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Preface

It was our privilege to serve as the program chairs for CAV 2020, the 32nd
International Conference on Computer-Aided Verification. CAV 2020 was held as a
virtual conference during July 21–24, 2020. The tutorial day was on July 20, 2020, and
the pre-conference workshops were held during July 19–20, 2020. Due to the
coronavirus disease (COVID-19) outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2020 received a very high number of submissions (240). We accepted 18 tool
papers, 4 case studies, and 43 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured invited talks by David Dill (Calibra) and
Pushmeet Kohli (Google DeepMind) as well as invited tutorials by Tevfik Bultan
(University of California, Santa Barbara) and Sriram Sankaranarayanan (University of
Colorado at Boulder). Furthermore, we continued the tradition of Logic Lounge, a
series of discussions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2020 hosted the following workshops:
Numerical Software Verification (NSV), Verified Software: Theories, Tools, and
Experiments (VSTTE), Verification of Neural Networks (VNN), Democratizing Soft-
ware Verification, Synthesis (SYNT), Program Equivalence and Relational Reasoning
(PERR), Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), Formal
Methods for Blockchains (FMBC), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee (PC) for CAV 2020 consisted of 85 members – a
committee of this size ensures that each member has to review a reasonable number of
papers in the allotted time. In all, the committee members wrote over 960 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2020 PC for their outstanding efforts in evalu-
ating the submissions and making sure that each paper got a fair chance. Like last
year’s CAV, we made the artifact evaluation mandatory for tool paper submissions and
optional but encouraged for the rest of the accepted papers. The Artifact Evaluation
Committee consisted of 40 reviewers who put in significant effort to evaluate each
artifact. The goal of this process was to provide constructive feedback to tool devel-
opers and help make the research published in CAV more reproducible. The Artifact



Evaluation Committee was generally quite impressed by the quality of the artifacts,
and, in fact, all accepted tools passed the artifact evaluation. Among the accepted
regular papers, 67% of the authors submitted an artifact, and 76% of these artifacts
passed the evaluation. We are also very grateful to the Artifact Evaluation Committee
for their hard work and dedication in evaluating the submitted artifacts. The evaluation
and selection process involved thorough online PC discussions using the EasyChair
conference management system, resulting in more than 2,000 comments.

CAV 2020 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2020 a success. First, we would like to thank Xinyu Wang and He Zhu for chairing the
Artifact Evaluation Committee and Jyotirmoy Deshmukh for local arrangements. We
also thank Zvonimir Rakamaric for chairing the workshop organization, Clark Barrett
for managing sponsorship, Thomas Wies for arranging student fellowships, and Yakir
Vizel for handling publicity. We also thank Roopsha Samanta for chairing the Men-
toring Committee. Last but not least, we would like to thank members of the CAV
Steering Committee (Kenneth McMillan, Aarti Gupta, Orna Grumberg, and Daniel
Kroening) for helping us with several important aspects of organizing CAV 2020.

We hope that you will find the proceedings of CAV 2020 scientifically interesting
and thought-provoking!

June 2020 Shuvendu K. Lahiri
Chao Wang
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Abstract. This paper presents the Neural Network Verification (NNV)
software tool, a set-based verification framework for deep neural networks
(DNNs) and learning-enabled cyber-physical systems (CPS). The crux
of NNV is a collection of reachability algorithms that make use of a vari-
ety of set representations, such as polyhedra, star sets, zonotopes, and
abstract-domain representations. NNV supports both exact (sound and
complete) and over-approximate (sound) reachability algorithms for ver-
ifying safety and robustness properties of feed-forward neural networks
(FFNNs) with various activation functions. For learning-enabled CPS,
such as closed-loop control systems incorporating neural networks, NNV
provides exact and over-approximate reachability analysis schemes for
linear plant models and FFNN controllers with piecewise-linear activa-
tion functions, such as ReLUs. For similar neural network control systems
(NNCS) that instead have nonlinear plant models, NNV supports over-
approximate analysis by combining the star set analysis used for FFNN
controllers with zonotope-based analysis for nonlinear plant dynamics
building on CORA. We evaluate NNV using two real-world case stud-
ies: the first is safety verification of ACAS Xu networks, and the second
deals with the safety verification of a deep learning-based adaptive cruise
control system.
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1 Introduction

Deep neural networks (DNNs) have quickly become one of the most widely used
tools for dealing with complex and challenging problems in numerous domains,
such as image classification [10,16,25], function approximation, and natural lan-
guage translation [11,18]. Recently, DNNs have been used in safety-critical cyber-
physical systems (CPS), such as autonomous vehicles [8,9,52] and air traffic col-
lision avoidance systems [21]. Although utilizing DNNs in safety-critical applica-
tions can demonstrate considerable performance benefits, assuring the safety and
robustness of these systems is challenging because DNNs possess complex non-
linear characteristics. Moreover, it has been demonstrated that their behavior
can be unpredictable due to slight perturbations in their inputs (i.e., adversarial
perturbations) [36].

Fig. 1. An overview of NNV and its major modules and components.

In this paper, we introduce the NNV (Neural Network Verification) tool,
which is a software framework that performs set-based verification for DNNs
and learning-enabled CPS, known colloquially as neural network control systems
(NNCS) as shown in Fig. 21. NNV provides a set of reachability algorithms that
can compute both the exact and over-approximate reachable sets of DNNs and
NNCSs using a variety of set representations such as polyhedra [40,53–56], star
sets [29,38,39,41], zonotopes [32], and abstract domain representations [33]. The
reachable set obtained from NNV contains all possible states of a DNN from
bounded input sets or of a NNCS from sets of initial states of a plant model.
NNV declares a DNN or a NNCS to be safe if, and only if, their reachable sets do
not violate safety properties (i.e., have a non-empty intersection with any state
satisfying the negation of the safety property). If a safety property is violated,

1 The source code for NNV is publicly available: https://github.com/verivital/nnv/.
A CodeOcean capsule [43] is also available: https://doi.org/10.24433/CO.0221760.
v1.

https://github.com/verivital/nnv/
https://doi.org/10.24433/CO.0221760.v1
https://doi.org/10.24433/CO.0221760.v1
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Table 1. Overview of major features available in NNV. Links refer to relevant files/-
classes in the NNV codebase. BN refers to batch normalization layers, FC to fully-
connected layers, AvgPool to average pooling layers, Conv to convolutional layers, and
MaxPool to max pooling layers.

Feature Exact analysis Over-approximate analysis

Components FFNN, CNN, NNCS FFNN, CNN, NNCS

Plant dynamics (for

NNCS)

Linear ODE Linear ODE, Nonlinear ODE

Discrete/Continuous

(for NNCS)

Discrete Time Discrete Time, Continuous Time

Activation functions ReLU, Satlin ReLU, Satlin, Sigmoid, Tanh

CNN Layers MaxPool, Conv, BN, AvgPool, FC MaxPool, Conv, BN, AvgPool, FC

Reachability methods Star, Polyhedron, ImageStar Star, Zonotope, Abstract-domain, ImageStar

Reachable

set/Flow-pipe

Visualization

Yes Yes

Parallel computing Yes Partially supported

Safety verification Yes Yes

Falsification Yes Yes

Robustness

verification (for

FFNN/CNN)

Yes Yes

Counterexample

generation

Yes Yes

NNV can construct a complete set of counter-examples demonstrating the set
of all possible unsafe initial inputs and states by using the star-based exact
reachability algorithm [38,41]. To speed up computation, NNV uses parallel
computing, as the majority of the reachability algorithms in NNV are more
efficient when executed on multi-core platforms and clusters.

NNV has been successfully applied to safety verification and robustness anal-
ysis of several real-world DNNs, primarily feedforward neural networks (FFNNs)
and convolutional neural networks (CNNs), as well as learning-enabled CPS. To
highlight NNV’s capabilities, we present brief experimental results from two
case studies. The first compares methods for safety verification of the ACAS
Xu networks [21], and the second presents safety verification of a learning-based
adaptive cruise control (ACC) system.

2 Overview and Features

NNV is an object-oriented toolbox written in Matlab, which was chosen in part
due to the prevalence of Matlab/Simulink in the design of CPS. NNV uses the
MPT toolbox [26] for polytope-based reachability analysis and visualization [40],
and makes use of CORA [3] for zonotope-based reachability analysis of nonlinear
plant models [38]. NNV also utilizes the Neural Network Model Transformation
Tool (NNMT) for transforming neural network models from Keras and Tensor-
flow into Matlab using the Open Neural Network Exchange (ONNX) format,
and the Hybrid Systems Model Transformation and Translation tool (HyST) [5]

https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nncs
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nncs
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/NonLinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/ReLU.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/SatLin.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/ReLU.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/SatLin.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/LogSig.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/TanSig.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/Conv2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/Conv2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
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Fig. 2. Architecture of a typical neural network control system (NNCS).

for plant configuration. NNV makes use of YALMIP [27] for some optimization
problems and MatConvNet [46] for some CNN operations.

The NNV toolbox contains two main modules: a computation engine and an
analyzer, shown in Fig. 1. The computation engine module consists of four sub-
components: 1) the FFNN constructor, 2) the NNCS constructor, 3) the reach-
ability solvers, and 4) the evaluator. The FFNN constructor takes a network
configuration file as an input and generates a FFNN object. The NNCS con-
structor takes the FFNN object and the plant configuration, which describes
the dynamics of a system, as inputs and then creates an NNCS object. Depend-
ing on the application, either the FFNN (or NNCS) object will be fed into a
reachability solver to compute the reachable set of the FFNN (or NNCS) from
a given initial set of states. Then, the obtained reachable set will be passed to
the analyzer module. The analyzer module consists of three subcomponents: 1)
a visualizer, 2) a safety checker, and 3) a falsifier. The visualizer can be called to
plot the obtained reachable set. Given a safety specification, the safety checker
can reason about the safety of the FFNN or NNCS with respect to the specifica-
tion. When an exact (sound and complete) reachability solver is used, such as the
star-based solver, the safety checker can return either “safe,” or “unsafe” along
with a set of counterexamples. When an over-approximate (sound) reachability
solver is used, such as the zonotope-based scheme or the approximate star-based
solvers, the safety checker can return either “safe” or “uncertain” (unknown).
In this case, the falsifier automatically calls the evaluator to generate simulation
traces to find a counterexample. If the falsifier can find a counterexample, then
NNV returns unsafe. Otherwise, it returns unknown. Table 1 shows a summary
of the major features of NNV.

3 Set Representations and Reachability Algorithms

NNV implements a set of reachability algorithms for sequential FFNNs and
CNNs, as well as NNCS with FFNN controllers as shown in Fig. 2. The reachable
set of a sequential FFNN is computed layer-by-layer. The output reachable set
of a layer is the input set of the next layer in the network.

3.1 Polyhedron [40]

The polyhedron reachability algorithm computes the exact polyhedron reach-
able set of a FFNN with ReLU activation functions. The exact reachability
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computation of layer L in a FFNN is done as follows. First, we construct the
affine mapping Ī of the input polyhedron set I, using the weight matrix W and
the bias vector b, i.e., Ī = W × I + b. Then, the exact reachable set of the
layer RL is constructed by executing a sequence of stepReLU operations, i.e.,
RL = stepReLUn(stepReLUn−1(· · · (stepReLU1(Ī)))). Since a stepReLU oper-
ation can split a polyhedron into two new polyhedra, the exact reachable set
of a layer in a FFNN is usually a union of polyhedra. The polyhedron reach-
ability algorithm is computationally expensive because computing affine map-
pings with polyhedra is costly. Additionally, when computing the reachable set,
the polyhedron approach extensively uses the expensive conversion between the
H-representation and the V-representation. These are the main drawbacks that
limit the scalability of the polyhedron approach. Despite that, we extend the
polyhedron reachability algorithm for NNCSs with FFNN controllers. However,
the propagation of polyhedra in NNCS may lead to a large degree of conserva-
tiveness in the computed reachable set [38].

3.2 Star Set [38,41] (code)

The star set is an efficient set representation for simulation-based verification of
large linear systems [6,7,42] where the superposition property of a linear system
can be exploited in the analysis. It has been shown in [41] that the star set is
also suitable for reachability analysis of FFNNs. In contrast to polyhedra, the
affine mapping and intersection with a half space of a star set is more easily com-
puted. NNV implements an enhanced version of the exact and over-approximate
reachability algorithms for FFNNs proposed in [41] by minimizing the number
of LP optimization problems that need to be solved in the computation. The
exact algorithm that makes use of star sets is similar to the polyhedron method
that makes use of stepReLU operations. However, it is much faster and more
scalable than the polyhedron method because of the advantage that star sets
have in affine mapping and intersection. The approximate algorithm obtains an
over-approximation of the exact reachable set by approximating the exact reach-
able set after applying an activation function, e.g., ReLU, Tanh, Sigmoid. We
refer readers to [41] for a detailed discussion of star-set reachability algorithms
for FFNNs.

We note that NNV implements enhanced versions of earlier star-based reach-
ability algorithms [41]. Particularly, we minimize the number of linear program-
ming (LP) optimization problems that must be solved in order to construct the
reachable set of a FFNN by quickly estimating the ranges of all of the states in
the star set using only the ranges of the predicate variables. Additionally, the
extensions of the star reachability algorithms to NNCS with linear plant mod-
els can eliminate the explosion of conservativeness in the polyhedron method
[38,39]. The reason behind this is that in star sets, the relationship between
the plant state variables and the control inputs is preserved in the computation
since they are defined by a unique set of predicate variables. We refer readers to
[38,39] for a detailed discussion of the extensions of the star-based reachability
algorithms for NNCSs with linear/nonlinear plant models.

https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
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3.3 Zonotope [32] (code)

NNV implements the zonotope reachability algorithms proposed in [32] for
FFNNs. Similar to the over-approximate algorithm using star sets, the zono-
tope algorithm computes an over-approximation of the exact reachable set of a
FFNN. Although the zonotope reachability algorithm is very fast and scalable, it
produces a very conservative reachable set in comparison to the star set method
as shown in [41]. Consequently, zonotope-based reachability algorithms are usu-
ally only more efficient for very small input sets. As an example it can be more
suitable for robustness certification.

3.4 Abstract Domain [33]

NNV implements the abstract domain reachability algorithm proposed in [33]
for FFNNs. NNV’s abstract domain reachability algorithm specifies an abstract
domain as a star set and estimates the over-approximate ranges of the states
based on the ranges of the new introduced predicate variables. We note that
better ranges of the states can be computed by solving LP optimization. How-
ever, better ranges come with more computation time.

3.5 ImageStar Set [37] (code)

NNV recently introduced a new set representation called the ImageStar for use
in the verification of deep convolutional neural networks (CNNs). Briefly, the
ImageStar is a generalization of the star set where the anchor and generator
vectors are replaced by multi-channel images. The ImageStar is efficient in the
analysis of convolutional layers, average pooling layers, and fully connected lay-
ers, whereas max pooling layers and ReLU layers consume most of the com-
putation time. NNV implements exact and over-approximate reachability algo-
rithms using the ImageStar for serial CNNs. In short, using the ImageStar, we
can analyze the robustness under adversarial attacks of the real-world VGG16
and VGG19 deep perception networks [31] that consist of >100 million param-
eters [37].

4 Evaluation

The experiments presented in this section were performed on a desktop with
the following configuration: Intel Core i7-6700 CPU @ 3.4 GHz 8 core Processor,
64 GB Memory, and 64-bit Ubuntu 16.04.3 LTS OS.

4.1 Safety Verification of ACAS Xu Networks

We evaluate NNV in comparison to Reluplex [22], Marabou [23], and ReluVal
[49], by considering the verification of safety property φ3 and φ4 of the ACAS Xu

https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
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neural networks [21] for all 45 networks.2 All the experiments were done using
4 cores for computation. The results are summarized in Table 2 where (SAT)
denotes the networks are safe, (UNSAT) is unsafe, and (UNK) is unknown.
We note that (UNK) may occur due to the conservativeness of the reachability
analysis scheme. Detailed verification results are presented in the appendix of
the extended version of this paper [44]. For a fast comparison with other tools,
we also tested a subset of the inputs for Property 1–4 on all the 45 networks. We
note that the polyhedron method [40] achieves a timeout on most of networks,
and therefore, we neglect this method in the comparison.

Verification Time. For property φ3, NNV’s exact-star method is about 20.7×
faster than Reluplex, 14.2× faster than Marabou, 81.6× faster than Marabou-
DnC (i.e., divide and conquer method). The approximate star method is 547×
faster than Reluplex, 374× faster than Marabou, 2151× faster than Marabou-
DnC, and 8× faster than ReluVal. For property φ4, NNV’s exact-star method
is 25.3× faster than Reluplex, 18.0× faster than Marabou, 53.4× faster than
Marabou-DnC, while the approximate star method is 625× faster than Reluplex,
445× faster than Marabou, 1321× faster than Marabou-DnC.

Table 2. Verification results of ACAS Xu networks.

ACAS XU φ3 SAT UNSAT UNK TIMEOUT TIME(s)

1 h 2 h 10 h

Reluplex 3 42 0 2 0 0 28454

Marabou 3 42 0 1 0 0 19466

Marabou DnC 3 42 0 3 3 1 111880

ReluVal 3 42 0 0 0 0 416

Zonotope 0 2 43 0 0 0 3

Abstract Domain 0 0 45 0 0 0 8

NNV Exact Star 3 42 0 0 0 0 1371

NNV Appr. Star 0 29 16 0 0 0 52

ACAS XU φ4

Reluplex 3 42 0 0 0 0 11880

Marabou 3 42 0 0 0 0 8470

Marabou DnC 3 42 0 2 2 0 25110

ReluVal 3 42 0 0 0 0 27

Zonotope 0 1 44 0 0 0 5

Abstract Domain 0 0 45 0 0 0 7

NNV Exact Star 3 42 0 0 0 0 470

NNV Appr. Star 0 32 13 0 0 0 19

2 We omit properties φ1 and φ2 for space and due to their long runtimes, but they
can be reproduced in the artifact.
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Conservativeness. The approximate star method is much less conservative
than the zonotope and abstract domain methods. This is illustrated since it can
verify more networks than the zonotope and abstract domain methods, and is
because it obtains a tighter over-approximate reachable set. For property φ3,
the zonotope and abstract domain methods can prove safety of 2/45 networks,
(4.44%) and 0/45 networks, (0%) respectively, while NNV’s approximate star
method can prove safety of 29/45 networks, (64.4%). For property φ4, the zono-
tope and abstract domain method can prove safety of 1/45 networks, (2.22%)
and 0/45 networks, (0.00%) respectively while the approximate star method can
prove safety of 32/45, (71.11%).

4.2 Safety Verification of Adaptive Cruise Control System

To illustrate how NNV can be used to verify/falsify safety properties of learning-
enabled CPS, we analyze a learning-based ACC system [1,38], in which the ego
(following) vehicle has a radar sensor to measure the distance to the lead vehicle
in the same lane, Drel, as well as the relative velocity of the lead vehicle, Vrel.
The ego vehicle has two control modes. In speed control mode, it travels at a
driver-specified set speed Vset = 30, and in spacing control mode, it maintains
a safe distance from the lead vehicle, Dsafe. We train a neural network with 5
layers of 20 neurons per layer with ReLU activation functions to control the ego
vehicle using a control period of 0.1 s.

We investigate safety of the learning-based ACC system with two types of
plant dynamics: 1) a discrete linear plant, and 2) a nonlinear continuous plant
governed by the following differential equations:

ẋlead(t) = vlead(t), v̇lead(t) = γlead, γ̇lead(t) = −2γlead(t) + 2alead − μv2
lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego, γ̇ego(t) = −2γego(t) + 2aego − μv2
ego(t),

where xlead(xego), vlead(vego) and γlead(γego) are the position, velocity and accel-
eration of the lead (ego) vehicle respectively. alead(aego) is the acceleration con-
trol input applied to the lead (ego) vehicle, and μ = 0.0001 is a friction param-
eter. To obtain a discrete linear model of the plant, we let μ = 0 and discretize
the corresponding linear continuous model using a zero-order hold on the inputs
with a sample time of 0.1 s (i.e., the control period).

Verification Problem. The scenario we are interested in is when the two vehi-
cles are operating at a safe distance between them and the ego vehicle is in
speed control mode. In this state the lead vehicle driver suddenly decelerates
with alead = −5 to reduce the speed. We want to verify if the neural network
controller on the ego vehicle will decelerate to maintain a safe distance between
the two vehicles. To guarantee safety, we require that Drel = xlead − xego ≥
Dsafe = Ddefault + Tgap × vego where Tgap = 1.4 s and Ddefault = 10. Our anal-
ysis investigates whether the safety requirement holds during the 5 s after the
lead vehicle decelerates. We consider safety of the system under the following
initial conditions: xlead(0) ∈ [90, 92], vlead(0) ∈ [20, 30], γlead(0) = γego(0) = 0,
vego(0) ∈ [30, 30.5], and xego ∈ [30, 31].
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Table 3. Verification results for ACC system with different plant models, where V T
is the verification time (in seconds).

v lead(0) Linear plant Nonlinear plant

Safety V T (s) Safety V T (s)

[29, 30] SAFE 9.60 UNSAFE 346.62

[28, 29] SAFE 9.45 UNSAFE 277.50

[27, 28] SAFE 9.82 UNSAFE 289.70

[26, 27] UNSAFE 17.80 UNSAFE 315.60

[25, 26] UNSAFE 19.24 UNSAFE 305.56

[24, 25] UNSAFE 18.12 UNSAFE 372.00

Verification Results. For linear dynamics, NNV can compute both the exact
and over-approximate reachable sets of the ACC system in bounded time steps,
while for nonlinear dynamics, NNV constructs an over-approximation of the
reachable sets. The verification results for linear and nonlinear models using the
over-approximate star method are presented in Table 3, which shows that safety
of the ACC system depends on the initial velocity of the lead vehicle. When
the initial velocity of the lead vehicle is smaller than 27 (m/s), the ACC system
with the discrete plant model is unsafe. Using the exact star method, NNV can
construct a complete set of counter-example inputs. When the over-approximate
star method is used, if there is a potential safety violation, NNV simulates the
system with 1000 random inputs from the input set to find counter examples. If
a counterexample is found, the system is UNSAFE, otherwise, NNV returns a
safety result of UNKNOWN. Figure 3 visualizes the reachable sets of the relative
distance Drel between two vehicles versus the required safe distance Dsafe over
time for two cases of initial velocities of the lead vehicle: vlead(0) ∈ [29, 30] and
vlead(0) ∈ [24, 25]. We can see that in the first case, Dref ≥ Dsafe for all 50
time steps stating that the system is safe. In the second case, Dref < Dsafe in
some control steps, so the system is unsafe. NNV supports a reachLive method
to perform analysis and reachable set visualization on-the-fly to help the user
observe the behavior of the system during verification.

The verification results for the ACC system with the nonlinear model are
all UNSAFE, which is surprising. Since the neural network controller of the
ACC system was trained with the linear model, it works quite well for the linear
model. However, when a small friction term is added to the linear model to form a
nonlinear model, the neural network controller’s performance, in terms of safety,
is significantly reduced. This problem raises an important issue in training neural
network controllers using simulation data, and these schemes may not work in
real systems since there is always a mismatch between the plant model in the
simulation engine and the real system.

Verification Times. As shown in Table 3, the approximate analysis of the ACC
system with discrete linear plant model is fast and can be done in 84 s. NNV
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Fig. 3. Two scenarios of the ACC system. In the first (top) scenario (vlead(0) ∈
[29, 30] m/s), safety is guaranteed, Drel ≥ Dsafe. In the second scenario (bottom)
(vlead(0) ∈ [24, 25] m/s), safety is violated since Dref < Dsafe in some control steps.

also supports exact analysis, but is computationally expensive as it constructs
all reachable states. Because there are splits in the reachable sets of the neu-
ral network controller, the number of star sets in the reachable set of the plant
increases quickly over time [38]. In contrast, the over-approximate method com-
putes the interval hull of all reachable sets at each time step, and maintains a
single reachable set of the plant throughout the computation. This makes the
over-approximate method faster than the exact method. In terms of plant mod-
els, the nonlinear model requires more computation time than the linear one. As
shown in Table 3, the verification for the linear model using the over-approximate
method is 22.7× faster on average than of the nonlinear model.

5 Related Work

NNV was inspired by recent work in the emerging fields of neural network and
machine learning verification. For the “open-loop” verification problem (verifica-
tion of DNNs), many efficient techniques have been proposed, such as SMT-based
methods [22,23,30], mixed-integer linear programming methods [14,24,28], set-
based methods [4,17,32,33,48,50,53,57], and optimization methods [51,58]. For
the “closed-loop” verification problem (NCCS verification), we note that the
Verisig approach [20] is efficient for NNCS with nonlinear plants and with Sig-
moid and Tanh activation functions. Additionally, the recent regressive polyno-
mial rule inference approach [34] is efficient for safety verification of NNCS with
nonlinear plant models and ReLU activation functions. The satisfiability mod-
ulo convex (SMC) approach [35] is also promising for NNCS with discrete linear
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plants, as it provides both soundness and completeness guarantees. ReachNN [19]
is a recent approach that can efficiently control the conservativeness in the reach-
ability analysis of NNCS with nonlinear plants and ReLU, Sigmoid, and Tanh
activation functions in the controller. In [54], a novel simulation-guided approach
has been developed to reduce significantly the computation cost for verifica-
tion of NNCS. In other learning-enabled systems, falsification and testing-based
approaches [12,13,45] have shown a significant promise in enhancing the safety
of systems where perception components and neural networks interact with the
physical world. Finally, there is significant related work in the domain of safe
reinforcement learning [2,15,47,59], and combining guarantees from NNV with
those provided in these methods would be interesting to explore.

6 Conclusions

We presented NNV, a software tool for the verification of DNNs and learning-
enabled CPS. NNV provides a collection of reachability algorithms that can be
used to verify safety (and robustness) of real-world DNNs, as well as learning-
enabled CPS, such as the ACC case study. For closed-loop systems, NNV can
compute the exact and over-approximate reachable sets of a NNCS with lin-
ear plant models. For NNCS with nonlinear plants, NNV computes an over-
approximate reachable set and uses it to verify safety, but can also automatically
falsify the system to find counterexamples.
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Abstract. Convolutional Neural Networks (CNN) have redefined state-
of-the-art in many real-world applications, such as facial recognition,
image classification, human pose estimation, and semantic segmentation.
Despite their success, CNNs are vulnerable to adversarial attacks, where
slight changes to their inputs may lead to sharp changes in their output
in even well-trained networks. Set-based analysis methods can detect or
prove the absence of bounded adversarial attacks, which can then be used
to evaluate the effectiveness of neural network training methodology.
Unfortunately, existing verification approaches have limited scalability
in terms of the size of networks that can be analyzed. In this paper, we
describe a set-based framework that successfully deals with real-world
CNNs, such as VGG16 and VGG19, that have high accuracy on Ima-
geNet. Our approach is based on a new set representation called the
ImageStar, which enables efficient exact and over-approximative analy-
sis of CNNs. ImageStars perform efficient set-based analysis by combin-
ing operations on concrete images with linear programming (LP). Our
approach is implemented in a tool called NNV, and can verify the robust-
ness of VGG networks with respect to a small set of input states, derived
from adversarial attacks, such as the DeepFool attack. The experimen-
tal results show that our approach is less conservative and faster than
existing zonotope and polytope methods.
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1 Introduction

Convolutional neural networks (CNN) have rapidly accelerated progress in com-
puter vision with many practical applications such as face recognition [19], image
classification [18], document analysis [21] and semantic segmentation. Recently,
it has been shown that CNNs are vulnerable to adversarial attacks, where a
well-trained CNN can be fooled into producing errant predictions due to tiny
changes in their inputs [9]. Many applications such as autonomous driving seek
to leverage the power of CNNs. However due the opaque nature of these models
there are reservations about using in safety-critical applications. Thus, there is
an urgent need for formally evaluating the robustness of a trained CNN.

Formal verification of deep neural networks (DNNs) has recently become an
important topic. The majority of existing approaches focus on verifying safety
and robustness properties of feedforward neural networks (FNN) with the Recti-
fied Linear Unit activation function (ReLU). These approaches include: mixed-
integer linear programming (MILP) [5,17,23], satisfiability (SAT) and satisfia-
bility modulo theory (SMT) techniques [7,15], optimization [6,11,22,42,44,51],
and geometric reachability [29,30,36,37,41,43,45,47,48,50]. Adjacent to these
methods are property inference techniques for DNNs, which are also an impor-
tant and interesting research area being investigated [10]. In a similar fashion,
the problem of verifying safety of cyber-physical systems (CPS) with learning-
enabled neural network components with imperfect plant models and sensing
information has recently attracted significant attention due to their real world
applications [1,12–14,24,31,32,35,46,49]. This research area views the safety
verification problem in a holistic manner by considering safety of the entire sys-
tem where learning-enabled components interact with the physical world.

Although numerous tools and methods have been proposed for neural net-
work verification, only a handful of methods can deal with CNNs [2,16,17,27,
29,30]. Moreover, in the aforementioned techniques, only one [27] can deal with
real-world CNNs, such as VGGNet [28]. Their approach makes used of the con-
cept of the L0 distance between two images. Their optimization-based approach
computes a tight bound on the number of pixels that may be changed in an image
without affecting the classification result of the network. It can also efficiently
generate adversarial examples that can be used to improve the robustness of
network. In a similar manner, this paper seeks to verify robustness of real-world
deep CNNs. Thus, we develop a set-based analysis method through the use of
the ImageStar, a new set representation that can represent an infinite family
of images. As an example, this representation can be used to represent a set
of images distorted by an adversarial attack. Using the ImageStar, we develop
both exact and over-approximate reachability algorithms to construct reachable
sets that contain all the possible outputs of a CNN under an adversarial attack.
These reachable sets are then used to reason about the overall robustness of
the network. When a CNN violates a robustness property, our exact reachabil-
ity scheme can construct a set of concrete adversarial examples. Our approach
differs from [27] in two primary ways. First, our method does not provide robust-
ness guarantees for a network in terms of the number of pixels that are allowed
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to be changed (in terms of L0 distance). Instead, we prove the robustness of
the network on images that are attacked by disturbances bounded by arbitrary
linear constraints. Second, our approach relies on reachable set computation of
a network corresponding to a bounded input set, as opposed to an optimization-
based approach. We implement these methods in the NNV tool [39] and compare
with the zonotope method used in DeepZ [29] and the polytope method used in
DeepPoly [30]. The experimental results indicate our method is less conservative
and faster than existing approaches when verifying robustness of CNNs.

The main contributions of the paper include the following. First is the
ImageStar set representation, which is an efficient representation for reacha-
bility analysis of CNNs. Second are exact and over-approximate reachability
algorithms for constructing reachable sets and verifying robustness of CNNs.
Third is the implementation of the ImageStar representation and reachability
algorithms in NNV [39]. Fourth is a rigorous evaluation and comparison of pro-
posed approaches, such as zonotope and polytope methods on different CNNs.

2 Problem Formulation

The reachability problem for CNNs is the task of analyzing a trained CNN with
respect to some perturbed input set in order to construct a set containing all
possible outputs of the network. In this paper, we consider the reachability of
a CNN N that consists of a series of layers L that may include convolutional
layers, fully connected layers, max-pooling layers, average pooling layers, and
ReLU activation layers. Mathematically, we define a CNN with n layers as N =
{Li}, i = 1, 2, . . . , n. The reachability of the CNN N is defined based on the
concept of reachable sets.

Definition 1 (Reachable set of a CNN). An (output) reachable set RN of
a CNN N = {Li}, i = 1, 2, . . . , n corresponding to a linear input set I is defined
incrementally as:

RL1 � {y1 | y1 = L1(x), x ∈ I},

RL2 � {y2 | y2 = L2(y1), y1 ∈ RL1},

...

RN = RLn
� {yn | yn = Ln−1(yn−1), yn−1 ∈ RLn−1},

where Li(·) is a function representing the operation of the ith layer.

The definition shows that the reachable set of the CNN N can be constructed
layer-by-layer. The core computation is constructing the reachable set of each
layer Li defined by a specific operation, i.e., convolution, affine mapping, max
pooling, average pooling, or ReLU.
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Fig. 1. An example of an ImageStar.

3 ImageStar

Definition 2. An ImageStar Θ is a tuple 〈c, V, P 〉 where c ∈ R
h×w×nc is the

anchor image, V = {v1, v2, · · · , vm} is a set of m images in R
h×w×nc called

generator images, P : R
m → {�,⊥} is a predicate, and h,w, nc are the height,

width, and number of channels of the images, respectively. The generator images
are arranged to form the ImageStar’s h × w × nc × m basis array. The set of
images represented by the ImageStar is:

�Θ� = {x | x = c + Σm
i=1(αivi) such that P (α1, · · · , αm) = �}.

Sometimes we will refer to both the tuple Θ and the set of states �Θ� as Θ. In
this work, we restrict the predicates to be a conjunction of linear constraints,
P (α) � Cα ≤ d where, for p linear constraints, C ∈ R

p×m, α is the vector of
m-variables, i.e., α = [α1, · · · , αm]T , and d ∈ R

p×1. A ImageStar is an empty
set if and only if P (α) is empty.

Example 1 (ImageStar). A 4 × 4 × 1 gray image with a bounded disturbance
b ∈ [−2, 2] applied on the pixel of the position (1, 2, 1) can be described as an
ImageStar depicted in Fig. 1.

Remark 1. An ImageStar is an extension of the generalized star set recently
defined in [3,4,37,38]. In a generalized star set, the anchor and the generators
are vectors, while in an ImageStar, the anchor and generators are images with
multiple channels. We will later show that the ImageStar is a very efficient rep-
resentation for the reachability analysis of convolutional layers, fully connected
layers, and average pooling layers.

Proposition 1 (Affine mapping of an ImageStar). An affine mapping of
an ImageStar Θ = 〈c, V, P 〉 with a scale factor γ and an offset image β is another
ImageStar Θ′ = 〈c′, V ′, P ′〉 in which the new anchor, generators and predicate
are as follows:

c′ = γ × c + β, V ′ = γ × V, P ′ ≡ P.

Note that, the scale factor γ can be a scalar or a vector containing scalar scale
factors in which each factor is used to scale one channel in the ImageStar.
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4 Reachability of CNN Using ImageStars

In this section, we present the reachable set computation for the convolutional,
average pooling, fully connected, batch normalization, max pooling, and ReLU
layers with respect to an input set consisting of an ImageStar.

4.1 Reachability of a Convolutional Layer

We consider a two-dimensional convolutional layer with following parameters:
the weights WConv2d ∈ R

hf ×wf ×nc×nf , the bias bConv2d ∈ R
1×1×nf , the padding

size P , the stride S, and the dilation factor D where hf , wf , nc are the height,
width, and the number of channels of the filters in the layer respectively. Addi-
tionally, nf is the number of filters. The reachability of a convolutional layer is
given in the following lemma.

Lemma 1. The reachable set of a convolutional layer with an ImageStar input
set I = 〈c, V, P 〉 is another ImageStar I ′ = 〈c′, V ′, P 〉 where c′ = Convol(c) is
the convolution operation applied to the anchor image, V ′ = {v′

1, . . . , v
′
m}, v′

i =
ConvolZeroBias(vi) is the convolution operation with zero bias applied to the
generator images, i.e., only using the weights of the layer.

Proof. Any image in the ImageStar input set is a linear combination of the center
and basis images. For any filter in the layer, the convolution operation applied
to the input image performs local element-wise multiplication of a local matrix
(of all channels) containing the values of the local pixels of the image and the
weights of the filter and then combine the result with the bias to get the output
for that local region. Due to the linearity of the input image, we can perform the
convolution operation with the bias on the center and the convolution operation
with zero bias on the basis images and then combine the result to get the output
image.

Example 2 (Reachable set of a convolutional layer). The reachable set of a convo-
lutional layer with single 2×2 filter and the ImageStar input set in Example 1 is

described in Fig. 2, where the weights and the bias of the filter are W =
[

1 1
−1 0

]
,

b = −1 respectively, the stride is S = [2 2], the padding size is P = [0 0 0 0] and
the dilation factor is D = [1 1].

4.2 Reachability of an Average Pooling Layer

The reachability of an average pooling layer with pooling size PS, padding size
P , and stride S is given below, with its proof similar to that of the convolutional
layer.

Lemma 2. The reachable set of a average pooling layer with an ImageStar input
set I = 〈c, V, P 〉 is another ImageStar I ′ = 〈c′, V ′, P 〉 where c′ = average(c),
V ′ = {v′

1, . . . , v
′
m}, v′

i = average(vi), average(·) is the average pooling operation
applied to the anchor and generator images.



Verification of Deep Convolutional Neural Networks Using ImageStars 23

Fig. 2. Reachability of convolutional layer using ImageStar.

Example 3 (Reachable set of an average pooling layer). The reachable set of an
2× 2 average pooling layer with padding size P = [0 0 0 0], stride S = [2 2], and
an ImageStar input set given by Example 1 is shown in Fig. 3.

Fig. 3. Reachability of average pooling layer using ImageStar.

4.3 Reachability of a Fully Connected Layer

The reachability of a fully connected layer is stated in the following lemma.

Lemma 3. Given a two-dimensional fully connected layer with weight Wfc ∈
R

nfc×mfc , bias bfc ∈ R
nfc , and an ImageStar input set I = 〈c, V, P 〉, the reach-

able set of the layer is another ImageStar I ′ = 〈c′, V ′, P 〉 where c′ = W ∗ c̄ + b,
V ′ = {v′

1, . . . , v
′
m}, v′

i = Wfc ∗ v̄i, c̄(v̄i) = reshape(c(vi), [mfc, 1]). Note that it
is required for consistency between the ImageStar and the weight matrix that
mfc = h × w × nc, where h,w, nc are the height, width and number of channels
of the ImageStar.

Proof. Similar to the convolutional layer and the average pooling layer, for any
image in the ImageStar input set, the fully connected layer performs an affine
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mapping of the input image which is a linear combination of the center and the
basis images of the ImageStar. Due to the linearity, the affine mapping of the
input image can be decomposed into the affine mapping of the center image and
the affine mapping without the bias of the basis images. The final result is the
sum of the individual affine maps.

4.4 Reachability of a Batch Normalization Layer

In the prediction phase, a batch normalization layer normalizes each input chan-
nel xi using the mean µ and variance σ2 over the full training set. Then the batch
normalization layer further shifts and scales the activations using the offset β and
the scale factor γ that are learnable parameters. The formula for normalization
is as follows:

x̄i =
xi − µ√
σ2 + ε

, yi = γx̄i + β,

where ε is a used to prevent division by zero. The batch normalization layer
can be described as a tuple B = 〈µ, σ2, ε, γ, β〉. The reachability of a batch
normalization layer with an ImageStar input set is given in the following lemma.

Lemma 4. The reachable set of a batch normalization layer B = 〈µ, σ2, ε, γ, β〉
with an ImageStar input set I = 〈c, V, P 〉 is another ImageStar I ′ = 〈c′, V ′, P ′〉
where:

c′ =
γ√

σ2 + ε
c + β − γ√

σ2 + ε
µ, V ′ =

γ√
σ2 + ε

V, P ′ ≡ P.

The reachable set of a batch normalization layer can be obtained in a straight-
forward fashion using two affine mappings of the ImageStar input set.

4.5 Reachability of a Max Pooling Layer

Reachability of max pooling layer with an ImageStar input set is challenging
because the value of each pixel in an image in the ImageStar depends on the pred-
icate variables αi. Therefore, the local max point when applying max-pooling
operation may change with the values of the predicate variables. In this section,
we investigate the exact reachability and over-approximate reachability of a max
pooling layer with an ImageStar input set. The first obtains the exact reachable
set while the second constructs an over-approximate reachable set.

Exact Reachability of a Max Pooling Layer. The central idea in the exact
analysis of the max-pooling layer is finding a set of local max point candidates
when we apply the max pooling operation on the image. We consider the max
pooling operation on the ImageStar in Example 1 with a pool size of 2 × 2,
a padding size of P = [0 0 0 0], and a stride S = [2 2] to clarify the exact
analysis step-by-step. First, the max-pooling operation is applied on 4 local
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Fig. 4. Exact reachability of max pooling layer using ImageStars.

regions I, II, III, IV , as shown in Fig. 4. The local regions II, III, IV have only
one max point candidate whic is the pixel that has the maximum value in the
region. It is interesting to note that region I has two max point candidates at
the positions (1, 2, 1) and (2, 2, 1) and these candidates correspond to different
conditions of the predicate variable α. For example, the pixel at the position
(1, 2, 1) is the max point if and only if 4 + α × 1 ≥ 3 + α × 0. Note that with
−2 ≤ α ≤ 2, we always have 4 + α ∗ 1 ≥ 2 + α × 0 ≥ 0 + α × 0. Since the local
region I has two max point candidates, and other regions have only one, the
exact reachable set of the max-pooling layer is the union of two new ImageStars
Θ1 and Θ2. In the first reachable set Θ1, the max point of the region I is
(1, 2, 1) with an additional constraint on the predicate variable α ≥ −1. For
the second reachable set Θ2, the max point of the region I is (2, 2, 1) with an
additional constraint on the predicate variable α ≤ −1. One can see that from
a single ImageStar input set, the output reachable set of the max-pooling layer
is split into two new ImageStars. Therefore, the number of ImageStars in the
reachable set of the max-pooling layer may grow quickly if each local region has
more than one max point candidates. The worst-case complexity of the number
of ImageStars in the exact reachable set of the max-pooling layer is given in
Lemma 5. The exact reachability algorithm is presented in the Appendix of the
extended version of this paper [33].

Lemma 5. The worst-case complexity of the number of ImageStars in the exact
reachability of the max pooling layer is O(((p1 × p2)h×w)nc) where [h,w, nc] is
the size of the ImageStar output sets, and [p1, p2] is the size of the max-pooling
layer.
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Proof. An image in the ImageStar output set has h × w pixels in each channel.
For each pixel, in the worst case, there are p1 × p2 candidates. Therefore, the
number of ImageStars in the output set in the worst case is O(((p1 ×p2)h×w)nc).

Fig. 5. Over-approximate reachability of max pooling layer using ImageStar.

Finding a set of local max point candidates is the core computation in the
exact reachability of max-pooling layer. To optimize this computation, we divide
the search for the local max point candidates into two steps. The first one is to
estimate the ranges of all pixels in the ImageStar input set. We can solve hI ×
wI ×nc linear programming optimizations to find the exact ranges of these pixels,
where [hI , wI , nc] is the size of the input set. However, unfortunately this is a
time-consuming computation. For example, if a single linear optimization
can be done in 0.01 s, for an ImageStar of the size 224×224×32, we need
about 10h to find the ranges of all pixels. To overcome this bottleneck,
we quickly estimate the ranges using only the ranges of the predicate variables
to get rid of a vast amount of non-max-point candidates. In the second step,
we solve a much smaller number of LP optimizations to determine the exact set
of the local max point candidates and then construct the ImageStar output set
based on these candidates.

Lemma 5 shows that the number of ImageStars in the exact reachability anal-
ysis of a max-pooling layer may grow exponentially. To overcome this problem,
we propose the following over-approximate reachability method.



Verification of Deep Convolutional Neural Networks Using ImageStars 27

Over-Approximate Reachability of a Max Pooling Layer. The central
idea of the over-approximate analysis of the max-pooling layer is that if a local
region has more than one max point candidates, we introduce a new predicate
variable standing for the max point of that region. We revisit the example intro-
duced earlier in the exact analysis to clarify this idea. Since the first local region I
has two max point candidates, we introduce new predicate variable β to represent
the max point of this region by adding three new constraints: 1) β ≥ 4+α∗1, i.e.,
β must be equal or larger than the value of the first candidate ; 2) β ≥ 3+α ∗ 0,
i.e., β must be equal or larger than the value of the second candidate; 3) β ≤ 6,
i.e., β must be equal or smaller than the upper bound of the pixels values in
the region. With the new predicate variable, a single over-approximate reachable
set Θ′ can be constructed in Fig. 5. The approximate reachability algorithm is
presented in the Appendix of the extended version of this paper [33].

Lemma 6. The worst-case complexity of the new predicate variables introduced
in the over-approximate analysis is O(h × w × nc) where [h,w, nc] is the size of
the ImageStar output set.

4.6 Reachability of a ReLU Layer

Similar to max-pooling layer, the reachability analysis of a ReLU layer is also
challenging because the value of each pixel in an ImageStar may be smaller
than zero or larger than zero depending on the values of the predicate variables
(ReLU(x) = max(0, x)). In this section, we investigate the exact and over-
approximate reachability algorithms for a ReLU layer with an ImageStar input
set. The techniques we use in this section are adapted from in [37].

Exact Reachability of a ReLU Layer. The central idea of the exact anal-
ysis of a ReLU layer with an ImageStar input set is performing a sequence of
stepReLU operations over all pixels of the ImageStar input set. Mathematically,
the exact reachable set of a ReLU layer L can be computed as follows.

RL = stepReLUN (stepReLUN−1(. . . (stepReLU1(I)))),

where N is the total number of pixels in the ImageStar input set I. The
stepReLUi operation determines whether or not a split occurs at the ith pixel.
If the pixel value is larger than zero, then the output value of that pixel remains
the same. If the pixel value is smaller than zero than the output value of that
pixel is reset to be zero. The challenge is that the pixel value depends on the
predicate variables. Therefore, there is the case that the pixel value may be neg-
ative or positive with an extra condition on the predicate variables. In this case,
we split the input set into two intermediate ImageStar reachable sets and apply
the ReLU law on each intermediate reach set. An example of the stepReLU
operation on an ImageStar is illustrated in Fig. 6. The value of the first pixel
value −1 + α would be larger than zero if α ≤ 1, and in this case we have
ReLU(−1+α) = −1+α. If α <= 1, then ReLU(−1+α) = 0+α×0. Therefore,
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Fig. 6. stepReLU operation on an ImageStar.

the first stepReLU operation produces two intermediate reachable sets Θ1 and
Θ2, as shown in the figure. The number of ImageStars in the exact reachable set
of a ReLU layer increases quickly along with the number of splits in the analysis,
as stated in the following lemma.

Lemma 7. The worst-case complexity of the number of ImageStars in the exact
analysis of a ReLU layer is O(2N ), where N is the number of pixels in the
ImageStar input set.

Proof. There are h × w × nc local regions in the approximate analysis. In the
worst case, we need to introduce a new variable for each region. Therefore, the
worst case complexity of new predicate variables introduced is O(h × w × nc).

Similar to [37], to control the explosion in the number of ImageStars in the
exact reachable set of a ReLU layer, we propose an over-approximate reachability
algorithm in the following.

Over-Approximate Reachability of a ReLU Layer. The idea behind the
over-approximate reachability of ReLU layer is replacing the stepReLU operation
at each pixel in the ImageStar input set by an approxStepReLU operation. At
each pixel where a split occurs, we introduce a new predicate variable to over-
approximate the result of the stepReLU operation at that pixel. An example of
the overStepReLU operation on an ImageStar is depicted in Fig. 7 in which the
first pixel of the input set has the ranges of [l1 = −3, u1 = 1] indicating that
a split occurs at this pixel. To avoid this split, we introduce a new predicate
variable β to over-approximate the exact intermediate reachable set (i.e., two
blue segments in the figure) by a triangle. This triangle is determined by three
constraints: 1) β ≥ 0 (the ReLU(x) ≥ 0 for any x); 2) β ≥ −1+α (ReLU(x) ≥ x
for any x); 3) β ≤ 0.5+0.25α (upper bound of the new predicate variable). Using
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Fig. 7. approxStepReLU operation on an ImageStar.

this over-approximation, a single intermediate reachable set Θ′ is produced as
shown in the figure. After performing a sequence of approxStepReLU operations,
we obtain a single over-approximate ImageStar reachable set for the ReLU layer.
However, the number of predicate variables and the number of constraints in the
obtained reachable set increase.

Lemma 8. The worst case complexity of the increment of predicate variables
and constraints is O(N) and O(3 × N) respectively, where N is the number of
pixels in the ImageStar input set.

Proof. In the worst case, splits occur at all N pixels in the ImageStar input set.
In this case, we need to introduce N new predicate variables to over-approximate
the exact intermediate reachable set. For each new predicate variable, we add 3
new constraints.

One can see that determining where splits occur is crucial in the exact and
over-approximate analysis of a ReLU layer. To do this, we need to know the
ranges of all pixels in the ImageStar input set. However, as mentioned earlier,
the computation of the exact range is expensive. To reduce the computation
cost, we first use the estimated ranges of all pixels to remove a vast amount of
non-splitting pixels. Then, we compute exact ranges for the pixels where splits
may occur to compute the exact or over-approximate reachable set of the layer.

4.7 Reachabilty Algorithm and Parallelization

We have presented the core ideas for reachability analysis of different types of
layers in a CNN. The reachable set of a CNN is constructed layer-by-layer in
which the output reachable set of the previous layer is the input for the next
layer. For the convolutional layer, average pooling layer and fully connected
layer, we always can compute efficiently the exact reachable set of each layer.
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Algorithm 1. Reachability analysis for a CNN.
Input: N = {Li}n

1 , I, scheme (’exact’ or ’approx’)
Output: RN
1: procedure RN = reach(N , I, scheme)
2: In = I
3: parfor i = 1 : n do In = Li.reach(In, scheme)
4: end parfor
5: RN = In

For the max pooling layer and ReLU layer, we can compute both the exact and
the over-approximate reachable sets. However, the number of ImageStars in the
exact reachable set may grow quickly. Therefore, in the exact analysis, a
layer may receive multiple input sets which can be handled in parallel
to speed up the computation time . The reachability algorithm for a CNN
is summarized in Algorithm 1. The detailed implementation of the reachability
algorithm for each layer can be found in NNV [34,39].

5 Evaluation

The proposed reachability algorithms are implemented in NNV [39], a tool for
verification of deep neural networks and learning-enabled CPS. NNV utilizes core
functions in MatConvNet [40] for the analysis of several layers. The evaluation
of our approach consists of two parts. First, we evaluate robustness verification
of deep neural networks in comparison to zonotope [29] and polytope methods
[30] that are re-implemented in NNV. Second, we evaluate the scalability of our
approach and the DeepPoly polytope method using real-world image classifiers,
VGG16, and VGG19 [28]. The experiments are done on a computer with follow-
ing configurations: Intel Core i7-6700 CPU @ 3.4GHz × 8 Processor, 62.8 GiB
Memory, Ubuntu 18.04.1 LTS OS.1 Lastly, we present a comparison with ERAN-
DeepZ method on their ConvMaxPool network trained on the CIFAR-10 data
set in the Appendix of the extended version of this paper [33].

5.1 Robustness Verification of MNIST Classification Networks

We compare our approach with the zonotope and polytope methods in two
aspects including verification time and conservativeness of the results. To
do that, we train 3 CNNs in small, medium, and large architectures with
98%, 99.7%, and 99.9% accuracy, respectively, using the MNIST data set consist-
ing of 60000 images of handwritten digits with a resolution of 28×28 pixels [20].
The network architectures are given in the Appendix of the extended version of
this paper [33].

1 Comparison code is available in the NNV repository: https://github.com/verivital/
nnv/tree/cav2020imagestar/code/nnv/examples/Submission/CAV2020 ImageStar
and as a CodeOcean capsule [34]: https://doi.org/10.24433/CO.3351375.v1.

https://github.com/verivital/nnv/tree/cav2020imagestar/code/nnv/examples/Submission/CAV2020_ImageStar
https://github.com/verivital/nnv/tree/cav2020imagestar/code/nnv/examples/Submission/CAV2020_ImageStar
https://doi.org/10.24433/CO.3351375.v1
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Fig. 8. Example output ranges of the small MNIST classification network using differ-
ent approaches.

The networks classify images into ten classes: 0, 1, . . . , 9. The classified output
is the index of the dimension that has maximum value, i.e., the argmax across
the 10 outputs. We evaluate the robustness of the network under the well-known
brightening attack used in [8]. The idea of a brightening attack is that we can
change the value of some pixels independently in the image to make it brighter
or darker to fool the network, to misclassify the image. In this case study, we
darken a pixel of an image if its value xi (between 0 and 255) is larger than a
threshold d, i.e., xi ≥ d. Mathematically, we reduce the value of that pixel xi to
the new value x′

i such that 0 ≤ x′
i ≤ δ × xi.

The robustness verification is done as follows. We select 100 images that are
correctly classified by the networks and perform the brightening attack on these,
which are then used to evaluate the robustness of the networks. A network is
robust to an input set if, for any attacked image, this is correctly classified by
the network. We note that the input set contains an infinite number of images.
Therefore, to prove the robustness of the network to the input set, we first
compute the output set containing all possible output vectors of the network
using reachability analysis. Then, we prove that in the output set, the correctly
classified output always has the maximum value compared with other outputs.
Note that we can neglect the softmax and classoutput layers of the networks in
the analysis since we only need to know the maximum output in the output set
of the last fully connected layer in the networks to prove the robustness of the
network.

We are interested in the percentage of the number of input sets that a net-
work is provably robust and the verification times of different approaches under
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different values of d and θ. When d is small, the number of pixels in the image
that are attacked is large and vice versa. For example, the average number of
pixels attacked (computed on 100 cases) corresponding to d = 250, 245 and 240
are 15, 21 and 25 respectively. The value of δ dictates the size of the input set
that can be created by a specific attack. Stated differently it dictates the range in
which the value of a pixel can be changed. For example, if d = 250 and δ = 0.01,
the value of an attacked pixel many range from 0 to 2.55.

Table 1. Verification results of the small MNIST CNN.

Robustness results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 86.00 87.00 84.00 87.00 83.00 87.00

d = 245 77.00 78.00 72.00 78.00 70.00 77.00

d = 240 72.00 73.00 67.00 72.00 65.00 71.00

Verification times (in Seconds)

d = 250 11.24 16.28 18.26 28.19 26.42 53.43

d = 245 14.84 19.44 24.96 40.76 38.94 85.97

d = 240 18.29 25.77 33.59 64.10 54.23 118.58

Table 2. Verification results of the medium MNIST CNN.

Robustness results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 86.00 99.00 73.00 99.00 65.00 99.00

d = 245 74.00 95.00 58.00 95.00 46.00 95.00

d = 240 69.00 90.00 49.00 89.00 38.00 88.00

Verification times (in Seconds)

d = 250 213.86 52.09 627.14 257.12 1215.86 749.41

d = 245 232.81 68.98 931.28 295.54 2061.98 1168.31

d = 240 301.58 102.61 1451.39 705.03 3148.16 2461.89

The experiments show that using the zonotope method, we cannot prove
the robustness of any network. The reason is that the zonotope method obtains
very conservative reachable sets. Figure 8 illustrates the ranges of the outputs
computed by our ImageStar (approximate scheme), the zonotope and polytope
approaches when we attack a digit 0 image with brightening attack in which
d = 250 and δ = 0.05. One can see that, using ImageStar and polytope method,
we can prove that the output corresponding to the digit 0 is the one that has a
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maximum value, which means that the network is robust in this case. However,
the zonotope method produces very large output ranges that cannot be used to
prove the robustness of the network. The figure also shows that our ImageStar
method produces tighter ranges than the polytope method, which means our
result is less conservative than the one obtained by the polytope method. We note
that the zonotope method is very time-consuming. It needs 93 s to compute the
reachable set of the network in this case, while the polytope method only needs
0.3 s, and our approximate ImageStar method needs 0.74 s. The main reason is
that the zonotope method introduces many new variables when constructing the
reachable set of the network, which results in the increase in both computation
time and conservativeness.

Table 3. Verification results of the large MNIST CNN.

Robustness results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 90.00 99.00 83.00 99.00 MemErr 99.00

d = 245 91.00 100.00 75.00 100.00 MemErr 100.00

d = 240 81.00 99.00 MemErr 99.00 MemErr 99.00

Verification times (in Seconds)

d = 250 917.23 67.45 5221.39 231.67 MemErr 488.69

d = 245 1420.58 104.71 6491.00 353.02 MemErr 1052.87

d = 240 1872.16 123.37 MemErr 476.67 MemErr 1522.50

The comparison of the polytope and our ImageStar method is given in
Tables 1, 2, and 3. The tables show that in all networks, our method is less
conservative than the polytope approach since the number of cases that our
approach can prove the robustness of the network is larger than the one proved
by the polytope method. For example, for the small network, for d = 240 and
δ = 0.015, we can prove 71 cases while the polytope method can prove 65 cases.
Importantly, the number of cases proved by DeepPoly reduces quickly when the
network becomes larger. For example, for the case that d = 240 and δ = 0.015,
the polytope method is able to prove the robustness of the medium network for
38 cases while our approach can prove 88 cases. This is because the polytope
method becomes more and more conservative when the network or the input set
is large. The tables show that the polytope method is faster than our ImageStar
method on the small network. However, it is slower than the ImageStar method
on any larger networks in all cases. Notably, for the large network, the ImageStar
approach is significantly faster than the polytope approach, 16.65 times faster in
average. The results also show that the polytope approach may run into memory
problem for some large input sets.
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Table 4. Verification results of VGG networks.

Robustness results (in percentage)

VGG16 VGG19

δ = 10−7 δ = 2 × 10−7 δ = 10−7 δ = 2 × 10−7

Polytope ImageStar Polytope ImageStar Polytope ImageStar Polytope ImageStar

l = 0.96 85.00 85.00 85.00 85.00 100.00 100.00 100.00 100.00

l = 0.97 85.00 85.00 85.00 85.00 100.00 100.00 100.00 100.00

l = 0.98 85.00 85.00 85.00 85.00 95.00 95.00 95.00 95.00

Verification times (in Seconds)

l = 0.96 319.04 318.60 327.61 319.93 320.91 314.14 885.07 339.30

l = 0.97 324.93 323.41 317.27 324.90 315.84 315.27 319.67 314.58

l = 0.98 315.54 315.26 468.59 332.92 320.53 320.44 325.92 317.95

5.2 Robustness Verification of VGG16 and VGG19

In this section, we evaluate the polytope and ImageStar methods on real-world
CNNs, the VGG16 and VGG19 classification networks [28]. We use Foolbox [26]
to generate the well-known DeepFool adversarial attacks [25] on a set of 20 bell
pepper images. From an original image ori im, Foolbox generates an adversarial
image adv im that can fool the network. The difference between two images is
defined by diff im = adv im − ori im. We want to verify if we apply (l + δ)
percent of the attack on the original image, whether or not the network classifies
the disturbed images correctly. The set of disturbed images can be represented
as an ImageStar as follows disb im = ori im + (l + δ) × diff im, where l is
the percentage of the attack at which we want to verify the robustness of the
network, and δ is a small perturbation around l, i.e., 0 ≤ δ ≤ δmax. Intuitively, l
describes how close we are to the attack, and the perturbation δ represents the
size of the input set.

Table 4 shows the verification results of VGG16 and VGG19 with different
levels of the DeepFool attack. The networks are robust if they classify correctly
the set of disturbed images disb im as bell peppers. To guarantee the robustness
of the networks, the output corresponding to the bell pepper label (index 946)
needs to be the maximum output compared with others. The table shows that
with a small input set, small δ, the polytope and ImageStar can prove robustness
of VGG16 and VGG19 in a reasonable amount of time. Notably, the verification
times as well as the robustness results of the polytope and ImageStar methods
are similar when they deal with small input sets except for two cases where
ImageStar is faster than the polytope method. It is interesting to note that
according to the verification results for the VGG and MNIST networks, deep
networks may be more robust than shall ow networks.

