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Abstract. While hardware generators have drastically improved design
productivity, they have introduced new challenges for the task of veri-
fication. To effectively cover the functionality of a sophisticated gener-
ator, verification engineers require tools that provide the flexibility of
metaprogramming. However, flexibility alone is not enough; components
must also be portable in order to encourage the proliferation of verifica-
tion libraries as well as enable new methodologies. This paper introduces
fault, a Python embedded hardware verification language that aims to
empower design teams to realize the full potential of generators.

1 Introduction

The new golden age of computer architecture relies on advances in the design
and implementation of computer-aided design (CAD) tools that enhance produc-
tivity [11,21]. While hardware generators have become much more powerful in
recent years, the capabilities of verification tools have not improved at the same
pace [12]. This paper introduces fault,1 a domain-specific language (DSL) that
aims to enable the construction of flexible and portable verification components,
thus helping to realize the full potential of hardware generators.

Using flexible hardware generators [1,16] drastically improves the produc-
tivity of the hardware design process, but simultaneously increases verification
cost. A generator is a program that consumes a set of parameters and produces a
hardware module. The scope of the verification task grows with the capabilities
of the generator, since more sophisticated generators can produce hardware with
varying interfaces and behavior. To reduce the cost of attaining functional cov-
erage of a generator, verification components must be as flexible as their design
1 https://github.com/leonardt/fault.
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counterparts. To achieve flexibility, hardware verification languages must provide
the metaprogramming facilities found in hardware construction languages [1].

However, flexibility alone is not enough to match the power of generators;
verification tools must also enable the construction of portable components. Gen-
erators facilitate the development of hardware libraries and promote the inte-
gration of components from external sources. Underlying the utility of these
libraries is the ability for components to be reused in a diverse set of envi-
ronments. The dominance of commercial hardware verification tools with strict
licensing requirements presents a challenge in the development of portable verifi-
cation components. To encourage the proliferation of verification libraries, hard-
ware verification languages must design for portability across verification tools.
Design for portability will also promote innovation in tools by simplifying the
adoption of new technologies, as well as enable new verification methodologies
based on unified interfaces to multiple technologies.

This paper presents fault, a domain-specific language (DSL) embedded in
Python designed to enable the flexible construction of portable verification com-
ponents. As an embedded DSL, fault users can employ all of Python’s rich
metaprogramming capabilities in the description of verification components.
Integration with magma [15], a hardware construction language embedded in
Python, is an essential feature of fault that enables full introspection of the
hardware circuit under test. By using a staged metaprogramming architecture,
fault verification components are portable across a wide variety of open-source
and commercial verification tools. A key benefit of this architecture is the abil-
ity to provide a unified interface to constrained random and formal verification,
enabling engineers to reuse the same component in simulation and model check-
ing environments. fault is actively used by academic and industrial teams to ver-
ify digital, mixed-signal, and analog designs for use in research and production
chips. This paper demonstrates fault’s capabilities by evaluating the runtime
performance of different tools on a variety of applications ranging in complexity
from unit tests of a single module to integration tests of a complex design. These
experiments leverage fault’s portability by reusing the same source input across
separate trials for each target tool.

2 Design

We had three goals in designing fault: enable the construction of flexible
test components through metaprogramming, provide portable abstractions that
allow test component reuse across multiple target environments, and support
direct integration with standard programming language features. The ability
to metaprogram test components is a vital requirement for scaling verification
efforts to cover the space of functionality utilized by hardware generators. Porta-
bility widens the target audience of a reusable component and enhances a design
team’s productivity by enabling simple migration to different technologies. Inte-
gration with a programming language enables design teams to leverage standard
software patterns for reuse as well as feature-rich test automation frameworks.
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Fig. 1. Architectural overview of the fault testing system. In a Python program, the
user constructs a Tester object with a magma Circuit and records a sequence
of test Actions. The compiler uses the action sequence as an intermediate represen-
tation (IR). Backend targets lower the actions IR into a format compatible with the
corresponding tool and provide an API to run the test and report the results.

Figure 1 provides an overview of the system architecture. fault is a DSL
embedded in Python, a prolific dynamic language with rich support for metapro-
gramming and a large ecosystem of libraries. fault is designed to work with
magma [15], a Python embedded hardware construction language which rep-
resents circuits as introspectable Python objects containing ports, connections,
and instances of other circuits. While fault and magma separate the concerns of
design and verification into separate DSLs, they are embedded in the same host
language for simple interoperability. This multi-language design avoids the com-
plexity of specifying and implementing a single general purpose language without
sacrificing the benefits of tightly integrating design and verification code.

To construct fault test components, the user first instantiates a Tester
object with a magma circuit as an argument. The user then records a sequence
of test actions using an API provided by the Tester class. Here is an example
of constructing a test for a 16-bit Add circuit:

tester = Tester(Add16)
tester.poke(Add16.in0, 3)
tester.poke(Add16.in1, 2)
tester.eval()
tester.expect(Add16.out, 5)

The poke action (method) sets an input value, the eval action triggers evalua-
tion of the circuit (the effects of poke actions are not propagated until an eval
action occurs), and the expect action asserts the value of an output. Attributes
of the Add16 object refer to circuit ports by name.

fault’s design is based on the concept of staged metaprogramming [20]; the
user writes a program that constructs another program to be executed in a
subsequent stage. In fault, the first stage executes Python code to construct a
test specification; the second stage invokes a target runtime that executes this
specification. To run the test for the 16-bit Add, the user simply calls a method
and provides the desired target:

tester.compile_and_run("verilator")
tester.compile_and_run("system-verilog", simulator="iverilog")
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By applying staged metaprogramming, fault allows the user to leverage the
full capabilities of the Python host language in the programmatic construction
of test components. For example, a test can use a native for loop to construct a
sequence of actions using the built-in random number library and integer type:

for _ in range(32):
N = (1 << 16) - 1
in0, in1 = random.randint(0, N), random.randint(0, N)
tester.poke(Add16.in0, in0)
tester.poke(Add16.in1, in1)
tester.eval()
tester.expect(Add16.out, (in0 + in1) & N)

Python for loops are executed during the first stage of computation and are
effectively “unrolled” into a flat sequence of actions. Other control structures
such as while loops, if statements, and function calls are handled similarly.

Python’s object introspection capabilities greatly enhance the flexibility of
fault tests. For example, the core logic of the above test can be generalized to
support an arbitrary width Add circuit by inspecting the interface:

# compute max value based on port width (length)
N = (1 << len(Add.in0)) - 1
in0, in1 = random.randint(0, N), random.randint(0, N)
tester.poke(Add.in0, in0)
tester.poke(Add.in1, in1)
tester.eval()
tester.expect(Add.out, (in0 + in1) & N)

This ability to metaprogram components as a function of the design under test
is an essential aspect of fault’s design. It allows the construction of generic com-
ponents that can be reused across designs with varying interfaces and behavior.

fault’s embedding in Python’s class system provides an opportunity for reuse
through inheritance. For example, a design team could subclass the generic
Tester class and add a new method to perform an asynchronous reset sequence:

class ResetTester(Tester):
def __init__(self, circuit, clock, reset_port):

super().__init__(self, circuit, clock)
self.reset_port = reset_port

def reset(self):
# asynchronous reset, negative edge
self.poke(self.reset_port, 1)
self.eval()
self.poke(self.reset_port, 0)
self.eval()
self.poke(self.reset_port, 1)
self.eval()

Combining inheritance with introspection, we can augment the the
ResetTester to automatically discover the reset port by inspecting port types:
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class AutoResetTester(ResetTester):
def __init__(self, circuit, clock):

# iterate over interface to find reset (assumes exactly one)
for port in circuit.interface.ports.values():

if isinstance(port, AsyncResetN):
reset_port = port

super().__init__(self, circuit, clock, reset_port)

2.1 Frontend: Tester API

fault’s Python embedding is implemented by the Tester class which provides
various interfaces for recording test actions as well as methods for compiling and
running tests using a specific target. By using Python’s class system to perform a
shallow embedding [5], fault avoids the complexity of processing abstract syntax
trees and simply uses Python’s standard execution to construct test components.
As a result, programming in fault is much like programming with a standard
Python library. This design choice reduces the overhead of learning the DSL
and simplifies aspects of implementation such as error messages, but comes at
the cost of limited capabilities for describing control flow. The fault frontend
described in this paper focuses on implementation simplicity, but the system is
designed to be easily extended with new frontends using alternative embeddings.

Action Methods. The Tester class provides a low-level interface for
recording actions using methods. The basic action methods are poke (set
a port to a value), expect (assert a port equals a value), step (invert
the value of the clock), peek (read the value of a port), and eval (eval-
uate the circuit). The peek method returns an object containing a ref-
erence to the value of a circuit port in the current simulation state.
Using logical and arithmetic operators, the user can construct expressions
with this object and pass the result to other actions. For example, to
expect that the value of the port O0 is equal to the inverse of the
value of port O1, the user would write tester.expect(circuit.O0,
∼tester.peek(circuit.O1)). The Tester provides a print action to
display simulation runtime information included the peeked values.

Metaprogramming Control Flow. Notably absent from the basic method
interface described above are control flow abstractions. As noted before, standard
Python control structures such as loops and if statements are executed in the
first stage of computation as part of the metaprogram. However, there are cases
where the user intends to preserve the control structure in the generated code,
such as long-running loops that should not be unrolled at compile time or loops
that are conditioned on dynamic values from the circuit state. For example,
consider a while loop that executes until it receives a ready signal:

# Construct while loop conditioned on circuit.ready.
loop = tester._while(tester.peek(circuit.ready))
loop.expect(circuit.ready, 0) # executes inside loop
loop.step(2) # executes inside loop
# Check final state after loop has exited
tester.expect(circuit.count, expected_cycle_count)
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This logic could not be encoded in the metaprogram, because the metapro-
gram is evaluated before the test is run, and thus does not know anything
about the runtime state of the circuit. To capture this dynamic control flow,
the Tester provides methods for inserting if-else statements, for loops,
and while loops. Each of these methods returns a new instance of the current
Tester object which provides the same API, allowing the user to record actions
corresponding to the body of the control construct. The Tester class provides
convenience functions for using these control structures to generate common
patterns, such as wait on, wait until low, and wait until posedge.

Attribute Interface. While the low-level method interface is useful for writ-
ing complex metaprograms, simple components are rather verbose to construct.
To simplify the handling of basic actions like poke and peek, the Tester
object exposes an interface for referring to circuit ports and internal signals using
Python’s object attribute syntax. For example, to poke the input port I of a
circuit with value 1, one would write tester.circuit.I = 1. This interface
supports referring to internal signals using a hierarchical syntax. For example,
referring to port Q of an instance ff can be done with tester.circuit.ff.Q.

Assume/Guarantee. The Tester object provides methods for specifying
assumptions and guarantees that are abstracted over constrained random and
formal model checking runtime environments. An assumption is a constraint
on input values, and a guarantee is an assertion on output values. Assump-
tions and guarantees are specified using Python lambda functions that return
symbolic expressions referring to the input and output and ports of a circuit.
For example, the guarantee lambda a, b, c: (c >= a) and (c >= b)
states that the output c is always greater than or equal to the inputs a and
b. Here is an example of verifying a simple ALU using the assume/guarantee
interface:

# Configuration sequence for opcode register
tester.circuit.opcode_en = 1
tester.circuit.opcode = 0 # opcode for add (+)
tester.step(2)
tester.circuit.opcode_en = 0
tester.step(2)
# Verify add does not overflow
tester.circuit.a.assume(lambda a: a < BitVector[16](32768))
tester.circuit.b.assume(lambda b: b < BitVector[16](32768))
tester.circuit.c.guarantee(

lambda a, b, c: (c >= a) and (c >= b)
)

Note that this example demonstrates the use of poke and step to initialize
circuits not only for constrained random testing, but also for formal verification.

2.2 Actions IR

In using the Tester API, users construct a sequence of Action objects that are
used as an intermediate representation (IR) for the compiler. Basic port action



fault: Python Hardware Verification DSL 409

objects, such as Poke and Expect, simply store references to ports and values.
Control flow action objects, such as While and If, contain sub-sequences of
actions, resulting in a hierarchical data-structure similar to an abstract syntax
tree. This view of the compiler internals reveals that the metaphor of recording
actions is really an abstraction over the construction of program fragments.

2.3 Backend Targets

fault supports a variety of open-source and commercial backend targets for run-
ning tests. A target is responsible for consuming an action sequence, compiling
it into a format compatible with the target runtime, and providing an API for
invoking the runtime. Targets must also report the result of the test either by
reading the exit code of running the process or processing the test output.

Verilog Simulation Targets. The fault compiler includes support for the
open-source Verilog simulators verilator [17] and iverilog [22], plus three com-
mercial simulators. To compile fault programs to a verilator test bench, the
backend lowers the action sequence into a C++ program that interacts with the
software simulation object produced by the verilator compiler. For iverilog and
the commercial simulators, the backend lowers the action sequence into a Sys-
temVerilog test bench that interacts with the test circuit through an initial
block inside the top-level module. One useful aspect of the SystemVerilog back-
end is its handling of variations in the feature support of target simulators. For
example, the commercial simulators use different commands for enabling wave-
form tracing and iverilog uses a non-standard API for interacting with files.
Constrained random inputs are generated using rejection or SMT [9] sampling.

CoSA. The CoreIR Symbolic Analyzer (CoSA) is a solver-agnostic SMT-based
hardware model checker [13]. fault’s CoSA target relies on magma’s ability
to compile Python circuit descriptions to CoreIR [8], a hardware intermediate
representation. CoreIR’s formal semantics are based on finite-state machines and
the SMT theory of fixed-size bitvectors [3]. fault action sequences are lowered
into CoSA’s custom explicit transition system format (ETS) and combined with
the CoreIR representation of the circuit to produce a model. CoSA allows the
user to specify assumptions and properties, providing a straightforward lowering
of fault assumptions and guarantees.

SPICE. In addition to being able to test designs with Verilog simulators, fault
supports analog and mixed-signal simulators. Compared to the traditional app-
roach of maintaining separate implementations for digital and analog tests, this
is a significantly easier way to write tests for mixed-signal circuits. Basic actions
such as poke and expect are supported in the SPICE simulation mode, but
they are implemented quite differently than they are in Verilog-based tests.
Rather than emitting a sequential list of actions in an initial block, fault
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compiles poke actions into piecewise-linear (PWL) waveforms. Other actions,
such as expect, are implemented by post-processing the simulation data.

Verilog-AMS. For designs containing a mixture of SPICE and Verilog blocks,
fault supports testing with a Verilog-AMS simulator. This mode is more similar
to running SystemVerilog-based tests than SPICE-based tests. In particular, the
test bench is implemented using a top-level SystemVerilog module, meaning that
a wide range of actions are supported including loops and conditionals. This is a
key benefit of using a Verilog-AMS simulator as opposed to a SPICE simulator.

3 Evaluation

To demonstrate fault’s capabilities, we evaluate the runtime performance of four
different testing tasks from the domain of hardware verification. Each task high-
lights the utility of fault’s portability by reusing the same source input across
separate trials of different targets. Due to licensing restrictions, we omit the
name of the commercial simulators and replace them with a generic name. The
code to reproduce these experiments is available in the artifact.2 Each experi-
ment involves at least one open-source simulator, but reproducing all the results
requires access to commercial simulators.

CGRA Processing Element Unit Tests. To demonstrate the capability of
fault as a tool for writing portable tests for digital verification, Fig. 2 reports
the runtime performance of a subset of the lassen test suite. lassen [19] is
an open-source implementation of a CGRA processing element that contains a
large suite of unit tests using fault. Interestingly, we see comparable perfor-
mance between verilator and commercial simulator 1, while commercial
simulator 2 is consistently ∼5x slower than the others. One important property
of the lassen test suite is that it generates a new test bench for each operation
and input/output pair. This stresses a simulator’s ability to efficiently handle
incremental changes, since each invocation involves a new top-level test bench
file, but an unchanged design under test.

Fig. 2. Runtime (s) for unit tests of a CGRA processing element collected with a VM
running on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz with 256GB of RAM.

2 https://github.com/leonardt/fault artifact/blob/master/README.md.

https://github.com/leonardt/fault_artifact/blob/master/README.md


fault: Python Hardware Verification DSL 411

SRAM Array. To demonstrate the capability of fault as a tool for writing
portable tests for analog and mixed-signal verification, we used OpenRAM to
generate a 16x16 SRAM and then ran a randomized readback test of the design
with SPICE, Verilog-AMS, and SystemVerilog simulators. OpenRAM [10] is an
open-source memory compiler that produces a SPICE netlist and Verilog model.

The results shown in Fig. 3a reveal two interesting trends. First, as expected,
SPICE simulations of the array were significantly slower than Verilog simulations
(100-1000x). Since fault allows the user to prototype tests with fast Verilog
simulations, and then seamlessly switch to SPICE for signoff verification, our tool
may reduce the latency in developing mixed-signal tests by orders of magnitude.
Second, even for simulations of the same type, there was significant variation
in the runtime of different simulators. SPICE simulation time varied by about
2x, while Verilog simulation time varied by about 10x. One of the advantages of
using fault is that it is easy to switch between simulators to find the one that
works best for a particular scenario.

Fig. 3. Results for OpenRAM 16x16 SRAM randomized readback test.

We also looked at the amount of human effort required to use fault to imple-
ment this test as compared to the traditional approach of writing separate test-
benches for each simulation language. Since “human effort” is subjective, we
used lines of code as a rough metric, as measured from handwritten implemen-
tations of the same test in SystemVerilog, Verilog-AMS, and SPICE. Figure 3b
shows the results of this experiment: the fault-based approach used 136 LoC as
compared to 412 LoC for the traditional approach, a reduction of 3.02x.

CGRA Integration Test Bench. To observe how fault scales to more com-
plex testing tasks, we report numbers for an integration test of the Stanford
Garnet CGRA [18]. This test generates an instance of the CGRA chip, runs a
simulation that programs the chip for an image processing application, streams
the input image data onto the chip, and streams the output image data to a
file. The output is compared to a reference software model. Running the test
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took 232 min with the verilator target, 185 min with commercial simulator
1, and 221 min with commercial simulator 2. Leveraging the portability of
fault-based tests could save up to 47 min in testing time. These results were
collected using the same machine as the SRAM experiment (see Fig. 3a).

Unified Constrained Random and Formal. To demonstrate the utility of
the assume/guarantee interface as a unified abstraction for constrained random
and formal verification, we compared the runtime performance of using a con-
strained random target versus a formal model checker to verify the simple ALU
property shown in Sect. 2.1. The first test evaluated the runtime performance of
verifying correctness of the property on 100 constrained random inputs versus
using a formal model checker. The formal model checker provided a complete
proof of correctness using interpolation-based model checking [14] in 1.613 s,
while constrained random verified 100 samples in 2.269 s (rejection sampling)
and 2.799 s (SMT sampling). The second test injected a bug into the ALU by
swapping the opcodes for addition and subtraction. The model checker found a
counterexample in 1.154 s with bounded model checking [4], while constrained
random failed in 2.947 s (rejection sampling) and 1.230 s (SMT sampling). In
both cases the model checker was at least as fast as the constrained random
equivalent while providing better coverage in the case of no bug. These results
were collected using a MacBook Pro (13-in 2017, 4 Thunderbolt, macOS 10.15.2),
with a 3.5 GHz Dual-Core Intel i7 CPU, and 16 GB RAM.

4 Related Work

Prior work has leveraged using a generic API to Verilog simulators to build porta-
bility into testing infrastructures. The ChiselTest library [2] and cocotb [7]
provide this capability for Scala and Python respectively. Using a generic API
offers many of the same advantages with regards to test portability, simplic-
ity, and automation, but the lack of multi-stage execution limits the applica-
tion to more diverse backend targets such as SPICE simulations and formal
model checkers. However, because these libraries interact with the simulator
directly, they do allow user code to immediately respond to the simulator state,
enabling interactive debugging through the host language. cocotb also presents
a coroutine abstraction that naturally models the concurrency found in hard-
ware simulation. Future work could investigate using cocotb as a runtime target
for fault’s frontend, enabling a similar concurrent, interactive style of testing.
Another interesting avenue of work would be to extend fault’s backend targets
to support lowering cocotb’s coroutine abstraction.

5 Conclusion

The ethos of fault is to enable the construction of flexible, portable test com-
ponents that are simple to integrate and scale for testing complex applications.
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The ability to metaprogram test components is essential for enabling verification
teams to match the productivity of design teams using generators. fault’s porta-
bility enables teams to easily transition to different tools for different use cases,
and enables the proliferation of reusable verification libraries that are applicable
in a diverse set of tooling environments.

While fault has already demonstrated utility to design teams in academia
and industry, there remains a bright future filled with opportunity to improve
the system. Extending the assume/guarantee interface to support temporal prop-
erties/constraints and leverage compositional reasoning [6] is essential for scal-
ing the approach to more complex systems. Adding concurrent programming
abstractions such as coroutines are essential for capturing the common patterns
used in the testing of parallel hardware. Using a deep embedding architecture
could significantly improve the performance of generating fault test benches.

Funding. The authors would like to thank the DARPA DSSoC (FA8650-18-2-
7861) and POSH (FA8650-18-2-7854) programs, the Stanford AHA and SystemX
affiliates, Intel’s Agile ISTC, the Hertz Foundation Fellowship, and the Stanford
Graduate Fellowship for supporting this work.
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Abstract. Craig interpolant generation for non-linear theory and
its combination with other theories are still in infancy, although
interpolation-based techniques have become popular in the verification
of programs and hybrid systems where non-linear expressions are very
common. In this paper, we first prove that a polynomial interpolant of
the form h(x) > 0 exists for two mutually contradictory polynomial for-
mulas φ(x,y) and ψ(x, z), with the form f1 ≥ 0 ∧ · · · ∧ fn ≥ 0, where
fi are polynomials in x,y or x, z, and the quadratic module generated
by fi is Archimedean. Then, we show that synthesizing such interpolant
can be reduced to solving a semi-definite programming problem (SDP).
In addition, we propose a verification approach to assure the validity
of the synthesized interpolant and consequently avoid the unsoundness
caused by numerical error in SDP solving. Besides, we discuss how to
generalize our approach to general semi-algebraic formulas. Finally, as
an application, we demonstrate how to apply our approach to invariant
generation in program verification.

Keywords: Craig interpolant · Archimedean condition · Semi-definite
programming · Program verification · Sum of squares

1 Introduction

Interpolation-based techniques have become popular in recent years because of
their inherently modular and local reasoning, which can scale up existing formal
verification techniques like theorem proving, model-checking, abstract interpre-
tation, and so on, while the scalability is the bottleneck of these techniques. The
study of interpolation was pioneered by Kraj́ic̆ek [20] and Pudlák [30] in con-
nection with theorem proving, by McMillan in connection with model-checking
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[25], by Graf and Säıdi [14], Henzinger et al. [16] and McMillan [26] in con-
nection with abstraction like CEGAR, by Wang et al. [17] in connection with
machine-learning based program verification.

Craig interpolant generation plays a central role in interpolation-based tech-
niques, and therefore has drawn increasing attention. In the literature, there
are various efficient algorithms proposed for automatically synthesizing inter-
polants for decidable fragments of first-order logic, linear arithmetic, array logic,
equality logic with uninterpreted functions (EUF), etc., and their combinations,
and their use in verification, e.g., [6,16,18,19,26,27,33,33,37] and the references
therein. Additionally, how to compare the strength of different interpolants is
investigated in [9]. However, interpolant generation for non-linear theory and its
combination with the aforementioned theories is still in infancy, although non-
linear polynomials inequalities are quite common in safety-critical software and
embedded systems [38,39].

In [7], Dai et al. had a first try and gave an algorithm for generating
interpolants for conjunctions of mutually contradictory nonlinear polynomial
inequalities based on the existence of a witness guaranteed by Stengle’s Posi-
tivstellensatz [36], which is computable using semi-definite programming (SDP).
Their algorithm is incomplete in general but if all variables are bounded (called
Archimedean condition), then it becomes complete. A major limitation of their
work is that two mutually contradictory formulas φ and ψ must have the same
set of variables. In [10], Gan et al. proposed an algorithm to generate inter-
polants for quadratic polynomial inequalities. The basic idea is based on the
insight that for analyzing the solution space of concave quadratic polynomial
inequalities, it suffices to linearize them by proving a generalization of Motzkin’s
transposition theorem for concave quadratic polynomial inequalities. Moreover,
they also discussed how to generate interpolants for the combination of the
theory of quadratic concave polynomial inequalities and EUF based on the hier-
archical calculus proposed in [34] and used in [33]. Obviously, quadratic con-
cave polynomial inequalities is a very restrictive class of polynomial formulas,
although most of existing abstract domains fall within it as argued in [10]. Mean-
while, in [13], Gao and Zufferey presented an approach to extract interpolants for
non-linear formulas possibly containing transcendental functions and differential
equations from proofs of unsatisfiability generated by δ-decision procedure [12]
based on interval constraint propagation (ICP) [1] by transforming proof traces
from δ-complete decision procedures into interpolants that consist of Boolean
combinations of linear constraints. Thus, their approach can only find the inter-
polants between two formulas whenever their conjunction is not δ-satisfiable.
Similar idea was also reported in [21]. In [5], Chen et al. proposed an app-
roach for synthesizing non-linear interpolants based on counterexample-guided
and machine-learning, but it relies on quantifier elimination in order to guar-
antee the completeness and convergence, which gives rise to the low efficiency
of their approach theoretically. In [35], Srikanth et al. presented an approach
called CAMPY to exploit non-linear interpolant generation, which is achieved
by abstracting non-linear formulas (possibly with non-polynomial expressions)
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to the theory of linear arithmetic with uninterpreted functions, i.e., EUFLIA,
to prove and/or disprove if a given program satisfies a given property, that may
contain nonlinear expressions.

Example 1. In order to compare the approach proposed in this paper and the
ones aforementioned, consider

φ = −2xy2 + x2 − 3xz − y2 − yz + z2 − 1 ≥ 0 ∧ 100 − x2 − y2 ≥ 0 ∧
x2z2 + y2z2 − x2 − y2 +

1

6
(x4 + 2x2y2 + y4) − 1

120
(x6 + y6) − 4 ≤ 0;

ψ = 4(x − y)4 + (x + y)2 + w2 − 133.097 ≤ 0 ∧ 100(x + y)2 − w2(x − y)4 − 3000 ≥ 0.

It can be checked that φ ∧ ψ |= ⊥.
Obviously, synthesizing interpolants for φ and ψ in this example is beyond

the ability of the above approaches reported in [7,10]. Using the method in [13]
implemented in dReal3 it would return “SAT” with δ = 0.001, i.e., φ ∧ ψ is δ-
satisfiable, and hence it cannot synthesize any interpolant using [12]’s approach
with any precision greater than 0.0011. While, using our method, an interpolant
h > 0 with degree 10 can be found as shown in Fig. 12. Additionally, using
the symbolic procedure REDUCE, it can be proved that h > 0 is indeed an
interpolant of φ and ψ.

Fig. 1. Example 1. (Green region: the
projection of φ(x, y, z) onto x and y;
red region: the projection of ψ(x, y, w)
onto x and y; gray region plus the
green region: the synthesized inter-
polant {(x, y) | h(x, y) > 0}.) (Color
figure online)

In this paper, we investigate this
issue and consider how to synthesize an
interpolant for two polynomial formu-
las φ(x,y) and ψ(x, z) with φ(x,y) ∧
ψ(x, z) |= ⊥, where
φ(x,y) : f1(x,y) ≥ 0∧· · ·∧fm(x,y) ≥ 0,
ψ(x, z) : g1(x, z) ≥ 0 ∧ · · · ∧ gn(x, z)≥ 0,

x ∈ R
r, y ∈ R

s, z ∈ R
t are

variable vectors, r, s, t ∈ N, and
f1, . . . , fm, g1, . . . , gn are polynomials. In
addition, Mx,y{f1(x,y), . . . , fm(x,y)}
and Mx,z{g1(x, z), . . ., gn(x, z)} are two
Archimedean quadratic modules. Here
we allow uncommon variables, that are
not allowed in [7], and drop the con-
straint that polynomials must be concave
and quadratic, which is assumed in [10].
The Archimedean condition amounts to
that all the variables are bounded, which
is reasonable in program verification, as
only bounded numbers can be repre-
sented in computer in practice. We first prove that there exists a polynomial
1 Alternatively, if we try the formula with the latest version of dReal4, it does not

produce any output after 20 h.
2 The mathematical representation of h is given in the full version [11].
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h(x) such that h(x) = 0 separates the state space of x defined by φ(x,y) from
the one defined by ψ(x, z) theoretically, and then propose an algorithm to com-
pute such h(x) based on SDP. Furthermore, we propose a verification approach
to assure the validity of the synthesized interpolant and consequently avoid the
unsoundness caused by numerical error in SDP solving. Finally, we also discuss
how to extend our results to general semi-algebraic constraints.

Another contribution of this paper is that as an application, we illustrate
how to apply our approach to invariant generation in program verification by
revising Lin et al.’s framework proposed in [22] for invariant generation based
on weakest precondition, strongest postcondition and interpolation by allowing
to generate nonlinear invariants.

The paper is organized as follows. Some preliminaries and the problem of
interest are introduced in Sect. 2. Section 3 shows the existence of an interpolant
for two mutually contradictory polynomial formulas only containing conjunction,
and Sect. 4 presents SDP-based methods to compute it. In Sect. 5, we discuss how
to avoid unsoundness caused by numerical error in SDP. Section 6 extends our
approach to general polynomial formulas. Section 7 demonstrates how to apply
our approach to invariant generation in program verification. We conclude this
paper in Sect. 8.

2 Preliminaries

In this section, we first give a brief introduction on some notions used throughout
this paper and then describe the problem of interest.

2.1 Quadratic Module

N, Q and R are the sets of integers, rational numbers and real numbers, respec-
tively. Q[x] and R[x] denotes the polynomial ring over rational numbers and
real numbers in r ≥ 1 indeterminates x : (x1, . . . , xr). We use R[x]2 := {p2 |
p ∈ R[x]} for the set of squares and

∑
R[x]2 for the set of sums of squares of

polynomials in x. Vectors are denoted by boldface letters. ⊥ and � stand for
false and true, respectively.

Definition 1 (Quadratic Module [24]). A subset M of R[x] is called a
quadratic module if it contains 1 and is closed under addition and multiplication
with squares, i.e., 1 ∈ M,M + M ⊆ M, and p2M ⊆ M for all p ∈ R[x].

Let p := {p1, . . . , ps} be a finite subset of R[x], the quadratic module Mx(p)
or simply M(p) generated by p (i.e. the smallest quadratic module containing all
pis) is Mx(p) = {

∑s
i=0 δipi | δi ∈

∑
R[x]2}, where p0 = 1.

Archimedean condition plays a key role in the study of polynomial optimiza-
tion.

Definition 2 (Archimedean). Let M be a quadratic module of R[x]. M is
said to be Archimedean if there exists some a > 0 such that a −

∑r
i=1 x2

i ∈ M.
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2.2 Problem Description

Craig showed that given two formulas φ and ψ in a first-order theory T , if
φ |= ψ, then there always exists an interpolant I over the common symbols of φ
and ψ s.t. φ |= I and I |= ψ. In the verification literature, this terminology has
been abused following [26], where a reverse interpolant (coined by Kovács and
Voronkov in [19]) I over the common symbols of φ and ψ is defined by

Definition 3 (Interpolant). Given two formulas φ and ψ in a theory T s.t.
φ ∧ ψ |=T ⊥, a formula I is an interpolant of φ and ψ if (i) φ |=T I; (ii)
I ∧ ψ |= ⊥; and (iii) I only contains common symbols and free variables shared
by φ and ψ.

Definition 4. A basic semi-algebraic set {x ∈ R
n |

∧s
i=1 pi(x) ≥ 0} is called

a set of the Archimedean form if Mx{p1(x), . . . , ps(x)} is Archimedean, where
pi(x) ∈ R[x], i = 1, . . . , s.

The interpolant synthesis problemof interest in this paper is given inProblem1.

Problem 1. Let φ(x,y) and ψ(x, z) be two polynomial formulas of the form

φ(x,y) : f1(x,y) ≥ 0 ∧ · · · ∧ fm(x,y) ≥ 0,

ψ(x, z) : g1(x, z) ≥ 0 ∧ · · · ∧ gn(x, z) ≥ 0,

where, x ∈ R
r, y ∈ R

s, z ∈ R
t are variable vectors, r, s, t ∈ N, and f1, . . . , fm, g1,

. . . , gn are polynomials in the corresponding variables. Suppose φ ∧ ψ |= ⊥,
and {(x,y) | φ(x,y)} and {(x, z) | ψ(x, z)} are semi-algebraic sets of the
Archimedean form. Find a polynomial h(x) such that h(x) > 0 is an interpolant
for φ and ψ.

