, in return for the
possibility of deadlocks; the Freyd structure allows us to duplicate objects, and
duplication of input channels introduces the possibility of race conditions.

Reconstructing Calculi. This paper introduces two calculi that are sound
and complete with respect to the compact closed Freyd category model. One is
a variant of the π-calculus, named πF ; the design of πF is based on the obser-
vations described above. The other is a higher-order programming language λch

defined as an instance of the computational λ-calculus [33]. Designing λch is not
so difficult because we can make use of the correspondence between computa-
tional λ-calculus and closed Freyd category (see Sect. 4). The λch -calculus have
operations for creating a channel and for sending a value via the channel and,
therefore, can be seen as a core calculus of Concurrent ML (or CML) [38].

Since the higher-order calculus λch and πF correspond to the same categor-
ical model, we can obtain translations between these calculi by simple semantic
computations. These translations are “correct by definition” and, interestingly,
coincide with those between higher-order and first-order π-calculus [39,42].

On β- vs. βη-theories. The categorical analysis of this paper reveals that
many conventional behavioural equivalences for the π-calculus are problematic
from a viewpoint of categorical type theory. The problem is that they induce
only semicategories, which may not have identities for some objects. This is a
reminiscent of the β-theory of the λ-calculus, of which categorical model is given
by semi-categorical notions [16].

Adding a single rule (which we call the η-rule) resolves the problem. Our
categorical type theory deals with only equivalences that admits the η-rule, and
the simplicity of the theory of this paper essentially relies on the η-rule.

Interestingly the η-rule seems to explain some phenomenon in the literature.
For example, Sangiorgi observed that a syntactic constraint called locality [28,49]
is essential for his translation [39,42]. The correctness of the translation can be
proved without using the η-rule, when one restricts the calculus local; we expect
that Sangiorgi’s observation can be related to this phenomenon.

Contributions. This paper introduces a new variant of the i/o-typed π-
calculus, which we call πF . A remarkable feature of πF is that it has a categorical
counterpart, called compact closed Freyd category. The correspondence is fairly
firm; the categorical semantics is sound and complete, and the term model is the
classifying category. The relevance of the model is demonstrated by a semantic
reconstruction of Sangiorgi’s translation [39,42]. These results open a new fron-
tier in the Curry-Howard-Lambek correspondence for concurrency; session-type
is not the only base for a Curry-Howard-Lambek correspondence for π-calculi.

Organisation of this Paper. Section 2 introduces the calculus πF and discuss
equivalences on processes. Section 3 gives the categorical semantics of πF and

A Categorical Model of an i/o-typed π-calculus 643

shows soundness and completeness. A connection to a higher-order programming
language with channels is studied in Sect. 4. In Sect. 5, we (1) discuss how our work
relates to linear logic and (2) present some ideas for how to extend the applica-
tion range of our model. We discuss related work in Sect. 6 and conclude in Sect. 7.
Omitted proofs, as well as detailed definitions, are available in the full version.

2 A Polyadic, Asynchronous π-calculus with i/o-types

This section introduces a variant of π-calculus, named πF . It is based on a fairly
standard calculus, namely polyadic and asynchronous π-calculus with i/o-types,
but the details are carefully designed so that πF has a categorical model.

2.1 The πF -calculus

This subsection defines the calculus πF , which is based on an asynchronous vari-
ant of the polyadic π-calculus with i/o-types in [35]. The aim of this subsection
is to explain what are the differences from the conventional π-calculus. Although
πF has some uncommon features, each of them was studied in the literature; see
Related Work (Sect. 6) for related ideas and calculi.

Types. The set of types, ranged over by S and T , is given by

S, T ::= cho[T1, . . . , Tn] | chi[T1, . . . , Tn] (n ≥ 0).

The type cho[T1, . . . , Tn] is for output channels sending n arguments of types
T1, . . . , Tn. The type chi[T1, . . . , Tn] is for input channels. The dual T⊥ of type
T is defined by cho[�T]⊥ def= chi[�T] and chi[�T]⊥ def= cho[�T]. For a sequence �T

def=
T1, . . . , Tn of types, we write �T⊥ for T⊥

1 , . . . , T⊥
n .

An important difference from [35] is that no channel allows both input and
output operations. We will refer this feature of πF as i/o-separation.

Processes. Let N be a denumerable set of names, ranged over by x, y and z.
Each name is either input-only or output-only, because of i/o-separation.

The set of processes, ranged over by P , Q and R, is defined by

P,Q,R ::=0 | (P |Q) | (νcho[�T] xy)P | x〈�y〉 | !x(�y).P.

The notion of free names, as well as bound names, is defined as usual. The set
of free names (resp. bound names) of P is written as fn(P) (resp. bn(P)). We
allow tacit renaming of bound names, and identify α-equivalent processes.

The meaning of the constructs should be clear, except for (νT xy)P which
is less common. The process 0 is the inaction; P | Q is a parallel composition;
x〈�y〉 is an output; and !x(�x).P is a replicated input. The restriction (νT xy)P
hides the names x and y of type T and T⊥ and, at the same time, establishes a
connection between x and y. Communication takes place only over bound names
explicitly connected by ν. This is in contrast to the conventional π-calculus, in
which input-output correspondence is a priori (i.e. ā is the output to a).

644 K. Sakayori and T. Tsukada

Γ � 0 : �
Γ � P : � Γ � Q : �

Γ � P | Q : �
Γ, x : cho[�T], y : chi[�T] � P : �

Γ � (νcho[�T] xy)P : �
(x : chi[�T]) ∈ Γ Γ, �y : �T � P : �

Γ � !x(�y).P : �
(x : cho[�T]) ∈ Γ �y : �T ⊆ Γ

Γ � x〈�y〉 : �

Fig. 1. Typing rules for processes

The πF -calculus does not have non-replicated input x(�y).P .

Typing Rules. A type environment Γ is a finite sequence of type bindings of
the form x : T . We assume the names in Γ are pairwise distinct. If �x = x1, . . . , xn

and �T = T1, . . . , Tn, we write �x : �T for x1 : T1, . . . , xn : Tn. We write (�x : �T) ⊆ Γ
to mean xi : Ti ∈ Γ for every i.

A type judgement is of the form Γ � P : 	, meaning that P is a well-typed
process under Γ . The typing rules are listed in Fig. 1.

Notation 1. We define (νchi[�T] xy)P as (νcho[�T] yx)P ; then (νT xy)P is defined
for every T . We abbreviate (νT1 x1y1) . . . (νTn

xnyn)P as (ν �T �x�y)P . We often
omit type annotations and write (νxy) for (νT xy) and (ν�x�y) for (ν �T �x�y). We
use a and b for names of input channel types and ā and b̄ for output. Note that
a and ā are connected only if they are bound by the same occurrence of ν.
�

Operational Semantics. Structural congruence, written ≡, is the smallest
congruence relation on processes that satisfies the following rules:

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
(νxy)(P | Q) ≡ ((νxy)P) | Q (νwx)(νyz)P ≡ (νyz)(νwx)P

where x, y /∈ fn(Q) in the fourth rule and w, x, y, z are distinct in the fifth rule.
The reduction relation on processes, written −→, is defined by the base rule

(ν �w�z)(νāa)(!a(�x).P | ā〈�y〉 | Q) −→ (ν �w�z)(νāa)(!a(�x).P | P{�y/�x} | Q)

(where P{�x/�y} is the capture-avoiding substitution) and the structural rule
which concludes P −→ Q from ∃P ′ Q′. P ≡ P ′ −→ Q′ ≡ Q. Note that, unlike
conventional π-calculi, communication only occurs over bound names connected
by ν. We write −→∗ for the reflexive and transitive closure of −→.

It should be clear that deadlocks and racy communications can be expressed
in πF . An example of race is (νāa)(ā〈�y〉 | !a(�x).P | !a(�x).Q), where two input
actions are trying to consume the output regarded as a resource. A similar
process (νāa)(!a(�x).P | ā〈�y〉 | ā〈�z〉) does not have a race since the receiver !a(�x).P
is replicated. In general, race conditions on output actions do not occur in πF .

A Categorical Model of an i/o-typed π-calculus 645

2.2 Equivalences on Processes

To establish a Curry-Howard-Lambek correspondence is to find a nice alge-
braic or categorical structure of terms. For example, the original Curry-Howard-
Lambek correspondence reveals the cartesian closed structure of λ-terms.

Such a nice structure would become visible only when appropriate notions
of composition and of equivalence could be identified, such as substitution and
βη-equivalence for the λ-calculus.

As for process calculi, so-called “parallel composition + hiding” paradigm [17]
has been used to compose processes. Given typed processes

�x : �T , �y : �S � P : 	 and �w : �S⊥, �u : �U � Q : 	,
their composite via (�y, �w) is defined as

�x : �T , �u : �U � (ν �S �y �w)(P | Q) : 	.
This kind of composition appears quite often in logical studies of π-calculi [1,
5,19]. It also plays a central role in interaction category paradigm proposed by
Abramsky, Gay and Nagarajan [2].

So it remains to determine an equivalence on π-calculus processes, appropri-
ate for our purpose. This subsection approaches the problem from two directions:

– Examining behavioural equivalences proposed and studied in the literature
– Developing a new equivalence based on categorical considerations

Let us clarify the notion of equivalence discussed below. An equation-in-
context is a judgement of the form Γ � P = Q, where Γ � P : 	 and Γ � Q : 	.
An equivalence E is a set of equations-in-context that is reflexive, transitive and
symmetric (e.g. (Γ � P = P) ∈ E for every Γ � P :).

Behavioural Equivalences. As mentioned above, we are interested in the
structure of πF -processes modulo existing behavioural equivalences. Among the
various behavioural equivalence, we start with studying barbed congruence [32],
which is one of the most widely used equivalences.

We define (asynchronous and weak) barbed congruence for πF . For each name
ā, we write P↓ā if P ≡ (ν�x�y)(ā〈�z〉 | Q) and ā is free, and P⇓ā if ∃Q.P −→∗ Q↓ā.
A (Γ/Δ)-context is a context C such that Γ � C[P] : 	 for every Δ � P : 	.
Definition 1. A barbed bisimulation is a symmetric relation R on processes
such that, whenever P R Q, (1) P↓ā implies Q⇓ā and (2) P −→ P ′ implies
∃Q′. (Q −→∗ Q′)∧ (P ′ R Q′). Barbed bisimilarity

•≈ is the largest barbed bisim-
ulation. Typed processes Δ � P : 	 and Δ � Q : 	 are barbed congruent at Δ,
written Δ � P �

c Q, if C[P]
•≈ C[Q] for every (Γ/Δ)-context C.
�

Let us consider a category-like structure C in which an object is a type and
a morphism is an equivalence class of πF -processes modulo barbed congruence.
More precisely, a morphism from T to S is a process x : T, y : S⊥ � P : 	 modulo

646 K. Sakayori and T. Tsukada

barbed congruence (and renaming of free names x and y). Then the composi-
tion (i.e. “parallel composition + hiding”) is well-defined on equivalence classes,
because barbed congruence is a congruence. This is a fairly natural setting.

We have a strikingly negative result.

Theorem 1. C is not a category.

Proof. In every category, if f : A −→ A is a left-identity on A (i.e. f ◦ g = g for
every g : A −→ A), then f is the identity on A. The process a : cho[], b̄ : chi[] �
!a().b̄〈〉 : 	 seen as a morphism (cho[]) −→ (cho[]) is a left-identity but not the
identity. The former means that c : cho[], b̄ : chi[] � (

(νāa)(!a().b̄〈〉 | P)
)

�
c

P{b̄/ā} for every c : cho[], ā : chi[] � P : 	, which is a consequence of the repli-
cator theorems [35]. To prove the latter, observe that (ν b̄b)(!a().b̄〈〉 | 0) and 0

are not barbed congruent. Indeed the context C
def= (νāa)(ā〈〉 | !a().ō〈〉 | [])

distinguishes the processes, where ō is the observable.
�
Note that race condition is essential for the proof, specifically, for the part

proving that the process !a().b̄〈〉 is not the identity. A race condition occurs in
C[(ν b̄b)(!a().b̄〈〉 | 0)], where ā in C has two receivers.

The process !a().b̄〈〉 is called forwarder, and forwarders will play a central
role in this paper. Its general form is a ↪→ b̄

def= !a(�x).b̄〈�x〉. When x : T and
y : T⊥, we write x � y to mean x ↪→ y if T = chi[�S] and otherwise y ↪→ x.

Remark 1. The argument in the proof of Theorem 1 is widely applicable to i/o-
typed calculi, not specific to πF . In particular, i/o-separation (i.e. absence of
chi/o[�T]) is not the cause, but the existence of cho[�T] or chi[�T] is.
�
Remark 2. Session-typed calculi in Caires, Pfenning and Toninho [8,9], which
correspond to linear logic, do not seem to suffer from this problem. In our under-
standing, this is because of race-freedom of their calculi.
�

To obtain a category, we should think of a coarser equivalence that identifies
(ν b̄b)(!a().b̄〈〉 | 0) with 0. Such an equivalence should be very coarse; even must-
testing equivalence [11] fails to equate them. As long as we have checked, only
may-testing equivalence [11] defined below satisfies the requirement.

Definition 2. Typed processes Δ � P : 	 and Δ � Q : 	 are may-testing
equivalent at Δ, written Δ � P =may Q, if C[P]⇓ā ⇔ C[Q]⇓ā for every (Γ/Δ)-
context C and name ā.
�

As we shall see, πF -processes modulo may-testing equivalence behaves well.
May-testing equivalence is, however, often too coarse.

Category-Driven Approach. In this approach, we first guess an appropriate
categorical structure sufficient for interpreting πF , based on intuitions discussed
in Introduction (see also Sect. 3.1), and then design an equivalence so that it is
sound and complete with respect to the categorical semantics.

Figure 2 defines the equivalence, described as a set of rules. A πF -theory is
an equivalence that behaves well from the categorical perspective.

A Categorical Model of an i/o-typed π-calculus 647

a /∈ fn(P, C) ā /∈ bn(C)
Γ � (νāa)(!a(�x).P | C[ā〈�y〉]) = (νāa)(!a(�x).P | C[P{�y/�x}])

(E-Beta)

a, ā /∈ fn(P)
Γ � (νāa)!a(�y).P = 0

(E-GC)
ā, a /∈ fn(c̄〈�x〉)

Γ � c̄〈�x〉 = (νāa)(a ↪ b̄ | c̄〈�x{ā/b̄}〉) (E-FOut)

b, ā /∈ fn(P)
Γ � (νāa)(b ↪ ā | P) = P{b/a} (E-Eta)

P ≡ Q

Γ � P = Q
(E-SCong)

Δ � P = Q C : Γ/Δ-context
Γ � C[P] = C[Q]

(E-Ctx)

Fig. 2. Inference rules of equations-in-context. Each rule has implicit assumptions that
the both sides of the equation are well-typed processes.

Definition 3. An equivalence E is a πF -theory if it is closed under the rules in
Fig. 2. Any set Ax of equations-in-context has the minimum theory Th(Ax) that
contains Ax. We write Ax � Γ � P = Q if (Γ � P = Q) ∈ Th(Ax).
�

Let us examine each rule in Fig. 2.
The rule (E-Beta) should be compared with the reduction relation. When

C = ([] | Q), then (E-Beta) claims

(νāa)(!a(�x).P | ā〈�y〉 | Q) = (νāa)(!a(�x).P | P{�y/�x} | Q)

provided that a /∈ fn(P,Q), which is indeed an instance of the reduction.
A significant difference from reduction is the side condition. It is essential

in the presence of race conditions. Without the side condition, every πF -theory
would be forced to contain the symmetric and transitive closure of the reduction
relation; thus it would identify P | (νāa)(!a().P | !a().Q) with Q | (νāa)(!a().P |
!a().Q) for every processes P and Q (where ā, a are fresh), because

(νāa)(ā〈〉 | !a().P | !a().Q) −→ P | (νāa)(!a().P | !a().Q)
(νāa)(ā〈〉 | !a().P | !a().Q) −→ Q | (νāa)(!a().P | !a().Q).

The side condition prevents πF -theories from collapsing.
Another, relatively minor, difference is that application of (E-Beta) is not

limited to the contexts of the form [] | Q. This kind of extension can be found in,
for example, work by Honda and Laurent [19] studying π-calculus from a logical
perspective.

The rule (E-GC) runs “garbage-collection”. Because no one can send a mes-
sage to the hidden name a, the process !a(�x).P will never be invoked and thus
is safely discarded. This rule is sound with respect to many behavioural equiv-
alences, including barbed congruence. Rules of this kind often appear in the
literature studying logical aspects of concurrent calculi (as in Honda and Lau-
rent [19] and Wadler [48]). There is, however, a subtle difference in the side
condition: (E-GC) requires that a and ā do not appear at all in P .

648 K. Sakayori and T. Tsukada

The rule (E-FOut) can be seen as the η-rule of abstractions, as in the λ-
calculus and in the higher-order π-calculus [39]. In the latter, an output name b̄
can be identified with an abstraction (�y).b̄〈�y〉. Then we have, for example,

(νāa)(a ↪→ b̄ | c̄〈ā〉) = (νāa)(a ↪→ b̄ | c̄〈 (�y).ā〈�y〉 〉) = c̄〈 (�y).b̄〈�y〉 〉 = c̄〈b̄〉

where we use (E-Beta) and (E-GC) in the second step. An important usage
of (E-FOut) is to replace an output of free names with that of bound names.
This kind of operation has been studied in [7,28] as a part of translations from
the π-calculus to its local/internal fragments.3

The rule (E-Eta) requires the forwarders are left-identities, directly describ-
ing the requirement discussed above.4

The rules (E-SCong) and (E-Ctx) are easy to understand. The former
requires that structurally congruent processes should be identified; the latter
says that a πF -theory is a congruence.

These rules can be justified from the operational viewpoint, as well. A well-
known result on the i/o-typed π-calculus (see, e.g., [35,43]) shows the following
propositions.

Proposition 1. Barbed congruence is closed under all rules but (E-Eta).
�
Proposition 2. May-testing equivalence is a πF -theory.
�
In particular, the latter means that may-testing equivalence is in the scope of
the categorical framework of this paper; see Theorem 5.

3 Categorical Semantics

This section introduces the class of compact closed Freyd categories and discusses
the interpretation of the πF -calculus in the categories. We show that the cate-
gorical semantics is sound and complete with respect to the equational theory
given in Sect. 2.2, and that the syntax of the πF -calculus induces a model.

This section, by its nature, is slightly theoretical compared with other sec-
tions. Section 3.1 explains the ideas of this section without heavily using cate-
gorical notions; the subsequent subsections require familiarity with categorical
type theory.

3.1 Overview

As mentioned in Sect. 1, the categorical model of πF is compact closed Freyd
category, which has both closed Freyd and compact closed structures. Here we

3 Free outputs can be eliminated from πF -processes by using the rules (E-FOut) and
(E-Eta), i.e. external mobility can be encoded by internal mobility [7,40]. If the
calculus is local [28,49], then we do not need (E-Eta) to eliminate free outputs.

4 A forwarder behaves as a right-identity with respect to every πF -theory. This is a
consequence of rules (E-Beta), (E-GC) and (E-FOut).

A Categorical Model of an i/o-typed π-calculus 649

informally discuss what is a compact closed Freyd category and how to interpret
πF by using syntactic representation.

A closed Freyd category is a model of higher-order programs with side effects.
It has, among others, the structures to interpret the function type A ⇒ B and
its constructor and destructor, namely, abstraction λx.t and application t u. It
also has a mechanism for unrestricted duplication of variables; in terms of logic,
contraction is admissible.

A compact closed category can be seen as MLL [14] with the left rule:

Γ,A∗, A � I

Γ � I

[
Γ � A∗ Δ � A

Γ,Δ � I

]
.

(The right rule is the companion, which itself is derivable in MLL.)
A compact closed Freyd category has all the constructs. It has the structures

corresponding to the following type constructors:

(closed Freyd) I,A ⊗ B,A ⇒ B (compact closed) I,A ⊗ B,A∗.

Note that the pair type A ⊗ B (as well as the unit I) coming from the closed
Freyd structure is identified with that from the compact closed structure. Infer-
ence rules for a compact closed Freyd category is those for functional languages
and the above rules of the compact closed structure.

Interpreting πF in a compact closed Freyd category is to interpret it by using
these constructs. As mentioned in Sect. 1, following Sangiorgi [39], we regard

– an output ā〈�x〉 as an application of a function ā to a tuple 〈�x〉, and
– an input !a(�x).P as an abstraction (�x).P (or λ�x.P) located at a.

We interpret the output action by using the function application. Hence the type
cho[T] is regarded as a function type T ⇒ I (where the unit type I is the type
for processes i.e.); then the typing rule for output actions becomes

Γ, ā : (T ⇒ I), x : T � ā : T ⇒ I Γ, ā : (T ⇒ I), x : T � x : T

Γ, ā : (T ⇒ I), x : T � ā〈x〉 : I

The type chi[T] is understood as (T ⇒ I)∗; the input-prefixing rule becomes

Γ, a : (T ⇒ I)∗ � a : (T ⇒ I)∗
Γ, a : (T ⇒ I)∗, x : T � P : I

Γ, a : (T ⇒ I)∗ � (x).P : T ⇒ I

Γ, a : (T ⇒ I)∗ � !a(x).P : I

This derivation directly expresses the intuition that an input-prefixing is abstrac-
tion followed by allocation; here allocation is interpreted by using the compact
closed structure, i.e. connection of ports. The name restriction also has a natural
derivation:

Γ, a : (T ⇒ I)∗, ā : (T ⇒ I) � P : I

Γ � (νāa)P : I

650 K. Sakayori and T. Tsukada

3.2 Compact Closed Freyd Category

Let us formalise the ideas given in Sect. 3.1. Hereafter in this section, we assume
basic knowledge of category theory and of categorical type theory.

We recall the definitions of compact closed category and closed Freyd cat-
egory. For simplicity, the structures below are strict and chosen; a functor is
required to preserve the chosen structures on the nose.

Definition 4 (Compact closed category [21]). Let (C,⊗, I) be a symmetric
strict monoidal category. The dual of an object A in C is an object A∗ equipped
with unit ηA : I −→ A⊗A∗ and counit εA : A∗⊗A −→ I that satisfy the “triangle
identities” (ηA ⊗ idA); (idA ⊗ εA) = idA and (idA∗ ⊗ηA); (εA ⊗ idA∗) = idA∗ . The
category C is compact closed if each object is equipped with a chosen dual.
�
Definition 5 (Closed Freyd category [37]). A Freyd category is given by
(1) a category with chosen finite products (C,⊗, I), called value category, (2) a
symmetric strict monoidal category (K,⊗, I, symm), called producer category,
and (3) an identity-on-object strict symmetric monoidal functor J : C → K. A
Freyd category is a closed Freyd category if the functor J(−) ⊗ A : C → K has
the (chosen) right adjoint A ⇒ − : K → C for every object A. We write ΛA,B,C

for the natural bijection K(J(A) ⊗ B,C) −→ C(A,B ⇒ C) and evalA,B for
Λ−1(idA⇒B) : (A ⇒ B) ⊗ A −→ B in K.
�
Remark 3. The above definition is a restriction of the original one [37], in which
K is a premonoidal [36] category. This change reflects concurrency of the cal-
culus. In fact, it validates the following law, expressed by the syntax of the
computational λ-calculus [33],

letx = M in let y = N inL = let y = N in letx = M inL.

Then one can evaluate M by using the left form and N by using the right form.
This law allows us to evaluate M and N in arbitrary order, or concurrently.
�

We now introduce the categorical structure corresponding to the πF -calculus.

Definition 6 (Compact closed Freyd category). A compact closed Freyd
category is a Freyd category J : C −→ K such that (1) K is compact closed, and
(2) J has the (chosen) right adjoint I ⇒ − : K → C.
�
We shall often write J for a compact closed Freyd category J : C ⊥ K.

A compact closed Freyd category is a closed Freyd category:

K(J(A) ⊗ B,C) ∼= K(J(A), B∗ ⊗ C) ∼= C(A, I ⇒ (B∗ ⊗ C)).

Example 1. The most basic example of a compact closed Freyd category is (the
strict monoidal version of) J : Sets ⊥ Rel : P. Here J is the identity-on-object
functor that maps a function to its graph and P is the “power set functor”

A Categorical Model of an i/o-typed π-calculus 651

chi[T1, . . . , Tn] def= ((1 ⊗ · · · ⊗ TT n) ⇒ I)∗

cho[T1, . . . , Tn] def= (T1 ⊗ · · · ⊗ Tn) ⇒ I

Γ � 0 : � def= J(!Γ)

Γ � !a(�x).P : � def= J(〈πΓ
a , ΛΓ,�T ,I(Γ, �x : �T � P : �)〉); εch[�T]

Γ � ā〈�x〉 : � def= J(〈πΓ
ā , πΓ

x1 , . . . , πΓ
xn

〉); eval�T ,I

Γ � P | Q : � def= J(ΔΓ); (Γ � P : � ⊗ Γ � Q : �)

Γ � (νxy)P : � def= (idΓ ⊗ ηT); Γ, x : T, y : T ⊥ � P : �

Fig. 3. Interpretation of types and processes. Here !Γ , ΔΓ and πΓ
y are maps in C

induced by the cartesian structure, namely, !Γ : �Γ � −→ I is the terminal map,
ΔΓ : �Γ � −→ �Γ � ⊗ �Γ � is the diagonal map and, when Γ = (y1 : T1, . . . , yn : Tn)
and x = yj , the morphism πΓ

x : �Γ � −→ �Tj� is the j-th projection. The interpretation
of a type environment x1 : T1, . . . , xn : Tn is �T1� ⊗ · · · ⊗ �Tn�.

that maps a relation R ⊆ A × B to a function P(R) def= {(SA, SB) | SB =
{b | a ∈ SA, a R b}}. Another example is obtained by replacing sets with
posets, functions with monotone functions and relations with downward closed
relations.
�

Example 2. A more sophisticated example is taken from Laird’s game-semantic
model of π-calculus [22]. Precisely speaking, the model in [22] itself is not com-
pact closed Freyd, but its variant (with non-negative arenas) is. This model is
important since it is fully abstract w.r.t. may-testing equivalence [22, Theorem 1];
hence our framework has a model that captures the may-testing equivalence.
�

3.3 Interpretation

Given a compact closed Freyd category J : C ⊥ K, this section defines the inter-
pretation �−�J . It maps types and type environments to objects as usual, and a
well-typed process Γ � P : 	 to a morphism �P � : �Γ � → I in K (recall that the
tensor unit I is the interpretation of the type for processes).

Figure 3 defines the interpretation of types and processes. It simply formalises
the ideas presented in Sect. 3.1: for example, the interpretation of !a(�x).P is the
abstraction Λ (from the closed Freyd structure) followed by location ε (from the
compact closed structure). There are some points worth noting.

– (A ⇒ I)∗ is not isomorphic to A∗ ⇒ I, A ⇒ I nor I ⇒ A. Indeed (A ⇒ I)∗

cannot be simplified. Do not confuse it with a valid law I ⇒ (A∗) ∼= A ⇒ I.
– A parallel composition is interpreted as a pair. Recall that two components

of a pair are evaluated in parallel in this setting (cf. Remark 3).
– All but the last rule use the cartesian structure of C in order to duplicate or

discard the environment.

652 K. Sakayori and T. Tsukada

Example 3. Let us consider y : T � (νāa)(ā〈y〉 | !a(x).P) : 	, where ā, a, y /∈
fn(P) and a : chi[T]. By (E-Beta) and (E-GC), this process is equal to P{y/x}.
It is natural to expect that the interpretations of the two processes coincide;
indeed it is. As the following calculation indicates, our semantics factorises the
reduction into two steps: (1) the “transmission” of the closure λ�x.P by the tri-
angle identity of the compact closed structure, and (2) the β-reduction modelled
by eval of the closed Freyd structure:

�y : T � (νāa)(ā〈y〉 | !a(x).P) : 	�
= (idT ⊗ ηcho[T]); �y : T, ā : cho[T], a : chi[T] � ā〈y〉 | !a(x).P : 	�
= (id ⊗ η); (�y : T, ā : cho[T] � ā〈y〉 : 	� ⊗ �a : chi[T] � !a(x).P : 	�)
= (id ⊗ η); ((symmT,cho[T]; evalT,I) ⊗ (idch[T]∗ ⊗ J(Λ(�x : T � P : 	�))); εT⇒I

= (idT ⊗ J(Λ(�x : T � P : 	�))); symmT,cho[T]; evalT,I (By triangle identity)

= (J(Λ(�x : T � P : 	�)) ⊗ idT); evalT,I

= �x : T � P � (By the universality of eval)
= �y : T � P{y/x} : 	�.

(Here we implicitly use derived rules for weakening and exchange.)
�

Example 4. The interpretation of a forwarder a : chi[�T], b̄ : cho[�T] � a ↪→ b̄ : 	 is
the counit εcho[�T] : �cho[�T]�∗ ⊗ �cho[�T]� −→ I in K, which is the one-sided form
of the identity. Recall that a forwarder is the identity in every πF -theory.
�

The semantics is sound and complete. That means, a judgement Ax � Γ �
P = Q is provable if and only if Γ � P = Q is valid in all models J of Ax .

Here we define the related notions and prove soundness; completeness is the
topic of the next subsection.

Definition 7. An equational judgement Γ � P = Q is valid in J if �Γ � P :
	�J = �Γ � Q : 	�J . Given a set Ax of non-logical axioms, J is a model of Ax,
written J |= Ax, if it validates all judgements in Ax. We write Ax �Γ � P = Q
if Γ � P = Q is valid in every J such that J |= Ax.
�
Theorem 2 (Soundness). If Ax � Γ � P = Q, then Ax � Γ � P = Q.
�

3.4 Term Model

A term model is a category whose objects are type environments and whose mor-
phisms are terms (i.e. processes in this setting). This section gives a construction
of the term model, by which we show completeness. This subsection basically
follows the standard arguments in categorical type theory; we mainly focus on
the features unique to our model, giving a sketch to the common part.

Given a set Ax of axioms, we define the term model JAx : CAx ⊥ KAx , which
we also write as Cl(Ax).

A Categorical Model of an i/o-typed π-calculus 653

The definition of the producer category KAx follows the standard recipe.
As usual, its objects are finite lists of types. The monoidal product �T ⊗ �S is
the concatenation of the lists and the dual �T ∗ is �T⊥. Given objects �T and �S,
a morphism from �T to �S is a process �x : �T , �y : �S⊥ � P : 	 (modulo renaming
of variables �x and �y). If Ax � �x : �T , �y : �S⊥ � P = Q is provable, then P and
Q are regarded as the same morphism. Composition of morphisms is defined as
“parallel composition plus hiding”: For morphisms P : �T −→ �S and Q : �S −→ �U ,
i.e. processes such that �x : �T , �y : �S⊥ � P : 	 and �z : �S, �w : �U⊥ � Q : 	, their
composite is �x : �T , �w : �U⊥ � (ν�y�z)(P | Q) : 	. The monoidal product P ⊗ Q
of morphisms is the parallel composition P | Q. The identity, as well as the
symmetry of the monoidal product and the unit and counit of the compact closed
structure, is a parallel composition of forwarders: for example, the identity on
�S is �x : �S, �y : �S⊥ � x1 � y1 | · · · | xn � yn : 	 where n is the length of �S.
The facts that most structural morphisms are forwarders and that forwarders
compose are the keys to show that KAx is a compact closed category.

We then see the definition of CAx , of which the definition of morphisms has
a subtle point. The objects of CAx are by definition the same as KAx , i.e. lists
of types. The definition of morphisms relies on the notion of values. The values
are defined by the grammar V ::=x | (�x).P , where P is a process and (�x).P is
called an abstraction. Typing rules for values are as follows:

x : T ∈ Γ

Γ � x : T

Γ, �x : �T � P

Γ � (�x).P : cho[�T]
.

(To understand the right rule, recall that �cho[�T]� = ��T � ⇒ I.) A morphism
from �T to �S = (S1, . . . , Sn) is an n-tuple (V1, . . . , Vn) of values of type �x : �T �
Vi : Si for each i (modulo renaming of �x). Composition is intuitively defined by
“substitution followed by β-reduction” whose definition is omitted here.5

The functor JAx places the values to the channels. For example, let �T =
(chi[U1], cho[U2]) and consider the morphism in CAx given by

a : chi[T1], b̄ : cho[T2] � (a, b̄, (�x).P) : (chi[T1], cho[T2], cho[�S])

where �S is the type for �x. The image of this morphism by the functor JAx is

a : chi[T1], b̄ : cho[T2], c̄ : cho[T1], d : chi[T2], e : chi[�S] � a ↪→ c̄ | d ↪→ b̄ | !e(�x).P : 	.

This example contains all the three ways to place a value to a given channel.

Theorem 3. Cl(Ax) is a compact closed Freyd category for every Ax.
�
In the model Cl(Ax), the interpretation of a process Γ � P : 	 is the equiv-

alence class that P belongs to. This fact leads to completeness.

5 Here is a subtle technical issue that we shall not address in this paper; see the long
version for the formal definition. We think, however, that this paragraph conveys a
precise intuition.

654 K. Sakayori and T. Tsukada

Theorem 4 (Completeness). If Ax � Γ � P = Q, then Ax � Γ � P = Q.
�
Theorem 5. There exists a compact closed Freyd category J that is fully
abstract w.r.t. may-testing equivalence, i.e. Γ � P =may Q iff �P �J = �Q�J .

Proof. Let J be the term model Cl(=may) and use Proposition 2.
�

3.5 Theory/Model Correspondence

It is natural to expect that Cl(Ax) is the classifying category as in the standard
categorical type theory. This means, to give a model of Ax in J is equivalent to
give a structure-preserving functor Cl(Ax) −→ J . This subsection clarifies and
studies this claim.

The set Mod(Ax , J) of models of Ax in J is defined as follows. If J |= Ax ,
then Mod(Ax , J) is a singleton set6; otherwise Mod(Ax , J) is the empty set.

We then define the notion of structure-preserving functors.

Definition 8. A strict compact closed Freyd functor from J : C ⊥ K : I ⇒ (−)
to J ′ : C′ ⊥ K′ : I ⇒′ (−) is a pair of functor (Φ, Ψ) such that

– Φ is a strict finite product preserving functor from C to C′,
– Ψ is a strict symmetric monoidal functor from K to K′ that preserves the

chosen compact closed structures (i.e. units and counits) on the nose, and
– (Φ, Ψ) is a map of adjoints between J � I ⇒ (−) and J ′ � I ⇒′ (−).

�
The collection of (small) compact closed Freyd categories and strict compact
closed Freyd functors form a 1-category, which we write as CCFC .

Now the question is whether Mod(Ax , J)
?∼= CCFC (Cl(Ax), J) in Set.

Unfortunately this does not hold. More precisely, the left-to-right inclusion
does not hold in general. This means that the term model satisfies some addi-
tional axioms reflecting some aspects of the πF -calculus.

The additional axioms reflect the definition of the dual �T ∗ in the term model;
we have �T ∗ def= �T⊥ by definition, and thus �T ∗∗ = �T and (�T ⊗ �S)∗ = �T ∗ ⊗ �S∗.
It might be surprising that these equations are harmful because isomorphisms
A∗∗ ∼= A and (A ⊗ B)∗ ∼= A∗ ⊗ B∗ exist in every compact closed category. The
point is that the equations also require C to have isomorphisms A∗∗ ∼= A and
(A ⊗ B)∗ ∼= A∗ ⊗ B∗ (witnessed by the respective identities).

We formally define the additional axioms, which we call (I) and (D):

(I) The canonical isomorphism A∗∗ −→ A in K is the identity.
(D) The canonical isomorphism (A ⊗ B)∗ −→ A∗ ⊗ B∗ in K is the identity.

Theorem 6. Mod(Ax , J) ∼= CCFC (Cl(Ax), J) if J satisfies (I) and (D).
�

6 Because we consider only the empty signature, the set of valuations is singleton.

A Categorical Model of an i/o-typed π-calculus 655

σ ::= τ τ ′ ξ ::= σ τ ::= (ξ1, . . . , ξn)

V ::= x | λ〈�x〉.M
M ::= 〈�V 〉 | V 〈�V 〉 | let 〈�x〉 = M inM ′

(a) λc

ξ ::= · · · | σ∗

V ::= · · · | channelσ | sendσ

(b) λch (difference from λc)

Fig. 4. Syntax of types and terms of the λc- and λch -calculi. The syntax of λc is adapted
to the setting of this paper.

4 A Concurrent λ-calculus and (de)compilation

In order to demonstrate the relevance of our semantic framework, this section
tries to give a semantic reconstruction of fully-abstract compilation and decompi-
lation from a higher-order calculus to the (first-order) π-calculus, such as [39,42].
We first design an instance of the computational λ-calculus [33], named λch , that
is sound and complete with respect to compact closed Freyd categories. It is
obtained by a straightforward extension of the coincidence between the compu-
tational λ-calculus and closed Freyd categories (Sect. 4.1). There are translations
between πF and λch since both are sound and complete with respect to com-
pact closed Freyd categories. Section 4.2 actually calculates the translations, and
compare them with those in [39,42].

4.1 The λch -calculus

The λch -calculus is a computational λ-calculus with additional constructors deal-
ing with channels. This section introduces and explains the calculus.

The situation is nicely expressed by the following intuitive equation:

λch

λc
≈ (compact closed Freyd category + I + D)

(closed Freyd category)
.

The base calculus λc is the computational λ-calculus, which corresponds to closed
Freyd category [33,37]. It is a call-by-value higher-order programming language,
given in Fig. 4(a). Our calculus λch is obtained by adding type and term con-
structors originating from the compact closed structure, which λc does not have.

Syntax. As for types, λch has a new constructor coming from the dual object
A∗. Normalising occurrences of the dual A∗ using the axioms (I) A∗∗ = A and
(D) (A ⊗ B)∗ = A∗ ⊗ B∗, we obtain the following grammar of types:

σ ::= τ → τ ′ ξ ::=σ | σ∗ τ ::= (ξ1, . . . , ξn)

where n ≥ 0 and (ξ1, . . . , ξn) is an alternative notation for ξ1⊗· · ·⊗ξn. Compared
with λc, the only new type is the dual type σ∗ of a function type σ.

As for terms, λch has constructors corresponding to the unit and counit

ηA : I −→ A ⊗ A∗ εA : A∗ ⊗ A −→ I (for each object A)

656 K. Sakayori and T. Tsukada

of the compact closed structure. We simply add these morphisms as constants:

Γ � channelσ : () → (σ, σ∗)
and

Γ � sendσ : (σ∗, σ) → ()
.

We shall often omit the subscript σ.
In summary, we obtain the syntax of λch shown in Fig. 4. Interestingly, λch

can be seen as a very core of Concurrent ML [38], a practical higher-order concur-
rent language, although λch is developed from purely semantic considerations.

Semantics. Let us first discuss the intuitive meanings of the new constructors.
The type σ∗ is for output channels; channel 〈〉 creates and returns a pair of an
input channel and an output channel that are connected; and send 〈α, V 〉 sends
the value V via the output channel α. The following points are worth noting.

– λch has no type constructor for input channels. The type system does not
distinguish between input channels for type σ and values of type σ.

– λch has no receive constructor. Receiving operation is implicit and on demand,
delayed as much as possible.

– The send operator broadcasts a value via a channel. Several receivers may
receive the same value from the same channel.

The first two points reflect the asynchrony of πF , and the last point reflects the
absence of non-replicated input (cf. Sect. 4.2).

Based on this intuition, we develop the operational, axiomatic and categorical
semantics of λch . We shall use the following abbreviations:

(νxy)M def= let 〈x, y〉 = channel 〈〉 inM M ‖ N
def= let 〈〉 = M inN.

Operational Semantics. Assume an infinite set X of channels, ranged over by α
and β. For each channel α, we write α for the input name and ᾱ for the output
name, both of which are values. A configuration is a tuple (M, �α, μ) of a term
M , a sequence �α of generated channels and a sequence μ of performed send
operations, i.e. μ = (send 〈β̄1, V1〉, . . . , send 〈β̄k, Vk〉). The reduction relation is
defined by the following rules for channels

(E[channel 〈〉], �α, μ) −→ (E[〈β, β̄〉], �α · β, μ) (β /∈ �α)
(E[send 〈β̄, V 〉], �α, μ) −→ (E[〈〉], �α, μ · send 〈β̄, V 〉)

(E[β V], �α, μ) −→ (E[W V], �α, μ) (send 〈β̄,W 〉 ∈ μ).

in addition to the standard rules for λ-abstractions and let-expressions, which
change only M . Here the set of evaluation contexts is given by the grammar:

E ::= [] | let 〈�x〉 = E inM | let 〈�x〉 = M inE.

Note that M and N in let 〈�x〉 = M inN are evaluated in parallel (cf. Remark 3).
This justifies the notation M ‖ N , an abbreviation for let 〈〉 = M inN .

A Categorical Model of an i/o-typed π-calculus 657

Axiomatic Semantics. The inference rules of the equational logic for λch are
those for λc with the rule of concurrent evaluation

let 〈�x〉 = M in let 〈�y〉 = N inL = let 〈�y〉 = N in let 〈�x〉 = M inL;

the β- and η-rules for channels

(νxx̄)(send 〈x̄, V 〉 ‖ M) = (νxx̄)(send 〈x̄, V 〉 ‖ M{V/x})
(νyȳ)(send 〈z̄, y〉 ‖ N) = N{z̄/ȳ}

where x̄ /∈ Fv(V) ∪ Fv(M), y /∈ Fv(N) and z̄ �= ȳ; and a GC rule.

Categorical Semantics. One can interpret λch -terms in a compact closed Freyd
category with (I) and (D). The interpretation of the λc-calculus part is stan-
dard [24,37]; the constant channelσ (resp. sendσ) is interpreted as the “closure”
whose body is ησ (resp. εσ) as expected.

�Γ � channelσ : () → (σ, σ∗)� def= J(!Γ ;ΛI,I,σ⊗σ∗(ησ))

�Γ � sendσ : (σ∗, σ) → ()� def= J(!Γ ;ΛI,σ⊗σ∗,I(εσ)).

The categorical semantics is sound and complete with respect to the equa-
tional theory of the λch -calculus. The proofs are basically straightforward but
there is a subtle issue in the definition of the term model: we have different def-
initions of the right adjoint I ⇒ (−), which are of course equivalent but do not
coincide on the nose. Our choice here is I ⇒ 〈�ξ〉 def= (�ξ⊥) → ().

4.2 Translations Between λch and πF

The higher-order calculus λch is equivalent to πF . This is because both calculi
correspond to the same class of categories, namely, the class of compact closed
Freyd categories with (I) and (D), i.e.,

(λch) ≈ (compact closed Freyd category + I + D) ≈ (πF).

This subsection studies translations derived from this semantic correspondence.
The translations are defined by the interpretations in the term models. For

example, the translation �−� from λch to πF is induced by the interpretation
of λch -terms in the term model Cl(∅). The interpretation �M�Cl(∅) of a λch -
term M is an equivalence class of πF -processes, since a morphism in Cl(∅) is an
equivalence class of πF -processes. The translation �M� is defined by choosing a
representative of the equivalence class. The other direction [(−)] is obtained by
the interpretation of πF in the term model of λch .

Figures 5 and 6 are concrete definitions of the translations for a natural choice
of representatives. Let us discuss the translations in more details.

The translation from πF to λch (Fig. 5) is easy to understand. It directly
expresses the higher-order view of the first-order π-calculus. For example, an

658 K. Sakayori and T. Tsukada

[(cho[�T])] def= [(�T)] () [(chi[�T])] def= ([(�T)] ())∗ [((T1, . . . , Tn))] def= ([(T1)], . . . , [(Tn)])

[(0)] def= 〈〉 [(P | Q)] def= [(P)] ‖ [(Q)] [((νxy)P)] def= (νxy)[(P)]

[(ā〈�x〉)] def= ā 〈�x〉 [(!a(�x).P)] def= send 〈a, λ(�x).[(P)]〉

Fig. 5. Translation from πF to λch

Fig. 6. Translation from λch to πF

output action is mapped to an application and an input-prefixing !a(�x).P to a
send operation of the value λ〈�x〉.P via the channel a.

An interesting (and perhaps confusing) phenomenon is that an input channel
in πF is mapped to an output channel in λch . This can be explained as follows.
In the name-passing viewpoint, the reduction

(νxy)(!y(�z).P | x〈�u〉) −→ (νxy)(!y(�z).P | P{�u/�z})
sends �u to the process !y(�z).P , and thus x is output and y is input. In the
process-passing viewpoint, the abstraction (�z).P is sent to the location of x, and
thus y is the output and x is the input.

Next, we explain the translation from λch to πF (Fig. 6).
Let us first examine the translation of types. The most non-trivial part is

the translation of a function type τ1 → τ2. A key to understand the translation
is the isomorphism τ1 → τ2

∼= τ1 ⊗ τ⊥
2 → (). The latter form of function type

corresponds to an output channel type in πF . Hence a function is understood as
a process additionally taking channels to which the return values are passed.

The translation �M��p of a λch -term Γ � M : (ξ1, . . . , ξn) takes extra param-
eters �p = p1, . . . , pn to which the values should be placed. This is a consequence
of the definition in the πF -term model that a morphism �T −→ �S is a process
�x : �T , �y : �S⊥ � P : 	. Here �p corresponds to �y, Γ to �x : �T and �ξ to �S.

Now it is not so difficult to understand the interpretations of constructs in the
λc-calculus. For example, the abstraction �λ〈�x〉.M�p is mapped to an abstraction
(�x, �q).�M��q placed at p, which takes additional channels �q to which the results
of the evaluation of M should be sent.

It might be surprising that the interpretations of channel and send coincide.
This is because of the one-sided formulation of πF . In the two-sided formula-
tion, the unit η and counit ε of the compact closed structure, corresponding to
channel and send, can be written as logical inference rules

A Categorical Model of an i/o-typed π-calculus 659

0 def= 0 P | Q
def= P | Q (νxy)P def= (νxy) P !x v

def= v x

v〈w1, . . . , wn〉 def= (νāa)(ν b̄1b1) . . . (ν b̄nbn)(v a | w1 b1 | · · · | n bn | ā〈b̄1, . . . , b̄n〉)
x a

def= (a ↪ x) (�x).P a
def= !a(�x). P

Fig. 7. Translation from AHOπ to πF

Γ,A,A⊥ � Δ

Γ � Δ
and

Γ � A⊥, A,Δ

Γ � Δ
,

which are different. In the one-sided formulation, however, they become

Γ,A,A⊥,Δ⊥ �
Γ,Δ⊥ � .

Hence η and ε (or channel and send) cannot be distinguished in πF .
The translation �−� must be the inverse of [(−)] because both the term models

are the initial compact closed Freyd category with (I) and (D). That means,
∅ � Γ � P = �[(P)]� and ∅ � Γ � M = [(�M�)] are provable for every P and M .
This result is independent of the choice of representatives.

4.3 Relation to Other Calculi and Translations

A number of higher-order concurrent calculi, as well as their translations to the
first-order π-calculus, have been proposed and studied (e.g. [29,39,40,42,45,47]).
The calculus λch and the translations have a lot of ideas in common with those
calculi and translations; see Sect. 6.

This subsection mainly discusses the relationship to the translations by San-
giorgi [42] (see also [43]) between asynchronous higher-order π-calculus (AHOπ
for short) and asynchronous local π-calculus (Lπ for short). Here we focus on
this work because it is closest to ours. We shall see that our semantic or cat-
egorical development provides us with a semantic reconstruction of Sangiorgi’s
translations, as well as an extension.

A variant of AHOπ can be seen as a fragment of λch . The syntax of processes
of AHOπ and representation by λch -terms are given as follow:

v, w ::= x | (�x).P P,Q ::= 0 | (P | Q) | (νxy)P | !x v | v〈�w〉
x λ〈�x〉.P 〈〉 P ‖ Q (νxy)P send 〈x, v〉 v 〈�w〉.

(It slightly differs from the original syntax, as ν binds a pair of names.)
This fragment is nicely described as the limitation on types:

σ ::= (�σ) → () ξ ::= σ | σ∗ τ ::= ().

Recall that σ is a type for abstractions, ξ is a type for variables, and τ is a type
for terms. This limitation means that (1) an abstraction cannot take a channel
as an argument, and (2) a term M must be of the unit type, i.e. a process.

660 K. Sakayori and T. Tsukada

Once regarding AHOπ as a fragment of λch , the translation from AHOπ to
πF is obtained by restricting �−� to AHOπ. The resulting translation is in Fig. 7.
As mentioned, the translation is the same as that of Sangiorgi [42] except for
minor differences due to the slight change of the syntax.

Sangiorgi also gave a translation in the opposite direction, from Lπ to AHOπ
in the same paper. The calculus Lπ is a fragment of the π-calculus in which only
output channels can be passed. The i/o-separation of πF allows us to characterise
the local version of πF by a limitation on types. In the local variant, the output
channel type is restricted to T ::= cho[�T], expressing that only output channels
can be passed via an output channel. Then the definition of type environment
should be changed accordingly: Γ ::= · | x : T | x : T⊥ (since the syntactic class
represented by T is not closed under the dual (−)⊥ in the local setting).

Interestingly the limitation on types in AHOπ coincides with that in Lπ,
when one identify cho[�T] with (�T) → () (as we have done in many places). In
other words, the syntactic restrictions of AHOπ and Lπ are the same semantic
conditions described in different syntax. As a consequence, the image of Lπ by
[(−)] is indeed in AHOπ.

Remark 4. There is, however, a notable difference from Sangiorgi’s work [42].
Sangiorgi proved that the translation is fully-abstract with respect to barbed
congruence; in contrast, we only show that � M = N iff � �M� = �N�. In
particular, the η-rule is inevitable for our argument. The presence of the η-
rules significantly simplifies the argument, at the cost of operational justification
(recall that the η-rule is not sound with respect to barbed congruence).

It is natural to ask how one can reconstruct the full-abstraction result with
respect to barbed congruence. An interesting observation is that, if M and N
are AHOπ processes, then �	 M = N iff �	 �M� = �N�, where �	 means prov-
ability without using η-rules. We expect that this semantic observation explains
why locality is essential as noted in [42]; we leave the details for future work.
�

5 Discussions

Connection to Logics. We have so far studied a connection between compact
closed Freyd category and π-calculus. Here we briefly discuss the missing piece
of the Curry-Howard-Lambek correspondence, namely logic.

The model of this paper is closely related to linear logic. Actually, every
compact closed Freyd category is a model of linear logic (more precisely, MELL),
as an instance of linear-non-linear model [6] (see, e.g., [27] for categorical models
of linear logic). The interpretation of formulas is shown in Table 1. It differs
from the translations by Abramsky [1] and Bellin and Scott [5] and from the
Curry-Howard correspondence for session types by Caires and Pfenning [8], but
resembles the connection between a variant of local π-calculus and a polarised
linear logic by Honda and Laurent [19]; a detailed analysis of the translation is
left for future work.

The logic corresponding to compact closed Freyd category should be a proper
extension of linear logic, since compact closed Freyd categories form a proper

A Categorical Model of an i/o-typed π-calculus 661

Table 1. The categorical and πF -calculus interpretations of MELL formulas

linear logic compact closed Freyd category πF -calculus

(formula) (object) (type environment)

A ⊗ B A ⊗ B x : A, y : B

A ` B

!A I ⇒ A x : cho[A⊥]

?A (A ⇒ I)∗ x : chi[A]

subclass of linear-non-linear models. For example, the following rules are invalid
in linear logic but admissible in compact closed Freyd categories:

� Γ � Δ

� Γ,Δ

� Γ,A,B � Δ,A⊥, B⊥

� Γ,Δ

� Γ,A,A⊥

� Γ
.

These rules, especially the second rule called multicut, were often studied in
concurrency theory; see Abramsky et al. [2] for their relevance to concurrency.

Do the above rules fill the gap between linear logic and compact closed Freyd
category? Recent work by Hasegawa [15] suggests that MELL with above rules
is still weaker than compact closed Freyd category. First observe that the above
rules can be interpreted in any linear-non-linear model of which the monoidal
category is compact closed. Hasegawa showed that a linear-non-linear model
whose monoidal category is compact closed induces a closed Freyd category of
which the monoidal category is traced (and vice versa) but the induced Freyd
category is not necessarily compact closed. Hence the logic corresponding to
compact closed Freyd category has further axioms or rules in addition to the
above ones. A reasonable candidate for the additional axiom is ! ∼= ?; interest-
ingly, Atkey et al. [3] reached a similar rule from a different perspective. Further
investigation is left for future work.

Non-empty Signature. The categorical type theory for the λ-calculus con-
siders a family parameterised by signatures, consisting of atomic types and con-
stants. It covers, for example, the λ-calculus with natural number type and
arithmetic constants (such as addition and multiplication), as well as a calculus
with integer reference type and read and update functions.

Although this paper only considers the calculus with the empty signature,
which has no additional type nor constant, extending our theory to handle non-
empty signatures is, in a sense, not difficult. The easiest way is to apply the
established theory of the computational λ-calculus [33,37]. As we have seen in
Sect. 4, the πF -calculus can be seen as a computational λ-calculus λch hav-
ing constants for manipulating channels; hence the πF -calculus with additional
constants is λch with the additional constants, which is still in the family of
computational λ-calculus.

The πF -calculus with non-empty signature has several applications. We shall
briefly discuss some of them.

662 K. Sakayori and T. Tsukada

An important example of πF with non-empty signature is the calculus with
non-replicated input, which we regard as a calculus with additional “process
constants” but without any additional type. A key observation is that every
non-replicated input process a(�x).P can be expressed as

a(�x).P �
c (ν b̄b)(a(�x).b̄〈�x〉 | !b(�x).P) (�c is weak barbed congruence)

and thus it suffices to deal with non-replicated input processes in special form,
namely a : chi[�T], b̄ : cho[�T] � a(�x).b̄〈�x〉 : 	. Adding these processes as con-
stants and the computational rules of a(�x).b̄〈�x〉 as equational axioms results in a
calculus with non-replicated inputs. The categorical model is a compact closed
Freyd category with distinguished morphisms (A ⇒ I) −→ (A ⇒ I) for each
object A which satisfy certain axioms.

This technique is applicable to synchronous output as well. Because

ā〈�x〉.P �
c (ν b̄b)(ā〈�x〉.b̄〈〉 | !b().P),

it suffices to consider constants representing ā : cho[�T], �x : �T , b̄ : cho[] � ā〈�x〉.b̄〈〉 : 	.

6 Related Work

Logical Studies of π-calculi. There is a considerable amount of studies on
connections between process calculi and linear logic. Here we divide these stud-
ies into two classes. These classes are substantially different; for example, one
regards the formula A ⊗ B as a type for processes with two “ports” of type A
and B, whereas the other as the session-type !A.B. Our work is more closely
related to the former than the latter, but some interesting coincidence to the
latter kind of studies can also be found.

The former class of research dates back to the work by Abramsky [1] and
Bellin and Scott [5], where they discovered that π-calculus processes can encode
proof-nets of classical linear logic. Later, Abramsky et al. [2] introduced the
interaction categories to give a semantic description of a CCS-like process calcu-
lus. In their work, they observed that the compact closed structure is important
to capture the strong expressive power of process calculi.

A tighter connection between π-calculus and proof-nets was recently pre-
sented by Honda and Laurent [19]. They showed that an i/o-typed π-calculus
corresponds to polarised proof-nets, and introduced the notion of extended reduc-
tion for the π-calculus to simulate cut-elimination. The π-calculus used in this
work is very similar to πF in terms of syntax and reduction. Their calculus is
asynchronous, does not allow non-replicated inputs, and requires i/o-separation.
Furthermore, the extended reduction is almost the same as the rules (E-Beta)
and (E-GC) except for the side conditions. A significant difference compared
to our work is that their calculus is local [28,49], reflecting the fact that the
corresponding logic is polarised.

