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Preface

It was our privilege to serve as the program chairs for CAV 2020, the 32nd
International Conference on Computer-Aided Verification. CAV 2020 was held as a
virtual conference during July 21–24, 2020. The tutorial day was on July 20, 2020, and
the pre-conference workshops were held during July 19–20, 2020. Due to the
coronavirus disease (COVID-19) outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2020 received a very high number of submissions (240). We accepted 18 tool
papers, 4 case studies, and 43 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured invited talks by David Dill (Calibra) and
Pushmeet Kohli (Google DeepMind) as well as invited tutorials by Tevfik Bultan
(University of California, Santa Barbara) and Sriram Sankaranarayanan (University of
Colorado at Boulder). Furthermore, we continued the tradition of Logic Lounge, a
series of discussions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2020 hosted the following workshops:
Numerical Software Verification (NSV), Verified Software: Theories, Tools, and
Experiments (VSTTE), Verification of Neural Networks (VNN), Democratizing Soft-
ware Verification, Synthesis (SYNT), Program Equivalence and Relational Reasoning
(PERR), Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), Formal
Methods for Blockchains (FMBC), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee (PC) for CAV 2020 consisted of 85 members – a
committee of this size ensures that each member has to review a reasonable number of
papers in the allotted time. In all, the committee members wrote over 960 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2020 PC for their outstanding efforts in evalu-
ating the submissions and making sure that each paper got a fair chance. Like last
year’s CAV, we made the artifact evaluation mandatory for tool paper submissions and
optional but encouraged for the rest of the accepted papers. The Artifact Evaluation
Committee consisted of 40 reviewers who put in significant effort to evaluate each
artifact. The goal of this process was to provide constructive feedback to tool devel-
opers and help make the research published in CAV more reproducible. The Artifact



Evaluation Committee was generally quite impressed by the quality of the artifacts,
and, in fact, all accepted tools passed the artifact evaluation. Among the accepted
regular papers, 67% of the authors submitted an artifact, and 76% of these artifacts
passed the evaluation. We are also very grateful to the Artifact Evaluation Committee
for their hard work and dedication in evaluating the submitted artifacts. The evaluation
and selection process involved thorough online PC discussions using the EasyChair
conference management system, resulting in more than 2,000 comments.

CAV 2020 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2020 a success. First, we would like to thank Xinyu Wang and He Zhu for chairing the
Artifact Evaluation Committee and Jyotirmoy Deshmukh for local arrangements. We
also thank Zvonimir Rakamaric for chairing the workshop organization, Clark Barrett
for managing sponsorship, Thomas Wies for arranging student fellowships, and Yakir
Vizel for handling publicity. We also thank Roopsha Samanta for chairing the Men-
toring Committee. Last but not least, we would like to thank members of the CAV
Steering Committee (Kenneth McMillan, Aarti Gupta, Orna Grumberg, and Daniel
Kroening) for helping us with several important aspects of organizing CAV 2020.

We hope that you will find the proceedings of CAV 2020 scientifically interesting
and thought-provoking!

June 2020 Shuvendu K. Lahiri
Chao Wang
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Abstract. This paper presents the Neural Network Verification (NNV)
software tool, a set-based verification framework for deep neural networks
(DNNs) and learning-enabled cyber-physical systems (CPS). The crux
of NNV is a collection of reachability algorithms that make use of a vari-
ety of set representations, such as polyhedra, star sets, zonotopes, and
abstract-domain representations. NNV supports both exact (sound and
complete) and over-approximate (sound) reachability algorithms for ver-
ifying safety and robustness properties of feed-forward neural networks
(FFNNs) with various activation functions. For learning-enabled CPS,
such as closed-loop control systems incorporating neural networks, NNV
provides exact and over-approximate reachability analysis schemes for
linear plant models and FFNN controllers with piecewise-linear activa-
tion functions, such as ReLUs. For similar neural network control systems
(NNCS) that instead have nonlinear plant models, NNV supports over-
approximate analysis by combining the star set analysis used for FFNN
controllers with zonotope-based analysis for nonlinear plant dynamics
building on CORA. We evaluate NNV using two real-world case stud-
ies: the first is safety verification of ACAS Xu networks, and the second
deals with the safety verification of a deep learning-based adaptive cruise
control system.

The material presented in this paper is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) through contract number FA8750-18-
C-0089, the National Science Foundation (NSF) under grant numbers SHF 1910017 and
FMitF 1918450, and the Air Force Office of Scientific Research (AFOSR) through award
numbers FA9550-18-1-0122 and FA9550-19-1-0288. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation thereon. Any opinions, finding, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of AFOSR, DARPA, or NSF.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-53288-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-53288-8_1


4 H.-D. Tran et al.
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1 Introduction

Deep neural networks (DNNs) have quickly become one of the most widely used
tools for dealing with complex and challenging problems in numerous domains,
such as image classification [10,16,25], function approximation, and natural lan-
guage translation [11,18]. Recently, DNNs have been used in safety-critical cyber-
physical systems (CPS), such as autonomous vehicles [8,9,52] and air traffic col-
lision avoidance systems [21]. Although utilizing DNNs in safety-critical applica-
tions can demonstrate considerable performance benefits, assuring the safety and
robustness of these systems is challenging because DNNs possess complex non-
linear characteristics. Moreover, it has been demonstrated that their behavior
can be unpredictable due to slight perturbations in their inputs (i.e., adversarial
perturbations) [36].

Fig. 1. An overview of NNV and its major modules and components.

In this paper, we introduce the NNV (Neural Network Verification) tool,
which is a software framework that performs set-based verification for DNNs
and learning-enabled CPS, known colloquially as neural network control systems
(NNCS) as shown in Fig. 21. NNV provides a set of reachability algorithms that
can compute both the exact and over-approximate reachable sets of DNNs and
NNCSs using a variety of set representations such as polyhedra [40,53–56], star
sets [29,38,39,41], zonotopes [32], and abstract domain representations [33]. The
reachable set obtained from NNV contains all possible states of a DNN from
bounded input sets or of a NNCS from sets of initial states of a plant model.
NNV declares a DNN or a NNCS to be safe if, and only if, their reachable sets do
not violate safety properties (i.e., have a non-empty intersection with any state
satisfying the negation of the safety property). If a safety property is violated,

1 The source code for NNV is publicly available: https://github.com/verivital/nnv/.
A CodeOcean capsule [43] is also available: https://doi.org/10.24433/CO.0221760.
v1.

https://github.com/verivital/nnv/
https://doi.org/10.24433/CO.0221760.v1
https://doi.org/10.24433/CO.0221760.v1
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Table 1. Overview of major features available in NNV. Links refer to relevant files/-
classes in the NNV codebase. BN refers to batch normalization layers, FC to fully-
connected layers, AvgPool to average pooling layers, Conv to convolutional layers, and
MaxPool to max pooling layers.

Feature Exact analysis Over-approximate analysis

Components FFNN, CNN, NNCS FFNN, CNN, NNCS

Plant dynamics (for

NNCS)

Linear ODE Linear ODE, Nonlinear ODE

Discrete/Continuous

(for NNCS)

Discrete Time Discrete Time, Continuous Time

Activation functions ReLU, Satlin ReLU, Satlin, Sigmoid, Tanh

CNN Layers MaxPool, Conv, BN, AvgPool, FC MaxPool, Conv, BN, AvgPool, FC

Reachability methods Star, Polyhedron, ImageStar Star, Zonotope, Abstract-domain, ImageStar

Reachable

set/Flow-pipe

Visualization

Yes Yes

Parallel computing Yes Partially supported

Safety verification Yes Yes

Falsification Yes Yes

Robustness

verification (for

FFNN/CNN)

Yes Yes

Counterexample

generation

Yes Yes

NNV can construct a complete set of counter-examples demonstrating the set
of all possible unsafe initial inputs and states by using the star-based exact
reachability algorithm [38,41]. To speed up computation, NNV uses parallel
computing, as the majority of the reachability algorithms in NNV are more
efficient when executed on multi-core platforms and clusters.

NNV has been successfully applied to safety verification and robustness anal-
ysis of several real-world DNNs, primarily feedforward neural networks (FFNNs)
and convolutional neural networks (CNNs), as well as learning-enabled CPS. To
highlight NNV’s capabilities, we present brief experimental results from two
case studies. The first compares methods for safety verification of the ACAS
Xu networks [21], and the second presents safety verification of a learning-based
adaptive cruise control (ACC) system.

2 Overview and Features

NNV is an object-oriented toolbox written in Matlab, which was chosen in part
due to the prevalence of Matlab/Simulink in the design of CPS. NNV uses the
MPT toolbox [26] for polytope-based reachability analysis and visualization [40],
and makes use of CORA [3] for zonotope-based reachability analysis of nonlinear
plant models [38]. NNV also utilizes the Neural Network Model Transformation
Tool (NNMT) for transforming neural network models from Keras and Tensor-
flow into Matlab using the Open Neural Network Exchange (ONNX) format,
and the Hybrid Systems Model Transformation and Translation tool (HyST) [5]

https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nncs
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nncs
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/NonLinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/ReLU.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/SatLin.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/ReLU.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/SatLin.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/LogSig.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/TanSig.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/Conv2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/Conv2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
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Fig. 2. Architecture of a typical neural network control system (NNCS).

for plant configuration. NNV makes use of YALMIP [27] for some optimization
problems and MatConvNet [46] for some CNN operations.

The NNV toolbox contains two main modules: a computation engine and an
analyzer, shown in Fig. 1. The computation engine module consists of four sub-
components: 1) the FFNN constructor, 2) the NNCS constructor, 3) the reach-
ability solvers, and 4) the evaluator. The FFNN constructor takes a network
configuration file as an input and generates a FFNN object. The NNCS con-
structor takes the FFNN object and the plant configuration, which describes
the dynamics of a system, as inputs and then creates an NNCS object. Depend-
ing on the application, either the FFNN (or NNCS) object will be fed into a
reachability solver to compute the reachable set of the FFNN (or NNCS) from
a given initial set of states. Then, the obtained reachable set will be passed to
the analyzer module. The analyzer module consists of three subcomponents: 1)
a visualizer, 2) a safety checker, and 3) a falsifier. The visualizer can be called to
plot the obtained reachable set. Given a safety specification, the safety checker
can reason about the safety of the FFNN or NNCS with respect to the specifica-
tion. When an exact (sound and complete) reachability solver is used, such as the
star-based solver, the safety checker can return either “safe,” or “unsafe” along
with a set of counterexamples. When an over-approximate (sound) reachability
solver is used, such as the zonotope-based scheme or the approximate star-based
solvers, the safety checker can return either “safe” or “uncertain” (unknown).
In this case, the falsifier automatically calls the evaluator to generate simulation
traces to find a counterexample. If the falsifier can find a counterexample, then
NNV returns unsafe. Otherwise, it returns unknown. Table 1 shows a summary
of the major features of NNV.

3 Set Representations and Reachability Algorithms

NNV implements a set of reachability algorithms for sequential FFNNs and
CNNs, as well as NNCS with FFNN controllers as shown in Fig. 2. The reachable
set of a sequential FFNN is computed layer-by-layer. The output reachable set
of a layer is the input set of the next layer in the network.

3.1 Polyhedron [40]

The polyhedron reachability algorithm computes the exact polyhedron reach-
able set of a FFNN with ReLU activation functions. The exact reachability
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computation of layer L in a FFNN is done as follows. First, we construct the
affine mapping Ī of the input polyhedron set I, using the weight matrix W and
the bias vector b, i.e., Ī = W × I + b. Then, the exact reachable set of the
layer RL is constructed by executing a sequence of stepReLU operations, i.e.,
RL = stepReLUn(stepReLUn−1(· · · (stepReLU1(Ī)))). Since a stepReLU oper-
ation can split a polyhedron into two new polyhedra, the exact reachable set
of a layer in a FFNN is usually a union of polyhedra. The polyhedron reach-
ability algorithm is computationally expensive because computing affine map-
pings with polyhedra is costly. Additionally, when computing the reachable set,
the polyhedron approach extensively uses the expensive conversion between the
H-representation and the V-representation. These are the main drawbacks that
limit the scalability of the polyhedron approach. Despite that, we extend the
polyhedron reachability algorithm for NNCSs with FFNN controllers. However,
the propagation of polyhedra in NNCS may lead to a large degree of conserva-
tiveness in the computed reachable set [38].

3.2 Star Set [38,41] (code)

The star set is an efficient set representation for simulation-based verification of
large linear systems [6,7,42] where the superposition property of a linear system
can be exploited in the analysis. It has been shown in [41] that the star set is
also suitable for reachability analysis of FFNNs. In contrast to polyhedra, the
affine mapping and intersection with a half space of a star set is more easily com-
puted. NNV implements an enhanced version of the exact and over-approximate
reachability algorithms for FFNNs proposed in [41] by minimizing the number
of LP optimization problems that need to be solved in the computation. The
exact algorithm that makes use of star sets is similar to the polyhedron method
that makes use of stepReLU operations. However, it is much faster and more
scalable than the polyhedron method because of the advantage that star sets
have in affine mapping and intersection. The approximate algorithm obtains an
over-approximation of the exact reachable set by approximating the exact reach-
able set after applying an activation function, e.g., ReLU, Tanh, Sigmoid. We
refer readers to [41] for a detailed discussion of star-set reachability algorithms
for FFNNs.

We note that NNV implements enhanced versions of earlier star-based reach-
ability algorithms [41]. Particularly, we minimize the number of linear program-
ming (LP) optimization problems that must be solved in order to construct the
reachable set of a FFNN by quickly estimating the ranges of all of the states in
the star set using only the ranges of the predicate variables. Additionally, the
extensions of the star reachability algorithms to NNCS with linear plant mod-
els can eliminate the explosion of conservativeness in the polyhedron method
[38,39]. The reason behind this is that in star sets, the relationship between
the plant state variables and the control inputs is preserved in the computation
since they are defined by a unique set of predicate variables. We refer readers to
[38,39] for a detailed discussion of the extensions of the star-based reachability
algorithms for NNCSs with linear/nonlinear plant models.

https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
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3.3 Zonotope [32] (code)

NNV implements the zonotope reachability algorithms proposed in [32] for
FFNNs. Similar to the over-approximate algorithm using star sets, the zono-
tope algorithm computes an over-approximation of the exact reachable set of a
FFNN. Although the zonotope reachability algorithm is very fast and scalable, it
produces a very conservative reachable set in comparison to the star set method
as shown in [41]. Consequently, zonotope-based reachability algorithms are usu-
ally only more efficient for very small input sets. As an example it can be more
suitable for robustness certification.

3.4 Abstract Domain [33]

NNV implements the abstract domain reachability algorithm proposed in [33]
for FFNNs. NNV’s abstract domain reachability algorithm specifies an abstract
domain as a star set and estimates the over-approximate ranges of the states
based on the ranges of the new introduced predicate variables. We note that
better ranges of the states can be computed by solving LP optimization. How-
ever, better ranges come with more computation time.

3.5 ImageStar Set [37] (code)

NNV recently introduced a new set representation called the ImageStar for use
in the verification of deep convolutional neural networks (CNNs). Briefly, the
ImageStar is a generalization of the star set where the anchor and generator
vectors are replaced by multi-channel images. The ImageStar is efficient in the
analysis of convolutional layers, average pooling layers, and fully connected lay-
ers, whereas max pooling layers and ReLU layers consume most of the com-
putation time. NNV implements exact and over-approximate reachability algo-
rithms using the ImageStar for serial CNNs. In short, using the ImageStar, we
can analyze the robustness under adversarial attacks of the real-world VGG16
and VGG19 deep perception networks [31] that consist of >100 million param-
eters [37].

4 Evaluation

The experiments presented in this section were performed on a desktop with
the following configuration: Intel Core i7-6700 CPU @ 3.4 GHz 8 core Processor,
64 GB Memory, and 64-bit Ubuntu 16.04.3 LTS OS.

4.1 Safety Verification of ACAS Xu Networks

We evaluate NNV in comparison to Reluplex [22], Marabou [23], and ReluVal
[49], by considering the verification of safety property φ3 and φ4 of the ACAS Xu

https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
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neural networks [21] for all 45 networks.2 All the experiments were done using
4 cores for computation. The results are summarized in Table 2 where (SAT)
denotes the networks are safe, (UNSAT) is unsafe, and (UNK) is unknown.
We note that (UNK) may occur due to the conservativeness of the reachability
analysis scheme. Detailed verification results are presented in the appendix of
the extended version of this paper [44]. For a fast comparison with other tools,
we also tested a subset of the inputs for Property 1–4 on all the 45 networks. We
note that the polyhedron method [40] achieves a timeout on most of networks,
and therefore, we neglect this method in the comparison.

Verification Time. For property φ3, NNV’s exact-star method is about 20.7×
faster than Reluplex, 14.2× faster than Marabou, 81.6× faster than Marabou-
DnC (i.e., divide and conquer method). The approximate star method is 547×
faster than Reluplex, 374× faster than Marabou, 2151× faster than Marabou-
DnC, and 8× faster than ReluVal. For property φ4, NNV’s exact-star method
is 25.3× faster than Reluplex, 18.0× faster than Marabou, 53.4× faster than
Marabou-DnC, while the approximate star method is 625× faster than Reluplex,
445× faster than Marabou, 1321× faster than Marabou-DnC.

Table 2. Verification results of ACAS Xu networks.

ACAS XU φ3 SAT UNSAT UNK TIMEOUT TIME(s)

1 h 2 h 10 h

Reluplex 3 42 0 2 0 0 28454

Marabou 3 42 0 1 0 0 19466

Marabou DnC 3 42 0 3 3 1 111880

ReluVal 3 42 0 0 0 0 416

Zonotope 0 2 43 0 0 0 3

Abstract Domain 0 0 45 0 0 0 8

NNV Exact Star 3 42 0 0 0 0 1371

NNV Appr. Star 0 29 16 0 0 0 52

ACAS XU φ4

Reluplex 3 42 0 0 0 0 11880

Marabou 3 42 0 0 0 0 8470

Marabou DnC 3 42 0 2 2 0 25110

ReluVal 3 42 0 0 0 0 27

Zonotope 0 1 44 0 0 0 5

Abstract Domain 0 0 45 0 0 0 7

NNV Exact Star 3 42 0 0 0 0 470

NNV Appr. Star 0 32 13 0 0 0 19

2 We omit properties φ1 and φ2 for space and due to their long runtimes, but they
can be reproduced in the artifact.
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Conservativeness. The approximate star method is much less conservative
than the zonotope and abstract domain methods. This is illustrated since it can
verify more networks than the zonotope and abstract domain methods, and is
because it obtains a tighter over-approximate reachable set. For property φ3,
the zonotope and abstract domain methods can prove safety of 2/45 networks,
(4.44%) and 0/45 networks, (0%) respectively, while NNV’s approximate star
method can prove safety of 29/45 networks, (64.4%). For property φ4, the zono-
tope and abstract domain method can prove safety of 1/45 networks, (2.22%)
and 0/45 networks, (0.00%) respectively while the approximate star method can
prove safety of 32/45, (71.11%).

4.2 Safety Verification of Adaptive Cruise Control System

To illustrate how NNV can be used to verify/falsify safety properties of learning-
enabled CPS, we analyze a learning-based ACC system [1,38], in which the ego
(following) vehicle has a radar sensor to measure the distance to the lead vehicle
in the same lane, Drel, as well as the relative velocity of the lead vehicle, Vrel.
The ego vehicle has two control modes. In speed control mode, it travels at a
driver-specified set speed Vset = 30, and in spacing control mode, it maintains
a safe distance from the lead vehicle, Dsafe. We train a neural network with 5
layers of 20 neurons per layer with ReLU activation functions to control the ego
vehicle using a control period of 0.1 s.

We investigate safety of the learning-based ACC system with two types of
plant dynamics: 1) a discrete linear plant, and 2) a nonlinear continuous plant
governed by the following differential equations:

ẋlead(t) = vlead(t), v̇lead(t) = γlead, γ̇lead(t) = −2γlead(t) + 2alead − μv2
lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego, γ̇ego(t) = −2γego(t) + 2aego − μv2
ego(t),

where xlead(xego), vlead(vego) and γlead(γego) are the position, velocity and accel-
eration of the lead (ego) vehicle respectively. alead(aego) is the acceleration con-
trol input applied to the lead (ego) vehicle, and μ = 0.0001 is a friction param-
eter. To obtain a discrete linear model of the plant, we let μ = 0 and discretize
the corresponding linear continuous model using a zero-order hold on the inputs
with a sample time of 0.1 s (i.e., the control period).

Verification Problem. The scenario we are interested in is when the two vehi-
cles are operating at a safe distance between them and the ego vehicle is in
speed control mode. In this state the lead vehicle driver suddenly decelerates
with alead = −5 to reduce the speed. We want to verify if the neural network
controller on the ego vehicle will decelerate to maintain a safe distance between
the two vehicles. To guarantee safety, we require that Drel = xlead − xego ≥
Dsafe = Ddefault + Tgap × vego where Tgap = 1.4 s and Ddefault = 10. Our anal-
ysis investigates whether the safety requirement holds during the 5 s after the
lead vehicle decelerates. We consider safety of the system under the following
initial conditions: xlead(0) ∈ [90, 92], vlead(0) ∈ [20, 30], γlead(0) = γego(0) = 0,
vego(0) ∈ [30, 30.5], and xego ∈ [30, 31].
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Table 3. Verification results for ACC system with different plant models, where V T
is the verification time (in seconds).

v lead(0) Linear plant Nonlinear plant

Safety V T (s) Safety V T (s)

[29, 30] SAFE 9.60 UNSAFE 346.62

[28, 29] SAFE 9.45 UNSAFE 277.50

[27, 28] SAFE 9.82 UNSAFE 289.70

[26, 27] UNSAFE 17.80 UNSAFE 315.60

[25, 26] UNSAFE 19.24 UNSAFE 305.56

[24, 25] UNSAFE 18.12 UNSAFE 372.00

Verification Results. For linear dynamics, NNV can compute both the exact
and over-approximate reachable sets of the ACC system in bounded time steps,
while for nonlinear dynamics, NNV constructs an over-approximation of the
reachable sets. The verification results for linear and nonlinear models using the
over-approximate star method are presented in Table 3, which shows that safety
of the ACC system depends on the initial velocity of the lead vehicle. When
the initial velocity of the lead vehicle is smaller than 27 (m/s), the ACC system
with the discrete plant model is unsafe. Using the exact star method, NNV can
construct a complete set of counter-example inputs. When the over-approximate
star method is used, if there is a potential safety violation, NNV simulates the
system with 1000 random inputs from the input set to find counter examples. If
a counterexample is found, the system is UNSAFE, otherwise, NNV returns a
safety result of UNKNOWN. Figure 3 visualizes the reachable sets of the relative
distance Drel between two vehicles versus the required safe distance Dsafe over
time for two cases of initial velocities of the lead vehicle: vlead(0) ∈ [29, 30] and
vlead(0) ∈ [24, 25]. We can see that in the first case, Dref ≥ Dsafe for all 50
time steps stating that the system is safe. In the second case, Dref < Dsafe in
some control steps, so the system is unsafe. NNV supports a reachLive method
to perform analysis and reachable set visualization on-the-fly to help the user
observe the behavior of the system during verification.

The verification results for the ACC system with the nonlinear model are
all UNSAFE, which is surprising. Since the neural network controller of the
ACC system was trained with the linear model, it works quite well for the linear
model. However, when a small friction term is added to the linear model to form a
nonlinear model, the neural network controller’s performance, in terms of safety,
is significantly reduced. This problem raises an important issue in training neural
network controllers using simulation data, and these schemes may not work in
real systems since there is always a mismatch between the plant model in the
simulation engine and the real system.

Verification Times. As shown in Table 3, the approximate analysis of the ACC
system with discrete linear plant model is fast and can be done in 84 s. NNV
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Fig. 3. Two scenarios of the ACC system. In the first (top) scenario (vlead(0) ∈
[29, 30] m/s), safety is guaranteed, Drel ≥ Dsafe. In the second scenario (bottom)
(vlead(0) ∈ [24, 25] m/s), safety is violated since Dref < Dsafe in some control steps.

also supports exact analysis, but is computationally expensive as it constructs
all reachable states. Because there are splits in the reachable sets of the neu-
ral network controller, the number of star sets in the reachable set of the plant
increases quickly over time [38]. In contrast, the over-approximate method com-
putes the interval hull of all reachable sets at each time step, and maintains a
single reachable set of the plant throughout the computation. This makes the
over-approximate method faster than the exact method. In terms of plant mod-
els, the nonlinear model requires more computation time than the linear one. As
shown in Table 3, the verification for the linear model using the over-approximate
method is 22.7× faster on average than of the nonlinear model.

5 Related Work

NNV was inspired by recent work in the emerging fields of neural network and
machine learning verification. For the “open-loop” verification problem (verifica-
tion of DNNs), many efficient techniques have been proposed, such as SMT-based
methods [22,23,30], mixed-integer linear programming methods [14,24,28], set-
based methods [4,17,32,33,48,50,53,57], and optimization methods [51,58]. For
the “closed-loop” verification problem (NCCS verification), we note that the
Verisig approach [20] is efficient for NNCS with nonlinear plants and with Sig-
moid and Tanh activation functions. Additionally, the recent regressive polyno-
mial rule inference approach [34] is efficient for safety verification of NNCS with
nonlinear plant models and ReLU activation functions. The satisfiability mod-
ulo convex (SMC) approach [35] is also promising for NNCS with discrete linear
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plants, as it provides both soundness and completeness guarantees. ReachNN [19]
is a recent approach that can efficiently control the conservativeness in the reach-
ability analysis of NNCS with nonlinear plants and ReLU, Sigmoid, and Tanh
activation functions in the controller. In [54], a novel simulation-guided approach
has been developed to reduce significantly the computation cost for verifica-
tion of NNCS. In other learning-enabled systems, falsification and testing-based
approaches [12,13,45] have shown a significant promise in enhancing the safety
of systems where perception components and neural networks interact with the
physical world. Finally, there is significant related work in the domain of safe
reinforcement learning [2,15,47,59], and combining guarantees from NNV with
those provided in these methods would be interesting to explore.

6 Conclusions

We presented NNV, a software tool for the verification of DNNs and learning-
enabled CPS. NNV provides a collection of reachability algorithms that can be
used to verify safety (and robustness) of real-world DNNs, as well as learning-
enabled CPS, such as the ACC case study. For closed-loop systems, NNV can
compute the exact and over-approximate reachable sets of a NNCS with lin-
ear plant models. For NNCS with nonlinear plants, NNV computes an over-
approximate reachable set and uses it to verify safety, but can also automatically
falsify the system to find counterexamples.
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Abstract. Convolutional Neural Networks (CNN) have redefined state-
of-the-art in many real-world applications, such as facial recognition,
image classification, human pose estimation, and semantic segmentation.
Despite their success, CNNs are vulnerable to adversarial attacks, where
slight changes to their inputs may lead to sharp changes in their output
in even well-trained networks. Set-based analysis methods can detect or
prove the absence of bounded adversarial attacks, which can then be used
to evaluate the effectiveness of neural network training methodology.
Unfortunately, existing verification approaches have limited scalability
in terms of the size of networks that can be analyzed. In this paper, we
describe a set-based framework that successfully deals with real-world
CNNs, such as VGG16 and VGG19, that have high accuracy on Ima-
geNet. Our approach is based on a new set representation called the
ImageStar, which enables efficient exact and over-approximative analy-
sis of CNNs. ImageStars perform efficient set-based analysis by combin-
ing operations on concrete images with linear programming (LP). Our
approach is implemented in a tool called NNV, and can verify the robust-
ness of VGG networks with respect to a small set of input states, derived
from adversarial attacks, such as the DeepFool attack. The experimen-
tal results show that our approach is less conservative and faster than
existing zonotope and polytope methods.
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1 Introduction

Convolutional neural networks (CNN) have rapidly accelerated progress in com-
puter vision with many practical applications such as face recognition [19], image
classification [18], document analysis [21] and semantic segmentation. Recently,
it has been shown that CNNs are vulnerable to adversarial attacks, where a
well-trained CNN can be fooled into producing errant predictions due to tiny
changes in their inputs [9]. Many applications such as autonomous driving seek
to leverage the power of CNNs. However due the opaque nature of these models
there are reservations about using in safety-critical applications. Thus, there is
an urgent need for formally evaluating the robustness of a trained CNN.

Formal verification of deep neural networks (DNNs) has recently become an
important topic. The majority of existing approaches focus on verifying safety
and robustness properties of feedforward neural networks (FNN) with the Recti-
fied Linear Unit activation function (ReLU). These approaches include: mixed-
integer linear programming (MILP) [5,17,23], satisfiability (SAT) and satisfia-
bility modulo theory (SMT) techniques [7,15], optimization [6,11,22,42,44,51],
and geometric reachability [29,30,36,37,41,43,45,47,48,50]. Adjacent to these
methods are property inference techniques for DNNs, which are also an impor-
tant and interesting research area being investigated [10]. In a similar fashion,
the problem of verifying safety of cyber-physical systems (CPS) with learning-
enabled neural network components with imperfect plant models and sensing
information has recently attracted significant attention due to their real world
applications [1,12–14,24,31,32,35,46,49]. This research area views the safety
verification problem in a holistic manner by considering safety of the entire sys-
tem where learning-enabled components interact with the physical world.

Although numerous tools and methods have been proposed for neural net-
work verification, only a handful of methods can deal with CNNs [2,16,17,27,
29,30]. Moreover, in the aforementioned techniques, only one [27] can deal with
real-world CNNs, such as VGGNet [28]. Their approach makes used of the con-
cept of the L0 distance between two images. Their optimization-based approach
computes a tight bound on the number of pixels that may be changed in an image
without affecting the classification result of the network. It can also efficiently
generate adversarial examples that can be used to improve the robustness of
network. In a similar manner, this paper seeks to verify robustness of real-world
deep CNNs. Thus, we develop a set-based analysis method through the use of
the ImageStar, a new set representation that can represent an infinite family
of images. As an example, this representation can be used to represent a set
of images distorted by an adversarial attack. Using the ImageStar, we develop
both exact and over-approximate reachability algorithms to construct reachable
sets that contain all the possible outputs of a CNN under an adversarial attack.
These reachable sets are then used to reason about the overall robustness of
the network. When a CNN violates a robustness property, our exact reachabil-
ity scheme can construct a set of concrete adversarial examples. Our approach
differs from [27] in two primary ways. First, our method does not provide robust-
ness guarantees for a network in terms of the number of pixels that are allowed
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to be changed (in terms of L0 distance). Instead, we prove the robustness of
the network on images that are attacked by disturbances bounded by arbitrary
linear constraints. Second, our approach relies on reachable set computation of
a network corresponding to a bounded input set, as opposed to an optimization-
based approach. We implement these methods in the NNV tool [39] and compare
with the zonotope method used in DeepZ [29] and the polytope method used in
DeepPoly [30]. The experimental results indicate our method is less conservative
and faster than existing approaches when verifying robustness of CNNs.

The main contributions of the paper include the following. First is the
ImageStar set representation, which is an efficient representation for reacha-
bility analysis of CNNs. Second are exact and over-approximate reachability
algorithms for constructing reachable sets and verifying robustness of CNNs.
Third is the implementation of the ImageStar representation and reachability
algorithms in NNV [39]. Fourth is a rigorous evaluation and comparison of pro-
posed approaches, such as zonotope and polytope methods on different CNNs.

2 Problem Formulation

The reachability problem for CNNs is the task of analyzing a trained CNN with
respect to some perturbed input set in order to construct a set containing all
possible outputs of the network. In this paper, we consider the reachability of
a CNN N that consists of a series of layers L that may include convolutional
layers, fully connected layers, max-pooling layers, average pooling layers, and
ReLU activation layers. Mathematically, we define a CNN with n layers as N =
{Li}, i = 1, 2, . . . , n. The reachability of the CNN N is defined based on the
concept of reachable sets.

Definition 1 (Reachable set of a CNN). An (output) reachable set RN of
a CNN N = {Li}, i = 1, 2, . . . , n corresponding to a linear input set I is defined
incrementally as:

RL1 � {y1 | y1 = L1(x), x ∈ I},

RL2 � {y2 | y2 = L2(y1), y1 ∈ RL1},

...

RN = RLn
� {yn | yn = Ln−1(yn−1), yn−1 ∈ RLn−1},

where Li(·) is a function representing the operation of the ith layer.

The definition shows that the reachable set of the CNN N can be constructed
layer-by-layer. The core computation is constructing the reachable set of each
layer Li defined by a specific operation, i.e., convolution, affine mapping, max
pooling, average pooling, or ReLU.
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Fig. 1. An example of an ImageStar.

3 ImageStar

Definition 2. An ImageStar Θ is a tuple 〈c, V, P 〉 where c ∈ R
h×w×nc is the

anchor image, V = {v1, v2, · · · , vm} is a set of m images in R
h×w×nc called

generator images, P : R
m → {�,⊥} is a predicate, and h,w, nc are the height,

width, and number of channels of the images, respectively. The generator images
are arranged to form the ImageStar’s h × w × nc × m basis array. The set of
images represented by the ImageStar is:

�Θ� = {x | x = c + Σm
i=1(αivi) such that P (α1, · · · , αm) = �}.

Sometimes we will refer to both the tuple Θ and the set of states �Θ� as Θ. In
this work, we restrict the predicates to be a conjunction of linear constraints,
P (α) � Cα ≤ d where, for p linear constraints, C ∈ R

p×m, α is the vector of
m-variables, i.e., α = [α1, · · · , αm]T , and d ∈ R

p×1. A ImageStar is an empty
set if and only if P (α) is empty.

Example 1 (ImageStar). A 4 × 4 × 1 gray image with a bounded disturbance
b ∈ [−2, 2] applied on the pixel of the position (1, 2, 1) can be described as an
ImageStar depicted in Fig. 1.

Remark 1. An ImageStar is an extension of the generalized star set recently
defined in [3,4,37,38]. In a generalized star set, the anchor and the generators
are vectors, while in an ImageStar, the anchor and generators are images with
multiple channels. We will later show that the ImageStar is a very efficient rep-
resentation for the reachability analysis of convolutional layers, fully connected
layers, and average pooling layers.

Proposition 1 (Affine mapping of an ImageStar). An affine mapping of
an ImageStar Θ = 〈c, V, P 〉 with a scale factor γ and an offset image β is another
ImageStar Θ′ = 〈c′, V ′, P ′〉 in which the new anchor, generators and predicate
are as follows:

c′ = γ × c + β, V ′ = γ × V, P ′ ≡ P.

Note that, the scale factor γ can be a scalar or a vector containing scalar scale
factors in which each factor is used to scale one channel in the ImageStar.



22 H.-D. Tran et al.

4 Reachability of CNN Using ImageStars

In this section, we present the reachable set computation for the convolutional,
average pooling, fully connected, batch normalization, max pooling, and ReLU
layers with respect to an input set consisting of an ImageStar.

4.1 Reachability of a Convolutional Layer

We consider a two-dimensional convolutional layer with following parameters:
the weights WConv2d ∈ R

hf ×wf ×nc×nf , the bias bConv2d ∈ R
1×1×nf , the padding

size P , the stride S, and the dilation factor D where hf , wf , nc are the height,
width, and the number of channels of the filters in the layer respectively. Addi-
tionally, nf is the number of filters. The reachability of a convolutional layer is
given in the following lemma.

Lemma 1. The reachable set of a convolutional layer with an ImageStar input
set I = 〈c, V, P 〉 is another ImageStar I ′ = 〈c′, V ′, P 〉 where c′ = Convol(c) is
the convolution operation applied to the anchor image, V ′ = {v′

1, . . . , v
′
m}, v′

i =
ConvolZeroBias(vi) is the convolution operation with zero bias applied to the
generator images, i.e., only using the weights of the layer.

Proof. Any image in the ImageStar input set is a linear combination of the center
and basis images. For any filter in the layer, the convolution operation applied
to the input image performs local element-wise multiplication of a local matrix
(of all channels) containing the values of the local pixels of the image and the
weights of the filter and then combine the result with the bias to get the output
for that local region. Due to the linearity of the input image, we can perform the
convolution operation with the bias on the center and the convolution operation
with zero bias on the basis images and then combine the result to get the output
image.

Example 2 (Reachable set of a convolutional layer). The reachable set of a convo-
lutional layer with single 2×2 filter and the ImageStar input set in Example 1 is

described in Fig. 2, where the weights and the bias of the filter are W =
[

1 1
−1 0

]
,

b = −1 respectively, the stride is S = [2 2], the padding size is P = [0 0 0 0] and
the dilation factor is D = [1 1].

4.2 Reachability of an Average Pooling Layer

The reachability of an average pooling layer with pooling size PS, padding size
P , and stride S is given below, with its proof similar to that of the convolutional
layer.

Lemma 2. The reachable set of a average pooling layer with an ImageStar input
set I = 〈c, V, P 〉 is another ImageStar I ′ = 〈c′, V ′, P 〉 where c′ = average(c),
V ′ = {v′

1, . . . , v
′
m}, v′

i = average(vi), average(·) is the average pooling operation
applied to the anchor and generator images.
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Fig. 2. Reachability of convolutional layer using ImageStar.

Example 3 (Reachable set of an average pooling layer). The reachable set of an
2× 2 average pooling layer with padding size P = [0 0 0 0], stride S = [2 2], and
an ImageStar input set given by Example 1 is shown in Fig. 3.

Fig. 3. Reachability of average pooling layer using ImageStar.

4.3 Reachability of a Fully Connected Layer

The reachability of a fully connected layer is stated in the following lemma.

Lemma 3. Given a two-dimensional fully connected layer with weight Wfc ∈
R

nfc×mfc , bias bfc ∈ R
nfc , and an ImageStar input set I = 〈c, V, P 〉, the reach-

able set of the layer is another ImageStar I ′ = 〈c′, V ′, P 〉 where c′ = W ∗ c̄ + b,
V ′ = {v′

1, . . . , v
′
m}, v′

i = Wfc ∗ v̄i, c̄(v̄i) = reshape(c(vi), [mfc, 1]). Note that it
is required for consistency between the ImageStar and the weight matrix that
mfc = h × w × nc, where h,w, nc are the height, width and number of channels
of the ImageStar.

Proof. Similar to the convolutional layer and the average pooling layer, for any
image in the ImageStar input set, the fully connected layer performs an affine
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mapping of the input image which is a linear combination of the center and the
basis images of the ImageStar. Due to the linearity, the affine mapping of the
input image can be decomposed into the affine mapping of the center image and
the affine mapping without the bias of the basis images. The final result is the
sum of the individual affine maps.

4.4 Reachability of a Batch Normalization Layer

In the prediction phase, a batch normalization layer normalizes each input chan-
nel xi using the mean µ and variance σ2 over the full training set. Then the batch
normalization layer further shifts and scales the activations using the offset β and
the scale factor γ that are learnable parameters. The formula for normalization
is as follows:

x̄i =
xi − µ√
σ2 + ε

, yi = γx̄i + β,

where ε is a used to prevent division by zero. The batch normalization layer
can be described as a tuple B = 〈µ, σ2, ε, γ, β〉. The reachability of a batch
normalization layer with an ImageStar input set is given in the following lemma.

Lemma 4. The reachable set of a batch normalization layer B = 〈µ, σ2, ε, γ, β〉
with an ImageStar input set I = 〈c, V, P 〉 is another ImageStar I ′ = 〈c′, V ′, P ′〉
where:

c′ =
γ√

σ2 + ε
c + β − γ√

σ2 + ε
µ, V ′ =

γ√
σ2 + ε

V, P ′ ≡ P.

The reachable set of a batch normalization layer can be obtained in a straight-
forward fashion using two affine mappings of the ImageStar input set.

4.5 Reachability of a Max Pooling Layer

Reachability of max pooling layer with an ImageStar input set is challenging
because the value of each pixel in an image in the ImageStar depends on the pred-
icate variables αi. Therefore, the local max point when applying max-pooling
operation may change with the values of the predicate variables. In this section,
we investigate the exact reachability and over-approximate reachability of a max
pooling layer with an ImageStar input set. The first obtains the exact reachable
set while the second constructs an over-approximate reachable set.

Exact Reachability of a Max Pooling Layer. The central idea in the exact
analysis of the max-pooling layer is finding a set of local max point candidates
when we apply the max pooling operation on the image. We consider the max
pooling operation on the ImageStar in Example 1 with a pool size of 2 × 2,
a padding size of P = [0 0 0 0], and a stride S = [2 2] to clarify the exact
analysis step-by-step. First, the max-pooling operation is applied on 4 local
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Fig. 4. Exact reachability of max pooling layer using ImageStars.

regions I, II, III, IV , as shown in Fig. 4. The local regions II, III, IV have only
one max point candidate whic is the pixel that has the maximum value in the
region. It is interesting to note that region I has two max point candidates at
the positions (1, 2, 1) and (2, 2, 1) and these candidates correspond to different
conditions of the predicate variable α. For example, the pixel at the position
(1, 2, 1) is the max point if and only if 4 + α × 1 ≥ 3 + α × 0. Note that with
−2 ≤ α ≤ 2, we always have 4 + α ∗ 1 ≥ 2 + α × 0 ≥ 0 + α × 0. Since the local
region I has two max point candidates, and other regions have only one, the
exact reachable set of the max-pooling layer is the union of two new ImageStars
Θ1 and Θ2. In the first reachable set Θ1, the max point of the region I is
(1, 2, 1) with an additional constraint on the predicate variable α ≥ −1. For
the second reachable set Θ2, the max point of the region I is (2, 2, 1) with an
additional constraint on the predicate variable α ≤ −1. One can see that from
a single ImageStar input set, the output reachable set of the max-pooling layer
is split into two new ImageStars. Therefore, the number of ImageStars in the
reachable set of the max-pooling layer may grow quickly if each local region has
more than one max point candidates. The worst-case complexity of the number
of ImageStars in the exact reachable set of the max-pooling layer is given in
Lemma 5. The exact reachability algorithm is presented in the Appendix of the
extended version of this paper [33].

Lemma 5. The worst-case complexity of the number of ImageStars in the exact
reachability of the max pooling layer is O(((p1 × p2)h×w)nc) where [h,w, nc] is
the size of the ImageStar output sets, and [p1, p2] is the size of the max-pooling
layer.
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Proof. An image in the ImageStar output set has h × w pixels in each channel.
For each pixel, in the worst case, there are p1 × p2 candidates. Therefore, the
number of ImageStars in the output set in the worst case is O(((p1 ×p2)h×w)nc).

Fig. 5. Over-approximate reachability of max pooling layer using ImageStar.

Finding a set of local max point candidates is the core computation in the
exact reachability of max-pooling layer. To optimize this computation, we divide
the search for the local max point candidates into two steps. The first one is to
estimate the ranges of all pixels in the ImageStar input set. We can solve hI ×
wI ×nc linear programming optimizations to find the exact ranges of these pixels,
where [hI , wI , nc] is the size of the input set. However, unfortunately this is a
time-consuming computation. For example, if a single linear optimization
can be done in 0.01 s, for an ImageStar of the size 224×224×32, we need
about 10h to find the ranges of all pixels. To overcome this bottleneck,
we quickly estimate the ranges using only the ranges of the predicate variables
to get rid of a vast amount of non-max-point candidates. In the second step,
we solve a much smaller number of LP optimizations to determine the exact set
of the local max point candidates and then construct the ImageStar output set
based on these candidates.

Lemma 5 shows that the number of ImageStars in the exact reachability anal-
ysis of a max-pooling layer may grow exponentially. To overcome this problem,
we propose the following over-approximate reachability method.
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Over-Approximate Reachability of a Max Pooling Layer. The central
idea of the over-approximate analysis of the max-pooling layer is that if a local
region has more than one max point candidates, we introduce a new predicate
variable standing for the max point of that region. We revisit the example intro-
duced earlier in the exact analysis to clarify this idea. Since the first local region I
has two max point candidates, we introduce new predicate variable β to represent
the max point of this region by adding three new constraints: 1) β ≥ 4+α∗1, i.e.,
β must be equal or larger than the value of the first candidate ; 2) β ≥ 3+α ∗ 0,
i.e., β must be equal or larger than the value of the second candidate; 3) β ≤ 6,
i.e., β must be equal or smaller than the upper bound of the pixels values in
the region. With the new predicate variable, a single over-approximate reachable
set Θ′ can be constructed in Fig. 5. The approximate reachability algorithm is
presented in the Appendix of the extended version of this paper [33].

Lemma 6. The worst-case complexity of the new predicate variables introduced
in the over-approximate analysis is O(h × w × nc) where [h,w, nc] is the size of
the ImageStar output set.

4.6 Reachability of a ReLU Layer

Similar to max-pooling layer, the reachability analysis of a ReLU layer is also
challenging because the value of each pixel in an ImageStar may be smaller
than zero or larger than zero depending on the values of the predicate variables
(ReLU(x) = max(0, x)). In this section, we investigate the exact and over-
approximate reachability algorithms for a ReLU layer with an ImageStar input
set. The techniques we use in this section are adapted from in [37].

Exact Reachability of a ReLU Layer. The central idea of the exact anal-
ysis of a ReLU layer with an ImageStar input set is performing a sequence of
stepReLU operations over all pixels of the ImageStar input set. Mathematically,
the exact reachable set of a ReLU layer L can be computed as follows.

RL = stepReLUN (stepReLUN−1(. . . (stepReLU1(I)))),

where N is the total number of pixels in the ImageStar input set I. The
stepReLUi operation determines whether or not a split occurs at the ith pixel.
If the pixel value is larger than zero, then the output value of that pixel remains
the same. If the pixel value is smaller than zero than the output value of that
pixel is reset to be zero. The challenge is that the pixel value depends on the
predicate variables. Therefore, there is the case that the pixel value may be neg-
ative or positive with an extra condition on the predicate variables. In this case,
we split the input set into two intermediate ImageStar reachable sets and apply
the ReLU law on each intermediate reach set. An example of the stepReLU
operation on an ImageStar is illustrated in Fig. 6. The value of the first pixel
value −1 + α would be larger than zero if α ≤ 1, and in this case we have
ReLU(−1+α) = −1+α. If α <= 1, then ReLU(−1+α) = 0+α×0. Therefore,
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Fig. 6. stepReLU operation on an ImageStar.

the first stepReLU operation produces two intermediate reachable sets Θ1 and
Θ2, as shown in the figure. The number of ImageStars in the exact reachable set
of a ReLU layer increases quickly along with the number of splits in the analysis,
as stated in the following lemma.

Lemma 7. The worst-case complexity of the number of ImageStars in the exact
analysis of a ReLU layer is O(2N ), where N is the number of pixels in the
ImageStar input set.

Proof. There are h × w × nc local regions in the approximate analysis. In the
worst case, we need to introduce a new variable for each region. Therefore, the
worst case complexity of new predicate variables introduced is O(h × w × nc).

Similar to [37], to control the explosion in the number of ImageStars in the
exact reachable set of a ReLU layer, we propose an over-approximate reachability
algorithm in the following.

Over-Approximate Reachability of a ReLU Layer. The idea behind the
over-approximate reachability of ReLU layer is replacing the stepReLU operation
at each pixel in the ImageStar input set by an approxStepReLU operation. At
each pixel where a split occurs, we introduce a new predicate variable to over-
approximate the result of the stepReLU operation at that pixel. An example of
the overStepReLU operation on an ImageStar is depicted in Fig. 7 in which the
first pixel of the input set has the ranges of [l1 = −3, u1 = 1] indicating that
a split occurs at this pixel. To avoid this split, we introduce a new predicate
variable β to over-approximate the exact intermediate reachable set (i.e., two
blue segments in the figure) by a triangle. This triangle is determined by three
constraints: 1) β ≥ 0 (the ReLU(x) ≥ 0 for any x); 2) β ≥ −1+α (ReLU(x) ≥ x
for any x); 3) β ≤ 0.5+0.25α (upper bound of the new predicate variable). Using
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Fig. 7. approxStepReLU operation on an ImageStar.

this over-approximation, a single intermediate reachable set Θ′ is produced as
shown in the figure. After performing a sequence of approxStepReLU operations,
we obtain a single over-approximate ImageStar reachable set for the ReLU layer.
However, the number of predicate variables and the number of constraints in the
obtained reachable set increase.

Lemma 8. The worst case complexity of the increment of predicate variables
and constraints is O(N) and O(3 × N) respectively, where N is the number of
pixels in the ImageStar input set.

Proof. In the worst case, splits occur at all N pixels in the ImageStar input set.
In this case, we need to introduce N new predicate variables to over-approximate
the exact intermediate reachable set. For each new predicate variable, we add 3
new constraints.

One can see that determining where splits occur is crucial in the exact and
over-approximate analysis of a ReLU layer. To do this, we need to know the
ranges of all pixels in the ImageStar input set. However, as mentioned earlier,
the computation of the exact range is expensive. To reduce the computation
cost, we first use the estimated ranges of all pixels to remove a vast amount of
non-splitting pixels. Then, we compute exact ranges for the pixels where splits
may occur to compute the exact or over-approximate reachable set of the layer.

4.7 Reachabilty Algorithm and Parallelization

We have presented the core ideas for reachability analysis of different types of
layers in a CNN. The reachable set of a CNN is constructed layer-by-layer in
which the output reachable set of the previous layer is the input for the next
layer. For the convolutional layer, average pooling layer and fully connected
layer, we always can compute efficiently the exact reachable set of each layer.
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Algorithm 1. Reachability analysis for a CNN.
Input: N = {Li}n

1 , I, scheme (’exact’ or ’approx’)
Output: RN
1: procedure RN = reach(N , I, scheme)
2: In = I
3: parfor i = 1 : n do In = Li.reach(In, scheme)
4: end parfor
5: RN = In

For the max pooling layer and ReLU layer, we can compute both the exact and
the over-approximate reachable sets. However, the number of ImageStars in the
exact reachable set may grow quickly. Therefore, in the exact analysis, a
layer may receive multiple input sets which can be handled in parallel
to speed up the computation time . The reachability algorithm for a CNN
is summarized in Algorithm 1. The detailed implementation of the reachability
algorithm for each layer can be found in NNV [34,39].

5 Evaluation

The proposed reachability algorithms are implemented in NNV [39], a tool for
verification of deep neural networks and learning-enabled CPS. NNV utilizes core
functions in MatConvNet [40] for the analysis of several layers. The evaluation
of our approach consists of two parts. First, we evaluate robustness verification
of deep neural networks in comparison to zonotope [29] and polytope methods
[30] that are re-implemented in NNV. Second, we evaluate the scalability of our
approach and the DeepPoly polytope method using real-world image classifiers,
VGG16, and VGG19 [28]. The experiments are done on a computer with follow-
ing configurations: Intel Core i7-6700 CPU @ 3.4GHz × 8 Processor, 62.8 GiB
Memory, Ubuntu 18.04.1 LTS OS.1 Lastly, we present a comparison with ERAN-
DeepZ method on their ConvMaxPool network trained on the CIFAR-10 data
set in the Appendix of the extended version of this paper [33].

5.1 Robustness Verification of MNIST Classification Networks

We compare our approach with the zonotope and polytope methods in two
aspects including verification time and conservativeness of the results. To
do that, we train 3 CNNs in small, medium, and large architectures with
98%, 99.7%, and 99.9% accuracy, respectively, using the MNIST data set consist-
ing of 60000 images of handwritten digits with a resolution of 28×28 pixels [20].
The network architectures are given in the Appendix of the extended version of
this paper [33].

1 Comparison code is available in the NNV repository: https://github.com/verivital/
nnv/tree/cav2020imagestar/code/nnv/examples/Submission/CAV2020 ImageStar
and as a CodeOcean capsule [34]: https://doi.org/10.24433/CO.3351375.v1.

https://github.com/verivital/nnv/tree/cav2020imagestar/code/nnv/examples/Submission/CAV2020_ImageStar
https://github.com/verivital/nnv/tree/cav2020imagestar/code/nnv/examples/Submission/CAV2020_ImageStar
https://doi.org/10.24433/CO.3351375.v1


Verification of Deep Convolutional Neural Networks Using ImageStars 31

0 5 9
Output

-8

-6

-4

-2

0

2

4

6

8
R

an
ge

s

ImageStar

0 5 9
Output

-600

-400

-200

0

200

400

600

R
an

ge
s

Zonotope

0 5 9
Output

-8

-6

-4

-2

0

2

4

6

8

R
an

ge
s

Polytope

Fig. 8. Example output ranges of the small MNIST classification network using differ-
ent approaches.

The networks classify images into ten classes: 0, 1, . . . , 9. The classified output
is the index of the dimension that has maximum value, i.e., the argmax across
the 10 outputs. We evaluate the robustness of the network under the well-known
brightening attack used in [8]. The idea of a brightening attack is that we can
change the value of some pixels independently in the image to make it brighter
or darker to fool the network, to misclassify the image. In this case study, we
darken a pixel of an image if its value xi (between 0 and 255) is larger than a
threshold d, i.e., xi ≥ d. Mathematically, we reduce the value of that pixel xi to
the new value x′

i such that 0 ≤ x′
i ≤ δ × xi.

The robustness verification is done as follows. We select 100 images that are
correctly classified by the networks and perform the brightening attack on these,
which are then used to evaluate the robustness of the networks. A network is
robust to an input set if, for any attacked image, this is correctly classified by
the network. We note that the input set contains an infinite number of images.
Therefore, to prove the robustness of the network to the input set, we first
compute the output set containing all possible output vectors of the network
using reachability analysis. Then, we prove that in the output set, the correctly
classified output always has the maximum value compared with other outputs.
Note that we can neglect the softmax and classoutput layers of the networks in
the analysis since we only need to know the maximum output in the output set
of the last fully connected layer in the networks to prove the robustness of the
network.

We are interested in the percentage of the number of input sets that a net-
work is provably robust and the verification times of different approaches under
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different values of d and θ. When d is small, the number of pixels in the image
that are attacked is large and vice versa. For example, the average number of
pixels attacked (computed on 100 cases) corresponding to d = 250, 245 and 240
are 15, 21 and 25 respectively. The value of δ dictates the size of the input set
that can be created by a specific attack. Stated differently it dictates the range in
which the value of a pixel can be changed. For example, if d = 250 and δ = 0.01,
the value of an attacked pixel many range from 0 to 2.55.

Table 1. Verification results of the small MNIST CNN.

Robustness results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 86.00 87.00 84.00 87.00 83.00 87.00

d = 245 77.00 78.00 72.00 78.00 70.00 77.00

d = 240 72.00 73.00 67.00 72.00 65.00 71.00

Verification times (in Seconds)

d = 250 11.24 16.28 18.26 28.19 26.42 53.43

d = 245 14.84 19.44 24.96 40.76 38.94 85.97

d = 240 18.29 25.77 33.59 64.10 54.23 118.58

Table 2. Verification results of the medium MNIST CNN.

Robustness results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 86.00 99.00 73.00 99.00 65.00 99.00

d = 245 74.00 95.00 58.00 95.00 46.00 95.00

d = 240 69.00 90.00 49.00 89.00 38.00 88.00

Verification times (in Seconds)

d = 250 213.86 52.09 627.14 257.12 1215.86 749.41

d = 245 232.81 68.98 931.28 295.54 2061.98 1168.31

d = 240 301.58 102.61 1451.39 705.03 3148.16 2461.89

The experiments show that using the zonotope method, we cannot prove
the robustness of any network. The reason is that the zonotope method obtains
very conservative reachable sets. Figure 8 illustrates the ranges of the outputs
computed by our ImageStar (approximate scheme), the zonotope and polytope
approaches when we attack a digit 0 image with brightening attack in which
d = 250 and δ = 0.05. One can see that, using ImageStar and polytope method,
we can prove that the output corresponding to the digit 0 is the one that has a
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maximum value, which means that the network is robust in this case. However,
the zonotope method produces very large output ranges that cannot be used to
prove the robustness of the network. The figure also shows that our ImageStar
method produces tighter ranges than the polytope method, which means our
result is less conservative than the one obtained by the polytope method. We note
that the zonotope method is very time-consuming. It needs 93 s to compute the
reachable set of the network in this case, while the polytope method only needs
0.3 s, and our approximate ImageStar method needs 0.74 s. The main reason is
that the zonotope method introduces many new variables when constructing the
reachable set of the network, which results in the increase in both computation
time and conservativeness.

Table 3. Verification results of the large MNIST CNN.

Robustness results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 90.00 99.00 83.00 99.00 MemErr 99.00

d = 245 91.00 100.00 75.00 100.00 MemErr 100.00

d = 240 81.00 99.00 MemErr 99.00 MemErr 99.00

Verification times (in Seconds)

d = 250 917.23 67.45 5221.39 231.67 MemErr 488.69

d = 245 1420.58 104.71 6491.00 353.02 MemErr 1052.87

d = 240 1872.16 123.37 MemErr 476.67 MemErr 1522.50

The comparison of the polytope and our ImageStar method is given in
Tables 1, 2, and 3. The tables show that in all networks, our method is less
conservative than the polytope approach since the number of cases that our
approach can prove the robustness of the network is larger than the one proved
by the polytope method. For example, for the small network, for d = 240 and
δ = 0.015, we can prove 71 cases while the polytope method can prove 65 cases.
Importantly, the number of cases proved by DeepPoly reduces quickly when the
network becomes larger. For example, for the case that d = 240 and δ = 0.015,
the polytope method is able to prove the robustness of the medium network for
38 cases while our approach can prove 88 cases. This is because the polytope
method becomes more and more conservative when the network or the input set
is large. The tables show that the polytope method is faster than our ImageStar
method on the small network. However, it is slower than the ImageStar method
on any larger networks in all cases. Notably, for the large network, the ImageStar
approach is significantly faster than the polytope approach, 16.65 times faster in
average. The results also show that the polytope approach may run into memory
problem for some large input sets.
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Table 4. Verification results of VGG networks.

Robustness results (in percentage)

VGG16 VGG19

δ = 10−7 δ = 2 × 10−7 δ = 10−7 δ = 2 × 10−7

Polytope ImageStar Polytope ImageStar Polytope ImageStar Polytope ImageStar

l = 0.96 85.00 85.00 85.00 85.00 100.00 100.00 100.00 100.00

l = 0.97 85.00 85.00 85.00 85.00 100.00 100.00 100.00 100.00

l = 0.98 85.00 85.00 85.00 85.00 95.00 95.00 95.00 95.00

Verification times (in Seconds)

l = 0.96 319.04 318.60 327.61 319.93 320.91 314.14 885.07 339.30

l = 0.97 324.93 323.41 317.27 324.90 315.84 315.27 319.67 314.58

l = 0.98 315.54 315.26 468.59 332.92 320.53 320.44 325.92 317.95

5.2 Robustness Verification of VGG16 and VGG19

In this section, we evaluate the polytope and ImageStar methods on real-world
CNNs, the VGG16 and VGG19 classification networks [28]. We use Foolbox [26]
to generate the well-known DeepFool adversarial attacks [25] on a set of 20 bell
pepper images. From an original image ori im, Foolbox generates an adversarial
image adv im that can fool the network. The difference between two images is
defined by diff im = adv im − ori im. We want to verify if we apply (l + δ)
percent of the attack on the original image, whether or not the network classifies
the disturbed images correctly. The set of disturbed images can be represented
as an ImageStar as follows disb im = ori im + (l + δ) × diff im, where l is
the percentage of the attack at which we want to verify the robustness of the
network, and δ is a small perturbation around l, i.e., 0 ≤ δ ≤ δmax. Intuitively, l
describes how close we are to the attack, and the perturbation δ represents the
size of the input set.

Table 4 shows the verification results of VGG16 and VGG19 with different
levels of the DeepFool attack. The networks are robust if they classify correctly
the set of disturbed images disb im as bell peppers. To guarantee the robustness
of the networks, the output corresponding to the bell pepper label (index 946)
needs to be the maximum output compared with others. The table shows that
with a small input set, small δ, the polytope and ImageStar can prove robustness
of VGG16 and VGG19 in a reasonable amount of time. Notably, the verification
times as well as the robustness results of the polytope and ImageStar methods
are similar when they deal with small input sets except for two cases where
ImageStar is faster than the polytope method. It is interesting to note that
according to the verification results for the VGG and MNIST networks, deep
networks may be more robust than shall ow networks.

5.3 Exact Analysis vs. Approximate Analysis

We compare our ImageStar approximate scheme with the zonotope and poly-
tope approximation methods, and investigate the performance of the ImageStar
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Table 5. Verification results of the VGG16 and VGG19 in which V T is the verification
time (in seconds) using the ImageStar exact and approximate schemes.

l δmax VGG16 VGG19

Exact Approximate Exact Approximate

Robust VT Robust VT Robust VT Robust VT

50% 10−7 Yes 64.56226 Yes 60.10607 Yes 234.11977 Yes 72.08723

2 × 10−7 Yes 63.88826 Yes 59.48936 Yes 1769.69313 Yes 196.93728

80% 10−7 Yes 64.92889 Yes 60.31394 Yes 67.11730 Yes 63.33389

2 × 10−7 Yes 64.20910 Yes 59.77254 Yes 174.55983 Yes 200.89500

95% 10−7 Yes 67.64783 Yes 59.89077 Yes 73.13642 Yes 67.56389

2 × 10−7 Yes 63.83538 Yes 59.23282 Yes 146.16172 Yes 121.91447

97% 10−7 Yes 64.30362 Yes 59.79876 Yes 77.25398 Yes 64.43168

2 × 10−7 Yes 64.06285 Yes 61.23296 Yes 121.70296 Yes 107.17331

98% 10−7 Yes 64.06183 Yes 59.89959 No 67.68139 Unkown 64.47035

2 × 10−7 Yes 64.01997 Yes 59.77469 No 205.00939 Unknown 107.42679

98.999% 10−7 Yes 64.24773 Yes 60.22833 No 71.90568 Unknown 68.25916

2 × 10−7 Yes 63.67108 Yes 59.69298 No 106.84492 Unknown 101.04668

exact scheme compared to the approximate one. To illustrate the advantages
and disadvantages of the exact scheme and approximate scheme, we consider
the robustness verification of VGG16 and VGG19 on a single ImageStar input
set created by an adversarial attack on a bell pepper image. The verification
results are presented in Table 5. The table shows that for a small perturba-
tion δ, the exact and over-approximate analysis can prove the robustness of the
VGG16 around some specific levels of attack in approximately one minute. We
can intuitively verify the robustness of the VGG networks via visualization of
their output ranges. An example of the output ranges of VGG19 for the case of
l = 0.95%, δmax = 2 × 10−7 is depicted in Fig. 9. One can see from the figure
that the output of the index 946 corresponding to the bell pepper label is always
the maximum one compared with others, which proves that VGG19 is robust in
this case. From the table, it is interesting that VGG19 is not robust if we apply
≥ 98% of the attack. Notably, the exact analysis can give us correct answers
with a counter-example set in this case. However, the over-approximate anal-
ysis cannot prove that VGG19 is not robust since its obtained reachable set
is an over-approximation of the exact one. Therefore, it may be the case that
the over-approximate reachable set violates the robustness property because of
its conservativeness. A counter-example generated by the exact analysis method
is depicted in Fig. 10 in which the disturbed image is classified as strawberry
instead of bell pepper since the strawberry output is larger than the bell pepper
output in this case.

To optimize the verification time, it is important to know the times consumed
by each type of layer in the reachability analysis step. Figure 11 described the
total reachability times of the convolutional layers, fully connected layers, max
pooling layers and ReLU layers in the VGG19 with 50% attack and 10−7 per-
turbation. As shown in the figure, the reachable set computation in the convo-



36 H.-D. Tran et al.

0 100 200 300 400 500 600 700 800 900 1000

Output Category ID

-4

-2

0

2

4

6

R
an

ge

6.3294844 6.3294846 6.3294848

Bell Pepper (946)

6.1827869

6.18278695

6.182787

6.18278705

6.1827871

S
oc

k 
(8

07
)

6.3294844 6.3294846 6.3294848

Bell Pepper (946)

6.2200835

6.2200836

6.2200837

6.2200838

6.2200839

6.220084

S
tra

w
be

rr
y 

(9
50

)

Fig. 9. Exact ranges of VGG19 show that VGG19 correctly classifies the input image
as a bell pepper.

lutional layers and fully connected layers can be done very quickly, which shows
the advantages of the ImageStar data structure. Notably, the total reachability
time is dominated by the time of computing the reachable set for 5 max pooling
layers and 18 ReLU layers. This is because the computation in these layers con-
cerns solving a large number of linear programing (LP) optimization problems
such as finding lower bound and upper bound, and checking max point candi-
dates. Therefore, to optimize the computation time, we need to minimize the
number of LP problems in the future.
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Fig. 10. A counter-example shows that VGG19 misclassifies the input image as a
strawberry instead of a bell pepper.



Verification of Deep Convolutional Neural Networks Using ImageStars 37

 3.48738 2.747624

 113.894

75.61323

Convolutional 2D (16)

Fully Connected (3)

Max Pooling (5)

ReLU (18)
0

20

40

60

80

100

120

Fig. 11. Total reachability time of each type of layer in VGG19, where the max pooling
and ReLU layers dominate the total reachability time.

6 Discussion

When we apply our approach on large networks, it has been shown that the size
of the input set is the most important factor that influences the performance of
verification approaches. However, this important issue has not been emphasized
in the existing literature. Most of existing approaches focus on the size of the
network that they can analyze. We hypothesize that existing methods (includ-
ing the methods in this paper) scalable to large networks are only so for small
input sets. When the input set is large, it causes three major problems in the
analysis, which are explosions of 1) computation time; 2) memory usage; and
3) conservativeness. In the exact analysis method, a large input set causes more
splits in the max-pooling and ReLU layers. A single ImageStar may split into
many new ImageStars after these layers, which leads to explosion in the num-
ber of ImageStars in the reachable set as shown in Fig. 12. Therefore, it requires
more memory to handle the new ImageStars and more time for the computation.
One may think that the over-approximate method can overcome this challenge
since it obtains only one ImageStar at each layer and at the cost of conserva-
tiveness of the result. An over-approximate method does usually help reduce
the computation time, as shown in the experimental results. However, it is not
necessarily efficient in terms of memory consumption. The reason is, if there is a
split, it introduces a new predicate variable and new generator. If the number of
generators and the dimensions of the ImageStar are large, it requires a massive
amount of memory to store the over-approximate reachable set. For instance,
if there are 100 splits in the first ReLU layer of VGG19, the second convolu-
tional layer will receive an ImageStar of size 224× 224× 64 with 100 generators.
To store this ImageStar with double precision, we need approximately 2.4 GB
of memory. In practice, the dimensions of the ImageStars obtained in the first
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several convolutional layers are usually large. Therefore, if splitting happens in
these layers, we may run out of memory. We see that existing approaches, such
as those using zonotopes and polytopes, also face the same challenges. Addition-
ally, the conservativeness of an over-approximate reachable set is a crucial factor
in evaluating an over-approximation approach. Therefore, the exact analysis still
plays an essential role in the analysis of neural networks since it helps to evaluate
the conservativeness of the over-approximation approaches.

0 5 10 15 20 25 30 35
Number of ImageStars
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1.2

1.4
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2 10-7

Fig. 12. Number of ImageStars in exact analysis increases with input size.

7 Conclusion

We have presented a new set-based method for robustness verification of deep
CNNs using ImageStars. The core of this method are exact and over-approximate
reachability algorithms for ImageStar input sets. The experiments show that our
approach is less conservative than recent zonotope and polytope approaches. It is
also faster than existing approaches when dealing with deep networks. Notably,
our approach can be applied to verify the robustness of real-world CNNs with
small perturbed input sets. It can also compute the exact reachable set and
visualize the exact output range of deep CNNs, and the analysis can speed up
significantly with parallel computing. We have found and shown the size of the
input set to be an important factor that impacts the performance of reachability
algorithms. Future work includes improving the method to deal with larger input
sets and optimizing the memory and time complexity of our computations.
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V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

16. Katz, G.: The marabou framework for verification and analysis of deep neural
networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–
452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

17. Kouvaros, P., Lomuscio, A.: Formal verification of CNN-based perception systems
(2018). arXiv preprint arXiv:1811.11373

https://doi.org/10.1007/978-3-319-63387-9_20
http://arxiv.org/abs/1709.09130
https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1811.11373


40 H.-D. Tran et al.

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

19. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional
neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

20. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

22. Lin, W., et al.: Robustness verification of classification deep neural networks via
linear programming. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 11418–11427 (2019)

23. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks (2017). arXiv preprint arXiv:1706.07351

24. Lopez, D.M., Musau, P., Tran, H.D., Johnson, T.T.: Verification of closed-loop
systems with neural network controllers. In: Frehse, G., Althoff, M. (eds.) ARCH19.
6th International Workshop on Applied Verification of Continuous and Hybrid
Systems. EPiC Series in Computing, vol. 61, pp. 201–210. EasyChair, April 2019

25. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

26. Rauber, J., Brendel, W., Bethge, M.: Foolbox v0. 8.0: A python toolbox to
benchmark the robustness of machine learning models, 5 (2017). arXiv preprint
arXiv:1707.04131

27. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global
robustness evaluation of deep neural networks with provable guarantees for the l 0
norm (2018). arXiv preprint arXiv:1804.05805

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556
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Abstract. Deep neural networks are increasingly being used as con-
trollers for safety-critical systems. Because neural networks are opaque,
certifying their correctness is a significant challenge. To address this issue,
several neural network verification approaches have recently been pro-
posed. However, these approaches afford limited scalability, and applying
them to large networks can be challenging. In this paper, we propose a
framework that can enhance neural network verification techniques by
using over-approximation to reduce the size of the network—thus mak-
ing it more amenable to verification. We perform the approximation such
that if the property holds for the smaller (abstract) network, it holds
for the original as well. The over-approximation may be too coarse, in
which case the underlying verification tool might return a spurious coun-
terexample. Under such conditions, we perform counterexample-guided
refinement to adjust the approximation, and then repeat the process.
Our approach is orthogonal to, and can be integrated with, many exist-
ing verification techniques. For evaluation purposes, we integrate it with
the recently proposed Marabou framework, and observe a significant
improvement in Marabou’s performance. Our experiments demonstrate
the great potential of our approach for verifying larger neural networks.

1 Introduction

Machine programming (MP), the automatic generation of software, is showing
early signs of fundamentally transforming the way software is developed [15]. A
key ingredient employed by MP is the deep neural network (DNN), which has
emerged as an effective means to semi-autonomously implement many complex
software systems. DNNs are artifacts produced by machine learning : a user pro-
vides examples of how a system should behave, and a machine learning algorithm
generalizes these examples into a DNN capable of correctly handling inputs that
it had not seen before. Systems with DNN components have obtained unprece-
dented results in fields such as image recognition [24], game playing [33], natural
language processing [16], computer networks [28], and many others, often sur-
passing the results obtained by similar systems that have been carefully hand-
crafted. It seems evident that this trend will increase and intensify, and that
DNN components will be deployed in various safety-critical systems [3,19].
c© The Author(s) 2020
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DNNs are appealing in that (in some cases) they are easier to create than
handcrafted software, while still achieving excellent results. However, their usage
also raises a challenge when it comes to certification. Undesired behavior has
been observed in many state-of-the-art DNNs. For example, in many cases slight
perturbations to correctly handled inputs can cause severe errors [26,35]. Because
many practices for improving the reliability of hand-crafted code have yet to
be successfully applied to DNNs (e.g., code reviews, coding guidelines, etc.), it
remains unclear how to overcome the opacity of DNNs, which may limit our
ability to certify them before they are deployed.

To mitigate this, the formal methods community has begun developing tech-
niques for the formal verification of DNNs (e.g., [10,17,20,37]). These techniques
can automatically prove that a DNN always satisfies a prescribed property.
Unfortunately, the DNN verification problem is computationally difficult (e.g.,
NP-complete, even for simple specifications and networks [20]), and becomes
exponentially more difficult as network sizes increase. Thus, despite recent
advances in DNN verification techniques, network sizes remain a severely limiting
factor.

In this work, we propose a technique by which the scalability of many exist-
ing verification techniques can be significantly increased. The idea is to apply
the well-established notion of abstraction and refinement [6]: replace a network
N that is to be verified with a much smaller, abstract network, N̄ , and then
verify this N̄ . Because N̄ is smaller it can be verified more efficiently; and it is
constructed in such a way that if it satisfies the specification, the original net-
work N also satisfies it. In the case that N̄ does not satisfy the specification, the
verification procedure provides a counterexample x. This x may be a true coun-
terexample demonstrating that the original network N violates the specification,
or it may be spurious. If x is spurious, the network N̄ is refined to make it more
accurate (and slightly larger), and then the process is repeated. A particularly
useful variant of this approach is to use the spurious x to guide the refinement
process, so that the refinement step rules out x as a counterexample. This vari-
ant, known as counterexample-guided abstraction refinement (CEGAR) [6], has
been successfully applied in many verification contexts.

As part of our technique we propose a method for abstracting and refining
neural networks. Our basic abstraction step merges two neurons into one, thus
reducing the overall number of neurons by one. This basic step can be repeated
numerous times, significantly reducing the network size. Conversely, refinement
is performed by splitting a previously merged neuron in two, increasing the
network size but making it more closely resemble the original. A key point is
that not all pairs of neurons can be merged, as this could result in a network
that is smaller but is not an over-approximation of the original. We resolve
this by first transforming the original network into an equivalent network where
each node belongs to one of four classes, determined by its edge weights and its
effect on the network’s output; merging neurons from the same class can then be
done safely. The actual choice of which neurons to merge or split is performed
heuristically. We propose and discuss several possible heuristics.
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For evaluation purposes, we implemented our approach as a Python frame-
work that wraps the Marabou verification tool [22]. We then used our framework
to verify properties of the Airborne Collision Avoidance System (ACAS Xu) set
of benchmarks [20]. Our results strongly demonstrate the potential usefulness of
abstraction in enhancing existing verification schemes: specifically, in most cases
the abstraction-enhanced Marabou significantly outperformed the original. Fur-
ther, in most cases the properties in question could indeed be shown to hold or
not hold for the original DNN by verifying a small, abstract version thereof.

To summarize, our contributions are: (i) we propose a general framework
for over-approximating and refining DNNs; (ii) we propose several heuristics for
abstraction and refinement, to be used within our general framework; and (iii)
we provide an implementation of our technique that integrates with the Marabou
verification tool and use it for evaluation. Our code is available online [9].

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
background on neural networks and their verification. In Sect. 3, we describe our
general framework for abstracting an refining DNNs. In Sect. 4, we discuss how
to apply these abstraction and refinement steps as part of a CEGAR procedure,
followed by an evaluation in Sect. 5. In Sect. 6, we discuss related work, and we
conclude in Sect. 7.

2 Background

2.1 Neural Networks

A neural network consists of an input layer, an output layer, and one or more
intermediate layers called hidden layers. Each layer is a collection of nodes, called
neurons. Each neuron is connected to other neurons by one or more directed
edges. In a feedforward neural network, the neurons in the first layer receive input
data that sets their initial values. The remaining neurons calculate their values
using the weighted values of the neurons that they are connected to through
edges from the preceding layer (see Fig. 1). The output layer provides the result-
ing value of the DNN for a given input.

There are many types of DNNs, which may differ in the way their neu-
ron values are computed. Typically, a neuron is evaluated by first computing
a weighted sum of the preceding layer’s neuron values according to the edge
weights, and then applying an activation function to this weighted sum [13]. We
focus here on the Rectified Linear Unit (ReLU) activation function [29], given as
ReLU(x) = max (0, x). Thus, if the weighted sum computation yields a positive
value, it is kept; and otherwise, it is replaced by zero.

More formally, given a DNN N , we use n to denote the number of layers
of N . We denote the number of nodes of layer i by si. Layers 1 and n are the
input and output layers, respectively. Layers 2, . . . , n − 1 are the hidden layers.
We denote the value of the j-th node of layer i by vi,j , and denote the column
vector [vi,1, . . . , vi,si

]T as Vi.
Evaluating N is performed by calculating Vn for a given input assignment

V1. This is done by sequentially computing Vi for i = 2, 3, . . . , n, each time using
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Fig. 1. A fully connected, feedforward DNN with 5 input nodes (in orange), 5 output
nodes (in purple), and 4 hidden layers containing a total of 36 hidden nodes (in blue).
Each edge is associated with a weight value (not depicted). (Color figure online)

the values of Vi−1 to compute weighted sums, and then applying the ReLU
activation functions. Specifically, layer i (for i > 1) is associated with a weight
matrix Wi of size si × si−1 and a bias vector Bi of size si. If i is a hidden layer,
its values are given by Vi = ReLU(WiVi−1 + Bi), where the ReLUs are applied
element-wise; and the output layer is given by Vn = WnVn−1 + Bn (ReLUs are
not applied). Without loss of generality, in the rest of the paper we assume that
all bias values are 0, and can be ignored. This rule is applied repeatedly once for
each layer, until Vn is eventually computed.

We will sometimes use the notation w(vi,j , vi+1,k) to refer to the entry of
Wi+1 that represents the weight of the edge between neuron j of layer i and
neuron k of layer i + 1. We will also refer to such an edge as an outgoing edge
for vi,j , and as an incoming edge for vi+1,k.

As part of our abstraction framework, we will sometimes need to consider a
suffix of a DNN, in which the first layers of the DNN are omitted. For 1 < i < n,
we use N [i] to denote the DNN comprised of layers i, i + 1, . . . , n of the original
network. The sizes and weights of the remaining layers are unchanged, and layer
i of N is treated as the input layer of N [i].

Figure 2 depicts a small neural network. The network has n = 3 layers, of sizes
s1 = 1, s2 = 2 and s3 = 1. Its weights are w(v1,1, v2,1) = 1, w(v1,1, v2,2) = −1,
w(v2,1, v3,1) = 1 and w(v2,2, v3,1) = 2. For input v1,1 = 3, node v2,1 evaluates to
3 and node v2,2 evaluates to 0, due to the ReLU activation function. The output
node v3,1 then evaluates to 3.

2.2 Neural Network Verification

DNN verification amounts to answering the following question: given a DNN N ,
which maps input vector x to output vector y, and predicates P and Q, does
there exist an input x0 such that P (x0) and Q(N(x0)) both hold? In other words,
the verification process determines whether there exists a particular input that
meets the input criterion P , and that is mapped to an output that meets the
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Fig. 2. A simple feedforward neural network.

output criterion Q. We refer to 〈N,P,Q〉 as the verification query. As is usual
in verification, Q represents the negation of the desired property. Thus, if the
query is unsatisfiable (UNSAT), the property holds; and if it is satisfiable (SAT),
then x0 constitutes a counterexample to the property in question.

Different verification approaches may differ in (i) the kinds of neural networks
they allow (specifically, the kinds of activation functions in use); (ii) the kinds
of input properties; and (iii) the kinds of output properties. For simplicity, we
focus on networks that employ the ReLU activation function. In addition, our
input properties will be conjunctions of linear constraints on the input values.
Finally, we will assume that our networks have a single output node y, and
that the output property is y > c for a given constant c. We stress that these
restrictions are for the sake of simplicity. Many properties of interest, including
those with arbitrary Boolean structure and involving multiple neurons, can be
reduced into the above single-output setting by adding a few neurons that encode
the Boolean structure [20,32]; see Fig. 3 for an example. The number of neurons
to be added is typically negligible when compared to the size of the DNN. In
particular, this is true for the ACAS Xu family of benchmarks [20], and also
for adversarial robustness queries that use the L∞ or the L1 norm as a distance
metric [5,14,21]. Additionally, other piecewise-linear activation functions, such
as max-pooling layers, can also be encoded using ReLUs [5].

Several techniques have been proposed for solving the aforementioned verifi-
cation problem in recent years (Sect. 6 includes a brief overview). Our abstrac-
tion technique is designed to be compatible with most of these techniques, by
simplifying the network being verified, as we describe next.

3 Network Abstraction and Refinement

Because the complexity of verifying a neural network is strongly connected to
its size [20], our goal is to transform a verification query ϕ1 = 〈N,P,Q〉 into
query ϕ2 = 〈N̄ , P,Q〉, such that the abstract network N̄ is significantly smaller
than N (notice that properties P and Q remain unchanged). We will construct
N̄ so that it is an over-approximation of N , meaning that if ϕ2 is UNSAT then
ϕ1 is also UNSAT. More specifically, since our DNNs have a single output, we can
regard N(x) and N̄(x) as real values for every input x. To guarantee that ϕ2

over-approximates ϕ1, we will make sure that for every x, N(x) ≤ N̄(x); and
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Fig. 3. Reducing a complex property to the y > 0 form. For the network on the left
hand side, suppose we wish to examine the property y2 > y1 ∨ y2 > y3, which is a
property that involves multiple outputs and includes a disjunction. We do this (right
hand side network) by adding two neurons, t1 and t2, such that t1 = ReLU(y2 − y1)
and t2 = ReLU(y2 − y3). Thus, t1 > 0 if and only if the first disjunct, y2 > y1, holds;
and t2 > 0 if and only if the second disjunct, y2 > y3, holds. Finally, we add a neuron
z1 such that z1 = t1 + t2. It holds that z1 > 0 if and only if t1 > 0 ∨ t2 > 0. Thus, we
have reduced the complex property into an equivalent property in the desired form.

thus, N̄(x) ≤ c =⇒ N(x) ≤ c. Because our output properties always have the
form N(x) > c, it is indeed the case that if ϕ2 is UNSAT, i.e. N̄(x) ≤ c for all x,
then N(x) ≤ c for all x and so ϕ1 is also UNSAT. We now propose a framework
for generating various N̄s with this property.

3.1 Abstraction

We seek to define an abstraction operator that removes a single neuron from the
network, by merging it with another neuron. To do this, we will first transform
N into an equivalent network, whose neurons have properties that will facilitate
their merging. Equivalent here means that for every input vector, both networks
produce the exact same output. First, each hidden neuron vi,j of our transformed
network will be classified as either a pos neuron or a neg neuron. A neuron is
pos if all the weights on its outgoing edges are positive, and is neg if all those
weights are negative. Second, orthogonally to the pos/neg classification, each
hidden neuron will also be classified as either an inc neuron or a dec neuron.
vi,j is an inc neuron of N if, when we look at N [i] (where vi,j is an input
neuron), increasing the value of vi,j increases the value of the network’s output.
Formally, vi,j is inc if for every two input vectors x1 and x2 where x1[k] = x2[k]
for k �= j and x1[j] > x2[j], it holds that N [i](x1) > N [i](x2). A dec neuron is
defined symmetrically, so that decreasing the value of x[j] increases the output.
We first describe this transformation (an illustration of which appears in Fig. 4),
and later we explain how it fits into our abstraction framework.

Our first step is to transform N into a new network, N ′, in which every hidden
neuron is classified as pos or neg. This transformation is done by replacing each
hidden neuron vij

with two neurons, v+
i,j and v−

i,j , which are respectively pos

and neg. Both v+
i,j an v−

i,j retain a copy of all incoming edges of the original
vi,j ; however, v+

i,j retains just the outgoing edges with positive weights, and v−
i,j

retains just those with negative weights. Outgoing edges with negative weights
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are removed from v+
i,j by setting their weights to 0, and the same is done for

outgoing edges with positive weights for v−
i,j . Formally, for every neuron vi−1,p,

w′(vi−1,p, v
+
i,j) = w(vi−1,p, vi,j), w′(vi−1,p, v

−
i,j) = w(vi−1,p, vi,j)

where w′ represents the weights in the new network N ′. Also, for every neuron
vi+1,q

w′(v+
i,j , vi+1,q) =

{
w(vi,j , vi+1,q) w(vi,j , vi+1,q) ≥ 0
0 otherwise

and

w′(v−
i,j , vi+1,q) =

{
w(vi,j , vi+1,q) w(vi,j , vi+1,q) ≤ 0
0 otherwise

(see Fig. 4). This operation is performed once for every hidden neuron of N ,
resulting in a network N ′ that is roughly double the size of N . Observe that N ′

is indeed equivalent to N , i.e. their outputs are always identical.
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Fig. 4. Classifying neurons as pos/neg and inc/dec. In the initial network (left), the
neurons of the second hidden layer are already classified: + and − superscripts indicate
pos and neg neurons, respectively; the I superscript and green background indicate
inc, and the D superscript and red background indicate dec. Classifying node v1,1

is done by first splitting it into two nodes v+
1,1 and v−

1,1 (middle). Both nodes have
identical incoming edges, but the outgoing edges of v1,1 are partitioned between them,
according to the sign of each edge’s weight. In the last network (right), v+

1,1 is split once
more, into an inc node with outgoing edges only to other inc nodes, and a dec node
with outgoing edges only to other dec nodes. Node v1,1 is thus transformed into three
nodes, each of which can finally be classified as inc or dec. Notice that in the worst
case, each node is split into four nodes, although for v1,1 three nodes were enough.

Our second step is to alter N ′ further, into a new network N ′′, where every
hidden neuron is either inc or dec (in addition to already being pos or neg).
Generating N ′′ from N ′ is performed by traversing the layers of N ′ backwards,
each time handling a single layer and possibly doubling its number of neurons:

– Initial step: the output layer has a single neuron, y. This neuron is an inc
node, because increasing its value will increase the network’s output value.
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– Iterative step: observe layer i, and suppose the nodes of layer i + 1 have
already been partitioned into inc and dec nodes. Observe a neuron v+

i,j in
layer i which is marked pos (the case for neg is symmetrical). We replace v+

i,j

with two neurons v+,I
i,j and v+,D

i,j , which are inc and dec, respectively. Both
new neurons retain a copy of all incoming edges of v+

i,j ; however, v+,I
i,j retains

only outgoing edges that lead to inc nodes, and v+,D
i,j retains only outgoing

edges that lead to dec nodes. Thus, for every vi−1,p and vi+1,q,

w′′(vi−1,p, v
+,I
i,j ) = w′(vi−1,p, v

+
i,j), w′′(vi−1,p, v

+,D
i,j ) = w′(vi−1,p, v

+
i,j)

w′′(v+,I
i,j , vi+1,q) =

{
w′(v+

i,j , vi+1,q) if vi+1,q is inc
0 otherwise

w′′(v+,D
i,j , vi+1,q) =

{
w′(v+

i,j , vi+1,q) if vi+1,q is dec
0 otherwise

where w′′ represents the weights in the new network N ′′. We perform this
step for each neuron in layer i, resulting in neurons that are each classified
as either inc or dec.

To understand the intuition behind this classification, recall that by our assump-
tion all hidden nodes use the ReLU activation function, which is monotonically
increasing. Because v+

i,j is pos, all its outgoing edges have positive weights, and
so if its assignment was to increase (decrease), the assignments of all nodes to
which it is connected in the following layer would also increase (decrease). Thus,
we split v+

i,j in two, and make sure one copy, v+,I
i,j , is only connected to nodes that

need to increase (inc nodes), and that the other copy, v+,D
i,j , is only connected

to nodes that need to decrease (dec nodes). This ensures that v+,I
i,j is itself inc,

and that v+,D
i,j is dec. Also, both v+,I

i,j and v+,D
i,j remain pos nodes, because their

outgoing edges all have positive weights.
When this procedure terminates, N ′′ is equivalent to N ′, and so also to N ;

and N ′′ is roughly double the size of N ′, and roughly four times the size of
N . Both transformation steps are only performed for hidden neurons, whereas
the input and output neurons remain unchanged. This is summarized by the
following lemma:

Lemma 1. Any DNN N can be transformed into an equivalent network N ′′

where each hidden neuron is pos or neg, and also inc or dec, by increasing its
number of neurons by a factor of at most 4.

Using Lemma 1, we can assume without loss of generality that the DNN
nodes in our input query ϕ1 are each marked as pos/neg and as inc/dec. We
are now ready to construct the over-approximation network N̄ . We do this by
specifying an abstract operator that merges a pair of neurons in the network
(thus reducing network size by one), and can be applied multiple times. The only
restrictions are that the two neurons being merged need to be from the same
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hidden layer, and must share the same pos/neg and inc/dec attributes. Conse-
quently, applying abstract to saturation will result in a network with at most
4 neurons in each hidden layer, which over-approximates the original network.
This, of course, would be an immense reduction in the number of neurons for
most reasonable input networks.

The abstract operator’s behavior depends on the attributes of the neurons
being merged. For simplicity, we will focus on the 〈pos, inc〉 case. Let vi,j , vi,k

be two hidden neurons of layer i, both classified as 〈pos, inc〉. Because layer i
is hidden, we know that layers i + 1 and i − 1 are defined. Let vi−1,p and vi+1,q

denote arbitrary neurons in the preceding and succeeding layer, respectively. We
construct a network N̄ that is identical to N , except that: (i) nodes vi,j and vi,k

are removed and replaced with a new single node, vi,t; and (ii) all edges that
touched nodes vi,j or vi,k are removed, and other edges are untouched. Finally,
we add new incoming and outgoing edges for the new node vi,t as follows:

– Incoming edges: w̄(vi−1,p, vi,t) = max{w(vi−1,p, vi,j), w(vi−1,p, vi,k)}
– Outgoing edges: w̄(vi,t, vi+1,q) = w(vi,j , vi+1,q) + w(vi,k, vi+1,q)

where w̄ represents the weights in the new network N̄ . An illustrative example
appears in Fig. 5. Intuitively, this definition of abstract seeks to ensure that
the new node vi,t always contributes more to the network’s output than the two
original nodes vi,j and vi,k—so that the new network produces a larger output
than the original for every input. By the way we defined the incoming edges of
the new neuron vi,t, we are guaranteed that for every input x passed into both N
and N̄ , the value assigned to vi,t in N̄ is greater than the values assigned to both
vi,j and vi,k in the original network. This works to our advantage, because vi,j

and vi,k were both inc—so increasing their values increases the output value.
By our definition of the outgoing edges, the values of any inc nodes in layer
i + 1 increase in N̄ compared to N , and those of any dec nodes decrease. By
definition, this means that the network’s overall output increases.

The abstraction operation for the 〈neg, inc〉 case is identical to the one
described above. For the remaining two cases, i.e. 〈pos, dec〉 and 〈neg, dec〉,
the max operator in the definition is replaced with a min operator.

The next lemma (proof omitted due to lack of space) justifies the use of our
abstraction step, and can be applied once per each application of abstract:

Lemma 2. Let N̄ be derived from N by a single application of abstract. For
every x, it holds that N̄(x) ≥ N(x).

3.2 Refinement

The aforementioned abstract operator reduces network size by merging neu-
rons, but at the cost of accuracy: whereas for some input x0 the original network
returns N(x0) = 3, the over-approximation network N̄ created by abstract
might return N̄(x0) = 5. If our goal is prove that it is never the case that
N(x) > 10, this over-approximation may be adequate: we can prove that always
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Fig. 5. Using abstract to merge 〈pos, inc〉 nodes. Initially (left), the three nodes v1, v2

and v3 are separate. Next (middle), abstract merges v1 and v2 into a single node. For
the edge between x1 and the new abstract node we pick the weight 4, which is the
maximal weight among edges from x1 to v1 and v2. Likewise, the edge between x2 and
the abstract node has weight −1. The outgoing edge from the abstract node to y has
weight 8, which is the sum of the weights of edges from v1 and v2 to y. Next, abstract
is applied again to merge v3 with the abstract node, and the weights are adjusted
accordingly (right). With every abstraction, the value of y (given as a formula at the
bottom of each DNN, where R represents the ReLU operator) increases. For example,
to see that 12R(4x1 − x2) ≥ 8R(4x1 − x2) + 4R(2x1 − 3x2), it is enough to see that
4R(4x1−x2) ≥ 4R(2x1−3x2), which holds because ReLU is a monotonically increasing
function and x1 and x2 are non-negative (being, themselves, the output of ReLU nodes).

N̄(x) ≤ 10, and this will be enough. However, if our goal is to prove that it is
never the case that N(x) > 4, the over-approximation is inadequate: it is possi-
ble that the property holds for N , but because N̄(x0) = 5 > 4, our verification
procedure will return x0 as a spurious counterexample (a counterexample for
N̄ that is not a counterexample for N). In order to handle this situation, we
define a refinement operator, refine, that is the inverse of abstract: it trans-
forms N̄ into yet another over-approximation, N̄ ′, with the property that for
every x, N(x) ≤ N̄ ′(x) ≤ N̄(x). If N̄ ′(x0) = 3.5, it might be a suitable over-
approximation for showing that never N(x) > 4. In this section we define the
refine operator, and in Sect. 4 we explain how to use abstract and refine as
part of a CEGAR-based verification scheme.

Recall that abstract merges together a couple of neurons that share the
same attributes. After a series of applications of abstract, each hidden layer i
of the resulting network can be regarded as a partitioning of hidden layer i of the
original network, where each partition contains original, concrete neurons that
share the same attributes. In the abstract network, each partition is represented
by a single, abstract neuron. The weights on the incoming and outgoing edges of
this abstract neuron are determined according to the definition of the abstract
operator. For example, in the case of an abstract neuron v̄ that represents a
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set of concrete neurons {v1, . . . , vn} all with attributes 〈pos, inc〉, the weight of
each incoming edge to v̄ is given by

w̄(u, v) = max(w(u, v1), . . . , w(u, vn))

where u represents a neuron that has not been abstracted yet, and w is the
weight function of the original network. The key point here is that the order of
abstract operations that merged v1, . . . , vn does not matter—but rather, only
the fact that they are now grouped together determines the abstract network’s
weights. The following corollary, which is a direct result of Lemma 2, establishes
this connection between sequences of abstract applications and partitions:

Corollary 1. Let N be a DNN where each hidden neuron is labeled as pos/neg
and inc/dec, and let P be a partitioning of the hidden neurons of N , that only
groups together hidden neurons from the same layer that share the same labels.
Then N and P give rise to an abstract neural network N̄ , which is obtained by
performing a series of abstract operations that group together neurons according
to the partitions of P. This N̄ is an over-approximation of N .

We now define a refine operation that is, in a sense, the inverse of abstract.
refine takes as input a DNN N̄ that was generated from N via a sequence of
abstract operations, and splits a neuron from N̄ in two. Formally, the operator
receives the original network N , the partitioning P, and a finer partition P ′ that
is obtained from P by splitting a single class in two. The operator then returns
a new abstract network, N̄ ′, that is the abstraction of N according to P ′.

Due to Corollary 1, and because N̄ returned by refine corresponds to a
partition P ′ of the hidden neurons of N , it is straightforward to show that N̄ is
indeed an over-approximation of N . The other useful property that we require
is the following:

Lemma 3. Let N̄ be an abstraction of N , and let N̄ ′ be a network obtained
from N̄ by applying a single refine step. Then for every input x it holds that
N̄(x) ≥ N̄ ′(x) ≥ N(x).

The second part of the inequality, N̄ ′(x) ≥ N(x) holds because N̄ ′ is an
over-approximation of N (Corollary 1). The first part of the inequality, N̄(x) ≥
N̄ ′(x), follows from the fact that N̄(x) can be obtained from N̄ ′(x) by a single
application of abstract.

In practice, in order to support the refinement of an abstract DNN, we
maintain the current partitioning, i.e. the mapping from concrete neurons to
the abstract neurons that represent them. Then, when an abstract neuron is
selected for refinement (according to some heuristic, such as the one we propose
in Sect. 4), we adjust the mapping and use it to compute the weights of the edges
that touch the affected neuron.
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4 A CEGAR-Based Approach

In Sect. 3 we defined the abstract operator that reduces network size at the cost
of reducing network accuracy, and its inverse refine operator that increases net-
work size and restores accuracy. Together with a black-box verification procedure
Verify that can dispatch queries of the form ϕ = 〈N,P,Q〉, these components
now allow us to design an abstraction-refinement algorithm for DNN verification,
given as Algorithm 1 (we assume that all hidden neurons in the input network
have already been marked pos/neg and inc/dec).

Algorithm 1. Abstraction-based DNN Verification(N,P,Q)
1: Use abstract to generate an initial over-approximation N̄ of N
2: if Verify(N̄ , P, Q) is UNSAT then
3: return UNSAT

4: else
5: Extract counterexample c
6: if c is a counterexample for N then
7: return SAT

8: else
9: Use refine to refine N̄ into N̄ ′

10: N̄ ← N̄ ′

11: Goto step 2
12: end if
13: end if

Because N̄ is obtained via applications of abstract and refine, the sound-
ness of the underlying Verify procedure, together with Lemmas 2 and 3, guar-
antees the soundness of Algorithm 1. Further, the algorithm always terminates:
this is the case because all the abstract steps are performed first, followed by a
sequence of refine steps. Because no additional abstract operations are per-
formed beyond Step 1, after finitely many refine steps N̄ will become identical
to N , at which point no spurious counterexample will be found, and the algo-
rithm will terminate with either SAT or UNSAT. Of course, termination is only
guaranteed when the underlying Verify procedure is guaranteed to terminate.

There are two steps in the algorithm that we intentionally left ambiguous:
Step 1, where the initial over-approximation is computed, and Step 9, where the
current abstraction is refined due to the discovery of a spurious counterexample.
The motivation was to make Algorithm 1 general, and allow it to be customized
by plugging in different heuristics for performing Steps 1 and 9, which may
depend on the problem at hand. Below we propose a few such heuristics.

4.1 Generating an Initial Abstraction

The most näıve way to generate the initial abstraction is to apply the abstract
operator to saturation. As previously discussed, abstract can merge together
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any pair of hidden neurons from a given layer that share the same attributes.
Since there are four possible attribute combinations, this will result in each
hidden layer of the network having four neurons or fewer. This method, which
we refer to as abstraction to saturation, produces the smallest abstract networks
possible. The downside is that, in some case, these networks might be too coarse,
and might require multiple rounds of refinement before a SAT or UNSAT answer
can be reached.

A different heuristic for producing abstractions that may require fewer
refinement steps is as follows. First, we select a finite set of input points,
X = {x1, . . . , xn}, all of which satisfy the input property P . These points can be
generated randomly, or according to some coverage criterion of the input space.
The points of X are then used as indicators in estimating when the abstraction
has become too coarse: after every abstraction step, we check whether the prop-
erty still holds for x1, . . . , xn, and stop abstracting if this is not the case. The
exact technique, which we refer to as indicator-guided abstraction, appears in
Algorithm 2, which is used to perform Step 1 of Algorithm 1.

Algorithm 2. Indicator-Guided Abstraction(N,P,Q,X)
1: N̄ ← N
2: while ∀x ∈ X. N̄(x) satisfies Q and there are still neurons that can be merged do
3: Δ ← ∞, bestPair ← ⊥
4: for every pair of hidden neurons vi,j , vi,k with identical attributes do
5: m ← 0
6: for every node vi−1,p do
7: a ← w̄(vi−1,p, vi,j), b ← w̄(vi−1,p, vi,k)
8: if |a − b| > m then
9: m ← |a − b|

10: end if
11: end for
12: if m < Δ then
13: Δ ← m, bestPair ← 〈vi,j , vi,k〉
14: end if
15: end for
16: Use abstract to merge the nodes of bestPair, store the result in N̄
17: end while
18: return N̄

Another point that is addressed by Algorithm 2, besides how many rounds of
abstraction should be performed, is which pair of neurons should be merged in
every application of abstract. This, too, is determined heuristically. Since any
pair of neurons that we pick will result in the same reduction in network size, our
strategy is to prefer neurons that will result in a more accurate approximation.
Inaccuracies are caused by the max and min operators within the abstract
operator: e.g., in the case of max , every pair of incoming edges with weights
a, b are replaced by a single edge with weight max (a, b). Our strategy here is to
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merge the pair of neurons for which the maximal value of |a− b| (over all incom-
ing edges with weights a and b) is minimal. Intuitively, this leads to max (a, b)
being close to both a and b—which, in turn, leads to an over-approximation
network that is smaller than the original, but is close to it weight-wise. We point
out that although repeatedly exploring all pairs (line 4) may appear costly, in
our experiments the time cost of this step was negligible compared to that of the
verification queries that followed. Still, if this step happens to become a bottle-
neck, it is possible to adjust the algorithm to heuristically sample just some of
the pairs, and pick the best pair among those considered—without harming the
algorithm’s soundness.

As a small example, consider the network depicted on the left hand side
of Fig. 5. This network has three pairs of neurons that can be merged using
abstract (any subset of {v1, v2, v3}). Consider the pair v1, v2: the maximal value
of |a − b| for these neurons is max (|1 − 4)|, |(−2) − (−1)|) = 3. For pair v1, v3,
the maximal value is 1; and for pair v2, v3 the maximal value is 2. According to
the strategy described in Algorithm 2, we would first choose to apply abstract
on the pair with the minimal maximal value, i.e. on the pair v1, v3.

4.2 Performing the Refinement Step

A refinement step is performed when a spurious counterexample x has been
found, indicating that the abstract network is too coarse. In other words, our
abstraction steps, and specifically the max and min operators that were used
to select edge weights for the abstract neurons, have resulted in the abstract
network’s output being too great for input x, and we now need to reduce it.
Thus, our refinement strategies are aimed at applying refine in a way that
will result in a significant reduction to the abstract network’s output. We note
that there may be multiple options for applying refine, on different nodes, such
that any of them would remove the spurious counterexample x from the abstract
network. In addition, it is not guaranteed that it is possible to remove x with
a single application of refine, and multiple consecutive applications may be
required.

One heuristic approach for refinement follows the well-studied notion of
counterexample-guided abstraction refinement [6]. Specifically, we leverage the
spurious counterexample x in order to identify a concrete neuron v, which is
currently mapped into an abstract neuron v̄, such that splitting v away from v̄
might rule out counterexample x. To do this, we evaluate the original network
on x and compute the value of v (we denote this value by v(x)), and then do
the same for v̄ in the abstract network (value denoted v̄(x)). Intuitively, a neu-
ron pair 〈v, v̄〉 for which the difference |v(x) − v̄(x)| is significant makes a good
candidate for a refinement operation that will split v away from v̄.

In addition to considering v(x) and v̄(x), we propose to also consider the
weights of the incoming edges of v and v̄. When these weights differ significantly,
this could indicate that v̄ is too coarse an approximation for v, and should be
refined. We argue that by combining these two criteria—edge weight difference
between v and v̄, which is a property of the current abstraction, together with
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the difference between v(x) and v̄(x), which is a property of the specific input x,
we can identify abstract neurons that have contributed significantly to x being
a spurious counterexample.

The refinement heuristic is formally defined in Algorithm 3. The algorithm
traverses the original neurons, looks for the edge weight times assignment value
that has changed the most as a result of the current abstraction, and then
performs refinement on the neuron at the end of that edge. As was the case
with Algorithm 2, if considering all possible nodes turns out to be too costly,
it is possible to adjust the algorithm to explore only some of the nodes, and
pick the best one among those considered—without jeopardizing the algorithm’s
soundness.

Algorithm 3. Counterexample-Guided Refinement(N, N̄, x)
1: bestNeuron ← ⊥, m ← 0
2: for each concrete neuron vi,j of N mapped into abstract neuron v̄i,j′ of N̄ do
3: for each concrete neuron vi−1,k of N mapped into abstract neuron v̄i−1,k′ of N̄

do
4: if |w(vi−1,k, vi,j) − w̄(v̄i−1,k′ , v̄i,j′)| · |vi,j(x) − v̄i,j′(x)| > m then
5: m ← |w(vi−1,k, vi,j) − w̄(v̄i−1,k′ , v̄i,j′)| · |vi,j(x) − v̄i,j′(x)|
6: bestNeuron ← vi,j

7: end if
8: end for
9: end for

10: Use refine to split bestNeuron from its abstract neuron

As an example, let us use Algorithm 3 to choose a refinement step for the
right hand side network of Fig. 5, for a spurious counterexample 〈x1, x2〉 = 〈1, 0〉.
For this input, the original neurons’ evaluation is v1 = 1, v2 = 4 and v3 = 2,
whereas the abstract neuron that represents them evaluates to 4. Suppose v1

is considered first. In the abstract network, w̄(x1, v̄1) = 4 and w̄(x2, v̄1) = −1;
whereas in the original network, w(x1, v1) = 1 and w(x2, v1) = −2. Thus, the
largest value m computed for v1 is |w(x1, v1) − w̄(x1, v̄1)| · |4 − 1| = 3 · 3 = 9.
This value of m is larger than the one computed for v2 (0) and for v3 (4), and
so v1 is selected for the refinement step. After this step is performed, v2 and v3

are still mapped to a single abstract neuron, whereas v1 is mapped to a separate
neuron in the abstract network.

5 Implementation and Evaluation

Our implementation of the abstraction-refinement framework includes modules
that read a DNN in the NNet format [19] and a property to be verified, create
an initial abstract DNN as described in Sect. 4, invoke a black-box verification
engine, and perform refinement as described in Sect. 4. The process terminates
when the underlying engine returns either UNSAT, or an assignment that is a
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true counterexample for the original network. For experimentation purposes, we
integrated our framework with the Marabou DNN verification engine [22]. Our
implementation and benchmarks are publicly available online [9].

Ownship

vown

Intruder

vint

ρ

ψ

θ

Fig. 6. (From [20]) An illustration of the
sensor readings passed as input to the
ACAS Xu DNNs.

Our experiments included verify-
ing several properties of the 45 ACAS
Xu DNNs for airborne collision avoid-
ance [19,20]. ACAS Xu is a system
designed to produce horizontal turning
advisories for an unmanned aircraft (the
ownship), with the purpose of prevent-
ing a collision with another nearby air-
craft (the intruder). The ACAS Xu sys-
tem receive as input sensor readings,
indicating the location of the intruder
relative to the ownship, the speeds of
the two aircraft, and their directions
(see Fig. 6). Based on these readings, it selects one of 45 DNNs, to which the
readings are then passed as input. The selected DNN then assigns scores to five
output neurons, each representing a possible turning advisory: strong left, weak
left, strong right, weak right, or clear-of-conflict (the latter indicating that it is
safe to continue along the current trajectory). The neuron with the lowest score
represents the selected advisory. We verified several properties of these DNNs
based on the list of properties that appeared in [20]—specifically focusing on
properties that ensure that the DNNs always advise clear-of-conflict for distant
intruders, and that they are robust to (i.e., do not change their advisories in the
presence of) small input perturbations.

Each of the ACAS Xu DNNs has 300 hidden nodes spread across 6 hid-
den layers, leading to 1200 neurons when the transformation from Sect. 3.1 is
applied. In our experiments we set out to check whether the abstraction-based
approach could indeed prove properties of the ACAS Xu networks on abstract
networks that had significantly fewer neurons than the original ones. In addition,
we wished to compare the proposed approaches for generating initial abstractions
(the abstraction to saturation approach versus the indicator-guided abstraction
described in Algorithm 2), in order to identify an optimal configuration for our
tool. Finally, once the optimal configuration has been identified, we used it to
compare our tool’s performance to that of vanilla Marabou. The results are
described next.

Figure 7 depicts a comparison of the two approaches for generating initial
abstractions: the abstraction to saturation scheme (x axis), and the indicator-
guided abstraction scheme described in Algorithm 2 (y axis). Each experiment
included running our tool twice on the same benchmark (network and property),
with an identical configuration except for the initial abstraction being used. The
plot depicts the total time (log-scale, in seconds, with a 20-h timeout) spent by
Marabou solving verification queries as part of the abstraction-refinement proce-
dure. It shows that, in contrast to our intuition, abstraction to saturation almost
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always outperforms the indicator-guided approach. This is perhaps due to the
fact that, although it might entail additional rounds of refinement, the abstrac-
tion to saturation approach tends to produce coarse verification queries that
are easily solved by Marabou, resulting in an overall improved performance. We
thus conclude that, at least in the ACAS Xu case, the abstraction to saturation
approach is superior to that of indicator-guided abstraction.

This experiment also confirms that properties can indeed be proved on
abstract networks that are significantly smaller than the original—i.e., despite
the initial 4x increase in network size due to the preprocessing phase, the final
abstract network on which our abstraction-enhanced approach could solve the
query was usually substantially smaller than the original network. Specifically,
among the abstraction to saturation experiments that terminated, the final net-
work on which the property was shown to be SAT or UNSAT had an average size
of 268.8 nodes, compared to the original 310—a 13% reduction. Because DNN
verification becomes exponentially more difficult as the network size increases,
this reduction is highly beneficial.

Fig. 7. Generating initial abstractions using abstraction to saturation and indicator-
guided abstraction.

Next, we compared our abstraction-enhanced Marabou (in abstraction to sat-
uration mode) to the vanilla version. The plot in Fig. 8 compares the total query
solving time of vanilla Marabou (y axis) to that of our approach (x axis). We ran
the tools on 90 ACAS Xu benchmarks (2 properties, checked on each of the 45
networks), with a 20-h timeout. We observe that the abstraction-enhanced ver-
sion significantly outperforms vanilla Marabou on average—often solving queries
orders-of-magnitude more quickly, and timing out on fewer benchmarks. Specif-
ically, the abstraction-enhanced version solved 58 instances, versus 35 solved
by Marabou. Further, over the instances solved by both tools, the abstraction-
enhanced version had a total query median runtime of 1045 s, versus 63671 s
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for Marabou. Interestingly, the average size of the abstract networks for which
our tool was able to solve the query was 385 nodes—which is an increase com-
pared to the original 310 nodes. However, the improved runtimes demonstrate
that although these networks were slightly larger, they were still much easier
to verify, presumably because many of the network’s original neurons remained
abstracted away.

Fig. 8. Comparing the run time (in seconds, logscale) of vanilla Marabou and the
abstraction-enhanced version on the ACAS Xu benchmarks.

Finally, we used our abstraction-enhanced Marabou to verify adversarial
robustness properties [35]. Intuitively, an adversarial robustness property states
that slight input perturbations cannot cause sudden spikes in the network’s out-
put. This is desirable because such sudden spikes can lead to misclassification of
inputs. Unlike the ACAS Xu domain-specific properties [20], whose formulation
required input from human experts, adversarial robustness is a universal prop-
erty, desirable for every DNN. Consequently it is easier to formulate, and has
received much attention (e.g., [2,10,20,36]).

In order to formulate adversarial robustness properties for the ACAS Xu
networks, we randomly sampled the ACAS Xu DNNs to identify input points
where the selected output advisory, indicated by an output neuron yi, received
a much lower score than the second-best advisory, yj (recall that the advisory
with the lowest score is selected). For such an input point x0, we then posed the
verification query: does there exist a point x that is close to x0, but for which yj

receives a lower score than yi? Or, more formally: (‖x − x0‖L∞ ≤ δ) ∧ (yj ≤ yi).
If this query is SAT then there exists an input x whose distance to x0 is at most
δ, but for which the network assigns a better (lower) score to advisory yj than
to yi. However, if this query is UNSAT, no such point x exists. Because we select
point x0 such that yi is initially much smaller than yj , we expect the query to
be UNSAT for small values of δ.
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For each of the 45 ACAS Xu networks, we created robustness queries for
20 distinct input points—producing a total of 900 verification queries (we arbi-
trarily set δ = 0.1). For each of these queries we compared the runtime of
vanilla Marabou to that of our abstraction-enhanced version (with a 20-h time-
out). The results are depicted in Fig. 9. Vanilla Marabou was able to solve more
instances—893 out of 900, versus 805 that the abstraction-enhanced version was
able to solve. However, on the vast majority of the remaining experiments, the
abstraction-enhanced version was significantly faster, with a total query median
runtime of only 0.026 s versus 15.07 s in the vanilla version (over the 805 bench-
marks solved by both tools). This impressive 99% improvement in performance
highlights the usefulness of our approach also in the context of adversarial robust-
ness. In addition, over the solved benchmarks, the average size of the abstract
networks for which our tool was able to solve the query was 104.4 nodes, versus
310 nodes in each of the original networks—a 66% reduction in size. This rein-
forces our statement that, in many cases, DNNs contain a great deal of unneeded
neurons, which can safely be removed by the abstraction process for the purpose
of verification.

Fig. 9. Comparing the run time (seconds, logscale) of vanilla Marabou and the
abstraction-enhanced version on the ACAS Xu adversarial robustness properties.

6 Related Work

In recent years, multiple schemes have been proposed for the verification of neu-
ral networks. These include SMT-based approaches, such as Marabou [22,23],
Reluplex [20], DLV [17] and others; approaches based on formulating the prob-
lem as a mixed integer linear programming instance (e.g., [4,7,8,36]); approaches
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that use sophisticated symbolic interval propagation [37], or abstract interpreta-
tion [10]; and others (e.g., [1,18,25,27,30,38,39]). These approaches have been
applied in a variety of tasks, such as measuring adversarial robustness [2,17],
neural network simplification [11], neural network modification [12], and many
others (e.g., [23,34]). Our approach can be integrated with any sound and com-
plete solver as its engine, and then applied towards any of the aforementioned
tasks. Incomplete solvers could also be used and might afford better performance,
but this could result in our approach also becoming incomplete.

Some existing DNN verification techniques incorporate abstraction elements.
In [31], the authors use abstraction to over-approximate the Sigmoid activation
function with a collection of rectangles. If the abstract verification query they
produce is UNSAT, then so is the original. When a spurious counterexample is
found, an arbitrary refinement step is performed. The authors report limited
scalability, tackling only networks with a few dozen neurons. Abstraction tech-
niques also appear in the AI2 approach [10], but there it is the input prop-
erty and reachable regions that are over-approximated, as opposed to the DNN
itself. Combining this kind of input-focused abstraction with our network-focused
abstraction is an interesting avenue for future work.

7 Conclusion

With deep neural networks becoming widespread and with their forthcoming
integration into safety-critical systems, there is an urgent need for scalable tech-
niques to verify and reason about them. However, the size of these networks
poses a serious challenge. Abstraction-based techniques can mitigate this diffi-
culty, by replacing networks with smaller versions thereof to be verified, without
compromising the soundness of the verification procedure. The abstraction-based
approach we have proposed here can provide a significant reduction in network
size, thus boosting the performance of existing verification technology.

In the future, we plan to continue this work along several axes. First, we
intend to investigate refinement heuristics that can split an abstract neuron
into two arbitrary sized neurons. In addition, we will investigate abstraction
schemes for networks that use additional activation functions, beyond ReLUs.
Finally, we plan to make our abstraction scheme parallelizable, allowing users to
use multiple worker nodes to explore different combinations of abstraction and
refinement steps, hopefully leading to faster convergence.
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V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

21. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Towards proving the
adversarial robustness of deep neural networks. In: Proceedings 1st Workshop on
Formal Verification of Autonomous Vehicles (FVAV), pp. 19–26 (2017)

22. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

23. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven sys-
tems. In: Proceedings 1st ACM SIGCOMM Workshop on Network Meets AI &
ML (NetAI) (2019)

24. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems,
pp. 1097–1105 (2012)

25. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks. Technical report
(2018). https://arxiv.org/abs/1801.05950

26. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
Technical report (2016). http://arxiv.org/abs/1607.02533

27. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. Technical report (2017). https://arxiv.org/abs/1706.07351

28. Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with Pen-
sieve. In: Proceedings Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), pp. 197–210 (2017)

29. Nair, V., Hinton, G.: Rectified linear units improve restricted boltzmann machines.
In: Proceedings 27th International Conference on Machine Learning (ICML), pp.
807–814 (2010)

30. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. Technical report (2017). http://arxiv.
org/abs/1709.06662

31. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

32. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings 27th International Joint Confer-
ence on Artificial Intelligence (IJACI), pp. 2651–2659 (2018)

33. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/2004.02462
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24


An Abstraction-Based Framework for Neural Network Verification 65

34. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC) (2019)

35. Szegedy, C., et al.: Intriguing properties of neural networks. Technical report
(2013). http://arxiv.org/abs/1312.6199

36. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings 7th International Conference on
Learning Representations (ICLR) (2019)

37. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings 27th USENIX Security
Symposium (2018)

38. Wu, H., et al.: Parallelization techniques for verifying neural networks. Technical
report (2020). https://arxiv.org/abs/2004.08440

39. Xiang, W., Tran, H.-D., Johnson, T.: Output reachable set estimation and verifi-
cation for multilayer neural networks. IEEE Trans. Neural Networks Learn. Syst.
(TNNLS) 99, 1–7 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2004.08440
http://creativecommons.org/licenses/by/4.0/


Improved Geometric Path Enumeration
for Verifying ReLU Neural Networks

Stanley Bak1(B), Hoang-Dung Tran2,3,
Kerianne Hobbs4,5,

and Taylor T. Johnson3

1 Stony Brook University, Stony Brook, USA
stanleybak@gmail.com

2 University of Nebraska, Lincoln, USA
3 Vanderbilt University, Nashville, USA

4 Air Force Research Laboratory, Wright-Patterson Air Force Base, USA
5 Georgia Institute of Technology, Atlanta, USA

Abstract. Neural networks provide quick approximations to complex
functions, and have been increasingly used in perception as well as con-
trol tasks. For use in mission-critical and safety-critical applications, how-
ever, it is important to be able to analyze what a neural network can
and cannot do. For feed-forward neural networks with ReLU activation
functions, although exact analysis is NP-complete, recently-proposed ver-
ification methods can sometimes succeed.

The main practical problem with neural network verification is exces-
sive analysis runtime. Even on small networks, tools that are theoreti-
cally complete can sometimes run for days without producing a result.
In this paper, we work to address the runtime problem by improving
upon a recently-proposed geometric path enumeration method. Through
a series of optimizations, several of which are new algorithmic improve-
ments, we demonstrate significant speed improvement of exact analysis
on the well-studied ACAS Xu benchmarks, sometimes hundreds of times
faster than the original implementation. On more difficult benchmark
instances, our optimized approach is often the fastest, even outperform-
ing inexact methods that leverage overapproximation and refinement.

1 Introduction

Neural networks have surged in popularity due to their ability to learn complex
function approximations from data. This ability has led to their proposed appli-
cation in perception and control decision systems, which are sometimes safety-
critical. For use in safety-critical applications, it is important to prove properties
about neural networks rather than treating them as black-box components.
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A recent method [24] based on path enumeration and geometric set propa-
gation has shown that exact analysis can be practical for piecewise linear neu-
ral networks. This includes networks with fully-connected layers, convolutional
layers, average and max pooling layers, and neurons with ReLU activation func-
tions. Here, we focus on fully-connected layers with ReLU activation functions.
The verification problem in this method is presented in terms of input/output
properties of the neural network. The method works by taking the input set
of states and performing a set-based execution of the neural network. Due to
the linear nature of the set representation and the piecewise linear nature of
the ReLU activation function, the set may need to be split after each neuron is
executed, so that the output after the final layer is a collection of sets that can
each be checked for intersection with an unsafe set.

Since the formal verification problem we are addressing has been shown to
be NP-Complete [13], we instead focus on improving practical scalability. This
requires us to choose a set of benchmarks for evaluation. For this, we focus on
properties from the well-studied ACAS Xu system [13]. This contains a mix of
safe and unsafe instances, where the original verification times measured from
seconds to days, including some unsolved instances.

The main contributions of this paper are:

• several new speed improvements to the path enumeration method, along with
correctness justifications, that are each systematically evaluated;

• the first verification method that verifies all 180 benchmark instances from
ACAS Xu properties 1–4, each in under 10 min on a standard laptop;

• a comparison with other recent tools, including Marabou, Neurify, NNV, and
ERAN, where our method is often the fastest and over 100x faster than the
original path enumeration method implementation in NNV.

This paper first reviews background related to neural networks, the path
enumeration verification approach, and the ACAS Xu benchmarks in Sect. 2.
Next, Sect. 3 analyzes several algorithmic optimizations to the basic procedure,
and systematically evaluates each optimization’s effect on the execution times of
the ACAS Xu benchmarks. A comparison with other tools is provided in Sect. 4,
followed by review of related work in Sect. 5 and a conclusion.

2 Background

We now review the neural network verification problem (Sect. 2.1), the basic geo-
metric path enumeration algorithm (Sect. 2.2), important spatial data structures
(Sect. 2.3), and the ACAS Xu benchmarks (Sect. 2.4).

2.1 Neural Networks and Verification

In this work, we focus our attention on fully-connected, feedforward neural net-
works with ReLU activation functions. A neural network computes a function
NN : R

ni → R
no , where ni is the number of inputs and no is the number of
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outputs. A neural network consists of k layers, where each layer i is defined with
a weight matrix Wi and a bias vector bi. Given an input point y0 ∈ R

ni , a neural
network will compute an output point yk ∈ R

no as follows:

x(1) = W1y0 + b1, y1 = f(x(1))

x(2) = W2y1 + b2, y2 = f(x(2))
...

x(k) = Wkyk−1 + bk, yk = f(x(k))

We call yi−1 and yi the input and output of the i-th layer, respectively, and
x(i) the intermediate values at layer i. The vector-function f is defined using
a so-called activation function, that is applied element-wise to the vector of
intermediate values at each layer. We focus on the popular rectified linear unit
(ReLU) activation function, ReLU(x) = max(x, 0).

For this computation definition to make sense, the sizes of the weights matri-
ces and bias vectors are restricted. The first layer must accept ni-dimensional
inputs, the final layer must produce no-dimensional outputs, and the interme-
diate layers must have weights and biases that have sizes compatible with their
immediate neighbors, in the sense of matrix/vector multiplication and addition.
The number of neurons (sometimes called hidden units) at layer i is defined as
the number of elements in the layer’s output vector yi.

Definition 1 (Output Range). Given a neural network that computes the
function NN and an input set I ⊆ R

ni , the output range is the set of pos-
sible outputs of the network, when executed from a point inside the input set,
Range(NN, I) = {yk | yk = NN(y0), y0 ∈ I}.
Computing the output range is one way to solve the verification problem.

Definition 2 (Verification Problem for Neural Networks). Given a neu-
ral network that computes the function NN, an input set I ⊆ R

ni , and an unsafe
set U ⊆ R

no , the verification problem for neural networks is to check if
Range(NN, I) ∩ U = ∅.

If verification is impossible, we would also prefer to generate a counterexam-
ple y0 ∈ I where yk = NN(y0) and yk ∈ U , although not all tools do this. We also
further assume in this work that the input and unsafe sets are defined with linear
constraints, I = {x | Aix ≤ bi, x ∈ R

ni}, and U = {x | Aux ≤ bu, x ∈ R
no}.

2.2 Basic Geometric Path Enumeration Algorithm

Given enough time, the output range of a neural network can be computed
exactly using a recently-proposed geometric path enumeration approach [24].
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input : Input Set: I, Unsafe Set: U
output: Verification Result (safe or unsafe)

1 s ← 〈layer:0, neuron:None, θ : convert(I)〉 // computation-state tuple

2 W ← List() // initialize waiting list

3 W.put(s)
4 result ← safe
5 while result = safe and ¬W.empty() do
6 s ← W.pop()
7 result ← step(s, W, U) // updates W, given in Algorithm 2

8 end
9 return result

Algorithm 1: High-level neural-network path enumeration algorithm.

The general strategy is to execute the neural network with sets instead of points.
A spatial data structure is used to represent the input set of states, and this set
is propagated through each layer of the neural network, computing the set of
possible intermediate values and then the set of possible outputs repeatedly until
the output of the final layer is computed. In this context, a spatial data structure
represents some subset of states in a Euclidean space R

n, where the number of
dimensions n is the number of neurons in one of the layers of the network, and
may change as the set is propagated layer by layer. An example spatial data
structure could be a polytope defined using a finite set of half-spaces (linear
constraints), although as explained later this is not the most efficient choice.
Section 2.3 will discuss spatial data structures in more detail.

The high-level verification method is shown in Algorithm1, where functions
in red are custom to the spatial data structure being used. The convert function
(line 1) converts the input set I from linear constraints to the desired spatial data
structure, and stores it in the θ element of s, where s is called a computation-
state tuple. A neuron value of None in the tuple indicates that next operation
should be an affine transformation. The computation-state tuple is then put into
a waiting list (line 3), which stores tuples that need further processing. The step
function (line 7) propagates the set θ by a single neuron in a single layer of the
network, and is elaborated on in the next paragraph. This function can modify
W, possibly inserting one or more computation-state tuples, although always
at a point further along in the network (with a larger layer number or neuron
index), which ensures eventual termination of the loop. This function will also
check if the set, after being fully propagated through the network, intersects the
unsafe set. In this case, step will return unsafe, which causes the while loop to
immediately terminate since the result is known.

The step function propagates the set of states θ by one neuron, and is shown
in Algorithm 2. The intermediate values are computed from the input set of each
layer by calling affine transformation (line 12). For the current neuron index
n, the algorithm will check if the input to the ReLU activation function, dimen-
sion n of the set θ, is always positive (or zero), always negative, or can be either
positive or negative. This is done by the get sign function (line 21), which
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input : Computation-State Tuple: s, Waiting List: W, Unsafe Set: U
output: Safe so far? (safe or unsafe)

1 if s.neuron = None then
2 // finished with the previous layer

3 if s.layer = k then
4 // finished with all layers

5 if s.θ.has intersection(U) = ∅ then
6 return safe
7 else
8 return unsafe // alternatively, return counterexample here

9 end

10 else
11 s.layer ← s.layer + 1
12 s.θ.affine transformation(Ws.layer, bs.layer)
13 s.neuron ← 1

14 end

15 end
16 n ← s.neuron
17 s.neuron ← n + 1
18 if s.neuron > size(bs.layer) then
19 s.neuron ← None // n is the last neuron in the current layer

20 end
21 switch get sign(s, n) do
22 case pos do
23 // do nothing

24 case neg do
25 s.θ.project to zero(n)
26 case posneg do
27 t ← 〈s.layer, s.neuron, s.θ〉 // deep copy s
28 s.θ.add constraint(n, ≥, 0) // split on positive case

29 t.θ.add constraint(n, ≤, 0) // split on negative case

30 t.θ.project to zero(n)
31 W.put(t)

32 end
33 W.put(s)
34 return safe // safe so far

Algorithm 2: Pseudocode for step function, which propagates a set
through the network by one neuron.

returns pos, neg, or posneg, respectively. In the first two cases, the current dimen-
sion n of the set is left alone or assigned to zero (using the project to zero
method), to reflect the semantics of the ReLU activation function when the input
is positive or negative, respectively. In the third case, the set is split into two
sets along linear constraint where the input to the activation function equals
zero. In the case where the input to the activation function is less than zero, the
value of dimension n is projected to zero, reflecting the semantics of the ReLU
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activation function. The splitting is done using the add constraint method of
the spatial data structure, which takes three arguments: n, sign, and val. This
method intersects the set with the linear condition that the n-th dimension is,
depending on sign, greater than, less than, and/or equal to val. Once the set
has been propagated through the whole network, it is checked for intersection
with the unsafe set (line 5), using the has intersection method.

This enumeration algorithm has been shown to be sound and complete [24].
However, for this strategy to work in practice, the spatial data structure used
to store θ must support certain operations efficiently. These are denoted in red
in Algorithms 1 and 2: convert, has intersection, affine transformation,
get sign, project to zero, and add constraint. Polytopes represented with
half-spaces, for example, do not have a known efficient way to compute general
affine transformations in high dimensions. Instead, linear star sets [4] will be
used, which are a spatial data structure that support all the required operations
efficiently and without overapproximation error. These will be elaborated on
more in the next subsection.

In this work, we focus on optimizations to the presented algorithm that
increase its practical scalability, while exploring the same set of paths. The most
important factor that we do not control and influences whether this can succeed
is the number of paths that exist. Each output set that gets checked for inter-
section with the unsafe set corresponds to a unique path through the network,
where the path is defined by the sign of each element of the intermediate values
vector at each layer. The algorithm enumerates every path of the network for a
given input set. An upper bound on this is 2N , where N is the total number of
neurons in all the layers of the network. For many practical verification problem
instances, however, the actual number of unique paths is significantly smaller
than the upper bound.

2.3 Spatial Data Structures

Using the correct spatial data structure (set representation in this context) is
important to the efficiency of Algorithm 1 and 2, as well as some of our opti-
mizations. Here we review two important spatial data structures, zonotopes and
(linear) star sets.

Zonotopes. A zonotope is an affine transformation of the [−1, 1]p box. Zono-
topes have been used for efficient analysis of hybrid systems [8] as well as more
recently to verify neural networks using overapproximations [7,21]. Zonotopes
can be described mathematically as Z = (c,G), where the center c is an n-
dimensional vector and generator matrix G is an n × p matrix. The columns of
G are sometimes referred to as generators of the zonotope, and we write these
as g1, . . . , gp. A zonotope Z encodes a set of states as:

Z =
{
x ∈ R

n
∣
∣ x = c + Gα, α ∈ [−1, 1]p

}
(1)

The two most important properties of zonotopes for the purposes of verifica-
tion are that they are efficient for (i) affine transformation, and (ii) optimization.
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An affine transformation of an n-dimensional point x to a q-dimensional
space is defined with a q × n matrix A and q-dimensional vector b so that the
transformed point is x′ = Ax+b. An affine transformation of every point in an n-
dimensional set of points described by a zonotope Z = (c,G) is easily computed
as Z ′ = (Ac + b, AG). Note this uses standard matrix operations which scale
polynomially with the dimension of A, and are especially efficient if the number
of generators is small. In the verification problem, the number of generators, p,
corresponds to the degrees of freedom needed to encode the input set of states.
In ACAS Xu system, for example, there are 5 inputs, and so the input set can
be encoded with 5 generators. In contrast, affine transformations of polytopes
require converting between a half-space and vertex representation, which is slow.

The second efficient operation for zonotopes is optimization in some direction
vector v. Given a zonotope Z = (c,G) and a direction v to maximize, the point
x∗ ∈ Z that maximizes the dot product v · x∗ can be obtained as a simple
summation x∗ = c +

∑p
i=1 x∗

i , where each x∗
i is given as:

x∗
i =

{
vi, if vi · gi ≥ −vi · gi

−vi, otherwise
(2)

Star Sets. A (linear) star set is another spatial data structure that generalizes
a zonotope. A star set is an affine transformation of an arbitrary p-dimensional
polytope. Mathematically, a star set S is a 3-tuple, (c,G, P ), where c and G are
the same as with a zonotope, and P is a half-space polytope in p dimensions. A
star set S encodes a set of states (compare with Eq. 1):

S = {x ∈ R
n | x = c + Gα, α ∈ P} (3)

A star set can encode any zonotope by letting P be the [−1, 1]p box. Star
sets can also encode more general sets than zonotopes by using a more complex
polytope P . A triangle, for example, can be encoded as a star set by setting P
to be a triangle, using the origin as c and the identity matrix as V . This cannot
be encoded with zonotopes, as they must be centrally symmetric. In Algorithm1
on line 1, the convert function produces the input star set (c,G, P ) from input
polytope I setting c to the zero vector, G to the identity matrix, and P to I.

Affine transformations by a q × n matrix A and q-dimensional vector b of a
star set S can be computed efficiently similar to a zonotope: S′ = (Ac+b, AG,P ).

Optimization in some direction v is slightly less efficient than with a zonotope,
and can be done using linear programming (LP). To find a point x∗ ∈ S that
maximizes the dot product v ·x∗, we convert the optimization direction v to the
initial space w = (vG)T , find a point α∗ ∈ P that maximizes w using LP, and
then convert α∗ back to the n-dimensional space x∗ = c + Gα∗.

Star sets, unlike zonotopes, also efficiently support half-space intersection
operations by adding constraints to the star set’s polytope. Given a star set
S = (c,G, P ) and an n-dimensional half-space dx ≤ e defined by vector d and
scalar e, we convert this to a p-dimensional half-space as follows:

(dG)α ≤ e − dc (4)
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The star set after intersection is then S′ = (c,G, P ′), where the half-space poly-
tope P ′ is the same as P , with one additional constraint given by Eq. 4.

2.4 ACAS Xu Benchmarks

Since the verification problem for neural networks is NP-Complete, we know
exact analysis methods cannot work well in all instances. In order to evaluate
improvements, therefore, we must focus on a set of benchmarks.

In this work, we choose to focus on the Airborne Collision System X
Unmanned (ACAS Xu) set of neural network verification benchmarks [13]. As
these benchmarks have been widely-used for evaluation in other publications,
and some authors have even made their tools available publicly, using these
allows us to provide a common comparison point with other methods later in
Sect. 4.

ACAS Xu is a flight-tested aircraft system designed to avoid midair collisions
of unmanned aircraft by issuing horizontal maneuver advisories [17]. The system
was designed using a partially observable Markov decision process that resulted
in a 2 GB lookup table which mapped states to commands. This mapping was
compressed to 3 MB using 45 neural networks (two of the inputs were discretized
and are used to choose the applicable network) [12]. Since the compression is
not exact, the verification step checks if the system still functions correctly.

Each network contains five inputs that get set to the current the aircraft
state, and five outputs that determine the current advisory. The network has six
ReLU layers with 50 neurons each, for a total of 300 neurons. Ten properties were
originally defined, encoding things like, if the aircraft are approaching each other
head-on, a turn command will be advised (property 3). The formal definition of
all the properties encoded as linear constraints is available in the appendix of
the original work [13].

3 Improvements

We now systematically explore several improvements to the exact path enumer-
ation verification method from Sect. 2.2. For each proposed improvement, we
compare the run-time on the ACAS Xu system with and without the change.
We focus on properties 1–4. Although originally these were measured on a subset
of the 45 networks [13], the same authors later used all the networks to check
these properties [14], which is what we will do here. Each verification instance
is run with a 10 min timeout, so that the maximum time needed to test a single
method, if a timeout is encountered on each of the 180 benchmarks, is 30 h.
Later, in Sect. 4, we will compare the most optimized method with other ver-
ification tools and the other ACAS Xu properties. Unless indicated otherwise,
our experiments were performed on a Laptop platform with Ubuntu Linux 18.04,
32 GB RAM and an Intel Xeon E-2176M CPU running at 2.7 GHz with 6 phys-
ical cores (12 virtual cores with hyperthreading). The full data measurements
summarized in this section are provided in AppendixC.
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Fig. 1. Depth-first search outperforms breadth-first search.

3.1 Local Search Type (DFS vs BFS)

Algorithm 1 uses a waiting list to store the computation-state tuples, which are
popped off one at a time and passed to the step function. This need not strictly
be a list, but is rather a collection of computation-state tuples, and we can
consider changing the order states are popped to explore the state space with
different strategies. If the possible paths through the neural network are viewed
as a tree, two well-known strategies for tree traversal that can be considered are
depth-first search (DFS) and breadth-first search (BFS). A DFS search can be
performed popping the computation-state tuple with the largest (layer, neuron)
pair, whereas a BFS search is done by popping the tuple with the smallest
(layer, neuron) pair.

The original path enumeration with star set approach [24] describes a layer-
by-layer exploration strategy, which is closer to a BFS search. Finite-state
machine model-checking methods, however, more often use DFS search.

We compare the two approaches in Fig. 1, which summarizes the execution
of all 180 benchmarks. Here, the y-axis is a timeout in seconds, and the x-axis
is the number of benchmarks verified within that time. Within the ten minute
timeout, around 90 benchmarks can be successfully verified with BFS, and 120
with DFS1. Notice that the y-axis is log scale, so that differences in runtimes
between easy and hard benchmark instances are both visible.

As can be seen in the figure, the DFS strategy is superior. This is primarily
due to unsafe instances of the benchmarks, where DFS can often quickly find an
unsafe execution and exit the high-level loop, whereas BFS first iterates through

1 The DFS method solves every benchmark that can be solved with BFS. Appendix C
contains the complete results.
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all the layers and neurons (DFS explores deep paths, which sometimes are quickly
found to be unsafe). In the cases where the system was safe, both approaches
took similar time. Another known advantage of DFS search is that the memory
needed to store the waiting list is significantly smaller, which can be a factor for
the benchmarks with a large number of paths.

Correctness Justification: Both DFS and BFS explore the same sets of states,
just in a different order.

3.2 Bounds for Splitting

Using DFS search, we consider other improvements. The original path enumer-
ation publication mentions the following optimization:

“. . . to minimize the number of [operations] and computation time, we
first determine the ranges of all states in the input set which can be done
efficiently by solving . . . linear programming problems.” [24]

An evaluation of the improvement is not provided, so we investigate this here.
The optimization is referring to the implementation of the get sign function on
line 21 of Algorithm2. The get sign(s, n) function takes as input a computation-
state tuple s with spatial data structure θ (a star set) and a dimension number
n. It returns pos, neg, or posneg, depending on whether value of dimension n,
which we call xn, in set θ can be positive (or zero), negative or both. Our
baseline implementation, which we refer to as Copy, determines the output of
get sign by creating two copies of the passed-in star set, intersecting them
with the condition that xn ≤ 0 or xn ≥ 0, and then checking each star set for
feasibility, done using linear programming (LP). In the second version, which we
call Bounds, the passed-in star set is instead minimized and maximized in the
direction of xn, to determine the possible signs. While Copy incurs overhead from
creating copies and adding intersections, Bounds does extra work by computing
the minimum and maximum which are not really needed (we only need the
possible signs of xn).

A comparison of the optimizations on the ACAS Xu benchmarks are shown
in Fig. 2 by comparing Copy to Bounds, we confirm the original paper’s claim
that Bounds is faster.

Correctness Justification: If θ intersected with xn ≤ 0 is feasible, then the
minimum value of xn in θ will be less than or equal to zero and vice versa.
Similar for the maximum case.

3.3 Fewer LPs with Concrete Simulations

We next consider strategies to determine the possible signs of a neuron’s output
with fewer LP calls, which we call prefiltering. Consider a modification of the
Bounds optimization, where rather than computing both the upper and lower
bound of xn, we first compute the lower bound and check if its value is positive.
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If this is the case, we know get sign should return pos, and we do not need
to compute the upper bound. We could, alternatively, first compute the upper
bound and check if its value is negative. If there is no branching and we guess
the correct side to check, only a single LP needs to be solved instead of two.

Fig. 2. Prefilter optimizations improve performance by rejecting branches without LP
solving. The Zono-Sim method works best.

We can do even better than guessing by tracking extra information in the
computation-state tuple. We add a simulation field to s, which contains a
concrete value in the set of states θ. This is initialized to any point in the input
set I, which can be obtained using LP, or using the center point if the input
states are a box. When get sign returns posneg and the set is split (line 27 in
Algorithm 2), the optimization point x∗ that proved a split was possible is used
as the value of simulation in the new set. Also, when an affine transformation
of the set is computed (line 12 in Algorithm2), or when the set is projected to
zero, simulation must also be modified by the same transformation.

With a concrete value of xn available in simulation, we use its sign to
decide whether to first check the upper or lower bound of dimension n in θ. If
the nth element of simulation is positive, for example, we first compute the
lower bound. If this is positive (or zero), then get sign can return pos. If the
lower bound is negative, then we can immediately return posneg without solving
another LP, since the simulation serves as a witness that xn can also be positive.
Only when the simulation value of xn is zero do we need to solve two LPs.

We call this method Sim in Fig. 2. This is shown to be generally faster than
the previous methods, as the overhead to track simulations is small compared
with the gains of solving fewer LPs.
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Correctness Justification: If the lower bound of xn is greater than zero, than
its upper bound will be also be greater than zero and pos is the correct output. If
the lower bound is less than zero and the nth element of simulation is greater
than zero, than the upper bound will also be positive, since it must be greater
than or equal to the value in the simulation (simulation is always a point in
the set θ), and so posneg is correct. Similar for the opposite case.

3.4 Zonotope Prefilter

We can further reduce LP solving by using a zonotope. In each computation-
state tuple s, we add a zonotope field z that overapproximates θ, so that θ ⊆ z.
In the ACAS Xu benchmarks (and most current benchmarks for verification of
NNs), the input set of states is provided as interval values on each input, which is
a box and can be used to initialize the zonotope. Otherwise, LPs can be solved
to compute box bounds on the input set to serve as an initial value. During
the affine transformation of θ (line 12 in Algorithm 2), the zonotope also gets
the same transformation applied. Cases where θ gets projected to zero are also
affine transformations and can be exactly computed with the zonotope z. The
only unsupported operation in the algorithm for zonotopes is add constraint,
used during the splitting operation (lines 28–29 in Algorithm2). We skip these
operations for the zonotope, which is why z is an overapproximation of θ.

With a zonotope overapproximation z available during get sign, we can
sometimes reduce the number of LPs to zero. Computing the minimum and
maximum of the n-th dimension of z is an optimization problem over zonotopes,
which recall from Sect. 2.3 can be done efficiently as a simple summation. If the
n-th dimension of z is completely positive or negative, we can return pos or neg
immediately. Otherwise, if both positive and negative values are possible in the
zonotope, we fall back to LP solving on θ to compute the possible signs. This can
be done either by computing both bounds, which we call Zono-Bounds or with the
simulation optimization from before, which we call Zono-Sim. The performance
of the methods are shown in Fig. 2. The Zonotope-Sim method performs the
fastest, verifying about 145 benchmarks in under 10 min and demonstrating that
reduction in LP solving is worth the extra bookkeeping.

Correctness Justification: Rejecting branches without LP solving is justified
by the fact that z is an overapproximation of θ. This is initially true, as if the
input set is a box then z = θ and otherwise z is the box overapproximation
of θ. This is also true for every operation other than add constraint, as these
are exact for zonotopes. Finally, it is also true when add constraint operation
is skipped on z, as adding constraints can only reduce the size of the set θ. If
θ ⊆ z, every smaller set θ′ will also be a subset of z by transitivity, θ′ ⊆ θ ⊆ z,
and so an overapproximation is maintained by ignoring these operations with z.
Finally, if the n-th dimension of an overapproximation of θ is strictly positive
(or negative), the n-th dimension of θ will also be strictly positive (or negative).
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Fig. 3. Computing neuron output
bounds eagerly improves speed.

Fig. 4. Zonotope domain contraction
improves overall performance.

3.5 Eager Bounds Computation

The step function shown in Algorithm2 computes the sign of xn for the current
neuron n. An alternative approach is to compute the possible signs for every
neuron’s output in the current layer immediately after the affine transformation
on line 12. These bounds can be saved in the computation-state tuple s and then
accessed by get sign. The potential advantage is that, if a split is determined
as impossible for some neuron n, and a split occurs at some earlier neuron i < n,
then the split will also be impossible for neuron n in both of the sets resulting
from the earlier split at neuron i. In this way, computing the bounds once for
neuron n is sufficient in the parent set, as opposed to computing the bounds
twice, in each of the two children sets resulting from the split. The benefit can be
even more drastic if there are multiple splits before neuron n is processed, where
potentially an exponential number of bounds computations can be skipped due
to a single computation in the parent. On the other hand, if a split is possible, we
will have computed more bounds than we needed, as we will do the computation
once in the parent and then once again in each of the children. Furthermore, this
method incurs additional storage overhead for the bounds, as well as copy-time
overhead when computation-state tuples are deep copied on line 27. Experiments
are important to check if the benefits outweigh the costs.

The modified algorithm, which we call Eager, will use the zonotope prefilter
and simulation as before to compute the bounds, but this will be done immedi-
ately after the affine transformation on line 12. Further, when a split occurs along
neuron n in the posneg case, the bounds also get recomputed in the two children
for the remaining neurons in the layer, starting at the next neuron n+1. Neurons
where a split was already rejected do not have their bounds recomputed. This
algorithm is compared with the previous approach, called Noneager. In Fig. 3,
we see eager computation of bounds slightly improves performance.

Correctness Justification: When sets are split in the posneg case in Algo-
rithm2, each child’s θ is a subset of the parent’s θ. Thus, the upper and lower
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bound of the output of each neuron n can only move inward. Thus, if the par-
ent’s bounds for some neuron are strictly positive (or negative), then the two
childrens’ bounds will match the parent’s and do not need to be recomputed.

3.6 Zonotope Contraction

The accuracy of the zonotope prefilters is important, as large overapproximation
error will lead to the computed overapproximation range of xn in zonotope z
always overlapping zero, and thus performance similar to the Sim method. This
effect is observed near the top of the curves in Fig. 2.

In order to improve accuracy, we propose a zonotope domain contraction
approach, where the size of the zonotope set z is reduced while still maintaining
an overapproximation of the exact star set θ. As discussed before, computing
exact intersections of zonotopes is generally impossible when splitting (lines 28–
29 in Algorithm 2). However, we can lower our expectations and instead consider
other ways to reduce the size of zonotope z while maintaining θ ⊆ z.

To do this, we use a slightly different definition of a zonotope, which we refer
to as an offset zonotope. Instead of an affine transformation of the [−1, 1]p box,
an offset zonotope is an affine transformation of an arbitrary box, [l1, u1]× . . .×
[lp, up], where each upper bound ui is greater than or equal to the lower bound
li. As this corresponds to an affine transformation of the [−1, 1]p box, offset
zonotopes are equally expressive as ordinary zonotopes. Optimization over offset
zonotopes can also be done using a simple summation, but instead of using Eq. 2,
we use the following modified equation:

x∗
i =

{
uivi, if uivi · gi ≥ livi · gi

livi, otherwise
(5)

Using offset zonotopes allows for some memory savings in the algorithm. The
initial zonotope can be created using a zero vector as the zonotope center and
the identity matrix as the generator matrix, the same as the initial input star
set. In fact, with this approach, since the affine transformations being applied to
the zonotope z and star set θ are identical, the centers and generator matrices
will always remain the same, so that we only need to store one copy of these.

Beyond memory savings, with offset zonotopes we can consider ways to
reduce the zonotope’s overapproximation error when adding constraints to θ.
The proposed computations are done after splitting (lines 28–29 in Algorithm2),
each time an extra constraint gets added to the star set’s polytope P . The new
linear constraint in the output space (xn ≤ 0 or xn ≥ 0) is transformed to a
linear constraint in the initial space using Eq. 4. We then try to contract the size
of the zonotope’s box domain by increasing each li and reducing each ui, while
still maintaining an overapproximation of the intersection. We consider two ways
to do this which we call Contract-LP and Contract-Simple.

In Contract-LP, linear programming is used to adjust each li and ui. Since the
affine transformations for the star set θ and the zonotope z are the same, z is an
overapproximation if and only if the star set’s polytope P is a subset of z’s initial
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Fig. 5. Both Contract-Simple and Contract-LP can find point q to contract a zonotope’s
initial box (left), but only Contract-LP can find point r (right), as it requires reasoning
with multiple linear constraints.

domain box [l1, u1] × . . . × [lp, up]. Thus, we can compute tight box bounds on
P using linear programming, and using this box as the offset zonotope’s initial
domain box. This will be the smallest box that is possible for the current affine
transformation while still maintaining an overapproximation. This approach,
however, requires solving 2p linear programs, which may be expensive.

Another approach is possible without invoking LP, which we call Contract-
Simple. Contract-Simple overapproximates the intersection by considering only
the new linear constraint. This is a problem of finding the smallest box that
contains the intersection of an initial box and a single halfspace, which can be
solved geometrically without LP solving (see AppendixA for an algorithm).

Since Contract-Simple only considers a single constraint, it can be less accu-
rate than Contract-LP. An illustration of the two methods is given in Fig. 5,
where the initial domain is a two-dimensional box. The thin lines are the linear
constraints that were added to θ, where all points below these lines are in the
corresponding halfspaces. On the left, both Contract-Simple and Contract-LP can
reduce the upper bound in the y direction by finding the point q, which lies at
the intersection of one side of the original box domain and the new linear con-
straint. On the right, two constraints were added to the star θ (after two split
operations), and they both must be considered at the same time to find point
r to be able to reduce the upper bound in the y direction. In this case, only
Contract-LP will succeed, as Contract-Simple works with only a single linear con-
straint at a time, and intersecting the original box with each of the constraints
individually does not change its size.

Comparing the performance of the methods in Fig. 4, we see that the less-
accurate but faster Contract-Simple works best for the ACAS Xu benchmarks.
We expect both methods to take longer when the input set has more dimensions,
but especially Contract-LP since it requires solving two LPs for every dimension.

Correctness Justification: The domain contraction procedures reduces the
size of zonotope z while maintaining an overapproximation of the star set θ.
This can be seen since the affine transformations in z and θ are always the same,
and every point in the star set’s initial input polytope P is also a point in the
initial box domain of z. Since an overapproximation of θ is maintained, it is still
sound to use z when determining the possible signs of a neuron’s output.
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Fig. 6. Our method verifies all the
benchmarks, although Neurify is usu-
ally faster when it completes.

Fig. 7. Without property 1, our app-
roach is generally fastest when the run-
time exceeds two seconds.

4 Evaluation with Other Tools

We next compare the optimized implementation with other neural network ver-
ification tools. Our optimizations are part of the exact analysis mode of the
nnenum tool available at https://github.com/stanleybak/nnenum. The artifact
evaluation package for our measurements here is online at http://stanleybak.
com/papers/bak2020cav repeatability.zip.

We evaluate with the fully optimized method, using DFS local search, Zono-
Sim prefilter, Eager bounds, Contract-Simple zonotope domain contraction. Fur-
ther, we use a parallelized version of the algorithm, where the details of the
parallalization are provided in AppendixB. With a 12-thread implementation
(one for each core on our evaluation system), the algorithm can now verify all
180 ACAS Xu benchmarks from properties 1–4 within the 10 min timeout. All
measurements are done on our Laptop system, with hardware as described in the
first paragraph of Sect. 3. The complete measurement data summarized here is
available in AppendixD.

ACAS Xu Properties 1–4. We compare our method with Marabou [14] Neu-
rify [26], and NNV [25]. Marabou is the newer, faster version of the Reluplex
algorithm [13], where a Simplex-based LP solver is modified with special ReLU
pivots2. Neurify is the newer, 20x faster version of the ReluVal algorithm [27],
which does interval-based overapproximation, and splits intervals based on gradi-
ent information, ensuring the overapproximation error cannot cause to an incor-
rect result. NNV is the original Matlab implementation of the path enumeration
method with star sets, available online at https://github.com/verivital/nnv. The
verification result is consistent between the methods, which is a good sanity check
for implementation correctness.
2 For Marabou, we used the faster parallel divide-and-conquer mode with arguments

as suggested in the paper [14]: --dnc --initial-divides=4 --initial-timeout=5

--num-online-divides=4 --timeout-factor=1.5 --num-workers=12.

https://github.com/stanleybak/nnenum
http://stanleybak.com/papers/bak2020cav_repeatability.zip
http://stanleybak.com/papers/bak2020cav_repeatability.zip
https://github.com/verivital/nnv
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Table 1. Tool runtime (secs) for ACAS Xu properties 5–10.

Property Net Result Our method ERAN Neurify NNV exact Marabou

5 1-1 SAFE 13 – 12 671 1969

6.1 1-1 SAFE 67 – 3 6230 12425

6.2 1-1 SAFE 76 – 1 7612 17755

7 1-9 UNSAFE 5948 – 804 – –

8 2-9 UNSAFE .7 – 64 – –

9 3-3 SAFE 88 318 393 12576 15235

10 4-5 SAFE 12 – 1 457 2795

The comparison on ACAS Xu benchmarks on properties 1–4 is shown in
Fig. 6. Our method is the only approach able to analyze all 180 benchmarks in
less than 10 min, and outperforms both Marabou and NNV.

The comparison with Neurify is more complicated. In Fig. 6, Neurify was
faster (when it finished) on all but the largest instances. One advantage of Neu-
rify compared with the other tools is that if the unsafe set is very far away
from the possible outputs of a neural network, it can prove safety quickly with a
very coarse overapproximation. Path enumeration methods, on the other hand,
explore all paths regardless of the distance to the unsafe set. This is especially
relevant for ACAS Xu property 1, where the system is unsafe if the first output,
clear-of-conflict, is greater than 1500 whereas, for example on network 1-1, this
output is always smaller than 1. The meaning of this property is also strange:
the absolute value of a specific output is irrelevant, as relative values are used
to select the current advisory. Neurify is admittedly the clear winner for all the
networks with this property.

When this property is excluded and instead only the more difficult prop-
erties 2–4 are considered (Fig. 7), a different trend emerges. Here, our method
outperforms Neurify when analysis takes more than about two seconds, which
we believe is an encouraging result. Further, part of the reason why Neurify can
be very quick on the easier benchmarks (with runtime less than two seconds) is
that our implementation incurs a startup delay of about 0.6 s simply to start the
Python process and begin executing our script, by which time the C++-based
Neurify can verify 80 benchmarks. We believe the more interesting cases are
when the runtimes are large, and we outperform Neurify in these cases.

Finally, we compare with using single-set overapproximations for analysis.
NNV provides an approximate-star method, where rather splitting, a single star
set is used to overapproximate the result of ReLU operations. While fast when it
succeeds, this strategy can only verify 68 of the 180 benchmarks. Furthermore,
the benchmarks it verified were also quickly checked with exact path enumer-
ation. Of the 68 verified benchmarks, the largest performance difference was
property 3 with network 3-3, which took 3.1 s with exact enumeration and 1.2 s
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with single-set overapproximation. For these ACAS Xu benchmarks, overapprox-
imation using a single set does not provide much benefit.

Other ACAS Xu Properties. Another recently proposed and well received
analysis method is presented in the elegant framework of abstract interpretation
using zonotopes, in tools such as AI2 [7] or DeepZ [21]. These methods are single-
set overapproximation methods, similar to the approximate-star method in NNV,
but with strictly more error (see Fig. 2 in the NNV paper [24] and the associated
discussion). As these methods have more error than approximate-star, and since
approximate-star could only verify 68 of the 180 benchmarks, we do not expect
these methods to work well on the ACAS Xu system.

However, a recent extension to these methods has been proposed where the
overapproximation is augmented with MILP solving [22] to provide complete
analysis. This has been implemented in the ERAN tool, publicly available at
https://github.com/eth-sri/eran. According to current version of the README,
ERAN currently only supports property 9 of ACAS Xu, so we were unable to try
this method on the other ACAS Xu networks or properties. Verifying property
9 uses a hard-coded custom strategy of first partitioning the input space into
6300 regions and analyzing these individually. This problem-specific parameter
presents a problem for fair timing comparison, as the time needed to find the
splitting parameter value of 6300 is unknown and does not get measured.

Ignoring this issue, we ran a comparison on property 9 and network 3-3, the
only network where the property applies. A runtime comparison for ERAN3 and
the other tools is shown in Table 1. Surprisingly, our enumeration method signif-
icantly outperforms the overapproximation and refinement approaches both in
Neurify and ERAN on this benchmark. Notice, however, that the original enu-
meration method in NNV is much slower than our method (about 150x slower
in this case). Without the optimizations from this work, one would reach the
opposite conclusion about which type of method works better for this bench-
mark. Both NNV and our method, however, report exploring the same number
of paths, 338600 on this system.

For completeness, Table 1 also includes the other original ACAS Xu prop-
erties, which were each defined over a single network4. Both our method and
Neurify completed all the benchmarks, although neither was best in all cases.
Property 7 is particularly interesting, since the input set is the entire input space,
so the number of path is very large. Hundreds of millions of paths were explored
before finding a case where the property was violated.

5 Related Work

As the interest in neural networks has surged, so has research in their verification.
We review some notable results here, although recent surveys may provide more

3 For ACAS Xu analysis, we used the following arguments provided by the ERAN
authors: --domain deepzono --dataset acasxu --complete True.

4 Property 6’s input set was a disjunction of two boxes which we split into two cases.

https://github.com/eth-sri/eran
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a thorough overview [15,28]. Verification approaches for NNs can broadly be
characterized into geometric techniques, SMT methods, and MILP approaches.

Geometric approaches, like this work, propagate sets of states layer by layer.
This can be done with polytopes [6,29] using libraries like the multi-parametric
toolbox (MPT) [10], although certain operations do not scale well, in particu-
lar, affine transformation. Other approaches use geometric methods to bound
the range of a neural network. These include AI2 [7] and DeepZ [21] which
propagate zonotopes through networks and are presented in the framework of
abstract interpretation. ReluVal [27] and Neurify [26] also fall into this cate-
gory, using interval symbolic methods to create overapproximations, followed by
a refinement strategy based on symbolic gradient information. Some of these
implementations are also sound with respect to floating-point rounding errors,
which we have not considered here, mostly for lack of an LP solver that is both
fast and does outward rounding. Other NN verification tools such as Reluplex,
Marabou, ERAN, and NNV also use numeric LP solving. Another performance
difference is that we used the free GLPK library for LP solving and some other
tools used the commercial Gurobi optimizer, which is likely faster. Other refine-
ment approaches partition the input space to detect adversarial examples [11],
compute maximum sensitivity for verification [30], or perform refinement based
on optimization shadow prices [20].

Mixed integer-linear programming (MILP) solvers can be used to exactly
encode the reachable set of states through a ReLU network using the big-M
trick to encode the possible branches [16,23]. This introduces a new boolean
variables for each neuron, which may limit scalability. The MILP approach has
also been combined with a local search [5] that uses gradient information to
speed up the search process.

SMT approaches include the Reluplex [13] and Marabou [14], which modify
the Simplex linear programming algorithm by splitting nodes into two, which are
linked by the semantics of a ReLU. The search process is modified with updates
that fix the ReLU semantics for the node pairs. Another tool, Planet, combines
the MILP approach with SAT solving and linear overapproximation [6].

Here, we focused on input/output properties of the neural network, given
as linear constraints. This formulation can check for adversarial examples [9] in
image classification within some L∞ norm of a base image, which are essentially
box input sets. Other more meaningful semantic image perturbations such as
rotations, color shifting, and lighting adjustments can also be converted into
input/output set verification problems [19].

6 Conclusions

One of the major successes of formal verification is the development of fast model
checking algorithms. When talking about how improvements to model checking
algorithms came about, Ken McMillan noted:

“Engineering matters: you can’t properly evaluate a technique without an
efficient implementation.” [18]
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With this in mind, we have strived to improve the practical efficiency of the
complete path-enumeration method for neural network verification. Although the
geometric path-enumeration method has been proposed before, we have shown
that, by a sequence of optimizations, the method’s scalability can be improved
by orders of magnitude.

One limitation is that we have focused on the ACAS Xu benchmarks.
Although there is a risk of overfitting our optimizations to the benchmarks being
considered, we believe these benchmarks are fairly general in that they contain
a mix of safe and unsafe instances, where the original verification times varied
from seconds to days. In particular, we believe these networks are similar to oth-
ers being used in control tasks, in terms of number of inputs and network size.
Further, practical considerations prevent us from considering too many more
benchmarks; our measurements already need over five days to run.

Unreported here, we were also able to run the implementation on larger per-
ception networks to analyze L∞ perturbation properties, networks with thou-
sands of neurons and hundreds of inputs, which succeeds when the perturba-
tion is sufficiently small. However, we believe path enumeration is the wrong
approach for those systems, as the number of paths quickly becomes too large
to enumerate. Instead, overapproximation and refinement methods would likely
work best, and evaluating optimizations for these methods may be done in future
work. One interpretation of the results presented here is that overapproximation
and refinement methods still have significant room for improvement, as it is
sometimes faster to explicitly enumerate benchmarks with millions of paths.

Many of the tools we have compared against also support more complicated
network structures, with different layer types and nonlinear activation func-
tions, whereas we only focused on the subclass of networks with ReLUs and
fully-connected layers. We believe that this is an important enough subclass of
neural networks that the results are still meaningful. Once the neural network
verification community is more mature, we expect a standard input format and
a set of categorized benchmarks will arise, similar to what has happened in the
SMT [2], software verification [3], and hybrid systems [1] communities.
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A Box Bounds Algorithm for Box-Halfspace Intersection

The problem of computing the box bounds of an intersection of an initial box
and a single halfspace can be computed without LP. Consider a p-dimensional
initial box defined with lower and upper bounds [l1, u1] × . . . × [lp, up]. Call the
constraint defining the halfspace fα ≤ g, where α is a p-dimensional vector of
variables, f is a p-dimensional vector with entries f1, . . . , fp, and g is a scalar.

Based on the signs of the signs of f1, . . . , fp, we first find the vertex v∗ in the
box that minimizes the dot product f · v∗. This can be done by choosing the ith
element of v∗ as:

v∗
i =

{
li, if fi ≥ 0
ui, otherwise

(6)

If f · v∗ > g, then the intersection is the empty set. Otherwise, we attempt
to contract in each of the p dimensions one-by-one.

For dimension i, if the lower bound was used to define v∗
i , then we attempt

to decrease ui. If the upper bound was used to define v∗
i , then we attempt to

increase li. This is done by finding the point on the edge of the box which
intersects the halfspace (point q in Fig. 5). Without loss of generality, assume
the lower bound of dimension i defined v∗

i . The intersection point q is given
by (v∗

1 , v∗
2 , . . . x, . . . v∗

p), where value of the ith coordinate, x, can be determined
from the single-variable equation q · f = g. If fi was zero, then this equation has
no solution, and we cannot contract in this dimension (the half-space and the
box edge where q must lie do not intersect). Otherwise, if we solve for x and find
x < ui, then we reduce ui, setting it to x. The process repeats for every other
dimension.

B Parallelization

The proposed approach can be parallelized in many ways. Here, we propose
and evaluate a work-stealing strategy, where each thread maintains a local set
of computation-state tuples and runs the high-level algorithm. Periodically, the
number of tuples in each local set are communicated using a shared data struc-
ture, and if some worker thread has no work remaining, the other threads will
push some of their local computation-state tuples to a shared global queue.

For this evaluation, we used the usual system setup described in the first
paragraph of Sect. 3, which we label Laptop. In addition, to see the effect of
more cores, we rented a c5.metal EC2 instance from Amazon Web Services,
which we refer to as AWS Server. This setup ran Ubuntu 18.08, and included a
dual Intel(R) Xeon(R) Platinum 8275CL processor running at 3.0 GHz, with a
total of 48 physical cores (96 with hyperthreading) and 384 GB of main memory.

To evaluate parallelism, we needed to use a benchmark with sufficient diffi-
culty where computation time dominates. For this, we chose ACAS Xu network
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Fig. 8. Doubling the number of cores roughly halves the computation time, up to the
physical core count on each platform.

4-2 with specification 2. In an earlier ACAS Xu evaluation [14], this property
timed out (>55 min) or ran out of memory for every tool analyzed. The single-
threaded runtime on the Laptop platform with our enumeration approach was
655 s (about 11 min), which enumerated 484555 paths in the network.

An evaluation where we adjusted the number of cores available to the com-
putation process for each of the two platforms is shown in Fig. 8. The AWS Server
platform was faster than the Laptop setup and, with all the cores being used,
could enumerate the same 484555 paths in about 15 s. The linear trend on the
log-log graph shows continuous improvement as more cores are added, up to the
physical-core limit on each platform. The gains from hyperthreading are com-
paratively smaller. Even using all the cores, about 90% of the computation time
was in the step function, as opposed to managing shared state. With more cores,
further improvement through additional parallelization is likely possible.

Correctness Justification: Parallelization explores the same set of states, just
in a different order.

C Full Optimization Data

See Table 2.
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Table 2. Runtimes (sec) for each optimization. Dashes (—) are timeouts (10 min).