5.3 Exact Analysis vs. Approximate Analysis

We compare our ImageStar approximate scheme with the zonotope and poly-
tope approximation methods, and investigate the performance of the ImageStar
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Table 5. Verification results of the VGG16 and VGG19 in which V T is the verification
time (in seconds) using the ImageStar exact and approximate schemes.

l δmax VGG16 VGG19

Exact Approximate Exact Approximate

Robust VT Robust VT Robust VT Robust VT

50% 10−7 Yes 64.56226 Yes 60.10607 Yes 234.11977 Yes 72.08723

2 × 10−7 Yes 63.88826 Yes 59.48936 Yes 1769.69313 Yes 196.93728

80% 10−7 Yes 64.92889 Yes 60.31394 Yes 67.11730 Yes 63.33389

2 × 10−7 Yes 64.20910 Yes 59.77254 Yes 174.55983 Yes 200.89500

95% 10−7 Yes 67.64783 Yes 59.89077 Yes 73.13642 Yes 67.56389

2 × 10−7 Yes 63.83538 Yes 59.23282 Yes 146.16172 Yes 121.91447

97% 10−7 Yes 64.30362 Yes 59.79876 Yes 77.25398 Yes 64.43168

2 × 10−7 Yes 64.06285 Yes 61.23296 Yes 121.70296 Yes 107.17331

98% 10−7 Yes 64.06183 Yes 59.89959 No 67.68139 Unkown 64.47035

2 × 10−7 Yes 64.01997 Yes 59.77469 No 205.00939 Unknown 107.42679

98.999% 10−7 Yes 64.24773 Yes 60.22833 No 71.90568 Unknown 68.25916

2 × 10−7 Yes 63.67108 Yes 59.69298 No 106.84492 Unknown 101.04668

exact scheme compared to the approximate one. To illustrate the advantages
and disadvantages of the exact scheme and approximate scheme, we consider
the robustness verification of VGG16 and VGG19 on a single ImageStar input
set created by an adversarial attack on a bell pepper image. The verification
results are presented in Table 5. The table shows that for a small perturba-
tion δ, the exact and over-approximate analysis can prove the robustness of the
VGG16 around some specific levels of attack in approximately one minute. We
can intuitively verify the robustness of the VGG networks via visualization of
their output ranges. An example of the output ranges of VGG19 for the case of
l = 0.95%, δmax = 2 × 10−7 is depicted in Fig. 9. One can see from the figure
that the output of the index 946 corresponding to the bell pepper label is always
the maximum one compared with others, which proves that VGG19 is robust in
this case. From the table, it is interesting that VGG19 is not robust if we apply
≥ 98% of the attack. Notably, the exact analysis can give us correct answers
with a counter-example set in this case. However, the over-approximate anal-
ysis cannot prove that VGG19 is not robust since its obtained reachable set
is an over-approximation of the exact one. Therefore, it may be the case that
the over-approximate reachable set violates the robustness property because of
its conservativeness. A counter-example generated by the exact analysis method
is depicted in Fig. 10 in which the disturbed image is classified as strawberry
instead of bell pepper since the strawberry output is larger than the bell pepper
output in this case.

To optimize the verification time, it is important to know the times consumed
by each type of layer in the reachability analysis step. Figure 11 described the
total reachability times of the convolutional layers, fully connected layers, max
pooling layers and ReLU layers in the VGG19 with 50% attack and 10−7 per-
turbation. As shown in the figure, the reachable set computation in the convo-
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Fig. 9. Exact ranges of VGG19 show that VGG19 correctly classifies the input image
as a bell pepper.

lutional layers and fully connected layers can be done very quickly, which shows
the advantages of the ImageStar data structure. Notably, the total reachability
time is dominated by the time of computing the reachable set for 5 max pooling
layers and 18 ReLU layers. This is because the computation in these layers con-
cerns solving a large number of linear programing (LP) optimization problems
such as finding lower bound and upper bound, and checking max point candi-
dates. Therefore, to optimize the computation time, we need to minimize the
number of LP problems in the future.
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Fig. 10. A counter-example shows that VGG19 misclassifies the input image as a
strawberry instead of a bell pepper.
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Fig. 11. Total reachability time of each type of layer in VGG19, where the max pooling
and ReLU layers dominate the total reachability time.

6 Discussion

When we apply our approach on large networks, it has been shown that the size
of the input set is the most important factor that influences the performance of
verification approaches. However, this important issue has not been emphasized
in the existing literature. Most of existing approaches focus on the size of the
network that they can analyze. We hypothesize that existing methods (includ-
ing the methods in this paper) scalable to large networks are only so for small
input sets. When the input set is large, it causes three major problems in the
analysis, which are explosions of 1) computation time; 2) memory usage; and
3) conservativeness. In the exact analysis method, a large input set causes more
splits in the max-pooling and ReLU layers. A single ImageStar may split into
many new ImageStars after these layers, which leads to explosion in the num-
ber of ImageStars in the reachable set as shown in Fig. 12. Therefore, it requires
more memory to handle the new ImageStars and more time for the computation.
One may think that the over-approximate method can overcome this challenge
since it obtains only one ImageStar at each layer and at the cost of conserva-
tiveness of the result. An over-approximate method does usually help reduce
the computation time, as shown in the experimental results. However, it is not
necessarily efficient in terms of memory consumption. The reason is, if there is a
split, it introduces a new predicate variable and new generator. If the number of
generators and the dimensions of the ImageStar are large, it requires a massive
amount of memory to store the over-approximate reachable set. For instance,
if there are 100 splits in the first ReLU layer of VGG19, the second convolu-
tional layer will receive an ImageStar of size 224× 224× 64 with 100 generators.
To store this ImageStar with double precision, we need approximately 2.4 GB
of memory. In practice, the dimensions of the ImageStars obtained in the first



38 H.-D. Tran et al.

several convolutional layers are usually large. Therefore, if splitting happens in
these layers, we may run out of memory. We see that existing approaches, such
as those using zonotopes and polytopes, also face the same challenges. Addition-
ally, the conservativeness of an over-approximate reachable set is a crucial factor
in evaluating an over-approximation approach. Therefore, the exact analysis still
plays an essential role in the analysis of neural networks since it helps to evaluate
the conservativeness of the over-approximation approaches.

0 5 10 15 20 25 30 35
Number of ImageStars
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1.2

1.4

1.6
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2 10-7

Fig. 12. Number of ImageStars in exact analysis increases with input size.

7 Conclusion

We have presented a new set-based method for robustness verification of deep
CNNs using ImageStars. The core of this method are exact and over-approximate
reachability algorithms for ImageStar input sets. The experiments show that our
approach is less conservative than recent zonotope and polytope approaches. It is
also faster than existing approaches when dealing with deep networks. Notably,
our approach can be applied to verify the robustness of real-world CNNs with
small perturbed input sets. It can also compute the exact reachable set and
visualize the exact output range of deep CNNs, and the analysis can speed up
significantly with parallel computing. We have found and shown the size of the
input set to be an important factor that impacts the performance of reachability
algorithms. Future work includes improving the method to deal with larger input
sets and optimizing the memory and time complexity of our computations.
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Abstract. Deep neural networks are increasingly being used as con-
trollers for safety-critical systems. Because neural networks are opaque,
certifying their correctness is a significant challenge. To address this issue,
several neural network verification approaches have recently been pro-
posed. However, these approaches afford limited scalability, and applying
them to large networks can be challenging. In this paper, we propose a
framework that can enhance neural network verification techniques by
using over-approximation to reduce the size of the network—thus mak-
ing it more amenable to verification. We perform the approximation such
that if the property holds for the smaller (abstract) network, it holds
for the original as well. The over-approximation may be too coarse, in
which case the underlying verification tool might return a spurious coun-
terexample. Under such conditions, we perform counterexample-guided
refinement to adjust the approximation, and then repeat the process.
Our approach is orthogonal to, and can be integrated with, many exist-
ing verification techniques. For evaluation purposes, we integrate it with
the recently proposed Marabou framework, and observe a significant
improvement in Marabou’s performance. Our experiments demonstrate
the great potential of our approach for verifying larger neural networks.

1 Introduction

Machine programming (MP), the automatic generation of software, is showing
early signs of fundamentally transforming the way software is developed [15]. A
key ingredient employed by MP is the deep neural network (DNN), which has
emerged as an effective means to semi-autonomously implement many complex
software systems. DNNs are artifacts produced by machine learning : a user pro-
vides examples of how a system should behave, and a machine learning algorithm
generalizes these examples into a DNN capable of correctly handling inputs that
it had not seen before. Systems with DNN components have obtained unprece-
dented results in fields such as image recognition [24], game playing [33], natural
language processing [16], computer networks [28], and many others, often sur-
passing the results obtained by similar systems that have been carefully hand-
crafted. It seems evident that this trend will increase and intensify, and that
DNN components will be deployed in various safety-critical systems [3,19].
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 43–65, 2020.
https://doi.org/10.1007/978-3-030-53288-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-53288-8_3


44 Y. Y. Elboher et al.

DNNs are appealing in that (in some cases) they are easier to create than
handcrafted software, while still achieving excellent results. However, their usage
also raises a challenge when it comes to certification. Undesired behavior has
been observed in many state-of-the-art DNNs. For example, in many cases slight
perturbations to correctly handled inputs can cause severe errors [26,35]. Because
many practices for improving the reliability of hand-crafted code have yet to
be successfully applied to DNNs (e.g., code reviews, coding guidelines, etc.), it
remains unclear how to overcome the opacity of DNNs, which may limit our
ability to certify them before they are deployed.

To mitigate this, the formal methods community has begun developing tech-
niques for the formal verification of DNNs (e.g., [10,17,20,37]). These techniques
can automatically prove that a DNN always satisfies a prescribed property.
Unfortunately, the DNN verification problem is computationally difficult (e.g.,
NP-complete, even for simple specifications and networks [20]), and becomes
exponentially more difficult as network sizes increase. Thus, despite recent
advances in DNN verification techniques, network sizes remain a severely limiting
factor.

In this work, we propose a technique by which the scalability of many exist-
ing verification techniques can be significantly increased. The idea is to apply
the well-established notion of abstraction and refinement [6]: replace a network
N that is to be verified with a much smaller, abstract network, N̄ , and then
verify this N̄ . Because N̄ is smaller it can be verified more efficiently; and it is
constructed in such a way that if it satisfies the specification, the original net-
work N also satisfies it. In the case that N̄ does not satisfy the specification, the
verification procedure provides a counterexample x. This x may be a true coun-
terexample demonstrating that the original network N violates the specification,
or it may be spurious. If x is spurious, the network N̄ is refined to make it more
accurate (and slightly larger), and then the process is repeated. A particularly
useful variant of this approach is to use the spurious x to guide the refinement
process, so that the refinement step rules out x as a counterexample. This vari-
ant, known as counterexample-guided abstraction refinement (CEGAR) [6], has
been successfully applied in many verification contexts.

As part of our technique we propose a method for abstracting and refining
neural networks. Our basic abstraction step merges two neurons into one, thus
reducing the overall number of neurons by one. This basic step can be repeated
numerous times, significantly reducing the network size. Conversely, refinement
is performed by splitting a previously merged neuron in two, increasing the
network size but making it more closely resemble the original. A key point is
that not all pairs of neurons can be merged, as this could result in a network
that is smaller but is not an over-approximation of the original. We resolve
this by first transforming the original network into an equivalent network where
each node belongs to one of four classes, determined by its edge weights and its
effect on the network’s output; merging neurons from the same class can then be
done safely. The actual choice of which neurons to merge or split is performed
heuristically. We propose and discuss several possible heuristics.
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For evaluation purposes, we implemented our approach as a Python frame-
work that wraps the Marabou verification tool [22]. We then used our framework
to verify properties of the Airborne Collision Avoidance System (ACAS Xu) set
of benchmarks [20]. Our results strongly demonstrate the potential usefulness of
abstraction in enhancing existing verification schemes: specifically, in most cases
the abstraction-enhanced Marabou significantly outperformed the original. Fur-
ther, in most cases the properties in question could indeed be shown to hold or
not hold for the original DNN by verifying a small, abstract version thereof.

To summarize, our contributions are: (i) we propose a general framework
for over-approximating and refining DNNs; (ii) we propose several heuristics for
abstraction and refinement, to be used within our general framework; and (iii)
we provide an implementation of our technique that integrates with the Marabou
verification tool and use it for evaluation. Our code is available online [9].

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
background on neural networks and their verification. In Sect. 3, we describe our
general framework for abstracting an refining DNNs. In Sect. 4, we discuss how
to apply these abstraction and refinement steps as part of a CEGAR procedure,
followed by an evaluation in Sect. 5. In Sect. 6, we discuss related work, and we
conclude in Sect. 7.

2 Background

2.1 Neural Networks

A neural network consists of an input layer, an output layer, and one or more
intermediate layers called hidden layers. Each layer is a collection of nodes, called
neurons. Each neuron is connected to other neurons by one or more directed
edges. In a feedforward neural network, the neurons in the first layer receive input
data that sets their initial values. The remaining neurons calculate their values
using the weighted values of the neurons that they are connected to through
edges from the preceding layer (see Fig. 1). The output layer provides the result-
ing value of the DNN for a given input.

There are many types of DNNs, which may differ in the way their neu-
ron values are computed. Typically, a neuron is evaluated by first computing
a weighted sum of the preceding layer’s neuron values according to the edge
weights, and then applying an activation function to this weighted sum [13]. We
focus here on the Rectified Linear Unit (ReLU) activation function [29], given as
ReLU(x) = max (0, x). Thus, if the weighted sum computation yields a positive
value, it is kept; and otherwise, it is replaced by zero.

More formally, given a DNN N , we use n to denote the number of layers
of N . We denote the number of nodes of layer i by si. Layers 1 and n are the
input and output layers, respectively. Layers 2, . . . , n − 1 are the hidden layers.
We denote the value of the j-th node of layer i by vi,j , and denote the column
vector [vi,1, . . . , vi,si

]T as Vi.
Evaluating N is performed by calculating Vn for a given input assignment

V1. This is done by sequentially computing Vi for i = 2, 3, . . . , n, each time using
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Fig. 1. A fully connected, feedforward DNN with 5 input nodes (in orange), 5 output
nodes (in purple), and 4 hidden layers containing a total of 36 hidden nodes (in blue).
Each edge is associated with a weight value (not depicted). (Color figure online)

the values of Vi−1 to compute weighted sums, and then applying the ReLU
activation functions. Specifically, layer i (for i > 1) is associated with a weight
matrix Wi of size si × si−1 and a bias vector Bi of size si. If i is a hidden layer,
its values are given by Vi = ReLU(WiVi−1 + Bi), where the ReLUs are applied
element-wise; and the output layer is given by Vn = WnVn−1 + Bn (ReLUs are
not applied). Without loss of generality, in the rest of the paper we assume that
all bias values are 0, and can be ignored. This rule is applied repeatedly once for
each layer, until Vn is eventually computed.

We will sometimes use the notation w(vi,j , vi+1,k) to refer to the entry of
Wi+1 that represents the weight of the edge between neuron j of layer i and
neuron k of layer i + 1. We will also refer to such an edge as an outgoing edge
for vi,j , and as an incoming edge for vi+1,k.

As part of our abstraction framework, we will sometimes need to consider a
suffix of a DNN, in which the first layers of the DNN are omitted. For 1 < i < n,
we use N [i] to denote the DNN comprised of layers i, i + 1, . . . , n of the original
network. The sizes and weights of the remaining layers are unchanged, and layer
i of N is treated as the input layer of N [i].

Figure 2 depicts a small neural network. The network has n = 3 layers, of sizes
s1 = 1, s2 = 2 and s3 = 1. Its weights are w(v1,1, v2,1) = 1, w(v1,1, v2,2) = −1,
w(v2,1, v3,1) = 1 and w(v2,2, v3,1) = 2. For input v1,1 = 3, node v2,1 evaluates to
3 and node v2,2 evaluates to 0, due to the ReLU activation function. The output
node v3,1 then evaluates to 3.

2.2 Neural Network Verification

DNN verification amounts to answering the following question: given a DNN N ,
which maps input vector x to output vector y, and predicates P and Q, does
there exist an input x0 such that P (x0) and Q(N(x0)) both hold? In other words,
the verification process determines whether there exists a particular input that
meets the input criterion P , and that is mapped to an output that meets the
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Fig. 2. A simple feedforward neural network.

output criterion Q. We refer to 〈N,P,Q〉 as the verification query. As is usual
in verification, Q represents the negation of the desired property. Thus, if the
query is unsatisfiable (UNSAT), the property holds; and if it is satisfiable (SAT),
then x0 constitutes a counterexample to the property in question.

Different verification approaches may differ in (i) the kinds of neural networks
they allow (specifically, the kinds of activation functions in use); (ii) the kinds
of input properties; and (iii) the kinds of output properties. For simplicity, we
focus on networks that employ the ReLU activation function. In addition, our
input properties will be conjunctions of linear constraints on the input values.
Finally, we will assume that our networks have a single output node y, and
that the output property is y > c for a given constant c. We stress that these
restrictions are for the sake of simplicity. Many properties of interest, including
those with arbitrary Boolean structure and involving multiple neurons, can be
reduced into the above single-output setting by adding a few neurons that encode
the Boolean structure [20,32]; see Fig. 3 for an example. The number of neurons
to be added is typically negligible when compared to the size of the DNN. In
particular, this is true for the ACAS Xu family of benchmarks [20], and also
for adversarial robustness queries that use the L∞ or the L1 norm as a distance
metric [5,14,21]. Additionally, other piecewise-linear activation functions, such
as max-pooling layers, can also be encoded using ReLUs [5].

Several techniques have been proposed for solving the aforementioned verifi-
cation problem in recent years (Sect. 6 includes a brief overview). Our abstrac-
tion technique is designed to be compatible with most of these techniques, by
simplifying the network being verified, as we describe next.

3 Network Abstraction and Refinement

Because the complexity of verifying a neural network is strongly connected to
its size [20], our goal is to transform a verification query ϕ1 = 〈N,P,Q〉 into
query ϕ2 = 〈N̄ , P,Q〉, such that the abstract network N̄ is significantly smaller
than N (notice that properties P and Q remain unchanged). We will construct
N̄ so that it is an over-approximation of N , meaning that if ϕ2 is UNSAT then
ϕ1 is also UNSAT. More specifically, since our DNNs have a single output, we can
regard N(x) and N̄(x) as real values for every input x. To guarantee that ϕ2

over-approximates ϕ1, we will make sure that for every x, N(x) ≤ N̄(x); and
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Fig. 3. Reducing a complex property to the y > 0 form. For the network on the left
hand side, suppose we wish to examine the property y2 > y1 ∨ y2 > y3, which is a
property that involves multiple outputs and includes a disjunction. We do this (right
hand side network) by adding two neurons, t1 and t2, such that t1 = ReLU(y2 − y1)
and t2 = ReLU(y2 − y3). Thus, t1 > 0 if and only if the first disjunct, y2 > y1, holds;
and t2 > 0 if and only if the second disjunct, y2 > y3, holds. Finally, we add a neuron
z1 such that z1 = t1 + t2. It holds that z1 > 0 if and only if t1 > 0 ∨ t2 > 0. Thus, we
have reduced the complex property into an equivalent property in the desired form.

thus, N̄(x) ≤ c =⇒ N(x) ≤ c. Because our output properties always have the
form N(x) > c, it is indeed the case that if ϕ2 is UNSAT, i.e. N̄(x) ≤ c for all x,
then N(x) ≤ c for all x and so ϕ1 is also UNSAT. We now propose a framework
for generating various N̄s with this property.

3.1 Abstraction

We seek to define an abstraction operator that removes a single neuron from the
network, by merging it with another neuron. To do this, we will first transform
N into an equivalent network, whose neurons have properties that will facilitate
their merging. Equivalent here means that for every input vector, both networks
produce the exact same output. First, each hidden neuron vi,j of our transformed
network will be classified as either a pos neuron or a neg neuron. A neuron is
pos if all the weights on its outgoing edges are positive, and is neg if all those
weights are negative. Second, orthogonally to the pos/neg classification, each
hidden neuron will also be classified as either an inc neuron or a dec neuron.
vi,j is an inc neuron of N if, when we look at N [i] (where vi,j is an input
neuron), increasing the value of vi,j increases the value of the network’s output.
Formally, vi,j is inc if for every two input vectors x1 and x2 where x1[k] = x2[k]
for k �= j and x1[j] > x2[j], it holds that N [i](x1) > N [i](x2). A dec neuron is
defined symmetrically, so that decreasing the value of x[j] increases the output.
We first describe this transformation (an illustration of which appears in Fig. 4),
and later we explain how it fits into our abstraction framework.

Our first step is to transform N into a new network, N ′, in which every hidden
neuron is classified as pos or neg. This transformation is done by replacing each
hidden neuron vij

with two neurons, v+
i,j and v−

i,j , which are respectively pos

and neg. Both v+
i,j an v−

i,j retain a copy of all incoming edges of the original
vi,j ; however, v+

i,j retains just the outgoing edges with positive weights, and v−
i,j

retains just those with negative weights. Outgoing edges with negative weights
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are removed from v+
i,j by setting their weights to 0, and the same is done for

outgoing edges with positive weights for v−
i,j . Formally, for every neuron vi−1,p,

w′(vi−1,p, v
+
i,j) = w(vi−1,p, vi,j), w′(vi−1,p, v

−
i,j) = w(vi−1,p, vi,j)

where w′ represents the weights in the new network N ′. Also, for every neuron
vi+1,q

w′(v+
i,j , vi+1,q) =

{
w(vi,j , vi+1,q) w(vi,j , vi+1,q) ≥ 0
0 otherwise

and

w′(v−
i,j , vi+1,q) =

{
w(vi,j , vi+1,q) w(vi,j , vi+1,q) ≤ 0
0 otherwise

(see Fig. 4). This operation is performed once for every hidden neuron of N ,
resulting in a network N ′ that is roughly double the size of N . Observe that N ′

is indeed equivalent to N , i.e. their outputs are always identical.
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Fig. 4. Classifying neurons as pos/neg and inc/dec. In the initial network (left), the
neurons of the second hidden layer are already classified: + and − superscripts indicate
pos and neg neurons, respectively; the I superscript and green background indicate
inc, and the D superscript and red background indicate dec. Classifying node v1,1

is done by first splitting it into two nodes v+
1,1 and v−

1,1 (middle). Both nodes have
identical incoming edges, but the outgoing edges of v1,1 are partitioned between them,
according to the sign of each edge’s weight. In the last network (right), v+

1,1 is split once
more, into an inc node with outgoing edges only to other inc nodes, and a dec node
with outgoing edges only to other dec nodes. Node v1,1 is thus transformed into three
nodes, each of which can finally be classified as inc or dec. Notice that in the worst
case, each node is split into four nodes, although for v1,1 three nodes were enough.

Our second step is to alter N ′ further, into a new network N ′′, where every
hidden neuron is either inc or dec (in addition to already being pos or neg).
Generating N ′′ from N ′ is performed by traversing the layers of N ′ backwards,
each time handling a single layer and possibly doubling its number of neurons:

– Initial step: the output layer has a single neuron, y. This neuron is an inc
node, because increasing its value will increase the network’s output value.
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– Iterative step: observe layer i, and suppose the nodes of layer i + 1 have
already been partitioned into inc and dec nodes. Observe a neuron v+

i,j in
layer i which is marked pos (the case for neg is symmetrical). We replace v+

i,j

with two neurons v+,I
i,j and v+,D

i,j , which are inc and dec, respectively. Both
new neurons retain a copy of all incoming edges of v+

i,j ; however, v+,I
i,j retains

only outgoing edges that lead to inc nodes, and v+,D
i,j retains only outgoing

edges that lead to dec nodes. Thus, for every vi−1,p and vi+1,q,

w′′(vi−1,p, v
+,I
i,j ) = w′(vi−1,p, v

+
i,j), w′′(vi−1,p, v

+,D
i,j ) = w′(vi−1,p, v

+
i,j)

w′′(v+,I
i,j , vi+1,q) =

{
w′(v+

i,j , vi+1,q) if vi+1,q is inc
0 otherwise

w′′(v+,D
i,j , vi+1,q) =

{
w′(v+

i,j , vi+1,q) if vi+1,q is dec
0 otherwise

where w′′ represents the weights in the new network N ′′. We perform this
step for each neuron in layer i, resulting in neurons that are each classified
as either inc or dec.

To understand the intuition behind this classification, recall that by our assump-
tion all hidden nodes use the ReLU activation function, which is monotonically
increasing. Because v+

i,j is pos, all its outgoing edges have positive weights, and
so if its assignment was to increase (decrease), the assignments of all nodes to
which it is connected in the following layer would also increase (decrease). Thus,
we split v+

i,j in two, and make sure one copy, v+,I
i,j , is only connected to nodes that

need to increase (inc nodes), and that the other copy, v+,D
i,j , is only connected

to nodes that need to decrease (dec nodes). This ensures that v+,I
i,j is itself inc,

and that v+,D
i,j is dec. Also, both v+,I

i,j and v+,D
i,j remain pos nodes, because their

outgoing edges all have positive weights.
When this procedure terminates, N ′′ is equivalent to N ′, and so also to N ;

and N ′′ is roughly double the size of N ′, and roughly four times the size of
N . Both transformation steps are only performed for hidden neurons, whereas
the input and output neurons remain unchanged. This is summarized by the
following lemma:

Lemma 1. Any DNN N can be transformed into an equivalent network N ′′

where each hidden neuron is pos or neg, and also inc or dec, by increasing its
number of neurons by a factor of at most 4.

Using Lemma 1, we can assume without loss of generality that the DNN
nodes in our input query ϕ1 are each marked as pos/neg and as inc/dec. We
are now ready to construct the over-approximation network N̄ . We do this by
specifying an abstract operator that merges a pair of neurons in the network
(thus reducing network size by one), and can be applied multiple times. The only
restrictions are that the two neurons being merged need to be from the same
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hidden layer, and must share the same pos/neg and inc/dec attributes. Conse-
quently, applying abstract to saturation will result in a network with at most
4 neurons in each hidden layer, which over-approximates the original network.
This, of course, would be an immense reduction in the number of neurons for
most reasonable input networks.

The abstract operator’s behavior depends on the attributes of the neurons
being merged. For simplicity, we will focus on the 〈pos, inc〉 case. Let vi,j , vi,k

be two hidden neurons of layer i, both classified as 〈pos, inc〉. Because layer i
is hidden, we know that layers i + 1 and i − 1 are defined. Let vi−1,p and vi+1,q

denote arbitrary neurons in the preceding and succeeding layer, respectively. We
construct a network N̄ that is identical to N , except that: (i) nodes vi,j and vi,k

are removed and replaced with a new single node, vi,t; and (ii) all edges that
touched nodes vi,j or vi,k are removed, and other edges are untouched. Finally,
we add new incoming and outgoing edges for the new node vi,t as follows:

– Incoming edges: w̄(vi−1,p, vi,t) = max{w(vi−1,p, vi,j), w(vi−1,p, vi,k)}
– Outgoing edges: w̄(vi,t, vi+1,q) = w(vi,j , vi+1,q) + w(vi,k, vi+1,q)

where w̄ represents the weights in the new network N̄ . An illustrative example
appears in Fig. 5. Intuitively, this definition of abstract seeks to ensure that
the new node vi,t always contributes more to the network’s output than the two
original nodes vi,j and vi,k—so that the new network produces a larger output
than the original for every input. By the way we defined the incoming edges of
the new neuron vi,t, we are guaranteed that for every input x passed into both N
and N̄ , the value assigned to vi,t in N̄ is greater than the values assigned to both
vi,j and vi,k in the original network. This works to our advantage, because vi,j

and vi,k were both inc—so increasing their values increases the output value.
By our definition of the outgoing edges, the values of any inc nodes in layer
i + 1 increase in N̄ compared to N , and those of any dec nodes decrease. By
definition, this means that the network’s overall output increases.

The abstraction operation for the 〈neg, inc〉 case is identical to the one
described above. For the remaining two cases, i.e. 〈pos, dec〉 and 〈neg, dec〉,
the max operator in the definition is replaced with a min operator.

The next lemma (proof omitted due to lack of space) justifies the use of our
abstraction step, and can be applied once per each application of abstract:

Lemma 2. Let N̄ be derived from N by a single application of abstract. For
every x, it holds that N̄(x) ≥ N(x).

3.2 Refinement

The aforementioned abstract operator reduces network size by merging neu-
rons, but at the cost of accuracy: whereas for some input x0 the original network
returns N(x0) = 3, the over-approximation network N̄ created by abstract
might return N̄(x0) = 5. If our goal is prove that it is never the case that
N(x) > 10, this over-approximation may be adequate: we can prove that always
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Fig. 5. Using abstract to merge 〈pos, inc〉 nodes. Initially (left), the three nodes v1, v2

and v3 are separate. Next (middle), abstract merges v1 and v2 into a single node. For
the edge between x1 and the new abstract node we pick the weight 4, which is the
maximal weight among edges from x1 to v1 and v2. Likewise, the edge between x2 and
the abstract node has weight −1. The outgoing edge from the abstract node to y has
weight 8, which is the sum of the weights of edges from v1 and v2 to y. Next, abstract
is applied again to merge v3 with the abstract node, and the weights are adjusted
accordingly (right). With every abstraction, the value of y (given as a formula at the
bottom of each DNN, where R represents the ReLU operator) increases. For example,
to see that 12R(4x1 − x2) ≥ 8R(4x1 − x2) + 4R(2x1 − 3x2), it is enough to see that
4R(4x1−x2) ≥ 4R(2x1−3x2), which holds because ReLU is a monotonically increasing
function and x1 and x2 are non-negative (being, themselves, the output of ReLU nodes).

N̄(x) ≤ 10, and this will be enough. However, if our goal is to prove that it is
never the case that N(x) > 4, the over-approximation is inadequate: it is possi-
ble that the property holds for N , but because N̄(x0) = 5 > 4, our verification
procedure will return x0 as a spurious counterexample (a counterexample for
N̄ that is not a counterexample for N). In order to handle this situation, we
define a refinement operator, refine, that is the inverse of abstract: it trans-
forms N̄ into yet another over-approximation, N̄ ′, with the property that for
every x, N(x) ≤ N̄ ′(x) ≤ N̄(x). If N̄ ′(x0) = 3.5, it might be a suitable over-
approximation for showing that never N(x) > 4. In this section we define the
refine operator, and in Sect. 4 we explain how to use abstract and refine as
part of a CEGAR-based verification scheme.

Recall that abstract merges together a couple of neurons that share the
same attributes. After a series of applications of abstract, each hidden layer i
of the resulting network can be regarded as a partitioning of hidden layer i of the
original network, where each partition contains original, concrete neurons that
share the same attributes. In the abstract network, each partition is represented
by a single, abstract neuron. The weights on the incoming and outgoing edges of
this abstract neuron are determined according to the definition of the abstract
operator. For example, in the case of an abstract neuron v̄ that represents a
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set of concrete neurons {v1, . . . , vn} all with attributes 〈pos, inc〉, the weight of
each incoming edge to v̄ is given by

w̄(u, v) = max(w(u, v1), . . . , w(u, vn))

where u represents a neuron that has not been abstracted yet, and w is the
weight function of the original network. The key point here is that the order of
abstract operations that merged v1, . . . , vn does not matter—but rather, only
the fact that they are now grouped together determines the abstract network’s
weights. The following corollary, which is a direct result of Lemma 2, establishes
this connection between sequences of abstract applications and partitions:

Corollary 1. Let N be a DNN where each hidden neuron is labeled as pos/neg
and inc/dec, and let P be a partitioning of the hidden neurons of N , that only
groups together hidden neurons from the same layer that share the same labels.
Then N and P give rise to an abstract neural network N̄ , which is obtained by
performing a series of abstract operations that group together neurons according
to the partitions of P. This N̄ is an over-approximation of N .

We now define a refine operation that is, in a sense, the inverse of abstract.
refine takes as input a DNN N̄ that was generated from N via a sequence of
abstract operations, and splits a neuron from N̄ in two. Formally, the operator
receives the original network N , the partitioning P, and a finer partition P ′ that
is obtained from P by splitting a single class in two. The operator then returns
a new abstract network, N̄ ′, that is the abstraction of N according to P ′.

Due to Corollary 1, and because N̄ returned by refine corresponds to a
partition P ′ of the hidden neurons of N , it is straightforward to show that N̄ is
indeed an over-approximation of N . The other useful property that we require
is the following:

Lemma 3. Let N̄ be an abstraction of N , and let N̄ ′ be a network obtained
from N̄ by applying a single refine step. Then for every input x it holds that
N̄(x) ≥ N̄ ′(x) ≥ N(x).

The second part of the inequality, N̄ ′(x) ≥ N(x) holds because N̄ ′ is an
over-approximation of N (Corollary 1). The first part of the inequality, N̄(x) ≥
N̄ ′(x), follows from the fact that N̄(x) can be obtained from N̄ ′(x) by a single
application of abstract.

In practice, in order to support the refinement of an abstract DNN, we
maintain the current partitioning, i.e. the mapping from concrete neurons to
the abstract neurons that represent them. Then, when an abstract neuron is
selected for refinement (according to some heuristic, such as the one we propose
in Sect. 4), we adjust the mapping and use it to compute the weights of the edges
that touch the affected neuron.
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4 A CEGAR-Based Approach

In Sect. 3 we defined the abstract operator that reduces network size at the cost
of reducing network accuracy, and its inverse refine operator that increases net-
work size and restores accuracy. Together with a black-box verification procedure
Verify that can dispatch queries of the form ϕ = 〈N,P,Q〉, these components
now allow us to design an abstraction-refinement algorithm for DNN verification,
given as Algorithm 1 (we assume that all hidden neurons in the input network
have already been marked pos/neg and inc/dec).

Algorithm 1. Abstraction-based DNN Verification(N,P,Q)
1: Use abstract to generate an initial over-approximation N̄ of N
2: if Verify(N̄ , P, Q) is UNSAT then
3: return UNSAT

4: else
5: Extract counterexample c
6: if c is a counterexample for N then
7: return SAT

8: else
9: Use refine to refine N̄ into N̄ ′

10: N̄ ← N̄ ′

11: Goto step 2
12: end if
13: end if

Because N̄ is obtained via applications of abstract and refine, the sound-
ness of the underlying Verify procedure, together with Lemmas 2 and 3, guar-
antees the soundness of Algorithm 1. Further, the algorithm always terminates:
this is the case because all the abstract steps are performed first, followed by a
sequence of refine steps. Because no additional abstract operations are per-
formed beyond Step 1, after finitely many refine steps N̄ will become identical
to N , at which point no spurious counterexample will be found, and the algo-
rithm will terminate with either SAT or UNSAT. Of course, termination is only
guaranteed when the underlying Verify procedure is guaranteed to terminate.

There are two steps in the algorithm that we intentionally left ambiguous:
Step 1, where the initial over-approximation is computed, and Step 9, where the
current abstraction is refined due to the discovery of a spurious counterexample.
The motivation was to make Algorithm 1 general, and allow it to be customized
by plugging in different heuristics for performing Steps 1 and 9, which may
depend on the problem at hand. Below we propose a few such heuristics.

4.1 Generating an Initial Abstraction

The most näıve way to generate the initial abstraction is to apply the abstract
operator to saturation. As previously discussed, abstract can merge together
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any pair of hidden neurons from a given layer that share the same attributes.
Since there are four possible attribute combinations, this will result in each
hidden layer of the network having four neurons or fewer. This method, which
we refer to as abstraction to saturation, produces the smallest abstract networks
possible. The downside is that, in some case, these networks might be too coarse,
and might require multiple rounds of refinement before a SAT or UNSAT answer
can be reached.

A different heuristic for producing abstractions that may require fewer
refinement steps is as follows. First, we select a finite set of input points,
X = {x1, . . . , xn}, all of which satisfy the input property P . These points can be
generated randomly, or according to some coverage criterion of the input space.
The points of X are then used as indicators in estimating when the abstraction
has become too coarse: after every abstraction step, we check whether the prop-
erty still holds for x1, . . . , xn, and stop abstracting if this is not the case. The
exact technique, which we refer to as indicator-guided abstraction, appears in
Algorithm 2, which is used to perform Step 1 of Algorithm 1.

Algorithm 2. Indicator-Guided Abstraction(N,P,Q,X)
1: N̄ ← N
2: while ∀x ∈ X. N̄(x) satisfies Q and there are still neurons that can be merged do
3: Δ ← ∞, bestPair ← ⊥
4: for every pair of hidden neurons vi,j , vi,k with identical attributes do
5: m ← 0
6: for every node vi−1,p do
7: a ← w̄(vi−1,p, vi,j), b ← w̄(vi−1,p, vi,k)
8: if |a − b| > m then
9: m ← |a − b|

10: end if
11: end for
12: if m < Δ then
13: Δ ← m, bestPair ← 〈vi,j , vi,k〉
14: end if
15: end for
16: Use abstract to merge the nodes of bestPair, store the result in N̄
17: end while
18: return N̄

Another point that is addressed by Algorithm 2, besides how many rounds of
abstraction should be performed, is which pair of neurons should be merged in
every application of abstract. This, too, is determined heuristically. Since any
pair of neurons that we pick will result in the same reduction in network size, our
strategy is to prefer neurons that will result in a more accurate approximation.
Inaccuracies are caused by the max and min operators within the abstract
operator: e.g., in the case of max , every pair of incoming edges with weights
a, b are replaced by a single edge with weight max (a, b). Our strategy here is to
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merge the pair of neurons for which the maximal value of |a− b| (over all incom-
ing edges with weights a and b) is minimal. Intuitively, this leads to max (a, b)
being close to both a and b—which, in turn, leads to an over-approximation
network that is smaller than the original, but is close to it weight-wise. We point
out that although repeatedly exploring all pairs (line 4) may appear costly, in
our experiments the time cost of this step was negligible compared to that of the
verification queries that followed. Still, if this step happens to become a bottle-
neck, it is possible to adjust the algorithm to heuristically sample just some of
the pairs, and pick the best pair among those considered—without harming the
algorithm’s soundness.

As a small example, consider the network depicted on the left hand side
of Fig. 5. This network has three pairs of neurons that can be merged using
abstract (any subset of {v1, v2, v3}). Consider the pair v1, v2: the maximal value
of |a − b| for these neurons is max (|1 − 4)|, |(−2) − (−1)|) = 3. For pair v1, v3,
the maximal value is 1; and for pair v2, v3 the maximal value is 2. According to
the strategy described in Algorithm 2, we would first choose to apply abstract
on the pair with the minimal maximal value, i.e. on the pair v1, v3.

4.2 Performing the Refinement Step

A refinement step is performed when a spurious counterexample x has been
found, indicating that the abstract network is too coarse. In other words, our
abstraction steps, and specifically the max and min operators that were used
to select edge weights for the abstract neurons, have resulted in the abstract
network’s output being too great for input x, and we now need to reduce it.
Thus, our refinement strategies are aimed at applying refine in a way that
will result in a significant reduction to the abstract network’s output. We note
that there may be multiple options for applying refine, on different nodes, such
that any of them would remove the spurious counterexample x from the abstract
network. In addition, it is not guaranteed that it is possible to remove x with
a single application of refine, and multiple consecutive applications may be
required.

One heuristic approach for refinement follows the well-studied notion of
counterexample-guided abstraction refinement [6]. Specifically, we leverage the
spurious counterexample x in order to identify a concrete neuron v, which is
currently mapped into an abstract neuron v̄, such that splitting v away from v̄
might rule out counterexample x. To do this, we evaluate the original network
on x and compute the value of v (we denote this value by v(x)), and then do
the same for v̄ in the abstract network (value denoted v̄(x)). Intuitively, a neu-
ron pair 〈v, v̄〉 for which the difference |v(x) − v̄(x)| is significant makes a good
candidate for a refinement operation that will split v away from v̄.

In addition to considering v(x) and v̄(x), we propose to also consider the
weights of the incoming edges of v and v̄. When these weights differ significantly,
this could indicate that v̄ is too coarse an approximation for v, and should be
refined. We argue that by combining these two criteria—edge weight difference
between v and v̄, which is a property of the current abstraction, together with
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the difference between v(x) and v̄(x), which is a property of the specific input x,
we can identify abstract neurons that have contributed significantly to x being
a spurious counterexample.

The refinement heuristic is formally defined in Algorithm 3. The algorithm
traverses the original neurons, looks for the edge weight times assignment value
that has changed the most as a result of the current abstraction, and then
performs refinement on the neuron at the end of that edge. As was the case
with Algorithm 2, if considering all possible nodes turns out to be too costly,
it is possible to adjust the algorithm to explore only some of the nodes, and
pick the best one among those considered—without jeopardizing the algorithm’s
soundness.

Algorithm 3. Counterexample-Guided Refinement(N, N̄, x)
1: bestNeuron ← ⊥, m ← 0
2: for each concrete neuron vi,j of N mapped into abstract neuron v̄i,j′ of N̄ do
3: for each concrete neuron vi−1,k of N mapped into abstract neuron v̄i−1,k′ of N̄

do
4: if |w(vi−1,k, vi,j) − w̄(v̄i−1,k′ , v̄i,j′)| · |vi,j(x) − v̄i,j′(x)| > m then
5: m ← |w(vi−1,k, vi,j) − w̄(v̄i−1,k′ , v̄i,j′)| · |vi,j(x) − v̄i,j′(x)|
6: bestNeuron ← vi,j

7: end if
8: end for
9: end for

10: Use refine to split bestNeuron from its abstract neuron

As an example, let us use Algorithm 3 to choose a refinement step for the
right hand side network of Fig. 5, for a spurious counterexample 〈x1, x2〉 = 〈1, 0〉.
For this input, the original neurons’ evaluation is v1 = 1, v2 = 4 and v3 = 2,
whereas the abstract neuron that represents them evaluates to 4. Suppose v1

is considered first. In the abstract network, w̄(x1, v̄1) = 4 and w̄(x2, v̄1) = −1;
whereas in the original network, w(x1, v1) = 1 and w(x2, v1) = −2. Thus, the
largest value m computed for v1 is |w(x1, v1) − w̄(x1, v̄1)| · |4 − 1| = 3 · 3 = 9.
This value of m is larger than the one computed for v2 (0) and for v3 (4), and
so v1 is selected for the refinement step. After this step is performed, v2 and v3

are still mapped to a single abstract neuron, whereas v1 is mapped to a separate
neuron in the abstract network.

5 Implementation and Evaluation

Our implementation of the abstraction-refinement framework includes modules
that read a DNN in the NNet format [19] and a property to be verified, create
an initial abstract DNN as described in Sect. 4, invoke a black-box verification
engine, and perform refinement as described in Sect. 4. The process terminates
when the underlying engine returns either UNSAT, or an assignment that is a
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true counterexample for the original network. For experimentation purposes, we
integrated our framework with the Marabou DNN verification engine [22]. Our
implementation and benchmarks are publicly available online [9].

Ownship

vown

Intruder

vint

ρ

ψ

θ

Fig. 6. (From [20]) An illustration of the
sensor readings passed as input to the
ACAS Xu DNNs.

Our experiments included verify-
ing several properties of the 45 ACAS
Xu DNNs for airborne collision avoid-
ance [19,20]. ACAS Xu is a system
designed to produce horizontal turning
advisories for an unmanned aircraft (the
ownship), with the purpose of prevent-
ing a collision with another nearby air-
craft (the intruder). The ACAS Xu sys-
tem receive as input sensor readings,
indicating the location of the intruder
relative to the ownship, the speeds of
the two aircraft, and their directions
(see Fig. 6). Based on these readings, it selects one of 45 DNNs, to which the
readings are then passed as input. The selected DNN then assigns scores to five
output neurons, each representing a possible turning advisory: strong left, weak
left, strong right, weak right, or clear-of-conflict (the latter indicating that it is
safe to continue along the current trajectory). The neuron with the lowest score
represents the selected advisory. We verified several properties of these DNNs
based on the list of properties that appeared in [20]—specifically focusing on
properties that ensure that the DNNs always advise clear-of-conflict for distant
intruders, and that they are robust to (i.e., do not change their advisories in the
presence of) small input perturbations.

Each of the ACAS Xu DNNs has 300 hidden nodes spread across 6 hid-
den layers, leading to 1200 neurons when the transformation from Sect. 3.1 is
applied. In our experiments we set out to check whether the abstraction-based
approach could indeed prove properties of the ACAS Xu networks on abstract
networks that had significantly fewer neurons than the original ones. In addition,
we wished to compare the proposed approaches for generating initial abstractions
(the abstraction to saturation approach versus the indicator-guided abstraction
described in Algorithm 2), in order to identify an optimal configuration for our
tool. Finally, once the optimal configuration has been identified, we used it to
compare our tool’s performance to that of vanilla Marabou. The results are
described next.

Figure 7 depicts a comparison of the two approaches for generating initial
abstractions: the abstraction to saturation scheme (x axis), and the indicator-
guided abstraction scheme described in Algorithm 2 (y axis). Each experiment
included running our tool twice on the same benchmark (network and property),
with an identical configuration except for the initial abstraction being used. The
plot depicts the total time (log-scale, in seconds, with a 20-h timeout) spent by
Marabou solving verification queries as part of the abstraction-refinement proce-
dure. It shows that, in contrast to our intuition, abstraction to saturation almost
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always outperforms the indicator-guided approach. This is perhaps due to the
fact that, although it might entail additional rounds of refinement, the abstrac-
tion to saturation approach tends to produce coarse verification queries that
are easily solved by Marabou, resulting in an overall improved performance. We
thus conclude that, at least in the ACAS Xu case, the abstraction to saturation
approach is superior to that of indicator-guided abstraction.

This experiment also confirms that properties can indeed be proved on
abstract networks that are significantly smaller than the original—i.e., despite
the initial 4x increase in network size due to the preprocessing phase, the final
abstract network on which our abstraction-enhanced approach could solve the
query was usually substantially smaller than the original network. Specifically,
among the abstraction to saturation experiments that terminated, the final net-
work on which the property was shown to be SAT or UNSAT had an average size
of 268.8 nodes, compared to the original 310—a 13% reduction. Because DNN
verification becomes exponentially more difficult as the network size increases,
this reduction is highly beneficial.

Fig. 7. Generating initial abstractions using abstraction to saturation and indicator-
guided abstraction.

Next, we compared our abstraction-enhanced Marabou (in abstraction to sat-
uration mode) to the vanilla version. The plot in Fig. 8 compares the total query
solving time of vanilla Marabou (y axis) to that of our approach (x axis). We ran
the tools on 90 ACAS Xu benchmarks (2 properties, checked on each of the 45
networks), with a 20-h timeout. We observe that the abstraction-enhanced ver-
sion significantly outperforms vanilla Marabou on average—often solving queries
orders-of-magnitude more quickly, and timing out on fewer benchmarks. Specif-
ically, the abstraction-enhanced version solved 58 instances, versus 35 solved
by Marabou. Further, over the instances solved by both tools, the abstraction-
enhanced version had a total query median runtime of 1045 s, versus 63671 s
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for Marabou. Interestingly, the average size of the abstract networks for which
our tool was able to solve the query was 385 nodes—which is an increase com-
pared to the original 310 nodes. However, the improved runtimes demonstrate
that although these networks were slightly larger, they were still much easier
to verify, presumably because many of the network’s original neurons remained
abstracted away.

Fig. 8. Comparing the run time (in seconds, logscale) of vanilla Marabou and the
abstraction-enhanced version on the ACAS Xu benchmarks.

Finally, we used our abstraction-enhanced Marabou to verify adversarial
robustness properties [35]. Intuitively, an adversarial robustness property states
that slight input perturbations cannot cause sudden spikes in the network’s out-
put. This is desirable because such sudden spikes can lead to misclassification of
inputs. Unlike the ACAS Xu domain-specific properties [20], whose formulation
required input from human experts, adversarial robustness is a universal prop-
erty, desirable for every DNN. Consequently it is easier to formulate, and has
received much attention (e.g., [2,10,20,36]).

In order to formulate adversarial robustness properties for the ACAS Xu
networks, we randomly sampled the ACAS Xu DNNs to identify input points
where the selected output advisory, indicated by an output neuron yi, received
a much lower score than the second-best advisory, yj (recall that the advisory
with the lowest score is selected). For such an input point x0, we then posed the
verification query: does there exist a point x that is close to x0, but for which yj

receives a lower score than yi? Or, more formally: (‖x − x0‖L∞ ≤ δ) ∧ (yj ≤ yi).
If this query is SAT then there exists an input x whose distance to x0 is at most
δ, but for which the network assigns a better (lower) score to advisory yj than
to yi. However, if this query is UNSAT, no such point x exists. Because we select
point x0 such that yi is initially much smaller than yj , we expect the query to
be UNSAT for small values of δ.
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For each of the 45 ACAS Xu networks, we created robustness queries for
20 distinct input points—producing a total of 900 verification queries (we arbi-
trarily set δ = 0.1). For each of these queries we compared the runtime of
vanilla Marabou to that of our abstraction-enhanced version (with a 20-h time-
out). The results are depicted in Fig. 9. Vanilla Marabou was able to solve more
instances—893 out of 900, versus 805 that the abstraction-enhanced version was
able to solve. However, on the vast majority of the remaining experiments, the
abstraction-enhanced version was significantly faster, with a total query median
runtime of only 0.026 s versus 15.07 s in the vanilla version (over the 805 bench-
marks solved by both tools). This impressive 99% improvement in performance
highlights the usefulness of our approach also in the context of adversarial robust-
ness. In addition, over the solved benchmarks, the average size of the abstract
networks for which our tool was able to solve the query was 104.4 nodes, versus
310 nodes in each of the original networks—a 66% reduction in size. This rein-
forces our statement that, in many cases, DNNs contain a great deal of unneeded
neurons, which can safely be removed by the abstraction process for the purpose
of verification.

Fig. 9. Comparing the run time (seconds, logscale) of vanilla Marabou and the
abstraction-enhanced version on the ACAS Xu adversarial robustness properties.

6 Related Work

In recent years, multiple schemes have been proposed for the verification of neu-
ral networks. These include SMT-based approaches, such as Marabou [22,23],
Reluplex [20], DLV [17] and others; approaches based on formulating the prob-
lem as a mixed integer linear programming instance (e.g., [4,7,8,36]); approaches
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that use sophisticated symbolic interval propagation [37], or abstract interpreta-
tion [10]; and others (e.g., [1,18,25,27,30,38,39]). These approaches have been
applied in a variety of tasks, such as measuring adversarial robustness [2,17],
neural network simplification [11], neural network modification [12], and many
others (e.g., [23,34]). Our approach can be integrated with any sound and com-
plete solver as its engine, and then applied towards any of the aforementioned
tasks. Incomplete solvers could also be used and might afford better performance,
but this could result in our approach also becoming incomplete.

Some existing DNN verification techniques incorporate abstraction elements.
In [31], the authors use abstraction to over-approximate the Sigmoid activation
function with a collection of rectangles. If the abstract verification query they
produce is UNSAT, then so is the original. When a spurious counterexample is
found, an arbitrary refinement step is performed. The authors report limited
scalability, tackling only networks with a few dozen neurons. Abstraction tech-
niques also appear in the AI2 approach [10], but there it is the input prop-
erty and reachable regions that are over-approximated, as opposed to the DNN
itself. Combining this kind of input-focused abstraction with our network-focused
abstraction is an interesting avenue for future work.

7 Conclusion

With deep neural networks becoming widespread and with their forthcoming
integration into safety-critical systems, there is an urgent need for scalable tech-
niques to verify and reason about them. However, the size of these networks
poses a serious challenge. Abstraction-based techniques can mitigate this diffi-
culty, by replacing networks with smaller versions thereof to be verified, without
compromising the soundness of the verification procedure. The abstraction-based
approach we have proposed here can provide a significant reduction in network
size, thus boosting the performance of existing verification technology.

In the future, we plan to continue this work along several axes. First, we
intend to investigate refinement heuristics that can split an abstract neuron
into two arbitrary sized neurons. In addition, we will investigate abstraction
schemes for networks that use additional activation functions, beyond ReLUs.
Finally, we plan to make our abstraction scheme parallelizable, allowing users to
use multiple worker nodes to explore different combinations of abstraction and
refinement steps, hopefully leading to faster convergence.
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Abstract. Neural networks provide quick approximations to complex
functions, and have been increasingly used in perception as well as con-
trol tasks. For use in mission-critical and safety-critical applications, how-
ever, it is important to be able to analyze what a neural network can
and cannot do. For feed-forward neural networks with ReLU activation
functions, although exact analysis is NP-complete, recently-proposed ver-
ification methods can sometimes succeed.

The main practical problem with neural network verification is exces-
sive analysis runtime. Even on small networks, tools that are theoreti-
cally complete can sometimes run for days without producing a result.
In this paper, we work to address the runtime problem by improving
upon a recently-proposed geometric path enumeration method. Through
a series of optimizations, several of which are new algorithmic improve-
ments, we demonstrate significant speed improvement of exact analysis
on the well-studied ACAS Xu benchmarks, sometimes hundreds of times
faster than the original implementation. On more difficult benchmark
instances, our optimized approach is often the fastest, even outperform-
ing inexact methods that leverage overapproximation and refinement.

1 Introduction

Neural networks have surged in popularity due to their ability to learn complex
function approximations from data. This ability has led to their proposed appli-
cation in perception and control decision systems, which are sometimes safety-
critical. For use in safety-critical applications, it is important to prove properties
about neural networks rather than treating them as black-box components.
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A recent method [24] based on path enumeration and geometric set propa-
gation has shown that exact analysis can be practical for piecewise linear neu-
ral networks. This includes networks with fully-connected layers, convolutional
layers, average and max pooling layers, and neurons with ReLU activation func-
tions. Here, we focus on fully-connected layers with ReLU activation functions.
The verification problem in this method is presented in terms of input/output
properties of the neural network. The method works by taking the input set
of states and performing a set-based execution of the neural network. Due to
the linear nature of the set representation and the piecewise linear nature of
the ReLU activation function, the set may need to be split after each neuron is
executed, so that the output after the final layer is a collection of sets that can
each be checked for intersection with an unsafe set.

Since the formal verification problem we are addressing has been shown to
be NP-Complete [13], we instead focus on improving practical scalability. This
requires us to choose a set of benchmarks for evaluation. For this, we focus on
properties from the well-studied ACAS Xu system [13]. This contains a mix of
safe and unsafe instances, where the original verification times measured from
seconds to days, including some unsolved instances.

The main contributions of this paper are:

• several new speed improvements to the path enumeration method, along with
correctness justifications, that are each systematically evaluated;

• the first verification method that verifies all 180 benchmark instances from
ACAS Xu properties 1–4, each in under 10 min on a standard laptop;

• a comparison with other recent tools, including Marabou, Neurify, NNV, and
ERAN, where our method is often the fastest and over 100x faster than the
original path enumeration method implementation in NNV.

This paper first reviews background related to neural networks, the path
enumeration verification approach, and the ACAS Xu benchmarks in Sect. 2.
Next, Sect. 3 analyzes several algorithmic optimizations to the basic procedure,
and systematically evaluates each optimization’s effect on the execution times of
the ACAS Xu benchmarks. A comparison with other tools is provided in Sect. 4,
followed by review of related work in Sect. 5 and a conclusion.

2 Background

We now review the neural network verification problem (Sect. 2.1), the basic geo-
metric path enumeration algorithm (Sect. 2.2), important spatial data structures
(Sect. 2.3), and the ACAS Xu benchmarks (Sect. 2.4).

2.1 Neural Networks and Verification

In this work, we focus our attention on fully-connected, feedforward neural net-
works with ReLU activation functions. A neural network computes a function
NN : R

ni → R
no , where ni is the number of inputs and no is the number of
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outputs. A neural network consists of k layers, where each layer i is defined with
a weight matrix Wi and a bias vector bi. Given an input point y0 ∈ R

ni , a neural
network will compute an output point yk ∈ R

no as follows:

x(1) = W1y0 + b1, y1 = f(x(1))

x(2) = W2y1 + b2, y2 = f(x(2))
...

x(k) = Wkyk−1 + bk, yk = f(x(k))

We call yi−1 and yi the input and output of the i-th layer, respectively, and
x(i) the intermediate values at layer i. The vector-function f is defined using
a so-called activation function, that is applied element-wise to the vector of
intermediate values at each layer. We focus on the popular rectified linear unit
(ReLU) activation function, ReLU(x) = max(x, 0).

For this computation definition to make sense, the sizes of the weights matri-
ces and bias vectors are restricted. The first layer must accept ni-dimensional
inputs, the final layer must produce no-dimensional outputs, and the interme-
diate layers must have weights and biases that have sizes compatible with their
immediate neighbors, in the sense of matrix/vector multiplication and addition.
The number of neurons (sometimes called hidden units) at layer i is defined as
the number of elements in the layer’s output vector yi.

Definition 1 (Output Range). Given a neural network that computes the
function NN and an input set I ⊆ R

ni , the output range is the set of pos-
sible outputs of the network, when executed from a point inside the input set,
Range(NN, I) = {yk | yk = NN(y0), y0 ∈ I}.
Computing the output range is one way to solve the verification problem.

Definition 2 (Verification Problem for Neural Networks). Given a neu-
ral network that computes the function NN, an input set I ⊆ R

ni , and an unsafe
set U ⊆ R

no , the verification problem for neural networks is to check if
Range(NN, I) ∩ U = ∅.

If verification is impossible, we would also prefer to generate a counterexam-
ple y0 ∈ I where yk = NN(y0) and yk ∈ U , although not all tools do this. We also
further assume in this work that the input and unsafe sets are defined with linear
constraints, I = {x | Aix ≤ bi, x ∈ R

ni}, and U = {x | Aux ≤ bu, x ∈ R
no}.

2.2 Basic Geometric Path Enumeration Algorithm

Given enough time, the output range of a neural network can be computed
exactly using a recently-proposed geometric path enumeration approach [24].



Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 69

input : Input Set: I, Unsafe Set: U
output: Verification Result (safe or unsafe)

1 s ← 〈layer:0, neuron:None, θ : convert(I)〉 // computation-state tuple

2 W ← List() // initialize waiting list

3 W.put(s)
4 result ← safe
5 while result = safe and ¬W.empty() do
6 s ← W.pop()
7 result ← step(s, W, U) // updates W, given in Algorithm 2

8 end
9 return result

Algorithm 1: High-level neural-network path enumeration algorithm.

The general strategy is to execute the neural network with sets instead of points.
A spatial data structure is used to represent the input set of states, and this set
is propagated through each layer of the neural network, computing the set of
possible intermediate values and then the set of possible outputs repeatedly until
the output of the final layer is computed. In this context, a spatial data structure
represents some subset of states in a Euclidean space R

n, where the number of
dimensions n is the number of neurons in one of the layers of the network, and
may change as the set is propagated layer by layer. An example spatial data
structure could be a polytope defined using a finite set of half-spaces (linear
constraints), although as explained later this is not the most efficient choice.
Section 2.3 will discuss spatial data structures in more detail.

The high-level verification method is shown in Algorithm1, where functions
in red are custom to the spatial data structure being used. The convert function
(line 1) converts the input set I from linear constraints to the desired spatial data
structure, and stores it in the θ element of s, where s is called a computation-
state tuple. A neuron value of None in the tuple indicates that next operation
should be an affine transformation. The computation-state tuple is then put into
a waiting list (line 3), which stores tuples that need further processing. The step
function (line 7) propagates the set θ by a single neuron in a single layer of the
network, and is elaborated on in the next paragraph. This function can modify
W, possibly inserting one or more computation-state tuples, although always
at a point further along in the network (with a larger layer number or neuron
index), which ensures eventual termination of the loop. This function will also
check if the set, after being fully propagated through the network, intersects the
unsafe set. In this case, step will return unsafe, which causes the while loop to
immediately terminate since the result is known.