Our work is inspired by these studies. The idea of i/o-separation can already
be found in the work by Bellin and Scott and the use of compact closed category

A Categorical Model of an i/o-typed π-calculus 663

is motivated by the study of interaction category. It is worth mentioning here
that the design of πF is also influenced by the calculus introduced by Laird [22],
although it is not a logical study but categorical (see below).

The latter approach started with the Curry-Howard correspondences between
session-typed π-calculi and linear logic established by Caires, Pfenning and Ton-
inho [8,9] and subsequently by Wadler [48]. These correspondences are exact
in the sense that every process has a corresponding proof, and vice versa. As a
consequence, processes of the calculi inherit good properties of linear logic proofs
such as termination and confluence of cut-elimination. In terms of process cal-
culi, process of these calculi do not fall into deadlock or race condition. This can
be seen as a serious restriction of expressive power [3,26,48].

Several extensions to increase the expressiveness of these calculi have been
proposed and studied. Interestingly, ideas behind some of these extensions are
related to our work, in particular to Sect. 5 discussing the multicut rule [2] and
the axiom ! ∼= ?. Atkey et al. [3] studied CP [48] with the multicut rule and ! ∼= ?
and discussed how these extensions increase the expressiveness of the calculus,
at the cost of losing some good properties of CP. Dardha and Gay [10] studied
another extension of CP with multicut, keeping the calculus deadlock-free by an
elaborated type system.

Balzer and Pfenning [4] proposed a session-typed calculus with shared (muta-
ble) resources, inspired by linear-non-linear adjunction [6].

Categorical Semantics of π-calculi. The idea of using a closed Freyd cate-
gory to model the π-calculus is strongly inspired by Laird [22]. He introduced
the distributive-closed Freyd category to describe abstract properties of a game-
semantic model of the asynchronous π-calculus and showed that distributive-
closed Freyd categories with some additional structures suffice to interpret the
asynchronous π-calculus. The additional structures are specific to his game model
and not completely axiomatised.7 Our notion of compact closed Freyd category
might be seen as a reformulation of his idea, obtained by filtering out some struc-
tures difficult to axiomatise and by strengthening some others to make axioms
simpler. A significant difference is that our categorical model does not deal with
non-replicated inputs, which we think is essential for a simple axiomatisation.

Another approach for categorical semantics of the π-calculus has been the
presheaf based approach [12,44]. These studies gave particular categories that
nicely handles the nominal aspects of the π-calculus; these studies, however, do
not aim for a correspondence between a categorical structure and the π-calculus.

Higher-Order Calculi with Channels. Besides the λch -calculus, there are
numbers of functional languages augmented by communication channels, from
theoretical ones [13,25,46,48] to practical languages [34,38].

On the practical side, Concurrent ML (CML) [38], among others, is a well-
developed higher-order concurrent language. CML has primitives to create chan-
nels and threads, and primitives to send and accept values through channels.
7 A list of properties in [22] does not seem to be complete. We could not prove some

claims in the paper only from these properties, but with ones specific to his model.

664 K. Sakayori and T. Tsukada

Since our λch -calculus can create (non-linear) channels and send values via chan-
nels, the λch -calculus can be seen as a core calculus of CML despite its origin in
categorical semantics. The major difference between CML and the λch -calculus
is that communications in CML are synchronous whereas communications in the
λch -calculus are asynchronous.

On the theoretical side, session-typed functional languages have been actively
studied [13,25,46,48]. Notably, some of these languages [25,46,48] are built upon
the Curry-Howard foundation between linear logic and session-typed processes.
It might be interesting to investigate whether we can relate these languages and
the λch -calculus through the lens of Curry-Howard-Lambek correspondence.

Higher-Order vs. First-Order π-calculus. A number of translations from
higher-order languages to the π-calculus have been developed [39,40,42,45,47]
since Milner [29] presented the encodings of the λ-calculus into the π-calculus.
The basic idea shared by these studies is to transform λx.M to a process
!a(x, p).P that receives the argument x together with a name p where the rest
of the computation will be transmitted. In our framework, this idea is described
as the isomorphism A ⇒ B ∼= A ⊗ B∗ ⇒ I.

Among others, the translation from AHOπ to Lπ [42] is the closest to our
translation from the λch -calculus to the πF -calculus. Sangiorgi [41] observed
that Milner’s translation can be established via the translation of AHOπ by
applying the CPS transformation to the λ-calculus. This observation also applies
to our translation. That is, we can obtain Milner’s translation by combining CPS
transformation and the compilation of the λch -calculus.

7 Conclusion and Future Work

We have introduced an i/o-typed π-calculus (πF -calculus) as well as the categor-
ical counterpart of πF -calculus (compact closed Freyd category) and showed the
categorical type theory correspondence between them. The correspondence was
established by regarding the π-calculus as a higher-order programming language,
introducing the i/o-separation, and introducing the η-rule, a rule that explains
the mismatch between behavioural equivalences and categorical models.

As an application of our semantic framework we introduced a higher-order
calculus λch -calculus “equivalent” to the πF -calculus. We have demonstrated
that translations between λch -calculus and πF -calculus can be derived by a sim-
ple semantic argument, and showed that the translation from λch to πF is a
generalisation of the translation from AHOπ to Lπ given by Sangiorgi [42].

There are three main directions for future work. First, further investiga-
tion on the η-rule is indispensable. We plan to construct a categorical model of
the πF -calculus with an additional constant that captures barbed congruence.
Revealing the relationship between locality and the η-rule is another impor-
tant problem. Second, the operational properties of the λch -calculus and its
relation to the equational theory needs a further investigation. Third, finding
the logical counterpart of compact closed Freyd category to establish a proper
Curry-Howard-Lambek correspondence is an interesting future work.

A Categorical Model of an i/o-typed π-calculus 665

Acknowledgement. We would like to thank Naoki Kobayashi, Masahito Hasegawa
and James Laird for discussions, and anonymous referees for valuable comments. This
work was supported by JSPS KAKENHI Grant Number 15H05706 and 16K16004.

References

1. Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (1994)
2. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the founda-

tions of typed concurrent programming. In: Proceedings of the NATO Advanced
Study Institute on Deductive Program Design, Marktoberdorf, Germany, pp. 35–
113 (1996)

3. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: A List of
Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, pp. 32–55 (2016)

4. Balzer, S., Pfenning, F.: Manifest sharing with session types. PACMPL 1(ICFP),
37:1–37:29 (2017)

5. Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theor. Comput. Sci.
135(1), 11–65 (1994)

6. Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

7. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
Theor. Comput. Sci. 195(2), 205–226 (1998)

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

9. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016)

10. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

11. de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. In: Diaz, J.
(ed.) ICALP 1983. LNCS, vol. 154, pp. 548–560. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0036936

12. Fiore, M.P., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus.
Inf. Comput. 179(1), 76–117 (2002)

13. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

14. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
15. Hasegawa, M.: From linear logic to cyclic sharing. Lecture slides, Linearity (2018)
16. Hayashi, S.: Adjunction of semifunctors: categorical structures in nonextensional

lambda calculus. Theor. Comput. Sci. 41, 95–104 (1985)
17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle

River (1985)
18. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

19. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and
polarised proof-nets. Theor. Comput. Sci. 411(22–24), 2223–2238 (2010)

https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35

666 K. Sakayori and T. Tsukada

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

21. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl.
Algebra 19, 193–213 (1980)

22. Laird, J.: A game semantics of the asynchronous π-calculus. In: Abadi, M., de
Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 51–65. Springer, Heidelberg
(2005). https://doi.org/10.1007/11539452 8

23. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic, vol. 7.
Cambridge University Press, New York (1988)

24. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Inf. Comput. 185(2), 182–210 (2003)

25. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J. (ed.)
ESOP 2015. LNCS, vol. 9032, pp. 560–584. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46669-8 23

26. Mazza, D.: The true concurrency of differential interaction nets. Math. Struct.
Comput. Sci. 28(7), 1097–1125 (2018)

27. Melliès, P.A.: Categorical semantics of linear logic. Panoramas et syntheses 27,
15–215 (2009)

28. Merro, M.: Locality in the π-calculus and applications to distributed objects. Ph.D.
thesis, École Nationale Supérieure des Mines de Paris (2000)

29. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992)

30. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

31. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992)

32. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

33. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS 1989), Pacific
Grove, California, USA, 5–8 June 1989, pp. 14–23 (1989)

34. Peyton Jones, S.L., Gordon, A.D., Finne, S.: Concurrent Haskell. In: Conference
Record of POPL 1996: The 23rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, Papers Presented at the Symposium, St. Peters-
burg Beach, Florida, USA, 21–24 January 1996, pp. 295–308 (1996)

35. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math.
Struct. Comput. Sci. 6(5), 409–453 (1996)

36. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math.
Struct. Comput. Sci. 7(5), 453–468 (1997)

37. Power, J., Thielecke, H.: Closed Freyd- and κ-categories. In: Wiedermann, J., van
Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 625–634.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 59

38. Reppy, J.H.: CML: a higher-order concurrent language. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion (PLDI), Toronto, Ontario, Canada, 26–28 June 1991, pp. 293–305 (1991)

39. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D. thesis, University of Edinburgh, UK (1993)

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/11539452_8
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-48523-6_59

A Categorical Model of an i/o-typed π-calculus 667

40. Sangiorgi, D.: π-Calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1&2), 235–274 (1996)

41. Sangiorgi, D.: From λ to π; or, rediscovering continuations. Math. Struct. Comput.
Sci. 9(4), 367–401 (1999)

42. Sangiorgi, D.: Asynchronous process calculi: the first- and higher-order paradigms.
Theor. Comput. Sci. 253(2), 311–350 (2001)

43. Sangiorgi, D., Walker, D.: The π-calculus—A Theory of Mobile Processes.
Cambridge University Press, New York (2001)

44. Stark, I.: A fully abstract domain model for the π-calculus. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, 27–30 July 1996, pp. 36–42 (1996)

45. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes.
In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 23

46. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

47. Turner, D.N.: The polymorphic Pi-calculus: theory and implementation. Ph.D.
thesis, University of Edinburgh, UK (1996)

48. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)
49. Yoshida, N.: Minimality and separation results on asynchronous mobile processes -

representability theorems by concurrent combinators. Theor. Comput. Sci. 274(1–
2), 231–276 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
http://creativecommons.org/licenses/by/4.0/

A Process Algebra for Link
Layer Protocols

Rob van Glabbeek1,2(B), Peter Höfner1,2, and Michael Markl1,3

1 Data61, CSIRO, Sydney, Australia
rvg@cs.stanford.edu

2 Computer Science and Engineering, University of New South Wales,
Sydney, Australia

3 Institut für Informatik, Universität Augsburg, Augsburg, Germany

Abstract. We propose a process algebra for link layer protocols, fea-
turing a unique mechanism for modelling frame collisions. We also for-
malise suitable liveness properties for link layer protocols specified in this
framework. To show applicability we model and analyse two versions of
the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol. Our analysis confirms the hidden station problem for the ver-
sion without virtual carrier sensing. However, we show that the version
with virtual carrier sensing not only overcomes this problem, but also
the exposed station problem with probability 1. Yet the protocol cannot
guarantee packet delivery, not even with probability 1.

1 Introduction

The (data) link layer is the 2nd layer of the ISO/OSI model of computer network-
ing [18]. Amongst others, it is responsible for the transfer of data between adja-
cent nodes in Wide Area Networks (WANs) and Local Area Networks (LANs).

Examples of link layer protocols are Ethernet for LANs [16], the Point-to-
Point Protocol [24] and the High-Level Data Link Control protocol (e.g. [14]).
Part of this layer are also multiple access protocols such as the Carrier-Sense Mul-
tiple Access with Collision Detection (CSMA/CD) protocol for re-transmission
in Ethernet bus networks and hub networks, or the Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol [17,19] in wireless networks.

One of the unique characteristics of the link layer is that when devices
attempt to use a medium simultaneously, collisions of messages occur. So, any
modelling language and formal analysis of layer-2 protocols has to support such
collisions. Moreover, some protocols are of probabilistic nature: CSMA/CA for
example chooses time slots probabilistically with discrete uniform distribution.

As we are not aware of any formal framework with primitives for mod-
elling data collisions, this paper introduces a process algebra for modelling and
analysing link layer protocols. In Sect. 2 we present an algebra featuring a unique
mechanism for modelling collisions, ‘hard-wired’ in the semantics. It is the non-
probabilistic fragment of the Algebra for Link Layer protocols (ALL), which we
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 668–693, 2019.
https://doi.org/10.1007/978-3-030-17184-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_24

A Process Algebra for Link Layer Protocols 669

introduce in Sect. 3. In Sect. 4 we formulate packet delivery, a liveness property
that ideally ought to hold for link layer protocols, either outright, or with a high
probability. In Sect. 5 we use this framework to formally model and analyse the
CSMA/CA protocol.

Our analysis confirms the hidden station problem for the version of
CSMA/CA without virtual carrier sensing (Sect. 5.2). However, we also show
that the version with virtual carrier sensing overcomes not only this problem,
but also the exposed station problem with probability 1. Yet the protocol cannot
guarantee packet delivery, not even with probability 1.

2 A Non-probabilistic Subalgebra

In this section we propose a timed process algebra that can model the collision
of link layer messages, called frames.1 It can be used for link layer protocols
that do not feature probabilistic choice, and is inspired by the (Timed) Alge-
bra for Wireless Networks ((T-)AWN) [2,12,13], a process algebra suitable for
modelling and analysing protocols on layers 3 (network) and 4 (transport) of the
OSI model.

The process algebra models a (wired or wireless) network as an encapsulated
parallel composition of network nodes. Due to the nature of the protocols under
consideration, on each node exactly one sequential process is running. The alge-
bra features a discrete model of time, where each sequential process maintains
a local variable now holding its local clock value—an integer. We employ only
one clock for each sequential process. All sequential processes in a network syn-
chronise in taking time steps, and at each time step all local clocks advance by
one unit. Since this means that all clocks are in sync and do not run at different
speeds it is clear that we do not consider the problem of clock shift. For the rest,
the variable now behaves like any other variable maintained by a process: its value
can be read when evaluating guards, thereby making progress time-dependant,
and any value can be assigned to it, thereby resetting the local clock. Network
nodes communicate with their direct neighbours—those nodes that are in trans-
mission range. The algebra provides a mobility option that allows nodes to move
in or out of transmission range. The encapsulation of the entire network inhibits
communications between network nodes and the outside world, with the excep-
tion of the receipt and delivery of data packets from or to clients (the higher
OSI layers).

2.1 A Language for Sequential Processes

The internal state of a process is determined, in part, by the values of certain
data variables that are maintained by that process. To this end, we assume a
data structure with several types, variables ranging over these types, operators
and predicates. Predicate logic yields terms (or data expressions) and formulas

1 As it is the nonprobabilistic fragment of a forthcoming algebra we do not name it.

670 R. van Glabbeek et al.

to denote data values and statements about them. Our data structure always
contains the types TIME, DATA, MSG, CHUNK, ID and P(ID) of discrete time values,
which we take to be integers, network layer data, messages, chunks of messages
that take one time unit to transmit, node identifiers and sets of node identifiers.
We further assume that there are variables now of type TIME and rfr of type
CHUNK. In addition, we assume a set of process names. Each process name X
comes with a defining equation

X(var1, . . . , varn)
def
= P ,

in which n ∈ IN, vari are variables and P is a sequential process expression
defined by the grammar below. It may contain the variables vari as well as
X. However, all occurrences of data variables in P have to be bound.2 The
choice of the underlying data structure and the process names with their defining
equations can be tailored to any particular application of our language.

The sequential process expressions are given by the following grammar:

P ::= X(exp1, . . . , expn) | [ϕ]P | [[var := exp]]P | α.P | P + P

α ::= transmit(ms) | newpkt(data, dest) | deliver(data)

Here X is a process name, expi a data expression of the same type as vari, ϕ
a data formula, var := exp an assignment of a data expression exp to a variable
var of the same type, ms a data expression of type MSG, and data, dest data
variables of types DATA, ID respectively.

Given a valuation of the data variables by concrete data values, the sequential
process [ϕ]P acts as P if ϕ evaluates to true, and deadlocks if ϕ evaluates to
false. In case ϕ contains free variables that are not yet interpreted as data
values, values are assigned to these variables in any way that satisfies ϕ, if
possible. The process [[var := exp]]P acts as P , but under an updated valuation of
the data variable var. The process P + Q may act either as P or as Q, depending
on which of the two processes is able to act at all. In a context where both are able
to act, it is not specified how the choice is made. The process α.P first performs
the action α and subsequently acts as P . The above behaviour is identical to
AWN, and many other standard process algebras. The action transmit(ms)
transmits (the data value bound to the expression) ms to all other network
nodes within transmission range. The action newpkt(data, dest) models the
injection by the network layer of a data packet data to be transmitted to a
destination dest. Technically, data and dest are variables that will be bound to
the obtained values upon receipt of a newpkt. Data is delivered to the network
layer by deliver(data). In contrast to AWN, we do not have a primitive for

2 An occurrence of a data variable in P is bound if it is one of the variables vari, one
of the two special variables now or rfr, a variable var occurring in a subexpression
[[var := exp]]Q, an occurrence in a subexpression [ϕ]Q of a variable occurring free in
ϕ, or a variable data or dest occurring in a subexpression newpkt(data, dest).Q.
Here Q is an arbitrary sequential process expression.

A Process Algebra for Link Layer Protocols 671

receiving messages from neighbouring nodes, because our processes are always
listening to neighbouring nodes, in parallel with anything else they do.

As in AWN, the internal state of a sequential process described by an expres-
sion P is determined by P , together with a valuation ξ associating values ξ(var)
to variables var maintained by this process. Valuations naturally extend to ξ-
closed expressions—those in which all variables are either bound or in the domain
of ξ. We denote the valuation that assigns the value v to the variable var, and
agrees with ξ on all other variables, by ξ[var := v]. The valuation ξ|S agrees
with ξ on all variables var ∈ S and is undefined otherwise. Moreover we use
ξ[var ++] as an abbreviation for ξ[var := ξ(var)+ 1], for suitable types.

To capture the durational nature of transmitting a message between network
nodes, we model a message as a sequence of chunks, each of which takes one
time unit to transmit. The function dur : MSG → TIME>0 calculates the amount
of time steps needed for a sending a message, i.e. it calculates the number of
chunks. We employ the internal data type CHUNK := {m:c | m ∈ MSG, 1 ≤ c ≤
dur(m)} ∪ {conflict, idle}. The chunk m:c indicates the c th fragment of a
message m. Data conflicts—junk transmitted via the medium—is modelled by
the special chunk conflict, and the absence of an incoming chunk is modelled
by idle.

Our process algebra maintains a variable rfr of type CHUNK, storing the frag-
ment of the current message received so far.

rfr ch rfr � ch
∗ conflict conflict
∗ idle idle
∗ m:1 m:1

m:c m:c+1 m:c+1
rfr m:c+1 conflict

if rfr �= m:c

As a value of this variable, m:c indicates that the
first c chunks of message m have been received in
order; conflict indicates that the last incoming
chunk was not the expected (next) part of a mes-
sage in progress, and idle indicates that the chan-
nel was idle during the last time step. The table on
the right, with ∗ a wild card, shows how the value
of rfr evolves upon receiving a new chunk ch.

Specifications may refer to the data type
CHUNK only through the Boolean functions new—having a single argument msg
of type MSG—and idle, defined by new(msg) := (rfr = (msg : dur(msg)) and
idle := (rfr = idle). A guard [new(msg)] evaluates to true iff a new message
msg has just been received; [idle] evaluates to true iff in the last time slice the
medium was idle.

The structural operational semantics of Table 1 describes how one internal
state can evolve into another by performing an action. The set Act of actions con-
sists of transmit(m:c, ch), wait(ch), newpkt(d, dest), deliver(d), and internal
actions τ, for each choice of m∈ MSG, c∈{1, . . . , dur(m)}, ch ∈ CHUNK, d∈ DATA
and dest∈ ID, where the first two actions are time consuming. On every time-
consuming action, each process receives a chunk ch and updates the variable rfr
accordingly; moreover, the variable now is incremented on all process expressions
in a (complete) network synchronously.

Besides the special variables now and rfr, the formal semantics employs an
internal variable cntr∈ IN that enumerates the chunks of split messages and is

672 R. van Glabbeek et al.

T
a
b
le

1
.
S
tr

u
ct

u
ra

l
o
p
er

a
ti

o
n
a
l
se

m
a
n
ti

cs
fo

r
se

q
u
en

ti
a
l
p
ro

ce
ss

ex
p
re

ss
io

n
s

A Process Algebra for Link Layer Protocols 673

used to identify which chunk needs to be sent next. The variables now, rfr and
cntr are not meant to be changed by ALL specifications, e.g. by using assign-
ments. We call them read-only and collect them in the set RO = {now, rfr, cntr}.

Let us have a closer look at the rules of Table 1.
The first two rules describe the sending of a message ms. Remember that

dur(ms) calculates the time needed to send ms. The counter cntr keeps track
of the time passed already. The action transmit(m:c, ch) occurs when the node
transmits the fragment m:c; simultaneously, it receives the fragment ch.3 The
counter cntr is 0 before a message is sent, and is incremented before the trans-
mission of each chunk. So, each chunk sent has the form ξ(ms):ξ(cntr)+1. To
ease readability we abbreviate ξ(cntr)+1 by c+. In case the (already incre-
mented) counter c+ is strictly smaller than the number of chunks needed to send
ξ(ms), another transmit-action is needed (Rule 1); if the last fragment has been
sent (c+ = dur(ξ(ms))) the process can continue to act as P (Rule 2).

The actions newpkt(d, dest) and deliver(d) are instantaneous and model the
submission of data d from the network layer, destined for dest, and the delivery
of data d to the network layer, respectively. The process newpkt(d, dest).P has
also the possibility to wait, namely if no network layer instruction arrives.

Rule 6 defines a rule for assignment in a straightforward fashion; only the
valuation of the variable var is updated.

In Rules 7 and 8, which define recursion, ξ|RO[vari := ξ(expi)]ni=1 is the valu-
ation that only assigns the values ξ(expi) to the variables vari, for i = 1, . . . , n,
and maintains the values of the variables now, rfr and cntr. These rules state
that a defined process X has the same transitions as the body p of its defining
equation. In case of a wait-transition, the sequential process does not progress,
and accordingly the recursion is not yet unfolded.

Most transition rules so far feature statements of the form ξ(exp) where exp
is a data expression. The application of the rule depends on ξ(exp) being defined.
Rule 9 covers all cases where the above rules cannot be applied since at least one
data expression in an action α is not defined. A state ξ, P is unvalued, denoted
by ξ(p)↑, if P has the form transmit(ms).P , deliver(data).P , [[var := exp]]P
or X(exp1, . . . , expn) with either ξ(ms) or ξ(data) or ξ(exp) or some ξ(expi)
undefined. From such a state the process can merely wait.

A process P + Q can wait only if both P and Q can do the same; if either
P or Q can achieve ‘proper’ progress, the choice process P + Q always chooses
progress over waiting. A simple induction shows that if ξ, P wait(ch)−−−−−→ ζ, P ′ and
ξ,Q wait(ch)−−−−−→ ζ ′, Q′ then P = P ′, Q = Q′ and ζ = ζ ′.

The first rule of (12), describing the semantics of guards [ϕ], is taken from
AWN. Here ξ

ϕ→ ζ says that ζ is an extension of ξ, i.e. a valuation that agrees
with ξ on all variables on which ξ is defined, and evaluates other variables occur-
ring free in ϕ, such that the formula ϕ holds under ζ. All variables not free in
ϕ and not evaluated by ξ are also not evaluated by ζ. Its negation ξ ϕ−�→ says

3 Normally, a node is in its own transmission range. In that case the received chunk
ch will be either the chunk m:c it is transmitting itself, or conflict in case some
other node within transmission range is transmitting as well.

674 R. van Glabbeek et al.

that no such extension exists, and thus, that ϕ is false in the current state, no
matter how we interpret the variables whose values are still undefined. If that is
the case, the process [ϕ]p will idle by performing the action wait(ch).

2.2 A Language for Node Expressions

We model network nodes in the context of a (wireless) network by node expres-
sions of the form

id :(ξ, P):R .

Here id ∈ ID is the address of the node, P is a sequential process expression
with a valuation ξ, and R ∈ P(ID) is the range of the node, defined as the set
of nodes within transmission range of id. Unlike AWN, the process algebra does
not offer a parallel operator for combining sequential processes; such an operator
is not needed due to the nature of link layer protocols.

In the semantics of this layer it is crucial to handle frame collisions. The idea
is that all chunks sent are recorded, together with the respective recipient. In
case a node receives more than one chunk at a time, a conflict is raised, as it
is impossible to send two or more messages via the same medium at the same
time.

The formal semantics for node expressions, presented in Table 2, uses tran-
sition labels traffic(T ,R), id :deliver(d), id :newpkt(d, id ′), connect(id, id ′),
disconnect(id, id ′) and τ , with partial functions T ,R : ID ⇀ CHUNK, id, id ′ ∈ ID,
and d ∈ DATA.

Table 2. Structural operational semantics for node expressions

All time-consuming actions on process level (transmit(m:c,ch) and wait(ch))
are transformed into an action traffic(T ,R) on node level: the first argument

A Process Algebra for Link Layer Protocols 675

Table 3. Structural operational semantics for network expressions

T maps dest to m:c if and only if the chunk m:c is transmitted to dest. The
second argument R maps id to m:c if and only if the chunk m:c is received on
process level at node id. For the sos-rules of Table 2 we use the set-theoretic
presentation of partial functions. The two rules for wait set T := ∅, as no
chunks are transmitted; the rules for transmit allow a transmitted chunk m:c
to travel to all nodes within transmission range: T := {(r,m:c) |r ∈ R}. In case
that during the transmission or waiting no chunk is received (ch = idle) we set
R = ∅; otherwise R = {(id, ch)}, indicating that chunk ch is received by node id.

The actions id :newpkt(d, dest) and id :deliver(d) as well as the internal
actions τ are simply inherited by node expressions from the processes that run
on these nodes.

The remaining rules of Table 2 model the mobility aspect of wireless networks;
the rules are taken straight from AWN [12,13]. We allow actions connect(id, id ′)
and disconnect(id, id ′) for id, id ′ ∈ ID modelling a change in network topology.
These actions can be thought of as occurring nondeterministically, or as actions
instigated by the environment of the modelled network protocol. In this formali-
sation node id ′ is in the range of node id, meaning that id ′ can receive messages
sent by id, if and only if id is in the range of id ′. To break this symmetry, one just
skips the last four rules of Table 2 and replaces the synchronisation rules for con-
nect and disconnect in Table 3 by interleaving rules (like the ones for deliver,
newpkt and τ) [12]. For some applications a wired or non-mobile network need
to be considered. In such cases the last six rules of Table 2 are dropped.

Whether a node id :P :R receives its own transmissions depends on whether
id ∈ R. Only if id ∈ R our process algebra will disallow the transmission from
and to a single node id at the same time, yielding a conflict.

2.3 A Language for Networks

A partial network is modelled by a parallel composition ‖ of node expressions,
one for every node in the network. A complete network is a partial network
within an encapsulation operator [], which limits the communication between
network nodes and the outside world to the receipt and delivery of data packets
to and from the network layer.

676 R. van Glabbeek et al.

The syntax of networks is described by the following grammar:

N ::= [MT
T] MT

S1∪·S2
::=MT

S1
‖MT

S2
MT

{id} ::= id :(ξ, P):R ,

with {id} ∪ R ⊆ T ⊆ ID. Here MT
S models a partial network describing the

behaviour of all nodes id ∈ S. The set T contains the identifiers of all nodes that
are part of the complete network. This grammar guarantees that node identifiers
of node expressions—the first component of id :P :R—are unique.

The operational semantics of network expressions is given in Table 3. Internal
actions τ as well as the actions id :deliver(d) and id :newpkt(d,id) are inter-
leaved in the parallel composition of nodes that makes up a network, and then
lifted to encapsulated networks (Line 1 of Table 3).

Actions traffic and (dis)connect are synchronised. The rule for synchro-
nising the action traffic (Line 3), the only action that consumes time on the
network layer, uses the union � of partial functions. It is formally defined as

(R1 � R2)(id) :=

⎧
⎨

⎩

conflict if id ∈ dom(R1) ∩ dom(R2)
R1(id) if id ∈ dom(R1) − dom(R2)
R2(id) if id ∈ dom(R2) − dom(R1) .

The synchronisation of the sets Ri and Ti has the following intuition: if a node
identifier id ∈ ID is in both dom(T1) and dom(T2) then there exist two nodes that
transmit to node id at the same time, and therefore a frame collision occurs.
In our algebra this is modelled by the special chunk conflict. The sos rules of
Tables 2 and 3 guarantee that there cannot be collisions within the set of received
chunks R. The reason is that each node merely contributes to R a chunk for
itself; it can be the chunk conflict though. Therefore we could have written
R1 ∪ R2 instead of R1 � R2 in the sixth rule of Table 3.

The last rule propagates a traffic(T ,R)-action of a partial network M to a
complete network [M]. By then T consists of all chunks (after collision detection)
that are being transmitted by any member in the network, and R consists of all
chunks that are received. The condition R = T determines the content of the
messages in R. The traffic(T ,R)-actions become internal at this level, as they
cannot be steered by the outside world; all that is left is a time-step tick.

2.4 Results on the Process Algebra

As for the process algebra T-AWN [2], but with a slightly simplified proof, one
can show that our processes have no time deadlocks:

Theorem 2.1. A complete network N in our process algebra always admits a
transition, independently of the outside environment, i.e. ∀N,∃a such that N a−→
and a �∈ {connect(id, id ′),disconnect(id, id ′), id :newpkt(d,dest)}.
More precisely, either N tick−−→, or N id : deliver(d)−−−−−−−−→ or N τ−→.

The following results (statements and proofs) are very similar to the results
about the process algebra AWN, as presented in [13]. A rich body of foundational

A Process Algebra for Link Layer Protocols 677

meta theory of process algebra allows the transfer of the results to our setting,
without too much overhead work.

Identical to AWN and its timed version T-AWN, our process algebra admits
a translation into one without data structures (although we cannot describe the
target algebra without using data structures). The idea is to replace any variable
by all possible values it can take. The target algebra differs from the original only
on the level of sequential processes; the subsequent layers are unchanged. The
construction closely follows the one given in the appendix of [2]. The inductive
definition contains the rules

Tξ(deliver(data).P) = deliver(ξ(data)).Tξ(P) and
Tξ([[var := exp]]P) = τ.Tξ

[
var := ξ(exp)

] (P).
Most other rules require extra operators that keep track of the passage of time
and the evolution of other internal variables. The resulting process algebra has a
structural operational semantics in the (infinitary) de Simone format, generating
the same transition system—up to strong bisimilarity, ↔ —as the original. It
follows that ↔, and many other semantic equivalences, are congruences on our
language [23].

Theorem 2.2. Strong bisimilarity is a congruence for all operators of our lan-
guage.

This is a deep result that usually takes many pages to establish (e.g. [25]). Here
we get it directly from the existing theory on structural operational semantics,
as a result of carefully designing our language within the disciplined framework
described by de Simone [23]. ��

Theorem 2.3. The operator ‖ is associative and commutative, up to ↔.

Proof. The operational rules for this operator fits a format presented in [6],
guaranteeing associativity up to ↔. The ASSOC-de Simone format of [6]
applies to all transition system specifications (TSSs) in de Simone format,
and allows 7 different types of rules (named 1–7) for the operators in ques-
tion. Our TSS is in de Simone format; the four rules for ‖ of Table 3 are
of types 1, 2 and 7, respectively. To be precise, it has rules 1a and 2a for
a ∈ {τ ,id :deliver(d),id :newpkt(d, dest)}, rules 7(a,b) for

(a, b) ∈ {(traffic(T1,R1), traffic(T2,R2)) | R1,R2, T1, T2 ∈ ID ⇀ CHUNK}

and rules 7(c,c) for c ∈ {connect(id, id ′),disconnect(id, id ′) | id, id ′ ∈ ID}.
Moreover, the partial communication function γ : Act × Act ⇀ Act is given by
γ(traffic(T1,R1), traffic(T2,R2)) = traffic(T1 � T2,R1 � R2) and γ(c, c) = c.
The main result of [6] is that an operator is guaranteed to be associative, provided
that γ is associative and six conditions are fulfilled. In the absence of rules
of types 3, 4, 5 and 6, five of these conditions are trivially fulfilled, and the
remaining one reduces to

7(a,b) ⇒ (1a ⇔ 2b) ∧ (2a ⇔ 2γ(a,b)) ∧ (1b ⇔ 1γ(a,b)) .

678 R. van Glabbeek et al.

Here 1a says that rule 1a is present, etc. This condition is trivially met for ‖ as
there neither exists a rule of the form 1traffic(T,R) nor of the form 2traffic(T,R),
or 1c, 2c with c as above. As on traffic actions γ is basically the union of partial
functions (�), where a collision in domains is indicated by an error conflict, it
is straightforward to prove associativity of γ.

Commutativity of ‖ follows by symmetry of the sos rules. ��

3 An Algebra for Link Layer Protocols

We now introduce ALL, the Algebra for Link Layer protocols. It is obtained
from the process algebra presented in the previous section by the addition of a
probabilistic choice operator

⊕n
0 . As a consequence, the semantics of the algebra

is no longer a labelled transition system, but a probabilistic labelled transition
system (pLTS) [8]. This is a triple (S,Act,→), where

(i) S is a set of states
(ii) Act is a set of actions
(iii) → ⊆ S × Act × D(S), where D(S) is the set of all (discrete) probability

distributions over S: functions Δ : S → [0, 1] with
∑

s∈S Δ(s) = 1.

As with LTSs, we usually write s α−→ Δ instead of (s, α,Δ) ∈ →. The point
distribution δs, for s ∈ S, is the distribution with δs(s) = 1. We simply write
s α−→ t for s α−→ δt. An LTS may be viewed as a degenerate pLTS, in which only
point distributions occur. For a uniform distribution over s0, . . . , sn ∈ S we write
Un

i=0si. The pLTS associated to ALL takes S to be the disjoint union of the pairs
ξ, P , with P a sequential process expression, and the network expressions. Act
is the collection of transition labels, and → consists of the transitions derivable
from the structural operational semantics of the language.

Rules (1)–(6), (9), (11) and (12) of Table 1 are adopted to ALL unchanged,
whereas in Rules (7), (8) and (10) the state ζ, P ′ (or ζ,Q′) is replaced by an
arbitrary distribution Δ. Add to those the following rule for the probabilistic
choice operator:

ξ,

n⊕

i=0

P τ−→ Uξ(n)
i=0 ξ

[
i := i

]
, P

Here the data variable i may occur in P . The rules of Tables 2 and 3 are adapted
to ALL unchanged, except that P ′, M ′ and N ′ are now replaced by arbitrary
distributions over sequential processes and network expressions, respectively.
Here we adapt the convention that a unary or binary operation on states lifts
to distributions in the standard manner. For example, if Δ is a distribution over
sequential processes, id ∈ ID and R ⊆ ID, then id :Δ :R describes the distribution
over node expressions that only has probability mass on nodes with address id
and range R, and for which the probability of id :P :R is Δ(P). Likewise, if Δ and
Θ are distributions over network expressions, then Δ‖Θ is the distribution over
network expressions of the form M‖N , where (Δ‖Θ)(M‖N) = Δ(M) · Θ(N).

A Process Algebra for Link Layer Protocols 679

4 Formalising Liveness Properties of Link Layer
Protocols

Link layer protocols communicate with the network layer through the actions
id :newpkt(d, dest) and id :deliver(d). The typical liveness property expected
of a link layer protocol is that if the network layer at node id injects a data
packet d for delivery at destination dest then this packet is delivered eventually.
In terms of our process algebra, this says that every execution of the action
id :newpkt(d, dest) ought to be followed by the action dest :deliver(d). This
property can be formalised in Linear-time Temporal Logic [22] as

G
(
id :newpkt(d, dest) ⇒ F(dest :deliver(d))

)
(1)

for any id, dest ∈ ID and d ∈ DATA. This formula has the shape G
(
φpre ⇒ Fφpost

)
,

and is called an eventuality property in [22]. It says that whenever we reach a
state in which the precondition φpre is satisfied, this state will surely be followed
by a state were the postcondition φpost holds. In [7,13] it is explained how action
occurrences can be seen or encoded as state-based conditions. Here we will not
define how to interpret general LTL-formula in pLTSs, but below we do this for
eventuality properties with specific choices of φpre and φpost .

Formula (1) is too strong and does not hold in general: in case the nodes
id and dest are not within transmission range of each other, the delivery of
messages from id to dest is doomed to fail. We need to postulate two side
conditions to make this liveness property plausible. Firstly, when the request
to deliver the message comes in, id needs to be connected to dest. We intro-
duce the predicate cntd(id, dest) to express this, and hence take φpre to be
cntd(id, dest) ∧ id :newpkt(d, dest). Secondly, we assume that the link between
id and dest does not break until the message is delivered. As remarked in [13],
such a side condition can be formalised by taking φpost to be dest :deliver(d) ∨
disconnect(id, dest). Thus the liveness property we are after is

G
(
cntd(id, dest) ∧ id :newpkt(d, dest) ⇒

F(dest :deliver(d) ∨ disconnect(id, dest) ∨ disconnect(dest, id))
) (2)

We now define the validity of eventuality properties G
(
φpre ⇒ Fφpost

)
. Here

φpre and φpost denote sets of transitions and actions, respectively, and hold if one of
the transitions or actions in the set occurs. In (2), φpre denotes the transitions with
label id :newpkt(d, dest) that occur when the side condition cntd(id, dest) is met,
whereas φpost = {dest :deliver(d),disconnect(id, dest),disconnect(dest, id)}
is a set of actions.

A path in a pLTS (S,Act,→) is an alternating sequence s0, α1, s1, α2, . . . of
states and actions, starting with a state and either being infinite or ending with
a state, such that there is a transition si

αi+1−−−→ Δi+1 with Δi+1(si+1) > 0 for each
i. The path is rooted if it starts with a state marked as ‘initial’, and complete if
either it is infinite, or there is no transition starting from its last state. A state
or transition is reachable if it occurs in a rooted path.

680 R. van Glabbeek et al.

In a pLTS with an initial state, an eventually formula G
(
φpre ⇒ Fφpost

)
,

with φpre and φpost denoting sets of transitions and actions, holds outright if all
complete paths starting with a reachable transition from φpre contain a transition
with a label from φpost .

Definitions 3 and 5 in [9] define the set of probabilities that a pLTS with
an initial state will ever execute the action ω. One obtains a set of probabilities
rather than a single probability due to the possibility of nondeterministic choice.
This definition generalises to sets of actions φpost (seen as disjunctions) by first
renaming all actions in such a set into ω. It also generalises trivially to pLTSs
with an initial transition. For t a transition in a pLTS, let Prob(t, φpost) be the
infimum of the set of probabilities that the pLTS in which t is taken to be the
initial transition will ever execute φpost . Now in a pLTS with an initial state, an
eventually formula G

(
φpre ⇒ Fφpost

)
holds with probability at least p if for all

reachable transitions t in φpre we have Prob(t, φpost) ≥ p.
Possible correctness criteria for link layer protocols are that the liveness prop-

erty (2) either holds outright, holds with probability 1, or at least holds with
probability p for a sufficiently high value of p.

Sometimes we are content to establish that (2) holds under the additional
assumptions that the network is stable until our packet is delivered, meaning that
no links between any nodes are broken or established, and/or that the network
layer refrains from injecting more packets. This is modelled by taking

φpost = {dest :deliver(d),disconnect(∗, ∗), connect(∗, ∗),newpkt(∗, ∗)}. (3)

We will refer to this version of (2) as the weak packet delivery property. Packet
delivery is the strengthening without newpkt(∗, ∗) in (3), i.e. not assuming that
the network layer refrains from injecting more packets.

5 Modelling and Analysing the CSMA/CA Protocol

In this section we model two versions of the CSMA/CA protocol, using the
process algebra ALL. Moreover, we briefly discuss some results we obtained
while analysing these protocols.

The Carrier-Sense Multiple Access (CSMA) protocol is a media access con-
trol (MAC) protocol in which a node verifies the absence of other traffic before
transmitting on a shared transmission medium. If a carrier is sensed, the node
waits for the transmission in progress to end before initiating its own transmis-
sion. Using CSMA, multiple nodes may, in turn, send and receive on the same
medium. Transmissions by one node are generally received by all other nodes
connected to the medium.

The CSMA protocol with Collision Avoidance (CSMA/CA) [17,19]4

improves the performance of CSMA. If the transmission medium is sensed busy
4 The primary medium access control (MAC) technique of IEEE 802.11 [19] is called

distributed coordination function (DCF), which is a CSMA/CA protocol.

A Process Algebra for Link Layer Protocols 681

before transmission then the transmission is deferred for a random time interval.
This interval reduces the likelihood that two or more nodes waiting to transmit
will simultaneously begin transmission upon termination of the detected trans-
mission. CSMA/CA is used, for example, in Wi-Fi.

It is well known that CSMA/CA suffers from the hidden station problem (see
Sect. 5.2). To overcome this problem, CSMA/CA is often supplemented by the
request-to-send/clear-to-send (RTS/CTS) handshaking [19]. This mechanism is
known as the IEEE 802.11 RTS/CTS exchange, or virtual carrier sensing. While
this extension reduces the amount of collisions, wireless 802.11 implementations
do not typically implement RTS/CTS for all transmissions because the trans-
mission overhead is too great for small data transfers.

We use the process algebra ALL to model both the CSMA/CA without and
with virtual carrier sensing.

5.1 A Formal Model for CSMA/CA

Our formal specification of CSMA/CA consists of four short processes written in
ALL. It is precise and free of ambiguities—one of the many advantages formal
methods provide, in contrast to specifications written in English prose.

The syntax of ALL is intended to look like pseudo code, and it is our belief
that the specification can easily be read and understood by software engineers,
who may or may not have experience with process algebra.

As the underlying data structure of our model is straightforward, we do not
present it explicitly, but introduce it while describing the different processes.

The basic process CSMA, depicted in Process 1, is the protocol’s entry point.

Process 1. The Basic Routine

CSMA(id)
def
=

1. newpkt(data,dest). INIT(id,0,dataframe(data,id,dest))
2. + [new(dataframe(data,src,id))] deliver(data) .
3. (
4. [[timeout := now + sifs]] [now ≥ timeout]
5. transmit(ackframe(src)) . CSMA(id)
6.)

This process maintains a single data variable id in which it stores its own iden-
tity. It waits until either it receives a request from the network layer to transmit a
packet data to destination dest, or it receives from another node in the network
a CSMA message (data frame) destined for itself.

In case of a newly injected data packet (Line 1), the process INIT is called; this
process (described below) initiates the sending of the message via the medium.
When passing the message on to INIT we use a function dataframe : DATA×ID×
ID → MSG that generates a message in a format used by the protocol: next to
the header fields (from which we abstract) it contains the injected data as well
as the designated receiver dest and the sender id—the current node.

682 R. van Glabbeek et al.

In case of an incoming dataframe destined for this node (the third argument
carrying the destination is id) (Line 2)—any other incoming message is ignored
by this process—the data is handed over to the network layer (deliver(data))
followed by the transmission of an acknowledgement back to the sender of the
message (src). CSMA/CA requires a short period of idling medium before send-
ing the acknowledgement: in [19] this interval is called short interframe space
(sifs). The process waits until the time of the interframe spacing has passed, and
then transmits the acknowledgement. The acknowledgement sent is not always
received by src, e.g. due to data collision; therefore src could send the same
message again (see Process 4) and id could deliver the same data to the network
layer again.

Process 2. Protocol Initialisation

INIT(id,tries,dframe)
def
=

1. [tries ≤ max retransmit]
2. [[cw := cwmin × 2tries]]
3.

⊕cw−1
b=0 CCA(id,b,tries,dframe) /* choose a backoff from {0, . . . , cw−1} */

4. + [tries > max retransmit]
5. deliver(channel access failure) . CSMA(id)

The process INIT (Process 2) initiates the sending of a message via the
medium. Next to the variable id, which is maintained by all processes, it main-
tains the variable tries and dframe: tries stores the number of attempts
already made to send message dframe. When the process is called the first time
for a message dframe (Line 1 of Process 1) the value of tries is 0.

The constant max retransmit specifies the maximum number of attempts
the protocol is allowed to retransmit the same message. If the limit is not yet
reached (Line 1) the message dframe is sent. As mentioned above, CSMA/CA
defers messages for a random time interval to avoid collision. The node must start
transmission within the contention window cw, a.k.a. backoff time. cw is calcu-
lated in Line 2; it increases exponentially.5 After cw is determined, the process
CCA is called, which performs the actual transmit-action. In case the maximum
number of retransmits is reached (Line 4), the process notifies the network layer
and restarts the protocol, awaiting new instructions from the application layer,
or a new incoming message.

Process 3 takes care of the actual transmission of dframe. However, the
protocol has a complicated procedure when to send this message.

First, the process senses the medium and awaits the point in time when it is
idle (Line 6). In case, before this happens, it receives from another node in the
network a CSMA message destined for itself (Line 1), this message is handled
just as in Process 1, except that after acknowledging this message the protocol
returns to Process 3.

5 A typical value for cwmin is 16; it must satisfy cwmin > 0.

A Process Algebra for Link Layer Protocols 683

Process 3. Clear Channel Assessment With Physical Carrier Sense

CCA(id,b,tries,dframe)
def
=

1. [new(dataframe(data,src,id))] deliver(data) .
2. (
3. [[timeout := now + sifs]] [now ≥ timeout]
4. transmit(ackframe(src)) . CCA(id,b,tries,dframe)
5.)
6. + [idle]
7. [[timeout:=now+difs]] /* start wait for duration difs */
8. (
9. [¬idle] CCA(id,b,tries,dframe)

10. + [idle ∧ now ≥ timeout]
11. [[timeout := now + b]]
12. (
13. [¬idle] /* busy during backoff time */
14. [[b := timeout − now]] CCA(id,b,tries,dframe)
15. + [idle ∧ now ≥ timeout] /* idle for backoff time */
16. transmit(dframe) .
17. ACKRECV(id,tries,now+max ack wait,dframe)
18.)
19.)

To guarantee a gap between messages sent via the medium, CSMA/CA (as
well as other protocols) specifies the distributed (coordination function) inter-
frame space (difs ∈ TIME), which is usually small,6 but larger than sifs, so
that acknowledgements get priority over new data frames. When the medium
becomes busy during the interframe space, another node started transmitting
and the process goes back to listening to the medium (Line 9). In case nothing
happens on the medium and the end of the interframe space is reached (Line
10), the process determines the actual time to start transmitting the message,
taking the backoff time b into account (Line 11). If the medium is idle for the
entire backoff period (Line 15), the message is transmitted (Line 16), and the
process calls the process ACKRECV that will await an acknowledgement from the
recipient of dframe (Line 17); the third argument specifies the maximum time
the process should wait for such an acknowledgement. (As mentioned before an
acknowledgement may never arrive.) If another node transmits on the medium
during the backoff period, the protocol restarts the routine (Lines 13 and 14),
with an adjusted backoff value b—the process already started waiting and should
not be punished when the waiting is restarted; this update guarantees fairness
of the protocol.

The process awaiting an acknowledgement (Process 4) is straightforward. It
waits until either it receives a CSMA message destined for itself (Line 1), or it
receives an acknowledgement (Line 6), or it has waited for this acknowledgement
as long as it is going to (Line 8).
6 Recommended values for the constant difs are given in [19].

684 R. van Glabbeek et al.

In the first case, the message is handled just as in Process 1, except that after
acknowledging this message the protocol returns to Process 4. In the second case
the network layer is informed that the sending of dframe was successful and the
process loops back to Process 1 (Line 7). Line 8 describes the situation where no
acknowledgement message arrives and the process times out. Here CSMA/CA
retries to send the message; the counter tries is incremented.

Process 4. Receiving an ACK

ACKRECV(id,tries,acktimeout,dframe)
def
=

1. [new(dataframe(data,src,id))] deliver(data) .
2. (
3. [[timeout := now + sifs]] [now ≥ timeout]
4. transmit(ackframe(src)) . ACKRECV(id,tries,acktimeout,dframe)
5.)
6. + [new(ackframe(id))] /* acknowledgement received */
7. deliver(success) . CSMA(id)
8. + [now ≥ acktimeout] INIT(id,tries+1,dframe)

5.2 The Hidden Station Problem

As mentioned in the introduction to this section, CSMA/CA suffers from the
hidden station problem. This refers to the situation where two nodes A and C
are not within transmission range of each other, while a node B is in range of
both. In this situation C may be transmitting to B, but A is not able to sense
this, and thus may start a transmission to B at roughly the same time, leading
to data collisions at B.

While CSMA/CA is not able to avoid such collisions as a whole—it is always
possible that two (or more) nodes hidden from each other happen to (randomly)
choose the same backoff time to send messages—it is the exponential growth of
the backoff slots that makes the problem less pressing in the long run, as the
following theorem shows.

Theorem 5.1. If max retransmit=∞ then weak packet delivery holds with
probability 1.

Proof sketch. Since the number of messages that nodes transmit is bounded, and
all nodes select random times to start transmitting out of an increasing longer
time span, with probability 1 each message will eventually go through. �

In practice, max retransmit is set to a value that is not high enough to approx-
imate the idea behind the above proof. In fact, the transmission time of a single
message may be larger than the maximal backoff period allowed. For this reason
the hidden station problem does occur when running the CSMA/CA protocol,
as studies have shown [5]. Nevertheless, the above analysis still shows that link
layer protocols can be formally analysed by process algebra in general, and ALL
in particular.

A Process Algebra for Link Layer Protocols 685

sender receiver

RTS

CTS

Data

ACK

Fig. 1. RTS/CTS exchange

5.3 A Formal Model for CSMA/CA with Virtual Carrier Sensing

To overcome the hidden station problem the usage of a request-to-send/clear-
to-send (RTS/CTS) handshaking [19] mechanism is available. This mechanism
is also known as virtual carrier sensing. The exchange of RTS/CTS messages
happens just before the actual data is sent, see Fig. 1. The mechanism serves two
purposes: (a) As the RTS and CTS messages are very short—they only contain
two node identifiers as well as a natural number indicating the time it will take to
send the actual data (plus overhead)—the likelihood of a collision is reduced. (b)
While the handshaking does not help with solving the hidden station problem
for the RTS message itself, it avoids the problem for the sending of data. The
reason is that a hidden node, which could interfere with the sending of data will
receive the CTS message from the designated recipient of data, and the hidden
node will remain silent until the data has been sent.

As for the CSMA/CA protocol we have modelled this extension in ALL,
based on the model of CSMA/CA we presented earlier.

Our extended model uses two functions to generate rts and cts messages,
respectively. The signature of both is ID × ID × TIME → MSG. The first argu-
ment carries the sender (source) of the message, the second the indented des-
tination, and the third argument a duration (time period) of silence that is
requested/granted. For example, before the message rts(src,dest,d) is trans-
mitted, the time period d is calculated by
The calculation is straightforward as it follows the protocol logic and determines
the amount of time needed until the acknowledgement would be received (see
Fig. 2). After the rts message has been received the medium should be idle for
the interframe space sifs; then a cts message is sent back, which takes time
dur cts; then another interframe space is needed, followed by the actual trans-
mission of the message—the sending will take dur(dataframe(data,id,dest))
time units; after the message is received (hopefully) another interframe space is
required before the acknowledgement is sent back.

[[d := sifs+dur cts+sifs+dur(dataframe(data,id,dest))+sifs+dur ack]] .

Process 2 remains essentially unchanged; it is merely equipped with the des-
tination dest of the message that needs to be transmitted, and an additional
timed variable nav ∈ TIME. These variables are not used in this process, but
required later on. Variable nav holds the point in time until the process should

686 R. van Glabbeek et al.

Fig. 2. The use of virtual channel sensing using CSMA/CA [3]

not transmit any rts or cts message. This period of silence is necessary as the
node figures out that until time nav another node will transmit message(s).7

Process 5 is the modified version of Process 1. Identical to Process 1 it awaits
an instruction from the network layer, or an incoming CSMA message destined
for itself. Lines 1–3 are identical to Process 1. Lines 4–11 handle the two new mes-
sage types. In case an rts message rts(src,dest,d) is received that is intended
for another recipient (dest �= id) the node concludes that another node wants to
use the medium for the amount of d time units; the process updates the variable
nav if needed, indicating the period the node should remain silent, by taking
the maximum of the current value of nav, and now+d, the point in time until
the sender src of the rts message requires the medium. The same behaviour
occurs if a cts message is received that is not intended for the node itself (Line
4). If the incoming message is an rts message intended for the node itself (Line
6) by default the node answers with a clear-to-send message back to the sender
(Line 9). However, when the receiver of the rts has knowledge about other nodes
requiring the medium (now ≤ nav), a clear-to-send cannot be granted, and the
request is dropped (Line 6). Similar to the sending of an acknowledgement (Line
2), the process waits for the short interframe space (sifs) before sending the
CTS (Line 6). Line 8 handles the case where the medium becomes busy (¬idle)
during this period; also here a clear-to-send cannot be granted, and the request
is dropped.8 Only when the medium stays idle during the entire interframe space
the node id can inform the source of the rts message that the medium is clear
to send; the cts is transmitted in Line 9. The time a receiver of this message
has to be silent is adjusted by deducting the time elapsed before this happens.
In Line 10 the process resets nav to remind itself not to issue any rts message
until the present exchange has been completed.9

7 After a successful RTS/CTS exchange, communicating nodes proceed with trans-
mitting the data and an acknowledgement regardless of the value of nav.

8 The condition now > timeout−sifs prevents the process from dropping the request
in the very first time slice that CSMA is running. Here the medium counts as busy,
but only because we have just received an rts message.

9 A case new(cts(src,dest,d)) ∧ dest = id is not required as a cts message is only
expected in case an rts was sent, and hence handled in process RTSREACT.

A Process Algebra for Link Layer Protocols 687

Process 5. The Basic Routine (RTS/CTS)

CSMA(id,nav)
def
=

1. newpkt(data,dest). INIT(id,dest,0,dataframe(data,id,dest),nav)
2. + [new(dataframe(data,src,id))] deliver(data) . [[timeout := now + sifs]]
3. [now ≥ timeout] transmit(ackframe(src)) . CSMA(id,nav)
4. + [(new(rts(src,dest,d)) ∨new(cts(src,dest,d))) ∧ dest �= id∧ nav < now+d]
5. [[nav := now+d]] CSMA(id, nav)
6. + [new(rts(src,id,d)) ∧ now > nav] [[timeout := now + sifs]]
7. (
8. [¬idle ∧ now > timeout−sifs] CSMA(id, nav)
9. + [idle ∧ now ≥ timeout] transmit(cts(id,src,d−dur cts−sifs)) .

10. [[nav := now+d−dur cts−sifs]] CSMA(id, nav)
11.)

Process 6. Clear Channel Assessment With Virtual Carrier Sense

CCA(id,dest,b,tries,dframe,nav)
def
=

1. [new(dataframe(data,src,id))] deliver(data) . [[timeout := now + sifs]]
2. [now ≥ timeout] transmit(ackframe(src)) . CCA(id,dest,b,tries,dframe,nav)
3. + [(new(rts(src,dest,d)) ∨new(cts(src,dest,d))) ∧ dest �= id∧ nav < now+d]
4. [[nav := now+d]] CCA(id,dest,b,tries,dframe,nav)
5. + [new(rts(src,id,d)) ∧ now > nav] [[timeout := now + sifs]]
6. (
7. [¬idle ∧ now > timeout−sifs] CCA(id,dest,b,tries,dframe,nav)
8. + [idle ∧ now ≥ timeout] transmit(cts(id,src,d−dur cts−sifs)) .
9. [[nav := now+d−dur cts−sifs]] CCA(id,dest,b,tries,dframe,nav)

10.)
11. + [idle ∧ now > nav]
12. [[timeout:=now+difs]]
13. (
14. [¬idle] CCA(id,dest,b,tries,dframe,nav)
15. + [idle ∧ now ≥ timeout]
16. [[timeout := now + b]]
17. (
18. [¬idle] /* busy during backoff time */
19. [[b := timeout − now]] CCA(id,dest,b,tries,dframe,nav)
20. + [idle ∧ now ≥ timeout] /* idle for backoff time */
21. [[d := sifs + dur cts + sifs + dur(dframe) + sifs + dur ack]]
22. transmit(rts(id,dest,d)) .
23. CTSRECV(id,dest,tries,now + max cts wait,dframe,nav)
24.)
25.)