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

1 1-1 SAFE — — 399 166 359 159 129 65 50 10
1 1-2 SAFE — — 467 206 416 191 154 76 57 12
1 1-3 SAFE — — — 485 — 496 375 197 163 32
1 1-4 SAFE — — — 558 — 538 407 271 177 36
1 1-5 SAFE — — — 492 — 491 360 215 138 30
1 1-6 SAFE — — — — — — — — 445 95
1 1-7 SAFE — — 539 250 518 259 190 113 78 17
1 1-8 SAFE — — — 409 — 434 287 188 128 27
1 1-9 SAFE — — — 476 — 446 324 221 132 29
1 2-1 SAFE — — — — — — 523 343 216 47
1 2-2 SAFE — — — — — — — — 599 119
1 2-3 SAFE — — — — — — 564 332 227 47
1 2-4 SAFE — — — 383 — 412 272 193 120 27
1 2-5 SAFE — — — — — — — — — 188
1 2-6 SAFE — — — — — — — 517 400 82
1 2-7 SAFE — — — — — — — — — 195
1 2-8 SAFE — — — — — — — — — 163
1 2-9 SAFE — — — — — — — — — 271
1 3-1 SAFE — — — — — — 438 411 263 57
1 3-2 SAFE — — — — — — 521 308 214 46
1 3-3 SAFE — — — — — — — 596 390 84
1 3-4 SAFE — — — 442 — 438 323 221 141 30
1 3-5 SAFE — — — — — — — — 401 86
1 3-6 SAFE — — — — — — — — — 297
1 3-7 SAFE — — — — — — — — — 155
1 3-8 SAFE — — — — — — — — — 141
1 3-9 SAFE — — — — — — — — 507 107
1 4-1 SAFE — — — — — — — — 517 107
1 4-2 SAFE — — — — — — — — 568 124
1 4-3 SAFE — — — 537 — 508 396 233 160 34
1 4-4 SAFE — — — 523 — 584 365 245 155 34
1 4-5 SAFE — — — — — — — — 573 119
1 4-6 SAFE — — — — — — — — — 408
1 4-7 SAFE — — — — — — — — — 195
1 4-8 SAFE — — — — — — — — — 131
1 4-9 SAFE — — — — — — — — — 304
1 5-1 SAFE — — — — — — 482 322 232 48
1 5-2 SAFE — — — — — — — 426 303 64
1 5-3 SAFE — — — 508 — 498 366 214 143 32
1 5-4 SAFE — — — 305 — 289 211 136 98 21
1 5-5 SAFE — — — — — — — 368 264 57
1 5-6 SAFE — — — — — — — — — 176
1 5-7 SAFE — — — — — — — — 474 97
1 5-8 SAFE — — — — — — — — — 153
1 5-9 SAFE — — — — — — — — — 161
2 1-1 SAFE — — 404 159 368 165 128 67 46 10
2 1-2 UNSAFE — 58 24 11 23 12 9 5 4 1
2 1-3 UNSAFE — 463 192 74 177 78 58 32 26 21
2 1-4 UNSAFE — 31 15 6 13 6 5 4 3 1
2 1-5 UNSAFE — 4 2 1 1 1 1 .8 .8 1
2 1-6 UNSAFE — — — 517 — 579 373 260 175 19
2 1-7 SAFE — — 557 234 520 255 193 111 79 17
2 1-8 SAFE — — — 403 — 399 297 184 126 27
2 1-9 SAFE — — — 431 — 472 317 206 136 29
2 2-1 UNSAFE — 92 39 18 37 18 13 7 5 .9
2 2-2 UNSAFE — .7 .7 .7 .7 .7 .7 .7 .7 .8
2 2-3 UNSAFE — 8 4 2 4 2 2 1 1 1
2 2-4 UNSAFE — 4 2 1 2 1 1 1 .9 .9
2 2-5 UNSAFE — 37 17 8 18 8 6 3 3 1
2 2-6 UNSAFE — 284 146 58 144 65 48 25 18 8

(continued)
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Table 2. (continued)

2 2-7 UNSAFE — 506 250 85 256 96 78 43 30 .9
2 2-8 UNSAFE — 51 26 10 24 10 9 5 4 2
2 2-9 UNSAFE — — — 291 — 320 242 132 94 2
2 3-1 UNSAFE — 190 68 31 50 24 20 12 9 4
2 3-2 UNSAFE — 250 88 38 96 44 27 19 14 1
2 3-3 SAFE — — — — — — — 590 409 83
2 3-4 UNSAFE — 197 106 41 97 42 32 18 13 .9
2 3-5 UNSAFE — 67 34 14 32 15 11 6 5 .9
2 3-6 UNSAFE — 27 10 5 11 5 5 3 2 5
2 3-7 UNSAFE — 49 25 11 25 12 9 5 4 1
2 3-8 UNSAFE — 266 112 42 114 50 32 20 15 2
2 3-9 UNSAFE — 20 11 5 10 5 4 2 2 2
2 4-1 UNSAFE — 115 45 19 40 20 14 8 7 5
2 4-2 SAFE — — — — — — — — 597 125
2 4-3 UNSAFE — 2 1 1 2 1 .9 .8 .8 .9
2 4-4 UNSAFE — 39 17 7 19 8 6 4 3 2
2 4-5 UNSAFE — 470 239 97 200 94 71 34 27 2
2 4-6 UNSAFE — 139 64 25 71 28 22 11 9 2
2 4-7 UNSAFE — 461 215 93 210 93 65 35 27 1
2 4-8 UNSAFE — 322 162 60 163 67 49 22 16 .9
2 4-9 UNSAFE — — 390 164 413 180 121 73 56 5
2 5-1 UNSAFE — 32 15 7 15 8 6 3 3 .9
2 5-2 UNSAFE — 91 39 18 30 16 12 6 6 1
2 5-3 UNSAFE — — — 460 — 487 316 201 141 24
2 5-4 UNSAFE — 2 1 1 1 1 .9 .8 .8 .9
2 5-5 UNSAFE — 261 107 48 111 46 36 19 14 2
2 5-6 UNSAFE — 208 102 41 95 41 30 15 10 2
2 5-7 UNSAFE — 107 52 21 53 22 18 8 7 2
2 5-8 UNSAFE — 302 161 63 160 67 50 27 19 1
2 5-9 UNSAFE — — 477 189 472 218 163 81 61 1
3 1-1 SAFE 561 526 232 116 125 80 58 103 58 12
3 1-2 SAFE 534 533 233 116 104 65 50 64 43 9
3 1-3 SAFE 143 147 75 35 30 20 15 19 14 4
3 1-4 SAFE 77 73 40 19 8 6 5 7 5 2
3 1-5 SAFE 88 84 42 21 10 7 6 8 6 2
3 1-6 SAFE 21 22 12 6 3 3 2 3 2 1
3 1-7 UNSAFE 8 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 1-8 UNSAFE 6 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 1-9 UNSAFE 4 .7 .7 .7 .7 .7 .7 .7 .7 .8
3 2-1 SAFE 147 142 75 34 31 21 16 24 14 4
3 2-2 SAFE 59 55 30 14 12 8 6 10 6 2
3 2-3 SAFE 108 101 50 25 19 12 9 14 9 3
3 2-4 SAFE 6 6 4 2 1 1 1 1 1 1
3 2-5 SAFE 33 33 18 9 4 4 3 4 3 1
3 2-6 SAFE 5 5 4 2 1 1 1 1 .9 1
3 2-7 SAFE 17 16 11 5 3 2 2 2 2 1
3 2-8 SAFE 6 6 5 2 1 1 1 1 1 1
3 2-9 SAFE 4 4 3 2 .9 .9 .8 1 .9 .9
3 3-1 SAFE 57 53 25 12 11 7 5 9 6 2
3 3-2 SAFE 578 537 226 117 93 53 40 59 36 8
3 3-3 SAFE 128 128 65 31 22 14 11 13 11 3
3 3-4 SAFE 27 26 16 7 5 4 3 4 2 1
3 3-5 SAFE 16 16 10 5 2 2 2 2 2 1
3 3-6 SAFE 31 33 20 10 5 4 3 3 3 1
3 3-7 SAFE 2 2 2 1 .8 .8 .7 .8 .8 .8
3 3-8 SAFE 12 12 8 4 2 2 1 2 1 1
3 3-9 SAFE 16 15 10 5 3 2 2 2 2 1
3 4-1 SAFE 18 18 11 5 5 3 2 4 3 1
3 4-2 SAFE 189 187 88 43 44 24 19 25 16 4
3 4-3 SAFE 282 283 136 63 64 35 29 32 24 5
3 4-4 SAFE 12 11 7 4 2 1 1 2 1 1
3 4-5 SAFE 4 4 3 2 1 1 .9 1 .9 1
3 4-6 SAFE 33 34 20 10 7 5 4 4 3 1
3 4-7 SAFE 15 15 11 5 2 2 2 2 2 1
3 4-8 SAFE 11 12 8 4 2 1 1 2 1 1
3 4-9 SAFE 12 11 8 4 2 2 2 2 1 1
3 5-1 SAFE 97 91 50 25 19 12 9 14 9 3
3 5-2 SAFE 18 19 11 6 5 3 2 4 2 1

Prop Net Result BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

(continued)
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Table 2. (continued)

3 5-3 SAFE 22 23 12 6 5 3 3 4 3 1
3 5-4 SAFE 11 11 7 4 2 2 1 2 1 1
3 5-5 SAFE 15 14 10 5 2 2 2 2 2 1
3 5-6 SAFE 23 21 14 7 3 3 2 3 2 1
3 5-7 SAFE 2 2 2 1 .8 .8 .7 .8 .7 .8
3 5-8 SAFE 37 38 24 10 6 4 4 5 3 1
3 5-9 SAFE 2 2 2 1 .9 .8 .7 .8 .8 .8
4 1-1 SAFE 149 150 72 34 33 22 16 23 16 4
4 1-2 SAFE 135 130 52 27 21 15 12 16 11 3
4 1-3 SAFE 95 96 44 23 18 12 10 13 9 3
4 1-4 SAFE 12 11 7 4 2 2 2 2 2 1
4 1-5 SAFE 81 84 42 20 12 9 8 9 7 2
4 1-6 SAFE 41 37 20 11 7 5 4 6 4 2
4 1-7 UNSAFE 6 .7 .7 .7 .7 .7 .7 .7 .7 .8
4 1-8 UNSAFE 7 .8 .7 .7 .7 .7 .7 .7 .7 .8
4 1-9 UNSAFE 5 .7 .7 .7 .7 .7 .7 .7 .7 .8
4 2-1 SAFE 38 41 21 11 7 5 5 7 4 2
4 2-2 SAFE 50 51 27 13 8 6 5 6 4 2
4 2-3 SAFE 9 9 6 3 2 2 2 2 1 1
4 2-4 SAFE 8 9 5 3 2 2 1 2 1 1
4 2-5 SAFE 28 27 14 7 6 4 4 4 3 1
4 2-6 SAFE 15 15 9 5 3 2 2 2 2 1
4 2-7 SAFE 7 7 5 3 1 1 1 1 1 1
4 2-8 SAFE 40 43 25 11 5 4 3 4 3 1
4 2-9 SAFE 3 3 3 2 .9 .9 .9 .9 .9 .9
4 3-1 SAFE 56 52 27 13 7 6 5 6 5 2
4 3-2 SAFE 63 61 31 15 12 9 7 11 7 2
4 3-3 SAFE 10 9 6 3 2 2 2 2 2 1
4 3-4 SAFE 12 12 7 3 2 2 2 2 2 1
4 3-5 SAFE 38 40 22 10 8 6 4 5 4 2
4 3-6 SAFE 20 20 12 6 3 3 2 3 2 1
4 3-7 SAFE 17 17 11 5 3 2 2 2 2 1
4 3-8 SAFE 7 7 5 2 2 2 1 1 1 1
4 3-9 SAFE 51 48 29 13 7 5 5 5 4 2
4 4-1 SAFE 7 7 5 3 2 1 1 2 1 1
4 4-2 SAFE 14 14 8 5 3 2 2 2 2 1
4 4-3 SAFE 26 27 14 8 5 4 3 5 3 1
4 4-4 SAFE 20 20 11 6 3 2 2 2 2 1
4 4-5 SAFE 17 16 9 5 3 2 2 2 2 1
4 4-6 SAFE 30 30 15 7 5 3 3 4 3 1
4 4-7 SAFE 3 3 2 1 1 .9 .9 .9 .8 .8
4 4-8 SAFE 24 23 16 7 4 3 2 3 2 1
4 4-9 SAFE 43 40 24 12 5 4 4 4 4 2
4 5-1 SAFE 57 53 26 14 10 7 6 8 5 2
4 5-2 SAFE 38 34 17 9 7 4 4 5 4 2
4 5-3 SAFE 14 13 8 4 3 2 2 3 2 1
4 5-4 SAFE 13 13 8 4 2 2 2 2 2 1
4 5-5 SAFE 17 17 11 6 3 3 2 2 2 1
4 5-6 SAFE 10 10 6 3 2 2 2 2 1 1
4 5-7 SAFE 3 3 2 1 .9 .8 .8 .9 .8 .8
4 5-8 SAFE 8 8 6 3 2 1 1 1 1 1
4 5-9 SAFE 14 13 8 4 2 2 2 2 2 1

Prop Net Result  BFS Copy Bound Sim Zono-B Zono-S Eager Con-LP Con-Sim Par

D Full Tool Comparison Data

This section contains the complete data measured in the optimization improve-
ments from Sect. 3 (Table 3).
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Table 3. Runtimes (sec) for each tool. Dashes (—) are timeouts (10min).

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

1 1-1 SAFE 95 — 10 .1
1 1-2 SAFE 168 — 12 .2
1 1-3 SAFE — — 32 1
1 1-4 SAFE — — 36 2
1 1-5 SAFE 119 — 30 .2
1 1-6 SAFE 110 — 95 .2
1 1-7 SAFE 63 — 17 .1
1 1-8 SAFE 56 — 27 .1
1 1-9 SAFE 43 — 29 .1
1 2-1 SAFE — — 47 .6
1 2-2 SAFE — — 119 1
1 2-3 SAFE — — 47 1
1 2-4 SAFE 294 — 27 .5
1 2-5 SAFE — — 188 4
1 2-6 SAFE — — 82 3
1 2-7 SAFE — — 195 11
1 2-8 SAFE — — 163 3
1 2-9 SAFE — — 271 8
1 3-1 SAFE — — 57 .4
1 3-2 SAFE — — 46 .7
1 3-3 SAFE 521 — 84 1
1 3-4 SAFE 510 — 30 .6
1 3-5 SAFE — — 86 2
1 3-6 SAFE — — 297 28
1 3-7 SAFE — — 155 12
1 3-8 SAFE — — 141 8
1 3-9 SAFE — — 107 11
1 4-1 SAFE — — 107 16
1 4-2 SAFE — — 124 3
1 4-3 SAFE — — 34 1
1 4-4 SAFE 387 — 34 .7
1 4-5 SAFE — — 119 3
1 4-6 SAFE — — 408 22
1 4-7 SAFE — — 195 23
1 4-8 SAFE — — 131 47
1 4-9 SAFE — — 304 21
1 5-1 SAFE 353 — 48 .4
1 5-2 SAFE 522 — 64 .7
1 5-3 SAFE 128 — 32 .2
1 5-4 SAFE 574 — 21 .4
1 5-5 SAFE — — 57 1
1 5-6 SAFE — — 176 15
1 5-7 SAFE — — 97 3
1 5-8 SAFE — — 153 16
1 5-9 SAFE — — 161 8
2 1-1 SAFE — — 10 .6
2 1-2 UNSAFE 254 — 1 3
2 1-3 UNSAFE — — 21 11
2 1-4 UNSAFE — — 1 10
2 1-5 UNSAFE — — 1 —
2 1-6 UNSAFE — — 19 52
2 1-7 SAFE — — 17 6
2 1-8 SAFE — — 27 23
2 1-9 SAFE — — 29 11
2 2-1 UNSAFE 59 — .9 .1

(continued)
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Table 3. (continued)

2 2-2 UNSAFE — — .8 .1
2 2-3 UNSAFE 549 — 1 .1
2 2-4 UNSAFE 18 — .9 .1
2 2-5 UNSAFE 547 — 1 .1
2 2-6 UNSAFE — — 8 .1
2 2-7 UNSAFE 24 — .9 .1
2 2-8 UNSAFE 102 — 2 .1
2 2-9 UNSAFE — — 2 —
2 3-1 UNSAFE 97 — 4 .1
2 3-2 UNSAFE 345 — 1 —
2 3-3 SAFE — — 83 —
2 3-4 UNSAFE — — .9 .1
2 3-5 UNSAFE 319 — .9 .1
2 3-6 UNSAFE 471 — 5 .1
2 3-7 UNSAFE — — 1 —
2 3-8 UNSAFE — — 2 .1
2 3-9 UNSAFE 457 — 2 .1
2 4-1 UNSAFE — — 5 .2
2 4-2 SAFE — — 125 —
2 4-3 UNSAFE 566 — .9 .1
2 4-4 UNSAFE 288 — 2 .1
2 4-5 UNSAFE — — 2 .1
2 4-6 UNSAFE 419 — 2 .1
2 4-7 UNSAFE — — 1 .1
2 4-8 UNSAFE 336 — .9 .1
2 4-9 UNSAFE — — 5 45
2 5-1 UNSAFE 119 — .9 .1
2 5-2 UNSAFE 24 — 1 .1
2 5-3 UNSAFE — — 24 —
2 5-4 UNSAFE 360 — .9 .1
2 5-5 UNSAFE 278 — 2 .1
2 5-6 UNSAFE 547 — 2 .1
2 5-7 UNSAFE 17 — 2 .1
2 5-8 UNSAFE 246 — 1 .1
2 5-9 UNSAFE 47 — 1 .1
3 1-1 SAFE — 564 12 104
3 1-2 SAFE — 283 9 2
3 1-3 SAFE — 58 4 3
3 1-4 SAFE 342 12 2 .3
3 1-5 SAFE 520 17 2 .2
3 1-6 SAFE 43 4 1 .1
3 1-7 UNSAFE 12 2 .8 .1
3 1-8 UNSAFE 12 2 .8 .1
3 1-9 UNSAFE 12 1 .8 .05
3 2-1 SAFE — 70 4 21
3 2-2 SAFE — 23 2 8
3 2-3 SAFE — 39 3 3
3 2-4 SAFE 15 2 1 .5
3 2-5 SAFE 18 7 1 .4
3 2-6 SAFE 15 1 1 .04
3 2-7 SAFE 16 4 1 .3
3 2-8 SAFE 15 2 1 .1
3 2-9 SAFE 13 1 .9 .03
3 3-1 SAFE 406 21 2 3
3 3-2 SAFE — 247 8 6
3 3-3 SAFE — 35 3 .2
3 3-4 SAFE 47 8 1 .4
3 3-5 SAFE 15 4 1 5
3 3-6 SAFE 390 7 1 151
3 3-7 SAFE 13 .9 .8 .1
3 3-8 SAFE 36 3 1 4
3 3-9 SAFE 45 4 1 3
3 4-1 SAFE — 8 1 8
3 4-2 SAFE — 88 4 97
3 4-3 SAFE — 130 5 2
3 4-4 SAFE 14 2 1 .1
3 4-5 SAFE 14 1 1 .1
3 4-6 SAFE 102 11 1 .2

Prop Net Result Marabou
NNV
Exact

Our
Method

Neurify

(continued)
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Table 3. (continued)

3 4-7 SAFE 96 3 1 .6
3 4-8 SAFE 85 2 1 2
3 4-9 SAFE 33 3 1 .1
3 5-1 SAFE — 35 3 21
3 5-2 SAFE — 8 1 2
3 5-3 SAFE 146 8 1 .2
3 5-4 SAFE 17 3 1 .2
3 5-5 SAFE 24 4 1 .5
3 5-6 SAFE 88 5 1 .9
3 5-7 SAFE 14 .6 .8 .04
3 5-8 SAFE 43 9 1 .1
3 5-9 SAFE 14 .9 .8 .1
4 1-1 SAFE — 82 4 1
4 1-2 SAFE — 50 3 1
4 1-3 SAFE — 36 3 .4
4 1-4 SAFE 105 3 1 .2
4 1-5 SAFE 504 24 2 .4
4 1-6 SAFE 89 12 2 .2
4 1-7 UNSAFE 12 2 .8 .1
4 1-8 UNSAFE 12 2 .8 .1
4 1-9 UNSAFE 12 2 .8 .1
4 2-1 SAFE 171 14 2 .8
4 2-2 SAFE 520 14 2 2
4 2-3 SAFE 77 3 1 .8
4 2-4 SAFE 23 3 1 .2
4 2-5 SAFE 61 11 1 .4
4 2-6 SAFE 90 5 1 .3
4 2-7 SAFE 14 2 1 .1
4 2-8 SAFE 43 8 1 .1
4 2-9 SAFE 13 1 .9 .03
4 3-1 SAFE — 13 2 1
4 3-2 SAFE 134 27 2 .4
4 3-3 SAFE 21 4 1 .1
4 3-4 SAFE 20 4 1 .2
4 3-5 SAFE 59 15 2 1
4 3-6 SAFE 66 5 1 2
4 3-7 SAFE 16 4 1 .3
4 3-8 SAFE 29 3 1 .3
4 3-9 SAFE 63 12 2 1
4 4-1 SAFE 78 3 1 3
4 4-2 SAFE 60 5 1 2
4 4-3 SAFE 134 10 1 1
4 4-4 SAFE 41 5 1 1
4 4-5 SAFE 62 4 1 2
4 4-6 SAFE 14 8 1 .04
4 4-7 SAFE 21 1 .8 .2
4 4-8 SAFE 37 6 1 .2
4 4-9 SAFE 25 8 2 .1
4 5-1 SAFE 339 19 2 3
4 5-2 SAFE 51 12 2 .5
4 5-3 SAFE 52 5 1 .2
4 5-4 SAFE 31 4 1 .2
4 5-5 SAFE 49 5 1 .6
4 5-6 SAFE 76 3 1 .3
4 5-7 SAFE 14 1 .8 .04
4 5-8 SAFE 31 3 1 .1
4 5-9 SAFE 26 3 1 .1

Prop Net Result  Marabou
NNV
Exact

Our
Method

Neurify
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Abstract. The field of verification has advanced due to the interplay of
theoretical development and empirical evaluation. Benchmarks play an
important role in this by supporting the assessment of the state-of-the-
art and comparison of alternative verification approaches. Recent years
have witnessed significant developments in the verification of deep neural
networks, but diverse benchmarks representing the range of verification
problems in this domain do not yet exist. This paper describes a neural
network verification benchmark generator, GDVB, that systematically
varies aspects of problems in the benchmark that influence verifier perfor-
mance. Through a series of studies, we illustrate how GDVB can assist in
advancing the sub-field of neural network verification by more efficiently
providing richer and less biased sets of verification problems.

Keywords: Neural network · Verification · Benchmark · Covering
array

1 Motivation

Advances in machine learning have enabled training of deep neural networks
(DNN) that are capable of realizing complex functions that rival or exceed the
performance of human-built software, e.g., [27,32,41]. This success has led sys-
tem developers to deploy, or consider deployment of, DNN models in critical
systems, e.g., [12,39,53]. Consequently, the verification of correctness proper-
ties of DNNs has become a key challenge to assuring autonomous systems, and
the research community has risen to this challenge. In the three years since
Katz et al. [30] presented ReLuplex at CAV 2017, researchers have published
more than 20 DNN verification approaches supporting different properties and
DNN architectures and spanning a range of algorithmic approaches [9,13,14,18–
20,22,29–31,36,45,46,50,56,59–63]. While DNN verification has its own unique
challenges, it is also a recent example in the long-history of domain-specific ver-
ification research, e.g., for hardware [25], software [17], real-time systems [58],
and cryptographic protocols [40], and can benefit from the experience of these
communities.
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A key lesson learned by the community is that despite the fact that veri-
fication emphasizes the development of theoretical and algorithmic techniques,
advances in verification research often arise from understanding how different
algorithmic and implementation approaches compare – a process that requires
empirical study. Empirical study in verification is common, but unlike many
other fields of computer science, for decades it has organized verification tool
competitions that serve as a regular and long-running form of community-driven
empirical study. Researchers tracked the progress of SMT solvers over a span
of 6 years at these community-driven empirical studies and found that repeat-
edly “a certain solver presents a key idea that improves the performance in a
particular division, and this idea is implemented by most solvers” in the follow-
ing year [7]. Enabling the type of comparative studies that drive such advances
requires verification benchmarks – a fact that the verification community has
recognized for at least 25 years, e.g., [8,10,33,43,55].

Benchmarking in verification has evolved in response to the demands of
empirical study within the field, e.g., [1–4], to support two objectives: (A1)
assessment of the state-of-the-art and (A2) comparison of alternative approaches.
In support of these, the verification community has favored benchmarks that:
(R1) are diverse in structure and difficulty; (R2) represent verifier use
cases; and (R3) evolve as verification technology advances.

The verification benchmarking and competition literature suggests that these
requirements are widely accepted. For example, the TPTP benchmark’s stated
goals include R1 (“contains problems varying in difficulty”), R2 (“spans a diver-
sity of subject matters”), and R3 (“is up-to-date”, “provides a mechanism for
adding new problems”) [54]. Moreover, these requirements are promoted, either
explicitly or implicitly, by many of the regularly held verification competitions.
To meet R1 and R2 SAT competitions construct benchmarks that include prob-
lems from six different domains: software, hardware, A.I, obstruction, combina-
torial challenges, and theorem proving [4]. SAT competitions since 2017 have
instituted a bring your own benchmarks policy that requires verifier developers
to submit 20 new benchmarks with at least 10 that are “not too easy” or “too
hard” – which helps to address R1 and R3. SMT competitions have used selec-
tion criteria that are biased towards these same requirements, e.g., “balancing
the difficulty of benchmarks” [7].

Verification competitions have undoubtedly been a positive force for develop-
ing high-quality verification benchmarks, but prior to their existence researchers
were forced to develop their own “benchmarks” – a collection of verification
problems on which they evaluate their techniques and perhaps others. This is
the situation that the subfield of DNN verification finds itself in.

The risk in letting technique developers choose their own benchmark is
selection bias – that the selected problems do not represent a broad or impor-
tant population of problems. For example, if an SMT benchmark were selected
based on the constraints generated by symbolic execution tools they would be
structurally biased, consisting only of conjunctive formula. As another example,



Systematic Generation of Diverse Benchmarks for DNN Verification 99

if a SAT benchmark were generated randomly it is likely that a large portion of
the benchmark would not represent realistic use cases.

Good benchmarks are expensive to develop, e.g., [11], but they are an invalu-
able resource for advancing a research community. When well designed they seek
to balance requirements R1-R3 and to support a fair and accurate assessment of
the state-of-the-art and comparison between alternative algorithmic and imple-
mentation approaches. This paper reports on GDVB, the first framework for
systematic Generation of DNN V erification problem Benchmarks, that meets
the de-facto requirements for verification benchmarks, R1–R3, in order to sup-
port objectives A1–A2 for the rapidly evolving field of DNN verification.

GDVB takes a generative approach to benchmark development – an app-
roach that has risen in popularity in recent years [5,35,64]. Unlike, other gener-
ative benchmark approaches GDVB seeks to systematically cover variations in
verification problems that are known to influence verifier performance. Towards
that end, GDVB is parameterized by: (1) a set of factors known to influence the
performance of DNN verifiers; (2) a coverage goal that determines the combina-
tion of factors that should be reflected in the benchmark; and (3) a seed verifi-
cation problem from which a set of variant problems are generated. From these
parameters, it computes a constrained mixed-level covering array [15] defining a
set of factor-value tuples. Each tuple defines how the seed verification problem
can be transformed to give rise to a verification problem capable of exposing
performance variation in a DNN verifier.

As a benchmark generator GDVB naturally meets requirement R3. By start-
ing from a seed network representing a DNN verification use case, GDVB is guar-
anteed to meet R2. As we discuss in Sect. 4, the use of factors allows GDVB
to produce systematically diverse verification problems both in terms of struc-
ture and difficulty in order to meet requirement R1. Moreover, GDVB offers
the potential to reduce selection bias in performing evaluations of DNN veri-
fiers, since it assures coverage of a space of performance related factors. Finally,
GDVB is designed to support the rapidly evolving field of DNN verifiers by
allowing the generation of benchmarks, e.g., from new seeds as verifiers improve,
as new performance factors are identified, and to target challenge problems in
different DNN domains, e.g., regression models for autonomous UAV naviga-
tion [39,53].

The contributions of this paper are: identification of the need for unbiased
and diverse benchmarks for DNN verification; a study of factors that affect the
performance of DNN verification tools (Sect. 3); the specification of a verification
benchmark as the solution to a constrained mixed-level covering array problem
(Sect. 4); the GDVB algorithm for computing a benchmark from a verifica-
tion problem by transforming the neural network and correctness specification
(Sect. 4.3); the evaluation of GDVB on multiple state-of-the-art DNN verifiers
using different seed verification problems that demonstrates how GDVB results
can support the evaluation of DNN verifiers (Sect. 5); and the GDVB tool.
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2 Background and Related Wok

Deep Neural Networks (DNN). A DNN is trained to accurately approxi-
mate a target function, f : R

d → R
r. A network, n : R

d → R
r, is comprised of

a graph of L hidden layers, l1, . . . , lL, along with an input layer, lin = l0, and
output layer, lout = lL+1. Each hidden layer defines an independent function,
where their composition when applied to the output of lin generates values in
lout that define the network output.

Hidden layers are, generally, comprised of a set of neurons that accumulate
a weighted sum of their inputs from the prior layer and then apply an activation
function to determine how to non-linearly scale that sum to compute the output
from the layer. A variety of different activation functions have been explored in
the literature, including: rectified linear units (ReLU), sigmoid, and tanh.

The design of a DNN involves choosing an appropriate set of layer types, e.g.,
convolutional, maxpooling, fully-connected, the instantiation of those layers, e.g.,
the number of neurons, the specific activation function, and the definition of how
layers are interconnected. Together these comprise the DNN architecture [23].

Networks are trained using a variety of algorithmic strategies with the goal
of minimizing the loss in the approximation of the learned function relative to
some proxy for f , e.g., labeled training data. The training process is stochastic,
e.g., initial weight values are randomized, which leads to variation in n even
when architecture, training algorithm, and training data are fixed.

Section 3 reveals how DNN architecture can influence verification perfor-
mance.

DNN Specifications. Given a network n : R
d → R

r, a property, φ, defines a
set of constraints over the inputs, φx , and an associated set of constraints over
the outputs, φy. Verification of n seeks to prove: ∀x ∈ R

d : φx(x) ⇒ φy(N(x))
where N(x) is running the neural network n with input x.

Specifying behavioral properties of DNNs is challenging and is an active
area of research [24]. In [30], a set of 188 purely conjunctive properties, of the
form described above, were defined for a simple neural network, with 7 inputs,
encoding of a rule set for autonomous aircraft collision avoidance (ACAS). In
[44,59,60], properties expressing output range invariants were used, for example,
that the steering angle never exceeded an absolute value of 30◦. Much of the work
on DNN verification has focused on local robustness properties [50–52], which
state that for a selected target input the output of the network is invariant for
other inputs within a specified distance of the target.

Section 3 reveals how the specification can influence verification performance.

DNN Verification Methods and Tools. There are a variety of different
algorithmic and implementation approaches taken to verifying the validity of a
DNN with respect to a stated correctness property.
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Definition 1. A DNN verification problem, 〈n, φ〉, is comprised of a DNN, n,
and a property specification, φ. The outcome of a verification problem for a DNN
verifier indicates whether n |= φ is valid, invalid, or unknown – indicating that
the problem cannot be determined to be either valid or invalid.

A recent DNN verification survey [37], classifies approaches as being based on
reachability, optimization, and search algorithms – or their combination. Reach-
ability methods begin with a symbolic encoding of an input set and compute,
for each layer, a symbolic encoding of the output set. They vary in the symbolic
encodings used, e.g., intervals, polyhedra, and in the degree of overapproximation
they introduce [22,46,50,63]. Optimization methods formulate verification as an
optimization problem whose solution implies the validity of φ [9,19,38,45,56,62].
Search methods work in combination with reachability and optimization, by
decomposing the input space to formulate verification sub-problems that are
discharged by the above techniques [13,14,18,20,29,30,59–61].

In this paper, we use implementations of the following verifiers: ERAN [50],
BaB [14], Neurify [59], Planet [20], and ReLuplex [30].

Verification Benchmarking. We covered the broad landscape of work on
benchmark development for verification in (Sect. 1). There have been efforts to
develop benchmarks within a variety of different verification problem domains,
e.g. hardware [25], software [17], real-time systems [58], cryptographic proto-
cols [40], and for different encodings of verification problems, e.g., model check-
ing [33], SAT [4], SMT [8], and theorem proving [55].

In recent work on DNN verification, researchers have shared collections of
examples that, in a sense, serve as informal benchmarks and permit comparative
evaluation, e.g. [30,50]. While valuable, these examples were not intended to, and
do not, comprise a benchmark meeting requirements R1–R3. To our knowledge,
GDVB is the first approach to achieving those goals for DNN verification.

For several years, the SAT community has been exploring scalable bench-
marks, e.g., [21,35]. For instance, to explore conflict-driven clause learning
(CDCL) SAT solver performance, Elffers et al. [21] used crafted parameterized
benchmarks that can be scaled with respect to different factors that may influ-
ence performance. We conduct a similar domain analysis of factors, but focus
on the landscape of DNN verification algorithms developed to date. Like this
line of work, GDVB advocates a scalable approach to benchmark generation. As
described in Sect. 4, GDVB starts with seed problems that are challenging for
current verifiers and “scales them down”, but it can also be applied to start with
easier seed problems and “scale them up” as more typical of the prior work on
scalable benchmarking.

Verification Benchmark Ranking. The verification community has explored
a variety of ranking schemes for assessing the cost-effectiveness of techniques. A
key challenge is that verification techniques vary not only in their cost, e.g.,
time to produce a verification result, but also in their accuracy, e.g., whether
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they produce an unknown result. For example, SAT competitions have employed
a range of scoring models, e.g., purse-based ranking, solution-count ranking
(SCR), careful ranking, and penalized average runtime (PAR2) [6]. SCR, which
counts the number of solved problem instances and uses verification time as a
tie breaker [57], is the scoring system of choice [1,4]. In Sect. 5, we report DNN
verifier performance using both SCR and PAR2 scoring systems.

Covering Arrays. In Sect. 3 we explore factors that influence DNN verifier
performance. Studying all their combinations would be cost prohibitive, so we
consider weaker notions of coverage.

A covering array defines a systematic method for testing how combinations
of parameter values influence system performance [16]. A covering array is an
N × k array. The k columns represent factors that may influence performance
and cells can take on v levels – defining settings for factors. The N rows of
the array define combinations of factor-levels. Arrays are defined to achieve a
strength of the coverage, t. t = 2 defines pairwise strength, which means that all
pairs of levels for all factors are present in some row of the covering array.

We require a richer form of covering array that permits the number of levels
to vary with different factors, i.e., a mixed-level covering array (MCA), and
that can constrain specified factor-level combinations, e.g., by forbidding their
inclusion in the MCA. By modeling each factor as a variable and its levels as
the domain of the variable, one can express constraints as propositional logic
formulae over equality terms; if the levels are ordered then richer underlying
theories can be applied. A constrained-MCA defines an MCA that is consistent
with a given constraint, C.

Definition 2. Constrained Mixed-level Covering Array (Definition 2.9
from [15])
CMCA(N ; t, k, (|v1|, |v2|, ..., |vk|), C) is an N × k array on |v| symbols, where
|v| =

∑k
i=0 |vi|, with the following properties: 1) Each column i(1 ≤ i ≤ k) con-

tains only elements from a set Si of size |vi|, 2) the rows of each N × t subarray
cover all t-tuples of values from the t columns at least one time, and 3) all rows
are models of C.

Transforming Neural Networks. The GDVB approach manipulates factors
that influence DNN verifier performance to construct a diverse benchmark. For
DNN construction, we leverage a recent approach, R4V [47], that given an origi-
nal DNN and an architectural specification automates the transformation of the
DNN and uses distillation [28] to train it to closely match the test accuracy of
the original DNN. R4V transformation specifications can be written to change a
number of architectural parameters of a network including: the input dimension,
the range of values for each input dimension, the number of layers, the number
of neurons per layer, the number of convolutional kernels, and the stride and
padding of a convolutional layer.
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3 Identifying Factors that Influence Verifier Performance

As discussed in Sect. 1 the verification community has acted to create poli-
cies that incentivize diverse benchmarks. Diversity is desirable in a benchmark
because it (a) demonstrates the range of applicability of a verification technology
and (b) exposes performance variation within and across verification technolo-
gies. Consider, that the SMT competition benchmark selection process seeks
to “include equal numbers of satisfiable and unsatisfiable benchmarks at differ-
ent levels of difficulty” [7]. This is due to the fact that the SMT community
understands that the satisfiability or unsatisfiability of a benchmark problem is
a factor that influences verifier performance1.

GDVB seeks to make factors influencing verifier performance explicit and to
manipulate them to generate a diverse benchmark. To determine an initial set of
factors for DNN verifiers we began with an analysis of the literature, which iden-
tified several candidate factors, and then conducted a targeted and exploratory
factor study to identify whether manipulating a factor could influence some
performance measure of some DNN verifier. This study only aims to identify
such factors and does not seek to characterize the complex relationship between
factors and DNN verifier performance; for example, we do not aim to capture
a comprehensive set of factors, assess the independence of or relations between
factors, or rank factors in terms of their degree of influence. A richer and more
detailed factor study might further improve the utility of GDVB, but we leave
such a study to future work.

3.1 Potential Factors

Relatively few published papers on DNN verification explicitly discuss the fac-
tors that influence performance, but nearly all of them present metrics on the
verification problems they solved.

Evaluation results for ReLuplex present data on verifier outcome and solve
time for local robustness properties that vary in the input center point and
radius [30]; most subsequent papers report similar property variation. Evaluation
results for RobustVerifier present a study of varying the number of layers in
the DNN and its impact on verifier performance [36]. Evaluation results for
ERAN present performance variations across a range of networks varying in
the number of layers, layer types, and neurons [22,50–52]. Bunel et al. [14] were
the first that we are aware of to explicitly vary factors of DNN verification
problems. They found that the performance varied with input dimension, number
of neurons per layer, and number of layers across a set of 6 different DNN
verifiers. All of the other papers published on DNN verification in recent years
have used verification problems that varied, in an ad-hoc fashion, over a subset
of the above factors.

1 Since unsatisfiability requires the consideration of all possible variable assignments
which generally is more costly than finding a single satisfiable assignment.
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3.2 Exploratory Factor Study

As in other verification domains, DNN verifier performance is multi-faceted. In
our study, we consider both verification time and accuracy. We say that the
result of a verification problem is accurate if a verifier determines conclusively
that the problem is valid or invalid, result as opposed to unknown2.

We study factors associated with both properties and DNNs. Based on the
literature analysis, we identified 2 factors related to the correctness property:
scale and translation. Scaling a property involves increasing the size of the input

Fig. 1. DNN verifier performance across factors

2 We cross-check accurate results with multiple verifiers.



Systematic Generation of Diverse Benchmarks for DNN Verification 105

domain which will involve more DNN behavior in verification. Translating a
property involves moving it to a different location in the input domain which
will involve different DNN behavior in verification. For robustness properties,
scaling and translation involve changing the radius and center point of the hyper-
cube describing the input space under verification. One might wonder whether
rotation of a property can influence verification performance. For robustness
properties, this seems unlikely given their symmetry, but it could be a factor for
more irregular input regions – we leave this for future work.

Based on the literature analysis, we identified 4 factors related to the DNN:
number of neurons, number of layers, the type of layers, the input dimension.
We conjectured that an additional 3 factors might impact verifier performance:
the type of activation function, the input domain size, and the learned weights.

Our exploratory factor study is opportunistic in that we seek to find a verifi-
cation problem for which manipulation of a selected factor exhibits performance
variation. Towards this end, we conducted a series of trials where we vary a fac-
tor hypothesized to influence verification performance, while holding all other
factors constant and report the results in Fig. 1. We studied variations of net-
works for the MNIST task and considered local robustness properties since these
were well-supported across a range of different verifiers. We used different ver-
ifiers across the study: ReLuplex, Planet, Neurify, BaB, ERAN with the
DeepPoly (DP) and DeepZono (DZ) abstract domains. We now briefly describe
the trials and then summarize the outcome.

Number of Neurons: The architecture of the DNN was fixed, with 4 fully-
connected layers using ReLU activation functions, and the total number of
neurons was varied (16, 64, 256) – they were spread evenly across layers. Each
network is trained 10 times and verified on 100 local robustness properties.
Figure 1(a) plots the number of neurons versus verification time for Planet.
Verification time can increase with the number of neurons.
Number of Layers: We use the same context as for the neuron factor study,
except that we fixed the number of neurons at 256 and vary the number of
layers (1, 2, 4). Figure 1(b) plots the number of layers versus verification time
for Planet. Verification time can increase with the number of layers.
Layer Types: We use a pair of two-layer neural networks, with the same
number of neurons, where one has a fully-connected layer and the other a
convolutional layer. Each network is trained 10 times and verified on 10 local
robustness properties. Figure 1(c) plots layer type versus the number of prop-
erties for which accurate results are produced using ERANDP . Verification
accuracy can vary with layer type.
Activation Function: We use the fully-connected network from the layer
types study, we generated three networks by altering the activation function
to use sigmoid and tanh. The training setup and properties remain the same
as in the previous trial. Figure 1(d) plots the activation function versus the
number of properties for which accurate results are produced using ERANDP .
Verification accuracy can vary with activation function.
Input Dimension: We use 3 architectures that differ only in their input
dimension which is scaled ( 1

16 , 1
4 , 1) relative on the original problem. The
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training setup and properties are from the layer type study. Figure 1(e) plots
the input dimension versus the number of properties for which accurate
results are produced using BaB. Verification accuracy can increase with
increasing input dimension.
Input Size: We use 5 architectures that differ only in the range of values
of their inputs which are scaled (1

4 , 1
2 , 1, 2, 4) based on the original problem.

The training setup and properties are from the layer type study. Figure 1(f)
plots the input size versus the number of properties for which accurate results
are produced using ERANDZ . Verification accuracy can decrease with
increasing input domain size.
Property Scale: We use a single-layer network and reuse the training setup
and properties from the layer type study. We scale the properties (0.01−0.1)
to generate verification problems. Figure 1(g) plots property scaling versus the
verification time using ReLuplex. Verification time can increase with
increasing property scale.
Property Translation: We replicated the property scale study, but held the
scale fixed and translated the center point of the local robustness property
to 10 other locations. Figure 1(h) plots the number of DNNs for each of the
10 translated properties for which accurate results could be produced using
Neurify. Verification accuracy can vary with property translation.
Network Weights: Building of the property studies, we explore the verifica-
tion of 10 scaled property variants across the same network trained 10 times
with different initial weights. Figure 1(i) plots the number of accurate prop-
erties for which the results could be produced using Planet. Verification
accuracy can vary with the learned weights of the network.

Exploraty Study Findings. Varying the factors studied influences the per-
formance of different DNN verifiers differently – in terms of time or accuracy.
For example, we found that: varying input dimension impacts BaB’s accuracy,
but not ReLuplex’s; varying input domain size impacts ERANDZ ’s accuracy,
but not Neurify’s; and varying property scale impacts ReLuplex’s verification
time, but not Neurify’s.

This study provides a starting set of viable factors that can be used to
parameterize the GDVB approach to produce verification problem benchmarks
in which those factors are systematically varied. Futhermore, as we discuss in
Sect. 4, GDVB generative process allows for us to accommodate information
about new factors that might be revealed in future factor studies.

4 The GDVB Approach

The goal of GDVB is to meet requirements R1–R3 by producing a factor diverse
benchmark that (a) reflects aspects of the complexity encoded in a real verifi-
cation problem that acts as a seed for generation 〈ns, φs〉, (b) varies aspects of
the problem that are related to verifier performance, (c) accounts for interac-
tions among those factors, and (d) is comprised only of well-defined verification
problems.
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Rather than synthesize random verification problems, we seed the generation
process in order to generate a benchmark that reflects the complexity of the
seed problem. This permits benchmarks to be generated to reflect the challenges
present in different DNN problem sub-domains.

Factors, like those described in Sect. 3, may interact; changes to one factor
may mask or amplify DNN verifier performance changes arising from another.
Exploring all combinations of factors is expensive, but by using covering arrays
we can systematically explore interactions among factors. Accounting for such
interactions helps to produce a benchmark that is less biased than one that only
covers individual factor variations.

Not all combinations of factors are possible. For example, if one reduces the
number of layers in a network to 0, then it is not possible to preserve the number
of neurons in the original network. Thus, benchmark generation must take into
account constraints among factors to ensure that only well-defined problems are
included in a benchmark.

4.1 Factor Diverse Benchmarks

Consider a set of factors, F , with a set of levels, Lf , for each factor, f ∈ F ; we
refer to Lf as the level set of f . For a verification problem, p, let l(p) be the
set of factor levels corresponding to the problem. A benchmark, B, is a set of
verification problems and we can denote the factor levels for the benchmark as
l(B) = {l(p) | p ∈ B}.

The simplest form of diversity for a benchmark is requiring that all individual
factor levels be present in at least one verification problem, ∀f ∈ F : ∀l ∈ Lf :
∃p ∈ l(B) : l ∈ p. However, this diversity fails to account for interactions among
factors. The simplest form of interaction-sensitive diversity considers pairs of
factors, but as we discuss below our approach generalizes to any arity of factor-
level coverage.

For a pair of factors, f, f ′ ∈ F , the Cartesian product of their level sets
defines the set of all pairwise combinations of their levels. Across all factors the
set of such pairs is pairs(F ) = {(l, l′) | f, f ′ ∈ F ∧ f �= f ′ ∧ l ∈ Lf ∧ l′ ∈ Lf ′}. A
pairwise diverse benchmark is one in which

∀(x, y) ∈ pairs(F ) : ∃p ∈ l(B) : (x, y) ∈ {(x′, y′) | x′ ∈ p ∧ y′ ∈ p}
Constraints on allowable combinations of factors serve to restrict a bench-

mark. A pairwise exclusion constraint, γ(F ) ⊆ pairs(F ), requires that

∀(x, y) ∈ γ(F ) : ∀p ∈ l(B) : ¬(x ∈ p ∧ y ∈ p)

We write γ when F is understood from the context.
The arity of factor-level coverage and exclusion constraints can vary indepen-

dently. It is common for factor-level coverage to be uniform and to generalize it to
t-way coverage, i.e., to require coverage of the elements of the Cartesian product
of the level sets of t factors. On the other hand, as observed in prior work [15],
constraints generally involve a mix of arity. To denote this generality we define
Γ ⊆ ⋃

i γi where γi defines the set of possible i-way exclusion constraints.
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Example. Consider the DAVE-2 DNN which accepts 100 by 100 color images
and infers an output indicating the steering angle [12]. DAVE-2 is comprised of
5 convolutional layers with 55296, 17424, 3888, 3136, and 1600 neurons, respec-
tively, followed by 4 fully connected layers with 1164, 100, 50, and 10 neurons,
respectively. All 82668 neurons use ReLU activations. One can define a local
robustness property for DAVE-2 as

φ = ∀x ∈ i ± 0.02 : ‖DAVE-2(x) − DAVE-2(i)‖ ≤ 5

which states that for a given an input image, i, all inputs within a distance of
0.02 will result in an inferred steering angle within 5◦ of the angle for i. These
yield the verification problem 〈DAVE-2, φ〉.

Consider factors for the number of neurons, number of convolutional layers,
and number of fully-connected layers; a tuple (#neuron, #conv,#fc) represents
levels for these factors. For each factor consider two percentage levels: 100% and
50%. A neuron factor level of 50% indicates that a version of DAVE-2 with
41334 neurons is required. In the absence of constraints, an example pairwise
factor diverse benchmark for 〈DAVE-2, φ〉 consists of the following four verifi-
cation problems: (100%, 100%, 100%), (100%, 50%, 50%), (50%, 100%, 50%), and
(50%, 50%, 100%). The property φ is constant across the benchmark.

4.2 From Factor Covering Arrays to Verification Problems

Given a set of factors, F = {f1, f2, . . . , f|F |}, and levels, Lfi
, a t-way factor

diverse benchmark of k verification problems is specified by

CMCA(|F |; t, k, (|Lf1 |, |Lf2 |, . . . , |Lf|F | |), Γ )

Each element in this mixed level covering array specifies how to construct a
verification problem in the benchmark from the seed problem.

Levels are operationalized as transformations on verification problems. We
assume a sufficient set of transformations, Δ, such that a verification problem
can be transformed into a form that achieves any level of any factor

∀f ∈ F : ∀lf ∈ Lf : ∃δ ∈ Δ : lf ∈ l(δ(〈ns, φs〉))

The definition of Δ and Li must be coordinated to achieve this property.
A per-factor transformation δ ∈ Δ may impact a single component of a

verification problem, e.g., reducing the number of neurons in a DNN does not
impact the property, or both components, e.g., the input dimension impacts the
DNN and the property by transforming the input data domain. The set of all
transformations Δ defines the set of verification problems that can be produced
by application of a set of per-factor transformations to the seed problem,

Δ(〈ns, φs〉) = {〈n, φ〉 | 〈n, φ〉 = δf1 ◦ δf2 . . . ◦ δf|F |(〈ns, φs〉) ∧ δi ∈ Δ}
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The set of all possible factor level combinations is Πf∈F Lf , i.e., the product
of all of the per-factor levels. The set of t-way factor level combinations is

ct = {c|a ∈ Πf∈F Lf ∧ c ⊆ a ∧ |c| = t}

allowing for the interpretation of |F |-tuples as sets.

Definition 3. Given a set of factors F , with associated factor levels Lf , a t-
way factor diverse benchmark, B, for a seed problem 〈ns, φs〉 with exclusion
constraints Γ is defined by the following: (1) B ⊆ Δ(〈ns, φs〉); (2) ∀〈n, φ〉 ∈ B :
∀γ ∈ Γ : γ �⊆ l(〈n, φ〉); and (3) ∀c ∈ ct − Γ : ∃〈n, φ〉 ∈ B : c ⊆ l(〈n, φ〉)

4.3 Generating Benchmarks

GDVB is defined in Algorithm 1. We use existing techniques, e.g. Automated
Combinatorial Testing for Software (ACTS) [34], for generating a CMCA for
constraints specified as logical formulae where factors are variables and levels are
values for those variables. A CMCA is a set of k-tuples. Each such tuple defines
the target level for each factor for a problem in the generated benchmark. Those
levels are used to transform the given seed verification problem and the resultant
problem is accumulated in the benchmark.

Algorithm 1: GDVB(〈ns, φs〉, F, Γ, t) Algorithm
Data: a seed problem 〈ns, φs〉, a set of factors F and constraints Γ , a coverage

goal t
Result: A benchmark of DNN verification problems B

1 C ← genCMCA(F, Γ, t)
2 B ← ∅
3 for c ∈ C do
4 B ← B ∪ transform(〈ns, φs〉, c)
5 end

transform uses different approaches to transform the seed DNN and the
property. DNN transformation builds on an approach called R4V that automates
architectural transformations to DNNs by scaling (1) the number of neurons in
a fully connected layer, (2) the number of kernels in a convolutional layer, (3)
the input dimension, or (4) the range of values within an input dimension [47].
The first 3 of these require changes to the structure of the DNN and the last
two require changes to the training data, e.g., reshaping, renormalizing. R4V
ensures that the network is well-defined after transformation. transform maps
factor-levels to per-layer scale parameters for R4V.

R4V permits the training of a network using network distillation which we
find advantageous for GDVB because: it accelerates the training process, and it
drives training to match the accuracy of the problem DNN to that of ns, which
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reduces variation in accuracy across B. We adapt R4V so that after each training
epoch, the learned DNN weights and the validation accuracy is recorded. When
training finishes, we select the weights associated with the highest validation
accuracy. Training is performed using the training data and hyperparameters
for ns.

Whereas R4V can be used to directly manipulate DNN architecture related
factors, it can only indirectly affect the learned weights. To address this, we
adopt the approach taken throughout the machine learning literature – train a
network on multiple initial seeds and report performance across seeds. Thus, each
DNN in B is trained multiple times, thereby producing a benchmark comprised
of s ∗ |B| verification problems, where is the desired number of seeds.

DNN Transformation Example. Consider this element of the CMCA
described above: 〈(50%, 100%, 50%), φ〉, applied to DAVE-2. transform would
compute that 50% of the fully connected layers should be present in the resultant
DNN and randomly select 2 of the 4 layers to scale by 0. The fully-connected
layers are chosen at random, since the layer count factor does not consider layer
ordering. If we consider the case where the layers with 100 and 50 neurons are
dropped, this will eliminate 150 neurons. The other transformation required is
to reduce the number of neurons by half. To do that all remaining layers will be
scaled by 82668 ∗ 0.5 − 150

82688 = 0.498.
Property transformation builds on a domain-specific language (DSL)

Fig. 2. Parametric property φ

for specifying DNN correctness properties
defined by the deep neural network verifi-
cation framework (DNNV) [48]. Specifica-
tions in this Python-based DSL are para-
metric and transform maps factor-levels
to those parameters. For example, Fig. 2
defines the parametric local robustness prop-
erty φ that is centered at the image stored at
“path/to/image”, has radius 0.02, and can be
translated and scaled through parameters t
and s, respectively.

Restricting factors to levels that are sup-
ported by transform and using CMCA
algorithms that meet Definition 2 ensures
that GDVB produces a solution that meets
Definition 3.

4.4 An Instantiation of GDVB

We developed an instance of GDVB3 that supports a set of factors informed by
the results of the study in Sect. 3, percentage-based levels for those factors, and a

3 https://github.com/edwardxu0/GDVB.

https://github.com/edwardxu0/GDVB
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set of constraints that restrict benchmark problems to those that are non-trivial
and that can be efficiently trained.

Our instantiation of GDVB supports the following factors: the total number
of neurons in the DNN (neu), the number of fully-connected layers (fc), the
number of convolutional layers (conv), the dimension of the DNN input (idm),
the size of each DNN input dimension (ids), the scale of the property (scl),
and the translation of the property (trn). We do not support an activation
function factor because only ERAN support non-ReLU activations and, thus,
using them would render other verifiers inapplicable for large portions generated
benchmarks.

We use quintile factor levels, {20%, 40%, 60%, 80%, 100%}, for factors neu,
idm, ids, and scl. To permit the elimination of layer types we extend these levels
with an additional quintile, 0%, for fc and conv. For trn, we select a set of five
translations that shift the property to be centered on a different instance of the
training data; unlike the above levels this level is unordered.

Our instantiation of GDVB exclusion constraints for DAVE-2 are as follows:
(1) fc = 0∧conv = 0, (2) conv = 0∧neu ≥ 20, (3) conv = 0∧ idm ≥ 80, and (4)
conv = 100 ∧ idm = 20. The first of these requires that some layer be present.
The second and third are related to the blowup in the size of fully-connected
layers that results from dropping all convolutional layers which makes training
difficult; limiting the total number of neurons and the reduction input dimension
mitigates this. The fourth constraint ensures that the input dimension reduction
results in a meaningful network; without it the dimensionality reduction achieved
by sequences of convolutional layers yields an invalid network, i.e., the input to
some layer is smaller than the kernel size.

These constraints were developed iteratively based on feedback from the R4V
tool, which reports when transform has specified an invalid DNN, and when
training failed to closely approximate the accuracy of the seed network.

We note that this instance of GDVB is flexible in that it permits the cus-
tomization of levels, as we demonstrate in the next section, to generate a bench-
mark that focuses on variation in a subset of factors. More generally, GDVB can
easily be extended to support additional factors and levels for which an instance
of transform can be defined. We expect that GDVB will evolve in this way
as studies of DNN verifiers are performed.

5 GDVB in Use

In this section we showcase the potential uses of GDVB across a series of arti-
facts and verifiers, while highlighting the challenges it helps to systematically
address.

5.1 Setup

Our evaluation applies GDVB to two seed networks: MNISTConvBig and
DAVE-2. We selected MNISTConvBig because it is one of the largest networks in
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ERAN’s evaluation [50]; it includes 4 convolutional layers and 3 fully connected
layers with 48,074 neurons and 1,974,762 parameters. We selected DAVE-2 to
illustrate the application of GDVB to a larger network that has been the subject
of other DNN analysis [42]; it has 5 convolutional layers and 5 fully connected
layers with 82,669 neurons and 2,116,983 parameters.

Table 1. Verifiers used in GDVB study
Verifier Algorithm

ReLuplex [30] Search-optimization

Planet [20] Search-optimization

BaB [14] Search-optimization

BaBSB [14] Search-optimization

Neurifya [59] Optimization

ERANDZ [50] Reachability

ERANDP [51] Reachability

ERANRZ [52] Reachability

ERANRP [49] Reachability
aWe use the version of Neurify provided
in DNNV [48], which is modified to be
applicable to a wide range of problems,
whereas the original version was
hard-coded to a particular verification
problem [59].

Table 1 lists the 9 verifiers we
selected for our study. This list
includes the most well-known veri-
fiers and verification algorithms. We
also select variations of some verifica-
tion approaches. We use Branch-and-
Bound (BaB), as well as a variation
of Branch-and-Bound with Smart-
Branching (BaBSB). Additionally,
we evaluate the ERAN verifier with 4
available abstract domains: DeepZono
(ERANDZ), DeepPoly (ERANDP ),
RefineZono (ERANRZ), and
RefinePoly (ERANRP ).

To evaluate verifier performance,
we use the solution-count ranking
(SCR) [57], which counts the number
of properties that returned accurate verification results. Additionally, we mea-
sured the penalized average runtime (PAR2) [6], which is computed as the sum
of the verification times for sat and unsat results and twice time limit for all
other verification results.

Table 2. Mean & variance of SCR and PAR2 scores across benchmarks. (The darker
and lighter gray boxes indicate the best and second best results.)

MNISTConvBig DAVE-2

Verifier SCR PAR2 SCR PAR2

ERANDZ 11.40 ± 0.49 18, 126.80 ± 488.27 7.20 ± 1.94 24, 496.20 ± 1, 176.59

ERANDP 21.00 ± 0.89 9, 206.00 ± 806.70 18.40 ± 2.15 17, 443.00 ± 1, 344.65

ERANRZ 10.20 ± 0.40 19, 252.60 ± 343.66 5.80 ± 2.14 25, 236.60 ± 1, 253.90

ERANRP 12.60 ± 1.02 16, 981.40 ± 930.71 10.20 ± 1.83 22, 250.60 ± 1, 186.44

Neurify 22.00 ± 1.10 8, 636.20 ± 1, 008.63 19.20 ± 2.56 17, 247.80 ± 1, 397.05

Planet 7.00 ± 0.63 23, 145.60 ± 468.18 3.40 ± 1.62 27, 268.60 ± 775.56

BaB 0.20 ± 0.40 28, 689.80 ± 220.40 0.00 ± 0.00 28, 800.00 ± 0.00

BaBSB 0.00 ± 0.00 28, 800.00 ± 0.00 0.00 ± 0.00 28, 800.00 ± 0.00

ReLuplex 3.20 ± 0.40 25, 757.80 ± 381.40 4.40 ± 1.02 26, 023.60 ± 635.90

All training and verification took place under CentOS Linux 7. R4V trans-
formation and distillation jobs ran on NVIDIA 1080Ti GPUs. Verification jobs
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were limited to 4 h and ran on 2.3 GHz and 2.2 GHz Xeon processors with 64 GB
of memory, for DAVE-2 and MNISTConvBig, respectively.

5.2 Comparing Verifiers Across a Range of Challenges

Consider the use case where a researcher is attempting to compare a new verifier
(e.g., a new algorithm, a revised implementation, an extension to an existing
approach) against existing verifiers. As shown earlier, for such comparison to
be meaningful, many factors must be considered and properly explored. Given
a seed network, a property, a set of factors, and a coverage goal, GDVB can
generate a benchmark that helps to reduce bias in conducting such an evaluation.

For this use case we consider seed networks and local robustness properties
similar to those from the ERANDZ study [50] for the MNISTConvBig verifica-
tion problem and local robustness properties based on those from the Neurify
study [59] for the DAVE-2 verification problem. We run an instance of GDVB
using the factors and levels described in Sect. 4.4, a coverage strength of 2, and
train 5 versions of each network to account for stochastic weight variation. The
total time to generate and train GDVB (MNISTConvBig, . . . ) was 24.3 h and
the resulting 30 verification problems took 401.8 h to run across all 9 verifiers.
For GDVB (DAVE-2, . . . ) 44 verification problems were generated with train-
ing and verification times of 158.2 h and 772.4 h, respectively. CMCA generation
took less than a minute for both problems. Each problem in the benchmark
must be trained and verified in sequence, but across problems they can be paral-
lelized. We exploited this to reduce the cost of running the benchmarks to 4.9 h
for MNISTConvBig and 7.9 h for DAVE-2. We measured the SCR and PAR2
score for the nine verifiers across the benchmarks.

The results are shown in Table 2. Since the SCR and PAR2 score trends
are the same we depict just SCR in Fig. 3. Boxplots show the SCR scores for
a verifier across all the generated problems; variation in plots arises from the 5
trained versions of the networks for each problem. For each box, the middle line
represent the median, the box-bounds are the first and third quartiles, and the
whiskers represent minimal and maximal values.

The plot for MNISTConvBig on the left of Fig. 3 shows that the GDVB
benchmark with the MNISTConvBig seed is able to identify consider-
able performance variation across verifiers, with ERANDP and Neurify
accurately verifying a median of over 20 properties, the rest of the ERAN-
variants verifying between 10 and 13 properties, and the remaining tools veri-
fying between 0 and 8 properties. The results are consistent when we employ
DAVE-2 as the seed network, with marked differences among groups of
verifiers although the generated problems turned out to be more challenging
across all verifiers. ERANDP and Neurify, the top performers, can verify less
than half of the generated problems. Verifiers like BaB were unable to ver-
ify any problem derived from DAVE-2 because of the complexity of the seed
problem. This point highlights the need for benchmarks to evolve with networks
that incorporate emerging technology, and also GDVB’s ability to automatically
generate a benchmark from different seeds to address that need.
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Fig. 3. SCR score for nine verifiers on GDVB benchmarks with MNISTConvBig (left)
and DAVE-2 (right) seeds

Now, understanding the overall performance of a family of verifiers is useful
but it is likely just the first step for a researcher to understand under what
conditions a verifier excels or struggles. When such conditions correspond to
the factors manipulated by GDVB, then they are readily available for further
analysis. One analysis may consist of simply plotting the data across its multiple
dimensions. We do so in the form of radar-charts for DAVE-2 in Fig. 4 and
for MNISTConvBig in Fig. 54. Since the observations we can gather from both
networks are similar, we just discuss DAVE-2 in detail. Each chart includes
six axes representing a factor scaled between 0 and 1. The solid lines link the
maximum values across factors that were accurately verified while the dotted
lines link the median values across factors.

The shape of the lines in the radar plots clearly show that the verification
problems generated by GDVB reveal unique patterns across the ver-
ifiers. For example, the ReLuplex plot indicates that it can do well verifying
networks with multiple fully connected (fc) layers but is challenged by larger
networks (neu) and those with convolutional layers (conv). Comparing multiple
charts also reveals some interesting trade-offs. For example, for smaller networks
with just fully connected layers, the medians seem to indicate that ReLuplex is
better than Planet. However, when a network incorporates convolutional layers
or a larger number of neurons, Planet appears to outperform ReLuplex.

Looking across charts can also pinpoint specific improvements resulting from
tool extensions or revisions. For example, the median line of ERANRZ indi-
cates that it was not as effective in handling verification problems with a larger
number of layers as its predecessor ERANDZ ; the same trend holds for the pair
ERANRP and ERANDP . We note that a more restrictive benchmark that is
biased towards fewer fully connected layers might not reveal such differences.

4 We do not plot BaBSB as its performance was identical to BaB.
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Fig. 4. DAVE-2: radar plot with maximum (solid) and median (dotted) values

GDVB offers the opportunity to investigate such differences even further by
generating targeted verification problems for a subset of factors hypothesized
to be culprits of those differences. For example, GDVB could generate addi-
tional verification problems with a number of fully connected layers between
60% and 80% of the total, while keeping the other factors constant, to refine the
understanding of the differences between ERANRZ and ERANDZ .

This study illustrates how GDVB benchmarks support the exploration of
verifier performance, lowering the burden on researchers to manually prepare
tens to hundreds of verification problems, and reducing the opportunities for
bias.

Fig. 5. MNISTConvBig: radar plot with maximum (solid) and median (dotted) values
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5.3 GDVB and Benchmark Requirements R1–R3

As explained in Sect. 1, benchmarking in verification seeks to develop bench-
marks that are: diverse; representative of real use cases; and reactive to new
technologies. The previous sections have provided evidence of how, through its
generative nature, GDVB is reactive to new advances in technology included in
the seed network. We have also seen the high degree of parameterization GDVB
offers including for setting a seed network from which realistic attributes are
inherited in the generated verification problems. In this section we want to illus-
trate how GDVB addresses the diversity requirement.

To depict diversity we use the parallel coordinate graph in Fig. 6. Each verti-
cal line corresponds to a factor, and the markers in each vertical line corresponds
to an explored level. Each verification problem is a polyline that connects the
factors’ levels explored by it. The two sets of lines correspond to the verification
problems included in the DAVE-2 benchmark published with Neurify [59],
which is a downsized version of the full DAVE-2 DNN, and the benchmark
produced by GDVB (DAVE-2, . . . ). Each factor in the plot is normalized by
dividing by the maximum value for the factor.

Figure 6 shows that the Neurify’s DAVE-2 has a large number of neurons,
inputs, and dimensions. Yet, it provides very limited coverage of all the factor
levels that may affect verification performance. In contrast, GDVB provides a
systematic exploration of the factors levels that can affect verifier performance
making it much less biased – especially to the numbers of layers in the verification
problems, and the combination of those factor levels.

The parallel plot for GDVB benchmark with the MNISTConvBig seed (not
shown for space reasons), depicts a similar trend in terms of systematic explo-
ration of diversity, but since MNISTConvBig is simpler than DAVE-2, the gen-
erated benchmark is correspondingly simpler. This points to the need to identify
representative and challenging seeds when parameterizing GDVB. GDVB is
fully capable of accomodating factor levels that exceed 100% of a seed network,
which is a means of pushing verifiers to the limits of their abilities.

Fig. 6. Diversity explored across factor levels
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We note that excluding factors or levels can yield a systematically generated
benchmark that is unable to characterize differences between verifiers, or worse,
misleads such a characterization by emphasizing certain factors while overlooking
others. For example, not exploring different network sizes or exploring networks
sizes under 1000 neurons will render similar scores across many DNN verifiers
that are differentiated by more comprehensive benchmarks. In applying GDVB,
we suggest selecting as many factors as we know may matter, starting from a
challenging seed problem, and incrementally refining the levels as needed to focus
benchmark results to differentiate verifier performance.

6 Conclusion

The increasing adoption of DNNs has led to a surge in research on DNN veri-
fication techniques. Benchmarks to assess these emerging techniques, however,
are costly to develop, often lack in diversity and do not represent the population
of real evolving DNNs. To address this challenge, we have introduced GDVB,
a framework for systematically generating DNN verification problems seeded in
complex, real-world networks, ensuring that benchmarks are derived from real
problems. GDVB is parameterizable by the factors that may influence verifica-
tion performance and thereby supports scalable benchmarking. A preliminary
study, using 9 DNN verifiers, demonstrates how GDVB can support the assess-
ment of the state-of-the-art.

We plan to conduct broader studies of verifier performance using GDVB,
and we encourate other researchers to use and contribute to it. There are many
directions to explore in identifying new factors that influence performance, e.g.,
the impact of quantization and model compression approaches [26]. Work in
this direction promises to deepen the community’s understanding and lead to
advances in DNN verification.
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Abstract. We demonstrate a unified approach to rigorous design of
safety-critical autonomous systems using the VerifAI toolkit for formal
analysis of AI-based systems. VerifAI provides an integrated toolchain
for tasks spanning the design process, including modeling, falsification,
debugging, and ML component retraining. We evaluate all of these appli-
cations in an industrial case study on an experimental autonomous air-
craft taxiing system developed by Boeing, which uses a neural network
to track the centerline of a runway. We define runway scenarios using
the Scenic probabilistic programming language, and use them to drive
tests in the X-Plane flight simulator. We first perform falsification, auto-
matically finding environment conditions causing the system to violate
its specification by deviating significantly from the centerline (or even
leaving the runway entirely). Next, we use counterexample analysis to
identify distinct failure cases, and confirm their root causes with special-
ized testing. Finally, we use the results of falsification and debugging to
retrain the network, eliminating several failure cases and improving the
overall performance of the closed-loop system.

Keywords: Falsification · Automated testing · Debugging ·
Simulation · Autonomous systems · Machine learning

1 Introduction

The expanding use of machine learning (ML) in safety-critical applications has
led to an urgent need for rigorous design methodologies that can ensure the
reliability of systems with ML components [15,17]. Such a methodology would
need to provide tools for modeling the system, its requirements, and its environ-
ment, analyzing a design to find failure cases, debugging such cases, and finally
synthesizing improved designs.

The VerifAI toolkit [1] provides a unified framework for all of these design
tasks, based on a simple paradigm: simulation driven by formal models and
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specifications. The top-level architecture of VerifAI is shown in Fig. 1. We first
define an abstract feature space describing the environments and system config-
urations of interest, either by explicitly defining parameter ranges or using the
Scenic probabilistic environment modeling language [6]. VerifAI then gener-
ates concrete tests by searching this space, using a variety of algorithms ranging
from random sampling to global optimization techniques. Finally, we simulate
the system for each test, monitoring the satisfaction or violation of a system-level
specification; the results of each test are used to guide further search, and any

Fig. 1. Architecture of VerifAI.

violations are recorded in a
table for automated analy-
sis (e.g. clustering) or visu-
alization. This architecture
enables a wide range of
use cases, including falsifi-
cation, fuzz testing, debug-
ging, data augmentation, and
parameter synthesis; Dreossi
et al. [1] demonstrated all
of these applications individ-
ually through several small
case studies.

In this paper, we provide
an integrated case study, applying VerifAI to a complete design flow for a large,
realistic system from industry: TaxiNet, an experimental autonomous aircraft
taxiing system developed by Boeing for the DARPA Assured Autonomy project.
This system uses a neural network to estimate the aircraft’s position from a
camera image; a controller then steers the plane to track the centerline of the
runway. The main requirement for TaxiNet, provided by Boeing, is that it keep
the plane within 1.5m of the centerline; we formalized this as a specification in
Metric Temporal Logic (MTL) [11]. Verifying this specification is difficult, as the
neural network must be able to handle the wide range of images resulting from
different lighting conditions, changes in runway geometry, and other disturbances
such as tire marks on the runway.

Our case study illustrates a complete iteration of the design flow for TaxiNet,
analyzing and debugging an existing version of the system to inform an improved
design. Specifically, we demonstrate:
1. Modeling the environment of the aircraft using the Scenic language.
2. Falsifying an initial version of TaxiNet, finding environment conditions under

which the aircraft significantly deviates from the centerline.
3. Analyzing counterexamples to identify distinct failure cases and diagnose

potential root causes.
4. Testing the system in a targeted way to confirm these root causes.
5. Designing a new version of the system by retraining the neural network based

on the results of falsification and debugging.
6. Validating that the new system eliminates some of the failure cases in the

original system and has higher overall performance.
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Following the procedure above, we were able to find several scenarios where
TaxiNet exhibited unsafe behavior. For example, we found the system could not
properly handle intersections between runways. More interestingly, we found
that TaxiNet could get confused when the shadow of the plane was visible,
which only occurred during certain times of day and weather conditions. We
stress that these types of failure cases are meaningful counterexamples that
could easily arise in the real world, unlike pixel-level adversarial examples [8];
we are able to find such cases because VerifAI searches through a space of
semantic parameters [3]. Furthermore, these counterexamples are system-level,
demonstrating undesired behavior from the complete system rather than simply
its ML component. Finally, our work differs from other works on validation of
cyber-physical systems with ML components (e.g. [19]) in that we address a
broader range of design tasks (including debugging and retraining as well as
testing) and also allow designers to guide search by encoding domain knowledge
using Scenic.

For our case study, we extend VerifAI in two ways. First, we interface the
toolkit to the X-Plane flight simulator [12] in order to run closed-loop simu-
lations of the entire system, with X-Plane rendering the camera images and
simulating the aircraft dynamics. More importantly, we extend the Scenic lan-
guage to allow it to be used in combination with VerifAI’s active sampling
techniques. Previously, as in any probabilistic programming language, a Scenic
program defined a fixed distribution [6]; while adequate for modeling particular
scenarios, this is incompatible with active sampling, where we change how tests
are generated over time in response to feedback from earlier tests. To reconcile
these two approaches, we extend Scenic with parameters that are assigned by
an external sampler. This allows us to continue to use Scenic’s convenient syn-
tax for modeling, while now being able to use not only random sampling but
optimization or other algorithms to search the parameter space.

Adding parameters to Scenic enables important new applications. For exam-
ple, in the design flow we described above, after finding through testing some
rare event which causes a failure, we need to generate a dataset of such failures
in order to retrain the ML component. Naïvely, we would have to manually write
a new Scenic program whose distribution was concentrated on these rare events
(as was done in [6]). With parameters, we can simply take the generic Scenic
program we used for the initial testing, and use VerifAI’s cross-entropy sam-
pler [1,14] to automatically converge to such a distribution [16]. Alternatively,
if we have an intuition about where a failure case may lie, we can use Scenic
to encode this domain knowledge as a prior for cross-entropy sampling, helping
the latter to find failures more quickly.

In summary, the novel contributions of this paper are:

– The first demonstration on an industrial case study of an integrated toolchain
for falsification, debugging, and retraining of ML-based autonomous systems.

– An interface between VerifAI and the X-Plane flight simulator.



Formal Analysis and Redesign of a Aircraft Taxiing System with VerifAI 125

– An extension of the Scenic language with parameters, and a demonstration
using it in conjunction with cross-entropy sampling to learn a Scenic program
encoding the distribution of failure cases.

We begin in Sect. 2 with a discussion of our extension of Scenic with param-
eters and our X-Plane interface. Section 3 presents the experimental setup and
results of our case study, and we close in Sect. 4 with some conclusions and
directions for future work.

2 Extensions of VerifAI

Scenic with Parameters. To enable search algorithms other than random
sampling to be used with Scenic we extend the language with a concept of
external parameters assigned by an external sampler. A Scenic program can
specify an external sampler to use; this sampler will define the allowed types
of parameters, which can then be used in the program in place of any distribu-
tion. The default external sampler provides access to the VerifAI samplers and
defines parameter types corresponding to VerifAI’s continuous and discrete
ranges. Thus for example one could write a Scenic program which picks the
colors of two cars randomly according to some realistic distribution, but chooses
the distance between them using VerifAI’s Bayesian Optimization sampler.

The semantics of external parameters is simple: when sampling from a
Scenic program, the external sampler is first queried to provide values for all
the parameters; the program is then equivalent to one without parameters, and
can be sampled as usual1.

X-Plane Interface. Our interface between X-Plane and VerifAI uses the
latter’s client-server architecture for communicating with simulators. The server
runs inside VerifAI, taking each generated feature vector and sending it to the
client. The client runs inside X-Plane and calls its APIs to set up and execute the
test, reporting back information needed to monitor the specifications. For our
client, we used X-Plane Connect [18], an X-Plane plugin providing access to X-
Plane’s “datarefs”. These are named values which represent simulator state, e.g.,
positions of aircraft and weather conditions. Our interface exposes all datarefs
to Scenic, allowing arbitrary distributions to be placed on them. We also set
up the Scenic coordinate system to be aligned with the runway, performing the
appropriate conversions to set the raw position datarefs.

3 TaxiNet Case Study

3.1 Experimental Setup

TaxiNet’s neural network estimates the aircraft’s position from a camera image;
the camera is mounted on the right wing and faces forward. Example images are
1 One complication arises because Scenic uses rejection sampling to enforce con-

straints: if a sample is rejected, what value should be returned to active samplers
that expect feedback, e.g. a cross-entropy sampler? By default we return a special
value indicating a rejection occurred.
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shown in Fig. 2. From such an image, the network estimates the cross-track error
(CTE), the left-right offset of the plane from the centerline, and the heading error
(HE), the angular offset of the plane from directly down the centerline. These
estimates are fed into a handwritten controller which outputs (the equivalent of)
a steering angle for the plane.

Fig. 2. Example input images to TaxiNet, rendered in X-Plane. Left/right =
clear/cloudy weather. Top/bottom = 12 pm/4 pm.

The Boeing team provided the Berkeley team with an initial version of Taxi-
Net without describing which images were used to train it. In this way, the
Berkeley team were not aware in advance of potential gaps in the training set
and corresponding potential failure cases2. For retraining experiments, the same
sizes of training and validation sets were used as for the original model, as well
as identical training hyperparameters.

The semantic feature space defined by our Scenic programs and searched
by VerifAI was 6-dimensional, made up of the following parameters3:

– the initial position and orientation of the aircraft (in 2D, on the runway);
– the type of clouds, out of 6 discrete options ranging from clear to stormy;
– the amount of rain, as a percentage, and
– the time of day.
2 After drawing conclusions from initial runs of all the experiments, the Berkeley team

were informed of the training parameters and trained their own version of TaxiNet
locally, repeating the experiments. This was done in order to ensure that minor
differences in the training/testing platforms at Boeing and Berkeley did not affect
the results (which was in fact qualitatively the case). All numerical results and graphs
use data from this second round of experiments.

3 We originally had additional parameters controlling the position and appearance
of a tire mark superimposed on the runway (using a custom X-Plane plugin to do
such rendering), but deleted the tire mark for simplicity after experiments showed
its effect on TaxiNet was negligible.
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Given values for these parameters from VerifAI, the test protocol we used in
all of our experiments was identical: we set up the initial condition described by
the parameters, then simulated TaxiNet controlling the plane for 30 s.

The main requirement for TaxiNet provided by Boeing was that it should
always track the centerline of the runway to within 1.5 m. For many of our
experiments we created a greater variety of test scenarios by allowing the plane
to start up to 8m off of the centerline: in such cases we required that the plane
approach within 1.5m of the centerline within 10 s and then stay there for the
remainder of the simulation. We formalized these two specifications as MTL
formulas ϕalways and ϕeventually respectively:

ϕalways = �(CTE ≤ 1.5) ϕeventually = ♦[0,10]�(CTE ≤ 1.5)

While both of these specifications are true/false properties, VerifAI uses a
continuous quantity ρ called the robustness of an MTL formula [4]. Its crucial
property is that ρ ≥ 0 when the formula is satisfied, while ρ ≤ 0 when the
formula is violated, so that ρ provides a metric of how close the system is to
violating the property. The exact definition of ρ is not important here, but as
an illustration, for ϕalways it is (the negation of) the greatest deviation beyond
the allowed 1.5m achieved over the whole simulation.

For additional experimental results, see the Appendix of the full version [5].

3.2 Falsification

In our first experiment, we searched for conditions in the nominal operating
regime of TaxiNet which cause it to violate ϕeventually. To do this, we wrote a
Scenic program Sfalsif modeling that regime, shown in Fig. 3. We first place a
uniform distribution on time of day between 6 am and 6 pm local time (approx-
imate daylight hours). Next, we determine the weather. Since only some of the
cloud types are compatible with rain, we put a joint distribution on them: with
probability 2/3, there is no rain, and any cloud type is equally likely; other-
wise, there is a uniform amount of rain between 25% and 100%4, and we allow
only cloud types consistent with rain. Finally, we position the plane uniformly
up to 8m left or right of the centerline, up to 2000m down the runway, and
up to 30◦ off of the centerline. These ranges ensured that (1) the plane began on
the runway and stayed on it for the entire simulation when tracking succeeded,
and (2) it was always possible to reach the centerline within 10 s and so satisfy
ϕeventually.

4 The 25% lower bound is because we observed that X-Plane seemed to only render
rain at all when the rain fraction was around that value or higher.
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Fig. 3. Generic Scenic program Sfalsif used for falsification and retraining.

However, it was quite easy to find falsifying initial conditions within this sce-
nario. We simulated over 4,000 runs randomly sampled from Sfalsif, and found
many counterexamples: in only 55% of the runs did TaxiNet satisfy ϕeventually,
and in 9.1% of runs, the plane left the runway entirely. This showed that Taxi-
Net’s behavior was problematic, but did not explain why. To answer that ques-
tion, we analyzed the data VerifAI collected during falsification, as we explain
next.

3.3 Error Analysis and Debugging

VerifAI builds a table which stores for each run the point sampled from the
abstract feature space and the resulting robustness value ρ (see Sect. 3.1) for the
specification. The table is compatible with the pandas data science library [13],
making visualization easy. While VerifAI contains algorithms for automatic
analysis of the table (e.g., clustering and Principal Component Analysis), we
do not use them here since the parameter space was low-dimensional enough to
identify failure cases by direct visualization.

We began by plotting TaxiNet’s performance as a function of each of the
parameters in our falsification scenario. Several parameters had a large impact
on performance:

– Time of day: Figure 4 plots ρ vs. time of day, each orange dot representing
a run during falsification; the red line is their median, using 30-min bins
(ignore the blue dots for now). Note the strong time-dependence: for example,
TaxiNet works well in the late morning (almost all runs having ρ > 0 and so
satisfying ϕeventually) but consistently fails to track the centerline in the early
morning.

– Clouds: Figure 5 shows the median performance curves (as in Fig. 4) for 3 of
X-Plane’s cloud types: no clouds, moderate “overcast” clouds, and dark “stra-
tus” clouds. Notice that at 8 am TaxiNet performs much worse with stratus
clouds than no clouds, while at 2 pm the situation is reversed. Performance
also varies quite irregularly when there are no clouds — we will analyze why
this is the case shortly.
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Fig. 4. Performance of TaxiNet as a function of time of day, before and after retraining.
(Color figure online)

– Distance along the runway: The green data in Fig. 6 show performance
as a function of how far down the runway the plane starts (ignore the
orange/purple data for now). TaxiNet behaves similarly along the whole
length of the runway, except around 1350–1500 m, where it veers completely
off of the runway (ρ ≈ −30). Consulting the airport map, we find that another
runway intersects the one we tested with at approximately 1450 m. Images
from the simulations show that at this intersection, both the centerline and
edge markings of our test runway are obscured.

These visualizations identify several problematic behaviors of TaxiNet: con-
sistently poor performance in the early morning, irregular performance at certain
times depending on clouds, and an inability to handle runway intersections. The
first and last of these are easy to explain as being due to dim lighting and
obscured runway markings. The cloud issue is less clear, but VerifAI can help
us to debug it and identify the root cause.

Inspecting Fig. 5 again, observe that performance at 2–3 pm with no clouds
is poor. This is surprising, since under these conditions the runway image is
bright and clear; the brightness itself is not the problem, since TaxiNet does
very well at the brightest time, noon. However, comparing images from a range
of times, we noticed another difference: shortly after noon, the plane’s shadow
enters the frame, and moves across the image over the course of the afternoon.
Furthermore, the shadow is far less visible under cloudy conditions (see Fig. 2).
Thus, we hypothesized that TaxiNet might be confused by the strong shadows
appearing in the afternoon when there are no clouds.

To test this hypothesis, we wrote a new Scenic scenario with no clouds,
varying only the time of day; we used VerifAI’s Halton sampler [9] to get an
even spread of times with relatively few samples. We then ran two experiments:
one with our usual test protocol, and one where we disabled the rendering of
shadows in X-Plane. The results are shown in Fig. 7: as expected, in the normal
run there are strong fluctuations in performance during the afternoon, as the
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Fig. 5. Median TaxiNet performance by time of day, for different cloud types. (For
clarity, individual runs are not shown as dots in this figure.)

Fig. 6. TaxiNet performance by distance along the runway. Solid lines are medians.
The lowest median value for original TaxiNet clipped by the bottom of the chart is
−32. (Color figure online)

Fig. 7. TaxiNet performance (with fixed plane position) by time of day, with and
without shadows.
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shadow is moving across the image; with shadows disabled, the fluctuations
disappear. This confirms that shadows are a root cause of TaxiNet’s irregular
performance in the afternoon.

Figures 4 and 6 show that there are failures even at favorable times and
runway positions. We diagnosed several additional factors leading to such cases,
such as starting at an extreme angle or further away from the centerline; see the
Appendix [5] for details.

Finally, we can use VerifAI for fault localization, identifying which part of
the system is responsible for an undesired behavior. TaxiNet’s main components
are the neural network used for perception and the steering controller: we can
test which is in error by replacing the network with ground truth CTE and HE
values and testing the counterexamples we found above again. Doing this, we
found that the system always satisfied ϕeventually; therefore, all the failure cases
were due to mispredictions by the neural network. Next, we use VerifAI to
retrain the network and improve its predictions.

3.4 Retraining

The easiest approach to retraining using VerifAI is simply to generate a new
generic training set using the falsification scenario Sfalsif from Fig. 3, which delib-
erately includes a wide variety of different positions, lighting conditions, and so
forth. We sampled new configurations from the scenario, capturing a single image
from each, to form new training and validation sets with the same sizes as for
original TaxiNet. We used these to train a new version of TaxiNet, Tgeneric, and
evaluated it as in the previous section, obtaining much better overall perfor-
mance: out of approximately 4,000 runs, 82% satisfied ϕeventually, and only 3.9%
left the runway (compared to 55% and 9.1% before). A variant of Tgeneric using
VerifAI’s Halton sampler, THalton, was even more robust, satisfying ϕeventually
in 83% of runs and leaving the runway in only 0.6% (a 15× improvement over
the original model). Furthermore, retraining successfully eliminated the unde-
sired behaviors caused by time-of-day and cloud dependence: the blue data in
Fig. 4 shows the retrained model’s performance is consistent across the entire
day, and in fact this is the case for each cloud type individually.

However, this naïve retraining did not eliminate all failure cases: the orange
data in Fig. 6 shows that THalton still does not handle the runway intersection
well. To address this issue, we used a second approach to retraining: over-
representing the failure cases of interest in the training set using a specialized
Scenic scenario [6].

We altered Sfalsif as shown in Fig. 8, increasing the probability of the plane
starting 1200–1600 m along the runway, a range which brackets the intersection;
we also emphasized the range 0–400 m, since Fig. 6 shows the model also has dif-
ficulty at the start of the runway. We trained a specialized model Tspecialized using
training data from this scenario together with the validation set from Tgeneric.
The new model had even better overall performance than THalton, with 86% of
runs satisfying ϕeventually and 0.5% leaving the runway. This is because perfor-
mance near the intersection is significantly improved, as shown by the purple
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data in Fig. 6; however, while the plane rarely leaves the runway completely, it
still typically deviates several meters from the centerline. Furthermore, perfor-
mance is worse than Tgeneric and THalton over the rest of the runway, suggesting
that larger training sets might be necessary for further performance improve-
ments.

Fig. 8. Position distribution empha-
sizing the runway beginning and
intersection. Probabilities corre-
sponding to the original scenario
(Fig. 3) shown in comments.

While in this case it was straightforward
to write the Scenic program in Fig. 8 by
hand, we can also learn such a program
automatically: starting from Sfalsif (Fig. 3),
we use cross-entropy sampling to move the
distribution towards failure cases. Applying
this procedure to Tgeneric for around 1200
runs, VerifAI indeed converged to a distri-
bution concentrated on failures. For exam-
ple, the distribution of distances along the
runway gave ∼79% probability to the range
1400–1600 m, 16% to 1200–1400 m, and 5%
to 0–200, with all other distances getting only ∼1% in total. Referring back to
Fig. 6, we see that these ranges exactly pick out where THalton (and Tgeneric) has
the worst performance.

Finally, we also experimented with a third approach to retraining, namely
augmenting the existing training and validation sets with additional data rather
than generating completely new data as we did above. The augmentation data
can come from counterexamples from falsification [2], from a handwritten Scenic
scenario, or from a failure scenario learned as we saw above. However, we were
not able to achieve better performance using such iterative retraining approaches
than simply generating a larger training set from scratch, so we defer discussion
of these experiments to the Appendix [5].

4 Conclusion

In this paper, we demonstrated VerifAI as an integrated toolchain useful
throughout the design process for a realistic, industrial autonomous system.
We were able to find multiple failure cases, diagnose them, and in some cases
fix them through retraining. We interfaced VerifAI to the X-Plane flight sim-
ulator, and extended the Scenic language with external parameters, allowing
the combination of probabilistic programming and active sampling techniques.
These extensions are publicly available [1,7].

While we were able to improve TaxiNet’s rate of satisfying its specification
from 55% to 86%, a 14% failure rate is clearly not good enough for a safety-
critical system (noting of course that TaxiNet is a simple prototype not intended
for deployment). In future work, we plan to explore a variety of ways we might
further improve performance, including repeating our falsify-debug-retrain loop
(which we only showed a single iteration of), increasing the size of the training
set, and choosing a more complex neural network architecture. We also plan
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to further automate error analysis, building on clustering and other techniques
(e.g., [10]) available with VerifAI and Scenic, and to incorporate white-box
reasoning techniques to improve the efficiency of search.
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Abstract. The Libra blockchain is designed to store billions of dollars
in assets, so the security of code that executes transactions is important.
The Libra blockchain has a new language for implementing transactions,
called “Move.” This paper describes the Move Prover, an automatic for-
mal verification system for Move. We overview the unique features of
the Move language and then describe the architecture of the Prover,
including the language for formal specification and the translation to
the Boogie intermediate verification language.
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1 Introduction

The ability to implement arbitrary transactions on a blockchain via so-called
smart contracts has led to an explosion in innovative services in systems such
as Ethereum [41]. Unfortunately, bugs in smart contracts have led to massive
amounts of funds being stolen or made inaccessible [5,15]. In retrospect, the
source of these disasters is fairly obvious: smart contracts operate without a
safety net. A fundamental requirement for blockchains is that transactions be
automatic and irreversible. Unlike traditional financial applications, there is lit-
tle opportunity for humans to oversee or intervene in transactions. Indeed, the
design of the blockchain is intended to prevent human involvement. The result-
ing potential havoc that can be caused by a bug in a smart contract makes it
essential for these contracts to be correct, without vulnerabilities. Not surpris-
ingly, there is great interest in formal verification and other advanced testing
methods for smart contracts, and several verification systems already exist or
are under development.

This work was supported by the Stanford Center for Blockchain Research and Novi,
a Facebook subsidiary whose goal is to provide financial services that let people par-
ticipate in the Libra network. The Libra Association manages the Libra network and
is an independent, not-for-profit membership organization, headquartered in Geneva,
Switzerland.
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The Libra blockchain [3,38] is designed to be a foundation for supporting
financial services for billions of people around the world. If successful, it could
store and manage assets worth billions of dollars, with correspondingly stringent
security requirements. The code that modifies the state of the blockchain is espe-
cially important. The architecture of the Libra blockchain requires that all such
modifications be performed by the Move [12] virtual machine, which executes
the well-defined Move instruction set. This architecture means that verification
efforts can focus on the correctness of bytecode programs implementing smart
contracts, including formally verifying those programs.

Contributions

In this paper, we describe a specification language and formal verification system
for Move. If a programmer writes functional correctness properties for a proce-
dure, the Move Prover tool can automatically verify it. Although many similar
Floyd-Hoare verifiers exist, widespread adoption has been a challenge because
conventional software is large, complex, and uses language features that present
difficulties for even the simplest verification tasks. However, we are hopeful that
the Move Prover will be used by the majority of Move programmers. There are
three reasons for this optimism. First, the Move language has been designed to
support verification. Second, we are building a culture of specification from the
beginning: each Move module used by the Libra blockchain is being written with
an accompanying formal specification. Finally, we are working to make the Move
Prover as precise, fast, and user-friendly as possible.

The Move language, the Move Prover, Move programs, and their specifica-
tions, have been evolving rapidly, so this description necessarily represents a
snapshot of the project at a particular time. However, we expect most of the
changes to be improvements and extensions to the basics described here. In the
remainder of this paper, we will:

1. Present a brief overview of Move and explain the language design decisions
that facilitate verification (Sect. 2);

2. Describe how the Move Prover toolchain is implemented (Sect. 3);
3. Explain the model used to represent Move programs (Sect. 4);
4. Define the Move specification language and give examples of useful properties

it can encode (Sect. 5); and
5. Demonstrate that the Move Prover can verify important aspects of the Libra

core modules (Sect. 6).

2 Background: The Move Language

Move [12] is an executable bytecode language for writing smart contracts and
custom transaction logic. Contracts in Move are written as modules that contain
record types and procedures. Records in modules may either be struct or resource
types—the most novel feature of Move. A resource type has linear [17] seman-
tics, meaning that resources cannot be created, copied, or destroyed except by
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module LibraCoin {
resource struct T { value: u64 }

public fun join(coin: &mut LibraCoin::T, to_consume: LibraCoin::T) {
let T { value } = to_consume; // MoveLoc(1); Unpack
let c_value_ref = &mut coin.value; // MoveLoc(0); MutBorrowField<value>; StLoc(0)
*c_value_ref = *c_value_ref + value; // CopyLoc(0); ReadRef; Add; MoveLoc(0); WriteRef
return; // Ret

}

Fig. 1. A Move module with its bytecode representation in comments.

procedures in its declaring module. Resources allow programmers to encode safe,
yet customizable assets that cannot be accidentally (or intentionally) copied or
destroyed by code outside the module.

Move is minimal in comparison to most conventional programming lan-
guages. The only types besides records are primitives (Booleans, unsigned inte-
gers, addresses), vectors, and references (which must be labeled as mutable
or immutable, similar to Rust [30]). Records can contain primitives and other
records, but not references. Control-flow constructs can be encoded via jumps
to static labels in the bytecode.

Move programs execute in the context of a blockchain with modules and
resources published under account addresses. To interact with the blockchain,
a programmer can write a Move transaction script, a single-procedure program
similar to a main procedure in a conventional language, that invokes proce-
dures of published modules. This script is then packaged into a cryptographi-
cally signed transaction that is executed by validators in the Libra blockchain.
As in Ethereum, transaction execution is metered, meaning that computational
resources (or “gas”) used when a Move program is executed are measured and
must be paid for by the submitter of a transaction (though we note that the
Move Prover does not yet reason about gas usage).

Verification-Friendly Design. There are several aspects of Move’s design that
facilitate verification. The first is limited interaction with the environment: to
ensure deterministic execution, the language can only read data from the global
blockchain state or the current transaction (no file or network I/O). Second,
many features that are challenging for verification are absent from Move: con-
currency, higher-order functions, exceptions, sub-typing, and dynamic dispatch.
The absence of the last feature is particularly notable because it is present in
Ethereum bytecode and has contributed to subtle re-entrancy bugs (e.g., [14]).
Third, Move has built-in safe arithmetic: overflows and underflows are detected
during execution and result in a transaction abort. Finally, many common errors
are prevented by the Move bytecode verifier (not to be confused with the Move
Prover), a static analyzer that checks each bytecode program before execution
(similar to the JVM [26] or CLR [31] bytecode verifier). The bytecode verifier
ensures that:
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Fig. 2. The Move Prover architecture.

1. Procedures and struct declarations are well-typed (e.g., linearity of resources)
2. Dependent modules and procedure targets exist (i.e., static linking)
3. Module dependencies are acyclic
4. The operand stack height is the same at the beginning and end of each basic

block
5. A procedure can only touch stack locations belonging to callers via a reference

passed to the callee
6. The global and local memory are always tree-shaped
7. There are no dangling references
8. A mutable reference has exclusive access to its referent

Because these checks are run on every Move bytecode program, the prover can
rely on them in its own reasoning. Note that this would not be true if the checks
were performed by a source language compiler, since bad bytecode programs
could be created by compiler bugs or by writing programs directly in the exe-
cutable bytecode representation.

Limited Aliasing. In the rest of this section, we present an example that explains
the memory-related invariants enforced by the Move bytecode verifier (6–8
above). The example in Fig. 1 is written in the Move source language, which
can be directly compiled to the Move bytecode representation shown in the
comments (note that the Move Prover analyzes the bytecode itself). The join

procedure accepts two arguments: coin of type &mut LibraCoin::T (a muta-
ble reference to a LibraCoin::T value stored elsewhere) and to_consume of
type LibraCoin::T (an owned LibraCoin::T value). The purpose of this pro-
cedure is to destroy the LibraCoin::T resource stored in to_consume and add
its value to the LibraCoin::T resource referenced by coin. The first line of the
procedure performs the destruction by “unpacking” to_consume (placing the
program value bound to its field into the program variable value), and the next
two lines read the current value of c_value_ref and update it.

The careful reader might wonder: what will happen if c_value_ref is
a reference to to_consume? In a C-like language, the first line would make
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c_value_ref into a dangling reference, which would lead to a memory error
when it is subsequently used. Fortunately, the Move bytecode verifier ensures
that this cannot happen. An owned value like to_consume can only be moved
(either onto the operand stack or into global storage) if there are no outstand-
ing references to the value. In addition, the bytecode verifier guarantees that
no mutable reference can be an ancestor or descendant of another (mutable or
immutable) reference in the same local or global data tree. This is a very strong
restriction! It ensures that procedure formals that can be mutated (mutable ref-
erences or owned values) point to disjoint memory locations. For example, an
additional formal of type &mut u64 in the code above could not point into the
memory of the other formals. Formals that are immutable references may alias
with each other, but not with mutable references or owned values. This means
it is impossible for an update to a reference to affect the value retrieved by a
simultaneously existing reference. These restrictions on the structure of mem-
ory enable greatly simplified reasoning about aliased mutable data, a significant
challenge for verification in conventional languages.

3 Tool Overview

Figure 2 shows the architecture of the Move Prover. The prover takes as input
Move source code annotated with specifications. The overall workflow consists
of several steps. First, the specifications are extracted from the annotated code,
and the Move source code is compiled into Move bytecode. Next, all stack oper-
ations are removed from the bytecode and replaced with operations on local
variables, and the stackless bytecode is abstracted into a prover object model.
Along a separate path, the specifications are parsed and added to the prover
object model. The finalized model is translated to a program in the Boogie
intermediate verification language (IVL) [23,24].

The Boogie program is handed to the Boogie verification system, which gen-
erates an SMT formula in the SMT-LIB format [10]. This can then be checked
using an SMT solver such as Z3 [32] or CVC4 [9]. If the result of this check is
UNSAT, then the specification holds, which is reported to the user. Otherwise,
a countermodel is obtained from the SMT-solver, which gets translated back to
Boogie. Boogie produces a Boogie-level error report, and this result is analyzed
and transformed into a source-level diagnosis that is given back to the user. Using
this diagnosis, the user can refine the implementation and/or specification and
start the process again.

The prover is written in Rust and can be found in the language/move-

prover directory in the Libra repository on GitHub [25].1 We describe the Boo-
gie model and the specification language in more detail in the following sections.

1 This paper reflects the state of the Move Prover at github commit https://github.
com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef.

https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef
https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef
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4 Boogie Model

Boogie IVL is a simple imperative programming language that supports local and
global variables, branching and loops, and procedures and procedure calls. Boo-
gie is designed for verification, so it also supports pre- and post-conditions, loop
invariants, and global axioms. Boogie programs are not executable; instead, they
are provided as input to the Boogie verification system, which applies a verifica-
tion strategy to generate verification conditions (as SMT formulas) [8]. If all of
the verification conditions hold, then each procedure ensures its post-conditions,
under the assumption that its pre-conditions hold. The variable types supported
by Boogie IVL match the sorts supported by SMT solvers, e.g., Booleans, inte-
gers, arrays, bitvectors, and datatypes. This makes the translation of Boogie
verification conditions into SMT formulas fairly transparent. Boogie is used as a
back-end for a wide variety of verification tools. The general strategy is to model
the semantics of a source language in Boogie. Then, programs and specifications
in the source language can be translated into Boogie IVL and checked using the
Boogie verification system. For more details about Boogie, we refer the reader
to [1,7,23,24].

Following this pattern, we built a Boogie model for Move bytecode pro-
grams. A few highlights of the model are shown in Fig. 3 and described below.
For a detailed understanding of the model, we refer the reader to the full Boo-
gie model, which can be found in the Libra repository at language/move-

prover/src/prelude.bpl and to a formalization of the core Move bytecode
language described in [13].

As mentioned above, in Move, a data value is either a primitive value (e.g.,
Boolean, integer, address), a struct (i.e. a record) containing one or more data
values, or a vector of data values. Data values are represented in Boogie as
the Value datatype, with one constructor for each primitive type, plus a vector
constructor (containing one field: a finite array of Value), used to model both
vectors and structs.

Because Move supports generic functions (i.e. type-parameterized functions),
we define a similar Boogie datatype for types called TypeValue (not shown).
A type-parameterized function can then be represented as a Boogie procedure
whose initial arguments are of type TypeValue (for the type parameters) and
whose data arguments are of type Value (regardless of their actual Move type).
The bytecode verifier ensures type-correctness, so we do not check that types
are used correctly, but rather assume this is the case (by using Boogie assume

statements as needed).
The Value and ValueArray datatypes are mutually recursive, and thus a

Value can be thought of as a finite tree. A primitive Value is a leaf node of
the tree, while a struct or vector Value is an internal node. A position within
the tree can be uniquely identified by a path, which is a sequence of integers. A
path specifies a node of the tree by starting at the root node and then following
children according to the indices in the path. We model paths as finite arrays
(also shown in Fig. 3). This simplifies the specification that two trees are disjoint,
which is a necessary precondition in some smart contract functions.
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type {:datatype} Value ;
function {:constructor} Boolean (b : bool) : Value ;
function {:constructor} In tege r ( i : int) : Value ;
function {:constructor} Address ( a : int) : Value ;
function {:constructor} Vector (v : ValueArray ) : Value ;

type {:datatype} ValueArray ;
function {:constructor} ValueArray (v : [int]Value , l : int) : ValueArray ;
type {:datatype} Path ;
function {:constructor} Path (p : [int]int, s i ze : int) : Path ;
type {:datatype} Location ;
function {:constructor} Global ( t : TypeValue , a : int) : Location ;
function {:constructor} Local ( i : int) : Location ;
type {:datatype} Reference ;
function {:constructor} Reference ( l : Location , p : Path ) : Reference ;

type {:datatype} Memory;
function {:constructor} Memory( domain : [ Location ]bool, conten ts : [ Location ]Value ) : Memory;
var $m : Memory;

Fig. 3. Highlights of the Boogie model for the Move Prover. The type {:datatype}
syntax is used to declare a new datatype, and the function {:constructor} syn-
tax is used to declare datatype constructors with their selectors. An array indexed by
type T containing elements of type V is denoted in Boogie as [T]V.

A Value can be stored in either local or global state, and references to data
in either are allowed as local variables. For simplicity and uniformity, we have a
single memory object which is a map from Location to Value (because memory
is a partial function, it also contains a map from Location to bool, which
indicates whether a particular location is present in memory). A Location is
either global (indexed by an account address and a type) or local (indexed by an
integer). References are then represented as a pair consisting of a location and
a path. To model reading from or writing to a reference, the global memory is
accessed along the reference’s path. Note that this is done by enumerating cases
up to the maximum possible path depth (based on the data structures in the
modules being verified).2

Finally, each bytecode instruction is modeled as a procedure modifying local
or global state in Boogie. A bytecode program is then translated to a sequence
of procedure calls, with goto statements handling control-flow.

2 As with most verification approaches based on generating verification conditions,
verifying recursive procedures or loops in Boogie requires writing loop invariants,
which can be difficult and may also introduce quantifiers, making the problem harder
for the underlying SMT solver. We have avoided this so far by relying on bounded
iteration, but our roadmap includes full handling of recursion and loops via loop
invariants.
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public fun pay_from_sender(payee: address, amount: u64) acquires T
{
Transaction::assert(payee != Transaction::sender(), 1); // new!

if (!exists<T>(payee)) {
Self::create_account(payee);

};
Self::deposit(
payee,
Self::withdraw_from_sender(amount),

);
}

spec fun pay_from_sender {
// ... omitted aborts_ifs ...
aborts_if amount == 0;
aborts_if global<T>(sender()).balance.value < amount;
ensures exists<T>(payee);
ensures global<T>(sender()).balance.value

== old(global<T>(sender()).balance.value) - amount;
}

Fig. 4. A simplified version of an example where verification led to an insight about a
function. Without the assert marked “new,” the specification fails to hold if payee
and sender are the same, as explained in Sect. 6.

5 Specifications

The Move Prover has a basic specification language for individual functions.
Specifications include classical Floyd-Hoare pre-conditions, post-conditions, and
a new condition specifying when a function aborts. (We are expanding this func-
tionality to include ghost variables and global invariants for modules.) These con-
ditions are separated from the actual code, in “spec blocks,” which are linked by
name to the structure or function being specified, or to the containing module.
Specifications never affect the execution of a module. A simplified example based
on verifying a real Libra module appears in Fig. 4.

Pre-conditions and post-conditions are standard. Pre-conditions are intro-
duced by the reserved word requires and post-conditions are introduced by
ensures, and each is followed by a Boolean expression, in a syntax that is
very similar to Move, which includes the usual relational and arithmetic oper-
ators, record field access, etc. A sub-expression after ensures can be enclosed
in old(...), causing the expression to be evaluated using the variable values
in the program state immediately after entry to the function, instead of using
the program state just before exit from the function. Move functions can return
multiple values, so the expressions return_1, return_2, etc. represent those
return values.

Formal verifiers for conventional programming languages treat run-time
errors as bugs to be reported. However, as in most smart contract languages,
performing an undefined operation in Move, such as division by zero, cancels the
entire transaction with no effect on the state except the consumption of some
currency to pay for the computational resources consumed by the code that
was executed before the error occurred. In Libra, this event is called an abort.
Aborts are not necessarily run-time errors in Move. They are the standard way
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to handle illegal transactions, such as trying to perform an operation that is not
authorized by the sender of the transaction.

Instead of treating all possible abort conditions as bugs, the Move Prover
allows the user to specify the conditions under which a function is expected to
abort. This type of specification is introduced by the reserved word aborts_if,
which is followed by the same kind of expressions that can appear after
requires. When aborts_if P appears in the specification of a function, the
Move Prover requires that the function aborts if and only if P holds. If multiple
aborts_if conditions are specified, there is an error unless the function aborts if
and only if the disjunction of all their conditions holds. (This current semantics
of aborts_if is subject to change.)

There are two expressions that are specific to the Libra blockchain. The
expression exists<M::T>(A) is true iff there is an instance of the type T from
module M appearing under account A in the global state tree. In the example
of Fig. 4, the first post-condition asserts that the payee account exists after a
payment transaction (the payee account might not exist before the payment, in
which case it is created). The expression global<M::T>(A) represents the value
of type T from module M stored at account A. In the example, this construct
accesses the balance values of the sender (the payer), to make sure that the
balance covers the payment, and to assert that the payer account balance has
decreased by the payment amount if the payment is successful.

Specification Translation. Specifications are translated into requires and
ensures statements in Boogie and combined with the prelude (the Boogie model,
see Sect. 4) and the translated Move bytecode for the program.

A global Boolean variable $abort_flag is introduced and assumed to be
false at the beginning of each procedure. The Boogie code for each instruc-
tion sets this flag to true for conditions that cause abort, such as undefined
operations or failures of explicit Move assert statements.

The specification translator combines, using logical disjunction, the condi-
tions of all aborts_if statements into a single expression (called condition

here), which is translated into the Boogie specifications ensures condition

==> $abort_flag and ensures !condition ==> !$abort_flag.

6 Evaluation

In this section, we report on our experience using the Move Prover. We first
demonstrate that it can successfully be used on core modules in the Libra code-
base.

Verifying Core Modules. We wrote specifications for all of the functions (25/25)
in the Libra module and most of the functions (34/38) in the LibraAccount mod-
ule (4 functions use features that are not yet supported: non-linear arithmetic
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and referencing data in the spec that does not appear in the code).3 These are
core modules of the Libra system, and their correct execution is crucial. The
Move Prover was able to prove all of these specifications in under a minute, as
shown below. The modules with their specifications are available in the Move
Prover source tree.4 The Libra and LibraAccount modules comprise nearly 1300
lines (including specifications). The total size of the generated Boogie files is
a little over 14,000 lines, and the generated SMT files are around 52,000 lines.
Writing these specifications was quite natural, thanks to the tree-based memory
model and to the support for type-generics. Experiments were run on a machine
with an Intel Core i9 processor with 8 cores @2.4 GHz and 32 GB RAM, running
macOS Catalina.

Move Module LoC Boogie LoC SMT LoC Functions Verified Runtime

Libra 420 3875 11,688 25 25 2.99 s

LibraAccount 867 10,362 40293 38 34 46.66 s

Impact of Move Prover. The Move Prover is co-developed with the Move lan-
guage itself (which is relatively stable) to ensure that contracts remain correct
as the entire toolset evolves. The prover is used in continuous integration, and
is beginning to be used to verify contracts in production. As of this writing, the
Move Prover hasn’t exposed any serious bugs. However, it has had an impact on
how we understand code. An example is a function called pay_from_sender (a
version with some specifications and comments omitted appears in Fig. 4). This
function simply pays money from the account of the sender (who signed the
transaction) to payee. In a previous version of the function, the Prover reported
errors for two of the “obvious” specification properties shown. The first speci-
fication says that the function always aborts when paying zero Libra, because
deposit aborts unless the amount is positive. However, in the earlier version,
create_account handled the payment to deposit the amount in the account
when the account did not yet exist, and that payment was allowed to be zero,
violating the specification. The function was rewritten as it appears now, so
that the same deposit code is called regardless of whether the payee account was
newly created. The last specification says that the payer’s account decreases by
amount after a successful payment. This condition was violated when the payer
and payee were the same, resulting in no decrease. Adding an assert (marked
“new!” in the figure) to abort in that useless case makes the specification simpler.

3 Two additional functions in LibraAccount are “native” which means that they are
built-in and don’t have any Move code. These are modeled directly in Boogie and
are not included in the count here.

4 To reproduce, run cargo run -- -s . -- <libra|libra_account>.move
from tests/sources/stdlib/modules in the move-prover source tree.
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7 Related Work

The only other formal verification framework for Move that we are aware of
is described in [36], where a high-level approach and some case studies are
described, but no implementation details are provided.

The closest work in the literature has been done in the context of verifica-
tion of solidity smart contracts using Boogie. VERISOL [22] is one tool which
formally verifies solidity smart contracts via a translation to Boogie. Its speci-
fication language is designed for the specific context of application policies, but
general specifications can be given by using solidity assertions. SOLC-VERIFY
[19,20] also uses Boogie to perform formal verification for solidity. It includes
an annotation-based specification language and supports a larger feature-set of
solidity than VERISOL. Interestingly, the formalization of the solidity persistent
memory model presented in [20] is similar to our tree-based memory model for
Move, though they were developed independently. One novelty of our model in
comparison to theirs is its ability to handle generic functions as discussed in
Sect. 4 (generics are supported in Move but not in solidity). Both VERISOL and
SOLC-VERIFY target contracts written in solidity, and not in the Ethereum
bytecode. In contrast, the Move Prover operates on the Move bytecode.

The solidity compiler itself includes a formal verification framework that
works via a direct translation to SMT [2]. Several other tools have focused on
specific vulnerability patterns, rather than user-defined specifications [16,28,34,
40]. Other theoretical foundations have also been employed for the verification of
solidity smart contracts. These include the K framework [35] (see, e.g., [21]), F*
[29] (see, e.g., [11,18]), and proof assistants such as Coq [37] (see, e.g., [42,43]).

Formal verification of Rust [30] programs is also related to the Move Prover,
as Move’s type system has similar characteristics to Rust [30]. Prusti [4] is a
tool that leverages Rust’s type system information to verify Rust programs. It is
based on a higher-level intermediate framework called Viper [33] (that internally
uses Boogie in some scenarios). Other verification efforts for Rust employ a
translation to LLVM and then leverage LLVM-based verification techniques (see,
e.g., [6,27,39]).

8 Conclusion

In this paper, we introduced the Move Prover, a formal verification tool designed
to be an integral part of the process of smart contract development for the Libra
platform. Though our initial experience with the Move Prover is positive, there
are many avenues for future work that we plan to pursue.

As Move continues to evolve, we expect that some constructs may be easier
and more efficient to model by using custom SMT constructs. An example of
this is the built-in vector type. Our current model requires the use of quantifiers
to compare two vector objects. However, an SMT theory of sequences could be
used to model vectors without needing to use quantifiers to define equality. We
plan to investigate the use of richer (and possibly custom) SMT theories in our
model.
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The specifications we have written so far are local in the sense that they deal
with only a single execution of a single Move function. However, some properties
of the Libra blockchain are inherently global in nature, such as the fact that
the total amount of currency should remain constant. We plan to investigate
techniques for creating and checking such global specifications.

The current Prover is still in a prototype phase. But the goal is for it to
be a product that is usable by everyone who is writing contracts for the Libra
platform. We expect that there will be many challenges in producing a user-
friendly, industrial-strength tool, but we also look forward to a future where
formal specification and verification is a routine part of the development process
for Move modules on the Libra blockchain.
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Abstract. We report our experience in the formal verification of the
deposit smart contract, whose correctness is critical for the security
of Ethereum 2.0, a new Proof-of-Stake protocol for the Ethereum
blockchain. The deposit contract implements an incremental Merkle tree
algorithm whose correctness is highly nontrivial, and had not been proved
before. We have verified the correctness of the compiled bytecode of the
deposit contract to avoid the need to trust the underlying compiler. We
found several critical issues of the deposit contract during the verification
process, some of which were due to subtle hidden bugs of the compiler.

1 Introduction

The deposit smart contract [14] is a gateway to join Ethereum 2.0 [15] that is
a new sharded Proof-of-Stake (PoS) protocol which at its early stage, lives in
parallel with the existing Proof-of-Work (PoW) chain, called Ethereum 1.x chain.
Validators drive the entire PoS chain, called Beacon chain, of Ethereum 2.0. To
be a validator, one needs to deposit a certain amount of Ether, as a “stake”, by
sending a transaction (over the Ethereum 1.x network) to the deposit contract.
The deposit contract records the history of deposits, and locks all the deposits
in the Ethereum 1.x chain, which can be later claimed at the Beacon chain of
Ethereum 2.0.1 Note that the deposit contract is a one-way function; one can
move her funds from Ethereum 1.x to Ethereum 2.0, but not vice versa.

The deposit contract, written in Vyper [19], employs the Merkle tree [30] data
structure to efficiently store the deposit history, where the tree is dynamically
updated (i.e., leaf nodes are incrementally added in order from left to right)
whenever a new deposit is received. The Merkle tree employed in this contract
is very large: it has height 32, so it can store up to 232 deposits. Since the size
of the Merkle tree is huge, it is not practical to reconstruct the whole tree every
time a new deposit is received.

To reduce both time and space complexity, thus saving the gas2 cost signif-
icantly, the contract implements an incremental Merkle tree algorithm [6]. The
1 This deposit process will change at a later stage.
2 In Ethereum, gas refers to the fee to execute a transaction or a smart contract on

the blockchain. The amount of gas fee depends on the size of the payloads.
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incremental algorithm enjoys O(h) time and space complexity to reconstruct
(more precisely, compute the root of) a Merkle tree of height h, while a naive
algorithm would require O(2h) time or space complexity. The efficient incre-
mental algorithm, however, leads to the deposit contract implementation being
unintuitive, and makes it non-trivial to ensure its correctness. The correctness of
the deposit contract, however, is critical for the security of Ethereum 2.0, since it
is a gateway for becoming a validator. Considering the utmost importance of the
deposit contract for the Ethereum blockchain, formal verification is demanded
to ultimately guarantee its correctness.

In this paper, we present our formal verification of the deposit contract.3 The
scope of verification is to ensure the correctness of the contract bytecode within
a single transaction, without considering transaction-level or off-chain behaviors.
We take the compiled bytecode as the verification target to avoid the need to
trust the compiler.4

We adopt a refinement-based verification approach. Specifically, our verifica-
tion effort consists of the following two tasks:

– Verify that the incremental Merkle tree algorithm implemented in the deposit
contract is correct w.r.t. the original full-construction algorithm.

– Verify that the compiled bytecode is correctly generated from the source code
of the deposit contract.

Intuitively, the first task amounts to ensuring the correctness of the contract
source code, while the second task amounts to ensuring the compiled bytecode
being a sound refinement of the source code (i.e., translation validation of the
compiler). This refinement-based approach allows us to avoid reasoning about
the complex algorithmic details, especially specifying and verifying loop invari-
ants, directly at the bytecode level. This separation of concerns helped us to save
a significant amount of verification effort. See Sect. 1.1 for more details.

Challenges. Formally verifying the deposit contract was challenging. First, the
algorithm employed in the contract is sophisticated and its correctness is not
straightforward to prove. Indeed, we found a critical bug in the algorithm imple-
mentation which had been not detected by existing tests (Sect. 3.1).

Second, we had to take the compiled bytecode as the verification target, which
is much larger (consisting of ∼3,000 instructions) and more complex than the
source code. The source-code-level verification was not accepted by the customer
for the end-to-end correctness guarantee, especially considering the fact that the
compiler is not mature enough [11]. Indeed, we found several new critical bugs
in the compiler during the formal verification process (Sect. 3.2).

Third, we had to consider not only the functional correctness, but also secu-
rity properties of the contract. That is, we had to identify the behaviors of the
contract in exceptional cases, and check if they are exploitable. We found a bug
of the contract in case that it receives invalid inputs (Sect. 3.3).

3 This was done as part of a contract funded by the Ethereum Foundation [16].
4 Indeed, we found several new critical bugs [41–44] of the Vyper compiler in the

process of formal verification. See Sect. 3 for more details.
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Finally, we had to take into account potential future changes in the Ethereum
blockchain system (called hard-forks). That is, we had to verify that the compiled
bytecode will work not only in the current system, but also in any future version
of the system that employs a different gas fee schedule. Considering such poten-
tial changes of the system required us to generalize the semantics of bytecode
execution. We also found a bug regarding that (Sect. 3.4).

1.1 Our Refinement-Based Verification Approach

We illustrate our refinement-based formal verification approach used in the
deposit contract verification. We present our approach using the K framework
and its verification infrastructure [46,52,55], but it can be applied to other pro-
gram verification frameworks.

Let us consider a sum program that computes the summation from 1 to n:

int sum(int n) { int s = 0; int i = 1;

while(i <= n) { s = s + i; i = i + 1; } return s; }

Given this program, we first manually write an abstract model of the program
in the K framework [52]. Such a K model is essentially a state transition system
of the program, and can be written as follows:

rule: sum(n) ⇒ loop(s: 0, i: 1, n: n)
rule: loop(s: s, i: i, n: n) ⇒ loop(s: s + i, i: i + 1, n: n) when i ≤ n
rule: loop(s: s, i: i, n: n) ⇒ return(s) when i > n

These transition rules correspond to the initialization, the while loop, and the
return statement, respectively. The indexed tuple (s: s, i : i, n : n) represents
the state of the program variables s, i, and n.5

Then, given the abstract model, we specify the functional correctness prop-
erty in reachability logic [54], as follows:

claim: sum(n) ⇒ return(
n(n+1)

2
) when n > 0

This reachability claim says that sum(n) will eventually return n(n+1)
2 in all

possible execution paths, if n is positive. We verify this specification using the
K reachability logic theorem prover [55], which requires us only to provide the
following loop invariant:6

invariant: loop(s:
i(i−1)

2
, i: i, n: n) ⇒ return(

n(n+1)
2

) when 0 < i ≤ n + 1

Once we prove the desired property of the abstract model, we manually refine
the model to a bytecode specification, by translating each transition rule of the
abstract model into a reachability claim at the bytecode level, as follows:
5 Note that this abstract model can be also automatically derived by instantiating

the language semantics with the particular program, if a formal semantics of the
language is available (in the K framework).

6 The loop invariants in reachability logic mentioned here look different from those
in Hoare logic. See the comparison between the two logic proof systems in [55,
Section 4]. These loop invariants can be also seen as transition invariants [48].
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claim: evm(pc: pcbegin, calldata: #bytes(32, n), stack: [], · · · )
⇒ evm(pc: pcloophead, stack: [0, 1, n], · · · )

claim: evm(pc: pcloophead, stack: [s, i, n], · · · )
⇒ evm(pc: pcloophead, stack: [s + i, i + 1, n], · · · ) when i ≤ n

claim: evm(pc: pcloophead, stack: [s, i, n], · · · )
⇒ evm(pc: pcend, stack: [], output: #bytes(32, s), · · · ) when i > n

Here, the indexed tuple evm(pc: , calldata: , stack: , output: ) repre-
sents (part of) the Ethereum Virtual Machine (EVM) state, and #bytes(N,V )
denotes a sequence of N bytes of the two’s complement representation of V .

We verify this bytecode specification against the compiled bytecode using
the same K reachability theorem prover [46,55]. Note that no loop invariant is
needed in this bytecode verification, since each reachability claim involves only a
bounded number of execution steps—specifically, the second claim involves only
a single iteration of the loop.

Then, we manually prove the soundness of the refinement, which can be
stated as follows: for any EVM states σ1 and σ2, if σ1 ⇒ σ2, then α(σ1) ⇒
α(σ2), where the abstraction function α is defined as follows:

α(evm(pc: pcbegin, calldata: #bytes(32, n), stack: [], · · · )) = sum(n)
α(evm(pc: pcloophead, stack: [s, i, n], · · · )) = loop(s: s, i: i, n: n)
α(evm(pc: pcend, stack: [], output: #bytes(32, s), · · · )) = return(s)

Putting all the results together, we finally conclude that the compiled byte-
code will return #bytes(32,n(n+1)

2 ).
Note that the abstract model and the compiler are not in the trust base,

thanks to the refinement, while the K reachability logic theorem prover [46,55]
and the formal semantics of EVM [24] are.

2 Formal Verification of the Deposit Contract

Following the refinement-based approach illustrated in Sect. 1.1, we first for-
malized the main business logic of the deposit contract (i.e., the incremental
Merkle tree algorithm), and proved its correctness. Then we refined the formal
model into a bytecode specification, and verified the compiled bytecode of the
deposit contract against the refined specification. From these, we concluded the
correctness of the deposit contract bytecode.

2.1 Incremental Merkle Tree Algorithm

We briefly describe the incremental Merkle tree algorithm of the deposit contract.
Due to space limitations, we omit the formalization of the algorithm and the
formal proof of the correctness, and refer the readers to our companion technical
report [45] for the full details.

A Merkle tree [30] is a perfect binary tree [34] where leaf nodes store the hash
of data, and non-leaf nodes store the hash of their children. A partial Merkle tree
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Fig. 1. Illustration of the incremental Merkle tree algorithm. Node numbers are labeled
in the upper-right corner of each node.

up-to m is a Merkle tree whose first (leftmost) m leaves are filled with data hashes
and the other leaves are empty and filled with zeros. The incremental Merkle
tree algorithm takes as input a partial Merkle tree up-to m and a new data
hash, and inserts the new data hash into the (m+1)th leaf, resulting in a partial
Merkle tree up-to m + 1.

Figure 1 illustrates the algorithm, showing how the given partial Merkle tree
up-to 3 (shown in the left) is updated to the resulting partial Merkle tree up-to
4 (in the right) when a new data hash is inserted into the 4th leaf node. The
key idea of the algorithm is that only the path from the new leaf to the root
(i.e., the gray nodes) needs to be computed (hence linear-time), and moreover
the path can be computed by using only the left (i.e., node 3 and node 9) or
right (i.e., node 14) sibling of each node in the path, which are only nodes that
the algorithm maintains (hence linear-space). Refer to [45] for the full details.

2.2 Bytecode Verification of the Deposit Contract

Now we present the formal verification of the compiled bytecode of the deposit
contract. The bytecode verification ensures that the compiled bytecode is a sound
refinement of the source code. This rules out the need to trust the compiler.

As illustrated in Sect. 1.1, we first manually refined the abstract model (in
which we proved the algorithm correctness) to the bytecode specification. For
the refinement, we consulted the ABI interface standard [13] (to identify, e.g.,
calldata and output in the illustrating example of Sect. 1.1), as well as the
bytecode (to identify, e.g., the pc and stack information).7 Then, we used the
KEVM verifier [46] to verify the compiled bytecode against the refined specifi-
cation. We adopted the KEVM verifier to reason about all possible corner-case
behaviors of the compiled bytecode, especially those introduced by certain unin-
tuitive and questionable aspects of the underlying Ethereum Virtual Machine
(EVM) [60]. This was possible because the KEVM verifier is derived from a
complete formal semantics of the EVM, called KEVM [24]. Our formal specifi-
cation and verification artifacts are publicly available at [50].

7 However, we want to note that the Vyper compiler can be augmented to extract
such information, which can automate the refinement process to a certain extent.
We leave that as future work.
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Let us elaborate on specific low-level behaviors verified against the bytecode.
In addition to executing the incremental Merkle tree algorithm, most of the
functions perform certain additional low-level tasks, and we verified that such
tasks are correctly performed. Specifically, for example, given deposit data,8 the
deposit function computes its 32-byte hash (called Merkleization) according to
the SimpleSerialize (SSZ) specification [18]. The leaves of the Merkle tree store
only the computed hashes instead of the original deposit data. The deposit
function also emits a DepositEvent log that contains the original deposit data,
where the log message needs to be encoded as a byte sequence following the
contract event ABI specification [13]. Other low-level operations performed by
those functions that we verified include: correct zero-padding for the 32-byte
alignment, correct conversions from big-endian to little-endian, input bytes of
the SHA2-256 hash function being correctly constructed, and return values being
correctly serialized to byte sequences according to the ABI specification [13].

We also verified a liveness property that the contract is always able to accept
a new (valid) deposit as long as a sufficient amount of gas is provided. This
liveness is not trivial since it needs to hold even in any future hard-fork where
the gas fee schedule is changed. Indeed, we found a bug that violates the liveness.
See Sect. 3.4 for more details.

Our formal specification includes both positive and negative behaviors. The
positive behaviors describe the desired behaviors of the contracts in a legitimate
input state. The negative behaviors, on the other hand, describe how the con-
tracts handle exceptional cases (e.g., when benign users feed invalid inputs by
mistake, or malicious users feed crafted inputs to take advantage of the con-
tracts). The negative behaviors are mostly related to security properties.

For the full specification of the verified bytecode behaviors, refer to [49].

3 Findings and Lessons Learned

In the course of our formal verification effort, we found subtle bugs [35–37] of
the deposit contract, as well as a couple of refactoring suggestions [38–40] that
can improve the code readability and reduce the gas cost. The subtle bugs of
the deposit contract are partly due to bugs of the Vyper compiler [41–44] that
we newly found (and reported to the Vyper team) in the verification process.

Below we elaborate on the bugs we found and lessons we learned along the
way. We note that all the bugs of the deposit contract have been reported,
confirmed, and properly fixed in the latest version (v0.11.2).

3.1 Maximum Number of Deposits

In the original version of the contract that we were asked to verify, a bug is
triggered when all of the leaf nodes of a Merkle tree are filled with deposit

8 Each deposit data consists of the public key, the withdrawal credentials, the deposit
amount, and the signature of the deposit owner.

https://github.com/ethereum/eth2.0-specs/blob/v0.11.2/deposit_contract/contracts/validator_registration.vy
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data, in which case the contract (specifically, the get deposit root function)
incorrectly computes the root hash of a tree, returning the zero root hash
(i.e., the root hash of an empty Merkle tree) regardless of the content of leaf
nodes. For example, suppose that we have a Merkle tree of height 2, which
has four leaf nodes, and every leaf node is filled with certain deposit data,
say v1, v2, v3, and v4, respectively. Then, while the correct root hash of the
tree is hash(hash(v1, v2), hash(v3, v4)), the get deposit root function returns
hash(hash(0, 0), hash(0, 0)), which is incorrect.

Due to the complex logic of the code, it is non-trivial to properly fix this bug
without significantly rewriting the code, and thus we suggested a workaround
that simply forces to never fill the last leaf node, i.e., accepting only 2h − 1
deposits at most, where h is the height of a tree. We note that, however, it is
infeasible in practice to trigger this buggy behavior in the current setting, since
the minimum deposit amount is 1 Ether and the total supply of Ether is less
than 130M which is much smaller than 232, thus it is not feasible to fill all the
leaves of a tree of height 32. Nevertheless, this bug has been fixed by the contract
developers as we suggested, since the contract may be used in other settings in
which the buggy behavior can be triggered and an exploit may be possible. Refer
to [37] for more details.

We also want to note that this bug was quite subtle to catch. Indeed, we
had initially thought that the original code was correct until we failed to write
a formal proof of the correctness theorem. The failure of our initial attempt to
prove the correctness led us to identify a missing premise that was needed for
the theorem to hold, from which we could find the buggy behavior scenario,
and suggested the bugfix. This experience reconfirms the importance of for-
mal verification. Although we were not “lucky” to find this bug when we had
eyeball-reviewed the code, which is all traditional security auditors do, the formal
verification process thoroughly guided and even “forced” us to find it eventually.

3.2 ABI Standard Conformance of get deposit count Function

In the previous version, the get deposit count function does not conform to the
ABI standard [13], where its return value contains incorrect zero-padding [35],
due to a Vyper compiler bug [41]. Specifically, in the buggy version of the com-
piled bytecode, the get deposit count function, whose return type is bytes[8],
returns a byte sequence of length 96, where the last byte is 0x20 while it should
be 0x00. According to the ABI specification [13], the last 24 bytes must be all
zero, serving as zero-pad for the 32-byte alignment. Thus the return value does
not conform to the ABI standard. This is problematic because any contract
(written in either Solidity or Vyper) that calls to (the buggy version of) the
deposit contract, expecting that the deposit count function conforms to the
ABI standard, could have misbehaved.9

9 The returned byte sequence, including the incorrect last byte, is copied to the caller’s
memory. If the caller reuses the last byte assuming that it is zero, the garbage value
will be passed around, which may break the business logic of the caller.
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This buggy behavior is mainly due to a subtle Vyper compiler bug [41] that
fails to correctly compile a function whose return type is bytes[n] where n < 16.
This leads to the compiled function returning a byte sequence with insufficient
zero-padding as mentioned above, failing to conform to the ABI standard.

We note that this bug could not have been detected if we did not take the
bytecode as the verification target. This reconfirms that the bytecode-level verifi-
cation is critical to ensure the ultimate correctness (unless we formally verify the
underlying compiler), because we cannot (and should not) trust the compiler.

3.3 Checking Well-Formedness of Calldata

The calldata decoding process in the previous version of the compiled bytecode
does not have sufficient runtime-checks for the well-formedness of calldata. As
such, it fails to detect certain ill-formed calldata, causing invalid deposit data
to be put into the Merkle tree. This is problematic especially when clients make
mistakes and send deposit transactions with incorrectly encoded calldata, which
may result in losing their deposit fund.

Specifically, we found a counter-example ill-formed calldata whose size (196
bytes) is much less than that of well-formed calldata (356 bytes). The problem,
however, is that the deposit function does not reject the ill-formed calldata, but
simply inserts certain invalid (garbage) deposit data in the Merkle tree. Since the
invalid deposit data cannot pass the signature validation later, no one can claim
the deposited fund associated with this, and the deposit owner loses the fund.
Note that this happens even though the deposit function employs assertions at
the beginning of the function that ensures the size of each of the arguments is
correct, which turned out to not work as expected.

This problem would not exist if the Vyper compiler thoroughly generated
runtime checks to ensure the well-formedness of calldata.10 However, since it
was not trivial to fix the compiler to generate such runtime checks, we sug-
gested several ways to improve the deposit contract source code to prevent this
behavior without fixing the compiler. After careful discussion with the deposit
contract development team, we together decided to employ a checksum-based
approach where the deposit function takes as an additional input a checksum
for the deposit data, and rejects any ill-formed calldata using the checksum. The
checksum-based approach is the least intrusive and the most gas-efficient of all
the suggested fixes. For more details of other suggested fixes, refer to [36].

We note that this issue was found when we were verifying the negative behav-
iors of the deposit contract. This shows the importance of having the formal
specification to include not only positive but also negative behaviors.

10 The compiler developers failed to consider the case when the given calldata is not
correctly encoded. For example, while the header of calldata contains offsets (i.e.,
pointers) to the positions of data elements, it could be the case that certain offsets
are beyond the calldata range. In that case, the calldata can be accessed outside its
bounds, due to the missing runtime-checks.
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3.4 Liveness

As mentioned in Sect. 2.2, the previous version of the deposit contract fails to
satisfy a liveness property in that it may not be able to accept a new deposit,
even if it is valid, in a certain future hard-fork that updates the gas fee schedule.
This was mainly due to another subtle Vyper compiler bug [44] that generates
bytecode where a hard-coded amount of gas is supplied when calling to certain
precompiled contracts. Although this hard-coded amount of gas is sufficient in
the current hard-fork (code-named Istanbul [17]), it may not be sufficient in a
certain future hard-fork that increases the gas fee schedule of the precompiled
contracts. In such a future hard-fork, the previous version of the deposit contract
will always fail due to the out-of-gas exception, regardless of how much gas is
initially supplied. Refer to [44] for more details.

We admit that we could not find this issue until the deposit contract develop-
ment team carefully reviewed and discussed with us the formal specification [49]
of the bytecode. Initially, we considered only the behaviors of the bytecode in
the current hard-fork, without identifying the requirement that the contract
bytecode should work in any future hard-fork. We identified the missing require-
ment, and found this liveness issue, at a very late stage of the formal verification
process, which delayed the completion of formal verification.

This experience essentially illustrates the well-known problem caused by the
gap between the intended behaviors (that typically exists only informally) by
developers, and the formal specification written by verification engineers. To
reduce this gap, the two groups should work closely together, or ideally, devel-
opers should write their own specifications in the first place. For the former, the
formal verification process should involve developers more frequently. For the
latter, the formal verification tools should become much easier to use without
requiring advanced knowledge of formal methods. We leave both as future work.

3.5 Discussion

Verification Effort. The net effort for formal verification took 7 person-weeks
(excluding various discussions with developers, reporting bugs and following-
up, especially for compiler bugs, etc.), where the algorithm correctness proof
took 2 person-weeks, and the bytecode verification took 5 person-weeks. This
includes the time spent on writing specifications as well. The bytecode specifi-
cation consists of ∼1,000 LOC (excluding comments), in addition to auxiliary
lemmas consisting of ∼200 LOC. The size of the source code is ∼100 LOC, and
the number of instructions in the compiled bytecode is ∼3,000.

Trust Base. The validity of the bytecode verification result assumes the cor-
rectness of the bytecode specification and the KEVM verifier. The algorithm
correctness proof is partially mechanized—only the proof of major lemmas are
mechanized in the K framework. The non-mechanized proofs are included in our
trust base. The Vyper compiler is not in the trust base.



160 D. Park et al.

Continuous Verification. The verification target contract was a moving target.
Even if the contract code had been frozen before starting the formal verification
process, the code (both source code or bytecode) was updated in the middle of
the verification process, to fix bugs found during the process. Indeed, we found
several bugs in both the contract and the compiler, and each time we found a
bug, we had to re-verify the newly compiled bytecode that fixes the bug. Here
the problem was the overhead of re-verification. About 20% of the bytecode
verification effort was spent on re-verification.

The re-verification overhead could have been reduced by automatically
adjusting formal specifications to updated bytecode, and/or making specifica-
tions as independent of the specific details of the bytecode as possible. For exam-
ple, the current bytecode specification employs specific program-counter (PC)
values to refer to some specific positions of the bytecode, especially when speci-
fying loop invariants. Most of such PC values need to be updated whenever the
bytecode is modified. The re-verification overhead could have been reduced by
automatically updating such PC values, or even having the specification refer to
specific positions without using PC values. We leave this as future work.

4 Related Work

Static Analysis and Verification of Smart Contracts. There have been proposed
many static analysis tools [5,10,20,25,28,29,32,57,58] that are designed to auto-
matically detect a certain fixed set of bugs and vulnerabilities of smart contracts,
at the cost of generality and expressiveness. VerX [47] can verify past-time linear
temporal properties over multiple runs of smart contracts, but it requires the
target contracts to be effectively loop-free.

There also have been proposed verification tools that allow us to specify and
verify arbitrary functional correctness and/or security properties, such as [3,22]
based on the F* proof assistant [1,56] based on Isabelle/HOL [33], the KEVM
verifier [46] based on the K framework [52], and VeriSol [27] based on Boogie [2].
The KEVM verifier has also been used to verify high-profile and challenging
smart contracts [51], including a multi-signature wallet called Gnosis Safe [21],
a decentralized token exchange called Uniswap [59], and a partial consensus
mechanism called Casper FFG [7].

Verification of Systems Software. There are many success stories of formal ver-
ification of systems software, from OS kernels [23,26,31], to file systems [8,53],
to cryptographic code [4]. While most of the verified systems code is either
synthesized from specifications, or implemented (or adjusted) to be verification-
friendly, there also exist efforts [9,12] to verify actual production code as is. Such
efforts are necessary especially when the production code is highly performance-
critical and/or existing development processes are hard to change to help pro-
duce verification-friendly code. The deposit contract we verified was given to us
at the code-frozen stage, and also performance-critical (especially in terms of
the gas cost), and thus we took and verified the given production-ready code as
is, without any modification except for fixing bugs.
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Abstract. The shift to cloud-based APIs has made application security
critically depend on understanding and reasoning about policies that reg-
ulate access to cloud resources. We present stratified predicate abstrac-
tion, a new approach that summarizes complex security policies into a
compact set of positive and declarative statements that precisely state
who has access to a resource. We have implemented stratified abstrac-
tion and deployed it as the engine powering AWS’s IAM Access Analyzer
service, and hence, demonstrate how formal methods and SMT can be
used for security policy explanation.

1 Introduction

A growing number of developers are using cloud-based implementations of basic
resources like associative arrays, encryption, storage, queuing, and event-driven
execution, to engineer client applications. For example, millions of Amazon Web
Services (AWS) customers use cloud APIs like Amazon SQS for queues, Amazon
S3 for storage, AWS KMS for crypto key management, Amazon DynamoDB for
associative arrays, and AWS Lambda for executing functions in a pure virtualized
environment. This shift to the cloud has made application security critically
depend upon deeply understanding and reasoning about policies that regulate
how different principals are allowed to access cloud resources. AWS users, for
example, configure principals in the Identity and Access Management (IAM)
service. The users define which requests are allowed access via resource policies
which allow some resources to be purposefully shared with the entire internet,
while restricting access to others to limited sets of identities.

The IAM policy language has many features that are essential to allow users
to build a wide array of possible applications. Some of these features make reason-
ing about policies challenging. First, individual policy elements can use regular
expressions, negation, and conditionals. Second, the policy elements can inter-
act with each other in subtle ways that make the net effect of a policy unclear.
Previously, we developed Zelkova [2], a tool that encodes policies as logical
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formulas and then uses SMT solvers [3,8] to answer questions about policies,
e.g. whether a particular policy is correct, too strict, or too permissive. While
Zelkova can be queried to explore the properties of policies e.g. whether some
resource is “publicly” accessible, our experience shows that formal policy anal-
ysis remains challenging as users must have sufficient technical sophistication
to realize the criteria important to them and be able to formalize the above as
Zelkova queries.

- Effect: Allow
Condition:

StringEquals:
SrcVpc:
- vpc -a
- vpc -b

- Effect: Allow
Condition:

StringEquals:
OrgID: o-2

- Effect: Deny
Condition:

StringEquals:
SrcVpc: vpc -b

StringNotEquals:
OrgID: o-1

Fig. 1. An example AWS policy Fig. 2. Stratified abstraction search tree

In this paper, we present a new approach to help users understand whether
their policy is correct, by abstracting the policy into a compact set of positive and
declarative statements that precisely summarize who has access to a resource.
Users can review the summary to decide whether the policy grants access accord-
ing to their intentions. The key challenge to computing such summaries is the
combinatorial blowup in the number of possible requests, which comprise the
combination of user name and account, identifiers, hostnames, IP addresses and
so on. Our key insight is that we can make summarization tractable via strati-
fied predicate abstraction, which allows us to collapse many equivalent (concrete)
requests into a single (abstract) finding. To this end, we introduce a new algo-
rithm for computing stratified abstractions of policies, yielding a set of findings
that are sound, i.e. which include all possible requests that can be granted access,
and precise, i.e. where the findings are as specific as possible.

We have implemented stratified abstraction and deployed it as the engine
powering AWS’s recently launched IAM Access Analyzer service, which helps
users reason about the semantics of their policy configurations. We present an
empirical evaluation of our method over a large set of real-world IAM policies.
We show that IAM Access Analyzer generates a sound, precise, and compact
set of findings for complex policies, taking less than a second per finding. Thus,
our results show how key ideas like SMT solving and predicate abstraction [1,5],
can be used not just to verify computing systems, but to precisely explain their
behavior to users.
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2 Overview

AWS access control policies specify who has access to a given resource, via a
set of Allow and Deny statements that grant and prohibit access, respectively.
Figure 1 shows a simplified policy specifying access to a particular resource. This
policy uses conditions based on which network (known as a VPC) the request
originated from and which organizational Amazon customer (referred to by an
Org ID) made the request. The first statement allows access to any request
whose SrcVpc is either vpc-a or vpc-b. The second statement allows access
to any request whose OrgId is o-2. However, the third statement denies access
from vpc-b unless the OrgId is o-1.

Crucially, for each request, access is granted only if: (a) some Allow statement
matches the request, and (b) none of the Deny statements match the request.
Consequently, it can be quite tricky to determine what accesses are allowed by a
given policy. First, individual statements can use regular expressions, negation,
and conditionals. Second, to know the effect of an allow statement, one must
consider all possible deny statements that can overlap with it, i.e. can refer to
the same request as the allow. Thus, policy verification is not compositional, in
that we cannot determine if a policy is “correct” simply by locally checking that
each statement is “correct”. Instead, we require a global verification mechanism,
that simultaneously considers all the statements and their subtle interactions,
to determine if a policy grants only the intended access.

As policies organically grow and become more complex and baroque, the
ultimate question that users have is: “is my policy correct?” Of course, this
specification problem has bedeviled formal methods from the day they were
invented. In our context: how does the security analyst know whether the policy
is, in fact not too strict or too permissive? Zelkova [2] is already used by users
of Amazon’s Simple Storage Service (S3) to determine whether any of their “data
buckets” are publicly accessible. More generally, the AWS Config service provides
templated Zelkova checks that can be filled in by users to validate their policies.
Some advanced users even use the Zelkova service directly, asking their own
questions about policies. While all of the above are useful, formal policies and
formal analysis remains difficult to use, as the user must have sufficient technical
sophistication to: (1) intuit the criteria important to them, (2) formalize the
above in the query language of Zelkova, and (3) interpret the results returned
by the tool. Ultimately, to answer “is this policy correct?”, the tool must help
the user understand what “correct” means in their particular context.

2.1 Approach

The core contribution of this work is to change the question from “is this policy
correct?” to “who has access?”. The response to the former is a Boolean while
the response to the latter is a set of findings. There are several key requirements
that findings must meet to be useful in the context of analyzing security policies
and answering the question “who has access?”.
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Sound. Users need confidence that findings summarize a policy. In particu-
lar, we must ensure that every access allowed by the policy is represented by
some finding. This over-approximation crucially enables compositional reason-
ing about the policy: if a user deems that each finding is safe, then she may rest
assured that the entire policy is safe.
Precise. Users require that findings be specific. A finding of “everybody has
access” is a sound and over-approximate summary of every policy, but is only
useful if the policy allows everyone access. Instead, we want findings that adhere
closely to the accesses allowed by the policy, and do not report false-alarms that
say certain identities have access when that is not, in fact, the case.
Compact. Users require that the set of findings be small. For example, we could
simply enumerate all the different kinds of requests that have access, but such a
list would typically be far too large to manually inspect. Instead, we require that
the findings be a compact representation of who has access, while still ensuring
soundness and precision.
Example. For example, the policy in Fig. 1 can be summarized through a set
of three findings, that say that access is granted to a request iff:

– Its SrcVpc is vpc-a, or,
– Its OrgId is o-2, or,
– Its SrcVpc is vpc-b and its OrgId is o-1.

The findings are sound as no other requests are granted access. The findings
are precise as in each case, there are requests matching the conditions that are
granted access.1 Finally, the findings compactly summarize the policy in three
positive statements declaring who has access.

2.2 Solution: Computing Findings via Stratified Abstraction

Next, we describe an informal overview of our algorithm for computing the
findings, by building it up in three stages.
1: Concrete Enumeration. One approach to synthesize findings would be to
(1) enumerate possible requests, (2) query Zelkova to filter out the requests
that do not have access, and (3) return the remainder as findings. Such an
approach is guaranteed to be both sound and precise. However, real-world poli-
cies comprise many fields, each of which have many possible values. For example,
there are 1012 (currently) possible AWS account numbers and 2128 possible IPv6
addresses. Enumerating all possible requests is computationally intractable, and
even if it were, the resulting set of findings is far too large and hence useless.
2: Predicate Abstraction. We tackle the problem of summarizing the super-
astronomical request-space by using predicate abstraction. Specifically, we make
a syntactic pass over the policy to extract the set of constants that are used to
constrain access, and we use those constants to generate a family of predicates
1 The finding “OrgId is o-2” also includes some requests that are not allowed, e.g.

when SrcVpc is vpc-b.
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whose conjunctions compactly describe partitions of the space of all requests.
For example, from the policy in Fig. 1 we would extract the following predicates

pa
.= SrcVpc = vpc-a, pb

.= SrcVpc = vpc-b, p�
.= SrcVpc = �,

q1
.= OrgId = o-1, q2

.= OrgId = o-2, q�
.= OrgId = �.

The first row has three predicates describing the possible value of the SrcVpc of
the request: that it equals vpc-a or vpc-b or some value other than vpc-a and
vpc-b. Similarly, the second row has three predicates describing the value of the
OrgId of the request: that it equals o-1 or o-2 or some value other than o-1 and
o-2.

We can compute findings by enumerating all the cubes generated by the above
predicates, and querying Zelkova to determine if the policy allows access to
the requests described by the cube. For example, the above predicates would
generate the cubes shown in Fig. 3. We omit trivially inconsistent cubes like
pa ∧ pb which correspond to the empty set of requests. Next to each cube, we
show the result of querying Zelkova to determine whether the policy allows
access to the requests described by the cube: ✓(resp. ✗) indicates requests are
allowed (resp. denied).

pa∧q1 pa∧q2 pa∧q�

pb∧q1 pb∧q2 pb∧q�

p�∧q1 p�∧q2 p�∧q�

Fig. 3. Cubes generated by the predicates pa, pb, p�, q1, q2, q� generated from the policy
in Fig. 1 and the result of querying Zelkova to check if the requests corresponding to
each cube are granted access by the policy.

Finally, we can translate each allowed cube into a finding, yielding five find-
ings. While this set of findings is sound and precise, it suffers in two ways.
First, real-world policies have many different fields, and hence, enumerating-
and-querying each cube can be quite slow. Second, the result is not compact.
The same information is more succinctly captured by the set of three findings
in Sect. 2.1 which, for example, collapses the three findings in the top row to a
single finding, “SrcVpc is vpc-a.”
3: Stratified Abstraction. The chief difficulty with enumerating all the cubes
greedily is that we end up eagerly splitting-cases on the values of fields when that
may not be required. For example, in Fig. 3, we split cases on the possible value
of OrgId even though it is irrelevant when SrcVpc is vpc-a. This observation
points the way to a new algorithm where we lazily generate the cubes as follows.
Our algorithm maintains a worklist of minimally refined cubes. At each step, we
(1) ask Zelkova if the cube allows an access that is not covered by any of its
refinements, (2) if so, we add it to the set of findings; and (3) if not, we refine the
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cube “point-wise” along the values of each field individually and add the results
to the worklist. The above process is illustrated in Fig. 2.

– Level 1. The worklist is initialized with �∧� which represents the cube where
we don’t care about the value of either SrcVpc or OrgId, i.e. which represents
every possible request. Zelkova determines that every access allowed by this
cube and by the policy are covered by one of the refinements of this cube (the
second level of the tree). Thus this � ∧ � finding is not essential, and we can
find more precise findings. We indicate this by the red shade and the ✗. Next,
we refine the above cube point-wise, by considering the two sub-cubes pa ∧�
and pb ∧ � which respectively represent the requests where SrcVpc is either
vpc-a or vpc-b (and OrgId could be any value), and, the two sub-cubes �∧q1

and � ∧ q2 which respectively represent the requests where OrgId is either
o-1 or o-2 (and SrcVpc could be any value). These refined cubes are added
to the worklist and considered in turn.

– Level 2. Zelkova determines that there are requests allowed by pa ∧ � and
� ∧ q2 which are not covered by any of their refinements, hence those are
shaded green and have a ✓. However, Zelkova rejects pb ∧ � and � ∧ q1

as anything allowed by them is allowed by one of their refinements. Now we
further refine the rejected cubes, but can omit considering the cubes pa ∧ q1,
pa ∧ q2 and pb ∧ q2 in the unshaded boxes, as each of those is covered or
subsumed by one of the two accepted cubes.

– Level 3. Hence, we issue one last Zelkova query for pb ∧ q1 which indeed
allows a request which is not covered by any of its refinements (as it has
none). Finally, we gather the set of accepted cubes, i.e. those in the green
shaded boxes, and translate those to the findings described in Sect. 2.1.

3 Algorithm

Next, we formalize our algorithm for computing policy summaries and show how
it yields findings that are sound and precise. In Sect. 4 we demonstrate how our
algorithm yields compact results for real-world policies..

3.1 Policies and Findings

Requests. Let K = {k1, . . . , kn} be a set of keys. Let Vk = {v1, . . .} be a
(possibly infinite) set of values for the key k. A request r a mapping from keys k
to values in Vk. For example, the request r1 maps the keys Principal, SrcIP, and
OrgID as:

r1 = {Principal �→ 123 : user/A, SrcIP �→ 192.0.2.3, OrgID �→ o-1}

Policies. A policy is a predicate on requests p : r → Bool . The denotation of a
policy p is the set of requests it allows:

γ(p) .= {r | p(r) = True}
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Predicates. A predicate is a map φ : Vk → Bool . The denotation of a predicate
is the set of values that satisfy the predicate:

γ(φ) .= {v | φ(v) = True}

We define a partial order on predicates, φ1 � φ2 iff γ(φ1) ⊆ γ(φ2). For example:

φ123(v) .= “v is a principal in account 123”
φua(v) .= “v is user-a in account 123”
φub(v) .= “v is user-b in account 123”

Here we have φua � φ123 and φub � φ123 because users are a type of principal.
The set of predicates must always contain � and must have the following prop-
erty: for all φ1, φ2 either φ1 � φ2, φ2 � φ1, or γ(φ1) ∩ γ(φ2) = ∅. This ensures
the set of predicates for a given key can be tree-ordered.
Findings. A finding σ is a map from keys K to predicates Φ. The denotation
of a finding σ is the set of requests where each key k is mapped to a value v in
the denotation of σ(k):

γ(σ) .= {r | ∀k.r(k) ∈ γ(σ(k))}

We represent a finite set of findings as Σ = {σ1, . . . , σn}. The denotation of a
set of findings is the union of the denotations the findings:

γ({σ1, . . . , σn}) .= γ(σ1) ∪ · · · ∪ γ(σn)

3.2 Properties

Next, we formalize the key desirable properties of findings, i.e. that they be
sound, precise, and compact, as coverage, irreducibility, and minimality respec-
tively.
Coverage. A set of findings Σ covers a policy p if γ(p) ⊆ γ(Σ). For example,
the set Σ1 containing the two findings

Σ1
.= {[SrcVpc �→ pa,OrgID �→ �], [SrcVpc �→ �,OrgID �→ q2]}

corresponding to the green boxes on level 2 of Fig. 2, does not cover the policy
from Fig. 1, as it excludes the request whose SrcVpc is vpc-b and OrgID is o-1.
However, Σ2 below does cover the policy as it includes all requests that are
granted access.

Σ2
.= Σ1 ∪ {[SrcVpc �→ pb,OrgID �→ q1]}

Reducibility. A finding σ refines another finding σ′, written σ  σ′ if for each
key k we have σ(k) � σ′(k). A finding σ refines a set of findings Σ, written
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σ  Σ if σ refines some σ′ ∈ Σ. Note that σ  σ′ implies γ(σ) ⊆ γ(σ′). We say
that a finding σ is irreducible for a policy p if

∃r ∈ γ(p) ∩ γ(σ). ∀σ′ � σ. r �∈ γ(σ′).

That is, σ is irreducible if it contains some request that is excluded by all its
proper refinements. For example, the finding [SrcVpc �→ pa,OrgID �→ �] is irre-
ducible as it contains a request [SrcVpc �→ vpc-a,OrgID �→ o-3] that is excluded
by its refinements [SrcVpc �→ pa,OrgID �→ q1] and [SrcVpc �→ pa,OrgID �→ q2].
Note that irreducibility is inherently tied to the available predicates, Φ.
Minimality. A set of findings Σ is minimal if the denotation of each Σ′ ⊂ Σ
is strictly contained in the denotation of Σ. For example, the set

{[SrcVpc �→ pa,OrgID �→ �], [SrcVpc �→ pa,OrgID �→ q1]}
is not minimal as the subset containing just the first finding denotes the same
set of requests, but, the set containing either finding individually is minimal.

3.3 Algorithm

Given a policy p and a finite set of partially ordered predicates Φ, our goal is to
produce a minimal covering of p comprising only irreducible findings.
Access Oracle. Our algorithm is built using an access oracle that takes as
input a policy p and a finding σ and returns Some iff some request described by
σ is allowed by p, and None otherwise.

CanAccess(p, σ) =

{
Some if γ(σ) ∩ γ(p) �= ∅
None if γ(σ) ∩ γ(p) = ∅

def AccessSummary(p:P ) -> [Σ]:

σ� = λk→�
wkl = queue ([σ�])

res = []

while wkl �=∅:
σ = wkl.deque ()
if CanAccess(p,Reduce(σ)) == Some:

res += [σ]
else:

wkl += [σ′ |σ′ ∈Refine(σ), σ′ ��res]
return res

Fig. 4. Algorithm to compute a minimal set of irreducible findings that cover policy p.

Dominators. We define the immediately dominates set of φ ∈ Φ as the set of
elements strictly smaller than φ but unrelated to each other:

idom(φ) .= {φ′ | φ′ ≺ φ and ∀φ′′.¬(φ′ ≺ φ′′ ≺ φ)}
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Reducing a Finding. The procedure ReducePred (resp. Reduce) takes as input
a predicate φ (resp. finding σ) and strengthens it to exclude all the requests that
are covered by the refinements of φ (resp. σ):

def ReducePred(φ:Φ) -> Φ:
φ1, . . . , φn = idom(φ)
return φ ∧ ¬φ1 ∧ · · · ∧ ¬φn

def Reduce(σ:Σ) -> Σ:

σ′ = λk → ReducePred(σ(k))
return σ′

Intuitively, Reduce allows us to determine if a finding is irreducible.

Lemma 1. σ is irreducible iff γ(Reduce(σ)) ∩ γ(p) �= ∅.

Refining a Finding. The procedure Refine takes as input a finding σ and
returns the set of findings obtainable by individually refining one value of σ.

def Refine(σ:Σ) -> [Σ]:

return [σ[k �→ φ′] | k ∈ K, φ′ ∈ idom(σ(k))]
If a finding σ is reducible, we will use Refine to split it into more precise findings.

Lemma 2. Let σ be reducible for p. Then γ(σ) ∩ γ(p) = γ(Refine(σ)) ∩ γ(p).

Summarizing Access. The procedure AccessSummary (Fig. 4) takes as input a
policy p and returns a minimal set of irreducible findings res that covers p. The
procedure maintains a queue wkl comprising a frontier of findings that are to
be explored. The queue is initialized with the trivial finding σ� that maps each
key to �. It then iteratively picks an element from the queue, checks if it is an
irreducible finding, and if so, adds it to the result set res. If not, it computes the
finding’s refinements and adds those to wkl . The process repeats till the queue
is empty. The algorithm maintains three loop invariants: (1) wkl ∪ res covers
p; (2) Each finding in res is irreducible; (3) res is minimal. Consequently, the
algorithm terminates with a minimal set of irreducible findings that covers p.
Note, the worklist is a queue so that if σ1 � σ2 the algorithm will consider σ2

before σ1.

Theorem 1. Let Σ = AccessSummary(p). Then (1) Σ covers p, (2) each σ ∈ Σ
is irreducible, and (3) Σ is minimal.

4 Implementation and Evaluation

The algorithm AccessSummary is implemented in the IAM Access Analyzer fea-
ture launched on Dec 2, 2019 [10]. The Zelkova tool [2] is used as the access
oracle for the algorithm. Access Analyzer monitors the relevant resource policies
in an account and re-runs the algorithm on any changes. Findings are presented
to the user through a web console and through APIs. Users can archive findings
that represent intended access to the resource. For unintended findings, Access
Analyzer links to the relevant policy that users can edit to remove that access.
Access Analyzer will automatically run on the changed policy and any findings
that are no longer relevant will be set to a resolved state. By monitoring any
existing or new active findings, users can ensure their polices grant only the
intended access.
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Evaluation Metrics. We evaluate our algorithm along two dimensions: (1)
“how efficient is the algorithm at generating findings?” and (2) “how effective
are the generated findings at simplifying the complexity of a policy?”. As our
algorithm solves a new problem, we do not have an external basis for comparison.
Instead, we compare the algorithm against the state space it operates over. To
this end, for each policy, we define the following measures:

– size is the size of the set of all possible findings for the policy.
– findings is the number of findings produced by the algorithm.
– queries is the number of SMT queries made by the algorithm.
– runtime is the total runtime of the algorithm.

Note that findings ≤ queries ≤ size, as each query generates at most one
finding and we query each possible finding at most once.
Benchmarks. We randomly selected 1,387 policies from a corpus of in-use poli-
cies. As we are interested primarily in difficult policies, we filtered out all poli-
cies that had size less than 10. That left 165 policies. Each policy was evalu-
ated on a 2.5 GHz Intel Core i7 with 16 GB of RAM. The runtime per finding
(runtime/findings) was less than 430ms for all policies except one outlier at
2,267 ms. The 165 policies ranged in size from 56 to 810 lines of pretty-printed
JSON with a median size of 91 lines.

Fig. 5. Actual findings vs. search space Fig. 6. Actual queries vs. search space

Results. Figures 5 and 6 show the number of findings and queries, respectively,
compared to the overall search space. Both graphs are sorted to be monotonic,
i.e. the x-axes are different. Figure 5 shows to what degree the findings sim-
plify the policy, with smaller numbers being better. This measure will always be
between 0 and 1 since 0 ≤ findings ≤ size. We see that 85% of policies achieve
a ratio of 0.5 or better, and 64% achieve a ratio of 0.2 or better. Figure 6 shows
how efficient the algorithm is in exploring its state space, with smaller numbers
being better. This measure is between 0 and 1 as 0 ≤ queries ≤ size. The
algorithm explores the entire search space for only 15% of the policies, with a
median ratio of 0.22.
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5 Related Work

The majority of tools available for access policy analysis are based on log analy-
sis or syntactic pattern matching, which are both imprecise (i.e. fail to account
for the complex logic in AWS policies) and unsound (i.e. fail to check for all
requests) and hence, can take months to discover that resources are susceptible
to potentially unintended access. Most formal methods based work has focused
on securing individual pieces of cloud infrastructure via low-level proofs of soft-
ware correctness e.g. Ironclad [6]. Cloud Contracts [4] are requirements over net-
work access control lists and routing tables. Cloud Contracts are verified using
the SecGuru tool [7] that compares network connectivity policies using the SMT
theory of bit vectors. In contrast, our work answers a larger question about the
entire enterprise-level security posture using a series of Zelkova queries [2].
The Fireman system [11] shows how to use Binary Decision Diagrams to ana-
lyze access control lists (ACL) in firewall configurations. The ACL configuration
language is more restricted than IAM’s and the tool is limited to a fixed set
of queries about which accesses (packets) are allowed. Most closely related to
our work is the Margrave system [9] which encodes firewall policies as propo-
sitional logic formulas, and then use SAT solvers to answer queries about the
policies. Margrave introduces the notion of scenario finding, and shows how to
produce an exhaustive set of scenarios that witness the queried behavior. The
IAM policy language is significantly richer, and hence, enumerating scenarios
is computationally intractable, which led us to the develop stratified abstrac-
tion as a means of summarizing policy semantics, thereby providing analysts
comprehensive visibility into the accessibility of resources, helping detect mis-
configurations, and ensuring that updates indeed fix the potential for unintended
accesses.
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Abstract. With the advent of smart contracts that execute on the
blockchain ecosystem, a new mode of reasoning is required for developers
that must pay meticulous attention to the gas spent by their smart con-
tracts, as well as for optimization tools that must be capable of effectively
reducing the gas required by the smart contracts. Super-optimization is a
technique which attempts to find the best translation of a block of code
by trying all possible sequences of instructions that produce the same
result. This paper presents a novel approach for super-optimization of
smart contracts based on Max-SMT which is split into two main phases:
(i) the extraction of a stack functional specification from the basic blocks
of the smart contract, which is simplified using rules that capture the
semantics of the arithmetic, bit-wise, relational operations, etc. (ii) the
synthesis of optimized blocks which, by means of an efficient Max-SMT
encoding, finds the bytecode blocks with minimal gas cost whose stack
functional specification is equal (modulo commutativity) to the extracted
one. Our experimental results are very promising: we are able to optimize
55.41 % of the blocks, and prove that 34.28 % were already optimal, for
more than 61 000 blocks from the most called 2500 Ethereum contracts.

1 Introduction

Open-source software that leverages on the blockchain ecosystem is known as
smart contract. Smart contracts are not necessarily restricted to the classical con-
cept of contracts, but can be any kind of program that executes on a blockchain
or distributed ledger. A smart contract can be regarded as a collection of secured
stored functions whose execution and effects (e.g., the transfer of some value
between parties) cannot be manipulated. This is because all records of the trans-
actions must be stored on a public and decentralized blockchain that avoids the
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pitfalls of centralization. While Bitcoin [21] paved the way for cryptocurrencies
and for the popularity of the blockchain technology, Ethereum [25] showed the
full potential of blockchains by allowing developers to run their decentralized
applications on top of their platform. The Ethereum Virtual Machine (EVM) is
capable of running smart contracts coded by Ethereum developers that have the
potential of replacing all sorts of legal, financial and social agreements, e.g., can
be used to fulfill employment contracts, execute bets and wagers, etc.

On the Ethereum blockchain platform, as well as in other emerging
blockchains equipped with a smart contract programming language (e.g., Tezos
[1], Zilliqa [24], Facebook’s Libra [23]), gas refers to the fee, or pricing value,
required to successfully conduct a transaction or to execute a smart contract.
Gas is priced in a sub-unit of the cryptocurrency—in Ethereum in gwei, a sub-
unit of its Ether cryptocurrency. The EVM specification [25] provides the gas
model, i.e., a precise definition of the gas consumption for each EVM bytecode
instruction. The EVM is a simple stack-based architecture: computation on the
EVM is done using a stack-based bytecode language; the word size of the machine
is 256-bits (32-bytes), and this is also the size of a stack item. The proposer of
a transaction allots an amount of gas (known as gas limit) to carry out the exe-
cution. If the transaction exceeds the allotted gas limit, an out-of-gas exception
is raised, interrupting the current execution. The rationale of gas metering is
three-fold: first, a gas-metered execution puts a cap on the number of operations
that a transaction can execute and prevents attacks based on non-terminating
executions; second, paying for gas at the moment of creating the transaction
does not allow the proposer to waste other parties’ (aka miners) computational
resources; third, gas fees discourage users to overuse replicated storage, which is
an expensive and valuable resource in a blockchain-based consensus system.

Optimization of smart contracts has thus a clear optimization target: gas
usage, as both computational and storage costs are accounted within the gas
cost of each of the EVM instructions. Indeed, reducing gas costs of smart con-
tracts is a problem of utmost relevance in the blockchain ecosystem, as there
are normally between half a million and a million transactions a day. The cost
of a transaction in Ethereum ranges from cents to few dollars, except in certain
peak periods that has been ten or a hundred times more. In order to provide an
idea of the impact of gas saving techniques, we have estimated that the money
spent in transactions (excluding the intrinsic gas cost) from 2017 to 2019 is
around 157 Million dollars1. Thus, optimizing programs in an energy-saving way
is essential in general, but it is even more so in the blockchain ecosystem. The
Solidity2 documentation [13], and posterior documents (e.g., [9,19]), identify gas-
costly patterns and propose replacements with gas-efficient ones. Adopting these
guidelines requires a deep understanding of EVM instructions and the gas con-
sumption for the different operations. Compilers for Solidity also try to optimize
the bytecode for minimizing its gas consumption (e.g., the flag optimize of the

1 The data is taken from [3] using the gas spent by transactions and the average gwei
and Ether exchange rate per day.

2 It is the most popular programming language for writing Ethereum smart contracts.
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solc compiler optimizes storage of large constants and the dispatch routine,
with the goal of saving gas).

Even when the guidelines are followed and the optimize flag is used, the com-
piled EVM code is not always as efficient as desired. Super-optimization [17] is
a technique proposed over 30 years ago which attempts to find the best transla-
tion of a block of code using exhaustive search to try all possible sequences of
instructions that produce the same result. As an exhaustive search problem, it
is computationally extremely demanding. The work in [15] proposed the idea of
“unbounded” super-optimization that consists in shifting the search for the tar-
get program into the solver. Recently, unbounded super-optimization has been
applied to Ethereum bytecode [20] for basic block optimization (i.e., optimiza-
tions are made inside a basic block formed by a sequence of instructions without
any JUMP operation in the middle). The experimental results in [20] confirm the
extreme computational demands of the technique (e.g., the tool times out in 92%
of the blocks used in their evaluation). This is a severe limitation for the use of
the technique, and the problem of finding the optimal code for an EVM block
still remains very challenging. The complexity stems mainly from three sources:
First, the problem is expressed in the theory of bit-vector arithmetic with bit-
width size of 256, which is a challenging width size for most SMT solvers. Second,
expressing the problem involves an exists-forall quantification, since we want to
find an assignment of instructions that works for all values in the initial stack.
Third, since we look for the gas-optimal code, the problem is not a satisfaction
problem but rather an optimization problem.

Contributions. This paper proposes a novel method for gas optimization of
smart contracts which is based on synthesizing optimized EVM blocks using
Max-SMT. The main novel features that distinguish our work from previous
approaches, that attack the same or a similar problem [15,20], are:

1. Stack functional specification. Our method takes as input an EVM bytecode
and first obtains from it a stack functional specification (SFS) of the input
and output operational stacks for each of the blocks of the control-flow graph
(CFG) for the bytecode by using symbolic execution. The SFS determines
thus the target stack that the block has to compute and is simplified using a
set of rules that capture a great part of the semantics of the arithmetic, bit-
wise, relational, etc., EVM operations which are relevant for gas optimization.

2. Synthesis problem using SMT. We approach optimization as a synthesis prob-
lem in which an SMT solver is used to synthesize optimal EVM bytecode
which, for the input stack given in the functional specification, produces
the target stack determined by the specification. We present a very efficient
encoding that, in contrast to the previous attempts, uses only existential
quantification in a very simple fragment of integer arithmetic. According to
our evaluation, its simplicity greatly improves the performance of the SMT
solvers while accuracy is kept as we cover the main possible optimizations.
Importantly, only the semantics of the stack operations (PUSH, DUP, SWAP, etc.)
is encoded, while all other operations are treated as uninterpreted functions.
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3. Use of Max-SMT. We encode the optimization problem using Max-SMT, by
adding soft constraints that encode the gas cost of the selected instructions,
by adding the needed weights. This allows us to take advantage of the features
given by recent Max-SMT optimizers that can improve the search.

4. Experiments. We report on syrup, an implementation of our approach, and
evaluate it on (i) the same data set used for evaluating the tool ebso from
[20] and, (ii) on 128 of the most called contracts on the Ethereum blockchain.
Our results are very promising: while ebso timed out in 92.12 % of the blocks
in (i), we only time out in 8.64 % and obtain gains that are two orders of
magnitude larger than ebso. These results show that we have found the right
balance between what is optimized by means of symbolic execution and sym-
bolic simplification using rules and what is encoded as a Max-SMT problem.
Moreover, for set (ii), we obtain gas savings of 0.59% of the total gas. Assum-
ing that these savings are uniformly distributed, it would amount nearly to 1
Million dollars from 2017 to 2019.

While the purpose of superoptimization is to optimize at the level of basic
blocks (intra-block), our approach to synthesize EVM code from a given SFS can
be applied also in a richer optimization framework that enables the optimization
of multiple basic blocks (inter-block). For this purpose, the framework should be
extended to include branching instructions (which in the SMT encoding can be
handled with uninterpreted functions as well) and, besides, additional compo-
nents would be required, e.g., in the context of EVM we would need to resolve
the jumping addresses, and to ensure that there are no additional incoming
jumps to intermediate blocks that are being merged by the optimizer. Inter-
block optimization is especially interesting in the context of smart contracts to
gain storage-related gas, since the optimizations that can be achieved locally for
the storage are quite limited as explained in Sect. 6.

1 pragma solidity ˆ0.4.25;
2 contract addExp{
3 function ae(uint x3, uint x2, uint x1,
4 uint x0) returns (uint){
5 uint x = x3+x2;
6 uint y = x1+x0;
7 return x∗∗y; //EXP operation
8 }
9 }

1 JUMPDEST
2 PUSH1 0x00
3 DUP1
4 PUSH1 0x00
5 DUP6
6 DUP8
7 ADD
8 SWAP2
9 POP

10 DUP4
11 DUP6
12 ADD
13 SWAP1
14 POP
15 DUP1
16 DUP3
17 EXP
18 SWAP3

19 POP
20 POP
21 POP
22 SWAP5
23 SWAP4
24 POP
25 POP
26 POP
27 POP
28 JUMP

Fig. 1. Solidity code (left). Under-optimized EVM bytecode using solc (right).

2 Overview: Optimal Bytecode as a Synthesis Problem

This section provides a general overview of our method for synthesizing super-
optimized smart contracts from given EVM bytecode. We use the motivating
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example in Fig. 1 whose Solidity source code contract appears to the left and
the EVM bytecode generated by the solc compiler appears to the right. Solid-
ity is an object-oriented, high-level language that is statically typed, supports
inheritance, libraries and user-defined types, among other features. It is designed
to target the EVM. As it can be observed in the example the EVM bytecodes
that operate on the stack (i.e., DUP, SWAP, ADD, AND, etc.) are standard operators.
In the following, we refer as stack operations only to DUP, PUSH, SWAP and POP,
which modify the stack without performing computations. The EVM has also
bytecodes to access persistent data stored in the contract’s storage (SLOAD and
SSTORE), to access data stored in the local memory (MLOAD and MSTORE), bytecodes
that jump to a different code address location (JUMP, JUMPI), bytecodes for calling
a function on a different contract (CALL, DELEGATECALL, CALLCODE and CALLSTATIC),
to write a log (LOG), to access information about the blockchain and transaction
(GAS, CALLER, BLOCKHASH, etc.) and copy information related to an external call
(CODECOPY, RETURNDATACOPY, etc.). However, as we explain in the coming sections,
our approach is based on optimizing the operations that modify the stack as
we have a great coverage of all potential bytecode optimizations while we still
remain scalable, i.e., we do not optimize those bytecodes whose effects are not
reflected in the stack, e.g., MSTORE, SSTORE, LOG1 or EXTCODECOPY. The gas con-
sumed by this bytecode (excluding the JUMPDEST and JUMP opcodes that cannot
be optimized and are thus not accounted in the examples) is 76. As specified
in [25], the operations from the so-called base family (like POP) have cost 2, the
operators from the verylow family (like PUSH, SWAP, ADD) cost 3, operators from
the low family (like MUL, DIV) cost 5, and so on.