The step function propagates the set of states θ by one neuron, and is shown
in Algorithm 2. The intermediate values are computed from the input set of each
layer by calling affine transformation (line 12). For the current neuron index
n, the algorithm will check if the input to the ReLU activation function, dimen-
sion n of the set θ, is always positive (or zero), always negative, or can be either
positive or negative. This is done by the get sign function (line 21), which
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input : Computation-State Tuple: s, Waiting List: W, Unsafe Set: U
output: Safe so far? (safe or unsafe)

1 if s.neuron = None then
2 // finished with the previous layer

3 if s.layer = k then
4 // finished with all layers

5 if s.θ.has intersection(U) = ∅ then
6 return safe
7 else
8 return unsafe // alternatively, return counterexample here

9 end

10 else
11 s.layer ← s.layer + 1
12 s.θ.affine transformation(Ws.layer, bs.layer)
13 s.neuron ← 1

14 end

15 end
16 n ← s.neuron
17 s.neuron ← n + 1
18 if s.neuron > size(bs.layer) then
19 s.neuron ← None // n is the last neuron in the current layer

20 end
21 switch get sign(s, n) do
22 case pos do
23 // do nothing

24 case neg do
25 s.θ.project to zero(n)
26 case posneg do
27 t ← 〈s.layer, s.neuron, s.θ〉 // deep copy s
28 s.θ.add constraint(n, ≥, 0) // split on positive case

29 t.θ.add constraint(n, ≤, 0) // split on negative case

30 t.θ.project to zero(n)
31 W.put(t)

32 end
33 W.put(s)
34 return safe // safe so far

Algorithm 2: Pseudocode for step function, which propagates a set
through the network by one neuron.

returns pos, neg, or posneg, respectively. In the first two cases, the current dimen-
sion n of the set is left alone or assigned to zero (using the project to zero
method), to reflect the semantics of the ReLU activation function when the input
is positive or negative, respectively. In the third case, the set is split into two
sets along linear constraint where the input to the activation function equals
zero. In the case where the input to the activation function is less than zero, the
value of dimension n is projected to zero, reflecting the semantics of the ReLU
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activation function. The splitting is done using the add constraint method of
the spatial data structure, which takes three arguments: n, sign, and val. This
method intersects the set with the linear condition that the n-th dimension is,
depending on sign, greater than, less than, and/or equal to val. Once the set
has been propagated through the whole network, it is checked for intersection
with the unsafe set (line 5), using the has intersection method.

This enumeration algorithm has been shown to be sound and complete [24].
However, for this strategy to work in practice, the spatial data structure used
to store θ must support certain operations efficiently. These are denoted in red
in Algorithms 1 and 2: convert, has intersection, affine transformation,
get sign, project to zero, and add constraint. Polytopes represented with
half-spaces, for example, do not have a known efficient way to compute general
affine transformations in high dimensions. Instead, linear star sets [4] will be
used, which are a spatial data structure that support all the required operations
efficiently and without overapproximation error. These will be elaborated on
more in the next subsection.

In this work, we focus on optimizations to the presented algorithm that
increase its practical scalability, while exploring the same set of paths. The most
important factor that we do not control and influences whether this can succeed
is the number of paths that exist. Each output set that gets checked for inter-
section with the unsafe set corresponds to a unique path through the network,
where the path is defined by the sign of each element of the intermediate values
vector at each layer. The algorithm enumerates every path of the network for a
given input set. An upper bound on this is 2N , where N is the total number of
neurons in all the layers of the network. For many practical verification problem
instances, however, the actual number of unique paths is significantly smaller
than the upper bound.

2.3 Spatial Data Structures

Using the correct spatial data structure (set representation in this context) is
important to the efficiency of Algorithm 1 and 2, as well as some of our opti-
mizations. Here we review two important spatial data structures, zonotopes and
(linear) star sets.

Zonotopes. A zonotope is an affine transformation of the [−1, 1]p box. Zono-
topes have been used for efficient analysis of hybrid systems [8] as well as more
recently to verify neural networks using overapproximations [7,21]. Zonotopes
can be described mathematically as Z = (c,G), where the center c is an n-
dimensional vector and generator matrix G is an n × p matrix. The columns of
G are sometimes referred to as generators of the zonotope, and we write these
as g1, . . . , gp. A zonotope Z encodes a set of states as:

Z =
{
x ∈ R

n
∣
∣ x = c + Gα, α ∈ [−1, 1]p

}
(1)

The two most important properties of zonotopes for the purposes of verifica-
tion are that they are efficient for (i) affine transformation, and (ii) optimization.
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An affine transformation of an n-dimensional point x to a q-dimensional
space is defined with a q × n matrix A and q-dimensional vector b so that the
transformed point is x′ = Ax+b. An affine transformation of every point in an n-
dimensional set of points described by a zonotope Z = (c,G) is easily computed
as Z ′ = (Ac + b, AG). Note this uses standard matrix operations which scale
polynomially with the dimension of A, and are especially efficient if the number
of generators is small. In the verification problem, the number of generators, p,
corresponds to the degrees of freedom needed to encode the input set of states.
In ACAS Xu system, for example, there are 5 inputs, and so the input set can
be encoded with 5 generators. In contrast, affine transformations of polytopes
require converting between a half-space and vertex representation, which is slow.

The second efficient operation for zonotopes is optimization in some direction
vector v. Given a zonotope Z = (c,G) and a direction v to maximize, the point
x∗ ∈ Z that maximizes the dot product v · x∗ can be obtained as a simple
summation x∗ = c +

∑p
i=1 x∗

i , where each x∗
i is given as:

x∗
i =

{
vi, if vi · gi ≥ −vi · gi

−vi, otherwise
(2)

Star Sets. A (linear) star set is another spatial data structure that generalizes
a zonotope. A star set is an affine transformation of an arbitrary p-dimensional
polytope. Mathematically, a star set S is a 3-tuple, (c,G, P ), where c and G are
the same as with a zonotope, and P is a half-space polytope in p dimensions. A
star set S encodes a set of states (compare with Eq. 1):

S = {x ∈ R
n | x = c + Gα, α ∈ P} (3)

A star set can encode any zonotope by letting P be the [−1, 1]p box. Star
sets can also encode more general sets than zonotopes by using a more complex
polytope P . A triangle, for example, can be encoded as a star set by setting P
to be a triangle, using the origin as c and the identity matrix as V . This cannot
be encoded with zonotopes, as they must be centrally symmetric. In Algorithm1
on line 1, the convert function produces the input star set (c,G, P ) from input
polytope I setting c to the zero vector, G to the identity matrix, and P to I.

Affine transformations by a q × n matrix A and q-dimensional vector b of a
star set S can be computed efficiently similar to a zonotope: S′ = (Ac+b, AG,P ).

Optimization in some direction v is slightly less efficient than with a zonotope,
and can be done using linear programming (LP). To find a point x∗ ∈ S that
maximizes the dot product v ·x∗, we convert the optimization direction v to the
initial space w = (vG)T , find a point α∗ ∈ P that maximizes w using LP, and
then convert α∗ back to the n-dimensional space x∗ = c + Gα∗.

Star sets, unlike zonotopes, also efficiently support half-space intersection
operations by adding constraints to the star set’s polytope. Given a star set
S = (c,G, P ) and an n-dimensional half-space dx ≤ e defined by vector d and
scalar e, we convert this to a p-dimensional half-space as follows:

(dG)α ≤ e − dc (4)
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The star set after intersection is then S′ = (c,G, P ′), where the half-space poly-
tope P ′ is the same as P , with one additional constraint given by Eq. 4.

2.4 ACAS Xu Benchmarks

Since the verification problem for neural networks is NP-Complete, we know
exact analysis methods cannot work well in all instances. In order to evaluate
improvements, therefore, we must focus on a set of benchmarks.

In this work, we choose to focus on the Airborne Collision System X
Unmanned (ACAS Xu) set of neural network verification benchmarks [13]. As
these benchmarks have been widely-used for evaluation in other publications,
and some authors have even made their tools available publicly, using these
allows us to provide a common comparison point with other methods later in
Sect. 4.

ACAS Xu is a flight-tested aircraft system designed to avoid midair collisions
of unmanned aircraft by issuing horizontal maneuver advisories [17]. The system
was designed using a partially observable Markov decision process that resulted
in a 2 GB lookup table which mapped states to commands. This mapping was
compressed to 3 MB using 45 neural networks (two of the inputs were discretized
and are used to choose the applicable network) [12]. Since the compression is
not exact, the verification step checks if the system still functions correctly.

Each network contains five inputs that get set to the current the aircraft
state, and five outputs that determine the current advisory. The network has six
ReLU layers with 50 neurons each, for a total of 300 neurons. Ten properties were
originally defined, encoding things like, if the aircraft are approaching each other
head-on, a turn command will be advised (property 3). The formal definition of
all the properties encoded as linear constraints is available in the appendix of
the original work [13].

3 Improvements

We now systematically explore several improvements to the exact path enumer-
ation verification method from Sect. 2.2. For each proposed improvement, we
compare the run-time on the ACAS Xu system with and without the change.
We focus on properties 1–4. Although originally these were measured on a subset
of the 45 networks [13], the same authors later used all the networks to check
these properties [14], which is what we will do here. Each verification instance
is run with a 10 min timeout, so that the maximum time needed to test a single
method, if a timeout is encountered on each of the 180 benchmarks, is 30 h.
Later, in Sect. 4, we will compare the most optimized method with other ver-
ification tools and the other ACAS Xu properties. Unless indicated otherwise,
our experiments were performed on a Laptop platform with Ubuntu Linux 18.04,
32 GB RAM and an Intel Xeon E-2176M CPU running at 2.7 GHz with 6 phys-
ical cores (12 virtual cores with hyperthreading). The full data measurements
summarized in this section are provided in AppendixC.
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Fig. 1. Depth-first search outperforms breadth-first search.

3.1 Local Search Type (DFS vs BFS)

Algorithm 1 uses a waiting list to store the computation-state tuples, which are
popped off one at a time and passed to the step function. This need not strictly
be a list, but is rather a collection of computation-state tuples, and we can
consider changing the order states are popped to explore the state space with
different strategies. If the possible paths through the neural network are viewed
as a tree, two well-known strategies for tree traversal that can be considered are
depth-first search (DFS) and breadth-first search (BFS). A DFS search can be
performed popping the computation-state tuple with the largest (layer, neuron)
pair, whereas a BFS search is done by popping the tuple with the smallest
(layer, neuron) pair.

The original path enumeration with star set approach [24] describes a layer-
by-layer exploration strategy, which is closer to a BFS search. Finite-state
machine model-checking methods, however, more often use DFS search.

We compare the two approaches in Fig. 1, which summarizes the execution
of all 180 benchmarks. Here, the y-axis is a timeout in seconds, and the x-axis
is the number of benchmarks verified within that time. Within the ten minute
timeout, around 90 benchmarks can be successfully verified with BFS, and 120
with DFS1. Notice that the y-axis is log scale, so that differences in runtimes
between easy and hard benchmark instances are both visible.

As can be seen in the figure, the DFS strategy is superior. This is primarily
due to unsafe instances of the benchmarks, where DFS can often quickly find an
unsafe execution and exit the high-level loop, whereas BFS first iterates through

1 The DFS method solves every benchmark that can be solved with BFS. Appendix C
contains the complete results.
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all the layers and neurons (DFS explores deep paths, which sometimes are quickly
found to be unsafe). In the cases where the system was safe, both approaches
took similar time. Another known advantage of DFS search is that the memory
needed to store the waiting list is significantly smaller, which can be a factor for
the benchmarks with a large number of paths.

Correctness Justification: Both DFS and BFS explore the same sets of states,
just in a different order.

3.2 Bounds for Splitting

Using DFS search, we consider other improvements. The original path enumer-
ation publication mentions the following optimization:

“. . . to minimize the number of [operations] and computation time, we
first determine the ranges of all states in the input set which can be done
efficiently by solving . . . linear programming problems.” [24]

An evaluation of the improvement is not provided, so we investigate this here.
The optimization is referring to the implementation of the get sign function on
line 21 of Algorithm2. The get sign(s, n) function takes as input a computation-
state tuple s with spatial data structure θ (a star set) and a dimension number
n. It returns pos, neg, or posneg, depending on whether value of dimension n,
which we call xn, in set θ can be positive (or zero), negative or both. Our
baseline implementation, which we refer to as Copy, determines the output of
get sign by creating two copies of the passed-in star set, intersecting them
with the condition that xn ≤ 0 or xn ≥ 0, and then checking each star set for
feasibility, done using linear programming (LP). In the second version, which we
call Bounds, the passed-in star set is instead minimized and maximized in the
direction of xn, to determine the possible signs. While Copy incurs overhead from
creating copies and adding intersections, Bounds does extra work by computing
the minimum and maximum which are not really needed (we only need the
possible signs of xn).

A comparison of the optimizations on the ACAS Xu benchmarks are shown
in Fig. 2 by comparing Copy to Bounds, we confirm the original paper’s claim
that Bounds is faster.

Correctness Justification: If θ intersected with xn ≤ 0 is feasible, then the
minimum value of xn in θ will be less than or equal to zero and vice versa.
Similar for the maximum case.

3.3 Fewer LPs with Concrete Simulations

We next consider strategies to determine the possible signs of a neuron’s output
with fewer LP calls, which we call prefiltering. Consider a modification of the
Bounds optimization, where rather than computing both the upper and lower
bound of xn, we first compute the lower bound and check if its value is positive.
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If this is the case, we know get sign should return pos, and we do not need
to compute the upper bound. We could, alternatively, first compute the upper
bound and check if its value is negative. If there is no branching and we guess
the correct side to check, only a single LP needs to be solved instead of two.

Fig. 2. Prefilter optimizations improve performance by rejecting branches without LP
solving. The Zono-Sim method works best.

We can do even better than guessing by tracking extra information in the
computation-state tuple. We add a simulation field to s, which contains a
concrete value in the set of states θ. This is initialized to any point in the input
set I, which can be obtained using LP, or using the center point if the input
states are a box. When get sign returns posneg and the set is split (line 27 in
Algorithm 2), the optimization point x∗ that proved a split was possible is used
as the value of simulation in the new set. Also, when an affine transformation
of the set is computed (line 12 in Algorithm2), or when the set is projected to
zero, simulation must also be modified by the same transformation.

With a concrete value of xn available in simulation, we use its sign to
decide whether to first check the upper or lower bound of dimension n in θ. If
the nth element of simulation is positive, for example, we first compute the
lower bound. If this is positive (or zero), then get sign can return pos. If the
lower bound is negative, then we can immediately return posneg without solving
another LP, since the simulation serves as a witness that xn can also be positive.
Only when the simulation value of xn is zero do we need to solve two LPs.

We call this method Sim in Fig. 2. This is shown to be generally faster than
the previous methods, as the overhead to track simulations is small compared
with the gains of solving fewer LPs.
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Correctness Justification: If the lower bound of xn is greater than zero, than
its upper bound will be also be greater than zero and pos is the correct output. If
the lower bound is less than zero and the nth element of simulation is greater
than zero, than the upper bound will also be positive, since it must be greater
than or equal to the value in the simulation (simulation is always a point in
the set θ), and so posneg is correct. Similar for the opposite case.

3.4 Zonotope Prefilter

We can further reduce LP solving by using a zonotope. In each computation-
state tuple s, we add a zonotope field z that overapproximates θ, so that θ ⊆ z.
In the ACAS Xu benchmarks (and most current benchmarks for verification of
NNs), the input set of states is provided as interval values on each input, which is
a box and can be used to initialize the zonotope. Otherwise, LPs can be solved
to compute box bounds on the input set to serve as an initial value. During
the affine transformation of θ (line 12 in Algorithm 2), the zonotope also gets
the same transformation applied. Cases where θ gets projected to zero are also
affine transformations and can be exactly computed with the zonotope z. The
only unsupported operation in the algorithm for zonotopes is add constraint,
used during the splitting operation (lines 28–29 in Algorithm2). We skip these
operations for the zonotope, which is why z is an overapproximation of θ.

With a zonotope overapproximation z available during get sign, we can
sometimes reduce the number of LPs to zero. Computing the minimum and
maximum of the n-th dimension of z is an optimization problem over zonotopes,
which recall from Sect. 2.3 can be done efficiently as a simple summation. If the
n-th dimension of z is completely positive or negative, we can return pos or neg
immediately. Otherwise, if both positive and negative values are possible in the
zonotope, we fall back to LP solving on θ to compute the possible signs. This can
be done either by computing both bounds, which we call Zono-Bounds or with the
simulation optimization from before, which we call Zono-Sim. The performance
of the methods are shown in Fig. 2. The Zonotope-Sim method performs the
fastest, verifying about 145 benchmarks in under 10 min and demonstrating that
reduction in LP solving is worth the extra bookkeeping.

Correctness Justification: Rejecting branches without LP solving is justified
by the fact that z is an overapproximation of θ. This is initially true, as if the
input set is a box then z = θ and otherwise z is the box overapproximation
of θ. This is also true for every operation other than add constraint, as these
are exact for zonotopes. Finally, it is also true when add constraint operation
is skipped on z, as adding constraints can only reduce the size of the set θ. If
θ ⊆ z, every smaller set θ′ will also be a subset of z by transitivity, θ′ ⊆ θ ⊆ z,
and so an overapproximation is maintained by ignoring these operations with z.
Finally, if the n-th dimension of an overapproximation of θ is strictly positive
(or negative), the n-th dimension of θ will also be strictly positive (or negative).
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Fig. 3. Computing neuron output
bounds eagerly improves speed.

Fig. 4. Zonotope domain contraction
improves overall performance.

3.5 Eager Bounds Computation

The step function shown in Algorithm2 computes the sign of xn for the current
neuron n. An alternative approach is to compute the possible signs for every
neuron’s output in the current layer immediately after the affine transformation
on line 12. These bounds can be saved in the computation-state tuple s and then
accessed by get sign. The potential advantage is that, if a split is determined
as impossible for some neuron n, and a split occurs at some earlier neuron i < n,
then the split will also be impossible for neuron n in both of the sets resulting
from the earlier split at neuron i. In this way, computing the bounds once for
neuron n is sufficient in the parent set, as opposed to computing the bounds
twice, in each of the two children sets resulting from the split. The benefit can be
even more drastic if there are multiple splits before neuron n is processed, where
potentially an exponential number of bounds computations can be skipped due
to a single computation in the parent. On the other hand, if a split is possible, we
will have computed more bounds than we needed, as we will do the computation
once in the parent and then once again in each of the children. Furthermore, this
method incurs additional storage overhead for the bounds, as well as copy-time
overhead when computation-state tuples are deep copied on line 27. Experiments
are important to check if the benefits outweigh the costs.

The modified algorithm, which we call Eager, will use the zonotope prefilter
and simulation as before to compute the bounds, but this will be done immedi-
ately after the affine transformation on line 12. Further, when a split occurs along
neuron n in the posneg case, the bounds also get recomputed in the two children
for the remaining neurons in the layer, starting at the next neuron n+1. Neurons
where a split was already rejected do not have their bounds recomputed. This
algorithm is compared with the previous approach, called Noneager. In Fig. 3,
we see eager computation of bounds slightly improves performance.

Correctness Justification: When sets are split in the posneg case in Algo-
rithm2, each child’s θ is a subset of the parent’s θ. Thus, the upper and lower
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bound of the output of each neuron n can only move inward. Thus, if the par-
ent’s bounds for some neuron are strictly positive (or negative), then the two
childrens’ bounds will match the parent’s and do not need to be recomputed.

3.6 Zonotope Contraction

The accuracy of the zonotope prefilters is important, as large overapproximation
error will lead to the computed overapproximation range of xn in zonotope z
always overlapping zero, and thus performance similar to the Sim method. This
effect is observed near the top of the curves in Fig. 2.

In order to improve accuracy, we propose a zonotope domain contraction
approach, where the size of the zonotope set z is reduced while still maintaining
an overapproximation of the exact star set θ. As discussed before, computing
exact intersections of zonotopes is generally impossible when splitting (lines 28–
29 in Algorithm 2). However, we can lower our expectations and instead consider
other ways to reduce the size of zonotope z while maintaining θ ⊆ z.

To do this, we use a slightly different definition of a zonotope, which we refer
to as an offset zonotope. Instead of an affine transformation of the [−1, 1]p box,
an offset zonotope is an affine transformation of an arbitrary box, [l1, u1]× . . .×
[lp, up], where each upper bound ui is greater than or equal to the lower bound
li. As this corresponds to an affine transformation of the [−1, 1]p box, offset
zonotopes are equally expressive as ordinary zonotopes. Optimization over offset
zonotopes can also be done using a simple summation, but instead of using Eq. 2,
we use the following modified equation:

x∗
i =

{
uivi, if uivi · gi ≥ livi · gi

livi, otherwise
(5)

Using offset zonotopes allows for some memory savings in the algorithm. The
initial zonotope can be created using a zero vector as the zonotope center and
the identity matrix as the generator matrix, the same as the initial input star
set. In fact, with this approach, since the affine transformations being applied to
the zonotope z and star set θ are identical, the centers and generator matrices
will always remain the same, so that we only need to store one copy of these.

Beyond memory savings, with offset zonotopes we can consider ways to
reduce the zonotope’s overapproximation error when adding constraints to θ.
The proposed computations are done after splitting (lines 28–29 in Algorithm2),
each time an extra constraint gets added to the star set’s polytope P . The new
linear constraint in the output space (xn ≤ 0 or xn ≥ 0) is transformed to a
linear constraint in the initial space using Eq. 4. We then try to contract the size
of the zonotope’s box domain by increasing each li and reducing each ui, while
still maintaining an overapproximation of the intersection. We consider two ways
to do this which we call Contract-LP and Contract-Simple.

In Contract-LP, linear programming is used to adjust each li and ui. Since the
affine transformations for the star set θ and the zonotope z are the same, z is an
overapproximation if and only if the star set’s polytope P is a subset of z’s initial
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Fig. 5. Both Contract-Simple and Contract-LP can find point q to contract a zonotope’s
initial box (left), but only Contract-LP can find point r (right), as it requires reasoning
with multiple linear constraints.

domain box [l1, u1] × . . . × [lp, up]. Thus, we can compute tight box bounds on
P using linear programming, and using this box as the offset zonotope’s initial
domain box. This will be the smallest box that is possible for the current affine
transformation while still maintaining an overapproximation. This approach,
however, requires solving 2p linear programs, which may be expensive.

Another approach is possible without invoking LP, which we call Contract-
Simple. Contract-Simple overapproximates the intersection by considering only
the new linear constraint. This is a problem of finding the smallest box that
contains the intersection of an initial box and a single halfspace, which can be
solved geometrically without LP solving (see AppendixA for an algorithm).

Since Contract-Simple only considers a single constraint, it can be less accu-
rate than Contract-LP. An illustration of the two methods is given in Fig. 5,
where the initial domain is a two-dimensional box. The thin lines are the linear
constraints that were added to θ, where all points below these lines are in the
corresponding halfspaces. On the left, both Contract-Simple and Contract-LP can
reduce the upper bound in the y direction by finding the point q, which lies at
the intersection of one side of the original box domain and the new linear con-
straint. On the right, two constraints were added to the star θ (after two split
operations), and they both must be considered at the same time to find point
r to be able to reduce the upper bound in the y direction. In this case, only
Contract-LP will succeed, as Contract-Simple works with only a single linear con-
straint at a time, and intersecting the original box with each of the constraints
individually does not change its size.

Comparing the performance of the methods in Fig. 4, we see that the less-
accurate but faster Contract-Simple works best for the ACAS Xu benchmarks.
We expect both methods to take longer when the input set has more dimensions,
but especially Contract-LP since it requires solving two LPs for every dimension.

Correctness Justification: The domain contraction procedures reduces the
size of zonotope z while maintaining an overapproximation of the star set θ.
This can be seen since the affine transformations in z and θ are always the same,
and every point in the star set’s initial input polytope P is also a point in the
initial box domain of z. Since an overapproximation of θ is maintained, it is still
sound to use z when determining the possible signs of a neuron’s output.



Improved Geometric Path Enumeration for Verifying ReLU Neural Networks 81

Fig. 6. Our method verifies all the
benchmarks, although Neurify is usu-
ally faster when it completes.

Fig. 7. Without property 1, our app-
roach is generally fastest when the run-
time exceeds two seconds.

4 Evaluation with Other Tools

We next compare the optimized implementation with other neural network ver-
ification tools. Our optimizations are part of the exact analysis mode of the
nnenum tool available at https://github.com/stanleybak/nnenum. The artifact
evaluation package for our measurements here is online at http://stanleybak.
com/papers/bak2020cav repeatability.zip.

We evaluate with the fully optimized method, using DFS local search, Zono-
Sim prefilter, Eager bounds, Contract-Simple zonotope domain contraction. Fur-
ther, we use a parallelized version of the algorithm, where the details of the
parallalization are provided in AppendixB. With a 12-thread implementation
(one for each core on our evaluation system), the algorithm can now verify all
180 ACAS Xu benchmarks from properties 1–4 within the 10 min timeout. All
measurements are done on our Laptop system, with hardware as described in the
first paragraph of Sect. 3. The complete measurement data summarized here is
available in AppendixD.

ACAS Xu Properties 1–4. We compare our method with Marabou [14] Neu-
rify [26], and NNV [25]. Marabou is the newer, faster version of the Reluplex
algorithm [13], where a Simplex-based LP solver is modified with special ReLU
pivots2. Neurify is the newer, 20x faster version of the ReluVal algorithm [27],
which does interval-based overapproximation, and splits intervals based on gradi-
ent information, ensuring the overapproximation error cannot cause to an incor-
rect result. NNV is the original Matlab implementation of the path enumeration
method with star sets, available online at https://github.com/verivital/nnv. The
verification result is consistent between the methods, which is a good sanity check
for implementation correctness.
2 For Marabou, we used the faster parallel divide-and-conquer mode with arguments

as suggested in the paper [14]: --dnc --initial-divides=4 --initial-timeout=5

--num-online-divides=4 --timeout-factor=1.5 --num-workers=12.

https://github.com/stanleybak/nnenum
http://stanleybak.com/papers/bak2020cav_repeatability.zip
http://stanleybak.com/papers/bak2020cav_repeatability.zip
https://github.com/verivital/nnv
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Table 1. Tool runtime (secs) for ACAS Xu properties 5–10.

Property Net Result Our method ERAN Neurify NNV exact Marabou

5 1-1 SAFE 13 – 12 671 1969

6.1 1-1 SAFE 67 – 3 6230 12425

6.2 1-1 SAFE 76 – 1 7612 17755

7 1-9 UNSAFE 5948 – 804 – –

8 2-9 UNSAFE .7 – 64 – –

9 3-3 SAFE 88 318 393 12576 15235

10 4-5 SAFE 12 – 1 457 2795

The comparison on ACAS Xu benchmarks on properties 1–4 is shown in
Fig. 6. Our method is the only approach able to analyze all 180 benchmarks in
less than 10 min, and outperforms both Marabou and NNV.

The comparison with Neurify is more complicated. In Fig. 6, Neurify was
faster (when it finished) on all but the largest instances. One advantage of Neu-
rify compared with the other tools is that if the unsafe set is very far away
from the possible outputs of a neural network, it can prove safety quickly with a
very coarse overapproximation. Path enumeration methods, on the other hand,
explore all paths regardless of the distance to the unsafe set. This is especially
relevant for ACAS Xu property 1, where the system is unsafe if the first output,
clear-of-conflict, is greater than 1500 whereas, for example on network 1-1, this
output is always smaller than 1. The meaning of this property is also strange:
the absolute value of a specific output is irrelevant, as relative values are used
to select the current advisory. Neurify is admittedly the clear winner for all the
networks with this property.

When this property is excluded and instead only the more difficult prop-
erties 2–4 are considered (Fig. 7), a different trend emerges. Here, our method
outperforms Neurify when analysis takes more than about two seconds, which
we believe is an encouraging result. Further, part of the reason why Neurify can
be very quick on the easier benchmarks (with runtime less than two seconds) is
that our implementation incurs a startup delay of about 0.6 s simply to start the
Python process and begin executing our script, by which time the C++-based
Neurify can verify 80 benchmarks. We believe the more interesting cases are
when the runtimes are large, and we outperform Neurify in these cases.

Finally, we compare with using single-set overapproximations for analysis.
NNV provides an approximate-star method, where rather splitting, a single star
set is used to overapproximate the result of ReLU operations. While fast when it
succeeds, this strategy can only verify 68 of the 180 benchmarks. Furthermore,
the benchmarks it verified were also quickly checked with exact path enumer-
ation. Of the 68 verified benchmarks, the largest performance difference was
property 3 with network 3-3, which took 3.1 s with exact enumeration and 1.2 s
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with single-set overapproximation. For these ACAS Xu benchmarks, overapprox-
imation using a single set does not provide much benefit.

Other ACAS Xu Properties. Another recently proposed and well received
analysis method is presented in the elegant framework of abstract interpretation
using zonotopes, in tools such as AI2 [7] or DeepZ [21]. These methods are single-
set overapproximation methods, similar to the approximate-star method in NNV,
but with strictly more error (see Fig. 2 in the NNV paper [24] and the associated
discussion). As these methods have more error than approximate-star, and since
approximate-star could only verify 68 of the 180 benchmarks, we do not expect
these methods to work well on the ACAS Xu system.

However, a recent extension to these methods has been proposed where the
overapproximation is augmented with MILP solving [22] to provide complete
analysis. This has been implemented in the ERAN tool, publicly available at
https://github.com/eth-sri/eran. According to current version of the README,
ERAN currently only supports property 9 of ACAS Xu, so we were unable to try
this method on the other ACAS Xu networks or properties. Verifying property
9 uses a hard-coded custom strategy of first partitioning the input space into
6300 regions and analyzing these individually. This problem-specific parameter
presents a problem for fair timing comparison, as the time needed to find the
splitting parameter value of 6300 is unknown and does not get measured.

Ignoring this issue, we ran a comparison on property 9 and network 3-3, the
only network where the property applies. A runtime comparison for ERAN3 and
the other tools is shown in Table 1. Surprisingly, our enumeration method signif-
icantly outperforms the overapproximation and refinement approaches both in
Neurify and ERAN on this benchmark. Notice, however, that the original enu-
meration method in NNV is much slower than our method (about 150x slower
in this case). Without the optimizations from this work, one would reach the
opposite conclusion about which type of method works better for this bench-
mark. Both NNV and our method, however, report exploring the same number
of paths, 338600 on this system.

For completeness, Table 1 also includes the other original ACAS Xu prop-
erties, which were each defined over a single network4. Both our method and
Neurify completed all the benchmarks, although neither was best in all cases.
Property 7 is particularly interesting, since the input set is the entire input space,
so the number of path is very large. Hundreds of millions of paths were explored
before finding a case where the property was violated.

5 Related Work

As the interest in neural networks has surged, so has research in their verification.
We review some notable results here, although recent surveys may provide more

3 For ACAS Xu analysis, we used the following arguments provided by the ERAN
authors: --domain deepzono --dataset acasxu --complete True.

4 Property 6’s input set was a disjunction of two boxes which we split into two cases.

https://github.com/eth-sri/eran
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a thorough overview [15,28]. Verification approaches for NNs can broadly be
characterized into geometric techniques, SMT methods, and MILP approaches.

Geometric approaches, like this work, propagate sets of states layer by layer.
This can be done with polytopes [6,29] using libraries like the multi-parametric
toolbox (MPT) [10], although certain operations do not scale well, in particu-
lar, affine transformation. Other approaches use geometric methods to bound
the range of a neural network. These include AI2 [7] and DeepZ [21] which
propagate zonotopes through networks and are presented in the framework of
abstract interpretation. ReluVal [27] and Neurify [26] also fall into this cate-
gory, using interval symbolic methods to create overapproximations, followed by
a refinement strategy based on symbolic gradient information. Some of these
implementations are also sound with respect to floating-point rounding errors,
which we have not considered here, mostly for lack of an LP solver that is both
fast and does outward rounding. Other NN verification tools such as Reluplex,
Marabou, ERAN, and NNV also use numeric LP solving. Another performance
difference is that we used the free GLPK library for LP solving and some other
tools used the commercial Gurobi optimizer, which is likely faster. Other refine-
ment approaches partition the input space to detect adversarial examples [11],
compute maximum sensitivity for verification [30], or perform refinement based
on optimization shadow prices [20].

Mixed integer-linear programming (MILP) solvers can be used to exactly
encode the reachable set of states through a ReLU network using the big-M
trick to encode the possible branches [16,23]. This introduces a new boolean
variables for each neuron, which may limit scalability. The MILP approach has
also been combined with a local search [5] that uses gradient information to
speed up the search process.

SMT approaches include the Reluplex [13] and Marabou [14], which modify
the Simplex linear programming algorithm by splitting nodes into two, which are
linked by the semantics of a ReLU. The search process is modified with updates
that fix the ReLU semantics for the node pairs. Another tool, Planet, combines
the MILP approach with SAT solving and linear overapproximation [6].

Here, we focused on input/output properties of the neural network, given
as linear constraints. This formulation can check for adversarial examples [9] in
image classification within some L∞ norm of a base image, which are essentially
box input sets. Other more meaningful semantic image perturbations such as
rotations, color shifting, and lighting adjustments can also be converted into
input/output set verification problems [19].

6 Conclusions

One of the major successes of formal verification is the development of fast model
checking algorithms. When talking about how improvements to model checking
algorithms came about, Ken McMillan noted:

“Engineering matters: you can’t properly evaluate a technique without an
efficient implementation.” [18]
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With this in mind, we have strived to improve the practical efficiency of the
complete path-enumeration method for neural network verification. Although the
geometric path-enumeration method has been proposed before, we have shown
that, by a sequence of optimizations, the method’s scalability can be improved
by orders of magnitude.

One limitation is that we have focused on the ACAS Xu benchmarks.
Although there is a risk of overfitting our optimizations to the benchmarks being
considered, we believe these benchmarks are fairly general in that they contain
a mix of safe and unsafe instances, where the original verification times varied
from seconds to days. In particular, we believe these networks are similar to oth-
ers being used in control tasks, in terms of number of inputs and network size.
Further, practical considerations prevent us from considering too many more
benchmarks; our measurements already need over five days to run.

Unreported here, we were also able to run the implementation on larger per-
ception networks to analyze L∞ perturbation properties, networks with thou-
sands of neurons and hundreds of inputs, which succeeds when the perturba-
tion is sufficiently small. However, we believe path enumeration is the wrong
approach for those systems, as the number of paths quickly becomes too large
to enumerate. Instead, overapproximation and refinement methods would likely
work best, and evaluating optimizations for these methods may be done in future
work. One interpretation of the results presented here is that overapproximation
and refinement methods still have significant room for improvement, as it is
sometimes faster to explicitly enumerate benchmarks with millions of paths.

Many of the tools we have compared against also support more complicated
network structures, with different layer types and nonlinear activation func-
tions, whereas we only focused on the subclass of networks with ReLUs and
fully-connected layers. We believe that this is an important enough subclass of
neural networks that the results are still meaningful. Once the neural network
verification community is more mature, we expect a standard input format and
a set of categorized benchmarks will arise, similar to what has happened in the
SMT [2], software verification [3], and hybrid systems [1] communities.
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A Box Bounds Algorithm for Box-Halfspace Intersection

The problem of computing the box bounds of an intersection of an initial box
and a single halfspace can be computed without LP. Consider a p-dimensional
initial box defined with lower and upper bounds [l1, u1] × . . . × [lp, up]. Call the
constraint defining the halfspace fα ≤ g, where α is a p-dimensional vector of
variables, f is a p-dimensional vector with entries f1, . . . , fp, and g is a scalar.

Based on the signs of the signs of f1, . . . , fp, we first find the vertex v∗ in the
box that minimizes the dot product f · v∗. This can be done by choosing the ith
element of v∗ as:

v∗
i =

{
li, if fi ≥ 0
ui, otherwise

(6)

If f · v∗ > g, then the intersection is the empty set. Otherwise, we attempt
to contract in each of the p dimensions one-by-one.

For dimension i, if the lower bound was used to define v∗
i , then we attempt

to decrease ui. If the upper bound was used to define v∗
i , then we attempt to

increase li. This is done by finding the point on the edge of the box which
intersects the halfspace (point q in Fig. 5). Without loss of generality, assume
the lower bound of dimension i defined v∗

i . The intersection point q is given
by (v∗

1 , v∗
2 , . . . x, . . . v∗

p), where value of the ith coordinate, x, can be determined
from the single-variable equation q · f = g. If fi was zero, then this equation has
no solution, and we cannot contract in this dimension (the half-space and the
box edge where q must lie do not intersect). Otherwise, if we solve for x and find
x < ui, then we reduce ui, setting it to x. The process repeats for every other
dimension.

B Parallelization

The proposed approach can be parallelized in many ways. Here, we propose
and evaluate a work-stealing strategy, where each thread maintains a local set
of computation-state tuples and runs the high-level algorithm. Periodically, the
number of tuples in each local set are communicated using a shared data struc-
ture, and if some worker thread has no work remaining, the other threads will
push some of their local computation-state tuples to a shared global queue.

For this evaluation, we used the usual system setup described in the first
paragraph of Sect. 3, which we label Laptop. In addition, to see the effect of
more cores, we rented a c5.metal EC2 instance from Amazon Web Services,
which we refer to as AWS Server. This setup ran Ubuntu 18.08, and included a
dual Intel(R) Xeon(R) Platinum 8275CL processor running at 3.0 GHz, with a
total of 48 physical cores (96 with hyperthreading) and 384 GB of main memory.

To evaluate parallelism, we needed to use a benchmark with sufficient diffi-
culty where computation time dominates. For this, we chose ACAS Xu network
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Fig. 8. Doubling the number of cores roughly halves the computation time, up to the
physical core count on each platform.

4-2 with specification 2. In an earlier ACAS Xu evaluation [14], this property
timed out (>55 min) or ran out of memory for every tool analyzed. The single-
threaded runtime on the Laptop platform with our enumeration approach was
655 s (about 11 min), which enumerated 484555 paths in the network.

An evaluation where we adjusted the number of cores available to the com-
putation process for each of the two platforms is shown in Fig. 8. The AWS Server
platform was faster than the Laptop setup and, with all the cores being used,
could enumerate the same 484555 paths in about 15 s. The linear trend on the
log-log graph shows continuous improvement as more cores are added, up to the
physical-core limit on each platform. The gains from hyperthreading are com-
paratively smaller. Even using all the cores, about 90% of the computation time
was in the step function, as opposed to managing shared state. With more cores,
further improvement through additional parallelization is likely possible.

Correctness Justification: Parallelization explores the same set of states, just
in a different order.

C Full Optimization Data

See Table 2.
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Table 2. Runtimes (sec) for each optimization. Dashes (—) are timeouts (10 min).

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

1 1-1 SAFE — — 399 166 359 159 129 65 50 10
1 1-2 SAFE — — 467 206 416 191 154 76 57 12
1 1-3 SAFE — — — 485 — 496 375 197 163 32
1 1-4 SAFE — — — 558 — 538 407 271 177 36
1 1-5 SAFE — — — 492 — 491 360 215 138 30
1 1-6 SAFE — — — — — — — — 445 95
1 1-7 SAFE — — 539 250 518 259 190 113 78 17
1 1-8 SAFE — — — 409 — 434 287 188 128 27
1 1-9 SAFE — — — 476 — 446 324 221 132 29
1 2-1 SAFE — — — — — — 523 343 216 47
1 2-2 SAFE — — — — — — — — 599 119
1 2-3 SAFE — — — — — — 564 332 227 47
1 2-4 SAFE — — — 383 — 412 272 193 120 27
1 2-5 SAFE — — — — — — — — — 188
1 2-6 SAFE — — — — — — — 517 400 82
1 2-7 SAFE — — — — — — — — — 195
1 2-8 SAFE — — — — — — — — — 163
1 2-9 SAFE — — — — — — — — — 271
1 3-1 SAFE — — — — — — 438 411 263 57
1 3-2 SAFE — — — — — — 521 308 214 46
1 3-3 SAFE — — — — — — — 596 390 84
1 3-4 SAFE — — — 442 — 438 323 221 141 30
1 3-5 SAFE — — — — — — — — 401 86
1 3-6 SAFE — — — — — — — — — 297
1 3-7 SAFE — — — — — — — — — 155
1 3-8 SAFE — — — — — — — — — 141
1 3-9 SAFE — — — — — — — — 507 107
1 4-1 SAFE — — — — — — — — 517 107
1 4-2 SAFE — — — — — — — — 568 124
1 4-3 SAFE — — — 537 — 508 396 233 160 34
1 4-4 SAFE — — — 523 — 584 365 245 155 34
1 4-5 SAFE — — — — — — — — 573 119
1 4-6 SAFE — — — — — — — — — 408
1 4-7 SAFE — — — — — — — — — 195
1 4-8 SAFE — — — — — — — — — 131
1 4-9 SAFE — — — — — — — — — 304
1 5-1 SAFE — — — — — — 482 322 232 48
1 5-2 SAFE — — — — — — — 426 303 64
1 5-3 SAFE — — — 508 — 498 366 214 143 32
1 5-4 SAFE — — — 305 — 289 211 136 98 21
1 5-5 SAFE — — — — — — — 368 264 57
1 5-6 SAFE — — — — — — — — — 176
1 5-7 SAFE — — — — — — — — 474 97
1 5-8 SAFE — — — — — — — — — 153
1 5-9 SAFE — — — — — — — — — 161
2 1-1 SAFE — — 404 159 368 165 128 67 46 10
2 1-2 UNSAFE — 58 24 11 23 12 9 5 4 1
2 1-3 UNSAFE — 463 192 74 177 78 58 32 26 21
2 1-4 UNSAFE — 31 15 6 13 6 5 4 3 1
2 1-5 UNSAFE — 4 2 1 1 1 1 .8 .8 1
2 1-6 UNSAFE — — — 517 — 579 373 260 175 19
2 1-7 SAFE — — 557 234 520 255 193 111 79 17
2 1-8 SAFE — — — 403 — 399 297 184 126 27
2 1-9 SAFE — — — 431 — 472 317 206 136 29
2 2-1 UNSAFE — 92 39 18 37 18 13 7 5 .9
2 2-2 UNSAFE — .7 .7 .7 .7 .7 .7 .7 .7 .8
2 2-3 UNSAFE — 8 4 2 4 2 2 1 1 1
2 2-4 UNSAFE — 4 2 1 2 1 1 1 .9 .9
2 2-5 UNSAFE — 37 17 8 18 8 6 3 3 1
2 2-6 UNSAFE — 284 146 58 144 65 48 25 18 8

(continued)
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Table 2. (continued)

2 2-7 UNSAFE — 506 250 85 256 96 78 43 30 .9
2 2-8 UNSAFE — 51 26 10 24 10 9 5 4 2
2 2-9 UNSAFE — — — 291 — 320 242 132 94 2
2 3-1 UNSAFE — 190 68 31 50 24 20 12 9 4
2 3-2 UNSAFE — 250 88 38 96 44 27 19 14 1
2 3-3 SAFE — — — — — — — 590 409 83
2 3-4 UNSAFE — 197 106 41 97 42 32 18 13 .9
2 3-5 UNSAFE — 67 34 14 32 15 11 6 5 .9
2 3-6 UNSAFE — 27 10 5 11 5 5 3 2 5
2 3-7 UNSAFE — 49 25 11 25 12 9 5 4 1
2 3-8 UNSAFE — 266 112 42 114 50 32 20 15 2
2 3-9 UNSAFE — 20 11 5 10 5 4 2 2 2
2 4-1 UNSAFE — 115 45 19 40 20 14 8 7 5
2 4-2 SAFE — — — — — — — — 597 125
2 4-3 UNSAFE — 2 1 1 2 1 .9 .8 .8 .9
2 4-4 UNSAFE — 39 17 7 19 8 6 4 3 2
2 4-5 UNSAFE — 470 239 97 200 94 71 34 27 2
2 4-6 UNSAFE — 139 64 25 71 28 22 11 9 2
2 4-7 UNSAFE — 461 215 93 210 93 65 35 27 1
2 4-8 UNSAFE — 322 162 60 163 67 49 22 16 .9
2 4-9 UNSAFE — — 390 164 413 180 121 73 56 5
2 5-1 UNSAFE — 32 15 7 15 8 6 3 3 .9
2 5-2 UNSAFE — 91 39 18 30 16 12 6 6 1
2 5-3 UNSAFE — — — 460 — 487 316 201 141 24
2 5-4 UNSAFE — 2 1 1 1 1 .9 .8 .8 .9
2 5-5 UNSAFE — 261 107 48 111 46 36 19 14 2
2 5-6 UNSAFE — 208 102 41 95 41 30 15 10 2
2 5-7 UNSAFE — 107 52 21 53 22 18 8 7 2
2 5-8 UNSAFE — 302 161 63 160 67 50 27 19 1
2 5-9 UNSAFE — — 477 189 472 218 163 81 61 1
3 1-1 SAFE 561 526 232 116 125 80 58 103 58 12
3 1-2 SAFE 534 533 233 116 104 65 50 64 43 9
3 1-3 SAFE 143 147 75 35 30 20 15 19 14 4
3 1-4 SAFE 77 73 40 19 8 6 5 7 5 2
3 1-5 SAFE 88 84 42 21 10 7 6 8 6 2
3 1-6 SAFE 21 22 12 6 3 3 2 3 2 1
3 1-7 UNSAFE 8 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 1-8 UNSAFE 6 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 1-9 UNSAFE 4 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 2-1 SAFE 147 142 75 34 31 21 16 24 14 4
3 2-2 SAFE 59 55 30 14 12 8 6 10 6 2
3 2-3 SAFE 108 101 50 25 19 12 9 14 9 3
3 2-4 SAFE 6 6 4 2 1 1 1 1 1 1
3 2-5 SAFE 33 33 18 9 4 4 3 4 3 1
3 2-6 SAFE 5 5 4 2 1 1 1 1 .9 1
3 2-7 SAFE 17 16 11 5 3 2 2 2 2 1
3 2-8 SAFE 6 6 5 2 1 1 1 1 1 1
3 2-9 SAFE 4 4 3 2 .9 .9 .8 1 .9 .9
3 3-1 SAFE 57 53 25 12 11 7 5 9 6 2
3 3-2 SAFE 578 537 226 117 93 53 40 59 36 8
3 3-3 SAFE 128 128 65 31 22 14 11 13 11 3
3 3-4 SAFE 27 26 16 7 5 4 3 4 2 1
3 3-5 SAFE 16 16 10 5 2 2 2 2 2 1
3 3-6 SAFE 31 33 20 10 5 4 3 3 3 1
3 3-7 SAFE 2 2 2 1 .8 .8 .7 .8 .8 .8
3 3-8 SAFE 12 12 8 4 2 2 1 2 1 1
3 3-9 SAFE 16 15 10 5 3 2 2 2 2 1
3 4-1 SAFE 18 18 11 5 5 3 2 4 3 1
3 4-2 SAFE 189 187 88 43 44 24 19 25 16 4
3 4-3 SAFE 282 283 136 63 64 35 29 32 24 5
3 4-4 SAFE 12 11 7 4 2 1 1 2 1 1
3 4-5 SAFE 4 4 3 2 1 1 .9 1 .9 1
3 4-6 SAFE 33 34 20 10 7 5 4 4 3 1
3 4-7 SAFE 15 15 11 5 2 2 2 2 2 1
3 4-8 SAFE 11 12 8 4 2 1 1 2 1 1
3 4-9 SAFE 12 11 8 4 2 2 2 2 1 1
3 5-1 SAFE 97 91 50 25 19 12 9 14 9 3
3 5-2 SAFE 18 19 11 6 5 3 2 4 2 1

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

(continued)
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Table 2. (continued)

3 5-3 SAFE 22 23 12 6 5 3 3 4 3 1
3 5-4 SAFE 11 11 7 4 2 2 1 2 1 1
3 5-5 SAFE 15 14 10 5 2 2 2 2 2 1
3 5-6 SAFE 23 21 14 7 3 3 2 3 2 1
3 5-7 SAFE 2 2 2 1 .8 .8 .7 .8 .7 .8
3 5-8 SAFE 37 38 24 10 6 4 4 5 3 1
3 5-9 SAFE 2 2 2 1 .9 .8 .7 .8 .8 .8
4 1-1 SAFE 149 150 72 34 33 22 16 23 16 4
4 1-2 SAFE 135 130 52 27 21 15 12 16 11 3
4 1-3 SAFE 95 96 44 23 18 12 10 13 9 3
4 1-4 SAFE 12 11 7 4 2 2 2 2 2 1
4 1-5 SAFE 81 84 42 20 12 9 8 9 7 2
4 1-6 SAFE 41 37 20 11 7 5 4 6 4 2
4 1-7 UNSAFE 6 .7 .7 .7 .7 .7 .7 .7 .7 .8
4 1-8 UNSAFE 7 .8 .7 .7 .7 .7 .7 .7 .7 .8
4 1-9 UNSAFE 5 .7 .7 .7 .7 .7 .7 .7 .7 .8
4 2-1 SAFE 38 41 21 11 7 5 5 7 4 2
4 2-2 SAFE 50 51 27 13 8 6 5 6 4 2
4 2-3 SAFE 9 9 6 3 2 2 2 2 1 1
4 2-4 SAFE 8 9 5 3 2 2 1 2 1 1
4 2-5 SAFE 28 27 14 7 6 4 4 4 3 1
4 2-6 SAFE 15 15 9 5 3 2 2 2 2 1
4 2-7 SAFE 7 7 5 3 1 1 1 1 1 1
4 2-8 SAFE 40 43 25 11 5 4 3 4 3 1
4 2-9 SAFE 3 3 3 2 .9 .9 .9 .9 .9 .9
4 3-1 SAFE 56 52 27 13 7 6 5 6 5 2
4 3-2 SAFE 63 61 31 15 12 9 7 11 7 2
4 3-3 SAFE 10 9 6 3 2 2 2 2 2 1
4 3-4 SAFE 12 12 7 3 2 2 2 2 2 1
4 3-5 SAFE 38 40 22 10 8 6 4 5 4 2
4 3-6 SAFE 20 20 12 6 3 3 2 3 2 1
4 3-7 SAFE 17 17 11 5 3 2 2 2 2 1
4 3-8 SAFE 7 7 5 2 2 2 1 1 1 1
4 3-9 SAFE 51 48 29 13 7 5 5 5 4 2
4 4-1 SAFE 7 7 5 3 2 1 1 2 1 1
4 4-2 SAFE 14 14 8 5 3 2 2 2 2 1
4 4-3 SAFE 26 27 14 8 5 4 3 5 3 1
4 4-4 SAFE 20 20 11 6 3 2 2 2 2 1
4 4-5 SAFE 17 16 9 5 3 2 2 2 2 1
4 4-6 SAFE 30 30 15 7 5 3 3 4 3 1
4 4-7 SAFE 3 3 2 1 1 .9 .9 .9 .8 .8
4 4-8 SAFE 24 23 16 7 4 3 2 3 2 1
4 4-9 SAFE 43 40 24 12 5 4 4 4 4 2
4 5-1 SAFE 57 53 26 14 10 7 6 8 5 2
4 5-2 SAFE 38 34 17 9 7 4 4 5 4 2
4 5-3 SAFE 14 13 8 4 3 2 2 3 2 1
4 5-4 SAFE 13 13 8 4 2 2 2 2 2 1
4 5-5 SAFE 17 17 11 6 3 3 2 2 2 1
4 5-6 SAFE 10 10 6 3 2 2 2 2 1 1
4 5-7 SAFE 3 3 2 1 .9 .8 .8 .9 .8 .8
4 5-8 SAFE 8 8 6 3 2 1 1 1 1 1
4 5-9 SAFE 14 13 8 4 2 2 2 2 2 1

Prop Net Result  BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

D Full Tool Comparison Data

This section contains the complete data measured in the optimization improve-
ments from Sect. 3 (Table 3).
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Table 3. Runtimes (sec) for each tool. Dashes (—) are timeouts (10min).

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

1 1-1 SAFE 95 — 10 .1
1 1-2 SAFE 168 — 12 .2
1 1-3 SAFE — — 32 1
1 1-4 SAFE — — 36 2
1 1-5 SAFE 119 — 30 .2
1 1-6 SAFE 110 — 95 .2
1 1-7 SAFE 63 — 17 .1
1 1-8 SAFE 56 — 27 .1
1 1-9 SAFE 43 — 29 .1
1 2-1 SAFE — — 47 .6
1 2-2 SAFE — — 119 1
1 2-3 SAFE — — 47 1
1 2-4 SAFE 294 — 27 .5
1 2-5 SAFE — — 188 4
1 2-6 SAFE — — 82 3
1 2-7 SAFE — — 195 11
1 2-8 SAFE — — 163 3
1 2-9 SAFE — — 271 8
1 3-1 SAFE — — 57 .4
1 3-2 SAFE — — 46 .7
1 3-3 SAFE 521 — 84 1
1 3-4 SAFE 510 — 30 .6
1 3-5 SAFE — — 86 2
1 3-6 SAFE — — 297 28
1 3-7 SAFE — — 155 12
1 3-8 SAFE — — 141 8
1 3-9 SAFE — — 107 11
1 4-1 SAFE — — 107 16
1 4-2 SAFE — — 124 3
1 4-3 SAFE — — 34 1
1 4-4 SAFE 387 — 34 .7
1 4-5 SAFE — — 119 3
1 4-6 SAFE — — 408 22
1 4-7 SAFE — — 195 23
1 4-8 SAFE — — 131 47
1 4-9 SAFE — — 304 21
1 5-1 SAFE 353 — 48 .4
1 5-2 SAFE 522 — 64 .7
1 5-3 SAFE 128 — 32 .2
1 5-4 SAFE 574 — 21 .4
1 5-5 SAFE — — 57 1
1 5-6 SAFE — — 176 15
1 5-7 SAFE — — 97 3
1 5-8 SAFE — — 153 16
1 5-9 SAFE — — 161 8
2 1-1 SAFE — — 10 .6
2 1-2 UNSAFE 254 — 1 3
2 1-3 UNSAFE — — 21 11
2 1-4 UNSAFE — — 1 10
2 1-5 UNSAFE — — 1 —
2 1-6 UNSAFE — — 19 52
2 1-7 SAFE — — 17 6
2 1-8 SAFE — — 27 23
2 1-9 SAFE — — 29 11
2 2-1 UNSAFE 59 — .9 .1

(continued)
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Table 3. (continued)

2 2-2 UNSAFE — — .8 .1
2 2-3 UNSAFE 549 — 1 .1
2 2-4 UNSAFE 18 — .9 .1
2 2-5 UNSAFE 547 — 1 .1
2 2-6 UNSAFE — — 8 .1
2 2-7 UNSAFE 24 — .9 .1
2 2-8 UNSAFE 102 — 2 .1
2 2-9 UNSAFE — — 2 —
2 3-1 UNSAFE 97 — 4 .1
2 3-2 UNSAFE 345 — 1 —
2 3-3 SAFE — — 83 —
2 3-4 UNSAFE — — .9 .1
2 3-5 UNSAFE 319 — .9 .1
2 3-6 UNSAFE 471 — 5 .1
2 3-7 UNSAFE — — 1 —
2 3-8 UNSAFE — — 2 .1
2 3-9 UNSAFE 457 — 2 .1
2 4-1 UNSAFE — — 5 .2
2 4-2 SAFE — — 125 —
2 4-3 UNSAFE 566 — .9 .1
2 4-4 UNSAFE 288 — 2 .1
2 4-5 UNSAFE — — 2 .1
2 4-6 UNSAFE 419 — 2 .1
2 4-7 UNSAFE — — 1 .1
2 4-8 UNSAFE 336 — .9 .1
2 4-9 UNSAFE — — 5 45
2 5-1 UNSAFE 119 — .9 .1
2 5-2 UNSAFE 24 — 1 .1
2 5-3 UNSAFE — — 24 —
2 5-4 UNSAFE 360 — .9 .1
2 5-5 UNSAFE 278 — 2 .1
2 5-6 UNSAFE 547 — 2 .1
2 5-7 UNSAFE 17 — 2 .1
2 5-8 UNSAFE 246 — 1 .1
2 5-9 UNSAFE 47 — 1 .1
3 1-1 SAFE — 564 12 104
3 1-2 SAFE — 283 9 2
3 1-3 SAFE — 58 4 3
3 1-4 SAFE 342 12 2 .3
3 1-5 SAFE 520 17 2 .2
3 1-6 SAFE 43 4 1 .1
3 1-7 UNSAFE 12 2 .8 .1
3 1-8 UNSAFE 12 2 .8 .1
3 1-9 UNSAFE 12 1 .8 .05
3 2-1 SAFE — 70 4 21
3 2-2 SAFE — 23 2 8
3 2-3 SAFE — 39 3 3
3 2-4 SAFE 15 2 1 .5
3 2-5 SAFE 18 7 1 .4
3 2-6 SAFE 15 1 1 .04
3 2-7 SAFE 16 4 1 .3
3 2-8 SAFE 15 2 1 .1
3 2-9 SAFE 13 1 .9 .03
3 3-1 SAFE 406 21 2 3
3 3-2 SAFE — 247 8 6
3 3-3 SAFE — 35 3 .2
3 3-4 SAFE 47 8 1 .4
3 3-5 SAFE 15 4 1 5
3 3-6 SAFE 390 7 1 151
3 3-7 SAFE 13 .9 .8 .1
3 3-8 SAFE 36 3 1 4
3 3-9 SAFE 45 4 1 3
3 4-1 SAFE — 8 1 8
3 4-2 SAFE — 88 4 97
3 4-3 SAFE — 130 5 2
3 4-4 SAFE 14 2 1 .1
3 4-5 SAFE 14 1 1 .1
3 4-6 SAFE 102 11 1 .2

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

(continued)
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Table 3. (continued)

3 4-7 SAFE 96 3 1 .6
3 4-8 SAFE 85 2 1 2
3 4-9 SAFE 33 3 1 .1
3 5-1 SAFE — 35 3 21
3 5-2 SAFE — 8 1 2
3 5-3 SAFE 146 8 1 .2
3 5-4 SAFE 17 3 1 .2
3 5-5 SAFE 24 4 1 .5
3 5-6 SAFE 88 5 1 .9
3 5-7 SAFE 14 .6 .8 .04
3 5-8 SAFE 43 9 1 .1
3 5-9 SAFE 14 .9 .8 .1
4 1-1 SAFE — 82 4 1
4 1-2 SAFE — 50 3 1
4 1-3 SAFE — 36 3 .4
4 1-4 SAFE 105 3 1 .2
4 1-5 SAFE 504 24 2 .4
4 1-6 SAFE 89 12 2 .2
4 1-7 UNSAFE 12 2 .8 .1
4 1-8 UNSAFE 12 2 .8 .1
4 1-9 UNSAFE 12 2 .8 .1
4 2-1 SAFE 171 14 2 .8
4 2-2 SAFE 520 14 2 2
4 2-3 SAFE 77 3 1 .8
4 2-4 SAFE 23 3 1 .2
4 2-5 SAFE 61 11 1 .4
4 2-6 SAFE 90 5 1 .3
4 2-7 SAFE 14 2 1 .1
4 2-8 SAFE 43 8 1 .1
4 2-9 SAFE 13 1 .9 .03
4 3-1 SAFE — 13 2 1
4 3-2 SAFE 134 27 2 .4
4 3-3 SAFE 21 4 1 .1
4 3-4 SAFE 20 4 1 .2
4 3-5 SAFE 59 15 2 1
4 3-6 SAFE 66 5 1 2
4 3-7 SAFE 16 4 1 .3
4 3-8 SAFE 29 3 1 .3
4 3-9 SAFE 63 12 2 1
4 4-1 SAFE 78 3 1 3
4 4-2 SAFE 60 5 1 2
4 4-3 SAFE 134 10 1 1
4 4-4 SAFE 41 5 1 1
4 4-5 SAFE 62 4 1 2
4 4-6 SAFE 14 8 1 .04
4 4-7 SAFE 21 1 .8 .2
4 4-8 SAFE 37 6 1 .2
4 4-9 SAFE 25 8 2 .1
4 5-1 SAFE 339 19 2 3
4 5-2 SAFE 51 12 2 .5
4 5-3 SAFE 52 5 1 .2
4 5-4 SAFE 31 4 1 .2
4 5-5 SAFE 49 5 1 .6
4 5-6 SAFE 76 3 1 .3
4 5-7 SAFE 14 1 .8 .04
4 5-8 SAFE 31 3 1 .1
4 5-9 SAFE 26 3 1 .1

Prop Net Result  Marabou
NNV
Exact

Our
Method

Neurify
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Abstract. The field of verification has advanced due to the interplay of
theoretical development and empirical evaluation. Benchmarks play an
important role in this by supporting the assessment of the state-of-the-
art and comparison of alternative verification approaches. Recent years
have witnessed significant developments in the verification of deep neural
networks, but diverse benchmarks representing the range of verification
problems in this domain do not yet exist. This paper describes a neural
network verification benchmark generator, GDVB, that systematically
varies aspects of problems in the benchmark that influence verifier perfor-
mance. Through a series of studies, we illustrate how GDVB can assist in
advancing the sub-field of neural network verification by more efficiently
providing richer and less biased sets of verification problems.