Process 6 is the modified version of Process 3. The goal of this process is to
send an rts message (Line 22). Before it can start its work, it waits until the
medium is idle, and any time it is required to be silent has elapsed (Line 11).

688 R. van Glabbeek et al.

Until this happens incoming data frames, rts or cts messages are treated just
as in Process 5: Lines 1–10 copy Lines 2–11 of Process 5, except that afterwards
the process returns to itself. Then Lines 12–20 are copied from Lines 7–15 from
Process 3. Line 21 calculates the time other nodes ought to keep silent when
receiving the rts message, and Line 23 passes control to the process CTSRECV,
which awaits a cts response to the rts message transmitted in Line 22. The
fourth argument of CTSRECV specifies the maximum time that process should
wait for such a response; a good value for max cts wait is sifs + dur cts.

Process CTSRECV listens for this time to a cts message with source dest and
destination id. In case the expected cts message arrives in time (Line 1), the
node waits for a time sifs (Line 2) and then transmits the data frame and pro-
ceeds to await an acknowledgement (Line 3). The fourth argument of ACKRECV
specifies the maximum time the process should wait for such an acknowledge-
ment; a good value for max ack wait is sifs+dur ack. If the cts message does
not arrive in time (Line 6), the process returns to INIT to send another rts
message, while incrementing the counter tries (Line 7). While waiting for the
cts message, any incoming rts or cts message destined for another node is
treated exactly as in Process 5 (Lines 4–5). Incoming data frames cannot arrive
when this process is running, and incoming rts messages to id are ignored.

Process 7. Receiving a CTS

CTSRECV(id,dest,tries,ctstimeout,dframe,nav)
def
=

1. [new(cts(dest,id,d))]
2. [[timeout := now + sifs]] [now ≥ timeout]
3. transmit(dframe) . ACKRECV(id,dest,tries,now + max ack wait,dframe,nav)
4. + [(new(rts(src,dest,d)) ∨new(cts(src,dest,d))) ∧ dest �= id∧ nav < now+d]
5. [[nav := now+d]] CTSRECV(id,dest,tries,ctstimeout,dframe,nav)
6. + [now ≥ ctstimeout]
7. INIT(id,dest,tries+1,dframe,nav)

Process 8. Receiving an ACK

ACKRECV(id,dest,tries,acktimeout,dframe,nav)
def
=

1. [new(ackframe(id))]
2. deliver(success) . CSMA(id,nav)
3. + [(new(rts(src,dest,d))∨new(cts(src,dest,d)))∧dest �= id∧nav < now+d]
4. [[nav := now+d]] ACKRECV(id,dest,tries,acktimeout,dframe,nav)
5. + [now ≥ timeout] /* nothing received */
6. INIT(id,dest,tries+1,dframe,nav)

Process 8 handles the receipt of an acknowledgement in response to a success-
ful data transmission. If an acknowledgement arrives, it must be from the node
to which id has transmitted a data frame. In that case (Line 1), the network
layer is informed that the sending of dframe was successful and the process loops
back to Process 5 (Line 2). Line 5 describes the situation where no acknowledge-
ment message arrives and the process times out. Also here CSMA/CA retries

A Process Algebra for Link Layer Protocols 689

to send the message; the counter tries is incremented. Lines 3–4 describe the
usual handling of incoming rts or cts messages destined for another node.

5.4 The Exposed Station Problem

Another source of collisions in CSMA/CA is the well-known exposed station
problem. This refers to a linear topology A − B − C − D, where an unending
stream of messages between C and D interferes with attempts by A to get a
message across to B. In the default CSMA/CA protocol as formalised in Sect. 5.1,
transmissions from A to B may perpetually collide at B with transmissions from
C destined for D. CSMA/CA with virtual carrier sensing mitigates this problem,
for a cts sent by B in response to an rts sent by A will tell C to keep silent
for the required duration. In fact, we can show that in the above topology,
if max retransmit=∞ then packet delivery holds with probability 1. A non-
probabilistic guarantee cannot be given since nodes A and C could behave in
the same way, meaning if one node is sending out a message the other does the
same at the very same moment, and if one is silent the other remains silent as
well. In this scenario all messages to be sent are doomed.

Based on our formalisation, we can prove that once the RTS/CTS handshake
has been successfully concluded, meaning that all nodes within range of the
intended recipient have received the cts, then packet delivery holds outright. So
the only problem left is to achieve a successful RTS/CTS handshake. Since rts
and cts messages are rather short, even by modest values of max retransmit it
becomes likely that such messages do not collide.

In spite of this, CSMA/CA with (or without) virtual channel sensing cannot
achieve packet delivery with probability 1 for general topologies. Assume the
following network topology

B A

C1 D1

C2 D2

C3 D3

Here it may happen that one of the Cis is always busy transmitting a large
message to Di; any given Ci is occasionally silent (not sending any message), but
then one of the others is transmitting. As Ci is disconnected from Cj , for j �= i,
coordination between the nodes is impossible. As a consequence, the medium at
A will always be busy, so that A cannot send an rts message from B.

6 Related Work

The CSMA protocol in its different variants has been analysed with different
formalisms in the past.

Multiple analyses were performed for the CSMA/CD protocol (CSMA with
collision detection), a predecessor of CSMA/CA that has a constant backoff, i.e.

690 R. van Glabbeek et al.

the backoff time is not increased exponentially, see [10,11,20,21,26]. In all these
approaches frame collisions have to be modelled explicitly, as part of the pro-
tocol description. In contrast, our approach handles collisions in the semantics;
thereby achieving a clear separation between protocol specifications and link
layer behaviour.

Duflot et al. [10,11] use probabilistic timed automata (PTAs) to model the
protocol, and use probabilistic model checking (PRISM) and approximate model
checking (APMC) for their analysis. The model explained in [26] is based on
PTAs as well, but uses the model checker Uppaal as verification tool. These
approaches, although formal, have very little in common with our approach. On
the one hand it is not easy to change the model from CSMA/CD to CSMA/CA,
as the latter requires unbounded data structures (or alike) to model the expo-
nential backoff. On the other hand, as usual, model checking suffers from state
space explosion and only small networks (usually fewer than ten nodes) can
be analysed. This is sufficient and convenient when it comes to finding counter
examples, but these approaches cannot provide guarantees for arbitrary network
topologies, as ours does.

Jensen et al. [20] use models of CSMA/CD to compare the tools SPIN and
Uppaal. Their models are much more abstract than ours. It is proven that no
collisions will ever occur, without stating the exact conditions under which this
statement holds.

To the best of our knowledge, Parrow [21] is the only one who used process
algebra (CCS) to model and analyse CSMA. His untimed model of CSMA/CD
is extremely abstract and the analysis performed is limited to two nodes only,
avoiding scenarios such as the hidden station problem.

There are far fewer formal analyses techniques available when it comes to
CSMA/CA (with and without virtual medium sensing). Traditional approaches
to the analysis of network protocols are simulation and test-bed experiments.
This is also the case for CSMA/CA (e.g. [4]). While these are important and
valid methods for protocol evaluation, in particular for quantitative performance
evaluation, they have limitations in regards to the evaluation of basic protocol
correctness properties.

Following the spirit of the above-mentioned research of model checking CSMA,
Fruth [15] analyses CSMA/CA using PTAs and PRISM. He considers properties
such as the minimum probability of two nodes successfully completing their
transmissions, and maximum expected number of collisions until two nodes have
successfully completed their transmissions. As before, this analysis technique
does not scale; in [15] the experiments are limited to two contending nodes only.

Beyond model checking, simulation and test-bed experiments, we are only
aware of two other formal approaches. In [1] Markov chains are used to derive
an accurate, analytical model to compute the throughput of CSMA/CA. Cal-
culating throughput is an orthogonal task to our vision of proving (functional)
correctness.

An approach aiming at proving the correctness of CSMA/CA with virtual
carrier sensing (RTS/CTS), and hence related to ours, is presented in [3]. Based

A Process Algebra for Link Layer Protocols 691

on stochastic bigraphs with sharing it uses rewrite rules to analyse quantita-
tive properties. Although it is an approach that is capable to analyse arbitrary
topologies, to apply the rewrite rules a particular topology needs to be modelled
by a directed acyclic graph structure, which is part of the bigraph.

7 Conclusion

In this paper we have proposed a novel process algebra, called ALL, that can
be used to model, verify and analyse link layer protocols. Since we aimed at a
process algebra featuring aspects of the link layer such as frame collisions, as
well as arbitrary data structures (to model a rich class of protocols), we could
not use any of the existing algebras. The design of ALL is layered. The first
layer allows modelling protocols in some sort of pseudo code, which hopefully
makes our approach accessible for network and software researchers/engineers.
The other layers are mainly for giving a formal semantics to the language. The
layer of partial network expressions, the third layer, provides a unique and sophis-
ticated mechanism for modelling the collision of frames. As it is hard-wired in
the semantics there is no need to model collisions manually when modelling a
protocol, as it was done before [21]. Next to primitives needed for modelling link
layer protocols (e.g. transmit) and standard operators of process algebra (e.g.
nondeterministic choice), ALL provides an operator for probabilistic choice.

This operator is needed to model aspects of link layer protocols such as the
exponential backoff for the Carrier-Sense Multiple Access with Collision Avoid-
ance protocol, the case study we have chosen to demonstrate the applicability
of ALL. We have modelled and analysed two versions of CSMA/CA, without
and with virtual carrier sensing. Our analysis has confirmed the hidden station
problem for the version without virtual carrier sensing. However, we have also
shown that the version with virtual carrier sensing overcomes not only this prob-
lem, but also the exposed station problem with probability 1. Yet the protocol
cannot guarantee packet delivery, not even with probability 1.

To perform this analysis we had to formalise suitable liveness properties for
link layer protocols specified in our framework.

Acknowledgement. We thank Tran Ngoc Ma for her involvement in this project in
a very early phase. We also like to thank the German Academic Exchange Service
(DAAD) that funded an internship of the third author at Data61, CSIRO.

References

1. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000). https://doi.org/10.
1109/49.840210

2. Bres, E., van Glabbeek, R.J., Höfner, P.: A timed process algebra for wireless
networks with an application in routing. In: Thiemann, P. (ed.) ESOP 2016. LNCS,
vol. 9632, pp. 95–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49498-1 5

https://doi.org/10.1109/49.840210
https://doi.org/10.1109/49.840210
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/978-3-662-49498-1_5

692 R. van Glabbeek et al.

3. Calder, M., Sevegnani, M.: Modelling IEEE 802.11 CSMA/CA RTS/CTS with
stochastic bigraphs with sharing. Formal Aspects Comput. 26(3), 537–561 (2014).
https://doi.org/10.1007/s00165-012-0270-3

4. Chhaya, H.S., Gupta, S.: Performance modeling of asynchronous data transfer
methods of IEEE 802.11 MAC Protocol. Wirel. Netw. 3, 217–234 (1997). https://
doi.org/10.1023/A:1019109301754

5. Comer, D.: Computer Networks and Internets. Pearson Education Inc., UpperSad-
dle River (2009)

6. Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 35

7. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks on
testing probabilistic processes. In: Cardelli, L., Fiore, M., Winskel, G. (eds.) Com-
putation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin, Electronic
Notes in Theoretical Computer Science, vol. 172, pp. 359–397. Elsevier (2007).
https://doi.org/10.1016/j.entcs.2007.02.013

9. Deng, Y., van Glabbeek, R.J., Morgan, C.C., Zhang, C.: Scalar outcomes suffice
for finitary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol.
4421, pp. 363–378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71316-6 25

10. Duflot, M., et al.: Probabilistic model checking of the CSMA/CD, protocol using
PRISM and APMC. In: Automated Verification of Critical Systems (AVoCS 2004).
Electronic Notes in Theoretical Computer Science Series, vol. 128, pp. 195–214
(2004). https://doi.org/10.1016/j.entcs.2005.04.012

11. Duflot, M., et al.: Practical applications of probabilistic model checking to commu-
nication protocols. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for Industrial
Critical Systems: A Survey of Applications, pp. 133–150. IEEE (2013). https://
doi.org/10.1002/9781118459898.ch7

12. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 295–315. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28869-2 15

13. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks used for modelling, verifying
and analysing AODV. Technical report 5513, NICTA (2013). http://arxiv.org/abs/
1312.7645

14. Friend, G.E., Fike, J.L., Baker, H.C., Bellamy, J.C.: Understanding Data Commu-
nications, 2nd edn. Howard W. Sams & Company, Indianapolis (1988)

15. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE
802.15.4 low-rate wireless personal area network protocol. In: Leveraging Appli-
cations of Formal Methods, Second International Symposium (ISoLA 2006), pp.
290–297. IEEE Computer Society (2006). https://doi.org/10.1109/ISoLA.2006.34

16. IEEE: IEEE standard for ethernet (2016). https://doi.org/10.1109/IEEESTD.
2016.7428776

17. IEEE: IEEE standard for low-rate wireless networks (2016). https://doi.org/10.
1109/IEEESTD.2016.7460875

18. ISO/IEC 7498–1: Information technology—open systems interconnection—basic
reference model: The basic model (1994). https://www.iso.org/standard/20269.
html

https://doi.org/10.1007/s00165-012-0270-3
https://doi.org/10.1023/A:1019109301754
https://doi.org/10.1023/A:1019109301754
https://doi.org/10.1007/978-3-540-85361-9_35
https://doi.org/10.1145/201019.201032
https://doi.org/10.1016/j.entcs.2007.02.013
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1002/9781118459898.ch7
https://doi.org/10.1002/9781118459898.ch7
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007/978-3-642-28869-2_15
http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1312.7645
https://doi.org/10.1109/ISoLA.2006.34
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html

A Process Algebra for Link Layer Protocols 693

19. ISO/IEC/IEEE 8802–11: Information technology—telecommunications and infor-
mation exchange between systems—local and metropolitan area networks—specific
requirements—part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications (2018). https://www.iso.org/standard/73367.html

20. Jensen, H.E., Larsen, K.G., Skou, A.: Modelling and analysis of a collision
avoidance protocol using Spin and Uppaal. In: The Spin Verification System.
Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 33–50.
DIMACS/AMS (1996). https://doi.org/10.7146/brics.v3i24.20005

21. Parrow, J.: Verifying a CSMA/CD-protocol with CCS. In: Aggarwal, S. (eds.)
IFIP Symposium on Protocol Specification, Testing and Verification (PSTV 1988),
North-Holland, pp. 373–384 (1988)

22. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science
(FOCS 1977), pp. 46–57. IEEE (1977). https://doi.org/10.1109/SFCS.1977.32

23. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. TCS 37, 245–
267 (1985). https://doi.org/10.1016/0304-3975(85)90093-3

24. Simpson, W.: The point-to-point protocol (PPP). RFC 1661 Internet Standard
(1994). http://www.ietf.org/rfc/rfc1661.txt

25. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75, 440–469 (2010). https://doi.org/10.1016/j.
scico.2009.07.008

26. Zhao, J., Li, X., Zheng, T., Zheng, G.: Removing irrelevant atomic formulas for
checking timed automata efficiently. In: Larsen, K.G., Niebert, P. (eds.) FORMATS
2003. LNCS, vol. 2791, pp. 34–45. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-40903-8 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://www.iso.org/standard/73367.html
https://doi.org/10.7146/brics.v3i24.20005
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0304-3975(85)90093-3
http://www.ietf.org/rfc/rfc1661.txt
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1007/978-3-540-40903-8_4
https://doi.org/10.1007/978-3-540-40903-8_4
http://creativecommons.org/licenses/by/4.0/

Program Analysis and Automated
Verification

Data Races and Static Analysis
for Interrupt-Driven Kernels

Nikita Chopra, Rekha Pai(B), and Deepak D’Souza

Indian Institute of Science, Bangalore, India
{nikita,rekhapai,deepakd}@iisc.ac.in

Abstract. We consider a class of interrupt-driven programs that model
the kernel API libraries of some popular real-time embedded operating
systems and the synchronization mechanisms they use. We define a natu-
ral notion of data races and a happens-before ordering for such programs.
The key insight is the notion of disjoint blocks to define the synchronizes-
with relation. This notion also suggests an efficient and effective lockset
based analysis for race detection. It also enables us to define efficient
“sync-CFG” based static analyses for such programs, which exploit data
race freedom. We use this theory to carry out static analysis on the
FreeRTOS kernel library to detect races and to infer simple relational
invariants on key kernel variables and data-structures.

Keywords: Static analysis · Interrupt-driven programs · Data races

1 Introduction

Embedded software is widespread and increasingly employed in safety-critical
applications in medical, automobile, and aerospace domains. These programs
are typically multi-threaded applications, running on uni-processor systems, that
are compiled along with a kernel library that provides priority-based schedul-
ing, and other task management and communication functionality. The appli-
cations themselves are similar to classical multi-threaded programs (using lock,
semaphore, or queue based synchronization) although they are distinguished by
their priority-based execution semantics. The kernel on the other hand typically
makes use of non-standard low-level synchronization mechanisms (like disabling-
enabling interrupts, suspending the scheduler, and flag-based synchronization)
to ensure thread-safe access to its data-structures. In the literature such software
(both applications and kernels) are referred to as interrupt-driven programs. Our
interest in this paper is in the subclass of interrupt-driven programs correspond-
ing to kernel libraries.

Efficient static analysis of concurrent programs is a challenging problem. One
could carry out a precise analysis by considering the product of the control flow
graphs (CFGs) of the threads, however this is prohibitively expensive due to the
exponential number of program points in the product graph. A promising direc-
tion is to focus on the subclass of race-free programs. This is an important class
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 697–723, 2019.
https://doi.org/10.1007/978-3-030-17184-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_25

698 N. Chopra et al.

of programs, as most developers aim to write race-free code, and one could try
to exploit this property to give an efficient way of analyzing programs that fall in
this class. In recent years there have been many techniques [7,11,12,18,21] that
exploit the race-freedom property to perform sound and efficient static analysis.
In particular [11,21] create an appealing structure called a “sync-CFG” which
is the union of the control flow graphs of the threads augmented with possi-
ble “synchronization” edges, and essentially perform sequential analysis on this
graph to obtain sound facts about the concurrent program. However these tech-
niques are all for classical lock-based concurrent programs. A natural question
asks if we can analyze interrupt-driven programs in a similar way.

There are several challenges in doing this. Firstly one needs to define what
constitutes a data race in a generalized setting that includes these programs.
Secondly, how does one define the happens-before order, and in particular the
synchronizes-with relation that many of the race-free analysis techniques rely
on, given the ad-hoc synchronization mechanisms used in these programs.

A natural route that suggests itself is to translate a given interrupt-driven
program into one that uses classical locks, and faithfully captures the interleaved
executions of the original program. One could then use existing techniques for
lock-based concurrency to analyze these programs. However, this route is fraught
with many challenges. To begin with, it is not clear how one would handle flag-
based synchronization which is one of the main synchronization mechanisms
used in these programs. Even if one could handle this, such a translation may
not preserve data races, in that the original program might have had a race but
the translated program does not. Finally, some of the synchronizes-with edges in
the translated program are clearly unnecessary, leading to imprecise data-flow
facts in the analyses.

In this paper, we show that it is possible to take a more organic route and
address these challenges in a principled way that could apply to other non-
standard classes of concurrent systems as well. Firstly, we propose a general
definition of a data race that is not based on a happens-before order, but on
the operational semantics of the class of programs under consideration. The def-
inition essentially says that two statements s and t can race, if two notional
“blocks” around them can overlap in time during an execution. We believe that
this definition accurately captures what it is that a programmer tries to avoid
while dealing with shared variables whose values matter. Secondly we propose
a way of defining the synchronizes-with relation, based on the notion of disjoint
blocks. These are statically identifiable pairs of path segments in the CFGs of dif-
ferent threads that are guaranteed to never overlap (in time) during an execution
of the program, much like blocks of code that lie between an acquire and release
of the same lock. This relation now suggests a natural sync-CFG structure on
which we can perform analyses like value-set (including interval, null-deference,
and points-to analysis), and region-based relational invariant analysis, in a sound
and efficient manner. We also use the notion of disjoint blocks to define an effi-
cient and precise lock-set-based analysis for detecting races in interrupt-driven
programs.

Static Analysis of Interrupt-Driven Kernels 699

We implement some of these analyses on the FreeRTOS kernel library [3]
which is one of the most widely used open-source real-time kernels for embed-
ded systems, comprising about 3,500 lines of C code. Our race-detection analysis
reports a total of 64 races in kernel methods, of which 18 turn out to be true
positives. We also carry out a region-based relational analysis using an imple-
mentation based on CIL [22]/Apron [15], to prove several relational invariants
on the kernel variables and abstracted data-structures.

2 Overview

We give an overview of our contributions via an illustrative example modelled
on a portion of the FreeRTOS kernel library. Figure 1 shows an interrupt-driven
program that contains a main thread that first initializes the kernel variables.
The variables represent components of a message queue, like msgw (the number
of messages waiting in the queue), len (max length of the queue), wtosend (the
number of tasks waiting to send to the queue), wtorec (the number of tasks
waiting to receive from the queue), and RxLock (a counter which also acts as
a synchronization flag that mediates access to the waiting queues). The main
thread then creates (or spawns) two threads: qsend which models the kernel
API method for sending a message to the queue, and qrec ISR which models
a method for receiving a message, and which is meant to be called from an
interrupt-service routine. The basic semantics of this program is that the ISR
thread can interrupt qsend at any time (provided interrupts are not disabled),
but always runs to completion itself. The threads use disableint/enableint
to disable and enable interrupts, suspendsch/resumesch to suspend/resume
the scheduler (thereby preventing preemption by another non-ISR thread), and
finally flag-based synchronization (using the RxLock variable), as different means
to ensure mutual exclusion.

Our first contribution is a general notion of data races which is applicable
to such programs. We say that two conflicting statements s and t in two dif-
ferent threads are involved in a data race if assuming s and t were enclosed in
a notional “block” of skip statements, there is an execution in which the two
blocks “overlap” in time. The given program can be seen to be free of races.
However if we were to remove the disableint statement of line 10, then the
statements accessing msgw in lines 12 and 42 would be racy, since soon after the
access of msgw in qsend at line 12, there could be preemption by qrec ISR which
goes on to execute line 42.

Next we illustrate the notion of “disjoint blocks” which is the key to defining
synchronizes-with edges, which we need in our sync-CFG analysis as well as to
define an appropriate happens-before relation. Disjoint blocks are also used in
our race-detection algorithm. A pair of blocks of code (for example any of the
like-shaded blocks of code in the figure) are disjoint if they can never overlap
during an execution. For example, the block comprising lines 11–14 in qsend and
the whole of qrec ISR, form a pair of disjoint blocks.

Next we give an analysis for checking race-freedom, by adapting the standard
lockset analysis [24] for classical concurrent programs. We associate a unique

700 N. Chopra et al.

17
16 }
15

12

11

qsend:

10

18

if(msgw < len) {
disableint;

if(wtorec > 0)
msgw++;

wtorec−−;
enableint;

enableint;
suspendsch;
disableint;
RxLock++;

else { 48
47
46

if(msgw > 0) {

45
44

qrec_ISR:

49

msgw−−;
if(RxLock = 0) {
if(wtosend > 0)
wtosend−−;

}
else
RxLock++;

}

create(qrec_ISR);
create(qsend);
RxLock := 0;5

4
3

1
2

6
7

19
20
21
22
23
24
25
26
27

14
13

29
28

wtorec := 0;

len := 10;
msgw := 0;

enableint;
wtosend++;

RxLock := 0;30

resumesch;
}

31
31

disableint;
while(RxLock > 1) {

wtosend−−;

}

if(wtosend > 0)

RxLock−−;

41

43
42

wtosend := 0;

enableint;31

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 = RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 < wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

0 = RxLock = msgw < len = 10

main:

Fig. 1. An interrupt-driven program modelled on the FreeRTOS kernel library. Simi-
larly shaded blocks denote disjoint blocks. Some of the sync-with edges are shown in
dashed lines. Some edges like 22 → 41 and 49 → 20 have been omitted for clarity.

lock with each pair of disjoint blocks, and add notional acquires and releases of
this lock at the beginning and end (respectively) of these blocks. We now do
the standard lockset analysis on this version of the program, and declare two
accesses to be non-racy if they hold sets of locks with a non-empty intersection.

Finally, we show how to do data-flow analysis for such programs in a sound
and efficient way. The basic idea is to construct a “sync-CFG” for the program
by unioning the control-flow graphs of the threads, and adding sync edges that
capture the synchronizes-with edges (going from the end of a block to the begin-
ning of its paired block), for example line 14 to line 41 and line 49 to line 11.
The sync-edges are shown by dashed arrows in the figure. We now do a standard
“value-set” analysis (for example interval analysis) on this graph, keeping track
of a set of values each variable can take. The resulting facts about a variable are
guaranteed to be sound at points where the variable is accessed (or even “owned”
in the sense that a notional read of the variable at that point is non-racy). For
example an interval analysis on this program would give us that 0 < msgw at
line 14. Finally, we could do a region-based value-set analysis, by identifying
regions of variables that are accessed as a unit – for example msgw and len could

Static Analysis of Interrupt-Driven Kernels 701

be in one region, while wtosend and wtorec could be in another. The figure
shows some facts inferred by a polyhedral analysis based on these regions, for
the given program.

3 Interrupt-Driven Programs

The programs we consider have a finite number of (static) threads, with a des-
ignated “main” thread in which execution begins. The threads access a set of
shared global variables, some of which are used as “synchronization flags”, using
a standard set of commands like assignment statements of the form x := e,
conditional statements (if-then-else), loop statements (while), etc. In addi-
tion, the threads can use commands like disableint, enableint (to disable
and enable interrupts, respectively), suspendsch, resumesch (to suspend and
resume the scheduler, respectively), while the main thread can also create a
thread (enable it for execution). Table 1 shows the set of basic statements cmdV,T

over a set of variables V and a set of threads T .
We allow standard integer and Boolean expressions over a set of variables V .

For an integer expression e over V , and an environment φ for V , we denote by
�e�φ the integer value that e evaluates to in φ. Similarly for a Boolean expression
b, we denote the Boolean value (true or false) that b evaluates to in φ by �b�φ.
For a set of environments Φ for a set of variables V , we define the set of integer
values that e can evaluate to in an environment in Φ, by �e�Φ = {�e�φ | φ ∈ Φ}.
Similarly, for a boolean expression b, we define the set of environments in Φ that
satisfy b to be �b�Φ = {φ ∈ Φ | �b�φ = true}.

Each thread is of one of two types: “task” threads that are like standard
threads, and “ISR” threads that represent threads that run as interrupt ser-
vice routines. The main thread is a task thread, which is the only task thread
enabled initially. The main thread can enable other threads (both task and ISR)
for execution using the create command. Task threads can be preempted by
other task threads (whenever interrupts are not disabled, and the scheduler is
not suspended) or by ISR threads (whenever interrupts are not disabled). On
the other hand ISR threads cannot be preempted and are assumed to run to
completion.

Only task threads are allowed to use disableint, enableint, suspendsch
and resumesch commands. Similarly, if flag-based synchronization is used, only
task threads can modify the flag variable, while an ISR can only check whether
the flag is set or not, and perform some actions accordingly.

Formally we represent an interrupt-driven program P as a tuple (V, T) where
V is a finite set of integer variables, and T is a finite set of named threads. Each
thread t ∈ T has a type which is one of task or ISR, and an associated control-
flow graph of the form Gt = (Lt, st, inst t) where Lt is a finite set of locations of
thread t, st ∈ Lt is the start location of thread t, inst t ⊆ Lt × cmdV,T × Lt is a
finite set of instructions of thread t.

Some definitions related to threads will be useful going forward. We denote
by LP =

⋃
t∈T Lt the disjoint union of the thread locations. Whenever P is clear

702 N. Chopra et al.

Table 1. Basic statements cmdV,T over variables V and threads T

Command Description

skip Do nothing

x := e Assign the value of expression e to variable x ∈ V

assume(b) Enabled only if expression b evaluates to true, acts like skip

create(t) Enable thread t ∈ T for execution

disableint Disable interrupts and context switches

enableint Enable interrupts and context switches

suspendsch Suspend the scheduler (other task threads cannot preempt the
current thread); Also sets ssflag variable

resumesch Resume the scheduler (other task threads can now preempt the
current thread); Also unsets ssflag variable

from the context we will drop the subscript of P from LP and its decorations.
For a location l ∈ L we denote by tid(l) the thread t which contains location l .
We denote the set of instructions of P by instP =

⋃
t∈T inst t. For an instruction

ι ∈ inst t, we will also write tid(ι) to mean the thread t. For an instruction
ι = 〈l , c, l ′〉, we call l the source location, and l ′ the target location of ι.

We denote the set of commands appearing in program P by cmd(P). We will
consider an assignment x := e as a write-access to x, and as a read-access to
every variable that appears in the expression e. Similarly, assume(b) is considered
to be a read-access of every variable that occurs in expression b. We say two
accesses are conflicting accesses if they are read/write accesses to the same
variable, and at least one of them is a write. We assume that the control-flow
graph of each thread comes from a well-structured program. Finally, we assume
that the main thread begins by initializing the variables to constant values.
Figure 2 shows an example program and the control-flow-graphs of its threads.

We define the operational semantics of an interrupt-driven program using a
labeled transition system (LTS). Let P = (V, T) be a program. We define an
LTS TP = (Q,Σ, s,⇒) corresponding to P , where:

– Q is a set of states of the form (pc, φ, enab, rt, it, id , ss), where pc ∈ T → L is
the program counter giving the current location of each thread, φ ∈ V → Z

is a valuation for the variables, enab ⊆ T is the set of enabled threads, rt ∈ T
is the currently running thread; it ∈ T is the task thread which is interrupted
when the scheduler is suspended; and id and ss are Boolean values telling us
whether interrupts are disabled (id = true) or not (id = false) and whether
the scheduler is suspended (ss = true) or not (ss = false).

– The set of labels Σ is the set of instructions instP of P .
– The initial state s is (λt.st, λx.0, {main},main,main, false, false). Thus all

threads are at their entry locations, the initial environment sets all variables
to 0, only the main thread is enabled and running, the interrupted task is

Static Analysis of Interrupt-Driven Kernels 703

main:
1. x := 0;
2. y := 0;
3. t := 0;
4. create(t1);
5. create(t2);
6.

t1: t2:
7. x := x + 1; 9. disableint;
8. 10. y := t;

11. t := x;
12. if(t > 0) {
13. y := y + 1;
14. }
15. else {
16. t := t + 1;
17. }
18. enableint;
19.

(a) Example program

t1 t2main

7

8

x := x + 1

9

10

11

12

18

19

disableint

y := t

t := x

enableint

assume(t>0)assume(t<=0)

skip skip

13

1417

16

t := t + 1 y := y + 1

1

2

3

4

5

6

x := 0

y := 0

t := 0

create(t1)

create(t2)

(b) Control-flow-graph representation

Fig. 2. An example program and its CFG representation.

set to main (this is a dummy value as it is used only when the scheduler is
suspended), interrupts are enabled, and the scheduler is not suspended.

– For an instruction ι = 〈l , c, l ′〉 in instP , with tid(ι) = t, we define

(pc, φ, enab, rt, it, id , ss) ⇒ι (pc′, φ′, enab′, rt′, it′, id ′, ss ′)

iff the following conditions are satisfied:
• t ∈ enab; pc(t) = l ; pc′ = pc[t �→ l ′];
• if id is true or rt is an ISR then t = rt;
• if ss is true, then either t = rt or t is an ISR thread;
• Based on the command c, the following conditions must be satisfied:

∗ If c is the skip command then φ′ = φ, enab′ = enab, id ′ = id , and
ss ′ = ss.

∗ If c is an assignment statement of the form x := e then φ′ = φ[x �→ �e�φ],
enab′ = enab, id ′ = id , and ss ′ = ss.

∗ If c is a command of the form assume(b) then �b�φ = true, φ′ = φ,
enab′ = enab, id ′ = id , and ss ′ = ss.

∗ If c is a create(u) command then t = main, φ′ = φ, enab′ = enab∪{u},
id ′ = id , and ss ′ = ss.

∗ If c is the disableint command then φ′ = φ, enab′ = enab, id ′ = true,
and ss ′ = ss.

∗ If c is the enableint command then φ′ = φ, enab′ = enab, id ′ = false,
and ss ′ = ss.

∗ If c is the suspendsch command then φ′ = φ[ssflag �→ 1], enab′ =
enab, id ′ = id , and ss ′ = true.

∗ If c is the resumesch command then φ′ = φ[ssflag �→ 0], enab′ = enab,
id ′ = id , and ss ′ = false.

704 N. Chopra et al.

• In addition, the transitions set the new running thread rt′ and interrupted
task it′ as follows. If t is an ISR thread, ss is true, and ι is the first
statement of t then it′ = rt, rt′ = t. If t is an ISR thread, ss is true, and ι
is the last statement of t then it′ = it, rt′ = it. In all other cases, rt′ = t
and it′ = it.

An execution σ of P is a finite sequence of transitions in TP from the initial
state s: σ = τ0, τ1, . . . , τn (n ≥ 0) from ⇒, such that there exists a sequence
of states q0, q1, . . . , qn+1 from Q, with q0 = s and τi = (qi, ιi, qi+1) for each
0 ≤ i ≤ n. Wherever convenient we will also represent an execution like σ above
as a sequence of the form q0 ⇒ι0 q1 ⇒ι1 · · · ⇒ιn

qn+1. We say that a state q ∈ Q
is reachable in program P if there is an execution of P leading to state q.

4 Data Races and Happens-Before Ordering

In this section we propose a definition of a data race which has general applicabil-
ity, and also define a natural happens-before order for interrupt-driven programs.

4.1 Data Races

Data races have typically been defined in the literature in terms of a happens-
before order on program executions. In the classical setting of lock-based syn-
chronization, the happens-before relation is a partial order on the instructions in
an execution, that is reflexive-transitive closure of the union of the program-order
relation between two instructions in the same thread, and the synchronizes-with
relation which relates a release of a lock in a thread to the next acquire of the
same lock in another thread. Two instructions in an execution are then defined
to be involved in a data race if they are conflicting accesses to a shared variable
and are not ordered by the happens-before relation.

We feel it is important to have a definition of a data race that is based on the
operational semantics of the class of programs we are interested in, and not on a
happens-before relation. Such a definition would more tangibly capture what it
is that a programmer typically tries to avoid when dealing with shared variables
whose consistency she is worried about. Moreover, when coming up with a defi-
nition of the happens-before order (the synchronizes-with relation in particular)
for non-standard concurrent programs like interrupt-driven programs, it is use-
ful to have a reference notion to relate to. For instance, one could show that a
proposed happens-before order is strong enough to ensure the absence of races.

We propose to define a race between two conflicting statements in a program
in terms of whether two imaginary blocks enclosing each of these statements can
overlap in an execution. Let us consider a multi-threaded program P in a class of
concurrent programs with a certain operational execution semantics. Consider a
block of contiguous instructions in a thread t of a program P and another block
in thread t′ of P . We say that these two blocks are involved in a high-level race
in an execution of P if they overlap with each other during the execution, in that

Static Analysis of Interrupt-Driven Kernels 705

one block begins in between the beginning and ending of the other. We say two
conflicting statements s and t in P are involved in a data race (or are racy), if
the following condition is true: Consider the program P ′ which is obtained from
P by replacing the statement s by the block “skip; s; skip”, and similarly for
statement t. Then there is an execution of P ′ in which the two blocks containing
s and t are involved in a high-level race. The definition is illustrated in Fig. 3.
We say a program P is race-free if no pair of instructions in it are racy.

t;
s; skip;

s;
skip;

skip;
t;
skip;

t1: t2: t1: t2:

t1 t2P ′P

Fig. 3. Illustrating the definition of a data race on statements s and t. A program P ,
its transformation P ′, and an execution of P ′ in which the blocks overlap.

The rationale for this definition is that the concerned statements s and t may
be compiled down to a sequence of instructions (represented by the blocks with
skip’s around s and t) depending on the underlying processor and compiler,
and if these instructions interleave in an execution, it may lead to undesirable
results.

To illustrate the definition, consider the program in Fig. 2a. The accesses to
x in line 7 and line 11 can be seen to be racy, since there is an execution of the
augmented program P ′ in which t1 performs the skip followed by the increment
to x at line 7, followed by a context switch to thread t2 which goes on to execute
lines 9 and 10 and then the read of x in line 11. On the other hand, the version
of the program in which line 7 is enclosed in a disableint-enableint block,
does not contain a race.

We note that for classical concurrent programs, it might suffice to define a
race as consecutive occurrences of conflicting accesses in an execution, as done in
[4,17]. However, this definition is not general enough to apply to interrupt-driven
programs. By this definition, the statements in lines 7 and 11 of the program in
Fig. 2a are not racy, as there is no execution in which they happen consecutively.
This is because the disableint-enableint block containing the access in line 11
is “atomic” in that the statements in the block must happen contiguously in any
execution, and hence the instructions corresponding to line 7 and line 11 can
never happen immediately one after another.

4.2 Disjoint Blocks and the Happens-Before Relation

Now that we have a proposed definition of races, we can proceed to give a
principled way to define the happens-before relation for our class of interrupt-

706 N. Chopra et al.

driven programs. The main question is how does one define the synchronizes-
with relation. Our insight here is that the key to defining the synchronizes-with
relation lies in identifying what we call disjoint blocks for the class of programs.
Disjoint blocks are statically identifiable pairs of path segments in the CFGs of
different threads, which are guaranteed by the execution semantics of the class
of programs never to overlap in an execution of the program. Disjoint block
structures – for example in the form of blocks enclosed between locks/unlocks of
the same lock – are the primary mechanism used by developers to ensure race-
freedom. The synchronizes-with relation in an execution can then be defined as
relating, for every pair (A,B) of disjoint blocks in the program, the end of block
A to the beginning of the succeeding occurrence of block B in the execution. The
happens-before order for an execution can now be defined, as before, in terms
of the program order and the synchronizes-with order, and is easily seen to be
sufficient to ensure non-raciness.

Let us illustrate this hypothesis on classical lock-based programs. The disjoint
block pairs for this class of programs are segments of code enclosed between
acquires and releases of the same lock; or the portion of a thread’s code before it
spawns a thread t, and the whole of thread t’s code; and similarly for joins. The
synchronizes-with relation between instructions in an execution essentially goes
from a release to the succeeding acquire of the same lock. If two accesses are
related by the resulting happens-before order, they clearly cannot be involved
in a race.

We now focus on defining a happens-before relation based on disjoint blocks
for our class of interrupt-driven programs. We have identified eight pairs of
disjoint block patterns for this class of programs, which are depicted in Fig. 4.
We use the following types of blocks to define the pairs. A block of type D is
a path segment in a task thread that begins with a disableint and ends with
an enableint with no intervening enableint in between. A block of type S
is a path segment in a task thread that begins with a suspendsch and ends
with a resumesch with no intervening resumesch. An I block is an initial and
terminating path segment in an ISR thread (i.e. begins with the first instruction
and ends with a terminating instruction). Similarly, for a task thread t, Tt is
an initial and terminating path in t, while Mt is an initial segment of the main
thread that ends with a create(t) command. A block of type Cssflag is a path
segment in an ISR thread corresponding to the then block of a conditional that
checks if ssflag = 0. For a synchronization flag f , Cf is the path segment in
an ISR thread corresponding to the then block of a conditional that checks if
f = 0. Finally Ff is a segment between statements that set f to 1 and back to
0, in a task thread. We also require that an Ff segment be within the scope of
a suspendsch command.

We can now describe the pairs of disjoint blocks depicted in Fig. 4. Case (a)
says that two D blocks in different task threads are disjoint. Clearly two such
blocks can never overlap in an execution, since once one of the blocks begins exe-
cution no context-switch can occur until interrupts are enabled again. Case (b)
says that D and I blocks are disjoint. Once again this is because once the D block

Static Analysis of Interrupt-Driven Kernels 707

(a) (b) (c)

(f)(d) (e)

main:

// begin

t:

// begin

// end

task: task: task:task:

(g) (h)

task: task: task: ISR:

// begin

// end

ISR:

// begin

// end

ISR:

// begin

// end

ISR:

if(f = 0){

task:ISR:

if(ssflag = 0){

task:

f := 1;

f := 0;

} }

// suspended
// with scheduler

create(t)

suspendsch;

resumesch;

disableint;

enableint

suspendsch; suspendsch;

resumesch; resumesch;

suspendsch;

resumesch;

enableint

disableint; disableint;

enableint

disableint;

enableint

D D I I I

D S S S

S

Mt Tt

Ff

CfCssflag

D

Fig. 4. Disjoint blocks in an interrupt-driven program.

begins execution no ISR can run until interrupts are enabled again, and once
an ISR begins execution it runs to completion without any context-switches.
Case (e) says that S blocks in different task threads are disjoint, because once
the scheduler is suspended no context-switch to another task thread can occur.
Case (f) says that Mt and Tt blocks are disjoint, since a thread cannot begin
execution before it is created in main. Case (g) says that an S block is disjoint
from a Cssflag block. This is because once the scheduler is suspended by the
suspendsch command, and even if a context-switch to an ISR occurs, the then
block of the if statement will not execute. Conversely, if the ISR is running
there can be no context-switch to another thread. Finally, case (h) is similar to
case (g). We note that the disjoint block pairs are not ordered (the relation is
symmetric).

We can now define the synchronizes-with relation as follows. Let σ = q0 ⇒ι0

q1 ⇒ι1 · · · ⇒ιn
qn+1 be an execution of P . We say instruction ιi synchronizes-

with an instruction ιj of P in σ, if i < j, tid(ιi) = tid(ιj), and there exists a pair
of disjoint blocks A and B, with ιi ending block A and ιj beginning block B. As
usual we say ιi is program-order related to ιj iff i < j and tid(ιi) = tid(ιj). We
define the happens-before relation on σ as the reflexive-transitive closure of the
union of the program-order and synchronizes-with relations for σ.

We can now define a HB-race in an execution σ of P as follows: we say that
two instructions ιi and ιj in σ are involved in a HB-race if they are conflicting

708 N. Chopra et al.

instructions that are not ordered by the happens-before relation in σ. We say
that two instructions in P are HB-racy if there is an execution of P in which
they are involved in a HB-race. Finally, we say a program P is HB-race-free if
no two of its instructions are HB-racy.

Once again, it is fairly immediate to see that if two statements of a program
are not involved in a HB-race, they cannot be involved in a race. Further, if
two statements belong to disjoint blocks, then they are clearly happens-before
ordered in every execution. Hence belonging to disjoint blocks is sufficient to
ensure that the statements are happens-before ordered, which in turn ensures
that the statements cannot be involved in a race.

5 Sync-CFG Analysis for Interrupt-Driven Programs

In this section we describe a way of lifting a sequential value-set analysis in
a sound way for a HB-race free interrupt-driven program, in a similar way to
how it is done for lock-based concurrent programs in [11]. A value-set analysis
keeps track of the set of values each variable can take at each program point.
The basic idea is to create a “sync-CFG” for a given interrupt-driven program
P , which is essentially the union of the CFGs of each thread of P , along with
“may-synchronize-with” edges between statements that may be synchronizes-
with related in an execution of P , and then perform the value-set analysis on
the resulting graph. Whenever the given program is HB-race free, the result of
the analysis is guaranteed to be sound, in a sense made clear in Theorem 1.

5.1 Sync-CFG

We begin by defining the “sync-CFG” for an interrupt-driven program. It is
on this structure that we will do the value-set analysis. Let P = (V, T) be
an interrupt-driven program, and let G be the disjoint union (over threads
t ∈ T) of the CFGs Gt. We define a set of may-synchronize-with edges in G,
denoted MSW (G), as follows. The edges correspond to the pairs of disjoint blocks
depicted in Fig. 4, in that they connect the ending of one block to the beginning
of the other block in the pair. Consider two instructions ι = 〈l , c,m〉 ∈ inst t

and κ = 〈l ′, c′,m′〉 ∈ inst t′ , with t = t′. We add the edge (m, l ′) in MSW (G),
iff for some pair of disjoint blocks (A,B), ι ends a block of type A in thread t
and κ begins a block of type B in thread t′. For example, corresponding to a
(D,D) pair of disjoint blocks, we add the edge (m, l ′) when c is an enableint
command, and c′ is a disableint command.

The sync-CFG induced by P is the control flow graph given by G along with
the additional edges in MSW (G). Figure 6 shows a program P2 and its induced
sync-CFG.

5.2 Value Set Analysis

We first spell out the particular form of abstract interpretation we will be using.
It is similar to the standard formulation of [9], except that it is a little more
general to accommodate non-standard control-flow graphs like the sync-CFG.

Static Analysis of Interrupt-Driven Kernels 709

An abstract interpretation of a program P = (V, T) is a structure of the form
A = (D,≤, do, F) where

– D is the set of abstract states.
– (D,≤) forms a complete lattice. We denote the join (least upper bound) in

this lattice by �≤, or simply � when the ordering is clear from the context.
– d0 ∈ D is the initial abstract state.
– F : instP → (D → D) associates a transfer function F (ι) (or simply Fι) with

each instruction ι of P . We require each transfer function Fι to be monotonic,
in that whenever d ≤ d′ we have Fι(d) ≤ Fι(d′).

An abstract interpretation A = (D,≤, d0, F) of P induces a “global” transfer
function FA : D → D, given by FA(d) = d0 �

⊔
ι∈instP

Fι(d). This transfer
function can also be seen to be monotonic. By the Knaster-Tarski theorem [28],
FA has a least fixed point (LFP) in D, which we denote by LFP(FA), and refer
to as the resulting value of the analysis.

A value set for a set of variables V is a map vs : V → 2Z, associating a
set of integer values with each variable in V . A value set vs induces a set of
environments Φvs in a natural way: Φvs = {φ | for all x ∈ V, φ(x) ∈ vs(x)}
(i.e. essentially the Cartesian product of the values sets). Conversely, a set of
environments Φ for V , induces a value set valset(Φ) given by valset(Φ)(x) =
{v ∈ Z | ∃φ ∈ Φ, φ(x) = v}, which is the “projection” of the environments to
each variable x ∈ V . Finally, we define a point-wise ordering on value sets as
follows: vs � vs ′ iff vs(x) ⊆ vs ′(x) for each variable x in V . We denote the least
element in this ordering by vs⊥ = λx.∅.

We can now define the value-set analysis Avset for an interrupt-driven pro-
gram P = (V, T) as follows. Let Avset = (D,≤, d0, F) where

– D is the set LP → (V → 2Z) (thus an element of D associates a value-set
with each program location)

– The ordering d ≤ d′ holds iff d(l) � d′(l) for each l ∈ LP

– The initial abstract value d0 is given by:

d0 = λl.

{
λx.{0} if l = smain

vs⊥ otherwise.

– The transfer functions are given as follows. Given an abstract value d, and
a location l ∈ LP , we define vsd

l to be the join of the value-set at l, and
the value-set at all may-synchronizes-with edges coming into l. Thus vsd

l =
d(l)��

⊔
(n,l)∈MSW (G) d(n). Below we will use Φ as an abbreviation of the set

Φvsd
l

of environments induced by vsd
l . Let ι = 〈l , c, l ′〉 be an instruction in P .

• If c is the command x := e then Fι(d) = d′ where

d′(m) =
{

vsd
l [x �→ �e�Φ] if m = l ′

vs⊥ otherwise.

710 N. Chopra et al.

• If c is the command assume(b), then Fι(d) = d′ where

d′(m) =
{

valset(�b�Φ) if m = l ′

vs⊥ otherwise.

• If c is any other command (skip, disableint, enableint, suspendsch,
resumesch, or create) then Fι(d) = d′ where

d′(m) =
{

vsd
l if m = l ′

vs⊥ otherwise.

Figure 6 shows the results of a value-set analysis on the sync-CFG of program
P2. The data-flow facts are shown just before a statement, at selected points in
the program.

Soundness. The value-set analysis is sound in the following sense: if P is a HB-
race free program, and we have a reachable state of P at a location l in a thread
where a variable x is read ; then the value of x in this state is contained in the
value-set for x, obtained by the analysis at point l. More formally:

Theorem 1. Let P = (V, T) be an HB-race free interrupt-driven program, and
let d∗ be the result of the analysis Avset on P . Let l be a location in a thread
t ∈ T where a variable x is read (i.e. P contains an instruction of the form
〈l , c, l ′〉 where c is a read access of x). Let φ be an environment at l reachable
via some execution of P . Then φ(x) ∈ d∗(l)(x).

The proof of this theorem is similar to the one for classical concurrent pro-
grams in [11] (see [10] for a more accurate proof). The soundness claim can
be extended to locations where a variable is “owned” (which includes locations
where it is read). We say a variable x is owned by a thread t at location l, if an
inserted read of x at this point is non-HB-racy in the resulting program.

Region-Based Analysis. One problem with the value-set analysis is that it may
not be able to prove relational invariants (like x ≤ y) for a program. One way
to remedy this is to exploit the fact that concurrent programs often ensure race-
free access to a region of variables, and to essentially do a region-based value-set
analysis, as originally done in [21]. More precisely, let us say we have a partition
of the set of variables V of a program P into a set of regions R1, . . . , Rn. We
classify each read (write) access to a variable x in a region R, as an read (write)
access to region R. We say that two instructions in an execution of P are involved
in a HB-region-race, if the two instructions are conflicting accesses to the same
region R, and are not happens-before ordered in the execution. A program is
HB-region-race free if none of its executions contain a HB-region-race.

We can now define a region-based version of the value-set analysis for a
program P , which we call Arvset . The value-set for a region R is a set of valuations
(or sub-environments) for the variables in R. The transfer functions are defined
in an analogous way to the value-set analysis. The analogue of Theorem 1 for
regions gives us that for a HB-region-race free program, at any location where a
region R is accessed, the region-value-set computed by the analysis at that point
will contain every sub-environment of R reachable at that point.

Static Analysis of Interrupt-Driven Kernels 711

6 Translation to Classical Lock-Based Programs

In this section we address the question of why an execution-preserving trans-
lation to a classical lock-based program is not a fruitful route to take. In a
nutshell, such a translation would not preserve races and would induce a sync-
CFG with many unnecessary MSW edges, leading to much more imprecise facts
than the analysis on the native sync-CFG described in the previous section.
We also describe how our approach can be viewed as a lightweight translation
of an interrupt-driven program to a classical lock-based one. The translation
is “lightweight” in the sense that it does not attempt to preserve the execution
semantics of the given interrupt-driven program, but instead preserves races and
the sync-CFG structure of the original program.

6.1 Execution-Preserving Lock Translation

One could try to translate a given interrupt-driven program P into a classi-
cal lock-based program PL in a way that preserves the interleaved execution
semantics of P . By this we mean that every execution of P has a corresponding
execution in PL that follows essentially the same sequence of interleaved instruc-
tions from the different threads (modulo of course the synchronization state-
ments which may differ); and vice-versa. For example, to capture the semantics
of disableint-enableint, one could introduce an “execution” lock E which is
acquired in place of disabling interrupts, and released in place of enabling inter-
rupts. Every instruction in a task thread outside a disableint-enableint block
must also acquire and release E immediately before and after the instruction.
Note that the latter step is necessary if we want to capture the fact that once
a thread disables interrupts it cannot be preempted by any thread. Figure 5a
shows an interrupt-driven program P1 and its lock translation PL

1 in Fig. 5b.
There are still issues with the translation related to re-entrancy of locks and it
is not immediately clear how one would handle flag-based synchronization – but
let us keep this aside for now.

The first problem with this translation is that it does not preserve race infor-
mation. Consider the program P1 in Fig. 5a and its translation PL

1 . The original
program clearly has a race on x in statements 4 and 9. However the translation
PL

1 does not have a race as the accesses are protected by the lock E. Hence
checking for races in PL does not substitute for checking in P . An alternative
around this would be to first construct P ′ (recall that this is the version of P
in which we introduce the skip-blocks around statements we want to check for
races), then construct its lock translation (P ′)L, and check this program for
high-level races on the introduced skip-blocks. However this is expensive as it
involves a 3x blow-up in going from P to P ′ and another 3x blow-up in going
from P ′ to (P ′)L. Further, checking for high-level races (for example using a
lock-set analysis) is more expensive than just checking for races. In contrast, as
we show next, our lock-set analysis on the native program P does not incur any
of these expenses.

712 N. Chopra et al.

main:
1. x := y := t := 0;
2. create(t1);
3. create(t2);

t1: t2:
4. x := x + 1; 8. disableint;
5. disableint; 9. t := x;
6. x := y; 10. enableint;
7. enableint;

(a) Example program P1

main:
1. x := y := t := 0;
2. spawn(t1);
3. spawn(t2);

t1: t2:
4. lock(E) 10. lock(E);
5. x := x + 1; 11. t := x;
6. unlock(E) 12. unlock(E);
7. lock(E)
8. x := y;
9. unlock(E)

(b) Exec-preserving trans. P L
1

main:
1. x := y := t := 0;
2. spawn(t1);
3. spawn(t2);

t1: t2:
4. x := x + 1; 8. lock(A);
5. lock(A); 9. t := x;
6. x := y; 10. unlock(A);
7. unlock(A);

(c) Lightweight trans. P W
1

Fig. 5. Example program P1, and its lock and lightweight translations P L
1 , P W

1 .

The second problem with a precise lock translation is that the sync-CFG of
the translated program has many unnecessary MSW-edges, leading to impre-
cision in the ensuing analysis. Consider the program P2 in Fig. 6, and its lock
translation PL

2 in Fig. 7. P2 is similar to P1 except that line 4 is now an increment
of y instead of x, and the resulting program is race-free (in fact HB-race-free).
Notice that the may-sync-with edges from line 13 to 4, and line 6 to 10 in the
sync-CFG of PL

2 in Fig. 7 are unnecessary (they are not present in the native
sync-CFG) and lead to imprecise facts in an interval analysis on this graph. Some
of the final facts in an interval analysis on these graphs are shown alongside the
programs in Figs. 6 and 7. In particular the analysis on PL

2 is unable to prove
the assertion in line 10 of the original program.

6.2 A Lightweight Lock-Translation

Our disjoint block-based approach of Sect. 5 can be viewed as a lightweight lock
translation which does not attempt to preserve execution semantics, but pre-
serves disjoint blocks and hence also races and the sync-CFG structure of the
original interrupt-driven program.

create(t2);
create(t1);
x := y := t := 0;1

2
3

6

5

t1:

4
disableint;
y := y+1;

7
x := y;
enableint;

disableint;

t2:

8

10
9 t := x;

// assert(t<=1)
enableint;11

main:

x = y = t = 0

0 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 01 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 1

Fig. 6. Program P2 with its Sync-CFG and facts from an interval analysis

Static Analysis of Interrupt-Driven Kernels 713

spawn(t2);
spawn(t1);
x := y := t := 0;1

2
3

5

t1:

4
y := y+1;
lock(E); lock(E);

t2:

10

12
11 t := x;

// assert(t<=1)
unlock(E);13

unlock(E);6

unlock(E);
x := y;8

9

lock(E);7

0 ≤ x, t
1 ≤ y

main:

0 ≤ x, y, t

0 ≤ x, y, t 0 ≤ x, y, t

0 ≤ x, y, t

0 ≤ x, y, t

Fig. 7. Lock translation P L
2 of P2, with its Sync-CFG and interval analysis facts

Let us first spell out the translation. Let us fix an interrupt-driven program
P = (V, T). The idea is simply to introduce a lock corresponding to each pattern
of disjoint block pairs listed in Fig. 4, and to insert at the entry and exit to these
blocks an acquire and release (respectively) of the corresponding lock. For each
of the cases (a) through (h) we introduce locks named A through H, with some
exceptions. Firstly, for case (f) regarding the create of a thread t, we simply
translate these as a spawn(t) command in a classical lock-based programming
language, which has a standard acquire-release semantics. Secondly, for case (h),
we need a copy of H for each thread t, which we call Ht. This is because the
concerned blocks (say between a set and unset of the flag f) are not disjoint
across task threads, but only with the “then” block of an ISR thread statement
that checks if f = 0. The ISR thread now acquires the set of locks {Ht | t ∈ T}
at the beginning of the “then” block of the if statement, and releases them at
the end of that block. We call the resulting classical lock-based program PW .
Figure 5c shows this translation for the program P1.