2.1 Extracting Stack Functional Specifications from EVM Bytecode

Our method takes as input the set of blocks that make up the control flow
graph (CFG) of the bytecode. The first step is, for each of the blocks, to
extract from it a stack functional specification (SFS) from which the super-
optimized bytecode will be synthesized. The SFS is a functional description of
the initial stack when entering the block and the final stack after executing
the block, which instead of using bytecode instructions to determine how the
final stack is computed, is defined by means of symbolic first-order terms over
the initial stack elements. The SFS for our running example is shown in Fig. 2.

x0

x1

x2

x3

x4

=⇒ x4

exp(x2 + x3, x0 + x1)

Fig. 2. Initial and final stack

As can be observed, it consists of an
initial stack shown at the left which
simply determines what the size of the
input stack to the block is and assigns
a symbolic variable as identifier to
each stack position (e.g., the initial
stack contains five elements named
x0, . . . , x4); while the output stack
contains two elements: x4 at the top, and the symbolic term exp(x2+x3, x0+x1)
at the bottom. The output stack is obtained by symbolic execution of the byte-
codes that operate on the stack, as it will be formalized in Sect. 3. The resulting
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expressions are then optimized by means of simplification rules based on the
semantics of the non-stack operations (e.g., the neutral elements, double nega-
tions or idempotent operations are removed, operations on constants performed).
This captures a relevant part of the semantics of the non-stack operators.

2.2 The Synthesis Problem

This section hints on how the generated bytecode will be, and on that the syn-
thesis of optimal bytecode from the specification is challenging.

Example 1. From the SFS in Fig. 2, we know that we have to compute x0 + x1

and x2 + x3, but we have to decide which summation we compute first. On the
left, we have the best bytecode (together with the stack evolution) when we first
compute x2 + x3 and on the right when we first compute x0 + x1. Computing
first one subexpression or the other has an impact on the consumed gas, since
the bytecode on the left has a gas cost of 31 and the bytecode on the right has
a gas cost of 25, which is indeed the optimum.

SWAP3 [x3, x1, x2, x0, x4]
SWAP1 [x1, x3, x2, x0, x4]
SWAP2 [x2, x3, x1, x0, x4]
ADD [x2 + x3, x1, x0, x4]
SWAP2 [x0, x1, x2 + x3, x4]
ADD [x0 + x1, x2 + x3, x4]
EXP [(x0 + x1) ∗∗ (x2 + x3), x4]
SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

ADD [x0 + x1, x2, x3, x4]
SWAP2 [x3, x2, x0 + x1, x4]

ADD [x3 + x2, x0 + x1, x4]

SWAP1 [x0 + x1, x3 + x2, x4]

EXP [(x0 + x1) ∗∗ (x2 + x3), x4]

SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

Both codes are far better than the original generated bytecode whose gas cost
was 76. Besides, note that the cost of the two additions and the exponentiation
is in total 16 (that necessarily has to remain), which means that the optimal
code has used only 9 units of gas for the rest while the original code needed 60
units.

The next example shows that the optimal code is obtained when the subterms
of the exponential are computed in the other order (compared to the previous
example). Hence, an exhaustive search of all possibilities (with its associated
computational demands) must be carried out to find the optimum.

Example 2. Let us now consider a slight variation of the previous example in
which the functional specification is [x0, x1, x2, x3] =⇒ [x3, (x0+x1) ∗∗ (x0+x2)].
Now, on the left-hand side we have the best bytecode (together with the stack
evolution) when we compute first x0 + x2 and on the right-hand side we have
the best bytecode when we compute first x0 + x1.
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DUP1 [x0, x0, x1, x2, x3]
SWAP3 [x2, x0, x1, x0, x3]
ADD [x2 + x0, x1, x0, x3]
SWAP2 [x0, x1, x2 + x0, x3]
ADD [x0 + x1, x2 + x0, x3]
EXP [(x0 + x1) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x0 + x1) ∗∗ (x2 + x0)]

DUP1 [x0, x0, x1, x2, x3]
SWAP2 [x1, x0, x0, x2, x3]
ADD [x1 + x0, x0, x2, x3]
SWAP2 [x2, x0, x1 + x0, x3]
ADD [x2 + x0, x1 + x0, x3]
SWAP1 [x1 + x0, x2 + x0, x3]
EXP [(x1 + x0) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x1 + x0) ∗∗ (x2 + x0)]

In this case the bytecode on the left has a gas cost of 28, which is indeed the
optimum, and the bytecode on the right has a gas cost of 31. The original
bytecode generated by solc has gas cost 74, so again the improvement is huge.

Both examples show that, in principle, even if we have the functional specification
that guides the search, we have to exhaustively try all possible ways to obtain
it, if we want to ensure that we have found the optimal bytecode.

2.3 Characteristics of Our SMT Encoding of the Synthesis Problem

Our approach to super-optimize blocks is based on restricting the problem in
such a way that we have both a great coverage of most EVM code optimizations
and we can propose an encoding in a simple theory where an SMT solver can
perform efficiently. To this end, the key point is to handle all non-stack oper-
ations, like ADD, SUB, AND, OR, LT, as uninterpreted bytecodes. This allows us to
simplify the encoding in two directions. First, by considering them as uninter-
preted bytecodes we can avoid reasoning on the theory of bit-vectors with width
256. Second, and even more important, this allows us to express the problem in
the existentially quantified fragment, avoiding the exists/forall alternation:

1. We start from the SFS by introducing fresh variables abstracting out all terms
built with uninterpreted functions, in such a way that every fresh variable
represents a term f(a1, . . . , an), where every ai is either a (256 bit) numeric
value, a fresh variable, or an initial stack variable. We also have sharing by
having a single variable for every term, e.g., (x0+1) ∗∗ (x0+1), where x0 is the
top of the initial stack, is abstracted into y0 =EXPU(y1, y1) and y1 =ADDU(x0, 1),
where y0 and y1 are fresh variables and EXPU and ADDU are the uninterpreted
bytecodes for exponentiation and addition, respectively.

2. Now, in order to avoid universal quantification, we take advantage of the fact
that only values from 0 to 2256 − 1 can be introduced in the stack by a PUSH

opcode and hence only this range can appear in the SFS. Therefore, if we
assign values from 2256 on to fresh variables and initial stack variables we
avoid the confusion between themselves and all other values in the problem.

After these two key observations have been made, we fix the maximal number n
of opcodes and highest size h of the stack that is allowed in a solution. This can
be bound by analyzing the original code generated by the compiler. From this,
we roughly encode the problem using variables o0, . . . , on−1 to express the oper-
ations of our code (together with variables p0, . . . , pn−1 that encode the value
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0 ≤ pi ≤ 2256 − 1 added to the stack when oi is a PUSH), variables si
0, . . . , s

i
h−1 to

encode the contents of the stack before executing the operation oi, where si
0 is the

top of the stack (we also use some Boolean variables to express the active part
of the stack). Using this, we can encode the behavior of all stack operations:
POP, PUSH, DUP, SWAP for all its versions (like DUP1, DUP2, . . . ). For the uninter-
preted bytecodes fu, we basically add for every abstraction y = fu(a1, . . . , am)
assertions stating that if we have a1, . . . , am at the top of the stack at step i
(i.e., si

0, . . . , s
i
m−1) and we take the operation f in oi then in step i + 1 we have

y, si
m, . . . on the top of the stack. Again, as all fresh variables and initial stack

variables have been replaced by values form 2256 on, there is no confusion with
all other values.

As a final remark, we have also encoded the commutativity property of unin-
terpreted bytecodes representing the ADD, MUL, AND, OR, etc. This can be easily
made by considering that the arguments can occur at the top of the stack in
the two possible orders. Other properties like associativity are more difficult to
encode and are left for future developments.

2.4 Optimal Synthesis Using Max-SMT

The last key element is how we encode the optimization problem of finding the
bytecode with minimal gas cost. First, let us describe which notion of optimality
we are considering. Our problem is defined as, given an SFS in which all occur-
ring bytecodes there are considered uninterpreted and maybe commutative, we
have to provide the bytecode with minimal gas cost whose SFS is equal modulo
commutativity to the given one. From the encoding we have described in the
previous section, we know that every solution to the SMT problem will have
the same SFS as the given one. Hence, we only need to find the solution with
minimal gas cost. In [20], this was made by implementing a loop on top of the
SMT solving process which was calling the solver asking every time for a better
solution in terms of gas, which was also encoded in the SMT problem. Such
approach cannot be easily implemented in an incremental way using the SMT
solver as a black box without the corresponding performance penalty.

Alternatively, we propose to encode the problem as a Max-SMT problem and
hence, we can easily use any Max-SMT optimizer, like Z3 [12], Barcelogic [7] or
(Opti)MathSAT [11], as a black box with an important gain in efficiency. The
Max-SMT encoding adds to the previously defined SMT encoding some soft
constraints, indicating which is the cost associated to choosing every family of
operators. As mentioned, choosing an operator from the base family has cost 2,
from the verylow 3, and so on. Then, the optimal solution is the solution that
minimizes this cost, which can be obtained with a Max-SMT optimizer.
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29 SSTORE
30 SWAP1
31 DUP5
32 SWAP1
33 MLOAD
34 SWAP1

35 DUP2
36 MSTORE
37 PUSH1 0x20
38 ADD
39 PUSH1 0x40
40 MLOAD

41 DUP1
42 SWAP2
43 SUB
44 SWAP1
45 LOG2
46 POP

47 PUSH1 0x01
48 SWAP2
49 SWAP1
50 POP
51 JUMP

Block 1 Block 2 Block 3

30 SWAP1
31 DUP5
32 SWAP1
33 MLOAD
34 SWAP1
35 DUP2

37 PUSH1 0x20
38 ADD
39 PUSH1 0x40
40 MLOAD

41 DUP1
42 SWAP2
43 SUB
44 SWAP1

46 POP
47 PUSH1 0x01
48 SWAP2
49 SWAP1
50 POP

Fig. 3. CFG block of a real smart contract (top), and blocks generated to build the
functional description of the EVM bytecode (bottom)

3 Stack Functional Specification from EVM Bytecode

The starting point of our work is the CFG of the EVM bytecode to be optimized.
There are already a number of tools (e.g., EthIR [6], Madmax [14], Mythril [18]
or Rattle [4]) that are able to compute the CFG from the bytecode of a given
smart contract. Therefore, we do not need to formalize, neither to implement,
this initial CFG generation step. Since there are bytecode instructions that we
do not optimize, for each of the blocks of the provided CFG, we first perform
a further block-partitioning that splits a basic block into the sub-blocks that
will be optimized by our method as defined below. A basic block is defined as a
sequence of EVM instructions without any JUMP bytecode.

Definition 1 (block-partitioning). Given a basic block B = [b0, b1, ..., bn],
we define its block-partitioning as follows:

blocks(B) =

{
Bi ≡ bi, . . . , bj

∣∣∣∣∣
(∀k.i < k < j, bk �∈ Jump ∪ Terminal ∪ Split ∪
{JUMPDEST}) ∧ ( i=0 ∨ bi−1 ∈ Split ∪ {JUMPDEST} ) ∧
( j=n ∨ bj+1 ∈ Jump ∪ Split ∪ Terminal )

}

where

Jump = {JUMP, JUMPI}
Terminal = {RETURN, REVERT, STOP, INVALID}

Split = {SSTORE, MSTORE, LOGX, CALLDATACOPY, CODECOPY, EXTCODECOPY,
RETURNDATACOPY}

As it can be observed, the bytecodes whose effects are not reflected on the stack
induce the partitioning and are omitted in the fragmented sub-blocks. These
include the bytecodes that modify the memory, the storage or record a log, that
belong to the Split set. Figure 3 shows a CFG block at the top and the blocks
generated to build the functional description at the bottom. The original CFG
block contains the bytecodes SSTORE, MSTORE and LOG2. Thus, it is split into three
different blocks that do not contain these bytecodes.
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(1) τ(S, PUSHX A) = [A | S]
(2) τ(S, DUPX) = [S[0] | S]
(3) τ(S, SWAPX) = temp = S[0], S[0] = S[X], S[X] = temp
(4) τ(S, POP) = S.remove(0)
(5) τ(S, OP) = [OP(S[0], ..., S[δ − 1]) | S[δ : n] ]

Fig. 4. Symbolic execution of the instructions that operate on the stack

Once we have the partitioned blocks from the CFG, we aim at obtaining
a functional description of the output stack (i.e., the stack after executing the
sequence of bytecodes in the block) using symbolic execution for each of the
partitioned blocks. As the stack is empty before executing a transaction and the
number of elements that each EVM bytecode consumes and produces is known,
the size of the stack at the beginning of each block can be inferred statically. We
can thus assume that the initial stack size is given within the CFG. A symbolic
stack S is a list of size k that represents the state of the stack where the list
position 0 corresponds to the top of the stack and k − 1 is the index of the
bottom of the stack, such that S[i] is the symbolic value stored at the position i
of the stack. Initially, the input stack maps each index to a symbolic variable si.

The symbolic execution of each bytecode is defined using the transfer function
τ described in Fig. 4 which takes an input stack and a bytecode and returns
the output stack as follows: (1) the PUSHX bytecode stores at the top of the
stack the value A, (2) DUPX duplicates the element stored at position X−1 to
the top of the stack, (3) SWAPX exchanges the values stored at the top of the
stack with the one stored at position X, (4) POP deletes the value stored in the
top of the stack (using the list operation remove to delete the element at the
given position), (5) OP represents all other EVM bytecodes that operate with the
stack (arithmetic and bit-wise operations among others). In that case, τ creates
a symbolic expression that is a functor with the same name as the original
EVM bytecode and as arguments the symbolic expressions stored in the stack
elements that it consumes. Here, δ stands for the number of elements that the
EVM bytecode OP gets from the stack. Now, the SFS can be defined using the
function τ as follows.

Definition 2 (SFS). Given a block B with an initial size of the stack k, the
initial state of the stack S0 stores at each position i ∈ {0, ..., k − 1} a symbolic
variable si. Then, the transfer function τ is extended to the block B, denoted by
τ(B), as: [s0, . . . , sk−1] if B is empty; and τ(τ(B′), o) if B has o as last operation
and B′ is the resulting block without o. The SFS of B is S0 =⇒ S = τ(B).

Example 3. Consider the block formed by the EVM bytecode shown in Fig. 1,
starting with the bytecode at program point 2 (pp2 for short) and finishing with
the bytecode at pp27. Before executing the block symbolically, the initial stack
is S0 = [s0, s1, s2, s3, s4] and k = 5. After applying the transfer function τ , we
obtain the following results at the next selected program points:
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pp2 : τ(S, PUSH1 0X00) = [0, s0, s1, s2, s3, s4]
pp3 : τ(S, DUP1) = [0, 0, s0, s1, s2, s3, s4]
pp5 : τ(S, DUP6) = [s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp6 : τ(S, DUP8) = [s3, s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp7 : τ(S,ADD) = [ADD(s3, s2), 0, 0, 0, s0, s1, s2, s3, s4]
pp8 : τ(S, SWAP2) = [0, 0,ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp9 : τ(S, POP) = [0,ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp15 : τ(S, DUP1) = [ADD(s1, s0),ADD(s1, s0),ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp16 : τ(S, DUP3) = [ADD(s3, s2),ADD(s1, s0),ADD(s1, s0),ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp17 : τ(S, EXP) = [EXP(ADD(s3, s2),ADD(s1, s0)),ADD(s1, s0),ADD(s3, s2), s0, s1, s2, s3, s4]
pp27 : τ(S, POP) = [s4, EXP(ADD(s3, s2),ADD(s1, s0))]

Thus, altogether, the output stack of the SFS given by τ for the block in Fig. 1
is S = [s4, EXP(ADD(s3, s2), ADD(s1, s0))]. For example, we can see that τ updates
the stack inserting a 0 in the top of the stack at pp2. At pp8, it swaps the element
in the top of the stack (ADD(s3, s2)) with the element stored at position 2 (0). It
generates a symbolic expression to represent the addition at pp7 with the values
stored in the position of the stack that it consumes. At pp17 it generates a new
symbolic expression EXP(ADD(s3, s2), ADD(s1, s0)) to represent the exponentiation
of the two elements stored in the top of the stack. Note that in this case these
elements are also symbolic expressions of the two previous additions symbolically
executed before.

Finally, we capture optimizations based on the semantics of the arithmetic
and bit-wise operations, by applying simplification rules on the SFS of the block
before we proceed to generate the optimized code. This simplification besides
reducing the number of operations includes other notions of simplification as
well. The easiest examples are the application of simplification rules like with the
units of every operation, or with the idempotence of bit-wise Boolean operators.

4 Optimal Synthesis Using Max-SMT

This section describes our Max-SMT encoding. We start by preprocessing the
SFS into an abstract form that is convenient for the encoding in Sect. 4.1. Next,
Sect. 4.2 describes a key element of our encoding: the stack model. Sect. 4.3
presents the complete encoding of the problem and Sect. 4.4 how to obtain the
optimized EVM blocks from the model obtained by the SMT solver. Finally,
Sect. 4.5 describes the optimization problem. The SFS and the encoding gen-
erated for the example shown in Fig. 1 are available at https://github.com/
mariaschett/syrup-backend/tree/master/examples/cav2020.

4.1 Abstracting Uninterpreted Functions

Before we apply our encoding, we need to abstract all (sub)expressions occurring
in the SFS, by introducing new fresh variables sk, sk+1, . . . that start after the
last stack variable in the initial stack [s0, . . . , sk−1] (of size k). In this process
we have a mapping from fresh variables to shallow expressions of depth one,

https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
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i.e., built with a function symbol and variables or constants as arguments. Here
we introduce the minimal number of fresh variables that allow us to describe
the SFS using only shallow expressions. By minimal, we mean that we use the
same variable if some subterm occurs more than once (we also take into account
commutativity properties to avoid creating unnecessary fresh variables). Finally
if an uninterpreted function occurs more than once, we add a subscript from 0
on to distinguish them. As a result we have that the abstracted SFS is defined
by a stack S containing only stack variables, fresh variables or constants (in
{0, . . . , 2256 − 1}) and a map M from fresh variables to shallow terms formed
by an uninterpreted function (maybe with subscript) applied to stack variables,
fresh variables or constants (in {0, . . . , 2256 − 1}). Besides, we note that the
abstracted SFS generated is equivalent to first-order A-normal form with shear-
ing. Trivially, all positions in the stack in the SFS and the abstracted SFS are
equal when the map is fully applied to remove all fresh variables and the sub-
scripts are removed. Moreover, we have that every uninterpreted function of the
SFS has a fresh variable assigned in the map and all function symbols in the
map are different.

Example 4. The abstraction of the SFS [s4, EXP(ADD(s3, s2), ADD(s1, s0))] shown in
Example 3 needs three fresh variables s5, s6 and s7. Then, the abstracted SFS is
the stack S = [s4, s7] and the mapping M is defined as {s5 �→ ADD0(s3, s2), s6 �→
ADD1(s1, s0), s7 �→ EXP(s5, s6)}.

4.2 Modeling the Stack

A key element in our encoding is the representation of the stack and the elements
it contains. As mentioned in Sect. 2.3, a first observation is that in our approach
we will only have in the stack constants in the domain {0, . . . , 2256 − 1} (we do
not care if they represent a negative number or not, as they are handled simply as
256-bit words), initial stack variables s0, . . . , sk−1 and fresh variables sk, . . . , sv.
In order to distinguish between constants and the variables si, we assign to every
variable si, with i ∈ {0, . . . , v}, the constant 2256 + i. Now, for instance, we can
establish that a PUSH operation can only introduce a constant in {0, . . . , 2256 −1}
and that fresh variables si can only be introduced by uninterpreted functions
if the appropriate arguments are in the stack (see below). The rest of stack
operations, like DUP or SWAP, just duplicate or move whatever is in the stack.
Since in our encoding we will use the variables s0, . . . , sv, as they are part of
the SFS, we have a first constraint assigning the constant values to all these
variables (this could be done as well with a let expression).

SV =
∧

0�i<v
si = 2256 + i

Let us now show how we model the stack along the execution of the instructions.
First, we have to fix a bound on the number of operations bo and the size of
the stack bs. We can apply different heuristics to this end though considering
the initial number of operations and the maximum number of stack elements
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involved in the block are sound bounds. We have to express a stack of bs positions
after executing j operations with j ∈ {0, . . . , bo}. To this end, on the one hand,
we use existentially quantified variables xi,j ∈ Z with i ∈ {0, . . . , bs − 1} and
j ∈ {0, . . . , bo} to express the word at position i of the stack after executing the
first j operations of the code, where x0,j encodes the word on the top of the
stack. On the other hand to complete the modeling we introduce propositional
variables ui,j with i ∈ {0, . . . , bs−1} and j ∈ {0, . . . , bo}, to denote the utilization
of the stack (i.e., the words that the stack currently holds). Here, ui,j indicates
that the word at position i of the stack after executing the first j operations
exists or not.

Additionally, to simplify the next definitions we have the following parame-
terized constraint that, given an instruction step j with 0 < j ≤ bo, two stack
positions α and β and a shift amount δ ∈ Z, with 0 ≤ α, 0 ≤ α + δ, β < bs and
β + δ < bs, imposes that the stack after executing j + 1 instructions between
positions α and β is the same as the stack after executing the j instruction but
with a shift of δ (they are moved up if negative and moved down otherwise).

Move(j, α, β, δ) =
∧

α�i�β
ui+δ,j+1 = ui,j ∧ xi+δ,j+1 = xi,j

4.3 Encoding of Instructions

Let I be the set of instructions occurring in our problem. The set I is split in
three subsets IC 	 IU 	 IS , where:

– IC contains the commutative uninterpreted functions occurring in the map
M of the abstracted SFS,

– IU contains the non-commutative uninterpreted functions occurring in M ,
– IS contains the stack operations: PUSH, that introduces an up to 32-bytes

item on top of the stack; POP that removes the top of the stack; DUPk, with
k ∈ {1, . . . , 16} that copies the k−1 element of the stack on top of the stack;
SWAPk, with k ∈ {1, . . . , 16} that swaps the top of the stack with the k element
of the stack; and an extra operation NOP that does nothing.

Note that, although in EVM there are 32 different PUSH instructions depending
on the amount of bytes needed to express the item, in our context this distinction
is unnecessary, since we can decide afterwards which PUSH do we need by checking
in the obtained solution which is the value to be pushed. Also, the operations
DUPk in IS are reduced to only those with k < bs (otherwise we go beyond the
maximal size of the stack) and, similarly, the operations SWAPk in IS are reduced
to only those with k < bs.

Let θ be a mapping from the set of instructions in I to consecutive different
non-negative integers in {0, . . . , mι}, where mι+1 is the cardinality of I. In order
to encode the selected instructions at every step, we introduce the existentially
quantified variables tj ∈ {0, . . . , mι}, with j ∈ {0, . . . , bo − 1} where for every
instruction ι ∈ I, if tj = θ(ι) then we have that the operation executed at step
j is ι. Additionally, we introduce associated existentially quantified variables
aj ∈ {0, . . . , 2256 − 1}, with j ∈ {0, . . . , bo − 1}, to express the value pushed at
the top of the stack when tj = θ(PUSH) (otherwise the value of aj is meaningless).
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Encoding the Stack Operations. First we show how we encode the effect of
choosing in tj one of the operations in IS that does not depend on the particular
(abstracted) SFS we are considering. The following parameterized constraints
show this effect:

CPUSH(j) =tj = θ(PUSH)⇒0 ≤ aj < 2256 ∧ ¬ubs−1,j ∧ u0,j+1 ∧ x0,j+1 = aj ∧
Move(j, 0, bs − 2, 1)

CDUPk(j) =tj = θ(DUPk)⇒¬ubs−1,j ∧ uk−1,j ∧ u0,j+1 ∧ x0,j+1 = xk−1,j ∧
Move(j, 0, bs − 2, 1)

CSWAPk(j) = tj = θ(SWAPk) ⇒ uk,j ∧ u0,j+1 ∧ x0,j+1 = xk,j ∧ uk,j+1 ∧
xk,j+1 = x0,j∧ Move(j, 1, k − 1, 0) ∧
Move(j, k + 1, bs − 1, 0)

CPOP(j) = tj = θ(POP) ⇒ u0,j ∧ ¬ubs−1,j+1 ∧ Move(j, 1, bs − 1,−1)
CNOP(j) = tj = θ(NOP) ⇒ Move(j, 0, bs − 1, 0)

Notice that the stack before executing the instruction tj is given in the variables
x0,j , . . . , xbs−1,j and u0,j , . . . , ubs−1,j , while the stack after executing tj is given
in x0,j+1, . . . , xbs−1,j+1 and u0,j+1, . . . , ubs−1,j+1.

In order to avoid redundant solutions (with NOP in intermediate steps), we
have to add as well a constraint stating that once we choose NOP as instruction
tj we can only choose NOP for the following instructions tj+1, tj+2 . . .:

CfromNOP =
∧

0�j<bo−1
tj = θ(NOP) ⇒ tj+1 = θ(NOP)

Encoding the Uninterpreted Operations. The encoding of the uninter-
preted operations comes from the map M of the abstracted SFS. First of all, note
that, every function f occurs only once in M (since subscripts are introduced)
and for every r �→ f(o0, . . . , on−1) in M we have that f ∈ IC 	 IU , r is a fresh
variable, and o0, . . . , on−1 are either initial stack variables, fresh variables or con-
stants. Note also that if f ∈ IC then n = 2. Therefore, we define in the encoding
the effect of choosing in tj the uninterpreted function f with r �→ f(o0, . . . , on−1)
in M , as an operation that takes its arguments o0, . . . , on−1 from the stack and
places its result r in the stack (where o0 must be at the top of the stack).

CU (j, f) = tj = θ(f) ⇒ ∧
0�i�n−1(ui,j ∧ xi,j = oi) ∧ u0,j+1 ∧ x0,j+1 = r ∧

Move(j, n,min(bs − 2 + n, bs − 1), 1 − n) ∧∧
bs−n+1�i�bs−1 ¬ui,j+1

where f ∈ IU and r �→ f(o0, . . . , on−1) ∈ M

Now for the commutative functions the only difference is that we know that
n = 2 and that we can find the arguments in any of both orders in the stack:

CC(j, f) =tj = θ(f)⇒u0,j ∧ u1,j ∧
((x0,j = o0 ∧ x1,j = o1) ∨ (x0,j = o1 ∧ x1,j = o0)) ∧
u0,j+1 ∧ x0,j+1 = r ∧ Move(j, 2, bs − 1,−1) ∧ ¬ubs−1,j

where f ∈ IC and r �→ f(o0, o1) ∈ M
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Finding the Target Program. We assign to every ι ∈ I an integer. Then,
tj ∈ Z encodes the chosen instruction at position j in the target program for
0 � j < bo. To encode the selection of an instruction for every tj , we have the
following constraint:

CI = CfromNOP ∧ ∧
0�j<bo

0 ≤ tj ≤ mι ∧
CPUSH(j) ∧ CDUPk(j) ∧ CSWAPk(j) ∧ CPOP(j) ∧
CNOP(j) ∧ ∧

f∈IU
CU (j, f) ∧ ∧

f∈IC
CC(j, f))

Complete Encoding. Let us conclude our encoding by defining the formula
CSFS that states the whole problem of finding an EVM block for a given
initial stack [s0, . . . , sk−1] and abstracted SFS with final stack [f0, . . . , fw−1]
and map M . Hence, we introduce a constraint B to describe how the stack
at the beginning is and a constraint E to describe how the stack at the
end is and combine all the constraints defined above to express CSFS .

B =
∧

0�α<k(uα,0 ∧ xα,0 = sα) ∧ ∧
k�β�bs−1 ¬uβ,0

E =
∧

0�α<w(uα,bo
∧ xα,bo

= fα) ∧ ∧
w�β�bs−1 ¬uβ,bo

CSFS = SV ∧ CI ∧ B ∧ E

Finally, let us mention that the performance of the used SMT solvers greatly
improves when the following (redundant) constraint, which states that all func-
tions in IU 	IC should be eventually used, is added:

∧
ι∈IU �IC

∨
0�j<bo

tj = θ(ι)
Empirical evidence shows, that this constraint helps the solver to establish

optimality, and removing it increases the time-outs and time taken by roughly
50%. On the other hand, adding the similar constraint that all functions in
IU 	IC are used at most once, while also helping the solvers to show optimality
for already optimal blocks, the performance for finding optimizations decreases
by a similar rate. As the latter is our main motivation, we did not include the
constraint.

4.4 From Models to EVM Blocks

The following definition shows how we can extract a concrete set of operations
from a model for the formula CSFS that computes the given SFS.

Definition 3. Given a model σ for CSFS we have that block(σ) is defined as the
sequence of EVM operations o0, . . . , of where f is the largest j ∈ {0, . . . , bo − 1}
such that tj �= θ(NOP). Now for all α ∈ {0, . . . , f} the operation oα is taken as

1. oα = PUSHk aα if tα = θ(PUSH) and aα can be represented with k bytes.
2. oα = ι if tα = θ(ι) where ι ∈ IS \ {PUSH}
3. oα = ι if tα = θ(ι) where ι ∈ IU 	 IC and ι has no subscript.
4. oα = ι if tα = θ(ιl) where ιl ∈ IU 	 IC and has subscript l.

The following result easily follows from the construction of CSFS .

Theorem 1 (soundness). Given an SFS and values for bo and bs, we have
that if σ is a model for CSFS obtained from the abstracted SFS then block(σ)
computes the given SFS.
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4.5 Optimization Using Max-SMT

Now that we know that every model of CSFS provides a block that computes the
SFS, we want to obtain the optimal solution. Since the cost of the solution can
be expressed in terms of the cost of every of the instructions we select in all tj , we
will introduce soft constraints expressing the cost of every selection. A (partial
weighted) Max-SMT problem is an optimization problem where we have an SMT
formula which establishes the hard constraints of the problem and a set of pairs
{[C1, ω1], . . . , [Cm, ωm]}, where each Ci is an SMT clause and ωi is its weight,
that establishes the soft constraints. In this context, the optimization problem
consists in finding the model that satisfies the hard constraints and minimizes
the sum of the weights of the falsified soft constraints. Our approach to find the
optimal code is by encoding the problem as a Max-SMT optimization problem,
where we add to the SMT formula CSFS which defines our hard constraints a set
of soft constraints such that sum of the weights of the falsified soft constraints
coincides with the cost (in terms of gas) of the operations taken in every step.
Therefore the optimal solution to the Max-SMT problem coincides with the
optimal solution in terms of gas cost.

In the EVM, every operation has an associated gas cost, which in general
is constant, but in some few cases may depend on the particular arguments it
is applied to or on the state of the blockchain. All these operations that are
non-constant are considered as uninterpreted, and hence we cannot change the
operands on which they are applied. Therefore, omitting the non-constant part
cannot affect which is the optimal solution. Thanks to this, we can split our set
of instructions I in p+1 disjoint sets W0 	 . . .	Wp where all instructions in Wi

have the same constant cost costi, and such that the costs are strictly increasing,
i.e., cost0 = 0 and costi−1 < costi for all i ∈ {1, . . . , p}.

In the following we describe the encoding we have chosen for the weighted
clauses (we have tried other slightly simpler alternatives but, in general, they
behave worse). Let wi = costi − costi−1 for i ∈ {1, . . . , p}. Hence, we have that
wi > 0 and, moreover, costi = Σ1�α�iwα for i ∈ {1, . . . , p}. Then, our Max-SMT
problem OSFS is obtained adding to CSFS the following soft constraints

OSFS = CSFS ∧
∧

0�j<bo

∧

1�i�p

[
∨

ι∈W0�...�Wi−1

tj = θ(ι) , wi ]

Therefore, if the selected instruction at step j is ι (i.e. tj = θ(ι)) for some ι ∈ Wi

then we accumulate the weight wα of all soft clauses with α ∈ {1, . . . , i}, which
as said sums costi, and hence we accumulate the cost of executing the instruction
ι. From this fact, our optimality theorem follows.

Theorem 2 (optimality). Given an SFS P and values for bo and bs, we
have that if σ is the optimal solution for the weighted Max-SMT problem OSFS

obtained from the abstracted SFS of P , then block(σ) is the optimal code that
has an SFS equal to P modulo commutativity.
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5 Experimental Evaluation

This section presents the results of our evaluation using syrup, the SYnthesizeR of
sUPer-optimized smart contracts that implements our approach. Our tool syrup
uses EthIR [6] to generate the CFGs of the analyzed contracts and Z3 [12] ver-
sion 4.8.7, Barcelogic [7], and MathSAT [11] version 1.6.3 (namely its optimality
framework OptiMathSAT), as SMT solvers. We refer by s-Z3, s-Bar, s-OMS, to
the results of using syrup with the respective solvers. Experiments have been
performed on a cluster with Intel Xeon Gold 6126 CPUs at 2.60 GHz, 2 GB of
memory and timeout of 15 min, running CentOS Linux 7.6. The main compo-
nents of syrup are implemented in Python and OCaml. The backend of syrup
generating SMT constraints from a SFS is open-source and can be found at
github.com/mariaschett/syrup-backend. Our tool accepts smart contracts writ-
ten in versions of Solidity up to 0.4.25 and EVM bytecode v1.8.18, namely the
three new EVM bytecodes (SHL, SHR and SAR) introduced from the Solidity com-
piler version 0.5.0 are not handled yet by EthIR. Our experimental setup con-
sists of two groups of benchmarks:

(i) In order to compare with the existing tool ebso, we use the same data set (and
the results for ebso) from [20]: the blocks of the 2500 most called contracts
deployed on the Ethereum blockchain3 after removing the duplicates and
the blocks which are only different in the arguments of PUSH by abstracting
to word size 4 bit. This results in a data set of 61 217 blocks.

(ii) A more realistic setting in which we analyze the 150 most called contracts4

queried from the Ethereum blockchain and removing those of the versions
not supported, resulting in 128. As the dates in which the contracts are
fetched are different, not all 128 contracts are included in setup (i), indeed,
the intersection are 106 contracts (besides there might be updated versions).
This setting is more realistic since the analysis is performed at the contract-
level (without removing any duplicates or similar blocks) and allows us to
gather statistics to assess the gains at the level of the deployed contracts.

We note that analyzing the most called contracts corresponds to the most rele-
vant case study as, according to [16], many Ethereum contracts are not used.

5.1 Comparison with ebso (setup I)

As seen in Definition. 1, we split the 61 217 blocks on certain bytecodes that are
not optimized, leading to a total of 72 450. For comparison, we merge the split
blocks back together. The next table shows the results of optimizing the 61 217
blocks by ebso (first column), and by syrup for every solver (next columns). In
column s-All, we use the 3 solvers as a single framework in syrup that yields the
best solution returned by any of the solvers (in parenthesis we show percentages).

3 Up to Ethereum blockchain block number 7 300 000 until 2019-03-04 01:22:15 UTC.
4 Up to Ethereum blockchain block number 9 193 265 until 2019-12-31 23:59:45 UTC.

https://github.com/mariaschett/syrup-backend
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ebso s-Z3 s-Bar s-OMS s-All

A 3882 (6.34%) 20 636 (33.71%) 20 783 (33.95%) 20 973 (34.26%) 20 988 (34.28%)

O 393 (0.64%) 25 922 (42.34%) 26 458 (43.22%) 28 063 (45.84%) 28 195 (46.06%)

B 550 (0.90%) 6288 (10.27%) 3051 (4.98%) 5293 (8.65%) 5726 (9.35%)

N n/a 1933 (3.16%) 563 (0.92%) 837 (1.37%) 1020 (1.67%)

T 56 392 (92.12%) 6438 (10.52%) 10 362 (16.93%) 6051 (9.88%) 5288 (8.64%)

G 27 726 1 188 311 1 003 717 1 272 381 1 309 875

S Not avail 13 710 904.75 13 141 046.21 12 239 980.85 10 948 011.57

Row A shows the number of blocks that were Already optimal, i.e., those
that cannot be optimized because they already consume the minimal amount of
gas and ebso/syrup find bytecode with the same consumption. Row O contains
the number of blocks that have been optimized and the found solution has been
proven to be Optimal, i.e., the one that consumes the minimum amount of gas
needed to obtain the SFS provided. The solvers used are able to provide the
best solution found until the timeout is reached. Row B contains the number
of blocks that have been optimized into a Better solution that consumes less
gas but it is not shown to be the optimum. Row N shows the number of blocks
that have Not been optimized and not proven to be optimal, i.e., the solution
found is the original one but there may exist a better one. Row T contains the
number of blocks for which no model could be found when the T imeout was
reached. Row G contains the accumulated Gas savings for all optimized blocks.
Importantly, the real savings would be larger if the optimized blocks are part of
a loop and hence might be executed multiple times. Row S shows the time in
Seconds in which each setting analyzes all the blocks.

Let us first compare the results by ebso and our best results when using the
portfolio of solvers in s-All. It is clear from the figures that syrup significantly
outperforms ebso on the number of blocks handled (while ebso times out in
92.12 % of the blocks, we only timeout in 8.64 %) and on the overall gas gains
(two orders of magnitude larger). For the analyzed blocks (i.e., those that do not
timeout), the percentages of syrup for number of optimized into better blocks,
into optimal blocks, and those proven to be already optimal, are much larger
than those of ebso. We now discuss how the gains for the blocks that ebso
can analyze compare to the gains by syrup. In particular, if missing part of the
semantics of the uninterpreted instructions and the SSTORE bytecode significantly
affects the gains. Out of 943 examples, where ebso found an optimization, in 46
cases syrup proved optimality w.r.t. the SFS and saved 348 gas but saved less
gas than ebso (total 10 514 gas). The source of this gain is the SSTORE bytecode:
there are two blocks where ebso saves 5000 each, because it realizes that we read
from a key in storage to then store the value back unchanged. As we discuss
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in Sect. 7, our framework naturally extends to handle this storage optimization.
However, in nearly all of 393 cases, where ebso found an optimal solution—in
378 cases—syrup saves as much as ebso amounting to 2670 gas. That is, the
additional semantics did not improve savings. Furthermore, in 43 cases out of
943, the semantics did impede ebso’s performance so that syrup found a better
result with 597 gas versus 440 of ebso. Therefore, we can conclude that syrup
is far more scalable and precise than ebso, the cases in which syrup optimizes
less than ebso are seldom and can be naturally handled in the future. Moreover,
they are offset by the cases where syrup did find an optimization, whereas ebso
did not.

Finally, we can see that MathSAT is the solver that shows the best perfor-
mance: It proves optimality of 34.26 % and optimizes 54.49 % of the blocks (c.f.
Sect. 5.3). Regarding analysis time, the global figure is not reported in [20]. In
syrup, by accumulating the time of all four scenarios (s-X) and using the 900 s
timeout of ebso, we analyze the whole data set in about 3042 h. We note that,
by considering the solvers as a portfolio, we reduce the analysis time as when
an optimal solution is found, the execution of the other two solvers is stopped.
However, for the other cases, we take the highest time taken by the solvers as we
need to know all solutions in order to keep the best one and provide an answer.

5.2 Analysis of the Most Called Contracts with Gas Savings
(setup Ii)

For our second setup, syrup produces the following results for the 46 966 blocks
of the 128 (most called) smart contracts:

Fig. 5. Gas saved per contract in the 128 most called smart contracts
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s-Z3 s-Bar s-OMS s-All

A 30 846 (65.68%) 30 923 (65.84%) 30 971 (65.94%) 30 974 (65.95%)

O 13 102 (27.9%) 13 240 (28.19%) 13 586 (28.93%) 13 606 (28.97%)

B 933 (1.98%) 510 (1.09%) 746 (1.59%) 801 (1.71%)

N 695 (1.48%) 95 (0.2%) 295 (0.63%) 467 (0.99%)

T 1390 (2.96%) 2198 (4.68%) 1368 (2.91%) 1118 (2.38%)

G 438 483 406 086 437 165 443 248

S 2 919 830.35 2 682 469.58 2 413 612.39 2 378 446.26

As before, MathSAT is the solver that shows the best performance: It proves
optimality of 65.94% and optimizes 30.52% of the blocks. The overall gas savings
in G amount to 0.73% of the total gas which, assuming a uniform distribution
of this saving among the contracts, amounts to around a million dollars from
2017 to 2019 (see Sect. 1 for details on this estimations). Moreover, we have
calculated that the 64% of the saved gas is due to the simplification rules and
the 36% to the Max-SMT optimization, which shows that both parts are highly
relevant in our results. For this data set, we additionally display in Fig. 5 the
amount of gas saved for each contract. The X-axis corresponds to each of the
128 analyzed contracts and the Y-axis corresponds to the amount of gas saved
when using each solver. In general the gains obtained by the different solvers
are quite aligned. On average, each contract saves 3425.65 units of gas using Z3,
3172.55 using Barcelogic and 3415.35 using MathSAT. However, we can observe
that the gains are dispersed w.r.t. the mean, and there are big differences in
the savings obtained for each of the contracts (the standard deviation is 2798.19
for Z3, 2664.05 for Barcelogic and 2889.01 for MathSAT). The biggest amount
of gas optimized in all contracts is 18 989 gas using Z3, 18 704 using Barcelogic
and 19 205 using MathSAT. In the case of this contract, MathSAT optimizes 706
blocks out of 1910, and the highest amount of gas optimized is 162 though the
most common amount of gas optimized is 3 (in 165 blocks). The highest amount
of gas optimized per block in all contracts is 481. Finally, we have analyzed the
impact of our optimization on the function transfer of the AirdropToken smart
contract, that has been called around 520 000 times. For this function, which has
no loops, syrup saves 832 units of gas per call. From the number of calls per day
(obtained from [2]), we estimate a total saving (just for this function) of 2815 $.

5.3 Comparison of SMT Solvers in Precision and Time

Figure 6 aims at providing some data to compare the accuracy and efficiency of
the process using the three SMT solvers. The table to the left shows in: Unique
the number of blocks that are uniquely optimized by the corresponding solver,
in UOptim the number of blocks that are proven to be optimal uniquely by one
solver, and +GSave the number of blocks for which one solver has strictly more
gains that the others. The suffixes 1 and 2 refer to the data set in Sects. 5.1 and
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s-Z3 s-Bar s-OMS

Unique1 608 73 925
UOPtim1 22 108 1296
+GSave1 694 634 4286
Unique2 238 6 234

UOPtim2 6 14 237
+GSave2 107 79 563
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Fig. 6. Comparison of SMT Solvers

5.2, resp., excluding all timeouts. In both data sets, MathSAT uniquely finds
a result, uniquely shows the block optimal, or finds the best gain for the large
majority. But clearly, in both data sets, every solver was needed to get the best
possible solution in every category. The plot to the right of Fig. 6 displays the
amount of blocks (Y-axis) that are solved in the corresponding amount of time
(X-axis). Dashed lines correspond to data set 1 and plain lines to 2. We can
see that for data set (i) within 10 s, nearly 89% of the results were found. For
data set (ii) this is even more pronounced, after 10 s around 95% were found,
with around 90% already being available after 1 s. The analysis shows that most
results can be found very fast and thus our optimizer could be invoked during the
compilation of a smart contract without adding a large overhead to compilation.

6 Related Work

There are currently two automated approaches to gas optimization of Ethereum
smart contracts. (i) First, the closest to ours is blockchain superoptimization
[20], whose goal is the same as ours: find the gas-optimal block of code for each
of the blocks in the CFG of the smart contract. While the approach of [20] would
not be applicable within a compiler (e.g., it times out in 92.12 % of the blocks
used in their experimental evaluation), our optimization tool performs very effi-
ciently (e.g., we have seen that 89% of the blocks are optimized in less than 10 s).
The reasons for our efficiency are indeed the fundamental differences with [20]:
(1) we use the SFS to solve the optimization problem efficiently as a synthesis
problem in which the semantic optimizations are carried out within the SFS
part, (2) we do not encode the semantics of the arithmetic and bit-vector oper-
ations in the SMT problem, as [20] does, what allows us to express the problem
using only existential quantification, (3) we use Max-SMT to solve the optimiza-
tion problem. The basis for ebso is in [15], where the description of an encoding
of unbounded superoptimization with the idea to shift the search for optimal
program to the SMT solver is first found. (ii) Second, the system Gasol [5]
incorporates also an automatic optimization for storage operations that con-
sists in replacing accesses to the storage (i.e., bytecodes SSTORE and SLOAD)
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by equivalent accesses to memory locations (i.e., bytecodes MSTORE and MLOAD),
when a static analysis identifies that it is sound and efficient doing such trans-
formation. This optimization is not intra-block, as done in supercompilation,
therefore it is not achievable by our approach as it involves modifying multiple
blocks, and also requires an analysis that identifies the patterns and the sound-
ness of the transformation. On the other hand, Gasol is not able to make the
intra-block optimizations that we are achieving. Therefore, the optimizations in
Gasol are orthogonal (and complementary) to those achievable by means of
superoptimization.

There is work also focused on identifying gas expensive patterns: (1) the
work in [9] identifies 7 expensive patterns on Solidity contracts and proposes
optimizations for them. However, there is no tool in [9] that carries out these
optimizations automatically; (2) The work in [10] identifies 24 anti-patterns, e.g.
[OP,POP] optimizes to POP. Again, there is not automation and those patterns are
manually identified. There is recent work that experimentally proves that the
gas model for some EVM instructions is not correctly aligned with respect to the
observed computational costs in real experiments [26], and that these misalign-
ments can lead to gas-related attacks [22]. Our work is parametric on the gas
model used, and new adjustments in the gas model of Ethereum are integrated in
our optimizer by just updating the cost for the corresponding modified instruc-
tions in our implementation. Finally, the tool TOAST [8] also superoptimizes
machine code. Although applied to different settings, the performance of syrup
is significantly better and the notions of optimality used are different (sequence
length and gas-usage respectively).

7 Conclusions and Future Work

We have presented a novel method for gas super-optimization of smart contracts
that combines symbolic execution with an effective Max-SMT encoding. Our
focus is on the stack operations because these bytecode operations allow for
multiple reorderings, simplifications, and cover the major part of the potential
optimizations; while reading and/or writing on memory or storage can be seldom
optimized (unless the same value is written, or read, consecutively). In spite of
this, the same methodology we have formalized for the stack could be extended to
optimize the memory and storage bytecode operations. Basically, the symbolic
execution phase would extract a functional specification also for memory and
for storage that would be analogous to our SFS and that could include storage-
related optimizations (e.g., detecting unnecessary storage). The SMT encoding
for these operations would be similar to ours but, for soundness, would have to
maintain the order among the memory and storage accesses. It is part of our
future work to implement also the super-optimizations for memory and storage
and experimentally evaluate if there is significant gain. We also plan to extend
the SMT encoding to include information gained from the original program such
as the original cost. Currently, in roughly 0.05% of the blocks of Sect. 5.2, syrup
synthesizes a more expensive solution.
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Abstract. Many important cryptographic primitives offer probabilistic
guarantees of security that can be specified as quantitative hyperproper-
ties; these are specifications that stipulate the existence of a certain num-
ber of traces in the system satisfying certain constraints. Verification of
such hyperproperties is extremely challenging because they involve simul-
taneous reasoning about an unbounded number of different traces. In this
paper, we introduce a technique for verifying quantitative hyperproper-
ties based on the notion of trace enumeration relations. These relations
allow us to reduce the problem of trace-counting into one of model-
counting of formulas in first-order logic. We also introduce a set of infer-
ence rules for machine-checked reasoning about the number of satisfying
solutions to first-order formulas (aka model counting). Putting these two
components together enables semi-automated verification of quantita-
tive hyperproperties on infinite-state systems. We use our methodology
to prove confidentiality of access patterns in Path ORAMs of unbounded
size, soundness of a simple interactive zero-knowledge proof protocol as
well as other applications of quantitative hyperproperties studied in past
work.

1 Introduction

Recent years have seen significant progress in automated and semi-automated
techniques for the verification of security requirements of computer systems [4,
10,16,19,30,47,50,55]. Much of this progress has built on the theory of hyper-
properties [21], and these have been used extensively in analysis of whether sys-
tems satisfy secure information flow properties [1,2,6,8,15,28,35,37,39,49,57]
such as observational determinism [41,55] and non-interference [32]. Unfortu-
nately, the security specification of several important security primitives cannot
be captured by secure information flow properties like observational determin-
ism. In particular, observational determinism and non-interference are not appli-
cable when reasoning about algorithms that offer probabilistic – as opposed to
deterministic – guarantees of confidentiality and integrity. Prominent examples
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 201–224, 2020.
https://doi.org/10.1007/978-3-030-53288-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_11&domain=pdf
http://orcid.org/0000-0002-3434-6937
http://orcid.org/0000-0003-2288-3396
http://orcid.org/0000-0001-9107-0239
https://doi.org/10.1007/978-3-030-53288-8_11


202 S. Sahai et al.

of security primitives offering probabilistic guarantees include Path ORAM [48]
and various zero-knowledge proof protocols.

A promising direction for the verification of such protocols are the class of
quantitative hyperproperties [29], one example of which is deniability [12,14].
Deniability states that for every infinitely-long sequence of observations that an
adversary makes, there are (exponentially) many different secrets that could have
resulted in exactly these observations. Therefore, the adversary learns very little
about the secrets in an execution from a particular sequence of observations.

How does one prove a quantitative hyperproperty like deniability? Suppose
our goal is to show that for every trace of adversary observations, there exist 2n

traces with the same observations but different secrets. Here n is a parameter
of the system, e.g., the length of a password in bits. One option, first suggested
by Yasuoka and Terauchi [54] and recently revisited by Finkbeiner, Hahn, and
Torfah [29], is to consider the following k-trace property, where k = 2n + 1.

∀π0. ∃π1, π2, . . . , π2n .

( 2n∧
j=1

obs(π0) = obs(πj)
)

∧
( 2n∧

j=1

2n∧
k=1

(j �= k) ⇒ secret(πj) �= secret(πk)
)

The property states that for every trace of the system, there must exist
2n other traces with identical observations and pairwise different secrets. In
the above, π0, π1, . . . represent trace variables, obs(πj) refers to the trace of
adversary observations projected from the trace πj , while secret(πj) refers to
the trace of secret values in the trace πj . There are at least three problems
with the verification of the above property. First, the size of this property grows
exponentially with n; verification needs to reason about 2n traces simultaneously
and is not scalable. The second problem is quantifier alternation. Even if we could
somehow reason about 2n traces, we have to show that for every trace π0, there
exist 2n other traces satisfying the above condition. The third problem is that
the above technique does not work for symbolic bounds. While it is possible – at
least in principle – to use the above construction by picking a specific value of
n, say 16, to show that 216 traces exist that satisfy deniability, we would like to
show that the property holds for all n, where n is a state variable or parameter
of the transition system. Capturing the dependence of the trace-count bound on
parameters, such as n, is important because it shows that the attacker has to
work exponentially harder as n increases. Such general proofs are not possible by
reduction to a k-trace property because the construction requires k be bounded.

Recent work by Finkbeiner, Hahn, and Torfah [29] has made significant
progress in addressing the first two problems by showing a reduction from k-trace
property checking into the problem of maximum model counting [31]. However,
their technique still produces a propositional formula whose size grows expo-
nentially in the size of the quantitative hyperproperty. Further, model counting
itself is a computationally hard problem that is known to be #P -complete, and
maximum model counting is even harder. As a result, their technique does not
scale well and times out on the verification of an 8-bit leakage bound for an 8-bit
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password. Finally, their method does not support symbolic bounds, and there-
fore cannot be used to verify parametric systems; we verify several examples of
such systems in this paper (e.g., Path ORAM [48] of symbolic size).

In this work, we propose a new technique for quantitative hyperproperty
verification that addresses each of the above problems. Our approach is based
on the following insights. First, instead of trying to count the number of traces
that have the same observations and different inputs, we instead show injectiv-
ity/surjectivity from satisfying assignments of a first-order formula to traces of
a transition system. This allows us to bound the number of traces satisfying
the quantitative hyperproperty by the number of satisfying solutions to this for-
mula. We introduce the notion of a trace enumeration relation to formalize this
relation between the first-order formula and traces of the transition system. An
important advantage of the above reduction is that proving the validity of a trace
enumeration relation is only a hyperproperty – not a quantitative hyperproperty.

Next, we develop a novel technique to bound the number of satisfiable solu-
tions to a first-order logic formula, which is of independent interest. While this is
a hard problem, we exploit the fact that our formulas have a significant amount
of structure. We introduce a set of inference rules inspired by ideas from enu-
merative combinatorics [13,52,56]. These rules allow us to bound the number of
satisfying assignments to a formula by making only satisfiability queries.

In summary, our techniques can prove quantitative hyperproperties with sym-
bolic bounds on parametric infinite-state systems. We demonstrate their utility
by verifying representative quantitative hyperproperties of diverse applications.

Contributions

1. We introduce a specification language for quantitative hyperproperties
(QHPs) over symbolic transition systems and define formal satisfaction
semantics for this language. Our specification language is more expressive
than past work on QHP specification because it allows the bound to be a
first-order formula over the state variables of the transition system.

2. We provide several examples of QHPs relevant to security verification. We
identify a new class of QHPs, referred to as soundness hyperproperties, appli-
cable to protocols that provide statistical guarantees of integrity.

3. We propose a novel semi-automated verification methodology for proving that
a system satisfies a QHP. Our methodology applies to properties that involve a
single instance of quantifier alternation and works by reducing the problem of
QHP verification to that of checking non-quantitative hyperproperties over
two and three traces of the system and counting satisfiable solutions to a
formula in first-order logic.

4. We introduce a set of inference rules for bounding the number of satisfiable
solutions to a first-order logic formula, using only satisfiability queries.

5. We demonstrate the applicability of our specification language and verifica-
tion methodology by providing proofs of security for Path ORAM, soundness
of a simple zero-knowledge protocol, as well as examples taken from prior
work on quantitative security specifications. We show that our verification
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methodology scales to larger systems than could be handled in prior work.
To the best of our knowledge, our work is the first machine-checked proof of
confidentiality of the access patterns in Path ORAM.

2 Motivating Example

In this section, we first introduce the model of transition systems used in this
paper. We then discuss quantitative hyperproperty (QHP) specification and ver-
ification for our running example – a simple zero-knowledge puzzle.

2.1 Preliminaries

Let FOL(T ) denote first-order logic modulo a theory T . The theory T is assumed
to be multi-sorted, includes the theory of linear integer arithmetic (LIA), and
contains the = relation. Let ΣT be the theory T ’s signature: the set consisting
of the constant, function, and predicate symbols in the theory. We say that a
formula is a ΣT -formula if it consists of the symbols in ΣT along with variables,
logical connectives, and quantifiers. We only consider theories which are such
that the set of satisfying assignments for any ΣT -formula is a countable set.1

For every variable x, we will assume there exists a unique variable x′, which
we refer to as the primed version of x. We will use X, Y , and Z to denote
sets of variables. Given a set of variables X, we will use X ′ to refer to the set
consisting of the primed version of each variable in X, that is X ′ = {x′ | x ∈ X}.
Similarly X1, X2, etc. are sets consisting of new variables defined as follows:
X1 = {x1 | x ∈ X} and X2 = {x2 | x ∈ X}. We will use F (X) to denote the
application of a function or predicate symbol F on the variables in the set X.
A satisfying assignment σ to the formula F (X) is written as σ |= F (X). Given
a formula F (X) and a satisfying assignment σ to this formula, we will denote
the valuation of the variable x ∈ X in the assignment σ as σ(x). We will abuse
notation in two ways and also write σ(X) to refer to a map from the variables
x ∈ X to their assignments in σ. We will also write σ(G(X)) to denote the
valuation of the term G(X) under the assignment σ.

The number of satisfiable assignments for the variables in the set X to a for-
mula F (X,Y ) as a function of the variables Y will be denoted by #X.F (X,Y ).
#X.F (X,Y ) is the function λY . |{σ(X) | σ |= F (X,Y)}| evaluated at Y ; |S|
is the cardinality of the set S. For example, consider the predicate f(i, n) .= (0 ≤
i < 2n). In this case, #i. f(i, n) = max (0, 2n), meaning that for a given value
of n > 0, there are 2n satisfying assignments to i.

Definition 1 (Transition System). A transition system M is defined as the
tuple M = 〈X, Init(X),Tx (X,X ′)〉. X is a finite set of (uninterpreted) constants
that represents the state variables of the transition system. Init and Tx are ΣT -
formulas representing the initial states and the transition relation, respectively.
1 Our experiments mostly use the AUFLIA theory which allows arrays, uninterpreted

functions, and linear integer arithmetic.
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Init is defined over the signature ΣT ∪X. Tx is over the signature ΣT ∪X ∪X ′;
X represents the pre-state of the transition and X ′ represents its post-state.

A state of the system is an assignment to the variables in X. We use σ0, σ1, σ2

etc. to represent states. A trace of the system M is an infinite sequence of states
τ = σ0σ1σ2 . . . σi . . . such that Init(σ0) is valid and for all i ≥ 0, Tx (σi, σi+1) is
valid; in order to keep notation uncluttered, we will often drop the ≥ 0 qualifier
when referring to trace indices. We assume that every state of the transition
system has a successor: for all σ there exists some σ ′ such that Tx (σ, σ ′) is
valid, ensuring every run of the system is infinite. We will represent traces by
τ, τ1, τ2, etc. Given a trace τ, we refer to its ith element by τ i. If τ = σ0σ1 . . . ,
then τ0 = σ0 and τ1 = σ1. The notation τ [i,∞] refers to the suffix of trace τ
starting at index i. The set of all traces of the system M is denoted by ΦM .
Given a state σ and a variable x ∈ X, σ(x) is the valuation of x in the state σ .

2.2 Motivating Example: Zero-Knowledge Hats

Zero-knowledge (Z-K) proofs are constructions involving two parties: a prover
and a verifier, where the prover’s goal is to convince the verifier about the
veracity of a given statement without revealing any additional information. We
motivate the need for quantitative hyperproperty verification using a Z-K puzzle.

Puzzle Overview: Consider the following scenario. Peggy has a pair of oth-
erwise identical hats of different colors (say, yellow and green). She wants to
convince Victor, who is yellow-green color blind, that the hats are of different
colors, without revealing the colors of the hats. This problem can be solved using
the following interactive protocol. Peggy gives both hats to Victor, and Victor
randomly chooses a hat behind a curtain and shows it to Peggy. Next, he goes
back behind the curtain and uniformly randomly chooses if he wants to switch
the hat or not. He now appears in front of Peggy and asks: “Did I switch?”

If the hats are really of different colors, Peggy will be able to answer correctly
with probability 1. If Peggy is cheating – the hats are in fact of the same color –
her best strategy is to guess, and with probability 0.5 she will answer incorrectly.
If the interaction is repeated k-times, Peggy will be caught with probability 1 −
2−k. The interaction between Peggy and Victor only reveals the fact that Peggy
can detect a switch and not the color of the hat, making this zero-knowledge.

Verification Objectives: A zero-knowledge proof must satisfy three proper-
ties: completeness (an honest prover should be able to convince an honest verifier
of a true statement), soundness (a cheating prover can convince an honest veri-
fier with negligible probability) and zero-knowledge (no information apart from
the veracity of the statement should be revealed). Completeness is a standard
trace property, while zero-knowledge is the 2-safety property of indistinguisha-
bility. Consequently, the main challenge in automated verification of the zero-
knowledge protocol described above is that of soundness. In this section, we
discuss its specification and verification using quantitative hyperproperties.



206 S. Sahai et al.

X
.= {C, P, S, i, R}

Init(X) .= (∀i. 0 ≤ C[i] ≤ 1) ∧ (∀i. 0 ≤ P[i] ≤ 1) ∧ S ∧ (i = 1) ∧ (R > 0)

Tx (X, X ′) .= (C′ = C) ∧ (P′ = P) ∧ (R′ = R) ∧ S′ = S ∧ (C[i] = P[i])
)) ∧

i′ = min (i + 1, R)

Fig. 1. Transition system model of the example protocol.

Soundness as a Quantitative Hyperproperty: Consider the transition sys-
tem M = 〈X, Init(X),Tx (X,X ′)〉, shown in Fig. 1, representing this protocol.
The variable R is a parameter of the system and refers to the number of rounds
of the protocol. C and P are boolean arrays representing the challenges from
the verifier to the prover, and the responses from the prover to the verifier,
respectively. i is the current round, and S is a boolean flag that corresponds to
whether the zero-knowledge proof has succeeded. C and P are initialized non-
deterministically to model the fact that the verifier chooses their challenges ran-
domly, and a cheating prover’s best strategy is guessing. While a cheating prover
can use any strategy, if the challenges are indistinguishable to her, then the best
strategy is to sample responses from a uniform distribution.

Soundness is captured by the following quantitative hyperproperty (QHP):

∀π0.#π1:F (δπj ,πk
). G (ψπ0,π1) ≥ 2R − 1 (1)

We will provide formal satisfaction semantics for QHPs in Sect. 3. For now, we
informally describe its meaning. The term #π1:F (δπj ,πk

). G (ψπ0,π1) ≥ 2R − 1
introduces a counting quantifier which stipulates the existence of at least 2R − 1
traces satisfying certain conditions: (i) these traces must all be pairwise-different,
where difference is defined by satisfaction of the formula F (δπj ,πk

) and (ii) all
of these traces must be related to trace π0 by the relation G (ψπ0,π1).

The state predicates δ and ψ are defined as follows.

δ(σ1, σ2)
.= σ1(P[i]) �= σ2(P[i])

ψ(σ1, σ2)
.=

(
σ1((i = R) ⇒ S) ⇒ σ2((i = R) ⇒ ¬S)

)
∧(

σ1(C) = σ2(C) ∧ σ1(R) = σ2(R)
)

The requirement imposed by δ is that Peggy’s responses be different at some
step i for every pair of traces captured by the counting quantifier. ψ says that if
trace π0 is a trace where Peggy’s cheating succeeds (i.e., S = true when i = R),
then in all traces captured by π1, the challenges and number of rounds are the
same as π0 but Peggy’s cheating is detected by Victor (i.e., S = false when
i = R). These requirements are illustrated in Fig. 2(b).

The QHP requires that for every trace in which a cheating prover succeeds
in tricking the verifier for a given trace of challenges, there are 2R − 1 other
traces with the same challenges in which the prover’s cheating is detected. Even
though soundness is a probabilistic property over the distribution of the system’s
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traces, it can be reduced to counting (and thus specified as a QHP) because each
execution trace is sampled uniformly from a finite set. Therefore, if the QHP is
satisfied, Peggy’s probability of successful cheating is upper-bounded by 2−R.

τ0
0

τ0 τ1
0 τ2

0 τk
0

success

τ0
0

. . . . . .

τ0
1

τ1 τ1
1 τ2

1 τk
1

fail

τ1
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τ2 τ1
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(b) Traces in the soundness QHP.(a) Trace enumeration predicates.

V(Y, R)

Y1

Y2

YC

U(Y1, τ0, τ1)

U(Y2, τ0, τ2)

U(YC, τ0, τC)

Fig. 2. Using trace enumeration predicates to verify the soundness QHP.

2.3 Solution Outline

To prove a QHP of the form ∀π0. #π1 : Δπj ,πk
. ϕ � N(Z), we construct a

trace enumeration predicate V(Y, Z) and show an injective/bijective mapping
from assignments to Y in V(Y, Z) and traces of the system. This allows us to
prove ∀π0. #π1 : Δπj ,πk

. ϕ � #Y.V(Y,Z). This part of the proof relies on the
notion of a trace enumeration relation (Sect. 4). In the next step, we show
that #Y.V(Y,Z) � N(Z) using the inference rules presented in Sect. 5. We now
describe these steps in the context of the motivating example.

Verification of Soundness for the Z-K Hats Puzzle: Property 1 is illustrated in
Fig. 2(b). τ0 is a trace where the Z-K proof succeeds, while the proof fails for
the set of traces ΦC = {τ1, τ2, . . . , τC}. The red states show the particular step
of the proof in which an incorrect response is given by the prover, and each of
these steps as well as their associated prover responses are pairwise different.
The QHP is satisfied if |ΦC | ≥ 2R − 1 for every τ0 ∈ ΦM , where R = τ0

0 (R).
The first step in our methodology is to construct a parameterized relation,

called a trace enumeration relation, U(Y, τ0, τ1). This relates τ0 to each trace in
the set ΦC and is parameterized by Y. For every value of the parameter Y, U
relates a trace in which the proof succeeds (τ0) to a trace in which the proof fails
(τ1). For every trace τ0 in which the proof succeeds, the set {τ1 | ∃Y. U(Y, τ0, τ1)}
corresponds to the set of traces with the same challenges and the same number
of rounds, but with failed proofs of knowledge. Note this is a subset of ΦC .

Next, we construct a predicate V(Y,R) which defines valid assignments to V
for a particular value of R. For a particular R, consider the set: {σ(Y) | σ |=
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V(Y,R)}. Suppose we are able to show that the relation U is injective in Y and
τ0 for assignments to Y drawn from this set, then we can lower-bound the size of
ΦC by the size of this set. In other words, we have reduced the problem of trace
counting to the problem of counting assignments to V(Y,R).

Precisely stated, using V and U , we show the following.

1. For every trace τ0, and every assignment Yi satisfying V(Yi, τ
0
0 (R)), there

exists a corresponding trace τi that satisfies both U(Yi, τ0, τi) and ψ(τ0, τi).
(Note τ0

0 (R) refers to the valuation of R in the initial state of τ0.)
2. Given two different satisfying assignments to V for a particular value of R,

say Yj and Yk, the corresponding traces τj and τk are guaranteed to have
different prover responses; in other words, the traces satisfy δ(τj , τk).

The above two properties, illustrated in Fig. 2(a), imply there is an injective
mapping from satisfying assignments of V(Y,R) to traces in ΦC . Therefore, the
number of traces in ΦC can be lower bounded by the number of satisfying assign-
ments to Y in V(Y,R), i.e. #Y.V(Y,R). We have reduced the difficult problem of
counting traces into a slightly easier problem of counting satisfying assignments
to a FOL(T ) formula.

The final step is to bound #Y.V(Y,R). For example, one well-known idea
from enumerative combinatorics is that if a set A is the union of disjoint sets B
and C, then |A| = |B| + |C|. Translated to model counting, the above can be
written as #X.F (X,Y ) = #X.G(X,Y )+#X.H(X,Y ) if F (X,Y ) ⇔ G(X,Y )∨
H(X,Y ) is valid and G(X,Y )∧H(X,Y ) is unsat.2 We present a set of inference
rules in Sect. 5 that build on this and related ideas. These inference rules allow
us derive a machine-checked proof of the bound #Y.V(Y,R) ≥ 2R − 1, thus
completing the proof of Property 1 for the Z-K hats puzzle.

3 Overview of Quantitative Hyperproperties

This section introduces a logic for the specification of quantitative hyperproper-
ties over symbolic transition systems. We present satisfaction semantics for this
logic and then discuss its applications in security verification.

ψ ::= ∀π. ψ | #π:Δπj ,πk . ψ � N(Z) | ϕ

ϕ ::= Pπ1,π2,...,πk | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ

� ::= ≤ | = | ≥

Fig. 3. Grammar of Quantitative HyperLTL.

2 We note there is an implied universal quantifier here. To be precise, we must write
∀Y. #X. F (X, Y ) = #X. G(X, Y ) + #X. H(X, Y ).
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3.1 Quantitative Hyperproperties

Figure 3 shows the syntax of Quantitative HyperLTL, our extension of Hyper-
LTL [30] that allows specification of quantitative hyperproperties over symbolic
transition systems. There are two noteworthy differences from the presentation
of HyperLTL in [30]. The first is the predicate Pπ1,π2,...,πk

. This refers to a
k-ary state predicate P that is applied to the first element of each trace in
the subscript. These are analogous to atomic propositions in presentations that
use Kripke structures and are defined as k-ary state predicates to capture rela-
tional properties over traces of the transition system. For example, consider the
predicate P(σ0, σ1)

.= (input(σ0) = input(σ1)). Given this definition, a sys-
tem M with exactly two traces ΦM = {τ1, τ2} satisfies the HyperLTL formula
∀π1, π2. Pπ1,π2 iff input(τ0

1 ) = input(τ0
2 ). This hyperproperty requires that the

input in the initial state of the system be deterministically initialized.
The second difference is the new counting quantifier : #π:Δπj ,πk

. ψ � N(Z).3

Δπj ,πk
is an unquantified HyperLTL formula over two “fresh” trace variables πj

and πk that encodes when two traces are considered different. ψ is another
(possibly-quantified) HyperLTL formula. The operator � can be ≤, =, or ≥.
N(Z) is an integer-sorted term in FOL(T ) over the variables in the set Z, Z ⊂ X
where X is the set of state variables of the transition system under consideration.
Z typically refers to the subset of the state variables that define the parameters
of the transition system; e.g. Z = {R} for the Z-K proof transition system in
Fig. 1, the number of blocks in a model of Path ORAM, the size of an array, etc.
Typically, the variables in the set Z do not change after initialization. Informally
stated, the counting quantifier is satisfied if a maximally large set ΦC ⊆ Φ,
satisfying the two conditions below, has cardinality � count where count is the
valuation of N(Z) in the initial state of every trace in ΦC . Those conditions are:
(i) each of the traces in ΦC are pairwise different as defined by satisfaction of
Δπj ,πk

, and (ii) every trace in this set satisfies the HyperLTL formula ψ.
The remaining operators are standard, so we do not discuss them further and

instead provide formal satisfaction semantics.

Satisfaction Semantics of Quantitative HyperLTL The validity judge-
ment of a property ϕ by a set of traces Φ is defined with respect to a trace
assignment Π : Vars → Φ. Here, Vars is the set of trace variables. We use
π, π1, π2 , . . . to refer to trace variables.4 The partial function Π is a mapping
from trace variables to traces. We use the notation Π[π �→ τ] to refer to a trace
assignment that is identical to Π except for the trace variable π which now maps
to the trace τ. We write Π |=Φ ψ if the set of traces Φ satisfies the property
ψ under the trace assignment Π. We will drop the subscript Φ from |=Φ if it
is clear from the context or irrelevant. The notation Π [i,∞] is an abbreviation

3 A counting quantifier over Kripke structures was introduced by Finkbeiner et al. [29].
Our definition is slightly different and a detailed comparison is deferred to Sect. 7.

4 Note the distinction between trace variables denoted by π1, π2, etc. and traces which
are denoted by τ1, τ2, etc.
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for the new trace assignment obtained by taking the suffix starting from index
i of every trace in Π: Π [i,∞](π) = Π(π)[i,∞] for every trace π ∈ dom(Π) where
dom(Π) is the domain of Π. We write Π � |=Φ ψ when Π |=Φ ψ is not satisfied.
Satisfaction rules for HyperLTL formulas are shown in Fig. 4.

Π |=Φ ∀π. ψ iff for all τ ∈ Φ : Π[π �→ τ ] |=Φ ψ

Π |=Φ #π:Δπj ,πk . ψ � N(Z) iff |ΦC | = 0 ⇒ 0 � N(Z) is valid, and

|ΦC | > 0 ⇒ ∀τ ∈ ΦC . |ΦC | � τ0(N(Z)), where,

ΦC ⊆ Φ is a maximally large set such that:

∀τj , τk ∈ ΦC .

τj �= τk ⇔ {πj �→ τj , πk �→ τk} |= Δπj ,πk

and, ∀τ ∈ ΦC . Π[π �→ τ ] |=Φ ψ

Π |=Φ Pπ1,...,πk iff P(Π(π1)0, . . . , Π(πk)0) is valid

Π |=Φ ¬ψ iff Π �|=Φ ψ

Π |=Φ ψ ∨ ϕ iff Π |=Φ ψ or Π |=Φ ϕ

Π |=Φ Xϕ iff Π [1,∞] |=Φ ϕ

Π |=Φ ϕUψ iff there exists j ≥ 0 : Π [j,∞] |=Φ ψ

and for all 0 ≤ i < j : Π [i,∞] |=Φ ϕ

Fig. 4. Satisfaction semantics for Quantitative HyperLTL formulas over symbolic tran-
sition systems.

Definition 2 (Quantitative HyperLTL Satisfaction). We say that the
transition system M satisfies the property ψ, denoted by M |= ψ if the empty
trace assignment ∅ satisfies formula ψ for the set of traces ΦM , that is ∅ |=ΦM

ψ.

Additional Operators: The above showed the minimal set of operators required
in Quantitative HyperLTL. The rest of this paper will use the other standard
operators such as ∧ (conjunction), ⇒ (implication), F (future/eventually) and
G (globally/always) which can be defined in terms of the operators in Fig. 3.

Well-Defined Formulas: In order for the semantics of Quantified HyperLTL to
be meaningful, we need certain semantic restrictions on the structure of QHPs.

Definition 3 (Well-defined QHPs). An instance of a counting quantifier #π:
Δπj ,πk

. ϕ � N(Z) is said to be well-defined if:

1. ¬Δπj ,πk
is an equivalence relation over the set of all traces Φ, and

2. In every set of the traces ΦC captured by the counting quantifier in the seman-
tics shown in Fig. 4, the term N(Z) has the same valuation for all initial
states: ∀τi, τj ∈ ΦC . τ0

i (N(Z)) = τ0
j (N(Z)).
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A Quantified HyperLTL formula is said to be well-defined if every instance
of a counting quantifier in the formula is well-defined.

Example 1 (Well-defined QHPs). The QHPs presented in the rest of this paper
are all well-defined, so here we give an example of a QHP that is not well-defined.
Consider this variant of Property 1: ∀π0.#π1: true. G (ψπ0,π1) ≥ 2R − 1. This
is not a well-defined QHP because Δπj ,πk

in the counting quantifier is simply
true, and its negation is not an equivalence relation over the set of traces.

Note that condition (1) in the definition above affects Δπj ,πk
while condition

(2) places a restriction on ϕ. The former condition prevents double-counting of
traces, while the latter ensures that the trace count is unambiguous.

The properties in our experiments require only syntactic checks to verify
well-definedness. Specifically, Δπj ,πk

is always of the form F (Pπj ,πk
) where P

is of the form P(σ1, σ2)
.= f(σ1) �= f(σ2). The negation of this is obviously an

equivalence relation over the set of all traces. Secondly, our QHPs are of the
form ∀π0. #π1:Δπj ,πk

. ϕ � N(Z) where ϕ enforces equality of the variables in
Z between the traces π0 and π1. These two features guarantee well-definedness.
In the rest of this paper, we only consider well-defined QHPs.

3.2 Applications of QHPs in Security Specification

Deniability: Our first example of a quantitative hyperproperty is deniability.
Suppose obs(σ) is a term that corresponds to the adversary observable part of
the state σ , while secret(σ) corresponds to the secret component of the state
σ . Deniability is satisfied when every trace of adversary observations can be
generated by at least N(Z) different secrets. For this, we define δ(σ1, σ2)

.=
secret(σ1) �= secret(σ2) and ≈O (σ1, σ2)

.= obs(σ1) = obs(σ2).

∀π0.#π1:F (δπj ,πk
). G (≈O

π0,π1
) ≥ N(Z)

τ0
1

τ1 τ1
1 τ2

1 τ3
1 τk

1τ0
1

. . . . . .

τ0
2

τ2 τ1
2 τ2

2 τ3
2 τk

2τ2
2

. . . . . .

τ0
3

τ3 τ1
3 τ2

3 τ3
3 τk

3τk
3

. . . . . .

τ0
CτC τ1

C τ2
C τ3

C τk
Cτ1

C . . . . . .

≈O ≈O ≈O ≈O ≈O

≈O ≈O ≈O ≈O ≈O

≈O ≈O ≈O ≈O ≈O
.
.
.

Fig. 5. Illustrating deniability.
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Figure 5 illustrates deniability. It shows a set of traces ΦC := {τ1, τ2, . . . , τC};
the circles represent the states in each trace and the secret values are shown
by color of the circle. For these traces, every pair of corresponding states have
the same observations: represented by ≈O, and every distinct pair of traces
differ in the secrets. Deniability is satisfied if |ΦC | ≥ N(Z). Satisfaction implies
that every trace of adversary observations has at least N(Z) counterparts with
identical observations but different values of secret(σ). If we can show in a system
satisfying deniability that each trace of secrets is equiprobable and N(Z) grows
exponentially in some parameters of the system, then we can conclude that
the system satisfies computational indistinguishability. Deniability can capture
probabilistic notions of confidentiality, such as confidentiality of Path ORAM.

Soundness: While deniability encodes a form of confidentiality, soundness is its
dual in the context of integrity. One example of soundness was given in Sect.
2.2 for the Z-K hats puzzle. Soundness is generally applicable to protocols that
offer probabilistic integrity guarantees. For instance, many interactive challenge-
response protocols consist of repeated rounds such that if the prover succeeds in
all rounds, the verifier can be convinced with a high probability that the prover is
not cheating. This can be viewed as a QHP stating that for every trace in which
a dishonest prover tricks a verifier into accepting an invalid proof, there are at
least N(Z) other traces with different prover responses in which the cheating is
detected. As usual, we require that traces be uniformly sampled from a finite set
in order to state soundness as a QHP.

Soundness is stated as ∀π0.#π1 : F (δπj ,πk
). G (ψπ0,π1) ≥ N(Z). The rela-

tion δ is defined as two states having different prover responses. ψ requires the
challenge-response protocol to fail in π1 if it succeeded in π0 and also that the
system parameters (the variables in Z) be identical between π0 and π1.

Summarizing QHP Specification: These examples demonstrate that QHPs
have important applications in security verification. They capture probabilistic
notions of both confidentiality and integrity. In particular, the following form
of QHPs consisting of a single quantifier alternation seems especially relevant
for security verification: ∀π0. #π1: Δπj ,πk

. ϕ � N(Z). Each of the examples of
quantitative hyperproperties discussed in the previous subsection – deniability,
soundness, as well as others like quantitative non-interference [46,54] fit in this
template. Therefore, in the rest of this paper, we focus on developing scalable
verification techniques for QHPs that follow this template.

4 Trace Enumerations

This section introduces the notion of a trace enumeration, which is a technique
that allows us to reduce the problem of counting traces to that of counting
satisfiable assignments to a formula in FOL(T ).
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4.1 Trace Enumeration Relations

We now formalize injective trace enumerations, which allow us to lower-bound
the number of traces captured by a counting quantifier in a QHP.

Definition 4 (Injective Trace Enumeration). Let us consider a transition
system M = 〈X, Init(X),Tx (X,X ′)〉 and the relation U(Y, τ1, τ2) where Y is a
set of variables disjoint from X, τ1 and τ2 are traces of this transition system.
Let ∀π0. #π1 : Δπj ,πk

. ϕ ≥ N(Z) be a QHP where Z ⊂ X. Suppose V(Y,Z)
is a predicate over the variables in Y and Z. We say that the pair V(Y,Z) and
U(Y, τ1, τ2) form an injective trace enumeration of the system M for the QHP
∀π0. #π1:Δπj ,πk

. ϕ ≥ N(Z) iff the following conditions are satisfied:

1. For every trace τ0 in ΦM and every satisfying assignment (Y, Z) for the pred-
icate V(Y,Z), there exists a trace τ1 ∈ ΦM which is related to the trace τ0 as
per the relation U via this same assignment to Y . Further, the pair τ0 and
τ1 satisfy the property ϕ and the valuation of the variables in Z in the initial
state of τ1 is equal to Z.

∀τ0 ∈ ΦM , Y, Z. V(Y, Z) ⇒ (2)(
∃τ1 ∈ ΦM . U(Y, τ0, τ1) ∧ {π0 �→ τ0, π1 �→ τ1} |= ϕ ∧ τ0

1 (Z) = Z
)

2. Different assignments to the variables in Y for the formula V(Y,Z) enumerate
different traces in U(Y, τ0, τ1), where “different” means satisfaction of Δπj ,πk

.

∀τ0, τ1, τ2 ∈ ΦM , Y1, Y2, Z. (3)
V(Y1, Z) ∧ V(Y2, Z) ∧ Y1 �= Y2 ⇒
U(Y1, τ0, τ1) ∧ U(Y2, τ0, τ2) ∧ τ0

1 (Z) = Z ∧ τ0
2 (Z) = Z ⇒

{πj �→ τ1, πk �→ τ2} |= Δπj ,πk

If V and U form an injective trace enumeration M for the property ∀π0. #π1:
Δπj ,πk

. ϕ ≥ N(Z), then for every trace τ0, there exist at least as many traces
satisfying the counting quantifier as there are satisfying assignments to Y in
V(Y,Z). This is made precise in the following lemma.

Lemma 1. [Trace Count Lower-Bound] If V(Y,Z) and U(Y, τ1, τ2) form an
injective trace enumeration of the system M for the QHP ∀π0. #π1:Δπj ,πk

. ϕ ≥
N(Z) and if #Y.V(Y,Z) is finite for all assignments to Z, then M |= ∀π0.#π1:
Δπj ,πk

. ϕ ≥ #Y.V(Y,Z).

Example 2 (Injective Trace Enumeration). Let P0[1], . . . ,P0[R] be a trace of
correct responses for some particular sequence of challenges for our running
example. Consider the array Y[1],Y[2], . . . ,Y[R] where each Y[j] ∈ {0, 1}. Y is a
boolean array of size R, and Y[i] = 1 means that the prover gives an incorrect
response to the challenge in round i. We can define the predicate V as follows.

V(Y,R) .=
(
∃i. 1 ≤ i ≤ R ∧ Y[i] �= 0

)
∧

(
∀i. (i < 1 ∨ i > R) ⇒ Y[i] = 0

)
(4)



214 S. Sahai et al.

The above definition ensures that at least one response is incorrect. Notice
that for every assignment to Y except the assignment of all zeros, the trace of
responses defined by ∀j. P1[j] = P0[j]⊕Y[j] (where ⊕ is exclusive or) corresponds
to a valid trace of the system and satisfies the counting quantifier in Property 1.
Specifically, every such response from the prover is incorrect and will result in the
protocol failing. We can use the above facts to define the relation U as follows:

U(Y, τ1, τ2)
.=

(
∀j. τ0

1 (P[j]) = τ0
2 (P[j]) ⊕ Y[j]

)
∧ (5)

τ0
1 (C) = τ0

2 (C) ∧ τ0
1 (R) = τ0

2 (R) ∧ (τR
1 (S) ⇒ ¬τR

2 (S))

The pair V and U form an injective trace enumeration for the system M (defined
in Fig. 1) for the Property 1. This is because different Y’s will result in different
prover responses for the same challenges. By Lemma 1, we can conclude that
Property 1 is satisfied if #Y.V(Y,R) ≥ 2R − 1

Analogous to injective trace enumerations, it is also possible to define sur-
jective trace enumerations that upper-bound the number of traces captured by
a counting quantifier. Details of surjective trace enumerations are presented in
the extended version of the paper [43].

5 Model Counting

As discussed in the previous section, trace enumeration relations can bound the
number of satisfying traces in a QHP. Given a QHP ∀π0. #π1 : Δπj ,πk

. ϕ �
N(Z), appropriate trace enumeration predicates V(Y,Z) and U can be used to
derive that ∀π0. #π1:Δπj ,πk

. ϕ � #Y.V(Y,Z). The final step in our verification
methodology is to show validity of #Y.V(Y,Z)�N(Z). To that end, this section
discusses our novel technique for model counting.

5.1 Model Counting via SMT Solving

Our approach borrows ideas from enumerative combinatorics [13,52,56] and
introduces the inference rules shown in Fig. 6 to reason about model counts
for formulas in FOL(T ). Each of the conclusions in the inference rules is a state-
ment involving model counts of FOL(T ) formulas, while each of the premises
is a formula in FOL(T ) that does not involve model counts and can, therefore,
be checked using SAT/SMT solvers. Most of the rules are straightforward, and
we do not describe them due to space constraints. The three interesting rules –
Injectivity , Ind≤ and Ind≥ – are discussed below.

Injectivity: This rule is based on the following idea from enumerative combina-
torics. Suppose we have two sets A and B. We can show that |A| ≤ |B| if there
exists an injective function from A to B. Translating this to model counts, the
set A in the rule corresponds to satisfying assignments to f(X), B corresponds
to satisfying assignments to g(Y ) and F is the injective witness function.
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Ind≥and Ind≤: Suppose the formulas f(X,n) and g(Y, n) are parameterized by
the integer variable n. If an injective witness function G (X,Y, n) is able to “lift”
satisfying assignments of f(Xn, n) and g(Yn, n) into a satisfying assignment of
f(Xn+1, n+1), then we can conclude that the number of satisfying assignments
to f(X,n + 1) are at least as many as the product of the number of satisfying
assignments to f(X,n) and g(Y, n). Ind≤ is the surjective version of this rule.
It applies when a satisfying assignment to f(Xn+1, n + 1) can be “lowered” into
satisfying assignments to f(Xn, n) and g(Yn, n) where the values of Xn and Yn

are given by the witness functions Hx and Hy respectively.

(#i. a ≤ i < b) = max (b − a, 0)
Range

#Y. f(X) ≥ 0
Positive

∧c
i=1 f(Xi) ∧ distinct(X1, . . . , Xc) is sat

#X. f(X) ≥ c
ConstLB

∧c
i=1 f(Xi) ∧ distinct(X1, . . . , Xc) is unsat

#X. f(X) < c
ConstUB

f(X, Y ) ⇒ g(X, Y )
#X. f(X, Y ) ≤ #X. g(X, Y )

UB

h(X, Y ) ⇔ f(X) ∧ g(Y )
#X ∪ Y . h(X, Y ) ≤ #X. f(X) × #Y. g(Y )

AndUB

f(X) ⇒ g(F (X))
f(X1) ∧ f(X2) ∧ X1 �= X2

) ⇒ F (X1) �= F (X2)

#X. f(X) ≤ #Y. g(Y )
Injectivity

h(X, Y ) ⇔ f(X) ∧ g(Y ) X ∩ Y = ∅
#X ∪ Y . h(X, Y ) = #X. f(X) × #Y. g(Y )

Disjoint

f(X, Y ) ⇔ g(X, Y ) ∨ h(X, Y )

#X. f(X, Y ) = #X. g(X, Y ) + #X. h(X, Y ) − #X. g(X, Y ) ∧ h(X, Y )
) Or

f(X, n) ∧ g(Y, n)
) ⇒ f(G (X, Y, n), n + 1)

(X1 �= X2 ∨ Y1 �= Y2) ⇒ G (X1, Y1, n) �= G (X2, Y2, n)
#X. f(X, n + 1) ≥ #X. f(X, n) × #Y. g(Y, n)

Ind≥

f(X, n + 1) ⇒ f(Hx(X, n + 1), n) ∧ g(Hy(X, n + 1), n)
)

X1 �= X2 ⇒ Hx(X1, n) �= Hx(X2, n) ∨ Hy(Y1, n) �= Hy(Y2, n)
)

#X. f(X, n + 1) ≤ #X. f(X, n) × #Y. g(Y, n)
Ind≤

Fig. 6. Model counting proof rules. Unless otherwise specified, premises are satisfied
when the formula is valid. Conclusions have an implicit universal quantifier.
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5.2 Model Counting in the Motivating Example

The definition of the predicate V in the motivating example is shown below.

V(Y,R) .=
(
∃i. 1 ≤ i ≤ R ∧ Y[i] �= 0

)
∧

(
∀i. ((i < 1 ∨ i > R) ⇒ Y[i] = 0)

)

Our task is to show #Y.V(Y,R) = 2R − 1. Recall that Y is an array of
binary values (i.e. the integers 0 and 1) and consider the following predicates:
Vf (Y,R) .=

(
∀i. (i < 1 ∨ i > R) ⇒ Y[i] = 0

)
, V1(Y,R) .=

(
∀i. Y[i] = 0

)
and

W(i) .= 0 ≤ i < 2. Using these definitions, the proof is as follows.

1. (ConstUB , Positive) #Y.Vf (Y,R) ∧ V1(Y,R) = 1.
2. (Or) #Y.Vf (Y,R) = #Y.V(Y,R) + #Y.V1(Y,R).
3. (ConstLB , ConstUB) #Y.V1(Y,R) = 1.
4. (ConstLB , ConstUB) #Y.Vf (Y, 1) = 2.
5. (Ind≤): #Y.Vf (Y,R) ≤ #i.W(i) × #Y.Vf (Y,R − 1).
6. (Ind≥): #Y.Vf (Y,R) ≥ #i.W(i) × #Y.Vf (Y,R − 1).
7. (Range): #i.W(i) = 2.
8. (4 – 7) imply that #Y.Vf (Y,R) = 2 × #Y.Vf (Y,R − 1), #Y.Vf (Y, 1) = 2,

this means #Y.Vf (Y,R) = 2R.
9. (2, 3, 8) imply that #Y.V(Y,R) = 2R − 1.

In step 5, the witness function is G (Y,R, i) .= Y[R + 1 �→ i], while in step 6,
they are H〈Y,R〉(Y,R + 1) .= 〈Y[R + 1 �→ 0],R〉 and Hi(Y,R + 1) .= (Y[R + 1]).5

Note steps 8 and 9 are automatically discharged by the SMT solver.

6 Experimental Results and Discussion

In this section, we present an experimental evaluation of the use of trace enu-
merations for the verification of quantitative hyperproperties.

6.1 Methodology

We studied five systems with varying complexity and QHPs. These were modeled
in the Uclid5 modeling and verification framework [44,51], which uses the Z3
SMT solver (v4.8.6) [23] to discharge the proof obligations. The experiments
were run on an Intel i7-4770 CPU @ 3.40 GHz with 8 cores and 32 GB RAM.

The verification conditions are currently manually generated from the mod-
els, but automation of this is straightforward and ongoing. The k-trace properties
were proven using self-composition [9,10] and induction. A number of strength-
ening invariants had to be specified manually for the inductive proofs. Many
of the invariants are relational and quantified and, therefore, difficult to infer
algorithmically. We note that recent work has made progress toward automated
inference of quantified invariants [27,36].

5 The notation arr [i �→ v] denotes an array that is identical to arr except for index i
which contains v.
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6.2 Overview of Results

Due to limited space, we only provide a brief description of our benchmarks
for evaluation and refer the interested reader to the extended version of our
paper [43] for a more detailed discussion. We have also made the models and
associated proof scripts available at [25]. A brief overview of the case studies
follows.

Table 1. Verification results of models.

Benchmark Hyperproperty Model
LoC

Proof
LoC

Num.
Annot

Verif.
Time

Electronic purse [7] Deniability 46 93 9 3.92 s

Password checker [29] Quantitative
non-interference

59 100 10 4.69 s

F-Y array shuffle Quantitative
information flow

86 195 96 7.38 s

ZK hats (Sect. 2.2) Soundness 91 191 36 6.34 s

Path ORAM [48] Deniability 587 209 142 9.74 s

1. Electronic Purse. We model an electronic purse, with a secret initial bal-
ance, proposed by Backes et al. [7]. A fixed amount is debited from the purse
until the balance is insufficient for the next transaction. We prove a denia-
bility property: there is a sufficient number of traces with identical attacker
observations but different initial balances.

2. Password Checker. We model the password checker from Finkbeiner et
al. [29], but we allow passwords of unbounded length n. We prove quantitative
non-interference: information leakage to an attacker is ≤n bits.

3. Array Shuffle. We implement a variant of the Fisher-Yates shuffle. We chose
this because producing random permutations of an array is an important com-
ponent of certain cryptographic protocols (e.g., Ring ORAM [40]). We prove a
quantitative information flow property stating that all possible permutations
are indeed generated by the shuffling algorithm.

4. ZK Hats. We prove soundness of the zero-knowledge protocol in Sect. 2.
5. Path ORAM. Discussed in Sect. 6.3.

The properties we prove on these models and the results of our evaluation are pre-
sented in Table 1 which shows the size of each model, the number of lines of proof
code (this is the code for self-composition, property specification, etc.), the num-
ber of verification annotations (invariants and procedure pre-/post-conditions)
and the verification time for each example. Once the auxiliary strengthening
invariants are specified, the verification completes within a few seconds. This
suggests that the methodology can scale to larger models, and even implemen-
tations. The main challenge in the application of the methodology is the con-
struction of the trace enumeration relations, associated witness functions, and
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the specification of strengthening invariants. Each of these requires application-
specific insight. Since most of our enumerations and invariants are quantified,
some of the proofs also required tweaking the SMT solver’s configuration options
(e.g. turning off model-based quantifier instantiation in Z3).

6.3 Deniability of Path ORAM

In this section, we discuss our main case study: the application of trace enumer-
ations for verifying deniability of server access patterns in Path ORAM [48], a
practical variant of Oblivious RAM (ORAM) [33]. ORAMs refer to a class of
algorithms that allow a client with a small amount of storage to store/load a
large amount of data on an untrusted server while concealing the client access
pattern from the server. Path ORAM stores encrypted data on the server in an
augmented binary tree format. Each node stores Z data blocks, referred to as
buckets of size Z. Additionally, the client has a small amount of local storage
called the stash. The client maintains a secret mapping called the position map
to keep track of the path where a data block is stored on the server. Each entry
in the position map maps a client address to a leaf on the server. Path ORAM
maintains the invariant that every block is stored somewhere along the path
from the root to the leaf node that the block is mapped to by the position map.

Deniability of Server Access Patterns in Path ORAM: We formulate
security of access patterns in Path ORAM as a deniability property stating that
for every infinitely-long trace of server accesses, there are (numBlks − 1)! traces
of client accesses with identical server observations but different client requests.

∀π0. #π1 : F (δπj ,πk
). G (ψπ0,π1) ≥ (numBlks − 1)! (6)

The binary predicate δ imposes the requirement that the client’s request are
different in each of the traces captured by the counting quantifier, and the con-
dition in ψ states that all the traces captured by the counting quantifier have
the same observable access pattern as π0.

Verification of Deniability in Path ORAM: To verify the QHP stated in
Eq. 6, for every trace of server accesses we need to generate (numBlks−1)! traces
of client requests that produce the same server access.

Suppose we have Path ORAM (a) that is initialized with some position map.
Now consider the Path ORAM (b) with the same number of blocks, but with
an initial position map that is a derangement of the position map of (a).6 The
key insight is that ORAM (b) can simulate an identical server access pattern
as ORAM (a) by appropriately choosing a different client request that maps to
the same leaf that is being accessed by (a) and then updating the position map
identically as (a). This is shown in Fig. 7, which shows two Path ORAMs that
produce identical server access patterns but service different client requests.
6 A derangement of a set is a permutation of the elements of the set such that no

element appears in its original position.
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Fig. 7. Path ORAMs satisfying the counting quantifier of Eq. 6, where, p represents
the position map indexed from 1 and r is the client’s request.

The above insight leads to a trace enumeration where two traces are related
via U if their position maps are derangements of each other, the client accesses
are permuted as per the derangement while all other parameters of the ORAM
are identical. We use this to prove Property 6. Further details are given in [43].

7 Related Work

Hyperproperties: Research into secure information flow started with the
seminal work of Denning and Denning [24], Goguen and Meseguer [32] and
Rushby [42]. The self-composition construction for the verification of secure
information flow was introduced by Barthe et al. [10]. Clarkson and Schnei-
der [21] introduced the class of specifications called hyperproperties. Clarkson
and colleagues also introduced HyperLTL and HyperCTL∗ [19], which are tem-
poral logics for specifying hyperproperties, while verification algorithms for these
were introduced by Finkbeiner and colleagues in [30]. Cartesian Hoare Logic [47]
was introduced by Sousa and Dillig and enables the specification and verification
of hyperproperties over programs as opposed to transition systems. A number
of subsequent efforts have studied hyperproperties in the context of program
verification [5,26,45,53].

Quantitative Information Flow: Quantitative hyperproperties build on the
rich literature of quantitative information flow (QIF) [3,17,20,34,46]. The QIF
problem is to quantify (or bound) the number of bits of secret information that
is attacker-observable. Certain notions of QIF can be expressed as QHPs. It
is important to note QHPs can express security specifications (e.g., soundness)
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that are not QIF. Yasuoka and Terauchi studied QIF from a theoretical per-
spective and showed that it could be expressed as hypersafety and hyperlive-
ness [54]. Approaches based on QIF measures such as min-entropy [46], Shannon
entropy [18] etc. have also been applied in the context of static analysis [38].

Quantitative Hyperproperties: Quantitative Cartesian Hoare Logic (QCHL)
enables verification of certain quantitative properties of programs [16]. QHPs are
more expressive than QCHL, the latter counts events within a trace (e.g. memory
accesses), while QHPs count the number of traces satisfying certain conditions.

The most closely related work to ours is of Finkbeiner et al. [29] who intro-
duced Quantitative HyperLTL over Kripke structures. They also introduced a
verification algorithm for this logic that is based on maximum model counting.
However, their algorithm does not scale to reasonable-sized systems, and exper-
iments from their paper show that the approach times out when checking an
8-bit leak in a password checker (using 8-bit passwords). We differ from their
work in three important ways. First, our properties are defined over symbolic
transition systems rather than Kripke structures. This allows modeling and ver-
ification of QHPs over infinite-state systems. Second, our bounds are symbolic,
which enables us to express bounds as functions of transition system parameters.
Finally, our definition of Quantitative HyperLTL is also more expressive. It is
not possible to convert our QHPs into (non-quantitative) HyperLTL formulas
with k-traces for any fixed value of k.

Verification of ORAMs: In concurrent work with ours, Barthe et al. [11] and
Darais et al. [22] have introduced specialized mechanisms to prove security of
ORAMs. Barthe et al. [11] introduced a probabilistic separation logic (PSL) that
(among other things) can be used to reason about the security of ORAMs. Unlike
QHPs, PSL does not permit quantitative reasoning about probabilities of events
and also does not (yet) support machine-checked reasoning. Darais et al. [22]
introduce a type system that enforces obliviousness; they use this type system
to implement a tree-based ORAM. Note that QHPs can express specifications
other than obliviousness, and obliviousness need not necessarily be a QHP.

8 Conclusion

Quantitative hyperproperties are a powerful class of specifications that stipu-
late the existence of a certain number of traces satisfying certain constraints.
Many important security guarantees, especially those involving probabilistic
guarantees of security, can be expressed as quantitative hyperproperties. Unfor-
tunately, verification of quantitative hyperproperties is a challenging problem
because these specifications require simultaneous reasoning about a large num-
ber of traces of a system. In this paper, we introduced a specification language,
satisfaction semantics, and a verification methodology for quantitative hyper-
properties. Our verification methodology is based on reducing the problem of
counting traces into that of counting the number of assignments that satisfy a
first-order logic formula. Our methodology enables security verification of many
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interesting security protocols that were previously out of reach, including confi-
dentiality of access pattern accesses in Path ORAM.
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Abstract. Observational models make tractable the analysis of infor-
mation flow properties by providing an abstraction of side channels. We
introduce a methodology and a tool, Scam-V, to validate observational
models for modern computer architectures. We combine symbolic execu-
tion, relational analysis, and different program generation techniques to
generate experiments and validate the models. An experiment consists of
a randomly generated program together with two inputs that are obser-
vationally equivalent according to the model under the test. Validation is
done by checking indistinguishability of the two inputs on real hardware
by executing the program and analyzing the side channel. We have eval-
uated our framework by validating models that abstract the data-cache
side channel of a Raspberry Pi 3 board with a processor implementing
the ARMv8-A architecture. Our results show that Scam-V can identify
bugs in the implementation of the models and generate test programs
which invalidate the models due to hidden microarchitectural behavior.

Keywords: Testing · Side channels · Information flow security ·
Model validation · Microarchitectures

1 Introduction

Information flow analysis that takes into account side channels is a topic
of increasing relevance, as attacks that compromise confidentiality via dif-
ferent microarchitectural features and sophisticated side channels continue to
emerge [2,27,28,31–33,40]. While there are information flow analyses that try
to counter these threats [3,15], these approaches use models that abstract from
many features of modern processors, like caches and pipelining, and their effects
on channels that can be accessed by an attacker, like execution time and power
consumption. Instead, these models [36] include explicit “observations” that
become available to an attacker when the program is executed and that should
overapproximate the information that can be observed on the real system.
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Fig. 1. Validation framework workflow

While abstract models are indispensable for automatic verification because
of the complexity of modern microarchitectures, the amount of details hidden by
these models makes it hard to trust that no information flow is missed, i.e., their
soundness. Different implementations of the same architecture, as well as opti-
mizations such as parallel and speculative execution, can introduce side channels
that may be overlooked by the abstract models. This has been demonstrated by
the recent Spectre attacks [32]: disregarding these microarchitectural features
can lead to consider programs that leak information on modern CPUs as secure.
Thus, it is essential to validate whether an abstract model adequately reflects
all information flows introduced by the low-level features of a specific processor.

In this work, we introduce an approach that addresses this problem: we show
how to validate observational models by comparing their outputs against the
behavior of the real hardware in systematically generated experiments. In the
following, we give an overview of our approach and this paper.

Our Contribution. We introduce Scam-V (Side Channel Abstract Model Val-
idator), a framework for the automatic validation of abstract observational
models. At a high level, Scam-V generates well-formed1 random binaries and
attempts to construct pairs of initial states such that runs of the binaries from
these states are indistinguishable at the level of the model, but distinguishable
on the real hardware. In essence, finding such counterexamples implies that the
observational model is not sound, and leads to a potential vulnerability. Figure 1
illustrates the main workflow of Scam-V.

The first step of our workflow (described in Sect. 3) is the generation of a
binary program for the given architecture, guided towards programs that trigger
certain features of the architecture. The second step translates the program to
the intermediate language BIR (described in Sect. 2.4) and annotates the result
with observations according to the observational model under validation. This
transpilation is provably correct with respect to the formal model of the ISA,
i.e., the original binary program and the transpiled BIR program have the same
effects on registers and memory. In step three we use symbolic execution to syn-

1 Terminating programs which do not cause run-time exceptions and emit observations
required by the analysis.
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thesize the weakest relation on program states that guarantees indistinguishabil-
ity in the observational model (Sect. 4). Through this relation, the observational
model is used to drive the generation of test cases – pairs of states that satisfy
the relation and can be used as inputs to the program (Sect. 5). Finally, we run
the generated binary with different test cases on the real hardware, and compare
the measurements on the side channel of the real processor. A description of this
process together with general remarks on our framework implementation are in
Sect. 6. Since the generated test cases satisfy the synthesized relation, soundness
of the model would imply that the side-channel data on the real hardware cannot
be distinguished either. Thus, a test case where we can distinguish the two runs
on the hardware amounts to a counterexample that invalidates the observational
model. After examining a given test case, the driver of the framework decides
whether to generate more test cases for the same program, or to generate a new
program.

We have implemented Scam-V in the HOL4 theorem prover2 and have eval-
uated the framework on three observational models (introduced in Sect. 2.3) for
the L1 data-cache of the ARMv8 processor on the Raspberry Pi 3 (Sect. 2.2).
Our experiments (Sect. 7) led to the identification of model invalidating microar-
chitectural features as well as bugs in the ARMv8 ISA model and our observa-
tional extensions. This shows that many existing abstractions are substantially
unsound.

Since our goal is to validate that observational models overapproximate hard-
ware information flows, we do not attempt to identify practically exploitable
vulnerabilities. Instead, our experiments attempt to validate these models in the
worst case scenario for the victim. This consists of an attacker that can precisely
identify the cache lines that have been evicted by the victim and that can min-
imize the noise of these measurements in the presence of background processes
and interrupts.

2 Background

2.1 Observational Models

We briefly introduce the concepts of side channels, indistinguishability, observa-
tional models, and observational equivalence. For the rest of this section, consider
a fixed program that runs on a fixed processor. We can model the program run-
ning on the processor by a transition system M = 〈S, →〉, where S is a set of
states and →⊆ S × S a transition relation. In automated verification, the state
space of such a model usually reflects the possible values of program variables
(or: registers of the processor), abstracting from low-level behavior of the pro-
cessor, such as cache contents, electric currents, or real-time behavior. That is,
for every state of the real system there is a state in the model that represents
it, and a state of the model usually represents a set of states of the real system.

Then, a side channel is a trait of the real system that can be read from by
an attacker and that is not modeled in M .
2 https://hol-theorem-prover.org.
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Definition 1 (Indistinguishability). States r1 and r2 of the real system are
indistinguishable if a real-world attacker is not able to distinguish executions
from r1 or r2 by means of the side channel on the real hardware.
Note that executions may be distinguishable even if they end in the same final
state, e.g., if the attacker is able to measure execution time.

In order to verify resilience against attacks that use side channels, one option
is to extend the model to include additional features of the real system and to for-
malize indistinguishability in terms of some variations of non-interference [25,26].
Unfortunately, it is infeasible to develop formal models that capture all side
channels of a modern computer architecture. For instance, precisely determining
execution time or power consumption of a program requires to deal with complex
processor features such as cache hierarchies, cache replacement policies, specula-
tive execution, branch prediction, or bus arbitration. Moreover, for some impor-
tant parts of microarchitectures, their exact behavior may not even be public
knowledge, e.g., the mechanism used to train the branch predictor. Additionally,
information flow analyses cannot use the same types of overapproximations that
are used for checking safety properties or analyzing worst-case execution time,
e.g., the introduction of nondeterminism to cover all possible outcomes.

In order to handle this complexity, information flow analyses [3,15] use mod-
els designed to overapproximate information flow to channels in terms of system
state observations. To this end, the model is extended with a set of possible
observations O and we consider a transition relation →⊆ S × O × S, i.e., each
transition produces an observation that captures the information that it poten-
tially leaks to the attacker. We assume that the set O contains an empty obser-
vation ⊥, and call a transition labeled with ⊥ a silent transition. We call the
resulting transition system an observational model. For instance, in case of a
rudimentary cacheless processor, the execution time of a program depends only
on the sequence of executed instructions. In this case, extending the model with
observations that reveal the instructions is more convenient than producing a
clock-accurate model of the system.

We use the operator ◦ for the sequential composition of observations. In
particular, for a trace π = s0 →o1 s1 . . . →on sn of the model, we write o1◦. . .◦on

for the sequence of observations along π. We write o1 ◦ . . . ◦ on ≈ o′
1 ◦ . . . ◦ o′

n′ if
the two sequences are equal after removing silent transitions. Comparing traces
with observations leads to a notion of observational equivalence, defined as a
relation on program states.
Definition 2 (Observational equivalence). Traces π = s0 →o1 s1 . . . →on

sn and π′ = s′
0 →o′

1 s′
1 . . . →o′

n′ s′
n′ of an observational model M are observa-

tionally equivalent (written as π ∼M π′) iff o1 ◦ . . . ◦ on ≈ o′
1 ◦ . . . ◦ o′

n′ .
States s1 ∈ S and s2 ∈ S are observationally equivalent, denoted s1 ∼M s2,

iff for every possible trace π1 of M that starts in s1 there is a trace π2 of M that
starts in s2 such that π1 ∼M π2, and vice versa.

Note that this notion is, in principle, different from the notion of indistin-
guishability. The overapproximation of information flows can lead to false posi-
tives: for example, execution of a program may require the same amount of time
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Fig. 2. L1 data-cache structure.

even if the sequences of executed instructions are different. A more severe con-
cern is that these abstractions may overlook some flows of information due to
the number of low-level details that are hidden. For instance, an observational
model may not take into account that for some microcontrollers the number of
clock cycles required for multiplication depends on the value of the operands.

The use of an abstract model to verify resilience against side-channel attacks
relies on the assumption that observational equivalence entails indistinguishabil-
ity for a real-world attacker on the real system:

Definition 3 (Soundness). An observational model M is sound if whenever
the model states s1 and s2 represent the real system states r1 and r2, respectively,
then s1 ∼M s2 entails indistinguishability of r1 and r2.

2.2 The Evaluation Platform: Raspberry Pi 3

In order to evaluate our framework, we selected Raspberry Pi 33, which is a
widely available ARMv8 embedded system. The platform’s CPU is a Cortex-
A53, which is an 8-stage pipelined processor with a 2-way superscalar and in-
order execution pipeline. The CPU implements branch prediction, but it does not
support speculative execution. This makes the CPU resilient against variations
of Spectre attacks [5].

In the following, we focus on side channels that exploit the Level 1 (L1) data-
cache of the system. The L1 data-cache is transparent for programmers. When
the CPU needs to read a location in memory in case of a cache miss, it copies
the data from memory into the cache for subsequent uses, tagging it with the
memory location from which the data was read.

Data is transferred between memory and cache in blocks of 64 bytes, called
cache lines. The L1 data-cache (Fig. 2) is physically indexed and physically
tagged and is 4-way set associative: each memory location can be cached in four
different entries in the cache—when a line is loaded, if all corresponding entries

3 https://www.raspberrypi.org.

https://www.raspberrypi.org
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are occupied, the CPU uses a specific (and usually underspecified) replacement
policy to decide which colliding line should be evicted. The whole L1 cache is
32KB in size, hence it has 128 cache sets (i.e. 32 KB/64 B/4). Let a be a physical
address, in the following we use off(a) (i.e., least significant 6 bits), index(a)
(i.e., bits from 6 to 12), and tag(a) (i.e., the remaining bits) to extract the cache
offset, cache set index, and cache tag of the address.

The cache implements a prefetcher, for some configurable k ∈ N: when it
detects a sequence of k cache misses whose cache set indices are separated by a
fixed stride, the prefetcher starts to fetch data in the background. For example,
in Fig. 2, if k = 3 and the cache is initially empty then accessing addresses a, b,
and c, whose cache lines are separated by a stride of 2, can cause the cache to
prefetch the block [384 . . . 449].

2.3 Different Attacker and Observational Models

Attacks that exploit the L1 data-cache are usually classified in three categories:
In time-driven attacks (e.g. [47]), the attacker measures the execution time of
the victim and uses this knowledge to estimate the number of cache misses and
hits of the victim; In trace-driven attacks (e.g. [1,48]), the adversary can profile
the cache activities during the execution of the victim and observe the cache
effects of a particular operation performed by the victim; Finally, in access-driven
attacks (e.g. [39,46]), the attacker can only determine the cache sets modified
after the execution of the victim has completed. A widely used approach to
extract information via cache is Prime+Probe [40]: (1) the attacker reads its
own memory, filling the cache with its data; (2) the victim is executed; (3) the
attacker measures the time needed to access the data loaded at step (1): slow
access means that the corresponding cache line has been evicted in step (2).

In the following we disregard time-driven attacks and trace-driven attacks:
the former can be countered by normalizing the victim execution time; the latter
can be countered by preventing victim preemption. Focusing on access-driven
attacks leads to the following notion of indistinguishability:

Definition 4. Real system states r1 and r2 are indistinguishable for access-
driven attacks on the L1 data-cache iff executions starting in r1 or r2 modify
the same cache sets.

We remark that for multi-way caches, the need for models that overapprox-
imate the information flow is critical since the replacement policies are seldom
formally specified and a precise model of the channel is not possible. The fol-
lowing observational model attempts to overapproximate information flows for
data-caches by relying on the fact that accessing two different addresses that
only differ in their cache offset produces the same cache effects:

Definition 5. The transition relation of the multi-way cache and pc observa-
tional model is s →o

mwc,pc s′, where →o
mwc,pc models the execution of one single

instruction, with o ∈ N × (({rd, wt} × N × N) ∪ ⊥). If o = (pc, acc) then pc is
the current program counter and acc = (op, t, i) is the memory access performed
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by the instruction, where op is the memory operation, t is the cache tag and i
is the cache set index corresponding to the address. If the instruction does not
access the memory, then acc =⊥.

Notice that by making the program counter observable, this model assumes that
the attacker can infer the sequence of instructions executed by the program.

We introduce several relaxed models, representing different assumptions on
the hardware behavior and attacker capability. Each relaxed model is obtained
by projecting observations of Definition 5. Let α be a relaxed model and fα the
corresponding projection function, then s →o′

α s′ iff exists o such that fα(o) = o′

and s →o
mwc,pc s′.

The following model assumes that the effects of instructions that do not
interact with the data memory are not measurable, hence the attacker does not
observe the program counter:

Definition 6. The projection of the multi-way cache observational model is
fmwc((pc, acc)) = acc.

On many processors, the replacement policy for a cache set does not depend
on previous accesses performed to other cache sets. The resulting isolation among
cache sets leads to the development of an efficient countermeasure against access-
driven attacks: cache coloring [23,45]. This consists in partitioning the cache
sets into multiple regions and ensuring that memory pages accessible by the
adversary are mapped to a specific region of the cache. In this case, accesses to
other regions do not affect the state of cache sets that an attacker can examine.
Therefore these accesses are not observable. This assumption is captured by the
following model:

Definition 7. The projection of the partitioned multi-way cache observational
model is fpmwc((pc, acc)) = acc if acc = (op, t, i) and i belongs to the set of
cache sets that are addressable by the attacker, and is ⊥ otherwise.

Notice that cache prefetching can violate soundness of this model, since accesses
to the non-observable region of the cache may lead to prefetching addresses that
lie in the observable part of the cache (see Sect. 7.2).

Finally, for direct-mapped caches, where each memory address is mapped to
only one cache entry, the cache tag should not be observable if the attacker does
not share memory with the victim:

Definition 8. The projection of the direct-mapped cache observational model
is fdc((pc, (op, t, i))) = (op, i) and fdc((pc, ⊥)) =⊥.

Since the cache in Cortex-A53 is multi-way set associative, this model is not
sound. For example, in a two-way set associative cache, accessing a, a and a, b,
where both a and b have the same cache set index but different cache tags, may
result in different cache states.
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Fig. 3. BIR transpilation example

2.4 Binary Intermediate Representation

To achieve a degree of hardware independence, we use the architecture-agnostic
intermediate representation BIR [34]. It is an abstract assembly language with
statements that work on memory, arithmetic expressions, and jumps. Figure 3
shows an example of code in a generic assembly language and its transpiled BIR
code. This code performs a conditional jump to l2 if Z holds, and otherwise it
sets X1 to the multiplication X2 ∗ X3. Then, at l2 it loads a word from memory
at address X1 into X2, and finally adds 8 to the pointer X1. BIR programs are
organized into blocks, which consist of jump-free statements and end in either
conditional jump (CJMP), unconditional jump (JMP), or HALT.

BIR also has explicit support for observations, which are produced by state-
ments that evaluate a list of expressions in the current state. To account for
expressive observational models, BIR allows conditional observation. The con-
dition is represented by an expression attached to the observation statement.
The observation itself happens only if this condition evaluates as true in the
current state. The observations in Fig. 3 reflect a scenario where the data-
cache has been partitioned: some lines are exclusively accessible by the vic-
tim (i.e. the program), some lines can be shared with the attacker. The state-
ment OBS(sline(X1), [tag(X1), index(X1)]) for the load instruction con-
sists of an observation condition (sline(X1)) and a list of expressions to
observe ([tag(X1), index(X1)]). The function sline checks that the argu-
ment address is mapped in a shared line and therefore visible to the attacker.
The functions tag and index extract the cache tag and set index in which the
argument address is mapped. Binary programs can be translated to BIR via
a process called transpilation. This transformation reuses formal models of the
ISAs and generates a proof that certifies correctness of the translation by estab-
lishing a bisimulation between the two programs.

3 Program Generation

We base our validation of observational models on the execution of binary pro-
grams rather than higher-level code representations. This approach has the fol-
lowing benefits: (i) It obviates the necessity to trust compilers or reason about
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Fig. 4. Example programs generated by the Scam-V random program generator.

Fig. 5. Example programs generated by Scam-V monadic program generators.

how their compilation affects side-channels. (ii) Implementation effort is reduced
because most existing side-channel analysis approaches also operate on binary
representations, which requires ISA models. (iii) This approach allows to find
ISA model faults independently of the compilation. (iv) It enables a unified
infrastructure to handle many different types of channels.

In Scam-V, we implemented two techniques to generate well-formed bina-
ries: random program generation and monadic program generation. The random
generator leverages the instruction encoding machinery from the existing HOL4
model of the ISA and produces arbitrary well-formed ARMv8 binaries, with
the possibility to control the frequency of occurrences of each instruction class.
The monadic generator is following a grammar-driven approach in the style of
QuickCheck [13] that generates arbitrary programs that fit a specific pattern or
template. The program templates can be defined in a modular, declarative style
and are extensible. We use this approach to generate programs in a guided fash-
ion, focusing on processor features that we want to exercise in order to validate a
model, or those we suspect may lead to a counterexample. Figures 4 and 5 show
some example programs generated by Scam-V, including straight-line programs
that only do memory loads, programs that load from addresses in a stride pat-
tern to trigger automatic prefetching, and programs with branches. More details
on how the program generators work can be found in [38].
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4 Synthesis of Weakest Relation

Synthesis of the weakest relation is based on standard symbolic execution tech-
niques. We only cover the basic ideas of symbolic execution in the following and
refer the reader to [30] for more details. We use X to range over symbols, and
c, e, and p to range over symbolic expressions. A symbolic state σ consists of
a concrete program counter iσ, a path condition pσ, and a mapping mσ from
variables to symbolic expressions. We write e(σ) = e for the symbolic evaluation
of the expression e in σ, and e(s) for the value obtained by substituting the
symbols of the symbolic expression e with the values of the variables in s, where
s is a concrete state.

Symbolic execution produces one terminating state4 for each possible exe-
cution path: a terminating state is produced when HALT is encountered; the
execution of CJMP c l1 l2 from state σ follows both branches using the path
conditions c(σ) and ¬c(σ). Symbolic execution of the example in Fig. 3 pro-
duces the terminating states σ1 and σ2. For the first branch we have pσ1 = Z
and mσ1 = {X1 → X1 + 8, X2 → LOAD(M, X1)} (we omit the variables that
are not updated), and for the second branch pσ2 = ¬Z and mσ2 = {X1 →
X2 ∗ X3 + 8, X2 → LOAD(M, X2 ∗ X3)}.

We extend standard symbolic execution to handle observations. That is, we
add to each symbolic state a list lσ, and the execution of OBS c #»e in σ appends the
pair (c, #»e ) to lσ, where c = c(σ) and #»e [i] = #»e [i](σ) are the symbolic evaluation
of the condition and expressions of the observation. For instance, in the example
of Fig. 3 the list for the terminating states are

lσ1 = [(sline(X1), [tag(X1), index(X1)])]
lσ2 = [(sline(X2 ∗ X3), [tag(X2 ∗ X3), index(X2 ∗ X3)])]

Let Σ be the set of terminating states produced by the symbolic execution, s
be a concrete state, and σ ∈ Σ be a symbolic state such that pσ(s) holds, then
executing the program from the initial state s produces the value mσ(X)(s)
for the variable X. Moreover, let lσ = [(c1, #»e 1) . . . (cn, #»e n)], then the generated
observations are (c1, #»e 1)(s)◦. . .◦(cn, #»e n)(s), where (c1, #»e 1)(s) = #»e 1(s) if c1(s),
and otherwise ⊥ (i.e. observations are list of concrete values).

After computing Σ, we synthesize the observational equivalence relation
(denoted by ∼) by ensuring that every possible pair of execution paths have
equivalent lists of observations. Formally, s1 ∼ s2 is equivalent to:

∧

(σ1,σ2)∈Σ×Σ

(pσ1(s1) ∧ pσ2(s2) ⇒ lσ1(s1) = lσ2(s2))

This synthesized relation implies the observational equivalence defined in
Sect. 2 (Definition 2). In the example, the synthesized relation (after simplifica-
tion) is as follows (notice that primed symbols represent variables of the second
state and we omitted the symmetric cases):
4 We consider only terminating programs.
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Fig. 6. Example test cases when the first 10 cache sets are shared.

(Z ∧ Z′) ⇒(
sline(X1) = sline(X′1) ∧
sline(X1) ⇒ (tag(X1) = tag(X′1) ∧ index(X1) = index(X′1))

)
∧

(Z ∧ ¬Z′) ⇒(
sline(X1) = sline(X′2 ∗ X′3) ∧
sline(X1) ⇒ (tag(X1) = tag(X′2 ∗ X′3) ∧ index(X1) = index(X′2 ∗ X′3))

)
∧

(¬Z ∧¬Z′) ⇒(
sline(X2 ∗X3) = sline(X′2 ∗X′3) ∧
sline(X2 ∗X3) ⇒ (tag(X2 ∗X3) = tag(X′2 ∗X′3) ∧ index(X2 ∗X3) = index(X′2 ∗X′3))

)

We recall that Raspberry Pi 3 has 128 cache sets and 64 bytes per line.
Figure 6 shows two pairs of states that satisfy the relation, assuming only the
first 10 cache sets are shared. States s1 and s2 lead the program to access the
third cache set, while s′

1 and s′
2 lead the program to access cache sets that are

not shared, therefore they generate no observations.

5 Test-Case Generation

A test case for a program P is a pair of initial states s1, s2 such that P produces
the same observations when executed from either state, i.e., s1 ∼ s2. The rela-
tion as described in Sect. 4 characterizes the space of observationally equivalent
states, so a simple but naive approach to test-case generation consists in query-
ing the SMT solver for a model of this relation. The model that results from the
query gives us two concrete observationally equivalent values for the registers
that affect the observations of the program, so at this point we could forward
these to our testing infrastructure to perform the experiment on the hardware.

However, the size of an observational equivalence class can be enormous,
because there are many variations to the initial states that cannot have effects
on the channels available to the attacker. Choosing a satisfying assignment for
the entire relation every time without any extra guidance risks producing many
test cases that are too similar to each other, and thus unlikely to find counterex-
amples. For instance, the SMT solver may generate many variations of the test
case (s1, s2) in Fig. 6 by iterating over all possible values for register X2 of state
s1, even if the value of this register is immaterial for the observation.

In practice, we explore the space of observationally equivalent states in a more
systematic manner. To this end, Scam-V supports two mechanisms to guide the
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selection of test cases: path enumeration and term enumeration. Path enumer-
ation partitions the space according to the combination of symbolic execution
paths that are taken, whereas term enumeration partitions the space according
to the value of a user-supplied BIR expression. In both cases, the partitions are
explored in round-robin fashion, choosing one test case from each partition in
turn. To make the queries to the SMT solver more efficient, we only generate a
fragment of the relation that corresponds to the partition under test.

Path Enumeration. Every time we have to generate a test case, we first select
a pair (σ1, σ2) ∈ Σ × Σ of symbolic states as per Sect. 4, which identifies a pair
of paths (pσ1 , pσ2). The chosen paths vary in each iteration in order to achieve
full path coverage. The query given to the SMT solver then becomes5

pσ1(s1) ∧ pσ2(s2) ∧ lσ1(s1) = lσ2(s2)

Since the meat of the relation is a conjunction of implications, this is a
natural partitioning scheme that ensures all conjuncts are actually explored.
Note that without this mechanism, the SMT solver could always choose states
that only satisfy one and the same conjunct. To guide this process even further,
the user can supply a path guard, which is a predicate on the space of paths. Any
path not satisfying the guard is skipped, allowing the user to avoid exploring
unwanted paths. For example, for the program in Fig. 3 we can use a path guard
to force the test generation to select only paths that produce no observations:
e.g., (Z ⇒ ¬sline(X1)) ∧ (¬Z ⇒ ¬sline(X2 ∗ X3)).

Term Enumeration. In addition to path enumeration, we can choose a BIR
expression e that depends on the symbolic state, and a range R of values to
enumerate. Every query also includes the conjuncts eσ1 = v1 ∧ eσ2 = v2 where
v1, v2 ∈ R and such that the vi are chosen to achieve full coverage of R×R. Term
enumeration can be useful to introduce domain-specific partitions, provided that
R×R is small enough. For example, this mechanism can be used to ensure that we
explore addresses that cover all possible cache sets, if we set e to be a mask that
extracts the cache set index bits of the address. For example, for the program
in Fig. 3 we can use Z ∗ index(X1) + (1 − Z) ∗ index(X2 ∗ X3) to enumerate all
combinations of accessed cache sets while respecting the paths.

6 Implementation

The implementation6 of Scam-V is done in the HOL4 theorem prover using its
meta-language, i.e., SML. Scam-V relies on the binary analysis platform HolBA
for transpiling the binary code of test programs to the BIR representation. This

5 Note that this is equivalent to taking a fragment of the observational equivalence
relation, specifically the case when pσ1 (s1) ∧ pσ2 (s2) holds.

6 Our implementation of Scam-V is embedded in HolBA, which is available at https://
github.com/kth-step/HolBA. Our extendable experimentation platform consists of
several “EmbExp-*” repositories available at https://github.com/kth-step.

https://github.com/kth-step/HolBA
https://github.com/kth-step/HolBA
https://github.com/kth-step
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Fig. 7. Experiment handling design with numbered steps. This showcases the workflow
for producing, preparing, executing and evaluating one experiment.

transpilation uses the existing HOL4 model of the ARMv8 architecture [16]
for giving semantics to ARM programs. In order to validate the observational
models of Sect. 2.3, we extended the transpilation process to inline observation
statements into the resulting BIR program. These observations represent the
observational power of the side channel. In order to compute possible execution
paths of test programs and their corresponding observations, which are needed
to synthesize the observational equivalence relation of Sect. 4, we implemented
a symbolic execution engine in HOL4. All program generators from Sect. 3 as
well as the weakest relation synthesis from Sect. 4 and the test-case generator
from Sect. 5 are implemented as SML libraries in Scam-V. The latter uses the
SMT solver Z3 [14] to generate test inputs. For conducting the experiments in
this paper, we used Raspberry Pi 3 boards equipped with ARM Cortex-A53
processors implementing the ARMv8-A architecture.

The Scam-V pipeline generates programs and pairs of observationally equiv-
alent initial states (test cases) for each program. Each combination of a program
with one of its test cases is called an experiment. After generating experiments,
we execute them on the processor implementation of interest to examine their
effects on the side channel. Figure 7 depicts the life of a single experiment as goes
through our experiment handling design. This consists of: (step 1) generating
an experiment and storing it in a database, (step 2) retrieving the experiment
from the database, (step 3) integrating it with experiment-platform code and
compiling it into platform-compatible machine code, and (step 4–6) executing
the generated binary on the real board, as well as finally receiving and storing
the experiment result.

The experiment-platform code configures page tables to setup cacheable and
uncacheable memory, clears the cache before every execution of the program, and
inserts memory barriers around the experiment code. The platform executes in
ARM TrustZone, which enables us to use privileged debug instructions to obtain
the cache state directly for comparison after experiment execution.

The way in which we compare final cache states for distinguishability depends
on the attacker and observational model in question. For multi-way cache, we
say two states are indistinguishable if and only if for each valid entry in one state,
there is a valid entry with the same cache tag in the corresponding cache set of
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the other state and vice versa. For the partitioned multi-way cache, we check
the states in the same way, except we do it only for a subset of the cache sets
(see Sect. 7.2 for details on the exact partition). For the direct-mapped cache,
we compare how many valid cache lines there are in each set, disregarding the
cache tags. These comparison functions have been chosen to match the attacker
power of the relaxed models in Definitions 6, 7, and 8 respectively.

7 Results

Since the ARM-v8 experimentation platform runs as bare-metal code, there are
no background processes or interrupts. Despite this fact, our measurements may
contain noise due to other hardware components that share the same memory
subsystem, such as the GPU, and because our experiments are not synchronized
with the memory controller. In order to simplify repeatability of our experiments,
we execute each experiment 10 times and check for discrepancies in the final state
of the data cache. Unless all executions give the same result, this experiment is
classified as inconclusive and excluded from further analysis.

7.1 Direct-Mapped Cache Observational Model

First, we want to make sure that Scam-V can invalidate unsound observational
models in general. For this purpose, we generated experiments that use the
model of Definition 8, i.e., for every memory access in BIR we observe the cache
set index of the address of the access. We know that this is not a sound model for
Raspberry Pi 3, because the platform uses a 4-way cache. Table 1.1 shows that
both the random program generator and the monadic load generator uncovered
counterexamples that invalidated this observational model.

7.2 Partitioned Cache Observational Model

Next, we consider the partitioned cache observational model from Definition 7.
That is, we partition the L1 cache of the Raspberry Pi 3 into two contiguous
regions and assume that the attacker has only access to the second region. Due
to the prefetcher of Cortex-A53 we expect this model to be unsound and indeed
we could invalidate it.

To this end, we generated experiments for two variations of the model. Vari-
ation A splits the cache at cache set 61, meaning that only cache sets 61–127
were considered accessible to the attacker. Variation B splits the cache at cache
set 64 (the midpoint), such that cache sets 64–127 were considered visible. The
following program is one of the counterexamples for variation A that have been
discovered by Scam-V using the monadic program generator.

Program Input 1 Input 2

ldr x2 , [x10 , #0] x10: 0 x80100080 0 x80100cc0
ldr x20 , [x10 , #128]
ldr x17 , [x10 , #256]
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Table 1. Invalidation of cache and faulty observational models.

(1.1) Observations Cache set index only (Definition 8)
Programs Monadic load generator Random program generator
Experiments 39660 20872
- Inconclusive 0 1
- Counterexample 19 18

(1.2) Experiment set Variation A Variation B
Observations Page unaligned cache

partitioning (Definition 7)
Page aligned cache
partitioning (Definition 7)

Programs Monadic stride generator
Experiments 36160 37843
- Inconclusive 5426 6967
- Counterexample 3460 0

(1.3) Observations Cache tag and set index (Definition 6)
Programs Random program generator Monadic generator

Loads Previction
Experiments 20256 23120 23290
- Inconclusive 2 0 0
- Counterexample 0 5 16

(1.4) Observations Cache tag and set index (Definition 6)
Programs Random program generator
Experiments 22321
- Inconclusive 0
- Failure 308

The counterexample exploits the fact that prefetching fills more lines than
those loaded by the program, provided the memory accesses happen in a certain
stride pattern. Thus, it essentially needs to have two properties: (i) two different
starting addresses for the stride, a1 and a2, with a cache set index that is lower
than 61 to avoid any observations in the model, and thus satisfying observational
equivalence, and (ii) one of a1 and a2 is close enough to the partition boundary.
In this case, automatic prefetching will continue to fill lines in subsequent sets,
effectively crossing the boundary into the attacker-visible region.

In our experiments, we used a path guard to generate only states that produce
only memory accesses to the region of the cache that is not visible by the attacker.
Additionally, we used term enumeration to force successive test cases to start a
stride on a different cache set and therefore cover the different cache set indices.
Without this guidance, the tool could generate only experiments that affect the
lower sets of the cache and never explore scenarios that affect the sets with
indices closer to the split boundary.

For variation B, we have not found such a counterexample. The only differ-
ence is that the partition boundary is on line 64, which means that each partition
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fits exactly in a small page (4K). We conjecture that the prefetcher does not per-
form line fills across small page (4K) boundaries. This could be for performance
reasons, as crossing a page boundary can involve a costly page walk if the next
page is not in the TLB. If this is the case, it would seem that it is safe to use
prefetching with a partitioned cache, provided the partitions are page-aligned.
Table 1.2 summarizes our experiments for this model.

7.3 Multi-way Cache Observational Model
In the remaining experiments, we consider the model of Definition 6 and we
assume that the attacker has access to the complete L1 cache. Even if we
expected this model to be sound, our experiments (Table 1.3) identified several
counterexamples. We comment on two classes of counterexamples below.
Previction. Some counterexamples are due to an undocumented behavior that
we called “previction” because it causes a cache line to be evicted before the
corresponding cache set is full. The following program compares x0 and x1 and
executes a sequence of three loads. In case of equality, fourteen nop are executed
between the first two loads.

Program Input 1 Input 2

cmp x0 , x1 x0: 0 x00000000 0 x00000000
b.eq #0x14 x1: 0 x00000000 0 x00000001
ldr x9 , [x2] x2: 0 x80100000 0 x80100000
ldr x9 , [x3] x3: 0 x80110000 0 x80110000
ldr x9 , [x4] x4: 0 x80120000 0 x80120000
b #0x48
ldr x9 , [x2]
nop {14 times }
ldr x9 , [x3]
ldr x9 , [x4]

Input 1 and Input 2 are two states that exercise the two execution paths and
have the same values for x2, x3 and x4, hence the two states are observationally
equivalent. Notice that all memory loads access cache set 0. Since the cache is
4-way associative and the cache is initially empty, we expect no eviction to occur.

Executions starting in Input 2 behave as expected and terminate with the
addresses of x2, x3, and x4 in the final cache state. However, the execution
from Input 1 leads to a previction, which causes the final cache state to only
contain the addresses of x3 and x4. The address of x2 has been evicted even
if the cache set is not full. Therefore the two states are distinguishable by the
attacker. Our hypothesis is that the processor detects a short sequence of loads
to the same cache set and anticipates more loads to the same cache set with
no reuse of previously loaded values. It evicts the valid cache line in order to
make space for more colliding lines. We note that these cache entries are not
dirty and thus eviction is most likely a cheap operation. The execution of a nop
sequence probably ensures that the first cache line fill is completed before the
other addresses are accessed.
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Offset-Dependent Behaviors. Our experiments identified further counterex-
amples that invalidate the observational model. In particular, the following coun-
terexample also invalidates the observational model of Definition 5, where cache
line offsets are not observable.

Program Input 1 Input 2

ldr x6 , [x0] x0 : 0 x80108000 0 x80108000
ldr x9 , [x3 , #4] x3 : 0 x800FFFFC 0 x800FFFFC
ldr x2 , [x16] x16: 0 x80100020 0 x80100000
ldr x16 ,[ x22] x22: 0 x8011FFF8 0 x8011FFF8
ldr x9 , [x22 ,#8]

This program consists of five consecutive load instructions. This program
always produces five observations consisting of the cache tag and set index of
the five addresses. Input 1 and Input 2 are observationally equivalent: they only
differ for x16, which affects the address used for the third load, but the addresses
0x80100020 and 0x80100000 have the same cache tag and set index and only differ
for the offset within the same cache line. However, these experiments lead to
two distinguishable microarchitectural states. More specifically, execution from
Input 1 results in the filling of cache set 0, where the addresses of registers x0,
x3, x16 and x22 + 8 are present in the cache, while executions from Input 2 leads
a cache state where the address of x0 is not in the cache and has been probably
evicted. This effect can be the result of the interaction between cache previction
and cache bank collision [9,40], whose behavior depends on the cache offset.
Notice that cache bank collision is undocumented for ARM Cortex-A53. Tromer
et al. [46] have shown that such offset-dependent behaviors can make insecure
side-channel countermeasures for AES that rely on making accesses to memory
blocks (rather than addresses) key-independent.

7.4 Problems in Model Implementations

Additionally to microarchitectural features that invalidate the formal models,
our experiments identified bugs of the implementation of the models: (1) the
formalization of the ARMv8 instruction set used by the transpiler and (2) the
module that inserts BIR observation statements into the transpiled binary to
capture the observations that can be made according to a given observational
model. Table 1.4 reports problems identified by the random program genera-
tor. Some of these failing experiments result in distinguishable states while oth-
ers result in run-time exceptions. In fact, if the model predicts wrong memory
accesses for a program then our framework can generate test inputs that cause
accesses to unmapped memory regions. The example program in Fig. 4 exhibits
both problems when executed with appropriate inputs.

Missing Observations. The second step of our framework translates binary
programs to BIR and adds observations to reflect the observational model under
validation. In order to generate observations that correspond to memory loads,
we syntactically analyze the right-hand side of BIR assignments. For instance,
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for line l2 in Fig. 3 we generate an observation that depends on variable X1
because the expression of assignment is LOAD(MEM, X1). This approach is prob-
lematic when a memory load is immaterial for the result of an instruction. For
example, ldr xzr and ldr wzr instructions load from memory to a register that
is constantly zero. The following program loads from x30 into xzr.

Program Input 1 Input 2

ldr xzr , [x30] x30: 0 x80000040 0 x800000038

The translation of this instruction is simply [JMP next_addr]: there is no
assignment that loads from x30 because the register xzr remains zero. Therefore,
our model generates no observations and any two input states are observation-
ally equivalent. The ARM specification does not clarify that the microarchitec-
ture can skip the immaterial memory load. Our experiments show that this is
not the case and therefore our implementation of the model is not correct. In
fact, the program accesses cache set index(0x80000040) = 1 for Input 1 and
cache set index(0x80000038) = 0 for Input 2, which results in distinguishable
states. Moreover, by not taking into account the memory access our framework
generates some tests that set x30 to unmapped addresses and cause run-time
exceptions.

Flaw in HOL4 ARMv8 ISA Model. Our tool has identified a bug of the
HOL4 ARMv8 ISA model. This model has been used in several projects [8,17]
as the basis for formal analysis and is used by our framework to transform
ARM programs to BIR programs. Despite its wide adoption, we identified a
problem in the semantics of instructions Compare and Branch on Zero (CBZ)
and Compare and Branch on Non-Zero (CBNZ). These instructions implement a
conditional jump based on the comparison of the input register with zero. While
CBZ jumps in case of equality, CBNZ jumps in case of inequality. However, our
tests identified that CBNZ wrongly behaves as CBZ in the HOL4 model.

8 Related Work

Hardware Models. Verification approaches that take into account the under-
lying hardware architecture have to rely on a formal model of that architecture.
Commercial instruction set architectures (ISAs) are usually specified mostly in
natural language, and their formalization is an active research direction. For
example, Goel et al. [24] formalize the ISA of x86 in ACL2, Morrisett et al. [37]
model the x86 architecture in the Coq theorem prover, and Sarkar et al. [42]
provide a formal semantics of the x86 multiprocessor ISA in HOL. Moreover,
domain-specific languages for ISAs have been developed, such as the L3 lan-
guage [19], which has been used to model the ARMv7 architecture. As another
example, Siewiorek et al. [44] proposed the Instruction-Set Processor language
for formalizing the semantics of the instructions of a processor.
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Processor Verification and Validation. To gain confidence in the correctness
of a processor model, it needs to be verified or validated against the actual hard-
ware. This problem has received considerable attention lately. There are white-
box approaches such as the formal verification that a processor model matches
a hardware design [10,18]. These approaches differ from ours in that they try
to give a formal guarantee that a processor model is a valid abstraction of the
actual hardware, and to achieve that they require the hardware to be accessible
as a white box. More similar to ours are black-box approaches that validate an
abstract model by randomly generated instructions or based on dynamic instru-
mentation [20,29]. Combinations of formal verification and testing approaches
for hardware verification and validation have also been considered [11].

In contrast to our work, all of the approaches above are limited to func-
tional correctness, and validation is limited to single-instruction test cases, which
we show to be insufficient for information flow properties. Going beyond these
restrictions is the work of Campbell and Stark [12], who generate sequences of
instructions as test cases, and go beyond functional correctness by including
timing properties. Still, neither their models nor their approach is suitable to
identify violations of information flow properties.

Validating Information Flow Properties. To the best of our knowledge, we
present the first automated approach to validate processor models with respect
to information flow properties. To this end, we build on the seminal works of
McLean [35] on non-interference, Roscoe [41] on observational determinism, and
Barthe et al. [7] on self-composition as a method for proving information flow
properties. Most closely related is the work by Balliu et al. [6] on relational
analysis based on observational determinism.

These approaches are based on the different observational models that have
been proposed in the literature. For example, the program counter security
model [36] has been used when the execution time depends on the control flow
of the victim. Extensions of this model also make observable data that can affect
execution time of an instruction, or memory addresses accessed by the program
to model timing differences due to caching [4].

Many analysis tools use these observational models. Ct-verif [3] implements a
sound information flow analysis by proving observational equivalence construct-
ing a product program. CacheAudit [15] quantifies information leakage by using
abstract interpretation.

The risks of using unsound models for such analyses have been demonstrated
by the recent Spectre attack family [32], which exploits speculation to leak data
through caches. Several other architectural details require special caution when
using abstract models, as some properties assumed by the models could be
unmet. For instance, cache clean operations do not always clean residual state
in implementations of replacement policies [21]. Furthermore, many processors
do not provide sufficient means to close all leakage, e.g., shared state cannot
be cleaned properly on a context switch [22]. Finally, it has been shown that
fixes relying on too specific assumptions can be circumvented by modifying the
attack [43], and that attacks are possible even against formally verified software
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if the underlying processor model is unsound [28]. For these reasons, validation
of formal models by directly measuring the hardware is of great importance.

9 Concluding Remarks

We presented Scam-V, a framework for automatic validation of observational
models of side channels. Scam-V uses a novel combination of symbolic execution,
relational analysis, and observational models to generate experiments. We eval-
uated Scam-V on the ARM Cortex-A53 processor and we invalidated all models
of Sect. 2.3, i.e., those with observations that are cache-line-offset-independent.

Our results are summarized as follows: (i) in case of cache partitioning, the
attacker can discover victim accesses to the other cache partitions due to the
automatic data prefetcher; (ii) the Cortex-A53 prefetcher seems to respect 4K
page boundaries, like in some Intel processors; (iii) a mechanism of Cortex-A53,
which we called previction, can leak the time between accesses to the same cache
set; (iv) the cache state is affected by the cache line offset of the accesses, prob-
ably due to undocumented cache bank collisions like in some AMD processors;
(v) the formal ARMv8 model had a flaw in the implementation of CBNZ; (vi)
our implementation of the observational model had a flaw in case of loads into
the constant zero register. Moreover, since the microarchitectural features that
lead to these findings are also available on other ARMv8 cores, including some
that are affected by Spectre (e.g. Cortex A57), it is likely that similar behaviors
can be observed on these cores, and that more powerful observational models,
including those that take into account Spectre-like effects, may also be unsound.

These promising results show that Scam-V can support the identification of
undocumented and security-relevant features of processors (like results (ii), (iii),
and (iv)) and discover problems in the formal models (like results (v) and (vi)).
In addition, users can drive test-case generation to conveniently explore classes
of programs that they suspect would lead to side-channel leakage (like in result
(i)). This process is enabled by path and term enumeration techniques as well
as custom program generators. Moreover, Scam-V can aid vendors to validate
implementations with respect to desired side-channel specifications.

Given the lack of vendor communication regarding security-relevant proces-
sor features, validation of abstract side-channel models is of critical importance.
As a future direction of work, we are planning to extend Scam-V for other archi-
tectures (e.g. ARM Cortex-M0 based microcontrollers), noisy side channels (e.g.
time and power consumption), and other side channels (e.g. cache replacement
state). Moreover, we are investigating approaches to automatically repair an
unsound observational model starting from the counterexamples, e.g., by adding
state observations. Finally, the theory in Sect. 4 can be used to develop a certi-
fying tool for verifying observational determinism.
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Abstract. Geo-replicated systems provide a number of desirable prop-
erties such as globally low latency, high availability, scalability, and built-
in fault tolerance. Unfortunately, programming correct applications on
top of such systems has proven to be very challenging, in large part
because of the weak consistency guarantees they offer. These complex-
ities are exacerbated when we try to adapt existing highly-performant
concurrent libraries developed for shared-memory environments to this
setting. The use of these libraries, developed with performance and scal-
ability in mind, is highly desirable. But, identifying a suitable notion of
correctness to check their validity under a weakly consistent execution
model has not been well-studied, in large part because it is problem-
atic to näıvely transplant criteria such as linearizability that has a useful
interpretation in a shared-memory context to a distributed one where the
cost of imposing a (logical) global ordering on all actions is prohibitive.
In this paper, we tackle these issues by proposing appropriate semantics
and specifications for highly-concurrent libraries in a weakly-consistent,
replicated setting. We use these specifications to develop a static analysis
framework that can automatically detect correctness violations of library
implementations parameterized with respect to the different consistency
policies provided by the underlying system. We use our framework to
analyze the behavior of a number of highly non-trivial library imple-
mentations of stacks, queues, and exchangers. Our results provide the
first demonstration that automated correctness checking of concurrent
libraries in a weakly geo-replicated setting is both feasible and practical.

1 Introduction

Geo-replicated systems maintain multiple copies of data at different locations
and provide a number of attractive properties such as globally uniform low
access-latency, always-on availability, fault tolerance, and improved scalability.
Applications with a geo-distributed user base need to necessarily run on top of
replicated systems to ensure fast and always-available service. On the other hand,
due to concurrent updates at different replicas and the possibility of arbitrary
c© The Author(s) 2020
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re-ordering of updates by the underlying network, replicated systems typically
guarantee a very weak form of consistency called eventual consistency [4], that
only requires replicas which have received the same set of updates to exhibit
the same state. Because this guarantee is often too weak to satisfy an appli-
cation’s correctness requirements, a number of (stronger) consistency policies
have emerged in recent years; these policies offer session [39], causality [27] or
transactional [13] guarantees, and constrain system behavior by imposing addi-
tional synchronization on actions. Nonetheless, writing correct applications in
this environment using these policies remains a challenging problem.

Having a library of performant and correct data structure implementations
developed with replication and geo-distribution in mind can significantly allevi-
ate the problem of writing correct applications, as demonstrated by the availabil-
ity of highly popular concurrent library implementations developed for shared-
memory systems [21,33]. CRDTs [36] (Conflict-Free Replicated Data Types)
offer an analog of such implementations for geo-replicated environments. How-
ever, using CRDTS to build useful data structure libraries is challenging because
the strong requirements imposed by CRDTs (namely that all operations com-
mute with each other) appears satisfiable only for simple objects such as sets,
lists, or maps. Important data structures such as stacks, queues, or exchangers
that serve as building blocks for many concurrent and distributed algorithms
have eluded implementations using CRDTs. Even when a data structure can
be expressed in this way, reasoning about its correctness is typically given in
terms of non-standard criteria such as replicated data type specifications [12],
convergence [31] or replication-aware linearizability [41], concepts that are likely
to be difficult for programmers to grasp, especially when contrasted with well-
established notions such as linearizability used to reason about shared-memory
concurrency. This state of affairs has made it difficult to seamlessly adapt and
exploit ongoing progress in the development of scalable and correct concurrent
algorithms used in the shared-memory world to a geo-replicated setting.

In order to bridge this gap, we study how to automatically transplant concur-
rent library implementations developed for shared memory systems to replicated
ones. Doing so would allow us to use carefully-crafted implementations which
have been proven to run correctly in shared memory environments, thereby sim-
plifying the task of building distributed replication-aware applications. How-
ever, realizing this goal poses a number of challenges, the most critical of which
is the widely different memory consistency models used in the two domains:
the eventually consistent memory model typically provided by a replicated sys-
tem is significantly weaker than the sequential consistency guarantees offered
by shared-memory. Consistency policies offering session, causal, or transactional
guarantees must be additionally considered to facilitate correct behavior. This
requires enriching the semantics of existing library implementations to take into
account the consistency policy of the underlying replicated system. Furthermore,
the de facto correctness criterion for concurrent library implementations is lin-
earizability, which is clearly too restrictive to be directly applied to this much
weaker setting, since it demands that any correct execution be equivalent to
some sequential execution of a reference implementation. Such a requirement
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is problematic in a geo-replicated environment where the cost of coordination
to enforce a global ordering of all actions is prohibitive. These observations are
similar to those made by Raad et al. [34] who considered the applicability of lin-
earizability in a weak memory context, a scenario that faces similar challenges
to our own. To address these issues, we therefore consider alternative declara-
tive specifications of data structures, based on axiomatic definitions [17], that
are roughly equivalent to the guarantees provided by linearizability (and hence
familiar to programmers), but suitably relaxed to take into account the weak
behaviors admitted by replicated systems.

We then propose an automated approach to find bounded violations of these
declarative specifications given an implementation and a consistency policy. Due
to the non-deterministic nature of replicated systems, manifesting violations in
actual executions requires (1) a specific combination of library methods to be
called (2) with specific argument values and (3) a specific interaction of low-level
read/write events. Indeed, existing approaches to checking application safety
under weak consistency [24] potentially involve long (on the order of hours) and
costly execution runs to offer meaningful assurance on application correctness
given the large space of possible behaviors that can be exhibited.

In contrast to testing approaches, our analysis framework directly searches
for an execution violating a specification, and in the process constructs the com-
bination of library methods to be called as well as their argument values, and
the low-level read/writes which can lead to the violation. Moreover, because our
analysis is parametric in the choice of consistency policy, we can constrain the
search for violating executions on-demand as per the chosen policy. We addi-
tionally show how our technique is capable of expressing complex correctness
specifications of libraries (see Sect. 3.4) and how it can be used to automati-
cally find violations in the face of this complexity. The analysis is sound in that
it only reports actual violations. Notably, our experiments manifest a number
of non-trivial and complex violating executions for realistic concurrent libraries
which require intricate interaction with library methods. We were also able to
analyse application behavior under different consistency policies, and in partic-
ular, were able to find the weakest consistency policy to eliminate a particular
violation. Our analysis is based on developing an efficient encoding of the imple-
mentation, the consistency policy, and the correctness specification as first-order
logic formulae which can be dispatched to off-the-shelf SMT solvers to find viola-
tions. Unlike random testing approaches, our technique is capable of identifying
non-trivial subtle safety violations in the order of minutes, making it feasible to
use not only for finding violations, but also for checking the feasibility of any
proposed remediations. We make the following major contributions:

1. We propose a novel operational semantics for replicated systems parameter-
ized under realistic consistency policies which can be used to describe execu-
tions of sophisticated concurrent library implementations.

2. We demonstrate how to adapt existing specification frameworks developed
for concurrent libraries on shared memory systems to replicated systems with
minimal changes.
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3. We describe an automated bounded verification procedure to detect violations
of such specifications for implementations intended to execute under a given
consistency policy.

4. We catalog the results of applying our analysis on a number of well-studied
implementations including stacks, queues and exchangers, on a commercial
replicated store (Cassandra), demonstrating empirically that our correctness
checking procedure is useful in practice.

The remainder of the paper is organized as follows. In the next section, we pro-
vide a motivating example to illustrate the challenges of reasoning about concur-
rent libraries in a weakly-consistent replicated environment. Section 3 formalizes
the language used to write library implementations and the specifications that
characterize their intended behavior. Section 4 describes our bounded verifica-
tion procedure and provides details about how we encode extracted verification
conditions. Section 5 describes experimental results and presents case studies to
illustrate the effectiveness of our approach. Related work and conclusions are
given in Sect. 6.

2 Illustrative Example

push(v){

1: n = New(Node);

2: n.Val = v;

while(true){

3: t = Top;

4: n.Next = t;

5: if (CAS(Top , t, n))

break;

}

}

pop(v){

while(true){

6: t = Top;

if (t == NULL)

return EMPTY;

7: v = t.Val;

8: n = t.Next;

9: if (CAS(Top , t, n))

return v;}

}

Fig. 1. Treiber Stack

In this section, we illustrate the various issues that arise when running stan-
dard concurrent library implementations on replicated systems. Figure 1 shows
the implementation of a Treiber stack, suitably adapted to execute in a replicated
environment. The Treiber stack provides two methods (push and pop) to clients,
and stores the elements of the stack in a linked list, with the order of elements
in the list corresponding to the order in which elements are pushed. Since repli-
cated stores typically offer a database or a key-value store interface, we store the
linked list as a table of type Node with columns Val and Next, where each row
stores a node of the linked list, with Val storing the value and Next storing the id
of the next node. Top contains the id of the Node row which is current top of the
stack (Top is initialized with the special value NULL indicating an empty stack).
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In Fig. 1, variables denoted by lower-case letters are assumed to be stored locally
and are not replicated. New(Node) returns the id of a new row in the Node table.
CAS(Top, t, n) is the typical Compare-And-Swap operation which atomically
compares Top to t, and if it is equal to t then updates it to n1.

Fig. 2. An execution of Treiber Stack on a replicated
store

Clients of concurrent libraries
issue invocations of a data
structure’s methods, possi-
bly at different replicas, with
invocations being grouped
together into sessions, with
each session containing invo-
cations issued by the same
client. Whenever a method
is invoked, the underlying
implementation of the method
is executed; we assume the
various reads and writes per-
formed by the method may possibly be executed at different replicas. All low-
level operations performed by the same invocation are defined to be in the same
session (i.e. the session of the parent invocation). Notice that the implementation
stores data across a number of locations (e.g. Top or a cell in the Node table), each
of which are operated independently through low-level read/write/CAS opera-
tions. The replicated store only guarantees eventual consistency, which means
that the values stored at all locations eventually converge across all replicas.
However, users expect the behavior of the library to conform to the specifica-
tion of the stack data structure, regardless of when and how updates propagate
across replicas.

Consider the following basic specification (adapted from the AddRem axiom
in [17]), which simply says that any value returned by a POP operation must
have been pushed by some PUSH operation in the execution; observe that the
specification does not allude to any specific system-level issues related to repli-
cation or weak consistency:

∀γ.meth(γ) = POP ∧ ret(γ) �= EMPTY ⇒ ∃γ′.meth(γ′) = PUSH ∧ arg(γ′) = ret(γ)

Consider the execution shown in Fig. 2 that involves an invocation of PUSH(1)
and POP from two different replicas. Among the many operations that the imple-
mentation of PUSH performs, we show only two write operations in the figure
(along with line numbers referring to the implementation in Fig. 1), namely the
write to the Val field of location L (L is the id of the new Node), and the write
to Top as a result of the successful CAS. Similarly, for the POP operation, we
show the read to Top, and then the read to the Val field. In the execution, the
write to Top propagates from replica R1 to R2 before the read, but the write to
1 CAS operations are typically supported in replicated systems by providing trans-

actional guarantees to a group of operations; e.g., lightweight transaction support
provided in Cassandra [26].
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Val does not, so that POP sees that a new node has been pushed but does not
read the value that was actually pushed, instead returning the initial value of the
location, thus breaking the specification described above. Eventual consistency
only guarantees that eventually, the write to Val will also be propagated to R2,
which is not sufficient to guarantee the specification holds under all executions.

One way to avoid this counterexample would be to ensure that the write to
Val field by PUSH is propagated to another replica before the write to Top, thus
guaranteeing that it would be available to the read of Val by POP. Notice that
the write to Val occurs before the write to Top in the same session, and hence we
can use session guarantees to ensure the required behavior. In particular, under
a Monotonic Writes (MW) consistency policy, writes are always propagated in
their session order to all replicas [1]. However, MW is not sufficient by itself
to eliminate the counterexample since the reads to Top and Val by POP may
occur at different replicas, so that the read to Val may occur at a replica in
which none of the writes by PUSH have propagated. Hence, we also need to have
these operations execute under a Monotonic Reads (MR) consistency policy that
mandates all writes witnessed by an operation will also be witnessed by later
operations in the same session.2

PUSH(1) PUSH(2) POP : 2 POP : 0

2 : W (L1.Val, 1) 3 : R(Top) : L1 6 : R(Top) : L2 6 : R(Top) : L1

5 : W (Top, L1) 5 : W (Top, L2) 9 : W (Top) : L1 7 : R(L1.Val) : 0

Fig. 3. A violation of AddRem by Treiber Stack under MW+MR

Hence, a combination of MW+MR prevents the counterexample in Fig. 2,
but it is unfortunately not enough to guarantee the AddRem specification is
correctly enforced. Consider the execution in Fig. 3 which involves four method
invocations (2 Pushes and 2 Pops), where each invocation occurs on a different
replica. Again, we only show some relevant low-level operations performed by
these invocations, with arrows from write to read operations showing reads-from
(rf) dependencies. In the execution, after the two pushes, 2 is stored on the top
of stack at Node L2. Thus, the first Pop operation returns 2 and sets the Top
to point at L1, which is then read by the second Pop. However, MW+MR only
guarantees that all write operations performed by the first Pop will be witnessed
by the second Pop. Hence, just like in Fig. 2, the second Pop operation may see
the node at location L1 but not the write to the Val field (which was performed
by PUSH(1)), resulting in violation of the specification. To avoid this, it must be
guaranteed that the write to L1.Val by Push(1) must be visible to its read by
the second Pop (depicted by the two boxes in Fig. 3). This can be guaranteed
by the Write Follows Read (WFR) policy, which analogously to MW, ensures

2 We formalize all consistency policies used in the paper in the next section.
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that writes witnessed in a session are propagated to all replicas before writes of
the session itself (as opposed to MW which only ensures that writes performed
in a session are propagated in session order). We note that both the violations
described above (along with their repairs) were automatically discovered using
our proposed methods, which devised solutions significantly less expensive than
imposing strong consistency (aka global coordination) on all accesses.

While MW+MR+WFR is required to ensure AddRem in a Treiber Stack, we
found that weaker consistency policies (including Eventual Consistency) were
sufficient for other properties and benchmarks (more details are provided in
Sect. 5).

3 Semantics and Specifications

In this section, we define a simple language to write library implementations
that is nonetheless powerful enough to express a number of real-world imple-
mentations. We then define an operational semantics to express executions of
any implementation written in this language on top of a replicated store. A key
feature of this operational semantics is that it is parametric in the consistency
policies available to the store. Thus, instantiating the semantics with different
consistency policy definitions allows us to reason about library behavior under
replicated stores providing different consistency guarantees. Another important
feature of the semantics is that it abstracts out low-level operational details such
as the number of replicas, the specific manifestation of how message sends and
receives are implemented, etc., and instead uses a succinct representation involv-
ing read and write events (and various binary relations among them) to capture
salient characteristics sufficient to reason about library correctness with respect
to consistency properties. The proposed semantics facilitates a bounded verifi-
cation approach that is parametric in the consistency policy, and also matches
very well with existing axiomatic approaches to specify correctness of library
implementations in shared memory systems.

First, we define a simple imperative language in which implementations can
be written:

v ∈ LocalVar l ∈ Locations n ∈ V

⊕ ∈ {+, −, ×, /} � ∈ {<, ≤, ==, >, ≥} ◦ ∈ {∧, ∨}
e := e ⊕ e | v | n
b := b ◦ b | e � e
c := v = e | v = l | l = e | If b then c else c

| c; c | while b do c | v = CAS(l, e1, e2)
| return e | return

The only difference between standard shared-memory programs and those
written in the above language is that read and write operations can now be
performed on either Locations, which are replicated, or local variables which
are not. As we saw in Sect. 2, replicated Locations can in general refer to
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any field in any table. Let P be the set of programs (c) generated using the
above grammar. A library L = (M, I) consists of a set of methods (M) and an
implementation function I : M → P. For simplicity, we assume that each method
takes as input one argument. Assume that I(m) contains the free variable a that
stores the input argument. Let V be the value domain for arguments and return
values. We designate a special value ⊥ ∈ V for the cases where the argument or
return value is empty.

The methods of a library implementation L can be invoked any number of
times by multiple clients. Invocations from the same client are grouped together
into sessions, where each session consists of a sequence of method invocations.
Following standard terminology, given a set of sessions S, an interaction between
clients and the library is expressed as a history, h : S → (M ×V)∗, which simply
associates a sequence of methods invocations to each session. An execution of
the history corresponds to executing the library implementation of each method
in the history on the replicated store. The store constrains the behavior of reads,
writes and CAS operations to replicated Locations through its consistency
policy.

We now formally define the operational semantics of a history on a replicated
store that is parametric in a consistency policy Ψ . While the history only asso-
ciates arguments with method invocations, executing it on the replicated store
will give rise to an abstract execution, which will also associate return values
with invocations, and whose correctness we are interested in checking. Given a
history h, library L, and consistency policy Ψ , we define our semantics in terms
of a labeled transition system (LTS) Ωh,L,Ψ = (Φ, E ,→), where Φ denotes a set
of states, E denotes a set of events (also used as labels) and →⊆ Φ×E ×Φ defines
a transition relation over states and events.

Each state in Φ is specified as a tuple (χ, h′, μ, c, α). χ denotes the replicated
store state and consists of read/write/update events to Locations and various
relations among them (described in detail later); h′ : S → (M × V)∗ denotes
the continuation of the history, i.e., the remaining history yet to be executed;
μ : S → (LocalVar → V) denotes the local variables map for each session;
c : S → P denotes the continuation of the current invocation for each session,
i.e., the implementation of the current invocation for each session that is yet to
be executed and α denotes the abstract execution. Each event σ ∈ E is a tuple
(i, s, a), where i is a unique event-id, s ∈ S is the session from which the event
originated, and a is the action to the replicated store (either read R(l, n), write
W(l, n) or update U(l,m, n)). Given an event σ = (i, s, a), act(σ) denotes the
action a, loc(σ) denotes the location that is the subject of the action.

3.1 Language Semantics

To simplify the presentation, we decouple the semantics of the language from
the semantics of the replicated store. The language is defined via a standard
imperative semantics except that there are no constraints on reads to replicated
locations (i.e., we do not mandate a specific replica that is targeted by the
read), and every operation to a replicated location generates an event. These
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rules do not concern the replicated store state, and hence are of the form
(h1, μ1, c1, α1)

σ−→ (h2, μ2, c2, α2) (i.e. omitting χ from Φ). We essentially pick
any session and then execute the next operation from the current invocation in
the session, or initiate the next invocation in the session if there is no invocation
currently running. As an illustration, consider the following rule L-Read:

c(s) ≡ v = l; c′ σ = (i, s,R(l, n)) fresh i

(h′, μ, c, α) σ−→ (h′, μ[s → μ(s)[v → n]], c[s → c′], α)

The rule picks the next operation in session s which is a read operation to
location l, and generates the read event σ reading value n from l. It updates
the local variable v to this value, leaving the yet-to-be-executed history (h′)
and abstract execution (α) unchanged. Write statements (i.e. l = n) generate
write events (W(l, n)), successful CAS statements (i.e. v = CAS(l,m, n) gen-
erate update events (U(l,m, n)), and unsuccessful CAS generates read events
(R(l,m′)). The complete set of rules can be found in the technical report [32].

3.2 Abstract Execution Semantics

An abstract execution α = (Γ, soΓ ) maintains a set of method invocation
events in Γ and a session order relation soΓ among these events. Each method
invocation event γ ∈ Γ is a tuple (i,m, a, r, s) where i is a unique event-id,
m ∈ M is a method of the library, a, r ∈ V are the method argument and
return values respectively and s ∈ S is the session from which the method was
called. We use the notation Γ s for the subset of Γ which only contains method
invocation events that originate in session s. The following rule (L-Return-
Val) describes the generation of a method invocation event, which occurs on
encountering a return statement during execution, and which is added to the
abstract execution.

c(s) ≡ return e; c′ h′(s) = m(k) · h′′ �e�μ(s) = n
α = (Γ, soΓ ) γ = (i,m, k, n, s) α′ = (Γ ∪ {γ}, soΓ ∪ Γ s × {γ})

(h′, μ, c, α) → (h′[s → h′′], μ, c[s → ε], α′)

The rule updates the yet-to-be executed history h′ by removing the current
invocation m(k) (since this invocation has now completed), updates the abstract
execution α to now include the newly completed invocation, and updates the
current invocation implementation to empty. Note that �e�μ(s) denotes the eval-
uation of the expression e under the local variable map μ(s). When the history
h′ becomes empty, i.e. there are no more method invocations to be executed, the
abstract execution becomes complete and would include all method instances
present in the original history h. Note that this rule does not generate any
read/write/update event.

3.3 Replicated Store Semantics

The replicated store state χ = (Σ, vis, ar, so) consists of the set of replicated store
events (Σ) and various relations on Σ. Events can either be read, write or update



260 K. Nagar et al.

events, and depending on the type of event, Σ is partitioned into ΣR, ΣW and
ΣU . The visibility relation vis ⊆ Σ × Σ denotes the events visible to an event
and is used to determine the output of read events. The arbitration relation
ar ⊆ (ΣW ∪ ΣU ) × (ΣW ∪ ΣU ) provides a total ordering on write or update
events to the same location. Finally, the session order relation so ⊆ Σ × Σ
provides a total ordering on events originating from the same session. All events
generated by statements in the same method invocation would belong to the
same session and hence would be related by so. We also define a happens-before
relation hb = (vis ∪ so)+ in the usual way.

We use Ψ to refer to a consistency policy supported by the store. Ψ is a
predicate on the store state, which must be maintained at every step of the
execution. Ψ essentially controls the visibility relation on events based on session
or happens-before order. The following table illustrates the various consistency
policies that we consider in our work; all of these policies can be implementation
without the need for global coordination [1].3 (all σi belong to Σ):

Table 1. Axiomatic characterization of various weak consistency policies.

Consistency policy Ψ(Σ, vis, ar, so)

Read Your Writes [39] so(σ1, σ2) ⇒ vis(σ1, σ2)

Monotonic Writes [39] so(σ1, σ2) ∧ vis(σ2, σ3) ⇒ vis(σ1, σ3)

Monotonic Reads [39] vis(σ1, σ2) ∧ so(σ2, σ3) ⇒ vis(σ1, σ3)

Write Follow Read [39] vis(σ1, σ2) ∧ so(σ2, σ3) ∧ vis(σ3, σ4) ⇒ vis(σ1, σ4)

Causal Visibility [27] hb(σ1, σ2) ∧ vis(σ2, σ3) ⇒ vis(σ1, σ3)

Causal Consistency [27] hb(σ1, σ2) ⇒ vis(σ1, σ2)

As we saw earlier in Sect. 2, MonotonicWrites enforces the constraint that if
an event is visible, then all events before it in session order must also be visible.
MonotonicReads requires that if an event is visible, it will continue to remain
visible to all operations later in the session. On the other hand, WriteFollowsRead
enforces that all events visible to a prior event in a session will continue to remain
visible to other events which witness a later event of the session.

We use the notation Σl to denote the subset of events pertaining to location
l, and Σs to denote the subset of events of session s. Given a set of events Σ′,
MAXl

ar(Σ
′) denotes the maximal events in Σ′ according to the relation ar which

write to location l. Given events σ ∈ Σl
R, σ′ ∈ Σl

W , we define the Reads-From
relation rf in terms of vis and ar relations as follows:

rf(σ′, σ) ⇔ vis(σ′, σ) ∧ ∀σ′′ ∈ Σl.(vis(σ′′, σ) ∧ σ′′ �= σ) ⇒ ar(σ′′, σ′))

3 Note that the lack of any constraints (i.e. Ψ = true) corresponds to Strong Even-
tual Consistency [18]. Since we assume SEC, our definition of Causal Consistency
corresponds to Causal Convergence (CCv) as defined by [8].
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The rf relation essentially encodes the ‘last writer wins’ nature of the store,
whereby the most recent visible write event according to ar becomes the event
supplying the value available to subsequent reads. The replicated store state
evolves by the addition of new events. On addition of a write/update event,
the arbitration order is appropriately modified to ensure that it remains a total
order on events targeting the same location. In addition, we also ensure causal
arbitration [11] by enforcing that ar and hb do not disagree with each other. For
update and read events, the values that these events read depend upon the most
recent write event to the same location visible to the events, which in turn is
controlled by the consistency policy. To elaborate, consider the rule R-CAS:

Σ′ ⊆ Σ σ′ ∈ MAXl
ar(Σ

′) ar ⊆ ar′
act(σ′) = W(l, m) ∨ act(σ′) = U(l, , m) σ = (i, s, U(l, m, n)) ∀τ ∈ Σl

U .¬(rf(σ′, τ))
ar′ is a total order on Σl

W ∪ Σl
U ∪ {σ} ∀σ1, σ2.¬(hb(σ1, σ2) ∧ ar′(σ2, σ1))

vis′ = vis ∪ Σ′ × {σ} so′ = so ∪ Σs × {σ} Ψ(Σ ∪ {σ}, vis′, ar′, so′)

(Σ, vis, ar, so)
σ−→ (Σ ∪ {σ}, vis′, ar′, so′)

Here, we want to add a new update event to location l. First, an arbitrary
subset (Σ′) of events of Σ is selected. This step essentially corresponds to the
creation of a new replica on which the events in Σ′ have been applied. Then,
we select the most recent write event (σ′) from Σ′ which ensures atomicity of
the update event (and hence the CAS statement responsible for the update). In
particular, we require that no other update event must have read from (rf) σ′.
The value written by σ′ (i.e. m) would be the read value of the update event.
vis, so and ar are appropriately updated, and the new store state must satisfy
the consistency policy Ψ , which in turn will govern the selection of the initial
subset Σ′. The formal rules for read and write events can be found in [32].