3 Existence of Interpolants

The basic idea and steps of proving the existence of interpolants are as follows:
Because an interpolant of φ and ψ contains only the common symbols in φ and
ψ, it is natural to consider the projections of the sets defined by φ and ψ on x,
i.e. Px(φ(x,y))=̂{x | ∃y. φ(x,y)} and Px(ψ(x, z))=̂{x | ∃z. ψ(x, z)}, which are
obviously disjoint. We therefore prove that, if h(x) = 0 separates Px(φ(x,y))
and Px(ψ(x, z)), then h(x) solves Problem 1 (see Proposition 1). Thus, we only
need to prove the existence of such h(x) through the following steps: First, we
prove that Px(φ(x,y)) and Px(ψ(x, z)) are compact semi-algebraic sets which are
unions of finitely many basic closed semi-algebraic sets (see Lemma 1). Second,
using Putinar’s Positivstellensatz, we prove that, for two disjoint basic closed
semi-algebraic sets S1 and S2 of the Archimedean form, there exists a polynomial
h1(x) such that h1(x) = 0 separates S1 and S2 (see Lemma 2). This result is then
extended to the case that S2 is a finite union of basic closed semi-algebraic sets
(see Lemma 3). Finally, by generalizing Lemma 3 to the case that two compact
semi-algebraic sets both are unions of finitely many basic closed semi-algebraic
sets and together with Proposition 1, we prove the existence of interpolant in
Theorem 2 and Corollary 1.
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Proposition 1. If h(x) ∈ R[x] satisfies the following constraints

∀x ∈ Px(φ(x,y)).h(x) > 0 and ∀x ∈ Px(ψ(x, z)).h(x) < 0, (1)

then h(x) > 0 is an interpolant for φ(x,y) and ψ(x, z), where φ(x,y) and ψ(x, z)
are defined as in Problem 1.

Proof. According to Definition 3, it is enough to prove that φ(x,y) |= h(x) > 0
and ψ(x, z) |= h(x) ≤ 0.

Since any (x0,y0) satisfying φ(x,y) must imply x0 ∈ Px(φ(x,y)), it follows
that h(x0) > 0 from (1) and φ(x,y) |= h(x) > 0. Similarly, we can prove
ψ(x, z) |= h(x) < 0, implying that ψ(x, z) |= h(x) ≤ 0. Therefore, h(x) > 0 is
an interpolant for φ(x,y) and ψ(x, z). ��

In order to synthesize such h(x) in Proposition 1, we first dig deeper into
the two sets Px(φ(x,y)) and Px(ψ(x, z)). As shown later, i.e. in Lemma 1, we
will find that these two sets are compact semi-algebraic sets of the form {x |
∨c

i=1

∧Ji

j=1 αi,j(x) ≥ 0}. Before this lemma, we introduce Finiteness theorem
pertinent to a basic closed semi-algebraic subset of R

n, which will be used in the
proof of Lemma 1, where a basic closed semi-algebraic subset of R

n is a set of
the form {x ∈ R

n | α1(x) ≥ 0, . . . , αk(x) ≥ 0} with α1, . . . , αk ∈ R[x].

Theorem 1 (Finiteness Theorem, Theorem 2.7.2 in [3]). Let A ⊂ R
n be a

closed semi-algebraic set. Then A is a finite union of basic closed semi-algebraic
sets.

Lemma 1. The set Px(φ(x,y)) is compact semi-algebraic set of the following
form

Px(φ(x,y)) := {x |
c∨

i=1

Ji∧

j=1

αi,j(x) ≥ 0},

where αi,j(x) ∈ R[x], i = 1, . . . , c, j = 1, . . . , Ji. The same claim applies to the
set Px(ψ(x, z)) as well.

Proof. For the sake of simplicity, we denote {(x,y) | φ(x,y)} and Px(φ(x,y))
by S and π(S), respectively.

Because S is a compact set and π is a continuous map that maps compact
set to compact set, π(S), which is the image of a compact set under a continuous
map, is compact. Moreover, as S is a semi-algebraic set and the projection of
a semi-algebraic set is also a semi-algebraic set by Tarski-Seidenberg theorem
[2], this implies that π(S) is a semi-algebraic set. Thus, π(S) is a compact semi-
algebraic set.

Since π(S) is a compact semi-algebraic set, and also a closed semi-
algebraic set, we have that π(S) is a finite union of basic closed semi-
algebraic sets from Theorem 1. Hence, there exist a series of polynomi-
als α1,1(x), . . . , α1,J1(x), . . . , αc,1(x), . . . , αc,Jc

(x) such that π(S) =
⋃c

i=1{x |
∧Ji

j=1 αi,j(x) ≥ 0} = {x |
∨c

i=1

∧Ji

j=1 αi,j(x) ≥ 0}. This concludes this lemma. ��
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After knowing the structure of Px(φ(x,y)) and Px(ψ(x, z)) being a union
of some basic semialgebraic sets as illustrated in Lemma 1, we next prove the
existence of h(x) ∈ R[x] satisfying (1), as formally stated in Theorem 2.

Theorem 2. Suppose that φ(x,y) and ψ(x, z) are defined as in Problem 1, then
there exists a polynomial h(x) satisfying (1).

As pointed out by an anonymous reviewer that Theorem 2 can be obtained by
some properties of the ring of Nash functions proved in [29]. In what follows, we
give a simpler and more intuitive proof. To the end, it requires some preliminaries
first. The main tool in our proof is Putinar’s Positivstellensatz, as formulated in
Theorem 3.

Theorem 3 (Putinar’s Positivstellensatz [31]). Let p1, . . . , pk ∈ R[x] and
S1 = {x | p1(x) ≥ 0, . . . , pk(x) ≥ 0}. Assume that the quadratic mod-
ule M(p1, . . . , pk) is Archimedean. For q ∈ R[x], if q > 0 on S1 then q ∈
M(p1, . . . , pk).

With Putinar’s Positivstellensatz we can draw a conclusion that there exists
a polynomial such that its zero level set3 separates two compact semi-algebraic
sets of the Archimedean form, as claimed in Lemmas 2 and 3.

Lemma 2. Let S1 = {x | p1(x) ≥ 0, . . . , pJ (x) ≥ 0}, S2 = {x | q1(x) ≥
0, . . . , qK(x) ≥ 0} be semi-algebraic sets of the Archimedean form and S1 ∩S2 =
∅, then there exists a polynomial h1(x) such that

∀x ∈ S1. h1(x) > 0, ∀x ∈ S2. h1(x) < 0. (2)

Proof. Since S1 ∩ S2 = ∅, it follows

p2 ≥ 0 ∧ · · · ∧ pJ ≥ 0 ∧ q1 ≥ 0 ∧ · · · ∧ qK ≥ 0 |= −p1 > 0.

Let S3 = {x | p2 ≥ 0 ∧ · · · ∧ pJ ≥ 0 ∧ q1 ≥ 0 ∧ · · · ∧ qK ≥ 0}, then −p1 > 0
on S3. Since S1 and S2 are semi-algebraic sets of the Archimedean form, it
follows Mx(p2(x), . . . , pJ (x), q1(x), . . . , qK(x)) is also Archimedean. Hence, S3

is compact. From −p1 > 0 on S3, we further have that there exists some u1 ∈∑
R[x]2 such that −u1p1 − 1 > 0 on S3. Using Theorem 3, we have that

−u1p1 − 1 ∈ Mx(p2(x), . . . , pJ (x), q1(x), . . . , qK(x)),

implying that there exists a set of sums of squares polynomials u2, . . . , uJ and
v0,v1, . . . , vK ∈ R[x], such that

−u1p1 − 1 ≡ u2p2 + · · · + uJpJ + v0 + v1q1 + · · · + vKqK .

Let h1 = 1
2 + u1p1 + · · · + uJpJ , i.e., −h1 = 1

2 + v0 + v1q1 + · · · + vKqK . It is
easy to check that (2) holds. ��

3 The zero level set of an n-variate polynomial h(x) is defined as {x ∈ R
n | h(x) = 0}.
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Lemma 3 generalizes the result of Lemma 2 to more general compact semi-
algebraic sets of the Archimedean form, which is the union of multiple basic
semi-algebraic sets.

Lemma 3. Assume S0 = {x | p1(x) ≥ 0, . . . , pJ (x) ≥ 0} and Si = {x |
qi,1(x) ≥ 0, . . . , qi,Ki

(x) ≥ 0}, i = 1, . . . , b, are semi-algebraic sets of the
Archimedean form, and S0 ∩

⋃b
i=1 Si = ∅, then there exists a polynomial h0(x)

such that

∀x ∈ S0. h0(x) > 0, ∀x ∈
b⋃

i=1

Si. h0(x) < 0. (3)

In order to prove this lemma, we prove the following lemma first.

Lemma 4. Let c, d ∈ R with 0 < c < d and U0 = [c, d]r. There exists a polyno-
mial ĥ(x) such that

x ∈ U0 |= ĥ(x) > 0 |=
r∧

i=1

xi > 0, (4)

where x = (x1, . . . , xr).

Proof. We show that there exists k ∈ N such that ĥ(x) = (d
2 )2k − (x1 − c+d

2 )2k −
· · · − (xr − c+d

2 )2k satisfies (4). It is evident that ĥ(x) > 0 |=
∧r

i=1 xi > 0 holds.
In the following we just need to verify that

∧r
i=1 c ≤ xi ≤ d |= ĥ(x) > 0 holds.

Since c ≤ xi ≤ d, we have (xi − c+d
2 )2k ≤ (d−c

2 )2k and (d
2 )2k −

∑r
i=1(xi −

c+d
2 )2k ≥ (d

2 )2k − r(d−c
2 )2k. Obviously, if an integer k satisfies ( d

d−c )2k > r, then
(d
2 )2k −

∑r
i=1(xi − c+d

2 )2k > 0. The existence of such k satisfying ( d
d−c )2k > r is

assured by d
d−c > 1. ��

Now we give a proof for Lemma 3 as follows.

Proof (of Lemma 3). For any i with 1 ≤ i ≤ b, according to Lemma 2, there exists
a polynomial hi ∈ R[x], satisfying ∀x ∈ S0. hi(x) > 0 and ∀x ∈ Si. hi(x) < 0.

Next, we construct h0(x) ∈ R[x] from h1(x), . . . , hb(x). Since S0 is a semi-
algebraic set of the Archimedean form, S0 is compact and thus hi(x) has min-
imum value and maximum value on S0, denoted by ci and di respectively. Let
c = min(c1, . . . , cb) and d = max(d1, . . . , db). Clearly, 0 < c < d.

From Lemma 4 there must exist a polynomial ĥ(w1, . . . , wb) such that

b∧

i=1

c ≤ wi ≤ d |= ĥ(w1, . . . , wb) > 0, (5)

ĥ(w1, . . . , wb) > 0 |=
b∧

i=1

wi > 0. (6)

Let h′
0(x) = ĥ(h1(x), . . . , hb(x)). Obviously, h′

0(x) ∈ R[x]. We next prove that
h′

0(x) satisfies (3) in Lemma 3.



Nonlinear Craig Interpolant Generation 423

For all x0 ∈ S0, c ≤ hi(x0) ≤ d, i = 1, . . . , b, h′
0(x0) =

ĥ(h1(x0), . . . , hb(x0)) > 0 by (5). Therefore, the first constraint in (3), i.e.
∀x0 ∈ S0.h0(x0) > 0, holds.

For any x0 ∈
⋃b

i=1 Si, there must exist some i such that x0 ∈ Si, implying
that hi(x0) < 0. By (6) we have h′

0(x0) = ĥ(h1(x0), . . . , hb(x0)) ≤ 0.
Thus, we obtain the conclusion that there exists a polynomial h′

0(x) such
that ∀x ∈ S0. h′

0(x) > 0, and ∀x ∈
⋃b

i=1 Si. h′
0(x) ≤ 0. Also, since S0 is a

compact set, and h′
0(x) > 0 on S0, there must exist some positive number ε > 0

such that h′
0(x) − ε > 0 over S0. Then h′

0(x) − ε < 0 on
⋃b

i=1 Si. Therefore,
setting h0(x) := h′

0(x) − ε, Lemma 3 is proved. ��
In Lemma 3 we proved that there exists a polynomial h(x) ∈ R[x] such that

its zero level set is a barrier between two semi-algebraic sets of the Archimedean
form, of which one set is a union of finitely many basic semi-algebraic sets. In
the following we will give a formal proof of Theorem 2, which is a generalization
of Lemma 3.

Proof (of Theorem 2). According to Lemma 1 we have that Px(φ(x,y)) and
Px(ψ(x, z)) are compact sets, and there respectively exists a set of polynomials
pi,j(x) ∈ R[x], i = 1, . . . , a, j = 1, . . . , Ji, and ql,k(x) ∈ R[x], l = 1, . . . , b,
k = 1, . . . , Ki, such that

Px(φ(x,y)) = {x |
a∨

i=1

Ji∧

j=1

pi,j(x) ≥ 0}, Px(ψ(x, z)) = {x |
b∨

l=1

Kl∧

k=1

ql,k(x) ≥ 0}.

Since Px(φ(x,y)) and Px(ψ(x, z)) are compact sets, there exists a positive
N ∈ R such that f = N −

∑r
i=1 x2

i ≥ 0 over Px(φ(x,y)) and Px(ψ(x, z)).
For each i = 1, . . . , a and each l = 1, . . . , b, set pi,0 = ql,0 = f . Denote
{x |

∨a
i=1

∧Ji

j=0 pi,j(x) ≥ 0} =
⋃a

i=1{x |
∧Ji

j=0 pi,j(x) ≥ 0} by P1 and

{x |
∨b

l=1

∧Kl

k=0 ql,k(x) ≥ 0} =
⋃b

l=1{x |
∧Kl

k=0 ql,k(x) ≥ 0} by P2. It is easy
to see that P1 = Px(φ(x,y), P2 = Px(ψ(x, z)).

Since φ ∧ ψ |= ⊥, there does not exist (x,y, z) ∈ R
r+s+t that satisfies φ ∧ ψ,

implying that Px(φ(x,y)) ∩ Px(ψ(x, z)) = ∅ and thus P1 ∩ P2 = ∅. Also, since
{x |

∧Ji1
j=0 pi1,j(x) ≥ 0} ⊆ P1, for each i1 = 1, . . . , a, {x |

∧Ji1
j=0 pi1,j(x) ≥

0} ∩ P2 = ∅ holds. By Lemma 3 there exists hi1(x) ∈ R[x] such that

∀x ∈ {x |
Ji1∧

j=0

pi1,j(x) ≥ 0}.hi1(x) > 0, ∀x ∈ P2.hi1(x) < 0.

Let S′ = {x | −h1(x) ≥ 0, . . . ,−ha(x) ≥ 0, N −
∑r

i=1 x2
i ≥ 0}. Obviously,

S′ is a semialgebraic set of the Archimedean form, P2 ⊂ S′ and P1 ∩ S′ = ∅.
Therefore, according to Lemma 2, there exists a polynomial h(x) ∈ R[x] such
that ∀x ∈ S′. h(x) > 0 and ∀x ∈ P1. h(x) < 0. Let h(x) = −h(x), then
we have ∀x ∈ P1. h(x) > 0 and ∀x ∈ P2. h(x) < 0, implying that ∀x ∈
Px(φ(x,y)).h(x) > 0 and ∀x ∈ Px(ψ(x, z)).h(x) < 0. Thus, this completes the
proof of Theorem 2. ��
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Consequently, we immediately have the following conclusion.

Corollary 1. Let φ(x,y) and ψ(x, z) be defined as in Problem 1. There must
exist a polynomial h(x) ∈ R[x] such that h(x) > 0 is an interpolant for φ and ψ.

Actually, since Px(φ(x,y)) and Px(ψ(x, z)) both are compact set by Lemma
1, and h(x) > 0 on Px(φ(x,y)) and h(x) < 0 on Px(ψ(x, z)), we can obtain h′(x)
by giving a small perturbation to the coefficients of h(x) such that h′(x) has the
property of h(x). Hence, there should exist a h(x) ∈ Q[x] such that h(x) > 0 is
an interpolant for φ and ψ, intuitively.

Theorem 4. Let φ(x,y) and ψ(x, z) be defined as in Problem 1. There must
exist a polynomial h(x) ∈ Q[x] such that h(x) > 0 is an interpolant for φ and
ψ.

Proof. We just need to prove there exists a polynomial h(x) ∈ Q[x] satisfying
(1).

By Theorem 2, there exists a polynomial h′(x) ∈ R[x] satisfying (1). Since
Px(φ(x,y)) and Px(ψ(x, z)) are compact sets, h′(x) > 0 on Px(φ(x,y)) and
h′(x) < 0 on Px(ψ(x, z)), there exist η1 > 0 and η2 > 0 such that

∀x ∈ Px(φ(x,y)).h′(x) − η1 ≥ 0, ∀x ∈ Px(ψ(x, z)).h′(x) + η2 ≤ 0.

Let η = min(η1
2 , η2

2 ). Suppose h′(x) ∈ R[x] has the form h′(x) =
∑

α∈Ω cαxα,
where α ∈ N

r, Ω ⊂ N
r is a finite set of indices, r is the dimension of x, xα is

the monomial xα1
1 · · ·xαr

r , and 0 �= cα ∈ R is the coefficient of monomial xα. Let
N = |Ω| be the cardinality of Ω. Since Px(φ(x,y)) and Px(ψ(x, z)) are compact
sets, for any α ∈ Ω, there exists Mα > 0 such that Mα = max{|xα| | x ∈
Px(φ(x,y)) ∪ Px(ψ(x, z))}. Then for any fixed polynomial ĥ(x) =

∑
α∈Ω dαxα,

with dα ∈ [cα − η
NMα

, cα + η
NMα

], and any x ∈ Px(φ(x,y)) ∪ Px(ψ(x, z)), we
have

|ĥ(x) − h′(x)| = |
∑

α∈Ω

(dα − cα)xα| ≤
∑

α∈Ω

|(dα − cα)| · |xα| ≤
∑

α∈Ω

η

NMα
· Mα = η.

Since η = min(η1
2 , η2

2 ), hence

∀x ∈ Px(φ(x,y)).ĥ(x) ≥ η1

2
> 0, ∀x ∈ Px(ψ(x, z)).ĥ(x) ≤ −η2

2
< 0. (7)

Since for any dα ∈ [cα − η
NMα

, cα + η
NMα

] (7) holds, there must exist some
rational number rα ∈ Q in [cα − η

NMα
, cα + η

NMα
] satisfying (7) because of the

density of rational numbers. Thus, let h(x) =
∑

α∈Ω rαxα. Clearly, it follows
that h(x) ∈ Q[x] and (1) holds. ��

So, the existence of h(x) ∈ Q[x] is guaranteed. Moreover, from the proof of
Theorem 4, we know that a small perturbation of h(x) is permitted, which is a
good property for computing h(x) in a numeric way. In the subsequent subsec-
tion, we recast the problem of finding such h(x) as a semi-definite programming
problem.
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4 SOS Formulation

Similar to [7], in this section, we discuss how to reduce the problem of finding
h(x) satisfying (1) to a sum of squares programming problem.

Theorem 5. Let φ(x,y) and ψ(x, z) be defined as in the Problem 1. Then there
exist m + n + 2 SOS (sum of squares) polynomials ui(x,y) (i = 1, . . . , m + 1),
vj(x, z) (j = 1, . . . , n + 1) and a polynomial h(x) such that

h − 1 =
m∑

i=1

uifi + um+1, −h − 1 =
n∑

j=1

vjgj + vn+1, (8)

and h(x) > 0 is an interpolant for φ(x,y) and ψ(x, z).

Proof. By Theorem 2 there exists a polynomial ĥ(x) such that

∀x ∈ Px(φ(x,y)).ĥ(x) > 0, ∀x ∈ Px(ψ(x, z)).ĥ(x) < 0.

Set S1 = {(x,y) | f1 ≥ 0, . . . , fm ≥ 0} and S2 = {(x, z) | g1 ≥ 0, . . . , gn ≥
0}. Since ĥ(x) > 0 on S1, which is compact, there exist ε1 > 0 such that
ĥ(x) − ε1 > 0 on S1. Similarly, there exist ε2 > 0 such that −ĥ(x) − ε2 > 0
on S2. Let ε = min(ε1, ε2), and h(x) = ĥ(x)

ε , then h(x) − 1 > 0 on S1 and
−h(x) − 1 > 0 on S2. Since Mx,y(f1(x,y), . . . , fm(x,y)) is Archimedean, from
Theorem 3, we have h(x)−1 ∈ Mx,y(f1(x,y), . . . , fm(x,y)). Similarly, −h(x)−
1 ∈ Mx,z(g1(x, z), . . . , gn(x, z)). That is, there exist m+n+2 SOS polynomials
ui, vj satisfying the following semi-definite constraints:

h(x) − 1 =
m∑

i=1

uifi + um+1, −h(x) − 1 =
n∑

j=1

vjgj + vn+1. ��
According to Theorem 5, the problem of finding h(x) ∈ R[x] solving

Problem 1 can be equivalently reformulated as the problem of searching for
SOS polynomials u1(x,y), . . . , um(x,y), v1(x, z), . . . , vn(x, z) and a polynomial
h(x) with appropriate degrees such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(x) − 1 −
m∑

i=1

uifi ∈
∑

R[x,y]2,

− h(x) − 1 −
n∑

j=1

vjgj ∈
∑

R[x, z]2,

ui ∈
∑

R[x,y]2, i = 1, . . . , m,

vj ∈
∑

R[x, z]2, j = 1, . . . , n.

(9)

(9) is SOS constraints over SOS multipliers u1(x,y), . . . , um(x,y), v1(x, z),
. . . , vn(x, z), polynomial h(x), which is convex and could be solved by many
existing semi-definite programming solvers such as the optimization library
AiSat [7] built on CSDP [4]. Therefore, according to Theorem 5, h(x) > 0 is
an interpolant for φ and ψ, which is formulated in Theorem 6.
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Theorem 6 (Soundness). Suppose that φ(x,y) and ψ(x, z) are defined as in
Problem 1, and h(x) is a feasible solution to (9), then h(x) solves Problem 1,
i.e. h(x) > 0 is an interpolant for φ and ψ.

Moreover, we have the following completeness theorem stating that if the
degrees of h(x) ∈ R[x] and ui(x,y) ∈

∑
R[x,y]2, vj(x, z) ∈

∑
R[x, z]2, i =

1, . . . , m, j = 1, . . . , n, are large enough, h(x) can be synthesized definitely via
solving (9).

Theorem 7 (Completeness). For Problem 1, there must be polynomials
ui(x,y) ∈ RN [x,y] (i = 1, . . . , m), vj(x, z) ∈ RN [x, z] (j = 1, . . . , n) and
h(x) ∈ RN [x] satisfying (11) for some positive integer N , where Rk[·] stands
for the family of polynomials of degree no more than k.

Proof. This is an immediate result of Theorem 5. ��

Example 2. Consider two contradictory formulas φ and ψ defined by

f1(x, y, z, a1, b1, c1, d1) ≥ 0 ∧ f2(x, y, z, a1, b1, c1, d1) ≥ 0 ∧ f3(x, y, z, a1, b1, c1, d1) ≥ 0,

g1(x, y, z, a2, b2, c2, d2) ≥ 0 ∧ g2(x, y, z, a2, b2, c2, d2) ≥ 0 ∧ g3(x, y, z, a2, b2, c2, d2) ≥ 0,

respectively, where

f1 = 4 − x2 − y2 − z2 − a2
1 − b2

1 − c2
1 − d2

1, f2 = −y4 + 2x4 − a4
1 − 1/100,

f3 = z2 − b2
1 − c2

1 − d2
1 − x − 1, g1 = 4 − x2 − y2 − z2 − a2

2 − b2
2 − c2

2 − d2
2,

g2 = x2 − y − a2 − b2 − d2
2 − 3, g3 = x.

It is easy to observe that φ and ψ satisfy the conditions in Problem 1. Since
there are local variables in φ and ψ and the degree of f2 is 4, the interpolant
generation methods in [7] and [10] are not applicable. We get a concrete SDP
problem of the form (9) by setting the degree of the polynomial h(x, y, z) in (9)
to be 2. Using the MATLAB package YALMIP [23] and Mosek [28], we obtain

h(x, y, z) = − 416.7204 − 914.7840x + 472.6184y + 199.8985x2 + 190.2252y2

+ 690.4208z2 − 187.1592xy.

Pictorially, we plot Px,y,z(φ(x, y, z, a1, b1, c1, d1)), Px,y,z(ψ(x, y, z, a2, b2, c2,
d2)) and {(x, y, z) | h(x, y, z) > 0} in Fig. 2. It is evident that h(x, y, z) as
presented above for dh = 2 is a real interpolant for φ(x, y, z, a, b, c, d) and
ψ(x, y, z, a, b, c, d).
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5 Avoidance of the Unsoundness Due to Numerical Error
in SDP

Fig. 2. Example 2. (Red region: Px,y,z

(φ(x, y, z, a1, b1, c1, d1)); green region:
Px,y,z(ψ(x, y, z, a2, b2, c2, d2)); gray region:
{(x, y, z) | h(x, y, z) > 0}.) (Color figure
online)

In this section, we discuss how to
avoid the unsoundness of our app-
roach caused by numerical error in
SDP based on the work in [32].

A square matrix A is positive
semidefinite if A is real symmetric
and all its eigenvalues are nonnegative,
denote by A � 0.

In order to solve formula (9) to
obtain h(x), we first need to fix a
degree bound of ui, vj and h, say
2d, d ∈ N. It is well-known that any
u(x) ∈

∑
R[x]2 with degree 2d can be

represented by

u(x) ≡ Ed(x)T CuEd(x), (10)

where Cu ∈ R
(r+d

d )×(r+d
d ) with Cu �

0, Ed(x) is a column vector with all
monomials in x, whose total degree is
not greater than d, and Ed(x)T stands
for the transposition of Ed(x). Equaling the corresponding coefficient of each
monomial whose degree is less than or equal to 2d at the two sides of (10), we
can get a linear equation system as

tr(Au,kCu) = bu,k, k = 1, . . . , Ku, (11)

where Au,k ∈ R
(r+d

d )×(r+d
d ) is constant matrix, bu,k ∈ R is constant, tr(A) stands

for the trace of matrix A. Thus, searching for ui, vj and h satisfying (9) can be
reduced to the following SDP problem:

find : Cu1 , . . . , Cum
, Cv1 , . . . , Cvn

, Ch,

s.t. tr(Aui,kCui
) = bui,k, i = 1, . . . , m, k = 1, . . . , Kui

,

tr(Avj ,kCvj
) = bvj ,k, j = 1, . . . , n, k = 1, . . . , Kvj

,

tr(Ah,kCh) = bh,k, k = 1, . . . , Kh,

diag(Cu1 , . . . , Cum
, Cv1 , . . . , Cvn

, Ch−1−uf , C−h−1−vg) � 0,

(12)

where Ch−1−uf is the matrix corresponding to polynomial h − 1 −
∑m

i=1 uifi,
which is a linear combination of Cu1 , . . . , Cum

and Ch; similarly, C−h−1−vg is
the matrix corresponding to polynomial −h − 1 −

∑n
j=1 vjgj , which is a linear

combination of Cv1 , . . . , Cvn
and Ch; and diag(C1, . . . , Ck) is a block-diagonal

matrix of C1, . . . , Ck.
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Let D be the dimension of C = diag(Cu1 , . . . , C−h−1−vg), i.e.,
diag(Cu1 , . . . , C−h−1−vg) ∈ R

D×D and Ĉ be the approximate solution to (12)
returned by calling a numerical SDP solver, the following theorem is proved in
[32].

Theorem 8 ([32], Theorem 3). C � 0 if there exists C̃ ∈ F
D×D such that

the following conditions hold: 1. C̃ij = Cij, for any i �= j; 2. C̃ii ≤ Cii − α, for
any i; and 3. the Cholesky algorithm implemented in floating-point arithmetic
can conclude that C̃ is positive semi-definite, where F is a floating-point format,
α = (D+1)κ

1−(2D+2)κtr(C) + 4(D + 1)(2(D + 2) + maxi{Cii})η, in which κ is the unit
roundoff of F and η is the underflow unit of F.

Corollary 2. Let C̃ ∈ F
D×D. Suppose that (D+1)Dκ

1−(2D+2)κ + 4(D + 1)η ≤ 1
2 , β =

(D+1)κ
1−(2D+2)κtr(C̃) + 4(D + 1)(2(D + 2) + maxi{C̃ii})η > 0, where F is a floating-

point format. Then C̃+2βI � 0 if the Cholesky algorithm based on floating-point
arithmetic succeeds on C̃, i.e., concludes that C̃ is positive semi-definite.

According to Remark 5 in [32], for IEEE 754 binary64 format with rounding
to nearest, κ = 2−53(� 10−16) and η = 2−1075(� 10−323). In this case, the order
of magnitude of β is 10−10 and (D+1)Dκ

1−(2D+2)κ +4(D+1)η is 10−13, much less than 1
2 .

Obviously, β becomes smaller when the length of binary format becomes longer.
W.l.o.g., we suppose that the Cholesky algorithm succeed in computing Ĉ the
solution of (12), which is reasonable as if an SDP solver returns a solution Ĉ,
then Ĉ should be considered to be positive semi-definite in the sense of numeric
computation.

So, by Corollary 2, we have Ĉ +2βI � 0 holds, where I is the identity matrix
with the corresponding dimension. Then we have

diag(Ĉu1 , . . . , Ĉum
, Ĉv1 , . . . , Ĉvn

, Ĉh−1−uf , Ĉ−h−1−vg) + 2βI � 0.

Let ε = maxp∈P,1≤i≤Kp
|tr(Ap,iĈp) − bp,i|, where P = {u1, . . . , um,

v1, . . . , vn, h}, which can be regarded as the tolerance of the SDP solver. Since
|tr(Ap,iCp) − bp,i| is the error term for each monomial of p, i.e., ε can be con-
sidered as the error bound on the coefficients of polynomials ui, vj and h, for
any polynomial ûi ( v̂j and ĥ), computed from (11) by replacing Cu with the
corresponding Ĉu, there exists a corresponding remainder term Rui

(resp. Rvj

and Rh) with degree not greater than 2d, whose coefficients are bounded by ε.
Hence, we have

ûi + Rui
+ 2βEd(x,y)T Ed(x,y) ∈

∑
R[x,y]2, i = 1, . . . , m,

v̂j + Rvj
+ 2βEd(x, z)T Ed(x, z) ∈

∑
R[x, z]2, j = 1, . . . , n,

ĥ + Rh − 1 −
m∑

i=1

(ûi + R′
ui

)fi + 2βEd(x,y)T Ed(x,y) ∈
∑

R[x,y]2,

−ĥ + R′
h − 1 −

m∑

j=1

(v̂j + R′
vj

)gj + 2βEd(x, z)T Ed(x, z) ∈
∑

R[x, z]2.

(13)
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Now, in order to avoid unsoundness of our approach caused by the numerical
issue due to SDP, we have to prove

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ > 0, (14)

g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ ĥ < 0. (15)

Regarding (14), let R2d,x be a polynomial in R[|x|], whose total degree is 2d,
and all coefficients are 1, e.g., R2,x,y = 1 + |x| + |y| + |x2| + |xy| + |y2|. Since
S = {(x,y) | f1 ≥ 0 ∧ · · · ∧ fm ≥ 0} is a compact set, then for any polynomial
p ∈ R[x,y], |p| is bounded on S. Let M1 be an upper bound of R2d,x,y on S,
M2 an upper bound of Ed(x,y)T Ed(x,y), and Mfi

an upper bound of fi on S.
Then, |Rui

|, |R′
ui

| and |Rh| are bounded by εM1. Let Exy = Ed(x,y)T Ed(x,y).
So for any (x0,y0) ∈ S, considering the polynomials below at (x0,y0) ∈ S, by
the first and third line in (13),

ĥ ≥ 1 − Rh +
m∑

i=1

(ûi + R′
ui

)fi − 2βExy

≥ 1 − εM1 +
m∑

i=1

(ûi + Rui
+ 2βExy + R′

ui
− Rui

− 2βExy)fi − 2βM2

= 1 − εM1 − 2βM2 +
m∑

i=1

(ûi + Rui
+ 2βExy)fi +

m∑

i=1

(R′
ui

− Rui
− 2βExy)fi

≥ 1 − εM1 − 2βM2 + 0 −
m∑

i=1

(εM1 + εM1 + 2βM2)Mfi

= 1 − (2
m∑

i=1

Mfi
+ 1)M1ε − 2(

m∑

i=1

Mfi
+ 1)M2β.

Whence,

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ ≥ 1 − (2
m∑

i=1

Mfi
+ 1)M1ε − 2(

m∑

i=1

Mfi
+ 1)M2β.