Figure 8 shows this translation along with the sync-CFG edges and some of
the final facts in an interval analysis for the program P2.

It is not difficult to see that PW allows all executions that are possible in P .
However it also allows more: for example the execution of PW

1 (Fig. 5c) in which
thread t1 preempts t2 at line 9 to execute the statement at line 4, is not allowed
in P1. Thus it only weakly captures the execution semantics of P . However, every
race in P is also a race in PW . To see this, suppose we have a race on statements
s and t in P . This means there is a high-level race on the two skip blocks around
s and t in the augmented program P ′. Since an execution exhibiting the high-
level race on these blocks would also be present in (P ′)W which is identical to
(PW)′, it follows that the corresponding statements are racy in PW as well.

Further, since our translation preserves disjoint blocks by construction, if s
and t are in disjoint blocks in P , the corresponding statements will be in disjoint
blocks in PW ; and vice-versa. It follows that the sync-CFGs induced by P and
PW are essentially isomorphic (modulo the synchronization statements). As a
result, any value-set-based analysis will produce identical results on the two
graphs.

714 N. Chopra et al.

Finally, if statements s and t are HB-racy in P , they must also be HB-racy
in PW . This is because disjoint blocks are preserved and the synchronizes-with
relation is inherited from the disjoint blocks. Hence the execution witnessing the
HB-race in P would also be present in PW , and would also witness a HB-race
on the corresponding statements.

We summarize these observations below:

Proposition 1. Let P be an interrupt-driven program and PW the classical lock
program obtained using our lightweight lock translation. Then:

1. If statements s and t are racy in P , the corresponding statements are racy in
PW as well.

2. If statements s and t are HB-racy in P , the corresponding statements are
HB-racy in PW as well.

3. The sync-CFGs induced by P and PW are essentially isomorphic. As a result
the final facts in a value-set-based analysis on these graphs will be identical.

��

spawn(t2);
spawn(t1);
x := y := t := 0;1

2
3

6

5

t1:

4 y := y+1;

7
x := y;
unlock(A);

lock(A);

t2:

8

10
9 t := x;

// assert(t<=1)
unlock(A);11

lock(A);

main:

x = y = t = 0

0 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 01 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 1

Fig. 8. Our lightweight translation P W
2 of P2, with its Sync-CFG and interval analysis

facts

6.3 Lockset Analysis for Race Detection

For classical lock-based programs, the lockset analysis [24] essentially tracks
whether two statements are in disjoint blocks. Here two blocks are disjoint if
they hold the same lock for the duration of the block. When two statements are
in disjoint blocks, they are necessarily happens-before ordered, and hence this
gives us a way to declare pairs of statements to be non-HB-racy.

A lockset analysis computes the set of locks held at each program point as
follows: at program entry it is assumed that no locks are held. When a call to
acquire(l) is encountered, the analysis adds the lock l at the out point of the
call. When a call to release(l) is encountered the lockset at the out point of the
call is the lockset computed at the in point with the lock l removed. For any
other statement, the lockset from the in point of the statement is copied to its
out point. The join operation is the simple intersection of the input locksets.
Once locksets are computed at each point, a pair of conflicting statements s and

Static Analysis of Interrupt-Driven Kernels 715

t in different threads are declared to may HB-race if the locksets held at these
points have no lock in common.

Using our lock translation above, we can detect races as follows. Given an
interrupt-driven program P , we first translate it to the lock-based program PW ,
and do a lockset analysis on PW . If any pair of conflicting statements s and t
are found to be may-HB-racy in PW , we declare them to be may-HB-racy in P .
By Proposition 1(2), it follows that this is a sound analysis for interrupt-driven
programs.

7 Analyzing the FreeRTOS Kernel Library

We now perform an experimental evaluation of the proposed race detection algo-
rithm and sync-CFG-based relational analysis for interrupt-driven programs.
We use the FreeRTOS kernel library [3], on which our interrupt-driven pro-
gram semantics are based, to perform our evaluation. FreeRTOS is a collection
of functions mostly written in C, that an application developer compiles with
and invokes in the application code. We view the FreeRTOS kernel library as an
interrupt-driven program as follows: we build an interrupt-driven program out of

task: ISR:

main:

the FreeRTOS kernel as shown in the
figure alongside. The main thread is
responsible for initializing the kernel data
structures and then creating two threads:
a task thread which branches out calling
each task kernel API function, and loops
on this; and an ISR thread which similarly
branches and loops on the ISR kernel API
functions. FreeRTOS provides versions of
API functions that can be called from
interrupt service routines. These functions
have “FromISR” appended to their name.
While it is sufficient to have one ISR
thread, we assume (in the analysis) that
there could be any number of task threads
running. To achieve this we simply add sync-edges within each task kernel func-
tion, in addition to the usual sync-edges between task functions. We used FreeR-
TOS version 10.0.0 for our experiments. We conducted these experiments on an
Intel Core i7 machine with 32 GB RAM running Ubuntu 16.04.

7.1 Race Detection

We consider 49 task and queue API functions that can be called from an appli-
cation (termed top-level functions) for race detection. The functions operating
on semaphores and mutexes were not considered.

716 N. Chopra et al.

We prepared the API functions for analysis, in two steps: (1) inlining and
(2) lock insertion, as follows: The function vTaskStartScheduler and the queue
initialization code in the function xQueueGenericCreate were treated as part of
the main thread, which initializes kernel data structures. All the helper function
calls made inside the top-level functions were inlined. After inlining, the functions
are modified to acquire and release locks using the strategy explained in Sect. 6.2.
We consider each pair of disjoint blocks as taking the same distinct lock. For
example, the pair of disjoint blocks protected by disableint-enableint take
lock A. That is disableint is replaced with acquire(A) and enableint is
replaced with release(A). A total of 9 locks corresponding to disjoint blocks
were employed in the modification of the FreeRTOS code. The two steps outlined
above are automated. Inlining is achieved using the inline pass in the CIL
framework [22]. Lock insertion is accomplished using a script.

The modified code, which has over 3.5K lines of code, is used for race detec-
tion. We tracked 24 variables and check whether the statements accessing them
are racy. These variables include fields in the queue data-structure, task con-
trol block, and queue registry, as well as variables related to tasks. FreeRTOS
maintains lists for the states of the tasks like “ready”, “suspended”, “waiting to
send”, etc. The pointers to these lists are also analysed. Access to any portion
of a list (like the delayed list) is treated as an access of a corresponding variable
of the same name.

Races are detected in this modified FreeRTOS code in three steps - (1) com-
pute locks held, (2) identify whether access of a variable is a read or write, and
(3) report potential races. First a lockset analysis, as explained in Sect. 6.3, to
compute locks held at each access to variables, is implemented as a pass in CIL.
The modified FreeRTOS code is analyzed using this new pass and the lockset at
each access to the 24 variables of interest is computed. Then, a writes pass to
identify whether accesses to variables are “read” or “write”, also implemented in
CIL, is run on the modified FreeRTOS code. Finally, a shell script to interpret
both the results in the previous steps and report potential races is employed.
The script identifies the conflicting access pairs (using the writes pass) and the
locks held by the conflicting accesses (using lockset pass).

Our analysis reports 64 pairs of conflicting accesses as being potentially
racy. On manual inspection we classified 18 of them are real races and the
rest as false positives. Table 2 summarizes our findings. The second column
in the table lists the variables of interest involved in the race, like various
task list pointers, queue registry fields pcQueueName and xHandle, task vari-
able uxCurrentNumberOfTasks, tick count xTickCount, etc. The third column
lists the functions in which the conflicting accesses are made and the fourth gives
the number of racing pairs. The fifth column assesses the potential races based
on our manual inspection of the code. The analysis took 3.91 s.

The false positives were typically due to the fact that we had abstracted
data-structures (like the delayed list which is a linked-list) by a synonymous
variable. Thus even if the accesses were to different parts of the structure (like

Static Analysis of Interrupt-Driven Kernels 717

the container field of a list item and the next pointer of a different list item) our
analysis flagged them as races.

We were in touch with the developers of FreeRTOS regarding the 18 pairs
we classified as true positives. The 14 races on the queue registry were deemed
to be non-issues as the queue delete function is usually invoked only once the
application is about to terminate. The 2 races on uxCurrentNumberOfTasks are
known (going by comments in the code) but are considered benign as the variable
is of “base type”. The remaining couple of races on the delayed task lists appear
to be real issues as they have been fixed (independent of our work) in v10.1.1.

7.2 Region-Based Relational Analysis

Our aim here is to do a region-based interval and polyhedral analysis of a region-
race-free subset of the FreeRTOS kernel APIs, and to prove some simple asser-
tions about the kernel variables in each region.

We first identified six regions for this purpose. One region corre-
sponds to variables protected by disabling interrupts (like xTickCount,
xNextTaskUnblockTime, etc.), while variables protected by suspend and resume
scheduler commands (like uxPendedTicks, xPendingReadyList, etc.) are in
another region. Fields of the queue structure like pcHead, pcTail, etc. are in
a third region, while the waiting lists for a queue form another region. The
queue registry fields like pcQueueName and xHandle are in region 5. The pointer
variable pxCurrentTCB, pointing to the current Task Control Block (TCB), is
put in the sixth region.

The FreeRTOS code was modified further to reflect access to regions. For
this new variables R1, . . . , R6, are declared. Wherever there is a write (or read)
access to a variable in region i an assignment statement that defines (or reads
from) variable Ri is inserted just before the access. This is done using a script
which takes the result of the writes pass to find where in the source code an
appropriate assignment statement has to be inserted. We selected 15 APIs that
did not contain any region races.

Next, we prepared the API functions for the analysis in two steps. They are
described below:

Abstraction of FreeRTOS API Functions. We abstracted the FreeRTOS source
code to prepare it for the relational analysis. In this abstraction, we basically
model the various lists (ready list, delayed list) by their lengths and the value at
the head of the list (if required). Using this abstraction, we are able to convert
list operations to operations on integers.

Similarly, to model insertion into a list, we abstract it by incrementing the
variable which represents the length of the list. We abstracted all the API func-
tions in a similar fashion.

Creation of the Sync-CFG. The next step is to create a sync-CFG out of the
abstracted program. For doing this, we used the abstracted version of the FreeR-
TOS code (along with acquire-release added as explained in Sect. 7.1).

718 N. Chopra et al.

Table 2. Potential races

Variables Functions #Race pairs Remark

pxDelayedTaskList eTaskGetState

xTaskIncrementTick

1 Real race. Read of

pxDelayedTaskList in

eTaskGetState while it is written

to in xTaskIncrementTick

pxOverflowDelayedTaskList eTaskGetState

xTaskIncrementTick

1 Real race. (similar as above)

uxCurrentNumberOfTasks xTaskCreate

uxTaskGetNumberOfTasks

2 Real race. Unprotected read in

uxTaskGetNumberOfTasks while it is

written to in xTaskCreate

pcQueueName

xHandle

vQueueDelete

pcQueueGetName

vQueueAddToRegistry

14 Real race. Unprotected accesses in

queue registry functions

xTasksWaitingToSend

xTasksWaitingToReceive

eTaskGetState

xQueueGenericReset

2 False positive. Initialization of

vars when queue is created

pxDelayedTaskList

pxOverflowDelayedTaskList

xSuspendedTaskList

pxCurrentTCB

9 functions like

xTaskCreate,

eTaskGetState, etc.

11 False positive. Initialization of

vars when the first task is created

pxDelayedTaskList

pxOverflowDelayedTaskList

xSuspendedTaskList

xTasksWaitingToSend

xTasksWaitingToReceive

13 functions like

vTaskDelay,

eTaskGetState, etc.

33 False positive. The accesses are to

disjoint portions of the lists

Next, we used a script to insert non-deterministic gotos from the point of
release of a lock to the acquire of the same lock. Since we are using gotos for
creation of sync-CFG, we keep all the API functions in main itself and evaluate
a non-deterministic “if” condition before entering the code for an API function.

Results. For the purpose of analysis we listed out some numerical relations
between kernel variables in the same region, which we believed should hold.
We identified a total of 15 invariants including 4 invariants which involve rela-
tions between kernel variables. We then inserted assertions for these invariants
at the key points in our source code like the exit of a block protecting a region.

We have implemented an interval-based value-set analysis and a region-based
octagon and polyhedral analysis for C programs using CIL [22] as the front-end
and the Apron library (version 0.9.11) [16]. We represent the sync-with edges of
the sync-CFG of a program using goto statements from the source (release) to
the target (acquire) of the may-synchronizes-with (MSW) edges.

We ran our implementation on the abstracted version of the FreeRTOS kernel
library, with the aim of checking how many of the invariants it was able to prove.
The abstracted code along with addition of gotos is about 1500 lines of code.
We did a preliminary interval analysis on this abstracted sync-CFG and were
able to prove 11 out of these 15 invariants. With a widening threshold of 30,
the interval analysis takes under 5 min to run. As expected, the interval analysis
could not prove the relational invariants.

Static Analysis of Interrupt-Driven Kernels 719

We then did a region-based polyhedral analysis using the six regions identified
above. For the region-based analysis, we used convex polyhedra domain with a
widening threshold of 30. It is able to prove all the assertions we believed to be
true. The analysis takes about 30 min to complete with the convex polyhedra
domain and about 20 min with the octagon domain.

The results obtained by our analysis are shown in Table 3.

Table 3. Relational analysis results

Assertion Interval Anal Region Anal
(Oct/Polyhedral)

xTickCount ≤ xNextTaskUnblockTime No Yes

head(pxDelayedTaskList) = xNextTaskUnblockTime No Yes

head(pxDelayedTaskList) ≥ TickCount No Yes

uxMessagesWaiting ≤ uxLength No Yes

uxMessagesWaiting ≥ 0 Yes Yes

uxCurrentNumberOfTasks ≥ 0 Yes Yes

lenpxReadyTasksLists ≥ 0 Yes Yes

uxTopReadyPriority ≥ 0 Yes Yes

lenpxDelayedTaskList ≥ 0 Yes Yes

lenxPendingReadyList ≥ 0 Yes Yes

lenxSuspendedTaskList ≥ 0 Yes Yes

cRxLock ≥ −1 Yes Yes

cTxLock ≥ −1 Yes Yes

lenxTasksWaitingToSend ≥ 0 Yes Yes

lenxTasksWaitingToReceive ≥ 0 Yes Yes

8 Related Work

We classify related work based on the main topics touched upon in this paper.

Data Races. Adve and Hill [1] introduce the notion of a data race using a
happens-before relation, and identify instructions that form release-acquire pairs,
for low-level concurrent programs. Boehm and Adve [4] define races in terms of
consecutive occurrences in a sequentially consistent execution, as well as using
a happens-before order, in the context of the C++ semantics. They show their
notions are equivalent as far as race-free programs go. As pointed out earlier,
the definition of races as consecutive occurrences is inadequate in our setting.
Schwarz et al. [26] define a notion of data race for priority-based interrupt-driven
programs, where there is a single main task and multiple ISRs. A race occurs
when the main thread is accessing a variable at a certain dynamic priority, and an
ISR thread with higher priority also accesses the variable. Our definition can be
seen to be stronger and more accurately captures racy situations. In particular,

720 N. Chopra et al.

if the ISR thread with higher priority does not actually execute the conflicting
access, due to say a condition not being enabled, then we would not call it a
race. The term “high-level” race was coined by Artho et al. [2]. Our definition
of a high-level race follows that of [20].

Analysis of Interrupt-Driven Programs. Regehr and Cooprider [23] describe a
source-to-source translation of an interrupt-driven program to a standard multi-
threaded program, and analyze the translated program for races. Their trans-
lation is inadequate for our setting in many ways: in particular, disable-enable
of interrupts is translated by acquiring and releasing all ISR-specific locks; how-
ever this does not prevent interaction with another task while one task has
disabled interrupts. In [8] they also describe an analysis framework for constant-
propagation analysis on TinyOS applications. They use a similar idea of adding
“control-flow” edges between disable-enable blocks and ISRs. However no sound-
ness argument is given, and other kinds of blocks (suspend/resume, flag-based
synchronization) are not handled. The works in [5,6,13] analyze timing prop-
erties, interrupt-latency, and stack sizes for interrupt-driven programs, using
model-checking, algebraic, and algorithmic approaches. Schwarz et al. [25,26]
give analyses for race-detection and invariants based on linear-equalities for their
aforementioned class of priority-based interrupt-driven programs. Our work dif-
fers in several ways: Their analysis is directed towards applications (we target
libraries where task priorities do not matter), their analyses are specific (we
provide a basis for carrying out a variety of value-set and relational analyses,
targeting race-free programs), they consider priority and flag-based synchroniza-
tion (but not disable-enable and suspend-resume based synchronization). Sung
and others [27] consider interrupt-driven applications in the form of ISRs with
different priorities, and perform interval-based static analysis for checking asser-
tions. They do not handle libraries and do not leverage race-freedom. Finally,
[20] uses a model-checking approach to find all high-level races in FreeRTOS
with a completeness guarantee.

Analysis of Race-Free Programs. Chugh et al. [7] use race information to do
thread-modular null-dereference analysis, by killing facts at a point whenever a
notional read of a variable is found to be racy. De et al. [11] propose the sync-
CFG and value-set analysis for race-free programs, while Mukherjee et al. [21]
extend the framework to region and relational analyses. Gotsman et al. [12] and
Miné et al. [18,19] define relational shape/value analyses for concurrent programs
that exploit race-freedom and lock invariants respectively. All these works are for
classical lock-based synchronization while we target interrupt-driven programs.

9 Conclusion

In this paper our aim has been to give efficient static analyses for classes of
non-standard concurrent programs like interrupt-driven kernels, that exploit the
property of race-freedom. Towards this goal, we have proposed a definition of

Static Analysis of Interrupt-Driven Kernels 721

data races which we feel is applicable to general concurrent programs. We have
also proposed a general principle for defining synchronizes-with edges, which is
the key ingredient of a happens-before relation, based on the notion of disjoint
blocks. We have implemented our theory to perform sound and effective static
analysis for race-detection and invariant inference, on the popular real-time ker-
nel FreeRTOS.

We feel this framework should be applicable to other kinds of concurrent
systems, like other embedded kernels (for example TI-RTOS [14]) and appli-
cation programs, and event-driven programs. There are additional challenges in
these systems like priority-based preemption and priority inheritance conventions
which need to be addressed. Apart from investigating these systems we would
like to apply this theory to perform other static analyses like null-dereference,
points-to, and shape analysis, for these non-standard classes of concurrent
programs.

References

1. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

2. Artho, C., Havelund, K., Biere, A.: High-level data races. J. Softw. Test. Verif.
Reliab. 13, 207–227 (2003)

3. Barry, R.: The FreeRTOS kernel, v10.0.0 (2017). https://freertos.org
4. Boehm, H., Adve, S.V.: Foundations of the C++ concurrency memory model. In:

Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, USA, pp. 68–78. ACM (2008)

5. Brylow, D., Damgaard, N., Palsberg, J.: Static checking of interrupt-driven soft-
ware. In: Proceedings of the 23rd International Conference on Software Engineer-
ing, ICSE 2001, Toronto, Ontario, Canada, 12–19 May 2001, pp. 47–56 (2001)

6. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.:
Stack size analysis for interrupt-driven programs. In: Cousot, R. (ed.) SAS 2003.
LNCS, vol. 2694, pp. 109–126. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-44898-5 7

7. Chugh, R., Voung, J.W., Jhala, R., Lerner, S.: Dataflow analysis for concurrent
programs using data race detection. In: Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, 7–13 June 2008, pp. 316–326 (2008)

8. Cooprider, N., Regehr, J.: Pluggable abstract domains for analyzing embedded
software. In: Proceedings of the ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES 2006), Ottawa,
Canada, 14–16 June 2006, pp. 44–53 (2006)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

10. De, A.: Access path based dataflow analysis for sequential and concurrent pro-
grams. Ph.D. thesis, Indian Institute of Science, Bangalore, December 2012

https://freertos.org
https://doi.org/10.1007/3-540-44898-5_7
https://doi.org/10.1007/3-540-44898-5_7

722 N. Chopra et al.

11. De, A., D’Souza, D., Nasre, R.: Dataflow analysis for data race-free programs.
In: Proceedings of the 20th European Symposium on Programming ESOP 2011,
Saarbrücken, Germany, 26 March – 3 April 2011, pp. 196–215 (2011)

12. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, 10–13 June 2007, pp.
266–277 (2007)

13. Huang, Y., Zhao, Y., Shi, J., Zhu, H., Qin, S.: Investigating time properties of
interrupt-driven programs. In: Gheyi, R., Naumann, D. (eds.) SBMF 2012. LNCS,
vol. 7498, pp. 131–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33296-8 11

14. Texas Instruments: TI-RTOS: A Real-Time Operating System for Microcontrollers
(2017). http://www.ti.com/tool/ti-rtos

15. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

16. Jeannet Bertrand, M.A.: Apron numerical abstract domain library (2009). http://
apron.cri.ensmp.fr/library/

17. Kini, D., Mathur, U., Viswanathan, M.: Dynamic race prediction in linear time. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, pp. 157–170. ACM, New York (2017)

18. Miné, A.: Relational thread-modular static value analysis by abstract interpre-
tation. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp.
39–58. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 3

19. Monat, R., Miné, A.: Precise thread-modular abstract interpretation of concurrent
programs using relational interference abstractions. In: Bouajjani, A., Monniaux,
D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 386–404. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52234-0 21

20. Mukherjee, S., Kumar, A., D’Souza, D.: Detecting all high-level dataraces in an
RTOS kernel. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol.
10145, pp. 405–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52234-0 22

21. Mukherjee, S., Padon, O., Shoham, S., D’Souza, D., Rinetzky, N.: Thread-local
semantics and its efficient sequential abstractions for race-free programs. In:
Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 253–276. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66706-5 13

22. Necula, G.: CIL – infrastructure for c program analysis and transformation (v.
1.3.7) (2002). http://people.eecs.berkeley.edu/∼necula/cil/

23. Regehr, J., Cooprider, N.: Interrupt verification via thread verification. Electr.
Notes Theor. Comput. Sci. 174(9), 139–150 (2007)

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

25. Schwarz, M.D., Seidl, H., Vojdani, V., Apinis, K.: Precise analysis of value-
dependent synchronization in priority scheduled programs. In: McMillan, K.L.,
Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 21–38. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54013-4 2

26. Schwarz, M.D., Seidl, H., Vojdani, V., Lammich, P., Müller-Olm, M.: Static anal-
ysis of interrupt-driven programs synchronized via the priority ceiling protocol.
In: Proceedings of the ACM SIGPLAN-SIGACT Principles of Programming Lan-
guages (POPL), pp. 93–104 (2011)

https://doi.org/10.1007/978-3-642-33296-8_11
https://doi.org/10.1007/978-3-642-33296-8_11
http://www.ti.com/tool/ti-rtos
https://doi.org/10.1007/978-3-642-02658-4_52
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.1007/978-3-319-52234-0_22
https://doi.org/10.1007/978-3-319-52234-0_22
https://doi.org/10.1007/978-3-319-66706-5_13
http://people.eecs.berkeley.edu/~necula/cil/
https://doi.org/10.1007/978-3-642-54013-4_2

Static Analysis of Interrupt-Driven Kernels 723

27. Sung, C., Kusano, M., Wang, C.: Modular verification of interrupt-driven software.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, Urbana, IL, USA, 30 October – 3 November 2017,
pp. 206–216 (2017)

28. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5, 285–309 (1955)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Abstract Domain for Trees
with Numeric Relations

Matthieu Journault1(B), Antoine Miné1,2(B), and Abdelraouf Ouadjaout1(B)

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6,
LIP6, 75005 Paris, France

{matthieu.journault,antoine.mine,abdelraouf.ouadjaout}@lip6.fr
2 Institut universitaire de France, Paris, France

Abstract. We present an abstract domain able to infer invariants on
programs manipulating trees. Trees considered in the article are defined
over a finite alphabet and can contain unbounded numeric values at their
leaves. Our domain can infer the possible shapes of the tree values of each
variable and find numeric relations between: the values at the leaves as
well as the size and depth of the tree values of different variables. The
abstract domain is described as a product of (1) a symbolic domain based
on a tree automata representation and (2) a numerical domain lifted, for
the occasion, to describe numerical maps with potentially infinite and
heterogeneous definition set. In addition to abstract set operations and
widening we define concrete and abstract transformers on these environ-
ments. We present possible applications, such as the ability to describe
memory zones, or track symbolic equalities between program variables.
We implemented our domain in a static analysis platform and present
preliminary results analyzing a tree-manipulating toy-language.

1 Introduction

The abstract interpretation framework [5] enables the development of sound
static analyzers by inferring and proving invariants on reachable states of pro-
grams. Invariants in the scope of abstract interpretation are elements of a lattice
called an abstract domain. Most domains focus on numeric or pointer variables.
By contrast, we propose an abstract domain for variables whose values are tree
data-structures. Tree values appear natively in some languages (such as OCaml)
and applications (such as the DOM in web programming) or can be encoded
through pointer manipulations (as in C). Trees can abstract terms in logic pro-
gramming. A tree domain can also be useful to collect symbolic expressions
appearing in a program.

This work is supported by the European Research Council under Consolidator Grant
Agreement 681393 – MOPSA.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 724–751, 2019.
https://doi.org/10.1007/978-3-030-17184-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_26

An Abstract Domain for Trees with Numeric Relations 725

typedef struct node
{

int data;
struct node* next;

} node;

node* append(node* head , int data)
{

if (head==NULL) {
return (create(data , NULL));

} else {
node *cursor=head;
while(cursor ->next != NULL)

cursor=cursor ->next;
node* new_node=create(data ,NULL);
cursor ->next=new_node;
return head;

}
}

Program 1: Append to list in C

float golden_ratio(int n) {
int i = 0;
float r = 1;
while (i < n) {

r = 1 + 1 / r;
i += 1;

}
return r;

}

Program 2: Golden ratio in C

let rec f x n =
match n with
| 0 -> []
| _ -> (x+1)::(x-1) ::(f x (n-1))

let () =
(* Assume x:int and n:int >=0*)
let t = f x n in
match t with
| [] -> ()
| p :: q when p > x -> ()
| _ -> assert false

Program 3: List type in OCaml

Used Memory Zones. Program 1 describes an append function defined in the C
language, this function adds an integer at the end of a linked list. The infinite
set of unbounded terms of the form *(*(...*(head + 4) ...+ 4) + 4) represents
memory zones that are used by the append function. Our analyzer is able to infer
and represent such sets of terms. This provides the information that Program 1
does not use any of the data field of the linked list. Such a function would be
fairly commonly called in a real-life project. In a classical top-down static analy-
sis by abstract interpretation, function calls are inlined at each call site. A way to
improve scalability is to design modular analyzers able to reuse previous analysis
results (as emphasized in [7]). In order to be able to successfully reuse function
body analysis, input states must be unified. Moreover the cost of performing the
analysis of the body of functions grows with the number of variables that need to
be tracked. A common way to deal with both problems is to use framing on the
inputs of the functions (as in separation logic [25]). This improves (1) precision:
as we know that they are not modified by the function call, (2) body analysis effi-
ciency: as the input state is reduced and finally (3) modularity: as constraints on
the usage of the first analysis are relaxed by the removal of constraints.

Symbolic Relations. Program 2 is a C function computing an approximation of
the golden ration (as it is the limit of the sequence r0 = 1, rn+1 = 1 + 1

rn
). As

classical numerical domains can not represent such numerical relations, methods
were proposed to track symbolic equality between expressions (see [23]). However
such methods can not handle the unbounded iteration of Program 2. The set of
reachable states at the end of Program 2 can be expressed by r = 1 + 1/(1 +
1/ . . . 1 . . .) with depth n. Please note that to infer such results we need to express
numerical relations between the size of trees and the numeric variables from the
program.

726 M. Journault et al.

Numerical Environment. Consider now the OCaml Program 3, we want to prove
that the assert false expression is never reached. This program builds a list
of size 2∗n with alternating values x+1 and x−1. The assertion states that the
head of the list is x+1. After the definition of t there are two types of reachable
states. (1) Those that have not gone through the loop (t �→ [], x �→ Z, n �→ 0),
and (2) those that have gone through at least one iteration of the loop: (t �→
[a1;a2;a3; ...], x �→ α, n > 0, a1 �→ α + 1, a2 �→ α − 1, a3 �→ α + 1), where
α ∈ Z. Therefore we need to be able to keep numerical relations between the
parametric and unbounded number of numeric values appearing in t and numeric
variables from the program. Classical numeric domains do not provide out-of-
the-box abstractions for sets of partially defined numerical functions, therefore
we define such an abstraction. As an example of analysis result, the memory
representation obtained by our analysis for t describes the set of trees of the
form: Cons(a, Cons(b, Cons(a, ..., Nil) ...)) where a = x + 1 and b =
x− 1. Therefore we are able to prove that the assert false expression is never
reached.

Contributions. The main contributions of the article are threefold: (1) The exten-
sion of results on tree automata to the abstract interpretation framework by
definition of a widening operator, in order to represent the set of tree shapes
that a variable can contain. (2) The definition of a numerical domain built upon
classical abstract domains able to represent sets of partial numerical maps with
heterogeneous and unbounded definition sets. This is necessary to represent the
numeric values at the leaves of a set of trees, as trees are unbounded and can
contain a different number of leaves. (3) The definition of a novel abstraction
for trees that can contain numerical values at their leaves. This last domain
combines the abstractions (1) and (2). Moreover it is relational as it can express
relations between numerical values found in trees and in the rest of the program,
and relations between trees. Finally all results were implemented in an existing
framework and experimented on a toy-language.

Limitations. At this point, analyses can only be performed on the toy language
presented thereinafter, not on real life code, therefore we do not present any
benchmark results, even though examples of analysis results will be put forth.
Indeed Programs 1, 2 and 3 were precisely analyzed once encoded into our toy-
language (see Programs 4 and 5).

Outline. We start, in Sect. 2, by presenting the concrete semantic we want to
abstract. In Sect. 3 we build a first abstraction which forgets numerical values and
focuses on abstracting tree shapes. Section 4 presents a novel numerical abstract
domain required for the definition of the abstract domain of Sect. 5, which aims
at precisely representing numerical constraints between trees and program vari-
ables. In Sect. 6 we provide remarks on the implementation and results of the
analyzer. Finally Sect. 7 mentions related works while Sect. 8 concludes.

An Abstract Domain for Trees with Numeric Relations 727

Notations. Classical Galois connections (see [5]) are denoted (A,⊆A) −−−→←−−−
α

γ

(B,⊆B). When no best abstraction can be defined, we use the representation
framework (as defined by Bourdoncle in [3], also known as concretization only
framework), representations are denoted by (A,⊆A)

γ←− (B,⊆B). A � B denotes
the set of partial maps from A to B, and λ|Ax.f(x) ∈ B denotes the map in
A → B that associates f(x) to x. Finally when f ∈ A → C and g ∈ B → C,
with A ∩ B = ∅, f
 g is the function defined on A ∪ B, that associates f(x)
(resp. g(x)) to x whenever x ∈ A (resp. x ∈ B).

2 Syntax and Concrete Semantics

Definition 1. An alphabet F is a finite set, a ranked alphabet is a pair R =
(F , a) where F is an alphabet and a ∈ F → N. For f ∈ F , we call arity of f
the value a(f). We assume that Z and F are disjoint and we define the set of
natural terms over R (denoted TZ(R)) to be the smallest set defined by:

– Z ⊆ TZ(R)
– ∀p ≥ 0, f ∈ F , t1, . . . , tp ∈ TZ(R), a(f) = p ⇒ f(t1, . . . , tp) ∈ TZ(R)

Moreover when R contains at least one symbol of arity 0, we define terms over
R (denoted T (R)) to be the smallest set defined by:

– ∀p ≥ 0, f ∈ F , t1, . . . , tp ∈ T (R), a(f) = p ⇒ f(t1, . . . , tp) ∈ T (R)

In the following, Fn denotes the subset of F of arity n. Moreover given a term
t ∈ T (R) we denote f = head(t) ∈ F and sons(t) a possibly empty tuple
(t1, . . . , tn) of elements of T (R) such that t = f(t1, . . . , tn).

Remark 1. Numerical leaves are defined to contain integers, however this could
be modified to rationals, real numbers or floats. We are parametric in the type
of numeric values, as they are delegated to an underlying numerical domain.

Example 1. Consider the ranked alphabet R = {*(1), &(1), +(2), x(0)}, u(n)
means that symbol u has arity n. Then &x ∈ T (R), but *(&x+4) ∈ TZ(R),
and *(&x+4) /∈ T (R). Using this alphabet we can model C pointer arithmetic.

Example 2. U = {+(x, y) | x ≤ y} and V = {+(x,+(z, y)) | x ≤ y ∧ z ≤ y} are
two sets of natural terms over R = {+(2)} which we use as running examples.

728 M. Journault et al.

Fig. 1. Syntax extension of the language

Fig. 2. Concrete operations on natural terms

int i;
int n;
tree y;
assume(n >= 0);
i = 0;
y = make_symbolic("p" ,{});
while (i < n) {

y = make_symbolic("*",
{make_symbolic("+",

{y,
make_integer (4)

})
});

i = i+1;
}

Program 4: *(p+4) iterated

int n; int i; int x; int rep;
tree t;
assume(n>=0);
i = 0;
t = make_symbolic("Nil" ,{});
while (i < n) {

t = make_symbolic("Cons",
{make_integer(x-1), t});

t = make_symbolic("Cons",
{make_integer(x+1), t});

i = i + 1;
};

if (get_sym_head(t) != "Nil") {
rep = get_num_head(get_son(t,0));
assert(rep > x);

}

Program 5: List manipulation

Syntax of the Language and Concrete Operations. We assume already defined
a small imperative language and extend it (in Fig. 1) with statements, tree
expressions (tree-expr) which are expressions that are evaluated to trees, and
simple symbol expressions (sym-expr) which enable the manipulation of sym-
bols. We add the ability to build a tree which contains only a numerical leaf:
make integer(e), the ability to read the i-th son of a tree t: get son(t, i),
Figure 2 defines concrete operations over the set ℘(TZ(R)). Figure 2 assumes
given a set of program numerical variables V, a set of numerical expressions
(over V) denoted expr, a set of statements stmt, a notion of numerical environ-
ment E ∈ E = V → Z, a set of tree program variables T , a notion of tree

An Abstract Domain for Trees with Numeric Relations 729

environment F ∈ F = T → ℘(TZ(R)), D = E × F is our concrete domain.
Finally we assume already partially defined on numerical expressions an eval-
uation function E[[e ∈ expr]](E ∈ V → Z, F ∈ T → ℘(TZ(R))) ∈ ℘(Z). Using
this operator we are able to define Program 4 which computes the memory zones
used by append from Program 1, and Program 5 that simulates the behavior of
Program 3.

3 Natural Term Abstraction by Tree Automata

In this section we start by defining a value abstraction for tree sets (in Sect. 3.1),
which is then lifted to an environment abstraction (in Sect. 3.2).

3.1 Value Abstraction

As a first abstraction for natural terms, we put aside numerical values and define
an abstraction able to describe sets of tree shapes. Tree automata enable the
description of set of terms built upon a finite ranked alphabet. The ranked
alphabet of the language we want to analyze is extend with the � symbol to
denote potential positions of numerical values.

Definition 2 (Finite tree automata). A finite tree automaton (FTA) over
a ranked alphabet R is a tuple (Q,R, Qf , δ), where Q is a (finite) set of states,
Qf ⊆ Q is the set of final states, and δ ∈ ℘(

⋃
n∈N

Fn × Qn × Q) is the set
of transitions. We define δ : (

⋃
n∈N

Fn × Qn) → ℘(Q) by: δ(f,−→q) = {q′ |
(f,−→q , q′) ∈ δ}. When δ is such that, ∀n ∈ N, f ∈ Fn, −→q ∈ Qn, |δ(f,−→q)| = 1,
we say that the automaton is complete and deterministic (CDFTA). We then
abuse notations and denote by δ(f,−→q) the unique element in the set δ(f,−→q).

Definition 3 (Reachability). Given a FTA A = (Q,R, Qf , δ) we define, a
reachability function reachA : T (R) → ℘(Q)

reachA(t) =let t1, . . . , tn = sons(t) in
⋃

(q1,...,qn)∈(reachA(t1),...,reachA(tn))

δ(head(t), (q1, . . . , qn))

If sons(t) is the empty tuple (which is the case when t is a constant a), the union
is made over a unique element (which is the empty tuple), which then boils down
to: δ(a, ()). If sons(t) is not the empty tuple and for some i, ReachA(ti) is
empty, then ReachA(t) is also empty.

Example 3. Consider the ranked alphabet R = {f(2), a(0)}, and the automaton
A = ({u, v},R, {v}, {a() → u, f(v, v) → v, f(u, u) → u, f(u, u) → v}). Then
reachA(a) = {u}, reachA(f(a, a)) = {u, v}, reachA(f(f(a, a), a)) = {u, v}.

730 M. Journault et al.

Definition 4 (Acceptance). Given a FTA A = (Q,R, Qf , δ), a term t, we
say that t is accepted by the automaton if reachA(t) ∩ Qf �= ∅. L(A) denotes
the set of terms accepted by automaton A.

Example 4. With the definition of Example 3, L(A) is the set of terms over R
that contain at least one f .

Definition 5 (Tree regular languages). A set of terms T over a ranked
alphabet R is called tree regular if there exists a FTA A over R such that
L(A) = T . The set of such languages is denoted TReg(R).

Remark 2. As for regular languages, for all A ∈ FTA there exists A′ ∈ CDFTA
such that L(A) = L(A′), moreover A′ is computable (see [4]).

Example 5. – As proved in Example 4 the set of all terms over {f(2), a(0)} that
contain at least one f is tree regular.

– Consider now the ranked alphabet {a(1), b(1), ε(0)} and the set of terms T =
{ε, a(b(ε)), a(a(b(b(ε)))), . . . }. We can prove (in a similar way as for anbn in
regular languages) that T is not tree regular.

– On every ranked alphabet R: every finite language, the empty language and
T (R) are tree regular.

Proposition 1. (TReg(R),⊆,∩,∪, .c, ∅, T (R)) is a complemented lattice with
infinite height, moreover it is not complete. ⊆,∩,∪ and complementation (.c)
are computable operations on tree automata [4].

We denote by R� the ranked alphabet R after adding the symbol � of arity
0 (we assume that � �∈ R). Given a natural term t, we define t� to be the term
obtained by replacing every integer with the � symbol.

Proposition 2. (℘(TZ(R)),⊆)
γ←− (TReg(R�),⊆) where γ(A) = {t | t� ∈

L(A)} is a representation. Moreover with such a γ definition, ∪, ∩ soundly
represent the union and the intersection.

Remark 3. We only have a representation and not a Galois connection as lan-
guage T of Example 5 does not have a best tree regular over approximation.

Example 6. Let R = {+(2)} and A = ({0, 1},R�, {0, 1}, {(�() → 0,+(0, 0) →
1,+(0, 1) → 1)}). Examples of terms recognized by A are shown on Fig. 3.
Natural terms from our running example U and V (defined in Example 2) are
also contained in γ(A). Moreover as we do not provide numerical constraints:
1 + (3 + 4), 23, 1 + (2 + (3 + 4)) are also elements in γ(A).

Due to the infinite height of the lattice, a widening operator is required. In
the following, we assume given a constant w ∈ N, this constant will be used
to stabilize increasing chains, the greater the constant, the more precise our
widening operator will be.

An Abstract Domain for Trees with Numeric Relations 731

Definition 6. Let A = (Q,R, Qf , δ) ∈ FTA, and ∼ be an equivalence relation
on Q, such that p ∼ q ∧ p ∈ Qf ⇒ q ∈ Qf . We define A/ ∼= (Q/ ∼,R, Qf/ ∼,⋃

(f,q1,...,qn,q)∈δ{(f, q∼
1 , . . . , q∼

n , q∼)}) where q∼ is the equivalence class of q in ∼.

Proposition 3. For every A ∈ FTA and every ∼ equivalence relation on its
states, L(A) ⊆ L(A/ ∼).

Therefore following the idea from [9] and in [11], we define a widening opera-
tion by quotienting states of automata by an equivalence relation of finite index.
We define by induction a special sequence of equivalence relations on states
of tree automata: ∼1= {Qf , Q \ Qf} and ∼k+1 is ∼k where we split equiv-
alence classes not satisfying the following condition: ∀f ∈ Fn, ∀p1, . . . , pn ∈
Q, ∀q1, . . . , qn ∈ Q, (

∧n
i=1 pi ∼k qi) ⇒ δ(f, p1, . . . , pn) ∼k δ(f, q1, . . . , qn) and

∀q ∈ Qf , q∼k ⊆ Qf . This sequence of equivalence relations is the Myhill-Nerode
sequence (see [4]). This sequence is of length at most the number of states of the
automaton (before stabilization). Let φ(w) = max{i ≤ |Q| | index of ∼i≤ w}
(given an integer w, φ yields the index of the most precise of the equivalence
relationships in the Myhill-Nerode sequence, that contains at most w equiva-
lence classes) and [A]w = A/ ∼φ(w). [A]w is therefore a FTA with at most w
states such that L(A) ⊆ L([A]w). As for regular languages, for every CDFTA a
equivalent minimal CDFTA (in the sense of the number of states, and unique
modulo state renaming) can be obtained by quotienting the automaton by ∼|Q|.
Therefore we define a widening operator on CDFTAs, which is then lifted to tree
regular languages.

Definition 7 (Widening operator �). A�A′ = [A ∪ A′]w.

Proposition 4. This widening is sound and stabilizes infinite sequences.

Remark 4. Consider the two following complete and deterministic tree auto-
mata: A = ({a, b, h}, {+(2)}, {a}, {�() → b,+(b, b) → a}) and B = ({a, b, c, h},
{+(2)}, {a}, {�() → b,+(b, b) → c,+(b, c) → a}) (unmentioned transitions
go to h). A (resp. B) recognizes the tree +(�,�) (resp. +(�,+(�,�))), it
over-approximates U (resp. V) from our running example. A ∪ B is recognized
by the following complete and deterministic tree automaton: C = ({a, b, c, h},
{+(2)}, {a, c}, {�() → b,+(b, b) → c,+(b, c) → a}). If we want to widen
A and B with parameter 3, the following equivalence relation is computed:
{{h}, {b}, {a, c}}. Merging equivalent states produces ({a, b, h}, {+(2)}, {a},
{�() → b,+(b, b) → a,+(b, a) → a}), which contains a loop and over-
approximates the union.

732 M. Journault et al.

3.2 Environment Abstraction

� +

� �

+

� +

� �

+

� . . .

+

� �

Fig. 3. Example of accepted
trees from Example 6

Now that we are given an abstraction for nat-
ural term sets, let us show how this is lifted
to a notion of abstract natural term environ-
ments mapping variables to natural terms. Given
a set of natural term variables T , consider F� =
(T → TReg(R�)) ∪ {⊥} and the set operators
defined by the point-wise lifting of operators on
TReg(R�). We also lift the concretization func-
tion ℘(TZ(R)) ← TReg(R�) to F ← F�. We
assume given an abstract numerical environment
E� and an abstract evaluator E[[e]]�. Abstract
transformers [[make symbolic]]�, [[is symbol]]�, [[get son(e)]]�, [[get sym head]]�

and [[get num head]]� are simple tree automata operations. For concision Fig. 4
only provides definitions of two of these operators. Please note that these def-
initions require all states of the automata to be reachable. An example of use
of the is symbol operator can be found in Example 7. Other abstract operators
are similar.

Fig. 4. Abstract operators

Example 7. Consider the tree automaton A of Example 6, (Fig. 3), with
F � = (x �→ A): [[get sym head(x)]]�(E�, F �) = {+} and [[get num head(x)]]�(E�,
F �) = �.

4 Numerical Abstractions

As emphasized in the introductory example, we rely on numerical domains to
introduce constraints on numerical variables found in trees. In a classical numeric
abstraction (e.g. intervals [6], octagons [22], polyhedra [8], . . .), each abstract
element represents a set of maps V → R for a fixed, finite set of variables
V. In contrast, our numeric variables are leaves of a possibly infinite set of
trees of unbounded size. Hence before starting the presentation of the numerical
abstraction for natural terms, we show how to extend in a generic way an abstract
element in two steps. Firstly we want to be able to represent a set of maps, where
each map is defined over a (possibly different) finite subset of an infinite set of
variables (this is done in Sect. 4.1). Secondly, we use summarization variables to
relax the finiteness constraint, so as to represent sets of maps over heterogeneous
maps over infinitely many variables (done in Sect. 4.2).

An Abstract Domain for Trees with Numeric Relations 733

4.1 Heterogeneous Support

We define M
Δ= ℘(V � R), the set of partial maps from V, to R. M is ordered

by the inclusion relation ⊆. In the following def(f) denotes the definition set of

f . We assume defined a representation (℘(S → R),⊆)
γS
0←−− (NS ,�S

0), for every
finite set S ⊆ V (such as octagons in |S| dimensions). NS comes with the usual
abstract set operator �S

0 , �S
0 . Moreover if x ∈ S, y /∈ S, S ′ is another finite set

and N � ∈ NS then N �[x �→ y] ∈ NS∪{y}\{x} is the abstract element obtained by
renaming x into y, N �

|S′ ∈ NS′ is obtained by existentially quantifying dimensions
associated to elements in S and not in S ′ and adding unconstrained dimensions
for elements in S ′ and not in S. From now on we assume that this last operator
is exact (as for intervals, octagons, polyhedra over R). However results from this
section can be extended to numerical domains that are able, given N � ∈ NS ,
N �′ ∈ NS′ , to check if γS

0 (N �) ⊆ γS′
0 (N �′)|S . The precision of the extension

defined in this subsection would then depend upon the precision of this test in
the underlying domain. Finally [[.]]S0 (resp. [[.]]�,S0) refers to the classical concrete
(resp. abstract) semantic of operators on sets of numerical maps (resp. abstract
elements). A classical method for the abstraction of heterogeneous maps is the
use of a partitioning of the concrete element according to the definition set of its
represented maps. However partitioning induces an increase in numerical oper-
ation cost (exponential in the number of variable) which we would like to avoid.
Therefore in order to abstract sets of maps with heterogeneous definition sets,
we start by abstracting the potential definition set. We choose a simple lower-
bound/upper-bound abstraction (l and u in the following definition). Moreover
we need to abstract the potential mappings given a definition set: this is done
using a classical numerical domain. Contrary to partitioning, we will use only
one numerical abstract element, defined on the upper-bound u, to represent all
environments (instead of one abstract element by definition set). We also add a
� element, used in the case where the upper bound u is infinite.

Definition 8 (Numerical abstraction). Let us define the following set: M� Δ=
{〈N �, l, u〉 | l, u ∈ ℘(V)∧l and u are finite∧l ⊆ u∧N � ∈ Nu∧N � �= ⊥u

0}∪{�,⊥}.
An element of M� is therefore: either �, ⊥ or a triple 〈N �, l, u〉 where l and u
are finite sets of variables such that N � is defined over u.

Definition 9 (Concretization function). Abstract elements from M� are
mapped to M thanks to the following concretization function: γ(⊥) = ∅, γ(�) =
M and γ(〈N �, l, u〉) = {ρ ∈ S → Z | l ⊆ S ⊆ u ∧ ρ ∈ γS

0 (N �)|S)}.

Example 8. As an example consider γ(〈{x = y, x ≤ 3, z = 0}, {x}, {x, y, z}〉) =
{(x �→ a) | a ≤ 3}∪ {(x �→ a, y �→ a) | a ≤ 3}∪ {(x �→ a, z �→ 0) | a ≤ 3}∪ {(x �→
a, y �→ a, z �→ 0) | a ≤ 3}. As intended, the resulting set of maps contains maps
with different definition sets.

734 M. Journault et al.

Definition 10 (Order). On M� we define the following comparison operator:
〈N �, l, u〉 � 〈N �′, l′, u′〉 ⇔ l′ ⊆ l ⊆ u ⊆ u′ ∧ N � �u

0 N �′
|u, this comparison is

trivially extended to � (resp. ⊥) as being the biggest (resp. smallest) element in
M�. In the following M�

p denotes the subset of M� where u = p extended with �
and ⊥.

Proposition 5. γ is monotonic for �.

Figure 5 provides the definition of the concrete and abstract semantics of the
classical numerical statements, Assume and Assign (denoted x ← e). We denote
vars(e) the set of variables appearing in e. We recall that [[Assume(c)]]S0 (E ∈
℘(S → R)) = {f ∈ E | true ∈ E[[c]](f)} and [[x ← e]]S0 (E ∈ ℘(S → R)) =
{f [x �→ e′] | f ∈ E ∧ e′ ∈ E[[e]](f)}. In order to ease the lifting of these classi-
cal operators we define [[stmt]]0(M ∈ M) Δ= ∪S finite⊆V [[stmt]]S0 (M ∩ (S → R)),
for every statement stmt. Moreover we assume the existence of the following
abstract operators: [[Assume(c)]]�,u0 (N �) and [[x ← e]]�,u0 N � abstracting soundly
their respective concrete transformers. Note that the concrete semantic of
Assume(c) (resp. x ← e) enforces that maps are defined at least on the vari-
ables appearing in c (resp. in e and on x). Abstract operators from Fig. 5 are
sound with respect to γ and their concrete operators.

Fig. 5. Concrete and abstract semantic of usual numerical operators

We now need to define � that abstracts the classic set operator ∪. We can not
directly apply the corresponding abstract operator on the numerical component
of the abstractions as they might have different definition sets. A first naive solu-
tion would be to extend their respective definition set and to perform the abstract
operation on the resulting elements: N �

|u∪u′ �u∪u′
0 N �′

|u∪u′ . However consider
M = 〈{x = y}(= U �), {x, y}, {x, y}〉 and N = 〈{x = z}(= V �), {x, z}, {x, z}〉,
where the underlying domain is the octagon domain where elements are repre-
sented as a set of linear constraints (e.g. {x = y}). We have U �

|{x,y,z} = {x = y}
and V �

|{x,y,z} = {x = z}, hence U �
|{x,y,z} �{x,y,z}

0 V �
|{x,y,z} = �. Consider now the

abstract element in M�: R = 〈{x = y, x = z}(= W �), {x}, {x, y, z}〉. The con-
cretization of R over-approximates the union of the concretization of M and N ,
and its numerical component is more precise than �. We note that the numerical
constraints appearing in W � could be found in U � or V �, therefore in order to
remove the aforementioned imprecision we define a refined abstract union opera-
tor, denoted as �� , that uses constraints found in the inputs in order to refine its

An Abstract Domain for Trees with Numeric Relations 735

Algorithm 1. strengthening operator
Input : X�, C: a set of constraints, U � ∈ Nu: a soundness threshold on

environment u, V � ∈ Nv: a soundness threshold on environment v
Output: Z� an abstract element over-approximating U � on u and V � on v

1 Z� ← X�;
2 foreach c ∈ C do

3 T � ← [[Assume(c)]]�,u∪v
0 (Z�);

4 if U � �u
0 T �

|u ∧ V � �v
0 T �

|v then

5 Z� ← T �;
6 end

7 return Z�;

result. This is done using the strenghtening operator of Algorithm 1 which adds
constraints from C that do not make the projection of X� to u (resp. v) lower
than the threshold U � (resp. V �). We assume that, given an abstract element
U �, we can extract a finite set of constraints satisfied by U �, those are denoted
constraints(U �) (the more constraints can be extracted, the more precise the
result will be). For example if the numerical domain is the interval domain, con-
straints have the form ±x ≥ a. If the numerical domain is the octagon domain
the constraints operator yields all the linear relations among variables that
define the octagon.

Definition 11 (�� operator). Let U � ∈ Nu, V � ∈ Nv be two numerical envi-
ronments, let X� ∈ Nu∪v, let C be a sequence of numerical constraints over u∪v,
let c = u ∩ v we define:

U � �� V � = let X� = (U �
|c �

c
0 V �

|c)|u∪v in

let C = constraints(U �) ∪ constraints(V �) in

strengthening(X�, C, U �, V �)

Remark 5. – The precision of �� depends upon the order of iteration over con-
straints c ∈ C in Algorithm 1. Our implementation currently iterates in the
order in which constraints are returned from the abstract domains. More
clever heuristics will be considered in future work.

– U � �� V � starts by performing the join over the domain c, the result is
then strengthened. Other strenghtening(X�, U � ∈ Nu, V � ∈ Nv) opera-
tor could be defined, however in order to ensure soundness of �� , it must
satisfy the following constraints: U � �u

0 strenghtening(X�, U �, V �) and
V � �v

0 strenghtening(X�, U �, V �).

Example 9. Let us now consider the example introduced thereinbefore U � �� V � =
{x = y, y = z} ∈ N{x,y,z}. Indeed using the notations of Definition 11: Z� Δ=
X� = � ∈ N{x,y,z}, C = {x = y, y = z}, moreover [[Assume(x = y)]]�,u∪v

0 (�) =

736 M. Journault et al.

{x = y}(Δ= T �), U � �{x,y}
0 {x = y} = T �

|{x,y} and V � �{x,z}
0 � = T �

|{x,z}. There-
fore constraint x = y is added to Z�. At the next loop iteration: [[Assume(x =
z)]]�,u∪v

0 ({x = y}) = {x = y, x = z}(Δ= T �), U � �{x,y}
0 {x = y} = T �

|{x,y} and

V � �{x,z}
0 {x = z} = T �

|{x,z}. Therefore constraint x = z is added to Z�.

Proposition 6 (Soundness of ��). let U � ∈ Nu and V � ∈ Nv, then γu
0 (U �) ⊆

(γu∪v
0 (U � �� V �))|u and γv

0 (V �) ⊆ (γu∪v
0 (U � �� V �))|v.

Definition 12 (Union abstract operators). We define the following abstr-
act set operator: 〈N �, l, u〉 � 〈N �′, l′, u′〉 Δ= 〈N � �� N �′, l ∩ l′, u ∪ u′〉. This operator
soundly abstracts the union. Moreover in order to ensure the stabilization of
infinitely increasing chains in M� we define the following widening operator:

〈N �, l, u〉�〈N �′, l′, u′〉 =

⎧
⎨

⎩

〈N ��u
0N �′

|u, l, u〉 when l ⊆ l′ ∧ u′ ⊆ u

〈N � �� N �′, l′, u〉 when l′ ⊂ l ∧ u′ ⊆ u
� otherwise

Remark 6. This widening operator over-approximates to � whenever the upper-
bound on the definition set is growing. This yields a huge loss of information
however this numerical domain is designed as a tool domain used by a higher
level abstraction in charge of stabilizing the environment before applying the
widening, so that this case will not be used in practice.

Subsequent tree abstractions require the definition of the following operators:

– 〈N �, l, u〉|−x
Δ= 〈N �

|u\{x}, l \ {x}, u \ {x}〉 and 〈N �, l, u〉|+x
Δ= 〈N �

|u∪{x}, l ∪
{x}, u ∪ {x}〉 which respectively removes (adds) a variable to the numerical
environment.

– 〈N �, l, u〉|S is computed by adding variables in S and not in u and removing
variables in u that are not in S.