Keywords: Neural network · Verification · Benchmark · Covering
array

1 Motivation

Advances in machine learning have enabled training of deep neural networks
(DNN) that are capable of realizing complex functions that rival or exceed the
performance of human-built software, e.g., [27,32,41]. This success has led sys-
tem developers to deploy, or consider deployment of, DNN models in critical
systems, e.g., [12,39,53]. Consequently, the verification of correctness proper-
ties of DNNs has become a key challenge to assuring autonomous systems, and
the research community has risen to this challenge. In the three years since
Katz et al. [30] presented ReLuplex at CAV 2017, researchers have published
more than 20 DNN verification approaches supporting different properties and
DNN architectures and spanning a range of algorithmic approaches [9,13,14,18–
20,22,29–31,36,45,46,50,56,59–63]. While DNN verification has its own unique
challenges, it is also a recent example in the long-history of domain-specific ver-
ification research, e.g., for hardware [25], software [17], real-time systems [58],
and cryptographic protocols [40], and can benefit from the experience of these
communities.
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 97–121, 2020.
https://doi.org/10.1007/978-3-030-53288-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_5&domain=pdf
http://orcid.org/0000-0001-5643-7197
http://orcid.org/0000-0003-0208-6517
http://orcid.org/0000-0002-1937-1544
http://orcid.org/0000-0001-9592-1352
https://doi.org/10.1007/978-3-030-53288-8_5


98 D. Xu et al.

A key lesson learned by the community is that despite the fact that veri-
fication emphasizes the development of theoretical and algorithmic techniques,
advances in verification research often arise from understanding how different
algorithmic and implementation approaches compare – a process that requires
empirical study. Empirical study in verification is common, but unlike many
other fields of computer science, for decades it has organized verification tool
competitions that serve as a regular and long-running form of community-driven
empirical study. Researchers tracked the progress of SMT solvers over a span
of 6 years at these community-driven empirical studies and found that repeat-
edly “a certain solver presents a key idea that improves the performance in a
particular division, and this idea is implemented by most solvers” in the follow-
ing year [7]. Enabling the type of comparative studies that drive such advances
requires verification benchmarks – a fact that the verification community has
recognized for at least 25 years, e.g., [8,10,33,43,55].

Benchmarking in verification has evolved in response to the demands of
empirical study within the field, e.g., [1–4], to support two objectives: (A1)
assessment of the state-of-the-art and (A2) comparison of alternative approaches.
In support of these, the verification community has favored benchmarks that:
(R1) are diverse in structure and difficulty; (R2) represent verifier use
cases; and (R3) evolve as verification technology advances.

The verification benchmarking and competition literature suggests that these
requirements are widely accepted. For example, the TPTP benchmark’s stated
goals include R1 (“contains problems varying in difficulty”), R2 (“spans a diver-
sity of subject matters”), and R3 (“is up-to-date”, “provides a mechanism for
adding new problems”) [54]. Moreover, these requirements are promoted, either
explicitly or implicitly, by many of the regularly held verification competitions.
To meet R1 and R2 SAT competitions construct benchmarks that include prob-
lems from six different domains: software, hardware, A.I, obstruction, combina-
torial challenges, and theorem proving [4]. SAT competitions since 2017 have
instituted a bring your own benchmarks policy that requires verifier developers
to submit 20 new benchmarks with at least 10 that are “not too easy” or “too
hard” – which helps to address R1 and R3. SMT competitions have used selec-
tion criteria that are biased towards these same requirements, e.g., “balancing
the difficulty of benchmarks” [7].

Verification competitions have undoubtedly been a positive force for develop-
ing high-quality verification benchmarks, but prior to their existence researchers
were forced to develop their own “benchmarks” – a collection of verification
problems on which they evaluate their techniques and perhaps others. This is
the situation that the subfield of DNN verification finds itself in.

The risk in letting technique developers choose their own benchmark is
selection bias – that the selected problems do not represent a broad or impor-
tant population of problems. For example, if an SMT benchmark were selected
based on the constraints generated by symbolic execution tools they would be
structurally biased, consisting only of conjunctive formula. As another example,
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if a SAT benchmark were generated randomly it is likely that a large portion of
the benchmark would not represent realistic use cases.

Good benchmarks are expensive to develop, e.g., [11], but they are an invalu-
able resource for advancing a research community. When well designed they seek
to balance requirements R1-R3 and to support a fair and accurate assessment of
the state-of-the-art and comparison between alternative algorithmic and imple-
mentation approaches. This paper reports on GDVB, the first framework for
systematic Generation of DNN V erification problem Benchmarks, that meets
the de-facto requirements for verification benchmarks, R1–R3, in order to sup-
port objectives A1–A2 for the rapidly evolving field of DNN verification.

GDVB takes a generative approach to benchmark development – an app-
roach that has risen in popularity in recent years [5,35,64]. Unlike, other gener-
ative benchmark approaches GDVB seeks to systematically cover variations in
verification problems that are known to influence verifier performance. Towards
that end, GDVB is parameterized by: (1) a set of factors known to influence the
performance of DNN verifiers; (2) a coverage goal that determines the combina-
tion of factors that should be reflected in the benchmark; and (3) a seed verifi-
cation problem from which a set of variant problems are generated. From these
parameters, it computes a constrained mixed-level covering array [15] defining a
set of factor-value tuples. Each tuple defines how the seed verification problem
can be transformed to give rise to a verification problem capable of exposing
performance variation in a DNN verifier.

As a benchmark generator GDVB naturally meets requirement R3. By start-
ing from a seed network representing a DNN verification use case, GDVB is guar-
anteed to meet R2. As we discuss in Sect. 4, the use of factors allows GDVB
to produce systematically diverse verification problems both in terms of struc-
ture and difficulty in order to meet requirement R1. Moreover, GDVB offers
the potential to reduce selection bias in performing evaluations of DNN veri-
fiers, since it assures coverage of a space of performance related factors. Finally,
GDVB is designed to support the rapidly evolving field of DNN verifiers by
allowing the generation of benchmarks, e.g., from new seeds as verifiers improve,
as new performance factors are identified, and to target challenge problems in
different DNN domains, e.g., regression models for autonomous UAV naviga-
tion [39,53].

The contributions of this paper are: identification of the need for unbiased
and diverse benchmarks for DNN verification; a study of factors that affect the
performance of DNN verification tools (Sect. 3); the specification of a verification
benchmark as the solution to a constrained mixed-level covering array problem
(Sect. 4); the GDVB algorithm for computing a benchmark from a verifica-
tion problem by transforming the neural network and correctness specification
(Sect. 4.3); the evaluation of GDVB on multiple state-of-the-art DNN verifiers
using different seed verification problems that demonstrates how GDVB results
can support the evaluation of DNN verifiers (Sect. 5); and the GDVB tool.
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2 Background and Related Wok

Deep Neural Networks (DNN). A DNN is trained to accurately approxi-
mate a target function, f : R

d → R
r. A network, n : R

d → R
r, is comprised of

a graph of L hidden layers, l1, . . . , lL, along with an input layer, lin = l0, and
output layer, lout = lL+1. Each hidden layer defines an independent function,
where their composition when applied to the output of lin generates values in
lout that define the network output.

Hidden layers are, generally, comprised of a set of neurons that accumulate
a weighted sum of their inputs from the prior layer and then apply an activation
function to determine how to non-linearly scale that sum to compute the output
from the layer. A variety of different activation functions have been explored in
the literature, including: rectified linear units (ReLU), sigmoid, and tanh.

The design of a DNN involves choosing an appropriate set of layer types, e.g.,
convolutional, maxpooling, fully-connected, the instantiation of those layers, e.g.,
the number of neurons, the specific activation function, and the definition of how
layers are interconnected. Together these comprise the DNN architecture [23].

Networks are trained using a variety of algorithmic strategies with the goal
of minimizing the loss in the approximation of the learned function relative to
some proxy for f , e.g., labeled training data. The training process is stochastic,
e.g., initial weight values are randomized, which leads to variation in n even
when architecture, training algorithm, and training data are fixed.

Section 3 reveals how DNN architecture can influence verification perfor-
mance.

DNN Specifications. Given a network n : R
d → R

r, a property, φ, defines a
set of constraints over the inputs, φx , and an associated set of constraints over
the outputs, φy. Verification of n seeks to prove: ∀x ∈ R

d : φx(x) ⇒ φy(N(x))
where N(x) is running the neural network n with input x.

Specifying behavioral properties of DNNs is challenging and is an active
area of research [24]. In [30], a set of 188 purely conjunctive properties, of the
form described above, were defined for a simple neural network, with 7 inputs,
encoding of a rule set for autonomous aircraft collision avoidance (ACAS). In
[44,59,60], properties expressing output range invariants were used, for example,
that the steering angle never exceeded an absolute value of 30◦. Much of the work
on DNN verification has focused on local robustness properties [50–52], which
state that for a selected target input the output of the network is invariant for
other inputs within a specified distance of the target.

Section 3 reveals how the specification can influence verification performance.

DNN Verification Methods and Tools. There are a variety of different
algorithmic and implementation approaches taken to verifying the validity of a
DNN with respect to a stated correctness property.
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Definition 1. A DNN verification problem, 〈n, φ〉, is comprised of a DNN, n,
and a property specification, φ. The outcome of a verification problem for a DNN
verifier indicates whether n |= φ is valid, invalid, or unknown – indicating that
the problem cannot be determined to be either valid or invalid.

A recent DNN verification survey [37], classifies approaches as being based on
reachability, optimization, and search algorithms – or their combination. Reach-
ability methods begin with a symbolic encoding of an input set and compute,
for each layer, a symbolic encoding of the output set. They vary in the symbolic
encodings used, e.g., intervals, polyhedra, and in the degree of overapproximation
they introduce [22,46,50,63]. Optimization methods formulate verification as an
optimization problem whose solution implies the validity of φ [9,19,38,45,56,62].
Search methods work in combination with reachability and optimization, by
decomposing the input space to formulate verification sub-problems that are
discharged by the above techniques [13,14,18,20,29,30,59–61].

In this paper, we use implementations of the following verifiers: ERAN [50],
BaB [14], Neurify [59], Planet [20], and ReLuplex [30].

Verification Benchmarking. We covered the broad landscape of work on
benchmark development for verification in (Sect. 1). There have been efforts to
develop benchmarks within a variety of different verification problem domains,
e.g. hardware [25], software [17], real-time systems [58], cryptographic proto-
cols [40], and for different encodings of verification problems, e.g., model check-
ing [33], SAT [4], SMT [8], and theorem proving [55].

In recent work on DNN verification, researchers have shared collections of
examples that, in a sense, serve as informal benchmarks and permit comparative
evaluation, e.g. [30,50]. While valuable, these examples were not intended to, and
do not, comprise a benchmark meeting requirements R1–R3. To our knowledge,
GDVB is the first approach to achieving those goals for DNN verification.

For several years, the SAT community has been exploring scalable bench-
marks, e.g., [21,35]. For instance, to explore conflict-driven clause learning
(CDCL) SAT solver performance, Elffers et al. [21] used crafted parameterized
benchmarks that can be scaled with respect to different factors that may influ-
ence performance. We conduct a similar domain analysis of factors, but focus
on the landscape of DNN verification algorithms developed to date. Like this
line of work, GDVB advocates a scalable approach to benchmark generation. As
described in Sect. 4, GDVB starts with seed problems that are challenging for
current verifiers and “scales them down”, but it can also be applied to start with
easier seed problems and “scale them up” as more typical of the prior work on
scalable benchmarking.

Verification Benchmark Ranking. The verification community has explored
a variety of ranking schemes for assessing the cost-effectiveness of techniques. A
key challenge is that verification techniques vary not only in their cost, e.g.,
time to produce a verification result, but also in their accuracy, e.g., whether
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they produce an unknown result. For example, SAT competitions have employed
a range of scoring models, e.g., purse-based ranking, solution-count ranking
(SCR), careful ranking, and penalized average runtime (PAR2) [6]. SCR, which
counts the number of solved problem instances and uses verification time as a
tie breaker [57], is the scoring system of choice [1,4]. In Sect. 5, we report DNN
verifier performance using both SCR and PAR2 scoring systems.

Covering Arrays. In Sect. 3 we explore factors that influence DNN verifier
performance. Studying all their combinations would be cost prohibitive, so we
consider weaker notions of coverage.

A covering array defines a systematic method for testing how combinations
of parameter values influence system performance [16]. A covering array is an
N × k array. The k columns represent factors that may influence performance
and cells can take on v levels – defining settings for factors. The N rows of
the array define combinations of factor-levels. Arrays are defined to achieve a
strength of the coverage, t. t = 2 defines pairwise strength, which means that all
pairs of levels for all factors are present in some row of the covering array.

We require a richer form of covering array that permits the number of levels
to vary with different factors, i.e., a mixed-level covering array (MCA), and
that can constrain specified factor-level combinations, e.g., by forbidding their
inclusion in the MCA. By modeling each factor as a variable and its levels as
the domain of the variable, one can express constraints as propositional logic
formulae over equality terms; if the levels are ordered then richer underlying
theories can be applied. A constrained-MCA defines an MCA that is consistent
with a given constraint, C.

Definition 2. Constrained Mixed-level Covering Array (Definition 2.9
from [15])
CMCA(N ; t, k, (|v1|, |v2|, ..., |vk|), C) is an N × k array on |v| symbols, where
|v| =

∑k
i=0 |vi|, with the following properties: 1) Each column i(1 ≤ i ≤ k) con-

tains only elements from a set Si of size |vi|, 2) the rows of each N × t subarray
cover all t-tuples of values from the t columns at least one time, and 3) all rows
are models of C.

Transforming Neural Networks. The GDVB approach manipulates factors
that influence DNN verifier performance to construct a diverse benchmark. For
DNN construction, we leverage a recent approach, R4V [47], that given an origi-
nal DNN and an architectural specification automates the transformation of the
DNN and uses distillation [28] to train it to closely match the test accuracy of
the original DNN. R4V transformation specifications can be written to change a
number of architectural parameters of a network including: the input dimension,
the range of values for each input dimension, the number of layers, the number
of neurons per layer, the number of convolutional kernels, and the stride and
padding of a convolutional layer.
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3 Identifying Factors that Influence Verifier Performance

As discussed in Sect. 1 the verification community has acted to create poli-
cies that incentivize diverse benchmarks. Diversity is desirable in a benchmark
because it (a) demonstrates the range of applicability of a verification technology
and (b) exposes performance variation within and across verification technolo-
gies. Consider, that the SMT competition benchmark selection process seeks
to “include equal numbers of satisfiable and unsatisfiable benchmarks at differ-
ent levels of difficulty” [7]. This is due to the fact that the SMT community
understands that the satisfiability or unsatisfiability of a benchmark problem is
a factor that influences verifier performance1.

GDVB seeks to make factors influencing verifier performance explicit and to
manipulate them to generate a diverse benchmark. To determine an initial set of
factors for DNN verifiers we began with an analysis of the literature, which iden-
tified several candidate factors, and then conducted a targeted and exploratory
factor study to identify whether manipulating a factor could influence some
performance measure of some DNN verifier. This study only aims to identify
such factors and does not seek to characterize the complex relationship between
factors and DNN verifier performance; for example, we do not aim to capture
a comprehensive set of factors, assess the independence of or relations between
factors, or rank factors in terms of their degree of influence. A richer and more
detailed factor study might further improve the utility of GDVB, but we leave
such a study to future work.

3.1 Potential Factors

Relatively few published papers on DNN verification explicitly discuss the fac-
tors that influence performance, but nearly all of them present metrics on the
verification problems they solved.

Evaluation results for ReLuplex present data on verifier outcome and solve
time for local robustness properties that vary in the input center point and
radius [30]; most subsequent papers report similar property variation. Evaluation
results for RobustVerifier present a study of varying the number of layers in
the DNN and its impact on verifier performance [36]. Evaluation results for
ERAN present performance variations across a range of networks varying in
the number of layers, layer types, and neurons [22,50–52]. Bunel et al. [14] were
the first that we are aware of to explicitly vary factors of DNN verification
problems. They found that the performance varied with input dimension, number
of neurons per layer, and number of layers across a set of 6 different DNN
verifiers. All of the other papers published on DNN verification in recent years
have used verification problems that varied, in an ad-hoc fashion, over a subset
of the above factors.

1 Since unsatisfiability requires the consideration of all possible variable assignments
which generally is more costly than finding a single satisfiable assignment.
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3.2 Exploratory Factor Study

As in other verification domains, DNN verifier performance is multi-faceted. In
our study, we consider both verification time and accuracy. We say that the
result of a verification problem is accurate if a verifier determines conclusively
that the problem is valid or invalid, result as opposed to unknown2.

We study factors associated with both properties and DNNs. Based on the
literature analysis, we identified 2 factors related to the correctness property:
scale and translation. Scaling a property involves increasing the size of the input

Fig. 1. DNN verifier performance across factors

2 We cross-check accurate results with multiple verifiers.



Systematic Generation of Diverse Benchmarks for DNN Verification 105

domain which will involve more DNN behavior in verification. Translating a
property involves moving it to a different location in the input domain which
will involve different DNN behavior in verification. For robustness properties,
scaling and translation involve changing the radius and center point of the hyper-
cube describing the input space under verification. One might wonder whether
rotation of a property can influence verification performance. For robustness
properties, this seems unlikely given their symmetry, but it could be a factor for
more irregular input regions – we leave this for future work.

Based on the literature analysis, we identified 4 factors related to the DNN:
number of neurons, number of layers, the type of layers, the input dimension.
We conjectured that an additional 3 factors might impact verifier performance:
the type of activation function, the input domain size, and the learned weights.

Our exploratory factor study is opportunistic in that we seek to find a verifi-
cation problem for which manipulation of a selected factor exhibits performance
variation. Towards this end, we conducted a series of trials where we vary a fac-
tor hypothesized to influence verification performance, while holding all other
factors constant and report the results in Fig. 1. We studied variations of net-
works for the MNIST task and considered local robustness properties since these
were well-supported across a range of different verifiers. We used different ver-
ifiers across the study: ReLuplex, Planet, Neurify, BaB, ERAN with the
DeepPoly (DP) and DeepZono (DZ) abstract domains. We now briefly describe
the trials and then summarize the outcome.

Number of Neurons: The architecture of the DNN was fixed, with 4 fully-
connected layers using ReLU activation functions, and the total number of
neurons was varied (16, 64, 256) – they were spread evenly across layers. Each
network is trained 10 times and verified on 100 local robustness properties.
Figure 1(a) plots the number of neurons versus verification time for Planet.
Verification time can increase with the number of neurons.
Number of Layers: We use the same context as for the neuron factor study,
except that we fixed the number of neurons at 256 and vary the number of
layers (1, 2, 4). Figure 1(b) plots the number of layers versus verification time
for Planet. Verification time can increase with the number of layers.
Layer Types: We use a pair of two-layer neural networks, with the same
number of neurons, where one has a fully-connected layer and the other a
convolutional layer. Each network is trained 10 times and verified on 10 local
robustness properties. Figure 1(c) plots layer type versus the number of prop-
erties for which accurate results are produced using ERANDP . Verification
accuracy can vary with layer type.
Activation Function: We use the fully-connected network from the layer
types study, we generated three networks by altering the activation function
to use sigmoid and tanh. The training setup and properties remain the same
as in the previous trial. Figure 1(d) plots the activation function versus the
number of properties for which accurate results are produced using ERANDP .
Verification accuracy can vary with activation function.
Input Dimension: We use 3 architectures that differ only in their input
dimension which is scaled ( 1

16 , 1
4 , 1) relative on the original problem. The
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training setup and properties are from the layer type study. Figure 1(e) plots
the input dimension versus the number of properties for which accurate
results are produced using BaB. Verification accuracy can increase with
increasing input dimension.
Input Size: We use 5 architectures that differ only in the range of values
of their inputs which are scaled (1

4 , 1
2 , 1, 2, 4) based on the original problem.

The training setup and properties are from the layer type study. Figure 1(f)
plots the input size versus the number of properties for which accurate results
are produced using ERANDZ . Verification accuracy can decrease with
increasing input domain size.
Property Scale: We use a single-layer network and reuse the training setup
and properties from the layer type study. We scale the properties (0.01−0.1)
to generate verification problems. Figure 1(g) plots property scaling versus the
verification time using ReLuplex. Verification time can increase with
increasing property scale.
Property Translation: We replicated the property scale study, but held the
scale fixed and translated the center point of the local robustness property
to 10 other locations. Figure 1(h) plots the number of DNNs for each of the
10 translated properties for which accurate results could be produced using
Neurify. Verification accuracy can vary with property translation.
Network Weights: Building of the property studies, we explore the verifica-
tion of 10 scaled property variants across the same network trained 10 times
with different initial weights. Figure 1(i) plots the number of accurate prop-
erties for which the results could be produced using Planet. Verification
accuracy can vary with the learned weights of the network.

Exploraty Study Findings. Varying the factors studied influences the per-
formance of different DNN verifiers differently – in terms of time or accuracy.
For example, we found that: varying input dimension impacts BaB’s accuracy,
but not ReLuplex’s; varying input domain size impacts ERANDZ ’s accuracy,
but not Neurify’s; and varying property scale impacts ReLuplex’s verification
time, but not Neurify’s.

This study provides a starting set of viable factors that can be used to
parameterize the GDVB approach to produce verification problem benchmarks
in which those factors are systematically varied. Futhermore, as we discuss in
Sect. 4, GDVB generative process allows for us to accommodate information
about new factors that might be revealed in future factor studies.

4 The GDVB Approach

The goal of GDVB is to meet requirements R1–R3 by producing a factor diverse
benchmark that (a) reflects aspects of the complexity encoded in a real verifi-
cation problem that acts as a seed for generation 〈ns, φs〉, (b) varies aspects of
the problem that are related to verifier performance, (c) accounts for interac-
tions among those factors, and (d) is comprised only of well-defined verification
problems.
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Rather than synthesize random verification problems, we seed the generation
process in order to generate a benchmark that reflects the complexity of the
seed problem. This permits benchmarks to be generated to reflect the challenges
present in different DNN problem sub-domains.

Factors, like those described in Sect. 3, may interact; changes to one factor
may mask or amplify DNN verifier performance changes arising from another.
Exploring all combinations of factors is expensive, but by using covering arrays
we can systematically explore interactions among factors. Accounting for such
interactions helps to produce a benchmark that is less biased than one that only
covers individual factor variations.

Not all combinations of factors are possible. For example, if one reduces the
number of layers in a network to 0, then it is not possible to preserve the number
of neurons in the original network. Thus, benchmark generation must take into
account constraints among factors to ensure that only well-defined problems are
included in a benchmark.

4.1 Factor Diverse Benchmarks

Consider a set of factors, F , with a set of levels, Lf , for each factor, f ∈ F ; we
refer to Lf as the level set of f . For a verification problem, p, let l(p) be the
set of factor levels corresponding to the problem. A benchmark, B, is a set of
verification problems and we can denote the factor levels for the benchmark as
l(B) = {l(p) | p ∈ B}.

The simplest form of diversity for a benchmark is requiring that all individual
factor levels be present in at least one verification problem, ∀f ∈ F : ∀l ∈ Lf :
∃p ∈ l(B) : l ∈ p. However, this diversity fails to account for interactions among
factors. The simplest form of interaction-sensitive diversity considers pairs of
factors, but as we discuss below our approach generalizes to any arity of factor-
level coverage.

For a pair of factors, f, f ′ ∈ F , the Cartesian product of their level sets
defines the set of all pairwise combinations of their levels. Across all factors the
set of such pairs is pairs(F ) = {(l, l′) | f, f ′ ∈ F ∧ f �= f ′ ∧ l ∈ Lf ∧ l′ ∈ Lf ′}. A
pairwise diverse benchmark is one in which

∀(x, y) ∈ pairs(F ) : ∃p ∈ l(B) : (x, y) ∈ {(x′, y′) | x′ ∈ p ∧ y′ ∈ p}
Constraints on allowable combinations of factors serve to restrict a bench-

mark. A pairwise exclusion constraint, γ(F ) ⊆ pairs(F ), requires that

∀(x, y) ∈ γ(F ) : ∀p ∈ l(B) : ¬(x ∈ p ∧ y ∈ p)

We write γ when F is understood from the context.
The arity of factor-level coverage and exclusion constraints can vary indepen-

dently. It is common for factor-level coverage to be uniform and to generalize it to
t-way coverage, i.e., to require coverage of the elements of the Cartesian product
of the level sets of t factors. On the other hand, as observed in prior work [15],
constraints generally involve a mix of arity. To denote this generality we define
Γ ⊆ ⋃

i γi where γi defines the set of possible i-way exclusion constraints.
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Example. Consider the DAVE-2 DNN which accepts 100 by 100 color images
and infers an output indicating the steering angle [12]. DAVE-2 is comprised of
5 convolutional layers with 55296, 17424, 3888, 3136, and 1600 neurons, respec-
tively, followed by 4 fully connected layers with 1164, 100, 50, and 10 neurons,
respectively. All 82668 neurons use ReLU activations. One can define a local
robustness property for DAVE-2 as

φ = ∀x ∈ i ± 0.02 : ‖DAVE-2(x) − DAVE-2(i)‖ ≤ 5

which states that for a given an input image, i, all inputs within a distance of
0.02 will result in an inferred steering angle within 5◦ of the angle for i. These
yield the verification problem 〈DAVE-2, φ〉.

Consider factors for the number of neurons, number of convolutional layers,
and number of fully-connected layers; a tuple (#neuron, #conv,#fc) represents
levels for these factors. For each factor consider two percentage levels: 100% and
50%. A neuron factor level of 50% indicates that a version of DAVE-2 with
41334 neurons is required. In the absence of constraints, an example pairwise
factor diverse benchmark for 〈DAVE-2, φ〉 consists of the following four verifi-
cation problems: (100%, 100%, 100%), (100%, 50%, 50%), (50%, 100%, 50%), and
(50%, 50%, 100%). The property φ is constant across the benchmark.

4.2 From Factor Covering Arrays to Verification Problems

Given a set of factors, F = {f1, f2, . . . , f|F |}, and levels, Lfi
, a t-way factor

diverse benchmark of k verification problems is specified by

CMCA(|F |; t, k, (|Lf1 |, |Lf2 |, . . . , |Lf|F | |), Γ )

Each element in this mixed level covering array specifies how to construct a
verification problem in the benchmark from the seed problem.

Levels are operationalized as transformations on verification problems. We
assume a sufficient set of transformations, Δ, such that a verification problem
can be transformed into a form that achieves any level of any factor

∀f ∈ F : ∀lf ∈ Lf : ∃δ ∈ Δ : lf ∈ l(δ(〈ns, φs〉))

The definition of Δ and Li must be coordinated to achieve this property.
A per-factor transformation δ ∈ Δ may impact a single component of a

verification problem, e.g., reducing the number of neurons in a DNN does not
impact the property, or both components, e.g., the input dimension impacts the
DNN and the property by transforming the input data domain. The set of all
transformations Δ defines the set of verification problems that can be produced
by application of a set of per-factor transformations to the seed problem,

Δ(〈ns, φs〉) = {〈n, φ〉 | 〈n, φ〉 = δf1 ◦ δf2 . . . ◦ δf|F |(〈ns, φs〉) ∧ δi ∈ Δ}
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The set of all possible factor level combinations is Πf∈F Lf , i.e., the product
of all of the per-factor levels. The set of t-way factor level combinations is

ct = {c|a ∈ Πf∈F Lf ∧ c ⊆ a ∧ |c| = t}

allowing for the interpretation of |F |-tuples as sets.

Definition 3. Given a set of factors F , with associated factor levels Lf , a t-
way factor diverse benchmark, B, for a seed problem 〈ns, φs〉 with exclusion
constraints Γ is defined by the following: (1) B ⊆ Δ(〈ns, φs〉); (2) ∀〈n, φ〉 ∈ B :
∀γ ∈ Γ : γ �⊆ l(〈n, φ〉); and (3) ∀c ∈ ct − Γ : ∃〈n, φ〉 ∈ B : c ⊆ l(〈n, φ〉)

4.3 Generating Benchmarks

GDVB is defined in Algorithm 1. We use existing techniques, e.g. Automated
Combinatorial Testing for Software (ACTS) [34], for generating a CMCA for
constraints specified as logical formulae where factors are variables and levels are
values for those variables. A CMCA is a set of k-tuples. Each such tuple defines
the target level for each factor for a problem in the generated benchmark. Those
levels are used to transform the given seed verification problem and the resultant
problem is accumulated in the benchmark.

Algorithm 1: GDVB(〈ns, φs〉, F, Γ, t) Algorithm
Data: a seed problem 〈ns, φs〉, a set of factors F and constraints Γ , a coverage

goal t
Result: A benchmark of DNN verification problems B

1 C ← genCMCA(F, Γ, t)
2 B ← ∅
3 for c ∈ C do
4 B ← B ∪ transform(〈ns, φs〉, c)
5 end

transform uses different approaches to transform the seed DNN and the
property. DNN transformation builds on an approach called R4V that automates
architectural transformations to DNNs by scaling (1) the number of neurons in
a fully connected layer, (2) the number of kernels in a convolutional layer, (3)
the input dimension, or (4) the range of values within an input dimension [47].
The first 3 of these require changes to the structure of the DNN and the last
two require changes to the training data, e.g., reshaping, renormalizing. R4V
ensures that the network is well-defined after transformation. transform maps
factor-levels to per-layer scale parameters for R4V.

R4V permits the training of a network using network distillation which we
find advantageous for GDVB because: it accelerates the training process, and it
drives training to match the accuracy of the problem DNN to that of ns, which
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reduces variation in accuracy across B. We adapt R4V so that after each training
epoch, the learned DNN weights and the validation accuracy is recorded. When
training finishes, we select the weights associated with the highest validation
accuracy. Training is performed using the training data and hyperparameters
for ns.

Whereas R4V can be used to directly manipulate DNN architecture related
factors, it can only indirectly affect the learned weights. To address this, we
adopt the approach taken throughout the machine learning literature – train a
network on multiple initial seeds and report performance across seeds. Thus, each
DNN in B is trained multiple times, thereby producing a benchmark comprised
of s ∗ |B| verification problems, where is the desired number of seeds.

DNN Transformation Example. Consider this element of the CMCA
described above: 〈(50%, 100%, 50%), φ〉, applied to DAVE-2. transform would
compute that 50% of the fully connected layers should be present in the resultant
DNN and randomly select 2 of the 4 layers to scale by 0. The fully-connected
layers are chosen at random, since the layer count factor does not consider layer
ordering. If we consider the case where the layers with 100 and 50 neurons are
dropped, this will eliminate 150 neurons. The other transformation required is
to reduce the number of neurons by half. To do that all remaining layers will be
scaled by 82668 ∗ 0.5 − 150

82688 = 0.498.
Property transformation builds on a domain-specific language (DSL)

Fig. 2. Parametric property φ

for specifying DNN correctness properties
defined by the deep neural network verifi-
cation framework (DNNV) [48]. Specifica-
tions in this Python-based DSL are para-
metric and transform maps factor-levels
to those parameters. For example, Fig. 2
defines the parametric local robustness prop-
erty φ that is centered at the image stored at
“path/to/image”, has radius 0.02, and can be
translated and scaled through parameters t
and s, respectively.

Restricting factors to levels that are sup-
ported by transform and using CMCA
algorithms that meet Definition 2 ensures
that GDVB produces a solution that meets
Definition 3.

4.4 An Instantiation of GDVB

We developed an instance of GDVB3 that supports a set of factors informed by
the results of the study in Sect. 3, percentage-based levels for those factors, and a

3 https://github.com/edwardxu0/GDVB.

https://github.com/edwardxu0/GDVB
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set of constraints that restrict benchmark problems to those that are non-trivial
and that can be efficiently trained.

Our instantiation of GDVB supports the following factors: the total number
of neurons in the DNN (neu), the number of fully-connected layers (fc), the
number of convolutional layers (conv), the dimension of the DNN input (idm),
the size of each DNN input dimension (ids), the scale of the property (scl),
and the translation of the property (trn). We do not support an activation
function factor because only ERAN support non-ReLU activations and, thus,
using them would render other verifiers inapplicable for large portions generated
benchmarks.

We use quintile factor levels, {20%, 40%, 60%, 80%, 100%}, for factors neu,
idm, ids, and scl. To permit the elimination of layer types we extend these levels
with an additional quintile, 0%, for fc and conv. For trn, we select a set of five
translations that shift the property to be centered on a different instance of the
training data; unlike the above levels this level is unordered.

Our instantiation of GDVB exclusion constraints for DAVE-2 are as follows:
(1) fc = 0∧conv = 0, (2) conv = 0∧neu ≥ 20, (3) conv = 0∧ idm ≥ 80, and (4)
conv = 100 ∧ idm = 20. The first of these requires that some layer be present.
The second and third are related to the blowup in the size of fully-connected
layers that results from dropping all convolutional layers which makes training
difficult; limiting the total number of neurons and the reduction input dimension
mitigates this. The fourth constraint ensures that the input dimension reduction
results in a meaningful network; without it the dimensionality reduction achieved
by sequences of convolutional layers yields an invalid network, i.e., the input to
some layer is smaller than the kernel size.

These constraints were developed iteratively based on feedback from the R4V
tool, which reports when transform has specified an invalid DNN, and when
training failed to closely approximate the accuracy of the seed network.

We note that this instance of GDVB is flexible in that it permits the cus-
tomization of levels, as we demonstrate in the next section, to generate a bench-
mark that focuses on variation in a subset of factors. More generally, GDVB can
easily be extended to support additional factors and levels for which an instance
of transform can be defined. We expect that GDVB will evolve in this way
as studies of DNN verifiers are performed.

5 GDVB in Use

In this section we showcase the potential uses of GDVB across a series of arti-
facts and verifiers, while highlighting the challenges it helps to systematically
address.

5.1 Setup

Our evaluation applies GDVB to two seed networks: MNISTConvBig and
DAVE-2. We selected MNISTConvBig because it is one of the largest networks in



112 D. Xu et al.

ERAN’s evaluation [50]; it includes 4 convolutional layers and 3 fully connected
layers with 48,074 neurons and 1,974,762 parameters. We selected DAVE-2 to
illustrate the application of GDVB to a larger network that has been the subject
of other DNN analysis [42]; it has 5 convolutional layers and 5 fully connected
layers with 82,669 neurons and 2,116,983 parameters.

Table 1. Verifiers used in GDVB study
Verifier Algorithm

ReLuplex [30] Search-optimization

Planet [20] Search-optimization

BaB [14] Search-optimization

BaBSB [14] Search-optimization

Neurifya [59] Optimization

ERANDZ [50] Reachability

ERANDP [51] Reachability

ERANRZ [52] Reachability

ERANRP [49] Reachability
aWe use the version of Neurify provided
in DNNV [48], which is modified to be
applicable to a wide range of problems,
whereas the original version was
hard-coded to a particular verification
problem [59].

Table 1 lists the 9 verifiers we
selected for our study. This list
includes the most well-known veri-
fiers and verification algorithms. We
also select variations of some verifica-
tion approaches. We use Branch-and-
Bound (BaB), as well as a variation
of Branch-and-Bound with Smart-
Branching (BaBSB). Additionally,
we evaluate the ERAN verifier with 4
available abstract domains: DeepZono
(ERANDZ), DeepPoly (ERANDP ),
RefineZono (ERANRZ), and
RefinePoly (ERANRP ).

To evaluate verifier performance,
we use the solution-count ranking
(SCR) [57], which counts the number
of properties that returned accurate verification results. Additionally, we mea-
sured the penalized average runtime (PAR2) [6], which is computed as the sum
of the verification times for sat and unsat results and twice time limit for all
other verification results.

Table 2. Mean & variance of SCR and PAR2 scores across benchmarks. (The darker
and lighter gray boxes indicate the best and second best results.)

MNISTConvBig DAVE-2

Verifier SCR PAR2 SCR PAR2

ERANDZ 11.40 ± 0.49 18, 126.80 ± 488.27 7.20 ± 1.94 24, 496.20 ± 1, 176.59

ERANDP 21.00 ± 0.89 9, 206.00 ± 806.70 18.40 ± 2.15 17, 443.00 ± 1, 344.65

ERANRZ 10.20 ± 0.40 19, 252.60 ± 343.66 5.80 ± 2.14 25, 236.60 ± 1, 253.90

ERANRP 12.60 ± 1.02 16, 981.40 ± 930.71 10.20 ± 1.83 22, 250.60 ± 1, 186.44

Neurify 22.00 ± 1.10 8, 636.20 ± 1, 008.63 19.20 ± 2.56 17, 247.80 ± 1, 397.05

Planet 7.00 ± 0.63 23, 145.60 ± 468.18 3.40 ± 1.62 27, 268.60 ± 775.56

BaB 0.20 ± 0.40 28, 689.80 ± 220.40 0.00 ± 0.00 28, 800.00 ± 0.00

BaBSB 0.00 ± 0.00 28, 800.00 ± 0.00 0.00 ± 0.00 28, 800.00 ± 0.00

ReLuplex 3.20 ± 0.40 25, 757.80 ± 381.40 4.40 ± 1.02 26, 023.60 ± 635.90

All training and verification took place under CentOS Linux 7. R4V trans-
formation and distillation jobs ran on NVIDIA 1080Ti GPUs. Verification jobs
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were limited to 4 h and ran on 2.3 GHz and 2.2 GHz Xeon processors with 64 GB
of memory, for DAVE-2 and MNISTConvBig, respectively.

5.2 Comparing Verifiers Across a Range of Challenges

Consider the use case where a researcher is attempting to compare a new verifier
(e.g., a new algorithm, a revised implementation, an extension to an existing
approach) against existing verifiers. As shown earlier, for such comparison to
be meaningful, many factors must be considered and properly explored. Given
a seed network, a property, a set of factors, and a coverage goal, GDVB can
generate a benchmark that helps to reduce bias in conducting such an evaluation.

For this use case we consider seed networks and local robustness properties
similar to those from the ERANDZ study [50] for the MNISTConvBig verifica-
tion problem and local robustness properties based on those from the Neurify
study [59] for the DAVE-2 verification problem. We run an instance of GDVB
using the factors and levels described in Sect. 4.4, a coverage strength of 2, and
train 5 versions of each network to account for stochastic weight variation. The
total time to generate and train GDVB (MNISTConvBig, . . . ) was 24.3 h and
the resulting 30 verification problems took 401.8 h to run across all 9 verifiers.
For GDVB (DAVE-2, . . . ) 44 verification problems were generated with train-
ing and verification times of 158.2 h and 772.4 h, respectively. CMCA generation
took less than a minute for both problems. Each problem in the benchmark
must be trained and verified in sequence, but across problems they can be paral-
lelized. We exploited this to reduce the cost of running the benchmarks to 4.9 h
for MNISTConvBig and 7.9 h for DAVE-2. We measured the SCR and PAR2
score for the nine verifiers across the benchmarks.

The results are shown in Table 2. Since the SCR and PAR2 score trends
are the same we depict just SCR in Fig. 3. Boxplots show the SCR scores for
a verifier across all the generated problems; variation in plots arises from the 5
trained versions of the networks for each problem. For each box, the middle line
represent the median, the box-bounds are the first and third quartiles, and the
whiskers represent minimal and maximal values.

The plot for MNISTConvBig on the left of Fig. 3 shows that the GDVB
benchmark with the MNISTConvBig seed is able to identify consider-
able performance variation across verifiers, with ERANDP and Neurify
accurately verifying a median of over 20 properties, the rest of the ERAN-
variants verifying between 10 and 13 properties, and the remaining tools veri-
fying between 0 and 8 properties. The results are consistent when we employ
DAVE-2 as the seed network, with marked differences among groups of
verifiers although the generated problems turned out to be more challenging
across all verifiers. ERANDP and Neurify, the top performers, can verify less
than half of the generated problems. Verifiers like BaB were unable to ver-
ify any problem derived from DAVE-2 because of the complexity of the seed
problem. This point highlights the need for benchmarks to evolve with networks
that incorporate emerging technology, and also GDVB’s ability to automatically
generate a benchmark from different seeds to address that need.
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Fig. 3. SCR score for nine verifiers on GDVB benchmarks with MNISTConvBig (left)
and DAVE-2 (right) seeds

Now, understanding the overall performance of a family of verifiers is useful
but it is likely just the first step for a researcher to understand under what
conditions a verifier excels or struggles. When such conditions correspond to
the factors manipulated by GDVB, then they are readily available for further
analysis. One analysis may consist of simply plotting the data across its multiple
dimensions. We do so in the form of radar-charts for DAVE-2 in Fig. 4 and
for MNISTConvBig in Fig. 54. Since the observations we can gather from both
networks are similar, we just discuss DAVE-2 in detail. Each chart includes
six axes representing a factor scaled between 0 and 1. The solid lines link the
maximum values across factors that were accurately verified while the dotted
lines link the median values across factors.

The shape of the lines in the radar plots clearly show that the verification
problems generated by GDVB reveal unique patterns across the ver-
ifiers. For example, the ReLuplex plot indicates that it can do well verifying
networks with multiple fully connected (fc) layers but is challenged by larger
networks (neu) and those with convolutional layers (conv). Comparing multiple
charts also reveals some interesting trade-offs. For example, for smaller networks
with just fully connected layers, the medians seem to indicate that ReLuplex is
better than Planet. However, when a network incorporates convolutional layers
or a larger number of neurons, Planet appears to outperform ReLuplex.

Looking across charts can also pinpoint specific improvements resulting from
tool extensions or revisions. For example, the median line of ERANRZ indi-
cates that it was not as effective in handling verification problems with a larger
number of layers as its predecessor ERANDZ ; the same trend holds for the pair
ERANRP and ERANDP . We note that a more restrictive benchmark that is
biased towards fewer fully connected layers might not reveal such differences.

4 We do not plot BaBSB as its performance was identical to BaB.
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Fig. 4. DAVE-2: radar plot with maximum (solid) and median (dotted) values

GDVB offers the opportunity to investigate such differences even further by
generating targeted verification problems for a subset of factors hypothesized
to be culprits of those differences. For example, GDVB could generate addi-
tional verification problems with a number of fully connected layers between
60% and 80% of the total, while keeping the other factors constant, to refine the
understanding of the differences between ERANRZ and ERANDZ .

This study illustrates how GDVB benchmarks support the exploration of
verifier performance, lowering the burden on researchers to manually prepare
tens to hundreds of verification problems, and reducing the opportunities for
bias.

Fig. 5. MNISTConvBig: radar plot with maximum (solid) and median (dotted) values
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5.3 GDVB and Benchmark Requirements R1–R3

As explained in Sect. 1, benchmarking in verification seeks to develop bench-
marks that are: diverse; representative of real use cases; and reactive to new
technologies. The previous sections have provided evidence of how, through its
generative nature, GDVB is reactive to new advances in technology included in
the seed network. We have also seen the high degree of parameterization GDVB
offers including for setting a seed network from which realistic attributes are
inherited in the generated verification problems. In this section we want to illus-
trate how GDVB addresses the diversity requirement.

To depict diversity we use the parallel coordinate graph in Fig. 6. Each verti-
cal line corresponds to a factor, and the markers in each vertical line corresponds
to an explored level. Each verification problem is a polyline that connects the
factors’ levels explored by it. The two sets of lines correspond to the verification
problems included in the DAVE-2 benchmark published with Neurify [59],
which is a downsized version of the full DAVE-2 DNN, and the benchmark
produced by GDVB (DAVE-2, . . . ). Each factor in the plot is normalized by
dividing by the maximum value for the factor.

Figure 6 shows that the Neurify’s DAVE-2 has a large number of neurons,
inputs, and dimensions. Yet, it provides very limited coverage of all the factor
levels that may affect verification performance. In contrast, GDVB provides a
systematic exploration of the factors levels that can affect verifier performance
making it much less biased – especially to the numbers of layers in the verification
problems, and the combination of those factor levels.

The parallel plot for GDVB benchmark with the MNISTConvBig seed (not
shown for space reasons), depicts a similar trend in terms of systematic explo-
ration of diversity, but since MNISTConvBig is simpler than DAVE-2, the gen-
erated benchmark is correspondingly simpler. This points to the need to identify
representative and challenging seeds when parameterizing GDVB. GDVB is
fully capable of accomodating factor levels that exceed 100% of a seed network,
which is a means of pushing verifiers to the limits of their abilities.

Fig. 6. Diversity explored across factor levels
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We note that excluding factors or levels can yield a systematically generated
benchmark that is unable to characterize differences between verifiers, or worse,
misleads such a characterization by emphasizing certain factors while overlooking
others. For example, not exploring different network sizes or exploring networks
sizes under 1000 neurons will render similar scores across many DNN verifiers
that are differentiated by more comprehensive benchmarks. In applying GDVB,
we suggest selecting as many factors as we know may matter, starting from a
challenging seed problem, and incrementally refining the levels as needed to focus
benchmark results to differentiate verifier performance.

6 Conclusion

The increasing adoption of DNNs has led to a surge in research on DNN veri-
fication techniques. Benchmarks to assess these emerging techniques, however,
are costly to develop, often lack in diversity and do not represent the population
of real evolving DNNs. To address this challenge, we have introduced GDVB,
a framework for systematically generating DNN verification problems seeded in
complex, real-world networks, ensuring that benchmarks are derived from real
problems. GDVB is parameterizable by the factors that may influence verifica-
tion performance and thereby supports scalable benchmarking. A preliminary
study, using 9 DNN verifiers, demonstrates how GDVB can support the assess-
ment of the state-of-the-art.

We plan to conduct broader studies of verifier performance using GDVB,
and we encourate other researchers to use and contribute to it. There are many
directions to explore in identifying new factors that influence performance, e.g.,
the impact of quantization and model compression approaches [26]. Work in
this direction promises to deepen the community’s understanding and lead to
advances in DNN verification.
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Army Research Office under grant number W911NF-19-1-0054.

References

1. 14th International Satisfiability Modulo Theories Competition. https://smt-comp.
github.io/2019/

2. Competition on Software Verification. https://sv-comp.sosy-lab.org/2019/
3. Hardware Model Checking Competition. http://fmv.jku.at/hwmcc19/index.html
4. The International Satisfiability Competitions. http://www.satcompetition.org/
5. Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2QBF formulas

and ASP programs. In: 16th International Conference on Principles of Knowledge
Representation and Reasoning (2018)

6. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT
challenge 2012 solver competition. Artif. Intell. 223, 120–155 (2015)

https://smt-comp.github.io/2019/
https://smt-comp.github.io/2019/
https://sv-comp.sosy-lab.org/2019/
http://fmv.jku.at/hwmcc19/index.html
http://www.satcompetition.org/


118 D. Xu et al.

7. Barrett, C., Deters, M., De Moura, L., Oliveras, A., Stump, A.: 6 years of SMT-
COMP. J. Autom. Reasoning 50(3), 243–277 (2013)

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0, vol. 13,
p. 14 (2010)

9. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Proceedings of the 30th
International Conference on Neural Information Processing Systems, pp. 2621–
2629 (2016)
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43. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
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Abstract. We demonstrate a unified approach to rigorous design of
safety-critical autonomous systems using the VerifAI toolkit for formal
analysis of AI-based systems. VerifAI provides an integrated toolchain
for tasks spanning the design process, including modeling, falsification,
debugging, and ML component retraining. We evaluate all of these appli-
cations in an industrial case study on an experimental autonomous air-
craft taxiing system developed by Boeing, which uses a neural network
to track the centerline of a runway. We define runway scenarios using
the Scenic probabilistic programming language, and use them to drive
tests in the X-Plane flight simulator. We first perform falsification, auto-
matically finding environment conditions causing the system to violate
its specification by deviating significantly from the centerline (or even
leaving the runway entirely). Next, we use counterexample analysis to
identify distinct failure cases, and confirm their root causes with special-
ized testing. Finally, we use the results of falsification and debugging to
retrain the network, eliminating several failure cases and improving the
overall performance of the closed-loop system.

Keywords: Falsification · Automated testing · Debugging ·
Simulation · Autonomous systems · Machine learning

1 Introduction

The expanding use of machine learning (ML) in safety-critical applications has
led to an urgent need for rigorous design methodologies that can ensure the
reliability of systems with ML components [15,17]. Such a methodology would
need to provide tools for modeling the system, its requirements, and its environ-
ment, analyzing a design to find failure cases, debugging such cases, and finally
synthesizing improved designs.

The VerifAI toolkit [1] provides a unified framework for all of these design
tasks, based on a simple paradigm: simulation driven by formal models and
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specifications. The top-level architecture of VerifAI is shown in Fig. 1. We first
define an abstract feature space describing the environments and system config-
urations of interest, either by explicitly defining parameter ranges or using the
Scenic probabilistic environment modeling language [6]. VerifAI then gener-
ates concrete tests by searching this space, using a variety of algorithms ranging
from random sampling to global optimization techniques. Finally, we simulate
the system for each test, monitoring the satisfaction or violation of a system-level
specification; the results of each test are used to guide further search, and any

Fig. 1. Architecture of VerifAI.

violations are recorded in a
table for automated analy-
sis (e.g. clustering) or visu-
alization. This architecture
enables a wide range of
use cases, including falsifi-
cation, fuzz testing, debug-
ging, data augmentation, and
parameter synthesis; Dreossi
et al. [1] demonstrated all
of these applications individ-
ually through several small
case studies.

In this paper, we provide
an integrated case study, applying VerifAI to a complete design flow for a large,
realistic system from industry: TaxiNet, an experimental autonomous aircraft
taxiing system developed by Boeing for the DARPA Assured Autonomy project.
This system uses a neural network to estimate the aircraft’s position from a
camera image; a controller then steers the plane to track the centerline of the
runway. The main requirement for TaxiNet, provided by Boeing, is that it keep
the plane within 1.5m of the centerline; we formalized this as a specification in
Metric Temporal Logic (MTL) [11]. Verifying this specification is difficult, as the
neural network must be able to handle the wide range of images resulting from
different lighting conditions, changes in runway geometry, and other disturbances
such as tire marks on the runway.

Our case study illustrates a complete iteration of the design flow for TaxiNet,
analyzing and debugging an existing version of the system to inform an improved
design. Specifically, we demonstrate:
1. Modeling the environment of the aircraft using the Scenic language.
2. Falsifying an initial version of TaxiNet, finding environment conditions under

which the aircraft significantly deviates from the centerline.
3. Analyzing counterexamples to identify distinct failure cases and diagnose

potential root causes.
4. Testing the system in a targeted way to confirm these root causes.
5. Designing a new version of the system by retraining the neural network based

on the results of falsification and debugging.
6. Validating that the new system eliminates some of the failure cases in the

original system and has higher overall performance.
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Following the procedure above, we were able to find several scenarios where
TaxiNet exhibited unsafe behavior. For example, we found the system could not
properly handle intersections between runways. More interestingly, we found
that TaxiNet could get confused when the shadow of the plane was visible,
which only occurred during certain times of day and weather conditions. We
stress that these types of failure cases are meaningful counterexamples that
could easily arise in the real world, unlike pixel-level adversarial examples [8];
we are able to find such cases because VerifAI searches through a space of
semantic parameters [3]. Furthermore, these counterexamples are system-level,
demonstrating undesired behavior from the complete system rather than simply
its ML component. Finally, our work differs from other works on validation of
cyber-physical systems with ML components (e.g. [19]) in that we address a
broader range of design tasks (including debugging and retraining as well as
testing) and also allow designers to guide search by encoding domain knowledge
using Scenic.

For our case study, we extend VerifAI in two ways. First, we interface the
toolkit to the X-Plane flight simulator [12] in order to run closed-loop simu-
lations of the entire system, with X-Plane rendering the camera images and
simulating the aircraft dynamics. More importantly, we extend the Scenic lan-
guage to allow it to be used in combination with VerifAI’s active sampling
techniques. Previously, as in any probabilistic programming language, a Scenic
program defined a fixed distribution [6]; while adequate for modeling particular
scenarios, this is incompatible with active sampling, where we change how tests
are generated over time in response to feedback from earlier tests. To reconcile
these two approaches, we extend Scenic with parameters that are assigned by
an external sampler. This allows us to continue to use Scenic’s convenient syn-
tax for modeling, while now being able to use not only random sampling but
optimization or other algorithms to search the parameter space.

Adding parameters to Scenic enables important new applications. For exam-
ple, in the design flow we described above, after finding through testing some
rare event which causes a failure, we need to generate a dataset of such failures
in order to retrain the ML component. Naïvely, we would have to manually write
a new Scenic program whose distribution was concentrated on these rare events
(as was done in [6]). With parameters, we can simply take the generic Scenic
program we used for the initial testing, and use VerifAI’s cross-entropy sam-
pler [1,14] to automatically converge to such a distribution [16]. Alternatively,
if we have an intuition about where a failure case may lie, we can use Scenic
to encode this domain knowledge as a prior for cross-entropy sampling, helping
the latter to find failures more quickly.

In summary, the novel contributions of this paper are:

– The first demonstration on an industrial case study of an integrated toolchain
for falsification, debugging, and retraining of ML-based autonomous systems.

– An interface between VerifAI and the X-Plane flight simulator.
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– An extension of the Scenic language with parameters, and a demonstration
using it in conjunction with cross-entropy sampling to learn a Scenic program
encoding the distribution of failure cases.

We begin in Sect. 2 with a discussion of our extension of Scenic with param-
eters and our X-Plane interface. Section 3 presents the experimental setup and
results of our case study, and we close in Sect. 4 with some conclusions and
directions for future work.

2 Extensions of VerifAI

Scenic with Parameters. To enable search algorithms other than random
sampling to be used with Scenic we extend the language with a concept of
external parameters assigned by an external sampler. A Scenic program can
specify an external sampler to use; this sampler will define the allowed types
of parameters, which can then be used in the program in place of any distribu-
tion. The default external sampler provides access to the VerifAI samplers and
defines parameter types corresponding to VerifAI’s continuous and discrete
ranges. Thus for example one could write a Scenic program which picks the
colors of two cars randomly according to some realistic distribution, but chooses
the distance between them using VerifAI’s Bayesian Optimization sampler.

The semantics of external parameters is simple: when sampling from a
Scenic program, the external sampler is first queried to provide values for all
the parameters; the program is then equivalent to one without parameters, and
can be sampled as usual1.

X-Plane Interface. Our interface between X-Plane and VerifAI uses the
latter’s client-server architecture for communicating with simulators. The server
runs inside VerifAI, taking each generated feature vector and sending it to the
client. The client runs inside X-Plane and calls its APIs to set up and execute the
test, reporting back information needed to monitor the specifications. For our
client, we used X-Plane Connect [18], an X-Plane plugin providing access to X-
Plane’s “datarefs”. These are named values which represent simulator state, e.g.,
positions of aircraft and weather conditions. Our interface exposes all datarefs
to Scenic, allowing arbitrary distributions to be placed on them. We also set
up the Scenic coordinate system to be aligned with the runway, performing the
appropriate conversions to set the raw position datarefs.

3 TaxiNet Case Study

3.1 Experimental Setup

TaxiNet’s neural network estimates the aircraft’s position from a camera image;
the camera is mounted on the right wing and faces forward. Example images are
1 One complication arises because Scenic uses rejection sampling to enforce con-

straints: if a sample is rejected, what value should be returned to active samplers
that expect feedback, e.g. a cross-entropy sampler? By default we return a special
value indicating a rejection occurred.



126 D. J. Fremont et al.

shown in Fig. 2. From such an image, the network estimates the cross-track error
(CTE), the left-right offset of the plane from the centerline, and the heading error
(HE), the angular offset of the plane from directly down the centerline. These
estimates are fed into a handwritten controller which outputs (the equivalent of)
a steering angle for the plane.

Fig. 2. Example input images to TaxiNet, rendered in X-Plane. Left/right =
clear/cloudy weather. Top/bottom = 12 pm/4 pm.

The Boeing team provided the Berkeley team with an initial version of Taxi-
Net without describing which images were used to train it. In this way, the
Berkeley team were not aware in advance of potential gaps in the training set
and corresponding potential failure cases2. For retraining experiments, the same
sizes of training and validation sets were used as for the original model, as well
as identical training hyperparameters.

The semantic feature space defined by our Scenic programs and searched
by VerifAI was 6-dimensional, made up of the following parameters3:

– the initial position and orientation of the aircraft (in 2D, on the runway);
– the type of clouds, out of 6 discrete options ranging from clear to stormy;
– the amount of rain, as a percentage, and
– the time of day.
2 After drawing conclusions from initial runs of all the experiments, the Berkeley team

were informed of the training parameters and trained their own version of TaxiNet
locally, repeating the experiments. This was done in order to ensure that minor
differences in the training/testing platforms at Boeing and Berkeley did not affect
the results (which was in fact qualitatively the case). All numerical results and graphs
use data from this second round of experiments.

3 We originally had additional parameters controlling the position and appearance
of a tire mark superimposed on the runway (using a custom X-Plane plugin to do
such rendering), but deleted the tire mark for simplicity after experiments showed
its effect on TaxiNet was negligible.
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Given values for these parameters from VerifAI, the test protocol we used in
all of our experiments was identical: we set up the initial condition described by
the parameters, then simulated TaxiNet controlling the plane for 30 s.

The main requirement for TaxiNet provided by Boeing was that it should
always track the centerline of the runway to within 1.5 m. For many of our
experiments we created a greater variety of test scenarios by allowing the plane
to start up to 8m off of the centerline: in such cases we required that the plane
approach within 1.5m of the centerline within 10 s and then stay there for the
remainder of the simulation. We formalized these two specifications as MTL
formulas ϕalways and ϕeventually respectively:

ϕalways = �(CTE ≤ 1.5) ϕeventually = ♦[0,10]�(CTE ≤ 1.5)

While both of these specifications are true/false properties, VerifAI uses a
continuous quantity ρ called the robustness of an MTL formula [4]. Its crucial
property is that ρ ≥ 0 when the formula is satisfied, while ρ ≤ 0 when the
formula is violated, so that ρ provides a metric of how close the system is to
violating the property. The exact definition of ρ is not important here, but as
an illustration, for ϕalways it is (the negation of) the greatest deviation beyond
the allowed 1.5m achieved over the whole simulation.

For additional experimental results, see the Appendix of the full version [5].