Note that enforcing the above rule would in essence prohibit two CAS oper-
ations to be executed concurrently, and hence would establish a global ordering
among the CAS operations. However, unlike in shared memory systems where
this is sufficient to establish a global ordering among all operations thus ensur-
ing linearizability, in replicated systems, this does not constrain the behavior of
other read and write operations (as we saw in Sect. 2, and hence more constraints
must be enforced through the consistency policy.

We can now combine the language, abstract execution, and replicated store
rules to describe transitions of the LTS Ωh,L,Ψ , which simply requires the lan-
guage rules and the replicated store rules to agree on the structure of all repli-
cated store events:

(h′, μ, c, α) σ−→ (h′′, μ′, c′, α) χ
σ−→ χ′

(χ, h′, μ, c, α) σ−→ (χ′, h′′, μ′, c′, α)

(h′, μ, c, α) → (h′′, μ′, c′, α′)
(χ, h′, μ, c, α) → (χ, h′′, μ′, c′, α′)

Example: Let us revisit the Treiber Stack and in particular the violating exe-
cution described in Fig. 2. The violating history consists of two sessions, with
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one session containing the invocation push(1) and another containing pop. The
execution of push(1), following the language semantics, creates the events σ1

and σ2 such that act(σ1) = W(L.Val, 1) and act(σ2) = U(Top, NULL, L) which
are both added to the store state. The execution of pop generates the read event
to Top, which following the store semantics picks the set Σ′ = {σ2}, resulting
in read event σ3 such that act(σ3) = R(Top, L). Under EC, the following read
to L.Val by pop is unconstrained and hence simply picks Σ′ = φ, resulting in
the event σ4 such that act(σ4) = R(L.Val, 0) where 0 is the initial value. This
results in violation of the AddRem specification.

Notice that so(σ1, σ2) and vis(σ2, σ3). Hence, under MW+MR, while generat-
ing the read event to L.Val by pop, the store must pick Σ′ = {σ1, σ2} to satisfy
the axioms of MW+MR, so that the event must read the value 1, which prevents
the violation from occurring.

3.4 Correctness Specification

Given an abstract execution obtained after executing a history on a replicated
store under some consistency policy, how do we decide if it correctly obeys the
semantics of the data structure implemented by the library? Linearization would
require us to demonstrate a total order on all method invocations which would
be admissible by a sequential reference implementation of the data structure.
However, since the consistency model of a replicated system is substantially
weaker than sequential consistency, it becomes necessary to also weaken correct-
ness requirements [34,37]. We use the axiomatic specifications of data structure
correctness as proposed by Emmi et al. [17], which are equivalent to standard
linearizability, as our basis, and then weaken them systematically to adapt them
to be useful in a replicated environment. Axiomatic specifications do not require
a total order to be established on method invocations, do not refer back to a
reference implementation, and also match the axiomatic, declarative nature of
the semantics of the replicated store.

First, we define all abstract executions that can be generated given a library
implementation, a history and a consistency policy. The initial state of the repli-
cated store is assumed to be empty, i.e. χInit = (φ, φ, φ, φ). Let hε be the empty
history which associates an empty sequence (ε) of invocations to each session.
Let cInit be the initial implementation state which simply associates the empty
program ε to each session.

Definition 1. Given a set of sessions S, a history h, a library implementation
L and a consistency policy Ψ , the abstract executions generated by Ωh,L,Ψ are
defined as : �Ωh,L,Ψ �= {Γ | (χInit, h, (φ, φ), cInit) →∗ ( , hε, Γ, )}

Thus, executing all invocations in the history under a given consistency policy
and library implementation gives rise to the set of final abstract executions. Due
to the non-deterministic nature of the semantics, multiple abstract executions
could be generated. Correctness of an abstract execution is specified in terms of
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various axioms that it must obey. An implementation is correct under a consis-
tency policy if for all possible histories, all final abstract executions generated
by the implementation obey the axioms.

To illustrate, let us consider the Stack data structure. It has two methods
M = {Push, Pop}. Given a method invocation event γ = (i,m, a, r, s), we assume
projection functions for all the respective components (e.g., m, a, and r). Further,
we assume a match predicate relating two method invocation events defined thus:

match(γ1, γ2) ⇔ m(γ1) = Push ∧ m(γ2) = Pop ∧ a(γ1) = r(γ2)

Let EMPTY denote a special value signifying the empty return value (see, e.g. the
Treiber Stack impl. in Fig. 1). Consider an abstract execution α = (Γ, soΓ ). We
define the happens-before relation for method invocations as hbΓ = (match ∪
soΓ )+. Then, the correctness of α can be specified in terms of the following
axioms:

– AddRem : ∀γ ∈ Γ.m(γ) = Pop ∧ r(γ) �= EMPTY ⇒ ∃γ′ ∈ Γ.match(γ′, γ)
– Injective : ∀γ1, γ2, γ3 ∈ Γ.match(γ1, γ2) ∧ match(γ1, γ3) ⇒ γ2 = γ3

– Empty : ∀γ1, γ2, γ3 ∈ Γ.m(γ1) = Pop ∧ r(γ1) = EMPTY ∧ m(γ2) = Push ∧
hbΓ (γ2, γ1) ⇒ ∃γ3 ∈ Γ.match(γ2, γ3)

– LIFO − 1 : ∀γ1, γ2, γ3 ∈ Γ.m(γ1) = Push ∧ match(γ2, γ3) ∧ hb(γ2, γ1) ∧
hb(γ1, γ3) ⇒ ∃γ4 ∈ Γ.match(γ1, γ4)

– LIFO − 2 : ∀γ1, γ2, γ3, γ4 ∈ Γ.¬(match(γ1, γ4) ∧ match(γ2, γ3) ∧ hb(γ2, γ1) ∧
hb(γ3, γ4) ∧ hb(γ1, γ3))

These axioms follow from those given in [17], except that instead of using a
linearization order as done in [17], we use a weaker happens-before hbΓ order.
It is also possible to use the even weaker session order soΓ in place of hbΓ . We
have already seen the AddRem axiom in §2. The Injective axiom enforces that
an element pushed onto the stack is not popped more than once4. The Empty
axiom says that if a pop invocation (γ1) returns EMPTY and if there is a push
invocation (γ2) that happens-before it, then γ2 must be matched to another
pop. This reflects the expected stack-like behavior from the point of view of
a client who observes these invocations. The LIFO − 1 property specifies that
if a push invocation γ2 happens-before another push invocation γ1, with both
of them happening-before a pop invocation γ3, and if γ2 is matched with γ3,
then to respect the LIFO order, γ1 must also be matched (to some γ4). LIFO − 2
complements LIFO − 1 by requiring that γ3 cannot happen-before such a γ4. The
specifications for other data structures we have considered, including Queue and
Exchanger can be found in [32].

4 Bounded Verification

We now present an automated bounded verification procedure capable of gen-
erating abstract executions that violate data structure correctness specifications
4 Note that we assume all methods are called with distinct arguments.



264 K. Nagar et al.

under a given consistency policy. We take advantage of the axiomatic nature of
both the semantics and specification and reduce the problem to that of checking
the satisfiability of a collection of formulae in first-order logic (FOL), which can
be dispatched to an off-the-shelf SMT solver. In particular, our strategy is to
instantiate a bounded number of invocations (k) without specifying their method
types, arguments, or session information, and instead leave it upto the solver to
search efficiently among all histories of length k.

4.1 Vocabulary

Given a library L = (M, Impl), we first take each method implementation and
unroll loops upto a constant bound5, and give a label to each program statement
that interacts with a replicated location (e.g. see the Treiber Stack impl. in
Fig. 1). Let L denote this set of labels.

We use an uninterpreted, finite sort I to represent invocations in the history
that we wish to construct, and then constrain this sort to contain only the
distinct elements INV1, . . . , INVk. In addition, we use uninterpreted sorts E and
V to represent the set of replicated store events and values that are read or
written by them. We define the function meth : I → M to associate a method
type with each invocation. We use an uninterpreted sort S to denote the set of
sessions involved in the history. The function sess : I → S associates a session
with each invocation.

For each method m ∈ M and each program statement labeled n in the imple-
mentation Impl(m), we define the function Pmn : I → E to associates the event
generated by the program statement to an invocation. In addition, functions
arg, ret : I → V associate the argument and return values to each invocation. For
every local variable v used in a program, function ρv : I → V denotes the value
of the local variable in that invocation. The predicate soI : I × I → B denotes the
session order relation among invocation instances.

We define functions loc, rval,wval : E → V to associate locations, values
read and values written by events resp. We use the uninterpreted, finite sort E

containing elements R,W,U to denote various event types. The function Etype :
E → E associates the type with each event. Finally, predicates vis, ar, soE, rf :
E×E → B denote the visibility, arbitration, session order, and read-from relations
resp. among events.

For every replicated location, we also instantiate a distinct value referring to
the location. For example, for the Treiber Stack implementation (Fig. 1), we have
distinct values for Top and for the Val and Next fields of each New Node generated
by an invocation. Since the number of invocations is fixed (k), the number of
such locations to be instantiated can also be pre-determined statically. We also
define a function Initval : V → V which fixes an initial value for every location,
and assigns initial values to all locations used in the execution.

5 Loops are typically only used to busy wait for a successful CAS operation in the
applications we consider.



Bounded Verification of Concurrent Libraries in Replicated Systems 265

4.2 Implementation Constraints

We now describe constraints on the events imposed by the implementation. First,
note that even though the set of functions {Pmn|m ∈ M, n ∈ L} are defined
for every invocation, an invocation i will only have a fixed method type meth(i),
and hence will only generate events corresponding to program statements in the
implementation of meth(i). We designate a special event ⊥ : E and associate it for
program statements of every other method type using the following constraint:

∀i ∈ I ∀m ∈ M ∀n ∈ L. m �= meth(i) ⇒ Pmn(i) = ⊥
For program statements in the implementation of meth(i), we add constraints for
every statement based on its type. Note that loops have already been unrolled
and for every statement labeled n in method m, we collect the conditionals of
any if statement enclosing the statement and replace any local variable v used
in those conditionals with the corresponding function ρv(i) (for invocation i) to
obtain the formulae�φmn�i. To illustrate the constraints added for different types
of statements, consider the rule for reads:

Impl(m) : n : v = l

∀i ∈ I. (meth(i) = m ∧�φmn�i) ⇒ (Etype(Pmn(i)) = R ∧ loc(Pmn(i)) = l
∧rval(Pmn(i)) = ρv(i)

)

The rule essentially specifies the constraint for statement labeled n in the
implementation of method m if it is a read operation. The constraint appropri-
ately sets the Etype, loc and rval functions of event Pmn(i) for every invocation
i, if the invocation has a method type of m and the enclosing if conditionals (if
any) are satisfied. The rules for write and CAS statements are similar (they also
set the wval function and additionally CAS also checks whether the value read is
equal to its first argument) and can be found in [32]. In addition, we also relate
adjacent events of the same invocation with the session order relation soE.

4.3 Abstract Execution Constraints

On encountering a return statement, we record the returned value using the
following constraint:

Impl(m) : n : return v

∀i ∈ I. (meth(i) = m ∧ �φmn�i) ⇒ (ret(i) = ρv(i) ∧ completed(i))

Apart from setting the ret value, we also use another unary predicate
completed to encode that the invocation has completed and reached the return
statement. This is needed because we are unrolling loops upto a fixed bound.
Since we know the last program statement statically, if we encounter this state-
ment without reaching return for an invocation, then completed will be set to
false.
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We also encode the constraint that the session order relation (soI) among
invocations of the same session is a total order. Finally, we also encode that if
two invocations i1 and i2 are in session order (soI(i1, i2)), then the last event of
i1 and the first event of i2 are in event session order (soE).

4.4 Replicated Store Constraints

We must also encode constraints ensuring that the semantics of the replicated
store are preserved. First, we capture various properties of relations on events,
viz. vis is anti-symmetric and irreflexive, ar among write events to the same
location is a total order, vis and soI do not clash with each other, ar does not clash
with vis and soI. All these constraints are implicitly enforced by the semantics
of the replicated store, so that the state of the store reached after any number
of execution steps must obey them.

The various consistency policies in Table 1 can be directly encoded using the
relations defined in the vocabulary. We now turn to encoding the last-writer-wins
nature of the data store, which relates the vis and ar relations with the read and
write values (rval and wval) of the events.

∀e1, e2 ∈ E.rf(e1, e2) ⇒ vis(e1, e2) ∧ wval(e1) = rval(e2)∧
∀e3 ∈ E

loc(e2)
W .(vis(e3, e2) ⇒ e3 = e1 ∨ ar(e3, e1))

∀e1 ∈ ER.(∀e2 ∈ E.¬rf(e2, e1)) ⇒ rval(e1) = Initval(loc(e1))

In the above constraints, we use the notation El
W to indicate only those events

that write to location l, and ER for read events. The first constraint enforces the
reads-from event to be the most recent visible event according to the arbitration
order, and also constrains the read value. The second constraint disallows out-
of-thin-air reads by enforcing that if there are no rf events, then the value read
must be the initial value. As an optimization, while encoding this constraint in
our tool, we enumerate all possible write events to the same location (which
are guaranteed to be finite since we only have k invocations) in the antecedent,
instead of the universal quantification used above.

For CAS operations which generate update events, we encode the constraint
(as derived from the semantics rule R-CAS) that two update events should not
read from the same event:

∀e, e1, e2 ∈ E. Etype(e1) = U ∧ Etype(e2) = U ∧ rf(e, e1) ∧ rf(e, e2) ⇒ e1 = e2

4.5 Specification Constraints

The axioms of correctness for data structures only use an invocation’s argu-
ment and return values, and the session order relation among invocations in the
abstract execution. Thus, they can be directly encoded using our vocabulary.
Given an axion θ, we encode its negation to find histories which have abstract
executions that violate the axiom.
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For example, to find violations of the AddRem axiom, we add the following
constraint:

∃i1 ∈ I. meth(i1) = POP ∧ ret(i1) �= EMPTY ∧ ∀i2 ∈ I. ¬match(i2, i1)

where we use the predicate match : I × I → B defined in a similar manner as in
Sect. 3.4. This completes the entire description of our encoding.

Our main soundness result can be formalized thus6

Theorem 1. Given a library implementation L, consistency policy Ψ and a cor-
rectness axiom θ, if the collection of formulae described above are satisfiable, then
there exists a history h and an abstract execution Γ ∈ �Ωh,L,Ψ � which violates θ.

5 Experimental Evaluation

Table 2. Consistency policies required for various implementations and specifications.

Benchmark AddRem Injective Empty[SO] Empty[HB] FIFO-1/LIFO-

1/Exchange

FIFO-2/LIFO-2 Max time

(s)

2Lock Queue

[29]

MW+MR MW+MR

+WFR

CC CC MW+MR MW+MR 269

LockFree Queue

[29]

MW+MR EC CC CC MW+MR EC 152

HW Queue [22] EC EC RMW MW+MR

+RMW

CC MW+MR

61

Treiber Stack

[40]

MW+MR

+WFR

EC CC CC MW+MR +WFR EC 245

Elimination Stack

[20]

MW+MR

+WFR

EC CC CC MW+MR +WFR MW

65

Exchanger [20] MW EC -NA- -NA- MW -NA-

40

We have implemented our bounded verification procedure and applied it to
a number of library implementations that have been widely-used in the world
of shared-memory systems. We generate FOL formulae for each implementation
as described in Sect. 4 and dispatch them to Z3 to determine their satisfiability.
For queues, we have used the 2LockQueue, LockFree Queue and Herlihy and Wing
(HW) Queue implementations, while for stacks, we have applied our approach
on the Treiber and Elimination Stack implementations. The Elimination stack uses
the exchanger implementation, and so we have also checked the correctness of
the exchanger.

Since our analysis takes as input the bound on the number of invocations (k),
the consistency policy, and the specification, we deploy the system as follows:
For each implementation and specification pairing, we start with bound k = 2
and the weakest consistency policy (EC). If we do not find any violation, then we

6 A Proof Sketch can be found in [32].
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increase the bound by 1 and perform the analysis again. On the other hand, if
we do find a violation, then by Theorem-1, we know that it is guaranteed to be
an actual violation. We record its structure from the satisfiable model returned
by Z3, and then increase the consistency policy to the next higher level. We
continue this process until we exhaust our verification time budget (of 1 hour
per benchmark implementation). Note that all the consistency policies that we
consider can be arranged in a lattice [38] whereby the higher one goes up the
lattice, the consistency policies become stronger, which means they allow only
a subset of executions that are allowed by policies weaker than them. Our tool
automatically traverses this lattice to find the weakest consistency policy at
which no bounded violation is found.

Table 2 summarizes the results of this process. For each pair of benchmark
implementation and correctness specification, it shows the weakest consistency
policy at which we did not find any violations. This means that at every con-
sistency policy weaker than the one specified in the table, violations were dis-
covered. For each benchmark, we also note the maximum time needed to find a
violation for any specification by Z3. Some specifications were discussed in §3.4,
with Empty[SO] meaning we replace the relation hbΓ with soΓ in the specifica-
tion; the correctness specifications for Queues and Exchangers are given in [32].
Across all benchmarks, we found that the longest history which violated any
specification within the time bound considered consisted of 6 invocations.

To empirically validate our results, we also executed all the benchmarks at the
appropriate consistency levels on Cassandra, a real-world replicated data store.
We configured Cassandra with 3 replicas running on Amazon EC2 instances at
different physical locations (all on the US East Coast). We randomly generated
client invocations at all 3 replicas and ran each implementation for 4 h (on
average 92000 invocations/benchmark). We collected the resulting traces and
checked the specifications. We did not find any violation of the specifications,
and surmise that violations, when they do occur, manifest in smaller executions
that can be systematically checked by our analysis.

The results yield a number of interesting observations. First and foremost,
note that even for the same benchmark, different correctness specifications
require different consistency policies, ranging from the weakest, Eventual Con-
sistency, (EC) to the strongest, Causal Consistency, (CC). This suggests that
depending upon the requirements of the clients of the library, there is a trade-
off between consistency and correctness that can be effectively explored. It has
long been known that Causal Consistency incurs a performance penalty [3] due
to expensive dependency tracking, significant metadata storage, and long wait
times for all causally dependent data to arrive. A number of recent approaches
[9,14,28] have looked at improving the performance of Causal Consistency,
mainly by reducing the amount of dependent data required. Our experiments
suggest that many important correctness properties of library implementations
may not require CC, but would work correctly under weaker session guarantees
or even EC. Note that as we discussed in Sect. 2, MW+MR only require all data
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to be propagated from the same session, while MW+MR+WFR requires data to
be propagated across the entire causal chain.

Another interesting observation is that important properties such as Injective
and FIFO/LIFO only require EC for most benchmarks. We also notice that for the
same correctness specification, different benchmarks require different consistency
policies, especially among the various Queue benchmarks. This illustrates that
clients have flexibility in choosing an implementation, based on the properties
that they need. For example, an HW queue can satisfy the AddRem specifica-
tion at the weakest consistency policy (EC), but requires CC for FIFO-1, which
can be satisfied using just session guarantees by both 2LockQueue and LockFree-
Queue. No single queue implementation provides all correctness guarantees at
the weakest consistency level. For stacks, the Elimination Stack and the Treiber
Stack require the same consistency policies for every specification except LIFO-2,
for which the Elimination Stack requires MW for the Exchange property of the
underlying Exchanger to be satisfied. By analyzing violations, we also found that
both the access pattern of different implementations as well as the semantics of
the data structure (stack vs. queue) played a major role in determining how and
if violations occur.

Note that even though we unroll loops upto a fixed bound, for all benchmarks
except LockFree Queue, the unrolling factor does not matter because in every
loop, every iteration except the last only performs read events, and the values
read are only used in the same iteration. Hence, only the last iteration which
performs a write/update event is relevant; unrolling the loop once is sufficient.

push(1) push(3) pop : 0

5 : U(Top, NULL, L1) 5 : U(Top, L2, L3) 6 : R(Top, L2)

push(2) pop : 3 7 : R(L2.Val, 0)

5 : U(Top, L1, L2) 9 : U(Top, L3, L2) 9 : U(Top, L2, L1)

pop : 1

6 : R(Top, L1)

Fig. 4. A violation of LIFO − 1 by Treiber Stack under MW+MR involving 6 invoca-
tions

In order to illustrate the complex violations automatically generated by our
framework, consider the violation of LIFO-1 in the Treiber stack implementa-
tion under MW+MR in Fig. 4. Here, invocations in the same column are in the
same session. Following the notation as used in the specification in Sect. 3.4,
γ1 = push(2), γ2 = push(1), γ3 = pop : 1. As a concrete violation of the specifi-
cation, γ2 happens before γ1, but γ3 returns the value pushed by γ2 even though
γ1 is unmatched, thus disobeying the LIFO property. The reason behind this
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violation is that another pop operation (pop:0) is actually popping the element
pushed by push(2), but it does not read the value 1 and instead reads the initial
value 0 (thus also violating AddRem). As a result, the last pop operation in the
leftmost session sees only the element 1 on the stack. We note that there is no
violation of smaller length under MW+MR. By upgrading the consistency level
to MW+MW+WFR, the violation is eliminated.

6 Related Work and Conclusion

Verifying applications under weak consistency has received significant attention
in recent years. A number of efforts [2,19,23,25,38] have looked at the prob-
lem of verifying arbitrary safety invariants while others have considered verifi-
cation with respect to distributed database applications and specific high-level
transactional properties [5–7,10,30,35]. These results are orthogonal to the work
described here, since neither consider the question of safely migrating performant
concurrent libraries to a replicated environment.

More directly related are proposals to deal with the specification and verifica-
tion of various properties of CRDTs [12,18,31,41,42]. CRDTs also offer a library
interface to clients and have been implemented for various data structures such
as set, list, map, etc. They follow a different system model than the library imple-
mentations that we have considered in our work, and typically do not require
any form of synchronization. However, this requirement imposes stringent con-
straints on their design (for example, in an op-based CRDT, all operations have
to commute with each other). We are not aware of any CRDT-like implementa-
tion of concurrent data structures such as Queue, Stack and Exchangers that we
have considered here.

Prior works [18,31] have also developed automated or semi-automated
approaches to verify the convergence of CRDTs, an important but fairly low-level
property that does not shed much insight on the correctness of libraries built
using them. High-level correctness specifications of CRDTs are either given in
terms of abstract RDT specifications [12,42] or customized specification frame-
works such as replication-aware linearizability [41]. Both of these specification
styles are closer to linearizability, but since direct linearization of all operations
an execution is not possible in a distributed environment, both approaches allow
relaxations to help decide a linearization order. These relaxations typically take
the form of allowing different per-invocation linearizations based on the type of
the invocation and the visibility relation. This can lead to complicated specifica-
tions that can be substantially different from their shared-memory counterparts,
complicating verification. In contrast, our axiomatic style also allows clients of
the library to know exactly how the relaxations in a replicated environment will
impact observable behavior. Finally, unlike other prior work, we develop a fully
automated approach for bounded verification of library implementations.

There has also been recent interest in specifying and verifying concurrent
library implementations for shared memory systems [16] and weak memory mod-
els [15,34]. While the specification style of weak memory models bears some
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superficial resemblance to that of weak consistency, the underlying system model
is quite different, and weak consistency models allows relaxed behaviors which
are not allowed by weak memory models. They also offer more fine-grained con-
trol than possible under weak memory given their ability to provide session-level
as well as system-wide consistency guarantees to individual low-level operations.
[34] proposes axiomatic specifications of libraries using happens-before and pro-
gram orders. Our specifications, while similar in spirit, are more fine-grained and
better suited to replicated systems.

To conclude, we tackle the problem of migrating concurrent library implemen-
tations from shared-memory systems to replicated, distributed ones. We define a
sensible semantics for such implementations on a replicated store parametric in
the consistency policy of the store and describe how to migrate the correctness
specifications for such libraries with minimal changes. Our verification framework
automatically finds bounded violations of these specifications. Parametericity of
consistency policies in the analysis allows us to find the weakest policy that
eliminates a discovered violation. Our experiments have demonstrated that the
proposed framework is effective in finding non-trivial violations in a number of
challenging and diverse benchmarks. We also find that the spectrum of weak
consistency policies in replicated systems can be effectively explored to tradeoff
correctness and performance.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments. This material is based upon work supported by the National Science Foundation
under Grant No. CCF-SHF 1717741.
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2016, Québec City, Canada, 23–26 August 2016, pp. 7:1–7:15 (2016). https://doi.
org/10.4230/LIPIcs.CONCUR.2016.7

8. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
18–20 January 2017, pp. 626–638. ACM (2017). http://dl.acm.org/citation.cfm?
id=3009888

9. Bravo, M., Rodrigues, L.E.T., Roy, P.V.: Saturn: a distributed metadata service
for causal consistency. In: Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys 2017, Belgrade, Serbia, 23–26 April 2017, pp. 111–
126 (2017). https://doi.org/10.1145/3064176.3064210

10. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Static serializability analysis
for causal consistency. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, 18–22 June 2018, pp. 90–104 (2018). https://doi.org/10.1145/3192366.
3192415

11. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1(1–2), 1–150 (2014). https://doi.org/10.1561/2500000011

12. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, San Diego, CA,
USA, 20–21 January 2014, pp. 271–284 (2014). https://doi.org/10.1145/2535838.
2535848

13. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: 26th International Conference on Concurrency
Theory, CONCUR 2015, Madrid, Spain, 1.4 September 2015, pp. 58–71 (2015).
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

14. Didona, D., Guerraoui, R., Wang, J., Zwaenepoel, W.: Causal consistency and
latency optimality: friend or foe? PVLDB 11(11), 1618–1632 (2018). https://doi.
org/10.14778/3236187.3236210. http://www.vldb.org/pvldb/vol11/p1618-didona.
pdf

15. Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Making linearizability com-
positional for partially ordered executions. In: Integrated Formal Methods - 14th
International Conference, IFM 2018, Maynooth, Ireland, 5–7 September 2018, Pro-
ceedings, pp. 110–129 (2018). https://doi.org/10.1007/978-3-319-98938-9 7

16. Emmi, M., Enea, C.: Weak-consistency specification via visibility relaxation.
Proc. ACM Program. Lang. 3(POPL), 60:1–60:28 (2019). https://doi.org/10.1145/
3290373

17. Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic reasoning. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 260–269
(2015). https://doi.org/10.1145/2737924.2737983

18. Gomes, V.B.F., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verifying strong
eventual consistency in distributed systems. PACMPL 1(OOPSLA), 109:1–109:28
(2017). https://doi.org/10.1145/3133933

https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.14778/3236187.3236210
https://doi.org/10.14778/3236187.3236210
http://www.vldb.org/pvldb/vol11/p1618-didona.pdf
http://www.vldb.org/pvldb/vol11/p1618-didona.pdf
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1145/3290373
https://doi.org/10.1145/3290373
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1145/3133933


Bounded Verification of Concurrent Libraries in Replicated Systems 273

19. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause i’m strong
enough: reasoning about consistency choices in distributed systems. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January
2016, pp. 371–384 (2016). https://doi.org/10.1145/2837614.2837625

20. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA 2004: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, Barcelona, Spain, 27–30 June 2004, pp. 206–215
(2004). https://doi.org/10.1145/1007912.1007944

21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

22. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

23. Houshmand, F., Lesani, M.: Hamsaz: replication coordination analysis and syn-
thesis. PACMPL 3(POPL), 74:1–74:32 (2019). https://dl.acm.org/citation.cfm?
id=3290387

24. Jepsen. https://jepsen.io. Accessed 27 Jan 2019
25. Kaki, G., Earanky, K., Sivaramakrishnan, K.C., Jagannathan, S.: Safe replication

through bounded concurrency verification. PACMPL 2(OOPSLA), 164:1–164:27
(2018). https://doi.org/10.1145/3276534

26. Lightweight transactions in cassandra. https://docs.datastax.com/en/cql/3.3/cql/
cql using/useInsertLWT.html. Accessed 2 Dec 2019

27. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: Proceedings
of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011,
Cascais, Portugal, 23–26 October 2011, pp. 401–416 (2011). https://doi.org/10.
1145/2043556.2043593

28. Mehdi, S.A., Littley, C., Crooks, N., Alvisi, L., Bronson, N., Lloyd, W.: I can’t
believe it’s not causal! scalable causal consistency with no slowdown cascades. In:
14th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2017, Boston, MA, USA, 27–29 March 2017, pp. 453–468 (2017). https://
www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi

29. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Philadelphia, Pennsylvania, USA,
23–26 May 1996, pp. 267–275 (1996). https://doi.org/10.1145/248052.248106

30. Nagar, K., Jagannathan, S.: Automated detection of serializability violations under
weak consistency. In: 29th International Conference on Concurrency Theory, CON-
CUR 2018, Beijing, China, 4–7 September 2018, pp. 41:1–41:18 (2018). https://
doi.org/10.4230/LIPIcs.CONCUR.2018.41

31. Nagar, K., Jagannathan, S.: Automated parameterized verification of CRDTs. In:
Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, 15–18 July 2019, Proceedings, Part II, pp. 459–477 (2019). https://
doi.org/10.1007/978-3-030-25543-5 26

32. Nagar, K., Mukherjee, P., Jagannathan, S.: Semantics, Specification and Bounded
Verification of Concurrent Libraries in Replicated Systems (Extended Version).
https://arxiv.org/abs/2004.10158

33. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional, Reading (2005)

https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://dl.acm.org/citation.cfm?id=3290387
https://dl.acm.org/citation.cfm?id=3290387
https://jepsen.io
https://doi.org/10.1145/3276534
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useInsertLWT.html
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useInsertLWT.html
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://doi.org/10.1145/248052.248106
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-25543-5_26
https://arxiv.org/abs/2004.10158


274 K. Nagar et al.

34. Raad, A., Doko, M., Rozic, L., Lahav, O., Vafeiadis, V.: On library correctness
under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models. PACMPL 3(POPL), 68:1–68:31 (2019).
https://doi.org/10.1145/3290381

35. Rahmani, K., Nagar, K., Delaware, B., Jagannathan, S.: CLOTHO: directed test
generation for weakly consistent database systems. PACMPL 3(OOPSLA), 117:1–
117:28 (2019). https://doi.org/10.1145/3360543

36. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Technical report, RR-7506,
INRIA, Inria - Centre Paris-Rocquencourt (2011)

37. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011). https://doi.org/10.1145/1897852.1897873

38. Sivaramakrishnan, K.C., Kaki, G., Jagannathan, S.: Declarative programming
over eventually consistent data stores. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Port-
land, OR, USA, 15–17 June 2015, pp. 413–424 (2015). https://doi.org/10.1145/
2737924.2737981

39. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.B.:
Session guarantees for weakly consistent replicated data. In: Proceedings of the
Third International Conference on Parallel and Distributed Information Systems
(PDIS 94), Austin, Texas, USA, 28–30 September 1994, pp. 140–149 (1994).
https://doi.org/10.1109/PDIS.1994.331722

40. Treiber, R.K.: Systems programming: coping with parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research (1986)

41. Wang, C., Enea, C., Mutluergil, S.O., Petri, G.: Replication-aware linearizability.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, 22–26 June 2019, pp.
980–993 (2019). https://doi.org/10.1145/3314221.3314617

42. Zeller, P., Bieniusa, A., Poetzsch-Heffter, A.: Formal specification and verification
of CRDTs. In: Formal Techniques for Distributed Objects, Components, and Sys-
tems - 34th IFIP WG 6.1 International Conference, FORTE 2014, Held as Part of
the 9th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, 3–5 June 2014, Proceedings, pp. 33–48 (2014).
https://doi.org/10.1007/978-3-662-43613-4 3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3290381
https://doi.org/10.1145/3360543
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1007/978-3-662-43613-4_3
http://creativecommons.org/licenses/by/4.0/


Refinement for
Structured Concurrent Programs

Bernhard Kragl1(B) , Shaz Qadeer2, and Thomas A. Henzinger1

1 IST Austria, Klosterneuburg, Austria
{bkragl,tah}@ist.ac.at

2 Novi, Seattle, USA
shaz@fb.com

Abstract. This paper presents a foundation for refining concurrent pro-
grams with structured control flow. The verification problem is decom-
posed into subproblems that aid interactive program development, proof
reuse, and automation. The formalization in this paper is the basis of a
new design and implementation of the Civl verifier.

1 Introduction

We present a solution to the problem of proving that no execution of a concurrent
program leads to a failure. This problem is equivalent to proving an arbitrary
safety property on the program. In deductive verification, a proof system decom-
poses this verification problem into a set of proof obligations (or verification
conditions), and discharging these obligations implies the correctness of the pro-
gram. At its core, any proof system depends on inductive invariants, and, in
general, these have to be supplied manually. Inventing an inductive invariant is
especially challenging for concurrent programs, since it has to capture compli-
cated relationships over the entire program state, across all concurrent compu-
tations. Thus, the main practical obstacle to deductive verification is a suitable
interaction mode for the programmer to invent and supply the necessary proof
hints. This paper develops and implements a systematic conceptual framework
for supplying these proof hints on a structured representation of the concurrent
program, specifically eliminating the need to write complex invariants on the
low-level encoding of the program as a flat transition system.

The Civl verifier [18,25] addresses the aforementioned challenge by advo-
cating layered refinement over structured concurrent programs. Instead of the
monolithic approach that requires the programmer to prove the safety of a pro-
gram P directly, Civl allows the programmer to specify a chain of increasingly
simpler programs P = P0,P1, . . . ,Pn = P ′ such that the safety of Pi implies the
safety of Pi−1 for all i ∈ [1, n], thus transferring the safety obligation on P to P ′.
The overall correctness of the program is established piecemeal by focusing on
the invariant required for each refinement step separately. While the program-
mer does the creative work of specifying the chain of programs and the inductive
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invariant justifying each link in the chain, the tool automatically constructs the
verification conditions underlying each refinement step.

The core principle of a layered refinement proof in Civl is iterative program
simplification through two kinds of creative reasoning. First, the programmer
must think about the primitive atomic actions used to specify a particular pro-
gram Pi in the chain of programs. These atomic actions must be chosen to have
useful commutativity properties which allow the tool to provably eliminate pre-
emptions at many control locations in Pi, thus creating large preemption-free
execution fragments. Second, the programmer must think about the justification
for the transformation of Pi into the next program Pi+1. This transformation
may be complex because (1) some of the variables in Pi may become irrelevant,
(2) new variables may be needed for the primitive atomic actions in Pi+1, and
(3) the transformation may simplify complex control flow (branching, procedure
calls, recursion, etc.) into a single step that executes an atomic action. This
paper focuses on the necessary foundation and tool support for this second kind
of creative reasoning.

We present our technique on an idealized yet general language RefPL, suit-
able for expressing structured parallelism, asynchronous computation, atomic
actions of arbitrary granularity, and dynamically-scoped preemption-free code
fragments. Using the design of RefPL and the formalization of its operational
semantics, we present two technical contributions.

Our first contribution is a general proof rule for soundly abstracting a recur-
sive RefPL program P into another RefPL program P ′ that hides subsets of global
variables, local variables, procedures, and atomic actions in P. Our proof rule
goes beyond Civl in two ways. First, it provides the capability to hide local
variables of procedures, specifically parameters, in addition to global variables.
This capability allows us to replace a procedure with an atomic action with a
smaller interface by hiding the extra parameters. Refinement proofs are sim-
plified because it becomes easy to introduce local snapshots of global variables
needed for specifications, pass these snapshots around as parameters to proce-
dures, and finally recover the original interface by hiding these extra parameters.
Second, unlike Civl our proof rule is capable of performing refinement proofs
on arbitrarily recursive programs. Since hiding low-level details is the core prin-
ciple of the layered refinement methodology, our proof rule contributes towards
increasing the expressiveness of refinement proofs compared to Civl.

Our proof rule depends on invariants that constrain the reachable states of the
program. Our second contribution, an aid to our refinement rule but also inde-
pendently useful, is a new specification idiom called yield invariants—named,
parameterized, and interference-free invariants that can be called in parallel
with ordinary procedures to soundly constrain the interference possible at yields
within the called procedure. Since a yield invariant is named, its definition is
separate from its invocation, thereby allowing proofs of interference-freedom to
be performed once and reused for each call site. Since it is parameterized, it can
be specialized to the needs of a call site by passing suitable input parameters.
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Reasoning with yield invariants becomes difficult in concurrent programs
when the absence of interference must be justified using facts referring to local
variables of different procedures executing in different threads. The alternative
of using global ghost variables that have the same information as local variables
is theoretically possible but impossibly tedious. We observe that local proofs for
many of these programming patterns can be achieved by exploiting permissions
that are redistributed by atomic actions and otherwise passed around the pro-
gram without duplication via input and output parameters of procedures. To
track permissions, we enhance the interface of yield invariants, procedures, and
atomic actions with annotations that satisfy a discipline enforced by a combi-
nation of linear typing [38] over procedure bodies and logical reasoning over the
transitions of atomic actions.

The formalization in this paper is the basis of a new design and implemen-
tation of the Civl verifier. We hope that Civl will serve researchers as a viable
platform for experimenting with optimizations and implementation decisions.

To summarize, this paper makes the following contributions:

– It presents a core language RefPL for expressing modular proofs of refine-
ment over structured concurrent programs. The formulation of refinement for
RefPL is general and allows the user to encode verification of an arbitrary
safety property as refinement verification. Furthermore, RefPL enables the
construction of layered proofs [25] of safety via iterated refinement.

– A refinement proof for RefPL is modular and decomposed along program syn-
tax through the use of yield invariants. The interfaces to procedures, actions,
and yield invariants exploit a linear typing discipline [38] that enhances local
verification through the use of permissions.

– Finally, we present a robust implementation of the refinement rule and yield
invariants in the Civl verifier.

1.1 Related Work

Formal verification techniques based on stepwise refinement have long been advo-
cated, in theory, for construction of verified programs (e.g., [5,35,36]). This paper
takes its inspiration from TLA [28] and Event-B [3,4] which popularized refine-
ment as an approach for reasoning about a concurrent program modeled as a
transition system. Recent efforts [10,16,17] have developed support for develop-
ment of verified programs atop the foundation of refinement over transition sys-
tems. Our work develops a foundation and tool support for refinement over struc-
tured concurrent programs rather than flat transition systems. We are encour-
aged by broad interest in the use of automatic program simplification [12,15] to
reduce the complexity of reasoning about concurrent programs.

The technique of yield invariants is inspired by interference-free location
invariants in the work of Owicki and Gries [34] and the rely specification in rely-
guarantee reasoning [21]. Yield invariants attempt to import the reuse of rely
specifications to location invariants. We introduce linear interfaces to encode
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permissions to address the practical concern of unwieldy ghost state. While per-
missions have been used before for encoding ownership in heap-manipulating
programs [32], our encoding of permissions is different, applicable to any shared
resource, and targeted specifically at noninterference reasoning.

There are other efforts to build practical verifiers for concurrent programs.
Some verifiers focus on automation and target specific programming models and
languages [7,11,20,29]. Our verifier is just as automated but capable of targeting
a variety of programming models because of the foundation of atomic actions
in RefPL. Other verifiers share our focus on expressiveness by providing general
and certified metatheory [22] but are less automated; our verifier attempts to
increase expressiveness without sacrificing automation. None of these aforemen-
tioned verifiers focus on refinement and layered proofs.

Our work bears a superficial resemblance to proof methods [8,23,37] for
linearizability [19]. Our work targets the general problem of safety verification.
Linearizability is a specific safety property to which our method is applicable.

2 Overview

In this section, we illustrate our contributions on a set of example programs.
Section 2.1 presents yield invariants, Sect. 2.2 presents refinement, and Sect. 2.3
presents linear interfaces.

2.1 Yield Invariants

Figure 1 shows a simple RefPL program. The first column shows a global counter
x, a procedure incr x that increments x twice, and a yield invariant yield x that
characterizes the interference from other threads while a thread is executing
incr x. The increments of x on lines 4 and 6 are separated by a call to the yield
invariant yield x. RefPL provides a single call statement for calling any number
(including zero) of procedures and yield invariants in parallel. The preserves spec-
ification on line 3 indicates that yield x is both a precondition (usually indicated
by requires) and a postcondition (usually indicated by ensures). In RefPL, each
precondition of a procedure is a call to a yield invariant; all preconditions are
called in parallel at procedure entry. Similarly, each postcondition is a call to a
yield invariant; all postconditions are called in parallel at procedure exit.

This paper focuses on reasoning about cooperative semantics in which pre-
emptions occur only at entry into a procedure, at a call during its execution,
and at exit. The RefPL verifier proves the correctness of yield x and incr x mod-
ularly on these cooperative semantics. Specifically, the yield invariant yield x is
proved interference-free since the only operations in the program that modify x
increment it. The procedure incr x is proved by using the precondition of incr x
to establish the yield invariant at line 5 and then using the yield invariant to
prove the postcondition at exit. This proof of incr x depends on the observation
that the input parameter x of incr x is passed as the argument to the three calls
to yield x: in the precondition, on line 5, and in the postcondition. The second
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1 var x: int // ≥ 0

2 procedure incr x( x: int)
3 preserves yield x( x)
4 x := x + 1
5 call yield x( x)
6 x := x + 1

7 invariant yield x( x: int)
8 x ≤ x

9 var y: int // ≥ 0

10 procedure incr y( y: int)
11 preserves yield y( y)
12 y := y + 1
13 call yield y( y)
14 y := y + 1

15 invariant yield y( y: int)
16 y ≤ y

17 procedure incr x y()
18 requires yield x(0)
19 requires yield y(0)
20 if (∗)
21 async incr x y()
22 call incr x(0) || yield y(0)
23 call incr y(0) || yield x(0)
24 assert 0 ≤ x ∧ 0 ≤ y

Fig. 1. Incrementing two separate counters to illustrate yield invariants.

column shows code similar to what we just discussed, except on global variable
y, procedure incr y, and yield invariant yield y.

The third column show a procedure incr x y which uses recursion to create an
unbounded number of concurrent threads. incr x y nondeterministically spawns
a copy of itself on lines 20–21, calls procedures to increment x and y on lines 22–
23, and asserts a safety property about x and y on line 24. Our verification goal
is to prove that if a single instance of incr x y starts in a state that satisfies the
initial constraints on x and y, indicated on lines 1 and 9 respectively, then the
assertion on line 24 holds in every copy of incr x y.

The proof of procedure incr x y shows the modularity of yield invariants.
First, notice that no new yield invariants are needed; the entire proof of incr x y
is achieved by reusing yield x and yield y. Specifically, yield x and yield y are
called in parallel with each other at entry, yield y is called in parallel with incr x
at line 22, and yield x is called in parallel with incr y at line 23. Second, the
arguments to yield x and yield y are specialized to match the constraints in the
initial state and the assertions.

2.2 Refining Atomic Actions

Figure 2 shows a spin lock implementation and a client that uses the spin lock to
atomically increment a shared counter. Procedure Acquire (lines 22–28) acquires
the lock and procedure Release (lines 29–34) releases the lock. Both procedures
use a primitive atomic action CAS (compare-and-swap) defined on lines 10–
14 with two parameters—old b and new b. This action compares the value of a
global variable b to old b. If they are equal, b is set to new b and true is returned,
otherwise, b is not modified and false is returned. Acquire attempts to set b from
false to true repeatedly via recursive call to itself (line 28) until it succeeds.
Release sets b back to false from true.

Procedure Incr (lines 16–21) atomically increments the global variable count
by acquiring the lock, reading count into a local variable t by calling Read
(lines 35–39), writing t+1 back to count by calling Write (lines 40–43), and
finally releasing the lock. We prove that Incr implements an atomic increment
via a sequence of two refinement steps.

The first step abstracts the procedures Acquire, Release, Read, and Write into
atomic actions AcquireSpec, ReleaseSpec, ReadSpec, and WriteSpec, respectively.
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1 // Concrete global variables
2 var b: bool // false
3 var count: int

4 // Abstract global variable
5 var l: Option〈Tid〉 // None

6 // Supporting invariant
7 invariant LockInv()
8 b ⇐⇒ (l 
= None)

9 // Primitive actions
10 action CAS(old b, new b: bool)
11 returns (success: bool)
12 success := b = old b
13 if (success)
14 b := new b

15 // Atomic increment
16 procedure Incr(linear tid: Tid)
17 preserves LockInv()
18 call Acquire(tid)
19 call t := Read(tid) || LockInv()
20 call Write(tid, t+1) || LockInv()
21 call Release(tid)

22 procedure Acquire(
23 linear tid: Tid)
24 refines AcquireSpec
25 preserves LockInv()
26 exec t := CAS(false, true)
27 if (t) l := Some(tid)
28 else call Acquire(tid)

29 procedure Release(
30 linear tid: Tid)
31 refines ReleaseSpec
32 preserves LockInv()
33 exec CAS(true, false)
34 l := None

35 procedure Read(
36 linear tid: Tid)
37 returns (v: int)
38 refines ReadSpec
39 v := count;

40 procedure Write(
41 linear tid: Tid, v: int)
42 refines WriteSpec
43 count := v;

44 action AcquireSpec(
45 linear tid: Tid)
46 assume l = None
47 l := Some(tid)

48 action ReleaseSpec(
49 linear tid: Tid)
50 assert l = Some(tid)
51 l := None

52 action ReadSpec(
53 linear tid: Tid)
54 returns (v: int)
55 assert l = Some(tid)
56 v := count

57 action WriteSpec(
58 linear tid: Tid, v: int)
59 assert l = Some(tid)
60 count := v

Fig. 2. Spin lock to illustrate refinement of atomic actions.

These atomic actions, defined in the third column of Fig. 2, provide an explicit
specification of the locking protocol for accessing the shared variable count. The
specification of these actions requires the introduction of (1) a local parameter
tid containing the unique id of the thread executing the code, and (2) a global
variable l whose value is either None when the lock is not held or Some(tid)
when the lock is held by thread tid. The second step uses these atomic actions
to abstract Incr to an atomic action that increments count by 1.

There are two challenges in the first refinement proof. First, the lock imple-
mentation is defined using the concrete Boolean variable b, whereas the lock
specification is defined using the logical lock variable l. Second, the implemen-
tation of Acquire is recursive, which is technically challenging for refinement
reasoning. The solution to the first problem is to introduce l and hide b during
the refinement proof. To introduce l into the concrete program, it is updated
appropriately when Acquire (line 27) and Release (line 34) complete successfully.
Furthermore, the relationship between the variables b and l is captured by the
yield invariant LockInv (lines 7–8) which is used in the precondition and postcon-
dition of Acquire and Release. The solution to the second problem is a powerful
rule for refinement reasoning, described in Sect. 4, which allows the recursive call
to Acquire on line 28 to be replaced by a call to the specification AcquireSpec
while modularly proving that the body of Acquire refines AcquireSpec.

procedure Incr(linear tid: Tid)
refines IncrSpec
exec AcquireSpec(tid)
exec t := ReadSpec(tid)
exec WriteSpec(tid, t+1)
exec ReleaseSpec(tid)

action IncrSpec()
count := count + 1

To set up the second refinement proof, the procedure
calls in the body of Incr are replaced by invocations of
the corresponding abstract atomic actions (as shown on
the right here). The rewritten body of Incr is preemption-
free; a yield may occur only at the beginning or the end.
This assumption is justified by a commutativity analy-
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sis based on the observation that AcquireSpec is a right mover, ReleaseSpec is
a left mover, and ReadSpec and WriteSpec are both movers [14]. Proving these
mover types requires that the tid input parameters of two concurrent actions
are distinct, which is specified by the linear annotation. In addition to encoding
distinctness of values, linear variables can be used for encoding disjointness of
permissions associated with values. We present an example illustrating permis-
sions in Sect. 2.3 and a detailed technical description in Sect. 4.

For the prove that procedure Incr refines the action IncrSpec, which incre-
ments count atomically, we do not need the invariant LockInv anymore; in fact
we do not need any invariant. Furthermore, the local parameter tid and the global
variable l are no longer needed in the program and can be hidden. Hiding local
variables is a novel feature of the refinement method described in this paper. The
capability to introduce and subsequently hide global and local variables allows
us to chain a sequence of refinement steps, localizing the use of variables to the
parts of the proof that need them.

2.3 Linear Interfaces

Figure 3 shows a synchronization protocol extracted from a verified concurrent
garbage collector [18]. There are N mutator threads (procedure Mutator on
line 28) numbered from 1 to N, and one collector thread (procedure Collector
on line 38) with ID 0. The protocol ensures that no mutator accesses memory
(line 37) concurrently while the collector is doing a root scan (line 44) using
barrier synchronization. Before the collector runs, it sets the Boolean variable
barrierOn to true (line 40) and waits until the integer variable barrierCounter gets
0 (line 42). Before a mutator accesses memory, it reads barrierOn (line 31). If false,
the mutator goes ahead. Otherwise, it signals to the collector by decrementing
barrierCounter (line 34) and waits for barrierOn to be reset to false (line 36).

This example declares both global and local linear variables (specified by
linear, linear in, linear out). Every linear variable—or more precisely, its current
value—is assigned a set of permissions of type Perm according to the collector
functions C1, C2, and C3. A linear integer i holds both Left(i) and Right(i), a
set of integers holds the corresponding Left permissions, and a Perm value holds
itself. Note that Perm is not special; any value can be a permission. For every
program location we can compute the set of available linear variables. For exam-
ple, when a mutator enters the barrier (line 34), i becomes unavailable because
the permission Left(i) is transferred to the ghost variable mutatorsInBarrier. Then
i becomes available again after exiting the barrier (line 36). Global linear vari-
ables (mutatorsInBarrier here) are always available. Parameterized by the linear
collectors, our linearity framework establishes the generic invariant that all per-
missions across all available linear variables are disjoint. Now suppose that some
mutator i is at line 37, where it holds both of its permissions and in particular
Left(i), while the collector is at line 45, where mutatorsInBarrier holds all Left per-
missions and in particular Left(i). This situation is impossible, since the linearity
feature of RefPL ensures that a duplication of permissions is impossible.
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1 datatype Perm = Left(int) | Right(int)

2 function linear C1(i: int) = {Left(i), Right(i)}
3 function linear C2(ids: Set〈int〉) = {Left(i) | i ∈ ids}
4 function linear C3(p: Perm) = {p}
5 const N: int // positive
6 var barrierOn: bool // false
7 var barrierCounter: int // N
8 var linear mutatorsInBarrier: Set〈int〉 // ∅

9 // Primitive actions
10 action IsBarrierOn() returns (b: bool)
11 b := barrierOn

12 action EnterBarrier(linear in i: int)
13 returns (linear out p: Perm)
14 assert i ∈ [1..N]
15 mutatorsInBarrier := mutatorsInBarrier + {i}
16 barrierCounter := barrierCounter − 1
17 p := Right(i)

18 action WaitForBarrierRelease
19 (linear in p: Perm, linear out i: int)
20 assert p = Right(i) ∧ i ∈ mutatorsInBarrier
21 assume ¬barrierOn
22 mutatorsInBarrier := mutatorsInBarrier − {i}
23 barrierCounter := barrierCounter + 1

24 action SetBarrier(b: bool)
25 barrierOn := b

26 action WaitBarrier()
27 assume barrierCounter = 0

28 procedure Mutator(linear i: int)
29 requires i ∈ [1..N] preserves BarrierInv()
30 var b: bool, p: Perm
31 exec b := IsBarrierOn()
32 if (b)
33 call BarrierInv()
34 exec p := EnterBarrier(i)
35 call BarrierInv() || MutatorInv(p, i)
36 exec WaitForBarrierRelease(p, i)
37 // access memory here

38 procedure Collector(linear i: int)
39 requires i = 0 preserves BarrierInv()
40 exec SetBarrier(true)
41 call BarrierInv() || CollectorInv(i, false)
42 exec WaitBarrier()
43 call BarrierInv() || CollectorInv(i, true)
44 // do root scan here
45 assert mutatorsInBarrier = [1..N]
46 exec SetBarrier(false)

47 // Supporting invariants
48 invariant BarrierInv()
49 mutatorsInBarrier ⊆ [1..N] ∧
50 size(mutatorsInBarrier) + barrierCounter = N

51 invariant MutatorInv(linear p: Perm, i: int)
52 p = Right(i) ∧ i ∈ mutatorsInBarrier

53 invariant CollectorInv(linear i: int, done: bool)
54 i = 0 ∧ barrierOn ∧
55 (done =⇒ mutatorsInBarrier = [1..N])

Fig. 3. Barrier synchronization to illustrate linear interfaces.

The strength of linearity, which leads to a less tedious verification task, is
that its invariant connects variables from different scopes, without the need to
explicitly state (and prove) this invariant. The programmer only provides a lin-
earity specification which is checked automatically (see Sect. 4). The resulting
guarantees can then be assumed “for free”. In contrast, even stating a corre-
sponding invariant requires the introduction of auxiliary global variables and
helper invariants to connect them to local variables.

3 RefPL: Syntax and Semantics

In this section we present RefPL, a core programming language which is carefully
designed to be (1) a minimal yet general modeling language to express concurrent
programs, (2) able to express invariants over program executions, and (3) suit-
able for expressing (refinement-based) program transformations. RefPL focuses
on interfaces for modular verification, while abstracting from detailed expression
syntax and types.

Syntax. Figure 4 (top panel) summarizes the syntax of RefPL. We assume sets
of names which we use to name actions (A), procedures (P,Q), yield invariants
(Y ), and statement labels (λ). A set of variables is partitioned into global and
local variables, and a store σ is a partial map from variables to values. We write
σ′ ⊆ σ if σ is an extension of σ′, σ|V for the restriction of σ to V , σ[σ′] for the
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store that is like σ′ on dom(σ′) and otherwise like σ, and g·� for the combination
of a global and local store. A program consists of a finite set of global variables
gs, a partial map as from action names to actions, and a partial map ps from
procedure names to procedures. Both actions and procedures have an interface
of input variables I and output variables O, and procedures have additional local
variables L. A (gated atomic) action [13,26] consists of a gate ρ and a transition
relation τ . The gate is a set of stores (i.e., a predicate) over gs ∪I. Executing the
action in a state that does not satisfy the gate fails the execution. Otherwise,
every transition (σ, σ′, Ω) in τ describes a possible atomic state transition from σ
(over gs ∪ I) to σ′ (over gs ∪O), together with the creation of new asynchronous
threads according to a set of pending asyncs Ω; every pending async (�, P ) ∈ Ω
is turned into a new thread that executes procedure P with input store �. A
procedure consists of a statement s that is composed of standard control-flow
commands and two call commands: exec to invoke actions and call for the
parallel invocation of multiple procedures. Every entry in the invocation sequence
of a call is called an arm of the call, and the label λ is used to attach specification
information to the call. Parameter passing is expressed using an input map ι from
the callee’s formals I to the caller’s actuals I ∪ O ∪ L, and an injective output
map o from the callee’s formals O to the caller’s actuals O ∪ L. Input variables
are immutable, since they are not mapped to by output maps and the variables
of a procedure are not modified anywhere else. Output and local variables of a
procedure are initialized to the default value h. In RefPL, loops are modeled
using recursion, and conditional statements are modeled using nondeterministic
branching (∗) and actions that assume the branching condition.

Type Checking. For a program we require that (1) the action name in an exec
statement is in dom(as), (2) the procedure names in a call statement are in
dom(ps), and the actual outputs of all arms are disjoint from each other and all
actual inputs, and (3) for every pending async (�, P ) in the transition relation
of an action in img(as), P ∈ dom(ps) and dom(�) contains all inputs of P .

Semantics. Figure 4 (bottom panel) presents the operational semantics of
RefPL, a transition relation ⇒ over configurations that consist of a global store
over gs and a finite multiset of threads. Each thread is a tree (which generalizes
a call stack); a call statement creates new leaf nodes (Lf) and blocks the caller
in an internal node (Nd) until all arms of the parallel call finish. Each tree node
contains a frame (P, �, s) that represents the current state of a procedure P dur-
ing execution: � is the procedure’s current local store and s is a statement that
remains to be executed. In the definition of ⇒ we use several evaluation contexts
that have a unique hole •; filling the hole is denoted by ·[·]. In particular, SC [s]
is a statement with s in evaluation position, and PC [t] is a multiset of thread
trees where t is a subtree in one of these trees. The operator ◦ means function
or relation composition.

Atomic actions (invoked through the exec command) execute directly in the
context of the caller; inline, if you will. If the current store does not satisfy the
gate of an executed action, the execution stops in the failure configuration �. It
is important to appreciate the generality of atomic actions. First, they can rep-
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A ∈ ActionName P, Q ∈ ProcName Y ∈ InvName λ ∈ Label

Val �
v ∈ Var = GVar ∪ LVar
g ∈ GStore = GVar ⇀ Val
� ∈ LStore = LVar ⇀ Val
σ ∈ Store = Var ⇀ Val
ρ ∈ Gate = 2Store

τ ∈ Trans = 2Store×Store×PASet

Ω ∈ PASet = 2LStore×ProcName

ι, o ∈ IOMap = LVar ⇀ LVar

s ∈ Stmt ::= | skip | s ; s | s ∗ s

| callλ (P, ι, o) | exec (A, ι, o)
I, O, L ∈ 2LVar

Action ::= (I, O, ρ, τ)
Proc ::= (I, O, L, s)

gs ∈ 2GVar

as ∈ ActionName ⇀ Action
ps ∈ ProcName ⇀ Proc

P ∈ Prog ::= (gs, as, ps)

Inv ::= (I, ρ)
InvCall ::= (Y, ι)

ys ∈ InvName ⇀ Inv

pre, post ∈ ProcName ⇀ 2InvCall

inv ∈ Label ⇀ 2InvCall

Y ::= (ys, pre, post , inv)

lg ∈ 2GVar

li ∈ (ActionName ∪ ProcName ∪ InvName)
× {�, �} ⇀ 2LVar

lo ∈ (ActionName ∪ ProcName) ⇀ 2LVar

lc ∈ Val → 2Val

L ::= (lg , li , lo, lc)

ref ∈ ProcName ⇀ ActionName
mark ∈ Label ⇀ {�, �} ∪ N

R ::= (ref ,mark)

f ::= (P, �, s)

t ::= Lf f | Nd f t

T ::= {t, . . . , t}
c ::= (g, T ) |

SC ::= •s | SC ; s

TC ::= •t | Nd f tTC t

PC ::= {TC} � T
LC ::= PC [Lf (P, •�,SC )]

for ps(Q) = (I, O, L, s) let

init(Q, �) = (Q, �|I ∪ [v �→ ]v∈O∪L, s)

(call) (g,PC [Lf (P, �,SC [callλ (Qi, ιi, oi)])]) ⇒
(g,PC [Nd (P, �,SC [callλ (Qi, ιi, oi)]) Lf init(Qi, � ◦ ιi)])

(return) (g,PC [Nd (P, �,SC [callλ (Qi, ιi, oi)]) Lf (Qi, �i, skip)]) ⇒
(g,PC [Lf (P, �[�i ◦ o−1

i ],SC [skip])])

(exec) as(A) = ( , , ρ, τ) g̃ ⊆ g (g̃·(� ◦ ι), ĝ·�̂, Ω) ∈ ρ ◦ τ

g′ = g[ĝ] �′ = �[�̂ ◦ o−1] T ′ = {Lf init(Q, �′′) | (�′′, Q) ∈ Ω}
(g,PC [Lf (P, �,SC [exec (A, ι, o)])]) ⇒ (g′,PC [Lf (P, �′,SC [skip])] � T ′)

(fail) as(A) = ( , , ρ, ) ¬∃g̃ ⊆ g : g̃·(� ◦ ι) ∈ ρ

(g,LC [�][exec (A, ι, o)]) ⇒
(choice) s′ ∈ {s1, s2}
(g,LC [�][s1 ∗ s2]) ⇒ (g,LC [�][s′])

(skip) (g,LC [�][skip ; s]) ⇒ (g,LC [�][s]) (stop) (g, {Lf ( , skip)} � T ) ⇒ (g, T )

Fig. 4. The programming language RefPL: syntax (top panel), proof annotations (mid-
dle panel), and operational semantics (bottom panel).



Refinement for Structured Concurrent Programs 285

resent atomic operations at an arbitrary level of granularity, from fine-grained
low-level operations (e.g., as implemented in hardware) to coarse-grained sum-
maries (e.g., obtained as part of a layered proof). Second, the notion of pending
asyncs subsumes the need for a dedicated asynchronous call statement, and
enables advanced proof techniques for asynchronous programs [24,26]. Finally,
all accesses to global variables are confined to atomic actions.

We distinguish between the preemptive semantics and the cooperative seman-
tics of a program. The preemptive semantics ⇒ defines the standard fine-grained
behaviors of a concurrent program, where a context switch can happen at any
time. A program should be proved correct under its preemptive semantics. How-
ever, for reasoning purposes we consider a cooperative semantics, where context
switches only happen at procedure calls and returns. We call these locations
yields. The justification for reducing reasoning about preemptive semantics to
cooperative semantics is outside the scope of this paper (Civl uses commuta-
tivity reasoning and a reduction argument).

A leaf node Lf(P, , s) is yielding, if it denotes the entry or exit of procedure P ,
i.e., if ps(P ) = ( , , , s) or s = skip. A configuration is yielding if all leaves are
yielding, and cooperative if at most one leaf is not yielding. Then the cooperative
semantics is given by restricting ⇒ to cooperative configurations. Notice that
the configuration after an exec might be non-yielding. Thus, under cooperative
semantics the pending asyncs created by exec can only start executing once the
caller reaches the next yield. We note that arbitrary yields can be modeled with
“empty” parallel calls (i.e., a call with no arms).

A yield-to-yield fragment {P |κ1} e {κ2} of a procedure P is any sequence
of exec statements e that forms a path in P from κ1 to κ2, where κ1 and κ2

are either call statements, ⊥, or 	 (κ1 = ⊥ for procedure entries; κ2 = 	 for
procedure exits). For example, procedure Acquire in Fig. 2 has three yield-to-
yield fragments: (A1) entry/successful CAS/then branch/exit, (A2) entry/failed
CAS/call in the else branch, and (A3) call in the else branch/exit (i.e., an “empty”
fragment). Let Gate(e) be the set of stores from which executing e cannot fail,
and let Trans(e) be the set of tuples (σ, σ′, Ω) where executing e from store
σ can result in σ′ with all created pending asyncs collected in Ω. We define a
reduced transition relation � over yielding configurations, such that c � c′ if
and only if there are cooperative but non-yielding configurations (ci)1≤i≤n∧n≥0

with c ⇒ c1 ⇒ . . . ⇒ cn ⇒ c′. Thus, every step in � corresponds to the
execution of a yield-to-yield fragment under cooperative semantics.

4 Abstracting RefPL Programs

This section presents a proof rule for transforming a concurrent program P into
a concurrent program P ′ such that there is a simulation between the cooperative
executions of P and P ′. The transformation comprises variable hiding (P ′ has
fewer global and local variables than P) and procedure abstraction (procedures
in P are summarized to atomic actions in P ′). Our proof rule takes as input a
yield specification Y, a linearity specification L, and a refinement specification
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R (see Fig. 4), and decomposes the refinement verification problem as follows.

Linearity(P,Y,L) Safety(P,Y,L) Refinement(P,Y,L,R,P ′)
Y,L,R 
 P � P ′

The yield specification declares yield invariants and attaches them to pro-
gram locations, and the linearity specification declares linear interfaces and
sets up a permission discipline (Sect. 4.1). The Linearity judgment (Sect. 4.2)
ensures that the linear interfaces of procedures, actions, and invariants in P
are valid, which establishes a linear disjointness property. The Safety judgment
(Sect. 4.3) ensures that preconditions, postconditions, and invariants in P are
valid and interference-free, which captures reachability information in P. Note
that Linearity and Safety interact, as yield invariants can have a linear interface
and safety checking assumes the guarantees of linearity checking. In our proof
rule, the guarantees of Linearity (Lemma 1) and Safety (Lemma 2) establish
the context for refinement checking. However, we stress that these guarantees
are useful on their own, independent of refinement. The refinement specifica-
tion (Sect. 4.4) declares how P is converted to P ′, and the Refinement judgment
ensures that every execution of P is simulated by an execution of P ′ (Theorem
1). In Sect. 5 we show how all of our obligations are implemented in practice.

4.1 Yield Invariants and Linear Interfaces

RefPL supports yield invariants of the form (I, ρ), where I are input variables
and ρ is a gate over gs ∪ I. In a yield specification Y = (ys, pre, post , inv), the
map ys assigns invariant names to yield invariants, such that invariants can be
“invoked” by name—similar to actions and procedures—by supplying an input
map ι. We will write ϕ and ψ for sets of such invariant calls, and σ |= ϕ to denote
that store σ satisfies ϕ, i.e., g·� |= ϕ ⇐⇒ ∀(Y, ι) ∈ ϕ ∃ĝ ⊆ g : ĝ·(�◦ ι) ∈ ys(Y ).ρ.
Then invariant calls are assigned to program locations as follows: pre(P ) are
the preconditions that must hold on entry to procedure P , post(P ) are the
postconditions that must hold on exit from procedure P , and inv(λ) are the
invariants that must hold at calls labeled with λ. These are the yield locations
in the cooperative semantics, under which we will show the invariants correct
and stable under interference.

RefPL supports linear permissions to enhance local reasoning. The core idea
of linearity is to identify a subset of (linear) available variables among all vari-
ables in all frames of a configuration. Every value stored in an available variable
is mapped to a set of values called permissions, with the desired property that the
values in available variables are mapped to disjoint permissions. This disjointness
property can then be used as free assumption in other verification conditions.

In a linearity specification L = (lg , li , lo, lc), the linear global variables lg
are a subset of gs, which are always available. For every action/procedure/in-
variant name X, li(X,�) and li(X,�) are subsets of its input variables called
linear-in and linear-out, respectively. The linear-ins expect to receive from an
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available actual parameter, while the linear-outs ensure that their actual param-
eter will be available upon return. An input variable can be both linear-in and
linear-out (which we assume for all invariants). For every action/procedure name
X, its linear outputs lo(X) are a subset of its output variables, such that the
receiving actual return parameters become available when X returns. For exam-
ple, in Fig. 3 the global variable mutatorsInBarrier is linear, procedure Mutator
and yield invariant CollectorInv have a linear (linear-in and linear-out) input
i, action EnterBarrier has linear-in input i and linear output p, and WaitFor-
BarrierRelease has a linear-in input p and linear-out input i. The permissions
assigned to an available variable are determined by a linear collector function lc,
which is a flexible mechanism to encode various permission disciplines. For con-
venience, we lift lc to collect all permissions of a set of variables V in store σ, i.e.,
lc(σ, V ) =

⊎
v∈V lc(σ(v)). A simple example of a collector function that expresses

unique identifiers (as needed in Fig. 2) would return the singleton set {tid} for a
thread identifier variable tid. Figure 3 shows a more advanced usage, where the
definition of lc is split across the functions C1, C2, and C3 (see Sect. 2.3).

4.2 Linearity

Let us assign to every (sub)statement s in P a linear type in
out , written as s : in

out ,
where in/out is the set of local variables available directly before/after executing
s. Based on the linear interfaces in li and lo, the most general linear types can
be inferred, but for simplicity we assume all types to be given and define a type
checker below. Since linear types annotate each program location with available
variables, we can define the collection of linear permissions over a configuration
c = (g, T ) as lc(c) = lc(g, lg) �

( ⊎
(P,�,s:inout )

lc(�, in)
)
, where (P, �, s : in

out) ranges
over all frames in all nodes of T . Then the linear disjointness property for a
configuration c is IsSet(lc(c)), where IsSet(·) states that a multiset does not
contain duplicates. We call such a configuration L-valid. The Linearity(P,Y,L)
judgment comprises a semantic check on actions and a syntactic check on pro-
cedures, which ensures the preservation of the linear disjointness property as
follows.

Lemma 1. Let c be an L-valid configuration of P. If c ⇒ c′ then c′ is L-valid.

Essentially, an execution starts with a set of permissions and redistributes these
in every step. The permissions can stay the same or decrease, but never increase.

Linear Action Checking. All state updates (other than parameter passing)
are confined to atomic actions. We need to ensure that the outgoing permissions
of an action are always a subset of the incoming permissions. Thus, for every
A ∈ dom(as) with as(A) = ( , , ρ, τ) we check

(g·�, g′·�′, Ω) ∈ ρ ◦ τ ∧ inPerm =
(
lc(g, lg) � lc(�, li(A, �))

) ∧ IsSet(inPerm) =⇒
(
lc(g′, lg) � lc(�, li(A, �)) � lc(�′, lo(A)) � ( ⊎

(�′′,P )∈Ω lc(�′′, li(P, �))
)) ⊆ inPerm.

Starting with a set of permissions in the linear globals and linear-in inputs, the
action can redistribute these permissions among the linear globals, its linear-out
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out ⊆ in

skip : in
out

s1 : in
out s2 : out

out′

s1 ; s2 : in
out′

s1 : in
out1 s2 : in

out2

s1 ∗ s2 : in
out1∩out2

ι(li(A, �)) ⊆ in out ⊆ in \ ι(li(A, �))
) � ι(li(A, �)) � o(lo(A))

exec (A, ι, o) : in
out

⊎
i ιi(li(Pi, �))

) �
(⊎

(Y,ι)∈inv(λ) ι(li(Y, �))
)

⊆ in

out ⊆ in \ ⊎
i ιi(li(Pi, �))

) � ⊎
i ιi(li(Pi, �))

) � ⊎
i oi(lo(Pi))

)
callλ (Pi, ιi, oi) : in

out

Fig. 5. Linear type checking.

inputs and linear outputs, and the linear-ins of pending asyncs, but permis-
sions cannot appear out of thin air. Notice that this check depends on the user-
provided linear collector function lc. For example, consider action EnterBarrier
in Fig. 3. The linear-in input i holds the permissions Left(i) and Right(i) on entry
(cf. collector C1). By adding i to mutatorsInBarrier we hand over the permission
Left(i) (cf. collector C2), and by the assignment to the linear output p we hand
over the permission Right(i) (cf. collector C3). Thus, the set of permissions in
mutatorsInBarrier and i before is the same as the permissions in mutatorsInBarrier
and p after executing EnterBarrier.

Linear Type Checking. Now that we can trust the linear interfaces of actions,
we need to ensure that the linear types in procedures “add up” w.r.t. control
flow and parameter passing. For every P ∈ dom(ps) with body s : in

out we require
in = li(P,�), out = li(P,�)∪ lo(P ), and a derivation of s : in

out according to the
rules in Fig. 5, where ι(V ) means

⊎
v∈V ι(v). For example, in procedure Mutator

in Fig. 3 the linear input parameter i becomes unavailable at line 34, where it is
passed as linear-in. However, this call makes the local variable p available, such
that it can be passed as linear-in to the call on line 36. This call also passes i as
linear-out input, which makes i available again on line 37.

4.3 Safety

In a yielding configuration (g, T ), every frame (P, �, s) in T is associated with a
set of invariant calls ϕ as follows: ϕ = pre(P ) if s is the entry of P , ϕ = post(P )
if s is skip (the exit of P ), or ϕ = inv(λ) if s is blocked at a call labeled with λ.
If g·� |= ϕ holds in every frame, then we call the configuration Y-valid. To show
that this property is preserved across the execution of a yield-to-yield fragment
(i.e, a step in �), the Safety(P,Y,L) judgment is decomposed into two kinds of
procedure-modular verification conditions: (1) a sequential check which ensures
that the next ϕ in the executing frame is established, and (2) a noninterference
check which ensures that the ϕ’s in all other frames are preserved. Both checks
weave in linearity to enhance local reasoning.



Refinement for Structured Concurrent Programs 289

Lemma 2. Let c be an L-valid, Y-valid configuration of P. If c � c′ then c′ is
Y-valid.

Floyd Packages. For convenience, let pre(κ) be the set of all invariants and
preconditions of a call statement κ (and post(κ) analogously):

pre(callλ (Qi, ιi, oi)) = inv(λ) ∪ ( ⋃
i{(Y, ιi ◦ ι) | (Y, ι) ∈ pre(Qi)}

)

post(callλ (Qi, ιi, oi)) = inv(λ) ∪ ( ⋃
i{(Y, (ιi ∪ oi) ◦ ι) | (Y, ι) ∈ post(Qi)}

)

For every yield-to-yield fragment {P |κ1} e {κ2} of P ∈ dom(ps) we define a
Floyd package {P |ϕ | ll} e {ψ}, which contains the invariants ϕ and linear avail-
able variables ll before, and the invariants ψ after the yield-to-yield fragment:

(ϕ, ll) =
{

(pre(P ) , li(P,�)) if κ1 = ⊥
(post(κ1) , out(κ1)) if κ1 �= ⊥ ; ψ =

{
post(P ) if κ2 = 	
pre(κ2) if κ2 �= 	 .

Sequential Checking. For every Floyd package {P |ϕ | ll} e {ψ} we check

⎛

⎝
① g·� |= ϕ
② (g·�, g′·�′, Ω) ∈ Trans(e)
③ IsSet(lc(g·�, lg ∪ ll))

⎞

⎠ =⇒
(

④ g′·�′ |= ψ
⑤ ∀(�′′, P ) ∈ Ω : g′·�′′ |= pre(P )

)

.

After ② executing e from a store with ③ disjoint permissions that ① satisfies ϕ, it
must be the case that ④ ψ and ⑤ the preconditions of all created pending asyncs
hold. Notice that we can assume all gates of atomic actions when executing e.
This is the case because yield invariants are not supposed to be strong enough to
prove P safe. Their purpose is to establish the context for refinement checking.

Noninterference Checking. For every Floyd package {P |ϕ | ll} e {ψ} and
every yield invariant Y ∈ dom(ys) we check

⎛

⎝
① g·� |= ϕ ∧ g·�′ |= Y
② (g·�, g′· , ) ∈ Trans(e)
③ IsSet(lc(g·�, lg ∪ ll) � lc(�′, li(Y,�)))

⎞

⎠ =⇒ ④ g′·�′ |= Y.

After ② executing e from a store with ③ disjoint permissions that ① satisfies
both ϕ and Y , it must be the case that ④ Y still holds. A key ingredient that
makes our yield invariants powerful is the possibility to pass parameters to them
(�′ above, which is the same before and after executing e), together with the
possibility to give invariants a linear interface to include them in the disjointness
assumption ③. The reuse of named, parameterized invariants that are inductive
on their own facilitates ergonomic and modular proofs as well as a reduction in
the number of noninterference checks compared to location invariants.

The example in Fig. 3 uses three yield invariants. BarrierInv states a global
property on barrierCounter and mutatorsInBarrier, MutatorInv states a property of
mutators on line 35, and CollectorInv states a property of the collector at lines 41
and 43 (notice the difference in the Boolean parameter). The linear parameters



290 B. Kragl et al.

to both MutatorInv and CollectorInv are essential to prove their noninterference.
For example, linearity discharges all noninterference obligations of CollectorInv
w.r.t. yield-to-yield fragments in procedure Collector; there cannot be two differ-
ent available variables i both holding thread identifier 0. CollectorInv is also stable
across the yield-to-yield fragments in procedure Mutator: by linearity, we know
that EnterBarrier cannot execute if mutatorsInBarrier holds all mutator identi-
fiers, and WaitForBarrierRelease is blocked when barrierOn is true. As an exam-
ple of a sequential check, observe that the invariants at line 41 together with
barrierCounter = 0 from executing WaitBarrier imply the invariants at line 43, in
particular that mutatorsInBarrier holds all mutator identifiers.

4.4 Refinement

Recall that the goal of our proof rule is to transform a program P = (gs, as, ps)
into a program P ′ = (gs ′, as ′, ps ′). So far, we showed how the two judgments
Linearity(P,Y,L) and Safety(P,Y,L) establish properties on executions of P,
using a linearity specification L and yield specification Y. In the remainder of
this section we show how the Refinement(P,Y,L,R,P ′) judgment ties together
P and P ′ using a refinement specification R.

Consider an execution step c � c′ of P. We want to say that there is a rep-
resentative step ĉ � ĉ′ in P ′. Representative means that ĉ and ĉ′ are abstract
representations of c and c′, respectively. We capture this notion in an abstraction
mapping α, which maps every concrete configuration of P to an abstract config-
uration of P ′. Then the meaning of the judgment L,Y,R 
 P � P ′ derived by
our proof rule is expressed in the following theorem.

Theorem 1. Let c be an L-valid, Y-valid configuration of P. (1) If c � � then
α(c) � �. (2) If c � c′ then either α(c) = α(c′), α(c) � α(c′), or α(c) � �.

The safety of P ′ should imply the safety of P. Thus, (1) states that any failure
in P is preserved in P ′. And (2) states that every step in P is matched with
a (potentially stuttering) step or failure in P ′. Hence, P ′ can fail “more often”
than P, but otherwise “behaves like” P.

Refinement Specification. In a refinement specification R = (ref ,mark), the
refinement mapping ref is a partial map from dom(ps) to dom(as ′). For every
procedure P ∈ dom(ref ), we check that P is abstracted by action A = ref (P ).
Since our refinement checks are procedure-modular, we require dom(ref ) to be
closed under calls in ps (not including pending asyncs). In general, P executes
multiple yield-to-yield fragments and possibly calls other procedures, while A
executes in a single atomic step. Thus we need to ensure that exactly one yield-to-
yield fragment in P behaves like A, while all other fragments have no visible side
effect. We use a marking function mark to identify where A should happen in P .
For every call statement with label λ, mark(λ) is either � (“before”), � (“after”),
or the index i ∈ N of some arm of the call. This means that we are still before A
when the call returns, that we are already after A when reaching the call, or that
arm i establishes A, respectively. Naturally, procedure entry and exit are marked



Refinement for Structured Concurrent Programs 291

with � and �, respectively. Then the marks along every path of P must match
the regular expression �+

N
?�+, which distinguishes two cases. (M1) No call is

marked with an index i ∈ N. Then some yield-to-yield fragment switches from �
to �, which we will check to behave like A. All other yield-to-yield fragments and
calls on the path must have no side effect. (M2) Some call is marked with index
i ∈ N. We will check that arm i of this call behaves like A, while all other calls
and yield-to-yield fragments on the path must have no side effect. Since we check
mark per path, there are in general multiple occurrences of (M1) and (M2).

In Fig. 2, the ref mapping is specified using the refines keyword. For example,
procedure Acquire refines the atomic action AcquireSpec. The mark mapping is
not explicitly specified, but we consider the call on line 28 to be marked with 1
(the index of its only arm). Then one path through Acquire is marked with ��
and the other one with � 1�, both matching the regular expression above.

Program Rewriting. The program P = (gs, as , ps) is rewritten into P ′ =
(gs ′, as ′, ps ′) as follows. First, global variables can be hidden, such that gs ′ ⊆ gs.
Second, new atomic actions can be added (for new abstractions of procedures)
and unreferenced ones removed, but for A ∈ dom(as) ∩ dom(as ′) we require
as ′(A) = as(A). Recall that an action can execute in any program that con-
tains the referenced global variables and procedures. Third, dom(ps ′) = dom(ps)
and we rewrite every ps(P ) = (I,O, L, s) into ps ′(P ) = (I ′, O′, L′, s′) as fol-
lows. Local variables can be hidden, such that I ′ ⊆ I ∧ O′ ⊆ O′ ∧ L′ ⊆ L. If
P �∈ dom(ref ), then s′ is like s, except that call arms (Q, ι, o) with ps ′(Q) =
(IQ, OQ, , ) turn into (Q, ι|IQ

, o|OQ
), with the requirement img(o)∩ (O′ ∪L′) =

img(o|OQ
) that formal and actual outputs can only be hidden together. We

denote this rewriting of a statement by α(s). If P ∈ dom(ref ), then s′ =
exec(ref (P ), id(I ′), id(O′)), where id(·) is the identity mapping on a given set of
variables. We denote this exec statement by α(P ). Thus, procedures in dom(ref )
remain in P ′, but with their bodies rewritten to a single exec to their abstrac-
tion. Clearly, the action interface as ′ ◦ ref (P ) = (I ′, O′, , ) must match the
procedure, and L′ = ∅. Overall, P ′ must still typecheck, which ensures, e.g.,
that the remaining actuals in input/output maps were not hidden.

In the first refinement step of Sect. 2.2, where the procedures in the second
column of Fig. 2 are abstracted to the atomic actions in the third column, the
global variable b is hidden. In the second refinement step, where procedure Incr
is abstracted to action IncrSpec, the input parameter tid and the global variable
l are hidden. Notice that, in order to chain together these two refinement steps,
we performed an auxiliary rewriting step in procedure Incr that converted call
statements to exec statements. Civl automatically performs this transformation
as part of a refinement step, justified by a commutativity argument we explained
in Sect. 2.2. However, this rewriting is not formalized as part of our refinement
rule in this paper.

Skip Action. In the following we assume a special action Skip that has no
inputs and outputs, does not modify global variables, and creates no pending
asyncs. Formally, as(Skip) = (∅, ∅, {ε}, {(ε, ε, ∅)}), where ε is the empty store.
Observe that safety verification (i.e., showing that the failure configuration � is
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unreachable) is a special case of refinement, where all global and local variables
are hidden, and all procedures are abstracted to Skip.

Abstraction Mapping. Figure 6 defines the abstraction
mapping α. In a given yielding configuration, we restrict the
global store to gs ′ and drop all trees rooted in a node that
refines Skip. The remaining nodes are traversed recursively,
where frames with P �∈ dom(ref ) (nodes • on the right) are
rewritten as expected. The interesting case is for nodes with
P ∈ dom(ref ), like node ❶ on the right. In this case, ❶ is turned into a leave
(cutting off the remaining subtree) whose statement is either α(P ) (the single
exec of ref (P )) or skip. Intuitively, to match the concrete steps of P (in ❶
and its subnodes), the abstract configuration first stutters at α(P ), then tran-
sitions to skip when the effect of ref (P ) happens, and then stutters at skip
until the return from ❶. The delicate part is to determine if ref (P ) happened
and to compute the local store for the abstract configuration. This is done by
the early-return function r. The function recurses on the unique path of marked
arms in calls, ❶ ❷ ❸ in our example, and either returns � (when “before
ref (P )”) or a local store � (when “after ref (P )”). Suppose that ❶,❷,❸ have
local stores �1, �2, �3, and that r(❸) = �3. Then r(❷) equals �2 updated with the
return parameters from �3, say �′

2, and similarly r(❶) equals �1 updated with
the return parameters from �′

2, say �′
1, which is the local store for the abstract

configuration. Thus, r performs “early” return parameter passing, even though
we are still in the middle of executing procedures. To prove Theorem 1, our ver-
ification conditions below have to ensure that throughout subsequent concrete
execution steps, r(❶) remains �′

1.

Refinement Packages. In a procedure P ∈ dom(ref ), the effect of the abstract
action ref (P ) can happen either in a yield-to-yield fragment directly in P , or
nested inside another called procedure. To handle (potentially recursive) proce-
dure calls during refinement, we decompose the problem into procedure-modular
checks. Recall that the marking function mark identifies yield-to-yield fragments
and call arms in P that should behave like the abstract action ref (P ). Conversely,
all other yield-to-yield fragments and call arms should have no side effect, which
is to say that they should behave like Skip. Hence we have a refinement obliga-
tion for every yield-to-yield fragment and every call arm in P , where refinement
is either checked against ref (P ) or Skip. We capture all these refinement obliga-
tions uniformly in refinement packages of the form {P |ϕ | ll} e {A}, where P is
the procedure we check refinement for, ϕ is a set of invariant calls and ll a set
of available variables we can assume, e is an exec sequence denoting the effect
we check refinement for, and A is the action we check refinement against.
(R1) Refinement Packages for Yield-to-Yield Fragments. For every procedure
P ∈ dom(ref ) and yield-to-yield fragment {P |κ1} e {κ2} of P we define the
refinement package {P |ϕ | ll} e {A} where ϕ and ll are defined the same as
for Floyd packages, and A = ref (P ) if mark(κ1) = � and mark(κ2) = �, or
A = Skip otherwise. This case is rather straightforward. We proved the validity
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Abstraction of configuration

α((g, T )) = (g|gs′ , {α(t) | t ∈ T ∧ root(t) = P ∧ ref (P ) �= Skip})

Abstraction of thread tree

For the definitions of α(s) and α(P ), see program rewriting.

�|P = �|I∪O∪L if ps ′(P ) = (I, O, L, )

α(Lf (P, �, s)) = Lf (P, �|P , α(s)) if P �∈ dom(ref )

α(Nd (P, �, s) t) = Nd (P, �|P , α(s)) α(t) if P �∈ dom(ref )

α(Lf (P, �, s)) = Lf (P, �|P , s′) s′ =
{

α(P ) if s �= skip

skip if s = skip
if P ∈ dom(ref )

α(Nd (P, �, )︸ ︷︷ ︸
t

) = Lf (P, �′|P , s′) s′, �′ =
{

α(P ), � if r(t) = �
skip , r(t) if r(t) �= � if P ∈ dom(ref )

Early-return computation

r(Lf (P, �, s)) =
{

if s �= skip

� if s = skip

r(Nd (P, �,SC [callλ (Q, ι, o)]) t) =

⎧⎪⎪⎨
⎪⎪⎩

if mark(λ) =
� if mark(λ) =

if mark(λ) = i ∧ r(ti) =
�[r(ti) ◦ o−1

i ] if mark(λ) = i ∧ r(ti) �=

Fig. 6. Abstraction mapping from configurations of P to configurations of P ′.

of ϕ and ll before the fragment, and need to check that the code e in the fragment
behaves either like ref (P ) or skip.
(R2) Refinement Packages for Call Arms. For every procedure P ∈ dom(ref ) and
callλ (Qi, ιi, oi) : in

out in P , let ϕ = inv(λ) and ll = in \
⋃

i ιi(li(Qi,�)). At a call
we know the validity of the invariants attached to the call and the availability
of in minus the linear variables passed into the callees. Then for every arm
(Qi, ιi, oi), let Ai = ref (P ) if mark(λ) = i or Ai = Skip otherwise. Now the final
missing ingredient for a refinement package {P |ϕ | ll} e {Ai} for every arm i is
the effect e for which we check refinement against Ai. To obtain a modular check,
our solution is to use the abstract action specification of the callee Qi. Formally,
e = exec (Bi, ιi|I , oi|O) for Bi = ref (Qi) with as ′(Bi) = (I,O, , ). Recall that
this is well-defined, since dom(ref ) is closed under calls. Notice that using the
specification of a callee while checking the specification of a caller is akin to
reasoning with procedure pre- and postconditions, where circular dependencies
are resolved via induction on the nesting depth.

Recall (from the end of Sect. 3) that procedure Acquire in Fig. 2 has three
yield-to-yield fragments: (A1), (A2), (A3). Each fragment induces an (R1)-type
refinement package, where (A1) is checked against AcquireSpec, while both (A2)
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and (A3) are checked against Skip. Furthermore, the call on line 28 induces an
(R2)-type refinement package against AcquireSpec.

Refinement Checking. The Refinement(P,Y,L,R,P ′) judgment requires
every refinement package {P |ϕ | ll} e {A} to be discharged as follows. Let
e = exec (A, id(I), id(O)) for as ′(A) = (I,O, , ) be the abstract effect we
check refinement against, let V = gs ′ ∪ I ′ ∪ O′ for as ′ ◦ ref (P ) = (I ′, O′, , ) be
the non-hidden variables in the scope of the refinement package, and check

(
① g·� |= ϕ
② IsSet(lc(g·�, lg ∪ ll))

)

=⇒

⎛

⎜
⎜
⎝

③ g·� ∈ Gate(e) =⇒ g·� ∈ Gate(e)
④ (g·�, g′·�′, Ω) ∈ Gate(e) ◦ Trans(e) =⇒

∃g·�̂, ĝ′·�̂′ : (ĝ·�̂, ĝ′·�̂′, Ω|ref ) ∈ Trans(e)
∧ g·�|V = ĝ·�̂|V ∧ g′·�′|V = ĝ′·�̂′|V

⎞

⎟
⎟
⎠

where Ω|ref = {(�,Q) ∈ Ω | ref (Q) �= Skip}.

We assume a store g·� that satisfies ① invariants and ② linear disjointness accord-
ing to the refinement package. Then refinement consists of two parts, failure
preservation and behavior preservation. First, ③ if e can fail in the concrete
then e must also fail in the abstract. Second, ④ if e cannot fail in the abstract
and e can transition to store g′·�′ while creating pending asyncs Ω in the concrete,
then there must be a matching transition of e in the abstract. Here matching
means that e starts in a store ĝ·�̂ that agrees with g·� on the non-hidden variables
V , ends in a store ĝ′·�̂′ that agrees with g′·�′ on V , and creates the same pending
asyncs except the ones to procedures abstracted to Skip.

5 Implementation

Civl is a refinement-based verifier for concurrent programs built on top of the
widely-used Boogie intermediate verification language. The Boogie [6] verifier
provides infrastructure for compiling annotated sequential procedures into log-
ical verification conditions whose validity is checked by a satisfiability-modulo-
theories solver. Civl is implemented as an extension of Boogie, which takes
as input an annotated layered concurrent program [25] (in a language whose
core is RefPL), performs concurrency-specific type checking and static analyses,
and then encodes all the verification conditions of its proof rule into a standard
sequential Boogie program. Thus, Civl can be understood as a compiler that
eliminates concurrency in a RefPL program by translating it down to a collection
of sequential procedures, thus reusing the rest of the Boogie pipeline unchanged.

The open-source Civl verifier is a stable tool which is part of the master
branch [2] and public release [1] of Boogie. Civl has over 100 regression tests
comprising both realistic programs and microbenchmarks. There are many pub-
lished papers [9,26,27,33,39] that describe nontrivial examples verified using
Civl, most written by researchers other than the developers of Civl. The code
in Civl is extensible; entirely new tactics for rewriting concurrent programs have
been added to it [24,26]. Finally, Civl is designed for interactive program devel-
opment. It is fast and provides several command-line flags to focus verification
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on parts of the program. Civl has fine-grained error reporting including error
traces, which attributes a verification failure to a particular check, local to a
small part of the program. This helps the programmer to debug and iteratively
improve both implementation and specification.

An early version of the Civl verifier was reported by Hawblitzel et al. [18].
The implementation of the techniques described in this paper has been done as
part of the new design and implementation of Civl based on the framework of
layered concurrent programs [25]. In the rest of this section, we will continue to
use Civl to refer to our new implementation. We now present an overview of
the different parts of the verifier.

Type Checking. In addition to the standard type checking of a Boogie program,
the Civl type checker performs several extra checks. First, it checks that the
layer specifications [25] on program elements such as global and local variables,
atomic actions, and procedures are correct. Second, it checks using a dataflow
analysis that it is sufficient to reason about the safety of cooperative semantics.
This analysis exploits mover type [14] annotations on atomic actions to rea-
son that yield-to-yield code fragments satisfy the requirements of Lipton reduc-
tion [30]. It also generates logical verification conditions whose validity guarantee
the correctness of the mover annotations on atomic actions.

Linearity Checking. The Civl linearity checker implements the method
described in Sect. 4.2 in two parts. First, it creates for each atomic action a
sequential procedure which verifies that the multiset of outgoing permissions is
a subset of the multiset of incoming permissions. We use the generalized array
theory [31] to encode multisets, and the IsSet constraint in particular. Second, it
type checks each procedure to compute the set of available variables at each con-
trol location and to verify that linear interfaces of called procedures and atomic
actions are used appropriately.

Safety Checking. The Civl safety checker implements the method described
in Sect. 4.3. Unlike the formal description which enumerates yield-to-yield code
fragments, the implementation is efficient, encodes all code fragments in a RefPL
procedure into a single sequential procedure with maximal sharing, and adds
the safety checks by injecting instrumentation code and assertions into a cloned
copy of the original procedure. To express the noninterference check, we add
instrumentation variables that take snapshots of global and output variables at
every yield. Furthermore, the generalized array theory is used here as well to
record the pending asyncs created in a yield-to-yield code fragment, such that
their preconditions can be checked.

Refinement Checking. The Civl refinement checker implements the method
described in Sect. 4.4. Similar to safety checking, the refinement checks are added
as instrumentation to procedure copies. At every yield, snapshot variables (sim-
ilar as for noninterference) are used to refer to the state at the previous yield
when asserting the appropriate transition relation. Civl computes a representa-
tion of the transition relation of an atomic actions as a logical formula from the
user-provided representation as imperative code.
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6 Conclusions

In this paper, we provide a foundation for refining structured concurrent pro-
grams and an implementation in the Civl verifier. The contribution of this
paper, and that of Civl in general, is the capability to express new proofs with
significant advantages for the programmer in terms of proof structuring, anno-
tation effort, and tool performance.
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Abstract. Inspired by distributed applications that use consensus or
other agreement protocols for global coordination, we define a new com-
putational model for parameterized systems that is based on a general
global synchronization primitive and allows for global transition guards.
Our model generalizes many existing models in the literature, including
broadcast protocols and guarded protocols. We show that reachability
properties are decidable for systems without guards, and give sufficient
conditions under which they remain decidable in the presence of guards.
Furthermore, we investigate cutoffs for reachability properties and pro-
vide sufficient conditions for small cutoffs in a number of cases that are
inspired by our target applications.

1 Introduction

Distributed applications are notoriously difficult to implement and reason about,
primarily due to the combinatorial explosion of behaviors resulting from the
interleaving of computation and communication. Naturally, they have received
a lot of attention from the formal methods community to facilitate reasoning
about correctness properties that are too complex to reason about informally or
manually [3,7,14,15,34,36,42,46,50,52,55].

One of the main challenges in fully automated reasoning about a distributed
system is scalability in a critical system parameter—the number of processes—
with the epitome of success being parameterized verification of correctness—
correctness that holds regardless of this parameter. Unfortunately, the param-
eterized verification problem is known to be undecidable even in very simple
cases, for example, finite-state processes that pass a 2-valued token in a ring [54].
Hence, approaches for parameterized verification are divided into two groups: (i)
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ones that support a large class of systems, but only provide semi-decision proce-
dures [1,41] and (ii) ones that provide fully automatic decision procedures for a
well-defined class of systems, but need to carefully restrict this class of systems
to obtain such a strong result. While the former cannot provide any guarantee of
success, the latter are often not sufficiently general to model practical examples.

In this work, we target fully-automated parameterized verification for a sig-
nificantly more general class of systems than addressed in prior work (cf. the
surveys [9,21,26]). Inspired by distributed applications that use consensus or
other agreement protocols for global coordination, we introduce global synchro-
nization protocols, a new computational model for distributed systems that gen-
eralizes most of the existing models based on process synchronization, including
models based on pairwise rendezvous [32], asynchronous rendezvous [16], nego-
tiation [27] and broadcasts [28]. We show that despite this generality, we can
still decide parameterized verification for safety properties. Going beyond that,
we show that under certain conditions, our model can be augmented with global
transition guards—which allow to model semaphore-based access control as well
as preconditions for global consensus-like coordination—while retaining decid-
ability. This makes our model one of the most expressive models for which the
parameterized verification problem is still decidable. Furthermore, we present
several results on cutoffs for our model, i.e., the number of processes sufficient
to prove or disprove properties of a parameterized system. Inspired both by
the decision procedure and by negative examples that require large cutoffs, we
define sufficient conditions on systems in our computational model that make
small, practical cutoffs possible. Finally, we evaluate our approach on several
distributed applications, showing that they can indeed be modeled as global
synchronization protocols, and we illustrate the significance of our cutoff results
in the verification of these benchmarks.

Motivating Example. Our system model is inspired by applications that use
agreement protocols, like leader election or consensus, as building blocks to
achieve a more complex overall functionality. We are interested in a compo-
sitional verification setting where we assume that the agreement protocols have
been verified separately and want to guarantee the overall correctness of an
application without having to explicitly model and verify the agreement proto-
cols within the application; in particular, we focus on a setting where verified
agreement protocols are encapsulated into an abstraction with precondition obli-
gations and postcondition guarantees.

Thus, our system model needs to be able to incorporate such pre- and post-
conditions of agreement protocols. As a simple example, consider the smoke
detector application in Fig. 1 whose intended behavior is as follows. Upon detect-
ing smoke, the processes coordinate to choose (up to) 2 processes to report the
smoke to the fire department. It uses different types of transitions, several of
which are popular in the literature and are supported by existing decidability
results: an internal transition (from state Env to state Ask), a broadcast (on
action Smoke), and a negotiation, i.e., a synchronous transition of all processes
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Fig. 1. A smoke detector process. The internal transition from initial state Env to Ask
models that a process detects smoke (an environment signal). A process that detected
smoke can initiate a broadcast Smoke, moving all processes from Env to Idle and
from Ask to Pick, where the transition Choose moves (up to) 2 processes to Report,
and the rest from Pick to Idle. Finally, all processes from Report and Idle may move
back to Env in a synchronous transition with no dedicated sender. Transitions labeled
with a set Gi can only be taken if all processes are in this set. The safety property for
a distributed smoke detector based on this process is that at most 2 processes should
report the fire.

with no distinguished sender (on action Reset). However, additionally our appli-
cation requires that some transitions can only happen under certain conditions,
given by guards Gi in transition labels. For example, action Reset should only
be possible if all processes are in G3, i.e., in states Report or Idle. And most
importantly, in state Pick we want the system to agree on (up to) 2 processes
that move into state Report . This requires a novel type of transition that we
have not found in existing literature, allowing two processes to take a distin-
guished role while all other processes are treated uniformly. To faithfully model
agreement of processes, we also require a guard on this transition, since any
agreement protocol is based on the assumption that all processes are ready (i.e.,
their local state satisfies some condition) before invocation of the protocol.

2 System Model: Global Synchronization Protocols

We present global synchronization protocols (GSPs), a formal system model
that generalizes most of the existing synchronization-based models in the lit-
erature [16,27,28,32], including models based on rendezvous and broadcasts. In
this model, each global transition synchronizes all processes, where an arbitrary
number k of processes act as the senders of the transitions, while the remain-
ing processes react uniformly as receivers. The model supports two basic types
of transitions: (i) a k-sender transition, which can fire only if at least k pro-
cesses are ready to act as senders, and is fired with exactly k processes acting as
senders, and (ii) a k-maximal transition, which can fire if the number m of pro-
cesses that are ready to act as senders is at least 1, and is fired with min(m, k)
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processes acting as senders. Additionally, each transition can be equipped with
a global guard that identifies a subset of the local state space. Then, a transition
is enabled whenever it can fire and the local states of all processes are in the set
identified by the transition guard.

We formalize these notions in the following, starting with the case without
transition guards.

2.1 Global Synchronization Without Guards

Unguarded Processes. An unguarded process is a labeled transition system
P = 〈A,S, s0, T 〉, where A is a set of local actions, S is a finite set of states,
s0 ∈ S is the initial state, and T ⊆ S × A × S is the transition relation. A is
based on a set A of global actions, where each a ∈ A has an arity k ≥ 1 and is
either a k-sender action or a k-maximal action. For every global action a ∈ A
with arity k, A contains local actions a1!!, . . . , ak!!, a??. Actions a1!!, . . . , ak!! are
called sending actions and a?? is called a receiving action.

A local transition from state s to state s′ on sending action α ∈ A denoted
s

α−→ s′ is called a sending transition (resp., receiving transition) if α is a sending
action (resp., receiving action). We assume that receives are deterministic: for
each state s and each receiving action a??, there is exactly one state s′ with
s

a??−−→ s′, and that sends are unique: for each sending action ai there is exactly
one pair of states s, s′ with s

ai!!−−→ s′.1

Example 1. If we ignore guards on transitions, the process in Fig. 1 is an
unguarded process. Global action Choose has arity 2, and local sending tran-
sitions Pick

Choosei!!−−−−−−→ Report for i ∈ {1, 2}. One local receiving transition is
Pick

Choose??−−−−−−→ Idle, and all other receiving transitions on Choose are self-
loops (not depicted).

Unguarded Systems. Given an unguarded process P = 〈A,S, s0, T 〉, we con-
sider systems composed of n identical processes, and use a counter abstraction
to efficiently represent global states, without loss of precision [25].2

That is, the parameterized global transition system is defined as M(n) =
〈A, Q,q0,→〉, where Q = {0, . . . , n}S , i.e., a global state is a function q : S →
{0, . . . , n}. Assuming a fixed order on S, we will also use q as a vector of natural
numbers. The initial state q0 is the state with q0(s0) = n and q0(s) = 0 for all
s �= s0. Finally, we define the global transition relation →, separated into the
two different types of actions:

1 Processes that do not satisfy the assumptions can easily be rewritten to satisfy them,
e.g. by adding self-loops on any missing receive actions, and by renaming the actions
of duplicate sending transitions (and adding corresponding receiving transitions).

2 For presentation clarity, we do not explicitly consider an environment process in our
model. All of our results extend to the case with an explicit environment process;
see the extended version [38] for a justification.
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k-sender Actions. A k-sender action a ∈ A with local sending transitions si
ai!!−−→

s′
i for i ∈ {1, . . . , k} can be fired from a global state q if there are k processes

that can take these local transitions. Upon firing the action, each of the local
transitions on actions ai!! is taken by exactly one process, and all other processes
take a transition on action a?? to arrive in the new global state q′. Formally, we
assign to each k-sender action a ∈ A (i) a vector va ∈ Q containing the number
of expected senders for each state t ∈ S: va(t) = |{s ai!!−−→ s′ | s = t}|, (ii) a vector
v′

a containing the number of senders that will be in each state t ∈ S after the
transition: v′

a(t) = |{s ai!!−−→ s′ | s′ = t}|, and (iii) a function Ma : S ×S → {0, 1},
where Ma(s, s′) = 1 if there is a local transition s

a??−−→ s′, and Ma(s, s′) = 0
otherwise. We also use Ma as a |S|×|S| matrix, called the synchronization matrix
of action a.

Then, a transition from global state q on action a is possible if q(si) ≥ va(si)
for all i ∈ {1, . . . , k}, and the resulting global state can be computed as

q′ = Ma · (q − va) + v′
a,

and we write q a−→ q′. Intuitively, q′ is obtained from q by “removing” the senders
from their local start states, moving all the remaining (receiving) processes to
their respective local destination states, and then adding the senders to their
appropriate local destination states. Note that this representation relies on the
assumption that sends are unique and receives are deterministic, which also
implies that each column of a synchronization matrix Ma is a unit vector.

Example 2. Consider the process in Fig. 1. The synchronization matrix and vec-
tors for action Smoke are shown below, with global states given in the order
〈Env, Ask, Idle, Pick, Report〉 (and abbreviated as 〈E, A, I, P, R〉).
Notice, for instance, that the first column in MSmoke encodes the local receive
transition Env

Smoke??−−−−−−→ Idle. The vector-pair vSmoke and v′
Smoke encode the

local send transition Ask
Smoke!!−−−−−→ Pick. In particular, vSmoke indicates that

the sender starts in Ask and v′
Smoke indicates that the sender moves to Pick.

E
A
I
P
R

MSmoke

E A I P R⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

E
A
I
P
R

vSmoke

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦

E
A
I
P
R

v′
Smoke

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

Now, consider a global state 〈3, 2, 0, 0, 0〉 with three processes in Env and two in
Ask. From this state, the transition 〈3, 2, 0, 0, 0〉 Smoke−−−−−→ 〈0, 0, 3, 2, 0〉 is enabled
(since there is at least 1 sender in Ask), where all three processes in Env act as
receivers to move to Idle (according to the synchronization matrix MSmoke),
one process in Ask acts as the sender to move to Pick, and the other process
in Ask acts as a receiver, also moving to Pick.
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k-maximal Actions. A k-maximal action a ∈ A with local sending transitions
si

ai!!−−→ s′
i for i ∈ {1, . . . , k} can be fired from a global state q if there is at least

one process that can take one of these local transitions. Upon firing the action,
for each state si with at least one local transition si

ai!!−−→ s′
i, (i) if q(si) ≥ va(si)

then each of the local transitions si
ai!!−−→ s′

i is taken by exactly one process, or,

(ii) if q(si) < va(si) then a total of q(si) of the local transitions si
ai!!−−→ s′

i are
taken, each by exactly one process. All other processes take a transition on the
receiving action a?? to arrive in the new global state q′. Formally, we again assign
to each action a vectors va,v′

a and a synchronization matrix Ma, as above. If
q(si) ≥ va(si) for all i ∈ {1, . . . , k}, then these are used as defined above. For
cases where this does not hold, we assign to the action an additional set of
vector-pairs (ua,u′

a) with different numbers of senders that actually participate,
and q′ is computed based on a vector-pair with the maximal number of senders
that is supported by q.

Example 3. The synchronization matrix and vectors for action Choose are
shown below. Note that, if Choose is a 2-maximal action, then the vector-pair
(uChoose, u′

Choose) is used to model the case where only one sender is available
to take the sending transition.

E
A
I
P
R

MChoose

E A I P R⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

E
A
I
P
R

uChoose

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

E
A
I
P
R

u′
Choose

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦

E
A
I
P
R

vChoose

⎡
⎢⎢⎢⎢⎣

0
0
0
2
0

⎤
⎥⎥⎥⎥⎦

E
A
I
P
R

v′
Choose

⎡
⎢⎢⎢⎢⎣

0
0
0
0
2

⎤
⎥⎥⎥⎥⎦

Regardless of whether Choose is a 2-sender or a 2-maximal action, the
global transition 〈0, 0, 1, 4, 0〉 Choose−−−−−→ 〈0, 0, 3, 0, 2〉 is possible. In a state q =
〈0, 0, 4, 1, 0〉, with 4 processes in Idle and 1 in Pick, the Choose action will not
be enabled if it is a 2-sender action because two sending processes are required
(in Pick), but only one sender is available. However, if Choose is a 2-maximal
action, then the global transition 〈0, 0, 4, 1, 0〉 Choose−−−−−→ 〈0, 0, 4, 0, 1〉 is possible.

Runs, Reachability Properties. A run of system M(n) is a finite or infinite
sequence of global states q0q1 . . ., where q0 is the initial state and qi

a−→ qi+1

for all i. We say that a state q is reachable in M(n) if there is a run of M(n)
that ends in q. For a fixed m ∈ N and local state s ∈ S, let φm(s) be a property
denoting the reachability of a global state q with q(s) ≥ m. If such a state is
reachable in M(n), we write M(n) |= φm(s).

Other Communication Primitives in the GSP Model. Note that most
of the synchronization-based communication primitives from the literature are
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instances of k-sender transitions or k-maximal transitions: broadcasts [28] are
simply 1-sender transitions, internal transitions are 1-sender transitions with
Ma = Id (the identity matrix), pairwise rendezvous transitions [32] are 2-sender
transitions (denoting the sender and receiver of the rendezvous transition) with
Ma = Id, asynchronous rendezvous transitions [16] are 2-maximal transitions
with Ma = Id. Negotiations [27], i.e., a synchronous transition of all processes
with no distinguished sender, can be modeled as a set of 1-sender transitions,
where every local receiving transition s

a??−−→ s′ is paired with a sending transition
s

a!!−→ s′, allowing an arbitrary process to act as the sender. In addition to these,
GSPs allow us to express many other natural synchronization primitives, e.g.,
summarizing the election of (up to) k leaders in a single step.

Finally, disjunctive guards [19], i.e., guards G ⊆ S that require that there
exists a process that is in some state s ∈ G, can be modeled by adding an
auxiliary sending action aG!!, and transitions s

aG!!−−→ Ma(s) for every s ∈ G, i.e.,
a process in some state s ∈ G must exist to enable the transition, but apart
from that this process acts like a receiver. Note that this works without adding
a notion of guards to our model.

In what follows, we extend our model to allow conjunctive guards, i.e., guards
that require that all processes are in some subset of the local state space.

2.2 Global Synchronization with Guards

Guarded Processes. A guarded process is a tuple PGSP = 〈A,S, s0, T 〉, where
all components are as before, except that now we have T ⊆ S × A × P(S) × S,
i.e., transitions are additionally labeled with a subset of S, called a guard. A
local transition from state s to state s′ on action α with guard G will be denoted
s

α,G−−→ s′. We call a guard G non-trivial if G �= S. Wlog, we assume that for any
global action a, all local transitions based on a have the same guard.

Guarded Systems. Let the support of a global state q be supp(q) = {s ∈ S |
q(s) > 0}, i.e., the set of local states that appear at least once in q. Then the

semantics of a global transition on action a with guard G, denoted q
a,G−−→ q′, is

as defined before, except that the transition is enabled only if supp(q) ⊆ G.

Example 4. Consider the global transitions introduced in Example 2, and recall
that global states are given in the order 〈Env, Ask, Idle, Pick, Report〉.
While the transition 〈0, 0, 1, 4, 0〉 Reset−−−−−→ 〈1, 0, 0, 4, 0〉 would be possible in the
unguarded model, the guard G3 = {Report, Idle} on the Reset action dis-
ables this transition, as supp(〈0, 0, 1, 4, 0〉) = {Pick, Idle} �⊆ G3. Similarly, from
q = 〈1, 0, 1, 2, 0〉, while a transition on action Choose is enabled for unguarded
processes, the guard G2 = {Pick, Idle} on action Choose disables this transi-
tion, since supp(〈1, 0, 1, 2, 0〉) �⊆ G2.
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3 Parameterized Verification for GSPs Without Guards

In this section, instead of the parameterized system M(n), we consider an
infinite-state system M∞ that includes the behaviors of M(n) for every n: it
initializes to M(n) for arbitrary n ∈ N, and then behaves according to the
semantics of a GSP of that size. We are interested in reachability properties
φm(s), where M∞ |= φm(s) is equivalent to ∃n. M(n) |= φm(s), i.e., we are
considering a parameterized reachability property over all instances of M.

We use this slightly different model in order to make use of the notion of well-
structured transition systems (WSTS), as defined by Finkel [30]: an infinite-state
transition system that is equipped with a well-quasi-order (WQO) on its state
space and has some additional properties. Finkel and Schnoebelen [31] have
surveyed existing results on WSTSs and put them into a common framework.

We will show that, for a suitable WQO, M∞ is a WSTS, and that this
enables parameterized verification for reachability properties φm(s).

3.1 Compatibility and Effective Computability of Predecessors

For the following definitions, fix an infinite set of states Q and a transition rela-
tion →. Moreover, let 
 be a WQO on Q, i.e., a reflexive and transitive relation
such that, for any infinite sequence q0,q1,q2, . . . of states from Q, there exist
indices i < j with qi 
 qj . In particular, 
 does not admit infinitely decreasing
sequences or infinite anti-chains.

Compatibility. We say that 
 is compatible with → if for every q,q′,p ∈ Q
with q 
 p and q → q′ there exists p′ ∈ Q with q′ 
 p′ and p →∗ p′. If
the property also holds after replacing p →∗ p′ with p → p′, then we say 
 is
strongly compatible with →.

Well-Structured Transition System. A transition system (Q,→) equipped
with a WQO that is compatible with → is called a well-structured transition
system (WSTS).

Upwards-Closed Sets. For a (possibly infinite) subset U ⊆ Q, the upwards
closure of U is the set ↑ U = {p ∈ Q | ∃q ∈ U : q 
 p}. A set U is upwards
closed if ↑ U = U . Every upwards closed set U has a finite basis: a finite set
B ⊆ U such that ↑ B = U .

Effectively Computable Predecessors. For U ⊆ Q, let Pred(U) denote the
predecessor states of U with respect to →. We say that we can effectively compute
Pred if there exists an algorithm that computes a finite basis of Pred(U) from
any finite basis of any upwards-closed U ⊆ Q.

Theorem 1 ([31]). In a WSTS with effectively computable Pred, reachability
of any upwards-closed set is decidable.
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3.2 Decidability for Unguarded GSPs

We prove that any unguarded GSP is a WSTS with effectively computable Pred,
which implies that reachability properties are decidable for GSPs. To this end,
let 
 be the component-wise order on global state vectors q, p:

q 
 p iff q(s) ≤ p(s) for all s ∈ S.

Note that with respect to this WQO, the set of global states q with q(s) ≥ m
is an upwards-closed set, i.e., if we can decide reachability of upwards-closed sets,
then we can decide reachability properties φm(s). Thus, decidability of checking
M∞ |= φm(s) follows from the following theorem.

Theorem 2. If M∞ is based on an unguarded GSP process, then M∞ equipped
with 
 is a WSTS and we can effectively compute Pred.

Proof. To prove that M∞ is a WSTS, we show strong compatibility of tran-
sitions w.r.t. 
. We consider the following two cases separately: (i) k-sender
transitions, and (ii) k-maximal transitions.

(i) For k-sender transitions, let q 
 p and q a−→ q′ for some k-sender action
a. Then q′ = Ma · (q−va)+v′

a for some synchronization matrix Ma and vectors
va,v′

a associated with action a. First observe that since q 
 p, there is also a
transition p a−→ p′ = Ma · (p−va)+v′

a. Moreover, we have Ma ·q 
 Ma ·p, and
therefore Ma · (q − va) + v′

a 
 Ma · (p − va) + v′
a, i.e., q′ 
 p′.

(ii) For k-maximal transitions, consider again q 
 p and q a−→ q′, where now a
is a k-maximal action. Then q′ = Ma ·(q−ua,q)+u′

a,q for some vectors ua,q,u′
a,q

with
∑

s∈S ua,q(s) =
∑

s∈S u′
a,q(s) ≤ k. Again, first observe that since q 
 p, a

transition p a−→ p′ is enabled, where p′ = Ma · (p − ua,p) + u′
a,p and ua,p(s) ≥

ua,q(s), u′
a,p(s) ≥ u′

a,q(s) for all s ∈ S. Note that, for any s ∈ S, we can have
ua,p(s) > ua,q(s) only if q(s) − ua,q(s) ≤ 0 and p(s) > q(s). Furthermore,
ua,p(s) − ua,q(s) ≤ p(s) − q(s). Therefore, we get q − ua,q 
 p − ua,p, which
implies Ma · (q − ua,q) 
 Ma · (p − ua,p), and thus Ma · (q − ua,q) + u′

a,q 

Ma · (p − ua,p) + u′

a,p, i.e., q′ 
 p′.
Next, we prove that we can effectively compute the basis of Pred(C), where

Pred(C) is the set of states from which a transition exists to a state in an
upwards-closed set C, as follows:

(i) For a k-sender transition based on action a, any predecessor q in Pred(C)
must satisfy (i) va 
 q, and (ii) Ma · (q − va) + v′

a = q′, for some q′ ∈ C. The
basis of Pred(C) consists of the minimal elements (w.r.t. 
) that satisfy these
conditions, and thus is computable.

(ii) For k-maximal transitions, the proof works in the same way, except that
now we may have multiple possibilities of what a minimal predecessor could be,
based on different subsets of the senders being present or not. Since this is always
a finite case distinction, effective computability of Pred is still guaranteed. �
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4 Parameterized Verification for GSPs with Guards

For GSPs with guards, compatibility under 
 in general does not hold, since for
q 
 p, a transition on action a that is enabled in q may not be enabled in p.
Furthermore, note that even strong restrictions on processes are unlikely to yield
compatibility with respect to 
, since whenever supp(q) ⊆ G for a non-trivial
G, one can always find a p with q 
 p and supp(p) � G, disabling the action.

Therefore, we introduce a refined WQO, denoted �, that is based on the
semantics of guards, as well as sufficient conditions on the guarded process P ,
such that the system M∞ is a WSTS and we can effectively compute Pred.

Let G be the set of guards that appear on transitions in P , and recall that
supp(q) = {s ∈ S | q(s) > 0}. Then we consider the following WQO3:

q � p iff (q 
 p ∧ ∀G ∈ G : (supp(q) ⊆ G ⇐⇒ supp(p) ⊆ G)) .

Intuitively, a global state p is considered greater than a global state q if p
has at least as many processes as q in any given state, and for every transition
q a−→ q′ that is enabled in q, a transition on action a is also enabled in p.

We will see that compatibility with respect to � can only be ensured under
additional conditions, as formalized in the following.

4.1 Guard-Compatibility and Well-Behaved Processes

Strong Guard-Compatibility for k-Sender Actions. For a k-sender action
a with local sending transitions si

ai!!,G−−−−→ s′
i for i ∈ {1, . . . , k}, let ŝ be the set of

all states si, ŝ′ the set of states s′
i, and Ma the synchronization matrix. We say

that action a is strongly guard-compatible if the following holds for all G′ ∈ G:

ŝ′ ⊆ G′ ⇒ ∀s ∈ G: Ma(s) ∈ G′ (C1)

Intuitively, if all senders move into a guard G′, then also all receivers need
to move into G′. This ensures that if G′ is satisfied after the transition in a
system of a given size, then it is satisfied after that transition in a system of any
bigger size, because any additional receivers must also move into G′. Note that
Condition (C1) always holds for trivial guards.

Strong Guard-Compatibility for k-Maximal Actions. For a k-maximal
action a, the idea of the condition is the same as before, but it must be extended
3 We show that � is a WQO by proving that every infinite sequence of global states

q1,q2, . . . contains qi,qj with i < j and qi � qj . To this end, consider an arbitrary
infinite sequence q = q1,q2, . . .. Then there is at least one set S of local states such
that infinitely many qi have supp(qi) = S. Let q′ be the infinite subsequence of q
where all elements have supp(q′

i) = S. Since � is a WQO, there exist q′
i,q

′
j with

i < j and q′
i � q′

j , and since supp(q′
i) = supp(q′

j) = S, we also get q′
i � q′

j . Since
q′

i = qk and q′
j = ql for some k < l, we get qk � ql for k < l, and thus � is a WQO.
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to allow different subsets of the potential senders to act as actual senders in a
given transition with action a. A simple approximation is that all senders must
agree, for every G ∈ G, on whether they enter G or not.

In the following, we formalize a notion that takes into account that transitions
that only use a subset of the potential senders are only possible from certain
global states, and that global states with different sets of actual senders may be
incomparable with respect to �, and therefore unproblematic for compatibility.

We write t � s if, for all guards G ∈ G, s ∈ G ⇒ t ∈ G. Similarly, we write
t � H for a set of states H if, for all guards G ∈ G, H ⊆ G ⇒ t ∈ G.

Consider a k-maximal action a with local transitions si
ai!!,G−−−−→ s′

i for i ∈
{1, . . . , k} and synchronization matrix Ma. Let R = G \ {s1, . . . , sk} and let G′

be the set of all guards GR ∈ G such that R ⊆ GR.
Then we say the action a is strongly guard-compatible if both of the following

hold for all G′ ∈ G:
⎛
⎝ ∨

1≤i≤k

s′
i ∈ G′

⎞
⎠ ⇒ (∀s ∈ R : Ma(s) ∈ G′) (C2.1)

∧
i,j∈{1,...,k}

(
(si � sj ∧ s′

j ∈ G′) ⇒ (s′
i ∈ G′ ∧ Ma(si) ∈ G′)

)
(C2.2)

Intuitively, if one potential sender moves from a state sj into a guard G′, then
every receiver from R must do the same, so that G′ will be satisfied regardless
of the number of receivers. This is also required for other senders and receivers
from a state si /∈ R, unless there exists a guard that is satisfied if sj is occupied,
but not if si is occupied, since that means that a global state where only sj is
occupied is incomparable (w.r.t. �) to a state where also si is occupied, and
therefore we do not care about compatibility of the transitions.

Note that for k = 1, the first condition (C2.1) instantiates to condition (C1)
and the second condition (C2.2) is an empty conjunction, i.e., vacuously satisfied.
This is to be expected, since semantically there is no difference between a 1-
sender action and a 1-maximal action.

Example 5. We can see that actions Smoke, Choose, and Reset from our
motivating example in Fig. 1 are strongly guard-compatible:

– Smoke is a 1-sender action with sending transition Ask
Smoke!!,{Env, Ask}−−−−−−−−−−−−−→

Pick. The state Pick is only included in one non-trivial guard G2 = {Pick,
Idle}. Since receiving transitions from {Env, Ask} end in {Pick, Idle} ⊆
G2, condition (C1) holds, so Smoke is strongly guard-compatible.

– Consider Choose with sending transitions Pick
Choosei!!,{Pick,Idle}−−−−−−−−−−−−−−→

Report for i ∈ {1, 2} as a 2-sender action. Report is only included in
one non-trivial guard G3 = {Report, Idle}. Since the receiving transition
from {Pick} ends in Idle ∈ G3 as well, (C1) holds, so Choose is strongly
guard-compatible.
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– Consider Choose as a 2-maximal action. Again, Report is only included in
one non-trivial guard G3 = {Report, Idle}. Since all senders and receivers
start from Pick and end up in a state in G3, conditions (C2.1) and (C2.2)
hold and Choose is, again, strongly guard-compatible.

– Reset is a negotiation action. Recall that negotiations are modeled as a set
of 1-sender actions, allowing for an arbitrary sender. Therefore, each of these
broadcasts must satisfy (C1) for the negotiation to be guard-compatible.
Reset is indeed strongly guard-compatible because all of its sending and
receiving transitions end in Env, meaning that when the action fires, all pro-
cesses will move into a single state, ensuring that all guards will be uniformly
enabled or disabled, regardless of the number of processes, which of them is
the sender, or whether they begin in Report or Idle.

– Finally, as stated in Sect. 2.1, the internal transition Env
G1−−→ Ask can be

modeled by a 1-sender action, say a, with a send transition Env
a!!,G1−−−−→ Ask

and self-loop receive transitions on all states. The sender ends up in one non-
trivial guard G1 = {Env,Ask}. Since receiving transitions from {Env, Ask}
end in {Env, Ask} ⊆ G1, condition (C1) holds, so a is strongly guard-
compatible.

Refinement: Weak Guard-Compatibility. To support a larger class of sys-
tems, we show how one can relax the previous conditions, at the cost of making
them more complex. The idea is that, instead of requiring that if the sender
ends up in a guard then the receivers immediately end up in that guard after
the transition, it is enough if the receivers have a path to a state in that guard.
To avoid unnecessary complexity, we only consider paths of internal transitions.

If there exists a path of unguarded internal transitions from s to s′, we write
s � s′. Then, condition (C1) can be relaxed to

ŝ′ ⊆ G′ ⇒ ∀s ∈ G:
(
Ma(s) ∈ G′ ∨ ∃s′ ∈ S : (s′ � ŝ′ ∧ Ma(s) � s′)

)
. (C1w)

Actions that satisfy condition (C1w) are called weakly guard-compatible.

Remark. In a similar way, we can relax conditions (C2.1) and (C2.2). Further-
more, the path � of internal transitions can be guarded, as long as the guards
are sufficiently general to guarantee that these transitions can be taken. We refer
the interested reader to the extended version [38] for more details.

Well-Behavedness. Based on guard-compatibility, we can now define the class
of processes that will allow us to retain decidability of reachability properties in
the parameterized system: We say that a process P is well-behaved if every
action is (weakly) guard-compatible.

Note that unguarded processes are trivially well-behaved.

Example 6. Observing that all actions in the process depicted in Fig. 1 are
(strongly) guard-compatible, it is clear that the process is well-behaved.
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Well-Behaved Systems in the Literature. We want to point out that many
systems studied in the literature are naturally well-behaved.

For example, Emerson and Kahlon [20] introduce a model for cache coherence
protocols that is based on broadcast communication and guards. They show that
many textbook protocols can be modeled under the following restrictions: (i)
every state is assumed to have an unguarded internal transition to the initial
state Init, and (ii) the only conjunctive guard is {Init}. Clearly, every action
in a process that satisfies these conditions will also satisfy condition (C1w), and
therefore well-behaved systems subsume and significantly generalize the types of
protocols considered by Emerson and Kahlon.

Moreover, there has recently been much research on the verification of round-
based distributed systems [14,34,37], where processes can move independently
to some extent, with the restriction that transitions between rounds can only
be done synchronously for all processes. When abstracting from certain features
(e.g. fault-tolerance and process IDs), our model is well-suited to express such
systems: guards can be used to restrict transitions to happen only in a certain
round, and can furthermore model the “border” of a round that needs to be
reached by all processes, such that they can jointly move to the next round.

Our example from Fig. 1 can also be seen as a round-based system: the first
round includes states Env, Ask, and upon taking the transition on Smoke,
all processes move to the second round, which includes states Pick, Idle.
From there, on action Choose the system moves to the third round, which
includes states Report, Idle, and on action Reset back to the first round.
Note that the states in different rounds are exactly the guards that are used in
the transitions—or seen the other way around, guards induce a set of rounds
on the local state space, and the guard-compatibility conditions ensure that
processes move between these rounds in a systematic way.

While the rounds are very simple in this example, the technique is much
more general and can be used to express many round-based systems, including
those described in Sect. 6.

4.2 Decidability for Well-Behaved Guarded Processes

Based on the notion of well-behavedness, we can now obtain a decidability result
that works in the presence of guards. The following theorem implies that param-
eterized verification for properties φm(s) is decidable for well-behaved processes.

Theorem 3. If M∞ is based on a well-behaved GSP process, then M∞ is a
WSTS and we can effectively compute Pred.

Proof. To prove that M∞ is a WSTS, we show compatibility of transitions w.r.t.
�, i.e., if q � p and q → q′, then ∃p′ with q′ � p′ and p →∗ p′. We consider
two cases: (i) k-sender transitions, and (ii) k-maximal transitions.

(i) Suppose a is a k-sender action. Let q
a,G−−→ q′ be a transition and q � p.

Since q � p implies that supp(p) ⊆ G, we know that transition p
a,G−−→ p′

is possible, and by the proof of Theorem2 we know that q′ 
 p′. To prove
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compatibility with respect to �, it remains to show that ∀G′ ∈ G : (supp(q′) ⊆
G′ ⇒ supp(p′) ⊆ G′).

First assume that condition (C1) holds. Then, let G′ ∈ G be an arbitrary
guard. By (C1), we either have ŝ �⊆ G′, in which case the desired condition is
satisfied for G′, or we have that ∀s ∈ G: Ma(s) ∈ G′, i.e., all potential receivers
move into G′. Thus, we get supp(q′) ⊆ G′ iff supp(p′) ⊆ G′, satisfying the desired
condition.

If instead of (C1) the action satisfies (C1w), the argument is the same, except
that if necessary we use the internal transitions that are guaranteed to exist by
the condition to arrive in a state p′ with q′ 
 p′.

(ii) Suppose a is a k-maximal action with local transitions si
ai!!,G−−−−→ s′

i for
i ∈ {1, . . . , k} and synchronization matrix Ma. By the proof of Theorem 2 we

know that there exists a transition p
a,G−−→ p′ with q′ 
 p′, and it remains to

show that ∀G′ ∈ G : (supp(q′) ⊆ G′ ⇐⇒ supp(p′) ⊆ G′).
Let G′ ∈ G be an arbitrary guard, and assume the action is strongly guard-

compatible. By condition (C2.1) we know that if there is a single local sending
transition with s′

i ∈ G′, then all receivers will move into G′. So first suppose
there is no such local transition: then G′ cannot be satisfied in q′ (since at least
one sender must be present), and the desired property holds. Inversely, suppose
there is such a local transition: then all processes that start in R will be mapped
into G′, so G′ will be satisfied iff all remaining processes are mapped into G′.
Now, suppose that all local transitions taken in q

a,G−−→ q′ are such that s′
i ∈ G′

(for otherwise q′ does not satisfy G′). Since q 
 p, there exists a transition

p
a,G−−→ p′ such that the set of local transitions that are fired in q

a,G−−→ q′ is a
subset of the local transitions that are fired in p

a,G−−→ p′. If all sending transitions
taken in p

a,G−−→ p′ are also such that s′
i ∈ G′, then by conditions (C2.1) and

(C2.2) the same will hold for all receiving transitions from p, and therefore,

supp(p′) ⊆ G′. Thus, suppose there is a local transition si
ai!!,G−−−−→ s′

i that is taken

in p
a,G−−→ p′, but not in q

a,G−−→ q′, and s′
i /∈ G′. Let sj

aj !!,G−−−−→ s′
j be an arbitrary

local transition that is taken in q
a,G−−→ q′. Then by condition (C2.2), either there

must be a guard G′′ ∈ G′ with si /∈ G′′ ∧ sj ∈ G′′, contradicting the assumption
that q � p, or we have s′

j ∈ G′ ⇒ s′
i ∈ G′ ∧ Ma(si) ∈ G′, contradicting the

assumption that s′
i /∈ G′.

Again, if the action is weakly guard-compatible, the argument can be
extended by using the paths of internal transitions, if necessary.

Effective computability of Pred follows from the proof of Theorem2—
the only difference is that we must consider the guards, i.e., a predeces-
sor is only valid if it additionally satisfies the guard of the transition under
consideration. �
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5 Cutoffs for GSPs

We investigate cutoff results for GSPs and their connection to the decidability
results in Theorem 2 and 3. While the proofs of these theorems yield a decision
procedure for parameterized verification, a cutoff result is more versatile as it
reduces parameterized verification to a problem over a fixed number of processes,
and under certain conditions can also be used for parameterized synthesis [39].

5.1 Definition and Basic Observations

A cutoff for a class of processes Π and a class of properties Φ is a number c ∈ N

such that for every P ∈ Π and φ ∈ Φ,

M∞ |= φ ⇔ M(c) |= φ

We show how to obtain cutoffs for well-behaved GSPs that satisfy additional
conditions, and for reachability properties of the form φm(s), based on obser-
vations from the proof of Theorem2. While for any given parametrized system
and any safety property a cutoff exists [45], a general cutoff, even if it can be
computed, may be too large to be of practical value: it has been shown that for
broadcast protocols the time complexity of checking reachability is non-primitive
recursive in the size of the processes [51], and from the proof one can conclude
that the same must hold for the size of cutoffs.

s0

s⊥

s6 s8 s3

sE

s7

s4s5

s1 s2

b!!

i!!

i??
a?? a??

a??

a??

a??

b??

a??

a??

a??

Fig. 2. Example witnessing quadratic cutoff. Not depicted are additional sending tran-
sitions on a!! from every state in the outer cycle to s⊥.
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Example: Quadratic Cutoffs. Consider the (unguarded) process in Fig. 2. We
are interested in a lower bound on the cutoff for this process, with respect to
φ1(sE), i.e., reachability of sE by at least one process. Note that to reach sE ,
we need at least one process in s8 and one in s5 at the same time. From the
initial state s0, the only possible action is i, sending one process to s6 in the
inner cycle and all other processes to s1 in the outer cycle. Then, the only way
to make progress is action a, moving the process in the inner cycle to s7, the
sending process from s1 to s⊥ (sending transitions on a!! are not depicted in
Fig. 2), and all other processes to s2. After three further transitions on a, the
outer processes are in s5, where the sending transition on b!! could be fired, but
the process in the inner cycle is in s7, so additional transitions on a are required.
Only after two additional rounds around the outer cycle we arrive in a state
where both s5 and s8 are occupied, and we can take the final transition on b
that takes one process into sE . To arrive there, we took 16 transitions (one on
i, 14 on a, and one on b), and by construction every process can only take one
sending transition in a run. Thus, we need a system with at least 16 processes to
have one of them reach sE , and no smaller number can be a cutoff for φ1(sE).

To see that cutoffs grow at least quadratically, note that in similar examples
where the inner and outer cycles consist of p1 and p2 states, respectively, and p1

and p2 are relatively prime, then we need p1 · p2 + 1 processes to reach sE .

5.2 Conditions for Small Cutoffs

We introduce sufficient conditions on processes that allow us to obtain small
cutoffs. These conditions are inspired by our intended applications (see Sect. 6),
and based on insights from the decision procedure in the proof of Theorem2 and
the example above. We observe that any q ∈ Pred(C) that reaches a state q′ ∈ C
through a k-sender action a must satisfy (i) va 
 q, and (ii) Ma ·(q−va)+v′

a =
q′. Thus, if there is q′ ∈ C such that ¬(va 
 q), we need to consider a predecessor
q with |q| > |q′|. It is easy to see that this can only happen if q′ contains
processes in states that can be reached through a only through either a receiving
transition, or a sending transition if k > 1. Thus, we want to avoid that states
we are interested in are only reachable through such transitions.

We restrict our attention to specifications φm(s) and to cases where we can
identify conditions on a GSP process P such that the cutoff for such specifications
is c = m. If this is the case, then we say that reachability of s is synchronization-
independent in P , and that the pair 〈P, φm(s)〉 is cutoff-amenable.

We begin with a simple case, where systems are restricted to only internal
transitions and negotiations (we defined in Sect. 2.1 how these are expressed in
terms of 1-sender transitions).

Lemma 1. Let P = 〈A,S, s0, T 〉 be a well-behaved GSP process such that
all transitions are internal transitions or negotiations. Then reachability of s is
synchronization-independent in P for every s ∈ S.

Proof. To see this, first consider a system with n > m processes, where eventually
m of them reach s. We can simulate this run in a system with m processes by
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simply keeping the m processes that reach s, and removing all others. Similarly,
if all processes in a system of size m eventually reach s, then we can simulate this
run in a bigger system by adding processes that “follow” the internal transitions
of the other processes such that always the same guards as in the original run
will be satisfied. Well-behavedness ensures that this is always possible. �

While we are in general not interested in systems that only communicate
through internal transitions and negotiations, we can refine this observation
based on the states we are interested in, and allow other types of communication.

To this end, define a transition of a process P to be free if it is (i) an internal
transition, (ii) a sending transition of either a broadcast (i.e., a 1-sender action)

or a k-maximal action, or (iii) a receiving transition s
a??,G−−−−→ s′ of a broadcast

with matching sending transition s
a!!,G−−−→ s′. Note that the latter includes nego-

tiation transitions. A path from one state to another is free if all transitions on
the path are free. The idea is that free transitions and paths are only restricted
by guards (i.e., the absence of processes in certain states), but not by the exis-
tence of other processes in certain states (as, e.g., a 2-sender transition would
be, since a sender depends on the presence of another sender to be able to fire
the global transition and move along its own local transition).

Lemma 2. Let P = 〈A,S, s0, T 〉 be a well-behaved GSP process, and s ∈ S
such that all paths from s0 to s in P are free. Then reachability of s is
synchronization-independent in P .

Proof. The argument follows the same line as the one above for protocols with
only internal transitions and negotiations, since the same transitions for existing
processes are also possible if we can ensure that the same guards can be satisfied
in the bigger system. Well-behavedness ensures that there is a run in the bigger
system where the same guards are satisfied. �

We require that all paths be free, since existence of a free path is not sufficient
in general: if m > 1, then the first process that moves along that free path
may force other processes to leave it (e.g., by taking a sending transition of a
broadcast). However, this condition is still slightly restrictive, and can be relaxed.

Define a simple path as a path with no repeated states. We show that under
additional conditions, it is enough to consider restrictions that are based on
paths that are simple and free:

Lemma 3. Let P = 〈A,S, s0, T 〉 be a well-behaved GSP process, s ∈ S, and
let F be the set of simple free paths from s0 to s. If for each send transition:

1. the transition does not appear in paths in F and the corresponding receiving
transitions ss

a??,Ga−−−−→ sd with ss ∈ p for some p ∈ F have sd = ss, or,
2. the transition appears in paths in F and the following holds for every corre-

sponding receive transition ss
a??,Ga−−−−→ sd where ss ∈ p for some p ∈ F and

sd /∈ p for any p ∈ F : either (a) there exists an internal transition ss −→ s′
d

with s′
d ∈ p for some p ∈ F , or (b) all paths out of sd lead back to a state sf

in a path in F and are free between sd and sf .
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then reachability of s is synchronization-independent in P .

Proof. First consider a run of a system that satisfies the above conditions, and
has n > m processes, where eventually m of them reach s. We can simulate
this run in a system with m processes by keeping the m processes that reach s,
and removing all others. Note that the sending transitions are on the same free
simple path from which processes can diverge using the corresponding receiving
or sending transitions, or they do not affect them at all. Hence, at least one of
the senders is guaranteed to reach s. All other senders and receivers may diverge
from a simple free path but are guaranteed a free path back to a state along a
free path and hence, can reach s freely.

Now assume that all processes in a system of size m eventually reach s, then
we can simulate this run in a bigger system by adding processes (that behave in
the same way as an existing process). Note that, since any transition diverging
from a free simple path can only be triggered by a sending transition on that
same free path, it is impossible to add a sender that can make processes diverge
and then not reach s after. �
Example 7. In this example we show how Lemma 3 applies to the example in
Fig. 1. Here s0 is the Env state, s is the Report state, and the value of m is 3
(since the safety specification is: no more than 2 detectors can report the fire).

The set of simple free paths F is:

– Env −→ Ask
Smoke!!−−−−−→ Pick

Choosei!!−−−−−−→ Report for i ∈ {1, 2}, and
– Env −→ Ask

Smoke??−−−−−−→ Pick
Choosei!!−−−−−−→ Report for i ∈ {1, 2}.

It is clear that all the sending transitions Smoke!!,Choose1!!,Choose2!!
appear only in F . Furthermore, the corresponding broadcast-receive transitions
satisfy the required conditions as follows:

– the transition Env
Smoke??−−−−−−→ Idle satisfies condition (2a) because the internal

transition Env −→ Ask exists in a path in F .
– the transition Pick

Choose??−−−−−−→ Idle satisfies condition (2b) since all paths
out of Idle are free (namely, the negotiation transition Idle

Reset−−−−→ Env)
and lead back to a path in F .

Since Lemma 3 holds, the reachability of s is synchronization-independent
and the cutoff is 3.

Checking the Cutoff Conditions. Note that while the conditions in Lemma 3
seem complex, all our cutoff conditions can be checked on the process definition
in polynomial time, making them well-suited for fully automatic verification.
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6 Applications and Evaluation

To evaluate our approach, we consider several distributed applications that use
agreement protocols like consensus or leader election, and that can be modeled
as well-behaved systems that satisfy one of our cutoff lemmas:

– Chubby [11]: A distributed lock service for coarse-grained synchronization
with an elected leader node that handles client messages.

– Distributed Smoke Detector (SD): A sensor network application that elects a
subset of processes, who have detected smoke, to report to the authorities.

– Smoke Detector with Reset (SDR): A variant of SD that uses a “reset” signal
to resume monitoring for smoke, thereby requiring infinite rounds of agree-
ment. (this was our motivating example in Fig. 1)

– Distributed Mobile Robotics (DMR): Based on an existing benchmark [18],
where a set of robots successively coordinate to create a motion plan.

– Distributed Key-Value Store (KVS) modeling a key-value store á la Redis [48].
– Small Aircraft Transportation System (SATS): The landing protocol of SATS

proposed by NASA [53]. SATS aims to increase access to small airports with-
out control towers by allowing aircrafts to coordinate with each other to
operate safely upon entering the airport airspace.

– SATS++: A variant of the SATS protocol where all processes communicate
explicitly to determine subsets of aircrafts to coordinate the landing with.

In addition, we provide an experimental evaluation, based on related
work [37] in which a new model—the Choose model—that can be seen as a
refinement of GSP, is proposed. The Choose model extends a standard model
of distributed systems [2,3] with a primitive that abstracts various types of
distributed agreement protocols. The work further defines a mapping from the
Choose model to GSP that establishes a simulation equivalence between the
two models, enabling interchange of safety verification and cutoff results between
the two models.

Table 1. Performance of parameterized verification based on our cutoffs.

Benchmark States Cutoff Verification
time(s)

Chubby 9 2 0.12

SD 5 3 0.28

SDR 5 3 0.13

DMR 8 3 0.16

KVS 18 3 3.06

SATS 24 5 3.83

SATS++ 26 5 17.1



318 N. Jaber et al.

Fig. 3. Verification time as a func-
tion of the number of processes.

To make use of the ease of encoding the
above benchmarks in the Choose model
and the ease of verification in the Choose
model using off-the-shelf model checkers,
we illustrate the effect of our cutoff results
on efficiency of verification in the Choose
model. For the benchmarks given above,
Fig. 3 depicts the verification time as a func-
tion of the number of processes. Observe
that verification time grows roughly expo-
nentially with the number of processes.
Moreover, verification for all the bench-
marks timed out beyond 9 processes, for a
timeout of 30 min. In contrast, in Table 1 all
benchmarks have a cutoff of less than 6, and
reasonable verification times.

7 Related Work

Bodies of work that aim at automatically solving the parameterized verification
problem (which is undecidable in the most general case [23,54]) take a large vari-
ety of different approaches [1,10,13,33,35,41,43,47,56], in most cases without
a focus on decidability. In the following we consider the approaches that target
decidability, with models closely related to our GSP model.

Models with Broadcasts and/or Global Guards. We want to enable rea-
soning about distributed systems, abstracting complex building blocks like agree-
ment protocols by primitives that satisfy assume-guarantee specifications. To
support parameterized reasoning for systems with such abstractions, one needs
a model with (i) conjunctive guards to model the assumptions, and (ii) forms
of synchronization that are sufficiently general to model the guarantees of those
building blocks, i.e., generalizations of broadcast communication.

Esparza et al. [28] present a decidability result for safety properties of broad-
cast protocols, but without global guards. Their result is also based on a reduc-
tion to WSTSs, but we showed that the WQO presented in their work (corre-
sponding to the WQO 
 in Sect. 3.2) is not suitable for systems with guards. We
note that our GSP model subsumes the model of Esparza et al., and that our
cutoff results also apply to their model (which had no previous cutoff results).

Other existing models either are not sufficiently general [19,20,22], or support
a combination of broadcasts and conjunctive guards without restrictions [21],
which makes safety undecidable. This highlights the significance of our result:
we manage to find a model with conjunctive guards and global synchronization
such that safety remains decidable.
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Other Decidable Classes. One way to obtain decidability is to restrict the
generality of the parameterized verification problem in various ways. Most results
in this direction consider a fully connected network (a clique), either with ren-
dezvous communication [5,32], local updates with global guards [6,19], or vari-
ants of these [16]. Some communication primitives have also been considered in
more complex networks, for example token passing [4,12,24], or broadcasts [17].
Decidability results for systems that are composed of identical components have
recently been surveyed by Bloem et al. [9] as well as Espazra et al. [26]. Sev-
eral bodies of work attempt to identify cutoff bounds for different classes of
distributed systems. For example, cutoffs have been obtained for cache coher-
ence protocols [20], guarded protocols [19,21,40], consensus protocols [44], and
self-stabilizing systems [8]. None of these approaches are sufficiently general to
tackle the types of distributed applications we address.

Petri Nets and Vector Addition Systems. Also closely related to the param-
eterized verification problems we consider is the body of work on Petri nets and
vector addition systems, surveyed e.g. by Esparza and Nielsen [29] or Reisig [49].
While some types of communication can faithfully be expressed in these systems,
global synchronization in general cannot.

8 Conclusion

We introduced global synchronization protocols (GSP), a system model that
generalizes many existing models supporting global synchronization such as
broadcast synchronization, pairwise rendezvous, and asynchronous rendezvous.
We identified sufficient conditions, summarized under our notion of well-
behavedness, that ensure decidability of the parameterized verification problem
even in the presence of global (conjunctive) transition guards. Finally, we inves-
tigated cutoffs for parameterized verification, and identified sufficient conditions
under which small cutoffs exist.

In ongoing work, we are focusing on extensions of our cutoff results as well as a
dedicated implementation of our decision procedure. In the near future, we plan
to investigate sufficient conditions that enable support for the parameterized
verification of liveness properties for GSPs, and intend to develop a domain-
specific language for writing GSPs that are well-behaved by construction.

References

1. Abdulla, P., Haziza, F., Holik, L.: Parameterized Verification Through View
Abstraction. Int. J. Softw. Tools Technol. Transfer 18(5), 495–516 (2016)

2. Alur, R., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.: Automatic com-
pletion of distributed protocols with symmetry. In: Kroening, D., Păsăreanu, C.S.
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44. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
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Abstract. Replication is a common technique to build reliable and scal-
able systems. Traditional strong consistency maintains the same total
order of operations across replicas. This total order is the source of mul-
tiple desirable consistency properties: integrity, convergence and recency.
However, maintaining the total order has proven to inhibit availability
and performance. Weaker notions exhibit responsiveness and scalability;
however, they forfeit the total order and hence its favorable properties.
This project revives these properties with as little coordination as pos-
sible. It presents a tool called Hampa that given a sequential object
with the declaration of its integrity and recency requirements, automat-
ically synthesizes a correct-by-construction replicated object that simul-
taneously guarantees the three properties. It features a relational object
specification language and a syntax-directed analysis that infers optimum
staleness bounds. Further, it defines coordination-avoidance conditions
and the operational semantics of replicated systems that provably guar-
antees the three properties. It characterizes the computational power and
presents a protocol for recency-aware objects. Hampa uses automatic
solvers statically and embeds them in the runtime to dynamically decide
the validity of coordination-avoidance conditions. The experiments show
that recency-aware objects reduce coordination and response time.

1 Introduction

Replicated objects [12,13,23,32,45] are pervasively used for fault-tolerance,
availability, responsiveness and scalability. They are used in diverse application
areas [14,20–22,37,39,40,50,53] including embedded controllers, online services
and game engines. However, coordinating the replicas has proven to be chal-
lenging. Strongly consistent replication, provided by consensus protocols such
as Viewstamp [42], Paxos [34] and Raft [44], guarantees the same total order of
operations across replicas. The total order simultaneously provides a hoard of
favorable properties: integrity, convergence and recency. Replicas converge to the
same state as the result of the same sequence of operations. Further, a propa-
gated operation executes in the same state as the originating replica. Therefore,
if an operation preserves the integrity properties [8] at the originating replica, it
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will certainly preserve them in the other replicas as well. In addition, the lock-
step execution keeps the replicas recent: an operations executes in all replicas
before the next. Thus, replicas can be stale by at most one operation.

However, strong consistency may not be available and responsive during
network failures or offline use. Further, its scalability is limited. The trade-
off between strong consistency of replicated objects, and their availability and
responsiveness is a famous dilemma [1,3,26–28]. Therefore, system designers
opted for weaker notions of consistency such as eventual [4,15,17,19,24,25,48,52]
and causal [2,13,33] consistency that can provide availability, responsiveness and
scalability but lose the same total order of operations. Several projects [16,49,51]
provide programming interfaces for weak consistency notions. Unfortunately, the
large collection of subtle weak consistency notions is unintuitive to users. If the
chosen notion is too weak, it can affect correctness, and if it is too strong, it may
degrade scalability.

Therefore, researchers have recently provided high-level abstractions to shield
the user from low-level complexities of weak consistency. These projects seem to
be the steps towards reviving the same three pillars of consistency, i.e. integrity,
convergence and recency, with as little coordination [7,35,47] as possible. CRDTs
[48] revived convergence. If an object satisfies a few algebraic properties, its repli-
cation can enjoy convergence even on top of eventual consistency. However, the
replicas can experience states that violate the integrity properties. Therefore,
follow-up projects revived the integrity property. CISE [29] and Soteria [41]
present proof techniques to verify the integrity properties of a replicated object.
Sieve [36], Indigo [10] and Hamsaz [30] translate the given high-level integrity
properties to hybrid models. However, they are oblivious to state recency. The
operations are eventually delivered to all replicas, however, they may be arbi-
trarily delayed. Some updates may be delivered too late and expose the clients
to stale data. On the other hand, at the expense of more communication, some
updates may be immediately sent and delivered. However, applications may
prefer to obtain more scalability and energy efficiency in return for bounded
staleness. In fact, many applications such as ticketing, distributed sensors and
network accounting can work with fairly recent data. Previous work such as
TACT [55], TRAPP [43], FRACT [59], and PBS [9] considered staleness but did
not address integrity and communication minimization. Further, they did not
provide automatic analysis, decision and synthesis. In addition to convergence
and integrity, this project, Hampa, revives recency. Given a sequential object
with the declaration of its integrity properties and recency requirements for its
methods, it automatically synthesizes a correct-by-construction replicated object
that guarantees integrity, convergence and recency while avoiding unnecessary
coordination.

To capture object specifications from the user, we present a relational lan-
guage and its denotational semantics. The language provides a complete set of
relational operators to define the object methods and integrity properties, and
allows the user to declare recency requirements for the return value of each
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method. Given a principled object specification, we present a syntax-directed
analysis that infers optimum staleness bounds for each element of the state.

We present the conditions required to simultaneously preserve the three prop-
erties: convergence, integrity and recency. These conditions are used to define
a novel operational semantics of replicated objects that provably preserve con-
vergence, integrity and the inferred staleness bound. We observe that recency-
awareness not only guarantees a limit on the staleness, but also allows buffering
of calls and reduces the coordination required to preserve integrity.

We characterize the computational power of recency-aware replicated objects.
We show that recency-aware objects have the same power as the perfect failure
detector. We present a novel protocol for recency-aware replicated objects that
implements the semantics. We use off-the-shelve SMT solvers both statically
and embed them at runtime to decide the validity of coordination-avoidance
conditions. We present a tool called Hampa that given an object definition,
analyzes the object and instantiates the protocol to synthesize replicated objects.
Our experiments with the synthesized objects show that the staleness bound has
an inverse relationship with the coordination and response time.

In summary, this paper presents the following contributions: (1) A relational
object specification language that captures integrity and recency declarations,
and its denotational semantics (Sect. 2). (2) The coordination conditions and the
operational semantics of replicated systems that simultaneously preserve conver-
gence, integrity and recency (Sects. 3 and 4). (3) A syntax-directed analysis that
infers optimum staleness bounds for each element of the state (Sect. 5). (4) The
characterization of the computational power and a protocol for recency-aware
replicated objects, (Sect. 6). (5) The Hampa replicated object synthesis tool and
its experimental results (Sect. 7). All the proofs are available in the appendix [5].

2 Recency-Aware Relational Object Language

Language. Figure 1 shows our core relational language for object specification.
An object is a record 〈Σ, I,M〉 that includes a state type Σ, an invariant I
on the state, and a set of methods M. The state can be a tuple of natural
number Nat and relation Rel types. The invariant I is a boolean function on
the state. A method m is a function from the parameter x and the pre-state
〈x1, .., xn〉 to a record of 〈eg, eu, er〉. The guard eg is a boolean expression that
captures the semantic preconditions of m such as conditions on the arguments.
The expressions eu and er are for the post-state and the return value. We use
guard, update and retv as functions that extract elements of this record. For each
method, the user declares an integer as the staleness bound ε for its return value.
A method call c is a method applied to its argument i.e. it is a function from
the current state to a record of 〈eg, eu, er〉.

An expression e is either a value v (that can be either a number n or a relation
R), a variable denoted by x, an application of the operators {+,−,=, <,&, !}
to operand expressions where & is the conjunction and and ! is the negation
operator, a selection σλ〈x〉.e(e′) that binds the attributes of each element of the
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relation e′ to the variables x and returns the elements that satisfy the condition
e, a projection Πλ〈x〉.〈e〉(e′) that for each element of the relation e′, binds its
attributes to the variables x and calculates a tuple of elements 〈e〉 and returns
the set of resulting tuples, a union e ∪ e′ that results in a relation with elements
of both of the relations e and e′, a difference e \ e′ that results in a relation
with the elements in the relation e that are not in the relation e′, and the
Cartesian product e × e′ that results in a relation with pair elements where
the first and second elements are in the relations e and e′ respectively. The
language supports a complete set of relational operators: any relational algebra
expression can be expressed by a combination of them. Selection (σ), projection
(π), union (∪), difference (\), product (×) and renaming (ρ) are a complete set of
operators. We note that since the language uses functions with argument names,
a renaming operator is unnecessary. The update and join operations are defined
as a syntactic sugar. The update operation Uλ〈x〉. 〈e,〈e′〉〉e

′′ returns a relation that
updates each element of e′′ that satisfies the condition e to the tuple 〈e′〉. The
join e1 �	λ〈x1,x2〉. e e2 results in pairs of elements of e1 and e2 that satisfy the
condition e.

Fig. 1. Syntax and semantics of the specification language

Semantics. Figure 1 presents a denotational semantics for expressions. The
semantics for values, variables, and binary and unary operations is standard.
The semantics of the selection expression σλ〈x〉.e′(e) is the set of tuples t in
the semantics of e such that substitution of the attributes x in e′ with their
corresponding values in t evaluates to true. The semantics of the projection



328 X. Li et al.

Class MovieBooking
Σ := let rs := Set N × N in � Reservation: user identifier and movie identifier

let ms := Set N × N in � Movie: movie identifier and available space
〈rs,ms〉

I := λ〈rs, ms〉. unique (ms, λ〈m, a〉. m) ∧
refIntegrity (rs, λ〈u, m〉. m, ms, λ〈m, a〉. m) ∧
rowIntegrity (ms, λ〈m, a〉. a ≥ 0)

book(〈u, m〉) := 0 λ〈rs, ms〉.
〈〈u, m〉 /∈ rs, 〈rs ∪ 〈u, m〉, U λ〈m′,a〉. 〈m′=m,〈m,a−1〉〉 ms〉, ⊥〉

cancelBook(〈u, m〉) := 0 λ〈rs, ms〉.
〈True, 〈rs \ 〈u, m〉, U λ〈m′,a〉. 〈m′=m,〈m,a+1〉〉 ms〉, ⊥〉

offScreen(m) := 0 λ〈rs, ms〉.
〈True, 〈rs, ms \ σλ〈m′,a〉. m′=m ms〉, ⊥〉

specialReserve(〈m, n〉) := 0 λ〈rs, ms〉.
〈n > 0, 〈rs, U λ〈m′,a〉. 〈m′=m,〈m,a−n〉〉 ms〉, ⊥〉

increaseSpace(〈m, n〉) := 0 λ〈rs, ms〉.
〈n > 0, 〈rs, U λ〈m′,a〉. 〈m′=m,〈m,a+n〉〉 ms〉, ⊥〉

querySpace(m) := ε1 λ〈rs, ms〉.
〈True, 〈rs, ms〉, Πλ〈m′,a〉. 〈a〉 (σλ〈m′,a〉. m′=m ms)〉

queryReservations(u) := ε2 λ〈rs, ms〉.
〈True, 〈rs, ms〉, Πλ〈u′,m〉. 〈m〉 (σλ〈u′,m〉. u′=u rs)〉

querySpaces(u) := ε3 λ 〈rs, ms〉.
〈True, 〈rs, ms〉, Πλ〈u,m,m′,a〉 〈m,a〉 (rs ��λ〈u,m〉,〈m′,a〉. m=m′ ms)〉

Fig. 2. Movie booking use-case

expression Πλ〈x〉.〈e〉(e′) is a set of tuples, one per each tuple t in the seman-
tics of e′: a tuple resulted from substituting x with t in the expressions e and
evaluating them. The semantics of union, difference and product are standard
from the set theory. We define the difference Δ between two values as follows:
the difference between two natural numbers is the absolute value of their sub-
traction i.e. Δ(n, n′) = |n − n′|; the difference of two relations is the size of
their symmetric difference i.e. Δ(R,R′) = |R \ R′| + |R′ \ R|. We use delta δ to
represents the staleness of a value that is the difference between the value and
its target value. The delta for a completely recent (or exact) value is zero. For
a call c, the weight weight(c) is a bound on the difference that the execution of
c can make on the state of the object. In other words, for every call c, we have
∀σ. Let 〈 , σ′, 〉 := c(σ) in Δ(σ′, σ) < weight(c).

Running Use-Case. Figure 2 shows the movie booking use-case. The state of
the object is the two relations reservation rs and movie ms. The reservation
relation rs stores the movies that the users have booked; it is the pairs of users
u and movies m. The movie relation ms stores the number of available spaces for
each movie; it is the pairs of movies m and spaces a. The integrity property I is
a conjunction of three conditions: (1) The movie in ms should be unique. (2) The
referential integrity requires that every movie in rs exists in ms. (3) The number
of available spaces for every movie should be non-negative. The object provides
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five update methods and three query methods. Given a user u and a movie m, the
method book adds the pair to rs and decrements the available spaces for m in ms.
Similarly, the method cancelBook removes a reservation and increments available
spaces. Given a movie m, the method offScreen removes the corresponding tuple
from ms. Given a movie m and a number n, the method specialReserve subtracts
n from the available spaces for m in ms. The dual method increaseSpace adds n
to the spaces for m. Given a movie m, the method querySpace returns the number
of available spaces for m. The method queryReservations returns the set of movies
that the given user has booked. Given a user u, the method querySpaces returns
the pairs of movies and their available spaces for the movies that u has booked.
The staleness bound for the update methods is specified as 0. The returned none
constant ⊥ is always exact. The bound values ε1, ε2 and ε3 of the query methods
represent the number of tuples that are different between the current state and
the pending stable state of the result relation.

(a)

(b)

(c)

Fig. 3. (a) Buffering and coordination. Example execution (b) without and (c) with
recency. ↓: request, ↑: indication, �: synchronization

To reduce communication, certain calls can be executed locally and buffered,
and the buffer can be communicated to other replicas later. As an example,
in Fig. 3(a), the first two calls to the method increaseSpace do not exceed the
staleness bound for ms and can be buffered. However, the third call exceeds the
bound and cannot be added to the buffer. Therefore, the buffer is flushed to
other replicas and the third call is blocked until an acknowledgement for the
delivery of the buffer is received. All the calls of the buffer can be sent in a single
message and the acknowledgement for them can be sent in a single message as
well.
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Let us now consider the interaction of buffering with coordination. We will
see that buffering (staleness) interestingly reduces the coordination required for
the conflicts. (We will define conflicting calls that should be synchronized later
in Sect. 3.) Fig. 3(b) and (c) show the same execution without and with buffer-
ing respectively. In Fig. 3(b), the first replica rep1 executes the sequence of calls
increaseSpace, specialReserve and increaseSpace. The method increaseSpace does
not conflict with any other method; therefore, calls to it are simply broadcast.
The method specialReserve conflicts with itself and the method book; there-
fore, the call to it goes through synchronization. The second replica rep2 calls
book that conflicts with four other methods. Hence, it should synchronize. (The
synchronization reaches to other replicas, blocks calling the four methods, and
propagates previous calls to those methods.) In this example, the conflicting
specialReserve call in rep1 should be propagated to rep2 before the book call can
be executed.

In Fig. 3(c), the recency bound allows the three calls of rep1 to be buffered.
Replicas use SMT solvers at runtime to check the validity of three prop-
erties for the buffers: all-S-commutativity, invariant-sufficiency and let-P-R-
commutativity that we will formally define in Sect. 3. In this example, the buffer
is invariant-sufficient if the number of spaces that the call specialReserve decre-
ments is less than the number that the increaseSpace calls increment. Therefore,
the buffer can be sent to other replicas without any additional synchroniza-
tion; the invariant in the pre-state is sufficient for the invariant in its post-state.
We note that the call specialReserve that previously went through synchroniza-
tion does not need any synchronization inside the buffer. Further, the let-P-R-
commutativity property of the buffer guarantees that the book call will preserve
the integrity after the buffer. Thus, the synchronization of the book call that
previously waited for the specialReserve call does not need to wait anymore.

3 Coordination Conditions

In this section, we present the coordination conditions for replicated objects
that preserve the three properties: convergence, integrity and recency. The state
of the given sequential object is replicated across replicas. Clients can request
method calls at every replica, and replicas coordinate the calls. Convergence is
the safety property that when all pending updates are processed, the replicas
converge to the same state. Integrity is the safety property that every method
call is executed only on a state where the guard of the method and the invariant
are satisfied. Recency is the safety property that bounds the difference between
the state of a replica and its impending state after the pending calls are applied.

The state of each replica is initialized to the same state σ0 that satisfies the
invariant I. The replica that accepts the request for a call from the user is called
the originating replica of the call. We uniquely identify requests by identifiers r.
We use the two maps call and orig that map request identifiers to the method
call and originating replica respectively. The execution history of a replica is
modeled as a permutation of a set of request identifiers. An execution x of a
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set of requests R is a bijective from positions [0..|R| − 1] to R. We denote the
range of x as R(x). An execution x of R defines the total order ≺x on R: A
request r precedes another request r′ in an execution x written as r ≺x r′ iff
x−1(r) < x−1(r′). A replicated execution xs is a function from replicas N to
executions. The post-state of each call at a replica is the result of applying the
call to its pre-state.

We first revisit the coordination conditions for convergence and integrity [30],
and then present coordination conditions for recency and their impact on the
prior conditions.

Convergence. A replicated execution is convergent if the state of the replicas is
the same after all the calls are propagated. Out of order delivery of method calls
at different replicas can lead to divergence of their states. Method calls such as
special reservation specialReserve and increasing space increaseSpace result in the
same state if their order of execution is swapped. However, the resulting state
of the two method calls book and cancelBook is dependent on their execution
order. Therefore, they should synchronize.

Definition 1 (State-Commutativity and State-Conflict). Two method
calls c1 and c2 S-commute, written as c1 �S c2 iff for every state σ,
update(c2)(update(c1)(σ)) = update(c1)(update(c2)(σ)). Otherwise, they S-
conflict, written as c1 �	S c2.

Integrity. The body of each method relies on the invariant in the pre-state.
Further, methods have explicit guards that declare their pre-conditions. We say
that a method call enjoys integrity at a state if the invariant and the guard of
the method hold in that state.

Definition 2 (Integrity). A method call c enjoys integrity in a state σ, written
as integrity(σ, c), iff guard(c)(σ) and I(σ).

Method calls should be executed only in states that they have integrity in. The
integrity condition is simply lifted to executions and replicated executions: An
execution enjoys integrity iff every request in it enjoys integrity.

Definition 3 (Permissibility). A method call c is permissible in a state σ,
written as P(σ, c), iff guard(c)(σ) and I(update(c)(σ)).

In contrast to integrity that requires the invariant to hold in the pre-state,
permissibility requires it to hold in the post-state. The post-state of a call is the
pre-state of the next call in a replica. Further, the initial state is assumed to
satisfy the invariant. Therefore, if every call is permissible in its pre-state, then
every call enjoys integrity. By induction, permissibility leads to integrity.

To execute a method call, we check that it is permissible at its originating
replica. Thus, we say that each method call is locally permissible. Otherwise, the
call is aborted or delayed. Still, if the call is simply broadcast, it is not necessarily
permissible when it arrives at other replicas. Some calls need coordination.
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Conflict. There are calls such as increaseSpace that are always permissible as
far as they are applied to a state that satisfies the invariant. Increasing the space
cannot result in a missing or duplicate movie or a negative number for available
spaces. Thus, if it is broadcast and executed on another replica, it is sufficient
that the pre-state satisfies the invariant to preserve it in the post-state.

Definition 4 (Invariant-Sufficient). A call c is invariant-sufficient iff for
every state σ, if I(σ) then P(σ, c).

However, not all calls are invariant-sufficient. For example, a book call may
be permissible in a replica but may become impermissible in another when it
is executed after an already executed offScreen call for the same movie. These
two calls should synchronize to preserve integrity. Nonetheless, some pairs of
calls such as offScreen and specialReserve do not affect each other’s permissibil-
ity. (In the running example, specialReserve has no guards. After an offScreen
call, it remains permissible as it doesn’t find the movie and leaves the relation
unchanged).

Definition 5 (Permissible-Right-Commutativity). The call c1 P-R-
commutes with the call c2 written as c1 →P c2 iff for every state σ, if P(σ, c1)
then P(update(c2)(σ), c1).

If a call c1 is invariant-sufficient or P-R-commutes another call c2, then the
call c1 will stay permissible when it is propagated and applied to another replica
even if c2 is executed before it in that replica.

Definition 6 (Permissible-Concur and Permissible-Conflict). A call c1

P-concurs with a call c2 iff c1 is invariant-sufficient or c1 →P c2. Otherwise, c1

P-conflicts with c2.

The call offScreen P-concurs with the call specialReserve; however, the call
book P-conflicts with the call offScreen.

We say that two calls concur iff they both S-commute and P-concur with
each other. Otherwise, we say they conflict and need synchronization.

Definition 7 (Concur and Conflict). A pair of calls c1 and c2 concur iff
they S-commute and P-concur with each other. Otherwise, they conflict c1 �	 c2.

Dependency. As we saw above, invariant-sufficient method calls can always
preserve the invariant. However, there are calls whose preservation of the invari-
ant is dependent on the calls that have executed before them at that replica. For
example, taking the movie off-screen offScreen is dependent on cancelling the last
booking cancelBook. If offScreen is moved left before cancelBook, it can become
impermissible. Nonetheless, taking a movie off-screen offScreen is independent
of the previous special reservations specialReserve.

Definition 8 (Permissible-Left-Commutative). A call c2 P-L-commutes a
call c1, written as c2 ←P c1 iff for every σ, if P(update(c1)(σ), c2) then P(σ, c2).
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A call can avoid tracking dependencies to another call if the former is
invariant-sufficient or P-L-commutes with the latter.

Definition 9 (Independent and Dependent). A call c2 is independent of
c1, written as c2 ⊥⊥ c1, iff either c2 is invariant-sufficient or c2 ←P c1. Other-
wise, c2 is dependent on c1, written as c2 
⊥⊥ c1.

If c1 is executed before c2 in the originating replica of c2 and c2 is dependent
on c1, then c2 should be applied to other replicas only if c1 is already applied.

Recency. Calls executed at a replica may be delayed in the network before they
are executed in other replicas. Further, they may be buffered at the originating
replica to reduce communication. The pending calls for a replica are the calls
that have executed in other replicas but not at that replica yet. The staleness of a
replica is the difference of its current state and its state after applying its pending
calls. Given a bound ε, a replica is sufficiently recent if its staleness is less than ε.
The calls that have originated in the current replica n but have not been received
yet by another replica n′ make the state of n′ stale. To bound the staleness of
n′ by ε, the staleness imposed to n′ by the calls originated by each of the other
|N | − 1 replicas should be bounded by ε/(|N | − 1). The difference that these
calls can make is bounded by the sum of their weights (defined in Sect. 2). The
staleness bound can be evenly divided between the replicas. However, in general
it can be distributed unevenly and even dynamically. In particular, replicas that
tend to issue updates more often can get a larger share.

Given a recency bound, a buffering quota can be calculated for each replica
and the recency bound can be preserved when calls are buffered. Buffering calls
can reduce communication; however, it can affect the convergence and integrity
properties. To preserve these properties a buffer should have three properties: all-
state-commutativity, invariant-sufficiency and let-P-R-commutativity. We con-
sider each condition in turn.

Definition 10 (All-State-Commutative). A call is all-S-commutative if it
is S-commutative with respect to every call.

The calls of the buffer are executed locally and are not synchronized with
other replicas. Therefore, if the buffer is not all-S-commutative, concurrent exe-
cution of S-conflicting calls in other replicas can lead to divergence. Similarly, if
the buffer is not invariant-sufficient, concurrent execution of P-conflicting calls
in other replicas can lead to impermissibility of the buffer when it is propagated
and executed in other replicas. The buffer in Fig. 3(c) is all-S-commutative:
it includes increaseSpace and specialReserve calls that result in increasing or
decreasing the space for movies; the result is S-commutative with respect to
all method calls. Further, it is invariant-sufficient if the net result of its calls
is a non-negative addition to the space of each movie. For example, if the
increaseSpace calls add s spaces and the specialReserve calls subtract s′ spaces
from the same movie where s′ ≤ s, then the net effect is adding spaces and the
buffer is invariant-sufficient.
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Definition 11 (Let-Permissible-Right-Commutative). A call is let-P-R-
commutative if every call P-R-commutes with it.