4.2 Representation of Maps over Potentially Unbounded Sets

In this subsection we focus on the problem of defining abstract numerical envi-
ronments on potentially infinite environments. A classical method we use here is
variable summarization (see [13]). This is based on the folding of several concrete
objects (a potentially infinite number) to an abstract element which summarizes
all concrete objects. The folding is encoded in a function f mapping summa-
rized variables to the set of concrete variables they abstract. Given an abstract
numerical environment N � and a mapping from summary variables: V ′ to sets of
concrete variables f ∈ V ′ → ℘(V) where f(v1) ∩ f(v2) �= ∅ ⇒ v1 = v2, we define
the collapsing of a partial map ρ ∈ V � Z under a summarizing function f :

↓f (ρ) = {ρ′ ∈ V ′
� Z |∀v′ ∈ V ′, (f(v′) ∩ def(ρ) = ∅ ∧ ρ′(v′) = undefined)

∨ (∃v ∈ V, v ∈ f(v′) ∩ def(ρ) ∧ ρ′(v′) = ρ(v))}

An Abstract Domain for Trees with Numeric Relations 737

Example 10. Consider V ′ = {x, y, z, t} and V = {a, b, c, d, g, h}, the environment
ρ = (a �→ 0, b �→ 1, c �→ 2, d �→ 3) and finally the summarizing function f = (x �→
{a}, y �→ {b, c}, z �→ {d}, t �→ {g}). Collapsing environment ρ under f yields the
set of environments: (x �→ 0, y �→ 1, z �→ 3) and (x �→ 0, y �→ 2, z �→ 3).

Given a summarizing function f we can now define an extension of the con-
cretization function γ of the previous subsection in the following manner:

γ[f](N �) = {ρ ∈ V � Z |↓f (ρ) ⊆ γ(N �)}

Example 11. Going back to Example 10 and considering the numerical abstract
element: N � = 〈{x ≤ y}, {x}, {x, y}〉, we have: γ(N �) = {(x �→ α) | α ∈
Z} ∪ {(x �→ α, y �→ β) | α ≤ β}. We have: m ∈ γ[f](N �) ⇔↓f (m) ⊆
γ(N �) ⇒ {x} ⊆ def(↓f (m)) ⊆ {x, y}. Therefore if we assume m defined on d
then f(z) ∩ def(m) �= ∅ hence there would be an element in ↓f (m) defined
on z. Hence m is not defined on d, similarly for g. Moreover {x} ⊆ def(↓f (m))
implies that m is defined on a. Finally: defining S = {(a �→ α) | α ∈ Z} ∪ {(a �→
α, b �→ β) | α ≤ β} ∪ {(a �→ α, c �→ β) | α ≤ β} ∪ {(a �→ α, b �→ β, c �→ γ) | α ≤
β ∧ α ≤ γ}. We have: γ[f](N �) = S ∪ (

⋃
f∈S{f
 (h �→ δ) | δ ∈ Z}).

The abstract domains we will define in the following sections will employ this
summarization framework. The manipulation of summarized variables requires
the definition of a fold(E, x,S) (resp. expand(E, x,S)) operator yielding a
new environment where x is used as a summary variable for S (resp. where
a summary variable x is desummarized into a set of variables S). Let S
and S ′ be two finite sets of elements such that S ′ ∩ S ⊆ {x}, we define:
expand0(N �, x,S ′′) =

�
v∈S′′ N �[x �→ v]|(S\{x})∪S′′ and fold0(N �, x,S ′′) =

⊔
v∈S′′ N �[v �→ x]|(S\S′′)∪{x} (which generalize the one introduced in [13]). These

operations are lifted as operators on elements of M�:

expand(〈N �, l, u〉, x,S) Δ= 〈expand0(N
�, x,S), l \ {x}, (u \ {x}) ∪ S〉

fold(〈N �, l, u〉, x,S) Δ= 〈fold0(N �, x,S),
{

(l \ S) ∪ {x} if S ⊆ l
(l \ S) otherwise , (u \ S) ∪ {x}〉

5 Natural Term Abstraction by Numerical Constraints

We are now able to represent sets of maps with heterogeneous supports and to
lift their concretization (modulo a summarization function) to sets of maps with
infinite and heterogeneous supports. Given a tree shape (in the sense of Sect. 3),
we can associate a numeric variable to each numeric leaf, and use a numeric
abstract element to represent the possible values of these leaves. We will name
the variable of each leaf as the path from the root to the leaf, i.e., V is a set of
words in {0, ..., n − 1} where n is the maximum arity of the considered ranked
alphabet. In order to avoid confusion such paths will be denoted �0, 1, 1� for the
word (0, 1, 1). A summarized variable then represents a set of such paths. We
will abstract such sets as regular expressions. Using the summarization extended

738 M. Journault et al.

to heterogeneous supports presented in the previous section, it will be possible
to represent, using a single numeric abstract element, a set of contraints over
the numeric leaves of an infinite set of unbounded trees of arbitrary shape.

5.1 Hole Positions and Numerical Constraints

The presentation of our computable abstraction able to represent numerical val-
ues in trees is broken down (for presentation purposes) into two consecutive
abstractions. The first one is not computable, as natural terms are abstracted as
partial environments over tree paths to numerical values. This abstraction looses
most of the tree shapes but focuses on their numerical environment. A second
abstraction will show how partial environments over paths are abstracted into
numerical abstract elements defined over a regular expression environment.

In the following, when R is a ranked alphabet of maximum arity n, we call
words sequences of integers, w = (w0, . . . , wp−1) ∈ {0, . . . , (n−1)}p will be called
a word of length p (denoted |w|), wi denotes the i-th integer of the sequence,
w = (w1, . . . , wp−1) is the tail of word w, W(R) = {0, . . . , (n− 1)}� is the set of
all words over {0, . . . , n − 1} of arbitrary size.

Definition 13 (Position in a term). Given a natural term t and a word w
we inductively define the subterm of t at position w (denoted t|w) to be:

t|w =

⎧
⎨

⎩

(tw0)|w when |w| > 0 ∧ t = f(t0, . . . , tp−1) with w0 < p
t when |w| = 0
undefined otherwise

Moreover we denote by numeric(t) = {w ∈ N
� | t|w ∈ Z}.

Definition 14 (Positioning lattice with exact numerical constraints).
We define C(R) Δ= ℘(W(R) � Z), an element of C(R) is therefore a set of
partial maps that are acceptable bindings of positions to integers.

Proposition 7 (Galois connection with natural terms). When t is a
natural term, tZ is the partial map: λ|numeric(t)w.tw. We have the following

Galois connection: (℘(TZ(R)),⊆) −−−−−−→←−−−−−−
αC(R)

γC(R)
(C(R),⊆), with:

γC(R)(Γ) = {t ∈ TZ(R) | tZ ∈ Γ} αC(R)(T) = {tZ | t ∈ T }

Example 12. Consider our running example (introduced in Example 2), V =
{+(x,+(z, y)) | x ≤ y ∧ z ≤ y}, we have αC(R)(V) = {�0� �→ α, �1, 0� �→
γ, �1, 1� �→ β | α ≤ β ∧ γ ≤ β}. The concretization of which is exactly V .

Example 13. Consider however the ranked alphabet {f(2), g(2), a(0)}, and the
tree a. Its abstraction contains only the empty map, the concretization of which
is the set of all terms that do not contain any numerical value. For example:
f(g(a, a), a), g(a, a), This emphasizes that we loose information on:

An Abstract Domain for Trees with Numeric Relations 739

– the labels in the natural terms: we only have the path from the root of the
term to leaves with numerical labels, not the actual symbols along the path.

– the shape of the natural terms: we do not keep any information on subterms
that do not contain numerical values.

Now that we have abstracted away the shape of the terms, we are left with
numerical environments with potentially infinite dimensions (that are words over
the alphabet {0, . . . , n−1}) and different definition sets. Therefore following the
idea of Sect. 4 we want to define a summarization for sets of words over the
alphabet {0, . . . , n − 1}. A summarization of such a language can be expressed
as a partition into sub-languages. The set of regular languages over the alpha-
bet {0, . . . , n − 1} is a subset of the set of languages over this alphabet, that is
closed under common set operations. Hence given a set {r1, . . . , rm} of regular
expressions (with respective recognized language {L1, . . . , Lm}), we summarize
all words in Li inside a common variable ri and therefore ↑ {r1, . . . , rm} denotes
the summarization function: λri.Li. In the following, Regn denotes the set of
regular expressions over the alphabet An = {0, . . . , n − 1}. As for tree regular
expressions, (Regn,⊂,∩,∪, .c, ∅, A�

n) is a (non complete) complemented lattice
of infinite height, upon which we can define a widening operator � (see [10]) in
a similar manner as for tree regular expressions (this widening is also parame-
terized by an integer constant). We recall moreover that operators ⊂,∩,∪ and
complementation (.c) are computable, and that every finite set of words is regu-

lar. Moreover we have the following representation: (A�
n,�)

γRegn=Id←−−−−−− (Regn,�).
Finally in order to disambiguate regular expressions from integers we will typeset
them within .! in a bold font as in: 0 + 0.1�!.
Example 14. Using notations from Sect. 4.2, V ′ = Regn and V = W(R).
Consider our running example (introduced in Example 2), natural terms from
V = {+(x,+(z, y)) | x ≤ y∧z ≤ y} contain three paths to numerical values: �0�,
�1, 0� and �1, 1�. Numerical constraints on �0� and �1, 0� are similar, therefore
the two paths are summarized into one regular expression: 0 + 1.0!, �1, 1� is
left alone in its regular expression: 1.1!. The two constraints x ≤ y ∧ z ≤ y can
now be expressed as one: 0 + 1.0! ≤ 1.1!.

In Example 14, we saw that tree paths with similar numerical constraints can
be summarized in one regular expression. However, for precision purposes, we
do not want to summarize all tree paths into one regular expression. Hence, we
will keep several disjoint regular expressions, which we call a subpartitioning.

Definition 15 (Subpartitioning). Given a regular expression s, a subparti-
tioning of s is a set {s1, . . . , sn} of regular expressions such that ∀i �= j, si∩sj =
∅ and

⋃n
i=1 si ⊆ s. We note P (s) the set of all subpartitioning of s. Moreover if

S = {s1, . . . , sn} is a set of regular expressions, [S]∅ = S \ {∅}.
Remark 7. Contrary to a partitioning of s, we do not require that the set of
partitions covers s. Indeed when a set of tree paths is unconstrained we can
just remove it from the partitioning, therefore no dimension in the numerical
abstract environment will be allocated for this path.

740 M. Journault et al.

S�
0

S�
1

unify join

a
b

S�
0

S�
1

S�
0 support

S�
0 partitions

S�
1 support

S�
1 partitions

shared partitions

Fig. 6. Unification operator

Definition 16 (Positioning lattice with numerical abstraction). Given
a ranked alphabet R, where the maximum arity of symbols is n, we define
C�(R) = {〈s, p, R�〉 | s ∈ Regn, p ∈ P (s), R� ∈ M�

p}. Therefore C�(R) are triples
containing:

– s: (called support) a regular expression coding for positions at which numerical
values can be located.

– p: a subpartitioning of s. Elements of the same partition are subject to the
same numerical constraints. Note that these partitions are regular.

– R�: an abstract numeric element where a dimension is associated to each
partition, this dimension plays the role of a summary dimension.

Remark 8. In the following, numerical abstract elements described in the form
{c}, where c is a set of constraints, refer to 〈c,vars(c),vars(c)〉 ∈ M�.

Algorithm 2. unify join operator
Input : 〈s, {p1, . . . , pn}, R�〉, 〈s′, {p′

1, . . . , p
′
m}, R�′〉 two abstract elements

Output: two unified abstract elements
1 (ci,j)i≤n,j≤m ← pi ∩ p′

j ;

2 (pi)i≤n ← pi ∩ s′c;
3 (p′

j)j≤m ← p′
j ∩ sc;

4 (qi)i≤n ← pi ∩ s′ ∩ (∪j≤mci,j)
c;

5 (q′
j)j≤m ← p′

j ∩ s ∩ (∪i≤nci,j)
c;

6 R� ← R� ;

7 R�′ ← R�′ ;
8 for i = 1 to n do

9 R� ← expand(R�, pi, [{ci,j}j≤m ∪ {pi} ∪ {qi}]∅);
10 for j = 1 to m do

11 R�′ ← expand(R�′, p′
j , [{ci,j}i≤n ∪ {p′

j} ∪ {q′
j}]∅);

12 return 〈s, ⋃i≤n,j≤m[{qi, pi, ci,j}]∅, R�〉, 〈s′,
⋃

i≤n,j≤m[{q′
i, p

′
j , ci,j}]∅, R�′〉;

An Abstract Domain for Trees with Numeric Relations 741

Unification. The previous definition shows that two elements U � = 〈s, p, R�〉
and V � = 〈s′, p′, R�′〉 can have different subpartitionings (p and p′). However the
partitions in p and in p′ might overlap, thus giving constraints to similar tree
paths. Therefore in order to define the classical operators: �,� and �, we need
to unify the two abstract elements (U � and V �) so that given a tree path and the
partition in which it is contained in U �, it is contained in the same partition in
V �. This will enable us to rely on abstract operators on the numerical domain.
In order to perform unification, we rely on the expand and fold operators.
Indeed consider our running example, U � = 〈 0 + 1!, { 0!, 1!}, { 0! ≤ 1!}〉
and V � = 〈 0+1.(0+1)!, { 0+1.0!, 1.1!}, { 0+1.0! ≤ 1.1!}〉. We see that
constraints on tree path �0� is given: in U � by partition 0! and in V � by partition
 0 + 1.0!. However we can split the partition 0 + 1.0! into two partitions: 0!
and 1.0!, and expand variable 0+1.0! into the two variables 0! and 1.0! in
the numeric component: expand({ 0+1.0! ≤ 1.1!}, 0+1.0!, { 0!, 1.0!}) =
{ 0! ≤ 1.1!, 1.0! ≤ 1.1!}. Once U � and V � are unified we can rely on the
numerical join to soundly abstract the union. Note that splitting partitions is
more precise than merging them. Indeed, consider the example where: in U � we
have 0! ≥ 0 and 1! ≤ 0 and in V � we have 0 + 1! = 0. Splitting partition
in V � yields: 0! = 0, 1! = 0, after joining we get 0! ≥ 0, 1! ≤ 0. Whereas
merging partitions in U � yields 0 + 1! unconstrained, after joining we also get
that 0+1! is unconstrained. However unifying by splitting or merging partitions
in both abstract elements might result in an over-approximation of the initial
elements. This does not pose a threat to the soundness of the join operator, but
it does for the inclusion test. Unifying by splitting partitions induces an increase
in the number of partitions which we want to avoid when trying to stabilize
abstract elements in the widening. Hence, we define three unification operators:

– An operator unify join that splits partitions from U � and V �, this operator
might induce an over-approximation for both U � and V � and is used in the
join operation. This operator is presented in Algorithm2, and illustrated in
Fig. 6.

– An operator unify subset that does not modify V � (in order to avoid over-
approximated it), we only split and merge (using the fold operator) partitions
from U � as, if the over-approximated U � is smaller than V �, then so is the
original U �.

– An operator unify widen that unifies U � and V � by only merging partitions
so that the number of partitions does not increase. This operator is used in
the widening definition.

Operators unify subset and unify widen are very similar to unify join.

Definition 17 (Comparison �C�(R)). Using unify subset we define a rela-
tion on C�(R): �C�(R)= {(U �, V �) | (〈s, p, N �〉, 〈s′, p′, N �′〉) = unify subset(U �,

V �) ⇒ s ⊆ s′ ∧ ∀b ∈ p′, (b ⊆ sc ∨ ∃!a ∈ p, b ∩ s = a) ∧ N � � N �′[φ]} where φ is
the renaming from p′ into p that renames b to a when such an a exists.

742 M. Journault et al.

Example 15. Going back to our running example: U � = 〈 0 + 1!, { 0!, 1!},
{ 0! ≤ 1!}(= A�)〉 and V � = 〈 0 + 1.(0 + 1)!, { 0 + 1.0!, 1.1!}, { 0 + 1.0! ≤
 1.1!}〉. We have s �⊆ s′ hence U � �� V �. However if we now consider W �:
〈 (ε+1).(0+1)!, { (ε+1).0!, (ε+1).1!}, { (ε+1).0! ≤ (ε+1).1!}(= B�)〉. W �

is already unified with U �, we have s ⊆ s′ and φ : ((ε+1).0! �→ 0, (ε+1).1! �→
 1!). Moreover A� � B�[φ] = { 0! ≤ 1!}. Hence U � � W �.

Proposition 8. We have: (C(R),�C(R))
γ1←− (C�(R),�C�(R)), where: γ1(〈s, p,

R�〉) = {f | def(f) ⊆ γRegn
(s) ∧ f ∈ γ[↑ p](R�)}. By composition we get:

(℘(TZ(R)),⊆)
γ2←− (C�(R),�C�R), with γ2 = γC(R) ◦ γ1.

Example 16. Going back to our running example: V � = 〈 0 + 1.(0 +
1)!, { 0 + 1.0!, 1.1!}, { 0 + 1.0! ≤ 1.1!}〉. We have: ↑ p = (0 + 1.0! �→
{�0�, �1, 0�}, 1! �→ �1�). Hence, γ1(V �) = {(�0� �→ α, �1� �→ β) | α ≤
β} ∪ {(�1, 0� �→ α, �1� �→ β) | α ≤ β} ∪ {(�0� �→ α, �1, 0� �→ γ, �1� �→ β) |
α ≤ β ∧ γ ≤ β}. The product with tree automata refines this result so that only
the last set is left.

We now define the � operator that relies on the unify join operator of Algo-
rithm2. Once elements are unified we can distinguish three kinds of partitions:
(1) Partitions found in both abstract elements (e.g. in Fig. 6). (2) Partitions
found in only one of the two, which do not overlap over the support of the other
abstract element (denoted uo), these are outer-partitions. Information on such
partitions can be soundly kept when joining two abstract elements (e.g. partition
a in Fig. 6). (3) Partitions found in only one of the two, which overlap over the
support of the other abstract element, these are inner-partitions. Information
on such partitions can not be soundly kept when joining two abstract elements.
(e.g. partition b in Fig. 6). Therefore in the following definition of the join oper-
ator, we compute (once elements are unified) the common partitions and both
outer-partitions and merge them to form the resulting subpartitioning.

Definition 18 (Union abstract operator). Given U �, V � ∈ C�(R), if
(〈s, p, R�〉, 〈s′, p′, R�′〉) = unify join(U �, V �), let c be p ∪ p′, let uo (U � outer-
partition) be {e ∈ p | e ⊆ s′c}, let vo (V � outer-partition) be {e ∈ p′ | e ⊆ sc},
we then define:

U � �C�(R) V � = 〈s ∪ s′, c ∪ uo ∪ vo, R�
|c∪uo � R�′

|c∪vo〉

Proposition 9. We have: γ1(U �) ∪ γ1(V �) ⊆ γ1(U � �C�(R) V �).

Example 17. Consider the two following abstract elements (this is the par-
ticular case of our running example where all numerical values are equal):
V � = 〈 0 + 1.(0 + 1)!(= s), { 0 + 1.0!(= a), 1.1!(= b), {a = b}}〉, and U � =
〈 0 + 1!(= s′), { 0!(= c), 1!(= d)}, {c = d}〉. Intuitively U � could encode the
term (x+x) and V � the term (x+(x+x)). The unification of those two elements
is: V �

1 = 〈s, {c, b, 1.0!(= e)}, R�〉 where R� = 〈{c = b, e = b}, {b}, {c, b, e}〉 and
U �

1 = U �, moreover the common environment (c in previous definition) is: {c},

An Abstract Domain for Trees with Numeric Relations 743

�1� = 1

�0� = 0

U �

�(ε + 1).1� = 1

�(ε + 1).0� = 0

V �

�(ε + 1).1� = 1

�(ε + 1).0� = 0

?

Z�
1 = U ��V �

�1�.1� = 1

�1�.0� = 0

Z�
2 = U ��V �

Fig. 7. Widening illustration

V � outer-partitioning is {e, f}, U � outer-partitioning is {d}. Hence: the numer-
ical component resulting of the join is: 〈{c = d}, {c, d}, {c, d}〉 � 〈{c = b, e =
b}, {b}, {c, b, e}〉 which is: 〈{c = b, e = b, c = d}, ∅, {c, d, e, b}〉. We see here that
using a naive numerical join operator, we would not have been able to get such
a precise result (the numerical join would have yielded �).

unify widen C�(R) contains infinite increasing chains, therefore, we need to
provide a widening operator. As for the other operators, widening is computed
on unified abstract elements. A unify widen operator is defined: it produces U �

and V �, over-approximations of its inputs with the same number of partitions.
Moreover it ensures that each partition of U � intersects exactly one partition of
V �. This can be obtained by iterative merging partitions that overlap in both
arguments until the abstract elements have the exact same partitions. Therefore
from the result of unify widen we can extract a list of pairs (a, b) where a is a
partition from U �, b is a partition from V � and a∩b �= ∅. This defines a bijection
from partitions of U � onto partitions of V �.

compose. In order to ensure stabilization we first need to stabilize the supports
on which abstract elements are defined. This is easily done using the automaton
widening (s1�s2 in Algorithm 3). Figure 7 illustrates the following simple exam-
ple: U � is an abstract element with support 0 + 1!, two partitions u = 0!
and u′ = 1!, and numerical constraints u′ = 1 and u = 0. V � is an abstract
element with support (ε + 1).(0 + 1)!, two partitions v = (ε + 1).0! and
v′ = (ε + 1).1! with the numerical constraints that v = 0 and v′ = 1. Sup-
ports are unstable, therefore we start by widening them, which yields a new
support: 1�.(0 + 1)!. The unification of U � and V � leaves subpartitionings
unchanged and yields the bijection (u �→ v, u′ �→ v′). Given this information
we now need to provide a new subpartitioning for the result of the widening.
We see in this example that we could soundly use the subpartitioning from V �,
this would produce the abstract element Z�

1 depicted in Fig. 7. However due to
the widening of the support, paths of the form �1, 1, 1, 0� are in the support of
the result but are left unconstrained as they are not in any of the partitions.
Therefore we need to use the opportunity of the extension of the support to
place constraints on the newly added paths. In order to do so we would like to
force the extension of the existing partitions from U � and V � into the new sup-
port. Therefore we need to define a compose operator that produces a sound
new partition, given: (1) a pair a, b of partitions (such as the one produced by

744 M. Journault et al.

Algorithm 3. widening operator
Input : U �, V � two abstract elements

1 (〈s1, p1, R
�
1〉, 〈s2, p2, R

�
2〉) ← unify widen(U �, V �) ;

2 s ← s1�s2;
3 r ← s \ (s1 ∪ s2);
4 foreach a ∈ p1 do
5 b ← the unique element from p2 such that b ∩ a
= ∅;
6 p ← compose(a, b, s1, s2, r);
7 p ← {p} ∪ p;

8 R��
1 ← R��

1 [a �→ p];

9 R��
2 ← R��

1 [b �→ p];
10 r ← r \ p;

11 if p = p1 then

12 return 〈s, p, R��
1 �R��

2 〉;
13 else

14 return 〈s, p, R��
1 � R��

2 〉;

unify widen), (2) the support s1 (resp s2) in which a (resp. b) lives and (3)
a space to occupy r. The following criteria must be verified by the resulting
partition p in order to be sound and to terminate: p ∩ s1 = a, p ∩ s2 = b and
p \ (s1 ∪ s2) ⊆ r. A variety of compose operators could be defined, we chose:
compose(a, b, s1, s2, r) = a∪(b∩(s2\s1))∪((a�(a∪b))∩r). The idea is the follow-
ing: we keep a (as it is always sound thanks to the definition of the unify widen
operator), we keep the part from b that satisfies the soundness condition, and we
extend into the space left to occupy according to the automata widening of a and
a∪ b. In our example, considering the pair (u, v), this would translate as: a = 0,
b∩(s2\s1) = 1.0! and (a�(a∪b))∩r = 0!� (ε+1).0!∩ 1≥2(0+1)! = 1≥2.0!.
We get the new partition: 1�.0!. Doing the same with the pair (v, v′) yields
 1�.1!. Finally we get the abstract element Z�

2 from Fig. 7, which is more precise
than Z�

1.

Definition 19 (Widening). Algorithm3 provides the definition of a widen-
ing operator using the unify widen operator and parameterized by a compose
function.

Widening Stabilization. Our abstraction contains three components: (1) a sup-
port that describes the set of paths (2) a subpartitioning of this support and (3)
a numerical component giving constraints on partitions in the subpartitioning.
We show how the widening operator stabilizes all three components.

– Regular expression widening is used on supports when widening is called.
Therefore ensuring support stabilization.

– Once supports are stable (this means s2 ⊆ s1), we have p = a for every pair
(a, b) of partitions. Meaning that once shapes stabilize, the only modifications

An Abstract Domain for Trees with Numeric Relations 745

allowed on the subpartitionings are those made by the unify widen operator.
Each partition resulting from the operator is the union of input partitions,
hence the subpartitioning will stabilize.

– Once subpartitionings are stable (p1 = p in Algorithm 3) numerical widening
is applied on the numerical component in order to ensure stabilization.

Example 18 (Numerical example). Consider the simple example where: R =
{f(2)}, U � = 〈 0 + 1!, { 0!, 1!}, { 1! = 0!}〉 and V � = 〈 0 + 1!, { 0!, 1!},
{ 1! ≥ 0!, 1! ≤ 0!+1}〉. U � and V � have the same shape, therefore widening
will be performed on the numerical component of the abstraction, therefore:
U ��V � = 〈 0 + 1!, { 0!, 1!}, { 1! ≥ 0!}〉.

Reducing Dimensionality and Improving Precision. As emphasized by the pre-
vious examples, definitions and illustrations, the numerical component of an
abstract state is used as a container for constraints on regular expressions, every
node in a regular expression must then satisfy all numerical constraints on the
underlying regular expression. Therefore when two nodes of a tree satisfy the
same constraints, they should be stored in the same partition so as to reduce the
dimension of the numerical domain (thus improving efficiency). Moreover the
widening operator provided in Algorithm3 relies (for precision) on the fact that
partitions are built by similarity of constraints, therefore partition merging, when
it does not result in an over-approximation, also leads to a precision gain. The
unification operator defined in Algorithm2 tends to split partitions whereas the
widening operator defined in Algorithm3 tends to merge them. In order to reduce
dimensionality, we would like to define a reduce : C�(R) → C�(R) operator, that
folds variables with similar constraints into one. Please note that ∀S ∩S′ ⊆ {x},
x ∈ S and R� ∈ NS , we have that R� �NS

expand(fold(R�, x, S′), x, S′).
This means that when variables are folded into one, expanding them after-
wards would yield a bigger abstract element. For example, consider the octagon
R� = {x ≥ 2, y ≥ 2, x = y} then fold(R�, z, {x, y}) = {z ≥ 2}(Δ= R�′)
and expand(R�′, z, {x, y}) = {x ≥ 2, y ≥ 2}. However if we consider R� =
{x ≥ 2, y ≥ 2} then fold(expand(R�, z, {x, y}), z, {x, y}) = R�. Therefore if
we assume given a score function score(R�, x, S′) ranging in [0, 1] such that
score(R�, x, S′) = 1 ⇔ R� = expand(fold(R�, x, S′), x, S′), we are able to
define a generic reduce operator parameterized by a value α. This reduce
operator merges partitions until no more set of partitions has a high enough
score according to the score function. Finding a good score function is a
work in progress. As a first approximation we used the following trivial one:
score0(R�, S) = 1 when expand(fold(R�, x, S), x, S) = R� and 0 otherwise.
This score0 guarantees there is no loss of precision, but can miss opportuni-
ties for simplification.

Example 19. Consider the following example: U � = 〈 0 + 1!, { 0!, 1!}, { 0! =
0, 1! = 0}〉. Relations on 0! and 1! can be expressed in one relation using
the summarizing variable 0 + 1!. This yields: reduce(U �) = 〈 0 + 1!, { 0 +
1!}, { 0 + 1! = 0}〉. Note that expand({ 0 + 1! = 0}, 0 + 1!, { 1!, 0!}) =
{ 0! = 0, 1! = 0}. Therefore no information is lost.

746 M. Journault et al.

Abstract Semantic of Operators. As for tree automata, abstract semantic of
operators defined in Sect. 2 can be defined as simple transformations on regular
automata. Indeed the make symbolic(s ∈ R) (resp. get son) operator, amounts
to adding (resp. removing) an integer letter to: (1) the partitions in the subpar-
titioning and (2) the support. make integer(e ∈ expr) amounts to building an
abstract element with support ε! and a subpartitioning containing only { ε!},
on which we put the constraint that it is equal to e. is symbol needs only split
the support and each partition, in the two language L = {ε} and A�

n \L. Indeed
in order to restrict to terms having only an integer as root, the support must
be reduced to ε. The get sym head operator always yields the whole ranked
alphabet (as this was abstracted away and will be refined by the automaton
abstraction). Finally for get num head: (1) if the empty path �� is in the sup-
port we produce the set of integers satisfying the numerical constraints on the
partition containing ε, and � in case no such partition could be found, and (2)
otherwise we know that no numerical value is produced.

5.2 Product of Tree Automata and Numerical Constraints

The abstraction by tree automata defined in Sect. 3 and the abstraction by
numerical constraints on tree paths defined in Sect. 5.1 provide non compara-
ble information on the set of terms they abstract. Indeed the former describes
precisely the shape of the term but can not express numerical constraints whereas
the latter abstracts away most of the shape and focuses on numerical constraints.
To benefit from both kinds of information, we use a reduced product between the
two domains. Both abstractions in the product contain information on potential
integer positions. The position of the � symbol in the tree automaton abstrac-
tion and the support in the numerical constraints abstractions both yield this
information. We remove the support component from the product as the infor-
mation can be retrieved from the tree abstraction. The definitions of the abstract
operators in Sect. 5.1 require the support to be a regular language. We show in
this subsection how to retrieve the support of a tree automaton with holes and
that it is regular.

Given a FTA(Q,R, Qf , δ) over a ranked alphabet R with maximum arity
n. We assume that every node in Q is reachable. Consider the following system
over variables vp for p ∈ Q with values in the set of languages over the alphabet
An (. designates the classical concatenation operator lifted to languages):

{vp =
⋃

(s,(q1,...,qm),q)∈δ|qi=p

vq.{i} ∪
{

{ε} if p ∈ Qf

∅ otherwise | p ∈ Q}

Every language {i} for i ∈ N is regular and does not contain ε, moreover
∅ and {ε} are regular languages. By application of Arden’s rule (see [18]) and
Gauss elimination we can compute the unique solution of this system, moreover
every vp is regular. Variable vp is defined so that: w ∈ vp if and only if there
exists a tree t recognized by the automaton such that p ∈ reach(t|w). If � ∈ R
we have that the regular language: ∪(�,(),p)∈δvp represents exactly the potential
positions of integers in trees accepted by the tree automaton.

An Abstract Domain for Trees with Numeric Relations 747

Height and Size. The product is enriched with a simple height and size abstrac-
tion: numerical variables (encoding heights and sizes) are added to the numerical
component of the abstraction.

5.3 Environment Abstraction

In the previous section, we designed abstractions for sets of trees. However in
order to be able to tackle the examples from the introductory section (Sect. 1) we
need to design an abstraction able to represent maps from a set of variables to
natural terms. In Sect. 3 we have shown how to lift abstractions on natural terms
to abstractions of environments over a given finite set of finite term variables T .
We apply the same mechanism here to lift the product presented in Sect. 5.2.
However lifting the product would result in abstract environments being maps
from natural term variables to abstractions containing a numerical environment.
In order to be able to express numerical relations between two sets of natural
terms or even between numerical program variables and numerical values of
natural terms we factor away the numerical environment so that it is shared
by all natural term abstractions in the term environment and by the program
variables in the numerical environment. Therefore the final abstraction is a pair
(m,R�) where: (1) m is a map from T to an abstract element that is a product
of the automaton abstraction and the hole positioning abstraction. Moreover
as all the numerical constraints are stored in a common numerical environment
the product abstraction amounts to a pair (A, p) where A is an element of the
automaton abstraction and p is a partitioning of its support. (2) R� is an element
of M� binding in the same numerical element: numerical program variables and
all partitions found in the mapping m.

6 Implementation and Example

6.1 Implementation

The analyzer was implemented in OCaml (∼5000 loc) in the novel and still
in development Mopsa framework (see [21]). Mopsa enables a modular devel-
opment of static analyzers defined by abstract interpretation. An analyzer is
built by choosing abstract domains, and combining them according to the user
specification. Mopsa comes with pre-existing iterators and domains (e.g. inter-
procedural analysis, loop iterators, numerical domains, . . .), and new ones can
be added (e.g. tree abstract domain). A key feature of Mopsa is the ability
of an abstract domain to use the abstract knowledge it maintains to trans-
form dynamically expressions into other expressions that can be manipulated
more easily by further domains, providing a flexible way to combine relational
domains. For instance, assume that a domain abstracts arrays by associat-
ing a scalar variable a0, a1, . . . , to each element a[0], a[1], ..., of an array a,
and delegating the abstraction of the array contents to a numeric domain for
scalars. It can then evaluate E

�[[2 ∗ a[i] + i]](i �→ [0, 1]) into the disjunction

748 M. Journault et al.

(2 ∗ a0 + i, i �→ [0, 0])∨ (2 ∗ a1 + i, i �→ [1, 1]), indicating that 2 ∗ a[i] + i is equiv-
alent to 2 ∗ a0 + i in the sub-environment where i = 0 and to 2 ∗ a1 + i in the
sub-environment where i = 1. Each term of the disjunction contains an array-free
expression that can be handled by the scalar domain in the corresponding sub-
environment. In the abstract, expressions can be evaluated by induction on the
syntax into symbolic expressions to retain the full power of relational domains
and disjunctive reasoning (see [21] for more details). We exploit this feature in
our implementation to combine our tree abstractions. We implemented (in the
Mopsa framework) libraries for regular and tree regular languages that offer the
usual lattice interface enriched with a widening operator. These libraries can be
reused for the definition of other abstract domains. The overall complexity of
the analysis is driven by the complexity of the lattice operations in the regular
and tree regular libraries. These are exponential in the number of states of the
considered automata, which is bounded by the widening parameter.

6.2 Examples of Analysis

Numerical variables of the form t.x, where t is a natural term variable, represent
a variable allocated for tree t. For example: t.r where r is a regular expression
is the variable allocated for partition r in tree t.

C Introductory Example. Let us consider the introductory example Pro-
gram 4. The loop invariant inferred with our analysis is the following
abstract element: U � = (y �→ (A, { 0.(0.0)�.1!(= r)}), R�), with A =
〈{a, b, c, d}, {∗(1),+(2),�(0), (p, 0)}, {c}, {∗(d) → c,+(c, a) → d,�() → a, p →
c}〉, and R� satisfies the constraints: {i ≥ 0, i ≤ n, y.r = 4}. This describes pre-
cisely the set of terms of the form: p, ∗(p+4), ∗(∗(p+4)+4), As mentioned in
Sect. 6.1 evaluations of tree expressions yield pairs containing an expression and
an abstract environment. Tree expressions are pairs (A, p), partitions in p are
bound by the adjoined environment. Let us now present the result of the evalua-
tion of the make integer(4) expression in the abstract environment U �. Here we
get the expression (A′, { ε!}) (where A′ recognizes only �) in the environment:
(y �→ (A, {r}), R�′) where R�′ = R� ∪ { ε! = 4}. This emphasizes how the envi-
ronment is used to give constraints on the adjoined expression. This transports
numerical relations from the leafs of the expression up to the assigned variable t.

OCaml Introductory Example. Let us now consider the introductory exam-
ple Program 5. The inferred loop invariant is the following (r = (1.1)�.0!
and r′ = (1.1)�.1.0!): (t �→ (A, {r, r′}), R�) and R� satisfies the con-
straints: {t.r′ = x − 1, t.r = t.r′ + 2, i ≥ 0, i ≤ n} and A =
({a, b, c, d}, {Cons(2), Nil(0),�(0)}, {a}, {Cons(c, a) → d, Cons(c, d) → a, Nil →
a,� → c}). Please note that at the end of the while loops the two numerical
environments that need to be joined are not defined over the same set of vari-
ables (in the environments that have not gone through the loop, variables t.r′

and t.r are not present). However thanks to the �� operator, we do not have to

An Abstract Domain for Trees with Numeric Relations 749

loose the numerical relations between these variables and x. Hence we are able
to prove that the assertion holds.

The analyzer was able to successfully analyze and infer the expected invari-
ants for both examples.

7 Related Works

Previous works on sets of trees abstractions [20] were able to recognize larger
classes of tree languages than tree automata. However we focused here on the
abstraction of trees labeled with numerical values, therefore the work closest to
ours would be [12]. Indeed it defines tree automata where leaves can be elements
of a lattice (for example an interval). They are therefore able to represent sets
of natural terms, but can not express numerical relations between the leaves of
trees. Moreover they rely on a partitioning of the leaf lattice for tree automata
operations. In [1] (and [2]) tree automata and regular automata are used for
the model checking of programs manipulating C pointers and structures. Other
uses have been made of tree automata in verification: shape analysis of C pro-
grams as in [15], computation of an over-approximation of terms computable by
attackers of cryptographic protocols as in [24]. Widening regular languages by
the computation of an equivalence relation of bounded index is also done in [9]
and in [11]. As mentioned, variable summarization is often used to represent
unbounded memory locations as in [17] or [14]. Moreover numerical abstract
domains able to handle optional variables have been defined such as [19]. Finally
termination analyses have been proposed for the analysis of programs manipu-
lating tree structures (AVL, red-black trees) see [16].

8 Conclusion

In this article we presented a relational abstract environment for sets of trees over
a finite algebra, with numerically labeled leaves. We emphasized the potential
applications of being able to describe such trees: description of reachable memory
zones, tracking symbolic equalities between program variables, description of tree
like structures. In order to improve the precision of the analysis while not blowing
up its cost we defined a novel abstraction for sets of maps with heterogeneous
supports. This numeric abstraction is able to represent optional dimensions in
numerical domains without losing relations with optional variables. All domains
presented in the article were implemented as a library in the Mopsa framework.

750 M. Journault et al.

References

1. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006). https://doi.org/10.1007/
11823230 5

2. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 29

3. Bourdoncle, F.: Sémantiques des Langages Impératifs d’Ordre Supérieur et
Interprétation Abstraite. Ph.D. thesis, Ecole polytechnique (1992)

4. Comon, H., et al.: Tree automata techniques and applications (2007). Release
October, 12th 2007

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL, pp. 238–252. ACM (1977)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software, pp. 77–94 (1977)

7. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 13

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL, pp. 84–96. ACM Press (1978)

9. Feret, J.: Abstract interpretation-based static analysis of mobile ambients. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 412–430. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 24

10. Le Gall, T.: Abstract lattices for the verification of systèmes with stacks and
queues. Ph.D. thesis, University of Rennes 1, France (2008)

11. Le Gall, T., Jeannet, B., Jéron, T.: Verification of communication protocols using
abstract interpretation of FIFO queues. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 204–219. Springer, Heidelberg (2006). https://doi.org/
10.1007/11784180 17

12. Genet, T., Le Gall, T., Legay, A., Murat, V.: Tree regular model checking for
lattice-based automata. CoRR, abs/1203.1495 (2012)

13. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with sum-
marized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol.
2988, pp. 512–529. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24730-2 38

14. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: Proceedings of POPL, pp. 338–350. ACM (2005)

15. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 34

16. Habermehl, P., Iosif, R., Rogalewicz, A., Vojnar, T.: Proving termination of tree
manipulating programs. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura,
Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 145–161. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75596-8 12

17. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Proceedings of PLDI, pp. 339–348. ACM (2008)

https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-47764-0_24
https://doi.org/10.1007/11784180_17
https://doi.org/10.1007/11784180_17
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-642-22110-1_34
https://doi.org/10.1007/978-3-642-22110-1_34
https://doi.org/10.1007/978-3-540-75596-8_12

An Abstract Domain for Trees with Numeric Relations 751

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.,
Inc, Boston (2006)

19. Liu, J., Rival, X.: Abstraction of optional numerical values. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 146–166. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 9

20. Mauborgne, L.: Representation of sets of trees for abstract interpretation. Ph.D.
thesis, Ecole polytechnique (1999)

21. Miné, A., Ouadjaout, A., Journault, M.: Design of a modular platform for
static analysis. In: The Ninth Workshop on Tools for Automatic Program Anal-
ysis (TAPAS 2018), Fribourg-en-Brisgau, Germany, August 2018. https://hal.
sorbonne-universite.fr/hal-01870001/file/mine-al-tapas18.pdf

22. Miné, A.: The octagon abstract domain. In: Proceedings of WCRE, p. 310. IEEE
Computer Society (2001)

23. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 23

24. Monniaux, D.: Abstracting cryptographic protocols with tree automata. In:
Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 149–163. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48294-6 10

25. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of 17th IEEE (LICS 2002), pp. 55–74. IEEE Computer Society (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-26529-2_9
https://hal.sorbonne-universite.fr/hal-01870001/file/mine-al-tapas18.pdf
https://hal.sorbonne-universite.fr/hal-01870001/file/mine-al-tapas18.pdf
https://doi.org/10.1007/11609773_23
https://doi.org/10.1007/3-540-48294-6_10
http://creativecommons.org/licenses/by/4.0/

A Static Higher-Order Dependency
Pair Framework

Carsten Fuhs1(B) and Cynthia Kop2(B)

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, London, UK

carsten@dcs.bbk.ac.uk
2 Department of Software Science, Radboud University Nijmegen,

Nijmegen, The Netherlands
c.kop@cs.ru.nl

Abstract. We revisit the static dependency pair method for proving
termination of higher-order term rewriting and extend it in a number
of ways: (1) We introduce a new rewrite formalism designed for general
applicability in termination proving of higher-order rewriting, Algebraic
Functional Systems with Meta-variables. (2) We provide a syntactically
checkable soundness criterion to make the method applicable to a large
class of rewrite systems. (3) We propose a modular dependency pair
framework for this higher-order setting. (4) We introduce a fine-grained
notion of formative and computable chains to render the framework more
powerful. (5) We formulate several existing and new termination proving
techniques in the form of processors within our framework.

The framework has been implemented in the (fully automatic) higher-
order termination tool WANDA.

1 Introduction

Term rewriting [3,48] is an important area of logic, with applications in many dif-
ferent areas of computer science [4,11,18,23,25,36,41]. Higher-order term rewrit-
ing – which extends the traditional first-order term rewriting with higher-order
types and binders as in the λ-calculus – offers a formal foundation of functional
programming and a tool for equational reasoning in higher-order logic. A key
question in the analysis of both first- and higher-order term rewriting is termi-
nation; both for its own sake, and as part of confluence and equivalence analysis.

In first-order term rewriting, a hugely effective method for proving termina-
tion (both manually and automatically) is the dependency pair (DP) approach
[2]. This approach has been extended to the DP framework [20,22], a highly
modular methodology which new techniques for proving termination and non-
termination can easily be plugged into in the form of processors.

In higher-order rewriting, two DP approaches with distinct costs and ben-
efits are used: dynamic [31,45] and static [6,32–34,44,46] DPs. Dynamic DPs
are more broadly applicable, yet static DPs often enable more powerful analy-
sis techniques. Still, neither approach has the modularity and extendability of
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 752–782, 2019.
https://doi.org/10.1007/978-3-030-17184-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_27

A Static Higher-Order Dependency Pair Framework 753

the DP framework, nor can they be used to prove non-termination. Also, these
approaches consider different styles of higher-order rewriting, which means that
for all results certain language features are not available.

In this paper, we address these issues for the static DP approach by extend-
ing it to a full higher-order dependency pair framework for both termination and
non-termination analysis. For broad applicability, we introduce a new rewriting
formalism, AFSMs, to capture several flavours of higher-order rewriting, includ-
ing AFSs [26] (used in the annual Termination Competition [50]) and pattern
HRSs [37,39] (used in the annual Confluence Competition [10]). To show the
versatility and power of this methodology, we define various processors in the
framework – both adaptations of existing processors from the literature and
entirely new ones.

Detailed Contributions. We reformulate the results of [6,32,34,44,46] into a DP
framework for AFSMs. In doing so, we instantiate the applicability restriction of
[32] by a very liberal syntactic condition, and add two new flags to track proper-
ties of DP problems: one completely new, one from an earlier work by the authors
for the first-order DP framework [16]. We give eight processors for reasoning in
our framework: four translations of techniques from static DP approaches, three
techniques from first-order or dynamic DPs, and one completely new.

This is a foundational paper, focused on defining a general theoretical frame-
work for higher-order termination analysis using dependency pairs rather than
questions of implementation. We have, however, implemented most of these
results in the fully automatic termination analysis tool WANDA [28].

Related Work. There is a vast body of work in the first-order setting regarding
the DP approach [2] and framework [20,22,24]. We have drawn from the ideas
in these works for the core structure of the higher-order framework, but have
added some new features of our own and adapted results to the higher-order
setting.

There is no true higher-order DP framework yet: both static and dynamic
approaches actually lie halfway between the original “DP approach” of first-
order rewriting and a full DP framework as in [20,22]. Most of these works
[30–32,34,46] prove “non-loopingness” or “chain-freeness” of a set P of DPs
through a number of theorems. Yet, there is no concept of DP problems, and the
set R of rules cannot be altered. They also fix assumptions on dependency chains
– such as minimality [34] or being “tagged” [31] – which frustrate extendability
and are more naturally dealt with in a DP framework using flags.

The static DP approach for higher-order term rewriting is discussed in, e.g.,
[34,44,46]. The approach is limited to plain function passing (PFP) systems. The
definition of PFP has been made more liberal in later papers, but always con-
cerns the position of higher-order variables in the left-hand sides of rules. These
works include non-pattern HRSs [34,46], which we do not consider, but do not
employ formative rules or meta-variable conditions, or consider non-termination,
which we do. Importantly, they do not consider strictly positive inductive types,
which could be used to significantly broaden the PFP restriction. Such types
are considered in an early paper which defines a variation of static higher-order

754 C. Fuhs and C. Kop

dependency pairs [6] based on a computability closure [7,8]. However, this work
carries different restrictions (e.g., DPs must be type-preserving and not introduce
fresh variables) and considers only one analysis technique (reduction pairs).

Definitions of DP approaches for functional programming also exist [32,33],
which consider applicative systems with ML-style polymorphism. These works
also employ a much broader, semantic definition than PFP, which is actually
more general than the syntactic restriction we propose here. However, like the
static approaches for term rewriting, they do not truly exploit the computability
[47] properties inherent in this restriction: it is only used for the initial generation
of dependency pairs. In the present work, we will take advantage of our exact
computability notion by introducing a computable flag that can be used by
the computable subterm criterion processor (Theorem 63) to handle benchmark
systems that would otherwise be beyond the reach of static DPs. Also in these
works, formative rules, meta-variable conditions and non-termination are not
considered.

Regarding dynamic DP approaches, a precursor of the present work is [31],
which provides a halfway framework (methodology to prove “chain-freeness”)
for dynamic DPs, introduces a notion of formative rules, and briefly translates a
basic form of static DPs to the same setting. Our formative reductions consider
the shape of reductions rather than the rules they use, and they can be used as
a flag in the framework to gain additional power in other processors. The adap-
tation of static DPs in [31] was very limited, and did not for instance consider
strictly positive inductive types or rules of functional type.

For a more elaborate discussion of both static and dynamic DP approaches
in the literature, we refer to [31] and the second author’s PhD thesis [29].
Organisation of the Paper. Section 2 introduces higher-order rewriting using
AFSMs and recapitulates computability. In Sect. 3 we impose restrictions on
the input AFSMs for which our framework is soundly applicable. In Sect. 4 we
define static DPs for AFSMs, and derive the key results on them. Section 5
formulates the DP framework and a number of DP processors for existing and
new termination proving techniques. Section 6 concludes. Detailed proofs for all
results in this paper and an experimental evaluation are available in a technical
report [17]. In addition, many of the results have been informally published in
the second author’s PhD thesis [29].

2 Preliminaries

In this section, we first define our notation by introducing the AFSM formalism.
Although not one of the standards of higher-order rewriting, AFSMs combine
features from various forms of higher-order rewriting and can be seen as a form
of IDTSs [5] which includes application. We will finish with a definition of com-
putability, a technique often used for higher-order termination methods.

A Static Higher-Order Dependency Pair Framework 755

2.1 Higher-Order Term Rewriting Using AFSMs

Unlike first-order term rewriting, there is no single, unified approach to higher-
order term rewriting, but rather a number of similar but not fully compatible
systems aiming to combine term rewriting and typed λ-calculi. For generality,
we will use Algebraic Functional Systems with Meta-variables: a formalism which
admits translations from the main formats of higher-order term rewriting.

Definition 1 (Simple types). We fix a set S of sorts. All sorts are simple
types, and if σ, τ are simple types, then so is σ → τ .

We let → be right-associative. Note that all types have a unique representa-
tion in the form σ1 → . . . → σm → ι with ι ∈ S.

Definition 2 (Terms and meta-terms). We fix disjoint sets F of function
symbols, V of variables and M of meta-variables, each symbol equipped with
a type. Each meta-variable is additionally equipped with a natural number. We
assume that both V and M contain infinitely many symbols of all types. The set
T (F ,V) of terms over F ,V consists of expressions s where s : σ can be derived
for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ

Meta-terms are expressions whose type can be derived by those clauses and:
(M) Z〈s1, . . . , sk〉 : σk+1 → . . . → σm → ι

if Z : (σ1 → . . . → σk → . . . → σm → ι, k) ∈ M and s1 : σ1, . . . , sk : σk

The λ binds variables as in the λ-calculus; unbound variables are called free, and
FV (s) is the set of free variables in s. Meta-variables cannot be bound; we write
FMV (s) for the set of meta-variables occurring in s. A meta-term s is called
closed if FV (s) = ∅ (even if FMV (s) �= ∅). Meta-terms are considered modulo
α-conversion. Application (@) is left-associative; abstractions (Λ) extend as far
to the right as possible. A meta-term s has type σ if s : σ; it has base type if
σ ∈ S. We define head(s) = head(s1) if s = s1 s2, and head(s) = s otherwise.

A (meta-)term s has a sub-(meta-)term t, notation s � t, if either s = t or
s � t, where s � t if (a) s = λx.s′ and s′ � t, (b) s = s1 s2 and s2 � t or (c)
s = s1 s2 and s1 � t. A (meta-)term s has a fully applied sub-(meta-)term t,
notation s � t, if either s = t or s � t, where s � t if (a) s = λx.s′ and s′ � t,
(b) s = s1 s2 and s2 � t or (c) s = s1 s2 and s1 � t (so if s = x s1 s2, then x
and x s1 are not fully applied subterms, but s and both s1 and s2 are).

For Z : (σ, k) ∈ M, we call k the arity of Z, notation arity(Z).

Clearly, all fully applied subterms are subterms, but not all subterms are
fully applied. Every term s has a form t s1 · · · sn with n ≥ 0 and t = head(s) a
variable, function symbol, or abstraction; in meta-terms t may also be a meta-
variable application F 〈s1, . . . , sk〉. Terms are the objects that we will rewrite;
meta-terms are used to define rewrite rules. Note that all our terms (and meta-
terms) are, by definition, well-typed. For rewriting, we will employ patterns:

756 C. Fuhs and C. Kop

Definition 3 (Patterns). A meta-term is a pattern if it has one of the forms
Z〈x1, . . . , xk〉 with all xi distinct variables; λx.� with x ∈ V and � a pattern; or
a �1 · · · �n with a ∈ F ∪ V and all �i patterns (n ≥ 0).

In rewrite rules, we will use meta-variables for matching and variables
only with binders. In terms, variables can occur both free and bound, and
meta-variables cannot occur. Meta-variables originate in very early forms of
higher-order rewriting (e.g., [1,27]), but have also been used in later formalisms
(e.g., [8]). They strike a balance between matching modulo β and syntactic
matching. By using meta-variables, we obtain the same expressive power as
with Miller patterns [37], but do so without including a reversed β-reduction as
part of matching.

Notational Conventions: We will use x, y, z for variables, X,Y,Z for meta-
variables, b for symbols that could be variables or meta-variables, f, g, h or more
suggestive notation for function symbols, and s, t, u, v, q, w for (meta-)terms.
Types are denoted σ, τ , and ι, κ are sorts. We will regularly overload notation
and write x ∈ V, f ∈ F or Z ∈ M without stating a type (or minimal arity).
For meta-terms Z〈〉 we will usually omit the brackets, writing just Z.

Definition 4 (Substitution). A meta-substitution is a type-preserving func-
tion γ from variables and meta-variables to meta-terms. Let the domain of γ
be given by: dom(γ) = {(x : σ) ∈ V | γ(x) �= x} ∪ {(Z : (σ, k)) ∈ M |
γ(Z) �= λy1 . . . yk.Z〈y1, . . . , yk〉}; this domain is allowed to be infinite. We let
[b1 := s1, . . . , bn := sn] denote the meta-substitution γ with γ(bi) = si and
γ(z) = z for (z : σ) ∈ V \ {b1, . . . , bn}, and γ(Z) = λy1 . . . yk.Z〈y1, . . . , yk〉 for
(Z : (σ, k)) ∈ M\{b1, . . . , bn}. We assume there are infinitely many variables x
of all types such that (a) x /∈ dom(γ) and (b) for all b ∈ dom(γ): x /∈ FV (γ(b)).

A substitution is a meta-substitution mapping everything in its domain to
terms. The result sγ of applying a meta-substitution γ to a term s is obtained by:
xγ = γ(x) if x ∈ V (s t)γ = (sγ) (tγ)
fγ = f if f ∈ F (λx.s)γ = λx.(sγ) if γ(x) = x ∧ x /∈

⋃
y∈dom(γ) FV (γ(y))

For meta-terms, the result sγ is obtained by the clauses above and:
Z〈s1, . . . , sk〉γ = γ(Z)〈s1γ, . . . , skγ〉 if Z /∈ dom(γ)
Z〈s1, . . . , sk〉γ = γ(Z)〈〈s1γ, . . . , skγ〉〉 if Z ∈ dom(γ)

(λx1 . . . xk.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xk := tk]
(λx1 . . . xn.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xn := tn] tn+1 · · · tk if n < k

and s is not an abstraction

Note that for fixed k, any term has exactly one of the two forms above
(λx1 . . . xn.s with n < k and s not an abstraction, or λx1 . . . xk.s).

Essentially, applying a meta-substitution that has meta-variables in its
domain combines a substitution with (possibly several) β-steps. For exam-
ple, we have that: deriv (λx.sin (F 〈x〉))[F := λy.plus y x] equals
deriv (λz.sin (plus z x)). We also have: X〈0, nil〉[X := λx.map (λy.x)] equals
map (λy.0) nil.

A Static Higher-Order Dependency Pair Framework 757

Definition 5 (Rules and rewriting). Let F ,V,M be fixed sets of function
symbols, variables and meta-variables respectively. A rule is a pair � ⇒ r of
closed meta-terms of the same type such that � is a pattern of the form f �1 · · · �n

with f ∈ F and FMV (r) ⊆ FMV (�). A set of rules R defines a rewrite relation
⇒R as the smallest monotonic relation on terms which includes:
(Rule) �δ ⇒R rδ if � ⇒ r ∈ R and dom(δ) = FMV (�)
(Beta) (λx.s) t ⇒R s[x := t]

We say s ⇒β t if s ⇒R t is derived using a (Beta) step. A term s is terminating
under ⇒R if there is no infinite reduction s = s0 ⇒R s1 ⇒R . . . , is in normal
form if there is no t such that s ⇒R t, and is β-normal if there is no t with
s ⇒β t. Note that we are allowed to reduce at any position of a term, even below
a λ. The relation ⇒R is terminating if all terms over F ,V are terminating. The
set D ⊆ F of defined symbols consists of those (f : σ) ∈ F such that a rule
f �1 · · · �n ⇒ r exists; all other symbols are called constructors.