3.2 Falsification

In our first experiment, we searched for conditions in the nominal operating
regime of TaxiNet which cause it to violate ϕeventually. To do this, we wrote a
Scenic program Sfalsif modeling that regime, shown in Fig. 3. We first place a
uniform distribution on time of day between 6 am and 6 pm local time (approx-
imate daylight hours). Next, we determine the weather. Since only some of the
cloud types are compatible with rain, we put a joint distribution on them: with
probability 2/3, there is no rain, and any cloud type is equally likely; other-
wise, there is a uniform amount of rain between 25% and 100%4, and we allow
only cloud types consistent with rain. Finally, we position the plane uniformly
up to 8m left or right of the centerline, up to 2000m down the runway, and
up to 30◦ off of the centerline. These ranges ensured that (1) the plane began on
the runway and stayed on it for the entire simulation when tracking succeeded,
and (2) it was always possible to reach the centerline within 10 s and so satisfy
ϕeventually.

4 The 25% lower bound is because we observed that X-Plane seemed to only render
rain at all when the rain fraction was around that value or higher.
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Fig. 3. Generic Scenic program Sfalsif used for falsification and retraining.

However, it was quite easy to find falsifying initial conditions within this sce-
nario. We simulated over 4,000 runs randomly sampled from Sfalsif, and found
many counterexamples: in only 55% of the runs did TaxiNet satisfy ϕeventually,
and in 9.1% of runs, the plane left the runway entirely. This showed that Taxi-
Net’s behavior was problematic, but did not explain why. To answer that ques-
tion, we analyzed the data VerifAI collected during falsification, as we explain
next.

3.3 Error Analysis and Debugging

VerifAI builds a table which stores for each run the point sampled from the
abstract feature space and the resulting robustness value ρ (see Sect. 3.1) for the
specification. The table is compatible with the pandas data science library [13],
making visualization easy. While VerifAI contains algorithms for automatic
analysis of the table (e.g., clustering and Principal Component Analysis), we
do not use them here since the parameter space was low-dimensional enough to
identify failure cases by direct visualization.

We began by plotting TaxiNet’s performance as a function of each of the
parameters in our falsification scenario. Several parameters had a large impact
on performance:

– Time of day: Figure 4 plots ρ vs. time of day, each orange dot representing
a run during falsification; the red line is their median, using 30-min bins
(ignore the blue dots for now). Note the strong time-dependence: for example,
TaxiNet works well in the late morning (almost all runs having ρ > 0 and so
satisfying ϕeventually) but consistently fails to track the centerline in the early
morning.

– Clouds: Figure 5 shows the median performance curves (as in Fig. 4) for 3 of
X-Plane’s cloud types: no clouds, moderate “overcast” clouds, and dark “stra-
tus” clouds. Notice that at 8 am TaxiNet performs much worse with stratus
clouds than no clouds, while at 2 pm the situation is reversed. Performance
also varies quite irregularly when there are no clouds — we will analyze why
this is the case shortly.
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Fig. 4. Performance of TaxiNet as a function of time of day, before and after retraining.
(Color figure online)

– Distance along the runway: The green data in Fig. 6 show performance
as a function of how far down the runway the plane starts (ignore the
orange/purple data for now). TaxiNet behaves similarly along the whole
length of the runway, except around 1350–1500 m, where it veers completely
off of the runway (ρ ≈ −30). Consulting the airport map, we find that another
runway intersects the one we tested with at approximately 1450 m. Images
from the simulations show that at this intersection, both the centerline and
edge markings of our test runway are obscured.

These visualizations identify several problematic behaviors of TaxiNet: con-
sistently poor performance in the early morning, irregular performance at certain
times depending on clouds, and an inability to handle runway intersections. The
first and last of these are easy to explain as being due to dim lighting and
obscured runway markings. The cloud issue is less clear, but VerifAI can help
us to debug it and identify the root cause.

Inspecting Fig. 5 again, observe that performance at 2–3 pm with no clouds
is poor. This is surprising, since under these conditions the runway image is
bright and clear; the brightness itself is not the problem, since TaxiNet does
very well at the brightest time, noon. However, comparing images from a range
of times, we noticed another difference: shortly after noon, the plane’s shadow
enters the frame, and moves across the image over the course of the afternoon.
Furthermore, the shadow is far less visible under cloudy conditions (see Fig. 2).
Thus, we hypothesized that TaxiNet might be confused by the strong shadows
appearing in the afternoon when there are no clouds.

To test this hypothesis, we wrote a new Scenic scenario with no clouds,
varying only the time of day; we used VerifAI’s Halton sampler [9] to get an
even spread of times with relatively few samples. We then ran two experiments:
one with our usual test protocol, and one where we disabled the rendering of
shadows in X-Plane. The results are shown in Fig. 7: as expected, in the normal
run there are strong fluctuations in performance during the afternoon, as the
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Fig. 5. Median TaxiNet performance by time of day, for different cloud types. (For
clarity, individual runs are not shown as dots in this figure.)

Fig. 6. TaxiNet performance by distance along the runway. Solid lines are medians.
The lowest median value for original TaxiNet clipped by the bottom of the chart is
−32. (Color figure online)

Fig. 7. TaxiNet performance (with fixed plane position) by time of day, with and
without shadows.
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shadow is moving across the image; with shadows disabled, the fluctuations
disappear. This confirms that shadows are a root cause of TaxiNet’s irregular
performance in the afternoon.

Figures 4 and 6 show that there are failures even at favorable times and
runway positions. We diagnosed several additional factors leading to such cases,
such as starting at an extreme angle or further away from the centerline; see the
Appendix [5] for details.

Finally, we can use VerifAI for fault localization, identifying which part of
the system is responsible for an undesired behavior. TaxiNet’s main components
are the neural network used for perception and the steering controller: we can
test which is in error by replacing the network with ground truth CTE and HE
values and testing the counterexamples we found above again. Doing this, we
found that the system always satisfied ϕeventually; therefore, all the failure cases
were due to mispredictions by the neural network. Next, we use VerifAI to
retrain the network and improve its predictions.

3.4 Retraining

The easiest approach to retraining using VerifAI is simply to generate a new
generic training set using the falsification scenario Sfalsif from Fig. 3, which delib-
erately includes a wide variety of different positions, lighting conditions, and so
forth. We sampled new configurations from the scenario, capturing a single image
from each, to form new training and validation sets with the same sizes as for
original TaxiNet. We used these to train a new version of TaxiNet, Tgeneric, and
evaluated it as in the previous section, obtaining much better overall perfor-
mance: out of approximately 4,000 runs, 82% satisfied ϕeventually, and only 3.9%
left the runway (compared to 55% and 9.1% before). A variant of Tgeneric using
VerifAI’s Halton sampler, THalton, was even more robust, satisfying ϕeventually
in 83% of runs and leaving the runway in only 0.6% (a 15× improvement over
the original model). Furthermore, retraining successfully eliminated the unde-
sired behaviors caused by time-of-day and cloud dependence: the blue data in
Fig. 4 shows the retrained model’s performance is consistent across the entire
day, and in fact this is the case for each cloud type individually.

However, this naïve retraining did not eliminate all failure cases: the orange
data in Fig. 6 shows that THalton still does not handle the runway intersection
well. To address this issue, we used a second approach to retraining: over-
representing the failure cases of interest in the training set using a specialized
Scenic scenario [6].

We altered Sfalsif as shown in Fig. 8, increasing the probability of the plane
starting 1200–1600 m along the runway, a range which brackets the intersection;
we also emphasized the range 0–400 m, since Fig. 6 shows the model also has dif-
ficulty at the start of the runway. We trained a specialized model Tspecialized using
training data from this scenario together with the validation set from Tgeneric.
The new model had even better overall performance than THalton, with 86% of
runs satisfying ϕeventually and 0.5% leaving the runway. This is because perfor-
mance near the intersection is significantly improved, as shown by the purple
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data in Fig. 6; however, while the plane rarely leaves the runway completely, it
still typically deviates several meters from the centerline. Furthermore, perfor-
mance is worse than Tgeneric and THalton over the rest of the runway, suggesting
that larger training sets might be necessary for further performance improve-
ments.

Fig. 8. Position distribution empha-
sizing the runway beginning and
intersection. Probabilities corre-
sponding to the original scenario
(Fig. 3) shown in comments.

While in this case it was straightforward
to write the Scenic program in Fig. 8 by
hand, we can also learn such a program
automatically: starting from Sfalsif (Fig. 3),
we use cross-entropy sampling to move the
distribution towards failure cases. Applying
this procedure to Tgeneric for around 1200
runs, VerifAI indeed converged to a distri-
bution concentrated on failures. For exam-
ple, the distribution of distances along the
runway gave ∼79% probability to the range
1400–1600 m, 16% to 1200–1400 m, and 5%
to 0–200, with all other distances getting only ∼1% in total. Referring back to
Fig. 6, we see that these ranges exactly pick out where THalton (and Tgeneric) has
the worst performance.

Finally, we also experimented with a third approach to retraining, namely
augmenting the existing training and validation sets with additional data rather
than generating completely new data as we did above. The augmentation data
can come from counterexamples from falsification [2], from a handwritten Scenic
scenario, or from a failure scenario learned as we saw above. However, we were
not able to achieve better performance using such iterative retraining approaches
than simply generating a larger training set from scratch, so we defer discussion
of these experiments to the Appendix [5].

4 Conclusion

In this paper, we demonstrated VerifAI as an integrated toolchain useful
throughout the design process for a realistic, industrial autonomous system.
We were able to find multiple failure cases, diagnose them, and in some cases
fix them through retraining. We interfaced VerifAI to the X-Plane flight sim-
ulator, and extended the Scenic language with external parameters, allowing
the combination of probabilistic programming and active sampling techniques.
These extensions are publicly available [1,7].

While we were able to improve TaxiNet’s rate of satisfying its specification
from 55% to 86%, a 14% failure rate is clearly not good enough for a safety-
critical system (noting of course that TaxiNet is a simple prototype not intended
for deployment). In future work, we plan to explore a variety of ways we might
further improve performance, including repeating our falsify-debug-retrain loop
(which we only showed a single iteration of), increasing the size of the training
set, and choosing a more complex neural network architecture. We also plan
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to further automate error analysis, building on clustering and other techniques
(e.g., [10]) available with VerifAI and Scenic, and to incorporate white-box
reasoning techniques to improve the efficiency of search.
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Abstract. The Libra blockchain is designed to store billions of dollars
in assets, so the security of code that executes transactions is important.
The Libra blockchain has a new language for implementing transactions,
called “Move.” This paper describes the Move Prover, an automatic for-
mal verification system for Move. We overview the unique features of
the Move language and then describe the architecture of the Prover,
including the language for formal specification and the translation to
the Boogie intermediate verification language.
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1 Introduction

The ability to implement arbitrary transactions on a blockchain via so-called
smart contracts has led to an explosion in innovative services in systems such
as Ethereum [41]. Unfortunately, bugs in smart contracts have led to massive
amounts of funds being stolen or made inaccessible [5,15]. In retrospect, the
source of these disasters is fairly obvious: smart contracts operate without a
safety net. A fundamental requirement for blockchains is that transactions be
automatic and irreversible. Unlike traditional financial applications, there is lit-
tle opportunity for humans to oversee or intervene in transactions. Indeed, the
design of the blockchain is intended to prevent human involvement. The result-
ing potential havoc that can be caused by a bug in a smart contract makes it
essential for these contracts to be correct, without vulnerabilities. Not surpris-
ingly, there is great interest in formal verification and other advanced testing
methods for smart contracts, and several verification systems already exist or
are under development.

This work was supported by the Stanford Center for Blockchain Research and Novi,
a Facebook subsidiary whose goal is to provide financial services that let people par-
ticipate in the Libra network. The Libra Association manages the Libra network and
is an independent, not-for-profit membership organization, headquartered in Geneva,
Switzerland.
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The Libra blockchain [3,38] is designed to be a foundation for supporting
financial services for billions of people around the world. If successful, it could
store and manage assets worth billions of dollars, with correspondingly stringent
security requirements. The code that modifies the state of the blockchain is espe-
cially important. The architecture of the Libra blockchain requires that all such
modifications be performed by the Move [12] virtual machine, which executes
the well-defined Move instruction set. This architecture means that verification
efforts can focus on the correctness of bytecode programs implementing smart
contracts, including formally verifying those programs.

Contributions

In this paper, we describe a specification language and formal verification system
for Move. If a programmer writes functional correctness properties for a proce-
dure, the Move Prover tool can automatically verify it. Although many similar
Floyd-Hoare verifiers exist, widespread adoption has been a challenge because
conventional software is large, complex, and uses language features that present
difficulties for even the simplest verification tasks. However, we are hopeful that
the Move Prover will be used by the majority of Move programmers. There are
three reasons for this optimism. First, the Move language has been designed to
support verification. Second, we are building a culture of specification from the
beginning: each Move module used by the Libra blockchain is being written with
an accompanying formal specification. Finally, we are working to make the Move
Prover as precise, fast, and user-friendly as possible.

The Move language, the Move Prover, Move programs, and their specifica-
tions, have been evolving rapidly, so this description necessarily represents a
snapshot of the project at a particular time. However, we expect most of the
changes to be improvements and extensions to the basics described here. In the
remainder of this paper, we will:

1. Present a brief overview of Move and explain the language design decisions
that facilitate verification (Sect. 2);

2. Describe how the Move Prover toolchain is implemented (Sect. 3);
3. Explain the model used to represent Move programs (Sect. 4);
4. Define the Move specification language and give examples of useful properties

it can encode (Sect. 5); and
5. Demonstrate that the Move Prover can verify important aspects of the Libra

core modules (Sect. 6).

2 Background: The Move Language

Move [12] is an executable bytecode language for writing smart contracts and
custom transaction logic. Contracts in Move are written as modules that contain
record types and procedures. Records in modules may either be struct or resource
types—the most novel feature of Move. A resource type has linear [17] seman-
tics, meaning that resources cannot be created, copied, or destroyed except by
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module LibraCoin {
resource struct T { value: u64 }

public fun join(coin: &mut LibraCoin::T, to_consume: LibraCoin::T) {
let T { value } = to_consume; // MoveLoc(1); Unpack
let c_value_ref = &mut coin.value; // MoveLoc(0); MutBorrowField<value>; StLoc(0)
*c_value_ref = *c_value_ref + value; // CopyLoc(0); ReadRef; Add; MoveLoc(0); WriteRef
return; // Ret

}

Fig. 1. A Move module with its bytecode representation in comments.

procedures in its declaring module. Resources allow programmers to encode safe,
yet customizable assets that cannot be accidentally (or intentionally) copied or
destroyed by code outside the module.

Move is minimal in comparison to most conventional programming lan-
guages. The only types besides records are primitives (Booleans, unsigned inte-
gers, addresses), vectors, and references (which must be labeled as mutable
or immutable, similar to Rust [30]). Records can contain primitives and other
records, but not references. Control-flow constructs can be encoded via jumps
to static labels in the bytecode.

Move programs execute in the context of a blockchain with modules and
resources published under account addresses. To interact with the blockchain,
a programmer can write a Move transaction script, a single-procedure program
similar to a main procedure in a conventional language, that invokes proce-
dures of published modules. This script is then packaged into a cryptographi-
cally signed transaction that is executed by validators in the Libra blockchain.
As in Ethereum, transaction execution is metered, meaning that computational
resources (or “gas”) used when a Move program is executed are measured and
must be paid for by the submitter of a transaction (though we note that the
Move Prover does not yet reason about gas usage).

Verification-Friendly Design. There are several aspects of Move’s design that
facilitate verification. The first is limited interaction with the environment: to
ensure deterministic execution, the language can only read data from the global
blockchain state or the current transaction (no file or network I/O). Second,
many features that are challenging for verification are absent from Move: con-
currency, higher-order functions, exceptions, sub-typing, and dynamic dispatch.
The absence of the last feature is particularly notable because it is present in
Ethereum bytecode and has contributed to subtle re-entrancy bugs (e.g., [14]).
Third, Move has built-in safe arithmetic: overflows and underflows are detected
during execution and result in a transaction abort. Finally, many common errors
are prevented by the Move bytecode verifier (not to be confused with the Move
Prover), a static analyzer that checks each bytecode program before execution
(similar to the JVM [26] or CLR [31] bytecode verifier). The bytecode verifier
ensures that:
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Fig. 2. The Move Prover architecture.

1. Procedures and struct declarations are well-typed (e.g., linearity of resources)
2. Dependent modules and procedure targets exist (i.e., static linking)
3. Module dependencies are acyclic
4. The operand stack height is the same at the beginning and end of each basic

block
5. A procedure can only touch stack locations belonging to callers via a reference

passed to the callee
6. The global and local memory are always tree-shaped
7. There are no dangling references
8. A mutable reference has exclusive access to its referent

Because these checks are run on every Move bytecode program, the prover can
rely on them in its own reasoning. Note that this would not be true if the checks
were performed by a source language compiler, since bad bytecode programs
could be created by compiler bugs or by writing programs directly in the exe-
cutable bytecode representation.

Limited Aliasing. In the rest of this section, we present an example that explains
the memory-related invariants enforced by the Move bytecode verifier (6–8
above). The example in Fig. 1 is written in the Move source language, which
can be directly compiled to the Move bytecode representation shown in the
comments (note that the Move Prover analyzes the bytecode itself). The join

procedure accepts two arguments: coin of type &mut LibraCoin::T (a muta-
ble reference to a LibraCoin::T value stored elsewhere) and to_consume of
type LibraCoin::T (an owned LibraCoin::T value). The purpose of this pro-
cedure is to destroy the LibraCoin::T resource stored in to_consume and add
its value to the LibraCoin::T resource referenced by coin. The first line of the
procedure performs the destruction by “unpacking” to_consume (placing the
program value bound to its field into the program variable value), and the next
two lines read the current value of c_value_ref and update it.

The careful reader might wonder: what will happen if c_value_ref is
a reference to to_consume? In a C-like language, the first line would make
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c_value_ref into a dangling reference, which would lead to a memory error
when it is subsequently used. Fortunately, the Move bytecode verifier ensures
that this cannot happen. An owned value like to_consume can only be moved
(either onto the operand stack or into global storage) if there are no outstand-
ing references to the value. In addition, the bytecode verifier guarantees that
no mutable reference can be an ancestor or descendant of another (mutable or
immutable) reference in the same local or global data tree. This is a very strong
restriction! It ensures that procedure formals that can be mutated (mutable ref-
erences or owned values) point to disjoint memory locations. For example, an
additional formal of type &mut u64 in the code above could not point into the
memory of the other formals. Formals that are immutable references may alias
with each other, but not with mutable references or owned values. This means
it is impossible for an update to a reference to affect the value retrieved by a
simultaneously existing reference. These restrictions on the structure of mem-
ory enable greatly simplified reasoning about aliased mutable data, a significant
challenge for verification in conventional languages.

3 Tool Overview

Figure 2 shows the architecture of the Move Prover. The prover takes as input
Move source code annotated with specifications. The overall workflow consists
of several steps. First, the specifications are extracted from the annotated code,
and the Move source code is compiled into Move bytecode. Next, all stack oper-
ations are removed from the bytecode and replaced with operations on local
variables, and the stackless bytecode is abstracted into a prover object model.
Along a separate path, the specifications are parsed and added to the prover
object model. The finalized model is translated to a program in the Boogie
intermediate verification language (IVL) [23,24].

The Boogie program is handed to the Boogie verification system, which gen-
erates an SMT formula in the SMT-LIB format [10]. This can then be checked
using an SMT solver such as Z3 [32] or CVC4 [9]. If the result of this check is
UNSAT, then the specification holds, which is reported to the user. Otherwise,
a countermodel is obtained from the SMT-solver, which gets translated back to
Boogie. Boogie produces a Boogie-level error report, and this result is analyzed
and transformed into a source-level diagnosis that is given back to the user. Using
this diagnosis, the user can refine the implementation and/or specification and
start the process again.

The prover is written in Rust and can be found in the language/move-

prover directory in the Libra repository on GitHub [25].1 We describe the Boo-
gie model and the specification language in more detail in the following sections.

1 This paper reflects the state of the Move Prover at github commit https://github.
com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef.

https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef
https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef
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4 Boogie Model

Boogie IVL is a simple imperative programming language that supports local and
global variables, branching and loops, and procedures and procedure calls. Boo-
gie is designed for verification, so it also supports pre- and post-conditions, loop
invariants, and global axioms. Boogie programs are not executable; instead, they
are provided as input to the Boogie verification system, which applies a verifica-
tion strategy to generate verification conditions (as SMT formulas) [8]. If all of
the verification conditions hold, then each procedure ensures its post-conditions,
under the assumption that its pre-conditions hold. The variable types supported
by Boogie IVL match the sorts supported by SMT solvers, e.g., Booleans, inte-
gers, arrays, bitvectors, and datatypes. This makes the translation of Boogie
verification conditions into SMT formulas fairly transparent. Boogie is used as a
back-end for a wide variety of verification tools. The general strategy is to model
the semantics of a source language in Boogie. Then, programs and specifications
in the source language can be translated into Boogie IVL and checked using the
Boogie verification system. For more details about Boogie, we refer the reader
to [1,7,23,24].

Following this pattern, we built a Boogie model for Move bytecode pro-
grams. A few highlights of the model are shown in Fig. 3 and described below.
For a detailed understanding of the model, we refer the reader to the full Boo-
gie model, which can be found in the Libra repository at language/move-

prover/src/prelude.bpl and to a formalization of the core Move bytecode
language described in [13].

As mentioned above, in Move, a data value is either a primitive value (e.g.,
Boolean, integer, address), a struct (i.e. a record) containing one or more data
values, or a vector of data values. Data values are represented in Boogie as
the Value datatype, with one constructor for each primitive type, plus a vector
constructor (containing one field: a finite array of Value), used to model both
vectors and structs.

Because Move supports generic functions (i.e. type-parameterized functions),
we define a similar Boogie datatype for types called TypeValue (not shown).
A type-parameterized function can then be represented as a Boogie procedure
whose initial arguments are of type TypeValue (for the type parameters) and
whose data arguments are of type Value (regardless of their actual Move type).
The bytecode verifier ensures type-correctness, so we do not check that types
are used correctly, but rather assume this is the case (by using Boogie assume

statements as needed).
The Value and ValueArray datatypes are mutually recursive, and thus a

Value can be thought of as a finite tree. A primitive Value is a leaf node of
the tree, while a struct or vector Value is an internal node. A position within
the tree can be uniquely identified by a path, which is a sequence of integers. A
path specifies a node of the tree by starting at the root node and then following
children according to the indices in the path. We model paths as finite arrays
(also shown in Fig. 3). This simplifies the specification that two trees are disjoint,
which is a necessary precondition in some smart contract functions.
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type {:datatype} Value ;
function {:constructor} Boolean (b : bool) : Value ;
function {:constructor} In tege r ( i : int) : Value ;
function {:constructor} Address ( a : int) : Value ;
function {:constructor} Vector (v : ValueArray ) : Value ;

type {:datatype} ValueArray ;
function {:constructor} ValueArray (v : [int]Value , l : int) : ValueArray ;
type {:datatype} Path ;
function {:constructor} Path (p : [int]int, s i ze : int) : Path ;
type {:datatype} Location ;
function {:constructor} Global ( t : TypeValue , a : int) : Location ;
function {:constructor} Local ( i : int) : Location ;
type {:datatype} Reference ;
function {:constructor} Reference ( l : Location , p : Path ) : Reference ;

type {:datatype} Memory;
function {:constructor} Memory( domain : [ Location ]bool, conten ts : [ Location ]Value ) : Memory;
var $m : Memory;

Fig. 3. Highlights of the Boogie model for the Move Prover. The type {:datatype}
syntax is used to declare a new datatype, and the function {:constructor} syn-
tax is used to declare datatype constructors with their selectors. An array indexed by
type T containing elements of type V is denoted in Boogie as [T]V.

A Value can be stored in either local or global state, and references to data
in either are allowed as local variables. For simplicity and uniformity, we have a
single memory object which is a map from Location to Value (because memory
is a partial function, it also contains a map from Location to bool, which
indicates whether a particular location is present in memory). A Location is
either global (indexed by an account address and a type) or local (indexed by an
integer). References are then represented as a pair consisting of a location and
a path. To model reading from or writing to a reference, the global memory is
accessed along the reference’s path. Note that this is done by enumerating cases
up to the maximum possible path depth (based on the data structures in the
modules being verified).2

Finally, each bytecode instruction is modeled as a procedure modifying local
or global state in Boogie. A bytecode program is then translated to a sequence
of procedure calls, with goto statements handling control-flow.

2 As with most verification approaches based on generating verification conditions,
verifying recursive procedures or loops in Boogie requires writing loop invariants,
which can be difficult and may also introduce quantifiers, making the problem harder
for the underlying SMT solver. We have avoided this so far by relying on bounded
iteration, but our roadmap includes full handling of recursion and loops via loop
invariants.
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public fun pay_from_sender(payee: address, amount: u64) acquires T
{
Transaction::assert(payee != Transaction::sender(), 1); // new!

if (!exists<T>(payee)) {
Self::create_account(payee);

};
Self::deposit(
payee,
Self::withdraw_from_sender(amount),

);
}

spec fun pay_from_sender {
// ... omitted aborts_ifs ...
aborts_if amount == 0;
aborts_if global<T>(sender()).balance.value < amount;
ensures exists<T>(payee);
ensures global<T>(sender()).balance.value

== old(global<T>(sender()).balance.value) - amount;
}

Fig. 4. A simplified version of an example where verification led to an insight about a
function. Without the assert marked “new,” the specification fails to hold if payee
and sender are the same, as explained in Sect. 6.

5 Specifications

The Move Prover has a basic specification language for individual functions.
Specifications include classical Floyd-Hoare pre-conditions, post-conditions, and
a new condition specifying when a function aborts. (We are expanding this func-
tionality to include ghost variables and global invariants for modules.) These con-
ditions are separated from the actual code, in “spec blocks,” which are linked by
name to the structure or function being specified, or to the containing module.
Specifications never affect the execution of a module. A simplified example based
on verifying a real Libra module appears in Fig. 4.

Pre-conditions and post-conditions are standard. Pre-conditions are intro-
duced by the reserved word requires and post-conditions are introduced by
ensures, and each is followed by a Boolean expression, in a syntax that is
very similar to Move, which includes the usual relational and arithmetic oper-
ators, record field access, etc. A sub-expression after ensures can be enclosed
in old(...), causing the expression to be evaluated using the variable values
in the program state immediately after entry to the function, instead of using
the program state just before exit from the function. Move functions can return
multiple values, so the expressions return_1, return_2, etc. represent those
return values.

Formal verifiers for conventional programming languages treat run-time
errors as bugs to be reported. However, as in most smart contract languages,
performing an undefined operation in Move, such as division by zero, cancels the
entire transaction with no effect on the state except the consumption of some
currency to pay for the computational resources consumed by the code that
was executed before the error occurred. In Libra, this event is called an abort.
Aborts are not necessarily run-time errors in Move. They are the standard way
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to handle illegal transactions, such as trying to perform an operation that is not
authorized by the sender of the transaction.

Instead of treating all possible abort conditions as bugs, the Move Prover
allows the user to specify the conditions under which a function is expected to
abort. This type of specification is introduced by the reserved word aborts_if,
which is followed by the same kind of expressions that can appear after
requires. When aborts_if P appears in the specification of a function, the
Move Prover requires that the function aborts if and only if P holds. If multiple
aborts_if conditions are specified, there is an error unless the function aborts if
and only if the disjunction of all their conditions holds. (This current semantics
of aborts_if is subject to change.)

There are two expressions that are specific to the Libra blockchain. The
expression exists<M::T>(A) is true iff there is an instance of the type T from
module M appearing under account A in the global state tree. In the example
of Fig. 4, the first post-condition asserts that the payee account exists after a
payment transaction (the payee account might not exist before the payment, in
which case it is created). The expression global<M::T>(A) represents the value
of type T from module M stored at account A. In the example, this construct
accesses the balance values of the sender (the payer), to make sure that the
balance covers the payment, and to assert that the payer account balance has
decreased by the payment amount if the payment is successful.

Specification Translation. Specifications are translated into requires and
ensures statements in Boogie and combined with the prelude (the Boogie model,
see Sect. 4) and the translated Move bytecode for the program.

A global Boolean variable $abort_flag is introduced and assumed to be
false at the beginning of each procedure. The Boogie code for each instruc-
tion sets this flag to true for conditions that cause abort, such as undefined
operations or failures of explicit Move assert statements.

The specification translator combines, using logical disjunction, the condi-
tions of all aborts_if statements into a single expression (called condition

here), which is translated into the Boogie specifications ensures condition

==> $abort_flag and ensures !condition ==> !$abort_flag.

6 Evaluation

In this section, we report on our experience using the Move Prover. We first
demonstrate that it can successfully be used on core modules in the Libra code-
base.

Verifying Core Modules. We wrote specifications for all of the functions (25/25)
in the Libra module and most of the functions (34/38) in the LibraAccount mod-
ule (4 functions use features that are not yet supported: non-linear arithmetic
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and referencing data in the spec that does not appear in the code).3 These are
core modules of the Libra system, and their correct execution is crucial. The
Move Prover was able to prove all of these specifications in under a minute, as
shown below. The modules with their specifications are available in the Move
Prover source tree.4 The Libra and LibraAccount modules comprise nearly 1300
lines (including specifications). The total size of the generated Boogie files is
a little over 14,000 lines, and the generated SMT files are around 52,000 lines.
Writing these specifications was quite natural, thanks to the tree-based memory
model and to the support for type-generics. Experiments were run on a machine
with an Intel Core i9 processor with 8 cores @2.4 GHz and 32 GB RAM, running
macOS Catalina.

Move Module LoC Boogie LoC SMT LoC Functions Verified Runtime

Libra 420 3875 11,688 25 25 2.99 s

LibraAccount 867 10,362 40293 38 34 46.66 s

Impact of Move Prover. The Move Prover is co-developed with the Move lan-
guage itself (which is relatively stable) to ensure that contracts remain correct
as the entire toolset evolves. The prover is used in continuous integration, and
is beginning to be used to verify contracts in production. As of this writing, the
Move Prover hasn’t exposed any serious bugs. However, it has had an impact on
how we understand code. An example is a function called pay_from_sender (a
version with some specifications and comments omitted appears in Fig. 4). This
function simply pays money from the account of the sender (who signed the
transaction) to payee. In a previous version of the function, the Prover reported
errors for two of the “obvious” specification properties shown. The first speci-
fication says that the function always aborts when paying zero Libra, because
deposit aborts unless the amount is positive. However, in the earlier version,
create_account handled the payment to deposit the amount in the account
when the account did not yet exist, and that payment was allowed to be zero,
violating the specification. The function was rewritten as it appears now, so
that the same deposit code is called regardless of whether the payee account was
newly created. The last specification says that the payer’s account decreases by
amount after a successful payment. This condition was violated when the payer
and payee were the same, resulting in no decrease. Adding an assert (marked
“new!” in the figure) to abort in that useless case makes the specification simpler.

3 Two additional functions in LibraAccount are “native” which means that they are
built-in and don’t have any Move code. These are modeled directly in Boogie and
are not included in the count here.

4 To reproduce, run cargo run -- -s . -- <libra|libra_account>.move
from tests/sources/stdlib/modules in the move-prover source tree.
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7 Related Work

The only other formal verification framework for Move that we are aware of
is described in [36], where a high-level approach and some case studies are
described, but no implementation details are provided.

The closest work in the literature has been done in the context of verifica-
tion of solidity smart contracts using Boogie. VERISOL [22] is one tool which
formally verifies solidity smart contracts via a translation to Boogie. Its speci-
fication language is designed for the specific context of application policies, but
general specifications can be given by using solidity assertions. SOLC-VERIFY
[19,20] also uses Boogie to perform formal verification for solidity. It includes
an annotation-based specification language and supports a larger feature-set of
solidity than VERISOL. Interestingly, the formalization of the solidity persistent
memory model presented in [20] is similar to our tree-based memory model for
Move, though they were developed independently. One novelty of our model in
comparison to theirs is its ability to handle generic functions as discussed in
Sect. 4 (generics are supported in Move but not in solidity). Both VERISOL and
SOLC-VERIFY target contracts written in solidity, and not in the Ethereum
bytecode. In contrast, the Move Prover operates on the Move bytecode.

The solidity compiler itself includes a formal verification framework that
works via a direct translation to SMT [2]. Several other tools have focused on
specific vulnerability patterns, rather than user-defined specifications [16,28,34,
40]. Other theoretical foundations have also been employed for the verification of
solidity smart contracts. These include the K framework [35] (see, e.g., [21]), F*
[29] (see, e.g., [11,18]), and proof assistants such as Coq [37] (see, e.g., [42,43]).

Formal verification of Rust [30] programs is also related to the Move Prover,
as Move’s type system has similar characteristics to Rust [30]. Prusti [4] is a
tool that leverages Rust’s type system information to verify Rust programs. It is
based on a higher-level intermediate framework called Viper [33] (that internally
uses Boogie in some scenarios). Other verification efforts for Rust employ a
translation to LLVM and then leverage LLVM-based verification techniques (see,
e.g., [6,27,39]).

8 Conclusion

In this paper, we introduced the Move Prover, a formal verification tool designed
to be an integral part of the process of smart contract development for the Libra
platform. Though our initial experience with the Move Prover is positive, there
are many avenues for future work that we plan to pursue.

As Move continues to evolve, we expect that some constructs may be easier
and more efficient to model by using custom SMT constructs. An example of
this is the built-in vector type. Our current model requires the use of quantifiers
to compare two vector objects. However, an SMT theory of sequences could be
used to model vectors without needing to use quantifiers to define equality. We
plan to investigate the use of richer (and possibly custom) SMT theories in our
model.
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The specifications we have written so far are local in the sense that they deal
with only a single execution of a single Move function. However, some properties
of the Libra blockchain are inherently global in nature, such as the fact that
the total amount of currency should remain constant. We plan to investigate
techniques for creating and checking such global specifications.

The current Prover is still in a prototype phase. But the goal is for it to
be a product that is usable by everyone who is writing contracts for the Libra
platform. We expect that there will be many challenges in producing a user-
friendly, industrial-strength tool, but we also look forward to a future where
formal specification and verification is a routine part of the development process
for Move modules on the Libra blockchain.

References

1. Boogie. https://github.com/boogie-org/boogie
2. Alt, L., Reitwiessner, C.: SMT-based verification of solidity smart contracts. In:

Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 376–388.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 28

3. Amsden, Z., et al.: The Libra Blockchain (2019). https://developers.libra.org/
docs/the-libra-blockchain-paper

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. PACMPL 3(OOPSLA), 147:1–147:30 (2019)

5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8
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19. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for solidity smart con-
tracts. CoRR abs/1907.04262 (2019)
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24. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2 26

25. Libra. https://github.com/libra/libra
26. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,

Reading (1997)
27. Lindner, M., Aparicius, J., Lindgren, P.: No panic! verification of rust programs

by symbolic execution. In: INDIN, pp. 108–114. IEEE (2018)
28. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: ACM Conference on Computer and Communications Security, pp.
254–269. ACM (2016)

29. Maillard, K., et al.: Dijkstra monads for all. In: 24th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP) (2019). https://arxiv.org/
abs/1903.01237

30. Matsakis, N.D., Klock II, F.S.: The rust language. Ada Lett. 34(3), 103–104 (2014).
https://doi.org/10.1145/2692956.2663188

31. Meijer, E., Wa, R., Gough, J.: Technical overview of the common language runtime
(2000)

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

33. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Dependable Software Systems Engineering, NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 50, pp. 104–125. IOS Press (2017)

34. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: ACSAC, pp. 653–663. ACM (2018)

https://ethereum.github.io/blog/2016/06/17/critical-update-re-dao-vulnerability
https://ethereum.github.io/blog/2016/06/17/critical-update-re-dao-vulnerability
https://github.com/skylightcyber/mythril-classic
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-030-44914-8_9
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
https://github.com/libra/libra
https://arxiv.org/abs/1903.01237
https://arxiv.org/abs/1903.01237
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1007/978-3-540-78800-3_24


150 J. E. Zhong et al.

35. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr.
Program. 79(6), 397–434 (2010)

36. Synthetic Minds Blog: Verifying smart contracts in the move language (2019).
https://synthetic-minds.com/pages/blog/blog-2019-09-11.html

37. The Coq development team: The coq proof assistant reference manual version 8.9
(2019). https://coq.inria.fr/distrib/current/refman/

38. The Libra Association: An Introduction to Libra (2019). https://libra.org/en-us/
whitepaper

39. Toman, J., Pernsteiner, S., Torlak, E.: Crust: a bounded verifier for rust (N). In:
ASE, pp. 75–80. IEEE Computer Society (2015)

40. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: practical security analysis of smart contracts. In: ACM Conference
on Computer and Communications Security, pp. 67–82. ACM (2018)

41. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
https://ethereum.github.io/yellowpaper/paper.pdf

42. Yang, Z., Lei, H.: Formal process virtual machine for smart contracts verification.
CoRR abs/1805.00808 (2018)

43. Yang, Z., Lei, H.: Fether: an extensible definitional interpreter for smart-contract
verifications in Coq. IEEE Access 7, 37770–37791 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://synthetic-minds.com/pages/blog/blog-2019-09-11.html
https://coq.inria.fr/distrib/current/refman/
https://libra.org/en-us/whitepaper
https://libra.org/en-us/whitepaper
https://ethereum.github.io/yellowpaper/paper.pdf
http://creativecommons.org/licenses/by/4.0/


End-to-End Formal Verification
of Ethereum 2.0 Deposit Smart Contract

Daejun Park1(B) , Yi Zhang1,2, and Grigore Rosu1,2

1 Runtime Verification, Inc., Urbana, IL, USA
daejun.park@runtimeverification.com

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
{yzhng173,grosu}@illinois.edu

Abstract. We report our experience in the formal verification of the
deposit smart contract, whose correctness is critical for the security
of Ethereum 2.0, a new Proof-of-Stake protocol for the Ethereum
blockchain. The deposit contract implements an incremental Merkle tree
algorithm whose correctness is highly nontrivial, and had not been proved
before. We have verified the correctness of the compiled bytecode of the
deposit contract to avoid the need to trust the underlying compiler. We
found several critical issues of the deposit contract during the verification
process, some of which were due to subtle hidden bugs of the compiler.

1 Introduction

The deposit smart contract [14] is a gateway to join Ethereum 2.0 [15] that is
a new sharded Proof-of-Stake (PoS) protocol which at its early stage, lives in
parallel with the existing Proof-of-Work (PoW) chain, called Ethereum 1.x chain.
Validators drive the entire PoS chain, called Beacon chain, of Ethereum 2.0. To
be a validator, one needs to deposit a certain amount of Ether, as a “stake”, by
sending a transaction (over the Ethereum 1.x network) to the deposit contract.
The deposit contract records the history of deposits, and locks all the deposits
in the Ethereum 1.x chain, which can be later claimed at the Beacon chain of
Ethereum 2.0.1 Note that the deposit contract is a one-way function; one can
move her funds from Ethereum 1.x to Ethereum 2.0, but not vice versa.

The deposit contract, written in Vyper [19], employs the Merkle tree [30] data
structure to efficiently store the deposit history, where the tree is dynamically
updated (i.e., leaf nodes are incrementally added in order from left to right)
whenever a new deposit is received. The Merkle tree employed in this contract
is very large: it has height 32, so it can store up to 232 deposits. Since the size
of the Merkle tree is huge, it is not practical to reconstruct the whole tree every
time a new deposit is received.

To reduce both time and space complexity, thus saving the gas2 cost signif-
icantly, the contract implements an incremental Merkle tree algorithm [6]. The
1 This deposit process will change at a later stage.
2 In Ethereum, gas refers to the fee to execute a transaction or a smart contract on

the blockchain. The amount of gas fee depends on the size of the payloads.
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incremental algorithm enjoys O(h) time and space complexity to reconstruct
(more precisely, compute the root of) a Merkle tree of height h, while a naive
algorithm would require O(2h) time or space complexity. The efficient incre-
mental algorithm, however, leads to the deposit contract implementation being
unintuitive, and makes it non-trivial to ensure its correctness. The correctness of
the deposit contract, however, is critical for the security of Ethereum 2.0, since it
is a gateway for becoming a validator. Considering the utmost importance of the
deposit contract for the Ethereum blockchain, formal verification is demanded
to ultimately guarantee its correctness.

In this paper, we present our formal verification of the deposit contract.3 The
scope of verification is to ensure the correctness of the contract bytecode within
a single transaction, without considering transaction-level or off-chain behaviors.
We take the compiled bytecode as the verification target to avoid the need to
trust the compiler.4

We adopt a refinement-based verification approach. Specifically, our verifica-
tion effort consists of the following two tasks:

– Verify that the incremental Merkle tree algorithm implemented in the deposit
contract is correct w.r.t. the original full-construction algorithm.

– Verify that the compiled bytecode is correctly generated from the source code
of the deposit contract.

Intuitively, the first task amounts to ensuring the correctness of the contract
source code, while the second task amounts to ensuring the compiled bytecode
being a sound refinement of the source code (i.e., translation validation of the
compiler). This refinement-based approach allows us to avoid reasoning about
the complex algorithmic details, especially specifying and verifying loop invari-
ants, directly at the bytecode level. This separation of concerns helped us to save
a significant amount of verification effort. See Sect. 1.1 for more details.

Challenges. Formally verifying the deposit contract was challenging. First, the
algorithm employed in the contract is sophisticated and its correctness is not
straightforward to prove. Indeed, we found a critical bug in the algorithm imple-
mentation which had been not detected by existing tests (Sect. 3.1).

Second, we had to take the compiled bytecode as the verification target, which
is much larger (consisting of ∼3,000 instructions) and more complex than the
source code. The source-code-level verification was not accepted by the customer
for the end-to-end correctness guarantee, especially considering the fact that the
compiler is not mature enough [11]. Indeed, we found several new critical bugs
in the compiler during the formal verification process (Sect. 3.2).

Third, we had to consider not only the functional correctness, but also secu-
rity properties of the contract. That is, we had to identify the behaviors of the
contract in exceptional cases, and check if they are exploitable. We found a bug
of the contract in case that it receives invalid inputs (Sect. 3.3).

3 This was done as part of a contract funded by the Ethereum Foundation [16].
4 Indeed, we found several new critical bugs [41–44] of the Vyper compiler in the

process of formal verification. See Sect. 3 for more details.
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Finally, we had to take into account potential future changes in the Ethereum
blockchain system (called hard-forks). That is, we had to verify that the compiled
bytecode will work not only in the current system, but also in any future version
of the system that employs a different gas fee schedule. Considering such poten-
tial changes of the system required us to generalize the semantics of bytecode
execution. We also found a bug regarding that (Sect. 3.4).

1.1 Our Refinement-Based Verification Approach

We illustrate our refinement-based formal verification approach used in the
deposit contract verification. We present our approach using the K framework
and its verification infrastructure [46,52,55], but it can be applied to other pro-
gram verification frameworks.

Let us consider a sum program that computes the summation from 1 to n:

int sum(int n) { int s = 0; int i = 1;

while(i <= n) { s = s + i; i = i + 1; } return s; }

Given this program, we first manually write an abstract model of the program
in the K framework [52]. Such a K model is essentially a state transition system
of the program, and can be written as follows:

rule: sum(n) ⇒ loop(s: 0, i: 1, n: n)
rule: loop(s: s, i: i, n: n) ⇒ loop(s: s + i, i: i + 1, n: n) when i ≤ n
rule: loop(s: s, i: i, n: n) ⇒ return(s) when i > n

These transition rules correspond to the initialization, the while loop, and the
return statement, respectively. The indexed tuple (s: s, i : i, n : n) represents
the state of the program variables s, i, and n.5

Then, given the abstract model, we specify the functional correctness prop-
erty in reachability logic [54], as follows:

claim: sum(n) ⇒ return(
n(n+1)

2
) when n > 0

This reachability claim says that sum(n) will eventually return n(n+1)
2 in all

possible execution paths, if n is positive. We verify this specification using the
K reachability logic theorem prover [55], which requires us only to provide the
following loop invariant:6

invariant: loop(s:
i(i−1)

2
, i: i, n: n) ⇒ return(

n(n+1)
2

) when 0 < i ≤ n + 1

Once we prove the desired property of the abstract model, we manually refine
the model to a bytecode specification, by translating each transition rule of the
abstract model into a reachability claim at the bytecode level, as follows:
5 Note that this abstract model can be also automatically derived by instantiating

the language semantics with the particular program, if a formal semantics of the
language is available (in the K framework).

6 The loop invariants in reachability logic mentioned here look different from those
in Hoare logic. See the comparison between the two logic proof systems in [55,
Section 4]. These loop invariants can be also seen as transition invariants [48].
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claim: evm(pc: pcbegin, calldata: #bytes(32, n), stack: [], · · · )
⇒ evm(pc: pcloophead, stack: [0, 1, n], · · · )

claim: evm(pc: pcloophead, stack: [s, i, n], · · · )
⇒ evm(pc: pcloophead, stack: [s + i, i + 1, n], · · · ) when i ≤ n

claim: evm(pc: pcloophead, stack: [s, i, n], · · · )
⇒ evm(pc: pcend, stack: [], output: #bytes(32, s), · · · ) when i > n

Here, the indexed tuple evm(pc: , calldata: , stack: , output: ) repre-
sents (part of) the Ethereum Virtual Machine (EVM) state, and #bytes(N,V )
denotes a sequence of N bytes of the two’s complement representation of V .

We verify this bytecode specification against the compiled bytecode using
the same K reachability theorem prover [46,55]. Note that no loop invariant is
needed in this bytecode verification, since each reachability claim involves only a
bounded number of execution steps—specifically, the second claim involves only
a single iteration of the loop.

Then, we manually prove the soundness of the refinement, which can be
stated as follows: for any EVM states σ1 and σ2, if σ1 ⇒ σ2, then α(σ1) ⇒
α(σ2), where the abstraction function α is defined as follows:

α(evm(pc: pcbegin, calldata: #bytes(32, n), stack: [], · · · )) = sum(n)
α(evm(pc: pcloophead, stack: [s, i, n], · · · )) = loop(s: s, i: i, n: n)
α(evm(pc: pcend, stack: [], output: #bytes(32, s), · · · )) = return(s)

Putting all the results together, we finally conclude that the compiled byte-
code will return #bytes(32,n(n+1)

2 ).
Note that the abstract model and the compiler are not in the trust base,

thanks to the refinement, while the K reachability logic theorem prover [46,55]
and the formal semantics of EVM [24] are.

2 Formal Verification of the Deposit Contract

Following the refinement-based approach illustrated in Sect. 1.1, we first for-
malized the main business logic of the deposit contract (i.e., the incremental
Merkle tree algorithm), and proved its correctness. Then we refined the formal
model into a bytecode specification, and verified the compiled bytecode of the
deposit contract against the refined specification. From these, we concluded the
correctness of the deposit contract bytecode.

2.1 Incremental Merkle Tree Algorithm

We briefly describe the incremental Merkle tree algorithm of the deposit contract.
Due to space limitations, we omit the formalization of the algorithm and the
formal proof of the correctness, and refer the readers to our companion technical
report [45] for the full details.

A Merkle tree [30] is a perfect binary tree [34] where leaf nodes store the hash
of data, and non-leaf nodes store the hash of their children. A partial Merkle tree
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Fig. 1. Illustration of the incremental Merkle tree algorithm. Node numbers are labeled
in the upper-right corner of each node.

up-to m is a Merkle tree whose first (leftmost) m leaves are filled with data hashes
and the other leaves are empty and filled with zeros. The incremental Merkle
tree algorithm takes as input a partial Merkle tree up-to m and a new data
hash, and inserts the new data hash into the (m+1)th leaf, resulting in a partial
Merkle tree up-to m + 1.

Figure 1 illustrates the algorithm, showing how the given partial Merkle tree
up-to 3 (shown in the left) is updated to the resulting partial Merkle tree up-to
4 (in the right) when a new data hash is inserted into the 4th leaf node. The
key idea of the algorithm is that only the path from the new leaf to the root
(i.e., the gray nodes) needs to be computed (hence linear-time), and moreover
the path can be computed by using only the left (i.e., node 3 and node 9) or
right (i.e., node 14) sibling of each node in the path, which are only nodes that
the algorithm maintains (hence linear-space). Refer to [45] for the full details.

2.2 Bytecode Verification of the Deposit Contract

Now we present the formal verification of the compiled bytecode of the deposit
contract. The bytecode verification ensures that the compiled bytecode is a sound
refinement of the source code. This rules out the need to trust the compiler.

As illustrated in Sect. 1.1, we first manually refined the abstract model (in
which we proved the algorithm correctness) to the bytecode specification. For
the refinement, we consulted the ABI interface standard [13] (to identify, e.g.,
calldata and output in the illustrating example of Sect. 1.1), as well as the
bytecode (to identify, e.g., the pc and stack information).7 Then, we used the
KEVM verifier [46] to verify the compiled bytecode against the refined specifi-
cation. We adopted the KEVM verifier to reason about all possible corner-case
behaviors of the compiled bytecode, especially those introduced by certain unin-
tuitive and questionable aspects of the underlying Ethereum Virtual Machine
(EVM) [60]. This was possible because the KEVM verifier is derived from a
complete formal semantics of the EVM, called KEVM [24]. Our formal specifi-
cation and verification artifacts are publicly available at [50].

7 However, we want to note that the Vyper compiler can be augmented to extract
such information, which can automate the refinement process to a certain extent.
We leave that as future work.
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Let us elaborate on specific low-level behaviors verified against the bytecode.
In addition to executing the incremental Merkle tree algorithm, most of the
functions perform certain additional low-level tasks, and we verified that such
tasks are correctly performed. Specifically, for example, given deposit data,8 the
deposit function computes its 32-byte hash (called Merkleization) according to
the SimpleSerialize (SSZ) specification [18]. The leaves of the Merkle tree store
only the computed hashes instead of the original deposit data. The deposit
function also emits a DepositEvent log that contains the original deposit data,
where the log message needs to be encoded as a byte sequence following the
contract event ABI specification [13]. Other low-level operations performed by
those functions that we verified include: correct zero-padding for the 32-byte
alignment, correct conversions from big-endian to little-endian, input bytes of
the SHA2-256 hash function being correctly constructed, and return values being
correctly serialized to byte sequences according to the ABI specification [13].

We also verified a liveness property that the contract is always able to accept
a new (valid) deposit as long as a sufficient amount of gas is provided. This
liveness is not trivial since it needs to hold even in any future hard-fork where
the gas fee schedule is changed. Indeed, we found a bug that violates the liveness.
See Sect. 3.4 for more details.

Our formal specification includes both positive and negative behaviors. The
positive behaviors describe the desired behaviors of the contracts in a legitimate
input state. The negative behaviors, on the other hand, describe how the con-
tracts handle exceptional cases (e.g., when benign users feed invalid inputs by
mistake, or malicious users feed crafted inputs to take advantage of the con-
tracts). The negative behaviors are mostly related to security properties.

For the full specification of the verified bytecode behaviors, refer to [49].

3 Findings and Lessons Learned

In the course of our formal verification effort, we found subtle bugs [35–37] of
the deposit contract, as well as a couple of refactoring suggestions [38–40] that
can improve the code readability and reduce the gas cost. The subtle bugs of
the deposit contract are partly due to bugs of the Vyper compiler [41–44] that
we newly found (and reported to the Vyper team) in the verification process.

Below we elaborate on the bugs we found and lessons we learned along the
way. We note that all the bugs of the deposit contract have been reported,
confirmed, and properly fixed in the latest version (v0.11.2).

3.1 Maximum Number of Deposits

In the original version of the contract that we were asked to verify, a bug is
triggered when all of the leaf nodes of a Merkle tree are filled with deposit

8 Each deposit data consists of the public key, the withdrawal credentials, the deposit
amount, and the signature of the deposit owner.

https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy
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data, in which case the contract (specifically, the get deposit root function)
incorrectly computes the root hash of a tree, returning the zero root hash
(i.e., the root hash of an empty Merkle tree) regardless of the content of leaf
nodes. For example, suppose that we have a Merkle tree of height 2, which
has four leaf nodes, and every leaf node is filled with certain deposit data,
say v1, v2, v3, and v4, respectively. Then, while the correct root hash of the
tree is hash(hash(v1, v2), hash(v3, v4)), the get deposit root function returns
hash(hash(0, 0), hash(0, 0)), which is incorrect.

Due to the complex logic of the code, it is non-trivial to properly fix this bug
without significantly rewriting the code, and thus we suggested a workaround
that simply forces to never fill the last leaf node, i.e., accepting only 2h − 1
deposits at most, where h is the height of a tree. We note that, however, it is
infeasible in practice to trigger this buggy behavior in the current setting, since
the minimum deposit amount is 1 Ether and the total supply of Ether is less
than 130M which is much smaller than 232, thus it is not feasible to fill all the
leaves of a tree of height 32. Nevertheless, this bug has been fixed by the contract
developers as we suggested, since the contract may be used in other settings in
which the buggy behavior can be triggered and an exploit may be possible. Refer
to [37] for more details.

We also want to note that this bug was quite subtle to catch. Indeed, we
had initially thought that the original code was correct until we failed to write
a formal proof of the correctness theorem. The failure of our initial attempt to
prove the correctness led us to identify a missing premise that was needed for
the theorem to hold, from which we could find the buggy behavior scenario,
and suggested the bugfix. This experience reconfirms the importance of for-
mal verification. Although we were not “lucky” to find this bug when we had
eyeball-reviewed the code, which is all traditional security auditors do, the formal
verification process thoroughly guided and even “forced” us to find it eventually.

3.2 ABI Standard Conformance of get deposit count Function

In the previous version, the get deposit count function does not conform to the
ABI standard [13], where its return value contains incorrect zero-padding [35],
due to a Vyper compiler bug [41]. Specifically, in the buggy version of the com-
piled bytecode, the get deposit count function, whose return type is bytes[8],
returns a byte sequence of length 96, where the last byte is 0x20 while it should
be 0x00. According to the ABI specification [13], the last 24 bytes must be all
zero, serving as zero-pad for the 32-byte alignment. Thus the return value does
not conform to the ABI standard. This is problematic because any contract
(written in either Solidity or Vyper) that calls to (the buggy version of) the
deposit contract, expecting that the deposit count function conforms to the
ABI standard, could have misbehaved.9

9 The returned byte sequence, including the incorrect last byte, is copied to the caller’s
memory. If the caller reuses the last byte assuming that it is zero, the garbage value
will be passed around, which may break the business logic of the caller.
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This buggy behavior is mainly due to a subtle Vyper compiler bug [41] that
fails to correctly compile a function whose return type is bytes[n] where n < 16.
This leads to the compiled function returning a byte sequence with insufficient
zero-padding as mentioned above, failing to conform to the ABI standard.

We note that this bug could not have been detected if we did not take the
bytecode as the verification target. This reconfirms that the bytecode-level verifi-
cation is critical to ensure the ultimate correctness (unless we formally verify the
underlying compiler), because we cannot (and should not) trust the compiler.

3.3 Checking Well-Formedness of Calldata

The calldata decoding process in the previous version of the compiled bytecode
does not have sufficient runtime-checks for the well-formedness of calldata. As
such, it fails to detect certain ill-formed calldata, causing invalid deposit data
to be put into the Merkle tree. This is problematic especially when clients make
mistakes and send deposit transactions with incorrectly encoded calldata, which
may result in losing their deposit fund.

Specifically, we found a counter-example ill-formed calldata whose size (196
bytes) is much less than that of well-formed calldata (356 bytes). The problem,
however, is that the deposit function does not reject the ill-formed calldata, but
simply inserts certain invalid (garbage) deposit data in the Merkle tree. Since the
invalid deposit data cannot pass the signature validation later, no one can claim
the deposited fund associated with this, and the deposit owner loses the fund.
Note that this happens even though the deposit function employs assertions at
the beginning of the function that ensures the size of each of the arguments is
correct, which turned out to not work as expected.

This problem would not exist if the Vyper compiler thoroughly generated
runtime checks to ensure the well-formedness of calldata.10 However, since it
was not trivial to fix the compiler to generate such runtime checks, we sug-
gested several ways to improve the deposit contract source code to prevent this
behavior without fixing the compiler. After careful discussion with the deposit
contract development team, we together decided to employ a checksum-based
approach where the deposit function takes as an additional input a checksum
for the deposit data, and rejects any ill-formed calldata using the checksum. The
checksum-based approach is the least intrusive and the most gas-efficient of all
the suggested fixes. For more details of other suggested fixes, refer to [36].

We note that this issue was found when we were verifying the negative behav-
iors of the deposit contract. This shows the importance of having the formal
specification to include not only positive but also negative behaviors.

10 The compiler developers failed to consider the case when the given calldata is not
correctly encoded. For example, while the header of calldata contains offsets (i.e.,
pointers) to the positions of data elements, it could be the case that certain offsets
are beyond the calldata range. In that case, the calldata can be accessed outside its
bounds, due to the missing runtime-checks.
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3.4 Liveness

As mentioned in Sect. 2.2, the previous version of the deposit contract fails to
satisfy a liveness property in that it may not be able to accept a new deposit,
even if it is valid, in a certain future hard-fork that updates the gas fee schedule.
This was mainly due to another subtle Vyper compiler bug [44] that generates
bytecode where a hard-coded amount of gas is supplied when calling to certain
precompiled contracts. Although this hard-coded amount of gas is sufficient in
the current hard-fork (code-named Istanbul [17]), it may not be sufficient in a
certain future hard-fork that increases the gas fee schedule of the precompiled
contracts. In such a future hard-fork, the previous version of the deposit contract
will always fail due to the out-of-gas exception, regardless of how much gas is
initially supplied. Refer to [44] for more details.

We admit that we could not find this issue until the deposit contract develop-
ment team carefully reviewed and discussed with us the formal specification [49]
of the bytecode. Initially, we considered only the behaviors of the bytecode in
the current hard-fork, without identifying the requirement that the contract
bytecode should work in any future hard-fork. We identified the missing require-
ment, and found this liveness issue, at a very late stage of the formal verification
process, which delayed the completion of formal verification.

This experience essentially illustrates the well-known problem caused by the
gap between the intended behaviors (that typically exists only informally) by
developers, and the formal specification written by verification engineers. To
reduce this gap, the two groups should work closely together, or ideally, devel-
opers should write their own specifications in the first place. For the former, the
formal verification process should involve developers more frequently. For the
latter, the formal verification tools should become much easier to use without
requiring advanced knowledge of formal methods. We leave both as future work.

3.5 Discussion

Verification Effort. The net effort for formal verification took 7 person-weeks
(excluding various discussions with developers, reporting bugs and following-
up, especially for compiler bugs, etc.), where the algorithm correctness proof
took 2 person-weeks, and the bytecode verification took 5 person-weeks. This
includes the time spent on writing specifications as well. The bytecode specifi-
cation consists of ∼1,000 LOC (excluding comments), in addition to auxiliary
lemmas consisting of ∼200 LOC. The size of the source code is ∼100 LOC, and
the number of instructions in the compiled bytecode is ∼3,000.

Trust Base. The validity of the bytecode verification result assumes the cor-
rectness of the bytecode specification and the KEVM verifier. The algorithm
correctness proof is partially mechanized—only the proof of major lemmas are
mechanized in the K framework. The non-mechanized proofs are included in our
trust base. The Vyper compiler is not in the trust base.
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Continuous Verification. The verification target contract was a moving target.
Even if the contract code had been frozen before starting the formal verification
process, the code (both source code or bytecode) was updated in the middle of
the verification process, to fix bugs found during the process. Indeed, we found
several bugs in both the contract and the compiler, and each time we found a
bug, we had to re-verify the newly compiled bytecode that fixes the bug. Here
the problem was the overhead of re-verification. About 20% of the bytecode
verification effort was spent on re-verification.

The re-verification overhead could have been reduced by automatically
adjusting formal specifications to updated bytecode, and/or making specifica-
tions as independent of the specific details of the bytecode as possible. For exam-
ple, the current bytecode specification employs specific program-counter (PC)
values to refer to some specific positions of the bytecode, especially when speci-
fying loop invariants. Most of such PC values need to be updated whenever the
bytecode is modified. The re-verification overhead could have been reduced by
automatically updating such PC values, or even having the specification refer to
specific positions without using PC values. We leave this as future work.