Calls in other replicas are checked to be permissible with no knowledge of
the buffered calls in the current replica. Let-P-R-commutativity of the buffer of
the current replica guarantees that the calls in other replicas will continue to be
permissible once they are propagated and executed after the buffer in the current
replica. The buffer in Fig. 3(c) is let-P-R-commutative; it may only increase the
number of spaces that cannot make any call impermissible.

4 Replicated System Semantics

In this section, we define the operational semantics of replicated objects where
(1) the integrity property I on the state of each replica is always preserved, (2)
replicas converge to the same state once all the calls are propagated, and (3) the
staleness of each replica is always bounded by ε. The semantics declares the con-
ditions for execution and propagation of method calls on the replicated object to
guarantee the three properties. In particular, it represents the conditions for local
buffering of method calls to avoid communication while preserving the recency
of the other replicas. In Sect. 5, we will see a static analysis that infers staleness
bounds for the state. In this section, the semantics preserves the inferred stale-
ness bound ε for the state σ of the object. (For objects with multiple pieces of
state, the staleness of each piece can be tracked separately.) The semantics strives
to concisely define the conditions; we will present the protocols that implement
these conditions in Sect. 6.

w := 〈h, t, xs, orig, call〉 World
h : →
N S × Σ × R Hosts
n : N Replica nodes

s : S := x ← c; s | skip Statement
c : C := m(e) | id Call

m : M Method
e := x | v Expression
x Variable
v Value
σ : Σ Object State
r : R Request
t : Set P Transit

p : P := 〈n, r〉 | 〈n, r∗〉 Packet
xs : →
N List R History

orig : R N→
 Original node
call : R 
→ C Request call
w0 := Init World

〈n 〈→
 sn, σ0, rn〉n∈N , ∅, ∅,

[rn 
→ n]n∈N , [rn 
→ id]n∈N 〉

Fig. 4. Operational semantics state

As Fig. 4 shows, the global state
of the replicated system is represented
as a world w that is a tuple of
〈h, t, xs, orig, call〉. The hosts h is a
mapping from replica identifiers N to
the local state of replicas. Each call
is assigned a unique request identi-
fier r at the originating replica. The
two maps call and orig keep a mapping
from request identifiers to the call and
the originating replica of the request
respectively. The state of each replica
is a statement s ∈ S, the state of the
object σ ∈ Σ, and the identifier r ∈ R
of the current buffer. A statement s is
either x ← c; s′ that is the sequence of
a call c and another statement s′, or
the terminal statement skip. A call c is
the application of a method m to an
argument expression e. A call can also
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be the identity call id that leaves the state unchanged. (It is assumed that client
statements do not make id calls.) The network t is the set of packets that are
sent but not yet delivered. A packet p contains the identifier of the destination
replica n and the request identifier r of the call. If a packet is transmitting a
buffered call, it is decorated with an asterisk ∗. The history xs is a mapping from
replica identifiers N to the list of request identifiers of the calls that are previ-
ously applied to that replica. The initial value of the world state is w0 where
each replica n hold its initial statement sn, the initial state σ0 of the object
that satisfies the integrity property I, and an empty buffer. Empty buffers are
represented by mapping the buffer identifier rn of each replica n to the identity
call id.

Figure 5 presents the operational semantics. The rule Call executes a
method call c at a replica n. The call c can be executed if the following conditions
hold. (1) To preserve integrity, the call c should be locally permissible P(σ, c) in
the current state σ. (2) To preserve convergence and integrity, any pair of con-
flicting calls should have the same order across the replicas, a property that we
call conflict-synchronization. Thus, to execute a new request r, the rule Call
requires the condition ConflictSyncInit: any call r′ that is already executed in
another replica n′ and conflicts with the current call r should have been already
executed in the current replica n. Otherwise, once the calls r and r′ are propa-
gated and executed on the other replicas, they will have different orders in the
two replicas n and n′. (3) To preserve recency, this rule requires the condition
InBound: the difference that the pending calls from the current replica n can
make to the state of every other replica n′ should be bounded by ε/(|N | − 1). If
the conditions above hold, a fresh identifier r is created for the call, the history
xs and the maps orig and call are updated to reflect the new call, a packet is sent
in the network t to every other replica, and the variable x is substituted with
the returned value v of the call in the continuation statement s of the current
replica.

The rule Deliver delivers a call that has been sent to the current replica. It
requires two conditions: conflict-synchronization and dependency-preservation.
(1) Similar to the rule Call, conflict-synchronization requires ConflictSync: if
a conflicting call r′ is executed before the received call r in another replica n′,
then r′ should have been already executed before r in n as well. (2) To preserve
integrity, the dependencies of calls should be preserved. Thus, the dependency-
preservation condition DepPres requires that a call r originated from a replica n′

is executed in the current replica n only if the calls r′ that have been executed
before r in n′ and r is dependent on r′ should have been already executed in n.

Recency-aware replication can be applied to any object, but it can improve
performance when there are method calls that can be buffered. The rule Cal-
lLocal executes a call but locally buffers it. Similar to the rule Call, it
first checks the local permissibility of the call c. Since a buffered call is not
immediately coordinated with calls in other replicas, it should satisfy the three
properties (that saw in Sect. 5) to make it concur with any call: (1) all-state-
commutativity AllSComm, (2) invariant-sufficiency InvSuff, and (3) let-P-Right-
commutativity LetPRComm. The identifier of the current buffer is r; the current



336 X. Li et al.

Call
P(σ, c) c(σ) = 〈 , σ′, v〉

fresh r orig′ = orig[r 
→ n]
call′ = call[r 
→ c]

xs′ = xs[n 
→ (xs(n) ::: r)]
ConflictSyncInit〈call′〉(xs

′, n, r)
InBound〈orig′,call′〉(xs

′, n)
t′ = t ∪ {〈n′, r〉 | n′ ∈ N \ {n}}

(h[n 
→ (x ← c; s, σ, r′)], t, xs, orig, call)
n,r,c−→

(h[n 
→ (s[x 
→ v], σ′, r′)], t′, xs′, orig′, call′)

Deliver
call(r)(σ) = 〈 , σ′, 〉

xs′ = xs[n 
→ (xs(n) ::: r)]
ConflictSync〈call〉(xs

′, n, r)
DepPres〈orig,call〉(xs

′, n, r)

(h[n 
→ (s, σ, r′)], t ∪ {〈n, r〉}, xs, orig, call})
n,r,call(r)−→

(h[n 
→ (s, σ′, r′)], t, xs′, orig, call)

CallLocal
P(σ, c) c(σ) = 〈 , σ′, v〉

c′ = c · call(r)
AllSComm(c)

InvSuff(c′) LetPRComm(c′)
call′ = call[r 
→ c′]

xs′ =
{

xs[n 
→ (xs(n) ::: r)] if call(r) = id
xs else

InBound〈orig,call′〉(xs
′, n)

(h[n 
→ (x ← c; s, σ, r)], t, xs, orig, call)
n,r,c−→

(h[n 
→ (s[x 
→ v], σ′, r)], t, xs′, orig, call′)

SendBuffer
call(r) = id fresh r′

orig′ = orig[r′ 
→ n] call′ = call[r′ 
→ id]
t′ = t ∪ {〈n′, r∗〉 | n′ ∈ N \ {n}}
(h[n 
→ (s, σ, r)], t, xs, orig, call)

−→
(h[n 
→ (s, σ, r′)], t′, xs, orig′, call′)

DeliverBuffer
call(r)(σ) = 〈 , σ′, 〉

xs′ = xs[n 
→ (xs(n) ::: r)]
(h[n 
→ (s, σ, r′)], t ∪ {〈n, r∗〉}, xs, orig, call})

n,r,call(r)−→
(h[n 
→ (s, σ′, r′)], t, xs′, orig, call)

id := λσ. 〈True, σ, ⊥〉
P(σ, c) := Let 〈g, σ′, 〉 := c(σ) in (g = true ∧ I(σ′) = true)

ConflictSyncInit〈call〉(xs, n, r) := ∀n′, r′. r′ ∈ xs(n′) ∧ call(r) �� call(r′) → r′ ∈ xs(n)

ConflictSync〈call〉(xs, n, r) := ∀n′, r′. r′ ≺xs(n′) r ∧ call(r) �� call(r′) → r′ ≺xs(n) r

DepPres〈orig,call〉(xs, n, r) := ∀r′. r′ ≺xs(orig(r)) r ∧ call(r) ⊥⊥ call(r′) → r′ ∈ xs(n)

AllSComm(c) := ∀c′. c �S c′

InvSuff(c) := ∀σ. I(σ) → P(σ, c)

LetPRComm(c) := ∀c′. c′ →P c

InBound〈orig,call〉(xs, n) := ∀n′.
∑

r ∈ xs(n)\xs(n′)∧orig(r)=n weight(call(r)) < ε
|N|−1

(c · c′)(σ) := Let 〈 , σ′, 〉 := c′(σ) in c(σ′)

Fig. 5. Replicated system semantics

call c is composed with the current buffered call call(r) to result in a composed
call c′ for the updated buffer. The composition · of calls simply cascades their
updates to the state. The all-state-commutativity condition is stated for single
calls c (that implies the same condition for the composed call c′ as well). This
condition is required for the call c because there might be other calls delivered
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between the last buffered call and the currently buffered call c. The call c should
state-commute past the calls in between. Further, as explained for the rule Call,
the condition InBound requires that the added staleness remains within bound.
If the above conditions hold, the map call is updated with the new buffer call c′,
and the identifier r of the buffered call is added to the history xs, if the buffer
was empty and the current call c is the first buffered call.

The rule SendBuffer sends the buffer to every other replica and resets
the buffer. Packets transmitting buffers are decorated with an asterisk. The
rule DeliverBuffer receives a packet containing a buffer. As we saw in the
rule CallLocal, buffers are checked to be invariant-sufficient in the originat-
ing replica. Therefore, on receiving a packet containing a buffer, in contrast to
the rule Deliver, the rule DeliverBuffer does not checks the dependency-
preservationDepPres and the conflict-synchronization ConflictSync conditions.

The following lemmas state the three properties of the semantics. The fol-
lowing lemma states that once the buffers are flushed call(r) = call(r′) = id and
the messages are delivered t = ∅, the replicas converge to the same state.

Lemma 1 (Convergence). For all h, n, n′, σ, σ′, r and r′, if w0 −→∗

〈h, ∅, , , 〉 where h(n) = 〈 , σ, r〉, h(n′) = 〈 , σ′, r′〉 and call(r) = call(r′) = id
then σ = σ′.

The following lemma states that every call enjoys the integrity property.

Lemma 2 (Integrity). For all h, n, r, c, w and σ, if w0 −→∗ 〈h, , , , 〉 n, ,c−→
w where h(n) = 〈 , σ, 〉 then integrity(σ, c).

The staleness of a replica is the difference of its current state and its state
after applying its pending calls from others (buffered calls and in transit calls).
The following lemma states that the stateless of every replica is bounded by ε.

Lemma 3 (Recency). For all h, h′, n, s, σ and σ′, if w0 −→∗ 〈h, , , , 〉
(−→ ∪ n, ,−→)∗ 〈h′, , , , 〉,h(n)= 〈s, σ, 〉, and h′(n)= 〈s, σ′, 〉 then Δ(σ′, σ) < ε.

5 Staleness Bound Inference and Optimization

In Sect. 4, we presented an operational semantics that preserves a given staleness
bound for the state. The users declare the recency that they expect from the return
value of each method of the object. The specified bounds for the methods can be
used to infer the bounds for the elements of the state. In this section, given an object
specification that includes recency declarations for themethods,we present a static
analysis that infers optimum staleness bounds for each element of the state. We
present a syntax-directed analysis that derives recency constraints between bound
variables for the state elements. A solution to the constraints assigns a bound value
to each state element such that if every state element keeps its staleness bound then
the result of every method call respects the recency declaration of the method. The
optimumsolutionmaximizes the (weighted) sumof the bounds to increase buffered
calls and hence decrease communication.
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δ := n | dx | δ + δ | δ × δ Bound
C := δ = δ | δ < δ | C ∧ C Constraints

CObj
me � C

〈Σ, I, me〉 � ∧C

CMet
free(er) = {x, σ1, .., σn}

[x 
→ 0, σ1 
→ dσ1, .., σn 
→ dσn] � er � δ′, C

def δ m(x)(〈σ1, .., σn〉) 〈eg, eu, er〉 � C ∧ (δ′ ≤ δ)
CVal
Γ � v � 0, ∅

CVar
(x 
→ δ) ∈ Γ

Γ � x � δ, ∅
COp
Γ � e � δ, C Γ � e′ � δ′, C′

⊕ ∈ {+, −, ∪, \}
Γ � e ⊕ e′ � δ + δ′, C ∧ C′

CBOp
Γ � e � δ, C Γ � e′ � δ′, C′

⊕ ∈ {=, <, &}
Γ � e ⊕ e′ � 0, C ∧ C′ ∧ (δ = 0 ∧ δ′ = 0)

CSel
Γ [x 
→ 0] � e � δ, C

Γ � e′ � δ′, C′

Γ � σλx.e(e′) � δ′, C ∧ C′ ∧ (δ = 0)

CProj
Γ � e � δ, C

Γ � Πx(e) � δ, C

CProd
Γ � e � δ, C

Γ � e′ � δ′, C′

Γ � e × e′ � δ × δ′, C ∧ C′

Fig. 6. Bound constraint derivation

Figure 6 presents the constraint inference rules for the object language that
we saw in Fig. 1. A delta bound δ is either a natural number n, a delta variable
dx, or addition or multiplication of two deltas. A constraint C is equality or
comparison of two deltas, or conjunction of two constraints. A delta environment
Γ is a mapping from variables to delta variables or values. The judgements are
of the following forms: the judgement o � C states the bounding constraint C for
the object o, the judgement m � C states the constraint C for the method m,
and the judgement Γ � e � δ, C states that under the delta environment Γ, the
staleness of the expression e is bounded by δ when the constraints C are satisfied.
The rule CObj states that the constraint for an object is the conjunction of the
constraints for its methods. (We assume that the state variables passed to all the
methods are renamed to the same variables 〈σ1, .., σn〉.) The rule CMet infers
the constraints for a method by first, inferring the constraints for its return
expression under a delta environment where the argument is mapped to the
delta value of zero (exactly recent) and the state variables σi are mapped to
delta variables dσi to be inferred, and second, bounding the return value. The
rule CVal assigns the delta value zero to values with no constraints. (Values
are exact.) The rule CVar retrieves the bindings for delta variables from the
environment. The rule COp states that the delta for the result of the operators
{+,−,∪, \} is the sum of the delta of its operands. On the other hand, the rule
CBOp requires the operands of the boolean operators {=, <,&} to be exact
and states that the result is exact as well. We elide the similar rule for the
unary negation operator !. The rule CSel requires the selection condition to be
exact and states that the delta of the resulting relation is the same as the input
relation. In other words, the resulting relation is stale by the same number of
elements as the input relation. Similarly, the rule CProj states that the delta of
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the resulting relation is the same as the input relation. On the other hand, the
rule CProd states that the delta for the resulting relation is the multiplication
of the deltas for the input relations. In our running example, let us associate the
bound variables drs and dms to rs and ms respectively. The constraint inferred
for querySpace is dms ≤ ε2, for queryReservations is drs ≤ ε1, and for querySpace
that involves the join operator (product and selection) is drs × dms ≤ ε3. More
detailed explanation for these derivation is available in the appendix [5].

We now define the notion of sufficiently-recent states. Intuitively, a state is
sufficiently-recent with respect to the target state if the difference of the return
value of every method call on that state versus the target state is within the
declared bound of the method.

Definition 12 (Sufficiently-recent State). A state 〈v1, .., vn〉 is a
sufficiently-recent state with respect to the target state 〈v∗

1 , .., v∗
n〉 for an object

o iff for every method def ε m(x)(〈σ1, .., σn〉) 〈eg, eu, er〉 of o, and every argu-

ment v, let vr be
�

er[x �→ v][σi �→ vi]
�

and v∗
r be

�
er[x �→ v][σi �→ v∗

i ]
�
, we have

Δ(vr, v
∗
r ) ≤ ε.

The following lemma states that the bound inference presented in Fig. 6 is
sound. In other words, if the inference derives the constraints C for an object,
for any solution S of C, if the staleness of each state element σi of the object
remains within the bound S(dσi), then the state remains sufficiently-recent.

Lemma 4 (Soundness of Bound Inference). Given an object o with the
state variables 〈σ1, .., σn〉, if o � C that is the constraints C (over the bound
variables dσi) are derived for o, and S is a solution for C, then for every pair
of states σ = 〈v1, .., vn〉 and σ∗ = 〈v∗

1 , .., v∗
n〉, if Δ(vi, v∗

i ) < S(dσi) then σ is
sufficiently-recent for σ∗.

There may be many solutions for the derived constraints, and hence, many
sound state bounds that preserve the user-specified bounds for the object. How-
ever, solutions that allow more staleness (albeit appropriately bounded) are more
favorable since they allow more buffered calls and require less communication.
Thus, a candidate objective function to maximize is dσ1 + .. + dσn. In other
words, what are the largest delta bounds for the state elements that still pre-
serve the recency specifications of the methods? This function gives the same
weight to all the state elements; however, some may be updated more frequently.
Let fi be the relative update frequency of the state element σi. Frequencies can
be obtained from historical logs or profiling. The objective function is defined
as the following weighted sum dσ1/f1 + .. + dσn/fn. More frequently updated
state elements are given proportionally larger bounds. In our running example,
let ε1 = 3, ε2 = 4, and ε3 = 6. If the update frequency of rs is twice as ms, the
optimum solution is drs = 3 and dms = 2.

Definition 13 (Recency Bound Optimization). Give an object o and the
relative update frequency fi of the state elements σi of o, if o � C then the
optimum staleness bounds for o are the solution S of C that maximizes dσ1/f1 +
.. + dσn/fn.



340 X. Li et al.

It is obvious that the objective function can be easily translated to a linear
function by multiplying the least common denominator of the frequencies.

6 The Power and the Protocol of Recency-Aware Objects

Now, we show that recency-aware objects are stronger than the perfect failure
detector abstraction [18] and present a protocol that implements recency-aware
objects using perfect failure detectors. These two results show that recency-aware
objects have the same computational power as the perfect failure detector.

The perfect failure detector abstraction P notifies processes about the crash
of the other processes in a synchronous network. It has the following properties:
Liveness: Every crashed process is eventually detected by all correct processes.
Safety: No correct process is ever suspected by other processes. The recency-
aware object R has the following liveness and safety properties. Liveness: If
the user makes a request to a correct replica, it eventually responds. Safety:
Executed calls that are yet pending for each correct replica is bounded. The
following lemma states that P is reducible to R and also its opposite, R is
reducible to P.

RecencyAwareObject
request : call(C)
indication : ret(C, V) | aborted(C)
Params :

ε : Int
SConf : Set[M]

Using :
rb : ReliableBroadcast
pl : PerfectPointToPointLink
pfd : Perfect Failure Detector
bro : BasicRepObject

State :
σ : Σ = σ0; buff = ∅;wq = ∅;
up = N ; p : →�N Set[C] = N → ∅

request (call(c)) if (method(c) �∈ blocked(bro))
if (¬P(σ, c))

issue indication aborted(c)
else

if (method(c) �∈ SConf ∧
InvSuff(buff ) ∧ LetPRComm(buff ))

foreach (r ∈ up \ {self})
p′(r) ← ((p(r) \ {buff }) ∪ {c · buff })

if (InBound(p′))
p ← p′

exec(c); buff ← c · buff
else

issue request (rb, broadcast(buff(buff )))
insert(wq, c)

else

foreach (r ∈ up \ {self})
p′(r) ← (p(r) ∪ {c})

if (InBound(p′))
p ← p′

issue request(bro, call(c))
else

issue request (rb, broadcast(buff(buff )))
insert(wq, c)

indication crash(pfd, p)
up ← up \ {p}

fun InBound(p)
foreach(n ∈ up)

if (
∑

c′∈p(n) weight(c′) > ε/(N − 1))

return False
return True

indication (rb, deliver(n, buff(buff )))
if (self �= n)

exec(buff )
issue request (pl, send(n, ack(buff )))

indication (pl, deliver(n, ack(c)))
p ← p[n �→ (p(n) \ {c})]
foreach (c ∈ wq) issue request(call(c))
wq ← ∅

fun exec(c)
σ ← update(c)(σ); v ← retv(c)(σ)
issue indication ret(c, v)

indication (bro, ret(c, v))
issue request (pl, send(orig(c), ack(c)))
issue indication ret(c, v)

Fig. 7. Recency-aware protocol
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Lemma 5. P � R ∧ R � P.

For the proof of the first conjunct, consider two replicas rep1 and rep2. We show
by contradiction that rep1 will eventually know whether rep2 has crashed. We
assume the opposite. Consider an execution where rep1 has already executed a
set of requests R and receives another request r from the user, such that the
pending set R ∪ {r} makes a difference in the state of rep2 that pushes it out-
of-bound. By the contradiction assumption, rep1 is never informed when rep2

crashes. Therefore, if rep1 does not hear from rep2, the following two scenarios
are indistinguishable to rep1. (S1) The replica rep2 has crashed. (S2) The replica
rep2 is too slow. The replica rep1 has the following two choices: (C1) The replica
rep1 waits to hear from rep2 about receiving a request in R before processing
and responding to r. (C2) The replica rep1 processes and responds to r. If the
protocol makes the choice C1, it might be the scenario S1 and then the liveness
property is violated. If the protocol makes the choice C2, it might be the scenario
S2 and then the recency bound for rep2 is violated.

The second conjunct, directly follows from the protocol. We briefly describe
the protocol in Fig. 7 that implements a recency-aware replicated object. The
full description of the protocol is available in the appendix [5]. Given an object
definition, the protocol benefits from both static and dynamic coordination anal-
ysis to guarantee convergence, integrity and recency. To reduce communication,
replicas try to execute the calls locally while maintaining the staleness bound
ε. Each replica keeps its locally executed calls in a buffer buff before they are
broadcast. Replicas send an acknowledgement ack to the originating replica once
they receive and execute a call or a buffer of calls. Each replica rep keeps a map
called pending p from each replica rep′ to the set of pending calls sent from
rep to rep′. When a replica originates a call c, it adds c to its local pending set
for each of the other replicas; once it receives an acknowledgement for c from
a replica rep′, it removes c from the set of pending calls for rep′. Each replica
keeps the set of correct replicas up, and removes a replica from the set if the
prefect failure detector pfd issues a crash event for that replica. A requested call
can be executed only if it does not push the pending set for any correct replica
out of the bound. Otherwise, it cannot be immediately executed and is kept in a
waiting queue wq to be retried later, and further, the buffer is sent to the other
replicas and is reset to accelerate the shrinking of the pending set. To decide
whether a call can be executed locally, the conditions of the rule CallLocal
of the operational semantics (Sect. 4) are checked. The set of state-conflicting
methods SConf that is statically calculated is consulted to check if the call is all-
state-commutative. The validity of the two conditions invariant-sufficiency and
let-P-R-commutativity of the buffer (after the new call is added) are dynami-
cally decided by a solver at run-time. If the conditions do not hold, the call is
coordinated with other replicas using the basic blocking coordination protocol
bro [30] that guarantees integrity and convergence but not recency.
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7 Experimental Results

We have implemented the analysis and protocol as a synthesis tool called Hampa.
We applied it to two use-cases: the bank account use-case (with the withdraw,
deposit and balance methods and the integrity property of non-negative bal-
ance) and the movie booking use-case (Fig. 2). The experiments show that as
the staleness bound increases, the coordination overhead and response time of
recency-aware objects is decreased. Further, recency-aware objects are twice as
responsive as sequentially consistent counterparts.

Platform and Setup. The experiments are conducted on a cluster of 4 com-
puting nodes. Each node has 2 AMD Opteron 6272 CPUs with a total 8 cores,
64GB ECC memory and 40Gbps InfiniBand network. JDK is openjdk version
1.8.0 222. We used the CVC4 [11] SMT solver v.1.7. Reported numbers are the
arithmetic means of results from three repetitions on 4 replicas. In the experi-
ments for the bank account use-case, all the calls are applied to the same account
object and the amount is selected randomly in the range [10,20]. For the movie
use-case, we send requests for each movie identifier to the same replica. Further,
we do not issue offScreen calls because taking a movie off-screen causes later
method calls on the same movie to be aborted and thus, these methods are not
fully exercised. This would significantly improve the response time. However, in
practice, offScreen calls are rarely used. The movie and user IDs are chosen at
random from six and a hundred unique IDs. In all the experiments, we execute
500 calls in millisecond intervals evenly distributed between 4 replicas.
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Fig. 8. Effect of recency on coordination load and response time. (a) and (b) show the
bank account use-case. d, w, and b stand for deposit, withdraw and balance (with the
frequencies of 75%, 25%, 5% in the workload respectively). (c) and (d) show the movie
use-case. c, b, q, s, and i stand for cancelBook, book, querySpace, specialReserve, and
increaseSpace (with frequencies 4%, 6%, 5%, 40% and 45%).
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Measurements. We measure two comparison criteria: coordination load and
response time. At the lower layers, the protocol reduces to three communication
primitives: total-order-broadcast (TOB), reliable-broadcast (RB) and point-to-
point links (P2P). To measure the coordination overhead, we separately count
the number of different types of messages that replicas send during the execution
of their requests. The response time for a call is the duration between the time
that the client requests the call and the time that the user receives the return
value.

We performed three experiments. In the first experiment, we study the effect
of increasing the staleness bound on the coordination load. We report the ratio
of the number of messages that the protocol sends for the bound under test over
the number of messages that it sends for the base-line bound. (The base-line
recency bound is the maximum weight of the calls. The baseline allows every
single call to be buffered.) In the second experiment, we study the effect of
increasing the staleness bound on the response time of each method. Finally, in
the last experiment, we compare the response time of our protocol with the base-
line recency, with the sequential consistency (SC). SC uses total-order broadcast
for all the methods.

Assessment. Figure 8(a) and (c) show the effect of increasing the staleness
bound on the coordination load for the two use-cases. As the staleness bound
is increased, the ratio of the messages sent by RB, TOB and P2P decreases.
Figure 8(a) (bank account), shows 88% decrease in the number of messages sent
to RB when the bound is increased from 20 to 200. Likewise, the TOB and
P2P ratios decrease by 78% and 90%, respectively. In Fig. 8(c) (movie book-
ing), buffering helps to reduce TOB calls by 40% across the experiments. This
decrease, however, unlike the bank account use-case, is steady over different
bounds. This is because it is more difficult to “buffer” in the movie booking
use-case. There are no S-conflicts in the bank account use-case and hence two
out of two update methods can be buffered. However, S-conflicts in the movie
use-case allow only 2 out of 4 update methods to be buffered: increaseSpace
and specialReserve. Also, we observe that the number of RB and P2P messages
decrease by at most 10%.
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Fig. 9. Response time comparison between
Hampa and sequential consistency for each
method type. Top: bank account, Bottom:
movie booking use-case.

Figure 8(b) and (d) shows the effect
of increasing the staleness bound on
the response time for the two use-
cases. In Fig. 8(b) (bank account), the
response time of withdraw and deposit
methods decrease by 71% and 75%,
respectively when the staleness bound
is increased from 20 to 200. The
withdraw method is the least respon-
sive method. The reason is that it has
a self-conflict and requires synchro-
nization if it cannot be buffered. In
Fig. 8(d) (movie booking), we observe
slight increase in response time for
the book method while increasing the
bound from 2 to 20. This is because
the book operation cannot be buffered
due to the S-conflict with other methods and has to be synchronized. On the
other hand, the response time of the specialReserve method decreases by 33%
when the bound is increased from 2 to 20. The reason is that it has a self-
conflict and if it cannot be buffered, it should be synchronized by the TOB and
TOB incurs a high coordination overhead. Therefore, as buffered calls increase
and the use of TOB decreases, the response time is significantly improved. The
response time of the increaseSpace method also benefits from recency awareness;
it decreases by 72%. The methods book and cancelBook have conflicts. In the
blocking protocol that Hampa uses, the method book handles synchronization;
therefore, the method cancelBook just broadcasts the request. As the recency
bound is increased, the network is less crowded and therefore, the response time
of cancelBook is decreased.

Figure 9 compares the response time of recency-aware objects with the base-
line bound with the sequentially consistent objects. The SC protocol synchro-
nizes all the calls and orders them with respect to each other. However, Hampa
minimizes coordination while preserving convergence, integrity and recency. We
observe that the response time speedup is in average as high as 2× and 1.8×
for the bank account and movie use-cases respectively. More experiments are
available in the appendix [5]. In particular, they show that the runtime cost of
SMT solving is only 0.2% to 1% of the average response time.

8 Related Work

Epsilon serializability [46] allows concurrent execution of updates with queries
and bounds the difference of the inconsistent values that are observed in these
executions and the consistent values that would be observed in a serializable exe-
cution. In contrast, Hampa preserves the integrity of the state, bounds staleness,
allows different orders in different replicas, and formally defines the difference
for relational operators.
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In TACT [54–58], operations return tentative values; they might be eventu-
ally reordered to preserve strong consistency. TACT bounds the numeric error
between the tentative and final return values. The user specifies the granularity
of the bounded object “conit” and the strength of the protocol. On the other
hand in Hampa, the states are final and enjoy integrity provided on top of weak
consistency. Further, the staleness bound with respect to the pending future
state is automatically optimized with static and dynamic analyses.

In AQuA [31], given a query and a staleness bound, the master server dynam-
ically selects a recent enough server to service the query. Similarly, TRAPP [43]
finds recent enough servers for different parts of data that are needed for the
query. FRACS [59] allows operations to be buffered at replicas up to a given
threshold. In contrast to Hampa, these projects do not guarantee integrity and
convergence, and do not automatically infer the staleness bounds. PIQL [6]
bounds the number of key-value store operations for each query trading the
precision of the result for performance. However, it does not consider the stale-
ness of replicas.

To reduce synchronization, PBS [9] communicates with only a partial quorum
of replicas to bring a total order to operations, and probabilistically bounds the
staleness of the observed states. In contrast, Hampa performs synchronization
with full quorums but only for conflicting calls, and allows different orders for
replicas. Further, it analyzes and synthesizes replicated objects and supports
relational in addition to single-key operations.

The trade-off between consistency and latency presented as PACELC [1]
aligns with our experiments. As the consistency decreases (staleness bound
increases), the latency decreases (responsiveness increases). Warranties [38] and
Homeostasis [47] allow local updates if they keep the validity of certain assertions.
Although other replicas can rely on the validity of the assertions, the staleness
of their state is not bounded. In contrast, Hampa maintains a staleness bound.
Further, it exploits weak consistency and guarantees convergence.

9 Conclusion

This paper presented a relational object specification language that captures the
integrity and recency requirements of the object. It presented a syntax-directed
analysis that given a specification, infers optimum staleness bounds. In addi-
tion, it presented the coordination avoidance conditions, operational semantics,
a protocol and a synthesis tool for replicated systems that guarantee conver-
gence, integrity and recency. The recency-aware protocol embeds a solver to
decide whether coordination avoidance is safe and increases the responsiveness.
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Abstract. Linearizability is the de facto correctness criterion for con-
current data type implementations. Violation of linearizability is wit-
nessed by an error trace in which the outputs of individual operations do
not match those of a sequential execution of the same operations. Exten-
sive work has been done in discovering linearizability violations, but little
work has been done in trying to provide useful hints to the programmer
when a violation is discovered by a tester tool. In this paper, we pro-
pose an approach that identifies the root causes of linearizability errors
in the form of code blocks whose atomicity is required to restore lin-
earizability. The key insight of this paper is that the problem can be
reduced to a simpler algorithmic problem of identifying minimal root
causes of conflict serializability violation in an error trace combined with
a heuristic for identifying which of these are more likely to be the true
root cause of non-linearizability. We propose theoretical results outlin-
ing this reduction, and an algorithm to solve the simpler problem. We
have implemented our approach and carried out several experiments on
realistic concurrent data types demonstrating its efficiency.

1 Introduction

Efficient multithreaded programs typically rely on optimized implementations
of common abstract data types (adts) like stacks, queues, sets, and maps [31],
whose operations execute in parallel across processor cores to maximize per-
formance [36]. Programming these concurrent objects correctly is tricky. Syn-
chronization between operations must be minimized to reduce response time
and increase throughput [23,36]. Yet this minimal amount of synchronization
must also be adequate to ensure that operations behave as if they were exe-
cuted atomically, one after the other, so that client programs can rely on the
(sequential) adt specification; this de-facto correctness criterion is known as lin-
earizability [24]. These opposing requirements, along with the general challenge
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in reasoning about thread interleavings, make concurrent objects a ripe source
of insidious programming errors [12,15,35].

Program properties like linearizability that are difficult to determine stati-
cally are typically substantiated by dynamic techniques like testing and runtime
verification. While monitoring linearizability of an execution against an arbitrary
adt specification requires exponential time in general [20], there exist several
efficient approaches for dealing with this problem that led to practical tools,
e.g., [3,4,13,14,16,33,39,47]. Although these approaches are effective at identi-
fying non-linearizable executions of a given object, they do not provide any hints
or guidelines about the source of a non-linearizability error once one is found.
If some sort of root-cause for non-linearizability can be identified, for example a
minimal set of commands in the code that explain the error, then the usability
of such testing tools will significantly increase for average programmers. Root-
causing concurrency bugs in general is a difficult problem. It is easy enough to
fix linearizability if one is willing to disregard or sacrifice performance measures,
e.g., by enforcing coarse-grain atomic sections that span a whole method body.
It is difficult to localize the problem to a degree that fixing it would not affect
the otherwise correct behaviours of the adt. Simplifying techniques, such as
equating root causes with some limited set of “bad” patterns, e.g., a non-atomic
section formed of two accesses to the same shared variable [10,28,38] have been
used to provide efficient coarse approximations for root cause identifications.

In this paper, we present an approach for identifying non-linearizability root-
causes in a given execution, which equates root causes with optimal repairs that
rule out the non-linearizable execution and as few linearizable executions as
possible (from a set of linearizable executions given as input). Our approach can
be extended to a set of executions and therefore in the limit identify the root
cause of the non-linearizability of an adt as a whole. Sequential1 executions of a
concurrent object are linearizable, and therefore, linearizability bugs can always
be ruled out by introducing one atomic section per each method in the adt.
Thus, focusing on atomic sections as repairs, there is a guarantee of existence of
a repair in all scenarios. We emphasize the fact that our goal is to interpret such
repairs as root-causes. Implementing these repairs in the context of a concrete
concurrent object using synchronization primitives (eg., locks) is orthogonal and
beyond the scope of this paper. Some solutions are proposed in [28,29,46].

As a first step, we investigate the problem of finding all optimal repairs in
the form of sets of atomic sections that rule out a given (non-linearizable) execu-
tion. A repair is considered optimal when roughly, it allows a maximal number of
interleavings. We identify a connection between this problem and conflict seri-
alizability [37], an atomicity condition originally introduced in the context of
database transactions. In the context of concurrent programs, given a decompo-
sition of the program’s code into code blocks, an execution is conflict serializable

1 An execution is called sequential when methods execute in isolation, one after
another.
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Fig. 1. A non-linearizable concurrent stack.

if it is equivalent2 to an execution in which all code blocks are executed in a
sequential non-interleaved fashion. A repair that rules out a non-linearizable
execution τ can be obtained using a decomposition of the set of events in τ
into a set of blocks that we call intervals, such that τ is not conflict serializable
with respect to this decomposition. Each interval will correspond to an atomic
section in the repair (obtained by mapping events in the execution to statements
in the code). A naive approach to compute all optimal repairs would enumerate
all decompositions into intervals and check conflict-serializabiliy with respect to
each one of them. Such an approach would be inefficient because the number
of possible decompositions is exponential in both the number of events in the
execution and the number of threads. We show that this problem is actually
polynomial time assuming a fixed number of threads. This is quite non-trivial
and requires a careful examination of the cyclic dependencies in non conflict-
serializable executions. Assuming a fixed number of threads is not an obstacle
in practice since recent work shows that most linearizability bugs can be caught
with client programs with two threads only [12,15].

In general, there may exist multiple optimal repairs that rule out a non-
linearizable execution. To identify which repairs are more likely to correspond to
root-causes, we rely on a given set of linearizable executions. We rank the repairs
depending on how many linearizable executions they disable, prioritizing those
that exclude fewer linearizable executions. This is inspired by the hypothesis
that cyclic memory accesses occurring in linearizable executions are harmless.

We evaluated this approach on several concurrent objects, which are varia-
tions of lock-based concurrent sets/maps from the Synchrobench repository [21].
We considered a set of non-linearizable implementations obtained by modifying
the placement of the lock/unlock primitives, and applied a linearizability test-
ing tool called Violat [14] to obtain client programs that admit non-linearizable
executions. We applied our algorithms on the executions obtained by running
these clients using Java Pathfinder [44]. Our results show that our approach is
highly effective in identifying the precise root cause of linearizability violations
since in every case, our tool precisely identifies the root cause of a violation that
is discoverable by the client of the library used to produce the error traces.

2 Two executions are equivalent if roughly, they are the same modulo reordering state-
ments that do not access the same shared variable.
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2 Overview

Figure 1 lists a variation of a concurrent stack introduced by Afek et al. [1].
The values pushed into the stack are stored into an unbounded array items;
a shared variable range keeps the index of the first unused position in items.
The push method stores the input in the array and it increments range using
a call to an atomic fetch and increment (F&I) primitive. This primitive returns
the current value of range while also incrementing it at the same time. The pop
method reads range and then traverses the array backwards starting from the
predecessor of this position, until it finds a position storing a non-null value. It
also nullifies all the array cells encountered during this traversal. If it reaches the
bottom of the array without finding non-null values, it returns that the stack is
empty.

This concurrent stack is not linearizable as witnessed by the execution in
Fig. 2. This is an execution of a client with three threads executing two push
and two pop operations in total. The push in the first thread is interrupted by
operations from the other two threads which makes both pop operations return
the same value b. The execution is not linearizable because the value b was
pushed only once and it cannot be returned by two different pop operations.

The root-cause of this violation is the non-atomicity of the statements at
lines 8 and 9 of pop, reading items[i] and updating it to null. The stack is
linearizable when the two statements are executed atomically (see [1]).

// Thread 2: push(b)

  i = F&I(range) //0

  items[0] = b

// Thread 2: pop()

  t = range - 1 // 1

  x = items[1] // null

  items[1] = null

  x = items[0] // b

  items[0] = null

  return b

// Thread 1: push(a)

  i = F&I(range) // 1

  items[1] = a

// Thread 3: pop()

  t = range -1 // 1

  x = items[1] // null

  items[1] = null

  x = items[0] // b

  items[0] = null

  return b

Fig. 2. A client program of the concurrent stack of Fig. 1 and one of its non-linearizable
executions illustrate as a sequence of read/write events.



354 B. Çirisci et al.

Our goal is to identify such root-causes. We start with a non-linearizable
execution like the one in Fig. 2. The first step is to compute all optimal repairs
in the form of atomic sections that disable the non-linearizable execution. There
are two such optimal repairs for the execution in Fig. 2: (1) an atomic section
containing the statements at lines 8 and 9 in pop (representing the root-cause),
and (2) an atomic section that includes the two statements in the push method.

These repairs disable the execution because each pair of statements is inter-
leaved with conflicting3 memory accesses in that execution. This is illustrated by
the boxes and the edges in Fig. 2 labeled by cf: the boxes include these two pairs
of statements and the edges emphasize the order between conflicting memory
accesses. In Sect. 5, we formalize this by leveraging the notion of conflict serial-
izability. The execution is not conflict-serializable assuming any decomposition
of the code in Fig. 1 into a set of code blocks (transactions) such that one of
them contains one of these two pairs. These repairs are optimal because they
consist of a single atomic section of minimal size (with just two statements). We
formalize a generic notion of optimality in Sect. 4 through the introduction of an
order relation between repairs, defined as component-wise inclusion of atomic
sections and compute the minimal repairs w.r.t. this order.

At the end of the first phase, our approach produces a set of all such optimal
(incomparable) repairs. To isolate one as the best candidate, we use a heuristic
to rank the optimal repairs. The heuristic relies on the hypothesis that repairs
which disable fewer linearizable executions are more likely to represent the best
candidate for the true root-cause of a linearizability bug.

For instance, the client in Fig. 2 admits a linearizable execution where the
first two threads are interleaved exactly as in Fig. 2 and where the pop in the
third thread executes after the first two threads finished. This is linearizable
because the pop in the third thread returns the value a written by the push in
the first thread in items[1] (this is the first non-null array cell starting from the
end). Focusing on the two optimal repairs mentioned above, enforcing only the
atomic section in the push will disable this linearizable execution. The atomic
section in the pop, which permits this execution, is ranked higher to indicate it
as the more likely root-cause. This is the expected result for our example.

This ranking scheme can easily be extended to a set of linearizable executions.
Given a set of linearizable executions, we rank optimal repairs by keeping track
of how many of the linearizable executions each disables.

3 Preliminaries

We formalize executions of a concurrent object as sequences of events repre-
senting calling or returning from a method invocation (called operation), or an
access (read or write) to a memory location. Then, we recall the notion of lin-
earizability [24].

3 As usual, two memory accesses are conflicting when they access the same variable
and at least one of them is a write.
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We fix arbitrary sets M and V of method names and parameter/return values.
We fix an arbitrary set O of operation identifiers, and for given sets M and V

of methods and values, we fix the sets C = {o.call m(v) : m ∈ M, v ∈ V, o ∈ O}
and R = {o.ret v : v ∈ O, o ∈ O} of call actions and return actions. Each call
action o.call m(v) combines a method m ∈ M and value v ∈ V with an operation
identifier o ∈ O. A return action o.ret v combines an operation identifier o ∈ O

with a value v ∈ V. Operation identifiers are used to pair call and return actions.
Also, let L be a set of (shared) memory locations and A = {o.rd(x), o.wr(x) :
o ∈ O, x ∈ L} the set of read and write actions. The operation identifier of an
action a is denoted by op(a).

We fix an arbitrary set T of thread ids. An event is a tuple 〈t, a〉 formed of
a thread id t ∈ T and an action a. A trace τ is a sequence of events satisfying
standard well-formedness properties, e.g., the projection of τ on events of the
same thread is a concatenation of sequences formed of a call action, followed by
read/write actions with the same operation identifier, and a return action. Also,
we assume that every atomic section (block) is interpreted as an uninterrupted
sequence of events that correspond to the instructions in that atomic section.

We define two relations over the events in a trace τ : the program order relation
poτ relates any two events e1 and e2 of the same thread such that e1 occurs
before e2 in τ , and the conflict relation cfτ relates any two events e1 and e2

of different threads that access the same location, at least one of them being a
write, such that e1 occurs before e2 in τ . We omit the subscript τ when the trace
is understood from the context.

Two traces τ1 and τ2 are called equivalent, denoted by τ1 ≡ τ2, when poτ1
=

poτ2
and cfτ1 = cfτ2 . They are called po-equivalent when only poτ1

= poτ2
.

The projection of a trace τ over call and return actions is called a history and
denoted by h(τ). A history is sequential when each call action c is immediately
followed by a return action r with op(c) = op(r). A linearization of a history h1

is a sequential history h2 that is a permutation of h1 that preserves the order
between return and call actions, i.e., a given return action occurs before a given
call action in h1 iff the same holds in h2.

A library L is a set of traces4. A trace τ of a library L is linearizable if
L contains some sequential trace whose history is a linearization of h(τ). A
library is linearizable if all its traces are linearizable5. In the following, since
linearizability is used as the main correctness criterion, a bug is a trace τ that is
not linearizable.

4 Intuitively, this corresponds to running a concrete library under a most general client
that makes an arbitrary number of invocations from an arbitrary number of threads.

5 Linearizability is typically defined with respect to a sequential ADT. Here, we take
the simplifying assumption that the ADT is defined by the set of sequential histories
of the library. This holds for all concurrent libraries that we are aware of.



356 B. Çirisci et al.

4 Linearizability Violations and Their Root Causes

Given a non-linearizable library, our goal is to identify the root cause of non-
linearizability in the library code. Let us start by formally describing the state
space of all such causes and state some properties of the space that will aid
the understanding of our algorithm. First, our focus is on a specific category
of causes, namely those that can be removed through the introduction of new
atomic code blocks to the library code without any other code changes.

Definition 1 (Non-linearizability Root Cause). For a non-linearizable
library L, the root cause is formally identified by R, a set of atomic blocks A
such that L is linearizable with the addition of blocks from A.

Observe that the set of atomic blocks identified in Definition 1 can concep-
tually be viewed as blocks of code whose non-atomicity is the root cause of
non-linearizability and their introduction would repair the library. For the rest
of this paper, we use the two terminologies interchangeably since for this specific
class, the two notions perfectly coincide. The immediate question that comes to
mind is whether Definition 1 is general enough. Observe that since linearizability
is fundamentally an atomicity type property for individual methods in a library,
if every single method of the library is declared atomic at the code level, then
the library is trivially linearizable. The only valid executions of the library are
the linear (sequential) executions in this case. Therefore,

Remark 1. Every non-linearizable library can be made linearizable by adding
atomic code blocks in R according to Definition 1.

Since there always is a trivial repair, one is interested in finding a good one.
The quality of a repair is contingent on the amount of parallelism that the
addition of the corresponding atomic blocks removes from the executions of
an arbitrary client of the library. Generally, it is understood that the fewer
the number of introduced atomic blocks and the shorter their length, the more
permissive they will be in terms of the parallel executions of a client of this
library. This motivates a simple formal subsumption relationship between repairs
of a bug. We say an atomic code block b subsumes another atomic code block
b′, denoted as b �c b′, if and only if b′ is contained within b.

Definition 2 (Repair Subsumption). A repair R subsumes another repair
R′, we write R �c R′ if and only if for all atomic blocks b′ ∈ R′, there exists an
atomic block b ∈ R such that b �c b′.

It is easy to see that �c is a partial order, and combined with the finite set of
all possible program repairs gives rise to the concept of a set of optimal repairs,
namely those that do not subsume any other repair. It can be lifted to sets of
repairs in the natural way: R �c R

′ iff ∀R′ ∈ R
′,∃R ∈ R : R �c R′.

Remark 2. The set of traces of a library L with a repair R is a superset of the
set of traces of L with the repair R′ if R′ �c R.
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This means that an optimal repair identification according to Definition 2
should lead to an optimal amount of parallelism in the library repaired by forcing
the corresponding code blocks to execute atomically. The goal of our algorithm
is to identify such a set of optimal repairs.

Now, let us turn our attention to an algorithmic setup to solve this problem.
The non-linearizability of a library L is witnessed by a non-empty set of non-
linearizable traces T . These are the concrete erroneous traces of (a client of) the
library, for which we intend to identify the repair.

Note that if τ is a non-linearizable trace, then all the traces τ ′ that are
equivalent to τ are also non-linearizable. Indeed, if τ ′ is equivalent to τ , then the
values that are read in τ ′ are the same as in τ6, which implies that the return
values in τ ′ are the same as in τ , and therefore, τ ′ is non-linearizable when τ is.

Consider a conceptual oracle, OL(T ), that takes a set of non-linearizable
traces of a library L and produces the set of all optimal repairs R such that
each R ∈ R excludes all the traces that are equivalent to those in T . Then the
following iterative algorithm produces R for a library L:

1. Let T = ∅ and R = ∅.
2. Check if L with the addition of atomic blocks from R is linearizable:

– Yes? Return R.
– NO? Produce a set of non-linearizability witnesses T ′ and let T = T ∪T ′.

3. Call OL(T ) and update the set of repairs R with the result.
4. Go to back to step 2.

Proposition 1. The above algorithm produces an optimal set of repairs R that
make its input library linearizable.

It is easy to see that if oracle OL(T ) can be relied on to produce per-
fect results, then the algorithm satisfies a progress property in the sense that
Rk+1 �c Rk, where Rk is the value of R in the k-th iteration of the loop. Fol-
lowing Remark 1, this chain of increasingly stronger repairs is bounded by the
specific repair in which every method of the library L has to be declared atomic.
Therefore, the algorithm converges. The assumption of optimality for OL(T )
implies that on the iteration that the algorithm terminates, it will produce the
optimal R.

Note that in oracle OL, the focus shifts from identifying the source of error
for the entire library to identifying the source of error in a specific set of non-
linearizability witnesses. First, we propose a solution for implementing OL for
a singleton set, i.e. precisely one error trace, and later argue why the solution
easily generalizes to finitely many error traces.

4.1 Repair Oracle Approximation

Given a trace τ as a violation of linearizability, we wish to implement OL that
takes a single trace τ and proposes an optimal set of repairs for it.

6 We assume that program instructions are deterministic, which is usually the case.
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Observe that if every trace of L is conflict serializable [37] (i.e., equivalent to
a sequential trace), assuming method boundaries as transaction boundaries, then
it is necessarily linearizable. Therefore, knowing that it is not linearizable, we can
conclude that there exists some trace of L which is not serializable. Following the
same line of reasoning, we can conclude that the error trace τ itself is not conflict
serializable, for some choice of transaction boundaries. This observation is the
basis of our solution for approximating repairs for non-linearizability through an
oracle that is actively seeking to repair for non-serializability violations.

Definition 3 (Trace Eliminator). For an error trace (a bug) τ , a set of
atomic blocks R is called a trace eliminator if and only if every trace that is
equivalent to τ is not a trace of the new library with the addition of blocks from
R.

Any trace eliminator that removes τ as a valid trace of a client of the library L
(and all the traces equivalent to τ), by amending the library for the conflict serial-
izability violation, (indirectly) eliminates it as a witness to non-linearizability as
well. Note that the universes of trace eliminators and non-linearizability repairs
are the same set of objects, and therefore the subsumption relation �c is well
defined for trace eliminators, and the concept of optimality is similarly defined.
Moreover, Definition 3 is agnostic to linearizability and can be interchangeably
used for serializability repairs.

Theorem 1. R is a trace eliminator for τ if and only if τ is not conflict seri-
alizable with transaction boundaries that subsume R (statements that are not
included in the atomic sections from R are assumed to form singleton transac-
tions).

Proof. (Sketch) For the if direction, assume by contradiction that R is not a
trace eliminator for τ . This implies that there exists a trace τ ′ ≡ τ where the
sequences of events corresponding to the atomic sections in R occur uninter-
rupted (not interleaved with other events). This is a direct contradiction to τ
not being conflict serializable when transaction boundaries are defined precisely
by the atomic sections in R. For the only if direction, assume by contradiction
that τ is conflict serializable. By definition, there is an equivalent trace τ ′ where
the sequences of events corresponding to the atomic sections in R occur unin-
terrupted. Therefore, the library L′ obtained by adding the atomic code blocks
in R admits τ ′, which contradicts the fact that R is a trace eliminator for τ . ��

The relationship between the set of trace eliminators for τ and OL(τ) can be
made precise. Since every trace eliminator is a linearizability repair by definition,
but not necessarily an optimal one, we have:

Proposition 2. Let OL(τ) represent the optimal set of repairs that eliminate τ
as a witness to non-linearizability and R be the set of optimal trace eliminators
for τ . We have R ⊇ OL(τ).
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This is precisely why the set of trace eliminators safely overapproximates
the set of linearizability repairs for a single trace. Note that Theorem1 links
any trace eliminator (a set of code blocks) to a collection of dynamic (runtime)
transactions. It is fairly straightforward to see that given the latter as an input,
the former can be inferred in a way that the dynamic transactions generated by
the static code blocks are as close as possible to the input transaction boundaries,
assuming no structural changes occur in the code. In Sect. 5, we discuss how an
optimal set of dynamic transaction boundaries can be computed, which give rise
to a set of optimal trace eliminators.

4.2 Generalization to Multiple Traces

If we have an implementation for an oracle OL(τ) that takes a single trace and
produces the set of optimal trace eliminators for it, then the following algorithm
implements an oracle for OL({τ1, . . . , τn}) for any finite number of traces:

– Let R = ∅.
– For each τi (1 ≤ i ≤ n): let Ri = OL(τi).
– Let T = R1 × · · · × Rn.
– For each T ∈ T: let R = R ∪ flatten(T ).
– For each R ∈ R: if ∃R′ ∈ R s.t. R �c R′ then R = R − {R}.

where flatten(T ) basically takes the union of repairs suggested by individual
components of T while merging any overlapping atomic blocks. Note that the ith
component of T suggests an optimal trace eliminator for τi. If we want a tight
combination of all such trace eliminators, we need the minimal set of atomic
blocks that covers all atomic blocks suggested by each eliminator. Formally:

flatten(〈R1, . . . ,Rn〉) = smallest R wrt �c st ∀1 ≤ i ≤ n : R �c Ri

we can then conclude:

Theorem 2. If OL(τ) produces the optimal set of trace eliminators for trace
τ , then the above algorithm correctly implements OL({τ1, . . . , τn}), that is, it
produces the optimal set of repairs for the set of error traces {τ1, . . . , τn}.

5 Conflict-Serializability Repairs

In this section, we investigate the theoretical properties of conflict serializability
repairs to provide a set up for an algorithm that implements the oracle OL for a
single input trace. The goal of this algorithm is to take a trace τ as an input and
return the optimal trace eliminator for τ , under the assumption that τ witnesses
the violation of linearizability.
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5.1 Repairs and Conflict Cycles

We start by introducing a few formal definitions and some theoretical connections
that will give rise to an algorithm for identifying an optimal set of atomic blocks
that can eliminate a trace τ as a witness to violation of conflict serialiazability.

Definition 4 (Decompositions and Intervals). A decomposition of a trace
τ is an equivalence relation D over its set of events such that:

– D relates only events of the same operation, i.e. if (e1, e2) ∈ D, then op(e1) =
op(e2), and

– the equivalence classes of D are continuous sequences of events of the
same operation, i.e., if (e1, e3) ∈ D and {(e1, e2), (e2, e3)} ⊆ poτ , then
{(e1, e2), (e2, e3)} ⊆ D

The equivalence classes of a decomposition D, denoted by Iτ,D are called inter-
vals.

Observe that the relation �c is well defined partial order over the universal
all possible intervals (of all possible decompositions) of a trace τ .

Definition 5 (Interval Graphs). Given a trace τ , and decomposition D, an
interval graph is defined as Gτ,D = (V,E) where the set of vertexes V is the set
of intervals of D and the set of edges E is defined as follows

E = {(i, i′)| i �= i′ ∧ ∃e ∈ i, e′ ∈ i′ : (e, e′) ∈ poτ ∪ cfτ}

Since, by definition, each edge in the interval graph is induced by an edge
from either relation poτ or cfτ , but note both, we lift these relations over the
sets of intervals in the natural way, that is:

(i, i′) ∈ cfi
τ ⇐⇒ ∃e ∈ i, e′ ∈ i′ : e �= e′ ∧ (e, e′) ∈ cfτ

(i, i′) ∈ poi
τ ⇐⇒ ∃e ∈ i, e′ ∈ i′ : e �= e′ ∧ (e, e′) ∈ poτ

Given an interval graph edge (i, i′) ∈ cfi
τ ∪ poi

τ , let

tre(i, i′) = {(e, e′) | e ∈ i ∧ e′ ∈ i′ ∧ (e, e′) ∈ cfτ ∪ poτ}
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Fig. 3. An interval graph.

Figure 3 illustrates an interval graph.
Node oi : ej denotes an event ej

of operation oi. Events of the same
thread are aligned vertically. We draw
only cfτ edges since the poτ edges are
implied by the vertical alignment of events.
Non-singleton intervals of D are i1 =
{e1, e2, e3, e4}, i2 = {e5, e6} and i3 =
{e7, e8}. Singleton intervals are identi-
fied by the corresponding event identi-
fiers. Edges among interval nodes cor-
respond to cfτ or poτ . For instance,
(i1, i2) ∈ cfi

τ since (e1, e6) ∈ cfτ , e1 ∈
i1 and e6 ∈ i2. As an example for
the function tre, we have tre(i2, i3) =
{(e5, e7), (e5, e8), (e6, e7), (e6, e8)} that con-
sists of poτ edges and tre(i3, i1) =
{(e8, e3), (e8, e4)} that consists of cfτ edges.

For the degenerate decomposition in
which each event is an interval of size one by itself, the interval graph collapses
into a trace graph, denoted by Gτ . Note that Gτ is acyclic since the relations
poτ and cfτ are consistent with the order between the events in τ .

Intervals are closely related to the static notion of transactions and the
induced transaction boundaries on traces. For example, in the decomposition
in which the intervals coincide with the boundaries of transactions (e.g. method
boundaries), it is straightforward to see that the interval graph becomes precisely
the conflict graph [19] widely known in the conflict serializability literature. It is
a known fact that a trace is conflict serializable if and only if its conflict graph
is acyclic [37]. Since τ is not conflict serializable with respect to the boundaries
of methods from L, we know the interval graph with those boundaries is cyclic.

With intervals set as single events, Gτ is acyclic, and with the intervals
set at method boundaries, it is cyclic. The high level observation is that there
exist a decomposition D in the middle of this spectrum, so to speak, such that
Gτ,D is cyclic, but Gτ,D′ for any D �c D′ is acyclic. In the following we will
formally argue why such a decomposition D is at the centre of identification of
serializability repairs.

A cycle in a graph is simple if only one vertex is repeated more than once.

Definition 6 (Critical Segment Sets). Let D be a decomposition such that
the interval graph Gτ,D is cyclic and α = i0 . . . in−1i0 be a simple cycle. Define

edges(α) = tre(i0, i1) × tre(i1, i2) × · · · × tre(in−1, i0)

segs(�e) = {[e�
k , e⊗

k ] | 0 ≤ k ≤ n − 1 ∧ (e�
k , e⊗

(k+1) mod n) = �e.k}
critSegs(�e) = {[e�

k , e⊗
k ] ∈ segs(�e) | (e�

k , e⊗
k ) ∈ poτ}

CritSegs(α) = {s | ∃�e ∈ edges(α) : s = critSegs(�e)}
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where the set CritSegs(α) is the set of all critical segments sets of cycle α.

Note that each cycle may induce several different segment sets, determined
by |edges(α)|. More importantly, each segment set includes at least one critical
segment.

Lemma 1. For any �e ∈ edges(α), we have critSegs(�e) �= ∅.

Example 1. In Fig. 3, α1 = i1, i2, i3, i1 is a simple cycle. Included in edges(α) are
the following three cycles and their corresponding segments:

α1
1 = 〈(e1, e6), (e6, e7)(e8, e3)〉 segs(α1

1) = {[e1, e3], [e6, e6], [e8, e7]}
α2

1 = 〈(e1, e6), (e6, e7), (e8, e4)〉 segs(α2
1) = {[e1, e4], [e6, e6], [e8, e7]}

α3
1 = 〈(e1, e6), (e5, e8), (e8, e3)〉 segs(α3

1) = {[e1, e3], [e5, e6], [e8, e8].}

The critical segments for these are critSegs(α1
1) = {[e1, e3]}, critSegs(α2

1) =
{[e1, e4]} and critSegs(α3

1 ) = {[e1, e3], [e5, e6]}.

There is a direct connection between the notion of critical segment sets and
conflict serializability repairs that the following lemma captures. A segment is
called uninterrupted in a trace τ when all its events occur continuously one after
another in τ without an interruption from events of another interval.

Lemma 2. Let α be a cycle in some interval graph Gτ,D of trace τ which is
not conflict serializable wrt to the decomposition D and critSegα ∈ CritSegs(α).
There does not exist trace τ ′ which is equivalent to τ in which all segments from
critSegα are uninterrupted in τ ′.

The immediate corollary of Lemma 2 is that if one ensures the atomicity of
the segments of events in CritSegs(α) by adding atomic blocks at the code level,
then τ can no longer be an execution of the library. In other words, a set of such
atomic code blocks is precisely a trace eliminator (Definition 3) for τ .

5.2 A Simple Algorithm

Lemma 2 and its corollary suggest a simple enumerative algorithm to discover
the set of all trace eliminators for a buggy trace τ .

– Let D be the set of all decompositions of τ and R = ∅.
– For each D ∈ D:

• Let C be the set of all simple cycles in Gτ,D.
• For each α ∈ C:

∗ Let S = CritSegs(α).
∗ R = R ∪ S

– For each R ∈ R:
• If ∃R′ ∈ R : R �c R′ then R = R − {R}.
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Theorem 3. The above algorithm produces the optimal set of trace eliminators
for a buggy trace τ .

This theorem is non-trivial, because the set of cycles considered are limited
to simple cycles and an argument is required for why no optimal solution is
missed as the result of this limitation. An important point is that any optimal
trace eliminator R defines a decomposition D where the non-singleton intervals
are precisely those defined by R such that Gτ,D contains a simple cycle α and
the set of code blocks in R is a member of CritSegs(α). Note that the algorithm
may end up producing non-ideal solutions in the first loop, and the proof of
Theorem 3 relies on the argument that all such solutions will be filtered out by
a proper solution that guarantees to exist and subsume them.

Example 2. The first loop of the above algorithm includes in R the trace elimi-
nators induced by the critical segments mentioned in Example 1. After the last
loop, however, only critSegs(α1

1) = {[e1, e3]} will remain in R since the other two
are subsumed by it.

The algorithm is obviously very inefficient. There are two levels of enumer-
ation: all decompositions and all cycles of each decomposition. Assuming that
there are O(|poτ |) events in an operation, then there are O(2|poτ |) different
decompositions for it. Assuming that there are O(|T|) operations, we conclude
that |D| = O(2|poτ ||T|). There could be O(2|Eτ |) possible cycles for each decompo-
sition where Eτ = poτ ∪ cfτ . Therefore, the first loop may generate O(22|Eτ ||T|)
many repairs. The last loop iterates over R and each repair takes O(R) time.
The algorithm operates in time O(24|Eτ ||T|). It is exponential both in the size of
threads set and the graph. There are many redundancies in the output of the
first loop, however. These are exploited to propose an optimized version of this
algorithm.

5.3 A Sound Optimization

Consider an arbitrary cycle α in the interval graph Gτ,D. If we want to trace the
cycle α over the trace graph Gτ , we would potentially need additional edges that
would let us go against the program order inside some intervals that appear on
α. Let us call the graph extended with such edges GD

τ . Formally, GD
τ includes

all the nodes and edges from a trace graph and incorporates additional edges
between the events of each interval of D to turn it into a clique7 which is by
definition a strongly connected and therefore accommodates the connectivity of
any event of an interval to another event in it.

The converse also holds, that is, every simple cycle with at least one conflict
edge in the GD

τ with the aforementioned additional edges corresponds to a cycle
in the interval graph Gτ,D. Note that the inclusion of at least one conflict edge
is essential, since every interval graph cycle always includes one such edge by
default; since the program order relation is acyclic. Formally:
7 A clique is a complete subgraph of a given graph.
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Lemma 3. For each simple cycle α of Gτ,D, there exists a simple cycle α′ of
GD

τ that contains at most two events from each interval in α.

The above lemma can immediately be generalized. Consider the graph GM
τ

where M indicates the decomposition whose intervals coinciding with the library
method boundaries. Since for any arbitrary decomposition D, we have M �c

D, we can conclude that GM
τ includes all possible additional edges that one

may want to consider as part of a cycle in an arbitrary GD
τ for an arbitrary

decomposition D. Hence, the set of edges of GM
τ is a superset of the set of edges

of all graphs GD
τ for all D. This immediately implies that the set of cycles of

GM
τ is the superset of the set of cycles of all such graphs. This fact, combined

with Lemma 3 leads us to the new simplified algorithm below in place of the one
in Sect. 5.2:

– Let R = ∅.
– Let C

′ be the set of all simple cycles in GM
τ .

– For each α ∈ C:
• Let S = critSegs(α).
• R = R ∪ S

– For each R ∈ R:
• If ∃R′ ∈ R : R �c R′ then R = R − {R}.

Note that we are slightly bending the definition of critSegs in the above
algorithm, compared to the one given in Definition 6 since the input cycle there
is formally a tuple, and here itis simply a list. The function is semantically the
same, however and therefore we do not redefine it.

Observe that ever cycle of GM
τ corresponds to a cycle in some graph GD

τ for
some decomposition D. This observation together with Lemma 3 and Theorem 3
implies the correctness of the above algorithm. Every cycle of every GD

τ is covered
by the algorithm, and conversely every cycle considered is valid.

We can simplify the above algorithm one step further by further limiting the
set of cycles C

′ that need to be enumerated. In graph theory, a chord of a simple
cycle is an edge connecting two vertices in the cycle which is not part the cycle.

Theorem 4. The above algorithm produces the set of optimal trace eliminators
for τ if C

′ is limited to the set of simple chordless cycles of GM
τ .

Theorem 4 makes a non-trivial and algorithmically subtle observation. Enu-
merating the set of all simple chordless cycles of GD

τ is a much simpler algorithmic
problem to solve compared to the initial one from Sect. 5.2. Lemma 3 supports
part of this argument since it ensures that all repairs explored in the algorithm
from Sect. 5.2 are also explored by the above algorithm. For Theorem4 to hold,
one needs to additionally argue that the cycles of GM

τ do not produce any junk,
that is, each cycle’s critical segments correspond to a valid trace eliminator for
τ . Also, as for simple cycles, CritSegs(α) for a cycle α subsumes CritSegs(α′) for
any chordless cycle α′ included in α. In Sect. 6.1, we present an algorithm that
solves the problem of enumerating all cycles in C

′ effectively.
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6 Repair List Generation

In this section, we first start by giving a detailed algorithm that produces the
set of all optimal trace eliminators. These repairs suggest incomparable optimal
ways of removing an erroneous trace from the library. We then present a novel
heuristic that orders this set into a list such that the the ones ranked higher in
the list are more likely to correspond to something that a human programmer
would identify (amongst the entire set) as the ideal repair.

6.1 Optimal Repairs Enumeration Algorithm

In this section, we present an algorithm for enumerating all simple chordless
cycles in GM

τ with at least one cfτ edge, prove its correctness, and formally
analyze its time complexity. The algorithm is the following:

– Let C = ∅.
– For each sequence α = c1, c2, . . . , cn where ci ∈ cfτ and 0 < n ≤ |T|:

• Let ci = (e⊗
i , e�

i ) for all i ∈ [1, n].
• If (e�

i , e⊗
(i mod n)+1) ∈ EM

τ \cfτ and e�
i �= e�

j s.t. i, j ∈ [1, n] s.t. i �= j:
∗ C = C ∪ {α}

It enumerates all non-empty cfτ sequences of length less than or equal to |T|.
If the sequence forms a valid simple cycle and visits each thread at most once
(i.e. there are no two distinct conflict edges such that its end points are on the
same thread), then it is added to the result set C. Correctness of the algorithm
relies on the following observation:

Lemma 4. α is a chordless cycle of GD
τ with at least one cfτ edge if and only

if α visits each thread at most once and it visits at least two threads.

Fig. 4. GM
τ with |cfτ ||T| chordless

cycles. (Color figure online)

As a corollary of Lemma 4, we know
that a chordless cycle could have at most
|T| conflict edges. Otherwise, by the pigeon
hole principle, at least two conflict edges
end up in the same thread. Therefore,
the algorithm can soundly enumerate only
sequences of cfτ edges of length less than
or equal to |T|. Moreover, the choice of
cfτ determines the rest of the edges in
the cycle. Therefore, there are at most
O(|cfτ ||T|) chordless cycles with at least one
cfτ edge of a graph GD

τ .
Note that, in general, the number of

simple cycles can be exponential in the
number of edges. This means that enumer-
ating only chordless cycles reduces the size
asymptotically. In other words, our pro-
posed sound optimization of Sect. 5.3 is at
the roof of the polynomial complexity results presented here.
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Interestingly, this upper bound is not loose. There is a class of traces
parametrized by |T| such that the number of chordless cycles with at least one
cfτ edge is |cfτ ||T|. Let T = {t1, . . . , tn} be the set of threads and GM

τ has k par-
allel conflict edges between ti and t(i mod n)+1 for all i ∈ [1, n]. Moreover, conflict
edges that start from ti is above the conflict edges that end at ti in terms of
program order. This graph is depicted in Fig. 4. To form a cycle, one needs to
pick one of k edges between ti and t(i mod n)+1 for all i ∈ [1, n]. So, there are kn

cycles. Since k = |cfτ |
|T| , there are

(
|cfτ |
|T|

)|T|
chordless cycles with a conflict edge.

If we consider |T| as a constant, there are Ω(|cfτ ||T|) chordless cycles with at
least one cfτ edge. We are finally ready to state the main complexity result:

Theorem 5. Above enumeration algorithm generates all chordless cycles with
at least one cfτ edge of GD

τ in O((|poτ | + |cfτ |)|cfτ ||T|) time.

Proof. The loop enumerates all the cfτ sequences of length at most |T| in
O(|cfτ ||T|) time. For each such sequence, it takes O(|poτ | + |cfτ |) time to check
whether this sequence forms a cycle (if each consecutive conflict edges are con-
nected through a EM

τ \cfτ edge) and whether it visits a thread more than once.
As a consequence, the above bound holds. ��

Lastly, there may be as many optimal repairs as there are chordless cycles in
GM

τ . Consider the class of traces depicted in Fig. 4. Each chordless cycle with at
least one cfτ edge has exactly n critical segments (illustrated in red). Consider
two distinct chordless cycles α1 and α2. There exists a thread ti such that there is
a different edge between ti and t(i mod n)+1 in α1 compared to α2. Without loss of
generality, assume that the corresponding edge of α1 has source and destination
events that appear before the source and destination events of the corresponding
edge of α2 in program order (poτ ). Then, α1 has a larger critical segment on
ti and smaller critical segment in t(i mod n)+1 compared to α2. Therefore, the
neither critical segment subsumes the other. Therefore, each chordless cycle with
at least one cfτ edge produces an optimal repair.

This implies that the bound presented in Theorem5, namely O((|poτ | +
|cfτ |)|cfτ ||T|), applies any other algorithm that outputs all optimal repairs.

6.2 Ranking Optimal Repairs

We argued through the example in Sect. 2 and a formal statement in Sect. 4.1
that not every eliminator of a buggy trace τ is an optimal root cause for non-
linearizability. All that we know is that they are all optimal trace eliminators.
As a heuristic to identify optimal linearizability repairs out of a set of trace
eliminators, we rely on another input in the form of a set Γ of linearizable exe-
cutions, and rank trace eliminators depending on how many linearizable traces
from Γ they disable, giving preference to trace eliminators that disable fewer
ones. This heuristic relies on an experimental hypothesis that there are harmless
cyclic dependencies that occur in linearizable executions.

Given a buggy trace τ , and a set Γ of linearizable traces, we use the following
algorithm to rank trace eliminators for τ :
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– Let R be the set of optimal trace eliminators for τ
– For each R ∈ R:

• Let f(R) = |{τ ′ ∈ Γ : R is a trace eliminator for τ ′}|
– Sort R in ascending order depending on f(R) with R ∈ R.

Since the above algorithm is heuristic in nature, there are no theoretical
guarantees for the optimality of its results. For instance, its effectiveness depends
on the set of linearizable traces Γ given as input. We discuss the empirical aspects
of the underlying hypothesis in more detail in Sect. 7.

7 Experimental Evaluation

We demonstrate the efficacy of our approach for computing linearizability root-
causes on several variations of lock-based concurrent sets/maps from the Syn-
chrobench repository [21]. We consider three libraries from this repository: two
linked-list set implementations, with coarse-grain and fine-grain locking, respec-
tively, and a map implementation based on an AVL tree overlapping with two
singly-linked lists, and fine-grain locking. We define three non-linearizable vari-
ations for each library by shrinking one atomic section only in the add method,
only in the remove method, or an atomic section in each of these two methods.
For each non-linearizable variation, we use Violat [14] to randomly sample three
library clients that admit non-linearizable traces8. We use Java Pathfinder [44] to
extract all traces of each client, up to partial-order reduction, partitioning them
into linearizable and non-linearizable traces. Traces are extracted as sequences
of call/return events and read/write accesses to explicit memory addresses, asso-
ciated to line numbers in the source code of each of the API methods. The latter
is important for being able to map critical segments (which refer to events in a
trace) to atomic code blocks in the source code.

In Table 1, we list some quantitative data about our benchmarks, the clients,
and the non-linearizable variations identified by the line numbers of the mod-
ified atomic sections (the original libraries can be found in the Synchrobench
repository). For instance, the first variation of RWLockCoarseGrainedListIntSet
is obtained by shrinking the atomic section in the add method between lines
[26, 32/35] to [32, 32/35] (there are two line numbers for the end of the atomic
section because it ends with an if conditional).

For each non-linearizable trace τ of a client C, we compute the set of optimal
trace eliminators for τ using the algorithm in Sect. 5.3 with the cycle enumeration
described in Sect. 6.1. We then compute the ranking of these trace eliminators
using as input the set of linearizable traces of C (the restriction to lineariz-
able traces of the same client is only for convenience). Note that multiple trace
eliminators can be ranked first since they disable exactly the same number of
linearizable traces. Also, note that an optimal root-cause can disable a number

8 These linearizability violations are quite rare. The frequencies reported by Violat in
the context of a fixed client (when using standard testing) are in the order of 1/1000.
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Table 1. Benchmark data. Column Lib. shows the transformation on the atomic
section(s) of the original library (we write atomic sections as pairs of line numbers in
square brackets), Client shows the clients (we abbreviate the names of add, remove,
and contains to a, r, and c, resp.), Non-lin. Out. shows an outcome (set of return
values) witnessing for non-linearizability (true, false, and null are abbreviated to T, F,
and N, resp.), # bugs and #valid give the number of non-linearizable and linearizable
traces extracted using Java Pathfinder, respectively, # ev. and # conf. give the
average number of events and conflict edges in these traces, Total(s) and Tr. Elim(s)
give the clock time in seconds for applying our approach, the latter excluding the Java
Pathfinder time for extracting traces.

of linearizable traces. This is true even for the ground truth repair (i.e. a repair
that a human would identify trough manual inspection).

The results are presented in Table 2 and are self-explanatory. In the majority
of cases, the first elements in this ranking are atomic sections which are pre-
cisely or very close to the expected results, i.e., atomic sections that belong to
the original (error-free) version of the corresponding library. In some cases, the
output of our approach is close, but not precisely the expected one. This is only
due to the particular choice of the client used to generate the traces. In general,
the quality of the produced repairs (compared to the ground truth) depends the
types of behaviours of the library that the client exercises. However, if our tool
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Table 2. Experimental data. Column #res gives the number of different results
(sequences of trace eliminators) returned by our algorithm when applied on each of
the non-linearizable traces of a client, and Tr. Elim. gives the first or the first two
trace eliminators in the ranking obtained with our approach. For each trace eliminator
we give the number of linearizable traces it disables (after →).

ranks repair R first, in the context of a client C, then after repairing the library
according to R the client C produces no linearizability violations.

The methods in the libraries OptimisticListSortedSetWaitFreeContains and
LogicalOrderingAVL use optimistic concurrency, i.e., unbounded loops that
restart when certain interferences are detected. This could potentially guide our
heuristic in the wrong direction of giving the ground truth a lower rank. Indeed,
a ground truth that concerns statements in the loop body could disable a large
number of executions which only differ in the number of loop iterations. This,
however, does not happen for small-size clients (like the ones used in our evalu-
ation) since the number of invocations are bounded, which bounds the number
of interferences and therefore the number of restarts.

Optimistic concurrency has the potential to mess with the heuristic, but this
does not happen in small bounded clients as witnessed by our blah benchmark
that does just fine.

To conclude, our empirical study demonstrates that given a good client (one
that exercises the problems in the library properly), our approach is very effective
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in identifying the method at fault and the part of its code that is the root cause
of the linearizability violation.

8 Related Work

Linearizability Violations. There is a large body of work on automatic detec-
tion of specific bugs such as data races, atomicity violations, e.g. [18,40,41,45].
The focus of this paper is on linearizability errors. Wing and Gong [47] pro-
posed an exponential-time monitoring algorithm for linearizability, which was
later optimized by Lowe [33] and by Horn and Kroening [25]; neither avoided
exponential-time asymptotic complexity. Burckhardt et al. [4] and Burnim et
al. [5] implement exponential-time monitoring algorithms in their tools for test-
ing of concurrent objects in .net and Java. Emmi and Enea [14,15] introduce the
tool Violat (used in our experiments) for checking linearizability of Java objects.

Concurrency Errors. There have been various techniques for fault localiza-
tion, error explanation, counterexample minimization and bug summarization
for sequential programs. We restrict our attention to relevant works for concur-
rent programs. More relevant to our work are those that try to extract simple
explanations (i.e. root causes) from concurrent error traces. In [30], the authors
focus on shortening counterexamples in message-passing programs to a set of
“crucial events” that are both necessary and sufficient to reach the bug. In [27],
the authors introduce a heuristic to simplify concurrent error traces by reducing
the number of context-switches. Tools that attempt to minimize the number of
context switches, such as SimTrace [26] and Tinertia [27], are orthogonal to the
approach presented in this paper. To gain efficiency and robustness, some works
rely on simple patterns of bugs for detection and a simple family of matching
fixes to remove them, e.g., [10,28,29,38]. Our work is set apart from these works
by addressing linearizability (in contrast to simple atomicity violation patterns)
as the correctness property of choice, and by being more systematic in the sense
that it enumerates all trace eliminators for a given linearizability violation. We
also present crisp results for the theoretical guarantees behind our approach and
an analysis of the time complexity. Weeratunge et al. [46] use a set of good
executions to derive an atomicity “specification”, i.e., pairs of accesses that are
atomic, and then enforce it using locks.

There is large body of work on synchronization synthesis [2,6–8,11,22,34,42,
43]. The approaches in [11,42] are based on inferring synchronization by con-
structing and exploring the entire product graph or tableaux corresponding to
a concurrent program. A different group of approaches infer synchronization
incrementally from traces [43] or generalizations of bad traces [7,8]. These tech-
niques [7,8,43] also infer atomic sections but they do not focus on linearizability
as the underlying correctness property but rather on assertion local violations.
Several works investigate the problem of deriving an optimal lock placement
given as input a program annotated with atomic sections, e.g., [9,17,48]. Afix [28]
and ConcurrencySwapper [7] automatically fix concurrency-related errors. The
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latter uses error invariants to generalize a linear error trace to a partially ordered
trace, which is then used to synthesize a fix.

Linearizability Repairs. Flint [32] is the only approach we know of that
focuses on repairing non-linearizable libraries, but it has a very specific focus,
namely fixing linearizability of composed map operations. It uses a different
approach based on enumeration-based synthesis and it does not rely on concrete
linearizability bugs.
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Abstract. We describe a technique for systematic testing of multi-
threaded programs. We combine Quasi-Optimal Partial-Order Reduc-
tion, a state-of-the-art technique that tackles path explosion due to
interleaving non-determinism, with symbolic execution to handle data
non-determinism. Our technique iteratively and exhaustively finds all
executions of the program. It represents program executions using partial
orders and finds the next execution using an underlying unfolding seman-
tics. We avoid the exploration of redundant program traces using cutoff
events. We implemented our technique as an extension of KLEE and eval-
uated it on a set of large multi-threaded C programs. Our experiments
found several previously undiscovered bugs and undefined behaviors in
memcached and GNU sort, showing that the new method is capable of
finding bugs in industrial-size benchmarks.

Keywords: Software testing · Symbolic Execution · Partial-Order
Reduction

1 Introduction

Advances in formal testing and the increased availability of affordable concur-
rency have spawned two opposing trends: While it has become possible to ana-
lyze increasingly complex sequential programs in new and powerful ways, many
projects are now embracing parallel processing to fully exploit modern hard-
ware, thus raising the bar for practically useful formal testing. In order to make
formal testing accessible to software developers working on parallel programs,
two main problems need to be solved. Firstly, a significant portion of the API
in concurrency libraries such as libpthread must be supported. Secondly, the
analysis must be accessible to non-experts in formal verification. Currently, this
niche is mostly occupied by manual and fuzz testing, oftentimes combined with
dynamic concurrency checkers such as ThreadSanitizer [45] or Helgrind [2].
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Data non-determinism in sequential and concurrent programs, and scheduling
non-determinism are two major sources of path explosion in program analysis.
Symbolic execution [10,11,22,29,38] is a technique to reason about input data in
sequential programs. It is capable of dealing with real-world programs. Partial-
Order Reductions (PORs) [5,19,20,41] are a large family of techniques to explore
a reduced number of thread interleavings without missing any relevant behavior.

In this paper we propose a technique that combines symbolic execution and
a Quasi-Optimal POR [35]. In essence, our approach (1) runs the program using
a symbolic executor, (2) builds a partial order representing the occurrence of
POSIX threading synchronization primitives (library functions pthread *) seen
during that execution, (3) adds the partial order to an underlying tree-like,
unfolding [32,41] data structure, (4) computes the first events of the next partial
orders to explore, and (5) selects a new partial order to explore and starts again.
We use cutoff events [32] to prune the exploration of different traces that reach
the same state, thus natively dealing with non-terminating executions.

We implemented our technique as an extension of KLEE. During the evalua-
tion of this prototype we found nine bugs (that we attribute to four root causes)
in the production version of memcached. All of these bugs have since been con-
firmed by the memcached maintainers and are fixed as of version 1.5.21. Our tool
handles a significant portion of the POSIX threading API [4], including barriers,
mutexes and condition variables without being significantly harder to use than
common fuzz testing tools.

The main challenge that our approach needs to address is that of scalability
in the face of an enormous state space. We tackle this challenge by detecting
whenever any two Mazurkiewicz traces reach the same program state to only
further explore one of them. Additionally, we exploit the fact that data races
on non-atomic variables cause undefined behavior in C [25, § 5.1.2.4/35], which
means that any unsynchronized memory access is, strictly speaking, a bug. By
adding a data race detection algorithm, we can thereby restrict thread schedul-
ing decisions to synchronization primitives, such as operations on mutexes and
condition variables, which significantly reduces the state space.

This work has three core contributions, the combination of which enables
the analysis of real-world multi-threaded programs (see also Sect. 6 for related
work):

1. A partial-order reduction algorithm capable of handling real-world POSIX
programs that use an arbitrary amount of threads, mutexes and condition
variables. Our algorithm continues analysis in the face of deadlocks.

2. A cutoff algorithm that recognizes whenever two Mazurkiewicz traces reach
the same program state, as identified by its actual memory contents. This sig-
nificantly prunes the search space and even enables the partial-order reduction
to deal with non-terminating executions.

3. An implementation that finds real-world bugs.

We also present an extended, more in-depth version of this paper [42].
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2 Overview

The technique proposed in this paper can be described as a process of 5 concep-
tual steps, each of which we describe in a section below:

Thread 1
1 atomic_int a = in();

2 atomic_int c = 3;

Thread 2
1 atomic_int b = c;

2 if(a >= 0)

3 puts("y");

4 else

5 puts("n");

(a)

1 1, a=in()

2 1, c=3

32, b=c

42, a>=0

52, "y" (b)

1 1, a=in()

2 1, c=3

32, b=c

62, a<0

72, "n" (c)

1
1, a=in()

2, b=c
8

9
1, c=3

2, a>=0
10

2, "y"
11

(d)

1
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9
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1, a=in()

161, c=3

2, "y"
17

(f)

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

(g)

1

2

3

4

5

6

8

(h)

1

2

3

4 6

7

8

(i)

1

2

8

9 10

11

12 14

(j)

1

2

8

9 10 12

13

14

(k)

1 8

14

15

16

17

(l)

Fig. 1. A program (a) with its 5 partial-order runs (b–f), its unfolding (g) and the 5
steps used by our algorithm to visit the unfolding (h–l).

2.1 Sequential Executions

Consider the program shown in Fig. 1a. Assume that all variables are initially
set to zero. The statement a = in() initializes variable a non-deterministically.
A run of the program is a sequence of actions, i.e., pairs 〈i, s〉 where i ∈ N

identifies a thread that executes a statement s. For instance, the sequence

σ1 := 〈1, a=in()〉, 〈1, c=3〉, 〈2, b=c〉, 〈2, a<0〉, 〈2, puts("n")〉
is a run of Fig. 1a. This run represents all program paths where both statements
of thread 1 run before the statements of thread 2, and where the statement a =
in() initializes variable a to a negative number. In our notion of run, concurrency
is represented explicitly (via thread identifiers) and data non-determinism is
represented symbolically (via constraints on program variables). To keep things
simple the example only has atomic integers (implicitly guarded by locks) instead
of POSIX synchronization primitives.

2.2 Independence Between Actions and Partial-Order Runs

Many POR techniques use a notion called independence [20] to avoid exploring
concurrent interleavings that lead to the same state. An independence relation
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associates pairs of actions that commute (running them in either order results in
the same state). For illustration purposes, in Fig. 1 let us consider two actions as
dependent iff either both of them belong to the same thread or one of them writes
into a variable which is read/written by the other. Furthermore, two actions will
be independent iff they are not dependent.

A sequential run of the program can be viewed as a partial order when we
take into account the independence of actions. These partial orders are known as
dependency graphs in Mazurkiewicz trace theory [31] and as partial-order runs
in this paper. Figures 1b to 1f show all the partial-order runs of Fig. 1a. The
partial-order run associated to the run σ1 above is Fig. 1c. For

σ2 := 〈2, b=c〉, 〈2, a>=0〉, 〈1, a=in()〉, 〈2, puts("y")〉, 〈1, c=3〉,

we get the partial order shown in Fig. 1f.

2.3 Unfolding: Merging the Partial Orders

An unfolding [16,32,37] is a tree-like structure that uses partial orders to rep-
resent concurrent executions and conflict relations to represent thread interfer-
ence and data non-determinism. We can define unfolding semantics for programs
in two conceptual steps: (1) identify isomorphic events that occur in different
partial-order runs; (2) bind the partial orders together using a conflict relation.

Two events are isomorphic when they are structurally equivalent, i.e., they
have the same label (run the same action) and their causal (i.e., happens-before)
predecessors are (transitively) isomorphic. The number within every event in
Figs. 1b to 1f identifies isomorphic events.

Isomorphic events from different partial orders can be merged together using
a conflict relation for the un-merged parts of those partial orders. To understand
why conflict is necessary, consider the set of events C := {1, 2}. It obviously
represents part of a partial-order run (Fig. 1c, for instance). Similarly, events
C ′ := {1, 8, 9} represent (part of) a run. However, their union C ∪ C ′ does not
represent any run, because (1) it does not describe what happens-before relation
exists between the dependent actions of events 2 and 8, and (2) it executes
the statement c=3 twice. Unfoldings fix this problem by introducing a conflict
relation between events. Conflicts are to unfoldings what branches are to trees.
If we declare that events 2 and 8 are in conflict, then any conflict-free (and
causally-closed) subset of C ∪ C ′ is exactly one of the original partial orders.
This lets us merge the common parts of multiple partial orders without losing
track of the original partial orders.

Figure 1g represents the unfolding of the program (after merging all 5 partial-
order runs). Conflicts between events are represented by dashed red lines. Each
original partial order can be retrieved by taking a (⊆-maximal) set of events
which is conflict-free (no two events in conflict are in the set) and causally closed
(if you take some event, then also take all its causal predecessors).

For instance, the partial order in Fig. 1d can be retrieved by resolving the
conflicts between events 1 vs. 14, 2 vs. 8, 10 vs. 12 in favor of, resp., 1, 8, 10.
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Resolving in favor of 1 means that events 14 to 17 cannot be selected, because
they causally succeed 14. Similarly, resolving in favor of 8 and 10 means that
only events 9 and 11 remain eligible, which hold no conflicts among them—all
other events are causal successors of either 2 or 12.

2.4 Exploring the Unfolding

Since the unfolding represents all runs of the program via a set of compactly-
merged, prefix-sharing partial orders, enumerating all the behaviors of the pro-
gram reduces to exploring all partial-order runs represented in its unfolding. Our
algorithm iteratively enumerates all ⊆-maximal partial-order runs.

In simplified terms, it proceeds as follows. Initially we explore the black
events shown in Fig. 1h, therefore exploring the run shown in Fig. 1b. We discover
the next partial order by computing the so-called conflicting extensions of the
current partial order. These are, intuitively, events in conflict with some event
in our current partial order but such that all its causal predecessors are in our
current partial order. In Fig. 1h these are shown in circles, events 8 and 6.

We now find the next partial order by (1) selecting a conflicting extension,
say event 6, (2) removing all events in conflict with the selected extension and
their causal successors, in this case events 4 and 5, and (3) expanding the partial
order until it becomes maximal, thus exploring the partial order Fig. 1c, shown
as the black events of Fig. 1i. Next we select event 8 (removing 2 and its causal
successors) and explore the partial order Fig. 1d, shown as the black events
of Fig. 1j. Note that this reveals two new conflicting extensions that were hidden
until now, events 12 and 14 (hidden because 8 is a causal predecessor of them,
but was not in our partial order). Selecting either of the two extensions makes
the algorithm explore the last two partial orders.

2.5 Cutoff Events: Pruning the Unfolding

When the program has non-terminating runs, its unfolding will contain infi-
nite partial orders and the algorithm above will not finish. To analyze non-
terminating programs we use cutoff events [32]. In short, certain events do not
need to be explored because they reach the same state as another event that
has been already explored using a shorter (partial-order) run. Our algorithm
prunes the unfolding at these cutoff events, thus handling terminating and non-
terminating programs that repeatedly reach the same state.

3 Main Algorithm

This section formally describes the approach presented in this paper.
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3.1 Programs, Actions, and Runs

Let P := 〈T,L, C〉 represent a (possibly non-terminating) multi-threaded POSIX
C program, where T is the set of statements, L is the set of POSIX mutexes
used in the program, and C is the set of condition variables. This is a deliber-
ately simplified presentation of our program syntax, see [42] for full details. We
represent the behavior of each statement in P by an action, i.e., a pair 〈i, b〉 in
A ⊆ N × B, where i ≥ 1 identifies the thread executing the statement and b is
the effect of the statement. We consider the following effects:

B := ({loc} × T ) ∪ ({acq, rel} × L) ∪ ({sig} × C × N)

∪ ({bro} × C × 2N) ∪ ({w1,w2} × C × L)

Below we informally explain the intent of an effect and how actions of different
effects interleave with each other. In [42] we use actions and effects to define
labeled transition system semantics to P . Below we also (informally) define an
independence relation (see Sect. 2.2) between actions.

Local Actions. An action 〈i, 〈loc, t〉〉 represents the execution of a local state-
ment t from thread i, i.e., a statement which manipulates local variables. For
instance, the actions labeling events 1 and 3 in Fig. 2b are local actions. Note
that local actions do not interfere with actions of other threads. Consequently,
they are only dependent on actions of the same thread.

Mutex Lock/Unlock. Actions 〈i, 〈acq, l〉〉 and 〈i, 〈rel, l〉〉 respectively represent
that thread i locks or unlocks mutex l ∈ L. The semantics of these actions cor-
respond to the so-called NORMAL mutexes in the POSIX standard [4]. Actions
of 〈acq, l〉 or 〈rel, l〉 effect are only dependent on actions whose effect is an opera-
tion on the same mutex l (acq, rel, w1 or w2, see below). For instance the action
of event 4 (rel) in Fig. 2b depends on the action of event 6 (acq).

Wait on Condition Variables. The occurrence of a pthread cond wait(c, l)
statement is represented by two separate actions of effect 〈w1, c, l〉 and 〈w2, c, l〉.
An action 〈i, 〈w1, c, l〉〉 represents that thread i has atomically released the lock l
and started waiting on condition variable c. An action 〈i, 〈w2, c, l〉〉 indicates
that thread i has been woken up by a signal or broadcast operation on c and
that it successfully re-acquired mutex l. For instance the action 〈1, 〈w1, c,m〉〉 of
event 10 in Fig. 2c represents that thread 1 has released mutex m and is waiting
for c to be signaled. After the signal happens (event 12) the action 〈1, 〈w2, c,m〉〉
of event 14 represents that thread 1 wakes up and re-acquires mutex m. An
action 〈i, 〈w1, c, l〉〉 is dependent on any action whose effect operates on mutex l
(acq, rel, w1 or w2) as well as signals directed to thread i (〈sig, c, i〉, see below),
lost signals (〈sig, c, 0〉, see below), and any broadcast (〈bro, c,W 〉 for any W ⊆ N,
see below). Similarly, an action 〈i, 〈w2, c, l〉〉 is dependent on any action whose
effect operates on lock l as well as signals and broadcasts directed to thread i
(that is, either 〈sig, c, i〉 or 〈bro, c,W 〉 when i ∈ W ).
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Signal/Broadcast on Condition Variables. An action 〈i, 〈sig, c, j〉〉, with j ≥ 0
indicates that thread i executed a pthread cond signal(c) statement. If j = 0
then no thread was waiting on condition variable c, and the signal had no effect,
as per the POSIX semantics. We refer to these as lost signals. Example: events 7
and 17 in Fig. 2b and 2d are labeled by lost signals. In both cases thread 1 was
not waiting on the condition variable when the signal happened. However, when
j ≥ 1 the action represents that thread j wakes up by this signal. Whenever
a signal wakes up a thread j ≥ 1, we can always find a (unique) w1 action of
thread j that happened before the signal and a unique w2 action in thread j
that happens after the signal. For instance, event 12 in Fig. 2c signals thread 1,
which went sleeping in the w1 event 10 and wakes up in the w2 event 14. Simi-
larly, an action 〈i, 〈bro, c,W 〉〉, with W ⊆ N indicates that thread i executed a
pthread cond broadcast(c) statement and any thread j such that j ∈ W was
woken up. If W = ∅, then no thread was waiting on condition variable c (lost
broadcast). Lost signals and broadcasts on c depend on any action of 〈w1, c, ·〉
effect as well as any non-lost signal/broadcast on c. Non-lost signals and broad-
casts on c that wake up thread j depend1 on w1 and w2 actions of thread j as
well as any signal/broadcast (lost or not) on the same condition variable.

A run of P is a sequence of actions in A∗ which respects the constraints
stated above for actions. For instance, a run for the program shown in Fig. 2a is
the sequence of actions which labels any topological order of the events shown
in any partial order in Fig. 2b to 2e. The sequence below,

〈1, 〈loc, x=in()〉〉, 〈2, 〈loc, y=1〉〉, 〈1, 〈acq,m〉〉,
〈1, 〈loc, x>=0〉〉, 〈1, 〈rel,m〉〉, 〈2, 〈acq,m〉〉

is a run of Fig. 2a. Naturally, if σ ∈ A∗ is a run, any prefix of σ is also a run.
Runs explicitly represent concurrency, using thread identifiers, and symbolically
represent data non-determinism, using constraints, as illustrated by the 1st and
4th actions of the run above. We let runs(P ) denote the set of all runs of P .

A concrete state of P is a tuple that represents, intuitively, the program
counters of each thread, the values of all memory locations, the mutexes locked
by each thread, and, for each condition variable, the set of threads waiting for
it (see [42] for a formal definition). Since runs represent operations on symbolic
data, they reach a symbolic state, which conceptually corresponds to a set of
concrete states of P .

The state of a run σ, written state(σ), is the set of all concrete states of P
that are reachable when the program executes the run σ. For instance, the run σ′

given above reaches a state consisting on all program states where y is 1, x is
a non-negative number, thread 2 owns mutex m and its instruction pointer is at
line 3, and thread 1 has finished. We let reach(P ) :=

⋃
σ∈runs(P ) state(σ) denote

the set of all reachable states of P .

1 The formal definition is slightly more complex, see [42] for the details.
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3.2 Independence

In the previous section, given an action a ∈ A we informally defined the set of
actions which are dependent on a, therefore indirectly defining an independence
relation. We now show that this relation is a valid independence [19,41]. Intu-
itively, an independence relation is valid when every pair of actions it declares as
independent can be executed in any order while still producing the same state.

Our independence relation is valid only for data-race-free programs. We say
that P is data-race-free iff any two local actions a := 〈i, 〈loc, t〉〉 and a′ :=
〈i′, 〈loc, t′〉〉 from different threads (i 	= i′) commute at every reachable state
of P . See [42] for additional details. This ensures that local statements of different
threads of P modify the memory without interfering each other.

Thread 1
1 x = in();

2 pthread_mutex_lock(m);

3 if(x < 0)

4 pthread_cond_wait(c, m);

5 pthread_mutex_unlock(m);

Thread 2
1 y = 1;

2 pthread_mutex_lock(m);

3 pthread_cond_signal(c, m);

4 pthread_mutex_unlock(m);

(a)

1
loc, x=in()

2 acq, m

3 loc, x>=0

4 rel, m

loc, y=1

5

6acq, m

7sig, c, 0

8rel, m

(b)

1
loc, x=in()

2 acq, m

9 loc, x<0

10 w1, c, m

loc, y=1

5

11acq, m

12sig, c, 1

13rel, m

14 w2, c, m

15 rel, m (c)

1
loc, x=in()

loc, y=1

5

16acq, m

17sig, c, 0

18rel, m

19 acq, m

20 loc, x>=0

21 rel, m

(d)

1
loc, x=in()

loc, y=1

5

16acq, m

17sig, c, 0

18rel, m

19 acq, m

22 loc, x<0

23 w1, c, m

(deadlock!)

(e)

Fig. 2. A program and its four partial-order runs.

Theorem 1. If P is data-race-free, then the independence relation defined in
Sect. 3.1 is valid.

Proof. See [42].

Our technique does not use data races as a source of thread interference
for partial-order reduction. It will not explore two execution orders for the two
statements that exhibit a data race. However, it can be used to detect and report
data races found during the POR exploration, as we will see in Sect. 4.4.

3.3 Partial-Order Runs

A labeled partial-order (LPO) is a tuple 〈X,<, h〉 where X is a set of events,
< ⊆ X ×X is a causality (a.k.a., happens-before) relation, and h : X → A labels
each event by an action in A.

A partial-order run of P is an LPO that represents a run of P without
enforcing an order of execution on actions that are independent. All partial-
order runs of Fig. 2a are shown in Fig. 2b to 2e.
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Given a run σ of P , we obtain the corresponding partial-order run Eσ :=
〈E,<, h〉 by the following procedure: (1) initialize Eσ to be the only totally-
ordered LPO that consists of |σ| events where the i-th event is labeled by the
i-th action of σ; (2) for every two events e, e′ such that e < e′, remove the pair
〈e, e′〉 from < if h(e) is independent from h(e′); (3) restore transitivity in < (i.e.,
if e < e′ and e′ < e′′, then add 〈e, e′′〉 to <). The resulting LPO is a partial-order
run of P .

Furthermore, the originating run σ is an interleaving of Eσ. Given some
LPO E := 〈E,<, h〉, an interleaving of E is the sequence that labels any topo-
logical ordering of E . Formally, it is any sequence h(e1), . . . , h(en) such that
E = {e1, . . . , en} and ei < ej =⇒ i < j. We let inter(E) denote the set of all
interleavings of E . Given a partial-order run E of P , the interleavings inter(E)
have two important properties: every interleaving in inter(E) is a run of P , and
any two interleavings σ, σ′ ∈ inter(E) reach the same state state(σ) = state(σ′).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

(a)

∅, ∅, ∅, 1

1}, ∅, ∅, 2

1, 2}, ∅, ∅, 3

1, 2, 3}, ∅, ∅, 5

1, 2, 3, 5}, ∅, ∅, 4

1, 2}, {3}, {9}, 9

1, 2, 9}, {3}, ∅, 10

1}, {2}, {5, 16}, 5

1, 5}, {2}, {16}, 16

1, 5, 16}, {2}, ∅, 17

1, 5, 16, 17, 18, 19}, {2}, ∅, 20Fig. 2b Fig. 2c

Fig. 2d Fig. 2e

(b)

Fig. 3. (a): unfolding of the program in Fig. 2a; (b): its POR exploration tree.

3.4 Prime Event Structures

We use unfoldings to give semantics to multi-threaded programs. Unfoldings are
Prime Event Structures [37], tree-like representations of system behavior that
use partial orders to represent concurrent interaction.

Figure 3a depicts an unfolding of the program in Fig. 2a. The nodes are events
and solid arrows represent causal dependencies: events 1 and 4 must fire before
8 can fire. The dotted line represents conflicts: 2 and 5 are not in conflict and
may occur in any order, but 2 and 16 are in conflict and cannot occur in the
same (partial-order) run.

Formally, a Prime Event Structure [37] (PES) is a tuple E := 〈E,<,#, h〉
with a set of events E, a causality relation < ⊆ E × E, which is a strict partial
order, a conflict relation # ⊆ E × E that is symmetric and irreflexive, and a
labeling function h : E → A.
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The causes of an event �e := {e′ ∈ E : e′ < e} are the least set of events
that must fire before e can fire. A configuration of E is a finite set C ⊆ E that
is causally closed (�e ⊆ C for all e ∈ C), and conflict-free (¬(e # e′) for all
e, e′ ∈ C). We let conf (E) denote the set of all configurations of E . For any e ∈ E,
the local configuration of e is defined as [e] := �e∪{e}. In Fig. 3a, the set {1, 2} is
a configuration, and in fact it is a local configuration, i.e., [2] = {1, 2}. The local
configuration of event 6 is {1, 2, 3, 4, 5, 6}. Set {2, 5, 16} is not a configuration,
because it is neither causally closed (1 is missing) nor conflict-free (2 # 16).

3.5 Unfolding Semantics for Programs

Given a program P , in this section we define a PES UP such that every config-
uration of UP is a partial-order run of P .

Let E1 := 〈E1, <1, h1〉, . . . , En := 〈En, <n, hn〉 be the collection of all the
partial-order runs of P . The events of UP are the equivalence classes of the
structural equality relation that we intuitively described in Sect. 2.3.

Two events are structurally equal iff their canonical name is the same.
Given some event e ∈ Ei in some partial-order run Ei, the canonical name
cn(e) of e is the pair 〈a,H〉 where a := hi(e) is the executed action and
H := {cn(e′) : e′ <i e} is the set of canonical names of those events that causally
precede e in Ei. Intuitively, canonical names indicate that action h(e) runs
after the (transitively canonicalized) partially-ordered history preceding e. For
instance, in Fig. 3a for events 1 and 6 we have cn(1) = 〈〈1, 〈loc, a=in()〉〉, ∅〉, and
cn(6) = 〈〈2, 〈acq,m〉〉, {cn(1), cn(2), cn(3), cn(4), cn(5)}〉. Actually, the number
within every event in Fig. 2b to 2e identifies (is in bijective correspondence with)
its canonical name. Event 19 in Fig. 2d is the same event as event 19 in Fig. 2e
because it fires the same action (〈1, 〈acq,m〉〉) after the same causal history
({1, 5, 16, 17, 18}). Event 2 in Fig. 2c and 19 in Fig. 2d are not the same event
because while h(2) = h(19) = 〈1, 〈acq,m〉〉 they have a different causal his-
tory ({1} vs. {1, 5, 16, 17, 18}). Obviously events 4 and 6 in Fig. 2b are different
because h(4) 	= h(6). We can now define the unfolding of P as the only PES
UP := 〈E,<,#, h〉 such that

– E := {cn(e) : e ∈ E1 ∪ . . . ∪ En} is the set of canonical names of all events;
– Relation < ⊆ E ×E is the union <1 ∪ . . .∪<n of all happens-before relations;
– Any two events e, e′ ∈ E of UP are in conflict, e # e′, when e 	= e′, and

¬(e < e′), and ¬(e′ < e), and h(e) is dependent on h(e′).

Figure 3a shows the unfolding produced by merging all 4 partial-order runs
in Fig. 2b to 2e. Note that the configurations of UP are partial-order runs of P .
Furthermore, the ⊆-maximal configurations are exactly the 4 originating partial
orders. It is possible to prove that UP is a semantics of P . In [42] we show that
(1) UP is uniquely defined, (2) any interleaving of any local configuration of UP

is a run of P , (3) for any run σ of P there is a configuration C of UP such that
σ ∈ inter(C).
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3.6 Conflicting Extensions

Our technique analyzes P by iteratively constructing (all) partial-order runs
of P . In every iteration we need to find the next partial order to explore. We
use the so-called conflicting extensions of a configuration to detect how to start
a new partial-order run that has not been explored before.

Given a configuration C of UP , an extension of C is any event e ∈ E \C such
that all the causal predecessors of e are in C. We denote the set of extensions of C
as ex (C) := {e ∈ E : e /∈ C ∧ �e ⊆ C}. The enabled events of C are extensions
that can form a larger configuration: en(C) := {e ∈ ex (C) : C ∪ {e} ∈ conf (E)}.
For instance, in Fig. 3a, the (local) configuration [6] has 3 extensions, ex ([6]) =
{7, 9, 16} of which, however, only event 7 is enabled: en([6]) = {7}. Event 19 is
not an extension of [6] because 18 is a causal predecessor of 19, but 18 	∈ [6]. A
conflicting extension of C is an extension for which there is at least one e′ ∈ C
such that e # e′. The (local) configuration [6] from our previous example has two
conflicting extensions, events 9 and 16. A conflicting extension is, intuitively, an
incompatible addition to the configuration C, an event e that cannot be executed
together with C (without removing e′ and its causal successors from C). We
denote by cex (C) the set of all conflicting extensions of C, which coincides with
the set of all extensions that are not enabled: cex (C) := ex (C) \ en(C).

Algorithm 1: Conflicting extensions for acq/w2 events.

1 Function cex-acq-w2(e)
2 Assume that e is 〈〈i, 〈acq, l〉〉, K〉 or 〈〈i, 〈w2, c, l〉〉, K〉
3 R := ∅
4 et := last-of(K, i)
5 if effect(e) = 〈acq, l〉 then
6 P := [et]
7 else
8 es := last-notify(e, c, i)
9 P := [et] ∪ [es]

10 em := last-lock(P, l)
11 er := last-lock(K, l)
12 if em = er then return R
13 if em = ⊥ ∨ effect(em) ∈ {〈rel, l〉, 〈w1, ·, l〉} then
14 Add 〈h(e), P 〉 to R
15 foreach event e′ ∈ K \ (P ∪ {er}) do
16 if effect(e′) ∈ {〈rel, l〉, 〈w1, ·, l〉} then
17 Add 〈h(e), P ∪ [e′]〉 to R

18 return R

Our technique discovers new conflicting extension events by trying to revert
the causal order of certain events in C. Owing to space limitations we only
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explain how the algorithm handles events of acq and w2 effect ([42] presents the
remaining 4 procedures of the algorithm). Algorithm1 shows the procedure that
handles this case. It receives an event e of acq or w2 effect (line 2). We build and
return a set of conflicting extensions, stored in variable R. Events are added to R
in line 14 and 17. Note that we define events using their canonical name. For
instance, in line 14 we add a new event whose action is h(e) and whose causal
history is P . Note that we only create events that execute action h(e). Concep-
tually speaking, the algorithm simply finds different causal histories (variables P
and e′) within the set K = �e to execute action h(e).

Procedure last-of(C, i) returns the only <-maximal event of thread i in C;
last-notify(e, c, i) returns the only immediate <-predecessor e′ of e such that
the effect of h(e′) is either 〈sig, c, i〉 or 〈bro, c, S〉 with i ∈ S; finally, procedure
last-lock(C, l) returns the only <-maximal event that manipulates lock l in C
(an event of effect acq, rel, w1 or w2), or ⊥ if no such event exists. See [42] for
additional details.

Algorithm 2: Main algorithm. See Sect. 3.7.

1 Global variables: U := ∅ (set of events of UP ) and N := ∅ (set of tree nodes)

2 Procedure explore()

3 nod(∅, ∅, ∅)
4 repeat
5 Select n := 〈C, D, A, e〉 from N
6 Add cex (C) to U
7 if ena(C) ⊆ D then
8 continue

9 if n has no left child then
10 n′ := nod(C ∪ {e}, D, A \ {e})
11 Make n′ the left child of n

12 if n has no right child then
13 J := alt(C, D ∪ {e})
14 if J 
= ∅ then
15 n′ := nod(C, D ∪ {e}, J \ C)

16 Make n′ the right child of n

17 until fixed point (N is stable)

18 Function nod(C, D, A)

19 if A 
= ∅ then
20 e := select from ena(C) ∩ A

21 else
22 e := select from ena(C) \ D

23 n := 〈C, D, A, e〉
24 Add n to N
25 return n

26 Function ena(C)

27 return {e ∈ en(C) : ¬cutoff(e)}
28 Function alt(C, D)

29 Let e be some event in D ∩ en(C)
30 S := {e′ ∈ U : e′ # e ∧ [e′] ∩ D = ∅}
31 S := {e′ ∈ S : [e′] ∪ C is a config.}
32 if S = ∅ then return ∅
33 Select some event e′ from S
34 return [e′]

3.7 Exploring the Unfolding

This section presents an algorithm that explores the state space of P by
constructing all maximal configurations of UP . In essence, our procedure is
an improved Quasi-Optimal POR algorithm [35], where the unfolding is not
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explored using a DFS traversal, but a user-defined search order. This enables
us to build upon the preexisting exploration heuristics (“searchers”) in KLEE
rather than having to follow a strict DFS exploration of the unfolding.

Our algorithm explores one configuration of UP at a time and organizes the
exploration into a binary tree. Figure 3b shows the tree explored for the unfolding
shown in Fig. 3a. A tree node is a tuple n := 〈C,D,A, e〉 that represents both
the exploration of a configuration C of UP and a choice to execute, or not, event
e ∈ en(C). Both D (for disabled) and A (for add) are sets of events.

The key insight of this tree is as follows. The subtree rooted at a given node n
explores all configurations of UP that include C and exclude D, with the following
constraint: n’s left subtree explores all configurations including event e and n’s
right subtree explores all configuration excluding e. Set A is used to guide the
algorithm when exploring the right subtree. For instance, in Fig. 3b the subtree
rooted at node n := 〈{1, 2}, ∅, ∅, 3〉 explores all maximal configurations that
contain events 1 and 2 (namely, those shown in Fig. 2b and 2c). The left subtree
of n explores all configurations including {1, 2, 3} (Fig. 2b) and the right subtree
all of those including {1, 2} but excluding 3 (Fig. 2c).

Algorithm 2 shows a simplified version of our algorithm. The complete ver-
sion, in [42], specifies additional details including how nodes are selected for
exploration and how they are removed from the tree. The algorithm constructs
and stores the exploration tree in the variable N , and the set of currently known
events of UN in variable U . At the end of the exploration, U will store all events
of UN and the leafs of the exploration tree in N will correspond to the maximal
configurations of UN .

The tree is constructed using a fixed-point loop (line 4) that repeats the
following steps as long as they modify the tree: select a node 〈C,D,A, e〉 in the
tree (line 5), extend U with the conflicting extensions of C (line 6), check if the
configuration is ⊆-maximal (line 7), in which case there is nothing left to do,
then try to add a left (line 9) or right (line 12) child node.

The subtree rooted at the left child node will explore all configurations that
include C ∪ {e} and exclude D (line 10); the right subtree will explore those
including C and excluding D ∪ {e} (line 15), if any of them exists, which we
detect by checking (line 14) if we found a so-called alternative [41].

An alternative is a set of events which witnesses the existence of some maxi-
mal configuration in UP that extends C without including D ∪ {e}. Computing
such witness is an NP-complete problem, so we use an approximation called
k-partial alternatives [35], which can be computed in P-time and works well
in practice. Our procedure alt specifically computes 1-partial alternatives: it
selects k = 1 event e from D ∩ en(C), searches for an event e′ in conflict with e
(we have added all known candidates in line 6, using the algorithms of Sect. 3.6)
that can extend C (i.e., such that C ∪ [e′] is a configuration), and returns it.
When such an event e′ is found (line 33), some events in its local configuration
[e′] become the A-component of the right child node (line 15), and the leftmost
branch rooted at that node will re-execute those events (as they will be selected
in line 20), guiding the search towards the witnessed maximal configuration.
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For instance, in Fig. 3b, assume that the algorithm has selected node n =
〈{1}, ∅, ∅, 2〉 at line 5 when event 16 is already in U . Then a call to alt({1}, {2})
is issued at line 13, event e = 2 is selected at line 29 and event e′ = 16 gets
selected at line 33, because 2 # 16 and [16] ∪ {1} is a configuration. As a
result, node n′ = 〈{1}, {2}, {5, 16}, 5〉 becomes the right child of n in line 15,
and the leftmost branch rooted at n′ adds {5, 16} to C, leading to the maximal
configuration Fig. 2d.

3.8 Cutoffs and Completeness

All interleavings of a given configuration always reach the same state, but inter-
leavings of different configurations can also reach the same state. It is possible
to exclude certain such redundant configurations from the exploration without
making the algorithm incomplete, by using cutoff events [32].

Intuitively, an event is a cutoff if we have already visited another event that
reaches the same state with a shorter execution. Formally, in Algorithm 2, line
27 we let cutoff(e) return true iff there is some e′ ∈ U such that state([e]) =
state([e′]) and |[e′]| < |[e]|. This makes Algorithm 2 ignore cutoff events and any
event that causally succeeds them. Sect. 4.2 explains how to effectively implement
the check state([e]) = state([e′]).

While cutoffs prevent the exploration of redundant configurations, the anal-
ysis is still complete: it is possible to prove that every state reachable via a
configuration with cutoffs is also reachable via a configuration without cutoffs.
Furthermore, cutoff events not only reduce the exploration of redundant configu-
rations, but also force the algorithm to terminate for non-terminating programs
that run on bounded memory.

Theorem 2 (Correctness). For any reachable state s ∈ reach(P ), Algo-
rithm2 explores a configuration C such that for some C ′ ⊆ C it holds that
state(C ′) = s. Furthermore, it terminates for any program P such that reach(P )
is finite.

A proof sketch is available in [42]. Naturally, since Algorithm2 explores UP ,
and UP is an exact representation of all runs of P , then Algorithm 2 is also
sound : any event constructed by the algorithm (added to set U) is associated
with a real run of P .

4 Implementation

We implemented our approach on top of the symbolic execution engine KLEE [10],
which was previously restricted to sequential programs. KLEE already provides
a minimal POSIX support library that we extended to translate calls to pthread
functions to their respective actions, enabling us to test real-world multi-threaded
C programs. We also extended already available functionality to make it thread-
safe, e.g., by implementing a global file system lock that ensures that concurrent
reads from the same file descriptor do not result in unsafe behavior. The source
code of our prototype is available at https://github.com/por-se/por-se.

https://github.com/por-se/por-se
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4.1 Standby States

When a new alternative is explored, a symbolic execution state needs to be
computed to match the new node in the POR tree. However, creating it from
scratch requires too much time and keeping a symbolic execution state around
for each node consumes significant amounts of memory. Instead of committing to
either extreme, we store standby states at regular intervals along the exploration
tree and, when necessary, replay the closest standby state. This way, significantly
fewer states are kept in memory without letting the replaying of previously
computed operations dominate the analysis either.

4.2 Hash-Based Cutoff Events

Schemmel et al. presented [43] an incremental hashing scheme to identify infi-
nite loops during symbolic execution. The approach detects when the program
under test can transition from any one state back to that same state. Their
scheme computes fragments for small portions of the program state, which are
then hashed individually, and combined into a compound hash by bitwise xor
operations. This compound hash, called a fingerprint, uniquely (modulo hash
collisions) identifies the whole state of the program under test. We adapt this
scheme to provide hashes that identify the concurrent state of parallel programs.

To this end, we associate each configuration with a fingerprint that describes
the whole state of the program at that point. For example, if the program
state consists of two variables, x = 3 and y = 5, the fingerprint would be
fp = hash ("x=3")⊕hash ("y=5"). When one fragment changes, e.g., from x = 3
to x = 4, the old fragment hash needs to be replaced with the new one. This
operation can be performed as fp′ = fp ⊕ hash ("x=3") ⊕ hash ("x=4") as the
duplicate fragments for x = 3 will cancel out. To quickly compute the finger-
print of a configuration, we annotate each event with an xor of all of these update
operations that were done on its thread. Computing the fingerprint of a config-
uration now only requires xor-ing the values from its thread-maximal events,
which will ensure that all changes done to each variable are accounted for, and
cancel out one another so that only the fragment for the last value remains.

Any two local configurations that have the same fingerprint represent the
same program state; each variable, program counter, etc., has the same value.
Thus, it is not necessary to continue exploring both—we have found a potential
cutoff point, which the POR algorithm will treat accordingly (Sect. 3.8).

4.3 Deterministic and Repeatable Allocations

KLEE usually uses the system allocator to determine the addresses of objects
allocated by the program under test. But it also provides a (more) deterministic
mode, in which addresses are consumed in sequence from a large pre-allocated
array. Since our hash-based cutoff computation uses memory address as part of
the computation, using execution replays from standby states (Sect. 4.1) requires
that we have fully repeatable memory allocation.
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We tackle this problem by decoupling the addresses returned by the emulated
system allocator in the program under test from the system allocator of KLEE
itself. A new allocator requires a large amount of virtual memory in which it
will perform its allocations. This large virtual memory mapping is not actually
used unless an external function call is performed, in which case the relevant
objects are temporarily copied into the region from the symbolic execution state
for which the external function call is to be performed. Afterwards, the pages
are marked for reclamation by the OS. This way, allocations done by different
symbolic execution states return the same address to the program under test.

While a deterministic allocator by itself would be enough for providing deter-
ministic allocation to sequential programs, parallel programs also require an allo-
cation pattern that is independent of which sequentialization of the same partial
order is chosen. We achieve this property by providing independent allocators for
each thread (based on the thread id, thus ensuring that the same virtual mem-
ory mapping is reused for each instance of the same semantic thread). When an
object is deallocated on a different thread than it was allocated on, its address
only becomes available for reuse once the allocating thread has reached a point
in its execution where it is causally dependent on the deallocation. Additionally,
the thread ids that are used by our implementation are hierarchically defined: A
new thread t that is the i-th thread started by its parent thread p has the thread
id t := (p, i), with the main thread being denoted as (1). This way, thread ids and
the associated virtual memory mappings are independent of how the concurrent
creation of multiple threads are sequentialized.

We have also included various optimizations that promote controlled reuse of
addresses to increase the chance that a cutoff event (Sect. 4.2) is found, such as
binning allocations by size, which reduces the chance that temporary allocations
impact which addresses are returned for other allocations.

4.4 Data Race Detection

Our data race detection algorithm simply follows the happens-before relation-
ships established by the POR. However, its implementation is complicated by
the possibility of addresses becoming symbolic. Generally speaking, a symbolic
address can potentially point to any and every byte in the whole address space,
thus requiring frequent and large SMT queries to be solved.

To alleviate the quadratic blowup of possibly aliasing accesses, we exploit
how KLEE performs memory accesses with symbolic addresses: The symbolic
state is forked for every possible memory object that the access may refer to (and
one additional time if the memory access may point to unallocated memory).
Therefore, a symbolic memory access is already resolved to memory object gran-
ularity when it potentially participates in a data race. This drastically reduces
the amount of possible data races without querying the SMT solver.
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4.5 External Function Calls

When a program wants to call a function that is neither provided by the program
itself nor by the runtime, KLEE will attempt to perform an external function call
by moving the function arguments from the symbolic state to its own address
space and attempting to call the function itself. While this support for uninter-
preted functions is helpful for getting some results for programs which are not
fully supported by KLEE’s POSIX runtime, it is also inherently incomplete and
not sound in the general case. Our prototype includes this option as well.

5 Experimental Evaluation

To explore the efficacy of the presented approach, we performed a series of exper-
iments including both synthetic benchmarks from the SV-COMP [9] benchmark
suite and real-world programs, namely, Memcached [3] and GNU sort [1]. We
compare against Yogar-CBMC [49], which is the winner of the concurrency safety
category of SV-COMP 2019 [9], and stands in for the family of bounded model
checkers. As such, Yogar-CBMC is predestined to fare well in the artificial SV-
COMP benchmarks, while our approach may demonstrate its strength in dealing
with more complicated programs.

Table 1. Our prototype and Yogar-CBMC running SV-COMP benchmarks. Timeout
set at 15 min with maximum memory usage of 15GB. Columns are: T: true result,
output matches expected verdict; F: false result, output does not match expected ver-
dict; U: unknown result, tool yields no answer; Time: total time taken; RSS: maximum
resident set size over all benchmarks.

Benchmark Our tool Yogar-CBMC

T F U Time RSS T F U Time RSS

pthread 29 – 9 1:50:19 16 GB 29 – 9 0:31:21 948 MB

pthread-driver-races 16 1 4 1:03:08 6049 MB 21 – – 0:00:12 72 MB

We ran the experiments on a cluster of multiple identical machines with
dual Intel Xeon E5-2643 v4 CPUs and 256 GiB of RAM. We used a 4 h timeout
and 200 GB maximum memory usage for real-world programs. We used a 15 min
timeout and 15 GB maximum memory for individual SV-COMP benchmarks.

5.1 SV-COMP

We ran our tool and Yogar-CBMC on the “pthread” and “pthread-driver-races”
benchmark suites in their newest (2020) incarnation. As expected, Table 1 shows
that Yogar-CBMC clearly outperforms our tool for this specific set of bench-
marks. Not only does Yogar-CBMC not miscategorize even a single benchmark,
it does so quickly and without using a lot of memory. Our tool, in contrast, takes
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significantly more time and memory to analyze the target benchmarks. In fact,
several benchmarks do not complete within the 15 min time frame and therefore
cannot give a verdict for those.

The “pthread-driver-races” benchmark suite contains one benchmark that is
marked as a failure for our tool in Table 1. For the relevant benchmark, a verdict
of “target function unreachable” is expected, which we translate to mean “no
data race occurs”. However, the benchmark program constructs a pointer that
may point to effectively any byte in memory, which, upon dereferencing it, leads
to both, memory errors and data races (by virtue of the pointer also being able
to touch another thread’s stack). While we report this behavior for completeness
sake, we attribute it to the adaptations made to fit the SV-COMP model to ours.

Preparation of Benchmark Suites. The SV-COMP benchmark suite does
not only assume various kinds of special casing (e.g., functions whose name
begins with VERIFIER atomic must be executed atomically), but also routinely
violates the C standard by, for example, employing data races as a control flow
mechanism [25, § 5.1.2.4/35]. Partially, this is because the analysis target is a
question of reachability of a certain part of the benchmark program, not its
correctness. We therefore attempted to guess the intention of the individual
benchmarks, making variables atomic or leaving the data race in when it is the
aim of the benchmark.

5.2 Memcached

Memcached [3] is an in-memory network object cache written in C. As it is a
somewhat large project with a fairly significant state space, we were unable to
analyze it completely, even though our prototype still found several bugs. Our
attempts to run Yogar-CBMC did not succeed, as it reproducibly crashes.

Faults Detected. Our prototype found nine bugs in memcached 1.5.19,
attributable to four different root causes, all of which where previously unknown.
The first bug is a misuse of the pthread API, causing six mutexes and condition
variables to be initialized twice, leading to undefined behavior. We reported2

the issue, a fix is included in version 1.5.20. The second bug occurs during the
initialization of memcached, where fields that will later be accessed in a thread-
safe manner are sometimes accessed in a non-thread-safe manner, assuming that
competing accesses are not yet possible. We reported3 a mistake our tool found in
the initialization order that invalidates the assumption that locking is not (yet)
necessary on one field. A fix ships with memcached 1.5.21. For the third bug,
memcached utilizes a maintenance thread to manage and resize its core hash
table when necessary. Additionally, on another thread, a timer checks whether
the maintenance thread should perform an expansion of the hash table. We

2 https://github.com/memcached/memcached/pull/566.
3 https://github.com/memcached/memcached/pull/575.

https://github.com/memcached/memcached/pull/566
https://github.com/memcached/memcached/pull/575
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found4 a data race between these two threads on a field that stores whether
the maintenance thread has started expanding. This is fixed in version 1.5.20.
The fourth and final issue is a data race on the stats state storing execution
statistics. We reported5 this issue and a fix is included in version 1.5.21.

Experiment. We run our prototype on five different versions of memcached,
the three releases 1.5.19, 1.5.20 and 1.5.21 plus variants of the earlier releases
(1.5.19+ and 1.5.20+) which include patches for the two bugs we found during
program initialization. Those variants are included to show performance when
not restricted by inescapable errors very early in the program execution.

Table 2 shows clearly how the two initialization bugs may lead to very quick
analyses—versions 1.5.19 and 1.5.20 are completely analyzed in 7 s each, while
versions 1.5.19+, 1.5.20+ and 1.5.21 exhaust the memory budget of 200 GB.
We have configured the experiment to stop the analysis once the memory limit
is reached, although the analysis could continue in an incomplete manner by
removing parts of the exploration frontier to free up memory. Even though the
number of error paths in Table 2 differs between configurations, it is notable
that each configuration can only reach exactly one of the bugs, as execution is
arrested at that point. When not restricted to the program initialization, the
analysis of memcached produces hundreds of thousands of events and retires
hundreds of millions of instructions in less than 2 h.

Table 2. Our prototype analyzing various versions of memcached and GNU sort. Time-
out set at 4 h with maximum memory usage of 200GB. Columns are: RSS: maximum
resident set size (swap space is not available); #I: number of instructions executed;
Th: maximum number of threads active at the same time; Σ: total number of events
in the explored unfolding; Mut: number of mutex lock/unlock events; CV: number of
wait1/wait2/signal/broadcast events; λ: number of symbolic choices; Cut: number of
events determined to be cutoffs; and the number of Finished Paths distinguish between
normal termination of the program under test (Exit), detection of an error (Err) and
being cut off (Cut).

Program Performance Th Events Finished Paths Halt

Version LoC Time RSS #I Σ Mut CV λ Cut Exit Err Cut Reason

Memcached 1.5.19 31065 0:00:07 204MB 23K 1 12 6 0 3 0 0 1 0 Finished

1.5.19+ 31051 1:33:42 208GB 1.2B 6 331K 271K 60K 3 24K 0 41K 29K Memory

1.5.20 31093 0:00:07 197MB 92K 2 24 16 0 3 0 0 1 0 Finished

1.5.20+ 31093 1:51:10 207GB 228M 10 745K 742K 2.7K 5 882 0 1 2.6K Memory

1.5.21 31090 1:29:57 207GB 546M 10 1.1M 1.1M 3.1K 3 558 0 0 2.6K Memory

Sort 8.31 86596 0:24:29 23GB 266M 2 1.8M 1.4M 269K 25K 58K 8.0K 4.9K 55K Finished

8.31+ 86599 4:01:39 88GB 1.0B 2 6.9M 5.8M 777K 276K 346K 6.3K 0 285K Time

Our setup delivers a single symbolic packet to memcached followed by a con-
crete shutdown packet. As this packet can obviously only be processed once the
4 https://github.com/memcached/memcached/pull/569.
5 https://github.com/memcached/memcached/pull/573.

https://github.com/memcached/memcached/pull/569
https://github.com/memcached/memcached/pull/573
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server is ready to process input, we observe symbolic choices only after program
startup is complete. (Since our prototype builds on KLEE, note that it assumes
a single symbolic choice during startup, without generating an additional path.)

5.3 GNU sort

GNU sort uses threads for speeding up the sorting of very large workloads. We
reduced the minimum size of input required to trigger concurrent sorting to
four lines to enable the analysis tools to actually trigger concurrent behavior.
Nevertheless, we were unable to avoid crashing Yogar-CBMC on this input.

During analysis of GNU sort 8.31, our prototype detected a data race, that
we manually verified, but were unable to trigger in a harmful manner. Table 2
shows two variants of GNU sort, the baseline version with eager parallelization
(8.31) and a version with added locking to prevent the data race (8.31+).

Surprisingly, version 8.31 finishes the exploration, as all paths either exit,
encounter the data race and are terminated or are cut off. By fixing the data
race in version 8.31+, we make it possible for the exploration to continue beyond
this point, which results in a full 4 h run that retires a full billion instructions
while encountering almost seven million unique events.

6 Related Work

The body of work in systematic concurrency testing [5,6,19,21,23,35,41,47,50]
is large. These approaches explore thread interleavings under a fixed program
input. They prune the search space using context-bounding [34], increasingly
sophisticated PORs [5–7,12,19,23,35,41], or random testing [13,50]. Our main
difference with these techniques is that we handle input data.

Thread-modular abstract interpretation [18,30,33] and unfolding-based
abstract interpretation [46] aim at proving safety rather than finding bugs.
They use over-approximations to explore all behaviors, while we focus on testing
and never produce false alarms. Sequentialization techniques [26,36,40] encode a
multi-threaded program into a sequential one. While these encodings can be very
effective for small programs [26] they grow quickly with large context bounds (5
or more, see [36]). However, some of the bugs found by our technique (Sect. 5)
require many context switches to be reached.

Bounded-model checking [8,15,28,39,49] for multi-threaded programs encode
multiple program paths into a single logic formula, while our technique encodes
a single path. Their main disadvantage is that for very large programs, even
constructing the multi-path formula can be extremely challenging, often pro-
ducing an upfront failure and no result. Conversely, while our approach faces
path explosion, it is always able to test some program paths.

Techniques like [17,27,44] operate on a data structure conceptually very sim-
ilar to our unfolding. They track read/write operations to every variable, which
becomes a liability on very large executions. In contrast, we only use POSIX
synchronization primitives and compactly represent memory accesses to detect
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data races. Furthermore, they do not exploit anything similar to cutoff events
for additional trace pruning.

Interpolation [14,48] and weakest preconditions [24] have been combined with
POR and symbolic execution for property-guided analysis. These approaches are
mostly complementary to PORs like our technique, as they eliminate a different
class of redundant executions [24].

This work builds on top of previous work [35,41,46]. The main contributions
w.r.t. those are: (1) we use symbolic execution instead of concurrency testing [35,
41] or abstract interpretation [46]; (2) we support condition variables, providing
algorithms to compute conflicting extensions for them; and (3) here we use hash-
based fingerprints to compute cutoff events, thus handling much more complex
partial orders than the approach described in [46].

7 Conclusion

Our approach combines POR and symbolic execution to analyze programs w.r.t.
both input (data) and concurrency non-determinism. We model a significant por-
tion of the pthread API, including try-lock operations and robust mutexes. We
introduce two techniques to cope with state-space explosion in real-world pro-
grams. We compute cutoff events by using efficiently-computed fingerprints that
uniquely identify the total state of the program. We restrict scheduling to syn-
chronization points and report data races as errors. Our experiments found pre-
viously unknown bugs in real-world software projects (memcached, GNU sort).
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Abstract. While hardware generators have drastically improved design
productivity, they have introduced new challenges for the task of veri-
fication. To effectively cover the functionality of a sophisticated gener-
ator, verification engineers require tools that provide the flexibility of
metaprogramming. However, flexibility alone is not enough; components
must also be portable in order to encourage the proliferation of verifica-
tion libraries as well as enable new methodologies. This paper introduces
fault, a Python embedded hardware verification language that aims to
empower design teams to realize the full potential of generators.

1 Introduction

The new golden age of computer architecture relies on advances in the design
and implementation of computer-aided design (CAD) tools that enhance produc-
tivity [11,21]. While hardware generators have become much more powerful in
recent years, the capabilities of verification tools have not improved at the same
pace [12]. This paper introduces fault,1 a domain-specific language (DSL) that
aims to enable the construction of flexible and portable verification components,
thus helping to realize the full potential of hardware generators.

Using flexible hardware generators [1,16] drastically improves the produc-
tivity of the hardware design process, but simultaneously increases verification
cost. A generator is a program that consumes a set of parameters and produces a
hardware module. The scope of the verification task grows with the capabilities
of the generator, since more sophisticated generators can produce hardware with
varying interfaces and behavior. To reduce the cost of attaining functional cov-
erage of a generator, verification components must be as flexible as their design
1 https://github.com/leonardt/fault.
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counterparts. To achieve flexibility, hardware verification languages must provide
the metaprogramming facilities found in hardware construction languages [1].

However, flexibility alone is not enough to match the power of generators;
verification tools must also enable the construction of portable components. Gen-
erators facilitate the development of hardware libraries and promote the inte-
gration of components from external sources. Underlying the utility of these
libraries is the ability for components to be reused in a diverse set of envi-
ronments. The dominance of commercial hardware verification tools with strict
licensing requirements presents a challenge in the development of portable verifi-
cation components. To encourage the proliferation of verification libraries, hard-
ware verification languages must design for portability across verification tools.
Design for portability will also promote innovation in tools by simplifying the
adoption of new technologies, as well as enable new verification methodologies
based on unified interfaces to multiple technologies.

This paper presents fault, a domain-specific language (DSL) embedded in
Python designed to enable the flexible construction of portable verification com-
ponents. As an embedded DSL, fault users can employ all of Python’s rich
metaprogramming capabilities in the description of verification components.
Integration with magma [15], a hardware construction language embedded in
Python, is an essential feature of fault that enables full introspection of the
hardware circuit under test. By using a staged metaprogramming architecture,
fault verification components are portable across a wide variety of open-source
and commercial verification tools. A key benefit of this architecture is the abil-
ity to provide a unified interface to constrained random and formal verification,
enabling engineers to reuse the same component in simulation and model check-
ing environments. fault is actively used by academic and industrial teams to ver-
ify digital, mixed-signal, and analog designs for use in research and production
chips. This paper demonstrates fault’s capabilities by evaluating the runtime
performance of different tools on a variety of applications ranging in complexity
from unit tests of a single module to integration tests of a complex design. These
experiments leverage fault’s portability by reusing the same source input across
separate trials for each target tool.

2 Design

We had three goals in designing fault: enable the construction of flexible
test components through metaprogramming, provide portable abstractions that
allow test component reuse across multiple target environments, and support
direct integration with standard programming language features. The ability
to metaprogram test components is a vital requirement for scaling verification
efforts to cover the space of functionality utilized by hardware generators. Porta-
bility widens the target audience of a reusable component and enhances a design
team’s productivity by enabling simple migration to different technologies. Inte-
gration with a programming language enables design teams to leverage standard
software patterns for reuse as well as feature-rich test automation frameworks.
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Fig. 1. Architectural overview of the fault testing system. In a Python program, the
user constructs a Tester object with a magma Circuit and records a sequence
of test Actions. The compiler uses the action sequence as an intermediate represen-
tation (IR). Backend targets lower the actions IR into a format compatible with the
corresponding tool and provide an API to run the test and report the results.

Figure 1 provides an overview of the system architecture. fault is a DSL
embedded in Python, a prolific dynamic language with rich support for metapro-
gramming and a large ecosystem of libraries. fault is designed to work with
magma [15], a Python embedded hardware construction language which rep-
resents circuits as introspectable Python objects containing ports, connections,
and instances of other circuits. While fault and magma separate the concerns of
design and verification into separate DSLs, they are embedded in the same host
language for simple interoperability. This multi-language design avoids the com-
plexity of specifying and implementing a single general purpose language without
sacrificing the benefits of tightly integrating design and verification code.

To construct fault test components, the user first instantiates a Tester
object with a magma circuit as an argument. The user then records a sequence
of test actions using an API provided by the Tester class. Here is an example
of constructing a test for a 16-bit Add circuit:

tester = Tester(Add16)
tester.poke(Add16.in0, 3)
tester.poke(Add16.in1, 2)
tester.eval()
tester.expect(Add16.out, 5)

The poke action (method) sets an input value, the eval action triggers evalua-
tion of the circuit (the effects of poke actions are not propagated until an eval
action occurs), and the expect action asserts the value of an output. Attributes
of the Add16 object refer to circuit ports by name.

fault’s design is based on the concept of staged metaprogramming [20]; the
user writes a program that constructs another program to be executed in a
subsequent stage. In fault, the first stage executes Python code to construct a
test specification; the second stage invokes a target runtime that executes this
specification. To run the test for the 16-bit Add, the user simply calls a method
and provides the desired target:

tester.compile_and_run("verilator")
tester.compile_and_run("system-verilog", simulator="iverilog")
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By applying staged metaprogramming, fault allows the user to leverage the
full capabilities of the Python host language in the programmatic construction
of test components. For example, a test can use a native for loop to construct a
sequence of actions using the built-in random number library and integer type:

for _ in range(32):
N = (1 << 16) - 1
in0, in1 = random.randint(0, N), random.randint(0, N)
tester.poke(Add16.in0, in0)
tester.poke(Add16.in1, in1)
tester.eval()
tester.expect(Add16.out, (in0 + in1) & N)

Python for loops are executed during the first stage of computation and are
effectively “unrolled” into a flat sequence of actions. Other control structures
such as while loops, if statements, and function calls are handled similarly.

Python’s object introspection capabilities greatly enhance the flexibility of
fault tests. For example, the core logic of the above test can be generalized to
support an arbitrary width Add circuit by inspecting the interface:

# compute max value based on port width (length)
N = (1 << len(Add.in0)) - 1
in0, in1 = random.randint(0, N), random.randint(0, N)
tester.poke(Add.in0, in0)
tester.poke(Add.in1, in1)
tester.eval()
tester.expect(Add.out, (in0 + in1) & N)

This ability to metaprogram components as a function of the design under test
is an essential aspect of fault’s design. It allows the construction of generic com-
ponents that can be reused across designs with varying interfaces and behavior.

fault’s embedding in Python’s class system provides an opportunity for reuse
through inheritance. For example, a design team could subclass the generic
Tester class and add a new method to perform an asynchronous reset sequence:

class ResetTester(Tester):
def __init__(self, circuit, clock, reset_port):

super().__init__(self, circuit, clock)
self.reset_port = reset_port

def reset(self):
# asynchronous reset, negative edge
self.poke(self.reset_port, 1)
self.eval()
self.poke(self.reset_port, 0)
self.eval()
self.poke(self.reset_port, 1)
self.eval()

Combining inheritance with introspection, we can augment the the
ResetTester to automatically discover the reset port by inspecting port types:
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class AutoResetTester(ResetTester):
def __init__(self, circuit, clock):

# iterate over interface to find reset (assumes exactly one)
for port in circuit.interface.ports.values():

if isinstance(port, AsyncResetN):
reset_port = port

super().__init__(self, circuit, clock, reset_port)

2.1 Frontend: Tester API

fault’s Python embedding is implemented by the Tester class which provides
various interfaces for recording test actions as well as methods for compiling and
running tests using a specific target. By using Python’s class system to perform a
shallow embedding [5], fault avoids the complexity of processing abstract syntax
trees and simply uses Python’s standard execution to construct test components.
As a result, programming in fault is much like programming with a standard
Python library. This design choice reduces the overhead of learning the DSL
and simplifies aspects of implementation such as error messages, but comes at
the cost of limited capabilities for describing control flow. The fault frontend
described in this paper focuses on implementation simplicity, but the system is
designed to be easily extended with new frontends using alternative embeddings.

Action Methods. The Tester class provides a low-level interface for
recording actions using methods. The basic action methods are poke (set
a port to a value), expect (assert a port equals a value), step (invert
the value of the clock), peek (read the value of a port), and eval (eval-
uate the circuit). The peek method returns an object containing a ref-
erence to the value of a circuit port in the current simulation state.
Using logical and arithmetic operators, the user can construct expressions
with this object and pass the result to other actions. For example, to
expect that the value of the port O0 is equal to the inverse of the
value of port O1, the user would write tester.expect(circuit.O0,
∼tester.peek(circuit.O1)). The Tester provides a print action to
display simulation runtime information included the peeked values.

Metaprogramming Control Flow. Notably absent from the basic method
interface described above are control flow abstractions. As noted before, standard
Python control structures such as loops and if statements are executed in the
first stage of computation as part of the metaprogram. However, there are cases
where the user intends to preserve the control structure in the generated code,
such as long-running loops that should not be unrolled at compile time or loops
that are conditioned on dynamic values from the circuit state. For example,
consider a while loop that executes until it receives a ready signal:

# Construct while loop conditioned on circuit.ready.
loop = tester._while(tester.peek(circuit.ready))
loop.expect(circuit.ready, 0) # executes inside loop
loop.step(2) # executes inside loop
# Check final state after loop has exited
tester.expect(circuit.count, expected_cycle_count)
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This logic could not be encoded in the metaprogram, because the metapro-
gram is evaluated before the test is run, and thus does not know anything
about the runtime state of the circuit. To capture this dynamic control flow,
the Tester provides methods for inserting if-else statements, for loops,
and while loops. Each of these methods returns a new instance of the current
Tester object which provides the same API, allowing the user to record actions
corresponding to the body of the control construct. The Tester class provides
convenience functions for using these control structures to generate common
patterns, such as wait on, wait until low, and wait until posedge.

Attribute Interface. While the low-level method interface is useful for writ-
ing complex metaprograms, simple components are rather verbose to construct.
To simplify the handling of basic actions like poke and peek, the Tester
object exposes an interface for referring to circuit ports and internal signals using
Python’s object attribute syntax. For example, to poke the input port I of a
circuit with value 1, one would write tester.circuit.I = 1. This interface
supports referring to internal signals using a hierarchical syntax. For example,
referring to port Q of an instance ff can be done with tester.circuit.ff.Q.

Assume/Guarantee. The Tester object provides methods for specifying
assumptions and guarantees that are abstracted over constrained random and
formal model checking runtime environments. An assumption is a constraint
on input values, and a guarantee is an assertion on output values. Assump-
tions and guarantees are specified using Python lambda functions that return
symbolic expressions referring to the input and output and ports of a circuit.
For example, the guarantee lambda a, b, c: (c >= a) and (c >= b)
states that the output c is always greater than or equal to the inputs a and
b. Here is an example of verifying a simple ALU using the assume/guarantee
interface:

# Configuration sequence for opcode register
tester.circuit.opcode_en = 1
tester.circuit.opcode = 0 # opcode for add (+)
tester.step(2)
tester.circuit.opcode_en = 0
tester.step(2)
# Verify add does not overflow
tester.circuit.a.assume(lambda a: a < BitVector[16](32768))
tester.circuit.b.assume(lambda b: b < BitVector[16](32768))
tester.circuit.c.guarantee(

lambda a, b, c: (c >= a) and (c >= b)
)

Note that this example demonstrates the use of poke and step to initialize
circuits not only for constrained random testing, but also for formal verification.

2.2 Actions IR

In using the Tester API, users construct a sequence of Action objects that are
used as an intermediate representation (IR) for the compiler. Basic port action
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objects, such as Poke and Expect, simply store references to ports and values.
Control flow action objects, such as While and If, contain sub-sequences of
actions, resulting in a hierarchical data-structure similar to an abstract syntax
tree. This view of the compiler internals reveals that the metaphor of recording
actions is really an abstraction over the construction of program fragments.

2.3 Backend Targets

fault supports a variety of open-source and commercial backend targets for run-
ning tests. A target is responsible for consuming an action sequence, compiling
it into a format compatible with the target runtime, and providing an API for
invoking the runtime. Targets must also report the result of the test either by
reading the exit code of running the process or processing the test output.

Verilog Simulation Targets. The fault compiler includes support for the
open-source Verilog simulators verilator [17] and iverilog [22], plus three com-
mercial simulators. To compile fault programs to a verilator test bench, the
backend lowers the action sequence into a C++ program that interacts with the
software simulation object produced by the verilator compiler. For iverilog and
the commercial simulators, the backend lowers the action sequence into a Sys-
temVerilog test bench that interacts with the test circuit through an initial
block inside the top-level module. One useful aspect of the SystemVerilog back-
end is its handling of variations in the feature support of target simulators. For
example, the commercial simulators use different commands for enabling wave-
form tracing and iverilog uses a non-standard API for interacting with files.
Constrained random inputs are generated using rejection or SMT [9] sampling.

CoSA. The CoreIR Symbolic Analyzer (CoSA) is a solver-agnostic SMT-based
hardware model checker [13]. fault’s CoSA target relies on magma’s ability
to compile Python circuit descriptions to CoreIR [8], a hardware intermediate
representation. CoreIR’s formal semantics are based on finite-state machines and
the SMT theory of fixed-size bitvectors [3]. fault action sequences are lowered
into CoSA’s custom explicit transition system format (ETS) and combined with
the CoreIR representation of the circuit to produce a model. CoSA allows the
user to specify assumptions and properties, providing a straightforward lowering
of fault assumptions and guarantees.

SPICE. In addition to being able to test designs with Verilog simulators, fault
supports analog and mixed-signal simulators. Compared to the traditional app-
roach of maintaining separate implementations for digital and analog tests, this
is a significantly easier way to write tests for mixed-signal circuits. Basic actions
such as poke and expect are supported in the SPICE simulation mode, but
they are implemented quite differently than they are in Verilog-based tests.
Rather than emitting a sequential list of actions in an initial block, fault
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compiles poke actions into piecewise-linear (PWL) waveforms. Other actions,
such as expect, are implemented by post-processing the simulation data.

Verilog-AMS. For designs containing a mixture of SPICE and Verilog blocks,
fault supports testing with a Verilog-AMS simulator. This mode is more similar
to running SystemVerilog-based tests than SPICE-based tests. In particular, the
test bench is implemented using a top-level SystemVerilog module, meaning that
a wide range of actions are supported including loops and conditionals. This is a
key benefit of using a Verilog-AMS simulator as opposed to a SPICE simulator.

3 Evaluation

To demonstrate fault’s capabilities, we evaluate the runtime performance of four
different testing tasks from the domain of hardware verification. Each task high-
lights the utility of fault’s portability by reusing the same source input across
separate trials of different targets. Due to licensing restrictions, we omit the
name of the commercial simulators and replace them with a generic name. The
code to reproduce these experiments is available in the artifact.2 Each experi-
ment involves at least one open-source simulator, but reproducing all the results
requires access to commercial simulators.

CGRA Processing Element Unit Tests. To demonstrate the capability of
fault as a tool for writing portable tests for digital verification, Fig. 2 reports
the runtime performance of a subset of the lassen test suite. lassen [19] is
an open-source implementation of a CGRA processing element that contains a
large suite of unit tests using fault. Interestingly, we see comparable perfor-
mance between verilator and commercial simulator 1, while commercial
simulator 2 is consistently ∼5x slower than the others. One important property
of the lassen test suite is that it generates a new test bench for each operation
and input/output pair. This stresses a simulator’s ability to efficiently handle
incremental changes, since each invocation involves a new top-level test bench
file, but an unchanged design under test.

Fig. 2. Runtime (s) for unit tests of a CGRA processing element collected with a VM
running on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz with 256GB of RAM.

2 https://github.com/leonardt/fault artifact/blob/master/README.md.

https://github.com/leonardt/fault_artifact/blob/master/README.md
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SRAM Array. To demonstrate the capability of fault as a tool for writing
portable tests for analog and mixed-signal verification, we used OpenRAM to
generate a 16x16 SRAM and then ran a randomized readback test of the design
with SPICE, Verilog-AMS, and SystemVerilog simulators. OpenRAM [10] is an
open-source memory compiler that produces a SPICE netlist and Verilog model.

The results shown in Fig. 3a reveal two interesting trends. First, as expected,
SPICE simulations of the array were significantly slower than Verilog simulations
(100-1000x). Since fault allows the user to prototype tests with fast Verilog
simulations, and then seamlessly switch to SPICE for signoff verification, our tool
may reduce the latency in developing mixed-signal tests by orders of magnitude.
Second, even for simulations of the same type, there was significant variation
in the runtime of different simulators. SPICE simulation time varied by about
2x, while Verilog simulation time varied by about 10x. One of the advantages of
using fault is that it is easy to switch between simulators to find the one that
works best for a particular scenario.

Fig. 3. Results for OpenRAM 16x16 SRAM randomized readback test.

We also looked at the amount of human effort required to use fault to imple-
ment this test as compared to the traditional approach of writing separate test-
benches for each simulation language. Since “human effort” is subjective, we
used lines of code as a rough metric, as measured from handwritten implemen-
tations of the same test in SystemVerilog, Verilog-AMS, and SPICE. Figure 3b
shows the results of this experiment: the fault-based approach used 136 LoC as
compared to 412 LoC for the traditional approach, a reduction of 3.02x.

CGRA Integration Test Bench. To observe how fault scales to more com-
plex testing tasks, we report numbers for an integration test of the Stanford
Garnet CGRA [18]. This test generates an instance of the CGRA chip, runs a
simulation that programs the chip for an image processing application, streams
the input image data onto the chip, and streams the output image data to a
file. The output is compared to a reference software model. Running the test



412 L. Truong et al.

took 232 min with the verilator target, 185 min with commercial simulator
1, and 221 min with commercial simulator 2. Leveraging the portability of
fault-based tests could save up to 47 min in testing time. These results were
collected using the same machine as the SRAM experiment (see Fig. 3a).

Unified Constrained Random and Formal. To demonstrate the utility of
the assume/guarantee interface as a unified abstraction for constrained random
and formal verification, we compared the runtime performance of using a con-
strained random target versus a formal model checker to verify the simple ALU
property shown in Sect. 2.1. The first test evaluated the runtime performance of
verifying correctness of the property on 100 constrained random inputs versus
using a formal model checker. The formal model checker provided a complete
proof of correctness using interpolation-based model checking [14] in 1.613 s,
while constrained random verified 100 samples in 2.269 s (rejection sampling)
and 2.799 s (SMT sampling). The second test injected a bug into the ALU by
swapping the opcodes for addition and subtraction. The model checker found a
counterexample in 1.154 s with bounded model checking [4], while constrained
random failed in 2.947 s (rejection sampling) and 1.230 s (SMT sampling). In
both cases the model checker was at least as fast as the constrained random
equivalent while providing better coverage in the case of no bug. These results
were collected using a MacBook Pro (13-in 2017, 4 Thunderbolt, macOS 10.15.2),
with a 3.5 GHz Dual-Core Intel i7 CPU, and 16 GB RAM.

4 Related Work

Prior work has leveraged using a generic API to Verilog simulators to build porta-
bility into testing infrastructures. The ChiselTest library [2] and cocotb [7]
provide this capability for Scala and Python respectively. Using a generic API
offers many of the same advantages with regards to test portability, simplic-
ity, and automation, but the lack of multi-stage execution limits the applica-
tion to more diverse backend targets such as SPICE simulations and formal
model checkers. However, because these libraries interact with the simulator
directly, they do allow user code to immediately respond to the simulator state,
enabling interactive debugging through the host language. cocotb also presents
a coroutine abstraction that naturally models the concurrency found in hard-
ware simulation. Future work could investigate using cocotb as a runtime target
for fault’s frontend, enabling a similar concurrent, interactive style of testing.
Another interesting avenue of work would be to extend fault’s backend targets
to support lowering cocotb’s coroutine abstraction.

5 Conclusion

The ethos of fault is to enable the construction of flexible, portable test com-
ponents that are simple to integrate and scale for testing complex applications.
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The ability to metaprogram test components is essential for enabling verification
teams to match the productivity of design teams using generators. fault’s porta-
bility enables teams to easily transition to different tools for different use cases,
and enables the proliferation of reusable verification libraries that are applicable
in a diverse set of tooling environments.

While fault has already demonstrated utility to design teams in academia
and industry, there remains a bright future filled with opportunity to improve
the system. Extending the assume/guarantee interface to support temporal prop-
erties/constraints and leverage compositional reasoning [6] is essential for scal-
ing the approach to more complex systems. Adding concurrent programming
abstractions such as coroutines are essential for capturing the common patterns
used in the testing of parallel hardware. Using a deep embedding architecture
could significantly improve the performance of generating fault test benches.
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Abstract. Craig interpolant generation for non-linear theory and
its combination with other theories are still in infancy, although
interpolation-based techniques have become popular in the verification
of programs and hybrid systems where non-linear expressions are very
common. In this paper, we first prove that a polynomial interpolant of
the form h(x) > 0 exists for two mutually contradictory polynomial for-
mulas φ(x,y) and ψ(x, z), with the form f1 ≥ 0 ∧ · · · ∧ fn ≥ 0, where
fi are polynomials in x,y or x, z, and the quadratic module generated
by fi is Archimedean. Then, we show that synthesizing such interpolant
can be reduced to solving a semi-definite programming problem (SDP).
In addition, we propose a verification approach to assure the validity
of the synthesized interpolant and consequently avoid the unsoundness
caused by numerical error in SDP solving. Besides, we discuss how to
generalize our approach to general semi-algebraic formulas. Finally, as
an application, we demonstrate how to apply our approach to invariant
generation in program verification.

Keywords: Craig interpolant · Archimedean condition · Semi-definite
programming · Program verification · Sum of squares

1 Introduction

Interpolation-based techniques have become popular in recent years because of
their inherently modular and local reasoning, which can scale up existing formal
verification techniques like theorem proving, model-checking, abstract interpre-
tation, and so on, while the scalability is the bottleneck of these techniques. The
study of interpolation was pioneered by Kraj́ic̆ek [20] and Pudlák [30] in con-
nection with theorem proving, by McMillan in connection with model-checking
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[25], by Graf and Säıdi [14], Henzinger et al. [16] and McMillan [26] in con-
nection with abstraction like CEGAR, by Wang et al. [17] in connection with
machine-learning based program verification.

Craig interpolant generation plays a central role in interpolation-based tech-
niques, and therefore has drawn increasing attention. In the literature, there
are various efficient algorithms proposed for automatically synthesizing inter-
polants for decidable fragments of first-order logic, linear arithmetic, array logic,
equality logic with uninterpreted functions (EUF), etc., and their combinations,
and their use in verification, e.g., [6,16,18,19,26,27,33,33,37] and the references
therein. Additionally, how to compare the strength of different interpolants is
investigated in [9]. However, interpolant generation for non-linear theory and its
combination with the aforementioned theories is still in infancy, although non-
linear polynomials inequalities are quite common in safety-critical software and
embedded systems [38,39].

In [7], Dai et al. had a first try and gave an algorithm for generating
interpolants for conjunctions of mutually contradictory nonlinear polynomial
inequalities based on the existence of a witness guaranteed by Stengle’s Posi-
tivstellensatz [36], which is computable using semi-definite programming (SDP).
Their algorithm is incomplete in general but if all variables are bounded (called
Archimedean condition), then it becomes complete. A major limitation of their
work is that two mutually contradictory formulas φ and ψ must have the same
set of variables. In [10], Gan et al. proposed an algorithm to generate inter-
polants for quadratic polynomial inequalities. The basic idea is based on the
insight that for analyzing the solution space of concave quadratic polynomial
inequalities, it suffices to linearize them by proving a generalization of Motzkin’s
transposition theorem for concave quadratic polynomial inequalities. Moreover,
they also discussed how to generate interpolants for the combination of the
theory of quadratic concave polynomial inequalities and EUF based on the hier-
archical calculus proposed in [34] and used in [33]. Obviously, quadratic con-
cave polynomial inequalities is a very restrictive class of polynomial formulas,
although most of existing abstract domains fall within it as argued in [10]. Mean-
while, in [13], Gao and Zufferey presented an approach to extract interpolants for
non-linear formulas possibly containing transcendental functions and differential
equations from proofs of unsatisfiability generated by δ-decision procedure [12]
based on interval constraint propagation (ICP) [1] by transforming proof traces
from δ-complete decision procedures into interpolants that consist of Boolean
combinations of linear constraints. Thus, their approach can only find the inter-
polants between two formulas whenever their conjunction is not δ-satisfiable.
Similar idea was also reported in [21]. In [5], Chen et al. proposed an app-
roach for synthesizing non-linear interpolants based on counterexample-guided
and machine-learning, but it relies on quantifier elimination in order to guar-
antee the completeness and convergence, which gives rise to the low efficiency
of their approach theoretically. In [35], Srikanth et al. presented an approach
called CAMPY to exploit non-linear interpolant generation, which is achieved
by abstracting non-linear formulas (possibly with non-polynomial expressions)
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to the theory of linear arithmetic with uninterpreted functions, i.e., EUFLIA,
to prove and/or disprove if a given program satisfies a given property, that may
contain nonlinear expressions.

Example 1. In order to compare the approach proposed in this paper and the
ones aforementioned, consider

φ = −2xy2 + x2 − 3xz − y2 − yz + z2 − 1 ≥ 0 ∧ 100 − x2 − y2 ≥ 0 ∧
x2z2 + y2z2 − x2 − y2 +

1

6
(x4 + 2x2y2 + y4) − 1

120
(x6 + y6) − 4 ≤ 0;

ψ = 4(x − y)4 + (x + y)2 + w2 − 133.097 ≤ 0 ∧ 100(x + y)2 − w2(x − y)4 − 3000 ≥ 0.

It can be checked that φ ∧ ψ |= ⊥.
Obviously, synthesizing interpolants for φ and ψ in this example is beyond

the ability of the above approaches reported in [7,10]. Using the method in [13]
implemented in dReal3 it would return “SAT” with δ = 0.001, i.e., φ ∧ ψ is δ-
satisfiable, and hence it cannot synthesize any interpolant using [12]’s approach
with any precision greater than 0.0011. While, using our method, an interpolant
h > 0 with degree 10 can be found as shown in Fig. 12. Additionally, using
the symbolic procedure REDUCE, it can be proved that h > 0 is indeed an
interpolant of φ and ψ.

Fig. 1. Example 1. (Green region: the
projection of φ(x, y, z) onto x and y;
red region: the projection of ψ(x, y, w)
onto x and y; gray region plus the
green region: the synthesized inter-
polant {(x, y) | h(x, y) > 0}.) (Color
figure online)

In this paper, we investigate this
issue and consider how to synthesize an
interpolant for two polynomial formu-
las φ(x,y) and ψ(x, z) with φ(x,y) ∧
ψ(x, z) |= ⊥, where
φ(x,y) : f1(x,y) ≥ 0∧· · ·∧fm(x,y) ≥ 0,
ψ(x, z) : g1(x, z) ≥ 0 ∧ · · · ∧ gn(x, z)≥ 0,

x ∈ R
r, y ∈ R

s, z ∈ R
t are

variable vectors, r, s, t ∈ N, and
f1, . . . , fm, g1, . . . , gn are polynomials. In
addition, Mx,y{f1(x,y), . . . , fm(x,y)}
and Mx,z{g1(x, z), . . ., gn(x, z)} are two
Archimedean quadratic modules. Here
we allow uncommon variables, that are
not allowed in [7], and drop the con-
straint that polynomials must be concave
and quadratic, which is assumed in [10].
The Archimedean condition amounts to
that all the variables are bounded, which
is reasonable in program verification, as
only bounded numbers can be repre-
sented in computer in practice. We first prove that there exists a polynomial
1 Alternatively, if we try the formula with the latest version of dReal4, it does not

produce any output after 20 h.
2 The mathematical representation of h is given in the full version [11].
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h(x) such that h(x) = 0 separates the state space of x defined by φ(x,y) from
the one defined by ψ(x, z) theoretically, and then propose an algorithm to com-
pute such h(x) based on SDP. Furthermore, we propose a verification approach
to assure the validity of the synthesized interpolant and consequently avoid the
unsoundness caused by numerical error in SDP solving. Finally, we also discuss
how to extend our results to general semi-algebraic constraints.

Another contribution of this paper is that as an application, we illustrate
how to apply our approach to invariant generation in program verification by
revising Lin et al.’s framework proposed in [22] for invariant generation based
on weakest precondition, strongest postcondition and interpolation by allowing
to generate nonlinear invariants.

The paper is organized as follows. Some preliminaries and the problem of
interest are introduced in Sect. 2. Section 3 shows the existence of an interpolant
for two mutually contradictory polynomial formulas only containing conjunction,
and Sect. 4 presents SDP-based methods to compute it. In Sect. 5, we discuss how
to avoid unsoundness caused by numerical error in SDP. Section 6 extends our
approach to general polynomial formulas. Section 7 demonstrates how to apply
our approach to invariant generation in program verification. We conclude this
paper in Sect. 8.

2 Preliminaries

In this section, we first give a brief introduction on some notions used throughout
this paper and then describe the problem of interest.

2.1 Quadratic Module

N, Q and R are the sets of integers, rational numbers and real numbers, respec-
tively. Q[x] and R[x] denotes the polynomial ring over rational numbers and
real numbers in r ≥ 1 indeterminates x : (x1, . . . , xr). We use R[x]2 := {p2 |
p ∈ R[x]} for the set of squares and

∑
R[x]2 for the set of sums of squares of

polynomials in x. Vectors are denoted by boldface letters. ⊥ and � stand for
false and true, respectively.

Definition 1 (Quadratic Module [24]). A subset M of R[x] is called a
quadratic module if it contains 1 and is closed under addition and multiplication
with squares, i.e., 1 ∈ M,M + M ⊆ M, and p2M ⊆ M for all p ∈ R[x].

Let p := {p1, . . . , ps} be a finite subset of R[x], the quadratic module Mx(p)
or simply M(p) generated by p (i.e. the smallest quadratic module containing all
pis) is Mx(p) = {

∑s
i=0 δipi | δi ∈

∑
R[x]2}, where p0 = 1.

Archimedean condition plays a key role in the study of polynomial optimiza-
tion.

Definition 2 (Archimedean). Let M be a quadratic module of R[x]. M is
said to be Archimedean if there exists some a > 0 such that a −

∑r
i=1 x2

i ∈ M.
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2.2 Problem Description

Craig showed that given two formulas φ and ψ in a first-order theory T , if
φ |= ψ, then there always exists an interpolant I over the common symbols of φ
and ψ s.t. φ |= I and I |= ψ. In the verification literature, this terminology has
been abused following [26], where a reverse interpolant (coined by Kovács and
Voronkov in [19]) I over the common symbols of φ and ψ is defined by

Definition 3 (Interpolant). Given two formulas φ and ψ in a theory T s.t.
φ ∧ ψ |=T ⊥, a formula I is an interpolant of φ and ψ if (i) φ |=T I; (ii)
I ∧ ψ |= ⊥; and (iii) I only contains common symbols and free variables shared
by φ and ψ.

Definition 4. A basic semi-algebraic set {x ∈ R
n |

∧s
i=1 pi(x) ≥ 0} is called

a set of the Archimedean form if Mx{p1(x), . . . , ps(x)} is Archimedean, where
pi(x) ∈ R[x], i = 1, . . . , s.

The interpolant synthesis problemof interest in this paper is given inProblem1.

Problem 1. Let φ(x,y) and ψ(x, z) be two polynomial formulas of the form

φ(x,y) : f1(x,y) ≥ 0 ∧ · · · ∧ fm(x,y) ≥ 0,

ψ(x, z) : g1(x, z) ≥ 0 ∧ · · · ∧ gn(x, z) ≥ 0,

where, x ∈ R
r, y ∈ R

s, z ∈ R
t are variable vectors, r, s, t ∈ N, and f1, . . . , fm, g1,

. . . , gn are polynomials in the corresponding variables. Suppose φ ∧ ψ |= ⊥,
and {(x,y) | φ(x,y)} and {(x, z) | ψ(x, z)} are semi-algebraic sets of the
Archimedean form. Find a polynomial h(x) such that h(x) > 0 is an interpolant
for φ and ψ.

3 Existence of Interpolants

The basic idea and steps of proving the existence of interpolants are as follows:
Because an interpolant of φ and ψ contains only the common symbols in φ and
ψ, it is natural to consider the projections of the sets defined by φ and ψ on x,
i.e. Px(φ(x,y))=̂{x | ∃y. φ(x,y)} and Px(ψ(x, z))=̂{x | ∃z. ψ(x, z)}, which are
obviously disjoint. We therefore prove that, if h(x) = 0 separates Px(φ(x,y))
and Px(ψ(x, z)), then h(x) solves Problem 1 (see Proposition 1). Thus, we only
need to prove the existence of such h(x) through the following steps: First, we
prove that Px(φ(x,y)) and Px(ψ(x, z)) are compact semi-algebraic sets which are
unions of finitely many basic closed semi-algebraic sets (see Lemma 1). Second,
using Putinar’s Positivstellensatz, we prove that, for two disjoint basic closed
semi-algebraic sets S1 and S2 of the Archimedean form, there exists a polynomial
h1(x) such that h1(x) = 0 separates S1 and S2 (see Lemma 2). This result is then
extended to the case that S2 is a finite union of basic closed semi-algebraic sets
(see Lemma 3). Finally, by generalizing Lemma 3 to the case that two compact
semi-algebraic sets both are unions of finitely many basic closed semi-algebraic
sets and together with Proposition 1, we prove the existence of interpolant in
Theorem 2 and Corollary 1.
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Proposition 1. If h(x) ∈ R[x] satisfies the following constraints

∀x ∈ Px(φ(x,y)).h(x) > 0 and ∀x ∈ Px(ψ(x, z)).h(x) < 0, (1)

then h(x) > 0 is an interpolant for φ(x,y) and ψ(x, z), where φ(x,y) and ψ(x, z)
are defined as in Problem 1.

Proof. According to Definition 3, it is enough to prove that φ(x,y) |= h(x) > 0
and ψ(x, z) |= h(x) ≤ 0.

Since any (x0,y0) satisfying φ(x,y) must imply x0 ∈ Px(φ(x,y)), it follows
that h(x0) > 0 from (1) and φ(x,y) |= h(x) > 0. Similarly, we can prove
ψ(x, z) |= h(x) < 0, implying that ψ(x, z) |= h(x) ≤ 0. Therefore, h(x) > 0 is
an interpolant for φ(x,y) and ψ(x, z). ��

In order to synthesize such h(x) in Proposition 1, we first dig deeper into
the two sets Px(φ(x,y)) and Px(ψ(x, z)). As shown later, i.e. in Lemma 1, we
will find that these two sets are compact semi-algebraic sets of the form {x |
∨c

i=1

∧Ji

j=1 αi,j(x) ≥ 0}. Before this lemma, we introduce Finiteness theorem
pertinent to a basic closed semi-algebraic subset of R

n, which will be used in the
proof of Lemma 1, where a basic closed semi-algebraic subset of R

n is a set of
the form {x ∈ R

n | α1(x) ≥ 0, . . . , αk(x) ≥ 0} with α1, . . . , αk ∈ R[x].

Theorem 1 (Finiteness Theorem, Theorem 2.7.2 in [3]). Let A ⊂ R
n be a

closed semi-algebraic set. Then A is a finite union of basic closed semi-algebraic
sets.

Lemma 1. The set Px(φ(x,y)) is compact semi-algebraic set of the following
form

Px(φ(x,y)) := {x |
c∨

i=1

Ji∧

j=1

αi,j(x) ≥ 0},

where αi,j(x) ∈ R[x], i = 1, . . . , c, j = 1, . . . , Ji. The same claim applies to the
set Px(ψ(x, z)) as well.

Proof. For the sake of simplicity, we denote {(x,y) | φ(x,y)} and Px(φ(x,y))
by S and π(S), respectively.

Because S is a compact set and π is a continuous map that maps compact
set to compact set, π(S), which is the image of a compact set under a continuous
map, is compact. Moreover, as S is a semi-algebraic set and the projection of
a semi-algebraic set is also a semi-algebraic set by Tarski-Seidenberg theorem
[2], this implies that π(S) is a semi-algebraic set. Thus, π(S) is a compact semi-
algebraic set.

Since π(S) is a compact semi-algebraic set, and also a closed semi-
algebraic set, we have that π(S) is a finite union of basic closed semi-
algebraic sets from Theorem 1. Hence, there exist a series of polynomi-
als α1,1(x), . . . , α1,J1(x), . . . , αc,1(x), . . . , αc,Jc

(x) such that π(S) =
⋃c

i=1{x |
∧Ji

j=1 αi,j(x) ≥ 0} = {x |
∨c

i=1

∧Ji

j=1 αi,j(x) ≥ 0}. This concludes this lemma. ��
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After knowing the structure of Px(φ(x,y)) and Px(ψ(x, z)) being a union
of some basic semialgebraic sets as illustrated in Lemma 1, we next prove the
existence of h(x) ∈ R[x] satisfying (1), as formally stated in Theorem 2.