Note that R is allowed to be infinite, which is useful for instance to model
polymorphic systems. Also, right-hand sides of rules do not have to be in β-
normal form. While this is rarely used in practical examples, non-β-normal rules
may arise through transformations, and we lose nothing by allowing them.

Example 6. Let F ⊇ {0 : nat, s : nat → nat, nil : list, cons : nat → list →
list, map : (nat → nat) → list → list} and consider the following rules R:

map (λx.Z〈x〉) nil ⇒ nil
map (λx.Z〈x〉) (cons H T) ⇒ cons Z〈H〉 (map (λx.Z〈x〉) T)

Then map (λy.0) (cons (s 0) nil) ⇒R cons 0 (map (λy.0) nil) ⇒R cons 0 nil.
Note that the bound variable y does not need to occur in the body of λy.0 to
match λx.Z〈x〉. However, a term like map s (cons 0 nil) cannot be reduced,
because s does not instantiate λx.Z〈x〉. We could alternatively consider the
rules:

map Z nil ⇒ nil
map Z (cons H T) ⇒ cons (Z H) (map Z T)

Where the system before had (Z : (nat → nat, 1)) ∈ M, here we
assume (Z : (nat → nat, 0)) ∈ M. Thus, rather than meta-variable appli-
cation Z〈H〉 we use explicit application Z H. Then map s (cons 0 nil) ⇒R
cons (s 0) (map s nil). However, we will often need explicit β-reductions; e.g.,
map (λy.0) (cons (s 0) nil) ⇒R cons ((λy.0) (s 0)) (map (λy.0) nil) ⇒β

cons 0 (map (λy.0) nil).

Definition 7 (AFSM). An AFSM is a tuple (F ,V,M,R) of a signature and
a set of rules built from meta-terms over F ,V,M; as types of relevant variables
and meta-variables can always be derived from context, we will typically just refer
to the AFSM (F ,R). An AFSM implicitly defines the abstract reduction system
(T (F ,V),⇒R): a set of terms and a rewrite relation on this set. An AFSM is
terminating if ⇒R is terminating (on all terms in T (F ,V)).

758 C. Fuhs and C. Kop

Discussion: The two most common formalisms in termination analysis of higher-
order rewriting are algebraic functional systems [26] (AFSs) and higher-order
rewriting systems [37,39] (HRSs). AFSs are very similar to our AFSMs, but
use variables for matching rather than meta-variables; this is trivially translated
to the AFSM format, giving rules where all meta-variables have arity 0, like
the “alternative” rules in Example 6. HRSs use matching modulo β/η, but the
common restriction of pattern HRSs can be directly translated into AFSMs,
provided terms are β-normalised after every reduction step. Even without this
β-normalisation step, termination of the obtained AFSM implies termination of
the original HRS; for second-order systems, termination is equivalent. AFSMs
can also naturally encode CRSs [27] and several applicative systems (cf. [29,
Chapter 3]).

Example 8 (Ordinal recursion). A running example is the AFSM (F ,R) with
F ⊇ {0 : ord, s : ord → ord, lim : (nat → ord) → ord, rec : ord → nat →
(ord → nat → nat) → ((nat → ord) → (nat → nat) → nat) → nat} and R
given below. As all meta-variables have arity 0, this can be seen as an AFS.

rec 0 K F G ⇒ K
rec (s X) K F G ⇒ F X (rec X K F G)

rec (lim H) K F G ⇒ G H (λm.rec (H m) K F G)

Observant readers may notice that by the given constructors, the type nat in
Example 8 is not inhabited. However, as the given symbols are only a subset of F ,
additional symbols (such as constructors for the nat type) may be included. The
presence of additional function symbols does not affect termination of AFSMs:

Theorem 9 (Invariance of termination under signature extensions).
For an AFSM (F ,R) with F at most countably infinite, let funs(R) ⊆ F be
the set of function symbols occurring in some rule of R. Then (T (F ,V),⇒R) is
terminating if and only if (T (funs(R),V),⇒R) is terminating.

Proof. Trivial by replacing all function symbols in F\funs(R) by corresponding
variables of the same type. ��

Therefore, we will typically only state the types of symbols occurring in the
rules, but may safely assume that infinitely many symbols of all types are present
(which for instance allows us to select unused constructors in some proofs).

2.2 Computability

A common technique in higher-order termination is Tait and Girard’s com-
putability notion [47]. There are several ways to define computability predicates;
here we follow, e.g., [5,7–9] in considering accessible meta-terms using strictly
positive inductive types. The definition presented below is adapted from these
works, both to account for the altered formalism and to introduce (and obtain
termination of) a relation �C that we will use in the “computable subterm cri-
terion processor” of Theorem 63 (a termination criterion that allows us to handle

A Static Higher-Order Dependency Pair Framework 759

systems that would otherwise be beyond the reach of static DPs). This allows
for a minimal presentation that avoids the use of ordinals that would otherwise
be needed to obtain �C (see, e.g., [7,9]).

To define computability, we use the notion of an RC-set :

Definition 10. A set of reducibility candidates, or RC-set, for a rewrite rela-
tion ⇒R of an AFSM is a set I of base-type terms s such that: every term in I
is terminating under ⇒R; I is closed under ⇒R (so if s ∈ I and s ⇒R t then
t ∈ I); if s = x s1 · · · sn with x ∈ V or s = (λx.u) s0 · · · sn with n ≥ 0, and for
all t with s ⇒R t we have t ∈ I, then s ∈ I (for any u, s0, . . . , sn ∈ T (F ,V)).

We define I-computability for an RC-set I by induction on types. For s ∈
T (F ,V), we say that s is I-computable if either s is of base type and s ∈ I; or
s : σ → τ and for all t : σ that are I-computable, s t is I-computable.

The traditional notion of computability is obtained by taking for I the set of
all terminating base-type terms. Then, a term s is computable if and only if (a)
s has base type and is terminating; or (b) s : σ → τ and for all computable t : σ
the term s t is computable. This choice is simple but, for reasoning, not ideal:
we do not have a property like: “if f s1 · · · sn is computable then so is each si”.
Such a property would be valuable to have for generalising termination proofs
from first-order to higher-order rewriting, as it allows us to use computability
where the first-order proof uses termination. While it is not possible to define
a computability notion with this property alongside case (b) (as such a notion
would not be well-founded), we can come close to this property by choosing
a different set for I. To define this set, we will use the notion of accessible
arguments, which is used for the same purpose also in the General Schema [8],
the Computability Path Ordering [9], and the Computability Closure [7].

Definition 11 (Accessible arguments). We fix a quasi-ordering �S on S
with well-founded strict part �S := �S \ �S .1 For a type σ ≡ σ1→ . . .→σm→κ
(with κ ∈ S) and sort ι, let ι �S

+ σ if ι �S κ and ι �S
− σi for all i, and let

ι �S
− σ if ι �S κ and ι �S

+ σi for all i.2

For f : σ1 → . . . → σm → ι ∈ F , let Acc(f) = {i | 1 ≤ i ≤ m ∧ ι �S
+ σi}.

For x : σ1 → . . . → σm → ι ∈ V, let Acc(x) = {i | 1 ≤ i ≤ m ∧ σi has the form
τ1 → . . . → τn → κ with ι �S κ}. We write s �acc t if either s = t, or s = λx.s′

and s′ �acc t, or s = a s1 · · · sn with a ∈ F ∪V and si �acc t for some i ∈ Acc(a)
with a /∈ FV (si).

With this definition, we will be able to define a set C such that, roughly, s
is C-computable if and only if (a) s : σ → τ and s t is C-computable for all C-
computable t, or (b) s has base type, is terminating, and if s = f s1 · · · sm then
si is C-computable for all accessible i (see Theorem 13 below). The reason that
Acc(x) for x ∈ V is different is proof-technical: computability of λx.x s1 · · · sm

1 Well-foundedness is immediate if S is finite, but we have not imposed that require-
ment.

2 Here ι �S
+ σ corresponds to “ι occurs only positively in σ” in [5,8,9].

760 C. Fuhs and C. Kop

implies the computability of more arguments si than computability of f s1 · · · sm

does, since x can be instantiated by anything.

Example 12. Consider a quasi-ordering �S such that ord �S nat. In Example 8,
we then have ord �S

+ nat → ord. Thus, 1 ∈ Acc(lim), which gives lim H�accH.

Theorem 13. Let (F ,R) be an AFSM. Let f s1 · · · sm �I si t1 · · · tn if both
sides have base type, i ∈ Acc(f), and all tj are I-computable. There is an RC-
set C such that C = {s ∈ T (F ,V) | s has base type ∧ s is terminating under
⇒R ∪ �C ∧ if s ⇒∗

R f s1 · · · sm then si is C-computable for all i ∈ Acc(f)}.

Proof (sketch). Note that we cannot define C as this set, as the set relies on
the notion of C-computability. However, we can define C as the fixpoint of a
monotone function operating on RC-sets. This follows the proof in, e.g., [8,9]. ��

The complete proof is available in [17, Appendix A].

3 Restrictions

The termination methodology in this paper is restricted to AFSMs that satisfy
certain limitations: they must be properly applied (a restriction on the number
of terms each function symbol is applied to) and accessible function passing (a
restriction on the positions of variables of a functional type in the left-hand sides
of rules). Both are syntactic restrictions that are easily checked by a computer
(mostly; the latter requires a search for a sort ordering, but this is typically
easy).

3.1 Properly Applied AFSMs

In properly applied AFSMs, function symbols are assigned a certain, minimal
number of arguments that they must always be applied to.

Definition 14. An AFSM (F ,R) is properly applied if for every f ∈ D there
exists an integer k such that for all rules � ⇒ r ∈ R: (1) if � = f �1 · · · �n then
n = k; and (2) if r � f r1 · · · rn then n ≥ k. We denote minar(f) = k.

That is, every occurrence of a function symbol in the right-hand side of a rule
has at least as many arguments as the occurrences in the left-hand sides of rules.
This means that partially applied functions are often not allowed: an AFSM with
rules such as double X ⇒ plus X X and doublelist L ⇒ map double L is not
properly applied, because double is applied to one argument in the left-hand
side of some rule, and to zero in the right-hand side of another.

This restriction is not as severe as it may initially seem since partial
applications can be replaced by λ-abstractions; e.g., the rules above can be
made properly applied by replacing the second rule by: doublelist L ⇒
map (λx.double x) L. By using η-expansion, we can transform any AFSM to
satisfy this restriction:

A Static Higher-Order Dependency Pair Framework 761

Definition 15 (R↑). Given a set of rules R, let their η-expansion be given by
R↑ = {(� Z1 · · ·Zm)↑η ⇒ (r Z1 · · ·Zm)↑η| � ⇒ r ∈ R with r : σ1 → . . . → σm →
ι, ι ∈ S, and Z1, . . . , Zm fresh meta-variables}, where

– s↑η= λx1 . . . xm.s (x1↑η) · · · (xm↑η) if s is an application or element of V ∪F ,
and s↑η= s otherwise;

– f = f for f ∈ F and x = x for x ∈ V, while Z〈s1, . . . , sk〉 = Z〈s1, . . . , sk〉
and (λx.s) = λx.(s↑η) and s1 s2 = s1 (s2↑η).

Note that � ↑η is a pattern if � is. By [29, Thm. 2.16], a relation ⇒R is
terminating if ⇒R↑ is terminating, which allows us to transpose any methods to
prove termination of properly applied AFSMs to all AFSMs.

However, there is a caveat: this transformation can introduce non-termination
in some special cases, e.g., the terminating rule f X ⇒ g f with f : o → o and
g : (o → o) → o, whose η-expansion f X ⇒ g (λx.(f x)) is non-terminating.
Thus, for a properly applied AFSM the methods in this paper apply directly.
For an AFSM that is not properly applied, we can use the methods to prove
termination (but not non-termination) by first η-expanding the rules. Of course,
if this analysis leads to a counterexample for termination, we may still be able
to verify whether this counterexample applies in the original, untransformed
AFSM.

Example 16. Both AFSMs in Example 6 and the AFSM in Example 8 are prop-
erly applied.

Example 17. Consider an AFSM (F ,R) with F ⊇ {sin, cos : real →
real, times : real → real → real, deriv : (real → real) → real → real}
and R = {deriv (λx.sin F 〈x〉) ⇒ λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)}.
Although the one rule has a functional output type (real → real), this AFSM is
properly applied, with deriv having always at least 1 argument. Therefore, we do
not need to use R↑. However, if R were to additionally include some rules that did
not satisfy the restriction (such as the double and doublelist rules above), then
η-expanding all rules, including this one, would be necessary. We have: R↑ =
{deriv (λx.sin F 〈x〉) Y ⇒ (λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)) Y }.
Note that the right-hand side of the η-expanded deriv rule is not β-normal.

3.2 Accessible Function Passing AFSMs

In accessible function passing AFSMs, variables of functional type may not occur
at arbitrary places in the left-hand sides of rules: their positions are restricted
using the sort ordering �S and accessibility relation �acc from Definition 11.

Definition 18 (Accessible function passing). An AFSM (F ,R) is accessi-
ble function passing (AFP) if there exists a sort ordering �S following Definition
11 such that: for all f �1 · · · �n ⇒ r ∈ R and all Z ∈ FMV (r): there are variables
x1, . . . , xk and some i such that �i �acc Z〈x1, . . . , xk〉.

762 C. Fuhs and C. Kop

The key idea of this definition is that computability of each �i implies com-
putability of all meta-variables in r. This excludes cases like Example 20 below.
Many common examples satisfy this restriction, including those we saw before:

Example 19. Both systems from Example 6 are AFP: choosing the sort order-
ing �S that equates nat and list, we indeed have cons H T �acc H and
cons H T �acc T (as Acc(cons) = {1, 2}) and both λx.Z〈x〉 �acc Z〈x〉 and
Z �acc Z. The AFSM from Example 8 is AFP because we can choose ord �S

nat and have lim H �acc H following Example 12 (and also s X �acc X
and K �acc K, F �acc F, G �acc G). The AFSM from Example 17 is AFP,
because λx.sin F 〈x〉 �acc F 〈x〉 for any �S : λx.sin F 〈x〉 �acc F 〈x〉 because
sin F 〈x〉 �acc F 〈x〉 because 1 ∈ Acc(sin).

In fact, all first-order AFSMs (where all fully applied sub-meta-terms of the
left-hand side of a rule have base type) are AFP via the sort ordering �S that
equates all sorts. Also (with the same sort ordering), an AFSM (F ,R) is AFP if,
for all rules f �1 · · · �k ⇒ r ∈ R and all 1 ≤ i ≤ k, we can write: �i = λx1 . . . xni

.�′

where ni ≥ 0 and all fully applied sub-meta-terms of �′ have base type.
This covers many practical systems, although for Example 8 we need a non-

trivial sort ordering. Also, there are AFSMs that cannot be handled with any �S .

Example 20 (Encoding the untyped λ-calculus). Consider an AFSM with F ⊇
{ap : o → o → o, lm : (o → o) → o} and R = {ap (lm F) ⇒ F} (note that
the only rule has type o → o). This AFSM is not accessible function passing,
because lm F �acc F cannot hold for any �S (as this would require o �S o).

Note that this example is also not terminating. With t = lm (λx.ap x x), we
get this self-loop as evidence: ap t t ⇒R (λx.ap x x) t ⇒β ap t t.

Intuitively: in an accessible function passing AFSM, meta-variables of a
higher type may occur only in “safe” places in the left-hand sides of rules. Rules
like the ones in Example 20, where a higher-order meta-variable is lifted out of
a base-type term, are not admitted (unless the base type is greater than the
higher type).

In the remainder of this paper, we will refer to a properly applied, accessible
function passing AFSM as a PA-AFP AFSM.

Discussion: This definition is strictly more liberal than the notions of “plain
function passing” in both [34] and [46] as adapted to AFSMs. The notion in
[46] largely corresponds to AFP if �S equates all sorts, and the HRS formalism
guarantees that rules are properly applied (in fact, all fully applied sub-meta-
terms of both left- and right-hand sides of rules have base type). The notion
in [34] is more restrictive. The current restriction of PA-AFP AFSMs lets us
handle examples like ordinal recursion (Example 8) which are not covered by
[34,46]. However, note that [34,46] consider a different formalism, which does
take rules whose left-hand side is not a pattern into account (which we do not
consider). Our restriction also quite resembles the “admissible” rules in [6] which

A Static Higher-Order Dependency Pair Framework 763

are defined using a pattern computability closure [5], but that work carries addi-
tional restrictions.

In later work [32,33], Kusakari extends the static DP approach to forms of
polymorphic functional programming, with a very liberal restriction: the defi-
nition is parametrised with an arbitrary RC-set and corresponding accessibility
(“safety”) notion. Our AFP restriction is actually an instance of this condition
(although a more liberal one than the example RC-set used in [32,33]). We have
chosen a specific instance because it allows us to use dedicated techniques for
the RC-set; for example, our computable subterm criterion processor (Theorem
63).

4 Static Higher-Order Dependency Pairs

To obtain sufficient criteria for both termination and non-termination of AFSMs,
we will now transpose the definition of static dependency pairs [6,33,34,46] to
AFSMs. In addition, we will add the new features of meta-variable conditions,
formative reductions, and computable chains. Complete versions of all proof
sketches in this section are available in [17, Appendix B].

Although we retain the first-order terminology of dependency pairs, the set-
ting with meta-variables makes it more suitable to define DPs as triples.

Definition 21 ((Static) Dependency Pair). A dependency pair (DP) is a
triple � � p (A), where � is a closed pattern f �1 · · · �k, p is a closed meta-term
g p1 · · · pn, and A is a set of meta-variable conditions: pairs Z : i indicating that
Z regards its ith argument. A DP is conservative if FMV (p) ⊆ FMV (�).

A substitution γ respects a set of meta-variable conditions A if for all Z : i in
A we have γ(Z) = λx1 . . . xj .t with either i > j, or i ≤ j and xi ∈ FV (t). DPs
will be used only with substitutions that respect their meta-variable conditions.

For � � p (∅) (so a DP whose set of meta-variable conditions is empty), we
often omit the third component and just write � � p.

Like the first-order setting, the static DP approach employs marked function
symbols to obtain meta-terms whose instances cannot be reduced at the root.

Definition 22 (Marked symbols). Let (F ,R) be an AFSM. Define F � :=
F � {f� : σ | f : σ ∈ D}. For a meta-term s = f s1 · · · sk with f ∈ D and
k = minar(f), we let s� = f� s1 · · · sk; for s of other forms s� is not defined.

Moreover, we will consider candidates. In the first-order setting, candidate
terms are subterms of the right-hand sides of rules whose root symbol is a defined
symbol. Intuitively, these subterms correspond to function calls. In the current
setting, we have to consider also meta-variables as well as rules whose right-hand
side is not β-normal (which might arise for instance due to η-expansion).

Definition 23 (β-reduced-sub-meta-term, �β, �A). A meta-term s has a
fully applied β-reduced-sub-meta-term t (shortly, BRSMT), notation s �β t, if
there exists a set of meta-variable conditions A with s�A t. Here s�A t holds if:

– s = t, or
– s = λx.u and u �A t, or

764 C. Fuhs and C. Kop

– s = (λx.u) s0 · · · sn and some si �A t, or u[x := s0] s1 · · · sn �A t, or
– s = a s1 · · · sn with a ∈ F ∪ V and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and ti �A t for some i ∈ {1, . . . , k} with (Z : i) ∈ A.

Essentially, s �A t means that t can be reached from s by taking β-reductions
at the root and “subterm”-steps, where Z : i is in A whenever we pass into
argument i of a meta-variable Z. BRSMTs are used to generate candidates:

Definition 24 (Candidates). For a meta-term s, the set cand(s) of candi-
dates of s consists of those pairs t (A) such that (a) t has the form f s1 · · · sk

with f ∈ D and k = minar(f), and (b) there are sk+1, . . . , sn (with n ≥ k) such
that s �A t sk+1 · · · sn, and (c) A is minimal: there is no subset A′ � A with
s �A′ t.

Example 25. In AFSMs where all meta-variables have arity 0 and the right-
hand sides of rules are β-normal, the set cand(s) for a meta-term s consists
exactly of the pairs t (∅) where t has the form f s1 · · · sminar(f) and t occurs as
part of s. In Example 8, we thus have cand(G H (λm.rec (H m) K F G)) =
{ rec (H m) K F G (∅) }.

If some of the meta-variables do take arguments, then the meta-variable
conditions matter: candidates of s are pairs t (A) where A contains exactly
those pairs Z : i for which we pass through the ith argument of Z to reach t in s.

Example 26. Consider an AFSM with the signature from Example 8 but a rule
using meta-variables with larger arities:

rec (lim (λn.H〈n〉)) K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ⇒
G〈λn.H〈n〉, λm.rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉)〉

The right-hand side has one candidate:

rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ({G : 2})

The original static approaches define DPs as pairs �� � p� where � ⇒ r is a
rule and p a subterm of r of the form f r1 · · · rm – as their rules are built using
terms, not meta-terms. This can set variables bound in r free in p. In the current
setting, we use candidates with their meta-variable conditions and implicit β-
steps rather than subterms, and we replace such variables by meta-variables.

Definition 27 (SDP). Let s be a meta-term and (F ,R) be an AFSM. Let
metafy(s) denote s with all free variables replaced by corresponding meta-
variables. Now SDP(R) = {�� � metafy(p�) (A) | � ⇒ r ∈ R∧p (A) ∈ cand(r)}.

Although static DPs always have a pleasant form f� �1 · · · �k �
g� p1 · · · pn (A) (as opposed to the dynamic DPs of, e.g., [31], whose right-hand
sides can have a meta-variable at the head, which complicates various techniques

A Static Higher-Order Dependency Pair Framework 765

in the framework), they have two important complications not present in first-
order DPs: the right-hand side p of a DP � � p (A) may contain meta-variables
that do not occur in the left-hand side � – traditional analysis techniques are not
really equipped for this – and the left- and right-hand sides may have different
types. In Sect. 5 we will explore some methods to deal with these features.

Example 28. For the non-η-expanded rules of Example 17, the set SDP(R) has
one element: deriv� (λx.sin F 〈x〉) � deriv� (λx.F 〈x〉). (As times and cos are
not defined symbols, they do not generate dependency pairs.) The set SDP(R↑)
for the η-expanded rules is {deriv� (λx.sin F 〈x〉) Y � deriv� (λx.F 〈x〉) Y }.
To obtain the relevant candidate, we used the β-reduction step of BRSMTs.

Example 29. The AFSM from Example 8 is AFP following Example 19; here
SDP(R) is:

rec� (s X) K F G � rec� X K F G (∅)
rec� (lim H) K F G � rec� (H M) K F G (∅)

Note that the right-hand side of the second DP contains a meta-variable that is
not on the left. As we will see in Example 64, that is not problematic here.

Termination analysis using dependency pairs importantly considers the
notion of a dependency chain. This notion is fairly similar to the first-order
setting:

Definition 30 (Dependency chain). Let P be a set of DPs and R a set of
rules. A (finite or infinite) (P,R)-dependency chain (or just (P,R)-chain) is
a sequence [(�0 � p0 (A0), s0, t0), (�1 � p1 (A1), s1, t1), . . .] where each �i �
pi (Ai) ∈ P and all si, ti are terms, such that for all i:

1. there exists a substitution γ on domain FMV (�i) ∪ FMV (pi) such that si =
�iγ, ti = piγ and for all Z ∈ dom(γ): γ(Z) respects Ai;

2. we can write ti = f u1 · · ·un and si+1 = f w1 · · ·wn and each uj ⇒∗
R wj.

Example 31. In the (first) AFSM from Example 6, we have SDP(R) =
{map� (λx.Z〈x〉)(cons H T) � map� (λx.Z〈x〉) T}. An example of
a finite dependency chain is [(ρ, s1, t1), (ρ, s2, t2)] where ρ is the one
DP, s1 = map� (λx.s x) (cons 0 (cons (s 0) (map (λx.x) nil)))
and t1 = map� (λx.s x) (cons (s 0) (map (λx.x) nil)) and s2 =
map� (λx.s x) (cons (s 0) nil) and t2 = map� (λx.s x) nil.

Note that here t1 reduces to s2 in a single step (map (λx.x) nil ⇒R nil).

We have the following key result:

Theorem 32. Let (F ,R) be a PA-AFP AFSM. If (F ,R) is non-terminating,
then there is an infinite (SDP(R),R)-dependency chain.

Proof (sketch). The proof is an adaptation of the one in [34], altered for the more
permissive definition of accessible function passing over plain function passing
as well as the meta-variable conditions; it also follows from Theorem 37 below.

��

766 C. Fuhs and C. Kop

By this result we can use dependency pairs to prove termination of a given
properly applied and AFP AFSM: if we can prove that there is no infinite
(SDP(R),R)-chain, then termination follows immediately. Note, however, that
the reverse result does not hold: it is possible to have an infinite (SDP(R),R)-
dependency chain even for a terminating PA-AFP AFSM.

Example 33. Let F ⊇ {0, 1 : nat, f : nat → nat, g : (nat → nat) → nat} and
R = {f 0 ⇒ g (λx.f x), g (λx.F 〈x〉) ⇒ F 〈1〉}. This AFSM is PA-AFP, with
SDP(R) = {f� 0 � g� (λx.f x), f� 0 � f� X}; the second rule does not cause the
addition of any dependency pairs. Although ⇒R is terminating, there is an infi-
nite (SDP(R),R)-chain [(f� 0 � f� X, f� 0, f� 0), (f� 0 � f� X, f� 0, f� 0), . . .].

The problem in Example 33 is the non-conservative DP f� 0 � f� X,
with X on the right but not on the left. Such DPs arise from abstractions in
the right-hand sides of rules. Unfortunately, abstractions are introduced by the
restricted η-expansion (Definition 15) that we may need to make an AFSM prop-
erly applied. Even so, often all DPs are conservative, like Examples 6 and 17.
There, we do have the inverse result:

Theorem 34. For any AFSM (F ,R): if there is an infinite (SDP(R),R)-chain
[(ρ0, s0, t0), (ρ1, s1, t1), . . .] with all ρi conservative, then ⇒R is non-terminating.

Proof (sketch). If FMV (pi) ⊆ FMV (�i), then we can see that si ⇒R · ⇒∗
β t′i for

some term t′i of which ti is a subterm. Since also each ti ⇒∗
R si+1, the infinite

chain induces an infinite reduction s0 ⇒+
R t′0 ⇒∗

R s′
1 ⇒+

R t′′1 ⇒∗
R ��

The core of the dependency pair framework is to systematically simplify a set
of pairs (P,R) to prove either absence or presence of an infinite (P,R)-chain,
thus showing termination or non-termination as appropriate. By Theorems 32
and 34 we can do so, although with some conditions on the non-termination
result. We can do better by tracking certain properties of dependency chains.

Definition 35 (Minimal and Computable chains). Let (F ,U) be an AFSM
and CU an RC-set satisfying the properties of Theorem 13 for (F ,U). Let F
contain, for every type σ, at least countably many symbols f : σ not used in U .

A (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] is U-computable if: ⇒U ⊇ ⇒R,
and for all i ∈ N there exists a substitution γi such that ρi = �i � pi (Ai) with
si = �iγi and ti = piγi, and (λx1 . . . xn.v)γi is CU -computable for all v and B
such that pi �B v, γi respects B, and FV (v) = {x1, . . . , xn}.

A chain is minimal if the strict subterms of all ti are terminating under ⇒R.

In the first-order DP framework, minimal chains give access to several pow-
erful techniques to prove absence of infinite chains, such as the subterm criterion
[24] and usable rules [22,24]. Computable chains go a step further, by building
on the computability inherent in the proof of Theorem 32 and the notion of
accessible function passing AFSMs. In computable chains, we can require that
(some of) the subterms of all ti are computable rather than merely terminating.

A Static Higher-Order Dependency Pair Framework 767

This property will be essential in the computable subterm criterion processor
(Theorem 63).

Another property of dependency chains is the use of formative rules, which
has proven very useful for dynamic DPs [31]. Here we go further and con-
sider formative reductions, which were introduced for the first-order DP frame-
work in [16]. This property will be essential in the formative rules processor
(Theorem 58).

Definition 36 (Formative chain, formative reduction). A (P,R)-chain
[(�0 � p0 (A0), s0, t0), (�1 � p1 (A1), s1, t1), . . .] is formative if for all i, the
reduction ti ⇒∗

R si+1 is �i+1-formative. Here, for a pattern �, substitution γ and
term s, a reduction s ⇒∗

R �γ is �-formative if one of the following holds:

– � is not a fully extended linear pattern; that is: some meta-variable occurs
more than once in � or � has a sub-meta-term λx.C[Z〈s〉] with x /∈ {s}

– � is a meta-variable application Z〈x1, . . . , xk〉 and s = �γ
– s = a s1 · · · sn and � = a �1 · · · �n with a ∈ F � ∪ V and each si ⇒∗

R �iγ by an
�i-formative reduction

– s = λx.s′ and � = λx.�′ and s′ ⇒∗
R �′γ by an �′-formative reduction

– s = (λx.u) v w1 · · ·wn and u[x := v] w1 · · ·wn ⇒∗
R �γ by an �-formative

reduction
– � is not a meta-variable application, and there are �′ ⇒ r′ ∈ R, meta-variables

Z1 . . . Zn (n ≥ 0) and δ such that s ⇒∗
R (�′ Z1 · · ·Zn)δ by an (�′ Z1 · · ·Zn)-

formative reduction, and (r′ Z1 · · ·Zn)δ ⇒∗
R �γ by an �-formative reduction.

The idea of a formative reduction is to avoid redundant steps: if s ⇒∗
R

�γ by an �-formative reduction, then this reduction takes only the steps
needed to obtain an instance of �. Suppose that we have rules plus 0 Y ⇒
Y, plus (s X) Y ⇒ s (plus X Y). Let � := g 0 X and t := plus 0 0. Then the
reduction g t t ⇒R g 0 t is �-formative: we must reduce the first argument to
get an instance of �. The reduction g t t ⇒R g t 0 ⇒R g 0 0 is not �-formative,
because the reduction in the second argument does not contribute to the non-
meta-variable positions of �. This matters when we consider � as the left-hand
side of a rule, say g 0 X ⇒ 0: if we reduce g t t ⇒R g t 0 ⇒R g 0 0 ⇒R 0, then
the first step was redundant: removing this step gives a shorter reduction to the
same result: g t t ⇒R g 0 t ⇒R 0. In an infinite reduction, redundant steps may
also be postponed indefinitely.

We can now strengthen the result of Theorem 32 with two new properties.

Theorem 37. Let (F ,R) be a properly applied, accessible function passing
AFSM. If (F ,R) is non-terminating, then there is an infinite R-computable
formative (SDP(R),R)-dependency chain.

Proof (sketch). We select a minimal non-computable (MNC) term s := f s1 · · · sk

(where all si are CR-computable) and an infinite reduction starting in s. Then we
stepwise build an infinite dependency chain, as follows. Since s is non-computable
but each si terminates (as computability implies termination), there exist a rule

768 C. Fuhs and C. Kop

f �1 · · · �k ⇒ r and substitution γ such that each si ⇒∗
R �iγ and rγ is non-

computable. We can then identify a candidate t (A) of r such that γ respects
A and tγ is a MNC subterm of rγ; we continue the process with tγ (or a term
at its head). For the formative property, we note that if s ⇒∗

R �γ and u is
terminating, then u ⇒∗

R �δ by an �-formative reduction for substitution δ such
that each δ(Z) ⇒∗

R γ(Z). This follows by postponing those reduction steps not
needed to obtain an instance of �. The resulting infinite chain is R-computable
because we can show, by induction on the definition of �acc, that if � ⇒ r
is an AFP rule and �γ is a MNC term, then γ(Z) is CR-computable for all
Z ∈ FMV (r). ��

As it is easily seen that all CU -computable terms are ⇒U -terminating and
therefore ⇒R-terminating, every U-computable (P,R)-dependency chain is also
minimal. The notions of R-computable and formative chains still do not suffice
to obtain a true inverse result, however (i.e., to prove that termination implies
the absence of an infinite R-computable chain over SDP(R)): the infinite chain
in Example 33 is R-computable.

To see why the two restrictions that the AFSM must be properly applied and
accessible function passing are necessary, consider the following examples.

Example 38. Consider F ⊇ {fix : ((o → o) → o → o) → o → o} and R =
{fix F X ⇒ F (fix F) X}. This AFSM is not properly applied; it is also
not terminating, as can be seen by instantiating F with λy.y. However, it does
not have any static DPs, since fix F is not a candidate. Even if we altered the
definition of static DPs to admit a dependency pair fix� F X � fix� F , this
pair could not be used to build an infinite dependency chain.

Note that the problem does not arise if we study the η-expanded rules R↑ =
{fix F X ⇒ F (λz.fix F z) X}, as the dependency pair fix� F X � fix� F Z
does admit an infinite chain. Unfortunately, as the one dependency pair does
not satisfy the conditions of Theorem 34, we cannot use this to prove non-
termination.

Example 39. The AFSM from Example 20 is not accessible function passing,
since Acc(lm) = ∅. This is good because the set SDP(R) is empty, which would
lead us to falsely conclude termination without the restriction.

Discussion: Theorem 37 transposes the work of [34,46] to AFSMs and extends
it by using a more liberal restriction, by limiting interest to formative, R-
computable chains, and by including meta-variable conditions. Both of these
new properties of chains will support new termination techniques within the DP
framework.

The relationship with the works for functional programming [32,33] is less
clear: they define a different form of chains suited well to polymorphic systems,
but which requires more intricate reasoning for non-polymorphic systems, as
DPs can be used for reductions at the head of a term. It is not clear whether
there are non-polymorphic systems that can be handled with one and not the
other. The notions of formative and R-computable chains are not considered
there; meta-variable conditions are not relevant to their λ-free formalism.

A Static Higher-Order Dependency Pair Framework 769

5 The Static Higher-Order DP Framework

In first-order term rewriting, the DP framework [20] is an extendable framework
to prove termination and non-termination. As observed in the introduction, DP
analyses in higher-order rewriting typically go beyond the initial DP approach
[2], but fall short of the full framework. Here, we define the latter for static DPs.
Complete versions of all proof sketches in this section are in [17, Appendix C].

We have now reduced the problem of termination to non-existence of certain
chains. In the DP framework, we formalise this in the notion of a DP problem:

Definition 40 (DP problem). A DP problem is a tuple (P,R,m, f) with P
a set of DPs, R a set of rules, m ∈ {minimal, arbitrary} ∪ {computableU |
any set of rules U}, and f ∈ {formative, all}.3

A DP problem (P,R,m, f) is finite if there exists no infinite (P,R)-chain
that is U-computable if m = computableU , is minimal if m = minimal, and is
formative if f = formative. It is infinite if R is non-terminating, or if there
exists an infinite (P,R)-chain where all DPs used in the chain are conservative.

To capture the levels of permissiveness in the m flag, we use a transitive-
reflexive relation � generated by computableU � minimal � arbitrary.

Thus, the combination of Theorems 34 and 37 can be rephrased as:
an AFSM (F ,R) is terminating if (SDP(R),R, computableR, formative) is
finite, and is non-terminating if (SDP(R),R,m, f) is infinite for some m ∈
{computableU , minimal, arbitrary} and f ∈ {formative, all}.4

The core idea of the DP framework is to iteratively simplify a set of DP
problems via processors until nothing remains to be proved:

Definition 41 (Processor). A dependency pair processor (or just processor)
is a function that takes a DP problem and returns either NO or a set of DP
problems. A processor Proc is sound if a DP problem M is finite whenever
Proc(M) �= NO and all elements of Proc(M) are finite. A processor Proc is
complete if a DP problem M is infinite whenever Proc(M) = NO or contains an
infinite element.

To prove finiteness of a DP problem M with the DP framework, we proceed
analogously to the first-order DP framework [22]: we repeatedly apply sound DP
processors starting from M until none remain. That is, we execute the following
rough procedure: (1) let A := {M}; (2) while A �= ∅: select a problem Q ∈ A and
a sound processor Proc with Proc(Q) �= NO, and let A := (A \ {Q}) ∪ Proc(Q).
If this procedure terminates, then M is a finite DP problem.

3 Our framework is implicitly parametrised by the signature F� used for term forma-
tion. As none of the processors we present modify this component (as indeed there
is no need to by Theorem 9), we leave it implicit.

4 The processors in this paper do not alter the flag m, but some require minimality
or computability. We include the minimal option and the subscript U for the sake of
future generalisations, and for reuse of processors in the dynamic approach of [31].

770 C. Fuhs and C. Kop

To prove termination of an AFSM (F ,R), we would use as initial DP problem
(SDP(R),R, computableR, formative), provided that R is properly applied
and accessible function passing (where η-expansion following Definition 15 may
be applied first). If the procedure terminates – so finiteness of M is proved by
the definition of soundness – then Theorem 37 provides termination of ⇒R.

Similarly, we can use the DP framework to prove infiniteness: (1) let A :=
{M}; (2) while A �= NO: select a problem Q ∈ A and a complete processor Proc,
and let A := NO if Proc(Q) = NO, or A := (A \ {Q}) ∪ Proc(Q) otherwise. For
non-termination of (F ,R), the initial DP problem should be (SDP(R),R,m, f),
where m, f can be any flag (see Theorem 34). Note that the algorithms coin-
cide while processors are used that are both sound and complete. In a tool,
automation (or the user) must resolve the non-determinism and select suitable
processors.

Below, we will present a number of processors within the framework. We will
typically present processors by writing “for a DP problem M satisfying X, Y , Z,
Proc(M) = . . . ”. In these cases, we let Proc(M) = {M} for any problem M not
satisfying the given properties. Many more processors are possible, but we have
chosen to present a selection which touches on all aspects of the DP framework:

– processors which map a DP problem to NO (Theorem 65), a singleton set
(most processors) and a non-singleton set (Theorem 42);

– changing the set R (Theorems 54, 58) and various flags (Theorem 54);
– using specific values of the f (Theorem 58) and m flags (Theorems 54, 61, 63);
– using term orderings (Theorems 49, 52), a key part of many termination

proofs.

5.1 The Dependency Graph

We can leverage reachability information to decompose DP problems. In first-
order rewriting, a graph structure is used to track which DPs can possibly follow
one another in a chain [2]. Here, we define this dependency graph as follows.

Definition 42 (Dependency graph). A DP problem (P,R,m, f) induces a
graph structure DG, called its dependency graph, whose nodes are the elements
of P. There is a (directed) edge from ρ1 to ρ2 in DG iff there exist s1, t1, s2, t2
such that [(ρ1, s1, t1), (ρ2, s2, t2)] is a (P,R)-chain with the properties for m, f .

Example 43. Consider an AFSM with F ⊇ {f : (nat → nat) → nat → nat} and
R = {f (λx.F 〈x〉) (s Y) ⇒ F 〈f (λx.0) (f (λx.F 〈x〉) Y)〉}. Let P := SDP(R) =

{
(1) f� (λx.F 〈x〉) (s Y) � f� (λx.0) (f (λx.F 〈x〉) Y) ({F : 1})
(2) f� (λx.F 〈x〉) (s Y) � f� (λx.F 〈x〉) Y ({F : 1})

}

The dependency graph of (P,R, minimal, formative) is:

(1) (2)

A Static Higher-Order Dependency Pair Framework 771

There is no edge from (1) to itself or (2) because there is no substitution γ
such that (λx.0)γ can be reduced to a term (λx.F 〈x〉)δ where δ(F) regards its
first argument (as ⇒∗

R cannot introduce new variables).

In general, the dependency graph for a given DP problem is undecidable,
which is why we consider approximations.

Definition 44 (Dependency graph approximation [31]). A finite graph Gθ

approximates DG if θ is a function that maps the nodes of DG to the nodes of
Gθ such that, whenever DG has an edge from ρ1 to ρ2, Gθ has an edge from
θ(ρ1) to θ(ρ2). (Gθ may have edges that have no corresponding edge in DG.)

Note that this definition allows for an infinite graph to be approximated
by a finite one; infinite graphs may occur if R is infinite (e.g., the union of all
simply-typed instances of polymorphic rules).

If P is finite, we can take a graph approximation Gid with the same nodes
as DG . A simple approximation may have an edge from �1 � p1 (A1) to �2 �
p2 (A2) whenever both p1 and �2 have the form f� s1 · · · sk for the same f and
k. However, one can also take the meta-variable conditions into account, as we
did in Example 43.

Theorem 45 (Dependency graph processor). The processor ProcGθ
that

maps a DP problem M = (P,R,m, f) to {({ρ ∈ P | θ(ρ) ∈ Ci},R,m, f) | 1 ≤
i ≤ n} if Gθ is an approximation of the dependency graph of M and C1, . . . , Cn

are the (nodes of the) non-trivial strongly connected components (SCCs) of Gθ,
is both sound and complete.

Proof (sketch). In an infinite (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .], there is
always a path from ρi to ρi+1 in DG. Since Gθ is finite, every infinite path in
DG eventually remains in a cycle in Gθ. This cycle is part of an SCC. ��

Example 46. Let R be the set of rules from Example 43 and G be the graph given
there. Then ProcG(SDP(R),R, computableR, formative) = {({f� (λx.F 〈x〉)
(s Y) � f� (λx.F 〈x〉) Y ({F : 1})},R, computableR, formative)}.

Example 47. Let R consist of the rules for map from Example 6 along with f L ⇒
map (λx.g x) L and g X ⇒ X. Then SDP(R) = {(1) map� (λx.Z〈x〉) (cons H T)
� map� (λx.Z〈x〉) T, (2) f� L � map� (λx.g x) L, (3) f� L � g� X}. DP (3)
is not conservative, but it is not on any cycle in the graph approximation Gid

obtained by considering head symbols as described above:

(3) (2) (1)

As (1) is the only DP on a cycle, ProcSDPGid
(SDP(R),R, computableR,

formative) = { ({(1)},R, computableR, formative) }.

772 C. Fuhs and C. Kop

Discussion: The dependency graph is a powerful tool for simplifying DP prob-
lems, used since early versions of the DP approach [2]. Our notion of a depen-
dency graph approximation, taken from [31], strictly generalises the original
notion in [2], which uses a graph on the same node set as DG with possibly
further edges. One can get this notion here by using a graph Gid. The advantage
of our definition is that it ensures soundness of the dependency graph processor
also for infinite sets of DPs. This overcomes a restriction in the literature [34,
Corollary 5.13] to dependency graphs without non-cyclic infinite paths.

5.2 Processors Based on Reduction Triples

At the heart of most DP-based approaches to termination proving lie well-
founded orderings to delete DPs (or rules). For this, we use reduction triples
[24,31].

Definition 48 (Reduction triple). A reduction triple (�,�,�) consists of
two quasi-orderings � and � and a well-founded strict ordering � on meta-terms
such that � is monotonic, all of �,�,� are meta-stable (that is, � � r implies
�γ � rγ if � is a closed pattern and γ a substitution on domain FMV (�) ∪
FMV (r), and the same for � and �), ⇒β ⊆ �, and both � ◦ � ⊆ � and
� ◦ � ⊆ �.

In the first-order DP framework, the reduction pair processor [20] seeks to
orient all rules with � and all DPs with either � or �; if this succeeds, those
pairs oriented with � may be removed. Using reduction triples rather than pairs,
we obtain the following extension to the higher-order setting:

Theorem 49 (Basic reduction triple processor). Let M = (P1 �
P2,R,m, f) be a DP problem. If (�,�,�) is a reduction triple such that

1. for all � ⇒ r ∈ R, we have � � r;
2. for all � � p (A) ∈ P1, we have � � p;
3. for all � � p (A) ∈ P2, we have � � p;

then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). For an infinite (P1 �P2,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] the
requirements provide that, for all i: (a) si � ti if ρi ∈ P1; (b) si � ti if ρi ∈ P2;
and (c) ti � si+1. Since � is well-founded, only finitely many DPs can be in P1,
so a tail of the chain is actually an infinite (P2,R,m, f)-chain. ��

Example 50. Let (F ,R) be the (non-η-expanded) rules from Example 17, and
SDP(R) the DPs from Example 28. From Theorem 49, we get the following
ordering requirements:

deriv (λx.sin F 〈x〉) � λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)
deriv� (λx.sin F 〈x〉) � deriv� (λx.F 〈x〉)

A Static Higher-Order Dependency Pair Framework 773

We can handle both requirements by using a polynomial interpretation J to
N [15,43], by choosing Jsin(n) = n + 1, Jcos(n) = 0, Jtimes(n1, n2) = n1,
Jderiv(f) = Jderiv�(f) = λn.f(n). Then the requirements are evaluated to:
λn.f(n) + 1 ≥ λn.f(n) and λn.f(n) + 1 > λn.f(n), which holds on N.

Theorem 49 is not ideal since, by definition, the left- and right-hand side of
a DP may have different types. Such DPs are hard to handle with traditional
techniques such as HORPO [26] or polynomial interpretations [15,43], as these
methods compare only (meta-)terms of the same type (modulo renaming of
sorts).

Example 51. Consider the toy AFSM with R = {f (s X) Y ⇒ g X Y, g X ⇒
λz.f X z} and SDP(R) = {f� (s X) Y � g� X, g� X � f� X Z}. If f and g
both have a type nat → nat → nat, then in the first DP, the left-hand side has
type nat while the right-hand side has type nat → nat. In the second DP, the
left-hand side has type nat → nat and the right-hand side has type nat.

To be able to handle examples like the one above, we adapt [31, Thm. 5.21]
by altering the ordering requirements to have base type.

Theorem 52 (Reduction triple processor). Let Bot be a set {⊥σ : σ |
σ a type} ⊆ F � of unused constructors, M = (P1 � P2,R,m, f) a DP prob-
lem and (�,�,�) a reduction triple such that: (a) for all � ⇒ r ∈ R, we have
� � r; and (b) for all � � p (A) ∈ P1 � P2 with � : σ1 → . . . → σm → ι and
p : τ1 → . . . → τn → κ we have, for fresh meta-variables Z1 : σ1, . . . , Zm : σm:

– � Z1 · · ·Zm � p ⊥τ1 · · · ⊥τn
if � � p (A) ∈ P1

– � Z1 · · ·Zm � p ⊥τ1 · · · ⊥τn
if � � p (A) ∈ P2

Then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). If (�,�,�) is such a triple, then for R ∈ {�,�} define R′

as follows: for s : σ1 → . . . → σm → ι and t : τ1 → . . . → τn → κ, let
s R′ t if for all u1 : σ1, . . . , um : σm there exist w1 : τ1, . . . , wn : τn such that
s u1 · · ·um R t w1 · · ·wn. Now apply Theorem 49 with the triple (�,�′,�′). ��

Here, the elements of Bot take the role of minimal terms for the ordering. We
use them to flatten the type of the right-hand sides of ordering requirements,
which makes it easier to use traditional methods to generate a reduction triple.

While � and � may still have to orient meta-terms of distinct types, these
are always base types, which we could collapse to a single sort. The only relation
required to be monotonic, �, regards pairs of meta-terms of the same type. This
makes it feasible to apply orderings like HORPO or polynomial interpretations.

Both the basic and non-basic reduction triple processor are difficult to use for
non-conservative DPs, which generate ordering requirements whose right-hand
side contains a meta-variable not occurring on the left. This is typically difficult
for traditional techniques, although possible to overcome, by choosing triples
that do not regard such meta-variables (e.g., via an argument filtering [35,46]):

774 C. Fuhs and C. Kop

Example 53. We apply Theorem 52 on the DP problem (SDP(R),R,
computableR, formative) of Example 51. This gives for instance the following
ordering requirements:

f (s X) Y � g X Y f� (s X) Y � g� X ⊥nat

g X � λz.f X z g� X Y � f� X Z

The right-hand side of the last DP uses a meta-variable Z that does not occur on
the left. As neither � nor � are required to be monotonic (only � is), function
symbols do not have to regard all their arguments. Thus, we can use a polynomial
interpretation J to N with J⊥nat

= 0, Js(n) = n + 1 and Jh(n1, n2) = n1 for
h ∈ {f, f�, g, g�}. The ordering requirements then translate to X + 1 ≥ X and
λy.X ≥ λz.X for the rules, and X + 1 > X and X ≥ X for the DPs. All
these inequalities on N are clearly satisfied, so we can remove the first DP. The
remaining problem is quickly dispersed with the dependency graph processor.

5.3 Rule Removal Without Search for Orderings

While processors often simplify only P, they can also simplify R. One of the
most powerful techniques in first-order DP approaches that can do this are usable
rules. The idea is that for a given set P of DPs, we only need to consider a subset
UR(P,R) of R. Combined with the dependency graph processor, this makes it
possible to split a large term rewriting system into a number of small problems.

In the higher-order setting, simple versions of usable rules have also been
defined [31,46]. We can easily extend these definitions to AFSMs:

Theorem 54. Given a DP problem M = (P,R,m, f) with m � minimal and
R finite, let UR(P,R) be the smallest subset of R such that:

– if a symbol f occurs in the right-hand side of an element of P or UR(P,R),
and there is a rule f �1 · · · �k ⇒ r, then this rule is also in UR(P,R);

– if there exists � ⇒ r ∈ R or � � r (A) ∈ P such that r�F 〈s1, . . . , sk〉 t1 · · · tn
with s1, . . . , sk not all distinct variables or with n > 0, then UR(P,R) = R.

Then the processor that maps M to {(P,UR(P,R), arbitrary, all)} is sound.

For the proof we refer to the very similar proofs in [31,46].

Example 55. For the set SDP(R) of the ordinal recursion example (Examples 8
and 29), all rules are usable due to the occurrence of H M in the second DP.
For the set SDP(R) of the map example (Examples 6 and 31), there are no
usable rules, since the one DP contains no defined function symbols or applied
meta-variables.

This higher-order processor is much less powerful than its first-order version:
if any DP or usable rule has a sub-meta-term of the form F s or F 〈s1, . . . , sk〉
with s1, . . . , sk not all distinct variables, then all rules are usable. Since applying
a higher-order meta-variable to some argument is extremely common in higher-
order rewriting, the technique is usually not applicable. Also, this processor

A Static Higher-Order Dependency Pair Framework 775

imposes a heavy price on the flags: minimality (at least) is required, but is lost;
the formative flag is also lost. Thus, usable rules are often combined with reduc-
tion triples to temporarily disregard rules, rather than as a way to permanently
remove rules.

To address these weaknesses, we consider a processor that uses similar ideas
to usable rules, but operates from the left-hand sides of rules and DPs rather
than the right. This adapts the technique from [31] that relies on the new for-
mative flag. As in the first-order case [16], we use a semantic characterisation
of formative rules. In practice, we then work with over-approximations of this
characterisation, analogous to the use of dependency graph approximations in
Theorem 45.
Definition 56. A function FR that maps a pattern � and a set of rules R to
a set FR(�,R) ⊆ R is a formative rules approximation if for all s and γ: if
s ⇒∗

R �γ by an �-formative reduction, then this reduction can be done using only
rules in FR(�,R).

We let FR(P,R) =
⋃
{FR(�i,R) | f �1 · · · �n � p (A) ∈ P ∧ 1 ≤ i ≤ n}.

Thus, a formative rules approximation is a subset of R that is sufficient for
a formative reduction: if s ⇒∗

R �γ, then s ⇒∗
FR(,R) �γ. It is allowed for there to

exist other formative reductions that do use additional rules.
Example 57. We define a simple formative rules approximation: (1) FR(Z,R) =
∅ if Z is a meta-variable; (2) FR(f �1 · · · �m,R) = FR(�1,R) ∪ · · · ∪ FR(�m,R)
if f : σ1 → . . . → σm → ι and no rules have type ι; (3) FR(s,R) = R otherwise.
This is a formative rules approximation: if s ⇒∗

R Zγ by a Z-formative reduction,
then s = Zγ, and if s ⇒∗

R f �1 · · · �m and no rules have the same output type as
s, then s = f s1 · · · sm and each si ⇒∗

R �iγ (by an �i-formative reduction).
The following result follows directly from the definition of formative rules.

Theorem 58 (Formative rules processor). For a formative rules approxi-
mation FR, the processor ProcFR that maps a DP problem (P,R,m, formative)
to {(P,FR(P,R),m, formative)} is both sound and complete.

Proof (sketch). A processor that only removes rules (or DPs) is always complete.
For soundness, if the chain is formative then each step ti ⇒∗

R si+1 can be replaced
by ti ⇒∗

FR(P,R) si+1. Thus, the chain can be seen as a (P,FR(P,R))-chain. ��
Example 59. For our ordinal recursion example (Examples 8 and 29), none
of the rules are included when we use the approximation of Example 57
since all rules have output type ord. Thus, ProcFR maps (SDP(R),R,
computableR, formative) to (SDP(R), ∅, computableR, formative). Note: this
example can also be completed without formative rules (see Example 64). Here
we illustrate that, even with a simple formative rules approximation, we can
often delete all rules of a given type.

Formative rules are introduced in [31], and the definitions can be adapted to a
more powerful formative rules approximation than the one sketched in Example
59. Several examples and deeper intuition for the first-order setting are given in
[16].

776 C. Fuhs and C. Kop

5.4 Subterm Criterion Processors

Reduction triple processors are powerful, but they exert a computational price:
we must orient all rules in R. The subterm criterion processor allows us to
remove DPs without considering R at all. It is based on a projection function
[24], whose higher-order counterpart [31,34,46] is the following:

Definition 60. For P a set of DPs, let heads(P) be the set of all symbols f that
occur as the head of a left- or right-hand side of a DP in P. A projection function
for P is a function ν : heads(P) → N such that for all DPs � � p (A) ∈ P, the
function ν with ν(f s1 · · · sn) = sν(f) is well-defined both for � and for p.

Theorem 61 (Subterm criterion processor). The processor Procsubcrit that
maps a DP problem (P1 � P2,R,m, f) with m � minimal to {(P2,R,m, f)} if
a projection function ν exists such that ν(�) � ν(p) for all � � p (A) ∈ P1 and
ν(�) = ν(p) for all � � p (A) ∈ P2, is sound and complete.

Proof (sketch). If the conditions are satisfied, every infinite (P,R)-chain induces
an infinite � · ⇒∗

R sequence that starts in a strict subterm of t1, contradicting
minimality unless all but finitely many steps are equality. Since every occurrence
of a pair in P1 results in a strict � step, a tail of the chain lies in P2. ��
Example 62. Using ν(map�) = 2, Procsubcrit maps the DP problem ({(1)},
R, computableR, formative) from Example 47 to

{
(∅,R, computableR,

formative)
}
.

The subterm criterion can be strengthened, following [34,46], to also handle
DPs like the one in Example 28. Here, we focus on a new idea. For computable
chains, we can build on the idea of the subterm criterion to get something more.

Theorem 63 (Computable subterm criterion processor). The proces-
sor Procstatcrit that maps a DP problem (P1 � P2,R, computableU , f) to
{(P2,R, computableU , f)} if a projection function ν exists such that ν(�) � ν(p)
for all � � p (A) ∈ P1 and ν(�) = ν(p) for all � � p (A) ∈ P2, is sound
and complete. Here, � is the relation on base-type terms with s � t if s �= t
and (a) s �acc t or (b) a meta-variable Z exists with s �acc Z〈x1, . . . , xk〉 and
t = Z〈t1, . . . , tk〉 s1 · · · sn.

Proof (sketch). By the conditions, every infinite (P,R)-chain induces an infinite
(�CU ∪ ⇒β)∗· ⇒∗

R sequence (where CU is defined following Theorem 13). This
contradicts computability unless there are only finitely many inequality steps.
As pairs in P1 give rise to a strict decrease, they may occur only finitely often.

��
Example 64. Following Examples 8 and 29, consider the projection function
ν with ν(rec�) = 1. As s X �acc X and lim H �acc H, both s X � X
and lim H � H M hold. Thus Procstatc(P,R, computableR, formative) =
{(∅,R, computableR, formative)}. By the dependency graph processor, the
AFSM is terminating.