Let S′ = {(x, z) | g1 ≥ 0∧ · · · ∧ gn ≥ 0}, M3 be an upper bound of R2d,x,z on
S′, M4 an upper bound of Ed(x, z)T Ed(x, z) on S′, and Mgj

an upper bound of
gj on S′. Similarly, it follows

g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ −ĥ ≥ 1 − (2
n∑

j=1

Mgj
+ 1)M3ε − 2(

n∑

j=1

Mgj
+ 1)M4β.

So, the following proposition is immediately.

Proposition 2. There exist two positive constants γ1 and γ2 such that

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ ≥ 1 − γ1ε − γ2β, (16)

g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ −ĥ ≥ 1 − γ1ε − γ2β. (17)
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Since ε and β heavily rely on the numerical tolerance and the floating point
representation, it is easy to see that ε and β become small enough with γ1ε < 1

2
and γ2β < 1

2 , if the numerical tolerance is small enough and the length of the
floating point representation is long enough. This implies

f1 ≥ 0 ∧ · · · ∧ fm ≥ 0 ⇒ ĥ > 0, g1 ≥ 0 ∧ · · · ∧ gn ≥ 0 ⇒ −ĥ > 0.

If so, any numerical result ĥ > 0 returned by calling an SDP solver to (12)
is guaranteed to be a real interpolant for φ and ψ, i.e., a correct solution to
Problem 1.

Example 3. Consider the numerical result for Example 2 in Sect. 4. Let Mf1 ,
Mf2 , Mf3 , Mg1 , Mg2 , Mg3 , M1, M2, M3, M4 are defined as above. It is easy to
see that

f1 ≥ 0 ⇒|x| ≤ 2 ∧ |y| ≤ 2 ∧ |z| ≤ 2 ∧ |a1| ≤ 2 ∧ |b1| ≤ 2 ∧ |c1| ≤ 2 ∧ |d1| ≤ 2.

Then, by simple calculations, we obtain Mf1 = 4,Mf2 = 32,Mf3 = 3,M1 =
83,M2 = 29. Thus,

(2
m∑

i=1

Mfi
+ 1)M1 = 6557, 2(

m∑

i=1

Mfi
+ 1)M2 = 2320.

Also, since

g1 ≥ 0 ⇒|x| ≤ 2 ∧ |y| ≤ 2 ∧ |z| ≤ 2 ∧ |a2| ≤ 2 ∧ |b2| ≤ 2 ∧ |c2| ≤ 2 ∧ |d2| ≤ 2,

we obtain Mg1 = 4,Mg2 = 7,Mg3 = 2,M3 = 83,M4 = 29. Thus,

(2
m∑

i=1

Mgi
+ 1)M3 = 2241, 2(

m∑

i=1

Mgi
+ 1)M4 = 812.

Consequently, we have γ1 = 6557 and γ2 = 2320 in Proposition 2.
Due to the fact that the default error tolerance is 10−8 in the SDP solver

Mosek and h is rounding to 4 decimal places, we have ε = 10−4

2 . In addition, as
the absolute value of each element in Ĉ is less than 103, and the dimension of
D is less than 103, we obtain

β =
(D + 1)κ

1 − (2D + 2)κ
tr(C̃) + 4(D + 1)(2(D + 2) + max

i
(C̃ii))η ≤ 10−6.

Consequently, γ1ε ≤ 6557 · 10−4

2 < 1
2 , γ2β ≤ 2320 · 10−6 < 1

2 , which imply that
h(x, y, z) > 0 presented in Example 2 is indeed a real interpolant.

Remark 1. Besides, the result could be verified by the following symbolic com-
putation procedure instead: computing Px(φ) and Px(ψ) first by some sym-
bolic tools, such as Redlog [8] which is a package that extends the com-
puter algebra system REDUCE to a computer logic system; then verifying
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x ∈ Px(φ) ⇒ h(x) > 0 and x ∈ Px(ψ) ⇒ h(x) < 0. For this example, Px,y,z(φ)
and Px,y,z(ψ) obtained by Redlog are too complicated and therefore not pre-
sented here. The symbolic computation can verify that h(x, y, z) in this example
is exactly an interpolant, which confirms our conclusion. Alternatively, we can
also solve the SDP in (9) using a SDP solver with infinite precision [15], and
obtain an exact result. But this only works for problems with small size because
a SDP solver with infinite precision is essentially based on symbolic computation
as commented in [15].

6 Generalizing to General Polynomial Formulas

Problem 2. Let φ(x,y) and ψ(x, z) be two polynomial formulas defined as fol-
lows,

φ(x,y) :
m∨

i=1

φi, φi =

Ki∧

k=1

fi,k(x,y) ≥ 0; ψ(x, z) :
n∨

j=1

ψj , ψj =

Sj∧

s=1

gj,s(x, z) ≥ 0,

where all fi,k and gj,s are polynomials. Suppose φ∧ψ |= ⊥, and for i = 1, . . . , m,
j = 1, . . . , n, {(x,y) | φi(x,y)} and {(x, z) | ψj(x, z)} are all semi-algebraic sets
of the Archimedean form. Find a polynomial h(x) such that h(x) > 0 is an
interpolant for φ and ψ.

Theorem 9. For Problem 2, there exists a polynomial h(x) satisfying

∀x ∈ Px(φ(x,y)).h(x) > 0, ∀x ∈ Px(ψ(x, z)).h(x) < 0.

Proof. We just need to prove that Lemma 1 holds for Problem 2 as well. Since
{(x,y) | φi(x,y)} and {(x, z) | ψj(x, z)} are all semi-algebraic sets of the
Archimedean form, then {(x,y) | φ(x,y)} and {(x, z) | ψ(x, z)} both are com-
pact. See {(x,y) | φ(x,y)} or {(x, z) | ψ(x, z)} as S in the proof of Lemma
1, then Lemma 1 holds for Problem 2. Thus, the rest of proof is same as that
forTheorem 2. ��
Corollary 3. Let φ(x,y) and ψ(x, z) be defined as in Problem 2. There must
exist a polynomial h(x) such that h(x) > 0 is an interpolant for φ and ψ.

Theorem 10. Let φ(x,y) and ψ(x, z) be defined as in Problem 2. Then there
exists a polynomial h(x) and

∑m
i=1(Ki + 1) +

∑n
j=1(Sj + 1) sum of squares

polynomials ui,k(x,y) (i = 1, . . . , m, k = 1, . . . , Ki + 1), vj,s(x, z) (j = 1, . . . , n,
s = 1, . . . , Sj) satisfying the following semi-definite constraints such that h(x) >
0 is an interpolant for φ(x,y) and ψ(x, z):

h − 1 =
Ki∑

k=1

ui,kfi,k + ui,Ki+1, i = 1, . . . , m; (18)

− h − 1 =
Sj∑

s=1

vj,sgj,s + vj,Sj+1, j = 1, . . . , n. (19)

Proof. By the property of Archimedean, the proof is same as that for T
heorem 5. ��
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Similarly, Problem 2 can be equivalently reformulated as the problem of
searching for sum of squares polynomials satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(x) − 1 −
Ki∑

k=1

ui,kfi,k ∈
∑

R[x,y]2, i = 1, . . . , m;

− h(x) − 1 −
Sj∑

s=1

vj,sgj,s ∈
∑

R[x, z]2, j = 1, . . . , n;

ui,k ∈
∑

R[x,y]2, i = 1, . . . , m, k = 1, . . . , Ki;

vj,s ∈
∑

R[x, z]2, j = 1, . . . , n, s = 1, . . . , Sj .

(20)

Example 4. Consider

φ(x, y, a1, a2, b1, b2) : (f1 ≥ 0 ∧ f2 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0),
ψ(x, y, c1, c2, d1, d2) : (g1 ≥ 0 ∧ g2 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0),

where

f1 = 16 − (x + y − 4)2 − 16(x − y)2 − a2
1, f2 = x + y − a2

2 − (2 − a2)2,

f3 = 16 − (x + y + 4)2 − 16(x − y)2 − b2
1, f4 = −x − y − b2

2 − (2 − b2)2,

g1 = 16 − 16(x + y)2 − (x − y + 4)2 − c2
1, g2 = y − x − c2

2 − (1 − c2)2,

g3 = 16 − 16(x + y)2 − (x − y − 4)2 − d2
1, g4 = x − y − d2

2 − (1 − d2)2.

We get a concrete SDP problem of the form (20) by setting the degree of h(x, y)
in (20) to be 2. Using the MATLAB package YALMIP and Mosek, we obtain

h(x, y) = −2.3238 + 0.6957x2 + 0.6957y2 + 7.6524xy.

The result is plotted in Fig. 3, and can be verified either by numerical error
analysis as in Example 2 or by a symbolic procedure like REDUCE as described
in Remark 1.

Example 5 (Ultimate). Consider the following example taken from [5], which is
a challenging benchmark to existing approaches for nonlinear interpolant gener-
ation.

φ = (f1 ≥ 0 ∧ f2 ≥ 0 ∨ f3 ≥ 0) ∧ f4 ≥ 0 ∧ f5 ≥ 0 ∨ f6 ≥ 0,

ψ = (g1 ≥ 0 ∧ g2 ≥ 0 ∨ g3 ≥ 0) ∧ g4 ≥ 0 ∧ g5 ≥ 0 ∨ g6 ≥ 0,

where
f1 = 3.8025 − x2 − y2, f2 = y,
f3 = 0.9025 − (x − 1)2 − y2, f4 = (x − 1)2 + y2 − 0.09,
f5 = (x + 1)2 + y2 − 1.1025, f6 = 0.04 − (x + 1)2 − y2,
g1 = 3.8025 − x2 − y2, g2 = −y,
g3 = 0.9025 − (x + 1)2 − y2, g4 = (x + 1)2 + y2 − 0.09,
g5 = (x − 1)2 + y2 − 1.1025, g6 = 0.04 − (x − 1)2 − y2.
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Fig. 3. Example 4. (Red region: Px,y

(φ(x, y, a1, a2, b1, b2)); green region:
Px,y(ψ(x, y, c1, c2, d1, d2)); gray region:
{(x, y) | h(x, y) > 0}.) (Color figure
online)

Fig. 4. Example 5. (Red region: Px,y

(φ(x, y)); green region: Px,y(ψ(x, y));
gray region: {(x, y) | h(x, y) > 0}.)
(Color figure online)

We first convert φ and ψ to the disjunction normal form as:

φ =(f1 ≥ 0 ∧ f2 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f6 ≥ 0),
ψ =(g1 ≥ 0 ∧ g2 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g6 ≥ 0).

We get a concrete SDP problem of the form (20) by setting the degree of h(x, y)
in (20) to be 7. Using the MATLAB package YALMIP and Mosek, keeping the
decimal to four, we obtain

h(x, y) = 1297.5980x + 191.3260y − 3172.9653x3 + 196.5763x2y + 2168.1739xy2

+ 1045.7373y3 + 1885.8986x5 − 1009.6275x4y + 3205.3793x3y2 − 1403.5431x2y3

+ 1842.0669xy4 + 1075.2003y5 − 222.0698x7 + 547.9542x6y − 704.7474x5y2

+ 1724.7008x4y3 − 728.2229x3y4 + 1775.7548x2y5 − 413.3771xy6 + 1210.2617y7.

The result is plotted in Fig. 4, and can be verified either by numerical error
analysis as in Example 2 or by a symbolic procedure like REDUCE as described
in Remark 1.

7 Application to Invariant Generation

In this section, as an application, we sketch how to apply our approach to invari-
ant generation in program verification, the details can be found in [11].

In [22], Lin et al. proposed a framework for invariant generation using weakest
precondition, strongest postcondition and interpolation, which consists of two pro-
cedures, i.e., synthesizing invariants by forward interpolation based on strongest
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postcondition and interpolant generation, and by backward interpolation based
on weakest precondition and interpolant generation. In [22], only linear invari-
ants can be synthesized as no powerful approaches are available to synthesize
nonlinear interpolants. Obviously, our results can strengthen their framework by
allowing to generate nonlinear invariants. For example, we can revise the proce-
dure Squeezing Invariant - Forward in their framework and obtain Algorithm 1.

The major revisions include:

– firstly, we exploit our method to synthesize interpolants see line 4 in Algo-
rithm 1;

– secondly, we add a conditional statement for Ai+1 at line 7–10 in Algorithm 1
in order to make Ai+1 to be Archimedean.

The procedure Squeezing Invariant - backward can be revised similarly.

Algorithm 1. Revised Squeezing Invariant - Forward
Input: An annotated loop: {P} while ρ do C {Q}, where P and Q are Archimedean
Output: (yes/no, I), where I is a loop invariant
1: A0 ← P ; B0 ← (¬ρ ∧ ¬Q); i ← 0; j ← 0;
2: while � do
3: if (

∨i
k=0 Ai) ∧ Bj is not satisfiable, (

∨i
k=0 Ai) and Bj are Archimedean then

4: call our method to synthesize an interpolant for (
∨i

k=0 Ai) and Bj , say Ii;
{Use our method to generate interpolant}

5: if {Ii ∧ ρ} C {Ii} then
6: return (yes, Ii);
7: else if Ii is Archimedean then
8: Ai+1 ← sp(Ii ∧ ρ, C);
9: else

10: Ai+1 ← sp(Ai ∧ ρ, C);
11: end if

{sp: a predicate transformer to compute the strongest postcondition of C w.r.t.
Ii ∧ ρ}

12: i ← i + 1; Bj+1 ← B0 ∨ (ρ ∧ wp(C, Bj));
{wp: a predicate transformer to compute the weakest precondition of C w.r.t.
Bj}

13: j ← j + 1;
14: else if Ai is concrete then
15: return (no, ⊥);
16: else
17: while Ai is not concrete do
18: i ← i − 1;
19: end while
20: Ai+1 ← sp(Ai ∧ ρ, C); i ← i + 1;
21: end if
22: end while
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Example 6. Consider a loop program given in Algorithm 2 for controlling the
acceleration of a car adapted from [21]. Suppose we know that vc is in [0, 40] at
the beginning of the loop, we would like to prove that vc < 49.61 holds after the
loop. Since the loop guard is unknown, it means that the loop may terminate
after any number of iterations.

We apply Algorithm 1 to the computation of an invariant to ensure that
vc < 49.61 holds. Since vc is the velocity of car, 0 ≤ vc < 49.61 is required to hold
in order to maintain safety. Via Algorithm 1, we have A0 = {vc | vc(40−vc) ≥ 0}
and B = {vc | vc < 0} ∪ {vc | vc ≥ 49.61}. Here, we replace B with B′ =
[−2,−1]∪[49.61, 55]), i.e., B′ = {vc | (vc+2)(−1−vc) ≥ 0∨(vc−49.61)(55−vc) ≥
0}, in order to make it with Archimedean form.

Firstly, it is evident that A0 : vc(40 − vc) ≥ 0 implies A0 ∧ B′ |= ⊥. By
applying our approach, we obtain an interpolant

I0 : 1.4378 + 3.3947 ∗ vc − 0.083 ∗ vc2 > 0

for A0 and B′. It can be verified that {I0}C {I0} (line 5) does not hold, where
C stands for the loop body.

Secondly, by setting A1 = sp(I0, C) (line 8) and re-calling our approach, we
obtain an interpolant

I1 : 2.0673 + 3.0744 ∗ vc − 0.0734 ∗ vc2 > 0

for A0 ∪ A1 and B′. Likewise, it can be verified that {I1}C {I1} (line 5) does
not hold.

Algorithm 2. Control code for accelerating a car
1: /* Pre: vc ∈ [0, 40] */
2: while unknown do
3: fa ← 0.5418 ∗ vc ∗ vc;
4: fr ← 1000 − fa;
5: ac ← 0.0005 ∗ fr;
6: vc ← vc + ac;
7: end while
8: /* Post: vc < 49.61 */

Thirdly, repeating the above procedure again, we obtain an interpolant

I2 : 2.2505 + 2.7267 ∗ vc − 0.063 ∗ vc2 > 0,

and it can be verified that {I2}C {I2} holds, implying that I2 is an invariant.
Moreover, it is trivial to verify that I2 ⇒ vc < 49.61.

Consequently, we have the conclusion that I2 is an inductive invariant which
witnesses the correctness of the loop.
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8 Conclusion

In this paper we propose a sound and complete method to synthesize Craig inter-
polants for mutually contradictory polynomial formulas φ(x,y) and ψ(x, z), with
the form f1 ≥ 0∧ · · · ∧ fn ≥ 0, where fi’s are polynomials in x,y or x, z and the
quadratic module generated by fi’s is Archimedean. The interpolant is generated
by solving a semi-definite programming problem, which is a generalization of the
method in [7] dealing with mutually contradictory formulas with the same set of
variables and the method in [10] dealing with mutually contradictory formulas
with concave quadratic polynomial inequalities. As an application, we apply our
approach to invariant generation in program verification.

As a future work, we would like to consider interpolant synthesizing for for-
mulas with strict polynomial inequalities. Also, it deserves to consider how to
synthesize interpolants for the combination of non-linear formulas and other
theories based on our approach and other existing ones, as well as further appli-
cations to the verification of programs and hybrid systems.
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Abstract. Given an unsatisfiable formula F in CNF, i.e. a set of clauses,
the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify
a minimal subset of clauses N ⊆ F such that N is unsatisfiable. The
emerging viewpoint of MUSes as the root causes of unsatisfiability has
led MUSes to find applications in a wide variety of diagnostic approaches.
Recent advances in identification and enumeration of MUSes have moti-
vated researchers to discover applications that can benefit from rich infor-
mation about the set of MUSes. One such extension is that of counting
the number of MUSes. The current best approach for MUS counting is
to employ a MUS enumeration algorithm, which often does not scale for
the cases with a reasonably large number of MUSes.

Motivated by the success of hashing-based techniques in the context
of model counting, we design the first approximate MUS counting proce-
dure with (ε, δ) guarantees, called AMUSIC. Our approach avoids exhaus-
tive MUS enumeration by combining the classical technique of univer-
sal hashing with advances in QBF solvers along with a novel usage of
union and intersection of MUSes to achieve runtime efficiency. Our pro-
totype implementation of AMUSIC is shown to scale to instances that
were clearly beyond the realm of enumeration-based approaches.

1 Introduction

Given an unsatisfiable Boolean formula F as a set of clauses {f1, f2, . . . fn}, also
known as conjunctive normal form (CNF), a set N of clauses is a Minimal Unsat-
isfiable Subset (MUS) of F iff N ⊆ F , N is unsatisfiable, and for each f ∈ N
the set N \ {f} is satisfiable. Since MUSes can be viewed as representing the
minimal reasons for unsatisfiability of a formula, MUSes have found applications
in wide variety of domains ranging from diagnosis [45], ontologies debugging [1],
spreadsheet debugging [29], formal equivalence checking [20], constrained count-
ing and sampling [28], and the like. As the scalable techniques for identification
of MUSes appeared only about decade and half ago, the earliest applications
primarily focused on a reduction to the identification of a single MUS or a
small set of MUSes. With an improvement in the scalability of MUS identifica-
tion techniques, researchers have now sought to investigate extensions of MUSes
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and their corresponding applications. One such extension is MUS counting, i.e.,
counting the number of MUSes of F . Hunter and Konieczny [26], Mu [45], and
Thimm [56] have shown that the number of MUSes can be used to compute
different inconsistency metrics for general propositional knowledge bases.

In contrast to the progress in the design of efficient MUS identification tech-
niques, the work on MUS counting is still in its nascent stages. Reminiscent of
the early days of model counting, the current approach for MUS counting is to
employ a complete MUS enumeration algorithm, e.g., [3,12,34,55], to explicitly
identify all MUSes. As noted in Sect. 2, there can be up to exponentially many
MUSes of F w.r.t. |F |, and thus their complete enumeration can be practically
intractable. Indeed, contemporary MUS enumeration algorithms often cannot
complete the enumeration within a reasonable time [10,12,34,47]. In this con-
text, one wonders: whether it is possible to design a scalable MUS counter without
performing explicit enumeration of MUSes?

The primary contribution of this paper is a probabilistic counter, called
AMUSIC, that takes in a formula F , tolerance parameter ε, confidence parameter
δ, and returns an estimate guaranteed to be within (1 + ε)-multiplicative factor
of the exact count with confidence at least 1 − δ. Crucially, for F defined over n
clauses, AMUSIC explicitly identifies only O(log n · log(1/δ) · (ε)−2) many MUSes
even though the number of MUSes can be exponential in n.

The design of AMUSIC is inspired by recent successes in the design of efficient
XOR hashing-based techniques [15,17] for the problem of model counting, i.e.,
given a Boolean formula G, compute the number of models (also known as
solutions) of G. We observe that both the problems are defined over a power-set
structure. In MUS counting, the goal is to count MUSes in the power-set of F ,
whereas in model counting, the goal is to count models in the power-set that
represents all valuations of variables of G. Chakraborty et al. [18,52] proposed an
algorithm, called ApproxMC, for approximate model counting that also provides
the (ε, δ) guarantees. ApproxMC is currently in its third version, ApproxMC3 [52].
The base idea of ApproxMC3 is to partition the power-set into nCells small cells,
then pick one of the cells, and count the number inCell of models in the cell. The
total model count is then estimated as nCells × inCell . Our algorithm for MUS
counting is based on ApproxMC3. We adopt the high-level idea to partition the
power-set of F into small cells and then estimate the total MUS count based on a
MUS count in a single cell. The difference between ApproxMC3 and AMUSIC lies
in the way of counting the target elements (models vs. MUSes) in a single cell;
we propose novel MUS specific techniques to deal with this task. In particular,
our contribution is the following:

– We introduce a QBF (quantified Boolean formula) encoding for the problem
of counting MUSes in a single cell and use a ΣP

3 oracle to solve it.
– Let UMUF and IMUF be the union and the intersection of all MUSes of F ,

respectively. We observe that every MUS of F (1) contains IMUF and (2) is
contained in UMUF . Consequently, if we determine the sets UMUF and IMUF ,
then we can significantly speed up the identification of MUSes in a cell.
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– We propose a novel approaches for computing the union UMUF and the inter-
section IMUF of all MUSes of F .

– We implement AMUSIC and conduct an extensive empirical evaluation on
a set of scalable benchmarks. We observe that AMUSIC is able to compute
estimates for problems clearly beyond the reach of existing enumeration-based
techniques. We experimentally evaluate the accuracy of AMUSIC. In partic-
ular, we observe that the estimates computed by AMUSIC are significantly
closer to true count than the theoretical guarantees provided by AMUSIC.

Our work opens up several new interesting avenues of research. From a the-
oretical perspective, we make polynomially many calls to a ΣP

3 oracle while
the problem of finding a MUS is known to be in FPNP , i.e. a MUS can be
found in polynomial time by executing a polynomial number of calls to an NP-
oracle [19,39]. Contrasting this to model counting techniques, where approximate
counter makes polynomially many calls to an NP-oracle when the underlying
problem of finding satisfying assignment is NP-complete, a natural question is
to close the gap and seek to design a MUS counting algorithm with polynomially
many invocations of an FPNP oracle. From a practitioner perspective, our work
calls for a design of MUS techniques with native support for XORs; the pursuit
of native support for XOR in the context of SAT solvers have led to an exciting
line of work over the past decade [52,53].

2 Preliminaries and Problem Formulation

A Boolean formula F = {f1, f2, . . . , fn} in a conjunctive normal form (CNF)
is a set of Boolean clauses over a set of Boolean variables Vars(F ). A Boolean
clause is a set {l1, l2, . . . , lk} of literals. A literal is either a variable x ∈ Vars(F )
or its negation ¬x. A truth assignment I to the variables Vars(F ) is a mapping
Vars(F ) → {1, 0}. A clause f ∈ F is satisfied by an assignment I iff I(l) = 1
for some l ∈ f or I(k) = 0 for some ¬k ∈ f . The formula F is satisfied by I
iff I satisfies every f ∈ F ; in such a case I is called a model of F . Finally, F is
satisfiable if it has a model; otherwise F is unsatisfiable.

A QBF is a Boolean formula where each variable is either universally (∀) or
existentially (∃) quantified. We write Q1 · · · Qk-QBF, where Q1, . . . Qk ∈ {∀,∃},
to denote the class of QBF with a particular type of alternation of the quantifiers,
e.g., ∃∀-QBF or ∃∀∃-QBF. Every QBF is either true (valid) or false (invalid).
The problem of deciding validity of a formula in Q1 · · · Qk-QBF where Q1 = ∃
is ΣP

k -complete [43].
When it is clear from the context, we write just formula to denote either

a QBF or a Boolean formula in CNF. Moreover, throughout the whole text, we
use F to denote the input Boolean Formula in CNF. Furthermore, we will use
capital letters, e.g., S,K,N , to denote other CNF formulas, small letters, e.g.,
f, f1, fi, to denote clauses, and small letters, e.g., x, x′, y, to denote variables.

Given a set X, we write P(X) to denote the power-set of X, and |X| to denote
the cardinality of X. Finally, we write Pr [O : P] to denote the probability of an
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Fig. 1. Illustration of the power set of the formula F from the Example 1. We denote
individual subsets of F using the bit-vector representation. The subsets with a dashed
border are the unsatisfiable subsets, and the others are satisfiable subsets. The MUSes
are filled with a background color. (Color figure online)

outcome O when sampling from a probability space P. When P is clear from the
context, we write just Pr [O].

Minimal Unsatisfiability

Definition 1 (MUS). A set N , N ⊆ F , is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for all f ∈ N the set N \{f} is satisfiable.

Note that the minimality concept used here is set minimality, not minimum
cardinality. Therefore, there can be MUSes with different cardinalities. In gen-
eral, there can be up to exponentially many MUSes of F w.r.t. |F | (see the
Sperner’s theorem [54]). We use AMUF to denote the set of all MUSes of F . Fur-
thermore, we write UMUF and IMUF to denote the union and the intersection of all
MUSes of F, respectively. Finally, note that every subset S of F can be expressed
as a bit-vector over the alphabet {0, 1}; for example, if F = {f1, f2, f3, f4} and
S = {f1, f4}, then the bit-vector representation of S is 1001.

Definition 2. Let N be an unsatisfiable subset of F and f ∈ N . The clause f
is necessary for N iff N \ {f} is satisfiable.

The necessary clauses are sometimes also called transition [6] or critical [2]
clauses. Note that a set N is a MUS iff every f ∈ N is necessary for N . Also,
note that a clause f ∈ F is necessary for F iff f ∈ IMUF .

Example 1. We demonstrate the concepts on an example, illustrated in Fig. 1.
Assume that F = {f1 = {x1}, f2 = {¬x1}, f3 = {x2}, f4 = {¬x1,¬x2}}. In this
case, AMUF = {{f1, f2}, {f1, f3, f4}}, IMUF = {f1}, and UMUF = F .

Hash Functions

Let n and m be positive integers such that m < n. By {1, 0}n we denote the set
of all bit-vectors of length n over the alphabet {1, 0}. Given a vector v ∈ {1, 0}n
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and i ∈ {1, . . . , n}, we write v[i] to denote the i-th bit of v. A hash function h
from a family Hxor(n,m) of hash functions maps {1, 0}n to {1, 0}m. The family
Hxor(n,m) is defined as {h |h(y)[i] = ai,0⊕(

⊕n
k=1(ai,k∧y[k])) for all 1 ≤ i ≤ m},

where ⊕ and ∧ denote the Boolean XOR and AND operators, respectively, and
ai,k ∈ {1, 0} for all 1 ≤ i ≤ m and 1 ≤ k ≤ n.

To choose a hash function uniformly at random from Hxor(n,m), we ran-
domly and independently choose the values of ai,k. It has been shown [24]
that the family Hxor(n,m) is pairwise independent, also known as strongly 2-
universal. In particular, let us by h ← Hxor(n,m) denote the probability space
obtained by choosing a hash function h uniformly at random from Hxor(n,m).
The property of pairwise independence guarantees that for all α1, α2 ∈ {1, 0}m

and for all distinct y1, y2 ∈ {1, 0}n, Pr [
∧2

i=1 h(yi) = αi : h ← Hxor(n,m)] =
2−2m.

We say that a hash function h ∈ Hxor(n,m) partitions {0, 1}n into 2m cells.
Furthermore, given a hash function h ∈ Hxor(n,m) and a cell α ∈ {1, 0}m of h,
we define their prefix-slices. In particular, for every k ∈ {1, . . . , m}, the kth prefix
of h, denoted h(k), is a map from {1, 0}n to {1, 0}k such that h(k)(y)[i] = h(y)[i]
for all y ∈ {1, 0}n and for all i ∈ {1, . . . , k}. Similarly, the kth prefix of α, denoted
α(k), is an element of {1, 0}k such that α(k)[i] = α[i] for all i ∈ {1, . . . , k}.
Intuitively, a cell α(k) of h(k) originates by merging the two cells of h(k+1) that
differ only in the last bit.

In our work, we use hash functions from the family Hxor(n,m) to partition
the power-set P(F ) of the given Boolean formula F into 2m cells. Furthermore,
given a cell α ∈ {0, 1}m, let us by AMU〈F,h,α〉 denote the set of all MUSes in the
cell α; formally, AMU〈F,h,α〉 = {M ∈ AMUF |h(bit(M)) = α}, where bit(M) is the
bit-vector representation of M . The following observation is crucial for our work.

Observation 1. For every formula F , m ∈ {1, . . . , |F | − 1}, h ∈ Hxor(|F |,m),
and α ∈ {0, 1}m it holds that: AMU〈F,h(i),α(i)〉 ⊇ AMU〈F,h(j),α(j)〉 for every i < j.

Example 2. Assume that we are given a formula F such that |F | = 4 and a hash
function h ∈ Hxor(4, 2) that is defined via the following values of individual ai,k:

a1,0 = 0, a1,1 = 1, a1,2 = 1, a1,3 = 0, a1,4 = 1
a2,0 = 0, a2,1 = 1, a2,2 = 0, a2,3 = 0, a2,4 = 1

The hash function partitions P(F ) into 4 cells. For example, h(1100) = 01
since h(1100)[1] = 0 ⊕ (1 ∧ 1) ⊕ (1 ∧ 1) ⊕ (0 ∧ 0) ⊕ (1 ∧ 0) = 0 and h(1100)[2] =
0⊕ (1∧1)⊕ (0∧1)⊕ (0∧0)⊕ (1∧0) = 1. Figure 2 illustrates the whole partition
and also illustrates the partition given by the prefix h(1) of h.

2.1 Problem Definitions

In this paper, we are concerned with the following problems.
Name: (ε, δ)-#MUS problem
Input: A formula F , a tolerance ε > 0, and a confidence 1 − δ ∈ (0, 1].
Output: A number c such that Pr [|AMUF |/(1+ ε) ≤ c ≤ |AMUF | · (1+ ε)] ≥ 1− δ.
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(a) Illustration of h(2) = h with 4 cells:
α1 = 00 , α2 = 01 , α3 = 10 ,

α4 = 11 .
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(b) Illustration of h(1) with 2 cells:
α1 = 0 , α2 = 1 .

Fig. 2. Illustration of the partition of P(F ) by h = h(2) and h(1) from Example 2. In
the case of h, we use 4 colors, orange, pink, white, and blue, to highlight its four cells.
In case of h(1), there are only two cells: the white and the blue cells are merged into
a white cell, and the pink and the orange cells are merged into an orange cell. (Color
figure online)

Name: MUS-membership problem
Input: A formula F and a clause f ∈ F .
Output: True if there is a MUS M ∈ AMUF such that f ∈ M and False otherwise.

Name: MUS-union problem
Input: A formula F .
Output: The union UMUF of all MUSes of F .

Name: MUS-intersection problem
Input: A formula F .
Output: The intersection IMUF of all MUSes of F .

Name: (ε, δ)-#SAT problem
Input: A formula F , a tolerance ε > 0, and a confidence 1 − δ ∈ (0, 1].
Output: A number m such that Pr [m/(1 + ε) ≤ c ≤ m · (1 + ε)] ≥ 1 − δ, where
m is the number of models of F .

The main goal of this paper is to provide a solution to the (ε, δ)-#MUS prob-
lem. We also deal with the MUS-membership, MUS-union and MUS-intersection
problems since these problems emerge in our approach for solving the (ε, δ)-#MUS
problem. Finally, we do not focus on solving the (ε, δ)-#SAT problem, however
the problem is closely related to the (ε, δ)-#MUS problem.