4 Related Work

Static Analysis and Verification of Smart Contracts. There have been proposed
many static analysis tools [5,10,20,25,28,29,32,57,58] that are designed to auto-
matically detect a certain fixed set of bugs and vulnerabilities of smart contracts,
at the cost of generality and expressiveness. VerX [47] can verify past-time linear
temporal properties over multiple runs of smart contracts, but it requires the
target contracts to be effectively loop-free.

There also have been proposed verification tools that allow us to specify and
verify arbitrary functional correctness and/or security properties, such as [3,22]
based on the F* proof assistant [1,56] based on Isabelle/HOL [33], the KEVM
verifier [46] based on the K framework [52], and VeriSol [27] based on Boogie [2].
The KEVM verifier has also been used to verify high-profile and challenging
smart contracts [51], including a multi-signature wallet called Gnosis Safe [21],
a decentralized token exchange called Uniswap [59], and a partial consensus
mechanism called Casper FFG [7].

Verification of Systems Software. There are many success stories of formal ver-
ification of systems software, from OS kernels [23,26,31], to file systems [8,53],
to cryptographic code [4]. While most of the verified systems code is either
synthesized from specifications, or implemented (or adjusted) to be verification-
friendly, there also exist efforts [9,12] to verify actual production code as is. Such
efforts are necessary especially when the production code is highly performance-
critical and/or existing development processes are hard to change to help pro-
duce verification-friendly code. The deposit contract we verified was given to us
at the code-frozen stage, and also performance-critical (especially in terms of
the gas cost), and thus we took and verified the given production-ready code as
is, without any modification except for fixing bugs.
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Abstract. The shift to cloud-based APIs has made application security
critically depend on understanding and reasoning about policies that reg-
ulate access to cloud resources. We present stratified predicate abstrac-
tion, a new approach that summarizes complex security policies into a
compact set of positive and declarative statements that precisely state
who has access to a resource. We have implemented stratified abstrac-
tion and deployed it as the engine powering AWS’s IAM Access Analyzer
service, and hence, demonstrate how formal methods and SMT can be
used for security policy explanation.

1 Introduction

A growing number of developers are using cloud-based implementations of basic
resources like associative arrays, encryption, storage, queuing, and event-driven
execution, to engineer client applications. For example, millions of Amazon Web
Services (AWS) customers use cloud APIs like Amazon SQS for queues, Amazon
S3 for storage, AWS KMS for crypto key management, Amazon DynamoDB for
associative arrays, and AWS Lambda for executing functions in a pure virtualized
environment. This shift to the cloud has made application security critically
depend upon deeply understanding and reasoning about policies that regulate
how different principals are allowed to access cloud resources. AWS users, for
example, configure principals in the Identity and Access Management (IAM)
service. The users define which requests are allowed access via resource policies
which allow some resources to be purposefully shared with the entire internet,
while restricting access to others to limited sets of identities.

The IAM policy language has many features that are essential to allow users
to build a wide array of possible applications. Some of these features make reason-
ing about policies challenging. First, individual policy elements can use regular
expressions, negation, and conditionals. Second, the policy elements can inter-
act with each other in subtle ways that make the net effect of a policy unclear.
Previously, we developed Zelkova [2], a tool that encodes policies as logical
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formulas and then uses SMT solvers [3,8] to answer questions about policies,
e.g. whether a particular policy is correct, too strict, or too permissive. While
Zelkova can be queried to explore the properties of policies e.g. whether some
resource is “publicly” accessible, our experience shows that formal policy anal-
ysis remains challenging as users must have sufficient technical sophistication
to realize the criteria important to them and be able to formalize the above as
Zelkova queries.

- Effect: Allow
Condition:

StringEquals:
SrcVpc:
- vpc -a
- vpc -b

- Effect: Allow
Condition:

StringEquals:
OrgID: o-2

- Effect: Deny
Condition:

StringEquals:
SrcVpc: vpc -b

StringNotEquals:
OrgID: o-1

Fig. 1. An example AWS policy Fig. 2. Stratified abstraction search tree

In this paper, we present a new approach to help users understand whether
their policy is correct, by abstracting the policy into a compact set of positive and
declarative statements that precisely summarize who has access to a resource.
Users can review the summary to decide whether the policy grants access accord-
ing to their intentions. The key challenge to computing such summaries is the
combinatorial blowup in the number of possible requests, which comprise the
combination of user name and account, identifiers, hostnames, IP addresses and
so on. Our key insight is that we can make summarization tractable via strati-
fied predicate abstraction, which allows us to collapse many equivalent (concrete)
requests into a single (abstract) finding. To this end, we introduce a new algo-
rithm for computing stratified abstractions of policies, yielding a set of findings
that are sound, i.e. which include all possible requests that can be granted access,
and precise, i.e. where the findings are as specific as possible.

We have implemented stratified abstraction and deployed it as the engine
powering AWS’s recently launched IAM Access Analyzer service, which helps
users reason about the semantics of their policy configurations. We present an
empirical evaluation of our method over a large set of real-world IAM policies.
We show that IAM Access Analyzer generates a sound, precise, and compact
set of findings for complex policies, taking less than a second per finding. Thus,
our results show how key ideas like SMT solving and predicate abstraction [1,5],
can be used not just to verify computing systems, but to precisely explain their
behavior to users.
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2 Overview

AWS access control policies specify who has access to a given resource, via a
set of Allow and Deny statements that grant and prohibit access, respectively.
Figure 1 shows a simplified policy specifying access to a particular resource. This
policy uses conditions based on which network (known as a VPC) the request
originated from and which organizational Amazon customer (referred to by an
Org ID) made the request. The first statement allows access to any request
whose SrcVpc is either vpc-a or vpc-b. The second statement allows access
to any request whose OrgId is o-2. However, the third statement denies access
from vpc-b unless the OrgId is o-1.

Crucially, for each request, access is granted only if: (a) some Allow statement
matches the request, and (b) none of the Deny statements match the request.
Consequently, it can be quite tricky to determine what accesses are allowed by a
given policy. First, individual statements can use regular expressions, negation,
and conditionals. Second, to know the effect of an allow statement, one must
consider all possible deny statements that can overlap with it, i.e. can refer to
the same request as the allow. Thus, policy verification is not compositional, in
that we cannot determine if a policy is “correct” simply by locally checking that
each statement is “correct”. Instead, we require a global verification mechanism,
that simultaneously considers all the statements and their subtle interactions,
to determine if a policy grants only the intended access.

As policies organically grow and become more complex and baroque, the
ultimate question that users have is: “is my policy correct?” Of course, this
specification problem has bedeviled formal methods from the day they were
invented. In our context: how does the security analyst know whether the policy
is, in fact not too strict or too permissive? Zelkova [2] is already used by users
of Amazon’s Simple Storage Service (S3) to determine whether any of their “data
buckets” are publicly accessible. More generally, the AWS Config service provides
templated Zelkova checks that can be filled in by users to validate their policies.
Some advanced users even use the Zelkova service directly, asking their own
questions about policies. While all of the above are useful, formal policies and
formal analysis remains difficult to use, as the user must have sufficient technical
sophistication to: (1) intuit the criteria important to them, (2) formalize the
above in the query language of Zelkova, and (3) interpret the results returned
by the tool. Ultimately, to answer “is this policy correct?”, the tool must help
the user understand what “correct” means in their particular context.

2.1 Approach

The core contribution of this work is to change the question from “is this policy
correct?” to “who has access?”. The response to the former is a Boolean while
the response to the latter is a set of findings. There are several key requirements
that findings must meet to be useful in the context of analyzing security policies
and answering the question “who has access?”.
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Sound. Users need confidence that findings summarize a policy. In particu-
lar, we must ensure that every access allowed by the policy is represented by
some finding. This over-approximation crucially enables compositional reason-
ing about the policy: if a user deems that each finding is safe, then she may rest
assured that the entire policy is safe.
Precise. Users require that findings be specific. A finding of “everybody has
access” is a sound and over-approximate summary of every policy, but is only
useful if the policy allows everyone access. Instead, we want findings that adhere
closely to the accesses allowed by the policy, and do not report false-alarms that
say certain identities have access when that is not, in fact, the case.
Compact. Users require that the set of findings be small. For example, we could
simply enumerate all the different kinds of requests that have access, but such a
list would typically be far too large to manually inspect. Instead, we require that
the findings be a compact representation of who has access, while still ensuring
soundness and precision.
Example. For example, the policy in Fig. 1 can be summarized through a set
of three findings, that say that access is granted to a request iff:

– Its SrcVpc is vpc-a, or,
– Its OrgId is o-2, or,
– Its SrcVpc is vpc-b and its OrgId is o-1.

The findings are sound as no other requests are granted access. The findings
are precise as in each case, there are requests matching the conditions that are
granted access.1 Finally, the findings compactly summarize the policy in three
positive statements declaring who has access.

2.2 Solution: Computing Findings via Stratified Abstraction

Next, we describe an informal overview of our algorithm for computing the
findings, by building it up in three stages.
1: Concrete Enumeration. One approach to synthesize findings would be to
(1) enumerate possible requests, (2) query Zelkova to filter out the requests
that do not have access, and (3) return the remainder as findings. Such an
approach is guaranteed to be both sound and precise. However, real-world poli-
cies comprise many fields, each of which have many possible values. For example,
there are 1012 (currently) possible AWS account numbers and 2128 possible IPv6
addresses. Enumerating all possible requests is computationally intractable, and
even if it were, the resulting set of findings is far too large and hence useless.
2: Predicate Abstraction. We tackle the problem of summarizing the super-
astronomical request-space by using predicate abstraction. Specifically, we make
a syntactic pass over the policy to extract the set of constants that are used to
constrain access, and we use those constants to generate a family of predicates
1 The finding “OrgId is o-2” also includes some requests that are not allowed, e.g.

when SrcVpc is vpc-b.
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whose conjunctions compactly describe partitions of the space of all requests.
For example, from the policy in Fig. 1 we would extract the following predicates

pa
.= SrcVpc = vpc-a, pb

.= SrcVpc = vpc-b, p�
.= SrcVpc = �,

q1
.= OrgId = o-1, q2

.= OrgId = o-2, q�
.= OrgId = �.

The first row has three predicates describing the possible value of the SrcVpc of
the request: that it equals vpc-a or vpc-b or some value other than vpc-a and
vpc-b. Similarly, the second row has three predicates describing the value of the
OrgId of the request: that it equals o-1 or o-2 or some value other than o-1 and
o-2.

We can compute findings by enumerating all the cubes generated by the above
predicates, and querying Zelkova to determine if the policy allows access to
the requests described by the cube. For example, the above predicates would
generate the cubes shown in Fig. 3. We omit trivially inconsistent cubes like
pa ∧ pb which correspond to the empty set of requests. Next to each cube, we
show the result of querying Zelkova to determine whether the policy allows
access to the requests described by the cube: ✓(resp. ✗) indicates requests are
allowed (resp. denied).

pa∧q1 pa∧q2 pa∧q�

pb∧q1 pb∧q2 pb∧q�

p�∧q1 p�∧q2 p�∧q�

Fig. 3. Cubes generated by the predicates pa, pb, p�, q1, q2, q� generated from the policy
in Fig. 1 and the result of querying Zelkova to check if the requests corresponding to
each cube are granted access by the policy.

Finally, we can translate each allowed cube into a finding, yielding five find-
ings. While this set of findings is sound and precise, it suffers in two ways.
First, real-world policies have many different fields, and hence, enumerating-
and-querying each cube can be quite slow. Second, the result is not compact.
The same information is more succinctly captured by the set of three findings
in Sect. 2.1 which, for example, collapses the three findings in the top row to a
single finding, “SrcVpc is vpc-a.”
3: Stratified Abstraction. The chief difficulty with enumerating all the cubes
greedily is that we end up eagerly splitting-cases on the values of fields when that
may not be required. For example, in Fig. 3, we split cases on the possible value
of OrgId even though it is irrelevant when SrcVpc is vpc-a. This observation
points the way to a new algorithm where we lazily generate the cubes as follows.
Our algorithm maintains a worklist of minimally refined cubes. At each step, we
(1) ask Zelkova if the cube allows an access that is not covered by any of its
refinements, (2) if so, we add it to the set of findings; and (3) if not, we refine the
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cube “point-wise” along the values of each field individually and add the results
to the worklist. The above process is illustrated in Fig. 2.

– Level 1. The worklist is initialized with �∧� which represents the cube where
we don’t care about the value of either SrcVpc or OrgId, i.e. which represents
every possible request. Zelkova determines that every access allowed by this
cube and by the policy are covered by one of the refinements of this cube (the
second level of the tree). Thus this � ∧ � finding is not essential, and we can
find more precise findings. We indicate this by the red shade and the ✗. Next,
we refine the above cube point-wise, by considering the two sub-cubes pa ∧�
and pb ∧ � which respectively represent the requests where SrcVpc is either
vpc-a or vpc-b (and OrgId could be any value), and, the two sub-cubes �∧q1

and � ∧ q2 which respectively represent the requests where OrgId is either
o-1 or o-2 (and SrcVpc could be any value). These refined cubes are added
to the worklist and considered in turn.

– Level 2. Zelkova determines that there are requests allowed by pa ∧ � and
� ∧ q2 which are not covered by any of their refinements, hence those are
shaded green and have a ✓. However, Zelkova rejects pb ∧ � and � ∧ q1

as anything allowed by them is allowed by one of their refinements. Now we
further refine the rejected cubes, but can omit considering the cubes pa ∧ q1,
pa ∧ q2 and pb ∧ q2 in the unshaded boxes, as each of those is covered or
subsumed by one of the two accepted cubes.

– Level 3. Hence, we issue one last Zelkova query for pb ∧ q1 which indeed
allows a request which is not covered by any of its refinements (as it has
none). Finally, we gather the set of accepted cubes, i.e. those in the green
shaded boxes, and translate those to the findings described in Sect. 2.1.

3 Algorithm

Next, we formalize our algorithm for computing policy summaries and show how
it yields findings that are sound and precise. In Sect. 4 we demonstrate how our
algorithm yields compact results for real-world policies..

3.1 Policies and Findings

Requests. Let K = {k1, . . . , kn} be a set of keys. Let Vk = {v1, . . .} be a
(possibly infinite) set of values for the key k. A request r a mapping from keys k
to values in Vk. For example, the request r1 maps the keys Principal, SrcIP, and
OrgID as:

r1 = {Principal �→ 123 : user/A, SrcIP �→ 192.0.2.3, OrgID �→ o-1}

Policies. A policy is a predicate on requests p : r → Bool . The denotation of a
policy p is the set of requests it allows:

γ(p) .= {r | p(r) = True}
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Predicates. A predicate is a map φ : Vk → Bool . The denotation of a predicate
is the set of values that satisfy the predicate:

γ(φ) .= {v | φ(v) = True}

We define a partial order on predicates, φ1 � φ2 iff γ(φ1) ⊆ γ(φ2). For example:

φ123(v) .= “v is a principal in account 123”
φua(v) .= “v is user-a in account 123”
φub(v) .= “v is user-b in account 123”

Here we have φua � φ123 and φub � φ123 because users are a type of principal.
The set of predicates must always contain � and must have the following prop-
erty: for all φ1, φ2 either φ1 � φ2, φ2 � φ1, or γ(φ1) ∩ γ(φ2) = ∅. This ensures
the set of predicates for a given key can be tree-ordered.
Findings. A finding σ is a map from keys K to predicates Φ. The denotation
of a finding σ is the set of requests where each key k is mapped to a value v in
the denotation of σ(k):

γ(σ) .= {r | ∀k.r(k) ∈ γ(σ(k))}

We represent a finite set of findings as Σ = {σ1, . . . , σn}. The denotation of a
set of findings is the union of the denotations the findings:

γ({σ1, . . . , σn}) .= γ(σ1) ∪ · · · ∪ γ(σn)

3.2 Properties

Next, we formalize the key desirable properties of findings, i.e. that they be
sound, precise, and compact, as coverage, irreducibility, and minimality respec-
tively.
Coverage. A set of findings Σ covers a policy p if γ(p) ⊆ γ(Σ). For example,
the set Σ1 containing the two findings

Σ1
.= {[SrcVpc �→ pa,OrgID �→ �], [SrcVpc �→ �,OrgID �→ q2]}

corresponding to the green boxes on level 2 of Fig. 2, does not cover the policy
from Fig. 1, as it excludes the request whose SrcVpc is vpc-b and OrgID is o-1.
However, Σ2 below does cover the policy as it includes all requests that are
granted access.

Σ2
.= Σ1 ∪ {[SrcVpc �→ pb,OrgID �→ q1]}

Reducibility. A finding σ refines another finding σ′, written σ  σ′ if for each
key k we have σ(k) � σ′(k). A finding σ refines a set of findings Σ, written
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σ  Σ if σ refines some σ′ ∈ Σ. Note that σ  σ′ implies γ(σ) ⊆ γ(σ′). We say
that a finding σ is irreducible for a policy p if

∃r ∈ γ(p) ∩ γ(σ). ∀σ′ � σ. r �∈ γ(σ′).

That is, σ is irreducible if it contains some request that is excluded by all its
proper refinements. For example, the finding [SrcVpc �→ pa,OrgID �→ �] is irre-
ducible as it contains a request [SrcVpc �→ vpc-a,OrgID �→ o-3] that is excluded
by its refinements [SrcVpc �→ pa,OrgID �→ q1] and [SrcVpc �→ pa,OrgID �→ q2].
Note that irreducibility is inherently tied to the available predicates, Φ.
Minimality. A set of findings Σ is minimal if the denotation of each Σ′ ⊂ Σ
is strictly contained in the denotation of Σ. For example, the set

{[SrcVpc �→ pa,OrgID �→ �], [SrcVpc �→ pa,OrgID �→ q1]}
is not minimal as the subset containing just the first finding denotes the same
set of requests, but, the set containing either finding individually is minimal.

3.3 Algorithm

Given a policy p and a finite set of partially ordered predicates Φ, our goal is to
produce a minimal covering of p comprising only irreducible findings.
Access Oracle. Our algorithm is built using an access oracle that takes as
input a policy p and a finding σ and returns Some iff some request described by
σ is allowed by p, and None otherwise.

CanAccess(p, σ) =

{
Some if γ(σ) ∩ γ(p) �= ∅
None if γ(σ) ∩ γ(p) = ∅

def AccessSummary(p:P ) -> [Σ]:

σ� = λk→�
wkl = queue ([σ�])

res = []

while wkl �=∅:
σ = wkl.deque ()
if CanAccess(p,Reduce(σ)) == Some:

res += [σ]
else:

wkl += [σ′ |σ′ ∈Refine(σ), σ′ ��res]
return res

Fig. 4. Algorithm to compute a minimal set of irreducible findings that cover policy p.

Dominators. We define the immediately dominates set of φ ∈ Φ as the set of
elements strictly smaller than φ but unrelated to each other:

idom(φ) .= {φ′ | φ′ ≺ φ and ∀φ′′.¬(φ′ ≺ φ′′ ≺ φ)}
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Reducing a Finding. The procedure ReducePred (resp. Reduce) takes as input
a predicate φ (resp. finding σ) and strengthens it to exclude all the requests that
are covered by the refinements of φ (resp. σ):

def ReducePred(φ:Φ) -> Φ:
φ1, . . . , φn = idom(φ)
return φ ∧ ¬φ1 ∧ · · · ∧ ¬φn

def Reduce(σ:Σ) -> Σ:

σ′ = λk → ReducePred(σ(k))
return σ′

Intuitively, Reduce allows us to determine if a finding is irreducible.

Lemma 1. σ is irreducible iff γ(Reduce(σ)) ∩ γ(p) �= ∅.

Refining a Finding. The procedure Refine takes as input a finding σ and
returns the set of findings obtainable by individually refining one value of σ.

def Refine(σ:Σ) -> [Σ]:

return [σ[k �→ φ′] | k ∈ K, φ′ ∈ idom(σ(k))]
If a finding σ is reducible, we will use Refine to split it into more precise findings.

Lemma 2. Let σ be reducible for p. Then γ(σ) ∩ γ(p) = γ(Refine(σ)) ∩ γ(p).

Summarizing Access. The procedure AccessSummary (Fig. 4) takes as input a
policy p and returns a minimal set of irreducible findings res that covers p. The
procedure maintains a queue wkl comprising a frontier of findings that are to
be explored. The queue is initialized with the trivial finding σ� that maps each
key to �. It then iteratively picks an element from the queue, checks if it is an
irreducible finding, and if so, adds it to the result set res. If not, it computes the
finding’s refinements and adds those to wkl . The process repeats till the queue
is empty. The algorithm maintains three loop invariants: (1) wkl ∪ res covers
p; (2) Each finding in res is irreducible; (3) res is minimal. Consequently, the
algorithm terminates with a minimal set of irreducible findings that covers p.
Note, the worklist is a queue so that if σ1 � σ2 the algorithm will consider σ2

before σ1.

Theorem 1. Let Σ = AccessSummary(p). Then (1) Σ covers p, (2) each σ ∈ Σ
is irreducible, and (3) Σ is minimal.

4 Implementation and Evaluation

The algorithm AccessSummary is implemented in the IAM Access Analyzer fea-
ture launched on Dec 2, 2019 [10]. The Zelkova tool [2] is used as the access
oracle for the algorithm. Access Analyzer monitors the relevant resource policies
in an account and re-runs the algorithm on any changes. Findings are presented
to the user through a web console and through APIs. Users can archive findings
that represent intended access to the resource. For unintended findings, Access
Analyzer links to the relevant policy that users can edit to remove that access.
Access Analyzer will automatically run on the changed policy and any findings
that are no longer relevant will be set to a resolved state. By monitoring any
existing or new active findings, users can ensure their polices grant only the
intended access.
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Evaluation Metrics. We evaluate our algorithm along two dimensions: (1)
“how efficient is the algorithm at generating findings?” and (2) “how effective
are the generated findings at simplifying the complexity of a policy?”. As our
algorithm solves a new problem, we do not have an external basis for comparison.
Instead, we compare the algorithm against the state space it operates over. To
this end, for each policy, we define the following measures:

– size is the size of the set of all possible findings for the policy.
– findings is the number of findings produced by the algorithm.
– queries is the number of SMT queries made by the algorithm.
– runtime is the total runtime of the algorithm.

Note that findings ≤ queries ≤ size, as each query generates at most one
finding and we query each possible finding at most once.
Benchmarks. We randomly selected 1,387 policies from a corpus of in-use poli-
cies. As we are interested primarily in difficult policies, we filtered out all poli-
cies that had size less than 10. That left 165 policies. Each policy was evalu-
ated on a 2.5 GHz Intel Core i7 with 16 GB of RAM. The runtime per finding
(runtime/findings) was less than 430ms for all policies except one outlier at
2,267 ms. The 165 policies ranged in size from 56 to 810 lines of pretty-printed
JSON with a median size of 91 lines.

Fig. 5. Actual findings vs. search space Fig. 6. Actual queries vs. search space

Results. Figures 5 and 6 show the number of findings and queries, respectively,
compared to the overall search space. Both graphs are sorted to be monotonic,
i.e. the x-axes are different. Figure 5 shows to what degree the findings sim-
plify the policy, with smaller numbers being better. This measure will always be
between 0 and 1 since 0 ≤ findings ≤ size. We see that 85% of policies achieve
a ratio of 0.5 or better, and 64% achieve a ratio of 0.2 or better. Figure 6 shows
how efficient the algorithm is in exploring its state space, with smaller numbers
being better. This measure is between 0 and 1 as 0 ≤ queries ≤ size. The
algorithm explores the entire search space for only 15% of the policies, with a
median ratio of 0.22.
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5 Related Work

The majority of tools available for access policy analysis are based on log analy-
sis or syntactic pattern matching, which are both imprecise (i.e. fail to account
for the complex logic in AWS policies) and unsound (i.e. fail to check for all
requests) and hence, can take months to discover that resources are susceptible
to potentially unintended access. Most formal methods based work has focused
on securing individual pieces of cloud infrastructure via low-level proofs of soft-
ware correctness e.g. Ironclad [6]. Cloud Contracts [4] are requirements over net-
work access control lists and routing tables. Cloud Contracts are verified using
the SecGuru tool [7] that compares network connectivity policies using the SMT
theory of bit vectors. In contrast, our work answers a larger question about the
entire enterprise-level security posture using a series of Zelkova queries [2].
The Fireman system [11] shows how to use Binary Decision Diagrams to ana-
lyze access control lists (ACL) in firewall configurations. The ACL configuration
language is more restricted than IAM’s and the tool is limited to a fixed set
of queries about which accesses (packets) are allowed. Most closely related to
our work is the Margrave system [9] which encodes firewall policies as propo-
sitional logic formulas, and then use SAT solvers to answer queries about the
policies. Margrave introduces the notion of scenario finding, and shows how to
produce an exhaustive set of scenarios that witness the queried behavior. The
IAM policy language is significantly richer, and hence, enumerating scenarios
is computationally intractable, which led us to the develop stratified abstrac-
tion as a means of summarizing policy semantics, thereby providing analysts
comprehensive visibility into the accessibility of resources, helping detect mis-
configurations, and ensuring that updates indeed fix the potential for unintended
accesses.
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Abstract. With the advent of smart contracts that execute on the
blockchain ecosystem, a new mode of reasoning is required for developers
that must pay meticulous attention to the gas spent by their smart con-
tracts, as well as for optimization tools that must be capable of effectively
reducing the gas required by the smart contracts. Super-optimization is a
technique which attempts to find the best translation of a block of code
by trying all possible sequences of instructions that produce the same
result. This paper presents a novel approach for super-optimization of
smart contracts based on Max-SMT which is split into two main phases:
(i) the extraction of a stack functional specification from the basic blocks
of the smart contract, which is simplified using rules that capture the
semantics of the arithmetic, bit-wise, relational operations, etc. (ii) the
synthesis of optimized blocks which, by means of an efficient Max-SMT
encoding, finds the bytecode blocks with minimal gas cost whose stack
functional specification is equal (modulo commutativity) to the extracted
one. Our experimental results are very promising: we are able to optimize
55.41 % of the blocks, and prove that 34.28 % were already optimal, for
more than 61 000 blocks from the most called 2500 Ethereum contracts.

1 Introduction

Open-source software that leverages on the blockchain ecosystem is known as
smart contract. Smart contracts are not necessarily restricted to the classical con-
cept of contracts, but can be any kind of program that executes on a blockchain
or distributed ledger. A smart contract can be regarded as a collection of secured
stored functions whose execution and effects (e.g., the transfer of some value
between parties) cannot be manipulated. This is because all records of the trans-
actions must be stored on a public and decentralized blockchain that avoids the
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pitfalls of centralization. While Bitcoin [21] paved the way for cryptocurrencies
and for the popularity of the blockchain technology, Ethereum [25] showed the
full potential of blockchains by allowing developers to run their decentralized
applications on top of their platform. The Ethereum Virtual Machine (EVM) is
capable of running smart contracts coded by Ethereum developers that have the
potential of replacing all sorts of legal, financial and social agreements, e.g., can
be used to fulfill employment contracts, execute bets and wagers, etc.

On the Ethereum blockchain platform, as well as in other emerging
blockchains equipped with a smart contract programming language (e.g., Tezos
[1], Zilliqa [24], Facebook’s Libra [23]), gas refers to the fee, or pricing value,
required to successfully conduct a transaction or to execute a smart contract.
Gas is priced in a sub-unit of the cryptocurrency—in Ethereum in gwei, a sub-
unit of its Ether cryptocurrency. The EVM specification [25] provides the gas
model, i.e., a precise definition of the gas consumption for each EVM bytecode
instruction. The EVM is a simple stack-based architecture: computation on the
EVM is done using a stack-based bytecode language; the word size of the machine
is 256-bits (32-bytes), and this is also the size of a stack item. The proposer of
a transaction allots an amount of gas (known as gas limit) to carry out the exe-
cution. If the transaction exceeds the allotted gas limit, an out-of-gas exception
is raised, interrupting the current execution. The rationale of gas metering is
three-fold: first, a gas-metered execution puts a cap on the number of operations
that a transaction can execute and prevents attacks based on non-terminating
executions; second, paying for gas at the moment of creating the transaction
does not allow the proposer to waste other parties’ (aka miners) computational
resources; third, gas fees discourage users to overuse replicated storage, which is
an expensive and valuable resource in a blockchain-based consensus system.

Optimization of smart contracts has thus a clear optimization target: gas
usage, as both computational and storage costs are accounted within the gas
cost of each of the EVM instructions. Indeed, reducing gas costs of smart con-
tracts is a problem of utmost relevance in the blockchain ecosystem, as there
are normally between half a million and a million transactions a day. The cost
of a transaction in Ethereum ranges from cents to few dollars, except in certain
peak periods that has been ten or a hundred times more. In order to provide an
idea of the impact of gas saving techniques, we have estimated that the money
spent in transactions (excluding the intrinsic gas cost) from 2017 to 2019 is
around 157 Million dollars1. Thus, optimizing programs in an energy-saving way
is essential in general, but it is even more so in the blockchain ecosystem. The
Solidity2 documentation [13], and posterior documents (e.g., [9,19]), identify gas-
costly patterns and propose replacements with gas-efficient ones. Adopting these
guidelines requires a deep understanding of EVM instructions and the gas con-
sumption for the different operations. Compilers for Solidity also try to optimize
the bytecode for minimizing its gas consumption (e.g., the flag optimize of the

1 The data is taken from [3] using the gas spent by transactions and the average gwei
and Ether exchange rate per day.

2 It is the most popular programming language for writing Ethereum smart contracts.
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solc compiler optimizes storage of large constants and the dispatch routine,
with the goal of saving gas).

Even when the guidelines are followed and the optimize flag is used, the com-
piled EVM code is not always as efficient as desired. Super-optimization [17] is
a technique proposed over 30 years ago which attempts to find the best transla-
tion of a block of code using exhaustive search to try all possible sequences of
instructions that produce the same result. As an exhaustive search problem, it
is computationally extremely demanding. The work in [15] proposed the idea of
“unbounded” super-optimization that consists in shifting the search for the tar-
get program into the solver. Recently, unbounded super-optimization has been
applied to Ethereum bytecode [20] for basic block optimization (i.e., optimiza-
tions are made inside a basic block formed by a sequence of instructions without
any JUMP operation in the middle). The experimental results in [20] confirm the
extreme computational demands of the technique (e.g., the tool times out in 92%
of the blocks used in their evaluation). This is a severe limitation for the use of
the technique, and the problem of finding the optimal code for an EVM block
still remains very challenging. The complexity stems mainly from three sources:
First, the problem is expressed in the theory of bit-vector arithmetic with bit-
width size of 256, which is a challenging width size for most SMT solvers. Second,
expressing the problem involves an exists-forall quantification, since we want to
find an assignment of instructions that works for all values in the initial stack.
Third, since we look for the gas-optimal code, the problem is not a satisfaction
problem but rather an optimization problem.

Contributions. This paper proposes a novel method for gas optimization of
smart contracts which is based on synthesizing optimized EVM blocks using
Max-SMT. The main novel features that distinguish our work from previous
approaches, that attack the same or a similar problem [15,20], are:

1. Stack functional specification. Our method takes as input an EVM bytecode
and first obtains from it a stack functional specification (SFS) of the input
and output operational stacks for each of the blocks of the control-flow graph
(CFG) for the bytecode by using symbolic execution. The SFS determines
thus the target stack that the block has to compute and is simplified using a
set of rules that capture a great part of the semantics of the arithmetic, bit-
wise, relational, etc., EVM operations which are relevant for gas optimization.

2. Synthesis problem using SMT. We approach optimization as a synthesis prob-
lem in which an SMT solver is used to synthesize optimal EVM bytecode
which, for the input stack given in the functional specification, produces
the target stack determined by the specification. We present a very efficient
encoding that, in contrast to the previous attempts, uses only existential
quantification in a very simple fragment of integer arithmetic. According to
our evaluation, its simplicity greatly improves the performance of the SMT
solvers while accuracy is kept as we cover the main possible optimizations.
Importantly, only the semantics of the stack operations (PUSH, DUP, SWAP, etc.)
is encoded, while all other operations are treated as uninterpreted functions.
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3. Use of Max-SMT. We encode the optimization problem using Max-SMT, by
adding soft constraints that encode the gas cost of the selected instructions,
by adding the needed weights. This allows us to take advantage of the features
given by recent Max-SMT optimizers that can improve the search.

4. Experiments. We report on syrup, an implementation of our approach, and
evaluate it on (i) the same data set used for evaluating the tool ebso from
[20] and, (ii) on 128 of the most called contracts on the Ethereum blockchain.
Our results are very promising: while ebso timed out in 92.12 % of the blocks
in (i), we only time out in 8.64 % and obtain gains that are two orders of
magnitude larger than ebso. These results show that we have found the right
balance between what is optimized by means of symbolic execution and sym-
bolic simplification using rules and what is encoded as a Max-SMT problem.
Moreover, for set (ii), we obtain gas savings of 0.59% of the total gas. Assum-
ing that these savings are uniformly distributed, it would amount nearly to 1
Million dollars from 2017 to 2019.

While the purpose of superoptimization is to optimize at the level of basic
blocks (intra-block), our approach to synthesize EVM code from a given SFS can
be applied also in a richer optimization framework that enables the optimization
of multiple basic blocks (inter-block). For this purpose, the framework should be
extended to include branching instructions (which in the SMT encoding can be
handled with uninterpreted functions as well) and, besides, additional compo-
nents would be required, e.g., in the context of EVM we would need to resolve
the jumping addresses, and to ensure that there are no additional incoming
jumps to intermediate blocks that are being merged by the optimizer. Inter-
block optimization is especially interesting in the context of smart contracts to
gain storage-related gas, since the optimizations that can be achieved locally for
the storage are quite limited as explained in Sect. 6.

1 pragma solidity ˆ0.4.25;
2 contract addExp{
3 function ae(uint x3, uint x2, uint x1,
4 uint x0) returns (uint){
5 uint x = x3+x2;
6 uint y = x1+x0;
7 return x∗∗y; //EXP operation
8 }
9 }

1 JUMPDEST
2 PUSH1 0x00
3 DUP1
4 PUSH1 0x00
5 DUP6
6 DUP8
7 ADD
8 SWAP2
9 POP

10 DUP4
11 DUP6
12 ADD
13 SWAP1
14 POP
15 DUP1
16 DUP3
17 EXP
18 SWAP3

19 POP
20 POP
21 POP
22 SWAP5
23 SWAP4
24 POP
25 POP
26 POP
27 POP
28 JUMP

Fig. 1. Solidity code (left). Under-optimized EVM bytecode using solc (right).

2 Overview: Optimal Bytecode as a Synthesis Problem

This section provides a general overview of our method for synthesizing super-
optimized smart contracts from given EVM bytecode. We use the motivating
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example in Fig. 1 whose Solidity source code contract appears to the left and
the EVM bytecode generated by the solc compiler appears to the right. Solid-
ity is an object-oriented, high-level language that is statically typed, supports
inheritance, libraries and user-defined types, among other features. It is designed
to target the EVM. As it can be observed in the example the EVM bytecodes
that operate on the stack (i.e., DUP, SWAP, ADD, AND, etc.) are standard operators.
In the following, we refer as stack operations only to DUP, PUSH, SWAP and POP,
which modify the stack without performing computations. The EVM has also
bytecodes to access persistent data stored in the contract’s storage (SLOAD and
SSTORE), to access data stored in the local memory (MLOAD and MSTORE), bytecodes
that jump to a different code address location (JUMP, JUMPI), bytecodes for calling
a function on a different contract (CALL, DELEGATECALL, CALLCODE and CALLSTATIC),
to write a log (LOG), to access information about the blockchain and transaction
(GAS, CALLER, BLOCKHASH, etc.) and copy information related to an external call
(CODECOPY, RETURNDATACOPY, etc.). However, as we explain in the coming sections,
our approach is based on optimizing the operations that modify the stack as
we have a great coverage of all potential bytecode optimizations while we still
remain scalable, i.e., we do not optimize those bytecodes whose effects are not
reflected in the stack, e.g., MSTORE, SSTORE, LOG1 or EXTCODECOPY. The gas con-
sumed by this bytecode (excluding the JUMPDEST and JUMP opcodes that cannot
be optimized and are thus not accounted in the examples) is 76. As specified
in [25], the operations from the so-called base family (like POP) have cost 2, the
operators from the verylow family (like PUSH, SWAP, ADD) cost 3, operators from
the low family (like MUL, DIV) cost 5, and so on.

2.1 Extracting Stack Functional Specifications from EVM Bytecode

Our method takes as input the set of blocks that make up the control flow
graph (CFG) of the bytecode. The first step is, for each of the blocks, to
extract from it a stack functional specification (SFS) from which the super-
optimized bytecode will be synthesized. The SFS is a functional description of
the initial stack when entering the block and the final stack after executing
the block, which instead of using bytecode instructions to determine how the
final stack is computed, is defined by means of symbolic first-order terms over
the initial stack elements. The SFS for our running example is shown in Fig. 2.

x0

x1

x2

x3

x4

=⇒ x4

exp(x2 + x3, x0 + x1)

Fig. 2. Initial and final stack

As can be observed, it consists of an
initial stack shown at the left which
simply determines what the size of the
input stack to the block is and assigns
a symbolic variable as identifier to
each stack position (e.g., the initial
stack contains five elements named
x0, . . . , x4); while the output stack
contains two elements: x4 at the top, and the symbolic term exp(x2+x3, x0+x1)
at the bottom. The output stack is obtained by symbolic execution of the byte-
codes that operate on the stack, as it will be formalized in Sect. 3. The resulting
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expressions are then optimized by means of simplification rules based on the
semantics of the non-stack operations (e.g., the neutral elements, double nega-
tions or idempotent operations are removed, operations on constants performed).
This captures a relevant part of the semantics of the non-stack operators.

2.2 The Synthesis Problem

This section hints on how the generated bytecode will be, and on that the syn-
thesis of optimal bytecode from the specification is challenging.

Example 1. From the SFS in Fig. 2, we know that we have to compute x0 + x1

and x2 + x3, but we have to decide which summation we compute first. On the
left, we have the best bytecode (together with the stack evolution) when we first
compute x2 + x3 and on the right when we first compute x0 + x1. Computing
first one subexpression or the other has an impact on the consumed gas, since
the bytecode on the left has a gas cost of 31 and the bytecode on the right has
a gas cost of 25, which is indeed the optimum.

SWAP3 [x3, x1, x2, x0, x4]
SWAP1 [x1, x3, x2, x0, x4]
SWAP2 [x2, x3, x1, x0, x4]
ADD [x2 + x3, x1, x0, x4]
SWAP2 [x0, x1, x2 + x3, x4]
ADD [x0 + x1, x2 + x3, x4]
EXP [(x0 + x1) ∗∗ (x2 + x3), x4]
SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

ADD [x0 + x1, x2, x3, x4]
SWAP2 [x3, x2, x0 + x1, x4]

ADD [x3 + x2, x0 + x1, x4]

SWAP1 [x0 + x1, x3 + x2, x4]

EXP [(x0 + x1) ∗∗ (x2 + x3), x4]

SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

Both codes are far better than the original generated bytecode whose gas cost
was 76. Besides, note that the cost of the two additions and the exponentiation
is in total 16 (that necessarily has to remain), which means that the optimal
code has used only 9 units of gas for the rest while the original code needed 60
units.

The next example shows that the optimal code is obtained when the subterms
of the exponential are computed in the other order (compared to the previous
example). Hence, an exhaustive search of all possibilities (with its associated
computational demands) must be carried out to find the optimum.

Example 2. Let us now consider a slight variation of the previous example in
which the functional specification is [x0, x1, x2, x3] =⇒ [x3, (x0+x1) ∗∗ (x0+x2)].
Now, on the left-hand side we have the best bytecode (together with the stack
evolution) when we compute first x0 + x2 and on the right-hand side we have
the best bytecode when we compute first x0 + x1.
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DUP1 [x0, x0, x1, x2, x3]
SWAP3 [x2, x0, x1, x0, x3]
ADD [x2 + x0, x1, x0, x3]
SWAP2 [x0, x1, x2 + x0, x3]
ADD [x0 + x1, x2 + x0, x3]
EXP [(x0 + x1) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x0 + x1) ∗∗ (x2 + x0)]

DUP1 [x0, x0, x1, x2, x3]
SWAP2 [x1, x0, x0, x2, x3]
ADD [x1 + x0, x0, x2, x3]
SWAP2 [x2, x0, x1 + x0, x3]
ADD [x2 + x0, x1 + x0, x3]
SWAP1 [x1 + x0, x2 + x0, x3]
EXP [(x1 + x0) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x1 + x0) ∗∗ (x2 + x0)]

In this case the bytecode on the left has a gas cost of 28, which is indeed the
optimum, and the bytecode on the right has a gas cost of 31. The original
bytecode generated by solc has gas cost 74, so again the improvement is huge.

Both examples show that, in principle, even if we have the functional specification
that guides the search, we have to exhaustively try all possible ways to obtain
it, if we want to ensure that we have found the optimal bytecode.

2.3 Characteristics of Our SMT Encoding of the Synthesis Problem

Our approach to super-optimize blocks is based on restricting the problem in
such a way that we have both a great coverage of most EVM code optimizations
and we can propose an encoding in a simple theory where an SMT solver can
perform efficiently. To this end, the key point is to handle all non-stack oper-
ations, like ADD, SUB, AND, OR, LT, as uninterpreted bytecodes. This allows us to
simplify the encoding in two directions. First, by considering them as uninter-
preted bytecodes we can avoid reasoning on the theory of bit-vectors with width
256. Second, and even more important, this allows us to express the problem in
the existentially quantified fragment, avoiding the exists/forall alternation:

1. We start from the SFS by introducing fresh variables abstracting out all terms
built with uninterpreted functions, in such a way that every fresh variable
represents a term f(a1, . . . , an), where every ai is either a (256 bit) numeric
value, a fresh variable, or an initial stack variable. We also have sharing by
having a single variable for every term, e.g., (x0+1) ∗∗ (x0+1), where x0 is the
top of the initial stack, is abstracted into y0 =EXPU(y1, y1) and y1 =ADDU(x0, 1),
where y0 and y1 are fresh variables and EXPU and ADDU are the uninterpreted
bytecodes for exponentiation and addition, respectively.

2. Now, in order to avoid universal quantification, we take advantage of the fact
that only values from 0 to 2256 − 1 can be introduced in the stack by a PUSH

opcode and hence only this range can appear in the SFS. Therefore, if we
assign values from 2256 on to fresh variables and initial stack variables we
avoid the confusion between themselves and all other values in the problem.

After these two key observations have been made, we fix the maximal number n
of opcodes and highest size h of the stack that is allowed in a solution. This can
be bound by analyzing the original code generated by the compiler. From this,
we roughly encode the problem using variables o0, . . . , on−1 to express the oper-
ations of our code (together with variables p0, . . . , pn−1 that encode the value
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0 ≤ pi ≤ 2256 − 1 added to the stack when oi is a PUSH), variables si
0, . . . , s

i
h−1 to

encode the contents of the stack before executing the operation oi, where si
0 is the

top of the stack (we also use some Boolean variables to express the active part
of the stack). Using this, we can encode the behavior of all stack operations:
POP, PUSH, DUP, SWAP for all its versions (like DUP1, DUP2, . . . ). For the uninter-
preted bytecodes fu, we basically add for every abstraction y = fu(a1, . . . , am)
assertions stating that if we have a1, . . . , am at the top of the stack at step i
(i.e., si

0, . . . , s
i
m−1) and we take the operation f in oi then in step i + 1 we have

y, si
m, . . . on the top of the stack. Again, as all fresh variables and initial stack

variables have been replaced by values form 2256 on, there is no confusion with
all other values.

As a final remark, we have also encoded the commutativity property of unin-
terpreted bytecodes representing the ADD, MUL, AND, OR, etc. This can be easily
made by considering that the arguments can occur at the top of the stack in
the two possible orders. Other properties like associativity are more difficult to
encode and are left for future developments.

2.4 Optimal Synthesis Using Max-SMT

The last key element is how we encode the optimization problem of finding the
bytecode with minimal gas cost. First, let us describe which notion of optimality
we are considering. Our problem is defined as, given an SFS in which all occur-
ring bytecodes there are considered uninterpreted and maybe commutative, we
have to provide the bytecode with minimal gas cost whose SFS is equal modulo
commutativity to the given one. From the encoding we have described in the
previous section, we know that every solution to the SMT problem will have
the same SFS as the given one. Hence, we only need to find the solution with
minimal gas cost. In [20], this was made by implementing a loop on top of the
SMT solving process which was calling the solver asking every time for a better
solution in terms of gas, which was also encoded in the SMT problem. Such
approach cannot be easily implemented in an incremental way using the SMT
solver as a black box without the corresponding performance penalty.

Alternatively, we propose to encode the problem as a Max-SMT problem and
hence, we can easily use any Max-SMT optimizer, like Z3 [12], Barcelogic [7] or
(Opti)MathSAT [11], as a black box with an important gain in efficiency. The
Max-SMT encoding adds to the previously defined SMT encoding some soft
constraints, indicating which is the cost associated to choosing every family of
operators. As mentioned, choosing an operator from the base family has cost 2,
from the verylow 3, and so on. Then, the optimal solution is the solution that
minimizes this cost, which can be obtained with a Max-SMT optimizer.
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29 SSTORE
30 SWAP1
31 DUP5
32 SWAP1
33 MLOAD
34 SWAP1

35 DUP2
36 MSTORE
37 PUSH1 0x20
38 ADD
39 PUSH1 0x40
40 MLOAD

41 DUP1
42 SWAP2
43 SUB
44 SWAP1
45 LOG2
46 POP

47 PUSH1 0x01
48 SWAP2
49 SWAP1
50 POP
51 JUMP

Block 1 Block 2 Block 3

30 SWAP1
31 DUP5
32 SWAP1
33 MLOAD
34 SWAP1
35 DUP2

37 PUSH1 0x20
38 ADD
39 PUSH1 0x40
40 MLOAD

41 DUP1
42 SWAP2
43 SUB
44 SWAP1

46 POP
47 PUSH1 0x01
48 SWAP2
49 SWAP1
50 POP

Fig. 3. CFG block of a real smart contract (top), and blocks generated to build the
functional description of the EVM bytecode (bottom)

3 Stack Functional Specification from EVM Bytecode

The starting point of our work is the CFG of the EVM bytecode to be optimized.
There are already a number of tools (e.g., EthIR [6], Madmax [14], Mythril [18]
or Rattle [4]) that are able to compute the CFG from the bytecode of a given
smart contract. Therefore, we do not need to formalize, neither to implement,
this initial CFG generation step. Since there are bytecode instructions that we
do not optimize, for each of the blocks of the provided CFG, we first perform
a further block-partitioning that splits a basic block into the sub-blocks that
will be optimized by our method as defined below. A basic block is defined as a
sequence of EVM instructions without any JUMP bytecode.

Definition 1 (block-partitioning). Given a basic block B = [b0, b1, ..., bn],
we define its block-partitioning as follows:

blocks(B) =

{
Bi ≡ bi, . . . , bj

∣∣∣∣∣
(∀k.i < k < j, bk �∈ Jump ∪ Terminal ∪ Split ∪
{JUMPDEST}) ∧ ( i=0 ∨ bi−1 ∈ Split ∪ {JUMPDEST} ) ∧
( j=n ∨ bj+1 ∈ Jump ∪ Split ∪ Terminal )

}

where

Jump = {JUMP, JUMPI}
Terminal = {RETURN, REVERT, STOP, INVALID}

Split = {SSTORE, MSTORE, LOGX, CALLDATACOPY, CODECOPY, EXTCODECOPY,
RETURNDATACOPY}

As it can be observed, the bytecodes whose effects are not reflected on the stack
induce the partitioning and are omitted in the fragmented sub-blocks. These
include the bytecodes that modify the memory, the storage or record a log, that
belong to the Split set. Figure 3 shows a CFG block at the top and the blocks
generated to build the functional description at the bottom. The original CFG
block contains the bytecodes SSTORE, MSTORE and LOG2. Thus, it is split into three
different blocks that do not contain these bytecodes.
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(1) τ(S, PUSHX A) = [A | S]
(2) τ(S, DUPX) = [S[0] | S]
(3) τ(S, SWAPX) = temp = S[0], S[0] = S[X], S[X] = temp
(4) τ(S, POP) = S.remove(0)
(5) τ(S, OP) = [OP(S[0], ..., S[δ − 1]) | S[δ : n] ]

Fig. 4. Symbolic execution of the instructions that operate on the stack

Once we have the partitioned blocks from the CFG, we aim at obtaining
a functional description of the output stack (i.e., the stack after executing the
sequence of bytecodes in the block) using symbolic execution for each of the
partitioned blocks. As the stack is empty before executing a transaction and the
number of elements that each EVM bytecode consumes and produces is known,
the size of the stack at the beginning of each block can be inferred statically. We
can thus assume that the initial stack size is given within the CFG. A symbolic
stack S is a list of size k that represents the state of the stack where the list
position 0 corresponds to the top of the stack and k − 1 is the index of the
bottom of the stack, such that S[i] is the symbolic value stored at the position i
of the stack. Initially, the input stack maps each index to a symbolic variable si.

The symbolic execution of each bytecode is defined using the transfer function
τ described in Fig. 4 which takes an input stack and a bytecode and returns
the output stack as follows: (1) the PUSHX bytecode stores at the top of the
stack the value A, (2) DUPX duplicates the element stored at position X−1 to
the top of the stack, (3) SWAPX exchanges the values stored at the top of the
stack with the one stored at position X, (4) POP deletes the value stored in the
top of the stack (using the list operation remove to delete the element at the
given position), (5) OP represents all other EVM bytecodes that operate with the
stack (arithmetic and bit-wise operations among others). In that case, τ creates
a symbolic expression that is a functor with the same name as the original
EVM bytecode and as arguments the symbolic expressions stored in the stack
elements that it consumes. Here, δ stands for the number of elements that the
EVM bytecode OP gets from the stack. Now, the SFS can be defined using the
function τ as follows.

Definition 2 (SFS). Given a block B with an initial size of the stack k, the
initial state of the stack S0 stores at each position i ∈ {0, ..., k − 1} a symbolic
variable si. Then, the transfer function τ is extended to the block B, denoted by
τ(B), as: [s0, . . . , sk−1] if B is empty; and τ(τ(B′), o) if B has o as last operation
and B′ is the resulting block without o. The SFS of B is S0 =⇒ S = τ(B).

Example 3. Consider the block formed by the EVM bytecode shown in Fig. 1,
starting with the bytecode at program point 2 (pp2 for short) and finishing with
the bytecode at pp27. Before executing the block symbolically, the initial stack
is S0 = [s0, s1, s2, s3, s4] and k = 5. After applying the transfer function τ , we
obtain the following results at the next selected program points:
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pp2 : τ(S, PUSH1 0X00) = [0, s0, s1, s2, s3, s4]
pp3 : τ(S, DUP1) = [0, 0, s0, s1, s2, s3, s4]
pp5 : τ(S, DUP6) = [s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp6 : τ(S, DUP8) = [s3, s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp7 : τ(S,ADD) = [ADD(s3, s2), 0, 0, 0, s0, s1, s2, s3, s4]
pp8 : τ(S, SWAP2) = [0, 0,ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp9 : τ(S, POP) = [0,ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp15 : τ(S, DUP1) = [ADD(s1, s0),ADD(s1, s0),ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp16 : τ(S, DUP3) = [ADD(s3, s2),ADD(s1, s0),ADD(s1, s0),ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp17 : τ(S, EXP) = [EXP(ADD(s3, s2),ADD(s1, s0)),ADD(s1, s0),ADD(s3, s2), s0, s1, s2, s3, s4]
pp27 : τ(S, POP) = [s4, EXP(ADD(s3, s2),ADD(s1, s0))]

Thus, altogether, the output stack of the SFS given by τ for the block in Fig. 1
is S = [s4, EXP(ADD(s3, s2), ADD(s1, s0))]. For example, we can see that τ updates
the stack inserting a 0 in the top of the stack at pp2. At pp8, it swaps the element
in the top of the stack (ADD(s3, s2)) with the element stored at position 2 (0). It
generates a symbolic expression to represent the addition at pp7 with the values
stored in the position of the stack that it consumes. At pp17 it generates a new
symbolic expression EXP(ADD(s3, s2), ADD(s1, s0)) to represent the exponentiation
of the two elements stored in the top of the stack. Note that in this case these
elements are also symbolic expressions of the two previous additions symbolically
executed before.

Finally, we capture optimizations based on the semantics of the arithmetic
and bit-wise operations, by applying simplification rules on the SFS of the block
before we proceed to generate the optimized code. This simplification besides
reducing the number of operations includes other notions of simplification as
well. The easiest examples are the application of simplification rules like with the
units of every operation, or with the idempotence of bit-wise Boolean operators.

4 Optimal Synthesis Using Max-SMT

This section describes our Max-SMT encoding. We start by preprocessing the
SFS into an abstract form that is convenient for the encoding in Sect. 4.1. Next,
Sect. 4.2 describes a key element of our encoding: the stack model. Sect. 4.3
presents the complete encoding of the problem and Sect. 4.4 how to obtain the
optimized EVM blocks from the model obtained by the SMT solver. Finally,
Sect. 4.5 describes the optimization problem. The SFS and the encoding gen-
erated for the example shown in Fig. 1 are available at https://github.com/
mariaschett/syrup-backend/tree/master/examples/cav2020.

4.1 Abstracting Uninterpreted Functions

Before we apply our encoding, we need to abstract all (sub)expressions occurring
in the SFS, by introducing new fresh variables sk, sk+1, . . . that start after the
last stack variable in the initial stack [s0, . . . , sk−1] (of size k). In this process
we have a mapping from fresh variables to shallow expressions of depth one,

https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
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i.e., built with a function symbol and variables or constants as arguments. Here
we introduce the minimal number of fresh variables that allow us to describe
the SFS using only shallow expressions. By minimal, we mean that we use the
same variable if some subterm occurs more than once (we also take into account
commutativity properties to avoid creating unnecessary fresh variables). Finally
if an uninterpreted function occurs more than once, we add a subscript from 0
on to distinguish them. As a result we have that the abstracted SFS is defined
by a stack S containing only stack variables, fresh variables or constants (in
{0, . . . , 2256 − 1}) and a map M from fresh variables to shallow terms formed
by an uninterpreted function (maybe with subscript) applied to stack variables,
fresh variables or constants (in {0, . . . , 2256 − 1}). Besides, we note that the
abstracted SFS generated is equivalent to first-order A-normal form with shear-
ing. Trivially, all positions in the stack in the SFS and the abstracted SFS are
equal when the map is fully applied to remove all fresh variables and the sub-
scripts are removed. Moreover, we have that every uninterpreted function of the
SFS has a fresh variable assigned in the map and all function symbols in the
map are different.

Example 4. The abstraction of the SFS [s4, EXP(ADD(s3, s2), ADD(s1, s0))] shown in
Example 3 needs three fresh variables s5, s6 and s7. Then, the abstracted SFS is
the stack S = [s4, s7] and the mapping M is defined as {s5 �→ ADD0(s3, s2), s6 �→
ADD1(s1, s0), s7 �→ EXP(s5, s6)}.

4.2 Modeling the Stack

A key element in our encoding is the representation of the stack and the elements
it contains. As mentioned in Sect. 2.3, a first observation is that in our approach
we will only have in the stack constants in the domain {0, . . . , 2256 − 1} (we do
not care if they represent a negative number or not, as they are handled simply as
256-bit words), initial stack variables s0, . . . , sk−1 and fresh variables sk, . . . , sv.
In order to distinguish between constants and the variables si, we assign to every
variable si, with i ∈ {0, . . . , v}, the constant 2256 + i. Now, for instance, we can
establish that a PUSH operation can only introduce a constant in {0, . . . , 2256 −1}
and that fresh variables si can only be introduced by uninterpreted functions
if the appropriate arguments are in the stack (see below). The rest of stack
operations, like DUP or SWAP, just duplicate or move whatever is in the stack.
Since in our encoding we will use the variables s0, . . . , sv, as they are part of
the SFS, we have a first constraint assigning the constant values to all these
variables (this could be done as well with a let expression).

SV =
∧

0�i<v
si = 2256 + i

Let us now show how we model the stack along the execution of the instructions.
First, we have to fix a bound on the number of operations bo and the size of
the stack bs. We can apply different heuristics to this end though considering
the initial number of operations and the maximum number of stack elements
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involved in the block are sound bounds. We have to express a stack of bs positions
after executing j operations with j ∈ {0, . . . , bo}. To this end, on the one hand,
we use existentially quantified variables xi,j ∈ Z with i ∈ {0, . . . , bs − 1} and
j ∈ {0, . . . , bo} to express the word at position i of the stack after executing the
first j operations of the code, where x0,j encodes the word on the top of the
stack. On the other hand to complete the modeling we introduce propositional
variables ui,j with i ∈ {0, . . . , bs−1} and j ∈ {0, . . . , bo}, to denote the utilization
of the stack (i.e., the words that the stack currently holds). Here, ui,j indicates
that the word at position i of the stack after executing the first j operations
exists or not.

Additionally, to simplify the next definitions we have the following parame-
terized constraint that, given an instruction step j with 0 < j ≤ bo, two stack
positions α and β and a shift amount δ ∈ Z, with 0 ≤ α, 0 ≤ α + δ, β < bs and
β + δ < bs, imposes that the stack after executing j + 1 instructions between
positions α and β is the same as the stack after executing the j instruction but
with a shift of δ (they are moved up if negative and moved down otherwise).

Move(j, α, β, δ) =
∧

α�i�β
ui+δ,j+1 = ui,j ∧ xi+δ,j+1 = xi,j

4.3 Encoding of Instructions

Let I be the set of instructions occurring in our problem. The set I is split in
three subsets IC 	 IU 	 IS , where:

– IC contains the commutative uninterpreted functions occurring in the map
M of the abstracted SFS,

– IU contains the non-commutative uninterpreted functions occurring in M ,
– IS contains the stack operations: PUSH, that introduces an up to 32-bytes

item on top of the stack; POP that removes the top of the stack; DUPk, with
k ∈ {1, . . . , 16} that copies the k−1 element of the stack on top of the stack;
SWAPk, with k ∈ {1, . . . , 16} that swaps the top of the stack with the k element
of the stack; and an extra operation NOP that does nothing.

Note that, although in EVM there are 32 different PUSH instructions depending
on the amount of bytes needed to express the item, in our context this distinction
is unnecessary, since we can decide afterwards which PUSH do we need by checking
in the obtained solution which is the value to be pushed. Also, the operations
DUPk in IS are reduced to only those with k < bs (otherwise we go beyond the
maximal size of the stack) and, similarly, the operations SWAPk in IS are reduced
to only those with k < bs.