The computable subterm criterion processor fundamentally relies on the new
computableU flag, so it has no counterpart in the literature so far.

A Static Higher-Order Dependency Pair Framework 777

5.5 Non-termination

While (most of) the processors presented so far are complete, none of them can
actually return NO. We have not yet implemented such a processor; however, we
can already provide a general specification of a non-termination processor.

Theorem 65 (Non-termination processor). Let M = (P,R,m, f) be a DP
problem. The processor that maps M to NO if it determines that a sufficient
criterion for non-termination of ⇒R or for existence of an infinite conservative
(P,R)-chain according to the flags m and f holds is sound and complete.

Proof. Obvious. ��

This is a very general processor, which does not tell us how to determine
such a sufficient criterion. However, it allows us to conclude non-termination as
part of the framework by identifying a suitable infinite chain.

Example 66. If we can find a finite (P,R)-chain [(ρ0, s0, t0), . . . , (ρn, sn, tn)]
with tn = s0γ for some substitution γ which uses only conservative DPs,
is formative if f = formative and is U-computable if m = computableU ,
such a chain is clearly a sufficient criterion: there is an infinite chain
[(ρ0, s0, t0), . . . , (ρ0, s0γ, t0γ), . . . , (ρ0, s0γγ, t0γγ), . . .]. If m = minimal and we
find such a chain that is however not minimal, then note that ⇒R is non-
terminating, which also suffices.

For example, for a DP problem (P,R, minimal, all) with P = {f� F X �
g� (F X), g� X � f� h X}, there is a finite dependency chain: [(f� F X �
g� (F X), f� h x, g� (h x)), (g� X � f� h X, g� (h x), f� h (h x))]. As f� h (h x)
is an instance of f� h x, the processor maps this DP problem to NO.

To instantiate Theorem 65, we can borrow non-termination criteria from first-
order rewriting [13,21,42], with minor adaptions to the typed setting. Of course,
it is worthwhile to also investigate dedicated higher-order non-termination
criteria.

6 Conclusions and Future Work

We have built on the static dependency pair approach [6,33,34,46] and formu-
lated it in the language of the DP framework from first-order rewriting [20,22].
Our formulation is based on AFSMs, a dedicated formalism designed to make
termination proofs transferrable to various higher-order rewriting formalisms.

This framework has two important additions over existing higher-order DP
approaches in the literature. First, we consider not only arbitrary and minimally
non-terminating dependency chains, but also minimally non-computable chains;
this is tracked by the computableU flag. Using the flag, a dedicated processor
allows us to efficiently handle rules like Example 8. This flag has no counterpart
in the first-order setting. Second, we have generalised the idea of formative rules
in [31] to a notion of formative chains, tracked by a formative flag. This makes
it possible to define a corresponding processor that permanently removes rules.

778 C. Fuhs and C. Kop

Implementation and Experiments. To provide a strong formal groundwork, we
have presented several processors in a general way, using semantic definitions of,
e.g., the dependency graph approximation and formative rules rather than syn-
tactic definitions using functions like TCap [21]. Even so, most parts of the DP
framework for AFSMs have been implemented in the open-source termination
prover WANDA [28], alongside a dynamic DP framework [31] and a mechanism
to delegate some ordering constraints to a first-order tool [14]. For reduction
triples, polynomial interpretations [15] and a version of HORPO [29, Ch. 5] are
used. To solve the constraints arising in the search for these orderings, and also to
determine sort orderings (for the accessibility relation) and projection functions
(for the subterm criteria), WANDA employs an external SAT-solver. WANDA
has won the higher-order category of the International Termination Competi-
tion [50] four times. In the International Confluence Competition [10], the tools
ACPH [40] and CSIˆho [38] use WANDA as their “oracle” for termination proofs
on HRSs.

We have tested WANDA on the Termination Problems Data Base [49], using
AProVE [19] and MiniSat [12] as back-ends. When no additional features are
enabled, WANDA proves termination of 124 (out of 198) benchmarks with static
DPs, versus 92 with only a search for reduction orderings; a 34% increase. When
all features except static DPs are enabled, WANDA succeeds on 153 benchmarks,
versus 166 with also static DPs; an 8% increase, or alternatively, a 29% decrease
in failure rate. The full evaluation is available in [17, Appendix D].
Future Work. While the static and the dynamic DP approaches each have their
own strengths, there has thus far been little progress on a unified approach,
which could take advantage of the syntactic benefits of both styles. We plan to
combine the present work with the ideas of [31] into such a unified DP framework.

In addition, we plan to extend the higher-order DP framework to rewriting
with strategies, such as implicit β-normalisation or strategies inspired by func-
tional programming languages like OCaml and Haskell. Other natural directions
are dedicated automation to detect non-termination, and reducing the number of
term constraints solved by the reduction triple processor via a tighter integration
with usable and formative rules with respect to argument filterings.

References

1. Aczel, P.: A general Church-Rosser theorem. Unpublished Manuscript, University
of Manchester (1978)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

3. Baader, F., Nipkow, F.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Logic Comput. 4(3), 217–247 (1994). https://doi.org/
10.1093/logcom/4.3.217

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1093/logcom/4.3.217

A Static Higher-Order Dependency Pair Framework 779

5. Blanqui, F.: Termination and confluence of higher-order rewrite systems. In: Bach-
mair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 47–61. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721975 4

6. Blanqui, F.: Higher-order dependency pairs. In: Proceedings of the WST 2006
(2006)

7. Blanqui, F.: Termination of rewrite relations on λ-terms based on Girard’s notion
of reducibility. Theor. Comput. Sci. 611, 50–86 (2016). https://doi.org/10.1016/j.
tcs.2015.07.045

8. Blanqui, F., Jouannaud, J., Okada, M.: Inductive-data-type systems. Theor.
Comput. Sci. 272(1–2), 41–68 (2002). https://doi.org/10.1016/S0304-
3975(00)00347-9

9. Blanqui, F., Jouannaud, J., Rubio, A.: The computability path ordering. Logical
Methods Comput. Sci. 11(4) (2015). https://doi.org/10.2168/LMCS-11(4:3)2015

10. Community. The International Confluence Competition (CoCo) (2018). http://
project-coco.uibk.ac.at/

11. Dershowitz, N., Kaplan, S.: Rewrite, rewrite, rewrite, rewrite, rewrite. In: Confer-
ence Record of the Sixteenth Annual ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, USA, 11–13 January 1989, pp. 250–259. ACM
Press (1989). https://doi.org/10.1145/75277.75299

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

13. Emmes, F., Enger, T., Giesl, J.: Proving non-looping non-termination automati-
cally. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 225–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31365-3 19

14. Fuhs, C., Kop, C.: Harnessing first order termination provers using higher order
dependency pairs. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS (LNAI), vol. 6989, pp. 147–162. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24364-6 11

15. Fuhs, C., Kop, C.: Polynomial interpretations for higher-order rewriting. In: Tiwari,
A. (ed.) 23rd International Conference on Rewriting Techniques and Applications
(RTA 2012) , RTA 2012. LIPIcs, vol. 15, Nagoya, Japan, 28 May–2 June 2012. pp.
176–192. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012). https://doi.
org/10.4230/LIPIcs.RTA.2012.176

16. Fuhs, C., Kop, C.: First-order formative rules. In: Dowek, G. (ed.) RTA 2014.
LNCS, vol. 8560, pp. 240–256. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08918-8 17

17. Fuhs, C., Kop, C.: A static higher-order dependency pair framework (extended
version). Technical report arXiv:1902.06733 [cs.LO], CoRR (2019)

18. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM Trans. Comput. Logic 18(2), 14:1–14:50 (2017). https://
doi.org/10.1145/3060143

19. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reasoning 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-
016-9388-y

20. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-32275-7 21

https://doi.org/10.1007/10721975_4
https://doi.org/10.1016/j.tcs.2015.07.045
https://doi.org/10.1016/j.tcs.2015.07.045
https://doi.org/10.1016/S0304-3975(00)00347-9
https://doi.org/10.1016/S0304-3975(00)00347-9
https://doi.org/10.2168/LMCS-11(4:3)2015
http://project-coco.uibk.ac.at/
http://project-coco.uibk.ac.at/
https://doi.org/10.1145/75277.75299
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1007/978-3-642-24364-6_11
https://doi.org/10.1007/978-3-642-24364-6_11
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1007/978-3-319-08918-8_17
https://doi.org/10.1007/978-3-319-08918-8_17
http://arxiv.org/abs/1902.06733
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-540-32275-7_21

780 C. Fuhs and C. Kop

21. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/
11559306 12

22. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/
10.1007/s10817-006-9057-7

23. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

24. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features.
Inf. Comput. 205(4), 474–511 (2007). https://doi.org/10.1016/j.ic.2006.08.010

25. Hoe, J.C., Arvind: Hardware synthesis from term rewriting systems. In: Silveira,
L.M., Devadas, S., Reis, R. (eds.) VLSI: Systems on a Chip. IFIPAICT, vol. 34,
pp. 595–619. Springer, Boston (2000). https://doi.org/10.1007/978-0-387-35498-
9 52

26. Jouannaud, J., Rubio, A.: The higher-order recursive path ordering. In: 14th
Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5 July
1999, pp. 402–411. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.
1999.782635

27. Klop, J., Oostrom, V.V., Raamsdonk, F.V.: Combinatory reduction systems: intro-
duction and survey. Theor. Comput. Sci. 121(1–2), 279–308 (1993). https://doi.
org/10.1016/0304-3975(93)90091-7

28. Kop, C.: WANDA - a higher-order termination tool. http://wandahot.sourceforge.
net/

29. Kop, C.: Higher order termination. Ph.D. thesis, VU Amsterdam (2012)
30. Kop, C., van Raamsdonk, F.: Higher order dependency pairs for algebraic func-

tional systems. In: Schmidt-Schauß, M. (ed.) Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, RTA 2011. LIPIcs, vol. 10,
Novi Sad, Serbia, 30 May–1 June 2011, pp. 203–218. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2011). https://doi.org/10.4230/LIPIcs.RTA.2011.203

31. Kop, C., van Raamsdonk, F.: Dynamic dependency pairs for algebraic functional
systems. Logical Methods Comput. Sci. 8(2), 10:1–10:51 (2012). https://doi.org/
10.2168/LMCS-8(2:10)2012

32. Kusakari, K.: Static dependency pair method in rewriting systems for functional
programs with product, algebraic data, and ML-polymorphic types. IEICE Trans.
96-D(3), 472–480 (2013). https://doi.org/10.1587/transinf.E96.D.472

33. Kusakari, K.: Static dependency pair method in functional programs. IEICE
Trans. Inf. Syst. E101.D(6), 1491–1502 (2018). https://doi.org/10.1587/transinf.
2017FOP0004

34. Kusakari, K., Isogai, Y., Sakai, M., Blanqui, F.: Static dependency pair method
based on strong computability for higher-order rewrite systems. IEICE Trans. Inf.
Syst. 92(10), 2007–2015 (2009). https://doi.org/10.1587/transinf.E92.D.2007

35. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999). https://doi.org/10.1007/10704567 3

36. Meadows, C.A.: Applying formal methods to the analysis of a key management
protocol. J. Comput. Secur. 1(1), 5–36 (1992). https://doi.org/10.3233/JCS-1992-
1102

https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1016/j.ic.2006.08.010
https://doi.org/10.1007/978-0-387-35498-9_52
https://doi.org/10.1007/978-0-387-35498-9_52
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
http://wandahot.sourceforge.net/
http://wandahot.sourceforge.net/
https://doi.org/10.4230/LIPIcs.RTA.2011.203
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.1587/transinf.E96.D.472
https://doi.org/10.1587/transinf.2017FOP0004
https://doi.org/10.1587/transinf.2017FOP0004
https://doi.org/10.1587/transinf.E92.D.2007
https://doi.org/10.1007/10704567_3
https://doi.org/10.3233/JCS-1992-1102
https://doi.org/10.3233/JCS-1992-1102

A Static Higher-Order Dependency Pair Framework 781

37. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Logic Comput. 1(4), 497–536 (1991). https://doi.
org/10.1093/logcom/1.4.497

38. Nagele, J.: CoCo 2018 participant: CSI∧ho 0.2 (2018). http://project-coco.uibk.
ac.at/2018/papers/csiho.pdf

39. Nipkow, T.: Higher-order critical pairs. In: Proceedings of the Sixth Annual Sym-
posium on Logic in Computer Science (LICS 1991), Amsterdam, The Netherlands,
15–18 July 1991, pp. 342–349. IEEE Computer Society (1991). https://doi.org/10.
1109/LICS.1991.151658

40. Onozawa, K., Kikuchi, K., Aoto, T., Toyama, Y.: ACPH: system description for
CoCo 2017 (2017). http://project-coco.uibk.ac.at/2017/papers/acph.pdf

41. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of Java Bytecode by term rewriting. In: Lynch, C. (ed.) Proceedings of the
21st International Conference on Rewriting Techniques and Applications, RTA
2010. LIPIcs, vol. 6, Edinburgh, Scottland, UK, 11–13 July 2010, pp. 259–276.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010). https://doi.org/10.
4230/LIPIcs.RTA.2010.259

42. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. Theor.
Comput. Sci. 403(2–3), 307–327 (2008). https://doi.org/10.1016/j.tcs.2008.05.013

43. van de Pol, J.: Termination of higher-order rewrite systems. Ph.D. thesis, Univer-
sity of Utrecht (1996)

44. Sakai, M., Kusakari, K.: On dependency pair method for proving termination of
higher-order rewrite systems. IEICE Trans. Inf. Syst. E88-D(3), 583–593 (2005)

45. Sakai, M., Watanabe, Y., Sakabe, T.: An extension of the dependency pair method
for proving termination of higher-order rewrite systems. IEICE Trans. Inf. Syst.
E84-D(8), 1025–1032 (2001)

46. Suzuki, S., Kusakari, K., Blanqui, F.: Argument filterings and usable rules in
higher-order rewrite systems. IPSJ Trans. Program. 4(2), 1–12 (2011)

47. Tait, W.: Intensional interpretation of functionals of finite type. J. Symbolic Logic
32(2), 187–199 (1967)

48. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

49. Wiki: Termination Problems DataBase (TPDB). http://termination-portal.org/
wiki/TPDB

50. Wiki: The International Termination Competition (TermComp) (2018). http://
termination-portal.org/wiki/Termination Competition

https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
http://project-coco.uibk.ac.at/2018/papers/csiho.pdf
http://project-coco.uibk.ac.at/2018/papers/csiho.pdf
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.1109/LICS.1991.151658
http://project-coco.uibk.ac.at/2017/papers/acph.pdf
https://doi.org/10.4230/LIPIcs.RTA.2010.259
https://doi.org/10.4230/LIPIcs.RTA.2010.259
https://doi.org/10.1016/j.tcs.2008.05.013
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition

782 C. Fuhs and C. Kop

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Coinduction in Uniform: Foundations
for Corecursive Proof Search

with Horn Clauses

Henning Basold1(B), Ekaterina Komendantskaya2(B), and Yue Li2

1 CNRS, ENS Lyon, Lyon, France
henning.basold@ens-lyon.fr

2 Heriot-Watt University, Edinburgh, UK
{ek19,yl55}@hw.ac.uk

Abstract. We establish proof-theoretic, constructive and coalgebraic
foundations for proof search in coinductive Horn clause theories. Opera-
tional semantics of coinductive Horn clause resolution is cast in terms of
coinductive uniform proofs; its constructive content is exposed via sound-
ness relative to an intuitionistic first-order logic with recursion controlled
by the later modality; and soundness of both proof systems is proven rel-
ative to a novel coalgebraic description of complete Herbrand models.

Keywords: Horn clause logic · Coinduction · Uniform proofs ·
Intuitionistic logic · Coalgebra · Fibrations · Löb modality

1 Introduction

Horn clause logic is a Turing complete and constructive fragment of first-order
logic, that plays a central role in verification [22], automated theorem proving [52,
53,57] and type inference. Examples of the latter can be traced from the Hindley-
Milner type inference algorithm [55,73], to more recent uses of Horn clauses in
Haskell type classes [26,51] and in refinement types [28,43]. Its popularity can
be attributed to well-understood fixed point semantics and an efficient semi-
decidable resolution procedure for automated proof search.

According to the standard fixed point semantics [34,52], given a set P of
Horn clauses, the least Herbrand model for P is the set of all (finite) ground
atomic formulae inductively entailed by P . For example, the two clauses below
define the set of natural numbers in the least Herbrand model.

κnat0 : nat 0
κnats : ∀x.natx → nat (s x)

This work is supported by the European Research Council (ERC) under the EU’s
Horizon 2020 programme (CoVeCe, grant agreement No. 678157) and by the EPSRC
research grants EP/N014758/1, EP/K031864/1-2.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 783–813, 2019.
https://doi.org/10.1007/978-3-030-17184-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_28

784 H. Basold et al.

Formally, the least Herbrand model for the above two clauses is the set of ground
atomic formulae obtained by taking a (forward) closure of the above two clauses.
The model for nat is given by N = {nat 0, nat (s 0), nat (s (s 0)), . . .}.

We can also view Horn clauses coinductively. The greatest complete Herbrand
model for a set P of Horn clauses is the largest set of finite and infinite ground
atomic formulae coinductively entailed by P . For example, the greatest complete
Herbrand model for the above two clauses is the set

N∞ = N ∪ {nat (s (s (· · ·)))},

obtained by taking a backward closure of the above two inference rules on the set
of all finite and infinite ground atomic formulae. The greatest Herbrand model is
the largest set of finite ground atomic formulae coinductively entailed by P . In
our example, it would be given by N already. Finally, one can also consider the
least complete Hebrand model, which interprets entailment inductively but over
potentially infinite terms. In the case of nat, this interpretation does not differ
from N . However, finite paths in coinductive structures like transition systems,
for example, require such semantics.

The need for coinductive semantics of Horn clauses arises in several scenarios:
the Horn clause theory may explicitly define a coinductive data structure or a
coinductive relation. However, it may also happen that a Horn clause theory,
which is not explicitly intended as coinductive, nevertheless gives rise to infinite
inference by resolution and has an interesting coinductive model. This commonly
happens in type inference. We will illustrate all these cases by means of examples.

Horn Clause Theories as Coinductive Data Type Declarations. The following
clause defines, together with κnat0 and κnats, the type of streams over natural
numbers.

κstream : ∀xy.natx ∧ stream y → stream (scons x y)

This Horn clause does not have a meaningful inductive, i.e. least fixed point,
model. The greatest Herbrand model of the clauses is given by

S = N∞ ∪ {stream(scons x0 (scons x1 · · ·)) | natx0,natx1, . . . ∈ N∞}

In trying to prove, for example, the goal (streamx), a goal-directed proof
search may try to find a substitution for x that will make (streamx) valid
relative to the coinductive model of this set of clauses. This search by resolu-

tion may proceed by means of an infinite reduction streamx
κstream:[scons y x′/x]�

nat y ∧ streamx′ κnat0:[0/y]� streamx′ κstream:[scons y′ x′′/x′]� · · · , thereby gen-
erating a stream Z of zeros via composition of the computed substitutions:
Z = (scons 0 x′)[scons 0x′′/x′] · · · . Above, we annotated each resolution step
with the label of the clause it resolves against and the computed substitution. A
method to compute an answer for this infinite sequence of reductions was given
by Gupta et al. [41] and Simon et al. [69]: the underlined loop gives rise to the

Coinduction in Uniform 785

circular unifier x = scons 0 x that corresponds to the infinite term Z. It is proven
that, if a loop and a corresponding circular unifier are detected, they provide an
answer that is sound relative to the greatest complete Herbrand model of the
clauses. This approach is known under the name of CoLP.

Horn Clause Theories in Type Inference. Below clauses give the typing rules of
the simply typed λ-calculus, and may be used for type inference or type checking:

κt1 : ∀xΓ a.varx ∧ findΓ xa → typedΓ xa

κt2 : ∀xΓ amb. typed [x : a|Γ]mb → typedΓ (λxm) (a → b)
κt3 : ∀Γ amn b. typedΓ m (a → b) ∧ typedΓ na → typedΓ (app mn) b

It is well known that the Y -combinator is not typable in the simply-typed
λ-calculus and, in particular, self-application λx. x x is not typable either. How-
ever, by switching off the occurs-check in Prolog or by allowing circular unifiers
in CoLP [41,69], we can resolve the goal “typed [] (λx (app xx)) a” and would
compute the circular substitution: a = b → c, b = b → c suggesting that an
infinite, or circular, type may be able to type this λ-term. A similar trick would
provide a typing for the Y -combinator. Thus, a coinductive interpretation of the
above Horn clauses yields a theory of infinite types, while an inductive interpre-
tation corresponds to the standard type system of the simply typed λ-calculus.

Horn Clause Theories in Type Class Inference. Haskell type class inference does
not require circular unifiers but may require a cyclic resolution inference [37,51].
Consider, for example, the following mutually defined data structures in Haskell.

data OddList a = OCons a (EvenList a)
data EvenList a = Ni l | ECons a (OddList a)

This type declaration gives rise to the following equality class instance declara-
tions, where we leave the, here irrelevant, body out.

instance (Eq a , Eq (EvenList a)) => Eq (OddList a) where
instance (Eq a , Eq (OddList a)) => Eq (EvenList a) where

The above two type class instance declarations have the shape of Horn clauses.
Since the two declarations mutually refer to each other, an instance inference
for, e.g., Eq (OddList Int) will give rise to an infinite resolution that alternates
between the subgoals Eq (OddList Int) and Eq (EvenList Int). The solution
is to terminate the computation as soon as the cycle is detected [51], and this
method has been shown sound relative to the greatest Herbrand models in [36].
We will demonstrate this later in the proof systems proposed in this paper.

The diversity of these coinductive examples in the existing literature shows
that there is a practical demand for coinductive methods in Horn clause logic,
but it also shows that no unifying proof-theoretic approach exists to allow for a
generic use of these methods. This causes several problems.

Problem 1. The existing proof-theoretic coinductive interpretations
of cycle and loop detection are unclear, incomplete and not uniform.

786 H. Basold et al.

Table 1. Examples of greatest (complete) Herbrand models for Horn clauses
γ1, γ2, γ3. The signatures are {a} for the clause γ1 and {a, f} for the others.

To see this, consider Table 1, which exemplifies three kinds of circular phenom-
ena in Horn clauses: The clause γ1 is the easiest case. Its coinductive models
are given by the finite set {p a}. On the other extreme is the clause γ3 that,
just like κstream, admits only an infinite formula in its coinductive model. The
intermediate case is γ2, which could be interpreted by an infinite set of finite
formulae in its greatest Herbrand model, or may admit an infinite formula in
its greatest complete Herbrand model. Examples like γ1 appear in Haskell type
class resolution [51], and examples like γ2 in its experimental extensions [37].
Cycle detection would only cover computations for γ1, whereas γ2, γ3 require
some form of loop detection1. However, CoLP’s loop detection gives confusing
results here. It correctly fails to infer p a from γ3 (no unifier for subgoals p a and
p (f a) exists), but incorrectly fails to infer p a from γ2 (also failing to unify p a
and p (f a)). The latter failure is misleading bearing in mind that p a is in fact in
the coinductive model of γ2. Vice versa, if we interpret the CoLP answer x = f x
as a declaration of an infinite term (f f . . .) in the model, then CoLP’s answer
for γ3 and p x is exactly correct, however the same answer is badly incomplete for
the query involving p x and γ2, because γ2 in fact admits other, finite, formulae
in its models. And in some applications, e.g. in Haskell type class inference, a
finite formula would be the only acceptable answer for any query to γ2.

This set of examples shows that loop detection is too coarse a tool to give
an operational semantics to a diversity of coinductive models.

Problem 2. Constructive interpretation of coinductive proofs in
Horn clause logic is unclear. Horn clause logic is known to be a construc-
tive fragment of FOL. Some applications of Horn clauses rely on this property
in a crucial way. For example, inference in Haskell type class resolution is con-
structive: when a certain formula F is inferred, the Haskell compiler in fact
constructs a proof term that inhabits F seen as type. In our earlier example
Eq (OddList Int) of the Haskell type classes, Haskell in fact captures the cycle
by a fixpoint term t and proves that t inhabits the type Eq (OddList Int).

1 We follow the standard terminology of [74] and say that two formulae F and G form
a cycle if F = G, and a loop if F [θ] = G[θ] for some (possibly circular) unifier θ.

Coinduction in Uniform 787

Fig. 1. Cube of logics covered by CUP

Although we know from [36] that these computations are sound relative to great-
est Herbrand models of Horn clauses, the results of [36] do not extend to Horn
clauses like γ3 or κstream, or generally to Horn clauses modelled by the greatest
complete Herbrand models. This shows that there is not just a need for coinduc-
tive proofs in Horn clause logic, but constructive coinductive proofs.

Problem 3. Incompleteness of circular unification for irregular coin-
ductive data structures. Table 1 already showed some issues with incomplete-
ness of circular unification. A more famous consequence of it is the failure of cir-
cular unification to capture irregular terms. This is illustrated by the following
Horn clause, which defines the infinite stream of successive natural numbers.

κfrom : ∀x y. from (s x) y → fromx (scons x y)

The reductions for from 0 y consist only of irregular (non-unifiable) formulae:

from 0 y
κfrom:[scons 0 y′/y]� from (s 0) y′ κfrom:[scons (s 0) y′′/y′]� · · ·

The composition of the computed substitutions would suggest an infinite term
as answer: from 0 (scons 0 (scons (s 0) . . .)). However, circular unification no
longer helps to compute this answer, and CoLP fails. Thus, there is a need for
more general operational semantics that allows irregular coinductive structures.

A New Theory of Coinductive Proof Search in Horn Clause Logic

In this paper, we aim to give a principled and general theory that resolves
the three problems above. This theory establishes a constructive foundation for
coinductive resolution and allows us to give proof-theoretic characterisations of
the approaches that have been proposed throughout the literature.

To solve Problem 1, we follow the footsteps of the uniform proofs by Miller
et al. [53,54], who gave a general proof-theoretic account of resolution in first-
order Horn clause logic (fohc) and three extensions: first-order hereditary Har-
rop clauses (fohh), higher-order Horn clauses (hohc), and higher-order heredi-
tary Harrop clauses (hohh). In Sect. 3, we extend uniform proofs with a general
coinduction proof principle. The resulting framework is called coinductive uni-
form proofs (CUP). We show how the coinductive extensions of the four logics of
Miller et al., which we name co-fohc, co-fohh, co-hohc and co-hohh, give a precise

788 H. Basold et al.

proof-theoretic characterisation to the different kinds of coinduction described
in the literature. For example, coinductive proofs involving the clauses γ1 and
γ2 belong to co-fohc and co-fohh, respectively. However, proofs involving clauses
like γ3 or κstream require in addition fixed point terms to express infinite data.
These extentions are denoted by co-fohcfix, co-fohhfix, co-hohcfix and co-hohhfix.

Section 3 shows that this yields the cube in Fig. 1, where the arrows show the
increase in logical strength. The invariant search for regular infinite objects done
in CoLP is fully described by the logic co-fohcfix, including proofs for clauses like
γ3 and κstream. An important consequence is that CUP is complete for γ1, γ2,
and γ3, e.g. p a is provable from γ2 in CUP, but not in CoLP.

In tackling Problem 3, we will find that the irregular proofs, such as those
for κfrom, can be given in co-hohhfix. The stream of successive numbers can be
defined as a higher-order fixed point term sfr = fix f. λx. scons x (f (s x)), and
the proposition ∀x. fromx (sfr x) is provable in co-hohhfix. This requires the use
of higher-order syntax, fixed point terms and the goals of universal shape, which
become available in the syntax of Hereditary Harrop logic.

In order to solve Problem 2 and to expose the constructive nature of the
resulting proof systems, we present in Sect. 4 a coinductive extension of first-
order intuitionistic logic and its sequent calculus. This extension (iFOL�) is
based on the so-called later modality (or Löb modality) known from provability
logic [16,71], type theory [8,58] and domain theory [20]. However, our way of
using the later modality to control recursion in first-order proofs is new and
builds on [13,14]. In the same section we also show that CUP is sound relative
to iFOL�, which gives us a handle on the constructive content of CUP. This
yields, among other consequences, a constructive interpretation of CoLP proofs.

Section 5 is dedicated to showing soundness of both coinductive proof systems
relative to complete Herbrand models [52]. The construction of these models is
carried out by using coalgebras and category theory. This frees us from having to
use topological methods and will simplify future extensions of the theory to, e.g.,
encompass typed logic programming. It also makes it possible to give original
and constructive proofs of soundness for both CUP and iFOL� in Sect. 5. We
finish the paper with discussion of related and future work.

Originality of the Contribution

The results of this paper give a comprehensive characterisation of coinductive
Horn clause theories from the point of view of proof search (by expressing coin-
ductive proof search and resolution as coinductive uniform proofs), constructive
proof theory (via a translation into an intuitionistic sequent calculus), and coal-
gebraic semantics (via coinductive Herbrand models and constructive soundness
results). Several of the presented results have never appeared before: the coin-
ductive extension of uniform proofs; characterisation of coinductive properties of
Horn clause theories in higher-order logic with and without fixed point operators;
coalgebraic and fibrational view on complete Herbrand models; and soundness of
an intuitionistic logic with later modality relative to complete Herbrand models.

Coinduction in Uniform 789

2 Preliminaries: Terms and Formulae

In this section, we set up notation and terminology for the rest of the paper.
Most of it is standard, and blends together the notation used in [53] and [11].

Definition 1. We define the sets T of types and P of proposition types by the
following grammars, where ι and o are the base type and base proposition type.

T � σ, τ ::= ι |σ → τ P � ρ ::= o |σ → ρ, σ ∈ T

We adapt the usual convention that → binds to the right.

Fig. 2. Well-formed terms

Fig. 3. Well-formed formulae

Definition 2. A term signature Σ is a set of pairs c : τ , where τ ∈ T, and a
predicate signature is a set Π of pairs p : ρ with ρ ∈ P. The elements in Σ and
Π are called term symbols and predicate symbols, respectively. Given term and
predicate signatures Σ and Π, we refer to the pair (Σ,Π) as signature. Let Var
be a countable set of variables, the elements of which we denote by x, y, . . . We
call a finite list Γ of pairs x : τ of variables and types a context. The set ΛΣ of
(well-typed) terms over Σ is the collection of all M with Γ � M : τ for some
context Γ and type τ ∈ T, where Γ � M : τ is defined inductively in Fig. 2. A
term is called closed if � M : τ , otherwise it is called open. Finally, we let Λ−

Σ

denote the set of all terms M that do not involve fix.

Definition 3. Let (Σ,Π) be a signature. We say that ϕ is a (first-order) formula
in context Γ , if Γ � ϕ is inductively derivable from the rules in Fig. 3.

790 H. Basold et al.

Definition 4. The reduction relation −→ on terms in ΛΣ is given as the
compatible closure (reduction under applications and binders) of β- and fix-
reduction:

(λx.M)N −→ M [N/x] fix x.M −→ M [fix x.M/x]

We denote the reflexive, transitive closure of −→ by . Two terms M and
N are called convertible, if M ≡ N , where ≡ is the equivalence closure of −→.
Conversion of terms extends to formulae in the obvious way: if Mk ≡ M ′

k for
k = 1, . . . , n, then p M1 · · ·Mn ≡ p M ′

1 · · · M ′
n.

We will use in the following that the above calculus features subject reduction
and confluence, cf. [61]: if Γ � M : τ and M ≡ N , then Γ � N : τ ; and M ≡ N
iff there is a term P , such that M P and N P .

The order of a type τ ∈ T is given as usual by ord(ι) = 0 and ord(σ → τ) =
max{ord(σ) + 1, ord(τ)}. If ord(τ) ≤ 1, then the arity of τ is given by ar(ι) = 0
and ar(ι → τ) = ar(τ)+1. A signature Σ is called first-order, if for all f : τ ∈ Σ
we have ord(τ) ≤ 1. We let the arity of f then be ar(τ) and denote it by ar(f).

Definition 5. The set of guarded base terms over a first-order signature Σ is
given by the following type-driven rules.

x : τ ∈ Γ ord(τ) ≤ 1
Γ �g x : τ

f : τ ∈ Σ

Γ �g f : τ

Γ �g M : σ → τ Γ �g N : σ

Γ �g M N : τ

f : σ ∈ Σ ord(τ) ≤ 1 Γ, x : τ, y1 : ι, . . . , yar(τ) : ι �g Mi : ι 1 ≤ i ≤ ar(f)

Γ �g fix x. λ y . f M : τ

General guarded terms are terms M , such that all fix-subterms are guarded base
terms, which means that they are generated by the following grammar.

G ::= M (with �g M : τ for some type τ) | c ∈ Σ |x ∈ Var |GG |λx.G

Finally, M is a first-order term over Σ with Γ � M : τ if ord(τ) ≤ 1 and the
types of all variables occurring in Γ are of order 0. We denote the set of guarded
first-order terms M with Γ � M : ι by ΛG,1

Σ (Γ) and the set of guarded terms in
Γ by ΛG

Σ(Γ). If Γ is empty, we just write ΛG,1
Σ and ΛG

Σ , respectively.

Note that an important aspect of guarded terms is that no free variable
occurs under a fix-operator. Guarded base terms should be seen as specific fixed
point terms that we will be able to unfold into potentially infinite trees. Guarded
terms close guarded base terms under operations of the simply typed λ-calculus.

Example 6. Let us provide a few examples that illustrate (first-order) guarded
terms. We use the first-order signature Σ = {scons : ι → ι → ι, s : ι → ι, 0 : ι}.
1. Let sfr = fix f. λx. scons x (f (s x)) be the function that computes the

streams of numerals starting at the given argument. It is easy to show that
�g sfr : ι → ι and so sfr 0 ∈ ΛG,1

Σ .

Coinduction in Uniform 791

2. For the same signature Σ we also have x : ι �g x : ι. Thus x ∈ ΛG,1
Σ (x : ι)

and s x ∈ ΛG,1
Σ (x : ι).

3. We have x : ι → ι �g x 0 : ι, but (x 0) �∈ ΛG,1
Σ (x : ι → ι).

The purpose of guarded terms is that these are productive, that is, we can
reduce them to a term that either has a function symbol at the root or is just
a variable. In other words, guarded terms have head normal forms: We say that
a term M is in head normal form, if M = f

#—

N for some f ∈ Σ or if M = x
for some variable x. The following lemma is a technical result that is needed to
show in Lemma 8 that all guarded terms have a head normal form.

Lemma 7. Let M and N be guarded base terms with Γ, x : σ �g M : τ and
Γ �g N : σ. Then M [N/x] is a guarded base term with Γ �g M [N/x] : τ .

Lemma 8. If M is a first-order guarded term with M ∈ ΛG,1
Σ (Γ), then M

reduces to a unique head normal form. This means that either (i) there is a
unique f ∈ Σ and terms N1, . . . , Nar(f) with Γ �g Nk : ι and M f

#—

N , and

for all L if M f
#—

L, then
#—

N ≡ #—

L; or (ii) M x for some x : ι ∈ Γ .

We end this section by introducing the notion of an atom and refinements
thereof. This will enable us to define the different logics and thereby to analyse
the strength of coinduction hypotheses, which we promised in the introduction.

Definition 9. A formula ϕ of the shape � or p M1 · · · Mn is an atom and a

– first-order atom, if p and all the terms Mi are first-order;
– guarded atom, if all terms Mi are guarded; and
– simple atom, if all terms Mi are non-recursive, that is, are in Λ−

Σ .

First-order, guarded and simple atoms are denoted by At1, Atg
ω and Ats

ω. We
denote conjunctions of these predicates by Atg

1 = At1∩Atg
ω and Ats

1 = At1∩Ats
ω.

Note that the restriction for Atg
ω only applies to fixed point terms. Hence, any

formula that contains terms without fix is already in Atg
ω and Atg

ω ∩Ats
ω = Ats

ω.
Since these notions are rather subtle, we give a few examples

Example 10. We list three examples of first-order atoms.

1. For x : ι we have stream x ∈ At1, but there are also “garbage” formulae like
“stream (fix x. x)” in At1. Examples of atoms that are not first-order are
p M , where p : (ι → ι) → o or x : ι → ι � M : τ .

2. Our running example “from 0 (sfr 0)” is a first-order guarded atom in Atg
1.

3. The formulae in Ats
1 may not contain recursion and higher-order features.

However, the atoms of Horn clauses in a logic program fit in here.

792 H. Basold et al.

3 Coinductive Uniform Proofs

This section introduces the eight logics of the coinductive uniform proof frame-
work announced and motivated in the introduction. The major difference of
uniform proofs with, say, a sequent calculus is the “uniformity” property, which
means that the choice of the application of each proof rule is deterministic and
all proofs are in normal form (cut free). This subsumes the operational semantics
of resolution, in which the proof search is always goal directed. Hence, the main
challenge, that we set out to solve in this section, is to extend the uniform proof
framework with coinduction, while preserving this valuable operational property.

We begin by introducing the different goal formulae and definite clauses that
determine the logics that were presented in the cube for coinductive uniform
proofs in the introduction. These clauses and formulae correspond directly to
those of the original work on uniform proofs [53] with the only difference being
that we need to distinguish atoms with and without fixed point terms. The
general idea is that goal formulae (G-formulae) occur on the right of a sequent,
thus are the goal to be proved. Definite clauses (D-formulae), on the other hand,
are selected from the context as assumptions. This will become clear once we
introduce the proof system for coinductive uniform proofs.

Definition 11. Let Di be generated by the following grammar with i ∈ {1, ω}.

Di ::= Ats
i | G → D | D ∧ D | ∀x : τ.D

Table 2. D- and G-formulae for coinductive uniform proofs.

The sets of definite clauses (D-formulae) and goals (G-formulae) of the four
logics co-fohc, co-fohh, co-hohc, co-hohh are the well-formed formulae of the
corresponding shapes defined in Table 2. For the variations co-fohhfix etc. of these
logics with fixed point terms, we replace upper index “s” with “g” everywhere in
Table 2. A D-formula of the shape ∀ #—x .A1∧· · ·∧An → A0 is called H-formula or
Horn clause if Ak ∈ Ats

1, and Hg-formula if Ak ∈ Atg
1. Finally, a logic program

(or program) P is a set of H-formulae. Note that any set of D-formulae in fohc
can be transformed into an intuitionistically equivalent set of H-formulae [53].

Coinduction in Uniform 793

We are now ready to introduce the coinductive uniform proofs. Such proofs
are composed of two parts: an outer coinduction that has to be at the root of
a proof tree, and the usual the usual uniform proofs by Miller et al. [54]. The
latter are restated in Fig. 4. Of special notice is the rule decide that mimics the
operational behaviour of resolution in logic programming, by choosing a clause
D from the given program to resolve against. The coinduction is started by
the rule co-fix in Fig. 5. Our proof system mimics the typical recursion with a
guard condition found in coinductive programs and proofs [5,8,19,31,40]. This
guardedness condition is formalised by applying the guarding modality 〈 〉 on
the formula being proven by coinduction and the proof rules that allow us to
distribute the guard over certain logical connectives, see Fig. 5. The guarding
modality may be discharged only if the guarded goal was resolved against a clause
in the initial program or any hypothesis, except for the coinduction hypotheses.
This is reflected in the rule decide〈〉, where we may only pick a clause from P ,
and is in contrast to the rule decide, in which we can pick any hypothesis. The
proof may only terminate with the initial step if the goal is no longer guarded.

Note that the co-fix rule introduces a goal as a new hypothesis. Hence,
we have to require that this goal is also a definite clause. Since coinduction
hypotheses play such an important role, they deserve a separate definition.

Definition 12. Given a language L from Table 2, a formula ϕ is a
coinduction goal of L if ϕ simultaneously is a D- and a G-formula of L.

Note that the coinduction goals of co-fohc and co-fohh can be transformed
into equivalent H- or Hg-formulae, since any coinduction goal is a D-formula.

Let us now formally introduce the coinductive uniform proof system.

Fig. 4. Uniform proof rules

794 H. Basold et al.

Fig. 5. Coinductive uniform proof rules

Definition 13. Let P and Δ be finite sets of, respectively, definite clauses and
coinduction goals, over the signature Σ, and suppose that G is a goal and ϕ
is a coinduction goal. A sequent is either a uniform provability sequent of the
form Σ;P ;Δ =⇒ G or Σ;P ;Δ D=⇒ A as defined in Fig. 4, or it is a coinductive
uniform provability sequent of the form Σ;P � ϕ as defined in Fig. 5. Let L be
a language from Table 2. We say that ϕ is coinductively provable in L, if P is a
set of D-formulae in L, ϕ is a coinduction goal in L and Σ;P � ϕ holds.

The logics we have introduced impose different syntactic restrictions on D-
and G-formulae, and will therefore admit coinduction goals of different strength.
This ability to explicitly use stronger coinduction hypotheses within a goal-
directed search was missing in CoLP, for example. And it allows us to account for
different coinductive properties of Horn clauses as described in the introduction.
We finish this section by illustrating this strengthening.

The first example is one for the logic co-fohc, in which we illustrate the
framework on the problem of type class resolution.

Example 14. Let us restate the Haskell type class inference problem discussed
in the introduction in terms of Horn clauses:

κi : eq i
κodd : ∀x. eq x ∧ eq (even x) → eq (odd x)
κeven : ∀x. eq x ∧ eq (odd x) → eq (even x)

To prove eq (odd i) for this set of Horn clauses, it is sufficient to use this
formula directly as coinduction hypothesis, as shown in Fig. 6. Note that this
formula is indeed a coinduction goal of co-fohc, hence we find ourselves in the
simplest scenario of coinductive proof search. In Table 1, γ1 is a representative
for this kind of coinductive proofs with simplest atomic goals.

It was pointed out in [37] that Haskell’s type class inference can also give rise
to irregular corecursion. Such cases may require the more general coinduction

Coinduction in Uniform 795

Fig. 6. The co-fohc proof for Horn clauses arising from Haskell Type class examples.
ϕ abbreviates the coinduction hypothesis eq (odd i). Note its use in the branch ♠.

hypothesis (e.g. universal and/or implicative) of co-fohh or co-hohh. The below
set of Horn clauses is a simplified representation of a problem given in [37]:

κi : eq i
κs : ∀x. (eq x) ∧ eq (s (g x)) → eq (s x)
κg : ∀x. eq x → eq (g x)

Trying to prove eq (s i) by using eq (s i) directly as a coinduction hypothesis
is deemed to fail, as the coinductive proof search is irregular and this coinduction
hypothesis would not be applicable in any guarded context. But it is possible
to prove eq (s i) as a corollary of another theorem: ∀x. (eq x) → eq (s x).
Using this formula as coinduction hypothesis leads to a successful proof, which
we omit here. From this more general goal, we can derive the original goal by
instantiating the quantifier with i and eliminating the implication with κi. This
second derivation is sound with respect to the models, as we show in Theorem 34.

We encounter γ2 from Table 1 in a similar situation: To prove p a, we first
have to prove ∀x. p x in co-fohh, and then obtain p a as a corollary by appealing
to Theorem 34. The next example shows that we can cover all cases in Table 1
by providing a proof in co-hohhfix that involves irregular recursive terms.

Example 15. Recall the clause ∀x y. from (s x) y → from x (scons x y)
that we named κfrom in the introduction. Proving ∃y. from 0 y is again not
possible directly. Instead, we can use the term sfr = fix f. λx. scons x (f (s x))
from Example 6 and prove ∀x. from x (sfr x) coinductively, as shown in Fig. 7.
This formula gives a coinduction hypothesis of sufficient generality. Note that
the correct coinduction hypothesis now requires the fixed point definition of an

796 H. Basold et al.

infinite stream of successive numbers and universal quantification in the goal.
Hence the need for the richer language of co-hohhfix. From this more general goal
we can derive our initial goal ∃ y.from 0 y by instantiating y with sfr 0.

Fig. 7. The co-hohhfix proof for ϕ = ∀x. from x (sfr x). Note that the last step of the
leftmost branch involves from c (scons c (sfr (s c))) ≡ from c (sfr c).

There are examples of coinductive proofs that require a fixed point definition
of an infinite stream, but do not require the syntax of higher-order terms or
hereditary Harrop formulae. Such proofs can be performed in the co-fohcfix logic.
A good example is a proof that the stream of zeros satisfies the Horn clause
theory defining the predicate stream in the introduction. The goal (stream s0),
with s0 = fix x. scons 0 x can be proven directly by coinduction. Similarly, one
can type self-application with the infinite type a = fix t. t → b for some given
type b. The proof for typed [x : a] (app x x) b is then in co-fohcfix. Finally, the
clause γ3 is also in this group. More generally, circular unifiers obtained from
CoLP’s [41] loop detection yield immediately guarded fixed point terms, and
thus CoLP corresponds to coinductive proofs in the logic co-fohcfix. A general
discussion of Horn clause theories that describe infinite objects was given in [48],
where the above logic programs were identified as being productive.

4 Coinductive Uniform Proofs and Intuitionistic Logic

In the last section, we introduced the framework of coinductive uniform proofs,
which gives an operational account to proofs for coinductively interpreted logic
programs. Having this framework at hand, we need to position it in the existing
ecosystem of logical systems. The goal of this section is to prove that coinductive
uniform proofs are in fact constructive. We show this by first introducing an
extension of intuitionistic first-order logic that allows us to deal with recursive

Coinduction in Uniform 797

Fig. 8. Intuitionistic rules for standard connectives

proofs for coinductive predicates. Afterwards, we show that coinductive uniform
proofs are sound relative to this logic by means of a proof tree translation. The
model-theoretic soundness proofs for both logics will be provided in Sect. 5.

We begin by introducing an extension of intuitionistic first-order logic with
the so-called later modality, written �. This modality is the essential ingredient
that allows us to equip proofs with a controlled form of recursion. The later
modality stems originally from provability logic, which characterises transitive,
well-founded Kripke frames [30,72], and thus allows one to carry out induction
without an explicit induction scheme [16]. Later, the later modality was picked up
by the type-theoretic community to control recursion in coinductive program-
ming [8,9,21,56,58], mostly with the intent to replace syntactic guardedness
checks for coinductive definitions by type-based checks of well-definedness.

Formally, the logic iFOL� is given by the following definition.

Definition 16. The formulae of iFOL� are given by Definition 3 and the rule:

Γ � ϕ

Γ � � ϕ

Conversion extends to these formulae in the obvious way. Let ϕ be a formula and
Δ a sequence of formulae in iFOL�. We say ϕ is provable in context Γ under
the assumptions Δ in iFOL�, if Γ | Δ � ϕ holds. The provability relation � is
thereby given inductively by the rules in Figs. 8 and 9.

Fig. 9. Rules for the later modality

798 H. Basold et al.

The rules in Fig. 8 are the usual rules for intuitionistic first-order logic and
should come at no surprise. More interesting are the rules in Fig. 9, where the rule
(Löb) introduces recursion into the proof system. Furthermore, the rule (Mon)
allows us to to distribute the later modality over implication, and consequently
over conjunction and universal quantification. This is essential in the translation
in Theorem 18 below. Finally, the rule (Next) gives us the possibility to proceed
without any recursion, if necessary.

Note that so far it is not possible to use the assumption �ϕ introduced in
the (Löb)-rule. The idea is that the formulae of a logic program provide us the
obligations that we have to prove, possibly by recursion, in order to prove a
coinductive predicate. This is cast in the following definition.

Definition 17. Given an Hg-formula ϕ of the shape ∀ #—x . (A1 ∧ · · · ∧ An) → ψ,
we define its guarding ϕ to be ∀ #—x . (� A1 ∧ · · · ∧� An) → ψ. For a logic program
P , we define its guarding P by guarding each formula in P .

The translation given in Definition 17 of a logic program into formulae
that admit recursion corresponds unfolding a coinductive predicate, cf. [14]. We
show now how to transform a coinductive uniform proof tree into a proof tree
in iFOL�, such that the recursion and guarding mechanisms in both logics
match up.

Theorem 18. If P is a logic program over a first-order signature Σ and the
sequent Σ;P � ϕ is provable in co-hohhfix, then P � ϕ is provable in iFOL�.

To prove this theorem, one uses that each coinductive uniform proof tree
starts with an initial tree that has an application of the co-fix-rule at the
root and that eliminates the guard by using the rules in Fig. 5. At the leaves
of this tree, one finds proof trees that proceed only by means of the rules in
Fig. 4. The initial tree is then translated into a proof tree in iFOL� that starts
with an application of the (Löb)-rule, which corresponds to the co-fix-rule, and
that simultaneously transforms the coinduction hypothesis and applies introduc-
tion rules for conjunctions etc. This ensures that we can match the coinduction
hypothesis with the guarded formulae of the program P .

The results of this section show that it is irrelevant whether the guarding
modality is used on the right (CUP-style) or on the left (iFOL�-style), as the
former can be translated into the latter. However, CUP uses the guarding on the
right to preserve proof uniformity, whereas iFOL� extends a general sequent
calculus. Thus, to obtain the reverse translation, we would have to have an
admissible cut rule in CUP. The main ingredient to such a cut rule is the ability to
prove several coinductive statements simultaneously. This is possible in CUP by
proving the conjunction of these statements. Unfortunately, we cannot eliminate
such a conjunction into one of its components, since this would require non-
deterministic guessing in the proof construction, which in turn breaks uniformity.
Thus, we leave a solution of this problem for future work.

Coinduction in Uniform 799

5 Herbrand Models and Soundness

In Sect. 4 we showed that coinductive uniform proofs are sound relative to the
intuitionistic logic iFOL�. This gives us a handle on the constructive nature of
coinductive uniform proofs. Since iFOL� is a non-standard logic, we still need
to provide semantics for that logic. We do this by interpreting in Sect. 5.4 the
formulae of iFOL� over the well-known (complete) Herbrand models and prove
the soundness of the accompanying proof system with respect to these mod-
els. Although we obtain soundness of coinductive uniform proofs over Herbrand
models from this, this proof is indirect and does not give a lot of information
about the models captured by the different calculi co-fohc etc. For this reason,
we will give in Sect. 5.3 a direct soundness proof for coinductive uniform proofs.
We also obtain coinduction invariants from this proof for each of the calculi,
which allows us to describe their proof strength.

5.1 Coinductive Herbrand Models and Semantics of Terms

Before we come to the soundness proofs, we introduce in this section (complete)
Herbrand models by using the terminology of final coalgebras. We then utilise
this description to give operational and denotational semantics to guarded terms.
These semantics show that guarded terms allow the description and computation
of potentially infinite trees.

The coalgebraic approach has been proven very successful both in logic and
programming [1,75,76]. We will only require very little category theoretical
vocabulary and assume that the reader is familiar with the category Set of
sets and functions, and functors, see for example [12,25,50]. The terminology of
algebras and coalgebras [4,47,64,65] is given by the following definition.

Definition 19. A coalgebra for a functor F : Set → Set is a map c : X → FX.
Given coalgebras d : Y → FY and c : X → FX, we say that a map h : Y → X
is a homomorphism d → c if Fh ◦ d = c ◦ h. We call a coalgebra c : X → FX
final, if for every coalgebra d there is a unique homomorphism h : d → c. We will
refer to h as the coinductive extension of d.

The idea of (complete) Herbrand models is that a set of Horn clauses deter-
mines for each predicate symbol a set of potentially infinite terms. Such terms
are (potentially infinite) trees, whose nodes are labelled by function symbols and
whose branching is given by the arity of these function symbols. To be able to
deal with open terms, we will allow such trees to have leaves labelled by variables.
Such trees are a final coalgebra for a functor determined by the signature.

Definition 20. Let Σ be first-order signature. The extension of a first-order
signature Σ is a (polynomial) functor [38] �Σ� : Set → Set given by

�Σ�(X) =
∐

f∈Σ Xar(f),

where ar : Σ → N is defined in Sect. 2 and Xn is the n-fold product of X. We
define for a set V a functor �Σ�+V : Set → Set by (�Σ�+V)(X) = �Σ�(X)+V ,
where + is the coproduct (disjoint union) in Set.

800 H. Basold et al.

To make sense of the following definition, we note that we can view Π as a
signature and we thus obtain its extension �Π�. Moreover, we note that the final
coalgebra of �Σ� + V exists because �Σ� is a polynomial functor.

Definition 21. Let Σ be a first-order signature. The coterms over Σ are the
final coalgebra rootV : Σ∞(V) → �Σ�(Σ∞(V)) + V . For brevity, we denote the
coterms with no variables, i.e. Σ∞(∅), by root : Σ∞ → �Σ�(Σ∞), and call it the
(complete) Herbrand universe and its elements ground coterms. Finally, we let
the (complete) Herbrand base B∞ be the set �Π�(Σ∞).

The construction Σ∞(V) gives rise to a functor Σ∞ : Set → Set, called
the free completely iterative monad [5]. If there is no ambiguity, we will drop the
injections κi when describing elements of Σ∞(V). Note that Σ∞(V) is final with
property that for every s ∈ Σ∞(V) either there are f ∈ Σ and #—

t ∈ (Σ∞(V))ar(f)

with rootV (s) = f(#—
t), or there is x ∈ V with rootV (s) = x. Finality allows us

to specify unique maps into Σ∞(V) by giving a coalgebra X → �Σ�(X) + V . In
particular, one can define for each θ : V → Σ∞ the substitution t[θ] of variables
in the coterm t by θ as the coinductive extension of the following coalgebra.

Σ∞(V) rootV−−−−→ �Σ�(Σ∞(V)) + V
[id,root◦θ]−−−−−−→ �Σ�(Σ∞(V))

Now that we have set up the basic terminology of coalgebras, we can give
semantics to guarded terms from Definition 5. The idea is that guarded terms
guarantee that we can always compute with them so far that we find a function
symbol in head position, see Lemma 8. This function symbol determines then
the label and branching of a node in the tree generated by a guarded term. If
the computation reaches a constant or a variable, then we stop creating the tree
at the present branch. This idea is captured by the following lemma.

Lemma 22. There is a map [[−]]1 : ΛG,1
Σ (Γ) → Σ∞(Γ) that is unique with

1. if M ≡ N , then [[M]]1 = [[N]]1, and
2. for all M , if M f

#—

N then rootΓ ([[M]]1) = f
(# —

[[N]]1
)
, and if M x then

rootΓ ([[M]]1) = x.

Proof (sketch). By Lemma 8, we can define a coalgebra on the quotient of
guarded terms by convertibility c : ΛG,1

Σ (Γ)/≡ → �Σ�
(
ΛG,1

Σ (Γ)/≡
)

+ Γ with

c[M] = f [
#—

N] if M f
#—

N and c[M] = x if M x. This yields a homo-

morphism h : ΛG,1
Σ (Γ)/≡ → Σ∞(Γ) and we can define [[−]]1 = h ◦ [−]. The rest

follows from uniqueness of h.

5.2 Interpretation of Basic Intuitionistic First-Order Formulae

In this section, we give an interpretation of the formulae in Definition 3, in
which we restrict ourselves to guarded terms. This interpretation will be relative
to models in the complete Herbrand universe. Since we later extend these models
to Kripke models to be able to handle the later modality, we formulate these
models already now in the language of fibrations [17,46].

Coinduction in Uniform 801

Definition 23. Let p : E → B be a functor. Given an object I ∈ B, the fibre
EI above I is the category of objects A ∈ E with p(A) = I and morphisms
f : A → B with p(f) = idI . The functor p is a (split) fibration if for every
morphism u : I → J in B there is functor u∗ : EJ → EI , such that id∗

I = IdEI

and (v ◦ u)∗ = u∗ ◦ v∗. We call u∗ the reindexing along u.

To give an interpretation of formulae, consider the following category Pred.

Pred =

{
objects : (X, P) with X ∈ Set and P ⊆ X
morphisms : f : (X, P) → (Y, Q) is a map f : X → Y with f(P) ⊆ Q

The functor P : Pred → Set with P(X,P) = X and P(f) = f is a split fibration,
see [46], where the reindexing functor for f : X → Y is given by taking preimages:
f∗(Q) = f−1(Q). Note that each fibre PredX is isomorphic to the complete
lattice of predicates over X ordered by set inclusion. Thus, we refer to this
fibration as the predicate fibration.