3 Related Work

It is well-known (see e.g., [21,36,51]) that a clause f ∈ F belongs to IMUF iff f is
necessary for F . Therefore, to compute IMUF , one can simply check each f ∈ F
for being necessary for F . We are not aware of any work that has focused on the
MUS-intersection problem in more detail.
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The MUS-union problem was recently investigated by Mencia et al. [42]. Their
algorithm is based on gradually refining an under -approximation of UMUF until
the exact UMUF is computed. Unfortunately, the authors experimentally show
that their algorithm often fails to find the exact UMUF within a reasonable time
even for relatively small input instances (only an under-approximation is com-
puted). In our work, we propose an approach that works in the other way: we
start with an over-approximation of UMUF and gradually refine the approxima-
tion to eventually get UMUF . Another related research was conducted by Jan-
ota and Marques-Silva [30] who proposed several QBF encodings for solving the
MUS-membership problem. Although they did not focus on finding UMUF , one can
clearly identify UMUF by solving the MUS-membership problem for each f ∈ F .

As for counting the number of MUSes of F , we are not aware of any previous
work dedicated to this problem. Yet, there have been proposed plenty of algo-
rithms and tools (e.g., [3,9,11,12,35,47]) for enumerating/identifying all MUSes
of F . Clearly, if we enumerate all MUSes of F , then we obtain the exact value of
|AMUF |, and thus we also solve the (ε, δ)-#MUS problem. However, since there can
be up to exponentially many of MUSes w.r.t. |F |, MUS enumeration algorithms
are often not able to complete the enumeration in a reasonable time and thus
are not able to find the value of |AMUF |.

Very similar to the (ε, δ)-#MUS problem is the (ε, δ)-#SAT problem. Both
problems involve the same probabilistic and approximation guarantees. More-
over, both problems are defined over a power-set structure. In MUS counting,
the goal is to count MUSes in P(F ), whereas in model counting, the goal is to
count models in P(Vars(F )). In this paper, we propose an algorithm for solving
the (ε, δ)-#MUS problem that is based on ApproxMC3 [15,17,52]. In particular,
we keep the high-level idea of ApproxMC3 for processing/exploring the power-set
structure, and we propose new low-level techniques that are specific for MUS
counting.

4 AMUSIC: A Hashing-Based MUS Counter

We now describe AMUSIC, a hashing-based algorithm designed to solve the (ε, δ)-
#MUS problem. The name of the algorithm is an acronym for Approximate Min-
imal Unsatisfiable Subsets Implicit Counter. AMUSIC is based on ApproxMC3,
which is a hashing-based algorithm to solve (ε, δ)-#SAT problem. As such, while
the high-level structure of AMUSIC and ApproxMC3 share close similarities, the
two algorithms differ significantly in the design of core technical subroutines.

We first discuss the high-level structure of AMUSIC in Sect. 4.1. We then
present the key technical contributions of this paper: the design of core subrou-
tines of AMUSIC in Sects. 4.3, 4.4 and 4.5.

4.1 Algorithmic Overview

The main procedure of AMUSIC is presented in Algorithm 1. The algorithm takes
as an input a Boolean formula F in CNF, a tolerance ε (> 0), and a confidence
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Algorithm 1: AMUSIC(F, ε, δ)
1 threshold ← 1 + 9.84(1 + ε

1+ε
)(1 + 1

ε
)2

2 Y ← FindMUSes(F, threshold)
3 if |Y | < threshold then return |Y |
4 G ← getUMU(F)

5 IG ← getIMU(G)

6 nCells ← 2; C ← emptyList; iter ← 0
7 while iter < �17 log2(3/δ)� do
8 iter ← iter + 1
9 (nCells, nSols) ← AMUSICCore(G, IG, threshold, nCells)

10 if nCells �= null then AddToList(C, nCells × nSols)

11 return FindMedian(C)

parameter δ ∈ (0, 1], and returns an estimate of |AMUF | within tolerance ε and
with confidence at least 1 − δ. Similar to ApproxMC3, we first check whether
|AMUF | is smaller than a specific threshold that is a function of ε. This check is
carried out via a MUS enumeration algorithm, denoted FindMUSes, that returns
a set Y of MUSes of F such that |Y | = min(threshold, |AMUF |). If |Y | < threshold,
the algorithm terminates while identifying the exact value of |AMUF |. In a sig-
nificant departure from ApproxMC3, AMUSIC subsequently computes the union
(UMUF ) and the intersection (IMUF ) of all MUSes of F by invoking the subrou-
tines GetUMU and GetIMU, respectively. Through the lens of set representation
of the CNF formulas, we can view UMUF as another CNF formula, G. Our key
observation is that AMUF = AMUG (see Sect. 4.2), thus instead of working with the
whole F , we can focus only on G. The rest of the main procedure is similar to
ApproxMC3, i.e., we repeatedly invoke the core subroutine called AMUSICCore.
The subroutine attempts to find an estimate c of |AMUG| within the tolerance
ε. Briefly, to find the estimate, the subroutine partitions P(G) into nCells cells,
then picks one of the cells, and counts the number nSols of MUSes in the cell.
The pair (nCells, nSols) is returned by AMUSICCore, and the estimate c of |AMUG|
is then computed as nSols × nCells. There is a small chance that AMUSICCore
fails to find the estimate; it such a case nCells = nSols = null. Individual esti-
mates are stored in a list C. After the final invocation of AMUSICCore, AMUSIC
computes the median of the list C and returns the median as the final estimate
of |AMUG|. The total number of invocations of AMUSICCore is in O(log(1/δ))
which is enough to ensure the required confidence 1 − δ (details on assurance of
the (ε, δ) guarantees are provided in Sect. 4.2).

We now turn to AMUSICCore which is described in Algorithm 2. The parti-
tion of P(G) into nCells cells is made via a hash function h from Hxor(|G|,m),
i.e. nCells = 2m. The choice of m is a crucial part of the algorithm as it regu-
lates the size of the cells. Intuitively, it is easier to identify all MUSes of a small
cell; however, on the contrary, the use of small cells does not allow to achieve a
reasonable tolerance. Based on ApproxMC3, we choose m such that a cell given
by a hash function h ∈ Hxor(|G|,m) contains almost threshold many MUSes. In
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Algorithm 2: AMUSICCore(G, IG, threshold, prevNCells)
1 Choose h at random from Hxor (|G|, |G| − 1)

2 Choose α at random from {0, 1}|G|−1

3 nSols ← CountInCell(G, IG, h, α, threshold)
4 if nSols = threshold then return (null, null)
5 mPrev ← log2 prevNCells
6 (nCells, nSols) ← LogMUSSearch(G, IG, h, α, threshold,mPrev)
7 return (nCells, nSols )

particular, the computation of AMUSICCore starts by choosing at random a hash
function h from Hxor(|G|, |G|−1) and a cell α at random from {0, 1}|G|−1. Sub-
sequently, the algorithm tends to identify mth prefixes h(m) and α(m) of h and α,
respectively, such that |AMU〈G,h(m),α(m)〉| < threshold and |AMU〈G,h(m−1),α(m−1)〉| ≥
threshold. Recall that AMU〈G,h(1),α(1)〉 ⊇ · · · ⊇ AMU〈G,h(|G|−1),α(|G|−1)〉 (Observa-
tion 1, Sect. 2). We also know that the cell α(0), i.e. the whole P(G), contains at
least threshold MUSes (see Algorithm 1, line 3). Consequently, there can exist at
most one such m, and it exists if and only if |AMU〈G,h(|G|−1),α(|G|−1)〉| < threshold.
Therefore, the algorithm first checks whether |AMU〈G,h(|G|−1),α(|G|−1)〉| < threshold.
The check is carried via a procedure CountInCell that returns the number nSols =
min(|AMU〈G,h(|G|−1),α(|G|−1)〉|, threshold). If nSols = threshold, then AMUSICCore
fails to find the estimate of |AMUG| and terminates. Otherwise, a procedure
LogMUSSearch is used to find the required value of m together with the num-
ber nSols of MUSes in α(m). The implementation of LogMUSSearch is directly
adopted from ApproxMC3 and thus we do not provide its pseudocode here (note
that in ApproxMC3 the procedure is called LogSATSearch). We only briefly sum-
marize two main ingredients of the procedure. First, it has been observed that
the required value of m is often similar for repeated calls of AMUSICCore. There-
fore, the algorithm keeps the value mPrev of m from previous iteration and first
test values near mPrev. If none of the near values is the required one, the algo-
rithm exploits that AMU〈G,h(1),α(1)〉 ⊇ · · · ⊇ AMU〈G,h(|G|−1),α(|G|−1)〉, which allows
it to find the required value of m via the galloping search (variation of binary
search) while performing only log |G| calls of CountInCell.

Note that in ApproxMC3, the procedure CountInCell is called BSAT and it is
implemented via an NP oracle, whereas we use a ΣP

3 oracle to implement the
procedure (see Sect. 4.3). The high-level functionality is the same: the procedures
use up to threshold calls of the oracle to check whether the number of the target
elements (models vs. MUSes) in a cell is lower than threshold.

4.2 Analysis and Comparison with ApproxMC3

Following from the discussion above, there are three crucial technical differences
between AMUSIC and ApproxMC3: (1) the implementation of the subroutine
CountInCell in the context of MUS, (2) computation of the intersection IMUF of
all MUSes of F and its usage in CountInCell, and (3) computation of the union
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UMUF of all MUSes of F and invocation of the underlying subroutines with G (i.e.,
UMUF ) instead of F . The usage of CountInCell can be viewed as domain-specific
instantiation of BSAT in the context of MUSes. Furthermore, we use the com-
puted intersection of MUSes to improve the runtime efficiency of CountInCell. It
is perhaps worth mentioning that prior studies have observed that over 99% of
the runtime of ApproxMC3 is spent inside the subroutine BSAT [52]. Therefore,
the runtime efficiency of CountInCell is crucial for the runtime performance of
AMUSIC, and we discuss in detail, in Sect. 4.3, algorithmic contributions in the
context of CountInCell including usage of IMUF . We now argue that the replace-
ment of F with G in line 4 in Algorithm 1 does not affect correctness guarantees,
which is stated formally below:

Lemma 1. For every G′ such that UMUF ⊆ G′ ⊆ F , the following hold:

AMUF = AMUG′ (1)
IMUF = IMUG′ (2)

Proof. (1) Since G′ ⊆ F then every MUS of G′ is also a MUS of F . In the other
direction, every MUS of F is contained in the union UMUF of all MUSes of F ,
and thus every MUS of F is also a MUS of G′ (⊇ UMUF ).

(2) IMUF =
⋂

M∈AMUF
=

⋂
M∈AMUG′ = IMUG′ .

Equipped with Lemma 1, we now argue that each run of AMUSIC can be
simulated by a run of ApproxMC3 for an appropriately chosen formula. Given
an unsatisfiable formula F = {f1, . . . , f|F |}, let us by BF denote a satisfi-
able formula such that: (1) Vars(BF ) = {x1, . . . , x|F |} and (2) an assignment
I : Vars(BF ) → {1, 0} is a model of BF iff {fi|I(xi) = 1} is a MUS of F .
Informally, models of BF one-to-one map to MUSes of F . Hence, the size of sets
returned by CountInCell for F is identical to the corresponding BSAT for BF .
Since the analysis of ApproxMC3 only depends on the correctness of the size of
the set returned by BSAT, we conclude that the answer computed by AMUSIC
would satisfy (ε, δ) guarantees. Furthermore, observing that CountInCell makes
threshold many queries to ΣP

3 -oracle, we can bound the time complexity. For-
mally,

Theorem 1. Given a formula F , a tolerance ε > 0, and a confidence 1 − δ ∈
(0, 1], let AMUSIC(F, ε, δ) return c. Then Pr [|AMUF |/(1 + ε) ≤ c ≤ |AMUF | · (1 +
ε)] ≥ 1 − δ. Furthermore, AMUSIC makes O(log |F | · 1

ε2 · log(1/δ)) calls to ΣP
3

oracle.

Few words are in order concerning the complexity of AMUSIC. As noted in
Sect. 1, for a formula on n variables, approximate model counters make O(log n ·
1
ε2 · log(1/δ)) calls to an NP oracle, whereas the complexity of finding a satisfying
assignment is NP-complete. In our case, we make calls to a ΣP

3 oracle while the
problem of finding a MUS is in FPNP . Therefore, a natural direction of future
work is to investigate the design of a hashing-based technique that employs an
FPNP oracle.



Approximate Counting of Minimal Unsatisfiable Subsets 449

Algorithm 3: CountInCell(G, IG, h, α, threshold)
1 c ← 0; M ← {}
2 while c < threshold do
3 M ← GetMUS(G, IG, M, h, α)
4 if M = null then return c
5 M ← M ∪ {M}
6 c ← c + 1

7 return c

4.3 Counting MUSes in a Cell: CountInCell

In this section, we describe the procedure CountInCell. The input of the pro-
cedure is the formula G (i.e., UMUF ), the set IG = IMUG, a hash function
h ∈ Hxor(|G|,m), a cell α ∈ {0, 1}m, and the threshold value. The output is
c = min(threshold, |AMU〈G,h,α〉|).

The description is provided in Algorithm 3. The algorithm iteratively calls
a procedure GetMUS that returns either a MUS M such that M ∈ (AMU〈G,h,α〉\M)
or null if there is no such MUS. For each M , the value of c is increased and M is
added to M. The loop terminates either when c reaches the value of threshold or
when GetMUS fails to find a new MUS (i.e., returns null). Finally, the algorithm
returns c.

GetMUS. To implement the procedure GetMUS, we build an ∃∀∃-QBF formula
MUSInCell such that each witness of the formula corresponds to a MUS from
AMU〈G,h,α〉 \ M. The formula consists of several parts and uses several sets of
variables that are described in the following.

The main part of the formula, shown in Eq. (3), introduces the first existential
quantifier and a set P = {p1, . . . , p|G|} of variables that are quantified by the
quantifier. Note that each valuation I of P corresponds to a subset S of G; in
particular let us by IP,G denote the set {fi ∈ G | I(pi) = 1}. The formula is build
in such a way that a valuation I is a witness of the formula if and only if IP,G

is a MUS from AMU〈G,h,α〉 \ M. This property is expressed via three conjuncts,
denoted inCell(P), unexplored(P), and isMUS(P), encoding that (i) IP,G is
in the cell α, (ii) IP,G is not in M, and (iii) IP,G is a MUS, respectively.

MUSInCell = ∃P. inCell(P ) ∧ unexplored(P ) ∧ isMUS(P ) (3)

Recall that the family Hxor(n,m) of hash functions is defined as {h |h(y)[i] =
ai,0 ⊕ (

⊕n
k=1 ai,k ∧ y[k]) for all 1 ≤ i ≤ m}, where ai,k ∈ {0, 1} (Sect. 2). A hash

function h ∈ Hxor(n,m) is given by fixing the values of individual ai,k and a cell
α of h is a bit-vector from {0, 1}m. The formula inCell(P ) encoding that the
set IP,G is in the cell α of h is shown in Eq. (4).

inCell(P) =
m∧

i=1

(ai,0 ⊕ (
⊕

p∈{pk|ai,k=1}
p) ⊕ ¬α[i]) (4)
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To encode that we are not interested in MUSes from M, we can simply
block all the valuations of P that correspond to these MUSes. However, we can
do better. In particular, recall that if M is a MUS, then no proper subset and
no proper superset of M can be a MUS; thus, we prune away all these sets from
the search space. The corresponding formula is shown in Eq. (5).

unexplored(P) =
∧

M∈M
((

∨

fi∈M

¬pi) ∧ (
∨

fi �∈M

pi)) (5)

The formula isMUS(P ) encoding that IP,G is a MUS is shown in Eq. (6).
Recall that IP,G is a MUS if and only if IP,G is unsatisfiable and for every closest
subset S of IP,G it holds that S is satisfiable, where closest subset means that
|IP,G \ S| = 1. We encode these two conditions using two subformulas denoted
by unsat(P ) and noUnsatSubset(P ).

isMUS(P) = unsat(P) ∧ noUnsatSubset(P) (6)

The formula unsat(P), shown in Eq. (7), introduces the set Vars(G) of vari-
ables that appear in G and states that every valuation of Vars(G) falsifies at
least one clause contained in IP,G.

unsat(P) = ∀Vars(G).
∨

fi∈G

(pi ∧ ¬fi) (7)

The formula noUnsatSubset(P), shown in Eq. (8), introduces another set of
variables: Q = {q1, . . . , q|G|}. Similarly as in the case of P , each valuation I of Q
corresponds to a subset of G defined as IQ,G = {fi ∈ G | I(qi) = 1}. The formula
expresses that for every valuation I of Q it holds that IQ,G is satisfiable or IQ,G

is not a closest subset of IP,G.

noUnsatSubset(P) = ∀Q. sat(Q) ∨ ¬subset(Q,P) (8)

The requirement that IQ,G is satisfiable is encoded in Eq. (9). Since we are
already reasoning about the satisfiability of G’s clauses in Eq. (7), we introduce
here a copy G′ of G where each variable xi of G is substituted by its primed copy
x′

i. Equation (9) states that there exists a valuation of Vars(G′) that satisfies
IQ,G.

sat(Q) = ∃Vars(G′).
∧

fi∈G′
(¬qi ∨ fi) (9)

Equation (10) encodes that IQ,G is a closest subset of IP,G. To ensure that
IQ,G is a subset of IP,G, we add the clauses qi → pi. To ensure the close-
ness, we use cardinality constraints. In particular, we introduce another set
R = {r1, . . . , r|G|} of variables and enforce their values via ri ↔ (pi ∧¬qi). Intu-
itively, the number of variables from R that are set to 1 equals to |IP,G \ IQ,G|.
Finally, we add cardinality constraints, denoted by exactlyOne(R), ensuring
that exactly one ri is set to 1.
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subset(Q,P) = ∃R.
∧

pi∈P

((qi → pi) ∧ (ri ↔ (pi ∧ ¬qi)) ∧ exactlyOne(R) (10)

Note that instead of encoding a closest subset in Eq. 10, we could just encode
that IQ,G is an arbitrary proper subset of IP,G as it would still preserve the mean-
ing of Eq. 6 that IP,G is a MUS. Such an encoding would not require introducing
the set R of variables and also, at the first glance, would save a use of one exis-
tential quantifier. The thing is that the whole formula would still be in the form
of ∃∀∃-QBF due to Eq. 9 (which introduces the second existential quantifier).
The advantage of using a closet subset is that we significantly prune the search
space of the QBF solver. It is thus matter of contemporary QBF solvers whether
it is more beneficial to reduce the number of variables (by removing R) or to
prune the searchspace via R.

For the sake of lucidity, we have not exploited the knowledge of IMUG (IG)
while presenting the above equations. Since we know that every clause f ∈ IMUG

has to be contained in every MUS of G, we can fix the values of the variables
{pi | fi ∈ IMUG} to 1. This, in turn, significantly simplifies the equations and
prunes away exponentially many (w.r.t. |IMUG|) valuations of P , Q, and R, that
need to be assumed. To solve the final formula, we employ a ∃∀∃-QBF solver,
i.e., a ΣP

3 oracle.
Finally, one might wonder why we use our custom solution for identifying

MUSes in a cell instead of employing one of existing MUS extraction techniques.
Conventional MUS extraction algorithms cannot be used to identify MUSes that
are in a cell since the cell is not “continuous” w.r.t. the set containment. In
particular, assume that we have three sets of clauses, K, L, M , such that K ⊂
L ⊂ M . It can be the case that K and M are in the cell, but L is not in the
cell. Contemporary MUS extraction techniques require the search space to be
continuous w.r.t. the set containment and thus cannot be used in our case.

4.4 Computing UMUF

We now turn our attention to computing the union UMUF (i.e., G) of all MUSes
of F . Let us start by describing well-known concepts of autark variables and
a lean kernel. A set A ⊆ Vars(F ) of variables is an autark of F iff there exists
a truth assignment to A such that every clause of F that contains a variable
from A is satisfied by the assignment [44]. It holds that the union of two autark
sets is also an autark set, thus there exists a unique largest autark set (see,
e.g., [31,32]). The lean kernel of F is the set of all clauses that do not contain
any variable from the largest autark set. It is known that the lean kernel of F
is an over-approximation of UMUF (see e.g., [31,32]), and there were proposed
several algorithms, e.g., [33,38], for computing the lean kernel.

Algorithm. Our approach for computing UMUF consists of two parts. First, we
compute the lean kernel K of F to get an over-approximation of UMUF , and
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Algorithm 4: getUMU(F)

1 K ← the lean kernel of F ; M ← {}
2 for f ∈ K \ {f ∈ M | M ∈ M} do
3 W ← checkNecessity(f, K)

4 if W �= null then M ← M ∪ { a MUS of W}
5 else K ← K \ {f}
6 return K

then we gradually refine the over-approximation K until K is exactly the set
UMUF . The refinement is done by solving the MUS-membership problem for each
f ∈ K. To solve the MUS-membership problem efficiently, we reveal a connection
to necessary clauses, as stated in the following lemma.

Lemma 2. A clause f ∈ F belongs to UMUF iff there is a subset W of F such
that W is unsatisfiable and f is necessary for W (i.e., W \ {f} is satisfiable).

Proof. ⇒: Let f ∈ UMUF and M ∈ AMUF such that f ∈ M . Since M is a MUS
then M \ {f} is satisfiable; thus f is necessary for M .
⇐: If W is a subset of F and f ∈ W a necessary clause for W then f has to
be contained in every MUS of W . Moreover, W has at least one MUS and since
W ⊆ F , then every MUS of W is also a MUS of F .

Our approach for computing UMUF is shown in Algorithm 4. It takes as
an input the formula F and outputs UMUF (denoted K). Moreover, the algo-
rithm maintains a set M of MUSes of F . Initially, M = ∅ and K is set to the
lean kernel of F ; we use an approach by Marques-Silva et al. [38] to compute the
lean kernel. At this point, we know that K ⊇ UMUF ⊇ {f ∈ M |M ∈ M}. To find
UMUF , the algorithm iteratively determines for each f ∈ K \ {f ∈ M |M ∈ M}
if f ∈ UMUF . In particular, for each f , the algorithm checks whether there exists
a subset W of K such that f is necessary for W (Lemma 2). The task of finding
W is carried out by a procedure checkNecessity(f,K). If there is no such W ,
then the algorithm removes f from K. In the other case, if W exists, the algo-
rithm finds a MUS of W and adds the MUS to the set M. Any available single
MUS extraction approach, e.g., [2,5,7,46], can be used to find the MUS.

To implement the procedure checkNecessity(f,K) we build a QBF formula
that is true iff there exists a set W ⊆ K such that W is unsatisfiable and f is
necessary for W . To represent W we introduce a set S = {sg | g ∈ K} of Boolean
variables; each valuation I of S corresponds to a subset IS,K of K defined as
IS,K = {g ∈ K | I(sg) = 1}. Our encoding is shown in Eq. 11.

∃S,Vars(K).∀Vars(K ′). sf ∧ (
∧

g∈K\{f}
(g ∨ ¬sg)) ∧ (

∨

g∈K′
(¬g ∧ sg)) (11)

The formula consists of three main conjuncts. The first conjunct ensures that
f is present in IS,K . The second conjunct states that IS,K \ {f} is satisfiable,
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i.e., that there exists a valuation of Vars(K) that satisfies IS,K \ {f}. Finally,
the last conjunct express that IS,K is unsatisfiable, i.e., that every valuation of
Vars(K) falsifies at least one clause of IS,K . Since we are already reasoning about
variables of K in the second conjunct, in the third conjunct, we use a primed
version (a copy) K ′ of K.

Alternative QBF Encodings. Janota and Marques-Silva [30] proposed three
other QBF encodings for the MUS-membership problem, i.e., for deciding
whether a given f ∈ F belongs to UMUF . Two of the three proposed encod-
ings are typically inefficient; thus, we focus on the third encoding, which is the
most concise among the three. The encoding, referred to as JM encoding (after
the initials of the authors), uses only two quantifiers in the form of ∃∀-QBF
and it is only linear in size w.r.t. |F |. The underlying ideas by JM encoding
and our encoding differ significantly. Our encoding is based on necessary clauses
(Lemma 2), whereas JM exploits a connection to so-called Maximal Satisfiable
Subsets. Both the encodings use the same quantifiers; however, our encoding is
smaller. In particular, the JM uses 2 × (Vars(F ) + |F |) variables whereas our
encoding uses only |F | + 2 × Vars(F ) variables, and leads to smaller formulas.

Implementation. Recall that we compute UMUF to reduce the search space,
i.e. instead of working with the whole F , we work only with G = UMUF . The
soundness of this reduction is witnessed in Lemma 1 (Sect. 4.2). In fact, Lemma 1
shows that it is sound to reduce the search space to any G′ such that UMUF ⊆
G′ ⊆ F . Since our algorithm for computing UMUF subsumes repeatedly solving
a ΣP

2 -complete problem, it can be very time-consuming. Therefore, instead of
computing the exact UMUF , we optionally compute only an over-approximation
G′ of UMUF . In particular, we set a (user-defined) time limit for computing the
lean kernel K of F . Moreover, we use a time limit for executing the procedure
checkNecessity(f,K); if the time limit is exceeded for a clause f ∈ K, we
conservatively assume that f ∈ UMUF , i.e., we over-approximate.

Sparse Hashing and UMUF . The approach of computation of UMUF is similar to,
in spirit, computation of independent support of a formula to design sparse hash
functions [16,28]. Briefly, given a Boolean formula H, an independent support of
H is a set I ⊆ Vars(H) such that in every model of H, the truth assignment to
I uniquely determines the truth assignment to Vars(H) \ I. Practically, inde-
pendent support can be used to reduce the search space where a model counting
algorithm searches for models of H. It is interesting to note that the state of
the art technique reduces the computation of independent support of a formula
in the context of model counting to that of computing (Group) Minimal Unsat-
isfiable Subset (GMUS). Thus, a formal study of computation of independent
support in the context of MUSes is an interesting direction of future work.



454 J. Bend́ık and K. S. Meel

Algorithm 5: getIMU(G)

1 C ← G
2 K ← ∅
3 while C �= ∅ do
4 f ← choose f ∈ C
5 (sat?, I, core) ← checkSAT(G \ {f})
6 if sat? then
7 R ← RMR(G, f, I)
8 K ← K ∪ {f} ∪ R
9 C ← C \ ({f} ∪ R)

10 else
11 C ← C ∩ core

12 return K

4.5 Computing IMUG

Our approach to compute the intersection IMUG (i.e., IG) of all MUSes of G is
composed of several ingredients. First, recall that a clause f ∈ G belongs to IMUG

iff f is necessary for G. Another ingredient is the ability of contemporary SAT
solvers to provide either a model or an unsat core of a given unsatisfiable formula
N ⊆ G, i.e., a small, yet not necessarily minimal, unsatisfiable subset of N . The
final ingredient is a technique called model rotation. The technique was originally
proposed by Marques-Silva and Lynce [40], and it serves to explore necessary
clauses based on other already known necessary clauses. In particular, let f be
a necessary clause for G and I : Vars(G) → {0, 1} a model of G \ {f}. Since
G is unsatisfiable, the model I does not satisfy f . The model rotation attempts
to alter I by switching, one by one, the Boolean assignment to the variables
Vars({f}). Each variable assignment I ′ that originates from such an alternation
of I necessarily satisfies f and does not satisfy at least one f ′ ∈ G. If it is the
case that there is exactly one such f ′, then f ′ is necessary for G. An improved
version of model rotation, called recursive model rotation, was later proposed
by Belov and Marques-Silva [6] who noted that the model rotation could be
recursively performed on the newly identified necessary clauses.

Our approach for computing IMUG is shown in Algorithm 5. To find IMUG,
the algorithm decides for each f whether f is necessary for G. In particular, the
algorithm maintains two sets: a set C of candidates on necessary clauses and
a set K of already known necessary clauses. Initially, K is empty and C = G. At
the end of computation, C is empty and K equals to IMUG. The algorithm works
iteratively. In each iteration, the algorithm picks a clause f ∈ C and checks
G \ {f} for satisfiability via a procedure checkSAT. Moreover, checkSAT returns
either a model I or an unsat core core of G\{f}. If G\{f} is satisfiable, i.e. f is
necessary for G, the algorithm employs the recursive model rotation, denoted by
RMR(G, f, I), to identify a set R of additional necessary clauses. Subsequently,
all the newly identified necessary clauses are added to K and removed from C.
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In the other case, when G \ {f} is unsatisfiable, the set C is reduced to C ∩ core
since every necessary clause of G has to be contained in every unsatisfiable subset
of G. Note that f �∈ core, thus at least one clause is removed from C.

5 Experimental Evaluation

We employed several external tools to implement AMUSIC. In particular, we use
the QBF solver CAQE [49] for solving the QBF formula MUSInCell, the 2QBF
solver CADET [50] for solving our ∃∀-QBF encoding while computing UMUF , and
the QBF preprocessor QRATPre+ [37] for preprocessing/simplifying our QBF
encodings. Moreover, we employ muser2 [7] for a single MUS extraction while
computing UMUF , a MaxSAT solver UWrMaxSat [48] to implement the algorithm
by Marques-Silva et al. [38] for computing the lean kernel of F , and finally, we
use a toolkit called pysat [27] for encoding cardinality constraints used in the
formula MUSInCell. The tool along with all benchmarks that we used is available
at https://github.com/jar-ben/amusic.

Objectives. As noted earlier, AMUSIC is the first technique to (approximately)
count MUSes without explicit enumeration. We demonstrate the efficacy of our
approach via a comparison with two state of the art techniques for MUS enumer-
ation: MARCO [35] and MCSMUS [3]. Within a given time limit, a MUS enumer-
ation algorithm either identifies the whole AMUF , i.e., provides the exact value of
|AMUF |, or identifies just a subset of AMUF , i.e., provides an under-approximation
of |AMUF | with no approximation guarantees.

The objective of our empirical evaluation was two-fold: First, we experimen-
tally examine the scalability of AMUSIC, MARCO, and MCSMUS w.r.t. |AMUF |.
Second, we examine the empirical accuracy of AMUSIC.

Benchmarks and Experimental Setup. Given the lack of dedicated counting
techniques, there is no sufficiently large set of publicly available benchmarks to
perform critical analysis of counting techniques. To this end, we focused on
a recently emerging theme of evaluation of SAT-related techniques on scalable
benchmarks1. In keeping with prior studies employing empirical methodology
based on scalable benchmarks [22,41], we generated a custom collection of CNF
benchmarks. The benchmarks mimic requirements on multiprocessing systems.
Assume that we are given a system with two groups (kinds) of processes, A =
{a1, . . . , a|A|} and B = {b1, . . . , b|B|}, such that |A| ≥ |B|. The processes require
resources of the system; however, the resources are limited. Therefore, there
are restrictions on which processes can be active simultaneously. In particular,
we have the following three types of mutually independent restrictions on the
system:
1 M. Y. Vardi, in his talk at BIRS CMO 18w5208 workshop, called on the SAT com-

munity to focus on scalable benchmarks in lieu of competition benchmarks. Also,
see: https://gitlab.com/satisfiability/scalablesat (Accessed: May 10, 2020).

https://github.com/jar-ben/amusic
https://gitlab.com/satisfiability/scalablesat
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Fig. 3. The number of completed iterations and the accuracy of the final MUS count
estimate for individual benchmarks.

– The first type of restriction states that “at most k − 1 processes from the
group A can be active simultaneously”, where k ≤ |A|.

– The second type of restriction enforces that “if no process from B is active
then at most k −1 processes from A can be active, and if at least one process
from B is active then at most l − 1 processes from A can be active”, where
k, l ≤ |A|.

– The third type of restriction includes the second restriction. Moreover, we
assume that a process from B can activate a process from A. In particular,
for every bi ∈ B, we assume that when bi is active, then ai is also active.

We encode the three restrictions via three Boolean CNF formulas, R1, R2, R3.
The formulas use three sets of variables: X = {x1, . . . , x|A|}, Y = {y1, . . . , y|B|},
and Z. The sets X and Y represent the Boolean information about activity of
processes from A and B: ai is active iff xi = 1 and bj is active iff yj = 1. The
set Z contains additional auxiliary variables. Moreover, we introduce a formula
ACT = (

∧
xi∈X xi) ∧ (

∧
yi∈Y yi) encoding that all processes are active. For each

i ∈ {1, 2, 3}, the conjunction Gi = Ri ∧ ACT is unsatisfiable. Intuitively, every
MUS of Gi represents a minimal subset of processes that need to be active
to violate the restriction. The number of MUSes in G1, G2, and G3 is

(|A|
k

)
,

(|A|
k

)
+ |B| × (|A|

l

)
, and

(|A|
k

)
+

∑|B|
i=1(

(|B|
i

) × (|A|−1
l−i

)
), respectively. We generated

G1, G2, and G3 for these values: 10 ≤ |A| ≤ 30, 2 ≤ |B| ≤ 6, � |A|
2 � ≤ k ≤ � 3×|A|

2 �,
and l = k − 1. In total, we obtained 1353 benchmarks (formulas) that range in
their size from 78 to 361 clauses, use from 40 to 152 variables, and contain from
120 to 1.7 × 109 MUSes.