Let θ be a mapping from the set of instructions in I to consecutive different
non-negative integers in {0, . . . , mι}, where mι+1 is the cardinality of I. In order
to encode the selected instructions at every step, we introduce the existentially
quantified variables tj ∈ {0, . . . , mι}, with j ∈ {0, . . . , bo − 1} where for every
instruction ι ∈ I, if tj = θ(ι) then we have that the operation executed at step
j is ι. Additionally, we introduce associated existentially quantified variables
aj ∈ {0, . . . , 2256 − 1}, with j ∈ {0, . . . , bo − 1}, to express the value pushed at
the top of the stack when tj = θ(PUSH) (otherwise the value of aj is meaningless).
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Encoding the Stack Operations. First we show how we encode the effect of
choosing in tj one of the operations in IS that does not depend on the particular
(abstracted) SFS we are considering. The following parameterized constraints
show this effect:

CPUSH(j) =tj = θ(PUSH)⇒0 ≤ aj < 2256 ∧ ¬ubs−1,j ∧ u0,j+1 ∧ x0,j+1 = aj ∧
Move(j, 0, bs − 2, 1)

CDUPk(j) =tj = θ(DUPk)⇒¬ubs−1,j ∧ uk−1,j ∧ u0,j+1 ∧ x0,j+1 = xk−1,j ∧
Move(j, 0, bs − 2, 1)

CSWAPk(j) = tj = θ(SWAPk) ⇒ uk,j ∧ u0,j+1 ∧ x0,j+1 = xk,j ∧ uk,j+1 ∧
xk,j+1 = x0,j∧ Move(j, 1, k − 1, 0) ∧
Move(j, k + 1, bs − 1, 0)

CPOP(j) = tj = θ(POP) ⇒ u0,j ∧ ¬ubs−1,j+1 ∧ Move(j, 1, bs − 1,−1)
CNOP(j) = tj = θ(NOP) ⇒ Move(j, 0, bs − 1, 0)

Notice that the stack before executing the instruction tj is given in the variables
x0,j , . . . , xbs−1,j and u0,j , . . . , ubs−1,j , while the stack after executing tj is given
in x0,j+1, . . . , xbs−1,j+1 and u0,j+1, . . . , ubs−1,j+1.

In order to avoid redundant solutions (with NOP in intermediate steps), we
have to add as well a constraint stating that once we choose NOP as instruction
tj we can only choose NOP for the following instructions tj+1, tj+2 . . .:

CfromNOP =
∧

0�j<bo−1
tj = θ(NOP) ⇒ tj+1 = θ(NOP)

Encoding the Uninterpreted Operations. The encoding of the uninter-
preted operations comes from the map M of the abstracted SFS. First of all, note
that, every function f occurs only once in M (since subscripts are introduced)
and for every r �→ f(o0, . . . , on−1) in M we have that f ∈ IC 	 IU , r is a fresh
variable, and o0, . . . , on−1 are either initial stack variables, fresh variables or con-
stants. Note also that if f ∈ IC then n = 2. Therefore, we define in the encoding
the effect of choosing in tj the uninterpreted function f with r �→ f(o0, . . . , on−1)
in M , as an operation that takes its arguments o0, . . . , on−1 from the stack and
places its result r in the stack (where o0 must be at the top of the stack).

CU (j, f) = tj = θ(f) ⇒ ∧
0�i�n−1(ui,j ∧ xi,j = oi) ∧ u0,j+1 ∧ x0,j+1 = r ∧

Move(j, n,min(bs − 2 + n, bs − 1), 1 − n) ∧∧
bs−n+1�i�bs−1 ¬ui,j+1

where f ∈ IU and r �→ f(o0, . . . , on−1) ∈ M

Now for the commutative functions the only difference is that we know that
n = 2 and that we can find the arguments in any of both orders in the stack:

CC(j, f) =tj = θ(f)⇒u0,j ∧ u1,j ∧
((x0,j = o0 ∧ x1,j = o1) ∨ (x0,j = o1 ∧ x1,j = o0)) ∧
u0,j+1 ∧ x0,j+1 = r ∧ Move(j, 2, bs − 1,−1) ∧ ¬ubs−1,j

where f ∈ IC and r �→ f(o0, o1) ∈ M
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Finding the Target Program. We assign to every ι ∈ I an integer. Then,
tj ∈ Z encodes the chosen instruction at position j in the target program for
0 � j < bo. To encode the selection of an instruction for every tj , we have the
following constraint:

CI = CfromNOP ∧ ∧
0�j<bo

0 ≤ tj ≤ mι ∧
CPUSH(j) ∧ CDUPk(j) ∧ CSWAPk(j) ∧ CPOP(j) ∧
CNOP(j) ∧ ∧

f∈IU
CU (j, f) ∧ ∧

f∈IC
CC(j, f))

Complete Encoding. Let us conclude our encoding by defining the formula
CSFS that states the whole problem of finding an EVM block for a given
initial stack [s0, . . . , sk−1] and abstracted SFS with final stack [f0, . . . , fw−1]
and map M . Hence, we introduce a constraint B to describe how the stack
at the beginning is and a constraint E to describe how the stack at the
end is and combine all the constraints defined above to express CSFS .

B =
∧

0�α<k(uα,0 ∧ xα,0 = sα) ∧ ∧
k�β�bs−1 ¬uβ,0

E =
∧

0�α<w(uα,bo
∧ xα,bo

= fα) ∧ ∧
w�β�bs−1 ¬uβ,bo

CSFS = SV ∧ CI ∧ B ∧ E

Finally, let us mention that the performance of the used SMT solvers greatly
improves when the following (redundant) constraint, which states that all func-
tions in IU 	IC should be eventually used, is added:

∧
ι∈IU �IC

∨
0�j<bo

tj = θ(ι)
Empirical evidence shows, that this constraint helps the solver to establish

optimality, and removing it increases the time-outs and time taken by roughly
50%. On the other hand, adding the similar constraint that all functions in
IU 	IC are used at most once, while also helping the solvers to show optimality
for already optimal blocks, the performance for finding optimizations decreases
by a similar rate. As the latter is our main motivation, we did not include the
constraint.

4.4 From Models to EVM Blocks

The following definition shows how we can extract a concrete set of operations
from a model for the formula CSFS that computes the given SFS.

Definition 3. Given a model σ for CSFS we have that block(σ) is defined as the
sequence of EVM operations o0, . . . , of where f is the largest j ∈ {0, . . . , bo − 1}
such that tj �= θ(NOP). Now for all α ∈ {0, . . . , f} the operation oα is taken as

1. oα = PUSHk aα if tα = θ(PUSH) and aα can be represented with k bytes.
2. oα = ι if tα = θ(ι) where ι ∈ IS \ {PUSH}
3. oα = ι if tα = θ(ι) where ι ∈ IU 	 IC and ι has no subscript.
4. oα = ι if tα = θ(ιl) where ιl ∈ IU 	 IC and has subscript l.

The following result easily follows from the construction of CSFS .

Theorem 1 (soundness). Given an SFS and values for bo and bs, we have
that if σ is a model for CSFS obtained from the abstracted SFS then block(σ)
computes the given SFS.
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4.5 Optimization Using Max-SMT

Now that we know that every model of CSFS provides a block that computes the
SFS, we want to obtain the optimal solution. Since the cost of the solution can
be expressed in terms of the cost of every of the instructions we select in all tj , we
will introduce soft constraints expressing the cost of every selection. A (partial
weighted) Max-SMT problem is an optimization problem where we have an SMT
formula which establishes the hard constraints of the problem and a set of pairs
{[C1, ω1], . . . , [Cm, ωm]}, where each Ci is an SMT clause and ωi is its weight,
that establishes the soft constraints. In this context, the optimization problem
consists in finding the model that satisfies the hard constraints and minimizes
the sum of the weights of the falsified soft constraints. Our approach to find the
optimal code is by encoding the problem as a Max-SMT optimization problem,
where we add to the SMT formula CSFS which defines our hard constraints a set
of soft constraints such that sum of the weights of the falsified soft constraints
coincides with the cost (in terms of gas) of the operations taken in every step.
Therefore the optimal solution to the Max-SMT problem coincides with the
optimal solution in terms of gas cost.

In the EVM, every operation has an associated gas cost, which in general
is constant, but in some few cases may depend on the particular arguments it
is applied to or on the state of the blockchain. All these operations that are
non-constant are considered as uninterpreted, and hence we cannot change the
operands on which they are applied. Therefore, omitting the non-constant part
cannot affect which is the optimal solution. Thanks to this, we can split our set
of instructions I in p+1 disjoint sets W0 	 . . .	Wp where all instructions in Wi

have the same constant cost costi, and such that the costs are strictly increasing,
i.e., cost0 = 0 and costi−1 < costi for all i ∈ {1, . . . , p}.

In the following we describe the encoding we have chosen for the weighted
clauses (we have tried other slightly simpler alternatives but, in general, they
behave worse). Let wi = costi − costi−1 for i ∈ {1, . . . , p}. Hence, we have that
wi > 0 and, moreover, costi = Σ1�α�iwα for i ∈ {1, . . . , p}. Then, our Max-SMT
problem OSFS is obtained adding to CSFS the following soft constraints

OSFS = CSFS ∧
∧

0�j<bo

∧

1�i�p

[
∨

ι∈W0�...�Wi−1

tj = θ(ι) , wi ]

Therefore, if the selected instruction at step j is ι (i.e. tj = θ(ι)) for some ι ∈ Wi

then we accumulate the weight wα of all soft clauses with α ∈ {1, . . . , i}, which
as said sums costi, and hence we accumulate the cost of executing the instruction
ι. From this fact, our optimality theorem follows.

Theorem 2 (optimality). Given an SFS P and values for bo and bs, we
have that if σ is the optimal solution for the weighted Max-SMT problem OSFS

obtained from the abstracted SFS of P , then block(σ) is the optimal code that
has an SFS equal to P modulo commutativity.
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5 Experimental Evaluation

This section presents the results of our evaluation using syrup, the SYnthesizeR of
sUPer-optimized smart contracts that implements our approach. Our tool syrup
uses EthIR [6] to generate the CFGs of the analyzed contracts and Z3 [12] ver-
sion 4.8.7, Barcelogic [7], and MathSAT [11] version 1.6.3 (namely its optimality
framework OptiMathSAT), as SMT solvers. We refer by s-Z3, s-Bar, s-OMS, to
the results of using syrup with the respective solvers. Experiments have been
performed on a cluster with Intel Xeon Gold 6126 CPUs at 2.60 GHz, 2 GB of
memory and timeout of 15 min, running CentOS Linux 7.6. The main compo-
nents of syrup are implemented in Python and OCaml. The backend of syrup
generating SMT constraints from a SFS is open-source and can be found at
github.com/mariaschett/syrup-backend. Our tool accepts smart contracts writ-
ten in versions of Solidity up to 0.4.25 and EVM bytecode v1.8.18, namely the
three new EVM bytecodes (SHL, SHR and SAR) introduced from the Solidity com-
piler version 0.5.0 are not handled yet by EthIR. Our experimental setup con-
sists of two groups of benchmarks:

(i) In order to compare with the existing tool ebso, we use the same data set (and
the results for ebso) from [20]: the blocks of the 2500 most called contracts
deployed on the Ethereum blockchain3 after removing the duplicates and
the blocks which are only different in the arguments of PUSH by abstracting
to word size 4 bit. This results in a data set of 61 217 blocks.

(ii) A more realistic setting in which we analyze the 150 most called contracts4

queried from the Ethereum blockchain and removing those of the versions
not supported, resulting in 128. As the dates in which the contracts are
fetched are different, not all 128 contracts are included in setup (i), indeed,
the intersection are 106 contracts (besides there might be updated versions).
This setting is more realistic since the analysis is performed at the contract-
level (without removing any duplicates or similar blocks) and allows us to
gather statistics to assess the gains at the level of the deployed contracts.

We note that analyzing the most called contracts corresponds to the most rele-
vant case study as, according to [16], many Ethereum contracts are not used.

5.1 Comparison with ebso (setup I)

As seen in Definition. 1, we split the 61 217 blocks on certain bytecodes that are
not optimized, leading to a total of 72 450. For comparison, we merge the split
blocks back together. The next table shows the results of optimizing the 61 217
blocks by ebso (first column), and by syrup for every solver (next columns). In
column s-All, we use the 3 solvers as a single framework in syrup that yields the
best solution returned by any of the solvers (in parenthesis we show percentages).

3 Up to Ethereum blockchain block number 7 300 000 until 2019-03-04 01:22:15 UTC.
4 Up to Ethereum blockchain block number 9 193 265 until 2019-12-31 23:59:45 UTC.

https://github.com/mariaschett/syrup-backend
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ebso s-Z3 s-Bar s-OMS s-All

A 3882 (6.34%) 20 636 (33.71%) 20 783 (33.95%) 20 973 (34.26%) 20 988 (34.28%)

O 393 (0.64%) 25 922 (42.34%) 26 458 (43.22%) 28 063 (45.84%) 28 195 (46.06%)

B 550 (0.90%) 6288 (10.27%) 3051 (4.98%) 5293 (8.65%) 5726 (9.35%)

N n/a 1933 (3.16%) 563 (0.92%) 837 (1.37%) 1020 (1.67%)

T 56 392 (92.12%) 6438 (10.52%) 10 362 (16.93%) 6051 (9.88%) 5288 (8.64%)

G 27 726 1 188 311 1 003 717 1 272 381 1 309 875

S Not avail 13 710 904.75 13 141 046.21 12 239 980.85 10 948 011.57

Row A shows the number of blocks that were Already optimal, i.e., those
that cannot be optimized because they already consume the minimal amount of
gas and ebso/syrup find bytecode with the same consumption. Row O contains
the number of blocks that have been optimized and the found solution has been
proven to be Optimal, i.e., the one that consumes the minimum amount of gas
needed to obtain the SFS provided. The solvers used are able to provide the
best solution found until the timeout is reached. Row B contains the number
of blocks that have been optimized into a Better solution that consumes less
gas but it is not shown to be the optimum. Row N shows the number of blocks
that have Not been optimized and not proven to be optimal, i.e., the solution
found is the original one but there may exist a better one. Row T contains the
number of blocks for which no model could be found when the T imeout was
reached. Row G contains the accumulated Gas savings for all optimized blocks.
Importantly, the real savings would be larger if the optimized blocks are part of
a loop and hence might be executed multiple times. Row S shows the time in
Seconds in which each setting analyzes all the blocks.

Let us first compare the results by ebso and our best results when using the
portfolio of solvers in s-All. It is clear from the figures that syrup significantly
outperforms ebso on the number of blocks handled (while ebso times out in
92.12 % of the blocks, we only timeout in 8.64 %) and on the overall gas gains
(two orders of magnitude larger). For the analyzed blocks (i.e., those that do not
timeout), the percentages of syrup for number of optimized into better blocks,
into optimal blocks, and those proven to be already optimal, are much larger
than those of ebso. We now discuss how the gains for the blocks that ebso
can analyze compare to the gains by syrup. In particular, if missing part of the
semantics of the uninterpreted instructions and the SSTORE bytecode significantly
affects the gains. Out of 943 examples, where ebso found an optimization, in 46
cases syrup proved optimality w.r.t. the SFS and saved 348 gas but saved less
gas than ebso (total 10 514 gas). The source of this gain is the SSTORE bytecode:
there are two blocks where ebso saves 5000 each, because it realizes that we read
from a key in storage to then store the value back unchanged. As we discuss
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in Sect. 7, our framework naturally extends to handle this storage optimization.
However, in nearly all of 393 cases, where ebso found an optimal solution—in
378 cases—syrup saves as much as ebso amounting to 2670 gas. That is, the
additional semantics did not improve savings. Furthermore, in 43 cases out of
943, the semantics did impede ebso’s performance so that syrup found a better
result with 597 gas versus 440 of ebso. Therefore, we can conclude that syrup
is far more scalable and precise than ebso, the cases in which syrup optimizes
less than ebso are seldom and can be naturally handled in the future. Moreover,
they are offset by the cases where syrup did find an optimization, whereas ebso
did not.

Finally, we can see that MathSAT is the solver that shows the best perfor-
mance: It proves optimality of 34.26 % and optimizes 54.49 % of the blocks (c.f.
Sect. 5.3). Regarding analysis time, the global figure is not reported in [20]. In
syrup, by accumulating the time of all four scenarios (s-X) and using the 900 s
timeout of ebso, we analyze the whole data set in about 3042 h. We note that,
by considering the solvers as a portfolio, we reduce the analysis time as when
an optimal solution is found, the execution of the other two solvers is stopped.
However, for the other cases, we take the highest time taken by the solvers as we
need to know all solutions in order to keep the best one and provide an answer.

5.2 Analysis of the Most Called Contracts with Gas Savings
(setup Ii)

For our second setup, syrup produces the following results for the 46 966 blocks
of the 128 (most called) smart contracts:

Fig. 5. Gas saved per contract in the 128 most called smart contracts
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s-Z3 s-Bar s-OMS s-All

A 30 846 (65.68%) 30 923 (65.84%) 30 971 (65.94%) 30 974 (65.95%)

O 13 102 (27.9%) 13 240 (28.19%) 13 586 (28.93%) 13 606 (28.97%)

B 933 (1.98%) 510 (1.09%) 746 (1.59%) 801 (1.71%)

N 695 (1.48%) 95 (0.2%) 295 (0.63%) 467 (0.99%)

T 1390 (2.96%) 2198 (4.68%) 1368 (2.91%) 1118 (2.38%)

G 438 483 406 086 437 165 443 248

S 2 919 830.35 2 682 469.58 2 413 612.39 2 378 446.26

As before, MathSAT is the solver that shows the best performance: It proves
optimality of 65.94% and optimizes 30.52% of the blocks. The overall gas savings
in G amount to 0.73% of the total gas which, assuming a uniform distribution
of this saving among the contracts, amounts to around a million dollars from
2017 to 2019 (see Sect. 1 for details on this estimations). Moreover, we have
calculated that the 64% of the saved gas is due to the simplification rules and
the 36% to the Max-SMT optimization, which shows that both parts are highly
relevant in our results. For this data set, we additionally display in Fig. 5 the
amount of gas saved for each contract. The X-axis corresponds to each of the
128 analyzed contracts and the Y-axis corresponds to the amount of gas saved
when using each solver. In general the gains obtained by the different solvers
are quite aligned. On average, each contract saves 3425.65 units of gas using Z3,
3172.55 using Barcelogic and 3415.35 using MathSAT. However, we can observe
that the gains are dispersed w.r.t. the mean, and there are big differences in
the savings obtained for each of the contracts (the standard deviation is 2798.19
for Z3, 2664.05 for Barcelogic and 2889.01 for MathSAT). The biggest amount
of gas optimized in all contracts is 18 989 gas using Z3, 18 704 using Barcelogic
and 19 205 using MathSAT. In the case of this contract, MathSAT optimizes 706
blocks out of 1910, and the highest amount of gas optimized is 162 though the
most common amount of gas optimized is 3 (in 165 blocks). The highest amount
of gas optimized per block in all contracts is 481. Finally, we have analyzed the
impact of our optimization on the function transfer of the AirdropToken smart
contract, that has been called around 520 000 times. For this function, which has
no loops, syrup saves 832 units of gas per call. From the number of calls per day
(obtained from [2]), we estimate a total saving (just for this function) of 2815 $.

5.3 Comparison of SMT Solvers in Precision and Time

Figure 6 aims at providing some data to compare the accuracy and efficiency of
the process using the three SMT solvers. The table to the left shows in: Unique
the number of blocks that are uniquely optimized by the corresponding solver,
in UOptim the number of blocks that are proven to be optimal uniquely by one
solver, and +GSave the number of blocks for which one solver has strictly more
gains that the others. The suffixes 1 and 2 refer to the data set in Sects. 5.1 and
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s-Z3 s-Bar s-OMS

Unique1 608 73 925
UOPtim1 22 108 1296
+GSave1 694 634 4286
Unique2 238 6 234

UOPtim2 6 14 237
+GSave2 107 79 563

0 50 10
0

20
0

55
0

90
0

30,000

35,000

40,000

45,000

Time in sec.

R
es

ul
ts

fo
un

d.

s-Z3

s-Bar

s-OMS

Fig. 6. Comparison of SMT Solvers

5.2, resp., excluding all timeouts. In both data sets, MathSAT uniquely finds
a result, uniquely shows the block optimal, or finds the best gain for the large
majority. But clearly, in both data sets, every solver was needed to get the best
possible solution in every category. The plot to the right of Fig. 6 displays the
amount of blocks (Y-axis) that are solved in the corresponding amount of time
(X-axis). Dashed lines correspond to data set 1 and plain lines to 2. We can
see that for data set (i) within 10 s, nearly 89% of the results were found. For
data set (ii) this is even more pronounced, after 10 s around 95% were found,
with around 90% already being available after 1 s. The analysis shows that most
results can be found very fast and thus our optimizer could be invoked during the
compilation of a smart contract without adding a large overhead to compilation.

6 Related Work

There are currently two automated approaches to gas optimization of Ethereum
smart contracts. (i) First, the closest to ours is blockchain superoptimization
[20], whose goal is the same as ours: find the gas-optimal block of code for each
of the blocks in the CFG of the smart contract. While the approach of [20] would
not be applicable within a compiler (e.g., it times out in 92.12 % of the blocks
used in their experimental evaluation), our optimization tool performs very effi-
ciently (e.g., we have seen that 89% of the blocks are optimized in less than 10 s).
The reasons for our efficiency are indeed the fundamental differences with [20]:
(1) we use the SFS to solve the optimization problem efficiently as a synthesis
problem in which the semantic optimizations are carried out within the SFS
part, (2) we do not encode the semantics of the arithmetic and bit-vector oper-
ations in the SMT problem, as [20] does, what allows us to express the problem
using only existential quantification, (3) we use Max-SMT to solve the optimiza-
tion problem. The basis for ebso is in [15], where the description of an encoding
of unbounded superoptimization with the idea to shift the search for optimal
program to the SMT solver is first found. (ii) Second, the system Gasol [5]
incorporates also an automatic optimization for storage operations that con-
sists in replacing accesses to the storage (i.e., bytecodes SSTORE and SLOAD)
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by equivalent accesses to memory locations (i.e., bytecodes MSTORE and MLOAD),
when a static analysis identifies that it is sound and efficient doing such trans-
formation. This optimization is not intra-block, as done in supercompilation,
therefore it is not achievable by our approach as it involves modifying multiple
blocks, and also requires an analysis that identifies the patterns and the sound-
ness of the transformation. On the other hand, Gasol is not able to make the
intra-block optimizations that we are achieving. Therefore, the optimizations in
Gasol are orthogonal (and complementary) to those achievable by means of
superoptimization.

There is work also focused on identifying gas expensive patterns: (1) the
work in [9] identifies 7 expensive patterns on Solidity contracts and proposes
optimizations for them. However, there is no tool in [9] that carries out these
optimizations automatically; (2) The work in [10] identifies 24 anti-patterns, e.g.
[OP,POP] optimizes to POP. Again, there is not automation and those patterns are
manually identified. There is recent work that experimentally proves that the
gas model for some EVM instructions is not correctly aligned with respect to the
observed computational costs in real experiments [26], and that these misalign-
ments can lead to gas-related attacks [22]. Our work is parametric on the gas
model used, and new adjustments in the gas model of Ethereum are integrated in
our optimizer by just updating the cost for the corresponding modified instruc-
tions in our implementation. Finally, the tool TOAST [8] also superoptimizes
machine code. Although applied to different settings, the performance of syrup
is significantly better and the notions of optimality used are different (sequence
length and gas-usage respectively).

7 Conclusions and Future Work

We have presented a novel method for gas super-optimization of smart contracts
that combines symbolic execution with an effective Max-SMT encoding. Our
focus is on the stack operations because these bytecode operations allow for
multiple reorderings, simplifications, and cover the major part of the potential
optimizations; while reading and/or writing on memory or storage can be seldom
optimized (unless the same value is written, or read, consecutively). In spite of
this, the same methodology we have formalized for the stack could be extended to
optimize the memory and storage bytecode operations. Basically, the symbolic
execution phase would extract a functional specification also for memory and
for storage that would be analogous to our SFS and that could include storage-
related optimizations (e.g., detecting unnecessary storage). The SMT encoding
for these operations would be similar to ours but, for soundness, would have to
maintain the order among the memory and storage accesses. It is part of our
future work to implement also the super-optimizations for memory and storage
and experimentally evaluate if there is significant gain. We also plan to extend
the SMT encoding to include information gained from the original program such
as the original cost. Currently, in roughly 0.05% of the blocks of Sect. 5.2, syrup
synthesizes a more expensive solution.
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Abstract. Many important cryptographic primitives offer probabilistic
guarantees of security that can be specified as quantitative hyperproper-
ties; these are specifications that stipulate the existence of a certain num-
ber of traces in the system satisfying certain constraints. Verification of
such hyperproperties is extremely challenging because they involve simul-
taneous reasoning about an unbounded number of different traces. In this
paper, we introduce a technique for verifying quantitative hyperproper-
ties based on the notion of trace enumeration relations. These relations
allow us to reduce the problem of trace-counting into one of model-
counting of formulas in first-order logic. We also introduce a set of infer-
ence rules for machine-checked reasoning about the number of satisfying
solutions to first-order formulas (aka model counting). Putting these two
components together enables semi-automated verification of quantita-
tive hyperproperties on infinite-state systems. We use our methodology
to prove confidentiality of access patterns in Path ORAMs of unbounded
size, soundness of a simple interactive zero-knowledge proof protocol as
well as other applications of quantitative hyperproperties studied in past
work.

1 Introduction

Recent years have seen significant progress in automated and semi-automated
techniques for the verification of security requirements of computer systems [4,
10,16,19,30,47,50,55]. Much of this progress has built on the theory of hyper-
properties [21], and these have been used extensively in analysis of whether sys-
tems satisfy secure information flow properties [1,2,6,8,15,28,35,37,39,49,57]
such as observational determinism [41,55] and non-interference [32]. Unfortu-
nately, the security specification of several important security primitives cannot
be captured by secure information flow properties like observational determin-
ism. In particular, observational determinism and non-interference are not appli-
cable when reasoning about algorithms that offer probabilistic – as opposed to
deterministic – guarantees of confidentiality and integrity. Prominent examples
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 201–224, 2020.
https://doi.org/10.1007/978-3-030-53288-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_11&domain=pdf
http://orcid.org/0000-0002-3434-6937
http://orcid.org/0000-0003-2288-3396
http://orcid.org/0000-0001-9107-0239
https://doi.org/10.1007/978-3-030-53288-8_11


202 S. Sahai et al.

of security primitives offering probabilistic guarantees include Path ORAM [48]
and various zero-knowledge proof protocols.

A promising direction for the verification of such protocols are the class of
quantitative hyperproperties [29], one example of which is deniability [12,14].
Deniability states that for every infinitely-long sequence of observations that an
adversary makes, there are (exponentially) many different secrets that could have
resulted in exactly these observations. Therefore, the adversary learns very little
about the secrets in an execution from a particular sequence of observations.

How does one prove a quantitative hyperproperty like deniability? Suppose
our goal is to show that for every trace of adversary observations, there exist 2n

traces with the same observations but different secrets. Here n is a parameter
of the system, e.g., the length of a password in bits. One option, first suggested
by Yasuoka and Terauchi [54] and recently revisited by Finkbeiner, Hahn, and
Torfah [29], is to consider the following k-trace property, where k = 2n + 1.

∀π0. ∃π1, π2, . . . , π2n .

( 2n∧
j=1

obs(π0) = obs(πj)
)

∧
( 2n∧

j=1

2n∧
k=1

(j �= k) ⇒ secret(πj) �= secret(πk)
)

The property states that for every trace of the system, there must exist
2n other traces with identical observations and pairwise different secrets. In
the above, π0, π1, . . . represent trace variables, obs(πj) refers to the trace of
adversary observations projected from the trace πj , while secret(πj) refers to
the trace of secret values in the trace πj . There are at least three problems
with the verification of the above property. First, the size of this property grows
exponentially with n; verification needs to reason about 2n traces simultaneously
and is not scalable. The second problem is quantifier alternation. Even if we could
somehow reason about 2n traces, we have to show that for every trace π0, there
exist 2n other traces satisfying the above condition. The third problem is that
the above technique does not work for symbolic bounds. While it is possible – at
least in principle – to use the above construction by picking a specific value of
n, say 16, to show that 216 traces exist that satisfy deniability, we would like to
show that the property holds for all n, where n is a state variable or parameter
of the transition system. Capturing the dependence of the trace-count bound on
parameters, such as n, is important because it shows that the attacker has to
work exponentially harder as n increases. Such general proofs are not possible by
reduction to a k-trace property because the construction requires k be bounded.

Recent work by Finkbeiner, Hahn, and Torfah [29] has made significant
progress in addressing the first two problems by showing a reduction from k-trace
property checking into the problem of maximum model counting [31]. However,
their technique still produces a propositional formula whose size grows expo-
nentially in the size of the quantitative hyperproperty. Further, model counting
itself is a computationally hard problem that is known to be #P -complete, and
maximum model counting is even harder. As a result, their technique does not
scale well and times out on the verification of an 8-bit leakage bound for an 8-bit
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password. Finally, their method does not support symbolic bounds, and there-
fore cannot be used to verify parametric systems; we verify several examples of
such systems in this paper (e.g., Path ORAM [48] of symbolic size).

In this work, we propose a new technique for quantitative hyperproperty
verification that addresses each of the above problems. Our approach is based
on the following insights. First, instead of trying to count the number of traces
that have the same observations and different inputs, we instead show injectiv-
ity/surjectivity from satisfying assignments of a first-order formula to traces of
a transition system. This allows us to bound the number of traces satisfying
the quantitative hyperproperty by the number of satisfying solutions to this for-
mula. We introduce the notion of a trace enumeration relation to formalize this
relation between the first-order formula and traces of the transition system. An
important advantage of the above reduction is that proving the validity of a trace
enumeration relation is only a hyperproperty – not a quantitative hyperproperty.

Next, we develop a novel technique to bound the number of satisfiable solu-
tions to a first-order logic formula, which is of independent interest. While this is
a hard problem, we exploit the fact that our formulas have a significant amount
of structure. We introduce a set of inference rules inspired by ideas from enu-
merative combinatorics [13,52,56]. These rules allow us to bound the number of
satisfying assignments to a formula by making only satisfiability queries.

In summary, our techniques can prove quantitative hyperproperties with sym-
bolic bounds on parametric infinite-state systems. We demonstrate their utility
by verifying representative quantitative hyperproperties of diverse applications.

Contributions

1. We introduce a specification language for quantitative hyperproperties
(QHPs) over symbolic transition systems and define formal satisfaction
semantics for this language. Our specification language is more expressive
than past work on QHP specification because it allows the bound to be a
first-order formula over the state variables of the transition system.

2. We provide several examples of QHPs relevant to security verification. We
identify a new class of QHPs, referred to as soundness hyperproperties, appli-
cable to protocols that provide statistical guarantees of integrity.

3. We propose a novel semi-automated verification methodology for proving that
a system satisfies a QHP. Our methodology applies to properties that involve a
single instance of quantifier alternation and works by reducing the problem of
QHP verification to that of checking non-quantitative hyperproperties over
two and three traces of the system and counting satisfiable solutions to a
formula in first-order logic.

4. We introduce a set of inference rules for bounding the number of satisfiable
solutions to a first-order logic formula, using only satisfiability queries.

5. We demonstrate the applicability of our specification language and verifica-
tion methodology by providing proofs of security for Path ORAM, soundness
of a simple zero-knowledge protocol, as well as examples taken from prior
work on quantitative security specifications. We show that our verification
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methodology scales to larger systems than could be handled in prior work.
To the best of our knowledge, our work is the first machine-checked proof of
confidentiality of the access patterns in Path ORAM.

2 Motivating Example

In this section, we first introduce the model of transition systems used in this
paper. We then discuss quantitative hyperproperty (QHP) specification and ver-
ification for our running example – a simple zero-knowledge puzzle.

2.1 Preliminaries

Let FOL(T ) denote first-order logic modulo a theory T . The theory T is assumed
to be multi-sorted, includes the theory of linear integer arithmetic (LIA), and
contains the = relation. Let ΣT be the theory T ’s signature: the set consisting
of the constant, function, and predicate symbols in the theory. We say that a
formula is a ΣT -formula if it consists of the symbols in ΣT along with variables,
logical connectives, and quantifiers. We only consider theories which are such
that the set of satisfying assignments for any ΣT -formula is a countable set.1

For every variable x, we will assume there exists a unique variable x′, which
we refer to as the primed version of x. We will use X, Y , and Z to denote
sets of variables. Given a set of variables X, we will use X ′ to refer to the set
consisting of the primed version of each variable in X, that is X ′ = {x′ | x ∈ X}.
Similarly X1, X2, etc. are sets consisting of new variables defined as follows:
X1 = {x1 | x ∈ X} and X2 = {x2 | x ∈ X}. We will use F (X) to denote the
application of a function or predicate symbol F on the variables in the set X.
A satisfying assignment σ to the formula F (X) is written as σ |= F (X). Given
a formula F (X) and a satisfying assignment σ to this formula, we will denote
the valuation of the variable x ∈ X in the assignment σ as σ(x). We will abuse
notation in two ways and also write σ(X) to refer to a map from the variables
x ∈ X to their assignments in σ. We will also write σ(G(X)) to denote the
valuation of the term G(X) under the assignment σ.

The number of satisfiable assignments for the variables in the set X to a for-
mula F (X,Y ) as a function of the variables Y will be denoted by #X.F (X,Y ).
#X.F (X,Y ) is the function λY . |{σ(X) | σ |= F (X,Y)}| evaluated at Y ; |S|
is the cardinality of the set S. For example, consider the predicate f(i, n) .= (0 ≤
i < 2n). In this case, #i. f(i, n) = max (0, 2n), meaning that for a given value
of n > 0, there are 2n satisfying assignments to i.

Definition 1 (Transition System). A transition system M is defined as the
tuple M = 〈X, Init(X),Tx (X,X ′)〉. X is a finite set of (uninterpreted) constants
that represents the state variables of the transition system. Init and Tx are ΣT -
formulas representing the initial states and the transition relation, respectively.
1 Our experiments mostly use the AUFLIA theory which allows arrays, uninterpreted

functions, and linear integer arithmetic.
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Init is defined over the signature ΣT ∪X. Tx is over the signature ΣT ∪X ∪X ′;
X represents the pre-state of the transition and X ′ represents its post-state.

A state of the system is an assignment to the variables in X. We use σ0, σ1, σ2

etc. to represent states. A trace of the system M is an infinite sequence of states
τ = σ0σ1σ2 . . . σi . . . such that Init(σ0) is valid and for all i ≥ 0, Tx (σi, σi+1) is
valid; in order to keep notation uncluttered, we will often drop the ≥ 0 qualifier
when referring to trace indices. We assume that every state of the transition
system has a successor: for all σ there exists some σ ′ such that Tx (σ, σ ′) is
valid, ensuring every run of the system is infinite. We will represent traces by
τ, τ1, τ2, etc. Given a trace τ, we refer to its ith element by τ i. If τ = σ0σ1 . . . ,
then τ0 = σ0 and τ1 = σ1. The notation τ [i,∞] refers to the suffix of trace τ
starting at index i. The set of all traces of the system M is denoted by ΦM .
Given a state σ and a variable x ∈ X, σ(x) is the valuation of x in the state σ .

2.2 Motivating Example: Zero-Knowledge Hats

Zero-knowledge (Z-K) proofs are constructions involving two parties: a prover
and a verifier, where the prover’s goal is to convince the verifier about the
veracity of a given statement without revealing any additional information. We
motivate the need for quantitative hyperproperty verification using a Z-K puzzle.

Puzzle Overview: Consider the following scenario. Peggy has a pair of oth-
erwise identical hats of different colors (say, yellow and green). She wants to
convince Victor, who is yellow-green color blind, that the hats are of different
colors, without revealing the colors of the hats. This problem can be solved using
the following interactive protocol. Peggy gives both hats to Victor, and Victor
randomly chooses a hat behind a curtain and shows it to Peggy. Next, he goes
back behind the curtain and uniformly randomly chooses if he wants to switch
the hat or not. He now appears in front of Peggy and asks: “Did I switch?”

If the hats are really of different colors, Peggy will be able to answer correctly
with probability 1. If Peggy is cheating – the hats are in fact of the same color –
her best strategy is to guess, and with probability 0.5 she will answer incorrectly.
If the interaction is repeated k-times, Peggy will be caught with probability 1 −
2−k. The interaction between Peggy and Victor only reveals the fact that Peggy
can detect a switch and not the color of the hat, making this zero-knowledge.

Verification Objectives: A zero-knowledge proof must satisfy three proper-
ties: completeness (an honest prover should be able to convince an honest verifier
of a true statement), soundness (a cheating prover can convince an honest veri-
fier with negligible probability) and zero-knowledge (no information apart from
the veracity of the statement should be revealed). Completeness is a standard
trace property, while zero-knowledge is the 2-safety property of indistinguisha-
bility. Consequently, the main challenge in automated verification of the zero-
knowledge protocol described above is that of soundness. In this section, we
discuss its specification and verification using quantitative hyperproperties.
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X
.= {C, P, S, i, R}

Init(X) .= (∀i. 0 ≤ C[i] ≤ 1) ∧ (∀i. 0 ≤ P[i] ≤ 1) ∧ S ∧ (i = 1) ∧ (R > 0)

Tx (X, X ′) .= (C′ = C) ∧ (P′ = P) ∧ (R′ = R) ∧ S′ = S ∧ (C[i] = P[i])
)) ∧

i′ = min (i + 1, R)

Fig. 1. Transition system model of the example protocol.

Soundness as a Quantitative Hyperproperty: Consider the transition sys-
tem M = 〈X, Init(X),Tx (X,X ′)〉, shown in Fig. 1, representing this protocol.
The variable R is a parameter of the system and refers to the number of rounds
of the protocol. C and P are boolean arrays representing the challenges from
the verifier to the prover, and the responses from the prover to the verifier,
respectively. i is the current round, and S is a boolean flag that corresponds to
whether the zero-knowledge proof has succeeded. C and P are initialized non-
deterministically to model the fact that the verifier chooses their challenges ran-
domly, and a cheating prover’s best strategy is guessing. While a cheating prover
can use any strategy, if the challenges are indistinguishable to her, then the best
strategy is to sample responses from a uniform distribution.

Soundness is captured by the following quantitative hyperproperty (QHP):

∀π0.#π1:F (δπj ,πk
). G (ψπ0,π1) ≥ 2R − 1 (1)

We will provide formal satisfaction semantics for QHPs in Sect. 3. For now, we
informally describe its meaning. The term #π1:F (δπj ,πk

). G (ψπ0,π1) ≥ 2R − 1
introduces a counting quantifier which stipulates the existence of at least 2R − 1
traces satisfying certain conditions: (i) these traces must all be pairwise-different,
where difference is defined by satisfaction of the formula F (δπj ,πk

) and (ii) all
of these traces must be related to trace π0 by the relation G (ψπ0,π1).

The state predicates δ and ψ are defined as follows.

δ(σ1, σ2)
.= σ1(P[i]) �= σ2(P[i])

ψ(σ1, σ2)
.=

(
σ1((i = R) ⇒ S) ⇒ σ2((i = R) ⇒ ¬S)

)
∧(

σ1(C) = σ2(C) ∧ σ1(R) = σ2(R)
)

The requirement imposed by δ is that Peggy’s responses be different at some
step i for every pair of traces captured by the counting quantifier. ψ says that if
trace π0 is a trace where Peggy’s cheating succeeds (i.e., S = true when i = R),
then in all traces captured by π1, the challenges and number of rounds are the
same as π0 but Peggy’s cheating is detected by Victor (i.e., S = false when
i = R). These requirements are illustrated in Fig. 2(b).

The QHP requires that for every trace in which a cheating prover succeeds
in tricking the verifier for a given trace of challenges, there are 2R − 1 other
traces with the same challenges in which the prover’s cheating is detected. Even
though soundness is a probabilistic property over the distribution of the system’s
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traces, it can be reduced to counting (and thus specified as a QHP) because each
execution trace is sampled uniformly from a finite set. Therefore, if the QHP is
satisfied, Peggy’s probability of successful cheating is upper-bounded by 2−R.

τ0
0

τ0 τ1
0 τ2

0 τk
0

success

τ0
0

. . . . . .

τ0
1

τ1 τ1
1 τ2

1 τk
1

fail

τ1
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τ2 τ1
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(b) Traces in the soundness QHP.(a) Trace enumeration predicates.

V(Y, R)

Y1

Y2

YC

U(Y1, τ0, τ1)

U(Y2, τ0, τ2)

U(YC, τ0, τC)

Fig. 2. Using trace enumeration predicates to verify the soundness QHP.

2.3 Solution Outline

To prove a QHP of the form ∀π0. #π1 : Δπj ,πk
. ϕ � N(Z), we construct a

trace enumeration predicate V(Y, Z) and show an injective/bijective mapping
from assignments to Y in V(Y, Z) and traces of the system. This allows us to
prove ∀π0. #π1 : Δπj ,πk

. ϕ � #Y.V(Y,Z). This part of the proof relies on the
notion of a trace enumeration relation (Sect. 4). In the next step, we show
that #Y.V(Y,Z) � N(Z) using the inference rules presented in Sect. 5. We now
describe these steps in the context of the motivating example.

Verification of Soundness for the Z-K Hats Puzzle: Property 1 is illustrated in
Fig. 2(b). τ0 is a trace where the Z-K proof succeeds, while the proof fails for
the set of traces ΦC = {τ1, τ2, . . . , τC}. The red states show the particular step
of the proof in which an incorrect response is given by the prover, and each of
these steps as well as their associated prover responses are pairwise different.
The QHP is satisfied if |ΦC | ≥ 2R − 1 for every τ0 ∈ ΦM , where R = τ0

0 (R).
The first step in our methodology is to construct a parameterized relation,

called a trace enumeration relation, U(Y, τ0, τ1). This relates τ0 to each trace in
the set ΦC and is parameterized by Y. For every value of the parameter Y, U
relates a trace in which the proof succeeds (τ0) to a trace in which the proof fails
(τ1). For every trace τ0 in which the proof succeeds, the set {τ1 | ∃Y. U(Y, τ0, τ1)}
corresponds to the set of traces with the same challenges and the same number
of rounds, but with failed proofs of knowledge. Note this is a subset of ΦC .

Next, we construct a predicate V(Y,R) which defines valid assignments to V
for a particular value of R. For a particular R, consider the set: {σ(Y) | σ |=
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V(Y,R)}. Suppose we are able to show that the relation U is injective in Y and
τ0 for assignments to Y drawn from this set, then we can lower-bound the size of
ΦC by the size of this set. In other words, we have reduced the problem of trace
counting to the problem of counting assignments to V(Y,R).

Precisely stated, using V and U , we show the following.

1. For every trace τ0, and every assignment Yi satisfying V(Yi, τ
0
0 (R)), there

exists a corresponding trace τi that satisfies both U(Yi, τ0, τi) and ψ(τ0, τi).
(Note τ0

0 (R) refers to the valuation of R in the initial state of τ0.)
2. Given two different satisfying assignments to V for a particular value of R,

say Yj and Yk, the corresponding traces τj and τk are guaranteed to have
different prover responses; in other words, the traces satisfy δ(τj , τk).

The above two properties, illustrated in Fig. 2(a), imply there is an injective
mapping from satisfying assignments of V(Y,R) to traces in ΦC . Therefore, the
number of traces in ΦC can be lower bounded by the number of satisfying assign-
ments to Y in V(Y,R), i.e. #Y.V(Y,R). We have reduced the difficult problem of
counting traces into a slightly easier problem of counting satisfying assignments
to a FOL(T ) formula.

The final step is to bound #Y.V(Y,R). For example, one well-known idea
from enumerative combinatorics is that if a set A is the union of disjoint sets B
and C, then |A| = |B| + |C|. Translated to model counting, the above can be
written as #X.F (X,Y ) = #X.G(X,Y )+#X.H(X,Y ) if F (X,Y ) ⇔ G(X,Y )∨
H(X,Y ) is valid and G(X,Y )∧H(X,Y ) is unsat.2 We present a set of inference
rules in Sect. 5 that build on this and related ideas. These inference rules allow
us derive a machine-checked proof of the bound #Y.V(Y,R) ≥ 2R − 1, thus
completing the proof of Property 1 for the Z-K hats puzzle.

3 Overview of Quantitative Hyperproperties

This section introduces a logic for the specification of quantitative hyperproper-
ties over symbolic transition systems. We present satisfaction semantics for this
logic and then discuss its applications in security verification.

ψ ::= ∀π. ψ | #π:Δπj ,πk . ψ � N(Z) | ϕ

ϕ ::= Pπ1,π2,...,πk | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ

� ::= ≤ | = | ≥

Fig. 3. Grammar of Quantitative HyperLTL.

2 We note there is an implied universal quantifier here. To be precise, we must write
∀Y. #X. F (X, Y ) = #X. G(X, Y ) + #X. H(X, Y ).
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3.1 Quantitative Hyperproperties

Figure 3 shows the syntax of Quantitative HyperLTL, our extension of Hyper-
LTL [30] that allows specification of quantitative hyperproperties over symbolic
transition systems. There are two noteworthy differences from the presentation
of HyperLTL in [30]. The first is the predicate Pπ1,π2,...,πk

. This refers to a
k-ary state predicate P that is applied to the first element of each trace in
the subscript. These are analogous to atomic propositions in presentations that
use Kripke structures and are defined as k-ary state predicates to capture rela-
tional properties over traces of the transition system. For example, consider the
predicate P(σ0, σ1)

.= (input(σ0) = input(σ1)). Given this definition, a sys-
tem M with exactly two traces ΦM = {τ1, τ2} satisfies the HyperLTL formula
∀π1, π2. Pπ1,π2 iff input(τ0

1 ) = input(τ0
2 ). This hyperproperty requires that the

input in the initial state of the system be deterministically initialized.
The second difference is the new counting quantifier : #π:Δπj ,πk

. ψ � N(Z).3

Δπj ,πk
is an unquantified HyperLTL formula over two “fresh” trace variables πj

and πk that encodes when two traces are considered different. ψ is another
(possibly-quantified) HyperLTL formula. The operator � can be ≤, =, or ≥.
N(Z) is an integer-sorted term in FOL(T ) over the variables in the set Z, Z ⊂ X
where X is the set of state variables of the transition system under consideration.
Z typically refers to the subset of the state variables that define the parameters
of the transition system; e.g. Z = {R} for the Z-K proof transition system in
Fig. 1, the number of blocks in a model of Path ORAM, the size of an array, etc.
Typically, the variables in the set Z do not change after initialization. Informally
stated, the counting quantifier is satisfied if a maximally large set ΦC ⊆ Φ,
satisfying the two conditions below, has cardinality � count where count is the
valuation of N(Z) in the initial state of every trace in ΦC . Those conditions are:
(i) each of the traces in ΦC are pairwise different as defined by satisfaction of
Δπj ,πk

, and (ii) every trace in this set satisfies the HyperLTL formula ψ.
The remaining operators are standard, so we do not discuss them further and

instead provide formal satisfaction semantics.

Satisfaction Semantics of Quantitative HyperLTL The validity judge-
ment of a property ϕ by a set of traces Φ is defined with respect to a trace
assignment Π : Vars → Φ. Here, Vars is the set of trace variables. We use
π, π1, π2 , . . . to refer to trace variables.4 The partial function Π is a mapping
from trace variables to traces. We use the notation Π[π �→ τ] to refer to a trace
assignment that is identical to Π except for the trace variable π which now maps
to the trace τ. We write Π |=Φ ψ if the set of traces Φ satisfies the property
ψ under the trace assignment Π. We will drop the subscript Φ from |=Φ if it
is clear from the context or irrelevant. The notation Π [i,∞] is an abbreviation

3 A counting quantifier over Kripke structures was introduced by Finkbeiner et al. [29].
Our definition is slightly different and a detailed comparison is deferred to Sect. 7.

4 Note the distinction between trace variables denoted by π1, π2, etc. and traces which
are denoted by τ1, τ2, etc.
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for the new trace assignment obtained by taking the suffix starting from index
i of every trace in Π: Π [i,∞](π) = Π(π)[i,∞] for every trace π ∈ dom(Π) where
dom(Π) is the domain of Π. We write Π � |=Φ ψ when Π |=Φ ψ is not satisfied.
Satisfaction rules for HyperLTL formulas are shown in Fig. 4.

Π |=Φ ∀π. ψ iff for all τ ∈ Φ : Π[π �→ τ ] |=Φ ψ

Π |=Φ #π:Δπj ,πk . ψ � N(Z) iff |ΦC | = 0 ⇒ 0 � N(Z) is valid, and

|ΦC | > 0 ⇒ ∀τ ∈ ΦC . |ΦC | � τ0(N(Z)), where,

ΦC ⊆ Φ is a maximally large set such that:

∀τj , τk ∈ ΦC .

τj �= τk ⇔ {πj �→ τj , πk �→ τk} |= Δπj ,πk

and, ∀τ ∈ ΦC . Π[π �→ τ ] |=Φ ψ

Π |=Φ Pπ1,...,πk iff P(Π(π1)0, . . . , Π(πk)0) is valid

Π |=Φ ¬ψ iff Π �|=Φ ψ

Π |=Φ ψ ∨ ϕ iff Π |=Φ ψ or Π |=Φ ϕ

Π |=Φ Xϕ iff Π [1,∞] |=Φ ϕ

Π |=Φ ϕUψ iff there exists j ≥ 0 : Π [j,∞] |=Φ ψ

and for all 0 ≤ i < j : Π [i,∞] |=Φ ϕ

Fig. 4. Satisfaction semantics for Quantitative HyperLTL formulas over symbolic tran-
sition systems.

Definition 2 (Quantitative HyperLTL Satisfaction). We say that the
transition system M satisfies the property ψ, denoted by M |= ψ if the empty
trace assignment ∅ satisfies formula ψ for the set of traces ΦM , that is ∅ |=ΦM

ψ.

Additional Operators: The above showed the minimal set of operators required
in Quantitative HyperLTL. The rest of this paper will use the other standard
operators such as ∧ (conjunction), ⇒ (implication), F (future/eventually) and
G (globally/always) which can be defined in terms of the operators in Fig. 3.

Well-Defined Formulas: In order for the semantics of Quantified HyperLTL to
be meaningful, we need certain semantic restrictions on the structure of QHPs.

Definition 3 (Well-defined QHPs). An instance of a counting quantifier #π:
Δπj ,πk

. ϕ � N(Z) is said to be well-defined if:

1. ¬Δπj ,πk
is an equivalence relation over the set of all traces Φ, and

2. In every set of the traces ΦC captured by the counting quantifier in the seman-
tics shown in Fig. 4, the term N(Z) has the same valuation for all initial
states: ∀τi, τj ∈ ΦC . τ0

i (N(Z)) = τ0
j (N(Z)).
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A Quantified HyperLTL formula is said to be well-defined if every instance
of a counting quantifier in the formula is well-defined.

Example 1 (Well-defined QHPs). The QHPs presented in the rest of this paper
are all well-defined, so here we give an example of a QHP that is not well-defined.
Consider this variant of Property 1: ∀π0.#π1: true. G (ψπ0,π1) ≥ 2R − 1. This
is not a well-defined QHP because Δπj ,πk

in the counting quantifier is simply
true, and its negation is not an equivalence relation over the set of traces.

Note that condition (1) in the definition above affects Δπj ,πk
while condition

(2) places a restriction on ϕ. The former condition prevents double-counting of
traces, while the latter ensures that the trace count is unambiguous.

The properties in our experiments require only syntactic checks to verify
well-definedness. Specifically, Δπj ,πk

is always of the form F (Pπj ,πk
) where P

is of the form P(σ1, σ2)
.= f(σ1) �= f(σ2). The negation of this is obviously an

equivalence relation over the set of all traces. Secondly, our QHPs are of the
form ∀π0. #π1:Δπj ,πk

. ϕ � N(Z) where ϕ enforces equality of the variables in
Z between the traces π0 and π1. These two features guarantee well-definedness.
In the rest of this paper, we only consider well-defined QHPs.

3.2 Applications of QHPs in Security Specification

Deniability: Our first example of a quantitative hyperproperty is deniability.
Suppose obs(σ) is a term that corresponds to the adversary observable part of
the state σ , while secret(σ) corresponds to the secret component of the state
σ . Deniability is satisfied when every trace of adversary observations can be
generated by at least N(Z) different secrets. For this, we define δ(σ1, σ2)

.=
secret(σ1) �= secret(σ2) and ≈O (σ1, σ2)

.= obs(σ1) = obs(σ2).

∀π0.#π1:F (δπj ,πk
). G (≈O

π0,π1
) ≥ N(Z)

τ0
1

τ1 τ1
1 τ2

1 τ3
1 τk

1τ0
1

. . . . . .

τ0
2

τ2 τ1
2 τ2

2 τ3
2 τk

2τ2
2

. . . . . .

τ0
3

τ3 τ1
3 τ2

3 τ3
3 τk

3τk
3

. . . . . .

τ0
CτC τ1

C τ2
C τ3

C τk
Cτ1

C . . . . . .

≈O ≈O ≈O ≈O ≈O

≈O ≈O ≈O ≈O ≈O

≈O ≈O ≈O ≈O ≈O
.
.
.

Fig. 5. Illustrating deniability.



212 S. Sahai et al.

Figure 5 illustrates deniability. It shows a set of traces ΦC := {τ1, τ2, . . . , τC};
the circles represent the states in each trace and the secret values are shown
by color of the circle. For these traces, every pair of corresponding states have
the same observations: represented by ≈O, and every distinct pair of traces
differ in the secrets. Deniability is satisfied if |ΦC | ≥ N(Z). Satisfaction implies
that every trace of adversary observations has at least N(Z) counterparts with
identical observations but different values of secret(σ). If we can show in a system
satisfying deniability that each trace of secrets is equiprobable and N(Z) grows
exponentially in some parameters of the system, then we can conclude that
the system satisfies computational indistinguishability. Deniability can capture
probabilistic notions of confidentiality, such as confidentiality of Path ORAM.

Soundness: While deniability encodes a form of confidentiality, soundness is its
dual in the context of integrity. One example of soundness was given in Sect.
2.2 for the Z-K hats puzzle. Soundness is generally applicable to protocols that
offer probabilistic integrity guarantees. For instance, many interactive challenge-
response protocols consist of repeated rounds such that if the prover succeeds in
all rounds, the verifier can be convinced with a high probability that the prover is
not cheating. This can be viewed as a QHP stating that for every trace in which
a dishonest prover tricks a verifier into accepting an invalid proof, there are at
least N(Z) other traces with different prover responses in which the cheating is
detected. As usual, we require that traces be uniformly sampled from a finite set
in order to state soundness as a QHP.

Soundness is stated as ∀π0.#π1 : F (δπj ,πk
). G (ψπ0,π1) ≥ N(Z). The rela-

tion δ is defined as two states having different prover responses. ψ requires the
challenge-response protocol to fail in π1 if it succeeded in π0 and also that the
system parameters (the variables in Z) be identical between π0 and π1.

Summarizing QHP Specification: These examples demonstrate that QHPs
have important applications in security verification. They capture probabilistic
notions of both confidentiality and integrity. In particular, the following form
of QHPs consisting of a single quantifier alternation seems especially relevant
for security verification: ∀π0. #π1: Δπj ,πk

. ϕ � N(Z). Each of the examples of
quantitative hyperproperties discussed in the previous subsection – deniability,
soundness, as well as others like quantitative non-interference [46,54] fit in this
template. Therefore, in the rest of this paper, we focus on developing scalable
verification techniques for QHPs that follow this template.

4 Trace Enumerations

This section introduces the notion of a trace enumeration, which is a technique
that allows us to reduce the problem of counting traces to that of counting
satisfiable assignments to a formula in FOL(T ).
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4.1 Trace Enumeration Relations

We now formalize injective trace enumerations, which allow us to lower-bound
the number of traces captured by a counting quantifier in a QHP.

Definition 4 (Injective Trace Enumeration). Let us consider a transition
system M = 〈X, Init(X),Tx (X,X ′)〉 and the relation U(Y, τ1, τ2) where Y is a
set of variables disjoint from X, τ1 and τ2 are traces of this transition system.
Let ∀π0. #π1 : Δπj ,πk

. ϕ ≥ N(Z) be a QHP where Z ⊂ X. Suppose V(Y,Z)
is a predicate over the variables in Y and Z. We say that the pair V(Y,Z) and
U(Y, τ1, τ2) form an injective trace enumeration of the system M for the QHP
∀π0. #π1:Δπj ,πk

. ϕ ≥ N(Z) iff the following conditions are satisfied:

1. For every trace τ0 in ΦM and every satisfying assignment (Y, Z) for the pred-
icate V(Y,Z), there exists a trace τ1 ∈ ΦM which is related to the trace τ0 as
per the relation U via this same assignment to Y . Further, the pair τ0 and
τ1 satisfy the property ϕ and the valuation of the variables in Z in the initial
state of τ1 is equal to Z.

∀τ0 ∈ ΦM , Y, Z. V(Y, Z) ⇒ (2)(
∃τ1 ∈ ΦM . U(Y, τ0, τ1) ∧ {π0 �→ τ0, π1 �→ τ1} |= ϕ ∧ τ0

1 (Z) = Z
)

2. Different assignments to the variables in Y for the formula V(Y,Z) enumerate
different traces in U(Y, τ0, τ1), where “different” means satisfaction of Δπj ,πk

.

∀τ0, τ1, τ2 ∈ ΦM , Y1, Y2, Z. (3)
V(Y1, Z) ∧ V(Y2, Z) ∧ Y1 �= Y2 ⇒
U(Y1, τ0, τ1) ∧ U(Y2, τ0, τ2) ∧ τ0

1 (Z) = Z ∧ τ0
2 (Z) = Z ⇒

{πj �→ τ1, πk �→ τ2} |= Δπj ,πk

If V and U form an injective trace enumeration M for the property ∀π0. #π1:
Δπj ,πk

. ϕ ≥ N(Z), then for every trace τ0, there exist at least as many traces
satisfying the counting quantifier as there are satisfying assignments to Y in
V(Y,Z). This is made precise in the following lemma.

Lemma 1. [Trace Count Lower-Bound] If V(Y,Z) and U(Y, τ1, τ2) form an
injective trace enumeration of the system M for the QHP ∀π0. #π1:Δπj ,πk

. ϕ ≥
N(Z) and if #Y.V(Y,Z) is finite for all assignments to Z, then M |= ∀π0.#π1:
Δπj ,πk

. ϕ ≥ #Y.V(Y,Z).

Example 2 (Injective Trace Enumeration). Let P0[1], . . . ,P0[R] be a trace of
correct responses for some particular sequence of challenges for our running
example. Consider the array Y[1],Y[2], . . . ,Y[R] where each Y[j] ∈ {0, 1}. Y is a
boolean array of size R, and Y[i] = 1 means that the prover gives an incorrect
response to the challenge in round i. We can define the predicate V as follows.

V(Y,R) .=
(
∃i. 1 ≤ i ≤ R ∧ Y[i] �= 0

)
∧

(
∀i. (i < 1 ∨ i > R) ⇒ Y[i] = 0

)
(4)
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The above definition ensures that at least one response is incorrect. Notice
that for every assignment to Y except the assignment of all zeros, the trace of
responses defined by ∀j. P1[j] = P0[j]⊕Y[j] (where ⊕ is exclusive or) corresponds
to a valid trace of the system and satisfies the counting quantifier in Property 1.
Specifically, every such response from the prover is incorrect and will result in the
protocol failing. We can use the above facts to define the relation U as follows:

U(Y, τ1, τ2)
.=

(
∀j. τ0

1 (P[j]) = τ0
2 (P[j]) ⊕ Y[j]

)
∧ (5)

τ0
1 (C) = τ0

2 (C) ∧ τ0
1 (R) = τ0

2 (R) ∧ (τR
1 (S) ⇒ ¬τR

2 (S))

The pair V and U form an injective trace enumeration for the system M (defined
in Fig. 1) for the Property 1. This is because different Y’s will result in different
prover responses for the same challenges. By Lemma 1, we can conclude that
Property 1 is satisfied if #Y.V(Y,R) ≥ 2R − 1

Analogous to injective trace enumerations, it is also possible to define sur-
jective trace enumerations that upper-bound the number of traces captured by
a counting quantifier. Details of surjective trace enumerations are presented in
the extended version of the paper [43].