Theorem 2. Suppose that φ(x,y) and ψ(x, z) are defined as in Problem 1, then
there exists a polynomial h(x) satisfying (1).

As pointed out by an anonymous reviewer that Theorem 2 can be obtained by
some properties of the ring of Nash functions proved in [29]. In what follows, we
give a simpler and more intuitive proof. To the end, it requires some preliminaries
first. The main tool in our proof is Putinar’s Positivstellensatz, as formulated in
Theorem 3.

Theorem 3 (Putinar’s Positivstellensatz [31]). Let p1, . . . , pk ∈ R[x] and
S1 = {x | p1(x) ≥ 0, . . . , pk(x) ≥ 0}. Assume that the quadratic mod-
ule M(p1, . . . , pk) is Archimedean. For q ∈ R[x], if q > 0 on S1 then q ∈
M(p1, . . . , pk).

With Putinar’s Positivstellensatz we can draw a conclusion that there exists
a polynomial such that its zero level set3 separates two compact semi-algebraic
sets of the Archimedean form, as claimed in Lemmas 2 and 3.

Lemma 2. Let S1 = {x | p1(x) ≥ 0, . . . , pJ (x) ≥ 0}, S2 = {x | q1(x) ≥
0, . . . , qK(x) ≥ 0} be semi-algebraic sets of the Archimedean form and S1 ∩S2 =
∅, then there exists a polynomial h1(x) such that

∀x ∈ S1. h1(x) > 0, ∀x ∈ S2. h1(x) < 0. (2)

Proof. Since S1 ∩ S2 = ∅, it follows

p2 ≥ 0 ∧ · · · ∧ pJ ≥ 0 ∧ q1 ≥ 0 ∧ · · · ∧ qK ≥ 0 |= −p1 > 0.

Let S3 = {x | p2 ≥ 0 ∧ · · · ∧ pJ ≥ 0 ∧ q1 ≥ 0 ∧ · · · ∧ qK ≥ 0}, then −p1 > 0
on S3. Since S1 and S2 are semi-algebraic sets of the Archimedean form, it
follows Mx(p2(x), . . . , pJ (x), q1(x), . . . , qK(x)) is also Archimedean. Hence, S3

is compact. From −p1 > 0 on S3, we further have that there exists some u1 ∈∑
R[x]2 such that −u1p1 − 1 > 0 on S3. Using Theorem 3, we have that

−u1p1 − 1 ∈ Mx(p2(x), . . . , pJ (x), q1(x), . . . , qK(x)),

implying that there exists a set of sums of squares polynomials u2, . . . , uJ and
v0,v1, . . . , vK ∈ R[x], such that

−u1p1 − 1 ≡ u2p2 + · · · + uJpJ + v0 + v1q1 + · · · + vKqK .

Let h1 = 1
2 + u1p1 + · · · + uJpJ , i.e., −h1 = 1

2 + v0 + v1q1 + · · · + vKqK . It is
easy to check that (2) holds. ��

3 The zero level set of an n-variate polynomial h(x) is defined as {x ∈ R
n | h(x) = 0}.
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Lemma 3 generalizes the result of Lemma 2 to more general compact semi-
algebraic sets of the Archimedean form, which is the union of multiple basic
semi-algebraic sets.

Lemma 3. Assume S0 = {x | p1(x) ≥ 0, . . . , pJ (x) ≥ 0} and Si = {x |
qi,1(x) ≥ 0, . . . , qi,Ki

(x) ≥ 0}, i = 1, . . . , b, are semi-algebraic sets of the
Archimedean form, and S0 ∩

⋃b
i=1 Si = ∅, then there exists a polynomial h0(x)

such that

∀x ∈ S0. h0(x) > 0, ∀x ∈
b⋃

i=1

Si. h0(x) < 0. (3)

In order to prove this lemma, we prove the following lemma first.

Lemma 4. Let c, d ∈ R with 0 < c < d and U0 = [c, d]r. There exists a polyno-
mial ĥ(x) such that

x ∈ U0 |= ĥ(x) > 0 |=
r∧

i=1

xi > 0, (4)

where x = (x1, . . . , xr).

Proof. We show that there exists k ∈ N such that ĥ(x) = (d
2 )2k − (x1 − c+d

2 )2k −
· · · − (xr − c+d

2 )2k satisfies (4). It is evident that ĥ(x) > 0 |=
∧r

i=1 xi > 0 holds.
In the following we just need to verify that

∧r
i=1 c ≤ xi ≤ d |= ĥ(x) > 0 holds.

Since c ≤ xi ≤ d, we have (xi − c+d
2 )2k ≤ (d−c

2 )2k and (d
2 )2k −

∑r
i=1(xi −

c+d
2 )2k ≥ (d

2 )2k − r(d−c
2 )2k. Obviously, if an integer k satisfies ( d

d−c )2k > r, then
(d
2 )2k −

∑r
i=1(xi − c+d

2 )2k > 0. The existence of such k satisfying ( d
d−c )2k > r is

assured by d
d−c > 1. ��

Now we give a proof for Lemma 3 as follows.

Proof (of Lemma 3). For any i with 1 ≤ i ≤ b, according to Lemma 2, there exists
a polynomial hi ∈ R[x], satisfying ∀x ∈ S0. hi(x) > 0 and ∀x ∈ Si. hi(x) < 0.

Next, we construct h0(x) ∈ R[x] from h1(x), . . . , hb(x). Since S0 is a semi-
algebraic set of the Archimedean form, S0 is compact and thus hi(x) has min-
imum value and maximum value on S0, denoted by ci and di respectively. Let
c = min(c1, . . . , cb) and d = max(d1, . . . , db). Clearly, 0 < c < d.

From Lemma 4 there must exist a polynomial ĥ(w1, . . . , wb) such that

b∧

i=1

c ≤ wi ≤ d |= ĥ(w1, . . . , wb) > 0, (5)

ĥ(w1, . . . , wb) > 0 |=
b∧

i=1

wi > 0. (6)

Let h′
0(x) = ĥ(h1(x), . . . , hb(x)). Obviously, h′

0(x) ∈ R[x]. We next prove that
h′

0(x) satisfies (3) in Lemma 3.
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For all x0 ∈ S0, c ≤ hi(x0) ≤ d, i = 1, . . . , b, h′
0(x0) =

ĥ(h1(x0), . . . , hb(x0)) > 0 by (5). Therefore, the first constraint in (3), i.e.
∀x0 ∈ S0.h0(x0) > 0, holds.

For any x0 ∈
⋃b

i=1 Si, there must exist some i such that x0 ∈ Si, implying
that hi(x0) < 0. By (6) we have h′

0(x0) = ĥ(h1(x0), . . . , hb(x0)) ≤ 0.
Thus, we obtain the conclusion that there exists a polynomial h′

0(x) such
that ∀x ∈ S0. h′

0(x) > 0, and ∀x ∈
⋃b

i=1 Si. h′
0(x) ≤ 0. Also, since S0 is a

compact set, and h′
0(x) > 0 on S0, there must exist some positive number ε > 0

such that h′
0(x) − ε > 0 over S0. Then h′

0(x) − ε < 0 on
⋃b

i=1 Si. Therefore,
setting h0(x) := h′

0(x) − ε, Lemma 3 is proved. ��
In Lemma 3 we proved that there exists a polynomial h(x) ∈ R[x] such that

its zero level set is a barrier between two semi-algebraic sets of the Archimedean
form, of which one set is a union of finitely many basic semi-algebraic sets. In
the following we will give a formal proof of Theorem 2, which is a generalization
of Lemma 3.

Proof (of Theorem 2). According to Lemma 1 we have that Px(φ(x,y)) and
Px(ψ(x, z)) are compact sets, and there respectively exists a set of polynomials
pi,j(x) ∈ R[x], i = 1, . . . , a, j = 1, . . . , Ji, and ql,k(x) ∈ R[x], l = 1, . . . , b,
k = 1, . . . , Ki, such that

Px(φ(x,y)) = {x |
a∨

i=1

Ji∧

j=1

pi,j(x) ≥ 0}, Px(ψ(x, z)) = {x |
b∨

l=1

Kl∧

k=1

ql,k(x) ≥ 0}.

Since Px(φ(x,y)) and Px(ψ(x, z)) are compact sets, there exists a positive
N ∈ R such that f = N −

∑r
i=1 x2

i ≥ 0 over Px(φ(x,y)) and Px(ψ(x, z)).
For each i = 1, . . . , a and each l = 1, . . . , b, set pi,0 = ql,0 = f . Denote
{x |

∨a
i=1

∧Ji

j=0 pi,j(x) ≥ 0} =
⋃a

i=1{x |
∧Ji

j=0 pi,j(x) ≥ 0} by P1 and

{x |
∨b

l=1

∧Kl

k=0 ql,k(x) ≥ 0} =
⋃b

l=1{x |
∧Kl

k=0 ql,k(x) ≥ 0} by P2. It is easy
to see that P1 = Px(φ(x,y), P2 = Px(ψ(x, z)).

Since φ ∧ ψ |= ⊥, there does not exist (x,y, z) ∈ R
r+s+t that satisfies φ ∧ ψ,

implying that Px(φ(x,y)) ∩ Px(ψ(x, z)) = ∅ and thus P1 ∩ P2 = ∅. Also, since
{x |

∧Ji1
j=0 pi1,j(x) ≥ 0} ⊆ P1, for each i1 = 1, . . . , a, {x |

∧Ji1
j=0 pi1,j(x) ≥

0} ∩ P2 = ∅ holds. By Lemma 3 there exists hi1(x) ∈ R[x] such that

∀x ∈ {x |
Ji1∧

j=0

pi1,j(x) ≥ 0}.hi1(x) > 0, ∀x ∈ P2.hi1(x) < 0.

Let S′ = {x | −h1(x) ≥ 0, . . . ,−ha(x) ≥ 0, N −
∑r

i=1 x2
i ≥ 0}. Obviously,

S′ is a semialgebraic set of the Archimedean form, P2 ⊂ S′ and P1 ∩ S′ = ∅.
Therefore, according to Lemma 2, there exists a polynomial h(x) ∈ R[x] such
that ∀x ∈ S′. h(x) > 0 and ∀x ∈ P1. h(x) < 0. Let h(x) = −h(x), then
we have ∀x ∈ P1. h(x) > 0 and ∀x ∈ P2. h(x) < 0, implying that ∀x ∈
Px(φ(x,y)).h(x) > 0 and ∀x ∈ Px(ψ(x, z)).h(x) < 0. Thus, this completes the
proof of Theorem 2. ��
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Consequently, we immediately have the following conclusion.

Corollary 1. Let φ(x,y) and ψ(x, z) be defined as in Problem 1. There must
exist a polynomial h(x) ∈ R[x] such that h(x) > 0 is an interpolant for φ and ψ.

Actually, since Px(φ(x,y)) and Px(ψ(x, z)) both are compact set by Lemma
1, and h(x) > 0 on Px(φ(x,y)) and h(x) < 0 on Px(ψ(x, z)), we can obtain h′(x)
by giving a small perturbation to the coefficients of h(x) such that h′(x) has the
property of h(x). Hence, there should exist a h(x) ∈ Q[x] such that h(x) > 0 is
an interpolant for φ and ψ, intuitively.

Theorem 4. Let φ(x,y) and ψ(x, z) be defined as in Problem 1. There must
exist a polynomial h(x) ∈ Q[x] such that h(x) > 0 is an interpolant for φ and
ψ.

Proof. We just need to prove there exists a polynomial h(x) ∈ Q[x] satisfying
(1).

By Theorem 2, there exists a polynomial h′(x) ∈ R[x] satisfying (1). Since
Px(φ(x,y)) and Px(ψ(x, z)) are compact sets, h′(x) > 0 on Px(φ(x,y)) and
h′(x) < 0 on Px(ψ(x, z)), there exist η1 > 0 and η2 > 0 such that

∀x ∈ Px(φ(x,y)).h′(x) − η1 ≥ 0, ∀x ∈ Px(ψ(x, z)).h′(x) + η2 ≤ 0.

Let η = min(η1
2 , η2

2 ). Suppose h′(x) ∈ R[x] has the form h′(x) =
∑

α∈Ω cαxα,
where α ∈ N

r, Ω ⊂ N
r is a finite set of indices, r is the dimension of x, xα is

the monomial xα1
1 · · ·xαr

r , and 0 �= cα ∈ R is the coefficient of monomial xα. Let
N = |Ω| be the cardinality of Ω. Since Px(φ(x,y)) and Px(ψ(x, z)) are compact
sets, for any α ∈ Ω, there exists Mα > 0 such that Mα = max{|xα| | x ∈
Px(φ(x,y)) ∪ Px(ψ(x, z))}. Then for any fixed polynomial ĥ(x) =

∑
α∈Ω dαxα,

with dα ∈ [cα − η
NMα

, cα + η
NMα

], and any x ∈ Px(φ(x,y)) ∪ Px(ψ(x, z)), we
have

|ĥ(x) − h′(x)| = |
∑

α∈Ω

(dα − cα)xα| ≤
∑

α∈Ω

|(dα − cα)| · |xα| ≤
∑

α∈Ω

η

NMα
· Mα = η.

Since η = min(η1
2 , η2

2 ), hence

∀x ∈ Px(φ(x,y)).ĥ(x) ≥ η1

2
> 0, ∀x ∈ Px(ψ(x, z)).ĥ(x) ≤ −η2

2
< 0. (7)

Since for any dα ∈ [cα − η
NMα

, cα + η
NMα

] (7) holds, there must exist some
rational number rα ∈ Q in [cα − η

NMα
, cα + η

NMα
] satisfying (7) because of the

density of rational numbers. Thus, let h(x) =
∑

α∈Ω rαxα. Clearly, it follows
that h(x) ∈ Q[x] and (1) holds. ��

So, the existence of h(x) ∈ Q[x] is guaranteed. Moreover, from the proof of
Theorem 4, we know that a small perturbation of h(x) is permitted, which is a
good property for computing h(x) in a numeric way. In the subsequent subsec-
tion, we recast the problem of finding such h(x) as a semi-definite programming
problem.
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4 SOS Formulation

Similar to [7], in this section, we discuss how to reduce the problem of finding
h(x) satisfying (1) to a sum of squares programming problem.

Theorem 5. Let φ(x,y) and ψ(x, z) be defined as in the Problem 1. Then there
exist m + n + 2 SOS (sum of squares) polynomials ui(x,y) (i = 1, . . . , m + 1),
vj(x, z) (j = 1, . . . , n + 1) and a polynomial h(x) such that

h − 1 =
m∑

i=1

uifi + um+1, −h − 1 =
n∑

j=1

vjgj + vn+1, (8)

and h(x) > 0 is an interpolant for φ(x,y) and ψ(x, z).

Proof. By Theorem 2 there exists a polynomial ĥ(x) such that

∀x ∈ Px(φ(x,y)).ĥ(x) > 0, ∀x ∈ Px(ψ(x, z)).ĥ(x) < 0.

Set S1 = {(x,y) | f1 ≥ 0, . . . , fm ≥ 0} and S2 = {(x, z) | g1 ≥ 0, . . . , gn ≥
0}. Since ĥ(x) > 0 on S1, which is compact, there exist ε1 > 0 such that
ĥ(x) − ε1 > 0 on S1. Similarly, there exist ε2 > 0 such that −ĥ(x) − ε2 > 0
on S2. Let ε = min(ε1, ε2), and h(x) = ĥ(x)

ε , then h(x) − 1 > 0 on S1 and
−h(x) − 1 > 0 on S2. Since Mx,y(f1(x,y), . . . , fm(x,y)) is Archimedean, from
Theorem 3, we have h(x)−1 ∈ Mx,y(f1(x,y), . . . , fm(x,y)). Similarly, −h(x)−
1 ∈ Mx,z(g1(x, z), . . . , gn(x, z)). That is, there exist m+n+2 SOS polynomials
ui, vj satisfying the following semi-definite constraints:

h(x) − 1 =
m∑

i=1

uifi + um+1, −h(x) − 1 =
n∑

j=1

vjgj + vn+1. ��
According to Theorem 5, the problem of finding h(x) ∈ R[x] solving

Problem 1 can be equivalently reformulated as the problem of searching for
SOS polynomials u1(x,y), . . . , um(x,y), v1(x, z), . . . , vn(x, z) and a polynomial
h(x) with appropriate degrees such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(x) − 1 −
m∑

i=1

uifi ∈
∑

R[x,y]2,

− h(x) − 1 −
n∑

j=1

vjgj ∈
∑

R[x, z]2,

ui ∈
∑

R[x,y]2, i = 1, . . . , m,

vj ∈
∑

R[x, z]2, j = 1, . . . , n.

(9)

(9) is SOS constraints over SOS multipliers u1(x,y), . . . , um(x,y), v1(x, z),
. . . , vn(x, z), polynomial h(x), which is convex and could be solved by many
existing semi-definite programming solvers such as the optimization library
AiSat [7] built on CSDP [4]. Therefore, according to Theorem 5, h(x) > 0 is
an interpolant for φ and ψ, which is formulated in Theorem 6.
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Theorem 6 (Soundness). Suppose that φ(x,y) and ψ(x, z) are defined as in
Problem 1, and h(x) is a feasible solution to (9), then h(x) solves Problem 1,
i.e. h(x) > 0 is an interpolant for φ and ψ.

Moreover, we have the following completeness theorem stating that if the
degrees of h(x) ∈ R[x] and ui(x,y) ∈

∑
R[x,y]2, vj(x, z) ∈

∑
R[x, z]2, i =

1, . . . , m, j = 1, . . . , n, are large enough, h(x) can be synthesized definitely via
solving (9).

Theorem 7 (Completeness). For Problem 1, there must be polynomials
ui(x,y) ∈ RN [x,y] (i = 1, . . . , m), vj(x, z) ∈ RN [x, z] (j = 1, . . . , n) and
h(x) ∈ RN [x] satisfying (11) for some positive integer N , where Rk[·] stands
for the family of polynomials of degree no more than k.

Proof. This is an immediate result of Theorem 5. ��

Example 2. Consider two contradictory formulas φ and ψ defined by

f1(x, y, z, a1, b1, c1, d1) ≥ 0 ∧ f2(x, y, z, a1, b1, c1, d1) ≥ 0 ∧ f3(x, y, z, a1, b1, c1, d1) ≥ 0,

g1(x, y, z, a2, b2, c2, d2) ≥ 0 ∧ g2(x, y, z, a2, b2, c2, d2) ≥ 0 ∧ g3(x, y, z, a2, b2, c2, d2) ≥ 0,

respectively, where

f1 = 4 − x2 − y2 − z2 − a2
1 − b2

1 − c2
1 − d2

1, f2 = −y4 + 2x4 − a4
1 − 1/100,

f3 = z2 − b2
1 − c2

1 − d2
1 − x − 1, g1 = 4 − x2 − y2 − z2 − a2

2 − b2
2 − c2

2 − d2
2,

g2 = x2 − y − a2 − b2 − d2
2 − 3, g3 = x.

It is easy to observe that φ and ψ satisfy the conditions in Problem 1. Since
there are local variables in φ and ψ and the degree of f2 is 4, the interpolant
generation methods in [7] and [10] are not applicable. We get a concrete SDP
problem of the form (9) by setting the degree of the polynomial h(x, y, z) in (9)
to be 2. Using the MATLAB package YALMIP [23] and Mosek [28], we obtain

h(x, y, z) = − 416.7204 − 914.7840x + 472.6184y + 199.8985x2 + 190.2252y2

+ 690.4208z2 − 187.1592xy.

Pictorially, we plot Px,y,z(φ(x, y, z, a1, b1, c1, d1)), Px,y,z(ψ(x, y, z, a2, b2, c2,
d2)) and {(x, y, z) | h(x, y, z) > 0} in Fig. 2. It is evident that h(x, y, z) as
presented above for dh = 2 is a real interpolant for φ(x, y, z, a, b, c, d) and
ψ(x, y, z, a, b, c, d).
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5 Avoidance of the Unsoundness Due to Numerical Error
in SDP

Fig. 2. Example 2. (Red region: Px,y,z

(φ(x, y, z, a1, b1, c1, d1)); green region:
Px,y,z(ψ(x, y, z, a2, b2, c2, d2)); gray region:
{(x, y, z) | h(x, y, z) > 0}.) (Color figure
online)

In this section, we discuss how to
avoid the unsoundness of our app-
roach caused by numerical error in
SDP based on the work in [32].

A square matrix A is positive
semidefinite if A is real symmetric
and all its eigenvalues are nonnegative,
denote by A � 0.

In order to solve formula (9) to
obtain h(x), we first need to fix a
degree bound of ui, vj and h, say
2d, d ∈ N. It is well-known that any
u(x) ∈

∑
R[x]2 with degree 2d can be

represented by

u(x) ≡ Ed(x)T CuEd(x), (10)

where Cu ∈ R
(r+d

d )×(r+d
d ) with Cu �

0, Ed(x) is a column vector with all
monomials in x, whose total degree is
not greater than d, and Ed(x)T stands
for the transposition of Ed(x). Equaling the corresponding coefficient of each
monomial whose degree is less than or equal to 2d at the two sides of (10), we
can get a linear equation system as

tr(Au,kCu) = bu,k, k = 1, . . . , Ku, (11)

where Au,k ∈ R
(r+d

d )×(r+d
d ) is constant matrix, bu,k ∈ R is constant, tr(A) stands

for the trace of matrix A. Thus, searching for ui, vj and h satisfying (9) can be
reduced to the following SDP problem:

find : Cu1 , . . . , Cum
, Cv1 , . . . , Cvn

, Ch,

s.t. tr(Aui,kCui
) = bui,k, i = 1, . . . , m, k = 1, . . . , Kui

,

tr(Avj ,kCvj
) = bvj ,k, j = 1, . . . , n, k = 1, . . . , Kvj

,

tr(Ah,kCh) = bh,k, k = 1, . . . , Kh,

diag(Cu1 , . . . , Cum
, Cv1 , . . . , Cvn

, Ch−1−uf , C−h−1−vg) � 0,

(12)

where Ch−1−uf is the matrix corresponding to polynomial h − 1 −
∑m

i=1 uifi,
which is a linear combination of Cu1 , . . . , Cum

and Ch; similarly, C−h−1−vg is
the matrix corresponding to polynomial −h − 1 −

∑n
j=1 vjgj , which is a linear

combination of Cv1 , . . . , Cvn
and Ch; and diag(C1, . . . , Ck) is a block-diagonal

matrix of C1, . . . , Ck.
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Let D be the dimension of C = diag(Cu1 , . . . , C−h−1−vg), i.e.,
diag(Cu1 , . . . , C−h−1−vg) ∈ R

D×D and Ĉ be the approximate solution to (12)
returned by calling a numerical SDP solver, the following theorem is proved in
[32].

Theorem 8 ([32], Theorem 3). C � 0 if there exists C̃ ∈ F
D×D such that

the following conditions hold: 1. C̃ij = Cij, for any i �= j; 2. C̃ii ≤ Cii − α, for
any i; and 3. the Cholesky algorithm implemented in floating-point arithmetic
can conclude that C̃ is positive semi-definite, where F is a floating-point format,
α = (D+1)κ

1−(2D+2)κtr(C) + 4(D + 1)(2(D + 2) + maxi{Cii})η, in which κ is the unit
roundoff of F and η is the underflow unit of F.

Corollary 2. Let C̃ ∈ F
D×D. Suppose that (D+1)Dκ

1−(2D+2)κ + 4(D + 1)η ≤ 1
2 , β =

(D+1)κ
1−(2D+2)κtr(C̃) + 4(D + 1)(2(D + 2) + maxi{C̃ii})η > 0, where F is a floating-

point format. Then C̃+2βI � 0 if the Cholesky algorithm based on floating-point
arithmetic succeeds on C̃, i.e., concludes that C̃ is positive semi-definite.

According to Remark 5 in [32], for IEEE 754 binary64 format with rounding
to nearest, κ = 2−53(� 10−16) and η = 2−1075(� 10−323). In this case, the order
of magnitude of β is 10−10 and (D+1)Dκ

1−(2D+2)κ +4(D+1)η is 10−13, much less than 1
2 .

Obviously, β becomes smaller when the length of binary format becomes longer.
W.l.o.g., we suppose that the Cholesky algorithm succeed in computing Ĉ the
solution of (12), which is reasonable as if an SDP solver returns a solution Ĉ,
then Ĉ should be considered to be positive semi-definite in the sense of numeric
computation.

So, by Corollary 2, we have Ĉ +2βI � 0 holds, where I is the identity matrix
with the corresponding dimension. Then we have

diag(Ĉu1 , . . . , Ĉum
, Ĉv1 , . . . , Ĉvn

, Ĉh−1−uf , Ĉ−h−1−vg) + 2βI � 0.

Let ε = maxp∈P,1≤i≤Kp
|tr(Ap,iĈp) − bp,i|, where P = {u1, . . . , um,

v1, . . . , vn, h}, which can be regarded as the tolerance of the SDP solver. Since
|tr(Ap,iCp) − bp,i| is the error term for each monomial of p, i.e., ε can be con-
sidered as the error bound on the coefficients of polynomials ui, vj and h, for
any polynomial ûi ( v̂j and ĥ), computed from (11) by replacing Cu with the
corresponding Ĉu, there exists a corresponding remainder term Rui

(resp. Rvj

and Rh) with degree not greater than 2d, whose coefficients are bounded by ε.
Hence, we have

ûi + Rui
+ 2βEd(x,y)T Ed(x,y) ∈

∑
R[x,y]2, i = 1, . . . , m,

v̂j + Rvj
+ 2βEd(x, z)T Ed(x, z) ∈

∑
R[x, z]2, j = 1, . . . , n,

ĥ + Rh − 1 −
m∑

i=1

(ûi + R′
ui

)fi + 2βEd(x,y)T Ed(x,y) ∈
∑

R[x,y]2,

−ĥ + R′
h − 1 −

m∑

j=1

(v̂j + R′
vj

)gj + 2βEd(x, z)T Ed(x, z) ∈
∑

R[x, z]2.

(13)
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Now, in order to avoid unsoundness of our approach caused by the numerical
issue due to SDP, we have to prove

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ > 0, (14)

g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ ĥ < 0. (15)

Regarding (14), let R2d,x be a polynomial in R[|x|], whose total degree is 2d,
and all coefficients are 1, e.g., R2,x,y = 1 + |x| + |y| + |x2| + |xy| + |y2|. Since
S = {(x,y) | f1 ≥ 0 ∧ · · · ∧ fm ≥ 0} is a compact set, then for any polynomial
p ∈ R[x,y], |p| is bounded on S. Let M1 be an upper bound of R2d,x,y on S,
M2 an upper bound of Ed(x,y)T Ed(x,y), and Mfi

an upper bound of fi on S.
Then, |Rui

|, |R′
ui

| and |Rh| are bounded by εM1. Let Exy = Ed(x,y)T Ed(x,y).
So for any (x0,y0) ∈ S, considering the polynomials below at (x0,y0) ∈ S, by
the first and third line in (13),

ĥ ≥ 1 − Rh +
m∑

i=1

(ûi + R′
ui

)fi − 2βExy

≥ 1 − εM1 +
m∑

i=1

(ûi + Rui
+ 2βExy + R′

ui
− Rui

− 2βExy)fi − 2βM2

= 1 − εM1 − 2βM2 +
m∑

i=1

(ûi + Rui
+ 2βExy)fi +

m∑

i=1

(R′
ui

− Rui
− 2βExy)fi

≥ 1 − εM1 − 2βM2 + 0 −
m∑

i=1

(εM1 + εM1 + 2βM2)Mfi

= 1 − (2
m∑

i=1

Mfi
+ 1)M1ε − 2(

m∑

i=1

Mfi
+ 1)M2β.

Whence,

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ ≥ 1 − (2
m∑

i=1

Mfi
+ 1)M1ε − 2(

m∑

i=1

Mfi
+ 1)M2β.

Let S′ = {(x, z) | g1 ≥ 0∧ · · · ∧ gn ≥ 0}, M3 be an upper bound of R2d,x,z on
S′, M4 an upper bound of Ed(x, z)T Ed(x, z) on S′, and Mgj

an upper bound of
gj on S′. Similarly, it follows

g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ −ĥ ≥ 1 − (2
n∑

j=1

Mgj
+ 1)M3ε − 2(

n∑

j=1

Mgj
+ 1)M4β.

So, the following proposition is immediately.

Proposition 2. There exist two positive constants γ1 and γ2 such that

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ ≥ 1 − γ1ε − γ2β, (16)

g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ −ĥ ≥ 1 − γ1ε − γ2β. (17)
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Since ε and β heavily rely on the numerical tolerance and the floating point
representation, it is easy to see that ε and β become small enough with γ1ε < 1

2
and γ2β < 1

2 , if the numerical tolerance is small enough and the length of the
floating point representation is long enough. This implies

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ > 0, g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ −ĥ > 0.

If so, any numerical result ĥ > 0 returned by calling an SDP solver to (12)
is guaranteed to be a real interpolant for φ and ψ, i.e., a correct solution to
Problem 1.

Example 3. Consider the numerical result for Example 2 in Sect. 4. Let Mf1 ,
Mf2 , Mf3 , Mg1 , Mg2 , Mg3 , M1, M2, M3, M4 are defined as above. It is easy to
see that

f1 ≥ 0 ⇒|x| ≤ 2 ∧ |y| ≤ 2 ∧ |z| ≤ 2 ∧ |a1| ≤ 2 ∧ |b1| ≤ 2 ∧ |c1| ≤ 2 ∧ |d1| ≤ 2.

Then, by simple calculations, we obtain Mf1 = 4,Mf2 = 32,Mf3 = 3,M1 =
83,M2 = 29. Thus,

(2
m∑

i=1

Mfi
+ 1)M1 = 6557, 2(

m∑

i=1

Mfi
+ 1)M2 = 2320.

Also, since

g1 ≥ 0 ⇒|x| ≤ 2 ∧ |y| ≤ 2 ∧ |z| ≤ 2 ∧ |a2| ≤ 2 ∧ |b2| ≤ 2 ∧ |c2| ≤ 2 ∧ |d2| ≤ 2,

we obtain Mg1 = 4,Mg2 = 7,Mg3 = 2,M3 = 83,M4 = 29. Thus,

(2
m∑

i=1

Mgi
+ 1)M3 = 2241, 2(

m∑

i=1

Mgi
+ 1)M4 = 812.

Consequently, we have γ1 = 6557 and γ2 = 2320 in Proposition 2.
Due to the fact that the default error tolerance is 10−8 in the SDP solver

Mosek and h is rounding to 4 decimal places, we have ε = 10−4

2 . In addition, as
the absolute value of each element in Ĉ is less than 103, and the dimension of
D is less than 103, we obtain

β =
(D + 1)κ

1 − (2D + 2)κ
tr(C̃) + 4(D + 1)(2(D + 2) + max

i
(C̃ii))η ≤ 10−6.

Consequently, γ1ε ≤ 6557 · 10−4

2 < 1
2 , γ2β ≤ 2320 · 10−6 < 1

2 , which imply that
h(x, y, z) > 0 presented in Example 2 is indeed a real interpolant.

Remark 1. Besides, the result could be verified by the following symbolic com-
putation procedure instead: computing Px(φ) and Px(ψ) first by some sym-
bolic tools, such as Redlog [8] which is a package that extends the com-
puter algebra system REDUCE to a computer logic system; then verifying
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x ∈ Px(φ) ⇒ h(x) > 0 and x ∈ Px(ψ) ⇒ h(x) < 0. For this example, Px,y,z(φ)
and Px,y,z(ψ) obtained by Redlog are too complicated and therefore not pre-
sented here. The symbolic computation can verify that h(x, y, z) in this example
is exactly an interpolant, which confirms our conclusion. Alternatively, we can
also solve the SDP in (9) using a SDP solver with infinite precision [15], and
obtain an exact result. But this only works for problems with small size because
a SDP solver with infinite precision is essentially based on symbolic computation
as commented in [15].

6 Generalizing to General Polynomial Formulas

Problem 2. Let φ(x,y) and ψ(x, z) be two polynomial formulas defined as fol-
lows,

φ(x,y) :
m∨

i=1

φi, φi =

Ki∧

k=1

fi,k(x,y) ≥ 0; ψ(x, z) :
n∨

j=1

ψj , ψj =

Sj∧

s=1

gj,s(x, z) ≥ 0,

where all fi,k and gj,s are polynomials. Suppose φ∧ψ |= ⊥, and for i = 1, . . . , m,
j = 1, . . . , n, {(x,y) | φi(x,y)} and {(x, z) | ψj(x, z)} are all semi-algebraic sets
of the Archimedean form. Find a polynomial h(x) such that h(x) > 0 is an
interpolant for φ and ψ.

Theorem 9. For Problem 2, there exists a polynomial h(x) satisfying

∀x ∈ Px(φ(x,y)).h(x) > 0, ∀x ∈ Px(ψ(x, z)).h(x) < 0.

Proof. We just need to prove that Lemma 1 holds for Problem 2 as well. Since
{(x,y) | φi(x,y)} and {(x, z) | ψj(x, z)} are all semi-algebraic sets of the
Archimedean form, then {(x,y) | φ(x,y)} and {(x, z) | ψ(x, z)} both are com-
pact. See {(x,y) | φ(x,y)} or {(x, z) | ψ(x, z)} as S in the proof of Lemma
1, then Lemma 1 holds for Problem 2. Thus, the rest of proof is same as that
forTheorem 2. ��
Corollary 3. Let φ(x,y) and ψ(x, z) be defined as in Problem 2. There must
exist a polynomial h(x) such that h(x) > 0 is an interpolant for φ and ψ.

Theorem 10. Let φ(x,y) and ψ(x, z) be defined as in Problem 2. Then there
exists a polynomial h(x) and

∑m
i=1(Ki + 1) +

∑n
j=1(Sj + 1) sum of squares

polynomials ui,k(x,y) (i = 1, . . . , m, k = 1, . . . , Ki + 1), vj,s(x, z) (j = 1, . . . , n,
s = 1, . . . , Sj) satisfying the following semi-definite constraints such that h(x) >
0 is an interpolant for φ(x,y) and ψ(x, z):

h − 1 =
Ki∑

k=1

ui,kfi,k + ui,Ki+1, i = 1, . . . , m; (18)

− h − 1 =
Sj∑

s=1

vj,sgj,s + vj,Sj+1, j = 1, . . . , n. (19)

Proof. By the property of Archimedean, the proof is same as that for T
heorem 5. ��
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Similarly, Problem 2 can be equivalently reformulated as the problem of
searching for sum of squares polynomials satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(x) − 1 −
Ki∑

k=1

ui,kfi,k ∈
∑

R[x,y]2, i = 1, . . . , m;

− h(x) − 1 −
Sj∑

s=1

vj,sgj,s ∈
∑

R[x, z]2, j = 1, . . . , n;

ui,k ∈
∑

R[x,y]2, i = 1, . . . , m, k = 1, . . . , Ki;

vj,s ∈
∑

R[x, z]2, j = 1, . . . , n, s = 1, . . . , Sj .

(20)

Example 4. Consider

φ(x, y, a1, a2, b1, b2) : (f1 ≥ 0 ∧ f2 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0),
ψ(x, y, c1, c2, d1, d2) : (g1 ≥ 0 ∧ g2 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0),

where

f1 = 16 − (x + y − 4)2 − 16(x − y)2 − a2
1, f2 = x + y − a2

2 − (2 − a2)2,

f3 = 16 − (x + y + 4)2 − 16(x − y)2 − b2
1, f4 = −x − y − b2

2 − (2 − b2)2,

g1 = 16 − 16(x + y)2 − (x − y + 4)2 − c2
1, g2 = y − x − c2

2 − (1 − c2)2,

g3 = 16 − 16(x + y)2 − (x − y − 4)2 − d2
1, g4 = x − y − d2

2 − (1 − d2)2.

We get a concrete SDP problem of the form (20) by setting the degree of h(x, y)
in (20) to be 2. Using the MATLAB package YALMIP and Mosek, we obtain

h(x, y) = −2.3238 + 0.6957x2 + 0.6957y2 + 7.6524xy.

The result is plotted in Fig. 3, and can be verified either by numerical error
analysis as in Example 2 or by a symbolic procedure like REDUCE as described
in Remark 1.

Example 5 (Ultimate). Consider the following example taken from [5], which is
a challenging benchmark to existing approaches for nonlinear interpolant gener-
ation.

φ = (f1 ≥ 0 ∧ f2 ≥ 0 ∨ f3 ≥ 0) ∧ f4 ≥ 0 ∧ f5 ≥ 0 ∨ f6 ≥ 0,

ψ = (g1 ≥ 0 ∧ g2 ≥ 0 ∨ g3 ≥ 0) ∧ g4 ≥ 0 ∧ g5 ≥ 0 ∨ g6 ≥ 0,

where
f1 = 3.8025 − x2 − y2, f2 = y,
f3 = 0.9025 − (x − 1)2 − y2, f4 = (x − 1)2 + y2 − 0.09,
f5 = (x + 1)2 + y2 − 1.1025, f6 = 0.04 − (x + 1)2 − y2,
g1 = 3.8025 − x2 − y2, g2 = −y,
g3 = 0.9025 − (x + 1)2 − y2, g4 = (x + 1)2 + y2 − 0.09,
g5 = (x − 1)2 + y2 − 1.1025, g6 = 0.04 − (x − 1)2 − y2.
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Fig. 3. Example 4. (Red region: Px,y

(φ(x, y, a1, a2, b1, b2)); green region:
Px,y(ψ(x, y, c1, c2, d1, d2)); gray region:
{(x, y) | h(x, y) > 0}.) (Color figure
online)

Fig. 4. Example 5. (Red region: Px,y

(φ(x, y)); green region: Px,y(ψ(x, y));
gray region: {(x, y) | h(x, y) > 0}.)
(Color figure online)

We first convert φ and ψ to the disjunction normal form as:

φ =(f1 ≥ 0 ∧ f2 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f6 ≥ 0),
ψ =(g1 ≥ 0 ∧ g2 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g6 ≥ 0).

We get a concrete SDP problem of the form (20) by setting the degree of h(x, y)
in (20) to be 7. Using the MATLAB package YALMIP and Mosek, keeping the
decimal to four, we obtain

h(x, y) = 1297.5980x + 191.3260y − 3172.9653x3 + 196.5763x2y + 2168.1739xy2

+ 1045.7373y3 + 1885.8986x5 − 1009.6275x4y + 3205.3793x3y2 − 1403.5431x2y3

+ 1842.0669xy4 + 1075.2003y5 − 222.0698x7 + 547.9542x6y − 704.7474x5y2

+ 1724.7008x4y3 − 728.2229x3y4 + 1775.7548x2y5 − 413.3771xy6 + 1210.2617y7.

The result is plotted in Fig. 4, and can be verified either by numerical error
analysis as in Example 2 or by a symbolic procedure like REDUCE as described
in Remark 1.

7 Application to Invariant Generation

In this section, as an application, we sketch how to apply our approach to invari-
ant generation in program verification, the details can be found in [11].

In [22], Lin et al. proposed a framework for invariant generation using weakest
precondition, strongest postcondition and interpolation, which consists of two pro-
cedures, i.e., synthesizing invariants by forward interpolation based on strongest
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postcondition and interpolant generation, and by backward interpolation based
on weakest precondition and interpolant generation. In [22], only linear invari-
ants can be synthesized as no powerful approaches are available to synthesize
nonlinear interpolants. Obviously, our results can strengthen their framework by
allowing to generate nonlinear invariants. For example, we can revise the proce-
dure Squeezing Invariant - Forward in their framework and obtain Algorithm 1.

The major revisions include:

– firstly, we exploit our method to synthesize interpolants see line 4 in Algo-
rithm 1;

– secondly, we add a conditional statement for Ai+1 at line 7–10 in Algorithm 1
in order to make Ai+1 to be Archimedean.

The procedure Squeezing Invariant - backward can be revised similarly.

Algorithm 1. Revised Squeezing Invariant - Forward
Input: An annotated loop: {P} while ρ do C {Q}, where P and Q are Archimedean
Output: (yes/no, I), where I is a loop invariant
1: A0 ← P ; B0 ← (¬ρ ∧ ¬Q); i ← 0; j ← 0;
2: while � do
3: if (

∨i
k=0 Ai) ∧ Bj is not satisfiable, (

∨i
k=0 Ai) and Bj are Archimedean then

4: call our method to synthesize an interpolant for (
∨i

k=0 Ai) and Bj , say Ii;
{Use our method to generate interpolant}

5: if {Ii ∧ ρ} C {Ii} then
6: return (yes, Ii);
7: else if Ii is Archimedean then
8: Ai+1 ← sp(Ii ∧ ρ, C);
9: else

10: Ai+1 ← sp(Ai ∧ ρ, C);
11: end if

{sp: a predicate transformer to compute the strongest postcondition of C w.r.t.
Ii ∧ ρ}

12: i ← i + 1; Bj+1 ← B0 ∨ (ρ ∧ wp(C, Bj));
{wp: a predicate transformer to compute the weakest precondition of C w.r.t.
Bj}

13: j ← j + 1;
14: else if Ai is concrete then
15: return (no, ⊥);
16: else
17: while Ai is not concrete do
18: i ← i − 1;
19: end while
20: Ai+1 ← sp(Ai ∧ ρ, C); i ← i + 1;
21: end if
22: end while
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Example 6. Consider a loop program given in Algorithm 2 for controlling the
acceleration of a car adapted from [21]. Suppose we know that vc is in [0, 40] at
the beginning of the loop, we would like to prove that vc < 49.61 holds after the
loop. Since the loop guard is unknown, it means that the loop may terminate
after any number of iterations.

We apply Algorithm 1 to the computation of an invariant to ensure that
vc < 49.61 holds. Since vc is the velocity of car, 0 ≤ vc < 49.61 is required to hold
in order to maintain safety. Via Algorithm 1, we have A0 = {vc | vc(40−vc) ≥ 0}
and B = {vc | vc < 0} ∪ {vc | vc ≥ 49.61}. Here, we replace B with B′ =
[−2,−1]∪[49.61, 55]), i.e., B′ = {vc | (vc+2)(−1−vc) ≥ 0∨(vc−49.61)(55−vc) ≥
0}, in order to make it with Archimedean form.

Firstly, it is evident that A0 : vc(40 − vc) ≥ 0 implies A0 ∧ B′ |= ⊥. By
applying our approach, we obtain an interpolant

I0 : 1.4378 + 3.3947 ∗ vc − 0.083 ∗ vc2 > 0

for A0 and B′. It can be verified that {I0}C {I0} (line 5) does not hold, where
C stands for the loop body.

Secondly, by setting A1 = sp(I0, C) (line 8) and re-calling our approach, we
obtain an interpolant

I1 : 2.0673 + 3.0744 ∗ vc − 0.0734 ∗ vc2 > 0

for A0 ∪ A1 and B′. Likewise, it can be verified that {I1}C {I1} (line 5) does
not hold.

Algorithm 2. Control code for accelerating a car
1: /* Pre: vc ∈ [0, 40] */
2: while unknown do
3: fa ← 0.5418 ∗ vc ∗ vc;
4: fr ← 1000 − fa;
5: ac ← 0.0005 ∗ fr;
6: vc ← vc + ac;
7: end while
8: /* Post: vc < 49.61 */

Thirdly, repeating the above procedure again, we obtain an interpolant

I2 : 2.2505 + 2.7267 ∗ vc − 0.063 ∗ vc2 > 0,

and it can be verified that {I2}C {I2} holds, implying that I2 is an invariant.
Moreover, it is trivial to verify that I2 ⇒ vc < 49.61.

Consequently, we have the conclusion that I2 is an inductive invariant which
witnesses the correctness of the loop.
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8 Conclusion

In this paper we propose a sound and complete method to synthesize Craig inter-
polants for mutually contradictory polynomial formulas φ(x,y) and ψ(x, z), with
the form f1 ≥ 0∧ · · · ∧ fn ≥ 0, where fi’s are polynomials in x,y or x, z and the
quadratic module generated by fi’s is Archimedean. The interpolant is generated
by solving a semi-definite programming problem, which is a generalization of the
method in [7] dealing with mutually contradictory formulas with the same set of
variables and the method in [10] dealing with mutually contradictory formulas
with concave quadratic polynomial inequalities. As an application, we apply our
approach to invariant generation in program verification.

As a future work, we would like to consider interpolant synthesizing for for-
mulas with strict polynomial inequalities. Also, it deserves to consider how to
synthesize interpolants for the combination of non-linear formulas and other
theories based on our approach and other existing ones, as well as further appli-
cations to the verification of programs and hybrid systems.
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Abstract. Given an unsatisfiable formula F in CNF, i.e. a set of clauses,
the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify
a minimal subset of clauses N ⊆ F such that N is unsatisfiable. The
emerging viewpoint of MUSes as the root causes of unsatisfiability has
led MUSes to find applications in a wide variety of diagnostic approaches.
Recent advances in identification and enumeration of MUSes have moti-
vated researchers to discover applications that can benefit from rich infor-
mation about the set of MUSes. One such extension is that of counting
the number of MUSes. The current best approach for MUS counting is
to employ a MUS enumeration algorithm, which often does not scale for
the cases with a reasonably large number of MUSes.

Motivated by the success of hashing-based techniques in the context
of model counting, we design the first approximate MUS counting proce-
dure with (ε, δ) guarantees, called AMUSIC. Our approach avoids exhaus-
tive MUS enumeration by combining the classical technique of univer-
sal hashing with advances in QBF solvers along with a novel usage of
union and intersection of MUSes to achieve runtime efficiency. Our pro-
totype implementation of AMUSIC is shown to scale to instances that
were clearly beyond the realm of enumeration-based approaches.

1 Introduction

Given an unsatisfiable Boolean formula F as a set of clauses {f1, f2, . . . fn}, also
known as conjunctive normal form (CNF), a set N of clauses is a Minimal Unsat-
isfiable Subset (MUS) of F iff N ⊆ F , N is unsatisfiable, and for each f ∈ N
the set N \ {f} is satisfiable. Since MUSes can be viewed as representing the
minimal reasons for unsatisfiability of a formula, MUSes have found applications
in wide variety of domains ranging from diagnosis [45], ontologies debugging [1],
spreadsheet debugging [29], formal equivalence checking [20], constrained count-
ing and sampling [28], and the like. As the scalable techniques for identification
of MUSes appeared only about decade and half ago, the earliest applications
primarily focused on a reduction to the identification of a single MUS or a
small set of MUSes. With an improvement in the scalability of MUS identifica-
tion techniques, researchers have now sought to investigate extensions of MUSes
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and their corresponding applications. One such extension is MUS counting, i.e.,
counting the number of MUSes of F . Hunter and Konieczny [26], Mu [45], and
Thimm [56] have shown that the number of MUSes can be used to compute
different inconsistency metrics for general propositional knowledge bases.

In contrast to the progress in the design of efficient MUS identification tech-
niques, the work on MUS counting is still in its nascent stages. Reminiscent of
the early days of model counting, the current approach for MUS counting is to
employ a complete MUS enumeration algorithm, e.g., [3,12,34,55], to explicitly
identify all MUSes. As noted in Sect. 2, there can be up to exponentially many
MUSes of F w.r.t. |F |, and thus their complete enumeration can be practically
intractable. Indeed, contemporary MUS enumeration algorithms often cannot
complete the enumeration within a reasonable time [10,12,34,47]. In this con-
text, one wonders: whether it is possible to design a scalable MUS counter without
performing explicit enumeration of MUSes?

The primary contribution of this paper is a probabilistic counter, called
AMUSIC, that takes in a formula F , tolerance parameter ε, confidence parameter
δ, and returns an estimate guaranteed to be within (1 + ε)-multiplicative factor
of the exact count with confidence at least 1 − δ. Crucially, for F defined over n
clauses, AMUSIC explicitly identifies only O(log n · log(1/δ) · (ε)−2) many MUSes
even though the number of MUSes can be exponential in n.

The design of AMUSIC is inspired by recent successes in the design of efficient
XOR hashing-based techniques [15,17] for the problem of model counting, i.e.,
given a Boolean formula G, compute the number of models (also known as
solutions) of G. We observe that both the problems are defined over a power-set
structure. In MUS counting, the goal is to count MUSes in the power-set of F ,
whereas in model counting, the goal is to count models in the power-set that
represents all valuations of variables of G. Chakraborty et al. [18,52] proposed an
algorithm, called ApproxMC, for approximate model counting that also provides
the (ε, δ) guarantees. ApproxMC is currently in its third version, ApproxMC3 [52].
The base idea of ApproxMC3 is to partition the power-set into nCells small cells,
then pick one of the cells, and count the number inCell of models in the cell. The
total model count is then estimated as nCells × inCell . Our algorithm for MUS
counting is based on ApproxMC3. We adopt the high-level idea to partition the
power-set of F into small cells and then estimate the total MUS count based on a
MUS count in a single cell. The difference between ApproxMC3 and AMUSIC lies
in the way of counting the target elements (models vs. MUSes) in a single cell;
we propose novel MUS specific techniques to deal with this task. In particular,
our contribution is the following:

– We introduce a QBF (quantified Boolean formula) encoding for the problem
of counting MUSes in a single cell and use a ΣP

3 oracle to solve it.
– Let UMUF and IMUF be the union and the intersection of all MUSes of F ,

respectively. We observe that every MUS of F (1) contains IMUF and (2) is
contained in UMUF . Consequently, if we determine the sets UMUF and IMUF ,
then we can significantly speed up the identification of MUSes in a cell.
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– We propose a novel approaches for computing the union UMUF and the inter-
section IMUF of all MUSes of F .

– We implement AMUSIC and conduct an extensive empirical evaluation on
a set of scalable benchmarks. We observe that AMUSIC is able to compute
estimates for problems clearly beyond the reach of existing enumeration-based
techniques. We experimentally evaluate the accuracy of AMUSIC. In partic-
ular, we observe that the estimates computed by AMUSIC are significantly
closer to true count than the theoretical guarantees provided by AMUSIC.

Our work opens up several new interesting avenues of research. From a the-
oretical perspective, we make polynomially many calls to a ΣP

3 oracle while
the problem of finding a MUS is known to be in FPNP , i.e. a MUS can be
found in polynomial time by executing a polynomial number of calls to an NP-
oracle [19,39]. Contrasting this to model counting techniques, where approximate
counter makes polynomially many calls to an NP-oracle when the underlying
problem of finding satisfying assignment is NP-complete, a natural question is
to close the gap and seek to design a MUS counting algorithm with polynomially
many invocations of an FPNP oracle. From a practitioner perspective, our work
calls for a design of MUS techniques with native support for XORs; the pursuit
of native support for XOR in the context of SAT solvers have led to an exciting
line of work over the past decade [52,53].

2 Preliminaries and Problem Formulation

A Boolean formula F = {f1, f2, . . . , fn} in a conjunctive normal form (CNF)
is a set of Boolean clauses over a set of Boolean variables Vars(F ). A Boolean
clause is a set {l1, l2, . . . , lk} of literals. A literal is either a variable x ∈ Vars(F )
or its negation ¬x. A truth assignment I to the variables Vars(F ) is a mapping
Vars(F ) → {1, 0}. A clause f ∈ F is satisfied by an assignment I iff I(l) = 1
for some l ∈ f or I(k) = 0 for some ¬k ∈ f . The formula F is satisfied by I
iff I satisfies every f ∈ F ; in such a case I is called a model of F . Finally, F is
satisfiable if it has a model; otherwise F is unsatisfiable.

A QBF is a Boolean formula where each variable is either universally (∀) or
existentially (∃) quantified. We write Q1 · · · Qk-QBF, where Q1, . . . Qk ∈ {∀,∃},
to denote the class of QBF with a particular type of alternation of the quantifiers,
e.g., ∃∀-QBF or ∃∀∃-QBF. Every QBF is either true (valid) or false (invalid).
The problem of deciding validity of a formula in Q1 · · · Qk-QBF where Q1 = ∃
is ΣP

k -complete [43].
When it is clear from the context, we write just formula to denote either

a QBF or a Boolean formula in CNF. Moreover, throughout the whole text, we
use F to denote the input Boolean Formula in CNF. Furthermore, we will use
capital letters, e.g., S,K,N , to denote other CNF formulas, small letters, e.g.,
f, f1, fi, to denote clauses, and small letters, e.g., x, x′, y, to denote variables.

Given a set X, we write P(X) to denote the power-set of X, and |X| to denote
the cardinality of X. Finally, we write Pr [O : P] to denote the probability of an
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Fig. 1. Illustration of the power set of the formula F from the Example 1. We denote
individual subsets of F using the bit-vector representation. The subsets with a dashed
border are the unsatisfiable subsets, and the others are satisfiable subsets. The MUSes
are filled with a background color. (Color figure online)

outcome O when sampling from a probability space P. When P is clear from the
context, we write just Pr [O].

Minimal Unsatisfiability

Definition 1 (MUS). A set N , N ⊆ F , is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for all f ∈ N the set N \{f} is satisfiable.

Note that the minimality concept used here is set minimality, not minimum
cardinality. Therefore, there can be MUSes with different cardinalities. In gen-
eral, there can be up to exponentially many MUSes of F w.r.t. |F | (see the
Sperner’s theorem [54]). We use AMUF to denote the set of all MUSes of F . Fur-
thermore, we write UMUF and IMUF to denote the union and the intersection of all
MUSes of F, respectively. Finally, note that every subset S of F can be expressed
as a bit-vector over the alphabet {0, 1}; for example, if F = {f1, f2, f3, f4} and
S = {f1, f4}, then the bit-vector representation of S is 1001.

Definition 2. Let N be an unsatisfiable subset of F and f ∈ N . The clause f
is necessary for N iff N \ {f} is satisfiable.

The necessary clauses are sometimes also called transition [6] or critical [2]
clauses. Note that a set N is a MUS iff every f ∈ N is necessary for N . Also,
note that a clause f ∈ F is necessary for F iff f ∈ IMUF .

Example 1. We demonstrate the concepts on an example, illustrated in Fig. 1.
Assume that F = {f1 = {x1}, f2 = {¬x1}, f3 = {x2}, f4 = {¬x1,¬x2}}. In this
case, AMUF = {{f1, f2}, {f1, f3, f4}}, IMUF = {f1}, and UMUF = F .

Hash Functions

Let n and m be positive integers such that m < n. By {1, 0}n we denote the set
of all bit-vectors of length n over the alphabet {1, 0}. Given a vector v ∈ {1, 0}n
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and i ∈ {1, . . . , n}, we write v[i] to denote the i-th bit of v. A hash function h
from a family Hxor(n,m) of hash functions maps {1, 0}n to {1, 0}m. The family
Hxor(n,m) is defined as {h |h(y)[i] = ai,0⊕(

⊕n
k=1(ai,k∧y[k])) for all 1 ≤ i ≤ m},

where ⊕ and ∧ denote the Boolean XOR and AND operators, respectively, and
ai,k ∈ {1, 0} for all 1 ≤ i ≤ m and 1 ≤ k ≤ n.

To choose a hash function uniformly at random from Hxor(n,m), we ran-
domly and independently choose the values of ai,k. It has been shown [24]
that the family Hxor(n,m) is pairwise independent, also known as strongly 2-
universal. In particular, let us by h ← Hxor(n,m) denote the probability space
obtained by choosing a hash function h uniformly at random from Hxor(n,m).
The property of pairwise independence guarantees that for all α1, α2 ∈ {1, 0}m

and for all distinct y1, y2 ∈ {1, 0}n, Pr [
∧2

i=1 h(yi) = αi : h ← Hxor(n,m)] =
2−2m.

We say that a hash function h ∈ Hxor(n,m) partitions {0, 1}n into 2m cells.
Furthermore, given a hash function h ∈ Hxor(n,m) and a cell α ∈ {1, 0}m of h,
we define their prefix-slices. In particular, for every k ∈ {1, . . . , m}, the kth prefix
of h, denoted h(k), is a map from {1, 0}n to {1, 0}k such that h(k)(y)[i] = h(y)[i]
for all y ∈ {1, 0}n and for all i ∈ {1, . . . , k}. Similarly, the kth prefix of α, denoted
α(k), is an element of {1, 0}k such that α(k)[i] = α[i] for all i ∈ {1, . . . , k}.
Intuitively, a cell α(k) of h(k) originates by merging the two cells of h(k+1) that
differ only in the last bit.

In our work, we use hash functions from the family Hxor(n,m) to partition
the power-set P(F ) of the given Boolean formula F into 2m cells. Furthermore,
given a cell α ∈ {0, 1}m, let us by AMU〈F,h,α〉 denote the set of all MUSes in the
cell α; formally, AMU〈F,h,α〉 = {M ∈ AMUF |h(bit(M)) = α}, where bit(M) is the
bit-vector representation of M . The following observation is crucial for our work.

Observation 1. For every formula F , m ∈ {1, . . . , |F | − 1}, h ∈ Hxor(|F |,m),
and α ∈ {0, 1}m it holds that: AMU〈F,h(i),α(i)〉 ⊇ AMU〈F,h(j),α(j)〉 for every i < j.

Example 2. Assume that we are given a formula F such that |F | = 4 and a hash
function h ∈ Hxor(4, 2) that is defined via the following values of individual ai,k:

a1,0 = 0, a1,1 = 1, a1,2 = 1, a1,3 = 0, a1,4 = 1
a2,0 = 0, a2,1 = 1, a2,2 = 0, a2,3 = 0, a2,4 = 1

The hash function partitions P(F ) into 4 cells. For example, h(1100) = 01
since h(1100)[1] = 0 ⊕ (1 ∧ 1) ⊕ (1 ∧ 1) ⊕ (0 ∧ 0) ⊕ (1 ∧ 0) = 0 and h(1100)[2] =
0⊕ (1∧1)⊕ (0∧1)⊕ (0∧0)⊕ (1∧0) = 1. Figure 2 illustrates the whole partition
and also illustrates the partition given by the prefix h(1) of h.

2.1 Problem Definitions

In this paper, we are concerned with the following problems.
Name: (ε, δ)-#MUS problem
Input: A formula F , a tolerance ε > 0, and a confidence 1 − δ ∈ (0, 1].
Output: A number c such that Pr [|AMUF |/(1+ ε) ≤ c ≤ |AMUF | · (1+ ε)] ≥ 1− δ.
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(a) Illustration of h(2) = h with 4 cells:
α1 = 00 , α2 = 01 , α3 = 10 ,

α4 = 11 .
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(b) Illustration of h(1) with 2 cells:
α1 = 0 , α2 = 1 .

Fig. 2. Illustration of the partition of P(F ) by h = h(2) and h(1) from Example 2. In
the case of h, we use 4 colors, orange, pink, white, and blue, to highlight its four cells.
In case of h(1), there are only two cells: the white and the blue cells are merged into
a white cell, and the pink and the orange cells are merged into an orange cell. (Color
figure online)

Name: MUS-membership problem
Input: A formula F and a clause f ∈ F .
Output: True if there is a MUS M ∈ AMUF such that f ∈ M and False otherwise.

Name: MUS-union problem
Input: A formula F .
Output: The union UMUF of all MUSes of F .

Name: MUS-intersection problem
Input: A formula F .
Output: The intersection IMUF of all MUSes of F .

Name: (ε, δ)-#SAT problem
Input: A formula F , a tolerance ε > 0, and a confidence 1 − δ ∈ (0, 1].
Output: A number m such that Pr [m/(1 + ε) ≤ c ≤ m · (1 + ε)] ≥ 1 − δ, where
m is the number of models of F .

The main goal of this paper is to provide a solution to the (ε, δ)-#MUS prob-
lem. We also deal with the MUS-membership, MUS-union and MUS-intersection
problems since these problems emerge in our approach for solving the (ε, δ)-#MUS
problem. Finally, we do not focus on solving the (ε, δ)-#SAT problem, however
the problem is closely related to the (ε, δ)-#MUS problem.

3 Related Work

It is well-known (see e.g., [21,36,51]) that a clause f ∈ F belongs to IMUF iff f is
necessary for F . Therefore, to compute IMUF , one can simply check each f ∈ F
for being necessary for F . We are not aware of any work that has focused on the
MUS-intersection problem in more detail.
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The MUS-union problem was recently investigated by Mencia et al. [42]. Their
algorithm is based on gradually refining an under -approximation of UMUF until
the exact UMUF is computed. Unfortunately, the authors experimentally show
that their algorithm often fails to find the exact UMUF within a reasonable time
even for relatively small input instances (only an under-approximation is com-
puted). In our work, we propose an approach that works in the other way: we
start with an over-approximation of UMUF and gradually refine the approxima-
tion to eventually get UMUF . Another related research was conducted by Jan-
ota and Marques-Silva [30] who proposed several QBF encodings for solving the
MUS-membership problem. Although they did not focus on finding UMUF , one can
clearly identify UMUF by solving the MUS-membership problem for each f ∈ F .

As for counting the number of MUSes of F , we are not aware of any previous
work dedicated to this problem. Yet, there have been proposed plenty of algo-
rithms and tools (e.g., [3,9,11,12,35,47]) for enumerating/identifying all MUSes
of F . Clearly, if we enumerate all MUSes of F , then we obtain the exact value of
|AMUF |, and thus we also solve the (ε, δ)-#MUS problem. However, since there can
be up to exponentially many of MUSes w.r.t. |F |, MUS enumeration algorithms
are often not able to complete the enumeration in a reasonable time and thus
are not able to find the value of |AMUF |.

Very similar to the (ε, δ)-#MUS problem is the (ε, δ)-#SAT problem. Both
problems involve the same probabilistic and approximation guarantees. More-
over, both problems are defined over a power-set structure. In MUS counting,
the goal is to count MUSes in P(F ), whereas in model counting, the goal is to
count models in P(Vars(F )). In this paper, we propose an algorithm for solving
the (ε, δ)-#MUS problem that is based on ApproxMC3 [15,17,52]. In particular,
we keep the high-level idea of ApproxMC3 for processing/exploring the power-set
structure, and we propose new low-level techniques that are specific for MUS
counting.

4 AMUSIC: A Hashing-Based MUS Counter

We now describe AMUSIC, a hashing-based algorithm designed to solve the (ε, δ)-
#MUS problem. The name of the algorithm is an acronym for Approximate Min-
imal Unsatisfiable Subsets Implicit Counter. AMUSIC is based on ApproxMC3,
which is a hashing-based algorithm to solve (ε, δ)-#SAT problem. As such, while
the high-level structure of AMUSIC and ApproxMC3 share close similarities, the
two algorithms differ significantly in the design of core technical subroutines.

We first discuss the high-level structure of AMUSIC in Sect. 4.1. We then
present the key technical contributions of this paper: the design of core subrou-
tines of AMUSIC in Sects. 4.3, 4.4 and 4.5.

4.1 Algorithmic Overview

The main procedure of AMUSIC is presented in Algorithm 1. The algorithm takes
as an input a Boolean formula F in CNF, a tolerance ε (> 0), and a confidence
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Algorithm 1: AMUSIC(F, ε, δ)
1 threshold ← 1 + 9.84(1 + ε

1+ε
)(1 + 1

ε
)2

2 Y ← FindMUSes(F, threshold)
3 if |Y | < threshold then return |Y |
4 G ← getUMU(F)

5 IG ← getIMU(G)

6 nCells ← 2; C ← emptyList; iter ← 0
7 while iter < �17 log2(3/δ)� do
8 iter ← iter + 1
9 (nCells, nSols) ← AMUSICCore(G, IG, threshold, nCells)

10 if nCells �= null then AddToList(C, nCells × nSols)

11 return FindMedian(C)

parameter δ ∈ (0, 1], and returns an estimate of |AMUF | within tolerance ε and
with confidence at least 1 − δ. Similar to ApproxMC3, we first check whether
|AMUF | is smaller than a specific threshold that is a function of ε. This check is
carried out via a MUS enumeration algorithm, denoted FindMUSes, that returns
a set Y of MUSes of F such that |Y | = min(threshold, |AMUF |). If |Y | < threshold,
the algorithm terminates while identifying the exact value of |AMUF |. In a sig-
nificant departure from ApproxMC3, AMUSIC subsequently computes the union
(UMUF ) and the intersection (IMUF ) of all MUSes of F by invoking the subrou-
tines GetUMU and GetIMU, respectively. Through the lens of set representation
of the CNF formulas, we can view UMUF as another CNF formula, G. Our key
observation is that AMUF = AMUG (see Sect. 4.2), thus instead of working with the
whole F , we can focus only on G. The rest of the main procedure is similar to
ApproxMC3, i.e., we repeatedly invoke the core subroutine called AMUSICCore.
The subroutine attempts to find an estimate c of |AMUG| within the tolerance
ε. Briefly, to find the estimate, the subroutine partitions P(G) into nCells cells,
then picks one of the cells, and counts the number nSols of MUSes in the cell.
The pair (nCells, nSols) is returned by AMUSICCore, and the estimate c of |AMUG|
is then computed as nSols × nCells. There is a small chance that AMUSICCore
fails to find the estimate; it such a case nCells = nSols = null. Individual esti-
mates are stored in a list C. After the final invocation of AMUSICCore, AMUSIC
computes the median of the list C and returns the median as the final estimate
of |AMUG|. The total number of invocations of AMUSICCore is in O(log(1/δ))
which is enough to ensure the required confidence 1 − δ (details on assurance of
the (ε, δ) guarantees are provided in Sect. 4.2).

We now turn to AMUSICCore which is described in Algorithm 2. The parti-
tion of P(G) into nCells cells is made via a hash function h from Hxor(|G|,m),
i.e. nCells = 2m. The choice of m is a crucial part of the algorithm as it regu-
lates the size of the cells. Intuitively, it is easier to identify all MUSes of a small
cell; however, on the contrary, the use of small cells does not allow to achieve a
reasonable tolerance. Based on ApproxMC3, we choose m such that a cell given
by a hash function h ∈ Hxor(|G|,m) contains almost threshold many MUSes. In
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Algorithm 2: AMUSICCore(G, IG, threshold, prevNCells)
1 Choose h at random from Hxor (|G|, |G| − 1)

2 Choose α at random from {0, 1}|G|−1

3 nSols ← CountInCell(G, IG, h, α, threshold)
4 if nSols = threshold then return (null, null)
5 mPrev ← log2 prevNCells
6 (nCells, nSols) ← LogMUSSearch(G, IG, h, α, threshold,mPrev)
7 return (nCells, nSols )

particular, the computation of AMUSICCore starts by choosing at random a hash
function h from Hxor(|G|, |G|−1) and a cell α at random from {0, 1}|G|−1. Sub-
sequently, the algorithm tends to identify mth prefixes h(m) and α(m) of h and α,
respectively, such that |AMU〈G,h(m),α(m)〉| < threshold and |AMU〈G,h(m−1),α(m−1)〉| ≥
threshold. Recall that AMU〈G,h(1),α(1)〉 ⊇ · · · ⊇ AMU〈G,h(|G|−1),α(|G|−1)〉 (Observa-
tion 1, Sect. 2). We also know that the cell α(0), i.e. the whole P(G), contains at
least threshold MUSes (see Algorithm 1, line 3). Consequently, there can exist at
most one such m, and it exists if and only if |AMU〈G,h(|G|−1),α(|G|−1)〉| < threshold.
Therefore, the algorithm first checks whether |AMU〈G,h(|G|−1),α(|G|−1)〉| < threshold.
The check is carried via a procedure CountInCell that returns the number nSols =
min(|AMU〈G,h(|G|−1),α(|G|−1)〉|, threshold). If nSols = threshold, then AMUSICCore
fails to find the estimate of |AMUG| and terminates. Otherwise, a procedure
LogMUSSearch is used to find the required value of m together with the num-
ber nSols of MUSes in α(m). The implementation of LogMUSSearch is directly
adopted from ApproxMC3 and thus we do not provide its pseudocode here (note
that in ApproxMC3 the procedure is called LogSATSearch). We only briefly sum-
marize two main ingredients of the procedure. First, it has been observed that
the required value of m is often similar for repeated calls of AMUSICCore. There-
fore, the algorithm keeps the value mPrev of m from previous iteration and first
test values near mPrev. If none of the near values is the required one, the algo-
rithm exploits that AMU〈G,h(1),α(1)〉 ⊇ · · · ⊇ AMU〈G,h(|G|−1),α(|G|−1)〉, which allows
it to find the required value of m via the galloping search (variation of binary
search) while performing only log |G| calls of CountInCell.

Note that in ApproxMC3, the procedure CountInCell is called BSAT and it is
implemented via an NP oracle, whereas we use a ΣP

3 oracle to implement the
procedure (see Sect. 4.3). The high-level functionality is the same: the procedures
use up to threshold calls of the oracle to check whether the number of the target
elements (models vs. MUSes) in a cell is lower than threshold.

4.2 Analysis and Comparison with ApproxMC3

Following from the discussion above, there are three crucial technical differences
between AMUSIC and ApproxMC3: (1) the implementation of the subroutine
CountInCell in the context of MUS, (2) computation of the intersection IMUF of
all MUSes of F and its usage in CountInCell, and (3) computation of the union
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UMUF of all MUSes of F and invocation of the underlying subroutines with G (i.e.,
UMUF ) instead of F . The usage of CountInCell can be viewed as domain-specific
instantiation of BSAT in the context of MUSes. Furthermore, we use the com-
puted intersection of MUSes to improve the runtime efficiency of CountInCell. It
is perhaps worth mentioning that prior studies have observed that over 99% of
the runtime of ApproxMC3 is spent inside the subroutine BSAT [52]. Therefore,
the runtime efficiency of CountInCell is crucial for the runtime performance of
AMUSIC, and we discuss in detail, in Sect. 4.3, algorithmic contributions in the
context of CountInCell including usage of IMUF . We now argue that the replace-
ment of F with G in line 4 in Algorithm 1 does not affect correctness guarantees,
which is stated formally below:

Lemma 1. For every G′ such that UMUF ⊆ G′ ⊆ F , the following hold:

AMUF = AMUG′ (1)
IMUF = IMUG′ (2)

Proof. (1) Since G′ ⊆ F then every MUS of G′ is also a MUS of F . In the other
direction, every MUS of F is contained in the union UMUF of all MUSes of F ,
and thus every MUS of F is also a MUS of G′ (⊇ UMUF ).

(2) IMUF =
⋂

M∈AMUF
=

⋂
M∈AMUG′ = IMUG′ .

Equipped with Lemma 1, we now argue that each run of AMUSIC can be
simulated by a run of ApproxMC3 for an appropriately chosen formula. Given
an unsatisfiable formula F = {f1, . . . , f|F |}, let us by BF denote a satisfi-
able formula such that: (1) Vars(BF ) = {x1, . . . , x|F |} and (2) an assignment
I : Vars(BF ) → {1, 0} is a model of BF iff {fi|I(xi) = 1} is a MUS of F .
Informally, models of BF one-to-one map to MUSes of F . Hence, the size of sets
returned by CountInCell for F is identical to the corresponding BSAT for BF .
Since the analysis of ApproxMC3 only depends on the correctness of the size of
the set returned by BSAT, we conclude that the answer computed by AMUSIC
would satisfy (ε, δ) guarantees. Furthermore, observing that CountInCell makes
threshold many queries to ΣP

3 -oracle, we can bound the time complexity. For-
mally,

Theorem 1. Given a formula F , a tolerance ε > 0, and a confidence 1 − δ ∈
(0, 1], let AMUSIC(F, ε, δ) return c. Then Pr [|AMUF |/(1 + ε) ≤ c ≤ |AMUF | · (1 +
ε)] ≥ 1 − δ. Furthermore, AMUSIC makes O(log |F | · 1

ε2 · log(1/δ)) calls to ΣP
3

oracle.

Few words are in order concerning the complexity of AMUSIC. As noted in
Sect. 1, for a formula on n variables, approximate model counters make O(log n ·
1
ε2 · log(1/δ)) calls to an NP oracle, whereas the complexity of finding a satisfying
assignment is NP-complete. In our case, we make calls to a ΣP

3 oracle while the
problem of finding a MUS is in FPNP . Therefore, a natural direction of future
work is to investigate the design of a hashing-based technique that employs an
FPNP oracle.
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Algorithm 3: CountInCell(G, IG, h, α, threshold)
1 c ← 0; M ← {}
2 while c < threshold do
3 M ← GetMUS(G, IG, M, h, α)
4 if M = null then return c
5 M ← M ∪ {M}
6 c ← c + 1

7 return c

4.3 Counting MUSes in a Cell: CountInCell

In this section, we describe the procedure CountInCell. The input of the pro-
cedure is the formula G (i.e., UMUF ), the set IG = IMUG, a hash function
h ∈ Hxor(|G|,m), a cell α ∈ {0, 1}m, and the threshold value. The output is
c = min(threshold, |AMU〈G,h,α〉|).

The description is provided in Algorithm 3. The algorithm iteratively calls
a procedure GetMUS that returns either a MUS M such that M ∈ (AMU〈G,h,α〉\M)
or null if there is no such MUS. For each M , the value of c is increased and M is
added to M. The loop terminates either when c reaches the value of threshold or
when GetMUS fails to find a new MUS (i.e., returns null). Finally, the algorithm
returns c.

GetMUS. To implement the procedure GetMUS, we build an ∃∀∃-QBF formula
MUSInCell such that each witness of the formula corresponds to a MUS from
AMU〈G,h,α〉 \ M. The formula consists of several parts and uses several sets of
variables that are described in the following.

The main part of the formula, shown in Eq. (3), introduces the first existential
quantifier and a set P = {p1, . . . , p|G|} of variables that are quantified by the
quantifier. Note that each valuation I of P corresponds to a subset S of G; in
particular let us by IP,G denote the set {fi ∈ G | I(pi) = 1}. The formula is build
in such a way that a valuation I is a witness of the formula if and only if IP,G

is a MUS from AMU〈G,h,α〉 \ M. This property is expressed via three conjuncts,
denoted inCell(P), unexplored(P), and isMUS(P), encoding that (i) IP,G is
in the cell α, (ii) IP,G is not in M, and (iii) IP,G is a MUS, respectively.

MUSInCell = ∃P. inCell(P ) ∧ unexplored(P ) ∧ isMUS(P ) (3)

Recall that the family Hxor(n,m) of hash functions is defined as {h |h(y)[i] =
ai,0 ⊕ (

⊕n
k=1 ai,k ∧ y[k]) for all 1 ≤ i ≤ m}, where ai,k ∈ {0, 1} (Sect. 2). A hash

function h ∈ Hxor(n,m) is given by fixing the values of individual ai,k and a cell
α of h is a bit-vector from {0, 1}m. The formula inCell(P ) encoding that the
set IP,G is in the cell α of h is shown in Eq. (4).

inCell(P) =
m∧

i=1

(ai,0 ⊕ (
⊕

p∈{pk|ai,k=1}
p) ⊕ ¬α[i]) (4)
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To encode that we are not interested in MUSes from M, we can simply
block all the valuations of P that correspond to these MUSes. However, we can
do better. In particular, recall that if M is a MUS, then no proper subset and
no proper superset of M can be a MUS; thus, we prune away all these sets from
the search space. The corresponding formula is shown in Eq. (5).

unexplored(P) =
∧

M∈M
((

∨

fi∈M

¬pi) ∧ (
∨

fi �∈M

pi)) (5)

The formula isMUS(P ) encoding that IP,G is a MUS is shown in Eq. (6).
Recall that IP,G is a MUS if and only if IP,G is unsatisfiable and for every closest
subset S of IP,G it holds that S is satisfiable, where closest subset means that
|IP,G \ S| = 1. We encode these two conditions using two subformulas denoted
by unsat(P ) and noUnsatSubset(P ).

isMUS(P) = unsat(P) ∧ noUnsatSubset(P) (6)

The formula unsat(P), shown in Eq. (7), introduces the set Vars(G) of vari-
ables that appear in G and states that every valuation of Vars(G) falsifies at
least one clause contained in IP,G.

unsat(P) = ∀Vars(G).
∨

fi∈G

(pi ∧ ¬fi) (7)

The formula noUnsatSubset(P), shown in Eq. (8), introduces another set of
variables: Q = {q1, . . . , q|G|}. Similarly as in the case of P , each valuation I of Q
corresponds to a subset of G defined as IQ,G = {fi ∈ G | I(qi) = 1}. The formula
expresses that for every valuation I of Q it holds that IQ,G is satisfiable or IQ,G

is not a closest subset of IP,G.

noUnsatSubset(P) = ∀Q. sat(Q) ∨ ¬subset(Q,P) (8)

The requirement that IQ,G is satisfiable is encoded in Eq. (9). Since we are
already reasoning about the satisfiability of G’s clauses in Eq. (7), we introduce
here a copy G′ of G where each variable xi of G is substituted by its primed copy
x′

i. Equation (9) states that there exists a valuation of Vars(G′) that satisfies
IQ,G.

sat(Q) = ∃Vars(G′).
∧

fi∈G′
(¬qi ∨ fi) (9)

Equation (10) encodes that IQ,G is a closest subset of IP,G. To ensure that
IQ,G is a subset of IP,G, we add the clauses qi → pi. To ensure the close-
ness, we use cardinality constraints. In particular, we introduce another set
R = {r1, . . . , r|G|} of variables and enforce their values via ri ↔ (pi ∧¬qi). Intu-
itively, the number of variables from R that are set to 1 equals to |IP,G \ IQ,G|.
Finally, we add cardinality constraints, denoted by exactlyOne(R), ensuring
that exactly one ri is set to 1.
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subset(Q,P) = ∃R.
∧

pi∈P

((qi → pi) ∧ (ri ↔ (pi ∧ ¬qi)) ∧ exactlyOne(R) (10)

Note that instead of encoding a closest subset in Eq. 10, we could just encode
that IQ,G is an arbitrary proper subset of IP,G as it would still preserve the mean-
ing of Eq. 6 that IP,G is a MUS. Such an encoding would not require introducing
the set R of variables and also, at the first glance, would save a use of one exis-
tential quantifier. The thing is that the whole formula would still be in the form
of ∃∀∃-QBF due to Eq. 9 (which introduces the second existential quantifier).
The advantage of using a closet subset is that we significantly prune the search
space of the QBF solver. It is thus matter of contemporary QBF solvers whether
it is more beneficial to reduce the number of variables (by removing R) or to
prune the searchspace via R.

For the sake of lucidity, we have not exploited the knowledge of IMUG (IG)
while presenting the above equations. Since we know that every clause f ∈ IMUG

has to be contained in every MUS of G, we can fix the values of the variables
{pi | fi ∈ IMUG} to 1. This, in turn, significantly simplifies the equations and
prunes away exponentially many (w.r.t. |IMUG|) valuations of P , Q, and R, that
need to be assumed. To solve the final formula, we employ a ∃∀∃-QBF solver,
i.e., a ΣP

3 oracle.
Finally, one might wonder why we use our custom solution for identifying

MUSes in a cell instead of employing one of existing MUS extraction techniques.
Conventional MUS extraction algorithms cannot be used to identify MUSes that
are in a cell since the cell is not “continuous” w.r.t. the set containment. In
particular, assume that we have three sets of clauses, K, L, M , such that K ⊂
L ⊂ M . It can be the case that K and M are in the cell, but L is not in the
cell. Contemporary MUS extraction techniques require the search space to be
continuous w.r.t. the set containment and thus cannot be used in our case.

4.4 Computing UMUF

We now turn our attention to computing the union UMUF (i.e., G) of all MUSes
of F . Let us start by describing well-known concepts of autark variables and
a lean kernel. A set A ⊆ Vars(F ) of variables is an autark of F iff there exists
a truth assignment to A such that every clause of F that contains a variable
from A is satisfied by the assignment [44]. It holds that the union of two autark
sets is also an autark set, thus there exists a unique largest autark set (see,
e.g., [31,32]). The lean kernel of F is the set of all clauses that do not contain
any variable from the largest autark set. It is known that the lean kernel of F
is an over-approximation of UMUF (see e.g., [31,32]), and there were proposed
several algorithms, e.g., [33,38], for computing the lean kernel.

Algorithm. Our approach for computing UMUF consists of two parts. First, we
compute the lean kernel K of F to get an over-approximation of UMUF , and
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Algorithm 4: getUMU(F)

1 K ← the lean kernel of F ; M ← {}
2 for f ∈ K \ {f ∈ M | M ∈ M} do
3 W ← checkNecessity(f, K)

4 if W �= null then M ← M ∪ { a MUS of W}
5 else K ← K \ {f}
6 return K

then we gradually refine the over-approximation K until K is exactly the set
UMUF . The refinement is done by solving the MUS-membership problem for each
f ∈ K. To solve the MUS-membership problem efficiently, we reveal a connection
to necessary clauses, as stated in the following lemma.

Lemma 2. A clause f ∈ F belongs to UMUF iff there is a subset W of F such
that W is unsatisfiable and f is necessary for W (i.e., W \ {f} is satisfiable).

Proof. ⇒: Let f ∈ UMUF and M ∈ AMUF such that f ∈ M . Since M is a MUS
then M \ {f} is satisfiable; thus f is necessary for M .
⇐: If W is a subset of F and f ∈ W a necessary clause for W then f has to
be contained in every MUS of W . Moreover, W has at least one MUS and since
W ⊆ F , then every MUS of W is also a MUS of F .

Our approach for computing UMUF is shown in Algorithm 4. It takes as
an input the formula F and outputs UMUF (denoted K). Moreover, the algo-
rithm maintains a set M of MUSes of F . Initially, M = ∅ and K is set to the
lean kernel of F ; we use an approach by Marques-Silva et al. [38] to compute the
lean kernel. At this point, we know that K ⊇ UMUF ⊇ {f ∈ M |M ∈ M}. To find
UMUF , the algorithm iteratively determines for each f ∈ K \ {f ∈ M |M ∈ M}
if f ∈ UMUF . In particular, for each f , the algorithm checks whether there exists
a subset W of K such that f is necessary for W (Lemma 2). The task of finding
W is carried out by a procedure checkNecessity(f,K). If there is no such W ,
then the algorithm removes f from K. In the other case, if W exists, the algo-
rithm finds a MUS of W and adds the MUS to the set M. Any available single
MUS extraction approach, e.g., [2,5,7,46], can be used to find the MUS.

To implement the procedure checkNecessity(f,K) we build a QBF formula
that is true iff there exists a set W ⊆ K such that W is unsatisfiable and f is
necessary for W . To represent W we introduce a set S = {sg | g ∈ K} of Boolean
variables; each valuation I of S corresponds to a subset IS,K of K defined as
IS,K = {g ∈ K | I(sg) = 1}. Our encoding is shown in Eq. 11.

∃S,Vars(K).∀Vars(K ′). sf ∧ (
∧

g∈K\{f}
(g ∨ ¬sg)) ∧ (

∨

g∈K′
(¬g ∧ sg)) (11)

The formula consists of three main conjuncts. The first conjunct ensures that
f is present in IS,K . The second conjunct states that IS,K \ {f} is satisfiable,
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i.e., that there exists a valuation of Vars(K) that satisfies IS,K \ {f}. Finally,
the last conjunct express that IS,K is unsatisfiable, i.e., that every valuation of
Vars(K) falsifies at least one clause of IS,K . Since we are already reasoning about
variables of K in the second conjunct, in the third conjunct, we use a primed
version (a copy) K ′ of K.

Alternative QBF Encodings. Janota and Marques-Silva [30] proposed three
other QBF encodings for the MUS-membership problem, i.e., for deciding
whether a given f ∈ F belongs to UMUF . Two of the three proposed encod-
ings are typically inefficient; thus, we focus on the third encoding, which is the
most concise among the three. The encoding, referred to as JM encoding (after
the initials of the authors), uses only two quantifiers in the form of ∃∀-QBF
and it is only linear in size w.r.t. |F |. The underlying ideas by JM encoding
and our encoding differ significantly. Our encoding is based on necessary clauses
(Lemma 2), whereas JM exploits a connection to so-called Maximal Satisfiable
Subsets. Both the encodings use the same quantifiers; however, our encoding is
smaller. In particular, the JM uses 2 × (Vars(F ) + |F |) variables whereas our
encoding uses only |F | + 2 × Vars(F ) variables, and leads to smaller formulas.

Implementation. Recall that we compute UMUF to reduce the search space,
i.e. instead of working with the whole F , we work only with G = UMUF . The
soundness of this reduction is witnessed in Lemma 1 (Sect. 4.2). In fact, Lemma 1
shows that it is sound to reduce the search space to any G′ such that UMUF ⊆
G′ ⊆ F . Since our algorithm for computing UMUF subsumes repeatedly solving
a ΣP

2 -complete problem, it can be very time-consuming. Therefore, instead of
computing the exact UMUF , we optionally compute only an over-approximation
G′ of UMUF . In particular, we set a (user-defined) time limit for computing the
lean kernel K of F . Moreover, we use a time limit for executing the procedure
checkNecessity(f,K); if the time limit is exceeded for a clause f ∈ K, we
conservatively assume that f ∈ UMUF , i.e., we over-approximate.

Sparse Hashing and UMUF . The approach of computation of UMUF is similar to,
in spirit, computation of independent support of a formula to design sparse hash
functions [16,28]. Briefly, given a Boolean formula H, an independent support of
H is a set I ⊆ Vars(H) such that in every model of H, the truth assignment to
I uniquely determines the truth assignment to Vars(H) \ I. Practically, inde-
pendent support can be used to reduce the search space where a model counting
algorithm searches for models of H. It is interesting to note that the state of
the art technique reduces the computation of independent support of a formula
in the context of model counting to that of computing (Group) Minimal Unsat-
isfiable Subset (GMUS). Thus, a formal study of computation of independent
support in the context of MUSes is an interesting direction of future work.



454 J. Bend́ık and K. S. Meel

Algorithm 5: getIMU(G)

1 C ← G
2 K ← ∅
3 while C �= ∅ do
4 f ← choose f ∈ C
5 (sat?, I, core) ← checkSAT(G \ {f})
6 if sat? then
7 R ← RMR(G, f, I)
8 K ← K ∪ {f} ∪ R
9 C ← C \ ({f} ∪ R)

10 else
11 C ← C ∩ core

12 return K

4.5 Computing IMUG

Our approach to compute the intersection IMUG (i.e., IG) of all MUSes of G is
composed of several ingredients. First, recall that a clause f ∈ G belongs to IMUG

iff f is necessary for G. Another ingredient is the ability of contemporary SAT
solvers to provide either a model or an unsat core of a given unsatisfiable formula
N ⊆ G, i.e., a small, yet not necessarily minimal, unsatisfiable subset of N . The
final ingredient is a technique called model rotation. The technique was originally
proposed by Marques-Silva and Lynce [40], and it serves to explore necessary
clauses based on other already known necessary clauses. In particular, let f be
a necessary clause for G and I : Vars(G) → {0, 1} a model of G \ {f}. Since
G is unsatisfiable, the model I does not satisfy f . The model rotation attempts
to alter I by switching, one by one, the Boolean assignment to the variables
Vars({f}). Each variable assignment I ′ that originates from such an alternation
of I necessarily satisfies f and does not satisfy at least one f ′ ∈ G. If it is the
case that there is exactly one such f ′, then f ′ is necessary for G. An improved
version of model rotation, called recursive model rotation, was later proposed
by Belov and Marques-Silva [6] who noted that the model rotation could be
recursively performed on the newly identified necessary clauses.

Our approach for computing IMUG is shown in Algorithm 5. To find IMUG,
the algorithm decides for each f whether f is necessary for G. In particular, the
algorithm maintains two sets: a set C of candidates on necessary clauses and
a set K of already known necessary clauses. Initially, K is empty and C = G. At
the end of computation, C is empty and K equals to IMUG. The algorithm works
iteratively. In each iteration, the algorithm picks a clause f ∈ C and checks
G \ {f} for satisfiability via a procedure checkSAT. Moreover, checkSAT returns
either a model I or an unsat core core of G\{f}. If G\{f} is satisfiable, i.e. f is
necessary for G, the algorithm employs the recursive model rotation, denoted by
RMR(G, f, I), to identify a set R of additional necessary clauses. Subsequently,
all the newly identified necessary clauses are added to K and removed from C.
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In the other case, when G \ {f} is unsatisfiable, the set C is reduced to C ∩ core
since every necessary clause of G has to be contained in every unsatisfiable subset
of G. Note that f �∈ core, thus at least one clause is removed from C.

5 Experimental Evaluation

We employed several external tools to implement AMUSIC. In particular, we use
the QBF solver CAQE [49] for solving the QBF formula MUSInCell, the 2QBF
solver CADET [50] for solving our ∃∀-QBF encoding while computing UMUF , and
the QBF preprocessor QRATPre+ [37] for preprocessing/simplifying our QBF
encodings. Moreover, we employ muser2 [7] for a single MUS extraction while
computing UMUF , a MaxSAT solver UWrMaxSat [48] to implement the algorithm
by Marques-Silva et al. [38] for computing the lean kernel of F , and finally, we
use a toolkit called pysat [27] for encoding cardinality constraints used in the
formula MUSInCell. The tool along with all benchmarks that we used is available
at https://github.com/jar-ben/amusic.

Objectives. As noted earlier, AMUSIC is the first technique to (approximately)
count MUSes without explicit enumeration. We demonstrate the efficacy of our
approach via a comparison with two state of the art techniques for MUS enumer-
ation: MARCO [35] and MCSMUS [3]. Within a given time limit, a MUS enumer-
ation algorithm either identifies the whole AMUF , i.e., provides the exact value of
|AMUF |, or identifies just a subset of AMUF , i.e., provides an under-approximation
of |AMUF | with no approximation guarantees.

The objective of our empirical evaluation was two-fold: First, we experimen-
tally examine the scalability of AMUSIC, MARCO, and MCSMUS w.r.t. |AMUF |.
Second, we examine the empirical accuracy of AMUSIC.

Benchmarks and Experimental Setup. Given the lack of dedicated counting
techniques, there is no sufficiently large set of publicly available benchmarks to
perform critical analysis of counting techniques. To this end, we focused on
a recently emerging theme of evaluation of SAT-related techniques on scalable
benchmarks1. In keeping with prior studies employing empirical methodology
based on scalable benchmarks [22,41], we generated a custom collection of CNF
benchmarks. The benchmarks mimic requirements on multiprocessing systems.
Assume that we are given a system with two groups (kinds) of processes, A =
{a1, . . . , a|A|} and B = {b1, . . . , b|B|}, such that |A| ≥ |B|. The processes require
resources of the system; however, the resources are limited. Therefore, there
are restrictions on which processes can be active simultaneously. In particular,
we have the following three types of mutually independent restrictions on the
system:
1 M. Y. Vardi, in his talk at BIRS CMO 18w5208 workshop, called on the SAT com-

munity to focus on scalable benchmarks in lieu of competition benchmarks. Also,
see: https://gitlab.com/satisfiability/scalablesat (Accessed: May 10, 2020).

https://github.com/jar-ben/amusic
https://gitlab.com/satisfiability/scalablesat


456 J. Bend́ık and K. S. Meel

Fig. 3. The number of completed iterations and the accuracy of the final MUS count
estimate for individual benchmarks.

– The first type of restriction states that “at most k − 1 processes from the
group A can be active simultaneously”, where k ≤ |A|.

– The second type of restriction enforces that “if no process from B is active
then at most k −1 processes from A can be active, and if at least one process
from B is active then at most l − 1 processes from A can be active”, where
k, l ≤ |A|.

– The third type of restriction includes the second restriction. Moreover, we
assume that a process from B can activate a process from A. In particular,
for every bi ∈ B, we assume that when bi is active, then ai is also active.

We encode the three restrictions via three Boolean CNF formulas, R1, R2, R3.
The formulas use three sets of variables: X = {x1, . . . , x|A|}, Y = {y1, . . . , y|B|},
and Z. The sets X and Y represent the Boolean information about activity of
processes from A and B: ai is active iff xi = 1 and bj is active iff yj = 1. The
set Z contains additional auxiliary variables. Moreover, we introduce a formula
ACT = (

∧
xi∈X xi) ∧ (

∧
yi∈Y yi) encoding that all processes are active. For each

i ∈ {1, 2, 3}, the conjunction Gi = Ri ∧ ACT is unsatisfiable. Intuitively, every
MUS of Gi represents a minimal subset of processes that need to be active
to violate the restriction. The number of MUSes in G1, G2, and G3 is

(|A|
k

)
,

(|A|
k

)
+ |B| × (|A|

l

)
, and

(|A|
k

)
+

∑|B|
i=1(

(|B|
i

) × (|A|−1
l−i

)
), respectively. We generated

G1, G2, and G3 for these values: 10 ≤ |A| ≤ 30, 2 ≤ |B| ≤ 6, � |A|
2 � ≤ k ≤ � 3×|A|

2 �,
and l = k − 1. In total, we obtained 1353 benchmarks (formulas) that range in
their size from 78 to 361 clauses, use from 40 to 152 variables, and contain from
120 to 1.7 × 109 MUSes.

All experiments were run using a time limit of 7200 s and computed on an
AMD EPYC 7371 16-Core Processor, 1 TB memory machine running Debian
Linux 4.19.67-2. The values of ε and δ were set to 0.8 and 0.2, respectively.
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Fig. 4. Scalability of AMUSIC, MARCO, and MCSMUS w.r.t. |AMUF |.

Accuracy. Recall that to compute an estimate c of |AMUF |, AMUSIC performs
multiple iteration of executing AMUSICCore to get a list C of multiple estimates
of |AMUF |, and then use the median of C as the final estimate c. The more
iterations are performed, the higher is the confidence that c is within the required
tolerance ε = 0.8, i.e., that |AMUF |

1.8 ≤ c ≤ 1.8 · |AMUF |. To achieve the confidence
1 − δ = 0.8, 66 iterations need to be performed. In case of 157 benchmarks, the
algorithm was not able to finish even a single iteration, and only in case of 251
benchmarks, the algorithm finished all the 66 iterations. For the remaining 945
benchmarks, at least some iterations were finished, and thus at least an estimate
with a lower confidence was determined.

We illustrate the achieved results in Fig. 3. The figure consists of two plots.
The plot at the bottom of the figure shows the number of finished iterations (y-
axis) for individual benchmarks (x-axis). The plot at the top of the figure shows
how accurate were the MUS count estimates. In particular, for each benchmark
(formula) F , we show the number c

|AMUF | where c is the final estimate (median
of estimates from finished iterations). For benchmarks where all iterations were
completed, it was always the case that the final estimate is within the required
tolerance, although we had only 0.8 theoretical confidence that it would be the
case. Moreover, the achieved estimate never exceeded a tolerance of 0.1, which
is much better than the required tolerance of 0.8. As for the benchmarks where
only some iterations were completed, there is only a single benchmark where the
tolerance of 0.8 was exceeded.

Scalability. The scalability of AMUSIC, MARCO, and MCSMUS w.r.t. the num-
ber of MUSes (|AMUF |) is illustrated in Fig. 4. In particular, for each benchmark
(x-axis), we show in the plot the estimate of the MUS count that was achieved
by the algorithms (y-axis). The benchmarks are sorted by the exact count of
MUSes in the benchmarks. MARCO and MCSMUS were able to finish the MUS
enumeration, and thus to provide the count, only for benchmarks that contained
at most 106 and 105 MUSes, respectively. AMUSIC, on the other hand, was able
to provide estimates on the MUS count even for benchmarks that contained up to
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109 MUSes. Moreover, as we have seen in Fig. 3, the estimates are very accurate.
Only in the case of 157 benchmarks where AMUSIC finished no iteration, it could
not provide any estimate.

6 Summary and Future Work

We presented a probabilistic algorithm, called AMUSIC, for approximate MUS
counting that needs to explicitly identify only logarithmically many MUSes and
yet still provides strong theoretical guarantees. The high-level idea is adopted
from a model counting algorithm ApproxMC3: we partition the search space into
small cells, then count MUSes in a single cell, and estimate the total count by
scaling the count from the cell. The novelty lies in the low-level algorithmic parts
that are specific for MUSes. Mainly, (1) we propose QBF encoding for counting
MUSes in a cell, (2) we exploit MUS intersection to speed-up localization of
MUSes, and (3) we utilize MUS union to reduce the search space significantly.
Our experimental evaluation showed that the scalability of AMUSIC outperforms
the scalability of contemporary enumeration-based counters by several orders of
magnitude. Moreover, the practical accuracy of AMUSIC is significantly better
than what is guaranteed by the theoretical guarantees.

Our work opens up several questions at the intersection of theory and prac-
tice. From a theoretical perspective, the natural question is to ask if we can
design a scalable algorithm that makes polynomially many calls to an NP ora-
cle. From a practical perspective, our work showcases interesting applications of
QBF solvers with native XOR support. Since approximate counting and sam-
pling are known to be inter-reducible, another line of work would be to investigate
the development of an almost-uniform sampler for MUSes, which can potentially
benefit from the framework proposed in UniGen [14,16]. Another line of work is
to extend our MUS counting approach to other constraint domains where MUSes
find an application, e.g., F can be a set of SMT [25] or LTL [4,8] formulas or
a set of transition predicates [13,23].

Acknowledgments. This work was supported in part by National Research Foun-
dation Singapore under its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004 ]
and AI Singapore Programme [AISG-RP-2018-005], and NUS ODPRT Grant [R-252-
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National Supercomputing Centre, Singapore https://www.nscc.sg.
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imal inductive validity cores. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018.
LNCS, vol. 10886, pp. 189–204. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92970-5 12

14. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 304–319. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 25

15. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

16. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: Proceedings of DAC (2014)

17. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Proceedings of IJCAI (2016)

18. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
IJCAI, pp. 3569–3576. IJCAI/AAAI Press (2016)

19. Chen, Z.-Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput.
119(2), 231–239 (1995)

20. Orly, C., Moran, G., Michael, L., Alexander, N., Vadim, R.: Designers work less
with quality formal equivalence checking. In: DVCon. Citeseer (2010)

https://doi.org/10.1007/978-3-319-33954-2_3
https://doi.org/10.1007/s00165-015-0348-9
https://doi.org/10.1007/978-3-319-09284-3_5
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-01090-4_9
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-642-40627-0_18


460 J. Bend́ık and K. S. Meel

21. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130
(1987)
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42. Menćıa, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union
of MUSes. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 211–
221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 15

43. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: SWAT (FOCS), pp. 125–129. IEEE
Computer Society (1972)

44. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Appl. Math. 10(3), 287–295 (1985)

45. Kedian, M.: Formulas free from inconsistency: an atom-centric characterization in
priest’s minimally inconsistent LP. J. Artif. Intell. Res. 66, 279–296 (2019)

46. Nadel, A., Ryvchin, V., Strichman, O.: Accelerated deletion-based extraction of
minimal unsatisfiable cores. JSAT 9, 27–51 (2014)

47. Narodytska, N., Bjørner, N., Marinescu, M.-C., Sagiv, M.: Core-guided minimal
correction set and core enumeration. In: IJCAI, pp. 1353–1361 (2018). ijcai.org

48. Piotrów, M.: Uwrmaxsat-a new minisat+-based solver in maxsat evaluation 2019.
In: MaxSAT Evaluation 2019, p. 11 (2019)

49. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD, pp. 136–
143. IEEE (2015)

50. Rabe, M.N., Tentrup, L., Rasmussen, C., Seshia, S.A.: Understanding and extend-
ing incremental determinization for 2QBF. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10982, pp. 256–274. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96142-2 17

51. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

52. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: Proceedings of the AAAI (2019)

53. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

54. Sperner, E.: Ein satz über untermengen einer endlichen menge. Math. Z. 27(1),
544–548 (1928). https://doi.org/10.1007/BF01171114

55. Stern, R.T., Kalech, M., Feldman, A., Provan, G.M.: Exploring the duality in
conflict-directed model-based diagnosis. In: AAAI. AAAI Press (2012)

56. Thimm, M.: On the evaluation of inconsistency measures. Meas. Inconsistency Inf.
73, 19–60 (2018)

https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1007/s10601-018-9301-x
https://doi.org/10.1007/s10601-018-9301-x
https://doi.org/10.1007/978-3-030-24258-9_15
http://www.ijcai.org
https://doi.org/10.1007/978-3-319-96142-2_17
https://doi.org/10.1007/978-3-319-96142-2_17
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/BF01171114


462 J. Bend́ık and K. S. Meel

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Tinted, Detached, and Lazy CNF-XOR
Solving and Its Applications to Counting

and Sampling

Mate Soos1, Stephan Gocht2, and Kuldeep S. Meel1(B)

1 School of Computing, National University of Singapore, Singapore, Singapore
meel@comp.nus.edu.sg

2 Lund University, Lund, Sweden

Abstract. Given a Boolean formula, the problem of counting seeks to
estimate the number of solutions of F while the problem of uniform
sampling seeks to sample solutions uniformly at random. Counting and
uniform sampling are fundamental problems in computer science with a
wide range of applications ranging from constrained random simulation,
probabilistic inference to network reliability and beyond. The past few
years have witnessed the rise of hashing-based approaches that use XOR-
based hashing and employ SAT solvers to solve the resulting CNF for-
mulas conjuncted with XOR constraints. Since over 99% of the runtime
of hashing-based techniques is spent inside the SAT queries, improving
CNF-XOR solvers has emerged as a key challenge.

In this paper, we identify the key performance bottlenecks in the
recently proposed BIRD architecture, and we focus on overcoming these
bottlenecks by accelerating the XOR handling within the SAT solver
and on improving the solver integration through a smarter use of (par-
tial) solutions. We integrate the resulting system, called BIRD2, with the
state of the art approximate model counter, ApproxMC3, and the state
of the art almost-uniform model sampler UniGen2. Through an extensive
evaluation over a large benchmark set of over 1896 instances, we observe
that BIRD2 leads to consistent speed up for both counting and sampling,
and in particular, we solve 77 and 51 more instances for counting and
sampling respectively.

1 Introduction

A CNF-XOR formula ϕ is represented as conjunction of two Boolean formulas
ϕCNF ∧ϕXOR wherein ϕCNF is represented in Conjunctive Normal Form (CNF)
and ϕXOR is represented as conjunction of XOR constraints. While owing to
the NP-completeness of CNF, every CNF-XOR formula can be represented as
a CNF formula with only a linear increase in the size of the resulting formula,
such a transformation may not be ideal in several scenarios. In particular, it is

The resulting tools ApproxMC4 and UniGen3 are available open source at https://
github.com/meelgroup/approxmc and https://github.com/meelgroup/unigen.
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well known that modern Conflict Driven Clause Learning (CDCL) SAT solvers
perform poorly on XOR formulas represented in CNF form despite the exis-
tence of efficient polynomial time decision procedures for XOR constraints. Fur-
thermore, constraints arising from domains such as cryptanalysis and circuits
can be naturally described as CNF-XOR formulas and these domains served as
the early inspiration for design of SAT solvers with native support for XORs
through the usage of Gaussian Elimination. These efforts lead to the develop-
ment of CryptoMiniSat, a SAT solver that sought to perform Conflict Driven
Clause Learning and Gaussian Elimination in tandem. The architecture of the
early verisons of CryptoMiniSat sought to employ disjoint storage of CNF and
XOR clauses – reminiscent to the architecture of SMT solvers.

While CryptoMiniSat was originally designed for cryptanalysis, its ability to
handle XORs natively has led it to be a fundamental building block of the
hashing-based techniques for approximate model counting and sampling. Model
counting, also known as #SAT, and uniform sampling of solutions for Boolean
formulas are two fundamental problems in computer science with a wide variety
of applications [1,11,18]. The core idea of hashing-based techniques for approx-
imate counting and almost-uniform sampling is to employ XOR-based 3-wise
independent hash functions1 to partition the solution space of F into roughly
equal small cells of solutions. The usage of XOR-based hash functions allows us
to represent a cell as conjunction of a Boolean formula in conjunctive normal
form (CNF) and XOR constraints, and a SAT solver is invoked to enumerate
solutions inside a randomly chosen cell. The corresponding counting and sam-
pling algorithms typically employ the underlying solver in an incremental fashion
and invoke the solver thousands of times, thereby necessitating the need for run-
time efficiency. In this context, Soos and Meel [19] observed that the original
architecture of CryptoMiniSat did not allow a straightforward integration of pre-
and in-processing which of late has emerged to be key techniques in SAT solving.
Accordingly, Soos and Meel [19] proposed a new architecture, called BIRD, that
relied on the key idea of keeping the XOR constraints in both CNF form and
XOR form. Soos and Meel integrated BIRD into CryptoMiniSat, and showed that
state of the art approximate model counter, ApproxMC, when integrated with
the new version of CryptoMiniSat achieves significant runtime improvements. The
resulting version of ApproxMC was called ApproxMC3.

Motivated by the success of BIRD in achieving significant runtime perfor-
mance improvements, we sought to investigate the key bottlenecks in the run-
time performance of CryptoMiniSat when handling CNF+XOR formulas. Given
the prominent usage of CNF-XOR formulas by the hashing based techniques,
we study the runtime behavior of CryptoMiniSat for the the queries issued by
the hashing-based approximate counters and samplers, ApproxMC3 and UniGen2
respectively. Our investigation leads us to make five core technical contributions.
The first four contributions contribute towards architectural advances in han-

1 While approximate counting techniques [10] only require 2-wise independent hash
functions, hashing-based sampling techniques [6,9] require 3-wise independent hash
functions.
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dling of CNF-XOR formulas while the fifth contribution focuses on algorithmic
improvements in the hashing-based techniques for counting and sampling:

1. Matrix row handling improvements for efficient propagation and conflict
checking of XOR constraints

2. XOR constraint detaching from the standard unit propagation system for
higher unit propagation speed

3. Lazy reason clause generation to reduce reason generation overhead for
unused reasons generated from XOR constraints

4. Allowing partial solution extraction by the SAT solver
5. Intelligent reuse of solutions by hashing-based techniques to reduce the

number of SAT calls

We integrate these improvements into the BIRD framework, the resulting
framework is called BIRD2. The BIRD2 framework is applied to state of the
art approximate model counter, ApproxMC3, and to the almost-uniform sam-
pler UniGen2 [6,9]. The resulting counter and sampler are called ApproxMC4
and UniGen3 respectively. We conducted an extensive empirical evaluation
with over 1800 benchmarks arising from diverse domains with computational
effort totalling 50,000 CPU hours. With a timeout of 5000 s, ApproxMC3
and UniGen2+BIRD were able to solve only 1148 and 1012 benchmarks, while
ApproxMC4 and UniGen3 solved 1225 and 1063 benchmarks respectively. Further-
more, we observe a consistent speedup for most of the benchmarks that could
be solved by ApproxMC3 and UniGen2+BIRD. In particular, the PAR-22 score
improved from 4146 with ApproxMC3 to 3701 with ApproxMC4. Similarly, the
corresponding PAR-2 scores for UniGen3 and UniGen2+BIRD improved to 4574
from 4878.

2 Notations and Preliminaries

Let F be a Boolean formula in conjunctive normal form (CNF) and Vars(F ) the
set of variables in F . Unless otherwise stated, we use n to denote the number of
variables in F i.e., n = |Vars(F )|. An assignment of truth values to the variables
in Vars(F ) is called a satisfying assignment or witness of F if it makes F eval-
uate to true. We denote the set of all witnesses of F by sol(F ). If we are only
interested in a subset of variables S ⊆ Vars(F ) we will use sol(F )↓S to indicate
the projection of sol(F ) on S.

The problem of propositional model counting is to compute |sol(F )| for a
given CNF formula F . A probably approximately correct (or PAC) counter is a
probabilistic algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a
tolerance ε > 0, and a confidence 1−δ ∈ (0, 1], and returns a count c with (ε, δ)-
guarantees, i.e., Pr

[
|sol(F )|/(1 + ε) ≤ c ≤ (1 + ε)|sol(F )|

]
≥ 1 − δ. Projected

2 PAR-2 score, that is, penalized average runtime, assigns a runtime of two times the
time limit (instead of a “not solved” status) for each benchmark not solved by a
tool.
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model counting is defined analogously using sol(F )↓S instead of sol(F ), for a
given sampling set S ⊆ Vars(F ).

A uniform sampler outputs a solution y ∈ sol(F ) such that Pr[y is output] =
1

|sol(F )| . An almost-uniform sampler relaxes the guarantee of uniformity and in
particular, ensures that 1

(1+ε)|sol(F )| ≤ Pr[y is output] ≤ 1+ε
|sol(F )| .

Universal Hash Functions. Let n,m ∈ N and H(n,m) � {h : {0, 1}n →
{0, 1}m} be a family of hash functions mapping {0, 1}n to {0, 1}m. We use
h

R←− H(n,m) to denote the probability space obtained by choosing a func-
tion h uniformly at random from H(n,m). To measure the quality of a hash
function we are interested in the set of elements of S mapped to α by h, denoted
Cell〈S,h,α〉 and its cardinality, i.e., |Cell〈S,h,α〉|. To avoid cumbersome terminology,
we abuse notation slightly and we use Cell〈F,m〉 (resp. Cnt〈F,m〉) as shorthand for
Cell〈sol(F ),h,α〉 (resp. |Cell〈sol(F ),h,α〉|).
Definition 1. A family of hash functions H(n,m) is k-wise independent3 if
∀α1, α2, . . . αk ∈ {0, 1}m and for distinct y1,y2, . . .yk ∈ {0, 1}n, h

R←− H(n,m),

Pr [(h(y1) = α1) ∧ (h(y2) = α2) . . . ∧ (h(yk) = αk)] =
(

1
2m

)k

(1)

Note that every k-wise independent hash family is also k−1 wise independent.

Prefix Slicing. While universal hash families have nice concentration bounds,
they are not adaptive, in the sense that one cannot build on previous queries. In
several applications of hashing, the dependence between different queries can be
exploited to extract improvements in theoretical complexity and runtime perfor-
mance. Thus, we are typically interested in prefix slices of hash functions [10] as
follows.

Definition 2. For every m ∈ {1, . . . n}, the mth prefix-slice of h, denoted h(m),
is a map from {0, 1}n to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈
{0, 1}n and for all i ∈ {1, . . . m}. Similarly, the mth prefix-slice of α, denoted
α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, . . . m}.

Explicit Hash Functions. The most common explicit hash family used in
state of the art sampling and counting techniques is based on random XOR
constraints. Viewing Vars(F ) as a vector x of dimension n × 1, we can represent
the hash family as follows: Let Hxor(n,m) � {h : {0, 1}n → {0, 1}m} be the
family of functions of the form h(x) = Mx + b with M ∈ F

m×n
2 and b ∈ F

m×1
2

where the entries of M and b are independently generated according to the
3 The phrase strongly 2-universal is also used to refer to 2-wise independent as noted

by Vadhan in [23], although the concept of 2-universal hashing proposed by Carter
and Wegman [4] only required that Pr[h(x) = h(y)] ≤ 1

2m .
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Bernoulli distribution with probability 1/2. Observe that h(m)(x) can be written
as h(m)(x ) = M (m)x +b(m), where M (m) denotes the submatrix formed by the
first m rows and n columns of M and b(m) is the first m entries of the vector
b. It is well known that Hxor is 3-wise independent [9].

3 Background

The general idea of hashing-based model counting and sampling is to use a hash
function from a suitable family, e.g. Hxor, to divide the solution space into cells
that are sufficiently small such that all solutions within a cell can be enumerated
efficiently. Given such a cell, its size can then be used to estimate the total count
of solutions or we can return a random element of this small cell to produce a
sample. Hence, hashing-based sampling and counting are closely related.

3.1 Hashing-Based Model Counting

The seminal work of Valiant [24] established that #SAT is #P-complete.
Toda [22] showed that the entire polynomial hierarchy is contained inside the
complexity class defined by a polynomial time Turing machine equipped with
#P oracle. Building on Carter and Wegman’s [4] seminal work of universal hash
functions, Stockmeyer [21] proposed a probabilistic polynomial time procedure
relative to an NP oracle to obtain an (ε, δ)-approximation of F .

The core theoretical idea of the hashing-based approximate solution count-
ing framework proposed in ApproxMC [8], building on Stockmeyer [21], is to
employ 2-universal hash functions to partition the solution space, denoted by
sol(F ) for a formula F , into roughly equal small cells, wherein a cell is called
small if it has solutions less than or equal to a pre-computed threshold, thresh.
An NP oracle is employed to check if a cell is small by enumerating solutions
one-by-one until either there are no more solutions or we have already enumer-
ated thresh + 1 solutions. In practice, a SAT solver is used to realize the NP
oracle. To ensure polynomially many calls to the oracle, thresh is set to be poly-
nomial in the input parameter ε. To determine the right number of cells, i.e., the
value of m for H(n,m), a search procedure is invoked. Finally, the subroutine,
called ApproxMCCore, computes the estimate as the number of solutions in the
randomly chosen cell scaled by the number of cells (i.e, 2m). To achieve prob-
abilistic amplification of the confidence, multiple invocations of the underlying
subroutine, ApproxMCCore, are performed with the final count computed as the
median of estimates returned by ApproxMCCore.

Two key algorithmic improvements proposed in ApproxMC2 [10] are signifi-
cant to practical performance: (1) the search for the right number of cells can be
performed via galloping search, and (2) one can first perform linear search over a
small enough interval (chosen to be of size 7) around the value of m found in the
previous iteration of ApproxMCCore. The practical profiling of ApproxMC2 reveals
that linear search is sufficient after the first invocation of ApproxMCCore. Note
that the linear search seeks to identify a value of m such that Cnt〈F,m−1〉 ≥ thresh



468 M. Soos et al.

and Cnt〈F,m〉 < thresh for an appropriately chosen thresh. ApproxMC is currently
in its third generation: ApproxMC3.

3.2 Hashing-Based Sampling

Jerrum, Valiant, and Vazirani [14] showed that the approximate counting and
almost-uniform counting are polynomially inter-reducible. Building on Jerrum
et al.’s result, Bellare, Goldreich, and Petrank [2] proposed a probabilistic uni-
form generator that makes polynomially many calls to an NP oracle where
each NP query is the input formula F conjuncted with constraints encoding
a degree n polynomially representing n-wise independent hash functions where
n is the number of variables in F . The practical implementation of Bellare
et al.’s technique did not scale beyond few tens of variables. Chakraborty, Meel,
and Vardi [7,9], sought to combine the inter-reducibility and the usage of inde-
pendent hashing, and proposed a hashing-based framework, called UniGen, that
employs 3-wise independent hashing and makes polynomially many calls to an
NP oracle.

The core theoretical idea of the hashing-based sampling framework, proposed
in UniGen, exploits the close relationship between counting and sampling. UniGen
first invokes ApproxMC to compute an estimate of the number of solutions of the
given formula F . It then uses the count to determine the number of cells that the
solution space should be partitioned into using 3-wise independent hash func-
tions. At this point, it is worth mentioning that the state of the art hashing-based
sampling employ 3-wise independent hash functions. Fortunately, the family of
hash functions, Hxor, is also known to be 3-wise independent. There after, sim-
ilar to ApproxMC, a linear search over a small enough interval (chosen to be of
size 4) is invoked to find the right value of m where a randomly chosen cell’s
size is within the desired bounds. For such a cell, all its solutions are enumer-
ated and one of the solutions is randomly chosen. Again, similar to ApproxMC2
(and ApproxMC3), the linear search seeks to identify a value of m such that
Cnt〈F,m−1〉 ≥ thresh and Cnt〈F,m〉 < thresh for an appropriately chosen thresh.
UniGen is currently in its second generation: UniGen2 [6].

3.3 The Underlying SAT Solver

The underlying SAT solver is invoked through subroutine BoundedSAT, which
is implemented using CryptoMiniSat. Formally, BoundedSAT takes as inputs a
formula F , a threshold thresh, and a sampling set S, and returns a subset Y
of sol(F )↓S , such that |Y | = min(thresh, |sol(F )↓S |). The formula F consists of
the original formula, which we want to count or sample, conjuncted with a set
of XOR constraints defined through a hash function sampled from the family
Hxor. We henceforth denote such formulas as CNF-XOR formulas. Note that
the efficient encoding of XOR constraints into CNF requires the introduction of
new variables and hence the sampling set S usually does not contain all variables
in F .
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As is consistent with prior studies, profiling of ApproxMC3 and UniGen2
reveal that over 99% of the time is spent in the runtime of BoundedSAT.
Therefore recent efforts have focused on improving BoundedSAT. Soos and
Meel [19] sought to address the performance of the underlying SAT solver by
proposing a new architecture, called BIRD, that allows the usage of in- and
pre-processing techniques for a Gauss Jordan Elimination (GJE)-augmented
SAT solver. ApproxMC2, integrated with BIRD, called ApproxMC3, gave up to
three orders of magnitude runtime performance improvement. Such significant
improvements are rare in the SAT community. Encouraged by Soos and Meel’s
observations, we seek to build on top of BIRD to achieve an even tighter inte-
gration of the underlying SAT solver and ApproxMC3/UniGen2.

BIRD: Blast, Inprocess, Recover, and Destroy. Pre- and inprocessing tech-
niques are known to have a large impact on the runtime performance of SAT
solvers. However, earlier Guassian elimination architectures were unable to per-
form these techniques. Motivated by this inability, Soos and Meel [19] proposed
a new framework, called BIRD, that allows usage of inprocessing techniques for
GJE-augmented CDCL solvers. The key idea of BIRD is to blast XOR clauses
into CNF clauses so that any technique working solely on CNF clauses does not
violate soundness of the solver. To perform Gauss-Jordan elimination, one needs
efficient algorithms and data structures to extract XORs from CNF. The entire
framework is presented as follows:

BIRD: Blast, In-process, Recover, and Destroy

Step 1 Blast XOR clauses into normal CNF clauses
Step 2 Inprocess (and pre-process) over CNF clauses
Step 3 Recover simplified XOR clauses
Step 4 Perform CDCL on CNF clauses with on-the-fly Gauss-Jordan Elimi-

nation (GJE) on XOR clauses until inprocessing is scheduled
Step 5 Destroy XOR clauses and goto Step 2

The above loop terminates as soon as a satisfying assignment is found or the
formula is proven UNSAT. The BIRD architecture separates inprocessing from
CDCL solving and therefore every sound inprocessing step can be employed.

4 Technical Contributions to CNF-XOR Solving

Inspired by the success of BIRD, we seek to further improve the underlying SAT
solver’s architecture based on the queries generated by the hashing-based tech-
niques. To this end, we relied on extensive profiling of CryptoMiniSat augmented
with BIRD to identify the key performance bottlenecks, and propose solutions
to overcome some of the challenges.
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4.1 Detaching XOR Clauses from Watch-Lists

Given a formula F in CNF, the recovery phase of BIRD attempts to construct
a set of XORs, H such that F → H. As detailed in [19], the core tech-
nique for recovery of an XOR of size k is to establish whether the required
2k−1 combinations of clauses are implied by the existing CNF clauses. For
example, the XOR x1 ⊕ x2 ⊕ x3 = 0 (where k = 3) can be recovered
if the existing set of CNF clauses implies the following 4(= 23−1) clauses:
(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3). To
this end, the first stage of the recovery phase of BIRD iterates over the CNF
clauses and for a given clause, called base cl of size k, searches whether the
remaining 2k−1 − 1 clauses are implied as well, in which case the resulting XOR
is added. It is worth noting that a clause can imply multiple clauses over the the
set of variables of base cl; For example if the base cl = (x1 ∨ ¬x2 ∨ x3), then the
clause (¬x1) would imply the two clauses (¬x1 ∨¬x2 ∨¬x3) and (¬x1 ∨x2 ∨x3).
Note that given a base cl, we are only interested in clauses over the variables in
base cl.

During blasting of XORs into CNF, XORs are first cut into smaller XORs
by introducing auxiliary variables. Hence, the first stage of recovery phase must
recover these smaller XORs and the second phase reconstructs the larger XORs
by XOR-ing two XORs together if they differ only on one variable, referred to
as a clash variable. For example, x1 ⊕ x2 ⊕ x3 = 0 and x3 ⊕ x4 ⊕ x5 = 1 can be
XOR-ed together over clash variable x3 to obtain x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1.

Since BIRD performs CDCL in tandem with Gauss-Jordan elimination, it is
worth noting that the Gauss-Jordan elimination (GJE)-based decision procedure
is sound and complete, i.e., all unit propagations and conflicts implied by the
given set of XORs would be discovered by a GJE-based decision procedure.
For the initial formula (in CNF) F and the recovered set of XORs, H, if a
set of CNF clauses G is implied by H, then presence or absence of G does
not affect soundness and completeness of GJE-augmented CDCL engine. Our
extensive profiling of the BIRD framework integrated in CryptoMiniSat revealed
a significant time spent in examination of clauses in G during unit propagation.
To this end, we sought to ask how to design an efficient technique to find all the
CNF clauses implied by the recovered XORs. These clauses could be detached
from unit propagation without any negative effect on correctness of execution.

A straightforward approach would be to mark all the clauses during the
blasting phase of XORs into CNF. However, the incompleteness of the recovery
phase of BIRD does not guarantee that all such marked clauses are indeed implied
by the recovered set of XORs. Another challenge in the search for detachable
clauses arises due to construction of larger XORs by combining smaller XORs.
For example, while x1 ⊕ x2 ⊕ x3 = 0 and x3 ⊕ x4 ⊕ x5 = 1 imply (x1 ∨ x2 ∨ ¬x3)
and (x3 ∨ x4 ∨ x5), the combined XOR x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1 does not imply
(x1 ∨ x2 ∨ ¬x3) and (x3 ∨ x4 ∨ x5).

Two core insights inform our design of the modification of the recovery phase
and search for detachable clauses. Firstly, given a base clause base cl, if a clause
cl participates in the recovery of XORs over the variables in base cl, then cl is
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implied by the recovered XOR if the number of variables in cl is the same as
that of base cl. We call such a clause cl a fully participating clause. Secondly, let
G1 and G2 be the set of CNF clauses implied by two XORs q1 and q2 that share
exactly one variable, say xi. Let U = (Vars(q1)∪Vars(q2))\xi. Let q3 be the XOR
obtained by XORing together q1 and q2, then, sol(q3)↓U ⊆ sol(G1 ∧ G2)↓U if xi

does not appear in the remaining clauses, i.e., xi /∈ Var [F \ (G1 ∪ G2)].
The above two insights lead us to design a modified recovery and detachment

phase as follows. During recovery, we add every fully participating clause to the
set of detachable clauses D. Let U = S ∪ (Vars(D) ∩ Vars(F\D)). Then, the
recovery of longer XORs is only performed over clash variables that do not
belong to U . We then detach the clauses in D from watch-lists during GJE-
augmented CDCL phase, mark the clash variables as non-decision variables,
perform CDCL, and only reattach the clauses and re-set the clash variables to
be decision variables after the Destroy phase of BIRD.

If the formula is satisfiable, the design of the solver is such that the solution
is always found during the GJE-augmented CDCL solving phase. Since clauses
in D are detached and the clash variables are set to be not decided on during
this phase, the clash variables are always left unassigned. As discussed below,
however, we only need to extract solutions over the sampling set S, therefore
the solution found is adequate as-is, without the clash variables, which are by
definition not over S as they are only introduced for having short encodings of
XORs into CNF.

Conceptually, this approach reconciles the overhead introduced by BIRD, i.e.,
that XOR constraints are also present as regular clauses, with the neatness of
the original CryptoMiniSat that stored XOR and regular constraints in different
data structures. This reconciliation takes the best of both worlds.

4.2 Fast Propagation/Conflict Detection and Reason Generation

We identified two key bottlenecks in the the current GJE component of BIRD
framework integrated in CryptoMiniSat, which we sought to improve upon. To
put our contributions in the context, we first describe the technical details of
the core data structures and algorithms.

Han-Jiang’s GJE. To perform Gaussian elimination on a set of XORs, the
XORs are represented as a matrix where each row represents an XOR and each
column represents a variable. The framework proposed by Soos et al. updates
the matrix whenever a variable is assigned and removes the assigned variable
from all XORs by zeroing out the corresponding column. However, using the
matrix in such a way involves significant memory copying during backtracking
due to having to revert the matrix to a previous version.

To avoid the overhead, Han and Jiang proposed a new framework [13] build-
ing on Simplex-like techniques that performs Gauss-Jordan elimination, i.e.,
using reduced row echelon form instead of row echelon form. The key data struc-
ture innovation was to employ a two-watched variable scheme for each row of the
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matrix wherein the watched variables are called basic and non-basic variables.
Essentially, the basic variables are the variables on the diagonal of a matrix in
reduced row echelon form and hence every row has exactly one basic variable
and the basic variable only occurs in one row. Similar to standard CDCL solv-
ing, when a matrix row’s watch is assigned, the GJE component must determine
whether the row (1) propagates, (2) needs to assign a new watch, (3) is satisfied,
or (4) is conflicted. It is worth recalling that a row would propagate if all except
one variable has been assigned and would conflict or be satisfied if all the vari-
ables in a row have been assigned. Furthermore, we need to find a new watch if
a watched variable was assigned and there is more than one unassigned variable
left. If a basic variable is replaced by a new watch then the two corresponding
columns are swapped and the reduced row echelon form is recomputed. In prac-
tice swapping columns is avoided by keeping track of which column is a basic
variable.

For propagation, checking for conflict, and conflict clause generation Han-
Jiang proposed a sequential walk through a row that eagerly computes the reason
clause and stops when it encounters a new watch variable or reaches until the
end of the row. At that point, the system (1) knows whether the row is satisfied,
propagating, or conflicted, and (2) if not satisfied, has eagerly computed the
reason clause for the propagation or the conflict.

For general benchmarks where XOR constraints do not play an influential
role in determining satisfiability of the underlying problem, the GJE component
can be as small as 10% of the entire solving time. However, for formulas generated
generated by hashing-based techniques, our profiling demonstrated several cases
where the Gaussian elimination component could be very time consuming, taking
up to 90% of solving time.

While the choice of GJE combined with clever data structure maintenance led
to significant improvements of the runtime of Gaussian Elimination component,
our profiling identified two processes as key bottlenecks: propagation checking
and reason generation. We next discuss our proposed algorithmic improvements
that achieve significant runtime improvement by addressing these bottlenecks.

Tinted Fast Unit Propagation. The core idea to achieve faster propagation
is based on bit-level parallelism via the different native operations supported
by modern CPUs. In particular, modern CPUs provide native support for basic
bitwise operations on bit fields such as AND, INVERT, hamming weight com-
putation (i.e., the number of non-zero entries), and find first set (i.e., finding
the index of first non-zero bit). Given the widespread support of SIMD exten-
sions, the above operations can be performed at the rate of 128. . . 512 bits per
instruction. Therefore, the core data structure represents every 0-1 vector as a
bit field.

A set of XORs over n variables x1, . . . , xn is represented as Mx = b for a
0-1 matrix M of size m × n, 0-1 vector b of length m and x = (x1, . . . , xn)T .
Consider the i−th row of M , denoted by M [i]. Let a be a 0-1 vector of size
n such that a [j]=1 if the variable xj is assigned True or False, and 0 in case
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xj is unassigned. Let v be a 0-1 vector of size n such that v [j] = 1 if xj is
set to True and 0 otherwise. Let z be the bitwise inverse of a 0-1 vector z
and & be the bitwise AND operation. Let Wunass = hamming weight(a&M [i])
the number of unassigned variables in the XOR represented by row i, and
Wval = hamming weight(v&M [i]) the number of satisfied variables. We view
the computation of Wunass and Wval as viewing the world of M through the
tinted lens of v and a . Now, the following holds:

1. Row i is satisfied if and only if Wunass = 0 and (Wval mod 2) ⊕ b[i] = 0.
2. Row i causes a conflict if and only if Wunass = 0 and (Wval mod 2)⊕b[i] = 1.
3. Row i propagates if and only if Wunass = 1. Propagated variable is the one

that corresponds to the column with the only bit set in a&M [i]. The value
propagated is (Wval mod 2) ⊕ b[i].

4. A new watch needs to be found for row i if and only if Wunass ≥ 2. The new
watch is any one of the variables corresponding to columns with the bits set
to 1 in a&M [i], except for the already existing watch variable.

Reason Generation. For propagation and conflict we generate the reason clauses
for row i as follows. We forward-scan M [i] for all set bits and insert the corre-
sponding variable into the reason clause as a literal that evaluates to false under
the current assignment. In the case of propagation, the literal added for the
propagated variable, say xj , is added as literal ¬xj if (Wval mod 2) ⊕ b[i] = 0
and xj otherwise.

Example. For example, let b[i] = 1 and M [i] = 10011 corresponding to vari-
ables x1, x2, . . . x5 and assignments 1?11? respectively, where “?” indicates an
unassigned variable. Then a = 10110,a&M [i] = 00001,Wunass = 1, v =
10110, v&M [i] = 10010,Wval = 2 and (Wval mod 2) ⊕ b[i] = 1. Therefore, this
row propagates (case 3 above), and the reason generated is (¬x1 ∨ ¬x4 ∨ x5). If
the assignements were 11110, then Wunass = 0 and (Wval mod 2) ⊕ b[i] = 1 so
this row conflicts (case 2 above), with conflict clause (¬x1 ∨ ¬x4 ∨ x5).

Performance. Notice that all cases only require bitwise and, inverse, hamming
weight and find first set operations. To find a new watch in case 4 we first find the
first bit that is set to 1 in ā&M by invoking find first set. In case the obtained
index is the same as the existing watch variable, we remove the first 1-bit by
left shifting and run find first set again to find the second 1-bit. Bitwise and and
inverse are trivially single-assembly instructions. We use compiler intrinsics to
execute find first set and hamming weight functions, which compile down to BSF
and POPCNT in x86 assembly, respectively. It is worth pointing out that we
keep the bit field representations of a and v synchronized when variables are
assigned. During backtracking we reset these to zero and refill them as needed.
For better cache efficiency, we use sequential set of bit-packed 64-bit integers to
represent all bit-fields, rows, and matrices.

Although bit-packing is not a novel concept in the context of CNF-XOR solv-
ing, let us elaborate why we believe that our contribution is conceptually inter-
esting. Soos et al. [20] used bit-packed pre- and post-evaluated matrices. Since
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post-evaluated matrices lose information, they have to be saved and reloaded
on backtracking. Han and Jiang’s code [13] changed this to using pre-evaluated
matrices only, which free the system from having to save and reload. But it
was slow, because bit-by-bit evaluation had to happen on every matrix row read
(thanks to the missing post-evaluation matrix). Our improved approach is essen-
tially merging the best of both worlds: fast evaluation, without having to save
and reload.

4.3 Lazy Reason Clause Generation

As discussed earlier, the current BIRD performs eager reason clause generation
in a spirit similar to the original proposal by Han and Jiang. At the time of
proposal of eager clause generation by Han and Jiang, the state of the art SAT
solver at that time could solve problems with XOR clauses of sizes in few tens
to few hundreds. The improved scalability, however, highlights the overhead due
to eager reason clause generation. During our profiling, we observed that for
several problems, the independent support of the underlying formula ranges in
thousands, and therefore, leading to generation of reason clauses involving thou-
sands of variables. The generation of such long reason clauses is time consum-
ing and tedious. Furthermore, a significant fraction of reason clauses are never
required during conflict analysis phase as we are, often, focused only on finding
a 1UIP clause. Therefore, we seek to explore lazy reason clause generation.

Let the state of a clause c indicate whether c is satisfied, conflicted or unde-
termined (i.e., the clause is neither satisfied nor conflicted). The core design of
our lazy generation technique is based on the following invariant satisfied by
CDCL-based techniques: Once a (CNF/XOR) clause is satisfied or conflicted,
the assignment to the variables in the clause does not change as long the state of
the clause does not change. Observe that when a clause propagates, the propa-
gated literal changes the state of the clause to satisfied. Furthermore, as long as
all variables are assigned, the row will not participate in GJE because none of
the contained variables can become a basic watch. Therefore, whenever an XOR
clause propagates, we keep an index of the row and the propagating literal but
do not compute the reason clause. Now, whenever a reason clause is requested,
we compute the reason clause as detailed above and return a pointer to the
computed reason clause, and index the computed clause by the corresponding
row. To ensure correctness, whenever a row causes a propagation, we delete the
existing reason clause but we do not eagerly compute the new corresponding
reason clause. On the other hand, if a row is conflicting, the conflict analysis
requires the reason clause immediately and as such the reason clause is eagerly
computed.

Lazy reason clause generation allows us to skip the majority of reason clauses
to be generated. Furthermore, given that a row cannot lead to more than one
reason clause, it allows us to statically allocate memory for them. This is in
stark contrast to the original implementation that not only eagerly computed
all reason clauses, but also dynamically allocated memory for them, freeing the
memory up during backtracking.
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4.4 Skipping Solution Extension of Eliminated Variables

SAT solvers aim to present a clean and uncomplicated API interface with inter-
nal behavior typically hidden to enable fast pacing development of heuristics
without necessitating change in the interface for the end users. While such a
design philosophy allows easier integration, it may be an hindrance to achiev-
ing efficiency for the use cases that may not be seeking a simple off-the-shelf
behavior. Given the surge of projected counting and sampling as the desired
formulation, BoundedSAT is invoked with a sampling set and we are interested
only in the assignment to variables in the sampling set. A naive solution would
be to obtain a complete assignment over the entire set of variables and then
extract an assignment over the desired sampling set. In this context, we wonder
if we can terminate early after the variables in the sampling set are assigned. In
modern SAT solvers, once the solver has determined that the formula is satis-
fied, the solution extension subroutine is invoked that extends the current partial
assignment to a complete assignment. Upon profiling, we observed that, during
solution extension, a significant time is spent in computing an assignment to the
variables eliminated due to Bounded Variable Elimination (BVE) [12] during
pre- and inprocessing. When a solution is found, the eliminated clauses must be
re-examined in reverse, linear, order to make sure the eliminated variables in the
model are correctly assigned. This examination process can be time-consuming
on large instances with large portions of the CNF eliminated.

BVE is widely used in modern SAT solvers owing to its ability to elimi-
nate a large subset of the input formula and thereby allowing compact data
structures. While disabling BVE would eliminate the overhead during solution
extension phase, it would also significantly degrade performance during solving
phase. Since we are interested in solutions only over the sampling set, we disable
the invocation of bounded variable elimination for variables in the sampling set.
Therefore, whenever the SAT solver determines that the current partial assign-
ment satisfies the formula, all the variables in the sampling set are assigned and
we do not invoke solution extension. The disabling of solution extension can save
significant (over 20%) time on certain instances.

4.5 Putting It All Together: BIRD2

We combine improvements proposed above into our new framework, called
BIRD2, a namesake to capture the primary architecture of Blast, In-process,
Recover, Detach, and Destroy. For completeness, we present the core skeleton of
BIRD2 in Algorithm 1. BIRD2 terminates as soon as a satisfying assignment is
found or the formula is proven UNSAT. Similar to BIRD, BIRD2 architecture sep-
arates inprocessing from CDCL solving and therefore every sound inprocessing
step can be employed.
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Algorithm 1. BIRD2(ϕ) � ϕ has a mix of CNF and XOR clauses
1: Blast XOR clauses into normal CNF clauses
2: In-process (and pre-process) over CNF clauses
3: Recover XOR clauses
4: Detach CNF clauses implied by recovered XOR clauses
5: Perform CDCL on CNF clauses with on-the-fly improved GJE on XOR clauses

until: (a) in-processing is scheduled, (b) a satisfying assignment is found, or (c)
formula is found to be unsatisfiable

6: Destroy XOR clauses and reattach detached CNF clauses. Goto line 2 if conditions
(b) or (c) above don’t hold. Otherwise, return satisfying assignment or report
unsatisfiable.

5 Technical Contribution to Counting and Sampling

In this section, we discuss our primary technical contribution to hashing-based
sampling and counting techniques.

5.1 Reuse of Previously Found Solutions

The usage of a prefix-slicing ensures monotonicity of the random variable,
Cnt〈F,i〉, since from the definition of prefix-slicing, we have that for all i,
h(i+1)(x) = α(i+1) =⇒ h(i)(x) = α(i). Formally,

Proposition 1. For all 1 ≤ i < m, Cell〈F,i+1〉 ⊆ Cell〈F,i〉
Furthermore as is evident from the analysis of ApproxMC3 [10], the pairwise
independence of the family Hxor implies E[Cnt〈F,i〉]

E[Cnt〈F,j〉]
= 2j−i. Therefore, once we

obtain the set of solutions from invocation of BoundedSAT for F ∧(hi)−1(0) (i.e.,
after putting i XORs), we can potentially reuse the returned solutions when we
are interested in enumerating solutions for F ∧ (hj)−1(0). In particular, note
that if i > j, then Proposition 1 implies that all the solutions F ∧ (hi)−1(0)
are indeed solutions for F ∧ (hj)−1(0) and we can invoke BoundedSAT with
adjusted threshold. On the other hand, for i < j, we can check if the solutions
of F ∧ (hi)−1(0) also satisfy F ∧ (hi+1)−1(0).

On closer observation, we find that the latter case may not be always helpful
when i and j differ by more than a small constant since the ratio of their expected
number of solutions decreases exponentially with j−i. Interestingly, as discussed
in Sect. 3, both ApproxMC3 and UniGen2 employ linear search over intervals of
sizes 4 to 7. for the right values of m. In particular, for both ApproxMC3 and
UniGen2, the linear search seeks to identify a value of m∗ such that Cnt〈F,m∗−1〉 ≥
thresh and Cnt〈F,m∗〉 < thresh for an appropriately chosen thresh. Therefore,
when invoking BoundedSAT for i = k after determining that for i = k + 1,
Cnt〈F,k+1〉 < thresh, we can replace thresh with thresh − Cnt〈F,k+1〉. Similarly,
when invoking BoundedSAT for i = k after determining that for i = k − 1,
Cnt〈F,k−1〉 ≥ thresh, we first check how many solutions of F ∧(hk−1)−1(0) satisfy
F ∧ (hk)−1(0). As noted above, in expectation, thresh/2 out of thresh solutions
of F ∧ (hk−1)−1(0) would satisfy F ∧ (hk)−1(0).
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5.2 ApproxMC4 and UniGen3

That said, we turn our focus to hashing-based sampling and counting techniques
to showcase the impact of BIRD2. To this end, we integrate BIRD2 along with the
proposed technique in Sect. 5.1 into the state of the art hashing-based counting
and sampling tools: ApproxMC3 and UniGen2 respectively. We call our improved
counting tool ApproxMC4 and our improved sampling tool UniGen3.

Assurance of Correctness. We believe it to be imperative to strongly verify
correctness and quality of results provided by our tools, as it is not only pos-
sible but indeed easy to accidentally generate incorrect or low quality results,
as demonstrated by Chakraborty and Meel [5]. To ensure the quality and cor-
rectness of our sampler and counter, we used three methods: (1) fuzzed the
system as first demonstrated in SAT by Brummayer et al. [3], (2) compared
the approximate counts returned by ApproxMC4 with the counts computed by
a known good exact model counter as previously performed by Soos and Meel
[19], and (3) compared the distribution of samples generated by UniGen4 on an
example problem against that of a known good uniform sampler as previously
performed by Chakraborty et al. [9]. We focus on (1), i.e. fuzzing, here and defer
the discussion about (2) and (3) to the next section.

Fuzzing is a technique [17] used to find bugs in code by generating random
inputs and observing crashes, invariant check fails, and other errors from the
output of the system under test. CryptoMiniSat has such a built-in fuzzer gen-
erating random CNFs and verifying the output of the solver. To account for
XOR constraints, we improved the built-in fuzzer of CryptoMiniSat by adding
a counting- and sampling-specific XOR-CNF generator. This inserts randomly
generated XORs that form distinct matrices inside the generated CNFs and adds
a randomly generated sampling set over some of these matrices. We also added
hundreds of lines of invariant checks to our improved Gauss-Jordan elimination
algorithm, running throughout our fuzzing tests. Running this improved fuzzer
for many hundreds of CPU hours has greatly helped debugging and gaining
confidence in our implementation.

6 Evaluation

To evaluate the performance and quality of approximations and samples com-
puted by ApproxMC4 and UniGen3, we conducted a comprehensive study involv-
ing 1896 benchmarks as released by Soos and Meel [16] comprising a wide range
of application areas including probabilistic reasoning, plan recognition, DQMR
networks, ISCAS89 combinatorial circuits, quantified information flow, program
synthesis, functional synthesis, logistics, and the like.

In the context of counting, we focused on a comparison of the performance of
ApproxMC4 vis-a-vis ApproxMC3. In the context of sampling, a simple method-
ology would have been a comparison of UniGen3 vis-a-vis the state of the art
sampler, UniGen2. Such a comparison, in our view, would be unfair to UniGen2



478 M. Soos et al.

as while ApproxMC3 builds on BIRD framework, such is not the case for UniGen2.
It is worth noting that the BIRD framework, proposed by Soos and Meel [19], can
work as a drop-in replacement for the SAT solver in UniGen2, as it only changes
the underlying SAT solver. Therefore, we used UniGen2 augmented with BIRD,
called UniGen2+BIRD henceforth, as baseline for performance comparisons in
the rest of this paper, as it is significantly faster than UniGen2, and therefore,
will lead to a fair comparison and showcase improvements solely due to BIRD2.

To keep in line with prior studies, we set ε = 0.8 and δ = 0.8 for ApproxMC3
and ApproxMC4 respectively. Similarly, we set ε = 16 for both UniGen3 and
UniGen2+BIRD respectively. The experiments were conducted on a high perfor-
mance computer cluster, each node consisting of 2xE5-2690v3 CPUs with 2 × 12
real cores and 96 GB of RAM. We use a timeout of 5000 s for each experiment,
which consisted of running a tool on a particular benchmark.

6.1 Performance

1

10

100

1000

5000

1 10 100 1000 5000
ApproxMC3 − Time (s)

A
pp

ro
xM

C
4 
− 

Ti
m

e 
(s

)

Fig. 1. Comparison of ApproxMC4 and ApproxMC3. ApproxMC4 is faster below the
diagonal. Time outs are plotted behind the 5000 s mark.

ApproxMC4 vis-a-vis ApproxMC3. Figure 1 shows a scatter plot comparing
ApproxMC4 and ApproxMC3. Although, there are some benchmarks that are
solved faster with ApproxMC3 there is a clear trend demonstrating the speed
up achieved through our improvements: ApproxMC4 can solve many benchmarks
more than 10 times faster and in total solves 77 more instances than ApproxMC3.
In particular, ApproxMC3 and ApproxMC4 solved 1148 and 1225 instances respec-
tively, while achieving PAR-2 scores of 4146 and 3701 respectively.
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Fig. 2. Cactus plot showing behavior of ApproxMC4 and ApproxMC3

Figure 2 shows the cactus plot for ApproxMC3 and ApproxMC4. We present
the number of benchmarks on the x-axis and the time taken on the y-axis. A
point (x, y) implies that x benchmarks took less than or equal to y seconds to
solve for the corresponding tool.

To present a detailed picture of performance gain achieved by ApproxMC4
over ApproxMC3, we present a runtime comparison of ApproxMC4 vis-a-vis
ApproxMC3 in Table 1 on a subset of benchmarks. Column 1 of the table
presents benchmarks names, while columns 2 and 3 list the number of vari-
ables and clauses. Column 4 and 5 list the runtime (in seconds) of ApproxMC4
and ApproxMC3, respectively.

While investigating the large improvements in performance, we observed that
when both the sampling set and the number of solutions is large for a problem,
the new system can be up to an order of magnitude faster. In these cases the
Gauss-Jordan elimination (GJE) component of the SAT solver dominated the
runtime of ApproxMC3 due to the large matrices involved in such problems. The
improvements of BIRD2 has led to significant improvement in efficiency of GJE
component and we observe that the runtime, in such instance, is now often
dominated by the CDCL solver’s propagation and conflict clause generation
routines.

UniGen3 vis-a-vis UniGen2+BIRD. Similar to Fig. 2, Fig. 3 shows the cac-
tus plot for UniGen3, UniGen2+BIRD, and UniGen2. We present the number
of benchmarks on the x-axis and the time taken on the y-axis. UniGen3 and
UniGen2+BIRD were able to solve 1012 and 1063 instances, respectively while
achieving PAR-2 scores of 4574 and 4878, respectively. UniGen2 could solve only
360 benchmarks, thereby justifying our choice of implementing UniGen2+BIRD
as a baseline for fair comparison to showcase strengths of BIRD2. We would like
to highlight that the cactus plot shows that given a 2600 s timeout, UniGen can
sample as many benchmarks as UniGen2+BIRD would do for a 5000 s timeout.

To present a clear picture of performance gain by UniGen3 over
UniGen2+BIRD, we present runtime comparison for UniGen3 vis-a-vis
UniGen2+BIRD in Table 1, where in addition to data on ApproxMC3 and
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Table 1. Performance comparison of ApproxMC3 vis-a-vis ApproxMC4 and
UniGen2+BIRD vis-a-vis UniGen3. TO indicates timeout after 5000 s or out of memory.
Notice that on many problems that used to time out even for counting, we can now
confidently sample.

Benchmark Vars Cls ApproxMC3 ApproxMC4 UniGen2+BIRD UniGen3

time (s) time (s) 500 samples
time (s)

500 samples
time (s)

or-70-5-1-UC-20 140 350 6.03 2.07 14.21 6.08

prod-4 7497 37358 56.65 7.09 171.57 36.54

min-8 1545 4230 152.53 5.58 471.47 35.04

parity.sk 11 11 13116 47506 389.26 436.32 705.85 809

leader sync4 11 205198 129149 346.4 20.55 1019.09 106.93

blasted TR b12 2 2426 8373 308.08 20.46 1218.01 546.62

hash-8-6 377545 1517574 462.28 266.59 1321.91 633.84

s15850a 15 7 10995 24836 1206.17 31.69 2782.96 230.17

ConcreteRole 395951 1520924 1694.19 309.07 3083.99 923.69

tire-3 577 2004 3059.19 233.28 3876.03 797.42

04B-2 19510 86961 1860.97 625.81 TO 2236.31

blasted case138 849 2253 TO 3691.9 TO TO

hash-11-4 518449 2082039 4602.95 4043.4 TO TO

karatsuba.sk 7 41 19594 82417 3192.85 3410.36 TO TO

log-3 1413 29487 TO 123.15 TO 408.25

modexp8-8-6 167793 633614 4439.21 TO TO TO

or-100-5-6-UC-20 200 500 TO 1689.47 TO 4898.43

prod-28 52233 261422 TO 235.02 TO 1053.9

s38417 15 7 25615 57946 TO 187.71 TO TO

signedAvg 30335 91854 TO 114.15 TO 582.01

ApproxMC4, columns 5 and 6 lists the runtime for UniGen3 and UniGen2+BIRD
respectively. Similar to the observation above, we note that UniGen3 is able to
sample for instances that timed out even for ApproxMC3. It is worth to recall
that UniGen3 (and UniGen2) first makes a call to an approximate counter during
its parameter search phase.

Remark 1. Since the runtime improvements of ApproxMC4 and UniGen3 are pri-
marily due to improvements in the underlying SAT solver, it is worth pointing
out, to put our contribution in context, that the difference between average
PAR-2 scores of the top two solvers in a SAT competition is usually less than
100.
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6.2 Quality and Correctness

Quality of Counting. To evaluate the quality of approximation we follow
the same approach as Soos and Meel [19] and compare the approximate counts
returned by ApproxMC4 with the counts computed by an exact model counter,
namely DSharp4. The approximate counts and the exact counts are used to
compute the observed tolerance εobs, which is defined as max( |sol(F )↓S |

AprxCount −
1, AprxCount

|sol(F )↓S | − 1), where AprxCount is the estimate computed by ApproxMC4

for a formula F and a sampling set S, which are both given for each bench-
mark. Note that, using εobs, we can rewrite the theoretical (ε, δ)-guarantee to
Pr[εobs ≤ ε] ≥ 1 − δ and hence we expect that εobs is mostly below ε = 0.8.
The observed tolerance εobs over all benchmarks is shown in Fig. 4. We observe
a maximal value for εobs of 0.3333 and the the arithmetic mean of εobs across
all benchmarks is 0.0411. Hence, the approximate counts are much closer to the
exact counts than is theoretically guaranteed.
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are very close to the exact counts.

4 DSharp is used because of its ability to handle sampling sets.
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Quality of Sampling. To evaluate the quality of sampling, we employed the
uniformity tester, Barbarik, proposed by Chakraborty and Meel [5]. To this
end, we selected 35 benchmarks from the pool of benchmarks employed by
Chakraborty and Meel in their work and we tested UniGen3 for all the 35
benchmarks. We observed that Barbarik accepts UniGen3 for all the 35 instances,
thereby providing a certificate for uniformity. We refer the reader to [5] for
detailed discussion of the guarantees provided by Barbarik. Keeping in line with
past work on sampling that tries to demonstrate the quality of sampling on a rep-
resentative benchmark where exact uniform sampling is feasible via enumeration-
based techniques, we chose the CNF instance blasted case110 (287 variables and
16384 solutions), which has been chosen in the previous studies as well. To this
end, we implemented a simple ideal uniform sampler, denoted by US henceforth,
by enumerating all the solutions and then picking a solution uniformly at ran-
dom. We then generate 4, 039, 266 samples from both UniGen3 and US. In each
case, the number of times various witnesses were generated was recorded, yield-
ing a distribution of the counts. Fig. 5 shows the distributions of counts generated
versus # of solutions. The x-axis represents counts and the y-axis represents the
number of witnesses appearing the specified number of times. Thus, the point
(230,212) represents the fact that each of 212 distinct witnesses were generated
230 times among the 4, 039, 266 samples. While UniGen3 provides guarantees of
almost-uniformity only, the two distributions are statistically indistinguishable.
In particular, the KL divergence [15] of the distribution by UniGen from that of
US is 0.003989.
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7 Conclusions

We investigated the bottlenecks of CNF-XOR solving in the context of hashing-
based approximate model counting and almost uniform sampling as implemented
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in ApproxMC3 and UniGen2 respectively. In this paper, we proposed five techni-
cal improvements, as follows: (1) detaching the clausal representation of XOR
constraints from unit propagation, (2) lazy reason generation for XOR con-
straints, (3) bit-level parallelism for XOR constraint propagation, (4) partial
solution extraction only covering the sampling set and (5) solution reuse. These
improvements were incorporated into the new framework BIRD2, which led to
the construction of improved approximate model counter ApproxMC4 and almost
uniform sampler UniGen3. Experiments over a large set of benchmarks from vari-
ous domains clearly show an improvement in running time and 77 more problems
could be solved for counting and 51 more for sampling.
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Abstract. The automatic formal verification of multiplier designs has
been pursued since the introduction of BDDs. We present a new rewriter-
based method for efficient and automatic verification of signed and
unsigned integer multiplier designs. We have proved the soundness of this
method using the ACL2 theorem prover, and we can verify integer multi-
plier designs with various architectures automatically, including Wallace,
Dadda, and 4-to-2 compressor trees, designed with Booth encoding and
various types of final stage adders. Our experiments have shown that our
approach scales well in terms of time and memory. With our method, we
can confirm the correctness of 1024 × 1024-bit multiplier designs within
minutes.

Keywords: Multipliers · Hardware verification · Formal methods ·
ACL2

1 Introduction

Arithmetic circuit designs may contain bugs that may not be detected through
random testing. Since the Pentium FDIV bug [29], formal verification has become
more prominent for validating the correctness of arithmetic circuits. Despite
being a crucial part of all processors, verifying the correctness of arithmetic
circuits, specifically multipliers, is still an ongoing challenge.

There have been numerous efforts to find a scalable and automated method to
formally verify integer multipliers. Early methods that were based on attempts
to represent hardware and its specification in various canonical forms - BDDs [6]
and derivatives, have an exponential space complexity. Therefore, they were
applicable only for small circuits. Similarly, SAT-based methods did not prove
to be scalable [28].

There are several approaches for the verification of hardware multipliers used
in the industry. One is based on writing a simple RTL multiplier design without
optimizations and comparing it to the candidate multiplier design through equiv-
alence checking [14,35]. This approach works only when the reference design is
structurally close to the original under verification and relies on the correctness
c© The Author(s) 2020
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of the reference design and proof maintenance whenever designers make struc-
tural changes. Another approach is to find a suitable decomposition of a design
into parts that can be verified automatically and compose those results into a
top-level theorem [13,15,30]. The drawback of this method is that it requires
manual intervention by the verification engineer who decides about the bound-
aries of the decomposition. A third approach involves guiding a mechanized proof
checker manually [27].

In recent years, the search for more automatic procedures resulted in methods
based on symbolic computational algebra [7,16,22,23,40] . This approach makes
it possible for certain types of multipliers to be verified automatically for larger
designs. However, they have limitations as to what type of multipliers they can
check (see experiments in Sect. 6). They are implemented as unverified programs
and, as far as we are aware, only one of them [16] produces certificates.

We have developed an automatic rewriter-based method for verification of
hardware integer multipliers that is

– widely applicable,
– provably correct, and
– scalable

We implemented and verified our method with the ACL2 theorem proving
system, which is a subset of the LISP programming language. Our method is not
ACL2 specific and can be adapted to other platforms with suitable adjustments.
In this paper, we also provide proof of its termination. Even though we have not
proved the completeness of this method, our tool can verify various multiplier
designs. We test our method on designs implemented with (System) Verilog
where design hierarchy is maintained. We can verify various types of multipliers
in a favorable time; for example, we tested our method with 8 different types of
1024 × 1024 multipliers and verified each of them in less than 10min, while the
other state-of-the-art tools ran for more than 3 h.

The paper is structured as follows. In Sect. 2, we present some concepts that
might be necessary to understand our approach. These include the basic notion
of term rewriting and the ACL2 system (Sect. 2.1), the semantics for hardware
modeling (Sect. 2.2), and some basic multiplier architectures (Sect. 2.3). Prelim-
inaries are followed by our specification and top-level correctness theorem for
multiplier designs (Sect. 3). We explain our methodology to prove this top-level
correctness theorem with term rewriting in Sect. 4. Section 5 describes the ter-
mination of our rewriting algorithm. Experiments with various benchmarks are
given and discussed in Sect. 6.

2 Preliminaries

In this section, we describe the concepts and tools required to understand the
method proposed in this paper. We review the ACL2 theorem prover and term
rewriting, how Verilog designs are translated and used in proofs, and various
integer multiplier architectures.
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2.1 ACL2 and Term Rewriting

ACL2 is a LISP-based interactive theorem prover that can be used to model
computer systems and prove properties about such models using both its internal
procedures as well as appealing to external tools such as SAT and SMT solvers.
ACL2 is used by the industry for both software and hardware verification [12].
Our methodology to prove multipliers correct uses ACL2-based term rewriting.

ACL2 can store proved lemmas as rewrite rules, and later use them when
attempting to confirm other conjectures. ACL2 terms are prefix expressions
and rewriting is attempted on terms such as (fnc arg1 arg2 ...). Left-hand
side of a rewrite rule is unified with terms; in case of a successful unification,
the matched term is replaced by a properly instantiated right-hand side if all
hypotheses are satisfied. Example 1 shows two rewrite rules, the second of which
can be proved using the first as a lemma. When users submit a defthm event,
ACL2 attempts to confirm the conjecture by rewriting it in an inside-out man-
ner. For the conjecture given in x-x_y-y, the rewriter replaces (+ x (- x)) and
(+ y (- y)) with 0 using a-a as a lemma. Then the resulting term (+ 0 0)
is replaced with 0 using the executable counterpart of the function +.

Example 1. A simple rewrite rule a-a, and a theorem x-x_y-y proved subse-
quently using a-a as a lemma.

(defthm a−a
(implies (integerp a)

(equal (+ a (− a)) 0)))

(defthm x−x_y−y
(implies (and (integerp x) (integerp y))

(equal (+ (+ x (− x)) (+ y (− y)))

0)))

The rewriting mechanism in ACL2 is much more complex and intricate than
we indicate here [18]. Throughout the rest of this paper, we omit ACL2 spe-
cific implementation details whenever possible. Understanding the basics of term
rewriting is sufficient to follow our methodology.

2.2 Semantics for Hardware Designs

We convert (System) Verilog designs to SVL netlists in ACL2 and use SVL
functions for semantics and simulation of circuit designs [33]. SVL netlists pre-
serve hierarchical information about hardware designs and they are based on the
SV [31] and VL [32] tools that are also included in the ACL2 libraries. These
tools have been used by several companies to confirm the correctness of various
circuit designs [12]. In this section, we describe the format of SVL netlists, and
how they are simulated hierarchically.

An SVL netlist is an association list where each key is a module name, and its
corresponding value is the definition of the module. An SVL module is composed
of input and output signals, and a list of occurrences. An occurrence can be an
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assignment or an instantiation of another module. Example 2 shows a simplified
SVL netlist containing a half and a full-adder.

Example 2. An SVL netlist for half and full-adder.

(("ha" (inputs x y)

(outputs s c)

(occs ((occ1 :assign s (bitxor x y))

(occ2 :assign c (bitand x y)))))

("fa" (inputs x y z)

(outputs s c)

(occs ((occ1 :module "ha" (ins x y) (outs t1 t2))

(occ2 :module "ha" (ins t1 z) (outs s t3))

(occ3 :assign c (bitor t2 t3))))))

The semantics of an SVL netlist is given by a recursively defined ACL2 func-
tion, svl-run. This function traverses occurrences of a module and simulates
them in order by evaluating the assignments and making a recursive call for
the submodules. After each occurrence, the values of wires/signals are stored in
an association list, and when finished, svl-run retrieves and returns the val-
ues of output signals from this association list. These values can be concrete
(svl-run is executed), or symbolic (the rewriter processes a call of svl-run
with variables for inputs), which can create ACL2 expressions representing the
functionality of the design for each output. For example, we can generate expres-
sions for the outputs of the full-adder ("fa") in Example 2: (⊕ x y z) and
(∨ (∧ x y) (∧ (⊕ x y) z)). Alternatively, since the design retains hierar-
chy, submodules can be replaced by their specification. For example, assume
that we have specification functions s-ha and c-ha for each output of the half-
adder ("ha"), and we proved a rewrite rule to replace calls of svl-run of "ha"
with these functions. If we rewrite the instantiations of "ha" with this rule while
expanding the definition of "fa", we can instead get (s-ha (s-ha x y) z) and
(∨ (c-ha x y) (c-ha (s-ha x y) z)) for each output of "fa".

2.3 Multiplier Architectures

In this section, we discuss the most commonly used algorithms to implement
integer multipliers. We summarize partial-product generation algorithms, such
as Booth encoding, and partial-product summation algorithms, such as Wallace-
tree. Even though the applicability of our verification method is not confined to
a specific set of algorithms, reviewing them is beneficial for understanding the
verification problem.

We can divide multiplier designs into two main components: partial product
generation and summation. Figure 1a shows these two steps on multiplication
of two 3-bit two’s-complement signed integers. We perform sign-extension (for
signed numbers) or zero-extension (for unsigned numbers) on inputs, generate
partial products, and then add them together to obtain the multiplication result
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in a fashion similar to grade-school multiplication. The integer multipliers we
have verified implement various partial-product generation and summation algo-
rithms for the same functionality with optimizations for better gate-delay and/or
area.

Fig. 1. (a) Grade-school-like multiplication for two 3-bit two’s-complement integers,
and (b) a Wallace-tree-like multiplier performing bit-level additions on the partial
products

Baugh-Wooley [1] and Booth [2] are commonly used algorithms to generate
partial products. Baugh-Wooley is used for signed multiplication, and it gener-
ates partial products as shown in Fig. 1a, but with a sign-extension algorithm to
prevent the repetition of generated partial product bits. A more commonly used
alternative is Booth encoding, which can be used for both signed and unsigned
multiplication. Instead of simply multiplying all the single bits of the two inputs
with each other, Booth encoding uses more than one bit at a time from one of the
operands, and it derives a more complex form for partial products. This helps
reduce the number of rows for partial products, thus helping shrink the summa-
tion circuitry and allowing more parallelism. Booth encoding can be implemented
with different radices, which determine the number of multiplier bits used at a
time to create partial products (e.g., Booth radix-4 [21] uses 3 bits at a time). The
higher the radix, the fewer the partial products; however, higher radices yield
a more complex design. Booth encoding can be combined with sign-extension
algorithms [38] to prevent repetition in generated partial products.

A rudimentary way to sum partial products is by using a shift-and-add algo-
rithm. One may use an accumulator and a vector adder such as a ripple-carry
adder to shift and add partial products. An array multiplier is a variation of this
algorithm and it is implemented using a very similar principle with some addi-
tional optimizations. Due to their regular structure, verifying the correctness of
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these multipliers has not been a challenging problem [5]. However, these circuits
often have very large gate delays, and Wallace-tree like multipliers are preferred
over these algorithms in industrial applications.

A family of partial product summation algorithms, which are often called
Wallace-tree like multipliers [36], use parallelism to obtain multiplication results
with less gate-delay but produce a very irregular and complex design structure.
Figure 1b shows an example of a Wallace-tree algorithm. In the first summation
layer, we see the generated partial products corresponding to the ones in Fig. 1a.
The Wallace-tree algorithm selects groups of bits from these partial products
and passes them to full and half-adders. After these parallel bit-level additions,
resulting carry and sum output bits are replaced on another layer whose sum-
mation will also yield the multiplication result. At each stage, layers are com-
pressed, and the number of rows decreases. We repeat this process until we reach
a state where we have only two rows. Then, instead of using full and half adders
to finish additions, a vector adder (final stage adder), such as carry-lookahead
and parallel prefix adders, is used. This method may provide a significant delay
reduction over array multipliers. There exist numerous variations of Wallace-tree
multipliers such as Dadda-tree [8] and 4-to-2 compressor trees [11]. Due to their
highly irregular structure, reasoning about Wallace-tree like multipliers is a diffi-
cult problem, especially when combined with complex partial product generation
algorithms such as Booth encoding. There is a lot of room for circuit designers
to deviate from text-book algorithm definitions when creating multipliers, which
increases the importance of having an automated method to verify these circuits
with minimal assumptions about the structure.

3 Specification

We aim to prove the functional correctness of signed and unsigned multiplier
designs. We do that by proving an ACL2 theorem demonstrating the equivalence
of semantics of a multiplier circuit design to the built-in ACL2 multiplication
function (*) with appropriate sign extensions and truncations.

We work with integer multiplier circuits that are designed to multiply two
numbers (signed or unsigned) stored in bit-vectors and cut (truncate) the result-
ing number to return it as a bit-vector. If we are multiplying m-bit and n-bit
numbers, then the first m+n bits of the result is sufficient to represent all output
values. For example, assume that we are multiplying signed numbers –4 and 3,
represented with 4-bit vector 1100 and 3-bit vector 011, respectively. Then, a
correct multiplier would return the 7-bit vector 1111100, which represents -12.

Listing 1.1 shows the final ACL2 theorem we prove for signed integer multi-
pliers, where a and b are variables and ∗m∗ and ∗n∗ are concrete values1. This
theorem states that for all integers a and b, simulating an m-by-n signed multi-
plier circuit returns a value that is equivalent to multiplication of sign-extended
a and b, truncated at m + n bits. On the left-hand side, *signed_mxn_mult*
1 By convention, “*” characters surrounding variables, such as *m*, signify constants

in ACL2.
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is an ACL2 constant that contains the multiplier design in SVL format which is
translated from (System) Verilog, and svl-run is the function to simulate this
module with inputs a and b. On the right-hand side, * is the built-in integer mul-
tiplication function, truncate returns first m+n bits of the result, and signext

returns a number that represents the sign-extended value of a bit-vector. Multi-
plier designs are implemented with fixed values of m and n; therefore, we prove
such theorems for constants m and n and variables a and b. The ACL2 theorem
for unsigned multiplication has the same form but in the place of signext, we
use the truncate function, which performs zero-extension. The actual statement
of the theorem contains more components than shown, including function calls
to extract outputs and parameters for state-holding elements; we only give the
essentials for brevity.

Listing 1.1. The Final Correctness Theorem for Signed Multipliers

(defthm multiplier_is_correct

(implies (and (integerp a)

(integerp b))

(equal (svl−run (list a b) ∗signed_mxn_mult∗)
(truncate (+ ∗m∗ ∗n∗)

(∗ (signext ∗m∗ a)

(signext ∗n∗ b))))))

4 Methodology

The correctness theorem given in Listing 1.1 is proved by rewriting both sides
of the equality to two syntactically equivalent terms. In this section, we describe
our methodology to rewrite both sides to a specific form through an automated
rewriting mechanism.

We have a targeted final expression for each output bit of a multiplier design,
the mathematical formula of which is given in Definition 2. The variables a and
b are the inputs/operands of multiplication with a certain size (e.g., 64 bits for
64 × 64 multiplication); and in this formula, they are sign-extended for two’s
complement signed multiplication or zero-extended for unsigned multiplication.

Definition 1. We define functions s and c as follows.

∀x ∈ Z s(x) = mod2(x)

∀x ∈ Z c(x) =
⌊x

2

⌋

Definition 2. The targeted form for each output bit (outj) is defined as follows.

wj =

⎧
⎨
⎩

(
j∑

i=0

aibj−i) + c(wj−1) if j ≥ 0

0 otherwise.

outj = s(wj)

where aibj−i is logical AND of the ith and (j − i)th bits of operands a and b.
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Table 1 shows an example of this targeted final form for the first four output
bits of 3 × 3 two’s complement signed multiplication (see Fig. 1a). Each output
bit is represented with expressions composed of the s, c, and + functions. In this
representation, the outermost function of each expression is s, carry bits from
previous columns are calculated with a single c per column, and the terms in
summations are sorted lexicographically. Two’s complement signed or unsigned
integer multiplication implemented by our candidate designs (See Sect. 6) can
be represented by an expression of this form.

Table 1. Expressions for the final form of the first four output bits from Fig. 1a

out3 out2 out1 out0

s(a0b3 + a1b2 + a2b1 + a3b0

+c(a0b2 + a1b1 + a2b0

+c(a1b0 + a0b1

+c(a0b0)))

s(a0b2 + a1b1 + a2b0

+c(a1b0 + a0b1

+c(a0b0)))

s(a1b0 + a0b1

+c(a0b0))
s(a0b0)

A summary of our rewriting approach to verify multiplier designs is given
in Fig. 2. Our method works with design semantics such as SVL where circuit
hierarchy can be maintained and we reason about adder modules and the main
multiplier module at different stages. As the first step, we work only with adder
modules (e.g., half/full-adders and final stage adders) instantiated as submodules
by the candidate multiplier design. We state a conjecture similar to Listing 1.1
for each adder module. We simplify their gate-level circuit description and prove
them equivalent to their specification. We save these proofs as rewrite rules where
lhs is svl-run of adder module and rhs is its specification. Having created these
rewrite rules for all the adder modules, we start working on the correctness proof
of the multiplier design as stated in Listing 1.1. On the LHS, as we derive ACL2
expressions from the definition of multiplier designs (see Sect. 2.2), we replace
instantiated adder modules with their specification, and we apply two other
sets of rewrite rules to simplify summation tree and partial product logic. On
the RHS, we rewrite the multiplier specification into the targeted final form of
multiplication, and we syntactically compare the two resulting terms to conclude
our multiplier design proofs.