All experiments were run using a time limit of 7200 s and computed on an
AMD EPYC 7371 16-Core Processor, 1 TB memory machine running Debian
Linux 4.19.67-2. The values of ε and δ were set to 0.8 and 0.2, respectively.
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Fig. 4. Scalability of AMUSIC, MARCO, and MCSMUS w.r.t. |AMUF |.

Accuracy. Recall that to compute an estimate c of |AMUF |, AMUSIC performs
multiple iteration of executing AMUSICCore to get a list C of multiple estimates
of |AMUF |, and then use the median of C as the final estimate c. The more
iterations are performed, the higher is the confidence that c is within the required
tolerance ε = 0.8, i.e., that |AMUF |

1.8 ≤ c ≤ 1.8 · |AMUF |. To achieve the confidence
1 − δ = 0.8, 66 iterations need to be performed. In case of 157 benchmarks, the
algorithm was not able to finish even a single iteration, and only in case of 251
benchmarks, the algorithm finished all the 66 iterations. For the remaining 945
benchmarks, at least some iterations were finished, and thus at least an estimate
with a lower confidence was determined.

We illustrate the achieved results in Fig. 3. The figure consists of two plots.
The plot at the bottom of the figure shows the number of finished iterations (y-
axis) for individual benchmarks (x-axis). The plot at the top of the figure shows
how accurate were the MUS count estimates. In particular, for each benchmark
(formula) F , we show the number c

|AMUF | where c is the final estimate (median
of estimates from finished iterations). For benchmarks where all iterations were
completed, it was always the case that the final estimate is within the required
tolerance, although we had only 0.8 theoretical confidence that it would be the
case. Moreover, the achieved estimate never exceeded a tolerance of 0.1, which
is much better than the required tolerance of 0.8. As for the benchmarks where
only some iterations were completed, there is only a single benchmark where the
tolerance of 0.8 was exceeded.

Scalability. The scalability of AMUSIC, MARCO, and MCSMUS w.r.t. the num-
ber of MUSes (|AMUF |) is illustrated in Fig. 4. In particular, for each benchmark
(x-axis), we show in the plot the estimate of the MUS count that was achieved
by the algorithms (y-axis). The benchmarks are sorted by the exact count of
MUSes in the benchmarks. MARCO and MCSMUS were able to finish the MUS
enumeration, and thus to provide the count, only for benchmarks that contained
at most 106 and 105 MUSes, respectively. AMUSIC, on the other hand, was able
to provide estimates on the MUS count even for benchmarks that contained up to
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109 MUSes. Moreover, as we have seen in Fig. 3, the estimates are very accurate.
Only in the case of 157 benchmarks where AMUSIC finished no iteration, it could
not provide any estimate.

6 Summary and Future Work

We presented a probabilistic algorithm, called AMUSIC, for approximate MUS
counting that needs to explicitly identify only logarithmically many MUSes and
yet still provides strong theoretical guarantees. The high-level idea is adopted
from a model counting algorithm ApproxMC3: we partition the search space into
small cells, then count MUSes in a single cell, and estimate the total count by
scaling the count from the cell. The novelty lies in the low-level algorithmic parts
that are specific for MUSes. Mainly, (1) we propose QBF encoding for counting
MUSes in a cell, (2) we exploit MUS intersection to speed-up localization of
MUSes, and (3) we utilize MUS union to reduce the search space significantly.
Our experimental evaluation showed that the scalability of AMUSIC outperforms
the scalability of contemporary enumeration-based counters by several orders of
magnitude. Moreover, the practical accuracy of AMUSIC is significantly better
than what is guaranteed by the theoretical guarantees.

Our work opens up several questions at the intersection of theory and prac-
tice. From a theoretical perspective, the natural question is to ask if we can
design a scalable algorithm that makes polynomially many calls to an NP ora-
cle. From a practical perspective, our work showcases interesting applications of
QBF solvers with native XOR support. Since approximate counting and sam-
pling are known to be inter-reducible, another line of work would be to investigate
the development of an almost-uniform sampler for MUSes, which can potentially
benefit from the framework proposed in UniGen [14,16]. Another line of work is
to extend our MUS counting approach to other constraint domains where MUSes
find an application, e.g., F can be a set of SMT [25] or LTL [4,8] formulas or
a set of transition predicates [13,23].
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Abstract. Given a Boolean formula, the problem of counting seeks to
estimate the number of solutions of F while the problem of uniform
sampling seeks to sample solutions uniformly at random. Counting and
uniform sampling are fundamental problems in computer science with a
wide range of applications ranging from constrained random simulation,
probabilistic inference to network reliability and beyond. The past few
years have witnessed the rise of hashing-based approaches that use XOR-
based hashing and employ SAT solvers to solve the resulting CNF for-
mulas conjuncted with XOR constraints. Since over 99% of the runtime
of hashing-based techniques is spent inside the SAT queries, improving
CNF-XOR solvers has emerged as a key challenge.

In this paper, we identify the key performance bottlenecks in the
recently proposed BIRD architecture, and we focus on overcoming these
bottlenecks by accelerating the XOR handling within the SAT solver
and on improving the solver integration through a smarter use of (par-
tial) solutions. We integrate the resulting system, called BIRD2, with the
state of the art approximate model counter, ApproxMC3, and the state
of the art almost-uniform model sampler UniGen2. Through an extensive
evaluation over a large benchmark set of over 1896 instances, we observe
that BIRD2 leads to consistent speed up for both counting and sampling,
and in particular, we solve 77 and 51 more instances for counting and
sampling respectively.

1 Introduction

A CNF-XOR formula ϕ is represented as conjunction of two Boolean formulas
ϕCNF ∧ϕXOR wherein ϕCNF is represented in Conjunctive Normal Form (CNF)
and ϕXOR is represented as conjunction of XOR constraints. While owing to
the NP-completeness of CNF, every CNF-XOR formula can be represented as
a CNF formula with only a linear increase in the size of the resulting formula,
such a transformation may not be ideal in several scenarios. In particular, it is

The resulting tools ApproxMC4 and UniGen3 are available open source at https://
github.com/meelgroup/approxmc and https://github.com/meelgroup/unigen.

c© The Author(s) 2020
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well known that modern Conflict Driven Clause Learning (CDCL) SAT solvers
perform poorly on XOR formulas represented in CNF form despite the exis-
tence of efficient polynomial time decision procedures for XOR constraints. Fur-
thermore, constraints arising from domains such as cryptanalysis and circuits
can be naturally described as CNF-XOR formulas and these domains served as
the early inspiration for design of SAT solvers with native support for XORs
through the usage of Gaussian Elimination. These efforts lead to the develop-
ment of CryptoMiniSat, a SAT solver that sought to perform Conflict Driven
Clause Learning and Gaussian Elimination in tandem. The architecture of the
early verisons of CryptoMiniSat sought to employ disjoint storage of CNF and
XOR clauses – reminiscent to the architecture of SMT solvers.

While CryptoMiniSat was originally designed for cryptanalysis, its ability to
handle XORs natively has led it to be a fundamental building block of the
hashing-based techniques for approximate model counting and sampling. Model
counting, also known as #SAT, and uniform sampling of solutions for Boolean
formulas are two fundamental problems in computer science with a wide variety
of applications [1,11,18]. The core idea of hashing-based techniques for approx-
imate counting and almost-uniform sampling is to employ XOR-based 3-wise
independent hash functions1 to partition the solution space of F into roughly
equal small cells of solutions. The usage of XOR-based hash functions allows us
to represent a cell as conjunction of a Boolean formula in conjunctive normal
form (CNF) and XOR constraints, and a SAT solver is invoked to enumerate
solutions inside a randomly chosen cell. The corresponding counting and sam-
pling algorithms typically employ the underlying solver in an incremental fashion
and invoke the solver thousands of times, thereby necessitating the need for run-
time efficiency. In this context, Soos and Meel [19] observed that the original
architecture of CryptoMiniSat did not allow a straightforward integration of pre-
and in-processing which of late has emerged to be key techniques in SAT solving.
Accordingly, Soos and Meel [19] proposed a new architecture, called BIRD, that
relied on the key idea of keeping the XOR constraints in both CNF form and
XOR form. Soos and Meel integrated BIRD into CryptoMiniSat, and showed that
state of the art approximate model counter, ApproxMC, when integrated with
the new version of CryptoMiniSat achieves significant runtime improvements. The
resulting version of ApproxMC was called ApproxMC3.

Motivated by the success of BIRD in achieving significant runtime perfor-
mance improvements, we sought to investigate the key bottlenecks in the run-
time performance of CryptoMiniSat when handling CNF+XOR formulas. Given
the prominent usage of CNF-XOR formulas by the hashing based techniques,
we study the runtime behavior of CryptoMiniSat for the the queries issued by
the hashing-based approximate counters and samplers, ApproxMC3 and UniGen2
respectively. Our investigation leads us to make five core technical contributions.
The first four contributions contribute towards architectural advances in han-

1 While approximate counting techniques [10] only require 2-wise independent hash
functions, hashing-based sampling techniques [6,9] require 3-wise independent hash
functions.
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dling of CNF-XOR formulas while the fifth contribution focuses on algorithmic
improvements in the hashing-based techniques for counting and sampling:

1. Matrix row handling improvements for efficient propagation and conflict
checking of XOR constraints

2. XOR constraint detaching from the standard unit propagation system for
higher unit propagation speed

3. Lazy reason clause generation to reduce reason generation overhead for
unused reasons generated from XOR constraints

4. Allowing partial solution extraction by the SAT solver
5. Intelligent reuse of solutions by hashing-based techniques to reduce the

number of SAT calls

We integrate these improvements into the BIRD framework, the resulting
framework is called BIRD2. The BIRD2 framework is applied to state of the
art approximate model counter, ApproxMC3, and to the almost-uniform sam-
pler UniGen2 [6,9]. The resulting counter and sampler are called ApproxMC4
and UniGen3 respectively. We conducted an extensive empirical evaluation
with over 1800 benchmarks arising from diverse domains with computational
effort totalling 50,000 CPU hours. With a timeout of 5000 s, ApproxMC3
and UniGen2+BIRD were able to solve only 1148 and 1012 benchmarks, while
ApproxMC4 and UniGen3 solved 1225 and 1063 benchmarks respectively. Further-
more, we observe a consistent speedup for most of the benchmarks that could
be solved by ApproxMC3 and UniGen2+BIRD. In particular, the PAR-22 score
improved from 4146 with ApproxMC3 to 3701 with ApproxMC4. Similarly, the
corresponding PAR-2 scores for UniGen3 and UniGen2+BIRD improved to 4574
from 4878.

2 Notations and Preliminaries

Let F be a Boolean formula in conjunctive normal form (CNF) and Vars(F ) the
set of variables in F . Unless otherwise stated, we use n to denote the number of
variables in F i.e., n = |Vars(F )|. An assignment of truth values to the variables
in Vars(F ) is called a satisfying assignment or witness of F if it makes F eval-
uate to true. We denote the set of all witnesses of F by sol(F ). If we are only
interested in a subset of variables S ⊆ Vars(F ) we will use sol(F )↓S to indicate
the projection of sol(F ) on S.

The problem of propositional model counting is to compute |sol(F )| for a
given CNF formula F . A probably approximately correct (or PAC) counter is a
probabilistic algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a
tolerance ε > 0, and a confidence 1−δ ∈ (0, 1], and returns a count c with (ε, δ)-
guarantees, i.e., Pr

[
|sol(F )|/(1 + ε) ≤ c ≤ (1 + ε)|sol(F )|

]
≥ 1 − δ. Projected

2 PAR-2 score, that is, penalized average runtime, assigns a runtime of two times the
time limit (instead of a “not solved” status) for each benchmark not solved by a
tool.
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model counting is defined analogously using sol(F )↓S instead of sol(F ), for a
given sampling set S ⊆ Vars(F ).

A uniform sampler outputs a solution y ∈ sol(F ) such that Pr[y is output] =
1

|sol(F )| . An almost-uniform sampler relaxes the guarantee of uniformity and in
particular, ensures that 1

(1+ε)|sol(F )| ≤ Pr[y is output] ≤ 1+ε
|sol(F )| .

Universal Hash Functions. Let n,m ∈ N and H(n,m) � {h : {0, 1}n →
{0, 1}m} be a family of hash functions mapping {0, 1}n to {0, 1}m. We use
h

R←− H(n,m) to denote the probability space obtained by choosing a func-
tion h uniformly at random from H(n,m). To measure the quality of a hash
function we are interested in the set of elements of S mapped to α by h, denoted
Cell〈S,h,α〉 and its cardinality, i.e., |Cell〈S,h,α〉|. To avoid cumbersome terminology,
we abuse notation slightly and we use Cell〈F,m〉 (resp. Cnt〈F,m〉) as shorthand for
Cell〈sol(F ),h,α〉 (resp. |Cell〈sol(F ),h,α〉|).
Definition 1. A family of hash functions H(n,m) is k-wise independent3 if
∀α1, α2, . . . αk ∈ {0, 1}m and for distinct y1,y2, . . .yk ∈ {0, 1}n, h

R←− H(n,m),

Pr [(h(y1) = α1) ∧ (h(y2) = α2) . . . ∧ (h(yk) = αk)] =
(

1
2m

)k

(1)

Note that every k-wise independent hash family is also k−1 wise independent.

Prefix Slicing. While universal hash families have nice concentration bounds,
they are not adaptive, in the sense that one cannot build on previous queries. In
several applications of hashing, the dependence between different queries can be
exploited to extract improvements in theoretical complexity and runtime perfor-
mance. Thus, we are typically interested in prefix slices of hash functions [10] as
follows.

Definition 2. For every m ∈ {1, . . . n}, the mth prefix-slice of h, denoted h(m),
is a map from {0, 1}n to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈
{0, 1}n and for all i ∈ {1, . . . m}. Similarly, the mth prefix-slice of α, denoted
α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, . . . m}.

Explicit Hash Functions. The most common explicit hash family used in
state of the art sampling and counting techniques is based on random XOR
constraints. Viewing Vars(F ) as a vector x of dimension n × 1, we can represent
the hash family as follows: Let Hxor(n,m) � {h : {0, 1}n → {0, 1}m} be the
family of functions of the form h(x) = Mx + b with M ∈ F

m×n
2 and b ∈ F

m×1
2

where the entries of M and b are independently generated according to the
3 The phrase strongly 2-universal is also used to refer to 2-wise independent as noted

by Vadhan in [23], although the concept of 2-universal hashing proposed by Carter
and Wegman [4] only required that Pr[h(x) = h(y)] ≤ 1

2m .
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Bernoulli distribution with probability 1/2. Observe that h(m)(x) can be written
as h(m)(x ) = M (m)x +b(m), where M (m) denotes the submatrix formed by the
first m rows and n columns of M and b(m) is the first m entries of the vector
b. It is well known that Hxor is 3-wise independent [9].

3 Background

The general idea of hashing-based model counting and sampling is to use a hash
function from a suitable family, e.g. Hxor, to divide the solution space into cells
that are sufficiently small such that all solutions within a cell can be enumerated
efficiently. Given such a cell, its size can then be used to estimate the total count
of solutions or we can return a random element of this small cell to produce a
sample. Hence, hashing-based sampling and counting are closely related.

3.1 Hashing-Based Model Counting

The seminal work of Valiant [24] established that #SAT is #P-complete.
Toda [22] showed that the entire polynomial hierarchy is contained inside the
complexity class defined by a polynomial time Turing machine equipped with
#P oracle. Building on Carter and Wegman’s [4] seminal work of universal hash
functions, Stockmeyer [21] proposed a probabilistic polynomial time procedure
relative to an NP oracle to obtain an (ε, δ)-approximation of F .

The core theoretical idea of the hashing-based approximate solution count-
ing framework proposed in ApproxMC [8], building on Stockmeyer [21], is to
employ 2-universal hash functions to partition the solution space, denoted by
sol(F ) for a formula F , into roughly equal small cells, wherein a cell is called
small if it has solutions less than or equal to a pre-computed threshold, thresh.
An NP oracle is employed to check if a cell is small by enumerating solutions
one-by-one until either there are no more solutions or we have already enumer-
ated thresh + 1 solutions. In practice, a SAT solver is used to realize the NP
oracle. To ensure polynomially many calls to the oracle, thresh is set to be poly-
nomial in the input parameter ε. To determine the right number of cells, i.e., the
value of m for H(n,m), a search procedure is invoked. Finally, the subroutine,
called ApproxMCCore, computes the estimate as the number of solutions in the
randomly chosen cell scaled by the number of cells (i.e, 2m). To achieve prob-
abilistic amplification of the confidence, multiple invocations of the underlying
subroutine, ApproxMCCore, are performed with the final count computed as the
median of estimates returned by ApproxMCCore.

Two key algorithmic improvements proposed in ApproxMC2 [10] are signifi-
cant to practical performance: (1) the search for the right number of cells can be
performed via galloping search, and (2) one can first perform linear search over a
small enough interval (chosen to be of size 7) around the value of m found in the
previous iteration of ApproxMCCore. The practical profiling of ApproxMC2 reveals
that linear search is sufficient after the first invocation of ApproxMCCore. Note
that the linear search seeks to identify a value of m such that Cnt〈F,m−1〉 ≥ thresh
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and Cnt〈F,m〉 < thresh for an appropriately chosen thresh. ApproxMC is currently
in its third generation: ApproxMC3.

3.2 Hashing-Based Sampling

Jerrum, Valiant, and Vazirani [14] showed that the approximate counting and
almost-uniform counting are polynomially inter-reducible. Building on Jerrum
et al.’s result, Bellare, Goldreich, and Petrank [2] proposed a probabilistic uni-
form generator that makes polynomially many calls to an NP oracle where
each NP query is the input formula F conjuncted with constraints encoding
a degree n polynomially representing n-wise independent hash functions where
n is the number of variables in F . The practical implementation of Bellare
et al.’s technique did not scale beyond few tens of variables. Chakraborty, Meel,
and Vardi [7,9], sought to combine the inter-reducibility and the usage of inde-
pendent hashing, and proposed a hashing-based framework, called UniGen, that
employs 3-wise independent hashing and makes polynomially many calls to an
NP oracle.

The core theoretical idea of the hashing-based sampling framework, proposed
in UniGen, exploits the close relationship between counting and sampling. UniGen
first invokes ApproxMC to compute an estimate of the number of solutions of the
given formula F . It then uses the count to determine the number of cells that the
solution space should be partitioned into using 3-wise independent hash func-
tions. At this point, it is worth mentioning that the state of the art hashing-based
sampling employ 3-wise independent hash functions. Fortunately, the family of
hash functions, Hxor, is also known to be 3-wise independent. There after, sim-
ilar to ApproxMC, a linear search over a small enough interval (chosen to be of
size 4) is invoked to find the right value of m where a randomly chosen cell’s
size is within the desired bounds. For such a cell, all its solutions are enumer-
ated and one of the solutions is randomly chosen. Again, similar to ApproxMC2
(and ApproxMC3), the linear search seeks to identify a value of m such that
Cnt〈F,m−1〉 ≥ thresh and Cnt〈F,m〉 < thresh for an appropriately chosen thresh.
UniGen is currently in its second generation: UniGen2 [6].

3.3 The Underlying SAT Solver

The underlying SAT solver is invoked through subroutine BoundedSAT, which
is implemented using CryptoMiniSat. Formally, BoundedSAT takes as inputs a
formula F , a threshold thresh, and a sampling set S, and returns a subset Y
of sol(F )↓S , such that |Y | = min(thresh, |sol(F )↓S |). The formula F consists of
the original formula, which we want to count or sample, conjuncted with a set
of XOR constraints defined through a hash function sampled from the family
Hxor. We henceforth denote such formulas as CNF-XOR formulas. Note that
the efficient encoding of XOR constraints into CNF requires the introduction of
new variables and hence the sampling set S usually does not contain all variables
in F .



Tinted, Detached, and Lazy CNF-XOR Solving 469

As is consistent with prior studies, profiling of ApproxMC3 and UniGen2
reveal that over 99% of the time is spent in the runtime of BoundedSAT.
Therefore recent efforts have focused on improving BoundedSAT. Soos and
Meel [19] sought to address the performance of the underlying SAT solver by
proposing a new architecture, called BIRD, that allows the usage of in- and
pre-processing techniques for a Gauss Jordan Elimination (GJE)-augmented
SAT solver. ApproxMC2, integrated with BIRD, called ApproxMC3, gave up to
three orders of magnitude runtime performance improvement. Such significant
improvements are rare in the SAT community. Encouraged by Soos and Meel’s
observations, we seek to build on top of BIRD to achieve an even tighter inte-
gration of the underlying SAT solver and ApproxMC3/UniGen2.

BIRD: Blast, Inprocess, Recover, and Destroy. Pre- and inprocessing tech-
niques are known to have a large impact on the runtime performance of SAT
solvers. However, earlier Guassian elimination architectures were unable to per-
form these techniques. Motivated by this inability, Soos and Meel [19] proposed
a new framework, called BIRD, that allows usage of inprocessing techniques for
GJE-augmented CDCL solvers. The key idea of BIRD is to blast XOR clauses
into CNF clauses so that any technique working solely on CNF clauses does not
violate soundness of the solver. To perform Gauss-Jordan elimination, one needs
efficient algorithms and data structures to extract XORs from CNF. The entire
framework is presented as follows:

BIRD: Blast, In-process, Recover, and Destroy

Step 1 Blast XOR clauses into normal CNF clauses
Step 2 Inprocess (and pre-process) over CNF clauses
Step 3 Recover simplified XOR clauses
Step 4 Perform CDCL on CNF clauses with on-the-fly Gauss-Jordan Elimi-

nation (GJE) on XOR clauses until inprocessing is scheduled
Step 5 Destroy XOR clauses and goto Step 2

The above loop terminates as soon as a satisfying assignment is found or the
formula is proven UNSAT. The BIRD architecture separates inprocessing from
CDCL solving and therefore every sound inprocessing step can be employed.

4 Technical Contributions to CNF-XOR Solving

Inspired by the success of BIRD, we seek to further improve the underlying SAT
solver’s architecture based on the queries generated by the hashing-based tech-
niques. To this end, we relied on extensive profiling of CryptoMiniSat augmented
with BIRD to identify the key performance bottlenecks, and propose solutions
to overcome some of the challenges.
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4.1 Detaching XOR Clauses from Watch-Lists

Given a formula F in CNF, the recovery phase of BIRD attempts to construct
a set of XORs, H such that F → H. As detailed in [19], the core tech-
nique for recovery of an XOR of size k is to establish whether the required
2k−1 combinations of clauses are implied by the existing CNF clauses. For
example, the XOR x1 ⊕ x2 ⊕ x3 = 0 (where k = 3) can be recovered
if the existing set of CNF clauses implies the following 4(= 23−1) clauses:
(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3). To
this end, the first stage of the recovery phase of BIRD iterates over the CNF
clauses and for a given clause, called base cl of size k, searches whether the
remaining 2k−1 − 1 clauses are implied as well, in which case the resulting XOR
is added. It is worth noting that a clause can imply multiple clauses over the the
set of variables of base cl; For example if the base cl = (x1 ∨ ¬x2 ∨ x3), then the
clause (¬x1) would imply the two clauses (¬x1 ∨¬x2 ∨¬x3) and (¬x1 ∨x2 ∨x3).
Note that given a base cl, we are only interested in clauses over the variables in
base cl.

During blasting of XORs into CNF, XORs are first cut into smaller XORs
by introducing auxiliary variables. Hence, the first stage of recovery phase must
recover these smaller XORs and the second phase reconstructs the larger XORs
by XOR-ing two XORs together if they differ only on one variable, referred to
as a clash variable. For example, x1 ⊕ x2 ⊕ x3 = 0 and x3 ⊕ x4 ⊕ x5 = 1 can be
XOR-ed together over clash variable x3 to obtain x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1.

Since BIRD performs CDCL in tandem with Gauss-Jordan elimination, it is
worth noting that the Gauss-Jordan elimination (GJE)-based decision procedure
is sound and complete, i.e., all unit propagations and conflicts implied by the
given set of XORs would be discovered by a GJE-based decision procedure.
For the initial formula (in CNF) F and the recovered set of XORs, H, if a
set of CNF clauses G is implied by H, then presence or absence of G does
not affect soundness and completeness of GJE-augmented CDCL engine. Our
extensive profiling of the BIRD framework integrated in CryptoMiniSat revealed
a significant time spent in examination of clauses in G during unit propagation.
To this end, we sought to ask how to design an efficient technique to find all the
CNF clauses implied by the recovered XORs. These clauses could be detached
from unit propagation without any negative effect on correctness of execution.

A straightforward approach would be to mark all the clauses during the
blasting phase of XORs into CNF. However, the incompleteness of the recovery
phase of BIRD does not guarantee that all such marked clauses are indeed implied
by the recovered set of XORs. Another challenge in the search for detachable
clauses arises due to construction of larger XORs by combining smaller XORs.
For example, while x1 ⊕ x2 ⊕ x3 = 0 and x3 ⊕ x4 ⊕ x5 = 1 imply (x1 ∨ x2 ∨ ¬x3)
and (x3 ∨ x4 ∨ x5), the combined XOR x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1 does not imply
(x1 ∨ x2 ∨ ¬x3) and (x3 ∨ x4 ∨ x5).

Two core insights inform our design of the modification of the recovery phase
and search for detachable clauses. Firstly, given a base clause base cl, if a clause
cl participates in the recovery of XORs over the variables in base cl, then cl is
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implied by the recovered XOR if the number of variables in cl is the same as
that of base cl. We call such a clause cl a fully participating clause. Secondly, let
G1 and G2 be the set of CNF clauses implied by two XORs q1 and q2 that share
exactly one variable, say xi. Let U = (Vars(q1)∪Vars(q2))\xi. Let q3 be the XOR
obtained by XORing together q1 and q2, then, sol(q3)↓U ⊆ sol(G1 ∧ G2)↓U if xi

does not appear in the remaining clauses, i.e., xi /∈ Var [F \ (G1 ∪ G2)].
The above two insights lead us to design a modified recovery and detachment

phase as follows. During recovery, we add every fully participating clause to the
set of detachable clauses D. Let U = S ∪ (Vars(D) ∩ Vars(F\D)). Then, the
recovery of longer XORs is only performed over clash variables that do not
belong to U . We then detach the clauses in D from watch-lists during GJE-
augmented CDCL phase, mark the clash variables as non-decision variables,
perform CDCL, and only reattach the clauses and re-set the clash variables to
be decision variables after the Destroy phase of BIRD.

If the formula is satisfiable, the design of the solver is such that the solution
is always found during the GJE-augmented CDCL solving phase. Since clauses
in D are detached and the clash variables are set to be not decided on during
this phase, the clash variables are always left unassigned. As discussed below,
however, we only need to extract solutions over the sampling set S, therefore
the solution found is adequate as-is, without the clash variables, which are by
definition not over S as they are only introduced for having short encodings of
XORs into CNF.

Conceptually, this approach reconciles the overhead introduced by BIRD, i.e.,
that XOR constraints are also present as regular clauses, with the neatness of
the original CryptoMiniSat that stored XOR and regular constraints in different
data structures. This reconciliation takes the best of both worlds.

4.2 Fast Propagation/Conflict Detection and Reason Generation

We identified two key bottlenecks in the the current GJE component of BIRD
framework integrated in CryptoMiniSat, which we sought to improve upon. To
put our contributions in the context, we first describe the technical details of
the core data structures and algorithms.

Han-Jiang’s GJE. To perform Gaussian elimination on a set of XORs, the
XORs are represented as a matrix where each row represents an XOR and each
column represents a variable. The framework proposed by Soos et al. updates
the matrix whenever a variable is assigned and removes the assigned variable
from all XORs by zeroing out the corresponding column. However, using the
matrix in such a way involves significant memory copying during backtracking
due to having to revert the matrix to a previous version.

To avoid the overhead, Han and Jiang proposed a new framework [13] build-
ing on Simplex-like techniques that performs Gauss-Jordan elimination, i.e.,
using reduced row echelon form instead of row echelon form. The key data struc-
ture innovation was to employ a two-watched variable scheme for each row of the
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matrix wherein the watched variables are called basic and non-basic variables.
Essentially, the basic variables are the variables on the diagonal of a matrix in
reduced row echelon form and hence every row has exactly one basic variable
and the basic variable only occurs in one row. Similar to standard CDCL solv-
ing, when a matrix row’s watch is assigned, the GJE component must determine
whether the row (1) propagates, (2) needs to assign a new watch, (3) is satisfied,
or (4) is conflicted. It is worth recalling that a row would propagate if all except
one variable has been assigned and would conflict or be satisfied if all the vari-
ables in a row have been assigned. Furthermore, we need to find a new watch if
a watched variable was assigned and there is more than one unassigned variable
left. If a basic variable is replaced by a new watch then the two corresponding
columns are swapped and the reduced row echelon form is recomputed. In prac-
tice swapping columns is avoided by keeping track of which column is a basic
variable.

For propagation, checking for conflict, and conflict clause generation Han-
Jiang proposed a sequential walk through a row that eagerly computes the reason
clause and stops when it encounters a new watch variable or reaches until the
end of the row. At that point, the system (1) knows whether the row is satisfied,
propagating, or conflicted, and (2) if not satisfied, has eagerly computed the
reason clause for the propagation or the conflict.

For general benchmarks where XOR constraints do not play an influential
role in determining satisfiability of the underlying problem, the GJE component
can be as small as 10% of the entire solving time. However, for formulas generated
generated by hashing-based techniques, our profiling demonstrated several cases
where the Gaussian elimination component could be very time consuming, taking
up to 90% of solving time.

While the choice of GJE combined with clever data structure maintenance led
to significant improvements of the runtime of Gaussian Elimination component,
our profiling identified two processes as key bottlenecks: propagation checking
and reason generation. We next discuss our proposed algorithmic improvements
that achieve significant runtime improvement by addressing these bottlenecks.

Tinted Fast Unit Propagation. The core idea to achieve faster propagation
is based on bit-level parallelism via the different native operations supported
by modern CPUs. In particular, modern CPUs provide native support for basic
bitwise operations on bit fields such as AND, INVERT, hamming weight com-
putation (i.e., the number of non-zero entries), and find first set (i.e., finding
the index of first non-zero bit). Given the widespread support of SIMD exten-
sions, the above operations can be performed at the rate of 128. . . 512 bits per
instruction. Therefore, the core data structure represents every 0-1 vector as a
bit field.

A set of XORs over n variables x1, . . . , xn is represented as Mx = b for a
0-1 matrix M of size m × n, 0-1 vector b of length m and x = (x1, . . . , xn)T .
Consider the i−th row of M , denoted by M [i]. Let a be a 0-1 vector of size
n such that a [j]=1 if the variable xj is assigned True or False, and 0 in case
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xj is unassigned. Let v be a 0-1 vector of size n such that v [j] = 1 if xj is
set to True and 0 otherwise. Let z be the bitwise inverse of a 0-1 vector z
and & be the bitwise AND operation. Let Wunass = hamming weight(a&M [i])
the number of unassigned variables in the XOR represented by row i, and
Wval = hamming weight(v&M [i]) the number of satisfied variables. We view
the computation of Wunass and Wval as viewing the world of M through the
tinted lens of v and a . Now, the following holds:

1. Row i is satisfied if and only if Wunass = 0 and (Wval mod 2) ⊕ b[i] = 0.
2. Row i causes a conflict if and only if Wunass = 0 and (Wval mod 2)⊕b[i] = 1.
3. Row i propagates if and only if Wunass = 1. Propagated variable is the one

that corresponds to the column with the only bit set in a&M [i]. The value
propagated is (Wval mod 2) ⊕ b[i].

4. A new watch needs to be found for row i if and only if Wunass ≥ 2. The new
watch is any one of the variables corresponding to columns with the bits set
to 1 in a&M [i], except for the already existing watch variable.

Reason Generation. For propagation and conflict we generate the reason clauses
for row i as follows. We forward-scan M [i] for all set bits and insert the corre-
sponding variable into the reason clause as a literal that evaluates to false under
the current assignment. In the case of propagation, the literal added for the
propagated variable, say xj , is added as literal ¬xj if (Wval mod 2) ⊕ b[i] = 0
and xj otherwise.

Example. For example, let b[i] = 1 and M [i] = 10011 corresponding to vari-
ables x1, x2, . . . x5 and assignments 1?11? respectively, where “?” indicates an
unassigned variable. Then a = 10110,a&M [i] = 00001,Wunass = 1, v =
10110, v&M [i] = 10010,Wval = 2 and (Wval mod 2) ⊕ b[i] = 1. Therefore, this
row propagates (case 3 above), and the reason generated is (¬x1 ∨ ¬x4 ∨ x5). If
the assignements were 11110, then Wunass = 0 and (Wval mod 2) ⊕ b[i] = 1 so
this row conflicts (case 2 above), with conflict clause (¬x1 ∨ ¬x4 ∨ x5).