5 Model Counting

As discussed in the previous section, trace enumeration relations can bound the
number of satisfying traces in a QHP. Given a QHP ∀π0. #π1 : Δπj ,πk

. ϕ �
N(Z), appropriate trace enumeration predicates V(Y,Z) and U can be used to
derive that ∀π0. #π1:Δπj ,πk

. ϕ � #Y.V(Y,Z). The final step in our verification
methodology is to show validity of #Y.V(Y,Z)�N(Z). To that end, this section
discusses our novel technique for model counting.

5.1 Model Counting via SMT Solving

Our approach borrows ideas from enumerative combinatorics [13,52,56] and
introduces the inference rules shown in Fig. 6 to reason about model counts
for formulas in FOL(T ). Each of the conclusions in the inference rules is a state-
ment involving model counts of FOL(T ) formulas, while each of the premises
is a formula in FOL(T ) that does not involve model counts and can, therefore,
be checked using SAT/SMT solvers. Most of the rules are straightforward, and
we do not describe them due to space constraints. The three interesting rules –
Injectivity , Ind≤ and Ind≥ – are discussed below.

Injectivity: This rule is based on the following idea from enumerative combina-
torics. Suppose we have two sets A and B. We can show that |A| ≤ |B| if there
exists an injective function from A to B. Translating this to model counts, the
set A in the rule corresponds to satisfying assignments to f(X), B corresponds
to satisfying assignments to g(Y ) and F is the injective witness function.
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Ind≥and Ind≤: Suppose the formulas f(X,n) and g(Y, n) are parameterized by
the integer variable n. If an injective witness function G (X,Y, n) is able to “lift”
satisfying assignments of f(Xn, n) and g(Yn, n) into a satisfying assignment of
f(Xn+1, n+1), then we can conclude that the number of satisfying assignments
to f(X,n + 1) are at least as many as the product of the number of satisfying
assignments to f(X,n) and g(Y, n). Ind≤ is the surjective version of this rule.
It applies when a satisfying assignment to f(Xn+1, n + 1) can be “lowered” into
satisfying assignments to f(Xn, n) and g(Yn, n) where the values of Xn and Yn

are given by the witness functions Hx and Hy respectively.

(#i. a ≤ i < b) = max (b − a, 0)
Range

#Y. f(X) ≥ 0
Positive

∧c
i=1 f(Xi) ∧ distinct(X1, . . . , Xc) is sat

#X. f(X) ≥ c
ConstLB

∧c
i=1 f(Xi) ∧ distinct(X1, . . . , Xc) is unsat

#X. f(X) < c
ConstUB

f(X, Y ) ⇒ g(X, Y )
#X. f(X, Y ) ≤ #X. g(X, Y )

UB

h(X, Y ) ⇔ f(X) ∧ g(Y )
#X ∪ Y . h(X, Y ) ≤ #X. f(X) × #Y. g(Y )

AndUB

f(X) ⇒ g(F (X))
f(X1) ∧ f(X2) ∧ X1 �= X2

) ⇒ F (X1) �= F (X2)

#X. f(X) ≤ #Y. g(Y )
Injectivity

h(X, Y ) ⇔ f(X) ∧ g(Y ) X ∩ Y = ∅
#X ∪ Y . h(X, Y ) = #X. f(X) × #Y. g(Y )

Disjoint

f(X, Y ) ⇔ g(X, Y ) ∨ h(X, Y )

#X. f(X, Y ) = #X. g(X, Y ) + #X. h(X, Y ) − #X. g(X, Y ) ∧ h(X, Y )
) Or

f(X, n) ∧ g(Y, n)
) ⇒ f(G (X, Y, n), n + 1)

(X1 �= X2 ∨ Y1 �= Y2) ⇒ G (X1, Y1, n) �= G (X2, Y2, n)
#X. f(X, n + 1) ≥ #X. f(X, n) × #Y. g(Y, n)

Ind≥

f(X, n + 1) ⇒ f(Hx(X, n + 1), n) ∧ g(Hy(X, n + 1), n)
)

X1 �= X2 ⇒ Hx(X1, n) �= Hx(X2, n) ∨ Hy(Y1, n) �= Hy(Y2, n)
)

#X. f(X, n + 1) ≤ #X. f(X, n) × #Y. g(Y, n)
Ind≤

Fig. 6. Model counting proof rules. Unless otherwise specified, premises are satisfied
when the formula is valid. Conclusions have an implicit universal quantifier.
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5.2 Model Counting in the Motivating Example

The definition of the predicate V in the motivating example is shown below.

V(Y,R) .=
(
∃i. 1 ≤ i ≤ R ∧ Y[i] �= 0

)
∧

(
∀i. ((i < 1 ∨ i > R) ⇒ Y[i] = 0)

)

Our task is to show #Y.V(Y,R) = 2R − 1. Recall that Y is an array of
binary values (i.e. the integers 0 and 1) and consider the following predicates:
Vf (Y,R) .=

(
∀i. (i < 1 ∨ i > R) ⇒ Y[i] = 0

)
, V1(Y,R) .=

(
∀i. Y[i] = 0

)
and

W(i) .= 0 ≤ i < 2. Using these definitions, the proof is as follows.

1. (ConstUB , Positive) #Y.Vf (Y,R) ∧ V1(Y,R) = 1.
2. (Or) #Y.Vf (Y,R) = #Y.V(Y,R) + #Y.V1(Y,R).
3. (ConstLB , ConstUB) #Y.V1(Y,R) = 1.
4. (ConstLB , ConstUB) #Y.Vf (Y, 1) = 2.
5. (Ind≤): #Y.Vf (Y,R) ≤ #i.W(i) × #Y.Vf (Y,R − 1).
6. (Ind≥): #Y.Vf (Y,R) ≥ #i.W(i) × #Y.Vf (Y,R − 1).
7. (Range): #i.W(i) = 2.
8. (4 – 7) imply that #Y.Vf (Y,R) = 2 × #Y.Vf (Y,R − 1), #Y.Vf (Y, 1) = 2,

this means #Y.Vf (Y,R) = 2R.
9. (2, 3, 8) imply that #Y.V(Y,R) = 2R − 1.

In step 5, the witness function is G (Y,R, i) .= Y[R + 1 �→ i], while in step 6,
they are H〈Y,R〉(Y,R + 1) .= 〈Y[R + 1 �→ 0],R〉 and Hi(Y,R + 1) .= (Y[R + 1]).5

Note steps 8 and 9 are automatically discharged by the SMT solver.

6 Experimental Results and Discussion

In this section, we present an experimental evaluation of the use of trace enu-
merations for the verification of quantitative hyperproperties.

6.1 Methodology

We studied five systems with varying complexity and QHPs. These were modeled
in the Uclid5 modeling and verification framework [44,51], which uses the Z3
SMT solver (v4.8.6) [23] to discharge the proof obligations. The experiments
were run on an Intel i7-4770 CPU @ 3.40 GHz with 8 cores and 32 GB RAM.

The verification conditions are currently manually generated from the mod-
els, but automation of this is straightforward and ongoing. The k-trace properties
were proven using self-composition [9,10] and induction. A number of strength-
ening invariants had to be specified manually for the inductive proofs. Many
of the invariants are relational and quantified and, therefore, difficult to infer
algorithmically. We note that recent work has made progress toward automated
inference of quantified invariants [27,36].

5 The notation arr [i �→ v] denotes an array that is identical to arr except for index i
which contains v.
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6.2 Overview of Results

Due to limited space, we only provide a brief description of our benchmarks
for evaluation and refer the interested reader to the extended version of our
paper [43] for a more detailed discussion. We have also made the models and
associated proof scripts available at [25]. A brief overview of the case studies
follows.

Table 1. Verification results of models.

Benchmark Hyperproperty Model
LoC

Proof
LoC

Num.
Annot

Verif.
Time

Electronic purse [7] Deniability 46 93 9 3.92 s

Password checker [29] Quantitative
non-interference

59 100 10 4.69 s

F-Y array shuffle Quantitative
information flow

86 195 96 7.38 s

ZK hats (Sect. 2.2) Soundness 91 191 36 6.34 s

Path ORAM [48] Deniability 587 209 142 9.74 s

1. Electronic Purse. We model an electronic purse, with a secret initial bal-
ance, proposed by Backes et al. [7]. A fixed amount is debited from the purse
until the balance is insufficient for the next transaction. We prove a denia-
bility property: there is a sufficient number of traces with identical attacker
observations but different initial balances.

2. Password Checker. We model the password checker from Finkbeiner et
al. [29], but we allow passwords of unbounded length n. We prove quantitative
non-interference: information leakage to an attacker is ≤n bits.

3. Array Shuffle. We implement a variant of the Fisher-Yates shuffle. We chose
this because producing random permutations of an array is an important com-
ponent of certain cryptographic protocols (e.g., Ring ORAM [40]). We prove a
quantitative information flow property stating that all possible permutations
are indeed generated by the shuffling algorithm.

4. ZK Hats. We prove soundness of the zero-knowledge protocol in Sect. 2.
5. Path ORAM. Discussed in Sect. 6.3.

The properties we prove on these models and the results of our evaluation are pre-
sented in Table 1 which shows the size of each model, the number of lines of proof
code (this is the code for self-composition, property specification, etc.), the num-
ber of verification annotations (invariants and procedure pre-/post-conditions)
and the verification time for each example. Once the auxiliary strengthening
invariants are specified, the verification completes within a few seconds. This
suggests that the methodology can scale to larger models, and even implemen-
tations. The main challenge in the application of the methodology is the con-
struction of the trace enumeration relations, associated witness functions, and



218 S. Sahai et al.

the specification of strengthening invariants. Each of these requires application-
specific insight. Since most of our enumerations and invariants are quantified,
some of the proofs also required tweaking the SMT solver’s configuration options
(e.g. turning off model-based quantifier instantiation in Z3).

6.3 Deniability of Path ORAM

In this section, we discuss our main case study: the application of trace enumer-
ations for verifying deniability of server access patterns in Path ORAM [48], a
practical variant of Oblivious RAM (ORAM) [33]. ORAMs refer to a class of
algorithms that allow a client with a small amount of storage to store/load a
large amount of data on an untrusted server while concealing the client access
pattern from the server. Path ORAM stores encrypted data on the server in an
augmented binary tree format. Each node stores Z data blocks, referred to as
buckets of size Z. Additionally, the client has a small amount of local storage
called the stash. The client maintains a secret mapping called the position map
to keep track of the path where a data block is stored on the server. Each entry
in the position map maps a client address to a leaf on the server. Path ORAM
maintains the invariant that every block is stored somewhere along the path
from the root to the leaf node that the block is mapped to by the position map.

Deniability of Server Access Patterns in Path ORAM: We formulate
security of access patterns in Path ORAM as a deniability property stating that
for every infinitely-long trace of server accesses, there are (numBlks − 1)! traces
of client accesses with identical server observations but different client requests.

∀π0. #π1 : F (δπj ,πk
). G (ψπ0,π1) ≥ (numBlks − 1)! (6)

The binary predicate δ imposes the requirement that the client’s request are
different in each of the traces captured by the counting quantifier, and the con-
dition in ψ states that all the traces captured by the counting quantifier have
the same observable access pattern as π0.

Verification of Deniability in Path ORAM: To verify the QHP stated in
Eq. 6, for every trace of server accesses we need to generate (numBlks−1)! traces
of client requests that produce the same server access.

Suppose we have Path ORAM (a) that is initialized with some position map.
Now consider the Path ORAM (b) with the same number of blocks, but with
an initial position map that is a derangement of the position map of (a).6 The
key insight is that ORAM (b) can simulate an identical server access pattern
as ORAM (a) by appropriately choosing a different client request that maps to
the same leaf that is being accessed by (a) and then updating the position map
identically as (a). This is shown in Fig. 7, which shows two Path ORAMs that
produce identical server access patterns but service different client requests.
6 A derangement of a set is a permutation of the elements of the set such that no

element appears in its original position.
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Fig. 7. Path ORAMs satisfying the counting quantifier of Eq. 6, where, p represents
the position map indexed from 1 and r is the client’s request.

The above insight leads to a trace enumeration where two traces are related
via U if their position maps are derangements of each other, the client accesses
are permuted as per the derangement while all other parameters of the ORAM
are identical. We use this to prove Property 6. Further details are given in [43].

7 Related Work

Hyperproperties: Research into secure information flow started with the
seminal work of Denning and Denning [24], Goguen and Meseguer [32] and
Rushby [42]. The self-composition construction for the verification of secure
information flow was introduced by Barthe et al. [10]. Clarkson and Schnei-
der [21] introduced the class of specifications called hyperproperties. Clarkson
and colleagues also introduced HyperLTL and HyperCTL∗ [19], which are tem-
poral logics for specifying hyperproperties, while verification algorithms for these
were introduced by Finkbeiner and colleagues in [30]. Cartesian Hoare Logic [47]
was introduced by Sousa and Dillig and enables the specification and verification
of hyperproperties over programs as opposed to transition systems. A number
of subsequent efforts have studied hyperproperties in the context of program
verification [5,26,45,53].

Quantitative Information Flow: Quantitative hyperproperties build on the
rich literature of quantitative information flow (QIF) [3,17,20,34,46]. The QIF
problem is to quantify (or bound) the number of bits of secret information that
is attacker-observable. Certain notions of QIF can be expressed as QHPs. It
is important to note QHPs can express security specifications (e.g., soundness)
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that are not QIF. Yasuoka and Terauchi studied QIF from a theoretical per-
spective and showed that it could be expressed as hypersafety and hyperlive-
ness [54]. Approaches based on QIF measures such as min-entropy [46], Shannon
entropy [18] etc. have also been applied in the context of static analysis [38].

Quantitative Hyperproperties: Quantitative Cartesian Hoare Logic (QCHL)
enables verification of certain quantitative properties of programs [16]. QHPs are
more expressive than QCHL, the latter counts events within a trace (e.g. memory
accesses), while QHPs count the number of traces satisfying certain conditions.

The most closely related work to ours is of Finkbeiner et al. [29] who intro-
duced Quantitative HyperLTL over Kripke structures. They also introduced a
verification algorithm for this logic that is based on maximum model counting.
However, their algorithm does not scale to reasonable-sized systems, and exper-
iments from their paper show that the approach times out when checking an
8-bit leak in a password checker (using 8-bit passwords). We differ from their
work in three important ways. First, our properties are defined over symbolic
transition systems rather than Kripke structures. This allows modeling and ver-
ification of QHPs over infinite-state systems. Second, our bounds are symbolic,
which enables us to express bounds as functions of transition system parameters.
Finally, our definition of Quantitative HyperLTL is also more expressive. It is
not possible to convert our QHPs into (non-quantitative) HyperLTL formulas
with k-traces for any fixed value of k.

Verification of ORAMs: In concurrent work with ours, Barthe et al. [11] and
Darais et al. [22] have introduced specialized mechanisms to prove security of
ORAMs. Barthe et al. [11] introduced a probabilistic separation logic (PSL) that
(among other things) can be used to reason about the security of ORAMs. Unlike
QHPs, PSL does not permit quantitative reasoning about probabilities of events
and also does not (yet) support machine-checked reasoning. Darais et al. [22]
introduce a type system that enforces obliviousness; they use this type system
to implement a tree-based ORAM. Note that QHPs can express specifications
other than obliviousness, and obliviousness need not necessarily be a QHP.

8 Conclusion

Quantitative hyperproperties are a powerful class of specifications that stipu-
late the existence of a certain number of traces satisfying certain constraints.
Many important security guarantees, especially those involving probabilistic
guarantees of security, can be expressed as quantitative hyperproperties. Unfor-
tunately, verification of quantitative hyperproperties is a challenging problem
because these specifications require simultaneous reasoning about a large num-
ber of traces of a system. In this paper, we introduced a specification language,
satisfaction semantics, and a verification methodology for quantitative hyper-
properties. Our verification methodology is based on reducing the problem of
counting traces into that of counting the number of assignments that satisfy a
first-order logic formula. Our methodology enables security verification of many
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interesting security protocols that were previously out of reach, including confi-
dentiality of access pattern accesses in Path ORAM.
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Abstract. Observational models make tractable the analysis of infor-
mation flow properties by providing an abstraction of side channels. We
introduce a methodology and a tool, Scam-V, to validate observational
models for modern computer architectures. We combine symbolic execu-
tion, relational analysis, and different program generation techniques to
generate experiments and validate the models. An experiment consists of
a randomly generated program together with two inputs that are obser-
vationally equivalent according to the model under the test. Validation is
done by checking indistinguishability of the two inputs on real hardware
by executing the program and analyzing the side channel. We have eval-
uated our framework by validating models that abstract the data-cache
side channel of a Raspberry Pi 3 board with a processor implementing
the ARMv8-A architecture. Our results show that Scam-V can identify
bugs in the implementation of the models and generate test programs
which invalidate the models due to hidden microarchitectural behavior.

Keywords: Testing · Side channels · Information flow security ·
Model validation · Microarchitectures

1 Introduction

Information flow analysis that takes into account side channels is a topic
of increasing relevance, as attacks that compromise confidentiality via dif-
ferent microarchitectural features and sophisticated side channels continue to
emerge [2,27,28,31–33,40]. While there are information flow analyses that try
to counter these threats [3,15], these approaches use models that abstract from
many features of modern processors, like caches and pipelining, and their effects
on channels that can be accessed by an attacker, like execution time and power
consumption. Instead, these models [36] include explicit “observations” that
become available to an attacker when the program is executed and that should
overapproximate the information that can be observed on the real system.
c© The Author(s) 2020
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Fig. 1. Validation framework workflow

While abstract models are indispensable for automatic verification because
of the complexity of modern microarchitectures, the amount of details hidden by
these models makes it hard to trust that no information flow is missed, i.e., their
soundness. Different implementations of the same architecture, as well as opti-
mizations such as parallel and speculative execution, can introduce side channels
that may be overlooked by the abstract models. This has been demonstrated by
the recent Spectre attacks [32]: disregarding these microarchitectural features
can lead to consider programs that leak information on modern CPUs as secure.
Thus, it is essential to validate whether an abstract model adequately reflects
all information flows introduced by the low-level features of a specific processor.

In this work, we introduce an approach that addresses this problem: we show
how to validate observational models by comparing their outputs against the
behavior of the real hardware in systematically generated experiments. In the
following, we give an overview of our approach and this paper.

Our Contribution. We introduce Scam-V (Side Channel Abstract Model Val-
idator), a framework for the automatic validation of abstract observational
models. At a high level, Scam-V generates well-formed1 random binaries and
attempts to construct pairs of initial states such that runs of the binaries from
these states are indistinguishable at the level of the model, but distinguishable
on the real hardware. In essence, finding such counterexamples implies that the
observational model is not sound, and leads to a potential vulnerability. Figure 1
illustrates the main workflow of Scam-V.

The first step of our workflow (described in Sect. 3) is the generation of a
binary program for the given architecture, guided towards programs that trigger
certain features of the architecture. The second step translates the program to
the intermediate language BIR (described in Sect. 2.4) and annotates the result
with observations according to the observational model under validation. This
transpilation is provably correct with respect to the formal model of the ISA,
i.e., the original binary program and the transpiled BIR program have the same
effects on registers and memory. In step three we use symbolic execution to syn-

1 Terminating programs which do not cause run-time exceptions and emit observations
required by the analysis.
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thesize the weakest relation on program states that guarantees indistinguishabil-
ity in the observational model (Sect. 4). Through this relation, the observational
model is used to drive the generation of test cases – pairs of states that satisfy
the relation and can be used as inputs to the program (Sect. 5). Finally, we run
the generated binary with different test cases on the real hardware, and compare
the measurements on the side channel of the real processor. A description of this
process together with general remarks on our framework implementation are in
Sect. 6. Since the generated test cases satisfy the synthesized relation, soundness
of the model would imply that the side-channel data on the real hardware cannot
be distinguished either. Thus, a test case where we can distinguish the two runs
on the hardware amounts to a counterexample that invalidates the observational
model. After examining a given test case, the driver of the framework decides
whether to generate more test cases for the same program, or to generate a new
program.

We have implemented Scam-V in the HOL4 theorem prover2 and have eval-
uated the framework on three observational models (introduced in Sect. 2.3) for
the L1 data-cache of the ARMv8 processor on the Raspberry Pi 3 (Sect. 2.2).
Our experiments (Sect. 7) led to the identification of model invalidating microar-
chitectural features as well as bugs in the ARMv8 ISA model and our observa-
tional extensions. This shows that many existing abstractions are substantially
unsound.

Since our goal is to validate that observational models overapproximate hard-
ware information flows, we do not attempt to identify practically exploitable
vulnerabilities. Instead, our experiments attempt to validate these models in the
worst case scenario for the victim. This consists of an attacker that can precisely
identify the cache lines that have been evicted by the victim and that can min-
imize the noise of these measurements in the presence of background processes
and interrupts.

2 Background

2.1 Observational Models

We briefly introduce the concepts of side channels, indistinguishability, observa-
tional models, and observational equivalence. For the rest of this section, consider
a fixed program that runs on a fixed processor. We can model the program run-
ning on the processor by a transition system M = 〈S, →〉, where S is a set of
states and →⊆ S × S a transition relation. In automated verification, the state
space of such a model usually reflects the possible values of program variables
(or: registers of the processor), abstracting from low-level behavior of the pro-
cessor, such as cache contents, electric currents, or real-time behavior. That is,
for every state of the real system there is a state in the model that represents
it, and a state of the model usually represents a set of states of the real system.

Then, a side channel is a trait of the real system that can be read from by
an attacker and that is not modeled in M .
2 https://hol-theorem-prover.org.
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Definition 1 (Indistinguishability). States r1 and r2 of the real system are
indistinguishable if a real-world attacker is not able to distinguish executions
from r1 or r2 by means of the side channel on the real hardware.
Note that executions may be distinguishable even if they end in the same final
state, e.g., if the attacker is able to measure execution time.

In order to verify resilience against attacks that use side channels, one option
is to extend the model to include additional features of the real system and to for-
malize indistinguishability in terms of some variations of non-interference [25,26].
Unfortunately, it is infeasible to develop formal models that capture all side
channels of a modern computer architecture. For instance, precisely determining
execution time or power consumption of a program requires to deal with complex
processor features such as cache hierarchies, cache replacement policies, specula-
tive execution, branch prediction, or bus arbitration. Moreover, for some impor-
tant parts of microarchitectures, their exact behavior may not even be public
knowledge, e.g., the mechanism used to train the branch predictor. Additionally,
information flow analyses cannot use the same types of overapproximations that
are used for checking safety properties or analyzing worst-case execution time,
e.g., the introduction of nondeterminism to cover all possible outcomes.

In order to handle this complexity, information flow analyses [3,15] use mod-
els designed to overapproximate information flow to channels in terms of system
state observations. To this end, the model is extended with a set of possible
observations O and we consider a transition relation →⊆ S × O × S, i.e., each
transition produces an observation that captures the information that it poten-
tially leaks to the attacker. We assume that the set O contains an empty obser-
vation ⊥, and call a transition labeled with ⊥ a silent transition. We call the
resulting transition system an observational model. For instance, in case of a
rudimentary cacheless processor, the execution time of a program depends only
on the sequence of executed instructions. In this case, extending the model with
observations that reveal the instructions is more convenient than producing a
clock-accurate model of the system.

We use the operator ◦ for the sequential composition of observations. In
particular, for a trace π = s0 →o1 s1 . . . →on sn of the model, we write o1◦. . .◦on

for the sequence of observations along π. We write o1 ◦ . . . ◦ on ≈ o′
1 ◦ . . . ◦ o′

n′ if
the two sequences are equal after removing silent transitions. Comparing traces
with observations leads to a notion of observational equivalence, defined as a
relation on program states.
Definition 2 (Observational equivalence). Traces π = s0 →o1 s1 . . . →on

sn and π′ = s′
0 →o′

1 s′
1 . . . →o′

n′ s′
n′ of an observational model M are observa-

tionally equivalent (written as π ∼M π′) iff o1 ◦ . . . ◦ on ≈ o′
1 ◦ . . . ◦ o′

n′ .
States s1 ∈ S and s2 ∈ S are observationally equivalent, denoted s1 ∼M s2,

iff for every possible trace π1 of M that starts in s1 there is a trace π2 of M that
starts in s2 such that π1 ∼M π2, and vice versa.

Note that this notion is, in principle, different from the notion of indistin-
guishability. The overapproximation of information flows can lead to false posi-
tives: for example, execution of a program may require the same amount of time
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Fig. 2. L1 data-cache structure.

even if the sequences of executed instructions are different. A more severe con-
cern is that these abstractions may overlook some flows of information due to
the number of low-level details that are hidden. For instance, an observational
model may not take into account that for some microcontrollers the number of
clock cycles required for multiplication depends on the value of the operands.

The use of an abstract model to verify resilience against side-channel attacks
relies on the assumption that observational equivalence entails indistinguishabil-
ity for a real-world attacker on the real system:

Definition 3 (Soundness). An observational model M is sound if whenever
the model states s1 and s2 represent the real system states r1 and r2, respectively,
then s1 ∼M s2 entails indistinguishability of r1 and r2.

2.2 The Evaluation Platform: Raspberry Pi 3

In order to evaluate our framework, we selected Raspberry Pi 33, which is a
widely available ARMv8 embedded system. The platform’s CPU is a Cortex-
A53, which is an 8-stage pipelined processor with a 2-way superscalar and in-
order execution pipeline. The CPU implements branch prediction, but it does not
support speculative execution. This makes the CPU resilient against variations
of Spectre attacks [5].

In the following, we focus on side channels that exploit the Level 1 (L1) data-
cache of the system. The L1 data-cache is transparent for programmers. When
the CPU needs to read a location in memory in case of a cache miss, it copies
the data from memory into the cache for subsequent uses, tagging it with the
memory location from which the data was read.

Data is transferred between memory and cache in blocks of 64 bytes, called
cache lines. The L1 data-cache (Fig. 2) is physically indexed and physically
tagged and is 4-way set associative: each memory location can be cached in four
different entries in the cache—when a line is loaded, if all corresponding entries

3 https://www.raspberrypi.org.

https://www.raspberrypi.org
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are occupied, the CPU uses a specific (and usually underspecified) replacement
policy to decide which colliding line should be evicted. The whole L1 cache is
32KB in size, hence it has 128 cache sets (i.e. 32 KB/64 B/4). Let a be a physical
address, in the following we use off(a) (i.e., least significant 6 bits), index(a)
(i.e., bits from 6 to 12), and tag(a) (i.e., the remaining bits) to extract the cache
offset, cache set index, and cache tag of the address.

The cache implements a prefetcher, for some configurable k ∈ N: when it
detects a sequence of k cache misses whose cache set indices are separated by a
fixed stride, the prefetcher starts to fetch data in the background. For example,
in Fig. 2, if k = 3 and the cache is initially empty then accessing addresses a, b,
and c, whose cache lines are separated by a stride of 2, can cause the cache to
prefetch the block [384 . . . 449].

2.3 Different Attacker and Observational Models

Attacks that exploit the L1 data-cache are usually classified in three categories:
In time-driven attacks (e.g. [47]), the attacker measures the execution time of
the victim and uses this knowledge to estimate the number of cache misses and
hits of the victim; In trace-driven attacks (e.g. [1,48]), the adversary can profile
the cache activities during the execution of the victim and observe the cache
effects of a particular operation performed by the victim; Finally, in access-driven
attacks (e.g. [39,46]), the attacker can only determine the cache sets modified
after the execution of the victim has completed. A widely used approach to
extract information via cache is Prime+Probe [40]: (1) the attacker reads its
own memory, filling the cache with its data; (2) the victim is executed; (3) the
attacker measures the time needed to access the data loaded at step (1): slow
access means that the corresponding cache line has been evicted in step (2).

In the following we disregard time-driven attacks and trace-driven attacks:
the former can be countered by normalizing the victim execution time; the latter
can be countered by preventing victim preemption. Focusing on access-driven
attacks leads to the following notion of indistinguishability:

Definition 4. Real system states r1 and r2 are indistinguishable for access-
driven attacks on the L1 data-cache iff executions starting in r1 or r2 modify
the same cache sets.

We remark that for multi-way caches, the need for models that overapprox-
imate the information flow is critical since the replacement policies are seldom
formally specified and a precise model of the channel is not possible. The fol-
lowing observational model attempts to overapproximate information flows for
data-caches by relying on the fact that accessing two different addresses that
only differ in their cache offset produces the same cache effects:

Definition 5. The transition relation of the multi-way cache and pc observa-
tional model is s →o

mwc,pc s′, where →o
mwc,pc models the execution of one single

instruction, with o ∈ N × (({rd, wt} × N × N) ∪ ⊥). If o = (pc, acc) then pc is
the current program counter and acc = (op, t, i) is the memory access performed
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by the instruction, where op is the memory operation, t is the cache tag and i
is the cache set index corresponding to the address. If the instruction does not
access the memory, then acc =⊥.

Notice that by making the program counter observable, this model assumes that
the attacker can infer the sequence of instructions executed by the program.

We introduce several relaxed models, representing different assumptions on
the hardware behavior and attacker capability. Each relaxed model is obtained
by projecting observations of Definition 5. Let α be a relaxed model and fα the
corresponding projection function, then s →o′

α s′ iff exists o such that fα(o) = o′

and s →o
mwc,pc s′.

The following model assumes that the effects of instructions that do not
interact with the data memory are not measurable, hence the attacker does not
observe the program counter:

Definition 6. The projection of the multi-way cache observational model is
fmwc((pc, acc)) = acc.

On many processors, the replacement policy for a cache set does not depend
on previous accesses performed to other cache sets. The resulting isolation among
cache sets leads to the development of an efficient countermeasure against access-
driven attacks: cache coloring [23,45]. This consists in partitioning the cache
sets into multiple regions and ensuring that memory pages accessible by the
adversary are mapped to a specific region of the cache. In this case, accesses to
other regions do not affect the state of cache sets that an attacker can examine.
Therefore these accesses are not observable. This assumption is captured by the
following model:

Definition 7. The projection of the partitioned multi-way cache observational
model is fpmwc((pc, acc)) = acc if acc = (op, t, i) and i belongs to the set of
cache sets that are addressable by the attacker, and is ⊥ otherwise.

Notice that cache prefetching can violate soundness of this model, since accesses
to the non-observable region of the cache may lead to prefetching addresses that
lie in the observable part of the cache (see Sect. 7.2).

Finally, for direct-mapped caches, where each memory address is mapped to
only one cache entry, the cache tag should not be observable if the attacker does
not share memory with the victim:

Definition 8. The projection of the direct-mapped cache observational model
is fdc((pc, (op, t, i))) = (op, i) and fdc((pc, ⊥)) =⊥.

Since the cache in Cortex-A53 is multi-way set associative, this model is not
sound. For example, in a two-way set associative cache, accessing a, a and a, b,
where both a and b have the same cache set index but different cache tags, may
result in different cache states.
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Fig. 3. BIR transpilation example

2.4 Binary Intermediate Representation

To achieve a degree of hardware independence, we use the architecture-agnostic
intermediate representation BIR [34]. It is an abstract assembly language with
statements that work on memory, arithmetic expressions, and jumps. Figure 3
shows an example of code in a generic assembly language and its transpiled BIR
code. This code performs a conditional jump to l2 if Z holds, and otherwise it
sets X1 to the multiplication X2 ∗ X3. Then, at l2 it loads a word from memory
at address X1 into X2, and finally adds 8 to the pointer X1. BIR programs are
organized into blocks, which consist of jump-free statements and end in either
conditional jump (CJMP), unconditional jump (JMP), or HALT.

BIR also has explicit support for observations, which are produced by state-
ments that evaluate a list of expressions in the current state. To account for
expressive observational models, BIR allows conditional observation. The con-
dition is represented by an expression attached to the observation statement.
The observation itself happens only if this condition evaluates as true in the
current state. The observations in Fig. 3 reflect a scenario where the data-
cache has been partitioned: some lines are exclusively accessible by the vic-
tim (i.e. the program), some lines can be shared with the attacker. The state-
ment OBS(sline(X1), [tag(X1), index(X1)]) for the load instruction con-
sists of an observation condition (sline(X1)) and a list of expressions to
observe ([tag(X1), index(X1)]). The function sline checks that the argu-
ment address is mapped in a shared line and therefore visible to the attacker.
The functions tag and index extract the cache tag and set index in which the
argument address is mapped. Binary programs can be translated to BIR via
a process called transpilation. This transformation reuses formal models of the
ISAs and generates a proof that certifies correctness of the translation by estab-
lishing a bisimulation between the two programs.

3 Program Generation

We base our validation of observational models on the execution of binary pro-
grams rather than higher-level code representations. This approach has the fol-
lowing benefits: (i) It obviates the necessity to trust compilers or reason about
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Fig. 4. Example programs generated by the Scam-V random program generator.

Fig. 5. Example programs generated by Scam-V monadic program generators.

how their compilation affects side-channels. (ii) Implementation effort is reduced
because most existing side-channel analysis approaches also operate on binary
representations, which requires ISA models. (iii) This approach allows to find
ISA model faults independently of the compilation. (iv) It enables a unified
infrastructure to handle many different types of channels.

In Scam-V, we implemented two techniques to generate well-formed bina-
ries: random program generation and monadic program generation. The random
generator leverages the instruction encoding machinery from the existing HOL4
model of the ISA and produces arbitrary well-formed ARMv8 binaries, with
the possibility to control the frequency of occurrences of each instruction class.
The monadic generator is following a grammar-driven approach in the style of
QuickCheck [13] that generates arbitrary programs that fit a specific pattern or
template. The program templates can be defined in a modular, declarative style
and are extensible. We use this approach to generate programs in a guided fash-
ion, focusing on processor features that we want to exercise in order to validate a
model, or those we suspect may lead to a counterexample. Figures 4 and 5 show
some example programs generated by Scam-V, including straight-line programs
that only do memory loads, programs that load from addresses in a stride pat-
tern to trigger automatic prefetching, and programs with branches. More details
on how the program generators work can be found in [38].
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4 Synthesis of Weakest Relation

Synthesis of the weakest relation is based on standard symbolic execution tech-
niques. We only cover the basic ideas of symbolic execution in the following and
refer the reader to [30] for more details. We use X to range over symbols, and
c, e, and p to range over symbolic expressions. A symbolic state σ consists of
a concrete program counter iσ, a path condition pσ, and a mapping mσ from
variables to symbolic expressions. We write e(σ) = e for the symbolic evaluation
of the expression e in σ, and e(s) for the value obtained by substituting the
symbols of the symbolic expression e with the values of the variables in s, where
s is a concrete state.

Symbolic execution produces one terminating state4 for each possible exe-
cution path: a terminating state is produced when HALT is encountered; the
execution of CJMP c l1 l2 from state σ follows both branches using the path
conditions c(σ) and ¬c(σ). Symbolic execution of the example in Fig. 3 pro-
duces the terminating states σ1 and σ2. For the first branch we have pσ1 = Z
and mσ1 = {X1 → X1 + 8, X2 → LOAD(M, X1)} (we omit the variables that
are not updated), and for the second branch pσ2 = ¬Z and mσ2 = {X1 →
X2 ∗ X3 + 8, X2 → LOAD(M, X2 ∗ X3)}.

We extend standard symbolic execution to handle observations. That is, we
add to each symbolic state a list lσ, and the execution of OBS c #»e in σ appends the
pair (c, #»e ) to lσ, where c = c(σ) and #»e [i] = #»e [i](σ) are the symbolic evaluation
of the condition and expressions of the observation. For instance, in the example
of Fig. 3 the list for the terminating states are

lσ1 = [(sline(X1), [tag(X1), index(X1)])]
lσ2 = [(sline(X2 ∗ X3), [tag(X2 ∗ X3), index(X2 ∗ X3)])]

Let Σ be the set of terminating states produced by the symbolic execution, s
be a concrete state, and σ ∈ Σ be a symbolic state such that pσ(s) holds, then
executing the program from the initial state s produces the value mσ(X)(s)
for the variable X. Moreover, let lσ = [(c1, #»e 1) . . . (cn, #»e n)], then the generated
observations are (c1, #»e 1)(s)◦. . .◦(cn, #»e n)(s), where (c1, #»e 1)(s) = #»e 1(s) if c1(s),
and otherwise ⊥ (i.e. observations are list of concrete values).

After computing Σ, we synthesize the observational equivalence relation
(denoted by ∼) by ensuring that every possible pair of execution paths have
equivalent lists of observations. Formally, s1 ∼ s2 is equivalent to:

∧

(σ1,σ2)∈Σ×Σ

(pσ1(s1) ∧ pσ2(s2) ⇒ lσ1(s1) = lσ2(s2))

This synthesized relation implies the observational equivalence defined in
Sect. 2 (Definition 2). In the example, the synthesized relation (after simplifica-
tion) is as follows (notice that primed symbols represent variables of the second
state and we omitted the symmetric cases):
4 We consider only terminating programs.
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Fig. 6. Example test cases when the first 10 cache sets are shared.

(Z ∧ Z′) ⇒(
sline(X1) = sline(X′1) ∧
sline(X1) ⇒ (tag(X1) = tag(X′1) ∧ index(X1) = index(X′1))

)
∧

(Z ∧ ¬Z′) ⇒(
sline(X1) = sline(X′2 ∗ X′3) ∧
sline(X1) ⇒ (tag(X1) = tag(X′2 ∗ X′3) ∧ index(X1) = index(X′2 ∗ X′3))

)
∧

(¬Z ∧¬Z′) ⇒(
sline(X2 ∗X3) = sline(X′2 ∗X′3) ∧
sline(X2 ∗X3) ⇒ (tag(X2 ∗X3) = tag(X′2 ∗X′3) ∧ index(X2 ∗X3) = index(X′2 ∗X′3))

)

We recall that Raspberry Pi 3 has 128 cache sets and 64 bytes per line.
Figure 6 shows two pairs of states that satisfy the relation, assuming only the
first 10 cache sets are shared. States s1 and s2 lead the program to access the
third cache set, while s′

1 and s′
2 lead the program to access cache sets that are

not shared, therefore they generate no observations.

5 Test-Case Generation

A test case for a program P is a pair of initial states s1, s2 such that P produces
the same observations when executed from either state, i.e., s1 ∼ s2. The rela-
tion as described in Sect. 4 characterizes the space of observationally equivalent
states, so a simple but naive approach to test-case generation consists in query-
ing the SMT solver for a model of this relation. The model that results from the
query gives us two concrete observationally equivalent values for the registers
that affect the observations of the program, so at this point we could forward
these to our testing infrastructure to perform the experiment on the hardware.

However, the size of an observational equivalence class can be enormous,
because there are many variations to the initial states that cannot have effects
on the channels available to the attacker. Choosing a satisfying assignment for
the entire relation every time without any extra guidance risks producing many
test cases that are too similar to each other, and thus unlikely to find counterex-
amples. For instance, the SMT solver may generate many variations of the test
case (s1, s2) in Fig. 6 by iterating over all possible values for register X2 of state
s1, even if the value of this register is immaterial for the observation.

In practice, we explore the space of observationally equivalent states in a more
systematic manner. To this end, Scam-V supports two mechanisms to guide the
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selection of test cases: path enumeration and term enumeration. Path enumer-
ation partitions the space according to the combination of symbolic execution
paths that are taken, whereas term enumeration partitions the space according
to the value of a user-supplied BIR expression. In both cases, the partitions are
explored in round-robin fashion, choosing one test case from each partition in
turn. To make the queries to the SMT solver more efficient, we only generate a
fragment of the relation that corresponds to the partition under test.

Path Enumeration. Every time we have to generate a test case, we first select
a pair (σ1, σ2) ∈ Σ × Σ of symbolic states as per Sect. 4, which identifies a pair
of paths (pσ1 , pσ2). The chosen paths vary in each iteration in order to achieve
full path coverage. The query given to the SMT solver then becomes5

pσ1(s1) ∧ pσ2(s2) ∧ lσ1(s1) = lσ2(s2)

Since the meat of the relation is a conjunction of implications, this is a
natural partitioning scheme that ensures all conjuncts are actually explored.
Note that without this mechanism, the SMT solver could always choose states
that only satisfy one and the same conjunct. To guide this process even further,
the user can supply a path guard, which is a predicate on the space of paths. Any
path not satisfying the guard is skipped, allowing the user to avoid exploring
unwanted paths. For example, for the program in Fig. 3 we can use a path guard
to force the test generation to select only paths that produce no observations:
e.g., (Z ⇒ ¬sline(X1)) ∧ (¬Z ⇒ ¬sline(X2 ∗ X3)).

Term Enumeration. In addition to path enumeration, we can choose a BIR
expression e that depends on the symbolic state, and a range R of values to
enumerate. Every query also includes the conjuncts eσ1 = v1 ∧ eσ2 = v2 where
v1, v2 ∈ R and such that the vi are chosen to achieve full coverage of R×R. Term
enumeration can be useful to introduce domain-specific partitions, provided that
R×R is small enough. For example, this mechanism can be used to ensure that we
explore addresses that cover all possible cache sets, if we set e to be a mask that
extracts the cache set index bits of the address. For example, for the program
in Fig. 3 we can use Z ∗ index(X1) + (1 − Z) ∗ index(X2 ∗ X3) to enumerate all
combinations of accessed cache sets while respecting the paths.

6 Implementation

The implementation6 of Scam-V is done in the HOL4 theorem prover using its
meta-language, i.e., SML. Scam-V relies on the binary analysis platform HolBA
for transpiling the binary code of test programs to the BIR representation. This

5 Note that this is equivalent to taking a fragment of the observational equivalence
relation, specifically the case when pσ1 (s1) ∧ pσ2 (s2) holds.

6 Our implementation of Scam-V is embedded in HolBA, which is available at https://
github.com/kth-step/HolBA. Our extendable experimentation platform consists of
several “EmbExp-*” repositories available at https://github.com/kth-step.

https://github.com/kth-step/HolBA
https://github.com/kth-step/HolBA
https://github.com/kth-step
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Fig. 7. Experiment handling design with numbered steps. This showcases the workflow
for producing, preparing, executing and evaluating one experiment.

transpilation uses the existing HOL4 model of the ARMv8 architecture [16]
for giving semantics to ARM programs. In order to validate the observational
models of Sect. 2.3, we extended the transpilation process to inline observation
statements into the resulting BIR program. These observations represent the
observational power of the side channel. In order to compute possible execution
paths of test programs and their corresponding observations, which are needed
to synthesize the observational equivalence relation of Sect. 4, we implemented
a symbolic execution engine in HOL4. All program generators from Sect. 3 as
well as the weakest relation synthesis from Sect. 4 and the test-case generator
from Sect. 5 are implemented as SML libraries in Scam-V. The latter uses the
SMT solver Z3 [14] to generate test inputs. For conducting the experiments in
this paper, we used Raspberry Pi 3 boards equipped with ARM Cortex-A53
processors implementing the ARMv8-A architecture.

The Scam-V pipeline generates programs and pairs of observationally equiv-
alent initial states (test cases) for each program. Each combination of a program
with one of its test cases is called an experiment. After generating experiments,
we execute them on the processor implementation of interest to examine their
effects on the side channel. Figure 7 depicts the life of a single experiment as goes
through our experiment handling design. This consists of: (step 1) generating
an experiment and storing it in a database, (step 2) retrieving the experiment
from the database, (step 3) integrating it with experiment-platform code and
compiling it into platform-compatible machine code, and (step 4–6) executing
the generated binary on the real board, as well as finally receiving and storing
the experiment result.

The experiment-platform code configures page tables to setup cacheable and
uncacheable memory, clears the cache before every execution of the program, and
inserts memory barriers around the experiment code. The platform executes in
ARM TrustZone, which enables us to use privileged debug instructions to obtain
the cache state directly for comparison after experiment execution.

The way in which we compare final cache states for distinguishability depends
on the attacker and observational model in question. For multi-way cache, we
say two states are indistinguishable if and only if for each valid entry in one state,
there is a valid entry with the same cache tag in the corresponding cache set of
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the other state and vice versa. For the partitioned multi-way cache, we check
the states in the same way, except we do it only for a subset of the cache sets
(see Sect. 7.2 for details on the exact partition). For the direct-mapped cache,
we compare how many valid cache lines there are in each set, disregarding the
cache tags. These comparison functions have been chosen to match the attacker
power of the relaxed models in Definitions 6, 7, and 8 respectively.

7 Results

Since the ARM-v8 experimentation platform runs as bare-metal code, there are
no background processes or interrupts. Despite this fact, our measurements may
contain noise due to other hardware components that share the same memory
subsystem, such as the GPU, and because our experiments are not synchronized
with the memory controller. In order to simplify repeatability of our experiments,
we execute each experiment 10 times and check for discrepancies in the final state
of the data cache. Unless all executions give the same result, this experiment is
classified as inconclusive and excluded from further analysis.

7.1 Direct-Mapped Cache Observational Model

First, we want to make sure that Scam-V can invalidate unsound observational
models in general. For this purpose, we generated experiments that use the
model of Definition 8, i.e., for every memory access in BIR we observe the cache
set index of the address of the access. We know that this is not a sound model for
Raspberry Pi 3, because the platform uses a 4-way cache. Table 1.1 shows that
both the random program generator and the monadic load generator uncovered
counterexamples that invalidated this observational model.

7.2 Partitioned Cache Observational Model

Next, we consider the partitioned cache observational model from Definition 7.
That is, we partition the L1 cache of the Raspberry Pi 3 into two contiguous
regions and assume that the attacker has only access to the second region. Due
to the prefetcher of Cortex-A53 we expect this model to be unsound and indeed
we could invalidate it.

To this end, we generated experiments for two variations of the model. Vari-
ation A splits the cache at cache set 61, meaning that only cache sets 61–127
were considered accessible to the attacker. Variation B splits the cache at cache
set 64 (the midpoint), such that cache sets 64–127 were considered visible. The
following program is one of the counterexamples for variation A that have been
discovered by Scam-V using the monadic program generator.

Program Input 1 Input 2

ldr x2 , [x10 , #0] x10: 0 x80100080 0 x80100cc0
ldr x20 , [x10 , #128]
ldr x17 , [x10 , #256]
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Table 1. Invalidation of cache and faulty observational models.

(1.1) Observations Cache set index only (Definition 8)
Programs Monadic load generator Random program generator
Experiments 39660 20872
- Inconclusive 0 1
- Counterexample 19 18

(1.2) Experiment set Variation A Variation B
Observations Page unaligned cache

partitioning (Definition 7)
Page aligned cache
partitioning (Definition 7)

Programs Monadic stride generator
Experiments 36160 37843
- Inconclusive 5426 6967
- Counterexample 3460 0

(1.3) Observations Cache tag and set index (Definition 6)
Programs Random program generator Monadic generator

Loads Previction
Experiments 20256 23120 23290
- Inconclusive 2 0 0
- Counterexample 0 5 16

(1.4) Observations Cache tag and set index (Definition 6)
Programs Random program generator
Experiments 22321
- Inconclusive 0
- Failure 308

The counterexample exploits the fact that prefetching fills more lines than
those loaded by the program, provided the memory accesses happen in a certain
stride pattern. Thus, it essentially needs to have two properties: (i) two different
starting addresses for the stride, a1 and a2, with a cache set index that is lower
than 61 to avoid any observations in the model, and thus satisfying observational
equivalence, and (ii) one of a1 and a2 is close enough to the partition boundary.
In this case, automatic prefetching will continue to fill lines in subsequent sets,
effectively crossing the boundary into the attacker-visible region.

In our experiments, we used a path guard to generate only states that produce
only memory accesses to the region of the cache that is not visible by the attacker.
Additionally, we used term enumeration to force successive test cases to start a
stride on a different cache set and therefore cover the different cache set indices.
Without this guidance, the tool could generate only experiments that affect the
lower sets of the cache and never explore scenarios that affect the sets with
indices closer to the split boundary.

For variation B, we have not found such a counterexample. The only differ-
ence is that the partition boundary is on line 64, which means that each partition
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fits exactly in a small page (4K). We conjecture that the prefetcher does not per-
form line fills across small page (4K) boundaries. This could be for performance
reasons, as crossing a page boundary can involve a costly page walk if the next
page is not in the TLB. If this is the case, it would seem that it is safe to use
prefetching with a partitioned cache, provided the partitions are page-aligned.
Table 1.2 summarizes our experiments for this model.

7.3 Multi-way Cache Observational Model
In the remaining experiments, we consider the model of Definition 6 and we
assume that the attacker has access to the complete L1 cache. Even if we
expected this model to be sound, our experiments (Table 1.3) identified several
counterexamples. We comment on two classes of counterexamples below.
Previction. Some counterexamples are due to an undocumented behavior that
we called “previction” because it causes a cache line to be evicted before the
corresponding cache set is full. The following program compares x0 and x1 and
executes a sequence of three loads. In case of equality, fourteen nop are executed
between the first two loads.

Program Input 1 Input 2

cmp x0 , x1 x0: 0 x00000000 0 x00000000
b.eq #0x14 x1: 0 x00000000 0 x00000001
ldr x9 , [x2] x2: 0 x80100000 0 x80100000
ldr x9 , [x3] x3: 0 x80110000 0 x80110000
ldr x9 , [x4] x4: 0 x80120000 0 x80120000
b #0x48
ldr x9 , [x2]
nop {14 times }
ldr x9 , [x3]
ldr x9 , [x4]

Input 1 and Input 2 are two states that exercise the two execution paths and
have the same values for x2, x3 and x4, hence the two states are observationally
equivalent. Notice that all memory loads access cache set 0. Since the cache is
4-way associative and the cache is initially empty, we expect no eviction to occur.

Executions starting in Input 2 behave as expected and terminate with the
addresses of x2, x3, and x4 in the final cache state. However, the execution
from Input 1 leads to a previction, which causes the final cache state to only
contain the addresses of x3 and x4. The address of x2 has been evicted even
if the cache set is not full. Therefore the two states are distinguishable by the
attacker. Our hypothesis is that the processor detects a short sequence of loads
to the same cache set and anticipates more loads to the same cache set with
no reuse of previously loaded values. It evicts the valid cache line in order to
make space for more colliding lines. We note that these cache entries are not
dirty and thus eviction is most likely a cheap operation. The execution of a nop
sequence probably ensures that the first cache line fill is completed before the
other addresses are accessed.
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Offset-Dependent Behaviors. Our experiments identified further counterex-
amples that invalidate the observational model. In particular, the following coun-
terexample also invalidates the observational model of Definition 5, where cache
line offsets are not observable.

Program Input 1 Input 2

ldr x6 , [x0] x0 : 0 x80108000 0 x80108000
ldr x9 , [x3 , #4] x3 : 0 x800FFFFC 0 x800FFFFC
ldr x2 , [x16] x16: 0 x80100020 0 x80100000
ldr x16 ,[ x22] x22: 0 x8011FFF8 0 x8011FFF8
ldr x9 , [x22 ,#8]

This program consists of five consecutive load instructions. This program
always produces five observations consisting of the cache tag and set index of
the five addresses. Input 1 and Input 2 are observationally equivalent: they only
differ for x16, which affects the address used for the third load, but the addresses
0x80100020 and 0x80100000 have the same cache tag and set index and only differ
for the offset within the same cache line. However, these experiments lead to
two distinguishable microarchitectural states. More specifically, execution from
Input 1 results in the filling of cache set 0, where the addresses of registers x0,
x3, x16 and x22 + 8 are present in the cache, while executions from Input 2 leads
a cache state where the address of x0 is not in the cache and has been probably
evicted. This effect can be the result of the interaction between cache previction
and cache bank collision [9,40], whose behavior depends on the cache offset.
Notice that cache bank collision is undocumented for ARM Cortex-A53. Tromer
et al. [46] have shown that such offset-dependent behaviors can make insecure
side-channel countermeasures for AES that rely on making accesses to memory
blocks (rather than addresses) key-independent.

7.4 Problems in Model Implementations

Additionally to microarchitectural features that invalidate the formal models,
our experiments identified bugs of the implementation of the models: (1) the
formalization of the ARMv8 instruction set used by the transpiler and (2) the
module that inserts BIR observation statements into the transpiled binary to
capture the observations that can be made according to a given observational
model. Table 1.4 reports problems identified by the random program genera-
tor. Some of these failing experiments result in distinguishable states while oth-
ers result in run-time exceptions. In fact, if the model predicts wrong memory
accesses for a program then our framework can generate test inputs that cause
accesses to unmapped memory regions. The example program in Fig. 4 exhibits
both problems when executed with appropriate inputs.

Missing Observations. The second step of our framework translates binary
programs to BIR and adds observations to reflect the observational model under
validation. In order to generate observations that correspond to memory loads,
we syntactically analyze the right-hand side of BIR assignments. For instance,
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for line l2 in Fig. 3 we generate an observation that depends on variable X1
because the expression of assignment is LOAD(MEM, X1). This approach is prob-
lematic when a memory load is immaterial for the result of an instruction. For
example, ldr xzr and ldr wzr instructions load from memory to a register that
is constantly zero. The following program loads from x30 into xzr.

Program Input 1 Input 2

ldr xzr , [x30] x30: 0 x80000040 0 x800000038

The translation of this instruction is simply [JMP next_addr]: there is no
assignment that loads from x30 because the register xzr remains zero. Therefore,
our model generates no observations and any two input states are observation-
ally equivalent. The ARM specification does not clarify that the microarchitec-
ture can skip the immaterial memory load. Our experiments show that this is
not the case and therefore our implementation of the model is not correct. In
fact, the program accesses cache set index(0x80000040) = 1 for Input 1 and
cache set index(0x80000038) = 0 for Input 2, which results in distinguishable
states. Moreover, by not taking into account the memory access our framework
generates some tests that set x30 to unmapped addresses and cause run-time
exceptions.

Flaw in HOL4 ARMv8 ISA Model. Our tool has identified a bug of the
HOL4 ARMv8 ISA model. This model has been used in several projects [8,17]
as the basis for formal analysis and is used by our framework to transform
ARM programs to BIR programs. Despite its wide adoption, we identified a
problem in the semantics of instructions Compare and Branch on Zero (CBZ)
and Compare and Branch on Non-Zero (CBNZ). These instructions implement a
conditional jump based on the comparison of the input register with zero. While
CBZ jumps in case of equality, CBNZ jumps in case of inequality. However, our
tests identified that CBNZ wrongly behaves as CBZ in the HOL4 model.

8 Related Work

Hardware Models. Verification approaches that take into account the under-
lying hardware architecture have to rely on a formal model of that architecture.
Commercial instruction set architectures (ISAs) are usually specified mostly in
natural language, and their formalization is an active research direction. For
example, Goel et al. [24] formalize the ISA of x86 in ACL2, Morrisett et al. [37]
model the x86 architecture in the Coq theorem prover, and Sarkar et al. [42]
provide a formal semantics of the x86 multiprocessor ISA in HOL. Moreover,
domain-specific languages for ISAs have been developed, such as the L3 lan-
guage [19], which has been used to model the ARMv7 architecture. As another
example, Siewiorek et al. [44] proposed the Instruction-Set Processor language
for formalizing the semantics of the instructions of a processor.
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Processor Verification and Validation. To gain confidence in the correctness
of a processor model, it needs to be verified or validated against the actual hard-
ware. This problem has received considerable attention lately. There are white-
box approaches such as the formal verification that a processor model matches
a hardware design [10,18]. These approaches differ from ours in that they try
to give a formal guarantee that a processor model is a valid abstraction of the
actual hardware, and to achieve that they require the hardware to be accessible
as a white box. More similar to ours are black-box approaches that validate an
abstract model by randomly generated instructions or based on dynamic instru-
mentation [20,29]. Combinations of formal verification and testing approaches
for hardware verification and validation have also been considered [11].

In contrast to our work, all of the approaches above are limited to func-
tional correctness, and validation is limited to single-instruction test cases, which
we show to be insufficient for information flow properties. Going beyond these
restrictions is the work of Campbell and Stark [12], who generate sequences of
instructions as test cases, and go beyond functional correctness by including
timing properties. Still, neither their models nor their approach is suitable to
identify violations of information flow properties.

Validating Information Flow Properties. To the best of our knowledge, we
present the first automated approach to validate processor models with respect
to information flow properties. To this end, we build on the seminal works of
McLean [35] on non-interference, Roscoe [41] on observational determinism, and
Barthe et al. [7] on self-composition as a method for proving information flow
properties. Most closely related is the work by Balliu et al. [6] on relational
analysis based on observational determinism.

These approaches are based on the different observational models that have
been proposed in the literature. For example, the program counter security
model [36] has been used when the execution time depends on the control flow
of the victim. Extensions of this model also make observable data that can affect
execution time of an instruction, or memory addresses accessed by the program
to model timing differences due to caching [4].

Many analysis tools use these observational models. Ct-verif [3] implements a
sound information flow analysis by proving observational equivalence construct-
ing a product program. CacheAudit [15] quantifies information leakage by using
abstract interpretation.

The risks of using unsound models for such analyses have been demonstrated
by the recent Spectre attack family [32], which exploits speculation to leak data
through caches. Several other architectural details require special caution when
using abstract models, as some properties assumed by the models could be
unmet. For instance, cache clean operations do not always clean residual state
in implementations of replacement policies [21]. Furthermore, many processors
do not provide sufficient means to close all leakage, e.g., shared state cannot
be cleaned properly on a context switch [22]. Finally, it has been shown that
fixes relying on too specific assumptions can be circumvented by modifying the
attack [43], and that attacks are possible even against formally verified software
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if the underlying processor model is unsound [28]. For these reasons, validation
of formal models by directly measuring the hardware is of great importance.

9 Concluding Remarks

We presented Scam-V, a framework for automatic validation of observational
models of side channels. Scam-V uses a novel combination of symbolic execution,
relational analysis, and observational models to generate experiments. We eval-
uated Scam-V on the ARM Cortex-A53 processor and we invalidated all models
of Sect. 2.3, i.e., those with observations that are cache-line-offset-independent.

Our results are summarized as follows: (i) in case of cache partitioning, the
attacker can discover victim accesses to the other cache partitions due to the
automatic data prefetcher; (ii) the Cortex-A53 prefetcher seems to respect 4K
page boundaries, like in some Intel processors; (iii) a mechanism of Cortex-A53,
which we called previction, can leak the time between accesses to the same cache
set; (iv) the cache state is affected by the cache line offset of the accesses, prob-
ably due to undocumented cache bank collisions like in some AMD processors;
(v) the formal ARMv8 model had a flaw in the implementation of CBNZ; (vi)
our implementation of the observational model had a flaw in case of loads into
the constant zero register. Moreover, since the microarchitectural features that
lead to these findings are also available on other ARMv8 cores, including some
that are affected by Spectre (e.g. Cortex A57), it is likely that similar behaviors
can be observed on these cores, and that more powerful observational models,
including those that take into account Spectre-like effects, may also be unsound.

These promising results show that Scam-V can support the identification of
undocumented and security-relevant features of processors (like results (ii), (iii),
and (iv)) and discover problems in the formal models (like results (v) and (vi)).
In addition, users can drive test-case generation to conveniently explore classes
of programs that they suspect would lead to side-channel leakage (like in result
(i)). This process is enabled by path and term enumeration techniques as well
as custom program generators. Moreover, Scam-V can aid vendors to validate
implementations with respect to desired side-channel specifications.

Given the lack of vendor communication regarding security-relevant proces-
sor features, validation of abstract side-channel models is of critical importance.
As a future direction of work, we are planning to extend Scam-V for other archi-
tectures (e.g. ARM Cortex-M0 based microcontrollers), noisy side channels (e.g.
time and power consumption), and other side channels (e.g. cache replacement
state). Moreover, we are investigating approaches to automatically repair an
unsound observational model starting from the counterexamples, e.g., by adding
state observations. Finally, the theory in Sect. 4 can be used to develop a certi-
fying tool for verifying observational determinism.
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