We simplify adder and multiplier modules by stating a set of lemmas in the
form of equality lhs = rhs. These lemmas are used to create a term rewriting
mechanism where expressions from circuit definitions are unified with lhs and
replaced with their corresponding rhs. We aim to provide a set of lemmas so
that such an automated system of rewriting can reduce a wide range of multiplier
circuit designs to the final form as given in Table 1. In pursuit of this goal, we
devised and experimented with various rewriting strategies; and we came up
with a well-performing heuristic. In the subsections below, we describe these
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Fig. 2. Summary of the overall method

lemmas separated into two main sets for adder and multiplier modules, and the
general mechanism to prove them equivalent to their specification. The lemmas
we introduce are proved using ACL2, and we omit the proofs for brevity.

4.1 Adder Module Proofs

The first step of our rewriting strategy is to represent the outputs of adder
modules in terms of the s, c, and + functions. We first determine the modules
that serve as adder components in multiplier designs, such as half-adders, full-
adders, 4-to-2-compressors, and final stage adders. Then we state a conjecture
similar to Listing 1.1 where lhs is svl-run of the adder module and rhs is its
specification. We prove this conjecture with a library of rewrite rules, derived
from the lemmas given in this section, which can simplify various types of adder
modules and prove them equivalent to their specification.

For vector adders, specifications have a fixed format as shown in Table 2;
however, for single-bit adders, such as full-adders and 4-to-2 compressors, speci-
fications may vary. The format of these specifications can be of any form as long
as they are composed of only the s, c, and + functions as given in Table 2. For
adders that are not given in this table (e.g., 4:2 compressors), users may derive
their specifications by simplifying them with the lemmas introduced below.

We expect adder modules to be composed of logical AND (∧), OR (∨),
XOR (⊕), and NOT (¬) gates in certain patterns. We get expressions for these
circuits’ functionality in terms of these functions through SVL semantics. We
rewrite these expressions with the lemmas given below to simplify them to the
same form as their specification. We define the operators ∧ (and), ∨ (or), ⊕
(exclusive or), and ¬ (negation) to work with integer-valued bits (e.g., 1∧0 = 0,
1 ∨ 1 = 1, or 0 ⊕ 1 = 1).

Lemma 1. ∀x, y ∈ {0, 1} x ⊕ y = s(x + y)

Lemma 2. ∀x, y ∈ {0, 1} x ∧ y = c(x + y)

Lemma 3. ∀x, y, h, g ∈ {0, 1} c(x + y + h) ∨ (s(x + y) ∧ g) = c(x + y + (h ∨ g))
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Table 2. Rewritten outputs of some adders

Adder out3 out2 out1 out0

Half-adder – – c(a0 + a1) s(a0 + a1)

Full-adder – – c(a0 + a1 + a2) s(a0 + a1 + a2)

Vector adders

s(a3 + b3

+c(a2 + b2

+c(a1 + b1

+c(a0 + b0)))

s(a2 + b2

+c(a1 + b1

+c(a0 + b0)))

s(a1 + b1

+c(a0 + b0))

s(a0 + b0)

We implement these lemmas as well as some corollaries as rewrite rules so
that terms that can be unified with the lhs of equations are replaced by their
respective rhs. An example corollary is ∀x, y, g ∈ {0, 1} (x ∧ y) ∨ (s(x + y) ∧ g) =
c(x + y + g) that can be derived from Lemmas 2 and 3. Similarly, ∀x, y, h ∈
{0, 1} c(x+y +h)∨ s(x+y) = c(x+y +1) can be derived from Lemma 3. These
extra lemmas help expand our coverage to match more term patterns that may
occur.

We add other rewrite rules using elementary properties of ∨, ∧ and + that
help facilitate simplification. Lemma 3, and some corollaries rewrite terms with
repeated variables. In such cases, in order for the rewriter to match the lhs with
an applicable term, it is necessary to flatten the terms with associativity (e.g.,
((a + b) + c) = (a + b + c)) and lexicographically sort them using commutativity
(e.g., (b + a) = (a + b)) for every +, ∨ and ∧ instance. Other examples of
rewrite rules we have in our system implement identity and inverse properties
of addition. Finally, we have a lemma that rewrites the definition of ⊕, which is
(¬ab ∨ a¬b), in terms of s as given in Lemma 1.

Note that we put a restriction on the use of the rewrite rule for Lemma 2
such that it is used only when x and y are input wires of the adder module.
The function c is a specification for carry, and not all AND gates may calculate
carry by themselves. We have observed that only the logical AND of input signals
should be rewritten to c. Rewriting the other instances of ∧ in terms of c prevents
application of Lemma 3 and complicates our rewriting approach. We enforce this
restriction in ACL2 through a syntactic check.

Our experiments given in Sect. 6 demonstrate that the method we described
in this section can automatically simplify vector adders including ripple-carry,
carry-lookahead [26] and parallel-prefix adders such as Brent-Kung [4], Ladner-
Fischer [20], Kogge-Stone [19], Han-Carlson [9] and others.

Reasoning about adder modules before the candidate multiplier module is
a crucial step in our rewriting mechanism. The functionality of all the adder
modules should be represented with the s, c, and + functions when expanding
the definition of the multiplier module. Then, and only then, the multiplier
design can be simplified and proved correct with the lemmas described in the
subsequent section.
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4.2 Multiplier Module Proofs

After creating rewrite rules for adder modules, we start working with the correct-
ness proof of our candidate multiplier design as given in Listing 1.1. Similarly,
we convert multiplier modules into ACL2 expressions, replace instantiated adder
modules with their specifications, and perform simplification with a rewriting
mechanism derived from the lemmas introduced in this section. We first describe
how we simplify complex expressions that originate from summation tree algo-
rithms such as Wallace-tree. Secondly, we add more lemmas to simplify partial
product logic that may be generated with Booth encoding. After rewriting with
these lemmas, we expect to have simplified multiplier designs to our targeted
final form as given in Table 1. We rewrite the multiplication specification into
our final form as well and conclude verification with a syntactic equivalence
check.

Simplify Summation Trees. In some integer multiplier designs, summation
of partial products may be implemented with a very irregular structure, as is the
case with Wallace-tree like multipliers (see Sect. 2.3), and it can be challenging
to simplify them to a regular and more easily interpretable form. We describe
a set of lemmas, solving this problem by providing an efficient and automated
mechanism for such complex structures. Below, we discuss the simplification
method for multiplier designs implemented with simple partial products.

Having rewritten the adder components in terms of the s, c, and + functions,
Example 3 shows the term representing the 4th LSB of a Wallace-tree multiplier
output. Our goal is to reduce such terms to our final form as given in Table 1.

Example 3. The 4th LSB of the Wallace-tree multiplier output from Fig. 1b after
adder submodules are rewritten in terms of the s, c and + functions:

s( s( s(a3b0 + a2b1 + a1b2)
+a0b3

+c(a2b0 + a1b1 + a0b2))
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

In such summation trees, we observe many nested calls for s. These can be
simplified easily by the following rule.

Lemma 4. ∀x, y ∈ Z s(s(x) + y) = s(x + y)

Example 4. Example 3 simplified with Lemma 4:

s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2)
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

Terms derived from summation trees may include many instances for addition
of two or more calls of c. Since such instances are not present in the final form,
we try to remove them. That can be done by merging such calls of c through a
temporary conversion to d as implemented with the lemmas given below.
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Definition 3. We define function d as follows.

∀x ∈ Z d(x) =
x

2

Lemma 5. ∀x, y ∈ Z c(x) + c(y) = d(x + y − s(x) − s(y))

Lemma 6. ∀x, y ∈ Z c(x) + d(y) = d(x + y − s(x))

Lemma 7. ∀x, y ∈ Z d(x) + d(y) = d(x + y)

Lemma 8. ∀x ∈ Z d(−s(x) + x) = c(x)

Applying Lemmas 5, 6, 7, and 8 repeatedly to the term in Example 4, we obtain
the term given in Example 5. Since ∀a, b ∈ {0, 1} c(a ∧ b) = 0, we have a term
that matches the 4th bit of the final form for multiplication as given in Table 1.
It is not required to convert certain instances of d back to c with Lemma 8;
however, we can achieve better proof-time performance by shrinking terms with
this rewrite.

Example 5. Example 4 simplified with Lemma 5, 6, 7, 8:

s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2

+c(a1b0 + a0b1)))

Rewriting with Lemmas 5 and 6 creates new instances of s, which may not
seem preferable at first glance because terms become less similar to the final
form. However, we have found that for correct designs, these extra subterms
cancel out and vanish during the rewriting process. We have seen this to be the
case even for very large and much more complex terms that may have millions
of nodes.

We implement these lemmas as rewrite rules as well as some elementary
algebraic properties in order to flatten and sort terms lexicographically in sum-
mations. Our rewrite rules do not subsume each other, and they may be applied
with an arbitrary order until none of the rules are applicable.

Simplify Partial Products. Unlike the simple partial product generation
method, multipliers with Booth encoding implement a more advanced algorithm
to generate partial products. That results in terms that are more complex (see
Example 6) than those we have addressed so far. We expand our rewriting mech-
anism for simplification of summation trees and add more rewrite rules for auto-
mated simplification of partial products such as the ones generated with Booth
encoding and sign extension tricks.
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Example 6. Below is a term for the second LSB of a multiplier output, imple-
mented with Booth radix-4 encoding and before any simplification for partial
products took place:

s([¬b1b0a1 ∨ b1¬b0¬a0 ∨ b1b0¬a1]
+c([b1b0 ∨ b1¬b0]

+[b1¬b0 ∨ ¬b1b0a0 ∨ b1b0¬a0]))

Similar to other multiplier verification methods [25], we perform algebraic rewrit-
ing on the ⊕, ∨ and ¬ functions with the following lemmas.

Lemma 9. ∀x ∈ {0, 1} ¬x = 1 − x

Lemma 10. ∀x, y ∈ {0, 1} x ∨ y = x + y − xy

Lemma 11. ∀x, y ∈ {0, 1} x ⊕ y = x + y − xy − xy

Example 7. Example 6 rewritten with Lemma 9, 10, and 11 as well as elementary
algebraic properties.

s(b1 + b0a1 − b1a0 + b1b0a0 − b1b0a1 − b1b0a1

+c(b1 + b1 + b0a0 − b1b0a0 − b1b0a0))

We would like such expressions to be simplified to our final form. When deriving
our rewrite rules, we concentrate on the terms with negative and/or duplicate
arguments and realize that applying the following set of lemmas is sufficient to
simplify such complex expressions.

Lemma 12. ∀x, y ∈ Z s((−x) + y) = s(x + y)

Lemma 13. ∀x, y ∈ Z c((−x) + y) = (−x) + c(x + y)

Lemma 14. ∀x, y ∈ Z d((−x) + y) = (−x) + d(x + y)

Lemma 15. ∀x, y ∈ Z s(x + x + y) = s(y)

Lemma 16. ∀x, y ∈ Z c(x + x + y) = x + c(y)

Lemma 17. ∀x, y ∈ Z d(x + x + y) = x + d(y)

Example 8. Below is the resulting term after Example 7 is simplified using
Lemma 12–17 and elementary algebraic properties. We obtain a term match-
ing the final form in Table 1.

s(b0a1 + b1a0 + c(b0a0))

We implement these lemmas as rewrite rules along with the rules for sim-
plification of summation trees. All of these lemmas automatically work together
without any user intervention.

Algebraic rewriting of logical gates can be very expensive in terms of time
and memory. For this reason, we limit the application of these rules to the partial
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product logic only. For example, if applied indiscriminately, Lemmas 10 and 11
can cause terms to grow exponentially. Even though partial product generation
logic may allocate a large area in multipliers, rewriting the adders to the s, c,
and + functions isolates partial products from each other and segregates them
into small chunks. We expect that expressions representing partial products are
composed of the ∨, ∧, ⊕, and ¬ functions only. Therefore, we restrict Lemmas 9–
11 to apply to terms that are composed of these functions only; and we restrict
Lemmas 12–17 to apply to terms that are composed of minterms, and the − and
+ functions only. For instance, in Lemma 13, if we are unifying x with a term
that contains an instance of s, c or d, then we prevent rewriting with a syntactic
check. This heuristic helps contain this potentially expensive approach to only
local and smaller terms.

Rewrite the Multiplier Specification. In our proposed rewriting scheme,
we have a targeted representation for each output bit of multiplication as
given in Definition 2. The rewriter cannot derive this form directly from
the built-in ACL2 multiplication (∗) function. Thus, we provide a recursively
defined function multbycol that follows the formula in Definition 2. We prove
multbycol to be equivalent to the ∗ function. When the rewriter works on
the conjecture stating the correctness of a multiplier design as shown in List-
ing 1.1, (truncate size (* a b)) is rewritten to (multbycol a b size).
The rewriter can then efficiently convert the specification into the targeted final
form.

Using the rewriting mechanism described in this section, we can verify mul-
tipliers with Baugh-Wooley, sign/unsigned Booth radix-4, and simple partial
product generation algorithms with various summation tree algorithms such as
Wallace and Dadda tree. Note that Lemmas 9–17 work together with Lem-
mas 4–8 but contradict Lemmas 1–3. This is the reason why our method relies
on semantics where the design hierarchy is maintained so that we can simplify
the logic in adder modules with Lemmas 1–3 and simplify the remainder of a
multiplier design with Lemmas 4–17 at a different time. When this separation
is possible, multiplier designs are verified fully automatically without requiring
users to designate the type of algorithm used. The complete process of proving
the equivalence of semantics of a multiplier design to its specification is verified
using ACL2.

5 Termination

Our rewriter does not enforce proof of termination for rewrite rules. The program
terminates either when there are not any applicable rules or when a certain
number of steps are taken, which may happen if that number is too small for the
current conjecture, there is a loop between rules, or some rules grow some terms
indefinitely. Even though it is not required by the rewriter, it is important to
show that our rewriting algorithm requires a limited number of steps and does
not run indefinitely.
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Terms from conjectures change every time a rewrite rule is applied. Therefore,
for each of our rewriting algorithms (adder and multiplier module simplification),
we define a measure calculated on the term and show that it decreases every time
we rewrite with one of our lemmas. We first define the measure for simplifying
adder modules (Lemmas 1–3). Since carried out separately, we define another
measure for the summation tree and partial product simplification algorithms
(Lemmas 4–17). For brevity, we omit the discussion for termination with other
lemmas pertaining to elementary algebraic properties such as commutativity and
associativity.

5.1 Measure for Adder Module Simplification

The first part of our multiplier verification algorithm is simplifying the logic in
adder components and rewriting them in terms of the s, c, and + functions.
Below, we define auxiliary functions and a measure that guarantees termination
of this part of the algorithm that rewrites terms with Lemmas 1–3.

Definition 4 (f1). Function f1 counts the number of symbols (constants, func-
tions and variables) in a term.

Definition 5 (f2). Function f2 counts the occurrences of ∧ and ⊕ in a term.

For example, computing f1 and f2 on the term s(x ⊕ y + x ∧ z + c(x ⊕ y)) yields
13 and 3, respectively.

Definition 6 We define a measure m1 as follows, where the resulting ordered
pairs are compared lexicographically.

m1(term) =< f2(term), f1(term) >

The pairs produced by m1 are ordered lexicographically: thus, the value of
m1 decreases if f2 decreases (no matter the value of f1), or f2 stays the same
and f1 decreases. Rewriting with Lemmas 1, 2, and 3 decreases f2. Rewriting
with some corollaries does not change the value of f2 but decreases f1 . For
example, rewriting with the corollary ∀x, y, h ∈ {0, 1} c(x + y + h) ∨ s(x + y) =
c(x + y + 1) does not change f2 but decreases f1. In short, every step taken
with these lemmas decreases the value of m1 calculated on the resulting term.
Therefore, the rewriting algorithm for adder modules terminates.

5.2 Measure for Multiplier Module Simplification

Rewriting for summation tree and partial product generation algorithms are per-
formed together with a rewriting algorithm derived with Lemmas 4–17, excluding
Lemmas 1–3. Therefore, we define a single measure to describe the termination
of this part of the rewriting mechanism. Below we give definitions for some aux-
iliary functions and our measure.



500 M. Temel et al.

Definition 7 (f3). Function f3 sums the occurrence-depth of negative
minterms, where the occurrence-depth is calculated with respect to the overall
term.

For example, computing f3 on the term s(x0x1 + c(−x2y0 + c(−x3y1))) yields
5 because its negative minterms −x2y0 and −x3y1 occur at depth 2 and 3,
respectively. These values can be calculated by counting the unclosed parentheses
from the beginning up to the occurrence of these terms.

Definition 8 (f4). Function f4 computes the number of unique occurrences of
functions {c, d, ¬, ⊕, ∨}.
For example, computing f4 for the term c(x0) + s(x1 + c(x0) + c(x1)) yields 2
because even though there are three instances of c, the second occurrence of
c(x0) is not counted.

Definition 9. We define measure m2 to return ordered triples as follows, to be
compared lexicographically.

m2(term) =< f4(term), f3(term), f1(term) >

The value of m2 decreases if f4 decreases, or f4 stays the same and f3

decreases, or f4 and f3 stay the same and f1 decreases. Below we discuss how
rewriting with Lemmas 4–17 satisfy this measure for termination.

Rewriting with Lemmas 4 and 8 does not change the value of f4. For both
lemmas, if x is unified with a term that contains a negative minterm, then the
value of f3 decreases, otherwise, f3 remains the same. By removing an instance
of s, rewriting with both lemmas decreases f1 and consequently m2.

Rewriting with Lemmas 5, 6, 7, 9, 10, and 11 decreases f4, and therefore m2,
by removing an instance of d, c, ¬, ∨ or ⊕. Even though rewriting with some of
these lemmas creates copies of terms, the value of f4 decreases because it does
not count the same term more than once.

Rewriting with Lemmas 12–17 does not affect the value of f4 since they
are restricted to rewrite terms that contain only the + and − functions, and
minterms. For Lemmas 12, 13, and 14, x can only be unified with a positive
minterm. Therefore, rewriting with these lemmas does not change f3. For Lem-
mas 15, 16, and 17, if x is unified with a negative minterm, then f3 decreases.
Otherwise, f3 remains the same and f1 decreases.

In short, rewriting with Lemmas 1–3 decreases the measure m1 and rewriting
with Lemmas 4-17 decreases the measure m2. Therefore, our proposed rewriting
mechanism terminates.

6 Experiments

In this section, we present our experimental results and compare them to the
other state-of-the-art tools for the automated verification of multiplier designs.
We have gathered a large set of multipliers from 3 different generators, and run
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all the experiments for other verification tools and ours on the same computer
(A 2014 model iMac Intel(R) Core(TM) i7-4790K CPU @ 4.00 GHz with 32
GB system memory) for comparison. The instructions and a ready-to-run VM
image to run our tool and reproduce these experimental results can be found
online at http://mtemel.com/mult.html.

For benchmarking, we used 3 different generators. The tool from Homma
et al. [10] generates Booth encoded sign and unsigned multipliers (input size
up to 64 bits) with various summation tree and final stage adders. Designs from
Homma et. al. have multiple copies of half/full-adder modules as well as some
other adder modules. Since our method requires reasoning about each adder
module, we wrote a function that scans the modules and automatically sim-
plifies them as described in Sect. 4.1. Secondly, we used SCA-genmul [24] to
generate simple unsigned and Baugh-Wooley based signed (also referred to as
simple signed) multipliers. This tool does not generate Booth-encoded multipli-
ers. Finally, we used another multiplier generator [34] that can generate large
Booth-encoded multipliers.

We have measured the complete proof time for each benchmark, when avail-
able, and compared our results to the work of D. Kaufmann et al. [16] and A.
Mahzoon et al. [23]. These methods are based on computer algebra, and they
are the best performing tools at the time this paper is rewritten. Since we veri-
fied the correctness of our tool using ACL2, we do not generate certificates. D.
Kaufmann et al. implement their method in a stand-alone C program but they
generate certificates to check their proofs. We measured the total time to veri-
fy/certify and check certificates. A. Mahzoon et al. also test their method with
a stand-alone C program but it does not produce any certificates. Even though
it is not a complete comparison, we still include the results of their tool for the
same benchmarks.

When we run our tool on these benchmarks, we only need to identify the
names of the adder modules, their I/O size; multiplier I/O size, and whether
they perform signed or unsigned multiplication in order to determine their spec-
ification. The proofs finish automatically, and users can see the specification
explicitly to validate what is proved. The other tools are not interactive and use
some heuristics to decide on the specification internally based on the design.

D. Kaufmann et al. [16] and A. Mahzoon et al. [23] both use AIGs as inputs,
and we use SVL [33], all of which are translated from (System) Verilog using
external tools. For the other tools, we used Yosys [39] and ABC [3] to cre-
ate AIGs, without any optimization. For our tool, we created SVL netlists as
described in Sect. 2.2. Since we compare the performance of different verification
methods, we do not include the translation time in any of these results.

Table 3 shows the result of experiments run with a collection of circuits. The
benchmarks are described with the generator, partial product generation algo-
rithm, summation tree algorithm, and final stage adder. Generators are tem [34],
sca [24], and hom [10]. Partial product generation algorithms are sp (simple
unsigned/signed or Baugh-Wooley-based), and bp (unsigned and signed Booth
radix-4 encoded). Summation tree algorithms are dt (Dadda tree), wt (Wal-

http://mtemel.com/mult.html


502 M. Temel et al.

Table 3. Proof-time results in seconds for various multiplier designs

Size Benchmark AM [23]a DK [16] Our tool
Unsigned Unsigned Signed Unsigned Signed

64 × 64 sca sp-dt-bk 39 6 6 1 1
sca sp-wt-lf 33 6 6 1 1
sca sp-cwt-ks TO 65 58 1 1
sca sp-ar-rc 23 5 5 1 1
tem sp-dt-ks 173 7 7 1 1
tem sp-wt-lf 33 6 6 1 1
tem bp-dt-hc TO 44 49 1 1
tem bp-wt-rp TO 45 49 2 2
hom bp-dt-ks 288 8 TE 2 2
hom bp-bdt-hc TO 7 7 2 2
hom bp-os-bk 71 6 TO 3 3
hom bp-wt-cla 108 24 21 13 12
hom bp-4:2-lf TE 7 7 3 3

128 × 128 sca sp-dt-bk 643 33 36 2 3
sca sp-wt-lf 633 34 38 2 2
sca sp-cwt-ks TO TO TO 3 3
sca sp-ar-rc 384 27 27 18 18
tem sp-dt-ks TO 47 49 2 3
tem sp-wt-lf 650 40 40 2 2
tem bp-dt-hc TO 877 1037 7 7
tem bp-wt-rp TO 918 1067 12 13

256 × 256 sca sp-dt-bk TO 213 209 9 11
sca sp-wt-lf 15351 226 223 11 13
sca sp-cwt-ks TO TO TO 13 15
tem sp-dt-ks TO 234 232 10 12
tem sp-wt-lf 15552 220 221 10 12
tem bp-dt-hc TO 11555 14043 41 47
tem bp-wt-rp TO 11975 14264 54 58

512 × 512 sca sp-dt-bk TO 1562 1562 53 64
sca sp-wt-lf TO 1588 1577 61 76
tem sp-dt-ks TO 1655 1655 68 75
tem sp-wt-lf TO 1604 1609 65 82
tem bp-dt-hc TO TO TO 246 281
tem bp-wt-rp TO TO TO 371 380

1024 × 1024 sca sp-dt-bk TO 13746 13247 339 397
sca sp-wt-lf TO 13560 14005 322 345
tem sp-dt-ks TO 14125 15198 324 392
tem sp-wt-lf TO 13664 13708 327 393

a Does not produce certificates.
TE: Terminated with an error. TO: Time-out. 5400 s. (90 min) for 64 × 64 and
128 × 128, 16200 s (270 min) for the rest.
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lace tree), cwt (counter-based Wallace tree), ar (array), os (overturned-stairs
tree), bdt (balanced delay tree), and 4:2 (4-to-2 compressor tree). Finally, the
final stage adders are bk (Brent-Kung), lf (Ladner-Fischer), rc (Ripple-carry),
ks (Kogge Stone), csk (Carry-skip), hc (Han-Carlson), and cla (Carry-lookahead).
The selection of benchmarks was arbitrary but we have concentrated on Wallace-
tree-like multipliers with complex final stage adders as they have a more
widespread industrial application. For experiments with 64 × 64 and 128 ×
128 multipliers, we set the time limit to 1.5 h, and for larger designs, we set the
limit to 4.5 h. The results are given in seconds rounded to the nearest integer.

For all the benchmarks we have tested, our tool out-performed the other tools
in all cases. Our method is shown to verify benchmarks the others cannot and
produce a more homogeneous timing performance across different designs. A.
Mahzoon et al. [23] work only on unsigned multipliers. Both A. Mahzoon et al.
and D. Kaufmann et al. [16] give fluctuating results for multipliers with different
architectures and/or different generators. For some benchmarks, the other tools
terminated with an error such as segmentation fault (marked with TE). Our
work is more resilient to differences in designs and it scales much better (proof
times increase by 4.5–6 times when circuit size grows 4 times). For Wallace-tree
like multipliers with simple partial products, about 40% of the time on average is
spent on simplification with the lemmas given in Sect. 4, and the rest is spent by
conversion of SVL semantics to ACL2 expressions. For multipliers with Booth-
encoding, over 70% of the time is spent on partial product simplification. Array
multipliers are the only type of circuit for which our tool struggles to scale. We
believe that is because the minimal parallelism this circuit implements causes
our rewriting engine to do much more work as compared to other multiplier
structures. Even though memory use is not reported here, it scales the same way
as timings, and it grows as big as 30 GB for the largest (1024 × 1024) circuits
we have tested.

Additionally, since integer multipliers are used to implement floating-point
operations, we tested our method in a correctness proof for an implementation
of a floating-point multiply-add instruction for Centaur Technology, and we got
similar results.

7 Related Work and Conclusion

Having described our method, we now compare it with the related work. Well-
known methods to verify multipliers include generic reasoning methods such
as BDDs and SAT solvers. However, these tools do not scale well with large
multipliers. For the last few years, efforts to verify large integer multipli-
ers have explored the symbolic computer algebra approach based on Gröbner
basis [7,16,22,23,28,37]. As far as we are aware, all these tools are stand-alone,
unverified C programs and none of them except D. Kaufmann et al. [16] pro-
duces certificates. The soundness and completeness of this approach is shown
only in theory [17]. We compared our method to the studies with the best tim-
ing performance [16,23]. The tools implementing these methods identify adder
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components in designs automatically and perform some rewriting. Their rewrit-
ing strategy is different than ours; their method does not rely on maintained
design hierarchy and separate reasoning of adder and multiplier modules. Even
though they provide a more automatic system, their application appears to be
limited to some known patterns. Additionally, our tool is implemented on an
interactive tool, which can enable users to carry out more complicated proofs
such as the correctness of floating-point circuits. The limitation of our method
is that it relies on maintaining circuit hierarchy. Should this pose a problem for
some designs, it might be possible for our method to be adapted in the future
to work with flattened modules and identify adder components similarly to the
related work.

When a proof fails for a multiplier design, our tool does not output a user-
friendly message. We will work to improve our tool to process the resulting
terms from failed verification attempts and generate counterexamples for incor-
rect designs.

In this paper, we have presented an efficient method with a proven tool to
verify large and complex integer multipliers. With maintained circuit hierar-
chy, we can automatically verify very irregular multiplier designs; for example,
various 1024 × 1024 Wallace-tree like multipliers can be verified in less than
10min. We believe that our tool can find broader applications because it can
be extended to verify circuits, such as floating-point multipliers, that include an
integer multiplier as a submodule.
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Abstract. We present a new semantic gate extraction technique for
propositional formulas based on interpolation. While known gate detec-
tion methods are incomplete and rely on pattern matching or simple
semantic conditions, this approach can detect any definition entailed by
an input formula.

As an application, we consider the problem of computing unique strat-
egy functions from Quantified Boolean Formulas (QBFs) and Depen-
dency Quantified Boolean Formulas (DQBFs). Experiments with a pro-
totype implementation demonstrate that functions can be efficiently
extracted from formulas in standard benchmark sets, and that many
of these definitions remain undetected by syntactic gate detection.

We turn this into a preprocessing technique by substituting unique
strategy functions for input variables and test solver performance on the
resulting instances. Compared to syntactic gate detection, we see a sig-
nificant increase in the number of solved QBF instances, as well as a
modest increase for DQBF instances.

1 Introduction

Due to the effectiveness of modern satisfiability (SAT) solvers [20], propositional
logic has become the language of choice for encoding hard combinatorial prob-
lems arising in areas such as electronic design automation [50] and AI planning.
Since many of these problems are hard for levels of the polynomial hierarchy
beyond NP, their propositional encodings can be exponentially larger than their
original descriptions. This imposes a limit on the problem instances that can
be feasibly solved even with extremely efficient SAT solvers, and has prompted
research on decision procedures for more succinct logical formalisms such as
Quantified Boolean Formulas (QBFs).

Quantified Boolean Formulas (QBFs) are propositional formulas combined
with universal and existential quantification over truth values and offer much
more succinct encodings of problems from domains such as planning and syn-
thesis [12]. At the same time, QBF evaluation is PSPACE-complete, and in spite
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of substantial progress in solver technology, many practically relevant instances
remain hard to solve.

In part, this hardness appears to be a matter of encoding. The most com-
monly used format for QBFs is Prenex Conjunctive Normal Form (PCNF). A
PCNF formula consists of a quantifier prefix and a matrix in conjunctive normal
form. As in the case of propositional logic, any QBF can be converted to PCNF
with linear overhead but this transformation is known to adversely affect solver
performance [1]. This appears to be due to two issues: First, conversion to CNF
causes a bias towards reasoning about unsatisfiability while making it difficult to
reason about solutions, violating the inherent duality of QBF solving. Second,
prenexing introduces spurious variable dependencies that needlessly constrain
solvers [5,40]. In light of these issues, researchers have introduced two new for-
mats for representing non-CNF (and even non-prenex) QBFs in the QCIR [30]
and QAIGER standards, and solvers supporting these standards have been devel-
oped. When only a PCNF encoding is available, gate extraction techniques can
be used to (re)construct a non-CNF QBF [21]. Syntactic gate extraction relies
on the detection of patterns of clauses and auxiliary variables introduced when
converting a propositional formula to CNF [16]. The corresponding algorithms
are fast but incomplete and can only detect definitions from a pre-defined library
of gates.

In this paper, we introduce a new semantic gate extraction technique based
on SAT solving and interpolation. In contrast to known approaches, this method
is complete: a definition ψ of a variable x can be extracted from a propositional
formula ϕ whenever the equivalence x ≡ ψ is entailed by ϕ. We obtain this
result as a generalization of recent work that leverages definability for propo-
sitional model counting [25,33]. Owing to a result known as Padoa’s Theorem,
determining whether a variable x is definable in terms of X is in coNP and can be
decided by a SAT call [33]. We show that a definition ψ of x in terms of X can be
obtained as an interpolant of the formula passed to the SAT solver (Theorem 2).
For SAT solvers that use a proof system with feasible interpolation—in particu-
lar, CDCL solvers that generate resolution proofs [32]—this means a definition
can be efficiently extracted from a proof of definability.

We apply this new gate extraction technique to identify unique strategy func-
tions of QBFs and Dependency QBFs. In a controller synthesis setting, a variable
with a unique strategy function corresponds to a control signal with a unique
(as a Boolean function) implementation. We can add such an implementation to
the specification without affecting the remaining control signals.

Experiments with a prototype show that definitions can be efficiently com-
puted for formulas from standard QBF benchmark sets, and that for many
instances a large fraction of variables have unique strategy functions that can-
not be identified by syntactic gate detection. We further test the performance of
solvers on instances obtained by replacing input variables with their definitions.
For 2QBF formulas and PCNF formulas, this significantly increases the number
of instances solved by some systems compared to purely syntactic gate extrac-
tion. Our experiments further show that semantic gate detection is orthogonal
to techniques implemented in state-of-the-art preprocessors.
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Semantic gate detection is efficient and conceptually simple. By definition,
it preserves logical equivalence and is compatible with strategy extraction. As
such, we believe it is an essential addition to the state of the art in preprocessing
(D)QBF.

2 Preliminaries

We assume a countably infinite set V of propositional variables and consider
propositional formulas constructed from V using the connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (the biconditional).
For a propositional formula ϕ, we write var(ϕ) to denote the set of variables
occurring in ϕ. A literal is a variable v or a negated variable ¬v. A clause
is a finite disjunction of literals. A clause is tautological if it contains both v
and ¬v for some variable v. A propositional formula is in conjunctive normal form
(CNF) if it is a finite conjunction of non-tautological clauses. An assignment of
a subset X ⊆ V of variables is a function that maps X to the set {0, 1} of truth
values. For a set X of variables we let [X] denote the set of assignments of X. Two
assignments σ : X → {0, 1} and τ : Y → {0, 1} agree on a subset W ⊆ X ∩ Y of
their common domain if σ(w) = τ(w) for each w ∈ W . For two assignments σ :
X → {0, 1} and τ : Y → {0, 1} that agree on the entire intersection of their
domains we define the combined assignment σ∪τ : X∪Y → {0, 1} as (σ∪τ)(v) =
σ(v) if v ∈ X and (σ ∪ τ)(v) = τ(v) otherwise.

For a propositional formula ϕ and an assignment τ : X → {0, 1} with
var(ϕ) ⊆ X, we let ϕ[τ ] denote the truth value obtained by evaluating ϕ under τ .
The formula ϕ is satisfied by τ if ϕ[τ ] = 1. In this case we call τ a satisfying
assignment of ϕ. Otherwise, if ϕ[τ ] = 0, formula ϕ is falsified by τ . A formula
is satisfiable if it has a satisfiable assignment, otherwise it is unsatisfiable. A
formula ϕ implies a formula ψ if ϕ ∧ ¬ψ is unsatisfiable.

We consider Quantified Boolean Formulas (QBFs) in Prenex Normal Form
(PNF). A QBF Φ = Q.ϕ in PNF consists of a quantifier prefix Q and a
propositional formula ϕ, called the matrix of Φ. The quantifier prefix is a
sequence Q1x1 . . . Qnxn where Qi ∈ {∀,∃} and the xi are pairwise distinct
variables for 1 ≤ i ≤ n. The quantifier prefix defines an ordering <Φ on its
variables as xi <Φ xj for 1 ≤ i < j ≤ n. We assume that QBFs do not contain
free variables and every variable in the quantifier prefix appears in the matrix,
formally {x1, . . . , xn} = var(ϕ). Accordingly, we write var(Φ) = var(ϕ) for the
set of variables appearing in the QBF Φ. We further assume that every variable
of Φ occurs exactly once in its quantified prefix. The set of existential variables
of Φ is var∃(Φ) = {xi | 1 ≤ i ≤ n,Qi = ∃ }, and the set of universal variables
of Φ is var∀(Φ) = {xi | 1 ≤ i ≤ n,Qi = ∀ }. For a variable x ∈ var(Φ), we
let typeΦ(x) = Q if x ∈ varQ(Φ), for Q ∈ {∀,∃}, omitting Φ from the subscript
if the QBF is understood.

Let Φ a QBF and let x ∈ var(Φ) be one of its variables with type(x) = Q.
A strategy function for x is a function f : [var(Φ) \ varQ(Φ)] → {0, 1} such
that f(τ) = f(τ ′) for any two assignments τ and τ ′ that agree on variables in
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{ v ∈ var(Φ) \ varQ(Φ) | v <Φ x }.1 Given an indexed family F = {fx}x∈X of
strategy functions such that X ⊆ varQ(Φ) for Q ∈ {∀,∃}, the response of F
to an assignment τ : (var(Φ) \ varQ(Φ)) → {0, 1} is the assignment F (τ) :
X → {0, 1} given by F (τ)(x) = fx(τ). An existential winning strategy (for Φ)
is a family F = {fu}u∈var∃(Φ) of strategy functions such that, for any universal
assignment τ : var∀(Φ) → {0, 1}, the assignment τ ∪ F (τ) satisfies the matrix
of Φ. Dually, a universal winning strategy (for Φ) is a family F = {fu}u∈var∀(Φ) of
strategy functions such that, for any existential assignment σ : var∃(Φ) → {0, 1},
the assignment σ ∪ F (σ) falsifies the matrix. A QBF Φ is true if there is an
existential winning strategy for Φ, and false if there exists a universal winning
strategy for Φ.

3 Semantic Gate Extraction by Interpolation

This work builds on an application of propositional definability to the model
counting problem [33]. We begin by recalling two basic concepts.

Definition 1. Let ϕ be a formula, let X be a subset of its variables, and let x
be a variable. Variable x is defined in terms of X in ϕ if σ(x) = τ(x) for any
two satisfying assignments σ and τ of ϕ that agree on X. A definition of x by X
in ϕ is a formula ψ with var(ψ) ⊆ X such that σ(x) = ψ[σ] for any satisfying
assignment σ of ϕ.

It is readily verified that there is a definition for every variable that is defined.
Lagniez et al. [33] observe that the following result can be used to determine
whether a variable is defined [34,39].

Theorem 1 (Padoa’s Theorem). Let ϕ be a formula and let X ⊆ var(ϕ) be
a subset of its variables. Let ϕ′ be the propositional formula obtained by replacing
every variable y ∈ var(ϕ)\X by a new variable y′. Let x ∈ var(ϕ) be a variable.
If x /∈ X, then x is defined in ϕ by X if, and only if, the formula ϕ∧x∧ϕ′ ∧¬x′

is unsatisfiable.

For the purposes of preprocessing in model counting, it is sufficient to know that
a variable x is defined by X in ϕ, and the above result shows that this can
be decided by a SAT solver. It is not necessary to compute the corresponding
definition, whose size is not polynomially bounded in the size of ϕ under common
assumptions in computational complexity [33].

While finding definitions is harder than deciding definability in theory, the
difference virtually disappears in practice. Our main theoretical contribution,
stated as Theorem 2 below, says that a definition can be obtained as an inter-
polant of the formula constructed in the statement of Padoa’s Theorem. Since
interpolants can be efficiently (in linear time) generated from resolution proofs
[22,32], the distinction between detecting definability and computing definitions

1 We sometimes refer to existential strategy functions as Skolem functions and uni-
versal strategy functions as Herbrand functions.
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becomes moot when a CDCL SAT solver is used to decide (un)satisfiability:
once it determines that the formula is unsatisfiable it has already (implicitly or
explicitly) produced a proof from which a definition can be extracted at a small
overhead.2

Before proving Theorem 2, we recall the definition of an interpolant following
McMillan [36].

Definition 2 (Interpolant). Let ψ and χ be an formulas such that ψ ∧ χ is
unsatisfiable. An interpolant for ψ and χ is a formula I such that

(1) ψ implies I,
(2) I ∧ χ is unsatisfiable, and
(3) I only refers to variables common to ψ and χ.

Craig’s Interpolation Theorem [9] states that every pair of jointly unsatisfiable
propositional formulas have an interpolant.3 It remains to show that an inter-
polant for a formula witnessing definability in fact yields a definition.

Lemma 1. Let ϕ be a formula and let X ⊆ var(ϕ) be a subset of its variables.
Let ϕ′ be the formula obtained by replacing every variable y ∈ var(ϕ) \ X by
a new variable y′. For any variable x ∈ var(ϕ) \ X, an interpolant for ϕ ∧ x
and ϕ′ ∧ ¬x′ is a definition of x by X in ϕ.

Proof. Let I be an interpolant for ϕ ∧ x and ϕ′ ∧ ¬x′. By property (3) of Defi-
nition 2, I only refers to the common variables var(ϕ ∧ x) ∩ var(ϕ′ ∧ ¬x′) = X
of these formulas. To see that I defines x in ϕ, consider a satisfying assign-
ment σ : var(ϕ) → {0, 1} of ϕ. If σ(x) = 1 then ϕ ∧ x is satisfied by σ. The
formula ϕ∧x implies I by property (1), so I[σ] = 1 as well. Otherwise, σ(x) = 0
and we can construct a satisfying assignment σ′ of ϕ′∧¬x′ by setting σ′(v) = σ(v)
for v ∈ X along with σ′(v′) = σ(v) for v ∈ var(ϕ)\X. By property (2), I∧ϕ′∧¬x′

is unsatisfiable, so we must have I[σ′] = I[σ] = 0.

Theorem 2. Let ϕ be a formula and let X ⊆ var(ϕ) be a subset of its variables.
Let ϕ′ be the formula obtained by replacing every variable y ∈ var(ϕ) \ X by a
new variable y′. A variable x ∈ var(ϕ) \ X is defined in terms of X in ϕ if, and
only if, the formula ϕ ∧ x ∧ ϕ′ ∧ ¬x′ is unsatisfiable, and a definition of x in
terms of X can be obtained as an interpolant for ϕ ∧ x and ϕ′ ∧ ¬x′.

Proof. By Theorem 1 variable x ∈ var(ϕ) \ X is defined in terms of X in ϕ if,
and only if, the formula ϕ ∧ x ∧ ϕ′ ∧ ¬x′ is unsatisfiable. Craig’s Interpolation
Theorem tells us that in this case there is an interpolant for ϕ ∧ x and ϕ′ ∧ ¬x′,
which defines x in terms of X by Lemma 1.

2 Assuming the SAT solver does not use the full power of the DRAT proof system [51].
3 In fact, the result holds even for first order logic, but we will confine ourselves to the

propositional case.
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4 Extracting Unique QBF Strategy Functions

In this section, we show how Theorem 2 can be used to extract unique strategy
functions of QBFs. We say that the Skolem (Herbrand) function of an existential
(universal) variable x in a QBF is unique if it is the same in every existential
(universal) winning strategy. In particular, if x is existentially (universally) quan-
tified and the formula is false (true), then the strategy function of x is trivially
unique (there is none). In other words, the strategy function of a variable x
is unique if there is at most one such function for x that is part of a winning
strategy. The following result states that propositional definability is a sufficient
condition for uniqueness of a strategy function.

Proposition 1. Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF. If an existential (univer-
sal) variable xi is defined in terms of variables X ⊆ {xj | 1 ≤ j < i,Qj �= Qi }
in ϕ (¬ϕ) its Skolem (Herbrand) function is unique.

Proof. We only consider the case where xi is an existential variable of Φ (the
case where xi is a universal variable is symmetric). Let F = {fxj

}xj∈var∃(Φ) and
G = {gxj

}xj∈var∃(Φ) be existential winning strategies and τ : var∀(Φ) → {0, 1}
an assignment to the universal variables. Since F and G are existential winning
strategies both σF = τ ∪F (τ) and σG = τ ∪G(τ) must be satisfying assignments
of ϕ. The assignments σF and σG agree on X ⊆ var∀(Φ), so we must have
fxi

(τ) = σF (xi) = σG(xi) = gxi
(τ) because xi is defined in terms of X. Since τ

was chosen arbitrarily, this identity holds for every universal assignment, so the
functions fxi

and gxi
coincide.

To see that definability is not a necessary condition for a strategy function to
be unique, consider the following example.

Example 1. Let Φ = ∀x∃y∀z.(x ↔ y) ∨ z. The formula ψ = x represents the
unique existential winning strategy (set y to the same value as x). However,
variable y is not defined in terms of x: the assignments {x, y, z} and {x,¬y, z}
both satisfy the matrix and agree on x, but differ on y. Intuitively, the reason
why the existential strategy function for y is unique in spite of y not being
defined is that the universal player would never assign z true as required by one
of the assignments witnessing non-definability.

4.1 An Algorithm for Computing Unique Strategy Functions

We now describe an algorithm for computing unique strategy functions of a QBF
based on Proposition 1. By using an interpolating SAT solver (ItpSatSolver)
that supports both incremental solving and assumptions [22], we can extract
definitions for variables of a given quantifier type (universal or existential) using
a single solver instance. Pseudocode is shown as Algorithm 1 below.

Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF and let Q ∈ {∀,∃} be a quantifier
type. Algorithm 1 first determines the leftmost variable xi in the prefix of Φ
that has quantifier type Q (line 3). The strategy function of any variable to the
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right of xi in the prefix (including xi itself) may use the variables to its left
(shared), so we can begin by looking for definitions of xi in terms of shared.
Towards constructing the formula for the corresponding unsatisfiability check
according to Theorem 2, copy(ϕ,X) returns a copy ϕ′ of the matrix ϕ where
each variable x ∈ var(ϕ) \ shared has been replaced by a fresh variable x′. Next
(lines 9–14), we consider each variable xj with quantifier type Q—these are
the variables we want to find definitions of—and introduce two fresh “selector”
variables si and s′

i, while adding clauses (¬sj ∨xj) and (¬s′
j ∨¬x′

j) to ϕ and ϕ′,
respectively. These clauses allow us to represent ϕ ∧ xj ∧ ϕ′ ∧ ¬x′

j by assuming
literals sj and s′

j .
4

After initializing the SAT solver, we consider the variables x1, . . . , xn in the
order of the quantifier prefix (lines 18–29). If variable xj has quantifier type Q,
we want to check whether xj is defined in ϕ in terms of oppositely quantified
variables Xj that precede it in the prefix (Proposition 1 tells us that in this
case the strategy function of xj is unique). For the first such variable xj , it is
clear that the set of variables common to ϕ and ϕ′ is precisely X. Unsatisfiability
of ϕ∧xj∧ϕ′∧¬x′

j is decided by calling the SAT solver under assumptions {sj , s
′
j}:

the assumptions ensure that xj and ¬x′
j are set to true by propagation, and all

remaining selector variables can be set to false so as to satisfy the clauses they
occur in without interfering with the remaining clauses. If the solver determines
unsatisfiability, an interpolant Ij is computed (line 22), which by Theorem 2 cor-
responds to a definition of xj , and adds the pair (xj , Ij) to a list of definitions.
Otherwise, if xj has the quantifier type opposite to Q, the strategy function
of any variable with quantifier type Q considered later may use xj . Accord-
ingly (lines 26–27), we add clauses (xj ∨ ¬x′

j) and (¬xj ∨ x′
j) to ϕ′ through the

incremental interface of the SAT solver. This has two effects: first, it enforces
equivalence of xj and x′

j , and second, xj is added to the common vocabulary
of ϕ and ϕ′, so that it can appear in interpolants computed in later iterations.5

Soundness of Algorithm 1 as stated in the following proposition can be proved
by a straightforward induction on the quantifier prefix using Theorem 2 and
Proposition 1.

Proposition 2. Given a quantified Boolean formula Φ and a quantifier type Q ∈
{∀,∃}, Algorithm 1 terminates with a (possibly empty) set { (x1, I1) . . . (xk, Ik) }
of pairs (xi, Ii) such that Ii represents the unique strategy function of xi in Φ
and var(xi) ∈ varQ(Φ) for 1 ≤ i ≤ k.

Example 2. Consider the QBF Ψ = ∀x1∃y1∀x2∃y2.ϕ, where

ϕ = (x1 ∨ y1) ∧ (¬x1 ∨ ¬y1) ∧ (x2 ∨ y2) ∧ (¬x2 ∨ ¬y2).

4 Two distinct selector variables are required to ensure that they do not belong to the
common variables of ϕ and ϕ′.

5 One could also add these clauses to ϕ, in which case x′
j would become part of the

shared vocabulary. This has the slight disadvantage that subsequently computed
definitions may use a mixture of variables from ϕ and ϕ′, rather than just ϕ.
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Algorithm 1. Extracting Unique Strategy Functions by Interpolation

1: procedure getDefinitionsQBF(Φ, Q ∈ {∀, ∃})
2: Q1x1 . . . Qnxn.ϕ ← Φ
3: i = min{ 1 ≤ i ≤ n | Qi = Q }
4: shared ← {x1, . . . , xi−1}
5: if Q = ∀ then
6: ϕ ← ¬ϕ � ∀-strategies aim to falsify the matrix.
7: end if
8: ϕ′ ← copy(ϕ, shared)
9: sametype ← { j | 1 ≤ j ≤ n and Qj = Q }

10: for j ∈ sametype do
11: sj , s

′
j ← fresh variables

12: ϕ ← ϕ ∧ (¬sj ∨ xj)
13: ϕ′ ← ϕ′ ∧ (¬s′

j ∨ ¬x′
j)

14: end for
15: solver ← ItpSatSolver(ϕ, ϕ′)
16: defined ← ∅
17: k ← max{ i ≤ k ≤ n | Qk = Q }
18: for j = i, . . . , k do
19: if Qj = Q then
20: result ← solver .solve({sj , s

′
j})

21: if result = UNSAT then
22: Ij ← solver .getInterpolant()
23: defined ← defined ∪ {(xj , Ij)}
24: end if
25: else � Qj �= Q
26: solver .addClause(ϕ′, xj ∨ ¬x′

j)
27: solver .addClause(ϕ′, ¬xj ∨ x′

j)
28: end if
29: end for
30: return defined
31: end procedure

We illustrate a run of Algorithm 1 on Ψ with Q = ∃. Since y1 is the leftmost
existential variable, we create a copy ϕ′ of ϕ with every variable except x1

renamed, that is,

ϕ′ = (x1 ∨ y′
1) ∧ (¬x1 ∨ ¬y′

1) ∧ (x′
2 ∨ y′

2) ∧ (¬x′
2 ∨ ¬y′

2).

We also add the clauses (¬s1∨y1) and (¬s2∨y2) to ϕ and the clauses (¬s′
1∨¬y′

1)
and (¬s′

2 ∨¬y′
2) to ϕ′. In the main loop, Algorithm 1 first checks whether ϕ∧ ϕ′

is unsatisfiable under the assumptions {s1, s
′
1}. Unit propagation simplifies ϕ to

(omitting unused selector variables and clauses)

(¬x1) ∧ (x2 ∨ y2) ∧ (¬x2 ∨ ¬y2),

and ϕ′ simplifies to

(x1) ∧ (¬x′
2 ∨ y′

2) ∧ (¬x′
2 ∨ ¬y′

2).



516 F. Slivovsky

By resolving (¬x1) with (x1) we obtain the empty clause, and ¬x1 is the corre-
sponding interpolant,6 so (y1,¬x1) is added to the set of definitions. Next, we
consider the universally quantified variable x2 and add the clauses (x2 ∨ ¬x′

2)
and (¬x2 ∨ x′

2) to ϕ′. Finally, we check whether y2 is definable by calling the
SAT solver under the assumptions {s2, s

′
2}. Now, the formula ϕ simplifies to

(x1 ∨ y1) ∧ (¬x1 ∨ ¬y1) ∧ (¬x2),

and ϕ′ simplifies to

(x1 ∨ y′
1) ∧ (¬x1 ∨ ¬y′

1) ∧
(x′

2) ∧ (x2 ∨ ¬x′
2) ∧ (¬x2 ∨ x′

2).

Unit propagation derives the clause (x2) from the clauses in the second line,
which can be resolved with the clause (¬x2) from ϕ to obtain a resolution refu-
tation of the formula ϕ ∧ ϕ′, with ¬x2 as an interpolant. Accordingly, (y2,¬x2)
is added to the set of definitions. Algorithm 1 terminates with the definitions
{(y1,¬x1), (y2,¬x2)}, and it is readily verified that y1 ≡ ¬x1, y2 ≡ ¬x2 is indeed
the unique existential winning strategy of Ψ .

4.2 Improvements and Generalization to Dependency QBF

Consider a QBF Φ = ∀x1, x2 ∃y1, y2.(x1 ↔ x2) ↔ (y1 ↔ y2). It is easy to verify
that Φ is true and that y1 and y2 do not have unique Skolem functions: for every
assignment to the universal variables there are two ways of setting y1 and y2 so
as to satisfy the matrix, so neither existential variable is defined by the universal
variables alone. However, each variable is defined by all remaining variables. For
instance, variable y2 is defined by x1, x2, and y1.

More generally, increasing the set of defining variables allows us to detect
more definitions: if x is defined in terms of X then it is also defined in terms
of any enclosing set X ′ ⊃ X. To exploit this, we modified Algorithm 1 so as
to assume a total ordering of variables and check for definitions of a variable x
in terms of all variables X which precede it in the quantifier prefix. This can
be implemented by simply adding clauses encoding equivalence of xj and x′

j

(lines 26–27) regardless of quantifier type.
Technically, this leads to an alternative definition of a “winning strategy”

for a QBF where each strategy function takes an assignment to all preceding
variables as input. Both definitions are ultimately equivalent in the sense that
a winning strategy according to one definition can be transformed into a win-
ning strategy according to the other definition without changing its responses
(cf. the work on quantifier elimination by functional composition and self-
substitution [8,14,28,29]). One can prove an analogue of Proposition 1 stating
that the strategy function—according to the alternative definition—of a vari-
able x is unique whenever x is defined in terms of the variables preceding x in
the quantifier prefix.
6 As mentioned above, interpolants can be efficiently extracted from resolution refu-

tations [32,36,46].
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Dependency Quantified Boolean Formulas (DQBFs) generalize QBFs by
allowing a non-linear quantifier prefix. More specifically, each existential variable
is annotated with a set of universal variables its Skolem function may depend
on. A DQBF is true if there is an existential winning strategy such that each
Skolem function satisfies these restrictions [2]. Although evaluating DQBF is
NEXPTIME-complete and thus believed to be much harder than evaluating
QBF, the fact that problems can be concisely encoded in DQBF [12,18] has
prompted the development of dedicated DQBF solvers [13,15,17,48].

Algorithm 1 can easily be extended to compute unique Skolem functions of
DQBF. The standard DQDIMACS format [15] allows for the combination of a
linear quantifier prefix with variables for which the dependency sets are explicitly
stated. The linear quantifier prefix can be handled as before. For each existential
variable x with explicit dependency set Dx we simply check whether x is defined
by Dx. If multiple variables x1, . . . , xk have the same dependency set Dx (which
is frequently the case in benchmark formulas) we check whether xi is defined
by Dx ∪ {x1, . . . , xi−1} for each 1 ≤ i ≤ k. Again, this technically requires a
non-standard definition of Skolem functions for DQBF but can easily be proven
sound.

5 Implementation

We implemented the algorithm described in the previous section in a prototype
named Unique. As a back end SAT solver we use ItpMiniSat, a modified ver-
sion of MiniSat [11] bundled with the ExtAvy model checker that efficiently
generates interpolants in memory and supports both assumptions and incre-
mental solving [22,49]. Unique can read PCNF formulas (QDIMACS), prenex
non-CNF QBFs (QCIR), as well as DQBFs with CNF matrices (DQDIMACS).

Interpolants obtained from ItpMiniSat are represented as And-Inverter
graphs (AIGs) and accessed through the AIG library of ABC [7]. To make use
of the structural sharing capabilities of AIGs, we maintain a single AIG repre-
senting the interpolants computed in the main loop (lines 18–29) of Algorithm 1.
Whenever a new interpolant is obtained, the corresponding AIG returned by Itp-
MiniSat is merged into the existing AIG. If the number of AIG nodes exceeds
a (geometrically increasing) threshold, we use the ABC macro compress2 to
reduce the size of the combined AIG. Upon termination, and assuming the AIG
is not too large, this is followed up by a round of FRAIGing [37] and a final
application of compress2.

While running Unique on QBFs with multiple quantifier alternations we
noticed that ItpMiniSat got stuck attempting to solve some of the definabil-
ity queries. Further testing revealed that the corresponding instances were hard
for most state-of-the-art solvers. Increasing the overall timeout would allow us
to solve these instances in some cases, but naturally the corresponding inter-
polants (for unsatisfiable instances) were very large (and difficult to compress
with ABC). This clearly defeats the purpose of detecting unique strategy func-
tions quickly. We thus decided to impose a limit on the number of conflicts
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for each call of ItpMiniSAT (currently set to 1000 conflicts). This significantly
reduces the overall running time of Unique for many instances and ensures that
individual interpolants are small, but only marginally decreases the total number
of definitions found.

Since the individual definability queries are independent of each other, it is
not necessary to determine for each input variable whether it is defined. Accord-
ingly, we implemented Unique as an anytime algorithm: upon termination, it
returns the set of variables with unique strategy functions identified up to that
point, along with the AIG representing the corresponding functions.

6 Experiments

For the experiments described below we used a cluster with Intel Xeon E5649
processors at 2.53 GHz running 64-bit Linux.

6.1 Gate Extraction

We first ran Unique to compute unique strategy functions for the instances in
the 2QBF (402 instances) benchmark set from the 2018 QBF Evaluation, as
well as the PCNF (558), QCIR (341), and DQBF (333) benchmark sets from
the 2019 QBF Evaluation.7 For each job we imposed a time limit of 600 s and a
memory limit of 1.8 GB.

0

100

200

300

0 200 400 600

2QBF

DQBF

PCNF

QCIR

Fig. 1. Running time (s) of Unique by benchmark set. For each 50-s interval within
the time limit (x-axis), the number of instances (y-axis) processed by Unique with a
running time in that interval is shown.

Figure 1 shows a histogram for the running time of Unique on different
benchmark sets. While most instances are processed quickly, Unique runs into

7 http://www.qbflib.org.

http://www.qbflib.org
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the time limit for a significant number of PCNF instances. Generally, the running
time increases with the size of the matrix and the number of variables. This
explains why almost all DQBF formulas are processed quickly, as these tend to
be much smaller compared to formulas from the other benchmark sets.

Figure 2 shows a histogram for the fraction of existential variables with unique
strategy functions in 2QBF and PCNF instances (turquoise bars). We clearly
see a bimodal distribution here: there is a large number of instances where the
strategy functions of most variables are unique, but also a significant number
of instances where few existential strategy functions are unique. To determine
how many of the corresponding definitions cannot be found by syntactic gate
detection, we used the QCIR-conv script provided by GhostQ [31] to convert
2QBF and PCNF instances to QCIR, and ran Unique again on the resulting cir-
cuits. To do this, the circuit is translated (back) to CNF, but auxiliary variables
representing gates are ignored by the definability check. Testing showed that a
one-sided CNF encoding [42] works better than standard Tseitin conversion.

2QBF PCNF

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

50

100

150

200

Fig. 2. Fraction of existential variables with unique strategy functions in 2QBF (left)
and PCNF (right) instances before (turquoise) and after (red) syntactic gate detection.
For each fraction (x-axis) we see the number of instances (y-axis) with the correspond-
ing fraction of unique existential strategy functions. (Color figure online)

Table 1 (left) shows quartiles for the distributions of unique existential strat-
egy functions detected by Unique in each benchmark set.8 We only show the
distribution for existential variables in Table 1 and Fig. 2 since very few uni-
versal variables were found to have unique strategy functions. In fact, only 51
instances from the QCIR benchmark set encoding bounded synthesis for Petri
games contained such universal variables.

The fraction of variables with unique strategy functions was smallest for
QCIR instances. This is expected, since they can represent circuit structure
directly and do not require auxiliary variables to encode gate definitions. By

8 For instance, the left side of the first row of Table 1 says that for 75% of 2QBF
instances, Unique was able to identify 3% of Skolem functions as unique; for half of
the instances, at least 90% of existential variables were identified as having unique
Skolem functions; and for 25% of instances, at least 96%.
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Table 1. Distribution (quartiles) of the fraction of unique Skolem functions identified
by Unique before (left) and after (right) preprocessing with HQSPre. Rows marked
by a star (*) show the distribution after syntactic gate detection.

Original Preprocessed

1st Median 3rd 1st Median 3rd

2QBF 0.03 0.9 0.96 0 0 0

2QBF* 0 0.22 0.54 0 0 0

PCNF 0 0.53 0.94 0 0 0.03

PCNF* 0 0.21 0.53 0 0 0.02

QCIR 0 0 0.13 – – –

DQBF 0.57 0.88 0.94 0 0.22 0.45

contrast, 2QBF and DQBF instances contain many variables with unique strat-
egy functions. For about half of the instances, between roughly 90% and 95% of
the existential strategy functions are unique.

On the right of Table 1 we show the distribution of unique existential strategy
functions after preprocessing with HQSPre [52]. Clearly, only very few unique
Skolem functions are detected by Unique. This may be in part due to the fact
that preprocessing detects and removes gate definitions [27]. Another possibil-
ity is that definitions are simply lost: some of the most powerful preprocessing
techniques for QBF currently used only preserve the truth value and not the set
of strategies [23]. We will return to this topic at the end of the next subsection.

6.2 Solving Formulas Augmented with Definitions

Unique strategy functions of a (D)QBF can be substituted for their variables
without changing the set of winning strategies. This can be used in preprocessing
to reduce the number of quantified variables, typically at the cost of increasing
the size of the matrix. In the following experiments, we substituted definitions
found by Unique for the defined variables and ran QBF and DQBF solvers on
the resulting instances.

First, we considered the 2QBF benchmark set. We picked the QCIR solvers
Quabs [47], QFun [26], and GhostQ [31], along with the dedicated 2QBF
(PCNF) solver CADET [43]. For the QCIR solvers, the performance on
instances constructed by syntactic gate detection with QCIR-conv serves
as a baseline. We compare it with performance on instances obtained by
Unique and—since QCIR-conv also performs circuit-level simplifications that
go beyond gate extraction—with a combination of both where QCIR-conv and
Unique are run in sequence.

For CADET, we compare performance on the original 2QBF instances with
performance on QDIMACS instances augmented with CNF encodings of defi-
nitions extracted by Unique. For each configuration, we report the number of



Interpolation-Based Semantic Gate Extraction 521

instances solved within a time limit of 15 min. To isolate the effect of adding defi-
nitions, the time required by Unique (and QCIR-conv) is not counted towards
the time limit.9 The results are shown in Fig. 3 (left).

Original Preprocessed

QFun QuAbS GhostQ CADET QFun QuAbS GhostQ CADET
0

100

200

Gate Detection QCIR−Conv Unique Both None

Fig. 3. Number of 2QBF instances solved (y-axis) by solvers (x-axis) using different
gate detection methods before (left) and after (right) preprocessing with HQSPre.

QFun, Quabs, and GhostQ benefit considerably from semantic gate extrac-
tion, in particular when applied on top of syntactic gate extraction. By contrast,
CADET solves fewer instances augmented with gate definitions than original
instances. We found this surprising, since variable definitions should be detected
by CADET’s heuristic for identifying unique Skolem functions. Perhaps most
definitions found by Unique are already covered in this way, so that the addi-
tional clauses simply slow down propagation. We believe that explicitly telling
CADET which variables have already been identified as determined should
result in a speedup overall.

Figure 4 takes a closer look at solving times for individual instances (for this
plot, memory outs are treated as timeouts). CADET is slower on instances
augmented by Unique but fairly consistent, while the effect on the other solvers
is more erratic. We conjecture that this is because the set of existential strategies
is preserved and the instances thus “look similar” to CADET.

Next, we tested with PCNF instances and considered the QDIMACS solvers
DepQBF [5] and CAQE [44], as well as the QCIR solvers Quabs [47],
QFun [26], and Qute [40]. Again, we compare the number of instances solved
in 15 min with different options for gate detection. Results are shown in Fig. 5
(left). Again all QCIR solvers benefit from gate detection with Unique when per-
formed on top of syntactic gate detection with QCIR-Conv, while performance

9 The results are qualitatively the same when the running time of Unique is counted
towards the time limit: the largest decrease in the number of solved instances across
all benchmark sets and configurations is 7.
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Fig. 4. Solving time (s) for 2QBF instances with (x-axis) and without Unique (y-axis).

decreases for both QDIMACS solvers. The additional clauses and variables intro-
duced by Unique apparently do not help these solvers and simply result in a
slowdown.

Finally, we tested the impact of Unique on DQBF (DQDIMACS) instances
solved by HQS [19] and DCAQE [48] within 15 min. Since DQBF solvers cur-
rently do not (yet) support non-CNF input, we translate definitions to CNF and
add them to the original formulas. Note that whenever an existential variable x
is defined by (a subset of) its dependency set, we can safely let x depend on
additional variables. This is sound since the response of variable x is already
determined by the variables in the original dependency set and cannot change
depending on other inputs. In particular, we can collect all defined variables (and
auxiliary variables) in an “innermost” existential quantifier block that depends
on all universal variables. Since many existential variables have uniquely deter-
mined strategy functions (see Table 1), this allows us to push many variables
into the innermost quantifier block and get closer to a linear quantifier prefix.
For HQS, this translates into a small increase in the number of solved instances
(208 vs. 189), whereas DCAQE basically solves the same number of instances
(133 vs. 135).

Interaction with Preprocessing. QBF solvers for PCNF are typically paired
with preprocessors such as Bloqqer [6] or HQSPre [52]. These are highly
engineered tools that batter instances with a barrage of techniques and can
often solve formulas completely on their own. Most solvers benefit greatly from
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Original Preprocessed
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Fig. 5. PCNF instances solved (y-axis) by solver (x-axis) using different methods for
gate detection before (left) and after (right) preprocessing with HQSPre.

preprocessing. This is evident in Fig. 5 (right), which shows the number of solved
PCNF instances with different forms of gate detection after preprocessing with
HQSPre (within a timeout of 600 s). Here, the number of solved instances
increases significantly for almost all systems.

At the same time, preprocessing appears to obscure or destroy definitions.
Unique hardly finds any definitions in preprocessed instances (cf. Table 1) and
accordingly has little impact on performance. For QFun, which benefitted most
from gate detection in our experiments, this translates to a substantial reduction
in the number of solved instances. On the 2QBF benchmark set (Fig. 3), both
QFun and GhostQ solve significantly fewer instances with HQSPre compared
to the combination of Unique and QCIR-Conv, whereas the number of solved
instances almost doubles for QuAbS. Understanding which preprocessing tech-
niques obscure gate definitions and why certain solvers benefit more from gate
detection than others are important questions for future work.10

7 Related Work

Our semantic gate detection technique is closely related to a method for deter-
minizing Boolean relations by Jiang et al. [29], a problem that essentially corre-
sponds to solving 2QBF. The authors show that, for a (total) relation R(X, y)
with a single output variable y, a functional implementation of y can be obtained
as an interpolant for ¬R(X, 0) ∧ ¬R(X, 1). This can be used to determinize
10 We also ran experiments with QCIR-conv and Unique applied before preprocessing.

The results were significantly worse, so we do not report them in detail. Standard
preprocessing requires PCNF input, so that definitions have to be encoded using
additional clauses and Tseitin variables. Just like the PCNF solvers in the other
experiments, HQSPre appears to be unable to do anything useful with these extra
clauses and variables.
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relations R(X,Y ) with a set of output variables Y = {y1, . . . , yn}. First, an
implementation fn for yn can be computed by treating R as a relation with
inputs X ∪ {y1, . . . , yn−1} and single output yn. Subsequently, the implemen-
tation fn can be substituted for yn to obtain a relation R′(X,Y \ {yn}). By
repeating this process, a functional implementation f1 of y1 can eventually be
obtained. Substituting fi into fi+1 for 1 ≤ i < n results in functional imple-
mentations that only depend on the original input variables X. This approach
does not require for any of the output variables to be defined by X, but an
implementation of yi solely in terms of the input variables X is only available at
the very end of this process. For deterministic relations R(X,Y ) (where every y
is defined in terms of X), the authors show that a functional implementation
of y ∈ Y can be obtained as the interpolant of a formula that corresponds to the
formula in the statement of Padoa’s theorem. Our result stated as Theorem 2 is
more general in that it holds for multi-output relations that are not necessarily
deterministic.

Hofferek et al. use interpolation to synthesize multiple functional implemen-
tations from a single proof and thus avoid the increase in formula size incurred
by repeated substitution [24]. This has an analogue in strategy extraction for
QBF, which allows for implementations of all (existential or universal) variables
to be obtained from a proof [3]. However, strategy extraction requires the input
QBF has been solved, whereas our main interest is in preprocessing QBF.

There is a series of works on recovering gate definitions from CNF formu-
las. Li integrated rules for detecting equivalent literals in a Davis-Putnam style
algorithm [35]. Ostrowski et al. represent formulas as graphs to detect patterns
corresponding to and-gates, or-gates, and equivalences [38]. Roy et al. use CNF
signatures to detect a richer set of gates [45]. Fu and Malik extend this to arbi-
trary (user-specified) gate libraries and ensure that a maximum acyclic circuit
is constructed [16].

In the context of QBF, Bacchus and Goultiaeva showed that circuit recon-
struction can speed up solvers by providing them with a better set of initial
cubes [21]. They also extended the scope of these techniques to CNF formulas
obtained from circuits by the Plaisted-Greenbaum encoding [42]. Scholl and Pig-
orsch developed a QBF solver that manipulates an AIG representation of the
matrix to perform quantifier elimination and relies on circuit reconstruction to
simplify the initial AIG [41].

Balabanov et al. proposed a SAT-based semantic gate extraction tech-
nique [4]. Their approach has the disadvantage that a subset of clauses inducing
a definition has to be guessed. As a more efficient heuristic, they suggest to
identify pseudo definitions instead. A set of clauses (A1 ∨ x), . . . , (Ak ∨ x), (B1 ∨
¬x), . . . , (Bl ∨ ¬x) is a pseudo definition of x if the formula A1 ∧ · · · ∧ Ak ∧
B1 ∧ · · · ∧ Bl is unsatisfiable. Rabe and Seshia use a similar criterion in their
incremental determinization algorithm to identify variables that are (locally)
deterministic [43]. Checking for pseudo definitions is typically efficient but lim-
its the range of definitions that can be detected.
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8 Conclusion

Syntactic gate detection has been shown to benefit SAT solvers [10,16] and
QBF solvers [21]. The underlying algorithms are fast but limited to a predefined
library of gates. By contrast, our semantic gate extraction method can detect any
definition entailed by an input formula but requires an interpolating SAT solver.
In the context of SAT, this overhead likely outweighs any potential benefits.
However—as demonstrated by our experiments—there is significant potential
for application to harder problems such as QBF and DQBF evaluation. Here,
preprocessing is just a first step.

At the same time, our results show that substituting unique strategy func-
tions can slow down solvers. In some sense, this is counter-intuitive: ideally,
providing solvers with unique strategy functions should give them a head start,
or at least not hurt their performance. By analogy, if we give a SAT solver part of
a backbone assignment, it can simply instantiate accordingly and need not con-
sider the corresponding variables for the remainder of its run. With the exception
of CADET, QBF solvers currently cannot “instantiate” variables with strategy
functions in this way, since they are only equipped to reason about assignments.
We believe that designing techniques for reasoning about strategies is a key
challenge in developing the next generation of QBF solvers.

Acknowledgements. The author would like to thank Adrian Rebola-Pardo, Matthias
Schlaipfer, and Georg Weissenbacher for helpful discussions.
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Abstract. We present TarTar, an automatic repair analysis tool that,
given a timed diagnostic trace (TDT) obtained during the model check-
ing of a timed automaton model, suggests possible syntactic repairs of the
analyzed model. The suggested repairs include modified values for clock
bounds in location invariants and transition guards, adding or removing
clock resets, etc. The proposed repairs guarantee that the given TDT
is no longer feasible in the repaired model, while preserving the overall
functional behavior of the system. We give insights into the design and
architecture of TarTar, and show that it can successfully repair 69%
of the seeded errors in system models taken from a diverse suite of case
studies.

1 Introduction

A reactive system with requirements pertaining to its timing behavior is often
modeled as a network of timed automata (NTA) [BY03]. Whether a timing
requirement holds in an NTA can be analyzed by timed model checkers such
as Uppaal [BLL+95] or opaal [DHJ+11]. In case of a requirement violation, a
model checker returns a timed counterexample, also called a timed diagnostic
trace (TDT). Until now, developers must manually identify and correct such
violations by analyzing the generated TDTs. It is therefore desirable to support
this process by an automated tool set that not only determines whether timing
requirements are met, but also proposes syntactic repairs of the NTA in case
they are not.

In [KLW19] we presented an automated repair analysis that analyzes a TDT
obtained from the violation of a timed safety property and returns syntactic
repair suggestions that avoid the concrete executions of the TDT violating the
property. The analysis performs an additional admissibility check ensuring that
the repaired model is functionally equivalent with the original NTA, which means
that no action traces are added or omitted by the repair.

To illustrate the repair analysis consider the NTA in Figs. 1(a) and (b). It
describes a client that sends a request req to a database db and expects to receive
a response ser within 4 time units after sending the request. The client contains a

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 529–540, 2020.
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(a) Timed Automata client (b) Timed Automata db (c) TDT tdt

Fig. 1. Network of timed automata - running example

clock x that measures the time delay between the request creation and the receiv-
ing of a response in location serReceiving. The NTA allows to execute a TDT
that violates the property, illustrated as a sequence diagram with time intervals
in Fig. 1(c). A time interval in the sequence diagram denotes the minimal and
maximal time delay for the message transmission and processing times in db,
respectively. The repair computation analyzes the TDT and produces several
syntactic repairs to the NTA that avoid the property violation. In [KLW19], the
computed repairs aim at the modification of clock bounds in location invariants
and transition guards. An example of such a repair is to reduce the bound in the
time constraint w ≤ 2 from 2 to 1. The modified bound constrains the maximal
transmit time of the req message so that the resulting NTA receives all responses
within the expected time. This repair eliminates the problematic executions of
the TDT in the original NTA without changing the functional behavior of the
system, which is confirmed by an admissibility test defined in [KLW19]. How-
ever, in general, it may not be possible to repair the model using only clock
bound alterations.

Contributions. We present TarTar [tar20], which extends the initial prototype
implementation of the clock bound repair analysis presented in [KLW19] to a
more comprehensive NTA repair tool. Specifically, the extended tool implements
new analyses that can suggest a whole range of repairs in addition to clock
bound variation, such as modifying comparison operators in constraints, clock
references, clock resets, and location urgency. Examples of new repairs computed
for the model in Fig. 1 are:

– Exchanging the comparison operator in the constraint w ≥ 1 to w < 1 ensures
that the time to send a request is below 1 time unit.

– An exchange of clock z in z ≤ 2 with clock y restricts the time of processing
and receiving the response to at most 2 time units.

– To reset the clock y on the previous transition instead ensures that the time
for sending and processing the request is below 1 time unit.
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– Making the location serReceiving urgent reduces the time to receive a response
to 0.

We call a repair admissible if the repaired system is functionally equivalent to
the unrepaired system. The repair analysis implemented in TarTar returns the
complete set of admissible repairs.

The repair analysis combines concepts and algorithms from model checking,
constraint solving, and automata theory. A real-time model checker is used to
generate TDTs for a given NTA that violate a given timed safety property. Tar-
Tar translates the TDT into a linear real arithmetic constraint system. An SMT
solver is used to compute a repair for the generated constraint system by solv-
ing a MaxSMT problem. An automata-based language equivalence test checks
whether the repair is admissible in the NTA model. The collaboration between
these subcomponents yields a complex tool architecture. We provide insights into
the design and implementation of this architecture and the underlying infras-
tructure of supporting tools. We evaluate the new repair analyses by applying
TarTar to a number of NTA models. We systematically inject different mod-
ifications in these correct models and compute repairs for the obtained faulty
models, which results in at least one admissible repair for 69% of the TDTs.

Related Work. Other tools exist that compute repairs. The tool BugAs-
sist [JM11] analyzes C-code by solving a MaxSMT problem. The tool
ReAssert [DDG+11] checks a set of possible modification to repair broken unit
tests. Angelix [MYR16], S3 [LCL+17] and SemFix [NQRC13] compute repairs
by symbolic execution and constraint solving. SketchFix [HZWK18] is based on
lazy candidate generation. All tools are not repairing broken time constraints.
We are not aware of related work on tools for the repair of timed automata
models. A more comprehensive overview of related work on automated repair is
given in [LPR19]. A discussion of work related to the foundations of our repair
analysis can be found in [KLW19].

2 New Types of Repair Analyses

The repair analysis presented in [KLW19] and implemented in the prototype
version of TarTar encodes a TDT as a constraint system in linear real arith-
metic. It computes syntactic correct modifications of the underlying NTA by
introducing bound variation variables v . For example, possible bound modifica-
tions for a clock bound x ≤ 2 are expressed by a modified clock bound x ≤ 2+v .
The repairs are computed by solving a partial SMT problem on the TDT con-
straint system, involving soft-assert constraints on the bound variation variables.
No repair is computed whenever the soft assertion v = 0 holds, otherwise the
computed value of v characterizes the repair. In the following we sketch the new
types of repairs implemented in TarTar. For a more comprehensive description,
which space limitations do not allow us to provide here, we refer to [KLW20].
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Operator Variation Repair Analysis. This analysis is motivated by the assump-
tion that a wrong comparison operator in a location invariant or transition guard
may cause a property violation. We assume for the repair encoding that the oper-
ators ∼ are indexed according to their order in the sequence 〈 <,≤,=,≥, > 〉.
The possible repairs are encoded by a fresh variation variable vov

i where the
value of vov

i is the index of the corresponding comparison operator. If x < 4 is
computed as a repair, then vov

i = 1. Using this repair analysis, TarTar finds
two admissible repairs for the example in Figs. 1(a) and (b) that replace the
comparison operator in the clock constraint w >= 1 by < or <=, respectively.

Clock Reference Repair Analysis. This analysis aims to repair property violations
resulting from errors that stem from the unintended use of a wrong clock variable.
We enumerate all the positions of clock variables in clock bound constraints
using index i and all clock variables using index k. We then introduce for every
position i, a fresh variation variable vcv

i whose value k indicates the clock ck to
be used at that position in the repaired model. For example, if y ≤ 2 is a repaired
constraint, where the position of y in the constraint has index 3 and clock y has
index 1, then vcv

3 = 1. Applying this repair analysis to the examples in Figs. 1(a)
and (b), TarTar finds 13 admissible clock reference modification repairs, each
involving two modifications. Nine repairs exchange y in the constraints y ≤ 1
and y ≥ 1 by a selection from the set of clocks z, x and w. Four repairs exchange
y in the constraint y ≤ 1 by w or x, and w in the constraint w ≥ 1 by y or z.

Reset Clock Repair Analysis. This analysis aims to repair a property violation
by adding or removing clock resets. We introduce a variation variable v rv

i,j for
each clock ci and the transition leaving location λj in the TDT. The reset status
in the extended constraint system is inverted when v rv

i,j �= 0: if ci was not reset
before, it will now be reset, and vice versa. Applying the reset repair analysis to
the examples in Figs. 1(a) and (b), TarTar finds four admissible repairs. One
repair removes the reset of clock y, another removes the reset of clock z and
two repairs add a reset of clock x either on the transitions towards the state
reqProcessing or the transition towards the state serReceiving.

Urgent Location Repair Analysis. This analysis aims to repair cases where a
faulty usage of urgent locations, which are always left with zero delay after
entering, causes a property violation. Urgency of a location is modeled in the
TDT constraint system by setting the location delay δj to 0. We define a fresh
variation variable vuv

i for a location λj . For vuv
i �= 0, the urgency for a location λj

is inverted. Applying the urgency location repair analysis to the examples in
Figs. 1(a) and (b), TarTar finds two inadmissible repairs. The first one makes
the state reqAwaiting urgent, and another repair makes the state serReceiving
urgent.

3 Usage of TarTar

We have implemented all repair analyses described in [KLW19] and in this paper
in a tool named TarTar. It provides a graphical user interface, a command-
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line interface and a web-interface which enables the execution of this resource
intensive software on compute servers. A user selects one of these interfaces via
arguments provided when invoking the Java library implementing TarTar. For
real-time model checking, TarTar relies on Uppaal.

– The argument –web launches the web server and corresponding interface.
– Any other arguments launches the command-line mode. When using the argu-

ment –help, the command-line console prints some help information.
– When no arguments are given, the graphical user interface depicted in

Fig. 2(a) is launched. The interface offers three tabs. New Analysis starts a
repair analysis, New Experiment starts fault seeding which is described later
in Sect. 5, and Version shows the current version number of TarTar.

All tool interfaces expect the same types of inputs in order to start a TarTar
analysis run. The user specifies a file containing the Uppaal model as input
and selects the kind of repair to compute. Optionally, a file with a TDT of
the given Uppaal model can be specified. When no TDT is provided, TarTar
automatically calls Uppaal to compute a TDT. The result of an analysis is
one repaired model file for every computed repair, as well as a text file that
summarizes which repairs are admissible.

(a) TarTar GUI (b) TarTar Architecture

Fig. 2. TarTar tool

4 Software Architecture and Implementation of TarTar

The software architecture of TarTar is depicted in Fig. 2(b). The orange rect-
angles in the figure represent external tools that TarTar calls in the course of
the repair analysis. Uppaal is a state-of-the-art and closed-source model checking
tool, which TarTar uses to compute a TDT for a given model and property.
The SMT solver Z3 [dMB08] is used to solve the generated partial MaxSMT
problems. To check the admissibility of a repair, TarTar uses opaal and the
AutomataLib component of LearnLib [IHS15] since they conveniently provide
functionality used during admissibility checking.
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Data Flow Architecture. TarTar consists of many computation steps. For exam-
ple, a TDT is parsed internally and stored as a Trace. This Trace is then modi-
fied and exported as SMT-LIB2 [BFT17] code. We define a computation step of
TarTar as the computation transforming input into result artifacts. This focus
on artifacts ensures a highly cohesive architecture and clear interfaces between
any two computation steps. Computation steps with identical objectives are
grouped into a project. This results in four projects depicted by blue rectangles
in Fig. 2(b).

– HMI denotes the user interfaces of TarTar. The user inputs a timed model.
TarTar then calls the project Repair Computation using a faulty timed
model as a parameter. In case that the model is correct, TarTar calls the
project Fault Seeding.

– Fault Seeding seeds faults into a correct model and then repairs the faulty
model by computing repairs using Repair Computation. We use this analysis
in Sect. 5 in order to benchmark the Repair Computation analyses.

– Repair Computation computes candidate repairs for a faulty timed model,
applies these repairs to the model and finally automatically calls the Admis-
sibility Test.

– Admissibility Test checks for every repaired model whether the computed
repair is also admissible.

Control Flow Architecture. TarTar computes iteratively a set of repairs for a
given faulty Uppaal model and a given property Π using the following steps:

0. Counterexample Creation. TarTar calls Uppaal to verify the model against
Π. In case Π is violated, it stores a shortest symbolic TDT witnessing the
violation in XML format.

1. Diagnostic Trace Creation. TarTar parses the model and the TDT into a
data structure Trace. To add potential repairs, TarTar copies the trace and
replaces the constraints that will potentially be subject to a repair by their
modified variants. The modified trace is then translated to a logic constraint
system, represented in SMT-LIB2 code.

2. Repair Computation. Z3 [dMB08] then solves a MaxSMT problem on the
modified trace constraint system, computing a repair in which the number
of unmodified constraints on the variation variables of type v = 0 is maxi-
mized. Since Z3 can solve a MaxSMT problem only for quantifier-free linear
real arithmetic, TarTar first runs a quantifier elimination on the constraint
system. It then solves the MaxSMT problem with soft constraints requir-
ing v = 0 for all variation variables. For a more comprehensive presentation
of this construction we refer the reader to [KLW20]. In case no solution is
found, TarTar terminates. Otherwise, TarTar applies the repair to the
faulty model and returns a repaired model.

3. Admissibility Check. TarTar checks the admissibility of a repair and com-
pares the untimed languages of the faulty and repaired models. TarTar
calls the model checker opaal in order to compute the timed transition sys-
tems (TTS) of the original and the repaired Uppaal model. We modified the
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opaal model checker in such a way that it returns the TTS for a model. Tar-
Tar then checks whether the two TTS have equivalent untimed languages,
in which case the repair is admissible. This check is implemented using the
library AutomataLib. In case the two TTS are not equivalent, the admissi-
bility test returns a trace as a witness for the difference.

4. Iteration. TarTar enumerates all repairs, i.e., all combinations of constraint
modifications that correct the TDT. The repairs are iteratively enumerated
starting with the ones that require the smallest number of modifications to
the model. After a repair is computed, the combination of modified variables
that has been found is prevented from being reconsidered for future repairs by
setting these modification variables to 0 using hard asserts. TarTar then pro-
ceeds with attempting to compute further, previously unconsidered repairs.

Fig. 3. TarTar component architecture

Component Architecture. We imple-
mented TarTar with the general
infrastructure depicted in Fig. 3. The
interface Job provides a general
abstraction for an algorithm and spec-
ifies the necessary input and result
values of the algorithm by the class
Description. TarTar contains a Job
for the projects Fault Seeding, Repair
Computations and Admissibility Test.
The class Session executes a Job and derivations of Session provide the different
interfaces to the user. With this infrastructure, the analysis implementation in
TarTar is independent from the implementation of the user interfaces, thus
reducing coupling and improving modifiability of the code.

Implementation Details. We implemented the different projects that constitute
TarTar in Java and use the build-management tool maven [Mav19] to manage
the dependencies between the projects. TarTar interacts differently with the
external tools that are needed for different purposes. It calls Uppaal via the
command-line interface in order to generate a TDT and calls Z3 via its API to
compute a repair. For the admissibility check, it calls opaal using a command-line
script and the AutomataLib as an included Java library. For the implementation
of the TarTar analyses the following two details are essential.

We modify constraints in an Uppaal model in order to apply a repair or
to seed a fault. Since neither clock constraints nor transitions possess explicit
unique identifiers in an Uppaal model, it is not obvious which constraint to
change. We therefore uniquely identify a constraint by traversing the constraints
in the sequence stored in the Uppaal model file and use the constraint index in
this sequence as its identifier.

The complexity of the algorithms for solving quantifier elimination and the
MaxSMT problem increase exponentially with the number of variables in the
SMT model [KLW19]. We therefore reduce the number of variables by exploit-
ing implied equality constraints. For example, a variable cj is created for every
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clock c in every step j of the TDT. We eliminate cj explicitly before quantifier
elimination by replacing it with the term

∑
i∈r..j di, where di is the time delay

at step i in the trace and r is the last step before j where c was reset.

5 Evaluation

Evaluation Strategy. In order to evaluate the repair analyses both qualitatively
and quantitatively, we need to synthesize a set of faulty timed automata. To the
best of our knowledge, no benchmark suite for faulty timed automata exists. We
therefore create faulty models by using the fault seeding strategy from [KLW19]
which is motivated by ideas from mutation testing [JH11]. Mutation testing eval-
uates the quality of a test suite for a given program by systematically corrupting
program code and determining the ratio of corruptions that the test suite is able
to detect. We apply the same principle to evaluate the quality of our repair
technique. As proposed in [KLW19], fault seeding modifies a single clock con-
straint so that the result is a set of models that violate a given property. During
the seeding, the bound of a single clock constraint is modified by an amount
of {−10,−1,+1,+0.1M,+M}, where M is the maximal clock bound occurring
in a given model. Our observation was that making either small modifications
that are close to the bound value or modifications in the order of the maximal
bound value M often introduce actual errors in the model. We have extended
fault seeding to the new types of repairs. In particular, fault seeding addition-
ally exchanges the comparison operator in a clock constraint by {<,≤,=,≥, >},
swap a referenced clock with all other clocks occurring in the given model, mod-
ify the reset clocks of any transition, and switch for any location whether it is
urgent. TarTar checks automatically whether a modified TA violates a given
property. If this is the case, it performs all of the above defined repair analyses.

Results. We applied fault seeding to the models in [KLW19] and analyzed
the obtained TDTs using the above described repair analyses implemented in
TarTar. All analyses were performed on a computer with an i7-6700K CPU
(4.00 GHz), 60 GB of RAM and a 64 bit Linux operating system. We summarize
the results of the experiment per considered model (Table 1) and per type of
considered repair (Table 2). Column Sd contains the count of seeded faults that
result in a number #T of faulty models. TUP is the maximal time that Uppaal
needs to create a TDT for the faulty models, and the longest TDT has a length of
Ln. TarTar computed for the TDTs overall a number #R repairs of which #A
are admissible. An admissible repair is found for #S of the TDTs. The computa-
tion effort for a repair analysis is given by the time TQE for successful quantifier
elimination, the number of timeouts #O of quantifier eliminations after 10 min,
the average time TR to compute a repair and the memory consumption MR. The
constraint system that Z3 solves has the count #Vr of variables and #Cn of con-
straints. The effort for the admissibility check is given in time TAdm and memory
MA. All times are given in seconds and memory consumption in MB. Notice that
we omit the columns pertaining to the fault seeding and TDT computation in
Table 2 as they are irrelevant here.
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Table 1. Experimental results according to model.

Repair #Sd #T TUP Ln #R #A #S TQE #O TR MR #Vr #Cn TAdm MA

db rep. 110 13 0.016 4 229 138 9 89.346 2 0.911 14.53 30 91 2.080 45

csma 191 10 0.012 2 70 26 8 0.049 0 0.023 0.58 16 72 1.825 75

elevator 88 5 0.011 1 7 5 4 0.049 0 0.020 0.53 6 28 1.665 17

viking 310 9 0.015 18 9 7 5 86.539 21 1.436 20.07 120 180 1.952 543

bando 1, 955 40 0.111 279 4, 061 209 21 31.555 46 4.922 20.86 1, 156 8, 144 19.57 1251

Pacemaker 1, 187 12 0.022 9 62 19 10 0.663 20 0.325 2.59 116 988 1.994 206

SBR 353 50 0.027 84 751 660 31 117.057 86 2.686 37.16 765 1, 211 138.004 211

FDDI 314 36 0.014 11 166 105 34 29.859 51 3.074 9.70 116 272 2.241 128

Overall, TarTar seeded 4.508 faults. This resulted in 175 TDTs in total
(60 TDTs due to bound modification, 72 due to operator variation, 27 due to
changing the clock reference, 8 due to complementing the reset of clocks and
8 due to the switching of urgent locations). TarTar found 5,355 repairs, out
of which 1,169 were admissible. It found at least one admissible repair for 122
of the TDTs. The maximal number of modified constraints in the admissible
repairs computed for a single TDT using all types of analysis was 25.

Table 2. Experimental results according to type of repair.

Repair #R #A #S TQE #O TR MR #Vr #Cn TAdm MA

Bound Modification 533 364 85 15.209 8 4.922 20.86 1, 156 2,498 138.004 525

Operator Variation 3, 929 96 51 117.057 44 2.686 37.16 996 8,144 59.117 543

Clock Reference 693 625 35 33.282 61 3.074 14.13 1, 120 5,355 116.944 206

Reset Clock 45 37 13 89.346 113 0.911 14.53 996 2,836 2.051 45

Urgent Location 155 47 37 0.107 0 0.135 3.16 1, 120 2,502 58.551 1, 251

Interpretation. Few of the seeded faults resulted in a property violation. TarTar
seeded 4.508 faults which led to 175 TDTs, thus only 3.9% of these faults result in
a TDT. This supports the hypothesis that, in practice, often times only few time
constraints have an impact on a property violation. TarTar computes at least
one admissible repair by bound modification for 85 (48%) of the 175 TDTs, by
operator variation for 51 (29%), by clock reference for 35 (20%), by clock reset for
13 (7%) and by urgent location for 37 (21%). Every analysis on its own computes
less admissible repairs than the combination of all repair analyses, which solves
122 (69%) of the 175 TDTs. The largest number of modified constraints in all
the admissible repairs for a single TDT was 25, which is less than anticipated.
This low number of modified constraints infer that, for the examples that we
considered, only a few constraints of each TDT combined to admissible repairs.
The number of modified constraints determines the number of possible repairs
that have an impact on whether a property is violated or not. Since it was
observed in [KLW19] that the computational effort for the repair computation is
largely determined by the quantifier elimination step, we expect that in light of
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the observed 226 timeouts a more efficient quantifier elimination would lead to
a significantly higher number of repairs. Furthermore, the number of timeouts,
and thus the computation time needed for the repair, rises with the length of
the analyzed TDT. The model SBR has the most timeouts with 86 and the
third longest trace with a length of 84 steps. The model bando has the third
most timeouts with 46 and the longest trace. Obviously, the longer the TDT,
the larger the resulting constraint system, leading to increased computational
effort. The bando model has the largest constraint system with 1, 156 variables
and 8, 144 constraints. The SBR model has the second largest constraint system
with 765 variables and 1, 211 constraints. The model FDDI has a shorter trace
of length of 11 and a much smaller constraint system with 116 variables and
272 constraints. From this we conclude that the complexity of a repair depends
not only on the trace length, but also on the intrinsic complexity of the model.
Modifying states from urgent to non-urgent during fault seeding resulted in
only 8 TDTs. This low number is due to the observation that the considered
models contain only few urgent states. Modifying non-urgent states to urgent
ones, however, did not lead to a single property violation resulting in a TDT.
The rationale is that urgency ensures to leave a state immediately without a
delay which leads to a restriction rather than a relaxation regarding the time
budget spent along an execution trace. As a consequence, making a state urgent
does not cause a property violation in many models since the type of the checked
properties is typically time bounded reachability, and a restricted time budget
does not make it more likely that the property is violated. We finally observe
that the admissibility check requires more computation resources than the repair
computation. The maximal memory used for the admissibility test was 1, 251MB
in contrast to 37.16MB for the repair computation. This is in line with our
expectation since the admissibility test searches the state space of the full NTA,
while the repair analyses only considers a single TDT.

6 Conclusion

We have presented the TarTar tool, its architecture and implementation, and
illustrated its application to a number of significant case studies. In the course
of our work we have extended the repair analysis that is implemented in Tar-
Tar for bound modification to modifications of comparison operators, clock
references, reset of clocks and missing urgencies. The evaluation of the repair
analyses showed that an admissible repair is computed for at least 69% of the
analyzed TDTs. The integration of various tools with heterogeneous interfaces
posed a particular challenge to the architecture of TarTar which we addressed
by the definition of intermediate artifacts.

In future work we plan to explore the interplay between different repairs that
are computed for a repaired system that still violates a property, and develop
refined strategies to select promising repairs from a repair set. A further gener-
alization of the analysis is to not only compute clock constraint modifications
for faulty models but also to compute possible relaxations of clock constraints
for correct models in order to support design space exploration.
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Abstract. We introduce SAW, a tool for safety analysis of weakly-hard
systems, in which traditional hard timing constraints are relaxed to allow
bounded deadline misses for improving design flexibility and runtime
resiliency. Safety verification is a key issue for weakly-hard systems, as it
ensures system safety under allowed deadline misses. Previous works are
either for linear systems only, or limited to a certain type of nonlinear
systems (e.g., systems that satisfy exponential stability and Lipschitz
continuity of the system dynamics). In this work, we propose a new
technique for infinite-time safety verification of general nonlinear weakly-
hard systems. Our approach first discretizes the safe state set into grids
and constructs a directed graph, where nodes represent the grids and
edges represent the reachability relation. Based on graph theory and
dynamic programming, our approach can effectively find the safe initial
set (consisting of a set of grids), from which the system can be proven safe
under given weakly-hard constraints. Experimental results demonstrate
the effectiveness of our approach, when compared with the state-of-the-
art. An open source implementation of our tool is available at https://
github.com/551100kk/SAW. The virtual machine where the tool is ready
to run can be found at https://www.csie.ntu.edu.tw/∼r08922054/SAW.
ova.

Keywords: Weakly-hard systems · Safety verification · Graph theory

1 Introduction

Hard timing constraints, where deadlines should always been met, have been
widely used in real-time systems to ensure system safety. However, with the
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Fig. 1. A weakly-hard system with perfect sensors and actuators.

rapid increase of system functional and architectural complexity, hard deadlines
have become increasingly pessimistic and often lead to infeasible designs or over
provisioning of system resources [16,20,21,32]. The concept of weakly-hard sys-
tems are thus proposed to relax hard timing constraints by allowing occasional
deadline misses [2,11]. This is motivated by the fact that many system func-
tions, such as some control tasks, have certain degrees of robustness and can
in fact tolerate some deadline misses, as long as those misses are bounded and
dependably controlled. In recent years, considerable efforts have been made in
the research of weakly-hard systems, including schedulability analysis [1,2,5,12–
14,19,25,28,30], opportunistic control for energy saving [18], control stability
analysis and optimization [8,10,22,23,26], and control-schedule co-design under
possible deadline misses [3,6,27]. Compared with hard deadlines, weakly-hard
constraints can more accurately capture the timing requirements of those system
functions that tolerate deadline misses, and significantly improve system feasi-
bility and flexibility [16,20]. Compared with soft deadlines, where any deadline
miss is allowed, weakly-hard constraints could still provide deterministic guaran-
tees on system safety, stability, performance, and other properties under formal
analysis [17,29].

A common type of weakly-hard model is the (m,K) constraint, which spec-
ifies that among any K consecutive task executions, at most m instances could
violate their deadlines [2]. Specifically, the high-level structure of a (m,K)-
constrained weakly-hard system is presented in Fig. 1. Given a sampled-data
system ẋ = f(x, u) with a sampling period δ > 0, the system samples the state
x at the time t = iδ for n = 0, 1, 2, . . . , and computes the control input u with
function π(x). If the computation completes within the given deadline, the sys-
tem applies u to influence the plant’s dynamics. Otherwise, the system stops
the computation and applies zero control input. As aforementioned, the system
should ensure the control input can be successfully computed and applied within
the deadline for at least K−m times over any K consecutive sampling periods.

For such weakly-hard systems, a natural and critical question is whether the
system is safe by allowing deadline misses defined in a given (m,K) constraint.



SAW: A Tool for Safety Analysis of Weakly-Hard Systems 545

There is only limited prior work in this area, while nominal systems have been
adequately studied [4,9,15,31]. In [8], a weakly-hard system with linear dynamic
is modeled as a hybrid automaton and then the reachability of the generated
hybrid automaton is verified by the tool SpaceEx [9]. In [7], the behavior of a lin-
ear weakly-hard system is transformed into a program, and program verification
techniques such as abstract interpretation and SMT solvers can be applied.

In our previous work [17], the safety of nonlinear weakly-hard systems are
considered for the first time. Our approach tries to derive a safe initial set for any
given (m,K) constraint, that is, starting from any initial state within such set,
the system will always stay within the same safe state set under the given weakly-
hard constraint. Specifically, we first convert the infinite-time safety problem into
a finite one by finding a set satisfying both local safety and inductiveness. The
computation of such valid set heavily lies on the estimation of the system state
evolution, where two key assumptions are made: 1) The system is exponentially
stable under nominal cases without any deadline misses, which makes the system
state contract with a constant decay rate; 2) The system dynamics are Lipschitz
continuous, which helps bound the expansion under a deadline miss. Based on
these two assumptions, we can abstract the safety verification problem as a one-
dimensional problem and use linear programming (LP) to solve it, which we call
one-dimension abstraction in the rest of the paper.

In practice, however, the assumptions in [17] are often hard to satisfy and
the parameters of exponential stability are difficult to obtain. In addition, while
the scalar abstraction provides high efficiency, the experiments demonstrate that
the estimation is always over conservative. In this paper, we go one step further
and present a new tool SAW for infinite-time safety verification of nonlinear
weakly-hard systems without any particular assumption on exponential
stability and Lipschitz bound, and try to be less conservative than the scalar
abstraction. Formally, the problem solved by this tool is described as follows:

Problem 1. Given an (m,K) weakly-hard system with nonlinear dynamics ẋ =
f(x, u), sampling period δ, and safe set X, find a safe initial set X0, such that
from any state x(0) ∈ X0, the system will always be inside X.

To solve this problem, we first discretize the safe state set X into grids. We
then try to find the grid set that satisfies both local safety and inductiveness.
For each property, we build a directed graph, where each node corresponds to a
grid and each directed edge represents the mapping between grids with respect
to reachability. We will then be able to leverage graph theory to construct the
initial safe set. Experimental results demonstrate that our tool is effective for
general nonlinear systems.

2 Algorithms and Tool Design

The schematic diagram of our tool SAW is shown in Fig. 2. The input is a model
file that specifies the system dynamics, sampling period, safe region and other
parameters, and a configuration file of Flow* [4] (which is set by default but can
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Fig. 2. The schematic diagram of SAW.

Algorithm 1: Overall algorithm of SAW
Data: Dynamic system f with safe state region X, the control law π,

weakly-hard constraint (m, K), sampling period δ
Result: Safe initial state set X0

1 Γ = partition(X, p);
/* Search the grid set that satisfies local safety. */

2 G1 = constructOneStepGraph() ;
3 ΓS , GK = calculateLocalSafety() ;

/* Search the grid set that satisfies inductiveness. */

4 ΓI = calculateInductivenessSet() ;
5 return ΓI ;

also be customized). After fed with the input, the tool works as follows (shown
in Algorithm 1). The safe state set X is first uniformly partitioned into small
grids Γ = {v1, v2, . . . , vpd}, where X = v1 ∪ v2 ∪ · · · ∪ vdp , vi ∩ vj = φ (∀i �= j),
d is the dimension of the state space, and p is the number of partitions in each
dimension (Line 1 in Algorithm 1). The tool then tries to find the grids that
satisfy the local safety. It first invokes a reachability graph constructor to build
a one-step reachability graph G1 to describe how the system evolves in one
sampling step (Line 2). Then, a dynamic programming (DP) based approach
finds the largest set ΓS = {vs1 , vs2 , . . . , vsn

} from which the system will not go
out of the safe region. The K-step reachability graph GK is also built in the DP
process based on G1 (Line 3). After that, the tool searches the largest subset
ΓI of ΓS that satisfies the inductiveness by using a reverse search algorithm
(Line 4). The algorithm outputs ΓI as the target set X0 (Line 5).

The key functions of the tool are the reachability graph constructor, DP-
based local safety set search, and reverse inductiveness set search. In the following
sections, we introduce these three functions in detail.

2.1 Reachability Graph Construction

Integration in dynamic system equations is often the most time-consuming part
to trace the variation of the states. In this function, we use Flow* to get a valid
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Algorithm 2: Construct one-step graph: constructOneStepGraph()
Data: Dynamic system f , grid set Γ , the control law π, sampling period δ
Result: Directed graph G1(Γ, E1)
/* Initialize the edge set E1 of G1. */

1 E1 ←− ∅;
2 for v ∈ Γ do

/* Consider deadline miss (e = 1)/meet (e = 0) respectively. */

3 for e ∈ {0, 1} do
/* Compute one step reachable set R1(v) from v. */

4 R1(v) = Flow*(v, δ, e);
/* v is unsafe and no edge is added if Xc ∩ R1(v) �= ∅. */

5 if Xc ∩ R1(v) �= ∅ then Conitnue;
/* Add an edge pointing v′ from v if v′ ∩ R1(v) �= ∅. */

6 for v′ ∈ Γ do
7 if v′ ∩ R1(v) �= ∅ then E1 ←− E1 ∪ {(v, e, v′)};

8 return G1(Γ, E1);

overapproximation of reachable set (represented as flowpipes) starting from every
grid after a sampling period δ. Given a positive integer n, the graph constructed
by the reachability set after n sampling period, n · δ, is called a n-step graph
Gn. Since the reachability for all the grids in any sampling step is independent
under our grid assumption, we first build G1 and then reuse G1 to construct GK

later without redundant computation of reachable set.
One-step graph is built with Algorithm 2. We consider deadline miss and

deadline meet separately, corresponding to two categories of edges (Line 3). For
a grid v, if the one-step reachable set R1(v) intersects with unsafe state Xc, then
it is considered as an unsafe grid and we let its reachable grid be ∅. Otherwise,
if R1(v) intersects with another grid v′ under the deadline miss/meet event e,
then we add a directed edge (v, e, v′) from v′ to v with label e. The number
of outgoing edges for each grid node v is bounded by pd. Assuming that the
complexity of Flow* to compute flowpipes for its internal clock ε is O(1), we can
get the overall time complexity as O(|Γ | · pd · δ/ε).

K-step graph GK is built for finding the grid set that satisfies local safety and
inductiveness. To avoid redundant computation on reachable set, we construct
GK based on G1 by traversing K-length paths, as the bi-product of local safety
set searching procedure.

2.2 DP-Based Local Safety Set Search

We propose a bottom-up dynamic programming for considering all the possible
paths, utilizing the overlapping subproblems property (Algorithm3). The reach-
able grid set at step K that is derived from a grid v at step k ≤ K with respect
to the number of deadline misses n ≤ m can be defined as DP(v, n, k). To be
consistent with Algorithm 2, this set is empty if and only if it does not satisfy the
local safety. We need to derive DP(v, 0, 0). Initially, the zero-step reachability is
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Algorithm 3: Search grid set for local safety: calculateLocalSafety()
Data: Directed graph G1(Γ, E1), weakly-hard constraint (m, K)
Result: Grid set ΓS , directed graph GK(Γ, EK)

1 for v ∈ Γ do
2 for n ← 0 to m do
3 DP(v, n, K) ←− {v};

4 for k ← K − 1 to 0 do
5 for v ∈ Γ do
6 for n ← 0 to m do
7 isSafe ← True;
8 for e ∈ {0, 1} do
9 if n + e ≤ m then

10 nextGrids(v) ←− {v′ | (v, e, v′) ∈ E1};
11 if nextGrids(v) = ∅ then isSafe ← False; break;
12 for v′ ∈ nextGrids(v) do
13 R(v′) ←− DP(v, n + e, k + 1);
14 if R(v) = ∅ then isSafe ← False; break;
15 DP(v′, n, k) ←− DP(v′, n, k) ∪ R(v);

16 if isSafe = false then
17 DP(v, n, k) ←− ∅;

18 ΓS ←− {v | DP(v, 0, 0) �= ∅};
19 EK ←− {(v, v′) | v ∈ DP(v, 0, 0)};
20 return ΓS , GK(Γ, EK);

straight forward, i.e., ∀u ∈ Γ, n ∈ [0,m], DP(v, n,K) = {v}. The transition is
defined as:

∀k ∈ [0,K − 1] : DP(v, n, k) =
⋃

∀v′,e:(v,e,v′)∈E1,n+e≤m

DP(v′, n + e, k + 1).

If there exists an empty set on the right hand side or there is no outgoing edge
from v for any e such that n + e ≤ m, we let DP(v, n, k) = ∅. Finally, we have
ΓS = {v | DP(v, 0, 0) �= ∅}, EK = {(v, v′) | v′ ∈ DP(v, 0, 0)}.

We used bitset to implement the set union which can accelerate 64 times
under the 64-bit architecture. The time complexity is O(|Γ |2/bits·pd ·K2+|Γ |2),
where bits depends on the running environment. |Γ |2 is contributed by GK .

2.3 Reverse Inductiveness Set Search

To find the grid set ΓI ⊆ ΓS that satisfies inductiveness, we propose a reverse
search algorithm Algorithm 4. Basically, instead of directly searching ΓI , we
try to obtain ΓI by removing any grid v within ΓS , from which there exists
a path reaching ΓU = Γ − ΓS . Specifically, Algorithm4 starts with initializing
ΓU = Γ −ΓS (line 1). The ΓU iteratively absorbs the grid v that can reach ΓU in
K sampling periods, until a fixed point is reached (line 2–3). Finally ΓI = Γ −ΓU

is the largest set that satisfies inductiveness. It is implemented as a breadth first
search (BFS) on the reversed graph of GK , and the time complexity is O(|Γ |2).
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Algorithm 4: Search grid set for inductiveness: calculateInductiveness-
Set()

Data: Directed graph GK(Γ, EK), Grid set ΓS

Result: Grid set ΓI

1 ΓU ←− Γ − ΓS ;
2 while ∃(v, v′) ∈ EK such that v /∈ ΓU , v′ ∈ ΓU do
3 ΓU ←− ΓU ∪ {v};
4 ΓI = Γ − ΓU ;
5 return ΓI ;

3 Example Usage

Example 1. Consider the following linear control system from [17]:
[
ẋ1

ẋ2

]
=

[
0 1
0 −0.1

] [
x1

x2

]
+ u, where u =

[
0 0

−0.375 −1.15

] [
x1

x2

]
.

δ = 0.2 and step size = 0.01. The initial state set is x1 ∈ [−1, 1] and x2 ∈ [−1, 1].
The safe state set is x1 ∈ [−3, 3] and x2 ∈ [−3, 3]. Following the input format
shown in Listing 1.1. Thus, we prepare the model file as Listing 1.2.

1 <state_dim > <input_dim > <grid_count >
2 <state_var_names > <input_var_names >
3 <state_ode.1>
4 ...
5 <state_ode.state_dim >
6 <input_equa.1>
7 ...
8 <input_equa.input_dim >
9 <period > <step_size >

10 <m> <k>
11 <safe_state.1>
12 ...
13 <safe_state.state_dim >
14 <initial_state .1>
15 ...
16 <initial_state.state_dim >

Listing 1.1. Input format

1 2 1 50
2 x1 x2 u
3 x2
4 -0.1 * x2 + u
5 -0.375 * x1 - 1.15 * x2
6 0.2 0.01
7 2 5
8 -3 3
9 -3 3

10 -1 1
11 -1 1

Listing 1.2. example/model1.txt

Then, we run our program with the model file.
1 ./saw example/model1.txt

To further ease the use of our tool, we also pre-complied our tool for x86 64 linux
environment. In such environment, users do not need to compile our tool and
can directly invoke saw linux x86 64 instead of saw (which is only available
after manually compiling the tool).
1 ./ saw_linux_x86_64 example/model1.txt

The program output is shown in Listing 1.3. Line 6 shows the number of
edges of G1. Lines 8–10 provide the information of GK , including the number of
edges and nodes. Line 12 prints the safe initial set X0. Our tool then determines
whether the given initial set is safe by checking if it is the subset of X0.
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1 [Info] Parsing model.
2 [Info] Building FLOW* configuration.
3 [Info] Building grids.
4 [Info] Building one -step graph.
5 Process: 100.00%
6 [Success] Number of edges: 19354
7 [Info] Building K-step graph.
8 [Success] Start Region Size: 1908
9 End Region: 1208

10 Number of Edges: 102436
11 [Info] Finding the largest closed subgraph.
12 [Success] Safe Initial Region Size: 1622
13 [Info] Calculating area.
14 Initial state region: 4.000000
15 Grids Intersection: 4.000000
16 Result: safe

Listing 1.3. Verification result

Table 1. Benchmark setting. ODE denotes the ordinary differential equation of the
example, π denotes the control law, and δ is the discrete control stepsize.

# ODE π δ Safe state set (m, K)

1
ẋ1 = x2

ẋ2 = −0.1x2 + u
u = −0.375x1 − 1.15x2 0.2

x1 ∈ [−3.0, 3.0]

x2 ∈ [−3.0, 3.0]
(2, 5)

2
ẋ1 = −2x1 + u1

ẋ2 = −0.9x2 + u2

u1 = −x1

u2 = −x1 − x2

0.3
x1 ∈ [−6.0, 6.0]

x2 ∈ [−6.0, 6.0]
(1, 10)

3
ẋ1 = x2 + u

ẋ2 = −2x1 − 0.1x2 + u
u = x1 1.6

x1 ∈ [−3.0, 3.0]

x2 ∈ [−3.0, 3.0]
(2, 10)

4 ẋ = x2 − x3 + u u = −2x 0.6 x ∈ [−4.0, 4.0] (2, 100)

5 ẋ = 0.2x + 0.03x2 + u u = −0.3x3 1.6 x ∈ [−2.0, 2.0] (1, 5)

6
ẋ1 = x2 − x3

1 + x2
1

ẋ2 = u

u = −1.22x1 − 0.57x2

−0.129x3
2

0.1
x1 ∈ [−5.0, 5.0]

x2 ∈ [−5.0, 5.0]
(2, 15)

4 Experiments

We implemented a prototype of SAW that is integrated with Flow*. In this
section, we first compare our tool with the one-dimension abstraction [17], on the
full benchmarks from [17] (#1–#4) and also additional examples with no guaran-
tee on exponential stability from related works (#5 and #6) [24]. Table 1 shows
the benchmark settings, including the (m,K) constraint set for each benchmark.
Then, we show how different parameter settings affect the verification results of
our tool. All our experiments were run on a desktop, with 6-core 3.60 GHz Intel
Core i7.

4.1 Comparison with One-Dimension Abstraction

Table 2 shows the experimental results. It is worth noting that the one-dimension
abstraction cannot find the safe initial set in most cases from [17]. In fact, it only
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Table 2. Experimental results. ExpParam denotes the parameters of the exponential
stability, where “N/A” means that either the system is not exponentially stable or
the parameters are not available. Initial state set denotes the set that needs to be
verified. The last two columns denote the verification results of the one-dimension
abstraction [17] and SAW, respectively. “—” means that no safe initial set X0 is found
by the tool. p represents the partition number for each dimension in SAW. Time (in
seconds) represents the execution time of SAW.

# ExpParam Initial state set One-dimension abstraction SAW

Result p Result Time

1
α = 1.8,

λ = 0.4

x1 ∈ [−1.0, 1.0]

x2 ∈ [−1.0, 1.0]
— 50 Yes 72.913

2
α = 1.1,

λ = 1.8

x1 ∈ [−6.0, 6.0]

x2 ∈ [−6.0, 6.0]

No

(X0 : x2
1 + x2

2 ≤ 1.9472)
30 Yes 10.360

3
α = 2,

λ = 0.37

x1 ∈ [−1.0, 2.0]

x2 ∈ [−1.0, 1.0]
— 100 Yes 183.30

4
α = 1.4,

λ = 1
x ∈ [−4.0, 4.0] — 30 Yes 80.613

5 N/A x ∈ [−1.56, 1.32] — 100 Yes 4.713

6 N/A
x1 ∈ [−5.0, 5.0]

x2 ∈ [−5.0, 5.0]
— 50 Yes 750.77

works effectively for a limited set of (m,K), e.g., when no consecutive deadline
misses is allowed. For general (m,K) constraints, one-dimension abstraction per-
forms much worse due to the over-conservation. Furthermore, we can see that,
without exponential stability, one-dimension abstraction based approach is not
applicable for the benchmarks #5 and #6. Note that for benchmark #2, one-
dimension abstraction obtains a non-empty safe initial set X0, which however,
does not contain the given initial state set. Thus we use “No” instead of “—” to
represent this result. Conversely, for every example, our tool computes a feasible
X0 that contains the initial state set (showing the initial state set is safe), which
we denote as “Yes”.

4.2 Impact of (m, K), Granularity, and Stepsize

(m,K). We take benchmark #1 (Example 1 in Sect. 3) as an example and run
our tool under different (m,K) values. Figures 3a, 3b, 3c demonstrate that, for
this example, the size of local safety region ΓS shrinks when K gets larger. The
size of inductiveness region ΓI grows in contrast. ΓS becomes the same as ΓI

when K gets larger, in which case m is the primary parameter that influences
the size of ΓI .

Granularity. We take benchmark #3 as an example, and run our tool with
different partition granularities. The results (Figs. 3d, 3e, 3f) show that ΓI grows
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(a) (m, K) = (2, 5) (b) (m, K) = (2, 9) (c) (m, K) = (3, 9)

(d) p = 15 (e) p = 20 (f) p = 100

Fig. 3. Results under different (m, K) values (3a, 3b, 3c) and different granularities
(3d, 3e, 3f). The green solid region is ΓI . The slashed region is ΓS . The blue rectangle
is the initial state set that needs to be verified. (Color figure online)

when p gets larger. The choice of p has significant impact on the result (e.g., the
user-defined initial state set cannot be verified when p = 15).

Stepsize. We take benchmark #5 as an example, and run our tool with dif-
ferent stepsizes of Flow*. With the same granularity p = 100, we get the safe
initial state set ΓI = [−1.56, 1.32] when step size = 0.1, but ΓI is empty when
step size = 0.3. The computation times are 4.713 s and 1.835 s, respectively.
Thus, we can see that there is a trade-off between the computational efficiency
and the accuracy.

5 Conclusion

In this paper, we present a new tool SAW to compute a tight estimation of safe
initial set for infinite-time safety verification of general nonlinear weakly-hard
systems. The tool first discretizes the safe state set into grids. By constructing
a reachability graph for the grids based on existing tools, the tool leverages
graph theory and dynamic programming technique to compute the safe initial
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set. We demonstrate that our tool can significantly outperform the state-of-the-
art one-dimension abstraction approach, and analyze how different constraints
and parameters may affect the results of our tool. Future work includes further
speedup of the reachability graph construction via parallel computing.
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Abstract. Reachability analysis is a critical tool for the formal verifica-
tion of dynamical systems and the synthesis of controllers for them. Due
to their computational complexity, many reachability analysis methods
are restricted to systems with relatively small dimensions. One significant
reason for such limitation is that those approaches, and their implementa-
tions, are not designed to leverage parallelism. They use algorithms that
are designed to run serially within one compute unit and they can not uti-
lize widely-available high-performance computing (HPC) platforms such
as many-core CPUs, GPUs and Cloud-computing services.

This paper presents PIRK, a tool to efficiently compute reachable sets
for general nonlinear systems of extremely high dimensions. PIRK can
utilize HPC platforms for computing reachable sets for general high-
dimensional non-linear systems. PIRK has been tested on several systems,
with state dimensions up to 4 billion. The scalability of PIRK’s parallel
implementations is found to be highly favorable.

Keywords: Reachability analysis · ODE integration · Runge-Kutta
method · Mixed monotonicity · Monte Carlo simulation · Parallel
algorithms

1 Introduction

Applications of safety-critical cyber-physical systems (CPS) are growing due
to emerging IoT technologies and the increasing availability of efficient com-
puting devices. These include smart buildings, traffic networks, autonomous
vehicles, truck platooning, and drone swarms, which require reliable bug-free
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software that perform in real-time and fulfill design requirements. Traditional
simulation/testing-based strategies may only find a small percentage of the soft-
ware defects and the repairs become much costly as the system complexity grows.
Hence, in-development verification strategies are favorable since they reveal the
faults in earlier stages, and guarantee that the designs satisfy the specifications
as they evolve through the development cycle. Formal methods offer an attrac-
tive alternative to testing- and simulation-based approaches, as they can verify
whether the specifications for a CPS are satisfied for all possible behaviors from
a set of the initial states of the system. Reachable sets characterize the states
a system can reach in a given time range, starting from a certain initial set
and subjected to certain inputs. They play an important role in several formal
methods-based approaches to the verification and controller synthesis. An exam-
ple of this is abstraction-based synthesis [1–4], in which reachable sets are used
to construct a finite-state “abstraction” which is then used for formal synthesis.

Computing an exact reachable set is generally not possible. Most practical
methods resort to computing over-approximations or under-approximations of
the reachable set, depending on the desired guarantee. Computing these approx-
imations to a high degree of accuracy is still a computationally intensive task,
particularly for high-dimensional systems. Many software tools have been cre-
ated to address the various challenges of approximating reachable sets. Each of
these tools uses different methods and leverages different system assumptions to
achieve different goals related to computing reachable sets. For example, CORA
[5] and SpaceEx [6] tools are designed to compute reachable sets of high accu-
racy for very general classes of nonlinear systems, including hybrid ones. Some
reachability analysis methods rely on specific features of dynamical systems,
such as linearity of the dynamics or sparsity in the interconnection structure
[7–9]. This allows computing the reachable sets in shorter time or for relatively
high-dimensional systems. However, it limits the approach to smaller classes of
applications, less practical specifications, or requires the use of less accurate (e.g.,
linearized) models.

Other methods attack the computational complexity problem by comput-
ing reachable set approximations from a limited class of set representations. An
example of limiting the set of allowed overapproximations are interval reachabil-
ity methods, in which reachable sets are approximated by Cartesian products of
intervals. Interval reachability methods allow for computing the reachable sets of
very general non-linear and high-dimensional systems in a short amount of time.
They also pose mild constraints on the systems under consideration, usually only
requiring some kind of boundedness constraint instead of a specific form for the
system dynamics. Many reachability tools that are designed to scale well with
state dimension focus on interval reachability methods: these include Flow∗ [10],
CAPD [11], C2E2 [12], VNODE-LP [13], DynIbex [14], and TIRA [15].

Another avenue by which reachable set computation time can be reduced,
which we believe has not been sufficiently explored, is the use of parallel com-
puting. Although most reachability methods are presented as serial algorithms,
many of them have some inherent parallelism that can be exploited. One example
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of a tool that exploits parallelism is XSpeed [16], which implements a parallelized
version of a support function-based reachability method. However, this parallel
method is limited to linear systems, and in some cases only linear systems with
invertible dynamics. Further, the parallelization is not suitable for massively
parallel hardware: only some of the work (sampling of the support functions)
is offloaded to the parallel device, so only a relatively small number of parallel
processing elements may be employed.

In this paper, we investigate the parallelism for three interval reachability
analysis methods and introduce PIRK, the Parallel Interval Reachability Ker-
nel. PIRK uses simulation-based reachability methods [17–19], which compute
rigorous approximations to reachable sets by integrating one or more systems
of ODEs. PIRK is developed in C++ and OpenCL as an open-source1 kernel for
pFaces [20], a recently introduced acceleration ecosystem. This allows PIRK to
be run on a wide range of computing platforms, including CPUs clusters, GPUs,
and hardware accelerators from any vendor, as well as cloud-based services like
AWS.

The user looking to use a reachability analysis tool for formal verification
may choose from an abundance of options, as our brief review has shown. What
PIRK offers in this choice is a tool that allows for massively parallel reachability
analysis of high-dimensional systems with an application programming interface
(API) to easily interface with other tools. To the best of our knowledge, PIRK is
the first and the only tool that can compute reachable sets of general non-linear
systems with dimensions beyond the billion. As we show later in Sect. 5, PIRK
computes the reachable set for a traffic network example with 4 billion dimension
in only 44.7 min using a 96-core CPU in Amazon AWS Cloud.

2 Interval Reachability Analysis

Fig. 1. An example of an Interval
Reachability problem for a nonlinear
system. Red rectangle: initial set. Blue
rectangles: reachable sets for several
final times t1. (Color figure online)

Consider a nonlinear system with dynam-
ics ẋ = f(t, x, p) with state x ∈ R

n, a set
of initial states X0, a time interval [t0, t1],
and a set of time-varying inputs P defined
over [t0, t1]. Let Φ(t; t0, x0, p) denote the
state of the system, at time t, of the tra-
jectory beginning at time t0 at initial state
x0 under input p. We assume the systems
are continuous-time.

The finite-time forward reachable set
is defined as

Rt0,t1 = {Φ(t1; t0, x, p)|x ∈ X0, p ∈ P}.
For the problem of interval reachabil-

ity analysis, there are a few more con-
straints on the problem structure. An interval set is a set of the form [a, a] =
1 PIRK is publicly available at https://github.com/mkhaled87/pFaces-PIRK.

https://github.com/mkhaled87/pFaces-PIRK
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{a : a ≤ a ≤ a}, where ≤ denotes the usual partial order on real vectors, that
is the partial order with respect to the positive orthant cone. The vectors a and
a are the lower and upper bounds respectively of the interval set. An interval
set can alternatively be described by its center a∗ = 1

2 (a + a) and half-width
[a] = 1

2 (a−a). In interval reachability analysis, the initial set must be an interval,
and inputs values restricted to an interval set, i.e. p(t) ∈ [p, p], and the reach-
able set approximation must also be an interval (Fig. 1). Furthermore, certain
methods for computing interval reachable sets require further restrictions on the
system dynamics, such as the state and input Jacobian matrices being bounded
or sign-stable.

2.1 Methods to Compute Interval Reachable Sets

PIRK computes interval reachable sets using three different methods, allowing
for different levels of tightness and speed, and which allow for different amounts
of additional problem data to be used.

The Contraction/Growth Bound method [4,21,22] computes the reachable
set using component-wise contraction properties of the system. This method may
be applied to input-affine systems of the form ẋ = f(t, x) + p. The growth and
contraction properties of each component of the system are first characterized
by a contraction matrix C. The contraction matrix is a component-wise gener-
alization of the matrix measure of the Jacobian Jx = ∂f/∂x [19,23], satisfying
Cii ≥ Jx,ii(t, x) for diagonal Jacobian elements Jx,ii(t, x), and Cij ≥ |Jx,ij(t, x)|
for off-diagonal Jacobian elements Jx,ij(t, x). The method constructs a reachable
set over-approximation by separately establishing its center and half-width. The
center is found by simulating the trajectory of the center of the initial set, that
is as Φ(t1; t0, x∗, p∗). The half width is found by integrating the growth dynamics
ṙ = g(r, p) = Cr + [p], where [p] = 1

2 (p − p), over [t0, t1] with initial condition
r(t0) = [x] = 1

2 (x − x).
The Mixed-Monotonicity method [24] computes the reachable set by separat-

ing the increasing and decreasing portions of the system dynamics in an auxiliary
system called the embedding system whose state dimension is twice that of the
original system [25]. The embedding system is constructed using a decomposi-
tion function d(t, x, p, x̂, p̂), which encodes the increasing and decreasing parts
of the system dynamics and satisfies d(t, x, p, x, p) = f(t, x, p). The evaluation
of a single trajectory of the embedding system can be used to find a reachable
set over-approximation for the original system.

The Monte Carlo method computes a probabilistic approximation to the
reachable set by evaluating the trajectories of a finite number m of pairs sam-
ple points (x(i)

0 , p(i)) in the initial set and input set, and selecting the smallest
interval that contains the final points of the trajectories. Unlike the other two
methods, the Monte Carlo method is restricted to constant-valued inputs, i.e.
inputs of the form p(t) = p, where p ∈ [p, p]. Each sampled initial state x

(i)
0 is

integrated over [t0, t1] with its input p(i) to yield a final state x
(i)
1 . The interval

reachable set is then approximated by the elementwise minimum and maximum
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of the x
(i)
1 . This approximation satisfies a probabilistic guarantee of correctness,

provided that enough sample states are chosen [26]. Let [R,R] be the approxi-
mated reachable set, ε, δ ∈ (0, 1), and m ≥ (2n

ε ) log
(

2n
δ

)
. Then, with probability

1−δ, the approximation [R,R] satisfies P (Rt0,t1\[R,R]) ≤ ε, where P (A) denotes
the probability that a sampled initial state will yield a final state in the set A,
and \ denotes set difference. The probability that a sampled initial state will be
sent to a state outside the estimate (the “accuracy” of the estimate) is quanti-
fied by ε. Improved accuracy (lower ε) increases the sample size as O(1/ε). The
probability that running the algorithm will fail to give an estimate satisfying the
inequality (The “confidence”) is quantified by δ. Improved confidence (lower δ)
increases the sample size by O(log(1/δ)).

3 Parallelization

The bulk of the computational work in each method is spent in ODE integration.
Hence, the most effective approach by which to parallelize the three methods is to
design a parallel ODE integration method. There are several available methods
for parallelizing the task of ODE integration. Several popular methods for paral-
lel ODE integration are parallel extensions of Runge-Kutta integration methods,
which are the most popular serial methods for ODE integration.

PIRK takes advantage of the task-level parallelism in the Runge-Kutta equa-
tions by evaluating each state dimension in parallel. This parallelization scheme
is called parallelization across space [27]. PIRK specifically uses a space-parallel
version of the fourth-order Runge-Kutta method, or space-parallel RK4 for
brevity. In space-parallel RK4, each parallel thread is assigned a different state
variable to evaluate the intermediate update equations. After each intermediate
step, the threads must synchronize to construct the updated state in global mem-
ory. Space-parallel RK4 can use as many parallel computation elements as there
are state variables: since PIRK’s goal is to compute reachable sets for extremely
high-dimensional systems, this is sufficient in most cases.

The space-parallel scheme is not hardware-specific, and may be used with any
parallel computing platform. PIRK is similarly hardware-agnostic: the pFaces
ecosystem, for which PIRK is a kernel, provides a common interface to run on
a variety of heterogeneous parallel computing platforms. The only difference
between platforms that affects PIRK is the number of available parallel processing
elements (PEs).

4 Complexity of the Parallelized Methods

The parallelized implementations of the three reachability methods described
in Sect. 2.1 use space-parallel RK4 to perform almost all computations other
than setting up initial conditions. We can therefore find the time and memory
complexity of each method by analyzing the complexity of space-parallel RK4
and counting the number of times each method uses it.
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For a system with n dimensions, space-parallel RK4 scales linearly as the
number of PEs (denoted by P ) increases. In a computer with a single PE (i.e.,
P = 1), the algorithm reduces to the original serial algorithm. Then, suppose
that a parallel computer has P ≤ n PEs of the same type. We assume a com-
putational model under which instruction overhead and latency from thread
synchronization are negligible, memory space has equal access time from all
processing elements, and the number of parallel jobs can be evenly distributed
among the P processing elements.2 Under this parallel random-access machine
model [28], the time complexity of space-parallel RK4 is reduced by a factor of
P : each PE is responsible for computing n/P components of the state vector.
Therefore, for fixed initial and final times t0 and t1, the time complexity of the
algorithm is O( n

P ).
The parallel version of the contraction/growth bound method uses space-

parallel RK4 twice. First, it is used to compute the solution of the system’s
ODE f for the center of the initial set X0. Then, it is used to compute the
growth/contraction of the initial set X0 by solving the ODE g of the growth
dynamics. Since this method uses a fixed number of calls of space-parallel RK4,
its time complexity is also O( n

P ) for a given t0 and t1.
The parallelized implementation of the mixed-monotonicity method uses

space-parallel RK4 only once, in order to integrate the 2n-dimensional embed-
ding system. This means that the mixed-monotonicity method also has a time
complexity of O( n

P ) for fixed t0 and t1. However, the mixed-monotonicity method
requires twice as much memory as the growth bound method, since it runs space-
parallel RK4 on a system of dimension 2n.

The parallelized implementation of the Monte Carlo method uses space-
parallel RK4 m times, once for each of the m sampled initial states. The imple-
mentation uses two levels of parallelization. The first level is a set of parallel
threads over the samples used for simulations. Then, within each thread, another
parallel set of threads are launched by space-parallel RK4. This is realized as
one parallel job of m × n threads. Consequently, the Monte Carlo method has
a complexity of O(mn

p ). Since only the elementwise minima and maxima of the
sampled states need to be stored, this method only requires as much memory as
the growth bound method.

Remark 1. A pseudocode of each parallel algorithm and a detailed discussion of
their time and space complexities are provided in an extended version of this
paper [29]. The extended version also contains additional details for the case
studies that will be presented in the next section.

5 Case Studies

In each of the case studies to follow, we report the time it takes PIRK to compute
reachable sets for systems of varying dimension using all three of its methods on

2 While these non-idealities will be present in real systems and slow down computation,
they should not affect the asymptotic complexity.
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Fig. 2. Logarithmic plots of the results for speed tests of the traffic model (first row)
and the quadrotor swarm (second row). Speed test results for the serial interval reach-
ability toolbox TIRA are also shown for the traffic model.

a variety of parallel computing platforms. We perform some of the same tests
using the serial tool TIRA, to measure the speedup gained by PIRK’s ability to
use massively parallel hardware.

We set a time limit of 1 h for all of the targeted case studies, and report
the maximum dimensions that could be reached under this limit. The Monte
Carlo method is given probabilistic parameters ε = δ = 0.05 in each case study
where it is used. We use four AWS machines for the computations with PIRK:
m4.10xlarge which has a CPU with 40 cores, c5.24xlarge which has a CPU
with 96 cores, g3.4xlarge which has a GPU with 2048 cores, and p3.2xlarge
which has a GPU with 5120 cores. For the computations with TIRA, we used a
machine with a 3.6 GHz Intel i7 CPU.

5.1 n-link Road Traffic Model

We consider the road traffic analysis problem reported in [30], a proposed bench-
mark for formal controller synthesis. We are interested in the density of cars along
a single one-way lane. The lane is divided into n segments, and the density of cars
in each segment is a state variable. The continuous-time dynamics are derived
from a spatially discretized version of the Cell Transmission Model [31]. This is
a nonlinear system with sparse coupling between state variables.

The results of the speed test are shown in the first row of Figure 2. The
machines m4.10xlarge and c5.24xlarge reach up to 2 billion and 4 billion
dimensions, respectively, using the growth/contraction method, in 47.3 min and
44.7 min, respectively. Due to memory limitations of the GPUs, the machines



PIRK: Parallel Interval Reachability Kernel 563

g3.4xlarge and p3.2xlarge both reach up to 400 million in 106 s and 11 s,
respectively.

The relative improvement of PIRK’s computation time over TIRA’s is sig-
nificantly larger for the growth bound method than for the other two. This
difference stems from how each tool computes the half-width of the reachable
set from the radius dynamics. TIRA solves the radius dynamics by computing
the full matrix exponential using MATLAB’s expm, whereas PIRK directly inte-
grates the dynamics using parallel Runge-Kutta. This caveat applies to Sect. 5.2
as well.

5.2 Quadrotor Swarm

The second test system is a swarm of K identical quadrotors with nonlinear
dynamics. The system dynamics of each quadrotor model are derived in a sim-
ilar way to the model used in the ARCH-COMP 18 competition [32], with the
added simplification of a small angle approximation in the angular dynamics
and the neglect of Coriolis force terms. A derivation of both models is avail-
able in [33]. Similar to the n-link traffic model, this system is convenient for
scaling: system consisting of one quadrotor can be expressed with 12 states, so
the state dimension of the swarm system is n = 12K. While this reachability
problem could be decomposed into K separate reachability problems which can
be solved separately, we solve the entire 12K-dimensional problem as a whole to
demonstrate PIRK’s ability to make use of sparse interconnection.

The results of the speed test are shown in Fig. 2 (second row). The machines
m4.10xlarge and c5.24xlarge reach up to 1.8 billion dimensions and 3.6 bil-
lion dimensions, respectively, (using the growth/contraction method) in 48 min
and 32 min, respectively. The machines g3.4xlarge and p3.2xlarge both reach
up to 120 million dimensions in 10.6 min and 46 s, respectively.

5.3 Quadrotor Swarm with Artificial Potential Field

The third test system is a modification of the quadrotor swarm system which
adds interactions between the quadrotors. In addition to the quadrotor dynamics
described in Sect. 5.2, this model augments each quadrotor with an artificial
potential field to guide it to the origin while avoiding collisions. This controller
applies nonlinear force terms to the quadrotor dynamics that seek to minimize
an artificial potential U that depends on the position of all of the quadrotors.
Due to the interaction of the state variables in the force terms arising from the
potential field, this system has a dense Jacobian. In particular, at least 25% of
the Jacobian elements will be nonzero for any number of quadrotors.

Table 1 shows the times of running PIRK using this system on the four
machines m4.10xlarge, c5.24xlarge, g3.4xlarge and p3.2xlarge in Amazon
AWS. Due to the high density of this example, we focus on the memory-light
growth bound and the Monte-Carlo methods. PIRK computed the reach sets
of systems up to 120,000 state variables (i.e., 10,000 quadrotors). Up to 1,200
states, all machines solve the problems in less than one second. Some of the
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Table 1. Results for running PIRK to compute the reach set of the quadrotors swarm
with artificial potential field. “N/M” means that the machine did not have enough
memory to compute the reachable set.

Method No. of states Memory (MB) Time (seconds)

m4.10xlarge c5.24xlarge g3.4xlarge p3.2xlarge

GB 1200 2.8 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0

GB 12000 275.3 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0

GB 120000 27,473.1 69.6 68.3 N/M N/M

MC 1200 45.7 1.0 ≤ 1.0 2.0 ≤ 1.0

MC 12000 457.5 56.8 23.7 233.1 40.6

MC 120000 4577.6 ≥ 2h 3091.8 N/M 5081.0

machines lack the required memory to solve the problems requiring large mem-
ory (e.g., 27.7 GB of memory is required to compute the reach set of the system
with 120,000 state variables using the growth bound method).

5.4 Heat Diffusion

The fourth test system is a model for the diffusion of heat in a 3-dimensional
cube. The model is based on a benchmark used in [7] to test a method for
numerical verification of affine systems. A model of the form ẋ = f(t, x, p) which
approximates the heat transfer through the cube according to the heat equation
can be obtained by discretizing the cube into an �× �× � grid, yielding a system
with �3 states. The temperature at each grid point is taken as a state variable.
Each spatial derivative is replaced with a finite-difference approximation. Since
the heat equation is a linear PDE, the discretized system is linear.

We take a fixed state dimension of n = 109 by fixing � = 1000. Integration
takes place over [t0, t1] = [0, 20] with time step size h = 0.02. Using the Growth
bound method, PIRK solves the problem on m4.10xlarge in 472 min, and in
350.2 min on c5.24xlarge. This is faster than the time reported in [7] (30 h)
using the same machine.

5.5 Overtaking Maneuver with a Single-Track Vehicle

The remaining case studies focus on models of practical importance with low
state dimension. Although PIRK is designed to perform well on high-dimensional
systems, it is also effective at quickly computing reachable sets for low dimen-
sional systems, for applications that require many reachable sets. The first such
case study is single-track vehicle model with seven states, presented in [34].

We fix an input that performs a maneuver to overtake an obstacle in the
middle lane of a 3-lane highway. To verify that the maneuver was safely com-
pleted, we compute reachable sets over a range of points and ensuring that the
reachable set does not intersect any obstacles. We consider a step-size of 0.005 s
in a time window between 0 and 6.5 s. We compute one reachable set at each
time step, resulting in a “reachable tube” comprising 1300 reachable sets. PIRK
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Fig. 3. Reachable tube for the single-track vehicle.

computed the reachable tube in 0.25 s using the growth bound method on an i7
CPU (Fig. 3).

5.6 Performance on ARCH Benchmarks

In order to compare PIRK’s performance to existing tools, we tested PIRK’s
growth bound implementation on three systems from the ARCH-COMP’18 cat-
egory report for systems with nonlinear dynamics [32]. This report contains
benchmark data from several popular reachability analysis tools (C2E2, CORA,
Flow∗, Isabelle, SpaceEx, and SymReach) on nonlinear reachability problems
with state dimensions between 2 and 12.

Table 2. Results from running PIRK (growth bound method) to compute the reach
sets for the examples reported in the ARCH-2018 competition.

Benchmark model PIRK CORA CORA/SX C2E2 Flow∗ Isabelle SymReach

Van der Pol (2 states) 0.13 2.3 0.6 38.5 1.5 1.5 17.14

Laub-Loomis (7 states) 0.04 0.82 0.85 0.12 4.5 10 1.93

Quadrotor (12 states) 0.01 5.2 1.5 – 5.9 30 2.96

Table 2 compares the computation times for PIRK on the three systems to
those reported by other tools in [32]. All times are in seconds. PIRK ran on an i9
CPU, while the others ran on i7 and i5: see [32] for more hardware details. PIRK
solves each of the benchmark problems faster than the other tools. Both of the
i7 and i9 processors used have 6 to 8 cores: the advantage of PIRK is its ability
to utilize all available cores.

6 Conclusion

Using a simple parallelization of interval reachability analysis techniques, PIRK
is able to compute reachable sets for nonlinear systems faster and at higher
dimensions than many existing tools. This performance increase comes from
PIRK’s ability to use massively parallel hardware such as GPUs and CPU clusters,
as well as the use of parallelizable simulation-based methods. Future work will
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focus on improving the memory-usage of the mixed monotonicity and Monte-
Carlo based methods, including an investigation of adaptive sampling strategies,
and on using PIRK as a helper tool to synthesize controllers for high-dimensional
systems.
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Abstract. Boolean networks (BNs) provide an effective modelling tool
for various phenomena from science and engineering. Any long-term
behaviour of a BN eventually converges to a so-called attractor. Depend-
ing on various logical parameters, the structure and quality of attractors
can undergo a significant change, known as a bifurcation. We present
a tool for analysing bifurcations in asynchronous parametrised Boolean
networks. To fight the state-space and parameter-space explosion prob-
lem the tool uses a parallel semi-symbolic algorithm.

Keywords: Boolean networks · Attractors · Bifurcation analysis

1 Introduction

Boolean networks (BNs) provide an effective mathematical tool to model compu-
tational processes and other phenomena from science and engineering. BNs rep-
resent a generalisation of other relevant mathematical models, which appeared
previously as cellular automata (CA), suggested by Wolfram [39] for computa-
tion modelling, or formal genetic nets [24] and Thomas networks [37], proposed
for gene regulatory networks. This gives an idea of the versatility of BNs in dif-
ferent applications (mathematics, physics chemistry, biology, ecology, etc.) and
engineering (computation, artificial intelligence, electronics, circuits, etc.).

The development of formal methods for analysis and synthesis of Boolean net-
works has recently attracted a lot of attention [11,18,20,28,36]. In this paper, we
are primarily interested in BN models for computational systems biology [29]. In
general, biological processes are emerging from complex inter- and intra-cellular
interactions and they cannot be sufficiently understood and controlled without
the help of powerful computer-aided modelling and analysis methods [38]. BNs
serve an important purpose of describing overall interactions within a living cell
at an appropriate level of abstraction and they provide a systematic approach
to model crucial states of cell dynamics – so-called phenotypes [22].
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The level of abstraction provided by BNs makes them an important tool for
design of targetted therapeutic procedures such as cell reprogramming [36] based
on changing one cell phenotype to another, allowing regeneration of tissues or
neurons [21]. Since phenotypes are determined by long-term behaviour of bio-
logical systems, fully automatised identification of phenotypes by employing BN
models is a necessary step towards the future of modern medicine. Owing to the
fact there is a continuous lack of sufficiently detailed (mechanistic) information
on biological processes, there is definitely a need to work with models involving
uncertain (or insufficient) knowledge. In this paper, we present a unique tool that
makes a significant contribution towards fully automatised analysis of long-term
behaviour of BN models with uncertain knowledge.

We start with giving some intuition on BNs. A BN consists of a set of Boolean
variables whose state is determined by other variables in the network through
a set of Boolean update functions assigned to the variables (different update
functions can be assigned to different variables) and regulations placed on them.
If at each point of time all the update functions are applied simultaneously we
speak about synchronous dynamics, if only one of the update functions is chosen
non-deterministically to modify the corresponding Boolean variable, we speak
of asynchronous dynamics. In this paper we consider asynchronous Boolean net-
works only.

In real-world applications, the update functions for some of the variables are
typically (partially) unknown and are represented as logical parameters of the
network. We speak of parametrised Boolean networks [40] in this case. If all the
parameters are fixed to a concrete Boolean function, a parametrised BN turns
into a (non-parametrised) BN.

The long-term behaviour of a BN, starting from an initial state, has three
possible outcomes. Briefly, the first situation is when the network evolves to
a single stable state. Such states are the fixed points or point attractors or
stable states. The second situation is that the network periodically oscillates
through a finite sequence of states—an oscillating attractor or attractive cycle
(the discrete equivalent of a limit cycle in continuous systems). The third case is
what we call a disordered attractor (or chaotic oscillation [32]), an attractor that
is neither stable not periodically oscillating and in which the system may behave
unpredictably, due to the nondeterminism of the asynchronous semantics of BNs.
Attractors are particularly relevant in the context of biological modelling as they
are used to represent differentiated cellular types or tissues (in the case of fixed
points) [2] and biological rhythms or oscillations (in the case of cycles) [17].

The set of network states that converge to the same attractor forms the
basin of attraction of that attractor [7]. Attractors (and their basins) are dis-
joint entities and the state space is compartmentalised by imaginary “attractor
boundaries”. The entire dynamics of a Boolean network can be represented as a
state transition system in which the trajectories from initial states are depicted,
revealing the basins of attraction and associated attractors. We call such a rep-
resentation the attractor landscape of the network [13].

In parametrised BNs the attractor landscape changes as the parameters are
varied. Some of these changes may lead to a qualitatively different landscape
(defined, e.g., in the count and/or quality of attractors). Such a qualitative
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change is called a bifurcation and the values of parameters for which it occurs
are called bifurcation points. Determining (all) bifurcation points for a network,
called attractor bifurcation analysis, is an important task in the analysis of
BNs [4].

While BN models are intuitive, mathematically simple to describe, and sup-
ported by analytical methods [12], analysis of large models appearing in real cases
is severely limited by the lack of robust computational tools running efficiently on
high-performance hardware. Several computational tools have been developed for
construction, visualisation and analysis of attractors in non-parametrised BNs.
Amongst them, the established tools include ATLANTIS [34], Bio Model Ana-
lyzer (BMA) [6], BoolNet [31], PyBoolNet [27], lnet [7], The Cell Collective [23],
CellNetAnalyzer [25], and ASSA-PBN [30]. Another group of existing tools tar-
gets the parameter synthesis problem for parametrised BNs. The most prominent
tools here are GRNMC [20], GINsim [10] (indirectly through NuSMV [14]), and
TREMPPI [35]. In general, parameter synthesis tools can be used to identify
parameters producing a specified long-term behaviour (depending on the logics
employed), however, they do not provide a sufficient solution for identification
and classification of all attractors in the system. Finally, it is worth noting that
there have recently appeared several tools aiming at control of cell behaviour
through BNs (i.e., driving a cell into the desired state). A well-known represen-
tative of these tools is ViSiBooL [33].

To the best of our knowledge, none of the existing tools is capable of perform-
ing attractor bifurcation analysis in parametrised models. Bifurcation analysis
has been recently recognised as a fundamental approach that provides a new
framework for understanding the behaviour of biological networks. The ability
to make a dramatic change in system behaviour is often essential to organism
function, and bifurcations are therefore ubiquitous in biological networks such
as the switches of the cell cycle. The tool AEON is supposed to fill in the gap
in the existing tools supporting analysis of Boolean network models.

AEON builds on methods and algorithms for asynchronous parametrised BNs
we have introduced in our previous research [1,3–5]. To deal with the state-space
and parameter-space explosion problem, the tool implements a shared-memory
parallel semi-symbolic algorithm. The results the tool provides to the user can
be used for example to the design of “wet” experiments, better understanding
of the system’s dynamics, or to control or re-program the system. As attractors
model phenotypes, one of the most urgent needs for computer aided support,
such as AEON can provide, is in applications in therapeutic innovations.

We believe that attractor bifurcation computed by AEON will shift the cur-
rent technology toward a comprehensive method when integrated with tools
aimed at control or other analysis methods.

2 Attractors in Parametrised Boolean Networks

In this section, we define precisely the problem of attractor bifurcation analy-
sis. We also give an overview of the necessary technical background needed to



572 N. Beneš et al.

describe the algorithmic solution and its implementation. More details can be
found in [4].

A Boolean network (BN) consists of a finite set of state variables V (whose
elements we denote by A, B, . . . ), a set of regulations R ⊆ V × V, and a family
of Boolean update functions F = {FA | A ∈ V}. If (B, A) ∈ R, we say that B is
a regulator of A. For each A ∈ V, we call the set C(A) = {B ∈ V | (B, A) ∈ R} of
its regulators the context of A. A state of the BN is an assignment of Boolean
values to the variables, i.e. a function V → {0, 1}. The type signature of each
update function FA is given by the context of A as FA : {0, 1}C(A) → {0, 1}.

In Boolean networks, one often describes various properties of the network
regulations. Here, we focus on three most basic types of regulation: We say that
(A, B) ∈ R is observable if there exists a state where changing the value of A
also changes the value of FB. In the tool, edges that might be non-observable are
drawn using dashed lines.

We say that a regulation (A, B) ∈ R is activating if by increasing A, one
cannot decrease the value of FB. Symmetrically, the regulation is inhibiting if by
increasing A, one cannot increase the value of FB. In the tool, activating edges are
denoted using green colour and sharp arrow tips, inhibiting edges are denoted
using red colour and flat arrow tips, and edges that might be neither activating
nor inhibiting are denoted using grey colour.
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Fig. 1. Illustration of a (parametrised) BN and its state transition graph. (Color figure
online)

Let us now consider an example of a BN with V = {A, B, C}, the regulations
R as denoted in Fig. 1 (left) and the update functions: FA = A ∨ ¬B ∨ ¬C, FB =
A ∨ C, FC = ¬B. We can see that all regulations are observable and the colour
(and shape) of the arrows respects the properties of activation and inhibition,
e.g. (B, A) is an inhibition, because by increasing the value of B, we cannot increase
the value of FA.

The semantics of a Boolean network is given as a directed state transition
graph. The state space of the graph is the set of all possible assignments of
Boolean values to the variables, i.e. {0, 1}V . We consider the state of the Boolean
network to evolve in an asynchronous manner, i.e. each variable is updated
independently. We thus add a transition s → t if s �= t and if there exists
a variable A such that t(A) = FA(s) and t(X) = s(X) for all X ∈ V \ {A}. We
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also use the notation →∗ to denote the reflexive and transitive closure of →,
i.e. s →∗ t means that the state t is reachable from the state s.

The semantics of the BN from our example is illustrated in Fig. 1 (middle).
The states are represented as Boolean triples denoting the values assigned to the
variables A, B, and C, respectively.

The long-term behaviour that we are interested in is captured by the notion
of attractors. In discrete-state systems, attractors are represented by terminal
strongly connected components (TSCCs) of the graph. A TSCC is a maximal
set of states S such that for all s, t ∈ S, s →∗ t, and for all s ∈ S, s → t implies
t ∈ S.

To classify the attractors of a given BN, we consider three primary kinds of
long-term behaviour:

– stability (�) We say that an attractor is stable, if it consists of a single state,
in which the network stays forever.

– oscillation (�) We consider an attractor to be oscillating if it is a single cycle
of states. The size of such cyclic attractor is often referred to as its period.

– disorder (�) Finally, an attractor is said to be disordered if it is neither stable
nor oscillating. This means that although the network will stay in the attrac-
tor forever, it will behave somewhat unpredictably due to nondeterminism.

The long-term behaviour of a BN is then characterised by a multi-set over the
universe of the three behaviours {�,�,�}. We call such multi-set a behaviour
class and we denote the set of all possible behaviour classes C. In our example,
the BN has only one attractor, and this attractor is stable; it consists of the
single state 110, see Fig. 1 (middle).

To deal with the fact that the update function family F might not be fully
known, we extend the Boolean network with a set of logical parameters which
determine the exact behaviour of each update function. These parameters have
the form of uninterpreted Boolean functions, which can be used as part of the
update functions’ description.

Formally, we assume a finite set of parameter names P, whose elements we
denote by P, Q, . . . ; we assume that every P ∈ P has an associated arity aP
meaning that P is an aP-ary uninterpreted function over Boolean values. Note
that nullary uninterpreted functions are also allowed and can be seen as sim-
ply Boolean parameters. We call an interpretation that assigns to each P ∈ P
an aP-ary Boolean function a parametrisation. We usually work with a subset of
parametrisations, called the valid parametrisations and denoted by P .

A parametrised Boolean network consists of a set of variables V, a set of reg-
ulations R ⊆ V ×V as in the non-parametrised case, a set of parameter names P,
its associated set of valid parametrisations P , and a family of parametrised update
functions F = { ̂FA | A ∈ V}. Each ̂FA is written as a Boolean expression that
may contain the uninterpreted functions of P.

Let us now modify the previous example so that we view the BN from Fig. 1
(left) as a parametrised one with the following update functions: ̂FA = A∨¬B∨¬C,
̂FB = P(A, C), ̂FC = ¬B, where P is a parameter name with arity 2. The set
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of valid parametrisations is constrained symbolically using the description of
activations and inhibitions in Fig. 1 (left). In this case, there are only two possible
parametrisations p1 (denoted by ♠) and p2 (denoted by �). The parametrisation
p1 assigns to P the function (x, y) 	→ x ∨ y, while p2 assigns to P the function
(x, y) 	→ x∧y. Note that other assignments would violate the description, namely
that both (A, B) and (C, B) are observable and activating.

By fixing a concrete parametrisation p ∈ P , we can interpret all the param-
eter names and thus transform the parametrised update functions into non-
parametrised ones, obtaining a (non-parametrised) BN, called the p-instantiation
of the parametrised BN. We then generalise the definition of attractors to
parametrised BNs, saying that a set of states S is an attractor in parametri-
sation p ∈ P if S is an attractor in the p-instantiation.

The asynchronous semantics of a parametrised BN can be described using an
edge-coloured state transition graph. The transitions of this graph are assigned
a set of so-called colours—in our case, the colours correspond exactly to the
parametrisations. The states are given as in the non-parametrised case. We then
say that s → t if there exists a parametrisation p such that s → t in the p-
instantiation. The set of colours of s → t is the set of all such parametrisations.
In our example, the graph is depicted in Fig. 1 (right; the edges are annotated
with ♠, �, or both).

Problem Formulation. We now formulate the problem of attractor bifurcation
analysis of parametrised BN as follows: Given a parametrised BN with a set of
valid parametrisations P , compute the bifurcation function A : P → C that
assigns to each parametrisation p the behaviour class of the p-instantiation of
the given parametrised BN.

In our example, the function A maps p1 (♠) to {�} (one stable attractor
{110}) and p2 (�) to {�} (one oscillating attractor {100, 101, 111, 110}).

3 Attractor Bifurcation Analysis with AEON

The workflow of our approach, as implemented in the tool, is illustrated in Fig. 2.
As an input, we take a parametrised BN including a graphical description of the
regulations. The tool computes its asynchronous semantics as a symbolic edge-
coloured graph represented using BDDs [8]. This is then used as an input to
a parallel TSCC detecting algorithm based on [1], which extracts the attractors
on the fly. Each attractor is classified as one of the three above-mentioned types
and this information is used to incrementally build the bifurcation function A,
also represented symbolically using BDDs. More details about the algorithm as
well as the classification procedure can be found in [4].

The bifurcation function induces a partitioning of the parameter space in
which two parametrisations are equivalent if their p-instantiations have the same
behaviour class. This partitioning is presented to the user as a list of behaviour
classes together with the cardinality of the respective parameter space partitions,
see Fig. 3. The user can select one of these classes and obtain a witness BN,
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Fig. 2. The workflow of the AEON tool.

i.e. a p-instantiation of the parametrised BN where p is one of the corresponding
parametrisations. Finally, the tool also provides the whole bifurcation function
encoded as BDDs—this output can be used for post-processing by further tools.

4 Implementation

The tool architecture consists of two components as seen in Fig. 4: the compute
engine, and a web-based, user-facing GUI application (the client). The engine
is responsible for the actual computation and acts as a web server to which the
client establishes a connection. Using web-based GUI enables portability across
different platforms, and the separation of the user interface from the compute
engine enables the user to run the computation remotely on high-performance
hardware.

Fig. 3. Screenshot of the tool displaying a parametrised BN together with the bifur-
cation analysis results.



576 N. Beneš et al.

One of the responsibilities of the client is to provide a user friendly, multi-
platform editor of parametrised BNs, since no popular BN editors currently
support parameters. Architecturally, the client consists of several modules:

– Live Model: In-memory representation of the currently displayed model.
– Compute Engine Connection maintains the communication between the

client and the compute engine.
– Network Editor: An interactive drag-and-drop editor for drawing the struc-

ture of the BN (variables, regulations). The implementation is based on the
popular Cytoscape [19] library for graph visualisation and manipulation.

– Parametrised BN Editor: The update functions can be modified in a sep-
arate parametrised BN editor tab. This module is also responsible for basic
integrity checks and static analysis of the BN, some of which is asynchronously
deferred to the compute engine.

– Import/Export facilitates serialisation and transfer of the BNs to other tools.
We currently provide a compact text-based format specifically designed for
AEON and a universally adopted XML-based SBML level 3 qual standard [9].
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Fig. 4. Overview of the tool architecture showing the main components of the GUI
client and the compute engine. Arrows represent the general flow of information
between individual components.

The compute engine is written entirely in Rust to ensure fast and reliable
operation (as well as easy portability). The functionality of the engine is split
into separate libraries to allow later reuse:

– lib-BDD: Our own robust, thread-safe, scalable Rust-based implementation
of BDDs.

– lib-PBN: A general purpose library for working with parametrised BNs.
It provides serialisation to and from the AEON text format as well as
SBML. Most importantly, it provides a parameter encoder that maps sets
of parametrisations of the parametrised BN to BDDs. Using this encoder,
the library implements an on-the-fly generation of the edge-coloured state
transition graph corresponding to the asynchronous semantics of the given
parametrised BN.
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– TSCC Search algorithm implements the component search algorithm as pre-
sented in [1]. The algorithm uses parallel reachability procedures as well as
asynchronous processing of independent parts of the state space to fully
utilise available CPUs and thus speed up the computation. The algorithm
is extended with appropriate cancellation points so that the user can stop the
computation when needed.

– TSCC Classifier classifies and stores information about the discovered com-
ponents. Specifically, for each non-empty behaviour class, we store a BDD
representation of the parametrisations that result in this type of behaviour.

Aside from the general overview of the tool, we would like to highlight two
additional aspects of AEON:

On-the-Fly Results: The attractors are discovered gradually. At any time during
the computation the user may inspect the partial result, i.e. the bifurcation
function computed so far. Although this is not the final outcome, such partial
information can still prove useful, e.g. if unexpected attractor behaviour is found
and the update functions of the model need to be adjusted.

SBML with Parameters: In our implementation, when dealing with fully instan-
tiated networks, we always output valid SBML. Unfortunately, the current
SBML standard does not allow parameters or uninterpreted functions inside the
update function terms. In fact, the update functions in SBML are represented
using MathML1 which in general allows arbitrary mathematical expressions, but
its use in SBML is restricted. To export parametrised BNs, we intentionally dis-
regard the restriction and our tool produces MathML formulae with parameters.
Note that existing SBML implementations can be easily extended to also support
parametrised BNs, since they already contain MathML parsers.

Both the client2 and the compute engine3 are released as open source under
the MIT License. Furthermore, an online version of the client is available at
https://biodivine.fi.muni.cz/aeon/, including links to pre-built binaries of the
computation engine for all major OSes.

5 Evaluation

We evaluated the efficiency and applicability of AEON tool on a set of real
biological models taken from the GINsim model database [10], ranging from
small toy examples to large real world models. The experiments were performed
on a 32-core AMD Ryzen workstation with 64 GB of memory. All tested models
are available in AEON source code repository (see footnote 3) as benchmark
models.

1 https://www.w3.org/TR/MathML3/.
2 https://github.com/sybila/biodivine-aeon-client.
3 https://github.com/sybila/biodivine-aeon-server.

https://biodivine.fi.muni.cz/aeon/
https://www.w3.org/TR/MathML3/
https://github.com/sybila/biodivine-aeon-client
https://github.com/sybila/biodivine-aeon-server
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The results are reported in Table 1. In general, the results show that the
combination of symbolic representation of parametrisations and shared-memory
parallel exploration of the state space allowed us to handle realistic BNs with
large parameter spaces and non-trivial number of attractor bifurcations in rea-
sonable time. Finally, let us note that the findings provided by AEON are in line
with known properties of these biological models and even have a potential to
provide new insights on the modelled biological processes.

Table 1. The evaluation results. Number of classes refers to the number of distinct
behaviour classes discovered by the algorithm. The times in the form minutes:seconds

refer to total runtime on 1 and two 32 CPU cores respectively.

Model name State
space size

Param. space size No. of classes Time
(1cpu)

Time
(32cpu)

Asymmetric
Cell Division

25 ∼218 11 0:05.62 0:03.39

Budding Yeast
(Orlando)

29 ∼218 6 0:35.22 0:02.93

TCR
Signalisation

210 ∼214 17 0:26.61 0:04.42

Drosophila
Cell Cycle

214 ∼236 8 27:48.1 1:42.28

Fission Yeast
Cell Cycle

210 ∼231 201 25:20.9 4:00.29

Mammalian
Cell Cycle

210 ∼244 176 38:39.6 8:02.14

Budding Yeast
(Irons)

218 ∼226 7 Timeout 52:28.1

In particular, in the case of the TCR Signalisation model, the authors have
shown in [26] that their non-parametrised model produces seven possible stable
states and one non-trivial attractor. By using AEON, we were able to confirm
their findings as well as analyse a fully parametrised version of the model, finding
sixteen other possible behaviours. Interestingly, in this model, all discovered
seventeen behaviour classes consist of exactly eight attractors.

For the Budding Yeast (Orlando) model [16], the authors state that for several
different parametrisations, the model always reaches a stable state (based on
simulation). Our analysis performed with AEON has confirmed that the original
instantiation of the model has indeed a single stable attractor. Moreover, we have
found that in the fully parametrised version of the model, almost ninety thousand
instantiations have a single stable attractor. Additionally, we have also found
there is almost an equal number of instantiations producing disordered attractors
and also several oscillating attractors. AEON is capable to generate witnesses
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for all of these situations thus opening the biological questions targeting the
existence of the corresponding phenotypes in nature.

The Fission Yeast Cell Cycle model [15] is known to contain one primary
stable attractor as well as eleven artificial attractors. It is known that various
multi-valued modifications of the original model exist that remove these arti-
ficial stable attractors from the model while preserving the only single stable
attractor [16]. By parametrising the model adequately and applying our method
using AEON, we have discovered that a large portion of the parameter space of
the model also produces a single stable attractor.
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1 Introduction

Cyber-physical systems (CPS) consists of tightly coupled physical components
such as electrical, mechanical, hydraulic, and biological components and software
systems. They are deeply involved in many safety-critical systems, for example,
high confidence medical devices, traffic control and safety systems, advanced
automotive systems and critical infrastructure control systems. Safety verifica-
tion helps to ensure them not to behave dangerously.

Hybrid systems are popular models used in the verification of Cyber-physical
systems, for its ability to describe interacting discrete transitions and continuous
dynamics [18]. Safety verification contributes to checking safety properties by
determining whether a system can evolve to some states violating desired safety
properties when it starts at some initial conditions. A successful verification of
a hybrid system can raise our confidence in its corresponding Cyber-physical
system.

For Cyber-physical systems with real time constraints, fast verification is
a vital requirement. For example, a online verification module in a monitoring
system should return the result before the deadline is reached. The paper aims at
fast verification of hybrid systems to satisfy the requirement of fast verification
of Cyber-physical systems.

Intuitively, safety verification of hybrid systems can be performed by com-
puting the reachable set. Reachable set computation based approaches explic-
itly computes either exact or approximate reachable sets corresponding to the
dynamics in the model, and then compares them with unsafe regions. It has been
successfully adopted in verifying behaviors of a system within a finite horizon.
However, due to their intrinsic computational difficulty, approaches of this kind
can hardly scale up to complex non-linear systems.

Many research efforts have been devoted to barrier certificate generation. A
barrier certificate is a function, of which the zero level set separates the unsafe
region from all reachable states of a system. It requires all system trajectories
starting from some initial conditions fall into one side of the barrier certificate
while the unsafe region resides on the other. As the existence of a barrier cer-
tificate implies that the unsafe region is not reachable, the safety verification
problem can be transformed into the problem of barrier certificate generation.
Compared with reachable set computation [31], barrier certificate generation
requires much less computation, since the unsafe region leads to seeking a bar-
rier certificate. Especially, it behaves very well when a safety property concerns
infinite time horizon [21,34].

Barrier certificate generation is a computation intensive task. A set of ver-
ification conditions corresponding to a specific type of barrier certificates is
given at first. Then they are encoded into some constraints on state variables
and unknown coefficients of barrier certificates of a specific type. Finally, those
unknown coefficients are determined by solving the constraints [27]. Thus, how
to encode verification conditions and solve them in an effective way is a critical
and challenging problem in barrier certificate based verification.
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Acting as the barrier between reachable states and the unsafe region, a bar-
rier certificate should always evaluate to be nonnegative or negative accordingly
in spite of what type it is. To achieve this, the most popular computational
method utilizes the theory of Putinar’s Positivstellensatz to derive a sum of
squares (SOS) program of the barrier certificate, which results in a bilinear
matrix inequality (BMI) solving problem belonging to the class of NP-hard
problems [20,21]. An effective and efficient BMI solver is a prerequisite for suc-
cess in exploiting SOS relaxation based methods.

The general BMI problem can be solved by the commercial BMI solver
PENBMI [14] at the cost of a very high computational complexity, where the
(exterior) penalty and (interior) barrier method incorporates with the augmented
Lagrangian method. To make it more tractable, the convex SOS relaxation based
methods become popular. They transform the BMI problem (non-convex) to a
linear matrix inequality (LMI) problem (convex) by fixing some multipliers and
then solve it quickly via convex optimization such as semidefinite programming
(SDP). Unfortunately, the removal of non-convexity may yield too conservative
verification conditions so that the solution to the original BMI problem is invis-
ible to the derived LMI problem.

The paper focuses on quickly solving the BMI problem derived from SOS
relaxation by directly attacking the problem without relaxing it to a LMI one.
Taking advantage of the special feature of the problem, that is all bilinear terms
are cross ones between different parameter vectors, a sequential iterative scheme
is proposed. It treats the non-convex BMI problem directly so as to avoid the loss
of precision accompanied with non-convexity removing. Meanwhile, it provides
much lower computational complexity than the PENBMI solver. Hence, the
proposed method spends much less time in computation and has the potential
to find solutions beyond the reach of existing methods.

To be specific, a feasible solution to the BMI problem can be found by a dual
augmented Lagrangian iterative framework. At each iteration, the minimization
over the four sets of primal variables is divided into four sequential minimization
problems with respect to one set of primal variables by fixing the other three
sets. On the theoretical side, we show that our method returns the feasible solu-
tion in cubic time, while the PENBMI solver in quartic time. We have developed
a prototyping tool implementing the proposed method and compared it with the
PENBMI solver and the LMI solver: SOSTOOLS [22] over a set of benchmarks
gathered from the literature. The experiment shows that our tool is more effec-
tive than them and provides a much lower computational complexity than the
PENBMI solver.

The paper is organized as follows. Section 2 describes the connection between
safety verification and barrier certificate generation. Section 3 addresses how
to transform the problem of barrier certificate generation into a BMI solving
problem. In Sect. 4, a sequential iterative scheme is presented followed by a
complexity analysis. Section 5 contains detailed examples illustrating the use of
our method as well as the experiment on benchmarks. We compare with related
works in Sect. 6 before concluding in Sect. 7.
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2 Preliminaries

Notations. Let R be the field of real number. R[x] denotes the polynomial ring
with coefficients in R over variables x = [x1, x2, · · · , xn]T . Let Σ[x] ⊂ R[x] be
the space of SOS polynomials. Sn denotes the set of n × n symmetric matrices,
and the notation B � 0 means that the matrix B ∈ Sn is positive semidefinite.
〈A,B〉 denotes the inner product between A and B.

A continuous dynamical system is modeled by a finite number of first-order
ordinary differential equations

ẋ = f(x), (1)

where ẋ denotes the derivative of x with respect to the time variable t, and f(x)
is called vector field f(x) = [f1(x), · · · , fn(x)]T defined on an open set Ψ ⊆ R

n.
We assume that f satisfies the local Lipschitz condition, which ensures that given
x = x0, there exists a time T > 0 and a unique function τ : [0, T ) �→ R

n such
that τ(0) = x0. And x(t) is called a solution of (1) that starts at a certain initial
state x0, that is, x(0) = x0. Namely, x(t) is also called a trajectory of (1) from
x0.

Definition 1 (Continuous System). A continuous system over x consists of
a tuple S : 〈Θ, f , Ψ〉, wherein Θ ⊆ R

n is a set of initial states, f is a vector field
over the domain Ψ ⊆ R

n.

A hybrid system is a system which exhibits mixed discrete-continuous behav-
iors. A popular model for representing hybrid systems is hybrid automata [1],
which combine finite state automata modeling the discrete dynamics, and dif-
ferential equations modeling the continuous dynamics.

Definition 2 (Hybrid Automata). A hybrid automaton is a tuple H : 〈L,
X, F , Ψ,E,Ξ,Δ,Θ, �0〉, where

– L, a finite set of locations (or models);
– X ⊆ R

n is the continuous state space. The hybrid state space of the system
is defined by X = L × X and a state is defined by (�,x) ∈ X ;

– F : L → (Rn → R
n), assigns to each location � ∈ L a locally Lipschitz

continuous vector field f�;
– Ψ assigns to each location � ∈ L a location condition (location invari-

ant) Ψ(�) ⊆ R
n;

– E ⊆ L × L is a finite set of discrete transitions;
– Ξ assigns to each transition e ∈ E a switching guard Ξe ⊆ R

n;
– Δ assigns to each transition e ∈ E a reset function Δe : R

n → R
n;

– Θ ⊆ R
n, an initial continuous state set;

– �0 ∈ L, the initial location. The initial state space of the system is defined by
�0 × Θ.