Performance. Notice that all cases only require bitwise and, inverse, hamming
weight and find first set operations. To find a new watch in case 4 we first find the
first bit that is set to 1 in ā&M by invoking find first set. In case the obtained
index is the same as the existing watch variable, we remove the first 1-bit by
left shifting and run find first set again to find the second 1-bit. Bitwise and and
inverse are trivially single-assembly instructions. We use compiler intrinsics to
execute find first set and hamming weight functions, which compile down to BSF
and POPCNT in x86 assembly, respectively. It is worth pointing out that we
keep the bit field representations of a and v synchronized when variables are
assigned. During backtracking we reset these to zero and refill them as needed.
For better cache efficiency, we use sequential set of bit-packed 64-bit integers to
represent all bit-fields, rows, and matrices.

Although bit-packing is not a novel concept in the context of CNF-XOR solv-
ing, let us elaborate why we believe that our contribution is conceptually inter-
esting. Soos et al. [20] used bit-packed pre- and post-evaluated matrices. Since
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post-evaluated matrices lose information, they have to be saved and reloaded
on backtracking. Han and Jiang’s code [13] changed this to using pre-evaluated
matrices only, which free the system from having to save and reload. But it
was slow, because bit-by-bit evaluation had to happen on every matrix row read
(thanks to the missing post-evaluation matrix). Our improved approach is essen-
tially merging the best of both worlds: fast evaluation, without having to save
and reload.

4.3 Lazy Reason Clause Generation

As discussed earlier, the current BIRD performs eager reason clause generation
in a spirit similar to the original proposal by Han and Jiang. At the time of
proposal of eager clause generation by Han and Jiang, the state of the art SAT
solver at that time could solve problems with XOR clauses of sizes in few tens
to few hundreds. The improved scalability, however, highlights the overhead due
to eager reason clause generation. During our profiling, we observed that for
several problems, the independent support of the underlying formula ranges in
thousands, and therefore, leading to generation of reason clauses involving thou-
sands of variables. The generation of such long reason clauses is time consum-
ing and tedious. Furthermore, a significant fraction of reason clauses are never
required during conflict analysis phase as we are, often, focused only on finding
a 1UIP clause. Therefore, we seek to explore lazy reason clause generation.

Let the state of a clause c indicate whether c is satisfied, conflicted or unde-
termined (i.e., the clause is neither satisfied nor conflicted). The core design of
our lazy generation technique is based on the following invariant satisfied by
CDCL-based techniques: Once a (CNF/XOR) clause is satisfied or conflicted,
the assignment to the variables in the clause does not change as long the state of
the clause does not change. Observe that when a clause propagates, the propa-
gated literal changes the state of the clause to satisfied. Furthermore, as long as
all variables are assigned, the row will not participate in GJE because none of
the contained variables can become a basic watch. Therefore, whenever an XOR
clause propagates, we keep an index of the row and the propagating literal but
do not compute the reason clause. Now, whenever a reason clause is requested,
we compute the reason clause as detailed above and return a pointer to the
computed reason clause, and index the computed clause by the corresponding
row. To ensure correctness, whenever a row causes a propagation, we delete the
existing reason clause but we do not eagerly compute the new corresponding
reason clause. On the other hand, if a row is conflicting, the conflict analysis
requires the reason clause immediately and as such the reason clause is eagerly
computed.

Lazy reason clause generation allows us to skip the majority of reason clauses
to be generated. Furthermore, given that a row cannot lead to more than one
reason clause, it allows us to statically allocate memory for them. This is in
stark contrast to the original implementation that not only eagerly computed
all reason clauses, but also dynamically allocated memory for them, freeing the
memory up during backtracking.



Tinted, Detached, and Lazy CNF-XOR Solving 475

4.4 Skipping Solution Extension of Eliminated Variables

SAT solvers aim to present a clean and uncomplicated API interface with inter-
nal behavior typically hidden to enable fast pacing development of heuristics
without necessitating change in the interface for the end users. While such a
design philosophy allows easier integration, it may be an hindrance to achiev-
ing efficiency for the use cases that may not be seeking a simple off-the-shelf
behavior. Given the surge of projected counting and sampling as the desired
formulation, BoundedSAT is invoked with a sampling set and we are interested
only in the assignment to variables in the sampling set. A naive solution would
be to obtain a complete assignment over the entire set of variables and then
extract an assignment over the desired sampling set. In this context, we wonder
if we can terminate early after the variables in the sampling set are assigned. In
modern SAT solvers, once the solver has determined that the formula is satis-
fied, the solution extension subroutine is invoked that extends the current partial
assignment to a complete assignment. Upon profiling, we observed that, during
solution extension, a significant time is spent in computing an assignment to the
variables eliminated due to Bounded Variable Elimination (BVE) [12] during
pre- and inprocessing. When a solution is found, the eliminated clauses must be
re-examined in reverse, linear, order to make sure the eliminated variables in the
model are correctly assigned. This examination process can be time-consuming
on large instances with large portions of the CNF eliminated.

BVE is widely used in modern SAT solvers owing to its ability to elimi-
nate a large subset of the input formula and thereby allowing compact data
structures. While disabling BVE would eliminate the overhead during solution
extension phase, it would also significantly degrade performance during solving
phase. Since we are interested in solutions only over the sampling set, we disable
the invocation of bounded variable elimination for variables in the sampling set.
Therefore, whenever the SAT solver determines that the current partial assign-
ment satisfies the formula, all the variables in the sampling set are assigned and
we do not invoke solution extension. The disabling of solution extension can save
significant (over 20%) time on certain instances.

4.5 Putting It All Together: BIRD2

We combine improvements proposed above into our new framework, called
BIRD2, a namesake to capture the primary architecture of Blast, In-process,
Recover, Detach, and Destroy. For completeness, we present the core skeleton of
BIRD2 in Algorithm 1. BIRD2 terminates as soon as a satisfying assignment is
found or the formula is proven UNSAT. Similar to BIRD, BIRD2 architecture sep-
arates inprocessing from CDCL solving and therefore every sound inprocessing
step can be employed.
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Algorithm 1. BIRD2(ϕ) � ϕ has a mix of CNF and XOR clauses
1: Blast XOR clauses into normal CNF clauses
2: In-process (and pre-process) over CNF clauses
3: Recover XOR clauses
4: Detach CNF clauses implied by recovered XOR clauses
5: Perform CDCL on CNF clauses with on-the-fly improved GJE on XOR clauses

until: (a) in-processing is scheduled, (b) a satisfying assignment is found, or (c)
formula is found to be unsatisfiable

6: Destroy XOR clauses and reattach detached CNF clauses. Goto line 2 if conditions
(b) or (c) above don’t hold. Otherwise, return satisfying assignment or report
unsatisfiable.

5 Technical Contribution to Counting and Sampling

In this section, we discuss our primary technical contribution to hashing-based
sampling and counting techniques.

5.1 Reuse of Previously Found Solutions

The usage of a prefix-slicing ensures monotonicity of the random variable,
Cnt〈F,i〉, since from the definition of prefix-slicing, we have that for all i,
h(i+1)(x) = α(i+1) =⇒ h(i)(x) = α(i). Formally,

Proposition 1. For all 1 ≤ i < m, Cell〈F,i+1〉 ⊆ Cell〈F,i〉
Furthermore as is evident from the analysis of ApproxMC3 [10], the pairwise
independence of the family Hxor implies E[Cnt〈F,i〉]

E[Cnt〈F,j〉]
= 2j−i. Therefore, once we

obtain the set of solutions from invocation of BoundedSAT for F ∧(hi)−1(0) (i.e.,
after putting i XORs), we can potentially reuse the returned solutions when we
are interested in enumerating solutions for F ∧ (hj)−1(0). In particular, note
that if i > j, then Proposition 1 implies that all the solutions F ∧ (hi)−1(0)
are indeed solutions for F ∧ (hj)−1(0) and we can invoke BoundedSAT with
adjusted threshold. On the other hand, for i < j, we can check if the solutions
of F ∧ (hi)−1(0) also satisfy F ∧ (hi+1)−1(0).

On closer observation, we find that the latter case may not be always helpful
when i and j differ by more than a small constant since the ratio of their expected
number of solutions decreases exponentially with j−i. Interestingly, as discussed
in Sect. 3, both ApproxMC3 and UniGen2 employ linear search over intervals of
sizes 4 to 7. for the right values of m. In particular, for both ApproxMC3 and
UniGen2, the linear search seeks to identify a value of m∗ such that Cnt〈F,m∗−1〉 ≥
thresh and Cnt〈F,m∗〉 < thresh for an appropriately chosen thresh. Therefore,
when invoking BoundedSAT for i = k after determining that for i = k + 1,
Cnt〈F,k+1〉 < thresh, we can replace thresh with thresh − Cnt〈F,k+1〉. Similarly,
when invoking BoundedSAT for i = k after determining that for i = k − 1,
Cnt〈F,k−1〉 ≥ thresh, we first check how many solutions of F ∧(hk−1)−1(0) satisfy
F ∧ (hk)−1(0). As noted above, in expectation, thresh/2 out of thresh solutions
of F ∧ (hk−1)−1(0) would satisfy F ∧ (hk)−1(0).
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5.2 ApproxMC4 and UniGen3

That said, we turn our focus to hashing-based sampling and counting techniques
to showcase the impact of BIRD2. To this end, we integrate BIRD2 along with the
proposed technique in Sect. 5.1 into the state of the art hashing-based counting
and sampling tools: ApproxMC3 and UniGen2 respectively. We call our improved
counting tool ApproxMC4 and our improved sampling tool UniGen3.

Assurance of Correctness. We believe it to be imperative to strongly verify
correctness and quality of results provided by our tools, as it is not only pos-
sible but indeed easy to accidentally generate incorrect or low quality results,
as demonstrated by Chakraborty and Meel [5]. To ensure the quality and cor-
rectness of our sampler and counter, we used three methods: (1) fuzzed the
system as first demonstrated in SAT by Brummayer et al. [3], (2) compared
the approximate counts returned by ApproxMC4 with the counts computed by
a known good exact model counter as previously performed by Soos and Meel
[19], and (3) compared the distribution of samples generated by UniGen4 on an
example problem against that of a known good uniform sampler as previously
performed by Chakraborty et al. [9]. We focus on (1), i.e. fuzzing, here and defer
the discussion about (2) and (3) to the next section.

Fuzzing is a technique [17] used to find bugs in code by generating random
inputs and observing crashes, invariant check fails, and other errors from the
output of the system under test. CryptoMiniSat has such a built-in fuzzer gen-
erating random CNFs and verifying the output of the solver. To account for
XOR constraints, we improved the built-in fuzzer of CryptoMiniSat by adding
a counting- and sampling-specific XOR-CNF generator. This inserts randomly
generated XORs that form distinct matrices inside the generated CNFs and adds
a randomly generated sampling set over some of these matrices. We also added
hundreds of lines of invariant checks to our improved Gauss-Jordan elimination
algorithm, running throughout our fuzzing tests. Running this improved fuzzer
for many hundreds of CPU hours has greatly helped debugging and gaining
confidence in our implementation.

6 Evaluation

To evaluate the performance and quality of approximations and samples com-
puted by ApproxMC4 and UniGen3, we conducted a comprehensive study involv-
ing 1896 benchmarks as released by Soos and Meel [16] comprising a wide range
of application areas including probabilistic reasoning, plan recognition, DQMR
networks, ISCAS89 combinatorial circuits, quantified information flow, program
synthesis, functional synthesis, logistics, and the like.

In the context of counting, we focused on a comparison of the performance of
ApproxMC4 vis-a-vis ApproxMC3. In the context of sampling, a simple method-
ology would have been a comparison of UniGen3 vis-a-vis the state of the art
sampler, UniGen2. Such a comparison, in our view, would be unfair to UniGen2
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as while ApproxMC3 builds on BIRD framework, such is not the case for UniGen2.
It is worth noting that the BIRD framework, proposed by Soos and Meel [19], can
work as a drop-in replacement for the SAT solver in UniGen2, as it only changes
the underlying SAT solver. Therefore, we used UniGen2 augmented with BIRD,
called UniGen2+BIRD henceforth, as baseline for performance comparisons in
the rest of this paper, as it is significantly faster than UniGen2, and therefore,
will lead to a fair comparison and showcase improvements solely due to BIRD2.

To keep in line with prior studies, we set ε = 0.8 and δ = 0.8 for ApproxMC3
and ApproxMC4 respectively. Similarly, we set ε = 16 for both UniGen3 and
UniGen2+BIRD respectively. The experiments were conducted on a high perfor-
mance computer cluster, each node consisting of 2xE5-2690v3 CPUs with 2 × 12
real cores and 96 GB of RAM. We use a timeout of 5000 s for each experiment,
which consisted of running a tool on a particular benchmark.

6.1 Performance

1

10

100

1000

5000

1 10 100 1000 5000
ApproxMC3 − Time (s)

A
pp

ro
xM

C
4 
− 

Ti
m

e 
(s

)

Fig. 1. Comparison of ApproxMC4 and ApproxMC3. ApproxMC4 is faster below the
diagonal. Time outs are plotted behind the 5000 s mark.

ApproxMC4 vis-a-vis ApproxMC3. Figure 1 shows a scatter plot comparing
ApproxMC4 and ApproxMC3. Although, there are some benchmarks that are
solved faster with ApproxMC3 there is a clear trend demonstrating the speed
up achieved through our improvements: ApproxMC4 can solve many benchmarks
more than 10 times faster and in total solves 77 more instances than ApproxMC3.
In particular, ApproxMC3 and ApproxMC4 solved 1148 and 1225 instances respec-
tively, while achieving PAR-2 scores of 4146 and 3701 respectively.
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Fig. 2. Cactus plot showing behavior of ApproxMC4 and ApproxMC3

Figure 2 shows the cactus plot for ApproxMC3 and ApproxMC4. We present
the number of benchmarks on the x-axis and the time taken on the y-axis. A
point (x, y) implies that x benchmarks took less than or equal to y seconds to
solve for the corresponding tool.

To present a detailed picture of performance gain achieved by ApproxMC4
over ApproxMC3, we present a runtime comparison of ApproxMC4 vis-a-vis
ApproxMC3 in Table 1 on a subset of benchmarks. Column 1 of the table
presents benchmarks names, while columns 2 and 3 list the number of vari-
ables and clauses. Column 4 and 5 list the runtime (in seconds) of ApproxMC4
and ApproxMC3, respectively.

While investigating the large improvements in performance, we observed that
when both the sampling set and the number of solutions is large for a problem,
the new system can be up to an order of magnitude faster. In these cases the
Gauss-Jordan elimination (GJE) component of the SAT solver dominated the
runtime of ApproxMC3 due to the large matrices involved in such problems. The
improvements of BIRD2 has led to significant improvement in efficiency of GJE
component and we observe that the runtime, in such instance, is now often
dominated by the CDCL solver’s propagation and conflict clause generation
routines.

UniGen3 vis-a-vis UniGen2+BIRD. Similar to Fig. 2, Fig. 3 shows the cac-
tus plot for UniGen3, UniGen2+BIRD, and UniGen2. We present the number
of benchmarks on the x-axis and the time taken on the y-axis. UniGen3 and
UniGen2+BIRD were able to solve 1012 and 1063 instances, respectively while
achieving PAR-2 scores of 4574 and 4878, respectively. UniGen2 could solve only
360 benchmarks, thereby justifying our choice of implementing UniGen2+BIRD
as a baseline for fair comparison to showcase strengths of BIRD2. We would like
to highlight that the cactus plot shows that given a 2600 s timeout, UniGen can
sample as many benchmarks as UniGen2+BIRD would do for a 5000 s timeout.

To present a clear picture of performance gain by UniGen3 over
UniGen2+BIRD, we present runtime comparison for UniGen3 vis-a-vis
UniGen2+BIRD in Table 1, where in addition to data on ApproxMC3 and
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Table 1. Performance comparison of ApproxMC3 vis-a-vis ApproxMC4 and
UniGen2+BIRD vis-a-vis UniGen3. TO indicates timeout after 5000 s or out of memory.
Notice that on many problems that used to time out even for counting, we can now
confidently sample.

Benchmark Vars Cls ApproxMC3 ApproxMC4 UniGen2+BIRD UniGen3

time (s) time (s) 500 samples
time (s)

500 samples
time (s)

or-70-5-1-UC-20 140 350 6.03 2.07 14.21 6.08

prod-4 7497 37358 56.65 7.09 171.57 36.54

min-8 1545 4230 152.53 5.58 471.47 35.04

parity.sk 11 11 13116 47506 389.26 436.32 705.85 809

leader sync4 11 205198 129149 346.4 20.55 1019.09 106.93

blasted TR b12 2 2426 8373 308.08 20.46 1218.01 546.62

hash-8-6 377545 1517574 462.28 266.59 1321.91 633.84

s15850a 15 7 10995 24836 1206.17 31.69 2782.96 230.17

ConcreteRole 395951 1520924 1694.19 309.07 3083.99 923.69

tire-3 577 2004 3059.19 233.28 3876.03 797.42

04B-2 19510 86961 1860.97 625.81 TO 2236.31

blasted case138 849 2253 TO 3691.9 TO TO

hash-11-4 518449 2082039 4602.95 4043.4 TO TO

karatsuba.sk 7 41 19594 82417 3192.85 3410.36 TO TO

log-3 1413 29487 TO 123.15 TO 408.25

modexp8-8-6 167793 633614 4439.21 TO TO TO

or-100-5-6-UC-20 200 500 TO 1689.47 TO 4898.43

prod-28 52233 261422 TO 235.02 TO 1053.9

s38417 15 7 25615 57946 TO 187.71 TO TO

signedAvg 30335 91854 TO 114.15 TO 582.01

ApproxMC4, columns 5 and 6 lists the runtime for UniGen3 and UniGen2+BIRD
respectively. Similar to the observation above, we note that UniGen3 is able to
sample for instances that timed out even for ApproxMC3. It is worth to recall
that UniGen3 (and UniGen2) first makes a call to an approximate counter during
its parameter search phase.

Remark 1. Since the runtime improvements of ApproxMC4 and UniGen3 are pri-
marily due to improvements in the underlying SAT solver, it is worth pointing
out, to put our contribution in context, that the difference between average
PAR-2 scores of the top two solvers in a SAT competition is usually less than
100.
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6.2 Quality and Correctness

Quality of Counting. To evaluate the quality of approximation we follow
the same approach as Soos and Meel [19] and compare the approximate counts
returned by ApproxMC4 with the counts computed by an exact model counter,
namely DSharp4. The approximate counts and the exact counts are used to
compute the observed tolerance εobs, which is defined as max( |sol(F )↓S |

AprxCount −
1, AprxCount

|sol(F )↓S | − 1), where AprxCount is the estimate computed by ApproxMC4

for a formula F and a sampling set S, which are both given for each bench-
mark. Note that, using εobs, we can rewrite the theoretical (ε, δ)-guarantee to
Pr[εobs ≤ ε] ≥ 1 − δ and hence we expect that εobs is mostly below ε = 0.8.
The observed tolerance εobs over all benchmarks is shown in Fig. 4. We observe
a maximal value for εobs of 0.3333 and the the arithmetic mean of εobs across
all benchmarks is 0.0411. Hence, the approximate counts are much closer to the
exact counts than is theoretically guaranteed.
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are very close to the exact counts.

4 DSharp is used because of its ability to handle sampling sets.
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Quality of Sampling. To evaluate the quality of sampling, we employed the
uniformity tester, Barbarik, proposed by Chakraborty and Meel [5]. To this
end, we selected 35 benchmarks from the pool of benchmarks employed by
Chakraborty and Meel in their work and we tested UniGen3 for all the 35
benchmarks. We observed that Barbarik accepts UniGen3 for all the 35 instances,
thereby providing a certificate for uniformity. We refer the reader to [5] for
detailed discussion of the guarantees provided by Barbarik. Keeping in line with
past work on sampling that tries to demonstrate the quality of sampling on a rep-
resentative benchmark where exact uniform sampling is feasible via enumeration-
based techniques, we chose the CNF instance blasted case110 (287 variables and
16384 solutions), which has been chosen in the previous studies as well. To this
end, we implemented a simple ideal uniform sampler, denoted by US henceforth,
by enumerating all the solutions and then picking a solution uniformly at ran-
dom. We then generate 4, 039, 266 samples from both UniGen3 and US. In each
case, the number of times various witnesses were generated was recorded, yield-
ing a distribution of the counts. Fig. 5 shows the distributions of counts generated
versus # of solutions. The x-axis represents counts and the y-axis represents the
number of witnesses appearing the specified number of times. Thus, the point
(230,212) represents the fact that each of 212 distinct witnesses were generated
230 times among the 4, 039, 266 samples. While UniGen3 provides guarantees of
almost-uniformity only, the two distributions are statistically indistinguishable.
In particular, the KL divergence [15] of the distribution by UniGen from that of
US is 0.003989.
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7 Conclusions

We investigated the bottlenecks of CNF-XOR solving in the context of hashing-
based approximate model counting and almost uniform sampling as implemented
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in ApproxMC3 and UniGen2 respectively. In this paper, we proposed five techni-
cal improvements, as follows: (1) detaching the clausal representation of XOR
constraints from unit propagation, (2) lazy reason generation for XOR con-
straints, (3) bit-level parallelism for XOR constraint propagation, (4) partial
solution extraction only covering the sampling set and (5) solution reuse. These
improvements were incorporated into the new framework BIRD2, which led to
the construction of improved approximate model counter ApproxMC4 and almost
uniform sampler UniGen3. Experiments over a large set of benchmarks from vari-
ous domains clearly show an improvement in running time and 77 more problems
could be solved for counting and 51 more for sampling.
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Abstract. The automatic formal verification of multiplier designs has
been pursued since the introduction of BDDs. We present a new rewriter-
based method for efficient and automatic verification of signed and
unsigned integer multiplier designs. We have proved the soundness of this
method using the ACL2 theorem prover, and we can verify integer multi-
plier designs with various architectures automatically, including Wallace,
Dadda, and 4-to-2 compressor trees, designed with Booth encoding and
various types of final stage adders. Our experiments have shown that our
approach scales well in terms of time and memory. With our method, we
can confirm the correctness of 1024 × 1024-bit multiplier designs within
minutes.

Keywords: Multipliers · Hardware verification · Formal methods ·
ACL2

1 Introduction

Arithmetic circuit designs may contain bugs that may not be detected through
random testing. Since the Pentium FDIV bug [29], formal verification has become
more prominent for validating the correctness of arithmetic circuits. Despite
being a crucial part of all processors, verifying the correctness of arithmetic
circuits, specifically multipliers, is still an ongoing challenge.

There have been numerous efforts to find a scalable and automated method to
formally verify integer multipliers. Early methods that were based on attempts
to represent hardware and its specification in various canonical forms - BDDs [6]
and derivatives, have an exponential space complexity. Therefore, they were
applicable only for small circuits. Similarly, SAT-based methods did not prove
to be scalable [28].

There are several approaches for the verification of hardware multipliers used
in the industry. One is based on writing a simple RTL multiplier design without
optimizations and comparing it to the candidate multiplier design through equiv-
alence checking [14,35]. This approach works only when the reference design is
structurally close to the original under verification and relies on the correctness
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 485–507, 2020.
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of the reference design and proof maintenance whenever designers make struc-
tural changes. Another approach is to find a suitable decomposition of a design
into parts that can be verified automatically and compose those results into a
top-level theorem [13,15,30]. The drawback of this method is that it requires
manual intervention by the verification engineer who decides about the bound-
aries of the decomposition. A third approach involves guiding a mechanized proof
checker manually [27].

In recent years, the search for more automatic procedures resulted in methods
based on symbolic computational algebra [7,16,22,23,40] . This approach makes
it possible for certain types of multipliers to be verified automatically for larger
designs. However, they have limitations as to what type of multipliers they can
check (see experiments in Sect. 6). They are implemented as unverified programs
and, as far as we are aware, only one of them [16] produces certificates.

We have developed an automatic rewriter-based method for verification of
hardware integer multipliers that is

– widely applicable,
– provably correct, and
– scalable

We implemented and verified our method with the ACL2 theorem proving
system, which is a subset of the LISP programming language. Our method is not
ACL2 specific and can be adapted to other platforms with suitable adjustments.
In this paper, we also provide proof of its termination. Even though we have not
proved the completeness of this method, our tool can verify various multiplier
designs. We test our method on designs implemented with (System) Verilog
where design hierarchy is maintained. We can verify various types of multipliers
in a favorable time; for example, we tested our method with 8 different types of
1024 × 1024 multipliers and verified each of them in less than 10min, while the
other state-of-the-art tools ran for more than 3 h.

The paper is structured as follows. In Sect. 2, we present some concepts that
might be necessary to understand our approach. These include the basic notion
of term rewriting and the ACL2 system (Sect. 2.1), the semantics for hardware
modeling (Sect. 2.2), and some basic multiplier architectures (Sect. 2.3). Prelim-
inaries are followed by our specification and top-level correctness theorem for
multiplier designs (Sect. 3). We explain our methodology to prove this top-level
correctness theorem with term rewriting in Sect. 4. Section 5 describes the ter-
mination of our rewriting algorithm. Experiments with various benchmarks are
given and discussed in Sect. 6.

2 Preliminaries

In this section, we describe the concepts and tools required to understand the
method proposed in this paper. We review the ACL2 theorem prover and term
rewriting, how Verilog designs are translated and used in proofs, and various
integer multiplier architectures.
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2.1 ACL2 and Term Rewriting

ACL2 is a LISP-based interactive theorem prover that can be used to model
computer systems and prove properties about such models using both its internal
procedures as well as appealing to external tools such as SAT and SMT solvers.
ACL2 is used by the industry for both software and hardware verification [12].
Our methodology to prove multipliers correct uses ACL2-based term rewriting.

ACL2 can store proved lemmas as rewrite rules, and later use them when
attempting to confirm other conjectures. ACL2 terms are prefix expressions
and rewriting is attempted on terms such as (fnc arg1 arg2 ...). Left-hand
side of a rewrite rule is unified with terms; in case of a successful unification,
the matched term is replaced by a properly instantiated right-hand side if all
hypotheses are satisfied. Example 1 shows two rewrite rules, the second of which
can be proved using the first as a lemma. When users submit a defthm event,
ACL2 attempts to confirm the conjecture by rewriting it in an inside-out man-
ner. For the conjecture given in x-x_y-y, the rewriter replaces (+ x (- x)) and
(+ y (- y)) with 0 using a-a as a lemma. Then the resulting term (+ 0 0)
is replaced with 0 using the executable counterpart of the function +.

Example 1. A simple rewrite rule a-a, and a theorem x-x_y-y proved subse-
quently using a-a as a lemma.

(defthm a−a
(implies (integerp a)

(equal (+ a (− a)) 0)))

(defthm x−x_y−y
(implies (and (integerp x) (integerp y))

(equal (+ (+ x (− x)) (+ y (− y)))

0)))

The rewriting mechanism in ACL2 is much more complex and intricate than
we indicate here [18]. Throughout the rest of this paper, we omit ACL2 spe-
cific implementation details whenever possible. Understanding the basics of term
rewriting is sufficient to follow our methodology.

2.2 Semantics for Hardware Designs

We convert (System) Verilog designs to SVL netlists in ACL2 and use SVL
functions for semantics and simulation of circuit designs [33]. SVL netlists pre-
serve hierarchical information about hardware designs and they are based on the
SV [31] and VL [32] tools that are also included in the ACL2 libraries. These
tools have been used by several companies to confirm the correctness of various
circuit designs [12]. In this section, we describe the format of SVL netlists, and
how they are simulated hierarchically.

An SVL netlist is an association list where each key is a module name, and its
corresponding value is the definition of the module. An SVL module is composed
of input and output signals, and a list of occurrences. An occurrence can be an
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assignment or an instantiation of another module. Example 2 shows a simplified
SVL netlist containing a half and a full-adder.

Example 2. An SVL netlist for half and full-adder.

(("ha" (inputs x y)

(outputs s c)

(occs ((occ1 :assign s (bitxor x y))

(occ2 :assign c (bitand x y)))))

("fa" (inputs x y z)

(outputs s c)

(occs ((occ1 :module "ha" (ins x y) (outs t1 t2))

(occ2 :module "ha" (ins t1 z) (outs s t3))

(occ3 :assign c (bitor t2 t3))))))

The semantics of an SVL netlist is given by a recursively defined ACL2 func-
tion, svl-run. This function traverses occurrences of a module and simulates
them in order by evaluating the assignments and making a recursive call for
the submodules. After each occurrence, the values of wires/signals are stored in
an association list, and when finished, svl-run retrieves and returns the val-
ues of output signals from this association list. These values can be concrete
(svl-run is executed), or symbolic (the rewriter processes a call of svl-run
with variables for inputs), which can create ACL2 expressions representing the
functionality of the design for each output. For example, we can generate expres-
sions for the outputs of the full-adder ("fa") in Example 2: (⊕ x y z) and
(∨ (∧ x y) (∧ (⊕ x y) z)). Alternatively, since the design retains hierar-
chy, submodules can be replaced by their specification. For example, assume
that we have specification functions s-ha and c-ha for each output of the half-
adder ("ha"), and we proved a rewrite rule to replace calls of svl-run of "ha"
with these functions. If we rewrite the instantiations of "ha" with this rule while
expanding the definition of "fa", we can instead get (s-ha (s-ha x y) z) and
(∨ (c-ha x y) (c-ha (s-ha x y) z)) for each output of "fa".

2.3 Multiplier Architectures

In this section, we discuss the most commonly used algorithms to implement
integer multipliers. We summarize partial-product generation algorithms, such
as Booth encoding, and partial-product summation algorithms, such as Wallace-
tree. Even though the applicability of our verification method is not confined to
a specific set of algorithms, reviewing them is beneficial for understanding the
verification problem.

We can divide multiplier designs into two main components: partial product
generation and summation. Figure 1a shows these two steps on multiplication
of two 3-bit two’s-complement signed integers. We perform sign-extension (for
signed numbers) or zero-extension (for unsigned numbers) on inputs, generate
partial products, and then add them together to obtain the multiplication result
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in a fashion similar to grade-school multiplication. The integer multipliers we
have verified implement various partial-product generation and summation algo-
rithms for the same functionality with optimizations for better gate-delay and/or
area.

Fig. 1. (a) Grade-school-like multiplication for two 3-bit two’s-complement integers,
and (b) a Wallace-tree-like multiplier performing bit-level additions on the partial
products

Baugh-Wooley [1] and Booth [2] are commonly used algorithms to generate
partial products. Baugh-Wooley is used for signed multiplication, and it gener-
ates partial products as shown in Fig. 1a, but with a sign-extension algorithm to
prevent the repetition of generated partial product bits. A more commonly used
alternative is Booth encoding, which can be used for both signed and unsigned
multiplication. Instead of simply multiplying all the single bits of the two inputs
with each other, Booth encoding uses more than one bit at a time from one of the
operands, and it derives a more complex form for partial products. This helps
reduce the number of rows for partial products, thus helping shrink the summa-
tion circuitry and allowing more parallelism. Booth encoding can be implemented
with different radices, which determine the number of multiplier bits used at a
time to create partial products (e.g., Booth radix-4 [21] uses 3 bits at a time). The
higher the radix, the fewer the partial products; however, higher radices yield
a more complex design. Booth encoding can be combined with sign-extension
algorithms [38] to prevent repetition in generated partial products.

A rudimentary way to sum partial products is by using a shift-and-add algo-
rithm. One may use an accumulator and a vector adder such as a ripple-carry
adder to shift and add partial products. An array multiplier is a variation of this
algorithm and it is implemented using a very similar principle with some addi-
tional optimizations. Due to their regular structure, verifying the correctness of
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these multipliers has not been a challenging problem [5]. However, these circuits
often have very large gate delays, and Wallace-tree like multipliers are preferred
over these algorithms in industrial applications.

A family of partial product summation algorithms, which are often called
Wallace-tree like multipliers [36], use parallelism to obtain multiplication results
with less gate-delay but produce a very irregular and complex design structure.
Figure 1b shows an example of a Wallace-tree algorithm. In the first summation
layer, we see the generated partial products corresponding to the ones in Fig. 1a.
The Wallace-tree algorithm selects groups of bits from these partial products
and passes them to full and half-adders. After these parallel bit-level additions,
resulting carry and sum output bits are replaced on another layer whose sum-
mation will also yield the multiplication result. At each stage, layers are com-
pressed, and the number of rows decreases. We repeat this process until we reach
a state where we have only two rows. Then, instead of using full and half adders
to finish additions, a vector adder (final stage adder), such as carry-lookahead
and parallel prefix adders, is used. This method may provide a significant delay
reduction over array multipliers. There exist numerous variations of Wallace-tree
multipliers such as Dadda-tree [8] and 4-to-2 compressor trees [11]. Due to their
highly irregular structure, reasoning about Wallace-tree like multipliers is a diffi-
cult problem, especially when combined with complex partial product generation
algorithms such as Booth encoding. There is a lot of room for circuit designers
to deviate from text-book algorithm definitions when creating multipliers, which
increases the importance of having an automated method to verify these circuits
with minimal assumptions about the structure.