Let us now expose the logical structure of the predicate fibration. This will
allow us to conveniently interpret first-order formulae over this fibration, but it
comes at the cost of having to introduce a good amount of category theoretical
language. However, doing so will pay off in Sect. 5.4, where we will construct
another fibration out of the predicate fibration. We can then use category theo-
retical results to show that this new fibration admits the same logical structure
and allows the interpretation of the later modality.

The first notion we need is that of fibred products, coproducts and exponents,
which will allow us to interpret conjunction, disjunction and implication.

Definition 24. A fibration p : E → B has fibred finite products (1,×), if each
fibre EI has finite products (1I ,×I) and these are preserved by reindexing: for
all f : I → J , we have f∗(1J) = 1I and f∗(A ×J B) = f∗(A) ×I f∗(B). Fibred
finite coproducts and exponents are defined analogously.

The fibration P is a so-called first-order fibration, which allows us to interpret
first-order logic, see [46, Def. 4.2.1].

Definition 25. A fibration p : E → B is a first-order fibration if2

– B has finite products and the fibres of p are preorders;
– p has fibred finite products (�,∧) and coproducts (⊥,∨) that distribute;
– p has fibred exponents →; and
– p has existential and universal quantifiers ∃I,J � π∗

I,J � ∀I,J for all projections
πI,J : I × J → I.

A first-order λ-fibration is a first-order fibration with Cartesian closed base B.

2 Technically, the quantifiers should also fulfil the Beck-Chevalley and Frobenius con-
ditions, and the fibration should admit equality. Since these are fulfilled in all our
models and we do not need equality, we will not discuss them here.

802 H. Basold et al.

The fibration P : Pred → Set is a first-order λ-fibration, as all its fibres are
posets and Set is Cartesian closed; P has fibred finite products (�,∩), given by
�X = X and intersection; fibred distributive coproducts (∅,∪); fibred exponents
⇒, given by (P ⇒ Q) = { #—

t | if #—
t ∈ P , then #—

t ∈ Q}; and universal and
existential quantifiers given for P ∈ PredX×Y by

∀X,Y P = {x ∈ X | ∀y ∈ Y. (x, y) ∈ P} ∃X,Y P = {x ∈ X | ∃y ∈ Y. (x, y) ∈ P}.
The purpose of first-order fibrations is to capture the essentials of first-order

logic, while the λ-part takes care of higher-order features of the term language.
In the following, we interpret types, contexts, guarded terms and formulae in
the fibration P : Pred → Set: We define for types τ and context Γ sets �τ� and
�Γ �; for guarded terms M with Γ � M : τ we define a map �M� : �Γ � → �τ� in
Set; and for a formula Γ � ϕ we give a predicate �ϕ� ∈ Pred�Γ �.

The semantics of types and contexts are given inductively in the Cartesian
closed category Set, where the base type ι is interpreted as coterms, as follows.

We note that a coterm t ∈ Σ∞(V) can be seen as a map (Σ∞)V → Σ∞ by
applying a substitution in (Σ∞)V to t: σ �→ t[σ]. In particular, the semantics of a
guarded first-order term M ∈ ΛG,1

Σ (Γ) is equivalently a map [[M]]1 : �Γ � → Σ∞.
We can now extend this map inductively to �M� : �Γ � → �τ� for all guarded
terms M ∈ ΛG

Σ(Γ) with Γ � M : τ by

�M�(γ)
(#—

t
)

= [[M #—x]]1
([

#—x �→ #—
t
]) �g M : τ with ar(τ) =

∣
∣ #—
t
∣
∣ =

∣
∣ #—x

∣
∣

�c�(γ)
(#—

t
)

= c
#—
t

�x�(γ) = γ(x)

�M N�(γ) = �M�(γ)
(
�N�(γ)

)

�λx.M�(γ)(t) = �M�(γ[x �→ t])

Lemma 26. The mapping �−� is a well-defined function from guarded terms to
functions, such that Γ � M : τ implies �M� : �Γ � → �τ�.

Since P : Pred → Set is a first-order fibration, we can interpret inductively
all logical connectives of the formulae from Definition 3 in this fibration. The only
case that is missing is the base case of predicate symbols. Their interpretation
will be given over a Herbrand model that is constructed as the largest fixed point
of an operator over all predicate interpretations in the Herbrand base. Both the
operator and the fixed point are the subjects of the following definition.

Definition 27. We let the set of interpretations I be the powerset P(B∞) of
the complete Herbrand base. For I ∈ I and p ∈ Π, we denote by I|p the
interpretation of p in I (the fibre of I above p)

I|p =
{ #—

t ∈ (Σ∞)ar(p) ∣
∣ p(#—

t) ∈ I
}
.

Coinduction in Uniform 803

Given a set P of Hg-formulae, we define a monotone map ΦP : I → I by

ΦP (I) = {[[ψ]]1[θ] | (∀ #—x .
∧n

k=1 ϕk → ψ) ∈ P, θ : | #—x | → Σ∞,∀k. [[ϕk]]1[θ] ∈ I},
where [[−]]1[θ] is the extension of semantics and substitution from coterms to the
Herbrand base by functoriality of �Π�. The (complete) Herbrand model MP of
P is the largest fixed point of ΦP , which exists because I is a complete lattice.

Given a formula ϕ with Γ � ϕ that contains only guarded terms, we define
the semantics of ϕ in Pred from an interpretation I ∈ I inductively as follows.

�Γ � p
—

M�I =
(

—

�M�
)∗

(I|p)
�Γ � ��I = ��Γ �

�Γ � ϕ � ψ�I = �Γ � ϕ�I � �Γ � ψ�I � ∈ {∧,∨,→}
�Γ � Qx : τ. ϕ�I = Q�Γ �,�τ� �Γ, x : τ � ϕ�I Q ∈ {∀,∃}

Lemma 28. The mapping �−�I is a well-defined function from formulae to pred-
icates, such that Γ � ϕ implies �ϕ�I ⊆ �Γ � or, equivalently, �ϕ�I ∈ Pred�Γ �.

This concludes the semantics of types, terms and formulae. We now turn to
show that coinductive uniform proofs are sound for this interpretation.

5.3 Soundness of Coinductive Uniform Proofs for Herbrand Models

In this section, we give a direct proof of soundness for the coinductive uniform
proof system from Sect. 3. Later, we will obtain another soundness result by
combining the proof translation from Theorem 18 with the soundness of iFOL�
(Theorems 39 and 42). The purpose of giving a direct soundness proof for uniform
proofs is that it allows the extraction of a coinduction invariant, see Lemma 32.

The main idea is as follows. Given a formula ϕ and a uniform proof π for
Σ;P � ϕ, we construct an interpretation I ∈ I that validates ϕ, i.e. �ϕ�I = �,
and that is contained in the complete Herbrand model MP . Combining these
two facts, we obtain that �ϕ�MP

= �, and thus the soundness of uniform proofs.
To show that the constructed interpretation I is contained in MP , we use

the usual coinduction proof principle, as it is given in the following definition.

Definition 29. An invariant for K ∈ I is a set I ∈ I, such that K ⊆ I and I
is a ΦP -invariant, that is, I ⊆ ΦP (I). If K has an invariant, then K ⊆ MP .

Thus, our goal is now to construct an interpretation together with an invari-
ant. This invariant will essentially collect and iterate all the substitutions that
appear in a proof. For this we need the ability to compose substitutions of
coterms, which we derive from the monad [5] (Σ∞, η, μ) with μ : Σ∞Σ∞ ⇒ Σ∞.

Definition 30. A (Kleisli-)substitution θ from V to W , written θ : V W , is
map V → Σ∞(W). Composition of θ : V W and δ : U V is given by

θ � δ = U
δ−→ Σ∞(V)

Σ∞(θ)−−−−→ Σ∞(Σ∞(W))
μW−−→ Σ∞(W).

804 H. Basold et al.

The notions in the following definition will allow us to easily organise and
iterate the substitutions that occur in a uniform proof.

Definition 31. Let S be a set with S = {1, . . . , n} for some n ∈ N. We call
the set S∗ of lists over S the set of substitution identifiers. Suppose that we
have substitutions θ0 : V ∅ and θk : V V for each k ∈ S. Then we can
define a map Θ : S∗ → (Σ∞)V , which turns each substitution identifier into a
substitution, by iteration from the right:

Θ(ε) = θ0 and Θ(w : k) = Θ(w) � θk

After introducing these notations, we can give the outline of the soundness
proof for uniform proofs relative to the complete Herbrand model. Given an
Hg-formula ∀ #—x . ϕ, we note that a uniform proof π for Σ;P � ∀ #—x . ϕ starts with

#—c : ι, Σ;P ;Δ =⇒ 〈ϕ[#—c / #—x]〉 #—c : ι /∈ Σ ∀R〈〉
Σ;P ;∀ #—x . ϕ =⇒ 〈∀ #—x . ϕ〉

co-fix
Σ;P � ∀ #—x . ϕ

where the eigenvariables in #—c are all distinct. Let Σc be the signature #—c : ι, Σ
and C the set of variables in #—c . Suppose the following is a valid subtree of π.

Σc;P ;Δ
ϕ[

#—
N/ #—x]

=====⇒ A ∀L
Σc;P ;Δ

∀ #—x . ϕ∈Δ
=====⇒ A

decide
Σc;P ;Δ =⇒ A

This proof tree gives rise to a substitution δ : C C by δ(c) = �Nc�, which we
call an agent of π. We let D ⊆ Atg

1 be the set of atoms that are proven in π:

D = {A | Σc;P ;Δ =⇒ 〈A〉 or Σc;P ;Δ =⇒ A appears in π}
From the agents and atoms in π we extract an invariant for the goal formula.

Lemma 32. Suppose that ϕ is an Hg-formula of the form ∀ #—x .A1 ∧ · · · ∧An →
A0 and that there is a proof π for Σ;P � ϕ. Let D be the proven atoms in π and
θ0, . . . , θs be the agents of π. Define Ac

k = Ak[#—c / #—x] and suppose further that I1

is an invariant for {Ac
k[Θ(ε)] | 1 ≤ k ≤ n}. If we put

I2 =
⋃

w∈S∗
D [Θ (w)]

then I1 ∪ I2 is an invariant for Ac
0[Θ(ε)].

Once we have Lemma 32 the following soundness theorem is easily proven.

Theorem 33. If ϕ is an Hg-formula and Σ;P � ϕ, then �ϕ�MP
= �.

Finally, we show that extending logic programs with coinductively proven
lemmas is sound. This follows easily by coinduction.

Coinduction in Uniform 805

Theorem 34. Let ϕ be an Hg-formula of the shape ∀ #—x . ψ1 → ψ2, such that,
for all substitutions θ if [[ψ1]]1[θ] ∈ MP,ϕ, then [[ψ1]]1[θ] ∈ MP . Then Σ;P � ϕ
implies MP∪{ϕ} = MP , that is, P ∪ {ϕ} is a conservative extension of P with
respect to the Herbrand model.

As a corollary we obtain that, if there is a proof for Σ;P � ϕ, then a proof
for Σ;P,ϕ � ψ is sound with respect to MP . Indeed, by Theorem 34 we have
that MP = MP∪ϕ and by Theorem 33 that Σ;P,ϕ � ψ is sound with respect
to MP∪{ϕ}. Thus, the proof of Σ;P,ϕ � ψ is also sound with respect to MP .
We use this property implicitly in our running examples, and refer the reader
to [15,49] for proofs, further examples and discussion.

5.4 Soundness of iFOL� over Herbrand Models

In this section, we demonstrate how the logic iFOL� can be interpreted over
Herbrand models. Recall that we obtained a fixed point model from the mono-
tone map ΦP on interpretations. In what follows, it is crucial that we construct
the greatest fixed point of ΦP by iteration, c.f. [6,32,77]: Let Ord be the class
of all ordinals equipped with their (well-founded) order. We denote by Ordop

the class of ordinals with their reversed order and define a monotone function←−
ΦP : Ordop → I, where we write the argument ordinal in the subscript, by

(←−
ΦP

)
α

=
⋂

β<α
ΦP

(←−
ΦP β

)
.

Note that this definition is well-defined because < is well-founded and because
ΦP is monotone, see [14]. Since I is a complete lattice, there is an ordinal α such
that

←−
ΦP α = ΦP

(←−
ΦP α

)
, at which point

←−
ΦP α is the largest fixed point MP of ΦP .

In what follows, we will utilise this construction to give semantics to iFOL�.
The fibration P : Pred → Set gives rise to another fibration as follows. We let

Pred be the category of functors (monotone maps) with fixed predicate domain:

Pred =

⎧
⎪⎨

⎪⎩

objects: u : Ordop → Pred, such that P ◦ u is constant
morphisms: u → v are natural transformations f : u ⇒ v,

such that Pf : P ◦ u ⇒ P ◦ v is the identity

The fibration P : Pred → Set is defined by evaluation at any ordinal (here 0),
i.e. by P(u) = P(u(0)) and P(f) = (Pf)0, and reindexing along f : X → Y by
applying the reindexing of P point-wise, i.e. by f#(u)α = f∗(uα).

Note that there is a (full) embedding K : Pred → Pred that is given by
K(X,P) = (X,P) with Pα = P . One can show [14] that P is again a first-order
fibration and that it models the later modality, as in the following theorem.

Theorem 35. The fibration P is a first-order fibration. If necessary, we denote
the first-order connectives by �̇, ∧̇ etc. to distinguish them from those in Pred.
Otherwise, we drop the dots. Finite (co)products and quantifiers are given point-
wise, while for X ∈ Set and u, v ∈ PredX exponents are given by

(v ⇒̇ u)α =
⋂

β≤α
(vβ ⇒ uβ).

806 H. Basold et al.

There is a fibred functor � : Pred → Pred with π ◦ � = π given on objects by

(� u)α =
⋂

β<α
uβ

and a natural transformation next : Id ⇒ � from the identity functor to �. The
functor � preserves reindexing, products, exponents and universal quantification:
�(f#u) = f#(� u), �(u∧v) = � u∧� v, �(uv) → (� u)� v, �

(∀nu
)

= ∀n(� u).
Finally, for all X ∈ Set and u ∈ PredX , there is löb : (� u ⇒̇ u) → u in PredX .

Using the above theorem, we can extend the interpretation of formulae to
iFOL� as follows. Let u : Ordop → I be a descending sequence of interpreta-
tions. As before, we define the restriction of u to a predicate symbol p ∈ Π by(
u|p

)
α

= uα|p =
{ #—

t
∣
∣ p

(#—
t
) ∈ uα

}
. The semantics of formulae in iFOL� as

objects in Pred is given by the following iterative definition.

�Γ � p
—

M�u =
(

—

�M�
)#

(u|p)
�Γ � ��u = �̇�Γ �

�Γ � ϕ � ψ�u = �Γ � ϕ�u � �Γ � ψ�u � ∈ {∧,∨,→}
�Γ � Qx : τ. ϕ�u = Q�Γ �,�τ� �Γ, x : τ � ϕ�u Q ∈ {∀,∃}

�Γ � � ϕ�u = ��Γ � ϕ�u

The following lemma is the analogue of Lemma 28 for the interpretation of
formulae without the later modality.

Lemma 36. The mapping �−�u is a well-defined map from formulae in iFOL�
to sequences of predicates, such that Γ � ϕ implies �ϕ�u ∈ Pred�Γ �.

Lemma 37. All rules of iFOL� are sound with respect to the interpretation
�−�u of formulae in Pred, that is, if Γ | Δ � ϕ, then

(∧
ψ∈Δ�ψ�u ⇒̇ �ϕ�u

)
= �̇.

In particular, Γ � ϕ implies �ϕ�u = �̇.

The following lemma shows that the guarding of a set of formulae is valid in
the chain model that they generate.

Lemma 38. If ϕ is an H-formula in P , then �ϕ�←−−
ΦP

= �̇.

Combining this with soundness from Lemma 37, we obtain that provability
in iFOL� relative to a logic program P is sound for the model of P .

Theorem 39. For all logic programs P , if Γ | P � ϕ then �ϕ�←−−
ΦP

= �̇.

The final result of this section is to show that the descending chain model,
which we used to interpret formulae of iFOL�, is sound and complete for the
fixed point model, which we used to interpret the formulae of coinductive uniform
proofs. This will be proved in Theorem 42 below. The easiest way to prove this
result is by establishing a functor Pred → Pred that maps the chain

←−
ΦP to

the model MP , and that preserves and reflects truth of first-order formulae
(Proposition 41). We will phrase the preservation of truth of first-order formulae
by a functor by appealing to the following notion of fibrations maps, cf. [46, Def.
4.3.1].

Coinduction in Uniform 807

Definition 40. Let p : E → B and q : D → A be fibrations. A fibration map
p → q is a pair (F : E → D, G : B → A) of functors, s.t. q ◦ F = G ◦ p and F
preserves Cartesian morphisms: if f : X → Y in E is Cartesian over p(f), then
F (f) is Cartesian over G(p(f)). (F,G) is a map of first-order (λ-)fibrations, if
p and q are first-order (λ-)fibrations, and F and G preserve this structure.

Let us now construct a first-order λ-fibration map Pred → Pred. We note
that since every fibre of the predicate fibration is a complete lattice, for every
chain u ∈ PredX there exists an ordinal α at which u stabilises. This means
that there is a limit lim u of u in PredX , which is the largest subset of X, such
that ∀α. lim u ⊆ uα. This allows us to define a map L : Pred → Pred by

L(X,u) = (X, lim u)
L(f : (X,u) → (Y, v)) = f.

In the following proposition, we show that L gives us the ability to express
first-order properties of limits equivalently through their approximating chains.
This, in turn, provides soundness and completeness for the interpretation of the
logic iFOL� over descending chains with respect to the largest Herbrand model.

Proposition 41. L : Pred → Pred, as defined above, is a map of first-order
fibrations. Furthermore, L is right-adjoint to the embedding K : Pred → Pred.
Finally, for each p ∈ Π and u ∈ PredB∞ , we have L

(
u|p

)
= L(u)|p.

We get from Proposition 41 soundness and completeness of
←−
ΦP for Herbrand

models. More precisely, if ϕ is a formula of plain first-order logic (�-free), then
its interpretation in the coinductive Herbrand model is true if and only if its
interpretation over the chain approximation of the Herbrand model is true.

Theorem 42. If ϕ is �-free (Definition 3) then �ϕ�←−−
ΦP

= �̇ if and only if
�ϕ�MP

= �.

Proof (sketch). First, one shows for all �-free formulae ϕ that L(�ϕ�←−−
ΦP

) =
�ϕ�MP

by induction on ϕ and using Proposition 41. Using this identity and
K � L, the result is then obtained from the following adjoint correspondence.

6 Conclusion, Related Work and the Future

In this paper, we provided a comprehensive theory of resolution in coinductive
Horn-clause theories and coinductive logic programs. This theory comprises of a
uniform proof system that features a form of guarded recursion and that provides

808 H. Basold et al.

operational semantics for proofs of coinductive predicates. Further, we showed
how to translate proofs in this system into proofs for an extension of intuitionistic
FOL with guarded recursion, and we provided sound semantics for both proof
systems in terms of coinductive Herbrand models. The Herbrand models and
semantics were thereby presented in a modern style that utilises coalgebras and
fibrations to provide a conceptual view on the semantics.

Related Work. It may be surprising that automated proof search for coinductive
predicates in first-order logic does not have a coherent and comprehensive theory,
even after three decades [3,60], despite all the attention that it received as pro-
gramming [2,29,42,44] and proof [33,35,39,40,45,59,64–67] method. The work
that comes close to algorithmic proof search is the system CIRC [63], but it can-
not handle general coinductive predicates and corecursive programming. Induc-
tive and coinductive data types are also being added to SMT solvers [24,62].
However, both CIRC and SMT solving are inherently based on classical logic
and are therefore not suited to situations where proof objects are relevant, like
programming, type class inference or (dependent) type theory. Moreover, the
proposed solutions, just like those in [41,69] can only deal with regular data,
while our approach also works for irregular data, as we saw in the from-example.

This paper subsumes Haskell type class inference [37,51] and exposes that
the inference presented in those papers corresponds to coinductive proofs in
co-fohc and co-hohh. Given that the proof systems proposed in this paper are
constructive and that uniform proofs provide proofs (type inhabitants) in normal
form, we could give a propositions-as-types interpretation to all eight coinductive
uniform proof systems. This was done for co-fohc and co-hohh in [37], but we
leave the remaining cube from the introduction for future work.

Future Work. There are several directions that we wish to pursue in the future.
First, we know that CUP is incomplete for the presented models, as it is intu-
itionistic and it lacks an admissible cut rule. The first can be solved by moving
to Kripke/Beth-models, as done by Clouston and Goré [30] for the propositional
part of iFOL�. However, the admissible cut rule is more delicate. To obtain
such a rule one has to be able to prove several propositions simultaneously by
coinduction, as discussed at the end of Sect. 4. In general, completeness of recur-
sive proof systems depends largely on the theory they are applied to, see [70]
and [18]. However, techniques from cyclic proof systems [27,68] may help. We also
aim to extend our ideas to other situations like higher-order Horn clauses [28,43]
and interactive proof assistants [7,10,23,31], typed logic programming, and logic
programming that mix inductive and coinductive predicates.

Acknowledgements. We would like to thank Damien Pous and the anonymous
reviewers for their valuable feedback.

Coinduction in Uniform 809

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. TCS 342(1), 3–27 (2005). https://doi.org/10.1016/j.tcs.2005.06.002

2. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: POPL 2013, pp. 27–38 (2013). https://doi.org/10.
1145/2429069.2429075

3. Aczel, P.: Non-well-founded sets. Center for the Study of Language and Informa-
tion, Stanford University (1988)

4. Aczel, P.: Algebras and coalgebras. In: Backhouse, R., Crole, R., Gibbons, J. (eds.)
Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.
LNCS, vol. 2297, pp. 79–88. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-47797-7 3

5. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. TCS 300(1–3), 1–45 (2003). https://doi.org/10.1016/
S0304-3975(02)00728-4

6. Adámek, J.: On final coalgebras of continuous functors. Theor. Comput. Sci.
294(1/2), 3–29 (2003). https://doi.org/10.1016/S0304-3975(01)00240-7

7. P.L. group on Agda: Agda Documentation. Technical report, Chalmers and
Gothenburg University (2015). http://wiki.portal.chalmers.se/agda/, version
2.4.2.5

8. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL, pp. 109–122. ACM (2007). https://
doi.org/10.1145/1190216.1190235

9. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
ICFP, pp. 197–208. ACM (2013). https://doi.org/10.1145/2500365.2500597

10. Baelde, D., et al.: Abella: a system for reasoning about relational specifications. J.
Formaliz. Reason. 7(2), 1–89 (2014). https://doi.org/10.6092/issn.1972-5787/4650

11. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Cam-
bridge University Press, Cambridge (2013)

12. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall Inter-
national Series in Computer Science, 2nd edn. Prentice Hall, Upper Saddle River
(1995). http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html

13. Basold, H.: Mixed inductive-coinductive reasoning: types, programs and logic.
Ph.D. thesis, Radboud University Nijmegen (2018). http://hdl.handle.net/2066/
190323

14. Basold, H.: Breaking the Loop: Recursive Proofs for Coinductive Predicates in
Fibrations. ArXiv e-prints, February 2018. https://arxiv.org/abs/1802.07143

15. Basold, H., Komendantskaya, E., Li, Y.: Coinduction in uniform: foundations for
corecursive proof search with horn clauses. Extended version of this paper. CoRR
abs/1811.07644 (2018). http://arxiv.org/abs/1811.07644

16. Beklemishev, L.D.: Parameter free induction and provably total com-
putable functions. TCS 224(1–2), 13–33 (1999). https://doi.org/10.1016/S0304-
3975(98)00305-3

17. Bénabou, J.: Fibered categories and the foundations of naive category theory. J.
Symb. Logic 50(1), 10–37 (1985). https://doi.org/10.2307/2273784

18. Berardi, S., Tatsuta, M.: Classical system of Martin-Löf’s inductive definitions is
not equivalent to cyclic proof system. In: Esparza, J., Murawski, A.S. (eds.) FoS-
SaCS 2017. LNCS, vol. 10203, pp. 301–317. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54458-7 18

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1007/3-540-47797-7_3
https://doi.org/10.1007/3-540-47797-7_3
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(01)00240-7
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.6092/issn.1972-5787/4650
http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html
http://hdl.handle.net/2066/190323
http://hdl.handle.net/2066/190323
https://arxiv.org/abs/1802.07143
http://arxiv.org/abs/1811.07644
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.2307/2273784
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1007/978-3-662-54458-7_18

810 H. Basold et al.

19. Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types
qua fixed points on universes. In: LICS, pp. 213–222. IEEE Computer Society
(2013). https://doi.org/10.1109/LICS.2013.27

20. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. In: Proceedings
of LICS 2011, pp. 55–64. IEEE Computer Society (2011). https://doi.org/10.1109/
LICS.2011.16

21. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49630-5 2. https://arxiv.org/abs/1601.01586

22. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

23. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform
(co)datatypes for Higher-Order Logic. In: LICS 2017, pp. 1–12. IEEE Computer
Society (2017). https://doi.org/10.1109/LICS.2017.8005071

24. Blanchette, J.C., Peltier, N., Robillard, S.: Superposition with datatypes and
codatatypes. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS
(LNAI), vol. 10900, pp. 370–387. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 25

25. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, vol. 1.
Cambridge University Press, Cambridge (2008)

26. Bottu, G., Karachalias, G., Schrijvers, T., Oliveira, B.C.D.S., Wadler, P.: Quanti-
fied class constraints. In: Haskell Symposium, pp. 148–161. ACM (2017). https://
doi.org/10.1145/3122955.3122967

27. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011). https://doi.org/10.1093/logcom/exq052

28. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses for ver-
ification. PACMPL 2(POPL), 11:1–11:28 (2018). https://doi.org/10.1145/3158099

29. Capretta, V.: General Recursion via Coinductive Types. Log. Methods Comput.
Sci. 1(2), July 2005. https://doi.org/10.2168/LMCS-1(2:1)2005

30. Clouston, R., Goré, R.: Sequent calculus in the topos of trees. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 133–147. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 9

31. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

32. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pac.
J. Math. 82(1), 43–57 (1979). http://projecteuclid.org/euclid.pjm/1102785059

33. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 26

34. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. J. Assoc. Comput. Mach. 23, 733–742 (1976). https://doi.org/10.1145/
321978.321991

35. Endrullis, J., Hansen, H.H., Hendriks, D., Polonsky, A., Silva, A.: A coinductive
framework for infinitary rewriting and equational reasoning. In: RTA 2015, pp.
143–159 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.143

https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/978-3-662-49630-5_2
https://arxiv.org/abs/1601.01586
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1109/LICS.2017.8005071
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1145/3158099
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
http://projecteuclid.org/euclid.pjm/1102785059
https://doi.org/10.1007/11944836_26
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://doi.org/10.4230/LIPIcs.RTA.2015.143

Coinduction in Uniform 811

36. Farka, F., Komendantskaya, E., Hammond, K.: Coinductive soundness of corecur-
sive type class resolution. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOP-
STR 2016. LNCS, vol. 10184, pp. 311–327. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63139-4 18

37. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
126–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3 9

38. Gambino, N., Kock, J.: Polynomial functors and polynomial monads. Math.
Proc. Cambridge Phil. Soc. 154(1), 153–192 (2013). https://doi.org/10.1017/
S0305004112000394

39. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-
016-9388-y

40. Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055070

41. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-
ming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol.
4670, pp. 27–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74610-2 4

42. Hagino, T.: A typed lambda calculus with categorical type constructors. In: Pitt,
D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science.
LNCS, vol. 283, pp. 140–157. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18508-9 24

43. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint optimiza-
tion. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 199–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 12

44. Howard, B.T.: Inductive, coinductive, and pointed types. In: Harper, R., Wexelblat,
R.L. (eds.) Proceedings of ICFP 1996, pp. 102–109. ACM (1996). https://doi.org/
10.1145/232627.232640

45. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization
in coinductive proof. In: Proceedings of POPL 2013, pp. 193–206. ACM (2013).
https://doi.org/10.1145/2429069.2429093

46. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

47. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316823187.
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

48. Komendantskaya, E., Li, Y.: Productive corecursion in logic programming. J.
TPLP (ICLP 2017 post-proc.) 17(5–6), 906–923 (2017). https://doi.org/10.1017/
S147106841700028X

49. Komendantskaya, E., Li, Y.: Towards coinductive theory exploration in horn clause
logic: Position paper. In: Kahsai, T., Vidal, G. (eds.) Proceedings 5th Workshop on
Horn Clauses for Verification and Synthesis, HCVS 2018, Oxford, UK, 13th July
2018, vol. 278, pp. 27–33 (2018). https://doi.org/10.4204/EPTCS.278.5

50. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press, Cambridge (1988)

51. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: ICFP 2005, pp. 204–215. ACM (2005). https://doi.org/10.
1145/1086365.1086391

https://doi.org/10.1007/978-3-319-63139-4_18
https://doi.org/10.1007/978-3-319-63139-4_18
https://doi.org/10.1007/978-3-319-29604-3_9
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/BFb0055070
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/232627.232640
https://doi.org/10.1145/232627.232640
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1017/CBO9781316823187
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.4204/EPTCS.278.5
https://doi.org/10.1145/1086365.1086391
https://doi.org/10.1145/1086365.1086391

812 H. Basold et al.

52. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-83189-8

53. Miller, D., Nadathur, G.: Programming with Higher-order logic. Cambridge Uni-
versity Press, Cambridge (2012)

54. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic 51(1–2), 125–157 (1991). https://
doi.org/10.1016/0168-0072(91)90068-W

55. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

56. Møgelberg, R.E.: A type theory for productive coprogramming via guarded
recursion. In: CSL-LICS, pp. 71:1–71:10. ACM (2014). https://doi.org/10.1145/
2603088.2603132

57. Nadathur, G., Mitchell, D.J.: System description: Teyjus—a compiler and abstract
machine based implementation of λProlog. CADE-16. LNCS (LNAI), vol. 1632, pp.
287–291. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 25

58. Nakano, H.: A modality for recursion. In: LICS, pp. 255–266. IEEE Computer
Society (2000). https://doi.org/10.1109/LICS.2000.855774

59. Niwinski, D., Walukiewicz, I.: Games for the μ-Calculus. TCS 163(1&2), 99–116
(1996). https://doi.org/10.1016/0304-3975(95)00136-0

60. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

61. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977). https://doi.org/10.1016/0304-3975(77)90044-5

62. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 5

63. Roşu, G., Lucanu, D.: Circular coinduction: a proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2 10

64. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000).
https://doi.org/10.1016/S0304-3975(00)00056-6

65. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

66. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 25

67. Santocanale, L.: μ-bicomplete categories and parity games. RAIRO - ITA 36(2),
195–227 (2002). https://doi.org/10.1051/ita:2002010

68. Shamkanov, D.S.: Circular proofs for the Gödel-Löb provability logic. Math. Notes
96(3), 575–585 (2014). https://doi.org/10.1134/S0001434614090326

69. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8 42

70. Simpson, A.: Cyclic arithmetic is equivalent to Peano arithmetic. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 17

71. Smoryński, C.: Self-Reference and Modal Logic. Universitext. Springer, New York
(1985). https://doi.org/10.1007/978-1-4613-8601-8

https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1007/3-540-48660-7_25
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1051/ita:2002010
https://doi.org/10.1134/S0001434614090326
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-1-4613-8601-8

Coinduction in Uniform 813

72. Solovay, R.M.: Provability interpretations of modal logic. Israel J. Math. 25(3),
287–304 (1976). https://doi.org/10.1007/BF02757006

73. Sulzmann, M., Stuckey, P.J.: HM(X) type inference is CLP(X) solving. J. Funct.
Program. 18(2), 251–283 (2008). https://doi.org/10.1017/S0956796807006569

74. Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
75. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-

meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60675-0 35

76. van den Berg, B., de Marchi, F.: Non-well-founded trees in categories. Ann. Pure
Appl. Logic 146(1), 40–59 (2007). https://doi.org/10.1016/j.apal.2006.12.001

77. Worrell, J.: On the final sequence of a finitary set functor. Theor. Comput. Sci.
338(1–3), 184–199 (2005). https://doi.org/10.1016/j.tcs.2004.12.009

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF02757006
https://doi.org/10.1017/S0956796807006569
https://doi.org/10.1007/3-540-60675-0_35
https://doi.org/10.1016/j.apal.2006.12.001
https://doi.org/10.1016/j.tcs.2004.12.009
http://creativecommons.org/licenses/by/4.0/

Author Index

Accattoli, Beniamino 410
Ahman, Danel 30
Alvarez-Picallo, Mario 525
Ariola, Zena M. 119

Balzer, Stephanie 611
Basold, Henning 783
Besson, Frédéric 499
Bi, Xuan 381
Blazy, Sandrine 499
Bocchi, Laura 583
Boutillier, Pierre 176
Buro, Samuele 293

Castellan, Simon 322
Chopra, Nikita 697
Cristescu, Ioana 176

D’Souza, Deepak 697
Dal Lago, Ugo 263
Dang, Alexandre 499
Downen, Paul 119
Dumitrescu, Victor 30

Eyers-Taylor, Alex 525

Feret, Jérôme 176
Fisher, Kathleen 205
Frumin, Dan 60
Fuhs, Carsten 752

Garg, Deepak 469
Gavazzo, Francesco 263
Giannarakis, Nick 30
Giarrusso, Paolo G. 553
Gilbert, Frederic 440
Gondelman, Léon 60
Gordon, Colin S. 88
Guerrieri, Giulio 410

Hawblitzel, Chris 30
Höfner, Peter 668
Hriţcu, Cătălin 30

Igarashi, Atsushi 353

Jensen, Thomas 499
Jourdan, Jacques-Henri 3
Journault, Matthieu 724

Komendantskaya, Ekaterina 783
Kop, Cynthia 752
Krebbers, Robbert 60
Kuru, Ismail 88

Leberle, Maico 410
Li, Yue 783

Markl, Michael 668
Martínez, Guido 30
Mastroeni, Isabella 293
McDermott, Dylan 235
Mével, Glen 3
Miné, Antoine 724
Murgia, Maurizio 583
Mycroft, Alan 235

Narasimhamurthy, Monal 30

Oliveira, Bruno C. d. S. 381
Ong, C.-H. Luke 525
Orchard, Dominic 147
Ouadjaout, Abdelraouf 724

Pai, Rekha 697
Paquet, Hugo 322
Paraskevopoulou, Zoe 30
Patrignani, Marco 469
Peyton Jones, Michael 525

Peyton Jones, Simon 119
Pfenning, Frank 611
Pit-Claudel, Clément 30
Pottier, François 3
Protzenko, Jonathan 30

Ramananandro, Tahina 30
Rastogi, Aseem 30
Régis-Gianas, Yann 553

Sakayori, Ken 640
Schrijvers, Tom 381
Schuster, Philipp 553
Sekiyama, Taro 353
Sullivan, Zachary 119
Swamy, Nikhil 30

Toninho, Bernardo 611
Tsukada, Takeshi 640

van Glabbeek, Rob 668
Vasconcelos, Vasco Thudichum 583
Vesely, Ferdinand 205

Wang, Meng 147
Wilke, Pierre 499

Xia, Li-yao 147
Xie, Ningning 381

Yoshida, Nobuko 583

816 Author Index

	ETAPS Foreword
	Preface
	Organization
	From Quadcopters to Helicopters: Formal Verification to Eliminate Exploitable Bugs (Abstract of Invited Talk)
	Contents
	Program Verification
	Time Credits and Time Receipts in Iris
	1 Introduction
	2 A User's Overview of Time Credits and Time Receipts
	2.1 Time Credits
	2.2 Time Receipts

	3 HeapLang and the Tick Translation
	4 Iris with Time Credits
	5 Iris with Time Receipts
	6 Marrying Time Credits and Time Receipts
	7 Application: Thunks in Iris-with-Time-Credits
	7.1 Concurrency and Reentrancy
	7.2 Implementation of Thunks
	7.3 Specification of Thunks in Iris-with-Time-Credits
	7.4 Proof of Thunks in Iris-with-Time-Credits

	8 Application: Union-Find in Iris$
	9 Discussion
	10 Related Work
	11 Conclusion
	References

	Meta-F: Proof Automation with SMT, Tactics, and Metaprograms
	1 Introduction
	2 Meta-F by Example
	2.1 Tactics for Individual Assertions and Partial Canonicalization
	2.2 Tactics for Entire VCs and Separation Logic
	2.3 Metaprogramming Verified Low-Level Parsers and Serializers

	3 The Design of Meta-F
	3.1 An Effect for Metaprogramming
	3.2 Executing Meta-F Metaprograms
	3.3 Syntax Inspection, Generation, and Quotation
	3.4 Specifying and Verifying Metaprograms

	4 Meta-F, Formally
	4.1 Correctness and Trusted Computing Base (TCB)
	4.2 Extracting Individual Assertions

	5 Executing Metaprograms Efficiently
	5.1 CBN and CBV Strong Reductions
	5.2 Native Plugins and Multi-language Interoperability

	6 Experimental Evaluation
	6.1 A Reflective Tactic for Partial Canonicalization
	6.2 Combining SMT and Tactics for the Parser Generator

	7 Related Work
	8 Conclusions
	References

	Semi-automated Reasoning About Non-determinism in C Expressions
	1 Introduction
	2 lMC: A Monadic Definitional Semantics of C
	2.1 The Source Language lMC
	2.2 The Target Language HeapLang
	2.3 The Monadic Definitional Semantics of lMC

	3 Separation Logic with Weakest Preconditions for lMC
	4 Soundness of Weakest Preconditions for lMC
	4.1 Weakest Preconditions for HeapLang
	4.2 Weakest Preconditions for Monadic Expressions
	4.3 Modeling the Heap
	4.4 Deriving the lMC Rules

	5 A Symbolic Executor for lMC
	5.1 Rules for Symbolic Execution
	5.2 An Algorithm for Symbolic Execution

	6 A Verification Condition Generator for lMC
	7 Discussion
	8 Related Work
	References

	Safe Deferred Memory Reclamation with Types
	1 Introduction
	2 Background and Motivation
	3 Semantics
	4 Type System and Programming Language
	4.1 RCU Type System for Write Critical Section
	4.2 Types in Action
	4.3 Type Rules

	5 Evaluation
	6 Soundness
	6.1 Proof

	7 Discussion and Related Work
	8 Conclusions
	References

	Language Design
	Codata in Action
	1 Introduction
	2 The Many Faces of Codata
	2.1 Church Encodings and Object-Oriented Programming
	2.2 Demand-Driven Programming
	2.3 Abstraction Mechanism
	2.4 Representing Pre- and Post-Conditions

	3 Inter-compilation of Core Calculi
	3.1 Syntax and Semantics
	3.2 Compiling Data to Codata: The Visitor Pattern
	3.3 Compiling Codata to Data: Tabulation
	3.4 Correctness
	3.5 Call-by-Value: Correcting the Evaluation Order
	3.6 Indexed Data and Codata Types: Type Equalities

	4 Compilation in Practice
	5 Related Work
	6 Conclusion
	References

	Composing Bidirectional Programs Monadically
	1 Introduction
	1.1 Further Examples of BX

	2 Monadic Bidirectional Programming
	2.1 Monadic Biparsers

	3 A Unifying Structure: Monadic Profunctors
	3.1 Constructing Monadic Profunctors
	3.2 Deriving Biparsers as Monadic Profunctor Pairs

	4 Reasoning about Bidirectionality
	4.1 Compositional Properties of Monadic Bidirectional Programming
	4.2 Quasicompositionality for Monadic Profunctors

	5 Monadic Bidirectional Programming for Lenses
	6 Monadic Bidirectional Programming for Generators
	7 Discussion and Related Work
	References

	Counters in Kappa: Semantics, Simulation, and Static Analysis
	1 Introduction
	2 Kappa
	2.1 Signature
	2.2 Site-Graphs
	2.3 Sliding Embeddings
	2.4 Rules

	3 Encoding Counters
	3.1 Encoding the Value of Counters as Unbounded Chains of Agents
	3.2 Encoding the Value of Counters as Circular Lists of Agents
	3.3 Correspondence
	3.4 Benchmarks

	4 Generic Abstraction of Reachable States
	4.1 Collecting Semantics
	4.2 Generic Abstraction
	4.3 Coalescent Product

	5 Numerical Abstraction
	5.1 Encoding States and Preconditions
	5.2 Encoding Rules
	5.3 Generic Numerical Abstract Domain
	5.4 Numerical Abstraction
	5.5 Benchmarks

	6 Conclusion
	References

	One Step at a Time
	1 Introduction
	2 Overview
	3 Big-Step Specifications
	3.1 Evaluator Definition Language

	4 Transformation Steps
	4.1 CPS Conversion
	4.2 Generalization of Continuations
	4.3 Argument Lifting in Continuations
	4.4 Continuations Switch Control Directly
	4.5 Defunctionalization
	4.6 Remove Self-recursive Tail-Calls
	4.7 Convert Continuations to Terms
	4.8 Inlining, Simplification and Conversion to Direct Style
	4.9 Removing Vacuous Continuations
	4.10 Detour: Generating Pretty-Big-Step Semantics
	4.11 Pretty-Printing
	4.12 Correctness

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Program Semantics
	Extended Call-by-Push-Value: Reasoning About Effectful Programs and Evaluation Order
	1 Introduction
	2 Extended Call-by-Push-Value
	2.1 Syntax
	2.2 Type System
	2.3 Equational Theory

	3 Call-by-Name and Call-by-Need
	3.1 The Equivalence at the Object (Internal) Level
	3.2 The Meta-level Equivalence

	4 An Effect System for Extended Call-by-Push-Value
	4.1 Effects
	4.2 Effect System and Signature
	4.3 Exploiting Effect-Dependent Equivalences

	5 Related Work
	6 Conclusions and Future Work
	References

	Effectful Normal Form Bisimulation
	1 Introduction
	2 From Applicative to Normal Form Bisimilarity
	3 Preliminaries: Monads and Algebraic Operations
	3.1 Algebraic Operations

	4 A Computational Call-by-value Calculus with Algebraic Operations
	5 Relators
	6 Effectful Eager Normal Form (Bi)simulation
	6.1 Congruence and Precongruence Theorems
	6.2 Soundness for Effectful Applicative (Bi)similarity
	6.3 Eager Normal Form (Bi)simulation Up-to Context
	6.4 Weak Head Normal Form (Bi)simulation

	7 Related Work
	8 Conclusion
	References

	On the Multi-Language Construction
	1 Introduction
	2 Background
	3 Combining Order-Sorted Theories
	3.1 The Initial Term Model

	4 Refining the Construction
	4.1 Subsort Polymorphic Boundary Functions
	4.2 Semantic-Only Boundary Functions

	5 Reduction to Order-Sorted Algebra
	6 An Example of Multi-Language Construction
	7 Concluding Remarks
	References

	Probabilistic Programming Inference via Intensional Semantics
	1 Introduction
	2 Probabilistic Programming
	2.1 Conditioning and Posterior Distribution
	2.2 A First-Order Probabilistic Programming Language
	2.3 Measure-Theoretic Semantics of Programs
	2.4 Exact Inference

	3 Approximate Inference via Intensional Semantics
	3.1 An Introduction to Approximate Inference
	3.2 Capturing Probabilistic Dependencies Using Event Structures
	3.3 Runtime Values and Dataflow Graphs
	3.4 Quantitative Dataflow Graphs

	4 Programs as Labelled Event Structures
	4.1 Composition of Probablistic Event Structures
	4.2 Interpretation of Programs

	5 An Inference Algorithm
	5.1 A Concrete Presentation of Probabilistic Dataflow Graphs
	5.2 Metropolis-Hastings
	5.3 Our Proposal Kernel

	6 Conclusion
	References

	Types
	Handling Polymorphic Algebraic Effects
	1 Introduction
	2 Overview
	2.1 Monomorphic Algebraic Effects and Handlers
	2.2 Polymorphic Algebraic Effects and Handlers
	2.3 Problem in Naive Combination with Let-Polymorphism
	2.4 Our Solution

	3 Surface Language: efflet
	3.1 Syntax
	3.2 Type System

	4 Intermediate Language: eff
	4.1 Syntax
	4.2 Semantics
	4.3 Type System
	4.4 Elaboration
	4.5 Properties

	5 Related Work
	5.1 Polymorphic Effects and Let-Polymorphism
	5.2 Algebraic Effects and Handlers

	6 Conclusion
	References

	Distributive Disjoint Polymorphism for Compositional Programming
	1 Introduction
	2 Compositional Programming
	2.1 A Finally Tagless Encoding in Haskell
	2.2 The SEDEL Encoding

	3 Semantics of the Fi+ Calculus
	3.1 Syntax and Semantics
	3.2 Disjointness
	3.3 Elaboration and Type Safety

	4 Algorithmic System and Decidability
	4.1 Algorithmic Subtyping Rules
	4.2 Decidability

	5 Establishing Coherence for Fi+
	5.1 The Challenge
	5.2 Impredicativity and Disjointness at Odds
	5.3 The Canonicity Relation for Fi+
	5.4 Establishing Coherence

	6 Related Work
	7 Conclusion and Future Work
	References

	Types by Need
	1 Introduction
	2 Closed -Calculi
	3 Preliminaries About Multi Types
	4 Types by Name
	4.1 CbN Correctness
	4.2 CbN Completeness
	4.3 CbN Model

	5 Types by Value
	5.1 CbV Correctness
	5.2 CbV Completeness

	6 Types by Need
	6.1 CbNeed Correctness
	6.2 CbNeed Completeness

	7 A New Fundamental Theorem for Call-by-Need
	8 Conclusions
	References

	Verifiable Certificates for Predicate Subtyping
	1 Introduction
	1.1 Extending Higher-Order Logic with Predicate Subtyping
	1.2 Contributions
	1.3 Related Works

	2 PVS-Core: A Minimal Extension of HOL with Predicate Subtyping
	2.1 Definitions
	2.2 A Minimal System Expressing Predicate Subtyping

	3 PVS-Cert: Verifiable Certificates for PVS-Core
	3.1 Definitions
	3.2 An Extension of -HOL
	3.3 Expressing Predicate Subtyping

	4 Properties of PVS-Cert
	5 Stratification in PVS-Cert
	6 A Type Preserving Reduction
	7 Strong Normalization and Cut Elimination
	7.1 Strong Normalization
	7.2 Cut Elimination in PVS-Cert

	8 Type-Checking in PVS-Cert
	9 Expressing PVS-Core in PVS-Cert
	9.1 An Erasing Function from PVS-Cert to PVS-Core
	9.2 Expressing PVS-Core Derivations as PVS-Cert Judgements
	9.3 Relating Conversion in PVS-Core and PVS-Cert
	9.4 Soundness of the Synthesis of Certificates

	10 Using PVS-Cert as a System of Verifiable Certificates for PVS-Core
	References

	Security and Incremental Computation
	Robustly Safe Compilation
	1 Introduction
	2 Robustly Safe Compilation
	2.1 Safety and Robust Safety
	2.2 Robustly Safe Compilation

	3 RSC via Trace-Based Backtranslation
	3.1 The Source Language RoyalBlueLU
	3.2 The Target Language RedOrangeLP
	3.3 Compiler from RoyalBlueLU to RedOrangeLP

	4 RSC via Bisimulation
	4.1 The Source Language RoyalBlueL
	4.2 The Target Language RedOrangeL
	4.3 Compiler from RoyalBlueL to RedOrangeL

	5 Fully Abstract Compilation
	5.1 Formalising Fully Abstract Compilation
	5.2 Towards a Fully Abstract Compiler from RoyalBlueLU to RedOrangeLP

	6 Related Work
	7 Conclusion
	References

	Compiling Sandboxes: Formally Verified Software Fault Isolation
	1 Introduction
	1.1 Software Fault Isolation
	1.2 Software Fault Isolation Through Compilation
	1.3 Challenges in Formally Verified SFI
	1.4 Contributions

	2 Background
	2.1 CompCert
	2.2 Portable Software Fault Isolation

	3 A Thread-Aware Sandbox
	4 Memory-Safe Masking
	4.1 Standard SFI Masking of Addresses
	4.2 Specialised Masking for 32-Bit Sandboxes
	4.3 Towards Well-Defined Pointer Arithmetic
	4.4 Arithmetisation of the Heap

	5 Enforcement of Control-Flow Integrity
	5.1 Relaxation of the Cminor SFI Property
	5.2 Control-Flow Integrity of Indirect Calls

	6 Safety and Security Proofs
	6.1 Security Proof
	6.2 Safety Proof

	7 SFI Runtime and Library
	7.1 Loading the SFI Application
	7.2 Monitoring Calls to the Runtime Library
	7.3 Communication via Global Variables

	8 Experiments
	8.1 Porting Quake
	8.2 PSFI Overhead: Impact of Sandboxing Primitives
	8.3 PSFI Overhead: Impact of Compiler Back-End
	8.4 PSFI Versus (P)NaCl

	9 Related Work
	10 Conclusion
	References

	Fixing Incremental Computation
	1 Introduction
	2 Change Actions and Derivatives
	2.1 Change Actions
	2.2 Derivatives
	2.3 Useful Facts About Change Actions and Derivatives
	2.4 Comparing Change Actions

	3 Posets and Boolean Algebras
	3.1 Posets
	3.2 Boolean Algebras

	4 Derivatives for Non-recursive Datalog
	4.1 Semantics of Datalog Formulae
	4.2 Differentiability of Datalog Formula Semantics
	4.3 Extensions to Datalog

	5 Changes on Functions
	5.1 Pointwise Functional Change Actions

	6 Directed-Complete Partial Orders and Fixpoints
	6.1 Dcpos
	6.2 Fixpoints

	7 Derivatives for Recursive Datalog
	7.1 Semantics of Datalog Programs
	7.2 Incremental Evaluation of Datalog

	8 Related Work
	8.1 Change Actions and Incremental Computation
	8.2 Datalog
	8.3 Differential -calculus
	8.4 Higher-Order Automatic Differentiation

	9 Conclusions and Future Work
	References

	Incremental -Calculus in Cache-Transfer Style
	1 Introduction
	2 ILC and CTS Primer
	2.1 Incrementalizing average via ILC
	2.2 Self-maintainability and Efficiency of Derivatives

	3 Formalization
	3.1 Syntax for λL
	3.2 The Source Language λAL
	3.3 Static Differentiation from λAL to λIAL
	3.4 A New Soundness Proof for Static Differentiation
	3.5 CTS Conversion
	3.6 Semantics of λCAL and λICAL
	3.7 Soundness of CTS Conversion

	4 Incrementalization Case Studies
	4.1 Averaging Bags of Integers
	4.2 Nested Loops over Two Sequences
	4.3 Indexed Joins of Two Bags
	4.4 Limitations and Future Work

	5 Related Work
	6 Conclusion
	References

	Concurrency and Distribution
	Asynchronous Timed Session Types
	1 Introduction
	2 Asynchronous Timed Session Types
	2.1 Type Formation

	3 Asynchronous Session Types Semantics and Subtyping
	3.1 Types in Isolation
	3.2 Asynchronous Timed Subtyping
	3.3 Types with Queues, and Their Composition

	4 Timed Asynchronous Duality
	5 A Calculus for Asynchronous Timed Processes
	6 Typing for Asynchronous Timed Processes
	7 Subject Reduction and Time Safety
	8 Conclusion and Related Work
	References

	Manifest Deadlock-Freedom for Shared Session Types
	1 Introduction
	2 Manifest Sharing
	3 Manifest Deadlock-Freedom
	3.1 Competition and Collaboration
	3.2 Type System
	3.3 Dining Philosophers in SILLS+
	3.4 Dynamics

	4 Extended Example: An Imperative Shared Queue
	5 Semantics
	5.1 Configuration Typing and Preservation
	5.2 Progress

	6 Additional Discussion
	7 Related Work
	8 Concluding Remarks
	References

	A Categorical Model of an i/o-typed -calculus
	1 Introduction
	2 A Polyadic, Asynchronous -calculus with i/o-types
	2.1 The F-calculus
	2.2 Equivalences on Processes

	3 Categorical Semantics
	3.1 Overview
	3.2 Compact Closed Freyd Category
	3.3 Interpretation
	3.4 Term Model
	3.5 Theory/Model Correspondence

	4 A Concurrent -calculus and (de)compilation
	4.1 The ch-calculus
	4.2 Translations Between ch and F
	4.3 Relation to Other Calculi and Translations

	5 Discussions
	6 Related Work
	7 Conclusion and Future Work
	References

	A Process Algebra for Link Layer Protocols
	1 Introduction
	2 A Non-probabilistic Subalgebra
	2.1 A Language for Sequential Processes
	2.2 A Language for Node Expressions
	2.3 A Language for Networks
	2.4 Results on the Process Algebra

	3 An Algebra for Link Layer Protocols
	4 Formalising Liveness Properties of Link Layer Protocols
	5 Modelling and Analysing the CSMA/CA Protocol
	5.1 A Formal Model for CSMA/CA
	5.2 The Hidden Station Problem
	5.3 A Formal Model for CSMA/CA with Virtual Carrier Sensing
	5.4 The Exposed Station Problem

	6 Related Work
	7 Conclusion
	References

	Program Analysis and Automated Verification
	Data Races and Static Analysis for Interrupt-Driven Kernels
	1 Introduction
	2 Overview
	3 Interrupt-Driven Programs
	4 Data Races and Happens-Before Ordering
	4.1 Data Races
	4.2 Disjoint Blocks and the Happens-Before Relation

	5 Sync-CFG Analysis for Interrupt-Driven Programs
	5.1 Sync-CFG
	5.2 Value Set Analysis

	6 Translation to Classical Lock-Based Programs
	6.1 Execution-Preserving Lock Translation
	6.2 A Lightweight Lock-Translation
	6.3 Lockset Analysis for Race Detection

	7 Analyzing the FreeRTOS Kernel Library
	7.1 Race Detection
	7.2 Region-Based Relational Analysis

	8 Related Work
	9 Conclusion
	References

	An Abstract Domain for Trees with Numeric Relations
	1 Introduction
	2 Syntax and Concrete Semantics
	3 Natural Term Abstraction by Tree Automata
	3.1 Value Abstraction
	3.2 Environment Abstraction

	4 Numerical Abstractions
	4.1 Heterogeneous Support
	4.2 Representation of Maps over Potentially Unbounded Sets

	5 Natural Term Abstraction by Numerical Constraints
	5.1 Hole Positions and Numerical Constraints
	5.2 Product of Tree Automata and Numerical Constraints
	5.3 Environment Abstraction

	6 Implementation and Example
	6.1 Implementation
	6.2 Examples of Analysis

	7 Related Works
	8 Conclusion
	References

	A Static Higher-Order Dependency Pair Framework
	1 Introduction
	2 Preliminaries
	2.1 Higher-Order Term Rewriting Using AFSMs
	2.2 Computability

	3 Restrictions
	3.1 Properly Applied AFSMs
	3.2 Accessible Function Passing AFSMs

	4 Static Higher-Order Dependency Pairs
	5 The Static Higher-Order DP Framework
	5.1 The Dependency Graph
	5.2 Processors Based on Reduction Triples
	5.3 Rule Removal Without Search for Orderings
	5.4 Subterm Criterion Processors
	5.5 Non-termination

	6 Conclusions and Future Work
	References

	Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses
	1 Introduction
	2 Preliminaries: Terms and Formulae
	3 Coinductive Uniform Proofs
	4 Coinductive Uniform Proofs and Intuitionistic Logic
	5 Herbrand Models and Soundness
	5.1 Coinductive Herbrand Models and Semantics of Terms
	5.2 Interpretation of Basic Intuitionistic First-Order Formulae
	5.3 Soundness of Coinductive Uniform Proofs for Herbrand Models
	5.4 Soundness of iFOL`3́9`42`"̇613A``45`47`"603A over Herbrand Models

	6 Conclusion, Related Work and the Future
	References

	Author Index