Trajectories of hybrid systems combine continuous flows and discrete tran-
sitions. Concretely, a trajectory of H is an infinite sequence of states σ =
{s0, s1, s2, · · · } such that
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– [Initiation] s0 = (�0,x0), with x0 ∈ Θ;
Furthermore, for each pair of consecutive state (si, si+1) ∈ σ with si = (�i,xi)
and si+1 = (�i+1,xi+1) satisfies the following one of the two consecution
conditions:

– [Discrete Consecution] e = (�i, �i+1) ∈ E, xi ∈ Ξe and xi+1 = Δe(xi);
– [Continuous Consecution] �i = �i+1, and there exists a time interval δ > 0

such that the solution x(xi; t) to ẋ = f�i
evolves from xi to xi+1, while

satisfying the location invariant Ψ(�i). Formally, x(xi, δ) = xi+1 and ∀t ∈
[0, δ],x(xi, t) ∈ Ψ(�i).

If Σ is the set of all possible trajectories of H, the reachable set is defined by
R = {s|∃ς ∈ Σ : s ∈ ς}, i.e., R contains all states that are elements of at least
one trajectory ς.

In this paper, we focus on semi-algebraic hybrid systems, that is, the cor-
responding vector fields are polynomials and the sets Θ,Ψ(�), Ξe,Δe in H are
semi-algebraic, represented by polynomial equations and inequalities. The semi-
algebraic sets Θ, Ψ(�), Ξe, and Δe in Definition 2 are represented as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Θ : = {x ∈ R
n | θ(x) ≥ 0},

Ψ(�) : = {x ∈ R
n |ψ�(x) ≥ 0},

Ξe : = {x ∈ R
n | ρe(x) ≥ 0},

Δe : = {x′ ∈ R
n | δe(x′) ≥ 0},

where � ∈ L, e ∈ E, θ(x), ψ�(x), ρe(x), and δe(x′) are vectors of polynomials,
and the inequalities are satisfied entry-wise. Suppose that Xu assigns to each
location � ∈ L an unsafe region Xu(�), defined by

Xu(�) := {x ∈ R
n | ζ�(x) ≥ 0},

where ζ� is a vector of polynomials. The safety specification is described over
the trace of state (�,x) w.r.t. unsafe regions Xu(�).

Definition 3 (Safety). Given a hybrid system H : 〈L, X, F , Ψ,E,Ξ,Δ,Θ, �0〉
and unsafe regions Xu(�), the safety property holds if there exist no trajectories
of H starting from the initial set �0 × Θ, can evolve to any state specified by
Xu(�), i.e., ∀� ∈ L∀σ ∈ Σ. s ∈ σ |= s /∈ Xu(�).

For safety verification of hybrid systems, the notion of barrier certificates [21]
plays an important role. A barrier certificate maps all the states in the reachable
set R to non-negative reals and all the states in the unsafe region to negative
reals, thus can be employed to prove safety of hybrid systems. However, the
exact reachable set R is usually intractable for most hybrid systems. In [21], a
sufficient inductive condition for barrier certificates is defined as follows.

Definition 4 (Barrier Certificate). A barrier certificate of hybrid system
H for safety w.r.t. unsafe regions Xu(�) is a set of real functions {B�(x)} such
that, for all � ∈ L and e = (�, �′) ∈ E, the following conditions hold:
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⎧
⎪⎪⎨

⎪⎪⎩

∀x ∈ Θ : B�0(x) ≥ 0,

∀x ∈ Ψ(�) : B�(x) = 0 |= 〈
∂B�

∂x (x), f�(x)
〉

> 0,
∀x ∈ Ξe,∀x′ ∈ Δe(x) : B�(x) ≥ 0 |= B�′(x′) ≥ 0,
∀x ∈ Xu(�) : B�(x) < 0.

(2)

Note that
〈

∂B�

∂x (x), f�(x)
〉

is the Lie derivative of B�(x) with respect to the vector
field f�(x).

3 Transfer to BMI

The problem of generating barrier certificates in Definition 4 is an infinite-
dimensional problem. In order to make it amenable to polynomial optimization,
the barrier certificate {B�(x)} should be restricted to a set of polynomials with
a priori degree bound. Putinar’s Positivstellensatz provides a powerful represen-
tation for polynomial positivity on semi-algebraic sets, which helps to transform
the problem of barrier certificate generation into solving a semidefinite program-
ming via SOS relaxation.

Arising from the second and third conditions of Definition 4, where the
parameters of {B�(x)} appear on the antecedent sides, the associated SOS rep-
resentations using Putinar’s Positvstellensatz form non-convex BMI constraints,
yielded from the polynomial products between the barrier certificate and its
polynomial multipliers.

In what follows, the procedure for transforming barrier certificate generation
into BMI solving is recapped in detail. Firstly, SOS relaxation is applied to
encode the entailment checking in condition (2) as an SOS program. In fact, all
the conditions of Definition 4 can be expressed as a unified type, say, a polynomial
is nonnegative (positive) on a semi-algebraic set, which can be characterized by
Putinar’s Positivstellensatz.

Let K be a basic semi-algebraic set defined by:

K = {x ∈ R
n | g1(x) ≥ 0, . . . , gs(x) ≥ 0}, (3)

where gj ∈ R[x], 1 ≤ j ≤ s. Given the finite family g = {g1(x), . . . , gs(x)},the
polynomial set defined by

M(g) =:= {σ0 +
s∑

i=1

σigi | σi ∈ Σ[x], 0 ≤ i ≤ s}

is called the quadratic module generated by g.

Theorem 1. [Putinar’s Positivstellensatz] Let K ⊂ R[x] be as in (3). Assume
that the quadratic module M(g) is archimedean, namely, there exists u(x) ∈
M(g) such that the set {x ∈ R

n|u(x) ≥ 0} is compact. If f(x) is strictly positive
on K, then f(x) can be represented as

f(x) = σ0(x) +
s∑

i=1

σi(x)gi(x), (4)

where σi ∈ Σ[x], 0 ≤ i ≤ s.
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Following Theorem 1, the existence of the representation (4) provides a suffi-
cient and necessary condition of polynomial positivity on a semi-algebraic set K

[23]. Although the number of auxiliary polynomials in the representation (4) is
only one more than the number of polynomials that define K, the degree bound
for σi(x) is exponential with n and deg(f). From a computational point of view,
the method for finding the above representation has some degree of conserva-
tiveness, say, by fixing a priori much smaller degree bound D for σi(x). Thus,
a sufficient condition for the nonnegativity of the given polynomial f(x) on the
semi-algebraic set K is provided as

f(x) = σ0(x) +
s∑

i=1

σi(x)gi, (5)

with deg(σi) ≤ D, σi ∈ Σ[x], 1 ≤ i ≤ s. The representation (5) ensures that
a polynomial is nonnegative on a given semi-algebraic set. At this point, all
conditions in Definition 4 can be derived as a unified type, i.e., polynomial non-
negativity on a semi-algebraic set. The representation (5) is used to characterize
the conditions of barrier certificate generation, for they are more tractable.

Theorem 2. Let the semi-algebraic hybrid system H and the unsafe regions
Xu(�) be defined as the above. Let D be a positive integer. Suppose there exist
polynomials {B�(x)} and {ν�(x)} with deg(ν�) ≤ D, positive numbers ε�,1 and
ε�,2, and vectors of sums of squares σ(x), λe,i(x), γe(x), ηe(x), φ�(x), μ�(x) with
the degree bound D, such that the following expressions:

B�0(x) − σ(x)θ(x)
B�′(x′) − λe(x)ρe(x) − γe(x′)δe(x′) − ηe(x)B�(x)〈

∂B�

∂x (x), f�(x)
〉 − φ�(x)ψ�(x) − ν�(x)B�(x) − ε�,1

−B�(x) − μ�(x)ζ�(x) − ε�,2

(6)

are SOSes for each � ∈ L and e ∈ E. Then {B�(x)} satisfies the conditions in
Definition 4, and therefore guarantees the safety of H.

Remark that a polynomial f(x) with deg(f) = 2d is a sum of squares if and
only if there exists a real symmetric and positive semidefinite matrix Q, called
as the Gram matrix, such that f(x) = vd(x)T Qvd(x), where vd(x) is the vector
consisting of all the monomials of degree less than or equal to d. In view of the
conditions (6) in Theorem 2, the problem of generating the barrier certificates
requires introducing the auxiliary (Gram matrices) variables. In fact, the decision
variables in the SOS program (6) are the coefficients of all the unknown polyno-
mials in (6), such as B�(x), σ(x), λe(x) and the associated Gram matrices. The
polynomial products, i.e., B�(x)ηe(x) and B�(x)ν�(x), derive some quadratic
terms of the products of these unknown coefficients, which occur in the second
and third constraints of (6). As a consequence, the problem for generating bar-
rier certificates in Theorem 2 derives a non-convex BMI problem. We now show
the transformation by a simple example.
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Example 1. Consider the system ẋ = −x with location invariant Ψ = {x ∈
R : x2 − 1 ≤ 0}. Suppose the barrier certificate B(x) with deg(B) = 1, we
predetermine its template as B(x) = u0 + u1 x with u0, u1 ∈ R and u1 �= 0. For
simplicity, here we consider the second condition in Definition 4, that is, to find
B(x) which satisfies

∀x ∈ Ψ : B(x) = 0 |= ∂B

∂x
· (−x) ≥ 0.

Following the SOS relaxation in (6), we need to find B(x) such that

φ0(x) :=
∂B

∂x
· (−x) − φ1(x) · (1 − x2) − φ2(x) · B(x) − ε (7)

and φ1(x) are SOSes, φ2(x) ∈ R[x], ε ∈ R>0. We assume that φ1 = u2 and φ2 =
v, with u2 ∈ R≥0 and v ∈ R. Then (7) yields φ0(x) = u2x

2 − (u1v +u1)x−u0v −
u2 − ε, and its Gram matrix representation φ0(x) = v1(x)T Qv1(x), where

Q =
[

u2 − 1
2u1 v − 1

2u1

− 1
2u1 v − 1

2u1 −u0 v − u2 − ε

]

and v1(x) =
[
x
1

]

.

Since φ0(x) and φ1(x) must be SOSes, we have Q � 0 and u2 ≥ 0, which is
equivalent to

B(u0, u1, u2, v) =

⎡

⎣
u2 0 0
0 u2 − 1

2u1 v − 1
2u1

0 − 1
2u1 v − 1

2u1 −u0 v − u2 − ε

⎤

⎦ � 0.

Therefore, the requirement that φ0(x) and φ1(x) are SOSes is translated into
the BMI constraint of the form

B = B0,0 +
2∑

i=0

uiBi,0 + vB0,1 +
2∑

i=0

uiv Bi,1 � 0, (8)

where all Bi,j ∈ S3 are constant matrices. �

As illustrated in Example 1, the problem of generating barrier certificates
satisfying condition (6) can be transformed into a BMI problem of the form

Find u ∈ R
p, v ∈ R

q

s.t. B(u,v) = B0,0 +
p∑

i=1

uiBi,0 +
q∑

j=1

vjB0,j +
p∑

i=1

q∑

j=1

uivjBij � 0, (9)

where all Bi,j ∈ St are constant matrices, u = [u1, . . . , up]T , v = [v1, . . . , vq]T

are parameter coefficients of the unknown polynomials occurring in the original
SOS program. Essentially, the BMI problem (9) is NP-hard. To simplify the
problem considerably, the canonical approach is to swap v, corresponding to
the polynomial multipliers ηe(x) and ν�(x), with the fixed vector. This strategy
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can reduce the BMI constraint into the associated LMI one. Unfortunately, the
resulting LMI problem is considerably more conservative than the original BMI
one. To be specific, the fixed ηe(x) and ν�(x) may result in too conservative
verification conditions that rule out barrier certificates satisfy the non-convex
conditions but not the stronger convex conditions.

By investigating (9), we can find a crucial feature of B(u,v), that is, all cross
terms between parameters of u and v are of the form ui vj . The feature motivates
us to design a more efficient approach for the specific type of BMI problems.

4 A Sequential Iterative Scheme for Solving BMI
Problems

The conventional approaches for solving the BMI problem typically employ the
augmented Lagrangian iterative framework, wherein each iteration involves two
optimization problems for primal and dual variables. Due to the existence of
nonlinear terms (quartic terms) in the associated Lagrangian function, the ana-
lytical solutions to the first problem do not exist. The iterative-based nonlinear
solving procedure is introduced to obtain the numerical solutions which results
in a time-consuming computing process.

Observing the BMI problem (9), we can see that all nonlinear terms are
the cross terms between u and v. As a result, the associated dual augmented
Lagrangian function is quartic for all variables, but is quadratic with respect
to each single variable. Having this crucial feature, if we choose one variable
as the independent variable and assign the others with fixed values, we may
get the problem of minimizing the quadratic function. According to the first-
order optimality condition, given a quadratic function f(x), the sufficient and
necessary condition that x̃ is a minimizer of f(x) requires that the gradient of
f(x) to be zero at x̃, i.e., ∇f(x̃) = 0. As a consequence, the analytical solutions
to our studied optimization problem can be easily formulated, since the gradient
of the associated Lagrangian function is affine.

The analytical optimal solutions can be obtained by calling simple matrix
computation, and thus are much more efficient than numerical solutions whose
computation relies on complicated nonlinear optimization methods. The com-
putational advantage is further demonstrated by a complexity analysis of our
scheme against the existing BMI solving algorithm that combines the (exterior)
penalty and (interior) barrier method with the augmented Lagrangian method,
presented later in this section.

To utilize the computational advantage of analytical optimal solutions, for
the first optimization problem (w.r.t primal variables) involved in each iteration
of the augmented Lagrangian iterative framework, rather than using the usual
joint minimization for all primal variables, we introduce a sequential minimiza-
tion scheme, that is, dividing it into four sequential sub-optimization problems
over one independent variable while keeping the others fixed. More concretely,
the sub-optimization problem with one single primal variable is constructed by
replacing the other variables with their optimal solutions obtained from the cur-
rent iteration (if available) or the last iteration.
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This section first introduces an iterative scheme to solve the BMI problem
and then illustrates how to derive analytical solutions to the sub-problems in
each iteration followed by a complexity analysis against the existing algorithm.

4.1 An Iterative Scheme

We start by presenting a straightforward reformulation of the BMI problem (9)
as follows:

⎧
⎨

⎩

λ∗ = min λ
s.t. Z = λ · I + B(u,v)

Z � 0.
(10)

Clearly, there exists a feasible solution (u,v) to the BMI problem (9) if and only
if the optimal value of problem (10) is non-positive, i.e., λ∗ ≤ 0. We try to build
an iterative scheme for dealing with the optimization problem (10).

The augmented Lagrangian function L associated with (10) is defined as:

Lμ(λ,u,v, Z, U) = λ + 〈U,Z − λI − B(u,v)〉 +
1
2μ

‖Z − λI − B(u,v)‖2
F , (11)

where μ > 0, 〈·, ·〉 means the inner product operator, and ‖ · ‖F denotes the
Frobenius norm of a matrix. Let U ∈ St be the Lagrangian multiplier associated
with the equality constraint, the dual function is defined as

g(U) = inf
(λ,u,v,Z)

Lμ(λ,u,v, Z, U),

and the Lagrange dual problem associated with (10) is to maximize this dual
function g(U), i.e., max

U
g(U). Clearly, the dual function yields lower bounds on

the optimal value λ∗ of the problem (10), that is, g(U) ≤ λ∗ for any U .
Applying the dual ascent [17] to the augment Lagrangian function yields the

iterative scheme, consisting of the following updates

(λk+1,uk+1,vk+1, Zk+1) := argmin
λ,u,v,Z

Lμ(λ,u,v, Z, Uk),

s.t. Z � 0,
Uk+1 := argmax

U
Lμ(λk+1,uk+1,vk+1, Zk+1, U),

⎫
⎪⎪⎬

⎪⎪⎭

(12)

where the first step is the primal variables update, and the second step is the
dual variable update.

The first step in (12) consists of quartic terms and is lack of analytical solu-
tion. Thus, it requires jointly minimizing Lμ(λ,u,v, Z, Uk) with respect to λ,u,v
and Z, which can be directly solved by applying the iterative-based nonlinear
optimization procedure at the cost of a high computational complexity. Instead
of the usual joint minimization solving, we separate the minimization over the
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primal variables λ,u,v, Z into four steps, that is, λ,u,v and Z are updated in an
alternating scheme, that is, minimizing Lμ with respect to one primal variable
given the others fixed. In detail, the sequential iterative scheme consists of the
following new iterations:

λk+1 := argmin
λ

Lμ(λ,uk,vk, Zk, Uk), (13)

uk+1 := argmin
u

Lμ(λk+1,u,vk, Zk, Uk), (14)

vk+1 := argmin
v

Lμ(λk+1,uk+1,v, Zk, Uk), (15)

Zk+1 := argmin
Z�0

Lμ(λk+1,uk+1,vk+1, Z, Uk), (16)

Uk+1 := argmax
U

Lμ(λk+1,uk+1,vk+1, Zk+1, U). (17)

The above iterative scheme introduces a sequential minimization that treats
the four primal variables one by one. Benefited from the fact that the explicit
formulae for the minimizer or maximizer (13–17) are available, the analytical
solutions can be directly derived. Furthermore, as the computation of those
analytical solutions involves only simple matrix computation, such as eigenvalue
decomposition and matrix inverse, it will be very efficient.

4.2 Analytical Solutions for the Sequential Iteration

In this subsection, we focus on how to find analytical solutions to problems
(13–17) in terms of the first-order optimality conditions.

Theorem 3. The minimizer λk+1 of (13),i.e.,

λk+1 := argmin
λ

Lμ(λ,uk,vk, Zk, Uk),

has the following analytical formula:

λk+1 :=
1
t

t∑

i=1

(Zk
i,i − Bi,i(uk,vk)) +

μ

t
· (Tr(Uk) − 1), (18)

where Tr(Uk) denotes the trace of Uk.

Proof. The first-order optimality condition for (13) is

∇λLμ = 1 − Tr(Uk) +
t

μ
λ − 1

μ

t∑

i=1

(Zk
i,i − Bi,i(uk,vk)) = 0.

It follows that the specified λk+1 in (18) is the optimal solution of (13), which
concludes the proof. �
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The first-order optimality condition resembling Theorem 3 can also be
invoked to produce the corresponding analytical solutions to (14) and (15),
respectively.

Theorem 4. Let vk = [vk
1 , . . . , vk

q ]T ∈ R
q, and define X [i] = Bi,0 +

∑q
�=1 vk

� Bi,�

for 0 ≤ i ≤ p. Let uk+1 be the minimizer of (14). Then

uk+1 := S−1 · [r1, . . . , rp]T , (19)

where S = [sij ] ∈ R
p×p with sij = 1

μ 〈X [i],X [j]〉, and

ri = 〈Uk +
1
μ

(Zk − λk+1I − X [0]),X [i]〉, 1 ≤ i ≤ p.

Proof. The first-order optimality condition for (14) is

∇uLμ(λk+1,u,vk, Zk, Uk) = (∇u1Lμ,∇u2Lμ, · · · ,∇up
Lμ)T = 0,

and the i-th gradient function ∇ui
Lμ(λk+1,u,vk, Zk, Uk), 1 ≤ i ≤ p is

〈Uk,−
q∑

�=1

vk
� Bi,� − Bi,0〉 +

1
μ

〈Zk − λk+1I − B(u,vk),−
q∑

�=1

vk
� Bi,� − Bi,0〉.

Then we have

∇ui
Lμ(λk+1,u,vk, Zk, UK) = 〈Uk,−X [i]〉 +

1
μ

〈Zk − λk+1I − B(u,vk),−X [i]〉

for i = 1 . . . , p.
Thus, ∇uLμ(λk+1,u,vk, Zk, Uk) = 0 yields (19), which proves the claim. �

Theorem 5. Let uk+1 = [uk+1
1 , . . . , uk+1

p ]T ∈ R
p, and define Y [j] = B0,j +

∑p
�=1 uk+1

� B�,j, for 0 ≤ j ≤ q. Let vk+1 be the minimizer of (15). Then

vk+1 := T−1 · [w1, . . . , wq]T , (20)

where T = [tij ] ∈ R
q×q with tij = 1

μ 〈Y [i], Y [j]〉, and

wi = 〈Uk +
1
μ

(Zk − λk+1I − Y [0]), Y [i]〉, 1 ≤ i ≤ q.

Proof. Similar to the proof of Theorem 4. �

The theorems below demonstrate the analytical solutions to the Z-
minimization and U -maximization, respectively.

Theorem 6. Let Zk+1 be the minimizer of (16), and Uk+1 be the solution of
(17). Denote by P k+1 the matrix P k+1 := λk+1I+B(uk+1,vk+1)−μUk. Suppose
P k+1 = QΣQT is a spectral decomposition, namely,

P k+1 = QΣQT =
[
Q† Q‡

]
[
Σ+ 0
0 Σ−

] [
QT

†
QT

‡

]

,
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where Σ+ and Q† are the nonnegative eigenvalues and the associated orthogonal
eigenvectors, while Σ− and Q‡ are the negative eigenvalues and the associated
orthogonal eigenvectors. Then we have

Zk+1 := Q†Σ+QT
† , (21)

Uk+1 := − 1
μQ‡Σ−QT

‡ . (22)

Proof. The first-order optimality condition for (16) is

∇ZLμ(λk+1,uk+1,vk+1, Z, Uk) = 0. (23)

In view of the terms of (23), the problem (16) is translated to

Zk+1 = argmin
Z�0

‖Z − λk+1I − B(uk+1,vk+1) + μUk‖2
F , (24)

which reads as
Zk+1 = argmin

Z�0
‖Z − P k+1‖2

F .

According to the spectral decomposition of P k+1, the result (21) immediately
follows.

From (17), we have

Uk+1 = Uk +
1
μ

(Zk+1 − λk+1I − B(uk+1,vk+1))

=
1
μ

(Zk+1 − P k+1),

which yields the result (22). �

4.3 Algorithm and Complexity Analysis

From the above observation in Sect. 4.1 and Sect. 4.2, the detailed procedure for
the sequential iterative scheme is summarized in Algorithm 1.

Remark 1. At the beginning of Algorithm 1, u0 ∈ R
p, v0 ∈ R

q are selected
randomly, Z0 = M�

0 · M0 where M0 ∈ R
t is chosen randomly, and heuristically

U0 = δ · It with δ > 0.

Remark 2. There are several options for the stopping criterion of the loop in
Algorithm 1. That is, Algorithm 1 will stop and return the current result when
one of the following cases occurs:

– |λk+1 − λk| ≤ ε,
– ‖Zk+1 − Zk‖ ≤ ε,

where ε is a given tolerance. A reasonable value for the stopping criterion might
be ε = 10−6.



A Novel Approach for Solving the BMI Problem 595

Algorithm 1: Sequential Iterative Scheme for solving a BMI
(SISBMI)

Input: Problem (9); initial values u0, v0, Z0 and U0.
Output: A feasible solution (u∗,v∗) of (9).

1 while stopping criterion not met do

2 Compute λk+1 according (18);

3 Compute uk+1 and vk+1 according to (19) and (20), respectively;

4 Bk+1 ← B(uk+1,vk+1);

5 Get the minimal eigenvalue of Bk+1, denoted by λ̂;

6 if λ̂ ≥ 0 then

7 (u∗,v∗) ← (uk+1,vk+1);
8 return (u∗,v∗);

9 Compute Zk+1 according to (21);

10 Compute Uk+1 according to (22).

Complexity Analysis
We analyze the complexity of Algorithm 1 and further compare it with the algo-
rithm in PENBMI solver [14], which combines the (exterior) penalty and (inte-
rior) barrier method with the augmented Lagrangian method. The BMI problem
we study corresponds to a nonconvex optimization problem with quartic terms.
For the BMI problems of the special form, neither of the two algorithms can
guarantee to converge. A complete complexity analysis is not available as the
number of iterations is not predictable. Therefore, the computational complex-
ity of one iteration becomes a safe baseline for performance evaluation. In this
paper, we follow the same complexity analysis as that in [14], i.e. analyzing the
complexity in one iteration.

Recall that the dimension of the matrix B(u,v) in (9) is t, and the numbers
of variables u and v are p and q, respectively. We see that each iteration in
Algorithm 1 can be divided into five steps. Firstly, the step of updating λ costs
O(t) flops, which is carried out by 3t + 3 adds. In the step of u−update, the
complexity is clearly dominated by the computation of the inverse of Au ∈
R

p×p, which costs O(p3) flops [5]. Analogously, v−update can be done in O(q3)
flops. In the step of Z−update, the critical issue is to compute the eigenvalue
decomposition of matrix V k+1 ∈ R

t×t, at a cost of about 4
3 t3 flops. So the step

of Z−update requires O(t3) flops. Finally, the step of U−update requires about
O(t) flops by performing Uk+1.

Now, the complexity for the above steps in each iteration of Algorithm 1 is
summarized as follows:

– Calculation of λ → O(t);
– Calculation of u → O(p3);
– Calculation of v → O(q3);
– Calculation of Z → O(t3);
– Calculation of U → O(t).
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The total cost of each iteration in Algorithm 1 is then O(p3 + q3 + t3), while
the cost of the algorithm adopted in PENBMI is approximately O((p + q)t3 +
(p + q)2t2 + (p + q)3), as shown in [14]. Assume that p, q and t are bounded by
T ∈ Z, i.e., T = max{p, q, t}, the complexity of Algorithm 1 is approximately
O(T 3), whereas the complexity of PENBMI is approximately O(T 4).

5 Experiments

In this section, we first show our method by verifying a nonlinear continuous
system and then compare our Sequential Iterative Scheme tool: SISBMI solver
with the other two solvers: PENBMI and SOSTOOLS.

Example 2. Consider the following nonlinear continuous system [28]
⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
10(x2 − x1)

x1(28 − x3) − x2

x1x2 − 8
3x3

⎤

⎦

with the location invariant

Ψ = {x ∈ R
3 | − 20 ≤ x1, x3 ≤ 20,−20 ≤ x2 ≤ 0}.

It is required to verify that all trajectories of the system starting from the initial
set

Θ = {x ∈ R
3 | (x1 + 14.5)2 + (x2 + 14.5)2 + (x3 − 12.5)2 ≤ 16}

will never enter the unsafe region

Xu = {x ∈ R
3 | (x1 + 16.5)2 + (x2 + 14.5)2 + (x3 − 2.5)2 ≤ 38.44}.

It suffices to find a barrier certificate B(x), which satisfies all the conditions in
Definition 3. Suppose that the degree of B(x) is 4, and the degree bound D = 6.
Firstly, we construct a bilinear SOS program (6), which is further transformed
into a BMI problem of the form (9) where the dimension of B(u,v) is 78, and
the number of decision variables is 396. By applying our algorithm, we succeed
to solve the BMI problem and obtain the following barrier certificate

B(x) = −0.0020x4
1 − 0.0013x4

3 − 0.0131x2
1x2

3 − 0.0022x1x2x2
3 + · · · + 0.0938x1 + 62.5702

︸ ︷︷ ︸

28 terms

.

As shown in Fig. 1, the zero level set of the barrier certificate B(x) (the
steelblue surface) separates Xu (the red ball) from all trajectories starting from
Θ (the green ball). Therefore, the safety of the above system is verified.

Alternatively, by applying the PENBMI solver to compute the solution of
the problem (9), we cannot find barrier certificates with degree less than 6. �



A Novel Approach for Solving the BMI Problem 597

Fig. 1. Phase portrait of the system in Example 2. (Color figure online)

Example 3. Consider the following hybrid system [20] depicted in Fig. 2, where

f1 =

⎡

⎣
−x2

−x1 + x3

x1 + (2x2 + 3x3)(1 + x2
3)

⎤

⎦ , f2 =

⎡

⎣
−x2

−x1 + x3

−x1 − 2x2 − 3x3

⎤

⎦ .

Fig. 2. The hybrid automata of the system in Example 3

The system starts in location �1 with the initial set

Θ = {x ∈ R
3 : x2

1 + x2
2 + x2

3 ≤ 0.01}.

Our task is to verify that the system will never enter the unsafe set

Xu(�2) = {x ∈ R
3 : 5 < x1 < 5.1}.

Applying our SISBMI solver, we obtain the polynomial barrier certificate
with degree 4:
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B�1 (x) = 0.0551x4
1 + 0.0392x4

2 + 0.0079x4
3 + 0.0696x2x2

3 + · · · − 1.1134x1 + 2.701
︸ ︷︷ ︸

35 terms

,

B�2 (x) = 0.0273x1
4 + 0.0541x3

1x2 − 1.098x1x2
2 − 0.521x1x2x3 + · · · − 2.725x1 + 8.197

︸ ︷︷ ︸

35 terms

.

�

Our SISBMI solver was implemented in Matlab (2018b), and was compared
with two solvers PENBMI and SOSTOOLS over a set of benchmarks in the
literature on barrier certificates generation. Among these benchmark examples,
examples C1–C15 are semi-algebraic continuous systems and examples H1–H7
are semi-algebraic hybrid systems. The performance is reported in Table 1. All
the experiments were performed on 2.6 GHz Intel i5 processor under Windows
10 with 8 GB RAM.

Table 1. Algorithm performance on benchmarks

ID n |L| df BMI LMI

t N SISBMI PENBMI SOSTOOLS

ds Is Ts dp Ip Tp dl Tl

C1 from [33] 2 1 3 21 33 2 32 0.2189 2 24 0.9198 2 0.1949

C2 from [24] 2 1 1 30 58 4 73 0.5475 — —

C3 from [21] 2 1 3 21 39 2 29 0.2761 2 22 1.3353 —

C4 from [30] 3 1 2 32 72 2 44 0.4126 2 23 1.8237 2 0.3245

C5 from [26] 3 1 3 32 72 2 47 0.4761 2 28 1.5435 2 0.3362

C6 from [3] 3 1 2 78 396 4 83 4.3598 — —

C7 from [28] 4 1 3 50 145 2 72 3.9577 2 28 21.0502 2 3.8658

C8 from [9] 3 1 2 32 72 — 2 40 2.4555 —

C9 from [6] 4 1 2 31 86 — 2 42 4.6909 —

C10 from [13] 7 1 2 73 394 2 112 10.7156 2 44 108.5615 2 7.2807

C11 from [13] 9 1 2 102 908 2 264 20.6856 2 30 272.4551 2 15.8167

C12 from [8] 12 1 1 70 123 2 108 3.2712 — —

H1 from [25] 2 2 2 38 65 2 61 0.4899 2 25 2.1499 2 0.2074

H2 from [36] 2 2 3 42 69 2 77 0.6331 2 24 2.2786 2 0.2265

H3 from [15] 2 2 2 75 138 2 115 3.7394 — —

H4 from [2] 2 3 1 42 89 1 70 0.5326 1 21 0.9968 2 0.1856

H5 from [1] 3 3 1 67 64 2 112 1.0864 — —

H6 from [7] 4 6 2 840 2736 2 616 48.0548 — —

H7 from [20] 3 2 3 170 899 4 219 18.7912 4 32 243.9832 —



A Novel Approach for Solving the BMI Problem 599

In Table 1, n denotes the number of the system variables, and |L| denotes the
number of locations; df denotes the maximal degree of the polynomials in the
vector fields; t is the dimension of the matrix B(u,v), and N refers to the number
of decision variables appearing in the BMI problem (9), namely, dim(u)+dim(v);
ds, dp and dl denote the degrees of the barrier certificates obtained via SISBMI,
PENBMI and SOSTOOLS, respectively; Is and Ip are the numbers of iterations
used by SISBMI and PENBMI, respectively; Ts, Tp and Tl record the time spent
by computation in seconds; the symbol—means that the solver was unable to
return a feasible solution with the degree bound deg(B) ≤ 6.

Table 1 shows that for the 19 examples, our SISBMI solver can successfully
handle 17 of them while the numbers of successful examples of PENBMI and
SOSTOOLS are 13 and 9, respectively. Our SISBMI solver seems to provide the
best solving capability. There are 10 examples that can be treated by BMI solvers
(either SISBMI or PENBMI) unable to be solved by the LMI solver SOSTOOLS
due to the more conservative conditions in the corresponding LMI problems. To
evaluate the best performance of SOSTOOLS, we have tried some widely used
multipliers [16,20], such as 0,±1,±(1+x2

1+ · · ·+x2
n), as well as some polynomial

multipliers with random coefficients and the prior degree bound that guarantee
the degrees of the polynomials involved in the verification conditions (6) do not
increase. Examples C8-C9 show the case where the solver PENBMI performs
better than our SISBMI solver as a result of the fact that both SISBMI and
PENBMI solvers only find local optimal solutions to the BMI problems.

The above analysis on effectiveness can also be used to support that our SIS-
BMI solver is a necessary complement to the existing tools. As shown in Table 1,
PENBMI solver can cover 13 examples. To solve the remaining 6 examples, it
has to resort to the SISBMI solver.

Considering the efficiency, the solver SOSTOOLS performs the best for
almost all the successful examples because of the much lower computational
complexity for solving the relaxed LMI problems. The efficiency comparison
between SISBMI and PENBMI solvers can be made by examining the ratio
between the execution times of these two solvers in Table 1. For the 11 examples
that are solved by both tools, on average, our SISBMI solver costs 3.4 times than
PENBMI solver in the number of iterations while only costs 0.27 times than
PENBMI solver in time. That is for all the successful examples, our SISBMI
solver takes much less time than PENBMI solver even it spends more iterations,
which complies with the complexity analysis of the underlying algorithms. Both
the theoretical analysis and the experiments support that our SISBMI solver is
more efficient than PENBMI solver.

6 Related Work

In theory, the problem of barrier certificate generation is a quantifier elimination
problem. The verification conditions corresponding to a barrier certificate can
be encoded into a set of constraints on state variables and coefficients where
the unknown coefficients are existentially quantified and state variables are uni-
versally quantified. Hence, several symbolic computation approaches [11,19,29],
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such as cylindrical algebraic decomposition (CAD) or Grönber bases computa-
tion, have been directly applied to attack the associated quantifier elimination
problems. However, due to the high computational complexity, they suffer from
the scalability problem.

Due to the relatively low computational complexity, SOS relaxation based
methods become popular. Rather than directly handling quantified constraints,
they transform them to a non-convex bilinear matrix inequality. Z. Yang et al.
[35] relied on the BMI solver PENBMI to compute exact polynomial barrier
certificates. O. Bouissou et al. [3] applied interval analysis to handle the BMI
problem derived from the dynamical systems whose initial and unsafe regions
are restricted to the box form. G. Jessica et al. [10] presented an augmented
Lagrangian framework for the special case of bilinear programs that arise from
data flow constraints and correspond to the construction of numerical abstract
domains aiming at safety verification.

To alleviate its computational intractability, a convex surrogate has been
proposed that behaves fairly well. Specifically, once the multipliers are fixed,
the BMI problem is further transformed into a LMI problem that can be quickly
solved by convex optimization. S. Prajna et al. [20] had first put the idea forward.
A. Sogokon et al. [34] employed the comparison principle associated with the
convex verification conditions, to generate vector barrier certificates in safety
verification.

Inspired by the fact that it is the non-convex feature of verification condi-
tions prevents well-developed convex optimization to be directly applied, many
convex but stronger verification conditions are studied. H. Kong et al. [16] pro-
posed an exponential condition for semi-algebraic hybrid systems. Kapinski et
al. [12] diagnosed convex verification conditions to Lyapunov-based barrier cer-
tificates. C. Sloth et al. [32] considered convex barrier certificates associated with
compositional conditions for a group of interconnected hybrid systems. L. Dai
et al. [4] studied how to balance the convexity of verification conditions with the
expressiveness of barrier certificates. All these convex verification conditions are
equivalent forms of LMI problems. They facilitate problem-solving at the risk of
losing feasible solutions.

7 Conclusion

We have presented a sequential iterative scheme for solving the BMI problem
derived from the barrier certificate generation of semi-algebraic hybrid systems.
Taking advantage of the special feature of the bilinear terms, the proposed app-
roach is more efficient than the existing BMI solver. Furthermore, compared
with popular LMI solving based methods, the solving procedure does not make
the verification condition more conservative, and thus reduces the risk of miss-
ing solutions. In virtue of the two appealing features, our approach can produce
barrier certificates not amenable to existing methods, which is evidenced by a
theoretical complexity analysis as well as the experiment on some benchmarks.
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Abstract. In this paper, we study efficient approaches to reachability
analysis for discrete-time nonlinear dynamical systems when the depen-
dencies among the variables of the system have low treewidth. Reach-
ability analysis over nonlinear dynamical systems asks if a given set of
target states can be reached, starting from an initial set of states. This is
solved by computing conservative over approximations of the reachable
set using abstract domains to represent these approximations. However,
most approaches must tradeoff the level of conservatism against the cost
of performing analysis, especially when the number of system variables
increases. This makes reachability analysis challenging for nonlinear sys-
tems with a large number of state variables. Our approach works by con-
structing a dependency graph among the variables of the system. The
tree decomposition of this graph builds a tree wherein each node of the
tree is labeled with subsets of the state variables of the system. Further-
more, the tree decomposition satisfies important structural properties.
Using the tree decomposition, our approach abstracts a set of states
of the high dimensional system into a tree of sets of lower dimensional
projections of this state. We derive various properties of this abstract
domain, including conditions under which the original high dimensional
set can be fully recovered from its low dimensional projections. Next,
we use ideas from message passing developed originally for belief propa-
gation over Bayesian networks to perform reachability analysis over the
full state space in an efficient manner. We illustrate our approach on
some interesting nonlinear systems with low treewidth to demonstrate
the advantages of our approach.

1 Introduction

Reachability analysis asks whether a target set of states is reachable over a
finite or infinite time horizon, starting from an initial set for a dynamical sys-
tem. This problem is fundamental to the verification of systems, and is known to
be challenging for a wide variety of models. This includes cyber-physical systems,
physical and biological processes. In this paper, we study reachability analysis
algorithms for nonlinear, discrete-time dynamical systems. The key challenge in
analyzing such systems arises from the difficulty of representing the reachable
sets of these systems. As a result, we resort to over-approximations of reach-
able sets using tractable set representations such as intervals [16], ellipsoids,
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 604–628, 2020.
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polyhedra [19], and low degree semi-algebraic sets [2]. Whereas these represen-
tations are useful for reachability analysis, they also trade off the degree of over-
approximation in representing various sets against the complexity of performing
operations such as intersections, unions, projections and image computations
over these sets. The theory of abstract interpretation allows us to design various
abstract domains that serve as representations for sets of states in order explore
these tradeoffs [17,18,34]. However, for nonlinear dynamical systems, these rep-
resentations often become too conservative or too expensive as the number of
state variables grow.

In this paper, we study reachability analysis using the idea of tree decompo-
sitions over the dependency graph of a dynamical system. Tree decompositions
are a well-known idea from graph theory [37], used to study properties of various
types of graphs. The treewidth of a graph is an intrinsic property of a graph that
relates to how “far away” a given graph is from a tree. For instance, trees are
defined to have a treewidth of 1. Many commonly occurring families of graphs
such as series-parallel graphs have treewidth 2 and so on. Formally, a tree decom-
position of a graph is a tree whose nodes are associated with subsets of vertices
of the original graph along with some key conditions that will be described in
Sect. 2. We use tree decompositions to build an abstract domain. The abstraction
operation projects a set of states in the full system state space along each of the
nodes of the tree, yielding various projections of this set. The concretization com-
bines projections back into the high dimensional set. We study various properties
of this abstract domain. First, we characterize abstract elements that can poten-
tially be generated by projecting some concrete elements along the nodes of the
tree (so called canonical elements, Definition 10). Next we characterize those
sets which can be abstracted along the tree decomposition and reconstructed
without any loss in information (tree decomposable sets, Definition 11). In this
process, we also derive a message passing approach wherein nodes of the tree can
exchange information to help refine sets of states in a sound manner. However,
as we will demonstrate, the abstraction is “lossy” in general since projections of
tree decomposable sets are not necessarily tree decomposable. We discuss some
interesting ways in which precision can be regained by carefully analyzing this
situation.

We combine these ideas together into an approach for reachability analysis of
nonlinear systems using a grid domain that represents complex non convex sets
as a union of fixed size cells using a gridding of the state-space. Although such
a domain would be prohibitively expensive, we show that the tree decomposi-
tion abstract domain can drastically cut down on the complexity of computing
reachable set overapproximations in this domain, yielding precise reachable set
estimation for some nonlinear systems with low treewidth. We demonstrate our
approach using a prototype implementation to show that for a restricted class of
systems whose dependency graphs have low treewidth, our approach can be quite
efficient and precise at the same time. Although some interesting systems have
low treewidth property, it is easy to see that many systems will have treewidths
that are too high for our approach. Our future work will consider how systems
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whose dependency graphs do not have sufficiently low treewidth can still be
tackled in a conservative manner using some ideas from this paper.

1.1 Related Work

As mentioned earlier, the concept of tree decompositions and treewidth origi-
nated in graph theory [37]. The concept of treewidth gained popularity when
it was shown that many NP-complete problems on graphs such as graph col-
oring could be solved efficiently for graphs with small treewidths [5]. Courcelle
showed that the problem of checking if a given graph satisfies a formula in the
monadic second order logic of graphs can be solved in linear time on graphs with
bounded treewidth [15]. Several NP-complete problems such as 3-coloring can be
expressed in this logic. Tree decompositions are also used to solve inference prob-
lems over Bayesian networks leading to representations of the Bayesian networks
such as junction trees that share many of the properties of a tree decomposi-
tion [29]. In fact, belief propagation over junction trees is performed by passing
messages that marginalize the probability distributions at various nodes of the
tree. This is analogous to the message passing approach described here.

Tree decomposition techniques have been applied to model checking prob-
lems over finite state systems. For instance, Obdržálek show that the μ-calculus
model checking problem can be solved in linear time in the size of a finite-state
system whose graph has a bounded treewidth [35]. However, as Ferrara et al.
point out, requiring the state graph of a system to have a bounded treewidth is
often restrictive [24]. Instead, they study concurrent finite state systems wherein
the communication graph has a bounded tree width. However, they conclude
that while it is more reasonable to assume that the communication graph has a
bounded tree width, it does not confer much advantages to verification problems.
For instance, they show that the unrolling of these systems over time potentially
results in unbounded treewidth. In this paper, we consider a different approach
wherein we study the treewidth of dependency graphs of the system. We find
that many systems have small treewidth and exploit this property. At the same
time, we note that some of the benchmarks studied have “sparse” dependency
graphs but treewidths that are too large for our approach.

Tree decomposition techniques have also been studied in static analysis of
programs. The control and data flow graphs of structured programs without
goto-statements or exceptional control flow are known to have small treewidth
that can be exploited to perform compiler optimizations such as register allo-
cation quite efficiently [38]. Chatterjee et al. have shown how to exploit small
treewidth property of the control flow graphs of procedures in programs to per-
form interprocedural dataflow analysis by modeling the execution of programs
with procedures as recursive state machines [11]. However, this approach seems
restricted to control dominated properties such as sequence of function calls. In
a followup work, they study control and data flow analysis problems for concur-
rent systems, wherein each component has constant treewidth [10]. In contrast,
our approach studies dynamical system and consider tree decompositions of the
data dependency graph.
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The use of message passing in this paper closely resembles past work by
Gulwani and Jojic [27]. Therein, a program verification problem involving the
verification pre/post and intermediate assertions in a program is solved by pass-
ing messages that can propagate information between assertions along program
paths in a randomized fashion. The approach is shown to be similar to loopy
belief propagation used in Bayesian inference. The key differences are (a) we
use data dependencies and tree decompositions rather than control flow paths
to pass information along; and (b) we formally prove properties of the message
passing algorithm.

Our approach is conceptually related to a well-known idea of speeding up
static analysis of large programs using “packing” of program variables [4,28].
This approach was used successfully in the Astreé static analyzer [3,4,21].
Therein, clusters of variables representing small sets of dependent local and
global are extracted. The remaining program variables are abstracted away and
the abstract interpretation process is carried out over just these variables. The
usefulness of this approach has borne out in other abstract interpretation efforts,
including Varvel [28]. The key idea in this paper can be seen as a formalization of
the rather informal “clustering” approach using tree decompositions. We demon-
strate theoretical properties as well as the ability to pass messages to improve
the results of the abstract interpretation.

The use of the dependency graph structure to speed up reachability analysis
approaches has been explored in the past for speeding up Hamilton-Jacobi-based
approaches by Mo Chen et al. [12] as well as flowpipe based approaches by
Xin Chen et al. [13]. Both approaches consider the directed dependency graph
wherein xi is connected to xj if the former appears in the dynamical update
equation of the latter variable. The approaches perform a strongly connected
component (SCC) decomposition and analyze each SCC in a topological sorted
order. However, this approach breaks as soon as the system has large SCCs,
which is common. As a result, Xin Chen et al. show how SCCs can themselves
be broken into numerous subsets at the cost of a more conservative solution.
In contrast, the tree decomposition approach can be applied to exploit sparsity
even when the entire dependency graph is a single SCC.

2 Preliminaries

In this section, we will describe the system model under analysis, the dependency
graph structure and the basics of tree decompositions. Let X : {x1, . . . , xn}
be a set of system variables and x : X �→ R represent a valuation to these
system variables. Let D be the domain of all valuations of X, that describes
the state space of the system. For convenience let xi denote x(xi). Also, let
W : {w1, . . . , wm} represent disturbance variables and w : W �→ R represent a
vector of m ≥ 0 external disturbance inputs that take values in some compact
disturbance space W.

Definition 1 (Dynamical Model). A model Π is a tuple 〈X,W,D,W, f,
X0, U〉, wherein X,W,D,W are as defined above, f is an arithmetic expression
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over variables in X,W describing the dynamics, X0 is a set of possible initial
valuations (states) and U is a designated set of unsafe states.

The dynamics are given by x(t + 1) = eval(f,x,w), wherein eval evaluates
a given an expression f , a set of valuations to the system variables x ∈ D and
disturbances w ∈ W, and returns a new set of valuations for each variable in X,
denoted by x(t + 1).

For simplicity, we write f(x,w) to denote eval(f,x,w) for a function expres-
sion f . A state of the system is a valuation x : X �→ R such that x ∈ D.
Given a finite sequence of disturbance inputs w(0), . . . ,w(T ), for some T ≥ 0
and w(i) ∈ W for all i ∈ [0, T ], an execution of the system is a sequence of
states x(0), . . . ,x(T + 1), such that x(0) ∈ X0, x(t) ∈ D for t ∈ [0, T + 1] and
x(t+1) = f(x(t),w(t)) for all t ∈ [0, T ]. According to these semantics, the system
may fail to have an execution for a given disturbance sequence w(t), t ∈ [0, T ]
and initial state x(0) if for some state x(t), we have f(x(t),w(t)) �∈ D.

A state x(t) is reachable (at time t) if there is an execution of the form
x(0), . . . ,x(t), satisfying the constraints above. We say that the unsafe state U
is reachable iff some state x ∈ U is reachable. Furthermore, we say that U is
reachable within a finite time horizon T , iff some state x ∈ U is reachable at
time t ∈ [0, T ].

Example 1. Consider a nonlinear example of a dynamical model Π with state
space x : (x1, x2, x3) and w : (w1). The dynamics can be written as parallel
assignments to the state variables:

x1 := x1 + 0.25x2 − 0.05x1sin(x2), x2 := x2 + w1, x3 := x3 − 0.2x3x2 ,

The assignments are all evaluated in parallel to update the current state x(t)
to a new state x(t + 1). The domain D is xi ∈ [−3, 3] for i = 1, 2, 3 and the
disturbance w1 ∈ [−0.1, 0.1]. The initial set X0 is x1 ∈ [−0.2, 0.2] ∧ x2 ∈
[−0.3, 0] ∧ x3 ∈ [0, 0.4].

We will now define the dependency (hyper)graph of the system Π. For con-
venience, we write the update function (expression) f of a system Π in terms
of individual updates (f1, . . . , fn), wherein x′

j = fj(x,w). We say that system
variable xi (or disturbance variable wj) is a proper input to the expression fk if
xi (or wj) occurs as a subterm in fk. Let inps(fk) denote the set of all proper
input variables to the function (expression) fk.

As an example, consider X = {x1, . . . , x4} and W = {w1, w2} and the expres-
sion f : x1x4−w1. The proper inputs to f are {x1, x4, w1}. We exclude cases such
as g : sin2(x1) + cos2(x1)

sin2(x2) + cos2(x2)
that has {x1, x2} as proper inputs. However a simplifica-

tion using elementary trigonometric rules can eliminate them. We will assume
that all expressions are simplified to involve the least number of variables.

Definition 2 (Dependency Hypergraph). A dependency hypergraph of a
system Π has vertices V : X ∪ W , given by the union of the system and
disturbance variables with hyperedge set E ⊆ 2V given by E = {e1, . . . , en},
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wherein for each update xk := fk(x,w) (k = 1, . . . , n), we have the hyperedge
ek : {xk} ∪ inps(fk). In other words, each update xk := fk(x,w) yields an edge
that includes xk along with all the system/disturbance variables that are proper
inputs to fk.

Example 2. The dependency hypergraph for the system from Example 1 has
the vertices V : {x1, x2, x3, w1} and the edges {e1 : {x1, x2}, e2 : {x2, w1} and
e3 : {x2, x3}}.

2.1 Tree Decomposition

We will now discuss tree decompositions and the associated concept of treewidth
of a hypergraph G : (V,E). The tree decomposition will be applied to the depen-
dency hypergraphs (Definition 2) for systems Π (Definition 1).

Definition 3 (Tree Decomposition and Treewidth). Given a hypergraph
G : (V,E), a tree decomposition is a tree T : (N,C) and a mapping verts : N �→
2V , wherein N is the set of tree nodes, C is the set of tree edges and verts(·)
associates each node u ∈ N with a set of graph vertices verts(n) ⊆ V . The tree
decomposition satisfies the following conditions:

1. For vertex v ∈ V there exists (at least one) n ∈ N such that v ∈ verts(n).
2. For each hyperedge e ∈ E there exists (at least one) n ∈ N : e ⊆ verts(n).
3. For each vertex v, for any two nodes n1, n2 such that v ∈ verts(n1) and

v ∈ verts(n2), then v ∈ verts(n) for each node n along the unique path
between n1 and n2 in the tree. Stated another way, the subset of nodes Nv :
{n ∈ N | v ∈ verts(n)} induces a subtree of T (denoted Tv).

The width of a tree decomposition is given by max{|verts(n)| | n ∈ N} − 1.
In other words, we find the node n in the tree whose associated set of vertices has
the largest cardinality. We subtract one from this maximal cardinality to obtain
the treewidth. A tree decomposition is optimal for a graph G if no other tree
decomposition exists with a strictly smaller width. The treewidth of a hypergraph
G is given by width of an optimal tree decomposition.

It is easy to show that if the graph G is a tree, it has treewidth 1. Likewise,
a cycle has tree width 2.

Example 3. The tree decomposition of the hypergraph G from Example 2 has
three nodes {n1, n2, n3} with edges (n1, n2) and (n2, n3). The nodes along with
the associated vertex sets are as follows:

n2 : {x2, w1} n1 : {x2, x3} n3 : {x1, x2}

Although the tree decomposition is not a rooted tree, we often designate an
arbitrary node r ∈ N as the root node, and consider the tree T as a rooted tree
with root r.
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Finding a Tree Decomposition: Interestingly, the problem of finding the
treewidth of a graph is itself a NP-hard problem. However, many practical
approaches exist for graphs with small treewidths. For instance, Bodlaender
presents an algorithm that runs in time O(kO(k3)) to construct a tree decompo-
sition of width at most k or conclude that the treewidth of the graph is at least
k + 1 [6]. Such an approach can be quite useful if a given graph is suspected to
have a small tree width in the first place. Besides this, many efficient algorithms
exist to approximate the treewidth of a graph to some constant factor. A detailed
survey of these results is available elsewhere [7,8]. Open-source packages such
as HTD can compute treewidth for graphs with thousands of nodes [1]. Finally,
we note that if a tree decomposition of width k can be found, then one can be
found with at most |V | nodes.

Lemma 1. Let T be a tree decomposition for a (multi)graph G with vertices V
and treewidth k. There exists a tree decomposition T̂ of G with the same treewidth
k, and at most |V | nodes.

A proof is provided in the extended version of the paper.

3 Abstract Domains Using Tree Decompositions

In this section, we will define abstract domains using tree decompositions of
the dependency hypergraph of the system under analysis. Let Π be a transition
system over system variables X. The concrete states are given by x ∈ D, wherein
x : X �→ R maps each state variable xj ∈ X to its value x(xj) (denoted xj).

Definition 4 (Projections). The projection of a state x to a subset of state
variables J ⊆ X, denoted as proj(x, J), is a valuation x̂ : J �→ R such that
x̂(xi) = x(xi) for all xi ∈ J . For a set of states S ⊆ D and a subset of state
variables J ⊆ X, we denote the projection of S along (the dimensions of) J as
proj(S, J) : {proj(x, J) | x ∈ S}.
Definition 5 (Extensions). Let R be a set of states involving just the variables
in the set J1 ⊆ X, i.e, R ⊆ proj(D,J1). We define the extension of R into a set
of variables J2 ⊇ J1 as extJ2(R) : {x ∈ proj(D,J2) | proj(x, J1) ∈ R}.

In other words, the extension of a set embeds each element in the larger
dimensional space defined by J2 allowing “all possible values” for the dimensions
in J2 \ J1.

We will use the notation ext(S) to denote the set extX(S), i.e, its extension
to the entire set of state variables X. For a state xS , we will use ext(xS) denote
ext({xS}).

Definition 6 (Product (Join) of Sets). Let R1 ⊆ proj(D,J1) and R2 ⊆
proj(D,J2). We define R1 ⊗ R2 : {x : J1 ∪ J2 �→ R | proj(x, J1) ∈
R1 and proj(x, J2) ∈ R2}.
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Let T : (N,C) be a tree decomposition of the dependency hypergraph of the
system. Recall that for each node n ∈ N we associate a set of system/disturbance
variables denoted by verts(n). Let vertsX(n) denote the set of system vari-
ables: verts(n)∩X. We say that an update function xk := fk(x,w) is associated
with a node n in the tree iff {xk} ∪ inps(fk) ⊆ verts(n).

Lemma 2. For every system variable xk, its update xk := fk(x,w) is associ-
ated with at least one node n ∈ N .

Proof. This follows from those of a tree decomposition that states that every
hyperedge in the dependency hypergraph must belong to verts(n) for at least
one node n ∈ N .

3.1 Abstraction and Concretization

We consider subsets of the concrete states for the system Π, i.e, the set 2D,
ordered by set inclusion as our concrete domain. Given a tree decomposition,
T , we define an abstract domain through projection of a concrete set along
verts(n) for each node n of T .

Definition 7 (Abstract Domain). Each element s of the abstract domain
AT is a mapping that associates each node n ∈ N with a set s(n) ⊆
proj(D,vertsX(n)).

For s1, s2 ∈ AT , s1 � s2 iff s1(n) ⊆ s2(n) for each n ∈ N .

We will use the notation proj(S, n) for a node n ∈ N to denote
proj(S,vertsX(n)).

Definition 8 (Abstraction Map). Given a tree decomposition T , the abstrac-
tion map αT takes a set of states S ⊆ D and produces a mapping that associates
tree node n ∈ N to a projection of S along the variables vertsX(n). Formally,

αT (S) : λn : N. proj(S, n) .

Thus, an abstract state s is a map that associates each node n of the tree to
a set s(n) ⊆ Dn. We now define the concretization map γT .

Definition 9 (Concretization Map). The concretization γT (s) of an
abstract state is defined as γT (s) :

⋂
n∈N ext(s(n)). In other words, we take

s(n) for every node n ∈ N , extend it to the full dimensional space of all system
variables and intersect the result over all nodes n ∈ N .

Example 4. Consider a simple tree decomposition T with 2 nodes n1, n2 and a
single edge (n1, n2). Let verts(n1) : {x1, x2} and verts(n2) : {x2, x3}. Let the

domain D be the set xi ∈ {1, 2, 3} for i = 1, 2, 3. We use the notation (
x1

v1,
x2

v2,
x3

v3)
to denote a state x that maps x1 to the value v1, x2 to the value v2 and so on.
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Now consider the set S = {(
x1

1,
x2

1,
x3

1), (
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3)}. We have that s : α(S)
is the mapping that projects S onto the dimensions (x1, x2) for node n1 and
(x2, x3) for node n2:

n1 �→ {(
x1

1,
x2

1), (
x1

1,
x2

2)}, n2 �→ {(
x2

1,
x3

1), (
x2

1,
x3

2), (
x2

2,
x3

3)} .

Likewise, we verify that the concretization map γ(s) will yields us:

γ(s) : {(
x1

1,
x2

1,
x3

1), (
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3)} .

For convenience, if the tree T is clear from the context, we will drop the
subscripts to simply write α and γ for the abstraction and concretization map,
respectively.

Theorem 1. For any tree decomposition T , the maps α and γ form a Galois
connection. I.e, for all S ⊆ D and s ∈ AT : α(S) � s iff S ⊆ γ(s).

Proof. Let S, s be such that α(S) � s. Therefore, proj(S, n) ⊆ s(n) ∀n ∈ N by
the definition of �. Pick any, x ∈ S. First, proj(x, n) ∈ proj(S, n) and therefore,
proj(x, n) ∈ s(n) for all n ∈ N . Thus, x ∈ ext(s(n)) for each node n ∈ N .
Therefore, x ∈ ⋂

n∈N ext(s(n)), and hence, x ∈ γ(s), by defn. of γ. Therefore,
S ⊆ γ(s).

Conversely, assume S ⊆ γ(s). Since γ(s) =
⋂

n∈N ext(s(n)) (from Defini-
tion 9). Therefore, S ⊆ ext(s(n)) forall n ∈ N . Therefore, for all x ∈ S,
proj(x, n) ∈ s(n). Therefore, proj(S, n) ⊆ s(n) for every n ∈ N . Finally, this
yields α(S) � s.

The meet operation is defined as s1 � s2 : λn. s1(n) ∩ s2(n), and likewise,
the join is defined as s1 � s2 : λn. s1(n) ∪ s2(n). We recall two key facts that
follow from Galois connection between α and γ.
1. For any set S ⊆ D, we have S ⊆ γ(α(S)). Abstracting a concrete set and

concretizing it back again “loses information”. To see why, we start from
α(S) � α(S) and apply the Galois connection to derive S ⊆ γ(α(S)).

2. Likewise, for any abstract domain object s ∈ A, we have α(γ(s)) � s. I.e, for
any element s, taking its concretization and abstracting it “gains informa-
tion”. To prove this, we start from γ(s) ⊆ γ(s) and conclude that α(γ(s)) � s.

Example 5. Returning back to Example 4, now consider the set

Ŝ = {(
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3), (
x1

2,
x2

1,
x3

2), (
x1

2,
x2

2,
x3

4)} .

Its abstraction ŝ : α(Ŝ) is given by the mapping:

n1 �→ {(
x1

1,
x2

1), (
x1

1,
x2

2), (
x1

2,
x2

1), (
x1

2,
x2

2)}, n2 �→ {(
x2

1,
x3

2), (
x2

2,
x3

3), (
x2

2,
x3

4)} .

We note that γ(ŝ) is the set: {(
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3), (
x1

1,
x2

2,
x3

4), (
x1

2,
x2

1,
x3

2), (
x1

2,
x2

2,
x3

3),

(
x1

2,
x2

2,
x3

4)}. Thus Ŝ ⊆ γ(ŝ). Notice that (
x1

2,
x2

2,
x3

3) and (
x1

1,
x2

2,
x3

4) are part of γ(ŝ)
but not the original set Ŝ. Similarly, consider the abstract element s1: n1 �→
{(

x1

1,
x2

1), (
x1

1,
x2

2)}, n2 �→ {(
x2

1,
x3

3)}. We note that γ(s1) : {(
x1

1,
x2

1,
x3

3)} and therefore

α(γ(s1)) yields the abstract element s2 � s1: n1 �→ {(
x1

1,
x2

1)}, n2 �→ {(
x2

1,
x3

3)}.
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3.2 Canonical Elements and Message Passing

In the tree decomposition, various nodes share information about the subsets of
vertices associated with each node. Since the subsets have elements in common,
it is possible that a node n1 has information about a variable x2 that is also
present in some other node n2 of the tree. We will now see how to take an abstract
element s and refine each s(n) by exchanging information between nodes in a
systematic manner.

For each edge (n1, n2) ∈ C of the tree, define the set of variables in com-
mon as CV(n1, n2): verts(n1) ∩ verts(n2) and CVX(n1, n2): vertsX(n1) ∩
vertsX(n2).

Definition 10 (Canonical Elements). An abstract element s is said to be
canonical if and only if for each edge (n1, n2) ∈ C in the tree:

proj(s(n1),CVX(n1, n2)) = proj(s(n2),CVX(n1, n2)) .

In other words, if we took the common variables vertsX(n1)∩vertsX(n2), the
set s(n1) projected along these common variables is equal to the projection of
s(n2) along the common variables.

Example 6. Consider the abstract element s1 from Example 5: n1 �→
{(

x1

1,
x2

1), (
x1

1,
x2

2)}, n2 �→ {(
x2

1,
x3

3)}. proj(s1(n1),CV(n1, n2)) is the set {
x2

1,
x2

2} whereas

proj(s1(n2),CV(n1, n2)) is simply {
x2

1}. Therefore, s1 fails to be canonical.

The key theorem of tree decomposition is that a canonical element in
the abstract domain can be seen as the projection of a concrete set S along
vertsX(n) for each node n of the tree. To prove that we will first establish a
useful property of a canonical element s.

Lemma 3. For every canonical element s ∈ A, node n ∈ N and element xn ∈
s(n), we have that ext(xn) ∩ γ(s) �= ∅.
Stated another way, the lemma claims that for any canonical s, any xn ∈ s(n) can
be extended to form some element of γ(s). A proof is provided in the extended
version.

Theorem 2. An element s is canonical (Definition 10) if and only if s = α(S)
for some concrete set S.

Ideally, in abstract interpretation, we would like to work with abstract
domain objects that satisfy s = α(γ(s)). One way to ensure that is to take
any given domain element s0 and simply calculate out α(γ(s0)) by applying the
maps. However, γ(s0) in our domain takes lower dimensional projections and
reconstructs a set in the full states pace. It may thus be too expensive to com-
pute. Fortunately, canonical objects satisfy the equality s = α(γ(s)). Therefore,
given any object s ∈ A that is not necessarily canonical, we would like to make
it canonical: I.e, we seek an object ŝ such that γ(ŝ) = γ(s), but ŝ is canonical. As
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mentioned earlier, directly computing ŝ = α(γ(s)) can be prohibitively expen-
sive, depending on the domain. We now describe a message passing approach.

First, we convert the tree T to a rooted tree by designating an arbitrary node
r ∈ N as the root of the tree.

Message Passing along Edges: Let (n1, n2) be an edge of the tree and s be
an abstract element. A message from n1 to n2 is defined as the set msg(s, n1 →
n2) : proj(s(n1),CV(n1, n2)). In other words, we project the set s(n1) along the
dimensions that are common to (n1, n2).

Once a node n2 receives M : msg(s, n1 → n2), it processes the message by
updating s(n2) as s(n2) := s(n2) ∩ extverts(n2)(M). In other words, it intersects
the message (extended to the dimensions in n2) with the current set that is
associated with n2.

Example 7. Consider a tree decomposition with three nodes {n1, n2, n3} and the
edges (n1, n2) and (n2, n3). Let verts(n1) : {x1, x2}, verts(n2) : {x2, x4} and
verts(n3) : {x2, x3}. Let D be the domain {1, 2, 3, 4}4. Consider the abstract
element s:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

A message msg(s, n1 → n2) is given by the set proj(s(n1), {x2}) : {
x2

2,
x2

3,
x2

4}.

This results in the new abstract object s′ wherein the element (
x2

1,
x4

1) is removed
from s(n2):

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

Upwards Message Passing: The upwards message passing works from leaves
up to the root of the tree according to the following two rules:

1. First, each leaf of the tree n passes a message to its parent np. The parent
node np intersects its current value s(np) with the message to update its
current set.

2. After a node has received (and processed) a message from all its children, it
passes a message up to its parent, if one exists.

The upwards message passing terminates at the root since it does not have
a parent to send a message to.

Example 8. Going back to Example 7, we designate n2 as the root and the
upwards pass sends the messages msg(s, n1 → n2) and msg(s, n3 → n2). This
results in the following updated element:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .
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Downwards Message Passing: The downwards message passing works from
the root down to the leaves.

1. To initialize, the root sends a message to all its children.
2. After a node has received (and processed) a message from its parent, it sends

a message to all its children.

The overall procedure to make a given abstract object s canonical is as fol-
lows: (a) perform an upwards message passing phase and (b) perform a down-
wards message passing phase.

Example 9. Going back to Example 8, the downward message passing phase
sends messages from n2 → n1 and n2 → n3. The resulting element ŝ is

n1 �→ {(
x1

1,
x2

2),�
��(

x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x4

4), (
x2

2,
x4

3)} .

On the other hand, it is important to perform message passing upwards first and
then downwards second. Reversing this does not yield a canonical element. For
instance going back to Example 7, if we first performed a downwards pass from
n2, the result is unchanged:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

Performing an upwards pass now yields the element s2:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x4

4), (
x2

2,
x4

3)} .

However this is not canonical, since the element (
x1

3,
x2

3) in s2(n1) violates the
requirement over the edge (n1, n2).

Let ŝ be the resulting abstract object after the message passing procedure
finishes.

Theorem 3. The result of message passing ŝ is a canonical object, and it sat-
isfies γ(ŝ) = γ(s).

Proof (Sketch). First, we note that whenever a message is passed for an abstract
value s from node m to n along an edge (m,n) resulting in a new abstract value
s′: (P1) γ(s′) = γ(s); and (P2) the projection of s′(n) along the dimensions
CV(m,n) is now contained in that of s′(m) along CV(m,n). Furthermore, prop-
erty (P2) remains unchanged regardless of any future messages that are passed
along the tree edges.

Next, it is shown that after each upwards pass, when a message is passed,
property (P2) (stated above) holds for each node m and its parent node n since
a message is passed from m to n. During the downwards pass, property (P2)
holds for each node n and its child node m in the tree. Combining the two,
we note that for each edge (m,n) in the tree, we have property (P2) in either
direction guaranteeing that proj(s∗(m),CV(m,n)) = proj(s∗(n),CV(m,n)), for
the final result s∗, or in other words that s∗ is canonical.
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3.3 Decomposable Sets and Post-conditions

We have already noted that for any concrete set over S ⊆ D, the process of
abstracting it by projecting into nodes of a tree T , and re-concretizing it is
“lossy”: I.e, S ⊆ γ(α(S)). In this section, we study “tree decomposable” concrete
sets S for which γ(α(S)) = S. Ideally, we would like to prove that if a set S is
tree decomposable then so is the set post(S,Π) of next states. However, we will
disprove this by showing a counterexample. Nevertheless, we will present an
analysis of why this fact fails and suggest approaches that can “manage” this
loss in precision.

Definition 11 (Decomposable Sets). We say that a set S is tree decompos-
able given a tree T iff γ(α(S)) = S.

This is in fact a “global” definition of decomposability. In fact, a nice “local”
definition can be provided that is reminiscent of the notion of conditional inde-
pendence in graphical models. We will defer this discussion to an extended ver-
sion of this paper due to space limitations.

Example 10. Consider set S : {(
x1

1,
x2

2,
x3

1), (
x1

2,
x2

2,
x2

2)} and tree T below:

n1 : {x1, x2} n2 : {x2, x3}

We wish to check if S is T -decomposable. We have s : α(S) as

s(n1) : proj(S, n1) : {(
x1

1,
x2

2), (
x1

2,
x2

2)} s(n2) : proj(S, n2){(
x2

2,
x3

1), (
x2

2,
x3

2)} .

Now, γ(s):{(
x1

1,
x2

2,
x3

1), (
x1

1,
x2

2,
x2

2), (
x1

2,
x2

2,
x3

1), (
x2

2,
x2

2,
x2

2) .}. We note that the set S is
not tree decomposable. On the other hand, one can verify that the set

S1:{(
x1

1,
x2

2,
x3

2), (
x1

2,
x2

2,
x2

2)} is tree decomposable.

The following lemma will be quite useful.

Lemma 4. Let S1, S2 be tree decomposable sets over T . Their intersection is
tree decomposable.

Let Π be a transition system over system variables in x ∈ D. For a given set
S ⊆ D, us define the post-condition post(S,Π) to be the set of states reachable
in one step starting from some state in S:

post(S,Π) : {x′ | x ∈ S, x′ = eval(f,x)} .

Let us also consider a transition relation R over pairs of states (x,x′) ∈ D⊗D:

R = {(x,x′) | x,x′ ∈ D and x′ = eval(f,x)} .

The relation R can be viewed as the intersection of n relations: R :
⋂

xj∈X Rj ,
wherein

Rj : {(x,x′) | x,x′ ∈ D and x′
j = eval(fj ,x)} .
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In other words, Rj is a component of R that models the update of the system
variable xj . Also for each xj ∈ X, let ej : inps(fj) ∪ xj be the inputs to the
update function fj and the node xj itself.

Given the tree T , we define the extended tree T ′ as having the same node
set N and edge set C as T . However, vertsT ′(n) = vertsT (n) ∪ {x′

j |xj ∈
vertsT (n)}. Note that T ′ with the labeling vertsT ′ satisfies all the condition
of a tree decomposition for a graph G save the addition of vertices x′

i in each
node of the tree. We will write verts′(n) to denote the set vertsT ′(n).

Lemma 5. The transition relation R of a system Π is tree T ′ decomposable.

The proof is provided in the extended version and is done by writing R as an
intersection of tree decomposable relations Rj , and appealing to Lemma 4.

First, we show the negative result that the image of a tree (T ) decomposable
set under a tree (T ′) decomposable transition relation is not tree decomposable,
in general.

Example 11. Let X = {x1, x2, x3} and consider again the tree decomposition
from Example 10. Let S be the set {(

x1∗,
x2∗,

x3∗)}, wherein we use the wild card
character as notation that can be substituted for any element in the set {1, 2}.
Therefore, we take S to be a set with 8 elements. Clearly S is tree decomposable
in the tree T from Example 10.

Consider the transition relation R that will be written as the intersection of
three transition relations:

R1 : {(X,X ′) | x′
1 = x2}, R2 : {(X,X ′) | x′

2 ∈ {1, 2}}, R′
3 : {(X,X ′) | x′

3 = x2} .

Clearly R is tree T ′ decomposable. We can now compute the post-condition
of S under this relation. The reader can verify the post-condition Ŝ :

{(
x1

1,
x2∗,

x3

1), (
x1

2,
x2∗,

x3

2)}. However, Ŝ is not tree decomposable. We note that ŝ : α(Ŝ)
is the set ŝ(n1) : {(

x1∗,
x2∗)} and ŝ(n2) : {(

x1∗,
x2∗)}. Therefore γ(ŝ) is the set {(

x1∗,
x2∗,

x3∗)}.

As noted above, the set R is tree T ′ decomposable. If S is tree decomposable,
we can extend S to a set S′ : extX′(S) that is now defined over X ∪ X ′ and is
also tree decomposable. As a result S′ ∩ R is also tree decomposable. However,
the postcondition of S is the set proj(S′ ∩ R,X ′). Thus, the key operation that
failed was the projection operation involved in computing the post-condition.
This suggests a possible solution to this issue albeit an expensive one: at each
step, we maintain the reachable states using both current and next state vari-
ables, thus avoiding projection. In effect, the reachable states at the ith step will
be entire trajectories of the system expressed over variables X0 ∪ X1 ∪ · · · Xi.
This is clearly not practical. However, a more efficient solution is to note that
some of the current state variables can be projected out without losing the
tree decomposability property. Going back to Example 11, we note that we can
safely project away {x1, x3}, while maintaining the new reachable set in terms
of (x2, x

′
1, x

′
2, x

′
3). In this way, we may recover the lost precision back.
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In conclusion, we note that tree decompositions may lose precision over post-
conditions. However, the loss in precision can be avoided if carefully selected
“previous state variables” are maintained as the computation proceeds. The
question of how to optimally maintain this information will be investigated in
the future.

4 Grid-Based Interval Analysis

We now combine the ideas to create a disjunctive interval analysis using tree
decompositions. The main idea here is to apply tree decompositions not to the
concrete set of states but to an abstraction of the concrete domain by grid-based
intervals.

We will now describe the interval-based abstraction of sets of states dynam-
ical system Π in order to perform over-approximate reachability analysis. Let
us fix a system Π : 〈x,w,D,W, f,X0, U〉 as defined in Definition 1. We will
assume that the domain of state variables D is a hyper-rectangle given by
D : [L(x1), U(x1)]×· · ·× [L(xn), U(xn)] for L(xj), U(xj) ∈ R and L(xj) ≤ U(xj)
for each j = 1, . . . , n. In other words, each system variable xj lies inside the inter-
val [L(xj), U(xj)]. Likewise, we will assume that W :

∏m
k=1[L(wk), U(wk)] such

that L(wk) ≤ U(wk) and L(wk), U(wk) ∈ R.
We will consider a uniform cell decomposition wherein each dimension

is divided into some natural number M > 0 of equal sized subintervals. The
ith subinterval of variable xj is denoted as subInt(xj , i), and is given by
[L(xj) + iδj , L(xj) + (i + 1)δj ] for i = 0, . . . , M − 1 and δj : (U(xj)−L(xj))

M . Sim-
ilarly, we will define subInt(wk, i) for disturbance variables wk whose domains
are also divided into M subdivisions. The overall domain D × W is therefore
divided into Mm+n cells wherein each cell is indexed by a tuple of natural num-
bers i : 〈i1, . . . , in, in+1, . . . , in+m〉, such that ij ∈ {0, . . . , M − 1} and the cell
corresponding to i is given by:

γC(i) :
n∏

j=1

subInt(xj , ij) ×
m∏

k=1

subInt(wk, in+k) (1)

Definition 12 (Grid-Based Abstract Domain). The grid based abstract
domain is defined by the set C : P(i ∈ {0, . . . , M}m+n), wherein each abstract
domain element is a set of grid cells. The sets are ordered simply by set inclusion
⊆ between sets of grid cells. The abstraction map αC : P(D) → C is defined as
follows:

αC(S) : {i ∈ C | γC(i) ∩ S �= ∅} .

The concretization map γC is defined above in (1).

Definition 13 (Interval Propagator). An interval propagator (IP) is a
higher order function that takes in the description of a function f with k real-
valued inputs and p real valued outputs, and an interval I : [l1, u1]×· · ·× [lk, uk]
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and outputs an interval (hyperrectangle over R
p) IntvlProp(f, I) such that the

following soundness guarantees hold:

(∀x ∈ D)
k∧

j=1

xj ∈ [lj , uj ] ⇒ eval(f,x) ∈ IntvlProp(f, I) .

In practice, interval arithmetic approaches have been used to build sound
interval propagators [33]. However, they suffer from issues such as the wrapping
effect that make their outputs too conservative. This can be remedied by either
(a) performing a finer subdivision of the inputs (i.e, increasing M) to ensure
that the intervals I being input into the IntvlProp are sufficiently small to
guarantee tight error bounds; or (b) using higher order arithmetics such as affine
arithmetic or Taylor polynomial arithmetic [25,32].

The interval propagator serves to define an abstract post-condition operation
over sets of cells Ŝ ⊆ C. Given such a set, Ŝ, we compute the post condition in
the abstract domain. Informally, the post condition is given (a) by iterating over
each cell in S; and (b) computing the possible next cells using IntvlProp.
Formally, we define the abstract post operation as follows:

postC(Ŝ,Π) :
⋃

i∈Ŝ

αC(IntvlProp(f, γC(i))) .

Given this machinery, an abstract T -step reachability analysis is performed
in the standard manner: (a) abstract the initial state; (b) compute post condi-
tion for T steps; and (c) check for intersections of the abstract states with the
abstraction of the unsafe set. We can also define and use widening operators to
make the sequence of iterates converge. The grid based abstract domain can offer
some guarantees with respect to the quality of the abstraction. For instance, we
can easily bound the Hausdorff distance between the underlying concrete set
and the abstraction as a function of the discretization sizes δj . However, the
desirable properties come at a high computational cost since the number of cells
grows exponentially in the number of system and disturbance variables.

4.1 Tree Decomposed Analysis

We now consider a tree-decomposed approach based on the concept of nodal
abstractions. The key idea here is to perform the grid-based abstraction not on
the full set of system and disturbance variables, but instead on individual nodal
abstractions over a tree decomposition T .

Definition 14 (Nodal Abstractions). A nodal abstraction Nodal
Abstraction(Π,n) corresponding to a node n ∈ N is defined as follows

1. The set of system variables are given by Xn : vertsX(n) with domain given
by Dn : proj(D,Xn).

2. The initial states are given by proj(X0,Xn).
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3. The unsafe set is given by proj(U,Xn).
4. The set of disturbance variables are Yn : vertsW (n) with domain given by

Wn : proj(W,Wn).
5. The updates are described by a relation R(Xn,X ′

n) that relate the possible
current states Xn and next states X ′

n. The relation is constructed as a con-
junction of assertions over variables xi, x

′
i wherein xi ∈ Xn.

(a) If the update xi := fi(x,w) is associated with the node n, we add the con-
junct x′

i = fi(Xn,Wn), noting that the proper inputs to fi are contained
in verts(n).

(b) Otherwise, x′
i ∈ proj(D, {xi}) that simply states that the next state value

of the variable xi is some value in its domain.

Given a system Π, the nodal abstraction is a conservative abstraction, and
therefore, it preserves reachability properties.

Lemma 6. For any reachable state x of Π at time t, its projection proj(x,Xn)
is a reachable state of NodalAbstraction(Π,n) at time t.

Since each nodal abstraction involves at most ω+1 variables, the abstraction
at each node can involve at most Mω+1 cells where ω is the tree width. Also,
note that a tree decomposition can be found with tree width ω that has at most
|X| + |W | nodes. This implies that the number of nodal abstractions can be
bounded by (|X| + |W |).

Let Π(n) : NodalAbstraction(Π,n) be the nodal abstraction for tree
node n ∈ N . For each node n ∈ N , we instantiate a grid based abstract domain
for Π(n) ranging over the variables vertsX(n). At the ith step of the reachability
analysis, we maintain a map si each node n to a set of grid cells si(n) defined
over verts(n).

1. Compute ŝi(n) : postC(si(n),Π(n)).
2. Make ŝi canonical using message passing between nodes to obtain si+1.

The message passing is performed not over projections of concrete states but
over cells belonging to the grid based abstract domain. Nevertheless, we can
easily extend the soundness guarantees in Theorem 3 to conclude soundness of
the composition.

Once again, we can stop this process after T steps or use widening to force
convergence. We now remark on a few technicalities that arise due to the way
the tree decomposition is constructed.

Intersections with Unsafe Sets: Checking for a non-empty intersection with
the unsafe sets may require constructing concrete cells over the full dimensional
space if the unsafe sets are not tree decomposable for the tree T . However in
many cases, the unsafe states are specified as intervals over individual variables,
which yields a tree decomposable set. In such cases, we need to intersect the
abstraction at each node with the unsafe set and perform message passing to
make it canonical before checking for emptiness.
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Handling Guards and Invariants: We have not discussed guards and invari-
ants. It is assumed that such guards and invariants are tree decomposable over
the tree T . In this case, we can check which abstract cells have a non-empty
intersection with the guard using message passing. The handling of transition
systems with guards and invariants will be discussed as part of future extensions.

5 Experimental Evaluation

In this section, we describe an experimental evaluation of our approach over
a set of benchmark problems. Our evaluation is based on a C++-based proto-
type implementation that can read in the description of a nonlinear dynamical
system over a set of system and disturbance variables. The dynamics can cur-
rently include polynomials, rational functions and trigonometric functions. Our
implementation uses the MPFI library to perform interval arithmetic over the
grid cells [36]. We use the HTD library to compute tree decompositions [1]. The
system then computes a time-bounded reachable set over the first T steps of the
system’s execution. Currently, we plot the results and compare the reachable
set estimates against simulation data. We also compare the reachable sets com-
puted by the tree decomposition approach against an approach without using
tree decompositions. However, we note that the latter approach timed out on
systems beyond 4 state variables.

Table 1 presents the results over a small set of challenging nonlinear systems
benchmarks along with a comparison to two other approaches (a) the approach
without tree decomposition and (b) the tool SAPO [22] which computes time
bounded reachable sets for polynomial systems using the technique of parallelo-
tope bundles described by Dreossi et al. [23]. The benchmarks range in number
of system variables from 3 to 20 state variables. We describe the sources for
each benchmark where appropriate. Note that the SAPO tool does not handle
nonpolynomial dynamics or time varying disturbances at the time of writing.

The treewidths range from 1 for the simplest system (Example 1) to 3 for the
7-state Laub Loomis oscillator example [30]. We note that the tree decomposition
was constructed within 0.01 s for all the examples. We also note that systems
with as many as 20 state variables are handled by our approach whereas the
monolithic approach cannot handle systems beyond 4 state variables. We now
compare the results of our approach to that of the monolithic approach on the
two cases where the latter approach completed.

System # 1: Consider again the system from Example 1 with 3 state variables
and 1 disturbance. We have already noted a tree decomposition of tree width 1
for this example.

System # 2: In this example, we consider a system over 4 state variables
{x, y, z, w} and one disturbance variable w1.

x := 0.5x + y + 0.05xy − w1, y := −0.7y − 0.03x, z := z − 0.4y,
w := w − 0.05xw
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Table 1. Results on benchmark examples. |X|: Number of state variables, |W |: number
of disturbance variables, Tree Decomp.: reachability using tree decompositions, Mono-
lithic: reachability analysis without tree decompositions. SAPO: number of directions
(|L|), number of bundles (|T |) and running time. All timings are reported in seconds
on a Macbook pro laptop running MacOS 10.14 with 16 GB RAM and 3.4 GHz Intel
core i7 processor. Reachability analysis was carried out for 15 time steps.

Name |X| |W | Tree
Width

Tree Decomp. Monolithic SAPO

Time # Cells Time # Cells (|L|, |T |) Time

System # 1 3 1 1 14.4 0.22M 1047.6 7.6M -n/a-

System # 2 4 1 2 2.7 24K 652 3.1M -n/a-

SIR [23,40] 3 0 1 4.1 95K 143 2M (3,1) 0.1

1D-Lattice-10 [39] 10 0 2 99 1.1M TO (1.5 h) (16,6) 679

Ebola-epidemic [14] 5 0 2 799.4 1.9M TO (1.5 h) (5,5) 0.02

p53-gene-reg [31] 6 0 2 135.8 98K TO (1.5 h) -n/a-

Influenza-epidemic [22] 4 0 2 517.9 1.4M TO (1.5 h) (7,4) 0.1

Coupled-vanderpol 6 0 2 10.5 0.1M TO (1.5 h) (10,5) 2.5

Laub-Loomis [20,30] 7 0 3 1755.1 2.6M TO (1.5 h) (12,6) 1.8

Honeybee* [9,23] 6 4 3 206.1 2.1M TO (1.5 h) (8,4) 0.7

Phosporelay [22] 7 0 3 1566.2 7.5M TO (1.5 h) (10,4) 1.2

Coord. Vehicles (1) 5 1 2 150.2 0.5M TO (1.5 h) -n/a-

Coord. Vehicles (2) 10 2 2 1175.2 2M TO (1.5 h) -n/a-

Coord. Vehicles (4) 20 4 2 2206.7 3.9M TO (1.5 h) -n/a-

The domains include (x, y, z, w) ∈ [−1, 1]4 and divided into 16 × 108 grid
cells (200 for each state variable). The disturbance w1 ∈ [−0.1, 0.1]. The ini-
tial conditions are x ∈ [0.08, 0.16], y ∈ [−0.16,−.05], z ∈ [0.12, 0, 31] and
w ∈ [−0.15,−0.1]. We obtain a tree decomposition of width 2, wherein the
nodes include n1 : {x, y, w1}, n2 : {y, z} and n3 : {x,w} with the edges (n1, n2)
and (n1, n3).

Figure 1 compares the resulting reachable sets for the tree decomposed reach-
ability analysis versus the monolithic approach. We note differences between the
two reachable sets but the loss in precision is not significant.

Coordinated Vehicles: In this example, we study nonlinear vehicle models of
vehicles executing coordinated turns. Each vehicle has states (xi, yi, vx,i, vy,i, ω),
representing positions, velocities and the rate of change in the yaw angle, respec-
tively, with a disturbance wi. The dynamics are given by

xi := xi + 0.1vx,i, yi := yi + 0.1vy,i, vx,i = vx,i + 0.1vx,i cos(0.1ωi)
− 0.1vy,i sin(0.1ωi)ωi = 0.5ωi + 0.5ω0 + 0.1wi

The vehicles are loosely coupled with ωi representing the turn rate of the
ith vehicle and ω0 that of the “lead” vehicle. The ith vehicle tries to gradually
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Fig. 1. Reachable set projections (shaded blue) for System# 2 (left) and the SIR
model [22] (right). Top: tree decomposition approach and Bottom: monolithic approach
without tree decompositions. Reachable sets are identical for the SIR model. Note the
difference in range of z for the system #2. The red dots show the results of simulations.
(Color figure online)

align its turn rate to that of the lead vehicle. This model represents a simple
scenario of loosely coupled systems that interact using a small set of state vari-
ables. Applications including models of cardiac cells that are also loosely coupled
through shared action potentials [26]. The variables xi, yi are set in the domain
[−15, 15] and subdivided into 300 parts along each dimension. Similarly, the
velocities range over [−10, 10] and are subdivided into 500 parts each and the
yaw rate ranges over [−0.2, 0.2] radians/sec and subdivided into 25 parts. The
disturbance ranges over [−0.1, 0.1]. Table 1 reports results from models involving
1, 2 and 4 vehicles. Since they are loosely coupled, the treewidth of these models
is 2.

Laub-Loomis Model: The Laub-Loomis model is a molecular network that
produces spontaneous oscillations for certain values of the model parameters.
The model’s description was taken from Dang et al. [20]. The system has 7 state
variables each of which was subdivided into 100 cells yielding a large state space
with 1014 cells. We note that the tree width of the graph is 3, yielding nodes
with upto 4 variables in them.

Comparison with SAPO. SAPO is a state-of-the-art tool that uses polytope
bundles and Bernstein polynomials to represent and propagate reachable sets
for polynomial dynamical systems [22,23]. We compare our approach directly on
SAPO for identical models and initial sets. Note that SAPO does not currently
handle non-polynomial models or models with time-varying disturbances. Table 1
shows that SAPO is orders of magnitude faster on all the models, with the sole
exception of the 1D-Lattice-10 model. Figure 2 shows the comparison of the
reachable sets computed by our approach (shaded blue region) against those
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Fig. 2. Comparison of various projections of the reachable sets computed by our app-
roach shown in blue, the reachable set computed by SAPO shown as black rectangles
and states obtained through random simulation shown in red dots. Top row: ebola
model, second row: phosporelay, third row: 1d-lattice-10, fourth row: vanderpol (35
steps) and bottom row: influenza model. (Color figure online)

computed by SAPO (black rectangles) for five different models. We note that
for three of the models compared, neither reachable set is contained in the other.
For the one dimensional lattice model, SAPO produces a better reachable set,
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whereas our approach is better for the influenza model. We also note that both
for our approach the precision can be improved markedly by increasing the
number of subdivisions, albeit at a large computational cost that depends on
the treewidth of the model. The same is true for SAPO, where the number of
directions and the template sizes have a non-trivial impact on running time.

Models with Large Treewidths. We briefly report on a few models that we
attempted with large treewidths. For such models, our approach of decomposing
the space into cells becomes infeasible due to the curse of dimensionality.

A model of how honeybees select between different sites [9,23] has 6 vari-
ables and its tree width is 5 with a single tree node containing all state vari-
ables. However, the large treewidth is due to two terms in the model which are
replaced by disturbance variables that overapproximate their value. This brings
down the treewidth to 3, making it tractable for our approach. Details of this
transformation are discussed in our extended version. Treewidth reduction using
abstractions is an interesting topic for future work.

We originally proposed to analyze a 2D grid lattice model taken from Vleck
et al [39]. However, a 2D 10×10 lattice model has a dependency hypergraph that
forms a 10×10 grid with treewidth 10. Likewise, the 17-state crazyflie benchmark
for SAPO [22] could not be analyzed by our approach since its treewidth is too
large.

6 Conclusions

We have shown how tree decompositions can define an abstract domain that
projects concrete sets along the various subsets of state variables. We showed
how message passing can be used to exchange information between these subsets.
We analyze the completeness of our approach and show that the abstraction is
lossy due to the projection operation. We show that for small tree width mod-
els, a gridding-based analysis of nonlinear system can be used whereas such
approaches are too expensive when applied in a monolithic fashion. For the
future, we plan to study tree decompositions for abstract domains such as dis-
junctions of polyhedra, parallelotope bundles and Taylor models. The process of
model abstraction to reduce treewidth is another interesting future possibility.
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Abstract. We address the problem of synthesizing a controller for non-
linear systems with reach-avoid requirements. Our controller consists of
a reference controller and a tracking controller which drives the actual
trajectory to follow the reference trajectory. We identify a type of refer-
ence trajectory such that the tracking error between the actual trajectory
of the closed-loop system and the reference trajectory can be bounded.
Moreover, such a bound on the tracking error is independent of the ref-
erence trajectory. Using such bounds on the tracking error, we propose
a method that can find a reference trajectory by solving a satisfiability
problem over linear constraints. Our overall algorithm guarantees that
the resulting controller can make sure every trajectory from the initial
set of the system satisfies the given reach-avoid requirement. We also
implement our technique in a tool FACTEST. We show that FACTEST
can find controllers for four vehicle models (3–6 dimensional state space
and 2–4 dimensional input space) across eight scenarios (with up to 22
obstacles), all with running time at the sub-second range.

1 Introduction

Design automation and safety of autonomous systems is an important research
area. Controller synthesis aims to provide correct-by-construction controllers
that can guarantee that the system under control meets certain requirements.
Controller synthesis is a type of program synthesis problem. The synthesized
program or controller g has to meet the given requirement R, when it is run in
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(closed-loop) composition with a given physical process or plant A. Therefore, a
synthesis algorithm has to account for the combined behavior of g and A.

Methods for designing controllers for asymptotic requirements like stability,
robustness, and tracking, predate the algorithmic synthesis approaches for pro-
grams [3,16,30]. However, these classic control design methods normally do not
provide formal guarantees in terms of handling bounded-horizon requirements
like safety. Typical controller programs are small, well-structured, and at core,
have a succinct logic (“bang-bang” control) or mathematical operations (PID
control). This might suggest that controllers could be an attractive target for
algorithmic synthesis for safety, temporal logic (TL), and bounded time require-
ments [1,9,18,34,38].

On the other hand, motion planning (MP), which is an instance of the con-
troller synthesis for robots is notoriously difficult (see [21] Chapter 6.5). A typi-
cal MP requirement is to make a robot A track certain waypoints while meeting
some constraints. A popular paradigm in MP, called sampling-based MP, gives
practical, fully automatic, randomized, solutions to hard problem instances by
only considering the geometry of the vehicle and the free space [14,15,20,21].
However, they do not ensure that the dynamic behavior of the vehicle will actu-
ally follow the planed path without running into obstacles. Ergo, MP continues
to be a central problem in robotics1.

In this paper, we aim to achieve faster control synthesis with guarantees by
exploiting a separation of concerns that exists in the problem: (A) how to drive
a vehicle/plant to a given waypoint? and (B) Which waypoints to choose for
achieving the ultimate goal? (A) can be solved using powerful control theoretic
techniques—if not completely automatically, but at least in a principled fashion,
with guarantees, for a broad class of A’s. Given a solution for (A), we solve
(B) algorithmically. A contribution of the paper is to identify characteristics
of a solution of (A) that make solutions of (B) effective. Consider nonlinear
control systems A : d

dtx = f(x, u) and reach-avoid requirements defined by a
goal set G that the trajectories should reach, and obstacles O the trajectories
should avoid. The above separation leads to a two step process: (A) Find a
state feedback tracking controller gtrk that drives the actual trajectory of the
closed-loop system ξg to follow a reference trajectory ξref. (B) Design a reference
controller gref, which consists of a reference trajectory ξref and a reference input
uref. The distance between ξg and ξref is called the tracking error e. If we can
somehow know beforehand the value of e without knowing ξref, we can use such
error to bloat O and shrink G, and then synthesize ξref such that it is e away
from the obstacles (inside the goal set). For linear systems, this was the approach
used in [7], but for nonlinear systems, the tracking error e will generally change
with ξref, and the two steps get entangled.

For a general class of nonlinear vehicles (such as cars, drones, and underwater
vehicles), the tracking controller gtrk is always designed to minimize the tracking

1 In the most recent International Conference on Robotics and Automation, among
the 3,512 submissions “Path and motion planning” was the second most popular key
phrase.
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error. The convergence of the error can be proved by a Lyapunov function for
certain types of ξref. We show how, under reasonable assumptions, we can use
Lyapunov functions to bound the value of the tracking error even when the
waypoints changes (Lemma 2). This error bound is independent of ξref so long as
ξref satisfies the assumptions. For step (B) we introduce a SAT-based trajectory
planning methods to find such ξref and uref by solving a satisfiability (SAT)
problem over quantifier free linear real arithmetic (Theorem1). Moreover, the
number of constraints in the SMT problem scales linearly to the increase of
number of obstacles (and not with the vehicle model). Thus, our methods can
scale to complex requirements and high dimensional systems.

Putting it all together, our final synthesis algorithm (Algorithm2) guarantees
that any trajectory following the synthesized reference trajectory will satisfy the
reach-avoid requirements. The resulting tool FACTEST is tested with four non-
linear vehicle models and on eight different scenarios, taken from MP literature,
which cover a wide range of 2D and 3D environments. Experiment results show
that our tool scales very well: it can find the small covers {Θj}j and the cor-
responding reference trajectories and control inputs satisfying the reach-avoid
requirements most often in less than a second, even with up to 22 obstacles. We
have also compared our SAT-based trajectory planner to a standard RRT plan-
ner, and the results show that our SAT-based method resoundingly outperforms
RRT. To summarize, our main contributions are:

1. A method (Algorithm 2) for controller synthesis separating tracking controller
gtrk and search for reference controller gref.

2. Sufficient conditions for tracking controller error performance that makes the
decomposition work (Lemma 2 and Lemma 3).

3. An SMT-based effective method for synthesizing reference controller gref.
4. The FACTEST implementation of the above and its evaluation showing very

encouraging results in terms of finding controllers that make any trajectories
of the closed-loop system satisfy reach-avoid requirements (Sect. 6).

Related Works. Model Predictive Control (MPC). MPC [4,25,45,49] has to
solve a constrained, discrete-time, optimal control problem. MPC for controller
synthesis typically requires model reduction for casting the optimization problem
as an LP [4], QP [2,36], MILP [33,34,45]. However, when the plant model is
nonlinear [8,22], it may be hard to balance speed and complex requirements as
the optimization problem become nonconvex and nonlinear.

Discrete Abstractions. Discrete, finite-state, abstraction of the control system is
computed, and then a discrete controller is synthesized by solving a two-player
game [10,17,24,42,47]. CoSyMA [28], Pessoa [37], LTLMop [18,46], Tulip [9,48],
and SCOTS [38] are based on these approaches. The discretization step often
leads to a severe state space explosion for higher dimensional models.

Safe Motion Planning. The idea of bounding the tracking error through pre-
computation has been used in several techniques: FastTrack [11] uses Hamilton-
Jacobi reachability analysis to produce a “safety bubble” around planed paths.
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Reachability based trajectory design for dynamical environments (RTD) [44]
computes an offline forward reachable sets to guarantee that the robot is not-
at-fault in any collision. In [40], a technique based on convex optimization is
used to compute tracking error bounds. Another technique [23,43] uses motion
primitives expanded by safety funnels, which defines similar ideas of safety tubes.

Sampling Based Planning. Probabilistic Road Maps (PRM) [15], Rapidly-
exploring Random Trees (RRT) [19], and fast marching tree (FMT) [12] are
widely used in actual robotic platforms. They can generate feasible trajectories
through known or partially known environments. Compared with the determin-
istic guarantees provided by our proposed method, these methods come with
stochastic guarantees. Also, they are not designed to be robust to model uncer-
tainty or disturbances. MoveIT [5] is a tool designed to implement and bench-
mark various motion planners on robots. The motion planners in MoveIT are
from the open motion planning library (OMPL) [41], which implements motion
planners abstractly.

Controlled Lyapunov Function (CLF). CLF have been used to guarantee that
the overall closed-loop controlled system satisfies a reach-while-stay specifica-
tion [35]. Instead of asking for a CLF for the overall closed-loop system, our
method only needs a Lyapunov function for the tracking error, which is a weaker
local requirement. CLF is often a difficult requirement to meet for nonlinear vehi-
cle models.

2 Preliminaries and Problem Statement

Let us denote real numbers by R, non-negative real numbers by R≥0, and natural
numbers by N. The n-dimensional Euclidean space is R

n. For a vector x ∈ R
n,

x(i) is the ith entry of x and ‖x‖2 is the 2-norm of x. For any matrix A ∈ R
n×m,

Aᵀ is its transpose; A(i) is the ith row of A. Given a r ≥ 0, an r-ball around
x ∈ R

n is defined as Br(x) = {x′ ∈ R
n | ||x′ − x||2 ≤ r}. We call r the radius

of the ball. Given a matrix H ∈ R
r×n and a vector b ∈ R

r, an (H, b)-polytope
is denoted by Poly(H, b) = {x ∈ R

n | Hx ≤ b}. Each row of the inequality
H(i)x ≤ b(i) defines a halfspace. We also call H(i)x = b(i) the surface of the
polytope. Let dP(H) = r denotes the number of rows in H. Given a set S ⊆ R

n,
the radius of S is defined as supx,y∈S ‖x − y‖2/2.

State Space and Workspace. The state space of control systems will be a subspace
X ⊆ R

n. The workspace is a subspace W ⊆ R
d, for d ∈ {2, 3}, which is the

physical space in which the robots have to avoid obstacles and reach goals.
Given a state vector x ∈ X , its projection to W is denoted by x ↓ p. That is, x ↓
p = [px, py]ᵀ ∈ R

2 for ground vehicles on the plane and x ↓ p = [px, py, pz]ᵀ ∈ R
3

for aerial and underwater vehicles. When x is clear from context we will write
x ↓ p as simply p. The vector x may include other variables like velocity, heading,
pitch, etc., but p only has the position in Cartesian coordinates. We assume that
the goal set G := Poly(HG, bG) and the unsafe set O (obstacles) are specified by
polytopes in W; O = ∪Oi, where Oi := Poly(HO,i, bO,i) for each obstacle i.
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Trajectories and Reach-Avoid Requirements. A trajectory ξ over X of duration T
is a function ξ : [0, T ] → X , that maps each time t in the time domain [0, T ] to a
point ξ(t) ∈ X . The time bound or duration of ξ is denoted by ξ.ltime = T . The
projection of a trajectory ξ : [0, T ] → X to W is written as ξ ↓ p : [0, T ] → W and
defined as (ξ ↓ p)(t) = ξ(t) ↓ p. We say that a trajectory ξ(t) satisfies a reach-
avoid requirement given by unsafe set O and goal set G if ∀t ∈ [0, ξ.ltime], ξ(t) ↓
p /∈ O and ξ(ξ.ltime) ↓ p ∈ G. See Fig. 1 for an example.

Given a trajectory ξ : [0, T ] → X and a time t > 0, the time shift of ξ is a
function (ξ + t) : [t, t + T ] → X defined as ∀t′ ∈ [t, t + T ], (ξ + t)(t′) = ξ(t′ − t).
Strictly speaking, for t > 0, ξ + t is not a trajectory. The concatenation of two
trajectories ξ1 � ξ2 is a new trajectory in which ξ1 is followed by ξ2. That is, for
each t ∈ [0, ξ1.ltime+ξ2.ltime], (ξ1 � ξ2)(t) = ξ1(t) when t ≤ ξ1.ltime, and equals
ξ2(t − ξ1.ltime) when t > ξ1.ltime. Trajectories are closed under concatenation,
and many trajectories can be concatenated in the same way.

2.1 Nonlinear Control System

Definition 1. An (n,m)-dimensional control system A is a 4-tuple 〈X ,Θ,U, f〉
where (i) X ⊆ R

n is the state space, (ii) Θ ⊆ X is the initial set, (iii) U ⊆ R
m

is the input space, and (iv) f : X × U → X is the dynamic function that is
Lipschitz continuous with respect to the first argument.

A control system with no inputs (m = 0) is called a closed system.
Let us fix a time duration T > 0. An input trajectory u : [0, T ] → U, is a

continuous trajectory over the input space U. We denote the set of all possible
input trajectories to be U . Given an input signal u ∈ U and an initial state
x0 ∈ Θ, a solution of A is a continuous trajectory ξu : [0, T ] → X that satisfies
(i) ξu(0) = x0 and (ii) for any t ∈ [0, T ], the time derivative of ξu at t satisfies
the differential equation:

d

dt
ξu(t) = f(ξu(t), u(t)). (1)

For any x0 ∈ Θ, u ∈ U , ξu is a state trajectory and we call such a pair (ξu, u) a
state-input trajectory pair.

A reference state trajectory (or reference trajectory for brevity) is a trajectory
over X that the control system tries to follow. We denote reference trajectories
by ξref. Similarly, a reference input trajectory (or reference input) is a trajectory
over U and we denote them as uref. Note these ξref and uref are not necessarily
solutions of (1). Figure 1 shows reference and actual solution trajectories.

We call a reference trajectory ξref and a reference input uref together as a
reference controller gref. Given gref, a tracking controller gtrk is a function that
is used to compute the inputs for A so that in the resulting closed system, the
state trajectories try to follow ξref.

Definition 2. Given an (n,m)-dynamical system A, a reference trajectory ξref,
and a reference input uref, a tracking controller for the triple 〈A, ξref, uref〉 is a
(state feedback) function gtrk : X × X × U → U.
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At any time t, the tracking controller gtrk takes in a current state of the system
x, a reference trajectory state ξref(t), and a reference input uref(t), and gives an
input gtrk(x, ξref(t), uref(t)) ∈ U for A. The controller g for A is determined by
both the reference controller gref and the tracking controller gtrk. The resulting
trajectory ξg of the closed control system (A closed with gref and gtrk) satisfies:

d

dt
ξg(t) = f (ξg(t), gtrk (ξg(t), ξref(t), uref(t))) ,∀ t ∈ [0, T ]\D, (2)

where D is the set of points in time where the second or third argument of gtrk

is discontinuous2.

2.2 Controller Synthesis Problem

Definition 3. Given a (n,m)-dimensional nonlinear system A = 〈X ,Θ,U, f〉,
its workspace W, goal set G ⊆ W and the unsafe set O ⊆ W, we are required to
find (a) a tracking controller gtrk, (b) a partition {Θj}j of Θ, and (c) for each
partition Θj, a reference controller gj,ref, which consists of a state trajectory ξj,ref

and an input trajectory uj,ref, such that ∀x0 ∈ Θj, the unique trajectory ξg of the
closed system as in Eq. (2) starting from x0 reaches G and avoids O.

Again, ξj,ref and uj,ref in gj,ref are not required to be a state-input pair, but,
for each initial state x0 ∈ Θj , the closed loop trajectory ξg following ξref is a
valid state trajectory with corresponding input u generated by gtrk and gj,ref. In
this paper, we will decompose the controller synthesis problem: Part (a) will be
delivered by design engineers with knowledge of vehicle dynamics, and parts (b)
and (c) will be automatically synthesized by our algorithm. The latter being the
main contribution of the paper.

Example 1. Consider a ground vehicle moving on a 2D workspace W ⊆ R
2 as

shown in Fig. 1.

Fig. 1. Zigzag scenario for a controller syn-
thesis problem. The initial set is blue, the
goal set is green, and the unsafe sets are
red. A valid reference trajectory is shown
in black and a feasible trajectory is shown
in purple. (Color figure online)

This scenario is called Zigzag and
it is adopted from [32]. The red poly-
topes are obstacles. The blue and
green polytopes are the initial set Θ
and the goal set G. There are also
obstacles (not shown in the figure)
defining the boundaries of the entire
workspace. The black line is a projec-
tion of a reference trajectory to the
workspace: ξref(t) ↓ p. This would not
be a feasible state trajectory for a
ground vehicle that cannot make sharp
turns. The purple dashed curve is a

2 ξg is a standard solution of ODE with piece-wise continuous right hand side.
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real feasible state trajectory of the system starting from Θ with a tracking con-
troller gtrk, where gtrk will be introduced in Example 2.

Consider the standard nonlinear bicycle model of a car [31]. The control
system has 3 state variables: the position px, py, and the heading direction θ. Its
motion is controlled by two inputs: linear velocity v and rotational velocity ω.
The car’s dynamics are given by:

d
dtpx = v cos(θ), d

dtpy = v sin(θ), d
dtθ = ω. (3)

3 Constructing Reference Trajectories from Waypoints

If ξref(t) ↓ p is a PWL (PWL) curve in the workspace W, we call ξref(t) a
PWL reference trajectory. In W, a PWL curve can be determined by the
endpoints of each line segment. We call such endpoints the waypoints of the
PWL reference trajectory. In Fig. 1, the black points p0, · · · , p6 are waypoints of
p(t) = ξref(t) ↓ p.

Consider any vehicle on the plane3 with state variables px, py, θ, v (x-position,
y-position, heading direction, linear velocity) and input variables a, ω (acceler-
ation and angular velocity). Once the waypoints {pi}k

i=0 are fixed, and if we
enforce constant speed v̄ (i.e., ξref(t) ↓ v = v̄ for all t ∈ [0, ξref.ltime]), then ξref(t)
can be uniquely defined by {pi}k

i=0 and v̄ using Algorithm 1. The semantics of
ξref and uref returned by Waypoints to Traj is that the reference trajectory
requires the vehicle to move at a constant speed v̄ along the lines connecting
the waypoints {pi}k

i=0. In Example 1, ξref(t), uref(t) can also be constructed using
Waypoints to Traj moving v to input variables and dropping a.

We notice that if k = 1, ξref(t), uref(t) returned by Algorithm1 is a valid
state-input trajectory pair. However, if k > 1, ξref(t), uref(t) returned by Algo-
rithm1 is usually not a valid state-input trajectory pair. This is because θref(t)
is discontinuous at the waypoints and no bounded inputs uref(t) can drive the
vehicle to achieve such θref(t). Therefore, when k > 1, ξref(t) is a PWL reference
trajectory with no uref(t) such that ξref, uref are solutions of (1).

Algorithm 1: Waypoints to Traj({pi}k
i=0, v̄)

input : {pi}k
i=0, v̄

1 ∀t ∈ [0,
∑k

i=1

‖pj−pj−1‖2
v̄

], vref(t) = v̄, aref(t) = 0, ωref(t) = 0;

2 ∀i ≥ 1, ∀t ∈
[∑i−1

j=1

‖pj−pj−1‖2
v̄

,
∑i

j=1

‖pj−pj−1‖2
v̄

)
,

pref(t) = pi−1 + v̄t − ∑i−1
j=1 ‖pj − pj−1‖2,

θref(t) = mod(atan2((py,i − py,i−1), (px,i − px,i−1), 2π);
3 ξref(t) = [pref(t), θref(t), vref(t)];
4 uref(t) = [aref(t), ωref(t)];
5 return ξref(t), uref(t) ;

3 A similar construction works for vehicles in 3D workspaces with additional variables.
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Proposition 1. Given a sequence of waypoints {pi}k
i=0 and a constant speed v̄,

ξref(t), uref(t) produced by Waypoints to Traj({pi}k
i=0, v̄) satisfy:

– pref(t) = ξref(t) ↓ p is a piece-wise continuous function connecting {pi}k
i=0.

– At time ti =
∑i

j=1 ‖pj −pj−1‖2/v̄, pref(ti) = pi. We call {ti})k
i=1 the concate-

nation time.
– ξref(t) = ξref,1(t) � · · · � ξref,k(t) and uref(t) = uref,1(t) � · · · � uref,k(t),

where (ξref,i, uref,i) are state-input trajectory pairs returned by the function
Waypoints to Traj({pi−1, pi}, v̄).

Outline of Synthesis Approach. In this Section, we present an Algo-
rithm Waypoints to Traj for constructing reference trajectories from arbitrary
sequence of waypoints. In Sect. 4, we precisely characterize the type of vehi-
cle tracking controller our method requires from designers. On our tool’s web-
page [27], we show with several extra examples that indeed developing such
controllers is non-trivial, far from automatic, yet bread and butter of control
engineers. In Sect. 5, we present the main synthesis algorithm, which uses the
tracking error bounds from the previous section, to construct waypoints, for
each initial state, which when passed through Waypoints to Traj provide the
solutions to the synthesis problem.

4 Bounding the Error of a Tracking Controller

4.1 Tracking Error and Lyapunov Functions

Given a reference controller gref, a tracking controller gtrk, and an initial state
x0 ∈ Θ, the resulting trajectory ξg of the closed control system (A closed with
gref and gtrk) is a state trajectory that starts from x0 and follows the ODE (2). In
this setting, we define the tracking error at time t to be a continuous function:

e : X × X → R
n.

When ξg(t) and ξref(t) are fixed, we also write e(t) = e(ξg(t), ξref(t)) which makes
it a function of time. One thing to remark here is that if ξref(t) is discontinuous,
then e(t) is also discontinuous. In this case, the derivative of e(t) cannot be
defined at the points of discontinuity. To start with, let us assume that gref =
(ξref, uref) is a valid state-input pair so ξref is a continuous state trajectory. Later
we will see that the analysis can be extended to cases when ξref is discontinuous
but a concatenation of continuous state trajectories.

When (ξref, uref) is a valid state-input pair and e(t) satisfy an differential
equation d

dte(t) = fe(e(t)), we use Lyapunov functions, which is a classic tech-
nique for proving stability of an equilibrium of an ODE, to bound the tracking
error e(t). The Lie derivative ∂V

∂e fe(e) below captures the rate of change of the
function V along the trajectories of e(t).
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Definition 4 (Lyapunov functions [16]). Fix a state-input reference trajec-
tory pair (ξref, uref), assume that the dynamics of the tracking error e for a closed
control system A with gref and gtrk can be rewritten as d

dte(t) = fe(e(t)), where
fe(0) = 0. A continuously differentiable function V : R

n → R satisfying (i)
V (0) = 0, (ii) ∀e ∈ R

n, V (e) ≥ 0, and (iii) ∀e ∈ R
n, ∂V

∂e fe(e) ≤ 0, is called a
Lyapunov function for the tracking error.

Example 2. For the car of Example 1, with a continuous reference trajectory
ξref(t) = [xref(t), yref(t), θref(t)]ᵀ, we define the tracking error in a coordinate
frame fixed to the car [13]:

⎛

⎝
ex(t)
ey(t)
eθ(t)

⎞

⎠ =

⎛

⎝
cos(θ(t)) sin(θ(t)) 0

− sin(θ(t)) cos(θ(t)) 0
0 0 1

⎞

⎠

⎛

⎝
xref(t) − px(t)
yref(t) − py(t)
θref(t) − θ(t)

⎞

⎠ . (4)

With the reference controller function g defined as:

v(t) = vref(t) cos(eθ(t)) + k1ex(t),
ω(t) = ωref(t) + vref(t)(k2ey(t) + k3 sin(eθ(t))),

(5)

it has been shown in [13] when k1, k2, k3 > 0, d
dtωref(t) = 0, and d

dtvref(t) = 0,

V ([ex, ey, eθ]ᵀ) =
1
2
(e2

x + e2
y) +

1 − cos(eθ)
k2

(6)

is a Lyapunov function with negative semi-definite time derivative ∂V
∂x fe =

−k1e
2
x − vrefk3 sin2(eθ)

k2
.

4.2 Bounding Tracking Error Using Lyapunov Functions: Part 1

Consider a given closed control system, A with gref and gtrk, in this section,
we will derive upper bounds on the tracking error e. Later in Sect. 5, we will
develop techniques that take the tracking error into consideration for computing
reference trajectories ξref.

To begin with, we consider state-input reference trajectory pairs (ξref, uref)
where uref is continuous, and therefore, ξref and ξg are differentiable. Let us
assume that the tracking error dynamics ( d

dte(t) = fe(e(t))) has a Lyapunov
function V (e(t)). The following is a standard result that follows from the theory
of Lyapunov functions for dynamical systems.

Lemma 1. Consider any state-input trajectory pair (ξref, uref), an initial state
x0, the corresponding trajectory ξg of the closed control system, and a constant
� > 0. If the tracking error e(t) has a Lyapunov function V , and if initially
V (e(0)) ≤ �, then for any t ∈ [0, ξref.ltime], V (e(t)) ≤ �.

This lemma is proved by showing that V (e(t)) = V (e(0))+
∫ t

0
d
dtV (e(τ))dτ ≤

V (e(0)). The last inequality holds since d
dtV (e(τ)) = ∂V

∂e fe(e) ≤ 0 for any τ ∈
[0, t] according the definition of Lyapunov functions (Definition 4).
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Lemma 1 says that if we can bound V (e(0)) = V (e(x0, ξref(0))), we can bound
V (e(ξg(t), ξref(t))) at any time t within the domain of the trajectories, regardless
of the value of ξref(t). This could decouple the problem of designing the track-
ing controller gtrk and synthesizing the reference controller gref as a state-input
trajectory pair (ξref, uref).

Example 3. Given two waypoints p0, p1 for the car in Example 1, take the
returned value of Waypoints to Traj({p0, p1}, v̄), move vref to uref and drop
aref. Then, the resulting (ξref, uref) is a continuous and differentiable state-input
reference trajectory pair. Moreover, if the robot is controlled by the tracking
controller as in Eq. (5), V (e(t)) = 1

2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))
k2

is a Lyapunov
function for the corresponding tracking error e(t) = [ex(t), ey(t), eθ(t)]ᵀ.

From Eq. (4), it is easy to check that e2
x(t) + ey(t)2 = (xref(t) − px(t))2 +

(yref(t) − py(t))2 for any time t. Assume that initially the position of the vehi-
cle satisfies [px(0), py(0)]ᵀ ∈ B�([xref(0), yref(0)]ᵀ). We check that V (e(0)) =
1
2 (ex(0)2 + ey(0)2) + 1−cos(eθ(0))

k2
≤ �2

2 + 2
k2

.

From Lemma 1, we know that ∀t ∈ [0, ξref.ltime], V (e(t)) ≤ �2

2 + 2
k2

.
Then we have (xref(t) − px(t))2 + (yref(t) − py(t))2 = (ex(t)2 + ey(t)2) ≤
�2 + 4

k2
. That is, the position of the robot at time t satisfies [px(t), py(t)]ᵀ ∈

B√
�2+ 4

k2

([xref(t), yref(t)]ᵀ).

4.3 Bounding Tracking Error Using Lyapunov Functions: Part 2

Next, let us consider the case where ξref is discontinuous. Furthermore, let us
assume that it is a concatenation of several continuous state trajectories ξref,1 �
· · · � ξref,k. In this case, we call ξref a piece-wise reference trajectory. If we have
a sequence of (ξref,i, uref,i), each is a valid state-input trajectory pair and the
corresponding error ei(t) has a Lyapunov function Vi(ei(t)), then we can use
Lemma 1 to bound the error of ei(t) if we know the value of ei(0). However,
the main challenge to glue these error bounds together is that e(t) would be
discontinuous with respect to the entire piece-wise ξref(t).

Without loss of generality, let us assume that the Lyapunov functions
Vi(ei(t)) share the same format. That is, ∀i, Vi(ei(t)) = V (ei(t)). Let ti be the
concatenation time points when ξref(t) (and therefore e(t)) is discontinuous. We
know that limt→t−

i
V (e(t)) = limt→t+i

V (e(t)) since limt→t−
i

e(t) = limt→t+i
e(t).

One insight we can get from Example 3 is that although e(t) is discontinuous
at time tis, some of the variables influencing e(t) are continuous. For exam-
ple, ex(t) and ey(t) in Example 3, which represent the error of the positions,
are continuous since both the actual and reference positions of the vehicle are
continuous. If we can further bound the term in V (e(t)) that corresponds to
the other variables, we could analyze the error bound for the entire piece-wise
reference trajectory. With this in sight, let us write e(t) as [ep(t), er(t)], where
ep(t) = e(t) ↓ p is the projection to W and er(t) is the remaining components.

Let us further assume that the Lyapunov function can be written in the form
of V (e(t)) = α(ep(t)) + β(er(t)). Indeed, on the tool’s webpage [27] we show
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that four commonly used vehicle models (car, robot, underwater vehicle, and
hovercraft) have Lyapunov functions for the tracking error e(t) of this form. If
β(er(t)) can be further bounded, then the tracking error for the entire trajectory
can be bounded using the following lemma.

Lemma 2. Consider ξref = ξref,1 � · · · � ξref,k, and uref = uref,1 � · · · � uref,k

as a piecewise reference and input with each (ξref,i, uref,i) being a state-input
trajectory pair. Suppose (1) V (e(t)) = α(ep(t))+β(er(t)) be a Lyapunov function
for the tracking error e(t) of each piece (ξref,i, uref,i); (2) ep(t) is continuous and
α(·) is a continuous function; (3) β(er(t)) ∈ [bl, bu], and (4) V (e(0)) ≤ ε0. Then,
the tracking error e(t) with respect to ξref and uref can be bounded by,

V (e(t)) ≤ εi,∀i ≥ 1,∀t ∈ [ti−1, ti),

where ∀ i > 1, εi = εi−1 − bl + bu, ε1 = ε0 being the bound on the initial tracking
error, and ti’s are the time points of concatenation4.

Proof. We prove this by induction on i. When i = 1, we know from Lemma 1
that if the initial tracking error is bounded by V (e(0)), then for any t ∈
[0, t1), V (e(t)) ≤ V (e(0)) ≤ ε0 = ε1, so the lemma holds.

Fix any i ≥ 1. If V (e(ti−1)) ≤ εi, from Lemma 1 we have ∀t ∈ [ti−1, ti),
V (e(t)) ≤ εi. Also, limt→t−

i
V (e(t)) = limt→t−

i
α(ep(t)) + β(er(t)) ≤ εi. Since

∀er(t) ∈ R
n−d, β(er(t)) ∈ [bl, bu], we have limt→t−

i
α(ep(t)) ≤ εi − bl, and

limt→t−
i

α(ep(t)) = limt→t+i
α(ep(t)). Therefore,

εi+1 = lim
t→t+i

V (e(t)) = lim
t→t+i

α(ep(t)) + β(er(t)) ≤ εi − bl + bu.

Another observation we have on the four vehicle models used in this paper is
that not only V (e(t)) can be written as α(ep(t)) + β(er(t)) with β(er(t)) being
bounded, but also α(ep(t)) can be written as α(ep(t)) = ceᵀ

p(t)ep(t) = c‖p(t) −
pref(t)‖2

2, where c ∈ R is a scalar constant; p(t) = ξg(t) ↓ p and pref(t) = ξref(t) ↓ p
are the actual position and reference position of the vehicle. In this case, we can
further bound the position of the vehicle p(t).

Lemma 3. In addition to the assumptions of Lemma2, if α(ep(t)) =
ceᵀ

p(t)ep(t) = c‖p(t) − pref(t)‖2
2, where c ∈ R, p(t) = ξg(t) ↓ p and pref(t) =

ξref(t) ↓ p. Then we have that at time t ∈ [ti−1, ti),

eᵀ
p(t)ep(t) ≤ εi − bl

c
,

where εi and bl are from Lemma2, which implies that

p(t) ∈ B�i
(pref(t)),with �i =

√
εi − bl

c
.

4 ∀t ∈ [ti−1, ti), ξref(t) = ξref,i(t − ∑i−1
j=1 ξref,j .ltime).
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Note that Lemma 2 and 3 does not depend on the concrete values of ξref and
uref. The lemmas hold for any piece-wise reference trajectory ξref and reference
input uref as long as the corresponding error e has a Lyapunov function (for each
piece of ξref and uref).

Example 4. Continue Example 3.

Fig. 2. Illustration of the error
bounds computed from Lemma 3.
The ith line segment is bloated by√

�2 + 4i
k2

. The closed-loop system’s

trajectory p(t) are purple curves and
they are contained by the bloated-
tube. (Color figure online)

Now let us consider the case of
a sequence of waypoints {pi}k

i=0. Let
(ξref, uref) = Waypoints to Traj({pi}k

i=0, v̄).
From Example 3, we know that V (e(t)) =
1
2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))

k2
is a Lya-

punov function for each segment of the piece-
wise reference trajectory ξref(t). We also
know that for any value of eθ, the term
1−cos(eθ(t))

k2
∈ [0, 2

k ]. From Lemma 2, we have
that for t ∈ [ti−1, ti) where ti are the con-
catenation time points, we have V (e(t)) ≤
V (e(0)) + 2(i−1)

k2
Therefore, following Exam-

ple 3, initially V (e(0)) ≤ �2

2 + 2
k2

. Then ∀t ∈
[ti−1, ti), V (e(t)) ≤ �2

2 + 2i
k2

, and the posi-
tion of the robot satisfies [px(t), py(t)]ᵀ ∈
B√

�2+ 4i
k2

([xref(t), yref(t)]ᵀ).

As seen in Fig. 2, we bloat the black reference trajectory pref(t) = ξref(t) ↓ p

by �i =
√

�2 + 4i
k2

for the ith line segment, the bloated tube contains the real
position trajectories (purple curves) p(t) of the closed system.

5 Synthesizing the Reference Trajectories

In Sect. 4.3, we have seen that under certain conditions, the tracking error e(t)
between an actual closed-loop trajectory ξg(t) and a piece-wise reference ξref(t)
can be bounded by a piece-wise constant value, which depends on the initial
tracking error e(0) and the number of segments in ξref. We have also seen an
example nonlinear vehicle model with PWL ξref for which the tracking error can
be bounded.

In this section, we discuss how to utilize such bound on e(t) to help find a
reference controller gref consisting of a reference trajectory ξref(t) and a reference
input uref(t) such that closed-loop trajectories ξg(t) from a neighborhood of
ξref(0) that are trying to follow ξref(t) are guaranteed to satisfy the reach-avoid
requirement. The idea of finding a gref follows a classic approach in robot motion
planning. The intuition is that if we know at any time t ∈ [0, ξref.ltime], ‖ξg(t) ↓
p − ξref(t) ↓ p‖2 will be at most �, then instead of requiring ξref(t) ↓ p to be
at least � away from the obstacles (inside the goal region), we will bloat the
obstacles (shrink the goal set) by �. Then the original problem is reduced to
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finding a ξref(t) such that ξref(t) ↓ p can avoid the bloated obstacles and reach
the shrunk goal set.

5.1 Use PWL Reference Trajectories for Vehicle Models

Finding a reference trajectory ξref(t) such that (a) ξref(t) satisfies the reach-avoid
conditions, and (b) ξref(t) and uref(t) are concatenations of state-input trajectory
pairs {(ξref,i, uref,i)}i and each pair satisfies the system dynamics, is a nontriv-
ial problem. If we were to encode the problem directly as a satisfiability or an
optimization problem, the solver would have to search for over the space of con-
tinuous functions constrained by the above requirements, including the nonlinear
differential constraints imposed by f . The standard tactic is to fix a reasonable
template for ξref(t), uref(t) and search for instantiations of this template.

From Example 4, we see that if ξref is a PWL reference trajectory con-
structed from waypoints in the workspace, the tracking error can be bounded
using Lemma 2. A PWL reference trajectories connecting the waypoints in the
workspace have the flexibility to satisfy the reach-avoid requirement. Therefore,
in this section, we fix ξref and uref to be the reference trajectory and reference
input returned by the Waypoints to Traj(·, ·). In Sect. 5.2, we will see that the
problem of finding such PWL ξref(t) can be reduced to a satisfiability problem
over quantifier-free linear real arithmetic, which can be solved effectively by
off-the-shelf SMT solvers (see Sect. 6 for empirical results).

5.2 Synthesizing Waypoints for a Linear Reference Trajectory

Algorithm 1 says that ξref(t) and uref(t) can be uniquely constructed given a
sequence of waypoints {pi}k

i=0 in the workspace W and a constant velocity v̄.
From Proposition 1, pref(t) = ξref(t) ↓ p connects the waypoints in W. Also, let
ti =

∑i
j=1 ‖pj − pj−1‖2/v̄ be the concatenation time, ∀t ∈ [ti−1, ti), p(t) is the

line segment connecting pi−1 and pi. We want to ensure that p(t) = ξg(t) ↓ p
satisfy the reach-avoid requirements. From Lemma 3, for any t ∈ [ti−1, ti), we
can bound ‖p(t) − pref(t)‖2 with the constant �i, then the remaining problem is
to ensure that, pref(t) is at least �i away from the obstacles and pref(ξref.ltime) is
inside the goal set with �k distance to any surface of the goal set.

Let us start with one segment p(t) with t ∈ [ti−1, ti). To enforce that p(t)
is �i away from a polytope obstacle, a sufficient condition is to enforce both
the endpoints of the line segment to lie out at least one surface of the polytope
bloated by �i.

Lemma 4. If pref(t) with t ∈ [ti−1, ti) is a line segment connecting pi−1 and pi

in W. Given a polytope obstacle O = Poly(HO, bO) and �i > 0, if

dP(HO)∨

s=1

(
(H(s)

O pi−1 > b
(s)
O + ‖H

(s)
O ‖2�i) ∧ (H(s)

O pi > b
(s)
O + ‖H

(s)
O ‖2�i)

)
= True,

then ∀t ∈ [ti−1, ti), B�i
(pref(t)) ∩ O = ∅.
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Proof. Fix any s such that (H(s)
O pi−1 > b

(s)
O + ‖H

(s)
O ‖2�i) ∧ (H(s)

O pi > b
(s)
O +

‖H
(s)
O ‖2�i) holds. The set S = {q ∈ R

d | H
(s)
O q > b

(s)
O + ‖H

(s)
O ‖2�i} defines a

convex half space. Therefore, if pi−1 ∈ S and pi ∈ S, then any point on the
line segment connecting pi−1 and pi is in S. Therefore, for any t ∈ [ti−1, ti),
H

(s)
O pref(t) > b

(s)
O + ‖H

(s)
O ‖2�i > b

(s)
O , which means pref(t) /∈ O.

The distance between pref(t) and the surface H
(s)
O q = b

(s)
O is |H(s)

O pref(t)−b
(s)
O |

‖H
(s)
O ‖2

>

�i. Therefore, for any p ∈ B�i
(pref(t)) we have ‖p− pref(t)‖2 ≤ �i and thus p /∈ O.

Furthermore,
∧dP(HO)

s=1 H
(s)
O q ≤ b

(s)
O +‖H

(s)
O ‖2�i defines of a new polytope that

we get by bloating Poly(HO, bO) with �i. Basically, it is constructed by moving
each surface of Poly(HO, bO) along the surface’s normal vector with the direction
pointing outside the polytope.

Similarly, we can define the condition when pref(ξ.ltime) = pk is inside the
goal shrunk by �k.

Lemma 5. Given a polytope goal set G = Poly(HG, bG) and �k > 0, if

dP(HG)∧

s=1

(
H

(s)
G pk ≤ b

(s)
O − ‖H(s)

G ‖2�k

)
= True, then B�k

(pk) ⊆ G.

Putting them all together, we want to solve the following satisfiability prob-
lem to ensure that each line segment between pi−1 and pi is at least �i away
from all the obstacles and pk is inside the goal set G with at least distance �k to
the surfaces of G. In this way, ξg(t) starting from a neighborhood of ξref(0) can
satisfy the reach-avoid requirement.

φwaypoints(pref(0), k,O, G, {�i}k
i=1) = ∃p0, · · · , pk,

p0 == pref(0)
dP(HG)∧

s=1

(
H

(s)
G pk ≤ b

(s)
O − ‖H

(s)
G ‖2�k

)

k∧

i=1

(
∧

Poly(H,b)∈O

(
dP(H)∨

s=1

(
H(s)pi−1 > b(s) + �i‖H(s)‖2 ∧ H(s)pi > b(s) + �i‖H(s)‖2

)
))

Notice that the constraints in φwaypoints are all linear over real
arithmetic. Moreover, the number of constraints in φwaypoints is

O

(
∑

Poly(H,b)∈O

kdP(H) + dP(HG)

)

. That is, fixing k, the number of constraints

will grow linearly with the total number of surfaces in the obstacle and goal set
polytopes. Fixing O and G, the number of constraints will grow linear with the
number of line segments k.
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Theorem 1. Fix k ≥ 1 as the number of line segments, pref(0) ∈ W as the
initial position of the reference trajectory. Assume that

(1) A closed with gref and gtrk is such that given any sequence of k+1 waypoints
in W and any v̄, the piece-wise reference ξref (and input uref) returned by
Algorithm1 satisfy the conditions in Lemmas 2 and 3 with Lyapunov func-
tion V (e(t)) for the tracking error e(t).

(2) For the above ξref, fix an ε0 such that V (e(0)) ≤ ε0, let {�i}k
i=1 be error

bounds for positions constructed using Lemma 2 and Lemma 3 from ε0.
(3) φwaypoints(pref(0), k,O, G, {�i}k

i=1) is satisfiable with waypoints {pi}k
i=0.

Let ξref(t), uref(t) = Waypoints to Trajectory ({pi}k
i=0, v̄), and pref(t) = ξref(t) ↓ p.

Let ξg(t) be a trajectory of A closed with gtrk(·, ξref, uref) starting from ξg(0) with
V (e(ξg(0), ξref(0))) ≤ ε0, then ξg(t) satisfies the reach-avoid requirement.

Proof. Since ξref(t), uref(t) are a PWL reference trajectory and a reference input
respectively constructed from the waypoints {pi}k

i=0, they satisfy Assumption
(1). Moreover, V (e(ξg(0), ξref(0))) ≤ ε0 satisfies Assumption (2). Using Lemma 2
and Lemma 3, we know that for t ∈ [ti−1, ti), ‖ξg(t) ↓ p − ξref(t) ↓ p‖2 ≤ �i.

Finally, since {pi}k
i=0 satisfy the constraints in φwaypoints, using Lemma 4 and

Lemma 5, we know that for any time t ∈ [0, tk], ξg(t) ↓ p /∈ O and ξg(tk) ∈ G.
Therefore the theorem holds.

5.3 Partitioning the Initial Set

Starting from the entire initial set Θ, fix ξref(0) ∈ Θ and an ε0 such that ∀x ∈
Θ, V (e(x, ξref(0))) ≤ ε0, then we can use Lemma 2 and Lemma 3 to construct the
error bounds {�i}k

i=1 for positions, and next use {�i}k
i=1 to solve φwaypoints and

find the waypoints and construct the reference trajectory.
However, if the initial set Θ is too large, {�i}k

i=1 could be too conservative
so φwaypoints is not satisfiable. In the first two figures on the top row of Fig. 3,
we could see that if we bloat the obstacle polytopes using the largest �i, then
no reference trajectory is feasible. In this case, we partition the initial set Θ to
several smaller covers Θj and repeat the above steps from each smaller cover Θj .
In Lemma 2 and Lemma 3 we could see that the values of {�i}k

i=1 decrease if ε0

decreases. Therefore, with the partition of Θ, we could possibly find a reference
trajectory more and more easily. As shown in Fig. 3 bottom row, after several
partitions, a reference trajectory for each Θj could be found.
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Fig. 3. Top row: each step attempting to find a reference trajectory in the space where
obstacles (goal set) are bloated (shrunk) by the error bounds {�i}i. From left to right:
Without partition, {�i}i are too large so a reference trajectory cannot be found. Θ is
partitioned, but {�i}s for the left-top cover are still too large. With further partions,
a reference trajectory could be found. Bottom row: It is shown that the bloated tubes
for each cover (which contain all other trajectories from that cover) can fit between
the original obstacles.

5.4 Overall Synthesis Algorithm

Taking partitioning into the overall algorithm, we have Algorithm2 to solve
the controller synthesis problem defined in Sect. 2.2. Algorithm 2 takes in as
inputs (1) an (n,m)-dimensional control system A, (2) a tracking controller
gtrk, (3) Obstacles O, (4) a goal set G, (5) a Lyapunov function V (e(t)) for the
tracking error e that satisfies the conditions in Lemma 2 and Lemma 3 for any
PWL reference trajectory and input, (6) the maximum number of line segments
allowed Segmax, (7) the maximum number of partitions allowed Partmax, and (8)
a constant velocity v̄. The algorithm returns a set RefTrajs, such that for each
triple 〈Θj , ξj,ref, uj,ref〉 ∈ RefTrajs, we have ∀x0 ∈ Θj , the unique trajectory ξg

of the closed system (A closed with gtrk(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement. The algorithm also returns 〈Cover,None〉, which
means that the algorithm fails to find controllers for the portion of the initial
set in Cover within the maximum number of partitions Partmax.

In Algorithm 2, Cover is the collection of covers in Θ that the corresponding
ξref and uref have not been discovered. Initially, Cover only contains Θ. The for-
loop from Line 2 will try to find a ξref and a uref for each Θ ∈ Cover until the
maximum allowed number for partitions is reached. At line 3, we fix the initial
state of ξref(0) = ξinit to be the center of the current cover Θ. Then at Line 4,
we get the initial error bounds ε0 after fixing ξinit. Using ε0 and the Lyapunov
function V (e), we can construct the error bounds {�i}k

i=1 for the positions of the
vehicle using Lemma 2 and Lemma 3 at Line 5.
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Algorithm 2: Controller synthesis algorithm
input : A = 〈X , Θ, U, f〉, gtrk, O, G, V (e(t)), Segmax, Partmax, v̄
initially: Cover ← {Θ}, prt ← 0, k ← 1, RefTrajs ← ∅

1 while (Cover �= ∅) ∧ (prt ≤ Partmax) do
2 for Θ ∈ Cover do
3 ξinit ← Center(Θ) ;
4 ε0 ← a such that ∀x ∈ Θ, V (e(x, ξinit)) ≤ a ;

5 {�i}k
i=1 ← GetBounds(V (e(t)), ε0) ;

6 while k ≤ Segmax do

7 if CheckSAT(ξinit ↓ p, k, O, G, {�i}k
i=1)) == SAT then

8 p0, · · · , pk ← GetValue(φwaypoints) ;

9 ξref, uref ← Waypoints to Traj({pi}k
i=0, v̄) ;

10 RefTrajs ← RefTrajs ∪ 〈Θ, ξref, uref〉 ;
11 Cover ← Cover \ {Θ};
12 k ← 1 ;
13 Break ;

14 else
15 k ← k + 1

16 if k > Segmax then
17 Cover ← Cover ∪ Partition(Θ) \ {Θ} ;
18 prt ← prt + 1;
19 k ← 1 ;

20 return RefTrajs, 〈Cover, None〉 ;

If the if condition at Line 7 holds with {pi}k
i=0 being the waypoints that

satisfy φwaypoints, then from Theorem 1 we know that the ξref, uref constructed
using {pi}k

i=0 at Line 9 will be such that, the unique trajectory ξg of the closed
system (A closed with gtrk(·, ξref, uref)) starting from x0 ∈ Θ satisfies the reach-
avoid requirement. Otherwise the algorithm will increase the number of segments
k in the PWL reference trajectory (Line 15). When the maximum number of line
segments allowed is reached but the algorithm still could not find ξref, uref that
can guarantee the satisfaction of reach-void requirement from the current cover
Θ, we will partition the current Θ at Line 17 and add those partitions to Cover.
At the same time, k will be reset to 1.

Theorem 2 (Soundness). Suppose the inputs to Algorithm2, A, gtrk, O, G,
V (e(t)), v̄ satisfy the conditions of Theorem1. Let the output be RefTrajs =
{〈Θj , ξj,ref, uj,ref〉}j and 〈Cover,None〉, then we have (1). Θ ⊆ ∪Θj ∪Cover, and
(2). for each triple 〈Θj , ξj,ref, uj,ref〉, we have ∀x0 ∈ Θj, the unique trajectory ξg

of the closed system (A closed with gtrk(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement.

The theorem follows directly from the proof of Theorem 1.

6 Implementation and Evaluation

We have implemented our synthesis algorithm (Algorithm2) in a prototype open
source tool we call FACTEST5 (FAst ConTrollEr SynThesis framework). Our

5 All models and source code of FACTEST are available at [27].
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implementation uses Pypoman6, Yices 2.2 [6], SciPy7 and NumPy8 libraries.
The inputs to FACTEST are the same as the inputs in Algorithm 2. FACTEST
terminates in two ways. Either it finds a reference trajectory ξj,ref and reference
input uj,ref for every partition Θj of Θ so that Theorem 2 guarantees they solved
the controller synthesis problem. Otherwise, it terminates by failing to find ref-
erence trajectories for at least one subset of Θ after partitioning Θ up to the
maximum specified depth.

6.1 Benchmark Scenarios: Vehicle Models and Workspaces

We will report on evaluating FACTEST in several 2D and 3D scenarios drawn
from motion planning literature (see Figs. 4). Recall, the state space X dimen-
sion corresponds to the vehicle model, and is separate from the dimensionality
of the workspace W. We will use four nonlinear vehicle models in these different
scenarios: (a) the kinematic vehicle model (car) [31] introduced in Example 1,
(b) a bijective mobile robot (robot) [13], (c) a hovering robot (hovercraft), and
(d) an autonomous underwater vehicle (AUV) [29]. The dynamics and tracking
controllers (gtrk) of the other three models are described on the FACTEST web-
site [27]. Each of these controllers come with a Lyapunov function that meets
the assumptions of Lemmas 2 and 3 so the tracking error bounds given by the
lemmas {�}k

i=1 can be computed.

(a) Zigzag [32] (b) Maze [32] (c) SCOTS [38] (d) Barrier

(e) Simple Env (f) Difficult Env (g) L-tunnel [32] (h) Z-tunnel [32]

Fig. 4. 2D and 3D workspaces with initial (blue) and goal (green) sets. The scenar-
ios run in the two-dimensional W use the car model. The scenarios run in the three
dimensional W use the hovercraft model. The black lines denote ξref and the dotted
violet lines denote ξg. (Color figure online)

6 https://pypi.org/project/pypoman/.
7 https://www.scipy.org/.
8 https://numpy.org/.

https://pypi.org/project/pypoman/
https://www.scipy.org/
https://numpy.org/
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6.2 Synthesis Performance

Table 1 presents the performance of FACTEST on several synthesis problems.
Several points are worth highlighting. (a) The absolute running time is at the
sub-second range, even for 6-dimensional vehicle models with 4-inputs, operating
in a 3D workspace. This is encouraging for online motion-control applications
with dynamic obstacles. (b) The running time is not too sensitive to dimensions
of X and U because the waypoints are only being generated in the lower dimen-
sional workspace W. Additionally, the construction of ξref from the waypoints
does not add significant time. However, since different models have different
dynamics and Lypunov functions, they would have different error bounds for
position. Such different bound could influence the final result. For example, the
result for the Barrier scenario differs between the car and the robot. The car
required 25 partitions to find a solution over all of Θ and the robot required
22. (c) Confirming what we have seen in Sect. 5.2, the runtime of the algorithm
scales with the number of segments required to solve the scenario and the num-
ber of obstacles. (d) As expected and seen in Zigzag scenarios, all other things
being the same, the running time and the number of partitions grow with larger
initial set uncertainty.

Table 1. Synthesis performance on different scenarios (environment, vehicle). Dimen-
sion of state space X (n), input (m), radius of initial set Θ, number of obstacles O,
running time (in seconds).

Scenario n, m Radius of Θ # O Time (s) # segments per ξref # partitions

Zigzag, car 1 3, 2 0.200 9 0.037 6.0 1.0

Zigzag, car 2 3, 2 0.400 9 0.212 4.0 6.0

Zigzag, car 3 3, 2 0.800 9 0.915 5.0–6.0 16.0

Zigzag, robot 1 4, 2 0.200 9 0.038 6.0 1.0

Zigzag, robot 2 4, 2 0.400 9 0.227 4.0 6.0

Zigzag, robot 3 4, 2 0.800 9 0.911 5.0–6.0 16.0

Barrier car 3, 2 0.707 6 0.697 2.0–4.0 25.0

Barrier, robot 4, 2 0.707 6 0.645 2.0–4.0 22.0

Maze, car 3, 2 0.200 22 0.174 8.0 1.0

Maze, robot 4, 2 0.200 22 0.180 8.0 1.0

SCOTS, car 3, 2 0.070 19 1.541 26.0 1.0

SCOTS, robot 4, 2 0.070 19 1.623 26.0 1.0

L-tunnel, hovercraft 4, 3 0.173 10 0.060 5.0 1.0

L-tunnel, AUV 6, 4 1.732 10 0.063 5.0 1.0

Z-tunnel, hovercraft 4, 3 0.173 5 0.029 4.0 1.0

Z-tunnel, AUV 6, 4 1.732 10 0.029 4.0 1.0

Comparison with Other Motion Controller Synthesis Tools: A Chal-
lenge. Few controller synthesis tools for nonlinear models are available for direct
comparisons. We had detailed discussions with the authors of FastTrack [11],



648 C. Fan et al.

but found it difficult to plug-in new vehicle models. RTD [44] is implemented in
MatLab also for specific vehicle models. Pessoa [26] and SCOTS [38] are imple-
mented as general purpose tools. However, they are based on construction of
discrete abstractions, which requires several additional user inputs. Therefore,
we were only able to compare FACTEST with SCOTS and Pessoa using the sce-
nario SCOTS. This scenario was originally built in SCOTS and is using the same
car model.

The results for SCOTS and Pessoa can be found in [38]. The total runtime
of SCOTS consists of the abstraction time tabs and the synthesis time tsyn. The
Pessoa tool has an abstraction time of tabs = 13509 s and a synthesis time of
tsyn = 535 s, which gives a total time of ttot = 14044 s. The SCOTS tool has a has
an abstraction time of tabs = 100 s and a synthesis time of tsyn = 413 s, which
gives a total time of ttot = 513 s. FACTEST clearly outperforms both SCOTS
and Pessoa with a total runtime of ttot = 1.541 s. This could be attributed to
the fact that FACTEST does not have to perform any abstractions, but even by
looking sole at tsyn, FACTEST is significantly faster. However, we do note that
the inputs of FACTEST and SCOTS are different. For example, SCOTS needs
a growth bound function β for the dynamics but FACTEST requires Lyapunov
functions for the tracking error.

6.3 RRT vs. SAT-Plan

To demonstrate the speed of our SAT-based reference trajectory synthesis algo-
rithm (i.e. only the while-loop from Line 6 to Line 15 of Algorithm2 which we
call SAT-Plan), we compare it with Rapidly-exploring Random Trees (RRT) [20].
The running time, number of line segments, and number of iterations needed to
find a path were compared. RRT was run using the Python Robotics library [39],
which is not necessarily an optimized implementation. SAT-Plan was run using
Yices 2.2. The scenarios are displayed in Fig. 4 and the results are in Fig. 5.

Fig. 5. Comparison of RRT and SAT-Plan. The left plot shows the runtime and the
right plot shows the number of necessary iterations. Note that RRT timed out on the
SCOTS scenario.
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Each planner was run 100 times. The colored bars represent the average
runtime and average number of iterations. The error bars represent the range of
minimum and maximum. The RRT path planner was given a maximum of 5000
iterations and a path resolution of 0.01. SAT-Plan was given a maximum of 100
line segments to find a path. RRT timed out for the SCOTS scenario, unable
to find a trajectory within 5000 iterations. The maze scenario timed out about
10% of the time.

Overall SAT-Plan scales in time much better as the size of the unsafe set
increases. Additionally, the maximum number of iterations that RRT had to
perform was far greater than the average number of line segments needed to
find a safe path. This means that the maximum number of iterations that RRT
must go through must be sufficiently large, or else a safe path will not be found
even if one exists. SAT-Plan does not have randomness and therefore will find a
reference trajectory (with k segments) in the modified space (bloated obstacles
and shrunk goal) if one (with k segments) exists. Various examples of solutions
found by RRT and SAT-Plan can be found on the FACTEST’s website [27].

7 Conclusion and Discussion

We introduced a technique for synthesizing correct-by-construction controllers
for a nonlinear vehicle models, including ground, underwater, and aerial vehicles,
for reach-avoid requirements. Our tool FACTEST implementing this technique
shows very encouraging performance on various vehicle models in different 2D
and 3D scenarios.

There are several directions for future investigations. (1) One could explore
a broader class of reference trajectories to reduce the tracking error bounds. (2)
It would also be useful to extend the technique so the synthesized controller can
satisfy the actuation constraints automatically. (3) Currently we require user to
provide the tracking controller gtrk with the Lyapunov functions, it would be
interesting to further automate this step.
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Abstract. Chemical reaction networks (CRNs) play a fundamental role
in analysis and design of biochemical systems. They induce continuous-
time stochastic systems, whose analysis is a computationally intensive
task. We present a tool that implements the recently proposed semi-
quantitative analysis of CRN. Compared to the proposed theory, the
tool implements the analysis so that it is more flexible and more precise.
Further, its GUI offers a wide range of visualization procedures that facil-
itate the interpretation of the analysis results as well as guidance to refine
the analysis. Finally, we define and implement a new notion of “mean”
simulations, summarizing the typical behaviours of the system in a way
directly comparable to standard simulations produced by other tools.

1 Introduction

Chemical Reaction Networks (CRNs) are a language widely used for modelling
and analysis of biochemical systems [10] as well as for high-level programming of
molecular devices [6,33]. They provide a compact formalism equivalent to Petri
nets [30], vector addition systems [24] and distributed population protocols [3].
A CRN consists of a set of chemical reactions of given species, each running at
a certain rate (intuitively, speed).

Example 1 (Gene expression). Our running example is the classic simple expres-
sion of a protein given by the reactions of production (p) and degradation (d) of
proteins and blocking (b) the DNA, over three species: protein (P), active DNA
(DNAon), and blocked DNA (DNAoff):

p: Don
10−→ Don + P d: P 0.1−−→ ∅ b: Don + P 0.001−−−→ Doff

Using mass-action kinetics (the reaction rate is multiplied by the populations of
the reactants), the CRN induces a infinite population Markov chain in Fig. 1.
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Fig. 1. The Markov chain for Gene expression, displaying the population of P. To
simplify the exposition, Don and Doff are displayed as discrete “states” of the system,
but in fact the two “states” are just shorthands for 1,0 and 0,1, respectively.

In order to facilitate numerous applications in systems and synthetic biology,
various techniques for simulation and formal analysis of CRNs have been pro-
posed, e.g. [2,7,15,18,32]. We pinpoint several specifics of this setting, necessary
to motivate and understand the features of the tool:

1. The analysis is notoriously difficult and computationally expensive due
to several aspects: state-space explosion (exponential growth in the number
of species, possibly infinite spaces due to unbounded populations as in Fig. 1,
different rates for different populations, again as in Fig. 1), stochasticity (races
between reactions), stiffness (rates of different magnitudes), multimodality
(qualitatively different behaviours such as extinction of predators only, or
also of preys in the predator-prey models) [17,34]. Consequently, even for
small CRNs, simulations may take minutes and analyses hours.

2. We have to face imprecise inputs. In particular, even if all relevant reactions
are known, the rates are typically not. It is then not clear what behaviours
can be induced by all possible values.

3. The analysis output need not be precise numerically, but only qualita-
tively. For instance, it is important to know that initial growth is followed by
extinction and what the order of magnitude of the peak population is, but not
necessarily what the exact distribution at an exact time is. Unfortunately, it
is hard to compute the qualitative information without the quantitative one.

4. Biologists and engineers often seek for plausible explanations of why the
system under study features or not the discussed behaviour. In many cases, a
set of system simulations/trajectories or population distributions is not suf-
ficient and the ability to provide an accurate explanation for the temporal or
steady-state behaviour is another major challenge for the existing techniques.

SeQuaiA1 is a tool for analysis of CRN addressing these issues:

1. It features unprecedented scalability, analysing standard complex bench-
marks within a fraction of a second.

2. It is robust w.r.t. concrete rates, not depending on the exact values but only
on their orders of magnitude.

3. Its semi-quantitative analysis is precise enough to conclude on the qualita-
tive behaviour of the system including rare behaviours and on rough estimates
of the quantities (population sizes, times).

1 Available at https://sequaia.model.in.tum.de.

https://sequaia.model.in.tum.de
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4. It produces small abstract models (Markov chains) that are explicit, yet
interpretable, making the behaviour more explainable.

It is based on the technique presented in [9], relying on two cornerstones. Firstly,
it computes a system abstraction with acceleration, abstracting not only states
and single transitions, but taking into account segments of paths. The resulting
models are small enough to allow for a synoptic observation of the model dynam-
ics. Secondly, it performs semi-quantitative analysis, focusing on the most
probable behaviours and more qualitative, global descriptions, such as oscilla-
tion, rather than fully quantitative sequences of exact transient distributions.
This yields explainable models and is a sufficient and computationally cheaper
technique. While the basic theory is derived from [9], there are a number of new
features and differences in our tool, not just the implementation:

Method: (i) The abstraction is more precise now that the tool can also com-
pute numerical outputs, whereas [9] focuses on a manually feasible, and hence
imprecise, abstraction. (ii) It suggests how to refine the abstractions, provid-
ing a knob for trading precision for computational resources.

Visualization: The GUI provides a number of ways to display the results, facil-
itating understanding the models, including (i) identification of strongly con-
nected parts of ‘iterations’, corresponding to ‘temporarily stable’ behaviours,
(ii) quantitative information on transient times and steady-state distribu-
tions, or (iii) visual qualitative explanations, such as semantic grouping of
states or tracking correlations between populations.

Additional analysis instruments: (i) The new notion of envelope provides an
explicit knob to consider not only the most probable, but also less probable
behaviours. (ii) The novel concept of mean simulation yields summaries of
most probable runs and an analysis output directly comparable to classic
simulation-based tools.

Related Work. Since a direct analysis of the Markov chains induced by CRN
does not scale well [19], deterministic approximations through fluid (mean-field)
techniques can be applied [4,8] to large populations, but cannot adequately
capture the stochasticity of CRNs caused by low population species. To this
end, both can be combined in hybrid approaches [7,18,21], typically involving
a computationally demanding numerical analysis. Reduction techniques such as
[1,12] are based on approximate bisimulation [11], on aggregation according to
the CRN-specific structure [13,27,35], or state truncation [20,28,29].

Despite the plethora of techniques, the practical analysis of CRNs often
relies on the stochastic simulation [15] and its multi-scale improvements [5,14,17,
22,31,32]. The widely used tool include the platform-independent Copasi [23],
DSD [25] with a convenient web-based graphical interface, or StochPy [26] easily
extensible using Python scientific libraries. In contrast, our approach (i) provides
a compact explanation of the system behaviour in the form of tiny models allow-
ing for a synoptic observation (ii) can easily reveal less probable behaviours, and
iii) as shown in [9], is able to analyse standard complex benchmarks in seconds
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and thus provides the unprecedented scalability compared to other numerical as
well as simulation-based techniques.

2 Workflow and Key Functionality

In this section, we guide the reader through the workflow, discuss the key features
of the tool and demonstrate them on examples. The GUI is structured into
several tabs and panels reflecting the workflow of the tool. First, a CRN is either
retrieved from a file in the Open model tab or a new one is created. Either way, the
model can be changed in the Editor panel together with the analysis parameters.
The process continues in the Analysis tab. The analysis follows in two steps. First,
the semi-quantitative abstraction of the Markov chain for the CRN is generated;
second, the semi-quantitative analysis is performed on the abstraction. The tool
offers an explicit option to display the abstraction as a .dot file or to directly
run both steps. After the complete analysis is executed, the Visualization panel
offers a range of options to display the results, including various quantitative
properties. Finally, the analysed model can be used to generate concrete runs
on the Simulation tab, which we call mean simulations since they display the
“average-case” behaviour. In the following we detail on these key elements.

Fig. 2. Left: The abstract Markov chain for Gene expression with population dis-
cretization thresholds 20, 50 and the population bound 1000. Top: The classic may
transition function. Bottom: The semi-quantitative version with accelerated transi-
tions (denoted by prefix “A”). Right: The full blue line shows a typical simulation
of the model (population of P), obtained using DSD tool [25]. The dotted green line
corresponds to the fast variant of the model with the rate of b being 10−2. (Color figure
online)
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2.1 Semi-quantitative Abstraction

Key Idea. The abstraction of the state space is simply given by a discretization of
the population for each species into finitely many intervals, see Fig. 2 (left). The
classic may abstraction of the transition function results in non-deterministic
self-loops as in Fig. 2 (left top) in red, which make impossible to conclude any-
thing useful (except for some safety properties) on the behaviour once we reach
such a state, even whether it is ever left at all. Instead, [9] considers sequences
of transitions: in this case, sequences of prevalently growing transitions (those
increasing the population) are significantly more probable than the prevalently
decreasing ones. Consequently, the self-looping transitions are accelerated (taken
multiple times) to get a “combined” transition that brings a typical represen-
tative of this population interval into a higher interval, see Fig. 2 (left bottom)
also in red. Hence the new rate reflects (i) the mass-action kinetics with the
typical population in the interval and (ii) the typical number of the transition
repetitions before another interval is reached. These accelerated transitions are
the key idea of the semi-quantitative abstraction and are denoted by a prefix A.

Tool Inputs. Technically, the tool requires, for each species, a (possible empty)
list of increasing population thresholds t1, t2, . . . tn and a population bound tb.
The thresholds split the concrete population to the intervals [0, 0], (0, t1], (t1, t2],
. . . (tn−1, tn], (tn,∞). Here 0 is taken separately to reflect enabledness of actions;
the representatives, used for consequent computations, are chosen to be in the
middle of the intervals and derived from tb for the last one. (For the empty list
we have only one non-zero interval (0,∞)). The input numbers are supposed to
reflect the monitored property of interest and the required precision, the bound
tb should give a probable upper bound on the maximal population. How to obtain
and iteratively improve these is discussed in Sect. 2.5 on refinement.

Example 2. Consider Gene expression, now with a ‘fast’ blocking where the rate
of b equals 10−2. A typical simulation can be seen in Fig. 2 (right, dotted green
line): the number of proteins grows until several dozen, then blocking takes place
until extinction. The semi-quantitative abstraction for thresholds 10, 20, 50 yields
the model in Fig. 3(a). In contrast to classic abstractions, there are no self-loops
and the abstract transitions are assigned concrete rates. One can see that the
blocking can in principle take place at any population and that population can
decrease also when DNA is on, i.e. in states [1, 0, ·]. However, all this happens
with very low probabilities and the model captures this only indirectly through
the numerical labelling. This is made explicit during the semi-quantitative
analysis.

2.2 Semi-quantitative Analysis

Key Idea. The aim is to prune the abstraction so that only reasonably probable
behaviour is reflected, see the thick transitions in the abstraction in Fig. 2 (left
bottom). To this end, we preserve in each state only the transitions with the
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Fig. 3. (a) and (b): ‘Fast’ Gene expression with thresholds 10, 20, 50. (a) depicts the
full abstraction and (b) depicts envelope = 3. (c)–(e): ‘Slow’ Gene expression with
thresholds 20, 50, 80, 150. (d) and (e) depicts the pruned abstraction with envelope = 3
and 1, respectively.
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highest rate h or almost highest rates, i.e. with h′ > h/envelope where envelope >
1 is a parameter. Parameter values in [1, 10] ensure we can only look at rates of
the same order of magnitude, thus the most probable events and those with e.g.
only 20% chance of happening. Higher values then allow for inspection of even
less probable behaviours.

Consequently, the method can naturally handle uncertainty in the reaction
rates since typically only the relative magnitudes of the rates are important,
actually, only their orders of magnitude. This robustness w.r.t. the input is very
beneficial for biologists as the precise rates are often not known.

Example 3. The analysis of the previous ‘fast’ Gene expression with envelope = 3
is depicted in Fig. 3(b). As such it shows the most probable behaviours: the fast
growth until the intervals 2 and 3 (i.e. 10–20 and 20–50) and not beyond to
4 (over 50), followed by a slower decline. The computed rates induce expected
times to pass through a state, matching closely those of the simulation Fig. 2
(right, dotted green line). Moreover, we see that the blocking transition from
interval 2 has a lower probability than the production, is thus less probable. As
such it would not even appear as a probable one, for a stricter envelope = 2.

Example 4. A more complicated behaviour arises when the blocking is slow, with
rate 10−3 as in Sect. 1. A simulation run for this case is depicted in Fig. 2 (right,
full blue line). One can observe a more balanced competition between blocking
and oscillation around 70–100 proteins. Similarly, while the full abstraction (not
shown here) features arbitrary oscillations (also back to no proteins at all), after
analysis the pruned abstraction is faithfully modelling the initial growth, subse-
quent oscillation only in the range of higher populations, followed by blocking
and gradual extinction of proteins, see Fig. 3(c).

Technically, the analysis relies on repeated alternation of transient and
steady-state analysis. First, starting from the initial state, we follow in each
state only the transitions with highest rates (most probable ones), until the set
of explored state reaches a fixpoint. A part of the created graph is recurrent and
forms a bottom strongly connected component (BSCC) or a collection thereof.
The system temporarily settles in the steady state of this BSCC. After some
time has passed, also a less probable transition happens almost surely and the
“BSCC” is exited. These exit points are identified by a steady-state analysis of
the BSCC, taking the magnitudes of exiting and non-exiting transition rates into
account. The exit points trigger a new iteration of the transient and then the
steady-state analysis.

Example 5. Figure 3(d) illustrates a situation with two iteration using the slow
variant of the model. Decreasing envelope to 1 caused that the blocking reaction
is explored in the second iteration – as an exit of the BSCC found in the first
iteration. Before that exit happens, the “BSCC” represents a “temporary” steady
state of the system.
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Note on Correctness. As discussed in [9], the semi-quantitative analysis provides
guarantees in the form of limit behaviour and convergence: firstly, the precision
grows with the differences in the orders of magnitudes of involved rates: as
their ratios tend to infinity, the error tends to zero; secondly, as the population
discretization gets finer, the error in the new “accelerated” transitions is reduced,
trivially being zero for complete refinement into singletons.

2.3 Visualization of Qualitative Information

A proper visualization is essential for clear presentation and easy interpretation
of the results of our analysis. To this end, the tool and its GUI offer various
options for visualizing the results. The basic ones, related to the graph structure,
are the following. Further options, with more quantitative flavour, are discussed
in the next section, followed by an example illustrating all of them.

Iterations. As the complete abstract model is typically very large and chaotic,
further structuring is necessary. Therefore, the default view shows the states
arranged and grouped into separate blocks, one for each iteration, additionally
coloured distinctly for each iteration. Besides, we can restrict which iterations we
show. This is useful to zoom in and investigate a particular part of the behaviour.

Intra-iteration SCCs (IISCCs). Additionally, the arrangement and colouring
can be based on aggregating SCCs within each iteration (IISCCs). This helps to
understand the emergence of repetitive behaviour patterns, such as oscillation or
(temporary) steady state. It can be also combined with the iteration grouping.

Collapsed Views. In order to understand the system behaviour, one typically
needs to have a synoptic overview of the system. For more complex systems,
even the pruned abstraction could become too large and the view of the fully
expanded system might not be sufficiently compact. In such cases, the aggregates
discussed in the previous views, i.e., iterations and IISCCs, can be collapsed
into a single nodes, hiding the complexity of the exact behaviour pattern within
these areas. This allows us, for instance, to ignore the particular (temporary)
oscillation or steady state in these states and to focus on more global behaviour,
such as what happened before and after this behaviour and how often does it
arise. In contrast to zooming in by restricting to certain iteration(s) only, the
collapsed views provide a means to zoom out.

2.4 Visualization of Quantitative Information

The produced graphs are also labelled by numerical information. While the
quantities cannot be precise due to the simplifications of the extremely scalable
analysis, they match the orders of magnitudes of the observed quantities, which
is often precise enough for biological purposes; for instance, the peak of protein
growth happens after units vs. dozens of seconds in the fast and slow variants
of Gene expression, respectively.
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Transient Analysis. Firstly, each abstract transition is labelled with a rate cor-
responding (in the order of magnitude) to the rate of the concrete transition
(or accelerated transition, i.e. a “sequence” of transitions) of a “typical” rep-
resentative of the abstract state. These rates induce the expected time spent
in each transient state of each iteration. Indeed, the waiting time is simply the
inverse of the sum of the outgoing rates. Further, each BSCC of each iteration
is labelled by an estimate of time before it is left into the next iteration. This is
a key notion, which allows us to easily provide transient timing information for
very stiff systems (working at different time scales). Consider the simple gene
model. From Fig. 3(b) and (d) we can easily compute the expected time to the
extinction (as the sum of the exit time for all SCC on the inspected path). Our
analysis correctly estimates that the expected extinction time is around 24 and
for the fast variant and 40 for the slow variant.

Steady State Analysis. In many biological models, the natural steady state is
either extinction or unbounded explosion. Hence it does not say much about the
“seemingly steady” state (the temporary steady state), i.e., behaviour that is
stable for a long but finite time. Therefore, the tool provides information not only
on the steady state of the whole system, but also for each iteration separately
since they represent the temporary steady states discussed above. Both can
be visualized as colouring of states, with higher probabilities corresponding to
darker colours, immediatelly giving a synoptic view on frequent behaviours.

Correlations. Finally, correlations between population sizes can be observed as
follows. The GUI can be given a set of equivalences of the form m∼n for species
i, j, meaning that if a state has (abstract) population m of species i and n of j
then it is regarded as satisfying the correlation in question. It is coloured accord-
ingly and the overall colouring of the system provides further indication under
which behaviour or in which phases the correlation holds.

Example 6. We demonstrate these visualization options on a more complicated
gene expression model [16], widely used model for benchmarking CRN analyzers,
in Fig. 4. As reported in [16,18], the behaviour oscillates between two steady
states with DNA on and DNA off. Moreover, there is a correlation between high
amounts of RNA present and DNA being on, and no RNA with DNA off.

The complete system and its steady state distribution is depicted in the
part a) using the iteration and IISCC arrangement. This view shows immedi-
ately without seeing any details that the only interesting states are in iteration 1
including all states with a high steady-state probability (the red colouring).
Therefore, in part b), we zoom in to iteration 1 and use the IISCC arrangement.
In order to observe the interesting switches between the temporary steady states,
we collapse the IISCCs, in the part c), and thus ignore the internal (non-
interesting) behaviour of the big IISCC. Finally, in part d), we use the cor-
relation colouring to identify states where the required correlation holds (i.e.
the blue states). Comparing part c) and d) immediately reveals that the system
spends the majority of the time in the states where the correlation holds.
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Fig. 4. A visualisation of the workflow for the extended gene expression model. (Color
figure online)

2.5 Precision and Refinement

So far, we have illustrated the concepts and the functionality on models with
an appropriate level of abstraction. However, it often happens that we start
the investigations with a too coarse abstraction. Whenever this happens, it is
important to notice this and appropriately refine the abstraction. While [9] does
not discuss this issue, the tool provides support also for that.

Precision Parameters. There are several knobs for trading the size and the
precision of the abstraction. They all come as input in the lower half of the
Editor tab: discretization, bound, and envelope.

Example 7. Recall the initial abstraction for the Gene expression of Fig. 2 (with
rate 10−3). The abstraction, using thresholds 20, 50 predicts an oscillation includ-
ing low populations of P (1–20) which is not correct (recall that the P oscillates
on high populations before the blocking reaction occurs). Figure 3(c) and (d)
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show the abstraction and the consequent analysis and visualization for a refined
model using thresholds 20, 50, 80, 150 (instead of just 20, 50). As already dis-
cussed, this abstraction already correctly predicts the system behaviour.

Discretization. The basic building block of each abstraction is the degree of
details it preserves in the abstract states. Firstly, it determines how precisely
we can observe the evolution of the population. For instance, whenever we want
to detect whether a population typically grows beyond a bound or oscillates in
a certain interval, such an interval should be present in the discretization. Sec-
ondly, the discretization should be fine enough so that in each state, the rates are
reasonably (in orders of magnitude) precise. Fortunately, in our analysis their
absolute precision is not vital. In contrast, we only need relative proportions of
the rates to have the right magnitude to decide which behaviour is probable. Con-
sequently, too rough abstraction is reflected in “non-determinism” when a state
has two transitions under similar rate. In such a case, the probable behaviour
cannot be determined. Therefore, the Visualization tab provides in the Coloriza-
tion pane an option to provide suggestions for refinement, including highlighting
non-deterministic states, pointing at the natural candidates for refinement. Note
that we highlight only the states where the two transitions lead to mutually dif-
ferent SCCs so that a significant change in behaviour may occur.

Bounds. Similarly, for the single infinite interval (tn,∞), the tool inputs a bound
which is a believed safe upper bound on the population of the species. Of course,
it may be wrong. This is irrelevant in case when the population explodes beyond
all bounds. However, whenever there are transitions from the highest level back
to a lower one, its feasibility and rate are in question. Optimally, such states
do not even occur in the pruned abstraction. If they do, we also highlight them
using the Colorization for Refinement suggestions (in another colour).

Envelope. As too rough abstractions introduce too much non-determinism,
dually, the degree of the non-determinism is determined (even defined) by the
envelope, the factor between rates so that even the less probable option is still
taken into account (and thus introduces non-determinism). Consequently, high
values of envelope introduce non-determinism, making the analysis take also less
important behaviour into account; in contrast, low values make the analyzed
system deterministic, showing only the most probable behaviour. The choice of
the envelope thus depends on whether such behaviours should also be reported.

2.6 Mean Simulations

Since our models, although abstract, have an operational semantics, we can even
run simulations on them. Moreover, the accelerated transitions, as “sequences”
of transitions, have a low variance in the expected time, by the law of large num-
bers. Hence their execution time can be chosen quite precisely in a deterministic
way. Similarly, the time to leave an IIBSCC is quite deterministic. Thus we can
generate simulation where the only random decisions are choices of transitions,
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but the timing follows the mean time of the respective events. Moreover, runs
within the pruned abstraction reflect the most important behaviours only.

Fig. 5. Mean simulation for the slow
variant of Gene expression, directly
comparable to Fig. 2 (right, full line).

Such mean simulations2, which can
thus be generated from our analysis, repre-
sent groups of typical runs (modulo small
time shifts and order of transitions within
an SCC, which are not very relevant).
Therefore, a few such simulation reflect
all the present behaviours (on a level of
desired significant probability) and can
serve to observe multi-modalities, bifurca-
tions, rough transient timing as well as fre-
quencies in the steady-state and tempo-
rary steady-state. To our best knowledge,
such a concept has not yet been considered
for simulation of stochastic systems.

Example 8. Figure 5 shows an abstract simulation for our running example with
discretisation thresholds 20, 50, 80, 150. One can readily observe its validity with
respect to the typical stochastic simulation in Fig. 2 (right, full blue line).

3 Conclusion

We have presented SeQuaiA, a scalable tool for robust and explainable analysis
of CRNs. The analysis is precise enough as cross-validated with simulation-based
results on several models widely used in the literature. One of the key contribu-
tions of the tool is the visualization, which is essential for clear presentation and
easy interpretation of the results of our analysis.
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