3 Specification

We aim to prove the functional correctness of signed and unsigned multiplier
designs. We do that by proving an ACL2 theorem demonstrating the equivalence
of semantics of a multiplier circuit design to the built-in ACL2 multiplication
function (*) with appropriate sign extensions and truncations.

We work with integer multiplier circuits that are designed to multiply two
numbers (signed or unsigned) stored in bit-vectors and cut (truncate) the result-
ing number to return it as a bit-vector. If we are multiplying m-bit and n-bit
numbers, then the first m+n bits of the result is sufficient to represent all output
values. For example, assume that we are multiplying signed numbers –4 and 3,
represented with 4-bit vector 1100 and 3-bit vector 011, respectively. Then, a
correct multiplier would return the 7-bit vector 1111100, which represents -12.

Listing 1.1 shows the final ACL2 theorem we prove for signed integer multi-
pliers, where a and b are variables and ∗m∗ and ∗n∗ are concrete values1. This
theorem states that for all integers a and b, simulating an m-by-n signed multi-
plier circuit returns a value that is equivalent to multiplication of sign-extended
a and b, truncated at m + n bits. On the left-hand side, *signed_mxn_mult*
1 By convention, “*” characters surrounding variables, such as *m*, signify constants

in ACL2.



Automated and Scalable Verification of Integer Multipliers 491

is an ACL2 constant that contains the multiplier design in SVL format which is
translated from (System) Verilog, and svl-run is the function to simulate this
module with inputs a and b. On the right-hand side, * is the built-in integer mul-
tiplication function, truncate returns first m+n bits of the result, and signext

returns a number that represents the sign-extended value of a bit-vector. Multi-
plier designs are implemented with fixed values of m and n; therefore, we prove
such theorems for constants m and n and variables a and b. The ACL2 theorem
for unsigned multiplication has the same form but in the place of signext, we
use the truncate function, which performs zero-extension. The actual statement
of the theorem contains more components than shown, including function calls
to extract outputs and parameters for state-holding elements; we only give the
essentials for brevity.

Listing 1.1. The Final Correctness Theorem for Signed Multipliers

(defthm multiplier_is_correct

(implies (and (integerp a)

(integerp b))

(equal (svl−run (list a b) ∗signed_mxn_mult∗)
(truncate (+ ∗m∗ ∗n∗)

(∗ (signext ∗m∗ a)

(signext ∗n∗ b))))))

4 Methodology

The correctness theorem given in Listing 1.1 is proved by rewriting both sides
of the equality to two syntactically equivalent terms. In this section, we describe
our methodology to rewrite both sides to a specific form through an automated
rewriting mechanism.

We have a targeted final expression for each output bit of a multiplier design,
the mathematical formula of which is given in Definition 2. The variables a and
b are the inputs/operands of multiplication with a certain size (e.g., 64 bits for
64 × 64 multiplication); and in this formula, they are sign-extended for two’s
complement signed multiplication or zero-extended for unsigned multiplication.

Definition 1. We define functions s and c as follows.

∀x ∈ Z s(x) = mod2(x)

∀x ∈ Z c(x) =
⌊x

2

⌋

Definition 2. The targeted form for each output bit (outj) is defined as follows.

wj =

⎧
⎨
⎩

(
j∑

i=0

aibj−i) + c(wj−1) if j ≥ 0

0 otherwise.

outj = s(wj)

where aibj−i is logical AND of the ith and (j − i)th bits of operands a and b.
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Table 1 shows an example of this targeted final form for the first four output
bits of 3 × 3 two’s complement signed multiplication (see Fig. 1a). Each output
bit is represented with expressions composed of the s, c, and + functions. In this
representation, the outermost function of each expression is s, carry bits from
previous columns are calculated with a single c per column, and the terms in
summations are sorted lexicographically. Two’s complement signed or unsigned
integer multiplication implemented by our candidate designs (See Sect. 6) can
be represented by an expression of this form.

Table 1. Expressions for the final form of the first four output bits from Fig. 1a

out3 out2 out1 out0

s(a0b3 + a1b2 + a2b1 + a3b0

+c(a0b2 + a1b1 + a2b0

+c(a1b0 + a0b1

+c(a0b0)))

s(a0b2 + a1b1 + a2b0

+c(a1b0 + a0b1

+c(a0b0)))

s(a1b0 + a0b1

+c(a0b0))
s(a0b0)

A summary of our rewriting approach to verify multiplier designs is given
in Fig. 2. Our method works with design semantics such as SVL where circuit
hierarchy can be maintained and we reason about adder modules and the main
multiplier module at different stages. As the first step, we work only with adder
modules (e.g., half/full-adders and final stage adders) instantiated as submodules
by the candidate multiplier design. We state a conjecture similar to Listing 1.1
for each adder module. We simplify their gate-level circuit description and prove
them equivalent to their specification. We save these proofs as rewrite rules where
lhs is svl-run of adder module and rhs is its specification. Having created these
rewrite rules for all the adder modules, we start working on the correctness proof
of the multiplier design as stated in Listing 1.1. On the LHS, as we derive ACL2
expressions from the definition of multiplier designs (see Sect. 2.2), we replace
instantiated adder modules with their specification, and we apply two other
sets of rewrite rules to simplify summation tree and partial product logic. On
the RHS, we rewrite the multiplier specification into the targeted final form of
multiplication, and we syntactically compare the two resulting terms to conclude
our multiplier design proofs.

We simplify adder and multiplier modules by stating a set of lemmas in the
form of equality lhs = rhs. These lemmas are used to create a term rewriting
mechanism where expressions from circuit definitions are unified with lhs and
replaced with their corresponding rhs. We aim to provide a set of lemmas so
that such an automated system of rewriting can reduce a wide range of multiplier
circuit designs to the final form as given in Table 1. In pursuit of this goal, we
devised and experimented with various rewriting strategies; and we came up
with a well-performing heuristic. In the subsections below, we describe these
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Fig. 2. Summary of the overall method

lemmas separated into two main sets for adder and multiplier modules, and the
general mechanism to prove them equivalent to their specification. The lemmas
we introduce are proved using ACL2, and we omit the proofs for brevity.

4.1 Adder Module Proofs

The first step of our rewriting strategy is to represent the outputs of adder
modules in terms of the s, c, and + functions. We first determine the modules
that serve as adder components in multiplier designs, such as half-adders, full-
adders, 4-to-2-compressors, and final stage adders. Then we state a conjecture
similar to Listing 1.1 where lhs is svl-run of the adder module and rhs is its
specification. We prove this conjecture with a library of rewrite rules, derived
from the lemmas given in this section, which can simplify various types of adder
modules and prove them equivalent to their specification.

For vector adders, specifications have a fixed format as shown in Table 2;
however, for single-bit adders, such as full-adders and 4-to-2 compressors, speci-
fications may vary. The format of these specifications can be of any form as long
as they are composed of only the s, c, and + functions as given in Table 2. For
adders that are not given in this table (e.g., 4:2 compressors), users may derive
their specifications by simplifying them with the lemmas introduced below.

We expect adder modules to be composed of logical AND (∧), OR (∨),
XOR (⊕), and NOT (¬) gates in certain patterns. We get expressions for these
circuits’ functionality in terms of these functions through SVL semantics. We
rewrite these expressions with the lemmas given below to simplify them to the
same form as their specification. We define the operators ∧ (and), ∨ (or), ⊕
(exclusive or), and ¬ (negation) to work with integer-valued bits (e.g., 1∧0 = 0,
1 ∨ 1 = 1, or 0 ⊕ 1 = 1).

Lemma 1. ∀x, y ∈ {0, 1} x ⊕ y = s(x + y)

Lemma 2. ∀x, y ∈ {0, 1} x ∧ y = c(x + y)

Lemma 3. ∀x, y, h, g ∈ {0, 1} c(x + y + h) ∨ (s(x + y) ∧ g) = c(x + y + (h ∨ g))
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Table 2. Rewritten outputs of some adders

Adder out3 out2 out1 out0

Half-adder – – c(a0 + a1) s(a0 + a1)

Full-adder – – c(a0 + a1 + a2) s(a0 + a1 + a2)

Vector adders

s(a3 + b3

+c(a2 + b2

+c(a1 + b1

+c(a0 + b0)))

s(a2 + b2

+c(a1 + b1

+c(a0 + b0)))

s(a1 + b1

+c(a0 + b0))

s(a0 + b0)

We implement these lemmas as well as some corollaries as rewrite rules so
that terms that can be unified with the lhs of equations are replaced by their
respective rhs. An example corollary is ∀x, y, g ∈ {0, 1} (x ∧ y) ∨ (s(x + y) ∧ g) =
c(x + y + g) that can be derived from Lemmas 2 and 3. Similarly, ∀x, y, h ∈
{0, 1} c(x+y +h)∨ s(x+y) = c(x+y +1) can be derived from Lemma 3. These
extra lemmas help expand our coverage to match more term patterns that may
occur.

We add other rewrite rules using elementary properties of ∨, ∧ and + that
help facilitate simplification. Lemma 3, and some corollaries rewrite terms with
repeated variables. In such cases, in order for the rewriter to match the lhs with
an applicable term, it is necessary to flatten the terms with associativity (e.g.,
((a + b) + c) = (a + b + c)) and lexicographically sort them using commutativity
(e.g., (b + a) = (a + b)) for every +, ∨ and ∧ instance. Other examples of
rewrite rules we have in our system implement identity and inverse properties
of addition. Finally, we have a lemma that rewrites the definition of ⊕, which is
(¬ab ∨ a¬b), in terms of s as given in Lemma 1.

Note that we put a restriction on the use of the rewrite rule for Lemma 2
such that it is used only when x and y are input wires of the adder module.
The function c is a specification for carry, and not all AND gates may calculate
carry by themselves. We have observed that only the logical AND of input signals
should be rewritten to c. Rewriting the other instances of ∧ in terms of c prevents
application of Lemma 3 and complicates our rewriting approach. We enforce this
restriction in ACL2 through a syntactic check.

Our experiments given in Sect. 6 demonstrate that the method we described
in this section can automatically simplify vector adders including ripple-carry,
carry-lookahead [26] and parallel-prefix adders such as Brent-Kung [4], Ladner-
Fischer [20], Kogge-Stone [19], Han-Carlson [9] and others.

Reasoning about adder modules before the candidate multiplier module is
a crucial step in our rewriting mechanism. The functionality of all the adder
modules should be represented with the s, c, and + functions when expanding
the definition of the multiplier module. Then, and only then, the multiplier
design can be simplified and proved correct with the lemmas described in the
subsequent section.
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4.2 Multiplier Module Proofs

After creating rewrite rules for adder modules, we start working with the correct-
ness proof of our candidate multiplier design as given in Listing 1.1. Similarly,
we convert multiplier modules into ACL2 expressions, replace instantiated adder
modules with their specifications, and perform simplification with a rewriting
mechanism derived from the lemmas introduced in this section. We first describe
how we simplify complex expressions that originate from summation tree algo-
rithms such as Wallace-tree. Secondly, we add more lemmas to simplify partial
product logic that may be generated with Booth encoding. After rewriting with
these lemmas, we expect to have simplified multiplier designs to our targeted
final form as given in Table 1. We rewrite the multiplication specification into
our final form as well and conclude verification with a syntactic equivalence
check.

Simplify Summation Trees. In some integer multiplier designs, summation
of partial products may be implemented with a very irregular structure, as is the
case with Wallace-tree like multipliers (see Sect. 2.3), and it can be challenging
to simplify them to a regular and more easily interpretable form. We describe
a set of lemmas, solving this problem by providing an efficient and automated
mechanism for such complex structures. Below, we discuss the simplification
method for multiplier designs implemented with simple partial products.

Having rewritten the adder components in terms of the s, c, and + functions,
Example 3 shows the term representing the 4th LSB of a Wallace-tree multiplier
output. Our goal is to reduce such terms to our final form as given in Table 1.

Example 3. The 4th LSB of the Wallace-tree multiplier output from Fig. 1b after
adder submodules are rewritten in terms of the s, c and + functions:

s( s( s(a3b0 + a2b1 + a1b2)
+a0b3

+c(a2b0 + a1b1 + a0b2))
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

In such summation trees, we observe many nested calls for s. These can be
simplified easily by the following rule.

Lemma 4. ∀x, y ∈ Z s(s(x) + y) = s(x + y)

Example 4. Example 3 simplified with Lemma 4:

s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2)
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

Terms derived from summation trees may include many instances for addition
of two or more calls of c. Since such instances are not present in the final form,
we try to remove them. That can be done by merging such calls of c through a
temporary conversion to d as implemented with the lemmas given below.
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Definition 3. We define function d as follows.

∀x ∈ Z d(x) =
x

2

Lemma 5. ∀x, y ∈ Z c(x) + c(y) = d(x + y − s(x) − s(y))

Lemma 6. ∀x, y ∈ Z c(x) + d(y) = d(x + y − s(x))

Lemma 7. ∀x, y ∈ Z d(x) + d(y) = d(x + y)

Lemma 8. ∀x ∈ Z d(−s(x) + x) = c(x)

Applying Lemmas 5, 6, 7, and 8 repeatedly to the term in Example 4, we obtain
the term given in Example 5. Since ∀a, b ∈ {0, 1} c(a ∧ b) = 0, we have a term
that matches the 4th bit of the final form for multiplication as given in Table 1.
It is not required to convert certain instances of d back to c with Lemma 8;
however, we can achieve better proof-time performance by shrinking terms with
this rewrite.

Example 5. Example 4 simplified with Lemma 5, 6, 7, 8:

s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2

+c(a1b0 + a0b1)))

Rewriting with Lemmas 5 and 6 creates new instances of s, which may not
seem preferable at first glance because terms become less similar to the final
form. However, we have found that for correct designs, these extra subterms
cancel out and vanish during the rewriting process. We have seen this to be the
case even for very large and much more complex terms that may have millions
of nodes.

We implement these lemmas as rewrite rules as well as some elementary
algebraic properties in order to flatten and sort terms lexicographically in sum-
mations. Our rewrite rules do not subsume each other, and they may be applied
with an arbitrary order until none of the rules are applicable.

Simplify Partial Products. Unlike the simple partial product generation
method, multipliers with Booth encoding implement a more advanced algorithm
to generate partial products. That results in terms that are more complex (see
Example 6) than those we have addressed so far. We expand our rewriting mech-
anism for simplification of summation trees and add more rewrite rules for auto-
mated simplification of partial products such as the ones generated with Booth
encoding and sign extension tricks.



Automated and Scalable Verification of Integer Multipliers 497

Example 6. Below is a term for the second LSB of a multiplier output, imple-
mented with Booth radix-4 encoding and before any simplification for partial
products took place:

s([¬b1b0a1 ∨ b1¬b0¬a0 ∨ b1b0¬a1]
+c([b1b0 ∨ b1¬b0]

+[b1¬b0 ∨ ¬b1b0a0 ∨ b1b0¬a0]))

Similar to other multiplier verification methods [25], we perform algebraic rewrit-
ing on the ⊕, ∨ and ¬ functions with the following lemmas.

Lemma 9. ∀x ∈ {0, 1} ¬x = 1 − x

Lemma 10. ∀x, y ∈ {0, 1} x ∨ y = x + y − xy

Lemma 11. ∀x, y ∈ {0, 1} x ⊕ y = x + y − xy − xy

Example 7. Example 6 rewritten with Lemma 9, 10, and 11 as well as elementary
algebraic properties.

s(b1 + b0a1 − b1a0 + b1b0a0 − b1b0a1 − b1b0a1

+c(b1 + b1 + b0a0 − b1b0a0 − b1b0a0))

We would like such expressions to be simplified to our final form. When deriving
our rewrite rules, we concentrate on the terms with negative and/or duplicate
arguments and realize that applying the following set of lemmas is sufficient to
simplify such complex expressions.

Lemma 12. ∀x, y ∈ Z s((−x) + y) = s(x + y)

Lemma 13. ∀x, y ∈ Z c((−x) + y) = (−x) + c(x + y)

Lemma 14. ∀x, y ∈ Z d((−x) + y) = (−x) + d(x + y)

Lemma 15. ∀x, y ∈ Z s(x + x + y) = s(y)

Lemma 16. ∀x, y ∈ Z c(x + x + y) = x + c(y)

Lemma 17. ∀x, y ∈ Z d(x + x + y) = x + d(y)

Example 8. Below is the resulting term after Example 7 is simplified using
Lemma 12–17 and elementary algebraic properties. We obtain a term match-
ing the final form in Table 1.

s(b0a1 + b1a0 + c(b0a0))

We implement these lemmas as rewrite rules along with the rules for sim-
plification of summation trees. All of these lemmas automatically work together
without any user intervention.

Algebraic rewriting of logical gates can be very expensive in terms of time
and memory. For this reason, we limit the application of these rules to the partial
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product logic only. For example, if applied indiscriminately, Lemmas 10 and 11
can cause terms to grow exponentially. Even though partial product generation
logic may allocate a large area in multipliers, rewriting the adders to the s, c,
and + functions isolates partial products from each other and segregates them
into small chunks. We expect that expressions representing partial products are
composed of the ∨, ∧, ⊕, and ¬ functions only. Therefore, we restrict Lemmas 9–
11 to apply to terms that are composed of these functions only; and we restrict
Lemmas 12–17 to apply to terms that are composed of minterms, and the − and
+ functions only. For instance, in Lemma 13, if we are unifying x with a term
that contains an instance of s, c or d, then we prevent rewriting with a syntactic
check. This heuristic helps contain this potentially expensive approach to only
local and smaller terms.

Rewrite the Multiplier Specification. In our proposed rewriting scheme,
we have a targeted representation for each output bit of multiplication as
given in Definition 2. The rewriter cannot derive this form directly from
the built-in ACL2 multiplication (∗) function. Thus, we provide a recursively
defined function multbycol that follows the formula in Definition 2. We prove
multbycol to be equivalent to the ∗ function. When the rewriter works on
the conjecture stating the correctness of a multiplier design as shown in List-
ing 1.1, (truncate size (* a b)) is rewritten to (multbycol a b size).
The rewriter can then efficiently convert the specification into the targeted final
form.

Using the rewriting mechanism described in this section, we can verify mul-
tipliers with Baugh-Wooley, sign/unsigned Booth radix-4, and simple partial
product generation algorithms with various summation tree algorithms such as
Wallace and Dadda tree. Note that Lemmas 9–17 work together with Lem-
mas 4–8 but contradict Lemmas 1–3. This is the reason why our method relies
on semantics where the design hierarchy is maintained so that we can simplify
the logic in adder modules with Lemmas 1–3 and simplify the remainder of a
multiplier design with Lemmas 4–17 at a different time. When this separation
is possible, multiplier designs are verified fully automatically without requiring
users to designate the type of algorithm used. The complete process of proving
the equivalence of semantics of a multiplier design to its specification is verified
using ACL2.

5 Termination

Our rewriter does not enforce proof of termination for rewrite rules. The program
terminates either when there are not any applicable rules or when a certain
number of steps are taken, which may happen if that number is too small for the
current conjecture, there is a loop between rules, or some rules grow some terms
indefinitely. Even though it is not required by the rewriter, it is important to
show that our rewriting algorithm requires a limited number of steps and does
not run indefinitely.
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Terms from conjectures change every time a rewrite rule is applied. Therefore,
for each of our rewriting algorithms (adder and multiplier module simplification),
we define a measure calculated on the term and show that it decreases every time
we rewrite with one of our lemmas. We first define the measure for simplifying
adder modules (Lemmas 1–3). Since carried out separately, we define another
measure for the summation tree and partial product simplification algorithms
(Lemmas 4–17). For brevity, we omit the discussion for termination with other
lemmas pertaining to elementary algebraic properties such as commutativity and
associativity.

5.1 Measure for Adder Module Simplification

The first part of our multiplier verification algorithm is simplifying the logic in
adder components and rewriting them in terms of the s, c, and + functions.
Below, we define auxiliary functions and a measure that guarantees termination
of this part of the algorithm that rewrites terms with Lemmas 1–3.

Definition 4 (f1). Function f1 counts the number of symbols (constants, func-
tions and variables) in a term.

Definition 5 (f2). Function f2 counts the occurrences of ∧ and ⊕ in a term.

For example, computing f1 and f2 on the term s(x ⊕ y + x ∧ z + c(x ⊕ y)) yields
13 and 3, respectively.

Definition 6 We define a measure m1 as follows, where the resulting ordered
pairs are compared lexicographically.

m1(term) =< f2(term), f1(term) >

The pairs produced by m1 are ordered lexicographically: thus, the value of
m1 decreases if f2 decreases (no matter the value of f1), or f2 stays the same
and f1 decreases. Rewriting with Lemmas 1, 2, and 3 decreases f2. Rewriting
with some corollaries does not change the value of f2 but decreases f1 . For
example, rewriting with the corollary ∀x, y, h ∈ {0, 1} c(x + y + h) ∨ s(x + y) =
c(x + y + 1) does not change f2 but decreases f1. In short, every step taken
with these lemmas decreases the value of m1 calculated on the resulting term.
Therefore, the rewriting algorithm for adder modules terminates.

5.2 Measure for Multiplier Module Simplification

Rewriting for summation tree and partial product generation algorithms are per-
formed together with a rewriting algorithm derived with Lemmas 4–17, excluding
Lemmas 1–3. Therefore, we define a single measure to describe the termination
of this part of the rewriting mechanism. Below we give definitions for some aux-
iliary functions and our measure.
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Definition 7 (f3). Function f3 sums the occurrence-depth of negative
minterms, where the occurrence-depth is calculated with respect to the overall
term.

For example, computing f3 on the term s(x0x1 + c(−x2y0 + c(−x3y1))) yields
5 because its negative minterms −x2y0 and −x3y1 occur at depth 2 and 3,
respectively. These values can be calculated by counting the unclosed parentheses
from the beginning up to the occurrence of these terms.

Definition 8 (f4). Function f4 computes the number of unique occurrences of
functions {c, d, ¬, ⊕, ∨}.
For example, computing f4 for the term c(x0) + s(x1 + c(x0) + c(x1)) yields 2
because even though there are three instances of c, the second occurrence of
c(x0) is not counted.

Definition 9. We define measure m2 to return ordered triples as follows, to be
compared lexicographically.

m2(term) =< f4(term), f3(term), f1(term) >

The value of m2 decreases if f4 decreases, or f4 stays the same and f3

decreases, or f4 and f3 stay the same and f1 decreases. Below we discuss how
rewriting with Lemmas 4–17 satisfy this measure for termination.

Rewriting with Lemmas 4 and 8 does not change the value of f4. For both
lemmas, if x is unified with a term that contains a negative minterm, then the
value of f3 decreases, otherwise, f3 remains the same. By removing an instance
of s, rewriting with both lemmas decreases f1 and consequently m2.

Rewriting with Lemmas 5, 6, 7, 9, 10, and 11 decreases f4, and therefore m2,
by removing an instance of d, c, ¬, ∨ or ⊕. Even though rewriting with some of
these lemmas creates copies of terms, the value of f4 decreases because it does
not count the same term more than once.

Rewriting with Lemmas 12–17 does not affect the value of f4 since they
are restricted to rewrite terms that contain only the + and − functions, and
minterms. For Lemmas 12, 13, and 14, x can only be unified with a positive
minterm. Therefore, rewriting with these lemmas does not change f3. For Lem-
mas 15, 16, and 17, if x is unified with a negative minterm, then f3 decreases.
Otherwise, f3 remains the same and f1 decreases.

In short, rewriting with Lemmas 1–3 decreases the measure m1 and rewriting
with Lemmas 4-17 decreases the measure m2. Therefore, our proposed rewriting
mechanism terminates.

6 Experiments

In this section, we present our experimental results and compare them to the
other state-of-the-art tools for the automated verification of multiplier designs.
We have gathered a large set of multipliers from 3 different generators, and run
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all the experiments for other verification tools and ours on the same computer
(A 2014 model iMac Intel(R) Core(TM) i7-4790K CPU @ 4.00 GHz with 32
GB system memory) for comparison. The instructions and a ready-to-run VM
image to run our tool and reproduce these experimental results can be found
online at http://mtemel.com/mult.html.

For benchmarking, we used 3 different generators. The tool from Homma
et al. [10] generates Booth encoded sign and unsigned multipliers (input size
up to 64 bits) with various summation tree and final stage adders. Designs from
Homma et. al. have multiple copies of half/full-adder modules as well as some
other adder modules. Since our method requires reasoning about each adder
module, we wrote a function that scans the modules and automatically sim-
plifies them as described in Sect. 4.1. Secondly, we used SCA-genmul [24] to
generate simple unsigned and Baugh-Wooley based signed (also referred to as
simple signed) multipliers. This tool does not generate Booth-encoded multipli-
ers. Finally, we used another multiplier generator [34] that can generate large
Booth-encoded multipliers.

We have measured the complete proof time for each benchmark, when avail-
able, and compared our results to the work of D. Kaufmann et al. [16] and A.
Mahzoon et al. [23]. These methods are based on computer algebra, and they
are the best performing tools at the time this paper is rewritten. Since we veri-
fied the correctness of our tool using ACL2, we do not generate certificates. D.
Kaufmann et al. implement their method in a stand-alone C program but they
generate certificates to check their proofs. We measured the total time to veri-
fy/certify and check certificates. A. Mahzoon et al. also test their method with
a stand-alone C program but it does not produce any certificates. Even though
it is not a complete comparison, we still include the results of their tool for the
same benchmarks.

When we run our tool on these benchmarks, we only need to identify the
names of the adder modules, their I/O size; multiplier I/O size, and whether
they perform signed or unsigned multiplication in order to determine their spec-
ification. The proofs finish automatically, and users can see the specification
explicitly to validate what is proved. The other tools are not interactive and use
some heuristics to decide on the specification internally based on the design.

D. Kaufmann et al. [16] and A. Mahzoon et al. [23] both use AIGs as inputs,
and we use SVL [33], all of which are translated from (System) Verilog using
external tools. For the other tools, we used Yosys [39] and ABC [3] to cre-
ate AIGs, without any optimization. For our tool, we created SVL netlists as
described in Sect. 2.2. Since we compare the performance of different verification
methods, we do not include the translation time in any of these results.

Table 3 shows the result of experiments run with a collection of circuits. The
benchmarks are described with the generator, partial product generation algo-
rithm, summation tree algorithm, and final stage adder. Generators are tem [34],
sca [24], and hom [10]. Partial product generation algorithms are sp (simple
unsigned/signed or Baugh-Wooley-based), and bp (unsigned and signed Booth
radix-4 encoded). Summation tree algorithms are dt (Dadda tree), wt (Wal-

http://mtemel.com/mult.html
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Table 3. Proof-time results in seconds for various multiplier designs

Size Benchmark AM [23]a DK [16] Our tool
Unsigned Unsigned Signed Unsigned Signed

64 × 64 sca sp-dt-bk 39 6 6 1 1
sca sp-wt-lf 33 6 6 1 1
sca sp-cwt-ks TO 65 58 1 1
sca sp-ar-rc 23 5 5 1 1
tem sp-dt-ks 173 7 7 1 1
tem sp-wt-lf 33 6 6 1 1
tem bp-dt-hc TO 44 49 1 1
tem bp-wt-rp TO 45 49 2 2
hom bp-dt-ks 288 8 TE 2 2
hom bp-bdt-hc TO 7 7 2 2
hom bp-os-bk 71 6 TO 3 3
hom bp-wt-cla 108 24 21 13 12
hom bp-4:2-lf TE 7 7 3 3

128 × 128 sca sp-dt-bk 643 33 36 2 3
sca sp-wt-lf 633 34 38 2 2
sca sp-cwt-ks TO TO TO 3 3
sca sp-ar-rc 384 27 27 18 18
tem sp-dt-ks TO 47 49 2 3
tem sp-wt-lf 650 40 40 2 2
tem bp-dt-hc TO 877 1037 7 7
tem bp-wt-rp TO 918 1067 12 13

256 × 256 sca sp-dt-bk TO 213 209 9 11
sca sp-wt-lf 15351 226 223 11 13
sca sp-cwt-ks TO TO TO 13 15
tem sp-dt-ks TO 234 232 10 12
tem sp-wt-lf 15552 220 221 10 12
tem bp-dt-hc TO 11555 14043 41 47
tem bp-wt-rp TO 11975 14264 54 58

512 × 512 sca sp-dt-bk TO 1562 1562 53 64
sca sp-wt-lf TO 1588 1577 61 76
tem sp-dt-ks TO 1655 1655 68 75
tem sp-wt-lf TO 1604 1609 65 82
tem bp-dt-hc TO TO TO 246 281
tem bp-wt-rp TO TO TO 371 380

1024 × 1024 sca sp-dt-bk TO 13746 13247 339 397
sca sp-wt-lf TO 13560 14005 322 345
tem sp-dt-ks TO 14125 15198 324 392
tem sp-wt-lf TO 13664 13708 327 393

a Does not produce certificates.
TE: Terminated with an error. TO: Time-out. 5400 s. (90 min) for 64 × 64 and
128 × 128, 16200 s (270 min) for the rest.
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lace tree), cwt (counter-based Wallace tree), ar (array), os (overturned-stairs
tree), bdt (balanced delay tree), and 4:2 (4-to-2 compressor tree). Finally, the
final stage adders are bk (Brent-Kung), lf (Ladner-Fischer), rc (Ripple-carry),
ks (Kogge Stone), csk (Carry-skip), hc (Han-Carlson), and cla (Carry-lookahead).
The selection of benchmarks was arbitrary but we have concentrated on Wallace-
tree-like multipliers with complex final stage adders as they have a more
widespread industrial application. For experiments with 64 × 64 and 128 ×
128 multipliers, we set the time limit to 1.5 h, and for larger designs, we set the
limit to 4.5 h. The results are given in seconds rounded to the nearest integer.

For all the benchmarks we have tested, our tool out-performed the other tools
in all cases. Our method is shown to verify benchmarks the others cannot and
produce a more homogeneous timing performance across different designs. A.
Mahzoon et al. [23] work only on unsigned multipliers. Both A. Mahzoon et al.
and D. Kaufmann et al. [16] give fluctuating results for multipliers with different
architectures and/or different generators. For some benchmarks, the other tools
terminated with an error such as segmentation fault (marked with TE). Our
work is more resilient to differences in designs and it scales much better (proof
times increase by 4.5–6 times when circuit size grows 4 times). For Wallace-tree
like multipliers with simple partial products, about 40% of the time on average is
spent on simplification with the lemmas given in Sect. 4, and the rest is spent by
conversion of SVL semantics to ACL2 expressions. For multipliers with Booth-
encoding, over 70% of the time is spent on partial product simplification. Array
multipliers are the only type of circuit for which our tool struggles to scale. We
believe that is because the minimal parallelism this circuit implements causes
our rewriting engine to do much more work as compared to other multiplier
structures. Even though memory use is not reported here, it scales the same way
as timings, and it grows as big as 30 GB for the largest (1024 × 1024) circuits
we have tested.

Additionally, since integer multipliers are used to implement floating-point
operations, we tested our method in a correctness proof for an implementation
of a floating-point multiply-add instruction for Centaur Technology, and we got
similar results.

7 Related Work and Conclusion

Having described our method, we now compare it with the related work. Well-
known methods to verify multipliers include generic reasoning methods such
as BDDs and SAT solvers. However, these tools do not scale well with large
multipliers. For the last few years, efforts to verify large integer multipli-
ers have explored the symbolic computer algebra approach based on Gröbner
basis [7,16,22,23,28,37]. As far as we are aware, all these tools are stand-alone,
unverified C programs and none of them except D. Kaufmann et al. [16] pro-
duces certificates. The soundness and completeness of this approach is shown
only in theory [17]. We compared our method to the studies with the best tim-
ing performance [16,23]. The tools implementing these methods identify adder
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components in designs automatically and perform some rewriting. Their rewrit-
ing strategy is different than ours; their method does not rely on maintained
design hierarchy and separate reasoning of adder and multiplier modules. Even
though they provide a more automatic system, their application appears to be
limited to some known patterns. Additionally, our tool is implemented on an
interactive tool, which can enable users to carry out more complicated proofs
such as the correctness of floating-point circuits. The limitation of our method
is that it relies on maintaining circuit hierarchy. Should this pose a problem for
some designs, it might be possible for our method to be adapted in the future
to work with flattened modules and identify adder components similarly to the
related work.

When a proof fails for a multiplier design, our tool does not output a user-
friendly message. We will work to improve our tool to process the resulting
terms from failed verification attempts and generate counterexamples for incor-
rect designs.

In this paper, we have presented an efficient method with a proven tool to
verify large and complex integer multipliers. With maintained circuit hierar-
chy, we can automatically verify very irregular multiplier designs; for example,
various 1024 × 1024 Wallace-tree like multipliers can be verified in less than
10min. We believe that our tool can find broader applications because it can
be extended to verify circuits, such as floating-point multipliers, that include an
integer multiplier as a submodule.
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Abstract. We present a new semantic gate extraction technique for
propositional formulas based on interpolation. While known gate detec-
tion methods are incomplete and rely on pattern matching or simple
semantic conditions, this approach can detect any definition entailed by
an input formula.

As an application, we consider the problem of computing unique strat-
egy functions from Quantified Boolean Formulas (QBFs) and Depen-
dency Quantified Boolean Formulas (DQBFs). Experiments with a pro-
totype implementation demonstrate that functions can be efficiently
extracted from formulas in standard benchmark sets, and that many
of these definitions remain undetected by syntactic gate detection.

We turn this into a preprocessing technique by substituting unique
strategy functions for input variables and test solver performance on the
resulting instances. Compared to syntactic gate detection, we see a sig-
nificant increase in the number of solved QBF instances, as well as a
modest increase for DQBF instances.

1 Introduction

Due to the effectiveness of modern satisfiability (SAT) solvers [20], propositional
logic has become the language of choice for encoding hard combinatorial prob-
lems arising in areas such as electronic design automation [50] and AI planning.
Since many of these problems are hard for levels of the polynomial hierarchy
beyond NP, their propositional encodings can be exponentially larger than their
original descriptions. This imposes a limit on the problem instances that can
be feasibly solved even with extremely efficient SAT solvers, and has prompted
research on decision procedures for more succinct logical formalisms such as
Quantified Boolean Formulas (QBFs).

Quantified Boolean Formulas (QBFs) are propositional formulas combined
with universal and existential quantification over truth values and offer much
more succinct encodings of problems from domains such as planning and syn-
thesis [12]. At the same time, QBF evaluation is PSPACE-complete, and in spite
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of substantial progress in solver technology, many practically relevant instances
remain hard to solve.

In part, this hardness appears to be a matter of encoding. The most com-
monly used format for QBFs is Prenex Conjunctive Normal Form (PCNF). A
PCNF formula consists of a quantifier prefix and a matrix in conjunctive normal
form. As in the case of propositional logic, any QBF can be converted to PCNF
with linear overhead but this transformation is known to adversely affect solver
performance [1]. This appears to be due to two issues: First, conversion to CNF
causes a bias towards reasoning about unsatisfiability while making it difficult to
reason about solutions, violating the inherent duality of QBF solving. Second,
prenexing introduces spurious variable dependencies that needlessly constrain
solvers [5,40]. In light of these issues, researchers have introduced two new for-
mats for representing non-CNF (and even non-prenex) QBFs in the QCIR [30]
and QAIGER standards, and solvers supporting these standards have been devel-
oped. When only a PCNF encoding is available, gate extraction techniques can
be used to (re)construct a non-CNF QBF [21]. Syntactic gate extraction relies
on the detection of patterns of clauses and auxiliary variables introduced when
converting a propositional formula to CNF [16]. The corresponding algorithms
are fast but incomplete and can only detect definitions from a pre-defined library
of gates.

In this paper, we introduce a new semantic gate extraction technique based
on SAT solving and interpolation. In contrast to known approaches, this method
is complete: a definition ψ of a variable x can be extracted from a propositional
formula ϕ whenever the equivalence x ≡ ψ is entailed by ϕ. We obtain this
result as a generalization of recent work that leverages definability for propo-
sitional model counting [25,33]. Owing to a result known as Padoa’s Theorem,
determining whether a variable x is definable in terms of X is in coNP and can be
decided by a SAT call [33]. We show that a definition ψ of x in terms of X can be
obtained as an interpolant of the formula passed to the SAT solver (Theorem 2).
For SAT solvers that use a proof system with feasible interpolation—in particu-
lar, CDCL solvers that generate resolution proofs [32]—this means a definition
can be efficiently extracted from a proof of definability.

We apply this new gate extraction technique to identify unique strategy func-
tions of QBFs and Dependency QBFs. In a controller synthesis setting, a variable
with a unique strategy function corresponds to a control signal with a unique
(as a Boolean function) implementation. We can add such an implementation to
the specification without affecting the remaining control signals.

Experiments with a prototype show that definitions can be efficiently com-
puted for formulas from standard QBF benchmark sets, and that for many
instances a large fraction of variables have unique strategy functions that can-
not be identified by syntactic gate detection. We further test the performance of
solvers on instances obtained by replacing input variables with their definitions.
For 2QBF formulas and PCNF formulas, this significantly increases the number
of instances solved by some systems compared to purely syntactic gate extrac-
tion. Our experiments further show that semantic gate detection is orthogonal
to techniques implemented in state-of-the-art preprocessors.
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Semantic gate detection is efficient and conceptually simple. By definition,
it preserves logical equivalence and is compatible with strategy extraction. As
such, we believe it is an essential addition to the state of the art in preprocessing
(D)QBF.

2 Preliminaries

We assume a countably infinite set V of propositional variables and consider
propositional formulas constructed from V using the connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (the biconditional).
For a propositional formula ϕ, we write var(ϕ) to denote the set of variables
occurring in ϕ. A literal is a variable v or a negated variable ¬v. A clause
is a finite disjunction of literals. A clause is tautological if it contains both v
and ¬v for some variable v. A propositional formula is in conjunctive normal form
(CNF) if it is a finite conjunction of non-tautological clauses. An assignment of
a subset X ⊆ V of variables is a function that maps X to the set {0, 1} of truth
values. For a set X of variables we let [X] denote the set of assignments of X. Two
assignments σ : X → {0, 1} and τ : Y → {0, 1} agree on a subset W ⊆ X ∩ Y of
their common domain if σ(w) = τ(w) for each w ∈ W . For two assignments σ :
X → {0, 1} and τ : Y → {0, 1} that agree on the entire intersection of their
domains we define the combined assignment σ∪τ : X∪Y → {0, 1} as (σ∪τ)(v) =
σ(v) if v ∈ X and (σ ∪ τ)(v) = τ(v) otherwise.

For a propositional formula ϕ and an assignment τ : X → {0, 1} with
var(ϕ) ⊆ X, we let ϕ[τ ] denote the truth value obtained by evaluating ϕ under τ .
The formula ϕ is satisfied by τ if ϕ[τ ] = 1. In this case we call τ a satisfying
assignment of ϕ. Otherwise, if ϕ[τ ] = 0, formula ϕ is falsified by τ . A formula
is satisfiable if it has a satisfiable assignment, otherwise it is unsatisfiable. A
formula ϕ implies a formula ψ if ϕ ∧ ¬ψ is unsatisfiable.

We consider Quantified Boolean Formulas (QBFs) in Prenex Normal Form
(PNF). A QBF Φ = Q.ϕ in PNF consists of a quantifier prefix Q and a
propositional formula ϕ, called the matrix of Φ. The quantifier prefix is a
sequence Q1x1 . . . Qnxn where Qi ∈ {∀,∃} and the xi are pairwise distinct
variables for 1 ≤ i ≤ n. The quantifier prefix defines an ordering <Φ on its
variables as xi <Φ xj for 1 ≤ i < j ≤ n. We assume that QBFs do not contain
free variables and every variable in the quantifier prefix appears in the matrix,
formally {x1, . . . , xn} = var(ϕ). Accordingly, we write var(Φ) = var(ϕ) for the
set of variables appearing in the QBF Φ. We further assume that every variable
of Φ occurs exactly once in its quantified prefix. The set of existential variables
of Φ is var∃(Φ) = {xi | 1 ≤ i ≤ n,Qi = ∃ }, and the set of universal variables
of Φ is var∀(Φ) = {xi | 1 ≤ i ≤ n,Qi = ∀ }. For a variable x ∈ var(Φ), we
let typeΦ(x) = Q if x ∈ varQ(Φ), for Q ∈ {∀,∃}, omitting Φ from the subscript
if the QBF is understood.

Let Φ a QBF and let x ∈ var(Φ) be one of its variables with type(x) = Q.
A strategy function for x is a function f : [var(Φ) \ varQ(Φ)] → {0, 1} such
that f(τ) = f(τ ′) for any two assignments τ and τ ′ that agree on variables in
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{ v ∈ var(Φ) \ varQ(Φ) | v <Φ x }.1 Given an indexed family F = {fx}x∈X of
strategy functions such that X ⊆ varQ(Φ) for Q ∈ {∀,∃}, the response of F
to an assignment τ : (var(Φ) \ varQ(Φ)) → {0, 1} is the assignment F (τ) :
X → {0, 1} given by F (τ)(x) = fx(τ). An existential winning strategy (for Φ)
is a family F = {fu}u∈var∃(Φ) of strategy functions such that, for any universal
assignment τ : var∀(Φ) → {0, 1}, the assignment τ ∪ F (τ) satisfies the matrix
of Φ. Dually, a universal winning strategy (for Φ) is a family F = {fu}u∈var∀(Φ) of
strategy functions such that, for any existential assignment σ : var∃(Φ) → {0, 1},
the assignment σ ∪ F (σ) falsifies the matrix. A QBF Φ is true if there is an
existential winning strategy for Φ, and false if there exists a universal winning
strategy for Φ.

3 Semantic Gate Extraction by Interpolation

This work builds on an application of propositional definability to the model
counting problem [33]. We begin by recalling two basic concepts.

Definition 1. Let ϕ be a formula, let X be a subset of its variables, and let x
be a variable. Variable x is defined in terms of X in ϕ if σ(x) = τ(x) for any
two satisfying assignments σ and τ of ϕ that agree on X. A definition of x by X
in ϕ is a formula ψ with var(ψ) ⊆ X such that σ(x) = ψ[σ] for any satisfying
assignment σ of ϕ.

It is readily verified that there is a definition for every variable that is defined.
Lagniez et al. [33] observe that the following result can be used to determine
whether a variable is defined [34,39].

Theorem 1 (Padoa’s Theorem). Let ϕ be a formula and let X ⊆ var(ϕ) be
a subset of its variables. Let ϕ′ be the propositional formula obtained by replacing
every variable y ∈ var(ϕ)\X by a new variable y′. Let x ∈ var(ϕ) be a variable.
If x /∈ X, then x is defined in ϕ by X if, and only if, the formula ϕ∧x∧ϕ′ ∧¬x′

is unsatisfiable.

For the purposes of preprocessing in model counting, it is sufficient to know that
a variable x is defined by X in ϕ, and the above result shows that this can
be decided by a SAT solver. It is not necessary to compute the corresponding
definition, whose size is not polynomially bounded in the size of ϕ under common
assumptions in computational complexity [33].

While finding definitions is harder than deciding definability in theory, the
difference virtually disappears in practice. Our main theoretical contribution,
stated as Theorem 2 below, says that a definition can be obtained as an inter-
polant of the formula constructed in the statement of Padoa’s Theorem. Since
interpolants can be efficiently (in linear time) generated from resolution proofs
[22,32], the distinction between detecting definability and computing definitions

1 We sometimes refer to existential strategy functions as Skolem functions and uni-
versal strategy functions as Herbrand functions.
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becomes moot when a CDCL SAT solver is used to decide (un)satisfiability:
once it determines that the formula is unsatisfiable it has already (implicitly or
explicitly) produced a proof from which a definition can be extracted at a small
overhead.2

Before proving Theorem 2, we recall the definition of an interpolant following
McMillan [36].

Definition 2 (Interpolant). Let ψ and χ be an formulas such that ψ ∧ χ is
unsatisfiable. An interpolant for ψ and χ is a formula I such that

(1) ψ implies I,
(2) I ∧ χ is unsatisfiable, and
(3) I only refers to variables common to ψ and χ.

Craig’s Interpolation Theorem [9] states that every pair of jointly unsatisfiable
propositional formulas have an interpolant.3 It remains to show that an inter-
polant for a formula witnessing definability in fact yields a definition.

Lemma 1. Let ϕ be a formula and let X ⊆ var(ϕ) be a subset of its variables.
Let ϕ′ be the formula obtained by replacing every variable y ∈ var(ϕ) \ X by
a new variable y′. For any variable x ∈ var(ϕ) \ X, an interpolant for ϕ ∧ x
and ϕ′ ∧ ¬x′ is a definition of x by X in ϕ.

Proof. Let I be an interpolant for ϕ ∧ x and ϕ′ ∧ ¬x′. By property (3) of Defi-
nition 2, I only refers to the common variables var(ϕ ∧ x) ∩ var(ϕ′ ∧ ¬x′) = X
of these formulas. To see that I defines x in ϕ, consider a satisfying assign-
ment σ : var(ϕ) → {0, 1} of ϕ. If σ(x) = 1 then ϕ ∧ x is satisfied by σ. The
formula ϕ∧x implies I by property (1), so I[σ] = 1 as well. Otherwise, σ(x) = 0
and we can construct a satisfying assignment σ′ of ϕ′∧¬x′ by setting σ′(v) = σ(v)
for v ∈ X along with σ′(v′) = σ(v) for v ∈ var(ϕ)\X. By property (2), I∧ϕ′∧¬x′

is unsatisfiable, so we must have I[σ′] = I[σ] = 0.

Theorem 2. Let ϕ be a formula and let X ⊆ var(ϕ) be a subset of its variables.
Let ϕ′ be the formula obtained by replacing every variable y ∈ var(ϕ) \ X by a
new variable y′. A variable x ∈ var(ϕ) \ X is defined in terms of X in ϕ if, and
only if, the formula ϕ ∧ x ∧ ϕ′ ∧ ¬x′ is unsatisfiable, and a definition of x in
terms of X can be obtained as an interpolant for ϕ ∧ x and ϕ′ ∧ ¬x′.

Proof. By Theorem 1 variable x ∈ var(ϕ) \ X is defined in terms of X in ϕ if,
and only if, the formula ϕ ∧ x ∧ ϕ′ ∧ ¬x′ is unsatisfiable. Craig’s Interpolation
Theorem tells us that in this case there is an interpolant for ϕ ∧ x and ϕ′ ∧ ¬x′,
which defines x in terms of X by Lemma 1.

2 Assuming the SAT solver does not use the full power of the DRAT proof system [51].
3 In fact, the result holds even for first order logic, but we will confine ourselves to the

propositional case.
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4 Extracting Unique QBF Strategy Functions

In this section, we show how Theorem 2 can be used to extract unique strategy
functions of QBFs. We say that the Skolem (Herbrand) function of an existential
(universal) variable x in a QBF is unique if it is the same in every existential
(universal) winning strategy. In particular, if x is existentially (universally) quan-
tified and the formula is false (true), then the strategy function of x is trivially
unique (there is none). In other words, the strategy function of a variable x
is unique if there is at most one such function for x that is part of a winning
strategy. The following result states that propositional definability is a sufficient
condition for uniqueness of a strategy function.

Proposition 1. Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF. If an existential (univer-
sal) variable xi is defined in terms of variables X ⊆ {xj | 1 ≤ j < i,Qj �= Qi }
in ϕ (¬ϕ) its Skolem (Herbrand) function is unique.

Proof. We only consider the case where xi is an existential variable of Φ (the
case where xi is a universal variable is symmetric). Let F = {fxj

}xj∈var∃(Φ) and
G = {gxj

}xj∈var∃(Φ) be existential winning strategies and τ : var∀(Φ) → {0, 1}
an assignment to the universal variables. Since F and G are existential winning
strategies both σF = τ ∪F (τ) and σG = τ ∪G(τ) must be satisfying assignments
of ϕ. The assignments σF and σG agree on X ⊆ var∀(Φ), so we must have
fxi

(τ) = σF (xi) = σG(xi) = gxi
(τ) because xi is defined in terms of X. Since τ

was chosen arbitrarily, this identity holds for every universal assignment, so the
functions fxi

and gxi
coincide.

To see that definability is not a necessary condition for a strategy function to
be unique, consider the following example.

Example 1. Let Φ = ∀x∃y∀z.(x ↔ y) ∨ z. The formula ψ = x represents the
unique existential winning strategy (set y to the same value as x). However,
variable y is not defined in terms of x: the assignments {x, y, z} and {x,¬y, z}
both satisfy the matrix and agree on x, but differ on y. Intuitively, the reason
why the existential strategy function for y is unique in spite of y not being
defined is that the universal player would never assign z true as required by one
of the assignments witnessing non-definability.

4.1 An Algorithm for Computing Unique Strategy Functions

We now describe an algorithm for computing unique strategy functions of a QBF
based on Proposition 1. By using an interpolating SAT solver (ItpSatSolver)
that supports both incremental solving and assumptions [22], we can extract
definitions for variables of a given quantifier type (universal or existential) using
a single solver instance. Pseudocode is shown as Algorithm 1 below.

Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF and let Q ∈ {∀,∃} be a quantifier
type. Algorithm 1 first determines the leftmost variable xi in the prefix of Φ
that has quantifier type Q (line 3). The strategy function of any variable to the
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right of xi in the prefix (including xi itself) may use the variables to its left
(shared), so we can begin by looking for definitions of xi in terms of shared.
Towards constructing the formula for the corresponding unsatisfiability check
according to Theorem 2, copy(ϕ,X) returns a copy ϕ′ of the matrix ϕ where
each variable x ∈ var(ϕ) \ shared has been replaced by a fresh variable x′. Next
(lines 9–14), we consider each variable xj with quantifier type Q—these are
the variables we want to find definitions of—and introduce two fresh “selector”
variables si and s′

i, while adding clauses (¬sj ∨xj) and (¬s′
j ∨¬x′

j) to ϕ and ϕ′,
respectively. These clauses allow us to represent ϕ ∧ xj ∧ ϕ′ ∧ ¬x′

j by assuming
literals sj and s′

j .
4

After initializing the SAT solver, we consider the variables x1, . . . , xn in the
order of the quantifier prefix (lines 18–29). If variable xj has quantifier type Q,
we want to check whether xj is defined in ϕ in terms of oppositely quantified
variables Xj that precede it in the prefix (Proposition 1 tells us that in this
case the strategy function of xj is unique). For the first such variable xj , it is
clear that the set of variables common to ϕ and ϕ′ is precisely X. Unsatisfiability
of ϕ∧xj∧ϕ′∧¬x′

j is decided by calling the SAT solver under assumptions {sj , s
′
j}:

the assumptions ensure that xj and ¬x′
j are set to true by propagation, and all

remaining selector variables can be set to false so as to satisfy the clauses they
occur in without interfering with the remaining clauses. If the solver determines
unsatisfiability, an interpolant Ij is computed (line 22), which by Theorem 2 cor-
responds to a definition of xj , and adds the pair (xj , Ij) to a list of definitions.
Otherwise, if xj has the quantifier type opposite to Q, the strategy function
of any variable with quantifier type Q considered later may use xj . Accord-
ingly (lines 26–27), we add clauses (xj ∨ ¬x′

j) and (¬xj ∨ x′
j) to ϕ′ through the

incremental interface of the SAT solver. This has two effects: first, it enforces
equivalence of xj and x′

j , and second, xj is added to the common vocabulary
of ϕ and ϕ′, so that it can appear in interpolants computed in later iterations.5

Soundness of Algorithm 1 as stated in the following proposition can be proved
by a straightforward induction on the quantifier prefix using Theorem 2 and
Proposition 1.

Proposition 2. Given a quantified Boolean formula Φ and a quantifier type Q ∈
{∀,∃}, Algorithm 1 terminates with a (possibly empty) set { (x1, I1) . . . (xk, Ik) }
of pairs (xi, Ii) such that Ii represents the unique strategy function of xi in Φ
and var(xi) ∈ varQ(Φ) for 1 ≤ i ≤ k.

Example 2. Consider the QBF Ψ = ∀x1∃y1∀x2∃y2.ϕ, where

ϕ = (x1 ∨ y1) ∧ (¬x1 ∨ ¬y1) ∧ (x2 ∨ y2) ∧ (¬x2 ∨ ¬y2).

4 Two distinct selector variables are required to ensure that they do not belong to the
common variables of ϕ and ϕ′.

5 One could also add these clauses to ϕ, in which case x′
j would become part of the

shared vocabulary. This has the slight disadvantage that subsequently computed
definitions may use a mixture of variables from ϕ and ϕ′, rather than just ϕ.



Interpolation-Based Semantic Gate Extraction 515

Algorithm 1. Extracting Unique Strategy Functions by Interpolation

1: procedure getDefinitionsQBF(Φ, Q ∈ {∀, ∃})
2: Q1x1 . . . Qnxn.ϕ ← Φ
3: i = min{ 1 ≤ i ≤ n | Qi = Q }
4: shared ← {x1, . . . , xi−1}
5: if Q = ∀ then
6: ϕ ← ¬ϕ � ∀-strategies aim to falsify the matrix.
7: end if
8: ϕ′ ← copy(ϕ, shared)
9: sametype ← { j | 1 ≤ j ≤ n and Qj = Q }

10: for j ∈ sametype do
11: sj , s

′
j ← fresh variables

12: ϕ ← ϕ ∧ (¬sj ∨ xj)
13: ϕ′ ← ϕ′ ∧ (¬s′

j ∨ ¬x′
j)

14: end for
15: solver ← ItpSatSolver(ϕ, ϕ′)
16: defined ← ∅
17: k ← max{ i ≤ k ≤ n | Qk = Q }
18: for j = i, . . . , k do
19: if Qj = Q then
20: result ← solver .solve({sj , s

′
j})

21: if result = UNSAT then
22: Ij ← solver .getInterpolant()
23: defined ← defined ∪ {(xj , Ij)}
24: end if
25: else � Qj �= Q
26: solver .addClause(ϕ′, xj ∨ ¬x′

j)
27: solver .addClause(ϕ′, ¬xj ∨ x′

j)
28: end if
29: end for
30: return defined
31: end procedure

We illustrate a run of Algorithm 1 on Ψ with Q = ∃. Since y1 is the leftmost
existential variable, we create a copy ϕ′ of ϕ with every variable except x1

renamed, that is,

ϕ′ = (x1 ∨ y′
1) ∧ (¬x1 ∨ ¬y′

1) ∧ (x′
2 ∨ y′

2) ∧ (¬x′
2 ∨ ¬y′

2).

We also add the clauses (¬s1∨y1) and (¬s2∨y2) to ϕ and the clauses (¬s′
1∨¬y′

1)
and (¬s′

2 ∨¬y′
2) to ϕ′. In the main loop, Algorithm 1 first checks whether ϕ∧ ϕ′

is unsatisfiable under the assumptions {s1, s
′
1}. Unit propagation simplifies ϕ to

(omitting unused selector variables and clauses)

(¬x1) ∧ (x2 ∨ y2) ∧ (¬x2 ∨ ¬y2),

and ϕ′ simplifies to

(x1) ∧ (¬x′
2 ∨ y′

2) ∧ (¬x′
2 ∨ ¬y′

2).
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By resolving (¬x1) with (x1) we obtain the empty clause, and ¬x1 is the corre-
sponding interpolant,6 so (y1,¬x1) is added to the set of definitions. Next, we
consider the universally quantified variable x2 and add the clauses (x2 ∨ ¬x′

2)
and (¬x2 ∨ x′

2) to ϕ′. Finally, we check whether y2 is definable by calling the
SAT solver under the assumptions {s2, s

′
2}. Now, the formula ϕ simplifies to

(x1 ∨ y1) ∧ (¬x1 ∨ ¬y1) ∧ (¬x2),

and ϕ′ simplifies to

(x1 ∨ y′
1) ∧ (¬x1 ∨ ¬y′

1) ∧
(x′

2) ∧ (x2 ∨ ¬x′
2) ∧ (¬x2 ∨ x′

2).

Unit propagation derives the clause (x2) from the clauses in the second line,
which can be resolved with the clause (¬x2) from ϕ to obtain a resolution refu-
tation of the formula ϕ ∧ ϕ′, with ¬x2 as an interpolant. Accordingly, (y2,¬x2)
is added to the set of definitions. Algorithm 1 terminates with the definitions
{(y1,¬x1), (y2,¬x2)}, and it is readily verified that y1 ≡ ¬x1, y2 ≡ ¬x2 is indeed
the unique existential winning strategy of Ψ .

4.2 Improvements and Generalization to Dependency QBF

Consider a QBF Φ = ∀x1, x2 ∃y1, y2.(x1 ↔ x2) ↔ (y1 ↔ y2). It is easy to verify
that Φ is true and that y1 and y2 do not have unique Skolem functions: for every
assignment to the universal variables there are two ways of setting y1 and y2 so
as to satisfy the matrix, so neither existential variable is defined by the universal
variables alone. However, each variable is defined by all remaining variables. For
instance, variable y2 is defined by x1, x2, and y1.

More generally, increasing the set of defining variables allows us to detect
more definitions: if x is defined in terms of X then it is also defined in terms
of any enclosing set X ′ ⊃ X. To exploit this, we modified Algorithm 1 so as
to assume a total ordering of variables and check for definitions of a variable x
in terms of all variables X which precede it in the quantifier prefix. This can
be implemented by simply adding clauses encoding equivalence of xj and x′

j

(lines 26–27) regardless of quantifier type.
Technically, this leads to an alternative definition of a “winning strategy”

for a QBF where each strategy function takes an assignment to all preceding
variables as input. Both definitions are ultimately equivalent in the sense that
a winning strategy according to one definition can be transformed into a win-
ning strategy according to the other definition without changing its responses
(cf. the work on quantifier elimination by functional composition and self-
substitution [8,14,28,29]). One can prove an analogue of Proposition 1 stating
that the strategy function—according to the alternative definition—of a vari-
able x is unique whenever x is defined in terms of the variables preceding x in
the quantifier prefix.
6 As mentioned above, interpolants can be efficiently extracted from resolution refu-

tations [32,36,46].
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Dependency Quantified Boolean Formulas (DQBFs) generalize QBFs by
allowing a non-linear quantifier prefix. More specifically, each existential variable
is annotated with a set of universal variables its Skolem function may depend
on. A DQBF is true if there is an existential winning strategy such that each
Skolem function satisfies these restrictions [2]. Although evaluating DQBF is
NEXPTIME-complete and thus believed to be much harder than evaluating
QBF, the fact that problems can be concisely encoded in DQBF [12,18] has
prompted the development of dedicated DQBF solvers [13,15,17,48].

Algorithm 1 can easily be extended to compute unique Skolem functions of
DQBF. The standard DQDIMACS format [15] allows for the combination of a
linear quantifier prefix with variables for which the dependency sets are explicitly
stated. The linear quantifier prefix can be handled as before. For each existential
variable x with explicit dependency set Dx we simply check whether x is defined
by Dx. If multiple variables x1, . . . , xk have the same dependency set Dx (which
is frequently the case in benchmark formulas) we check whether xi is defined
by Dx ∪ {x1, . . . , xi−1} for each 1 ≤ i ≤ k. Again, this technically requires a
non-standard definition of Skolem functions for DQBF but can easily be proven
sound.

5 Implementation

We implemented the algorithm described in the previous section in a prototype
named Unique. As a back end SAT solver we use ItpMiniSat, a modified ver-
sion of MiniSat [11] bundled with the ExtAvy model checker that efficiently
generates interpolants in memory and supports both assumptions and incre-
mental solving [22,49]. Unique can read PCNF formulas (QDIMACS), prenex
non-CNF QBFs (QCIR), as well as DQBFs with CNF matrices (DQDIMACS).

Interpolants obtained from ItpMiniSat are represented as And-Inverter
graphs (AIGs) and accessed through the AIG library of ABC [7]. To make use
of the structural sharing capabilities of AIGs, we maintain a single AIG repre-
senting the interpolants computed in the main loop (lines 18–29) of Algorithm 1.
Whenever a new interpolant is obtained, the corresponding AIG returned by Itp-
MiniSat is merged into the existing AIG. If the number of AIG nodes exceeds
a (geometrically increasing) threshold, we use the ABC macro compress2 to
reduce the size of the combined AIG. Upon termination, and assuming the AIG
is not too large, this is followed up by a round of FRAIGing [37] and a final
application of compress2.

While running Unique on QBFs with multiple quantifier alternations we
noticed that ItpMiniSat got stuck attempting to solve some of the definabil-
ity queries. Further testing revealed that the corresponding instances were hard
for most state-of-the-art solvers. Increasing the overall timeout would allow us
to solve these instances in some cases, but naturally the corresponding inter-
polants (for unsatisfiable instances) were very large (and difficult to compress
with ABC). This clearly defeats the purpose of detecting unique strategy func-
tions quickly. We thus decided to impose a limit on the number of conflicts
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for each call of ItpMiniSAT (currently set to 1000 conflicts). This significantly
reduces the overall running time of Unique for many instances and ensures that
individual interpolants are small, but only marginally decreases the total number
of definitions found.

Since the individual definability queries are independent of each other, it is
not necessary to determine for each input variable whether it is defined. Accord-
ingly, we implemented Unique as an anytime algorithm: upon termination, it
returns the set of variables with unique strategy functions identified up to that
point, along with the AIG representing the corresponding functions.

6 Experiments

For the experiments described below we used a cluster with Intel Xeon E5649
processors at 2.53 GHz running 64-bit Linux.

6.1 Gate Extraction

We first ran Unique to compute unique strategy functions for the instances in
the 2QBF (402 instances) benchmark set from the 2018 QBF Evaluation, as
well as the PCNF (558), QCIR (341), and DQBF (333) benchmark sets from
the 2019 QBF Evaluation.7 For each job we imposed a time limit of 600 s and a
memory limit of 1.8 GB.

0

100

200

300

0 200 400 600

2QBF

DQBF

PCNF

QCIR

Fig. 1. Running time (s) of Unique by benchmark set. For each 50-s interval within
the time limit (x-axis), the number of instances (y-axis) processed by Unique with a
running time in that interval is shown.

Figure 1 shows a histogram for the running time of Unique on different
benchmark sets. While most instances are processed quickly, Unique runs into

7 http://www.qbflib.org.

http://www.qbflib.org


Interpolation-Based Semantic Gate Extraction 519

the time limit for a significant number of PCNF instances. Generally, the running
time increases with the size of the matrix and the number of variables. This
explains why almost all DQBF formulas are processed quickly, as these tend to
be much smaller compared to formulas from the other benchmark sets.

Figure 2 shows a histogram for the fraction of existential variables with unique
strategy functions in 2QBF and PCNF instances (turquoise bars). We clearly
see a bimodal distribution here: there is a large number of instances where the
strategy functions of most variables are unique, but also a significant number
of instances where few existential strategy functions are unique. To determine
how many of the corresponding definitions cannot be found by syntactic gate
detection, we used the QCIR-conv script provided by GhostQ [31] to convert
2QBF and PCNF instances to QCIR, and ran Unique again on the resulting cir-
cuits. To do this, the circuit is translated (back) to CNF, but auxiliary variables
representing gates are ignored by the definability check. Testing showed that a
one-sided CNF encoding [42] works better than standard Tseitin conversion.

2QBF PCNF

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

50

100

150

200

Fig. 2. Fraction of existential variables with unique strategy functions in 2QBF (left)
and PCNF (right) instances before (turquoise) and after (red) syntactic gate detection.
For each fraction (x-axis) we see the number of instances (y-axis) with the correspond-
ing fraction of unique existential strategy functions. (Color figure online)

Table 1 (left) shows quartiles for the distributions of unique existential strat-
egy functions detected by Unique in each benchmark set.8 We only show the
distribution for existential variables in Table 1 and Fig. 2 since very few uni-
versal variables were found to have unique strategy functions. In fact, only 51
instances from the QCIR benchmark set encoding bounded synthesis for Petri
games contained such universal variables.

The fraction of variables with unique strategy functions was smallest for
QCIR instances. This is expected, since they can represent circuit structure
directly and do not require auxiliary variables to encode gate definitions. By

8 For instance, the left side of the first row of Table 1 says that for 75% of 2QBF
instances, Unique was able to identify 3% of Skolem functions as unique; for half of
the instances, at least 90% of existential variables were identified as having unique
Skolem functions; and for 25% of instances, at least 96%.
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Table 1. Distribution (quartiles) of the fraction of unique Skolem functions identified
by Unique before (left) and after (right) preprocessing with HQSPre. Rows marked
by a star (*) show the distribution after syntactic gate detection.

Original Preprocessed

1st Median 3rd 1st Median 3rd

2QBF 0.03 0.9 0.96 0 0 0

2QBF* 0 0.22 0.54 0 0 0

PCNF 0 0.53 0.94 0 0 0.03

PCNF* 0 0.21 0.53 0 0 0.02

QCIR 0 0 0.13 – – –

DQBF 0.57 0.88 0.94 0 0.22 0.45

contrast, 2QBF and DQBF instances contain many variables with unique strat-
egy functions. For about half of the instances, between roughly 90% and 95% of
the existential strategy functions are unique.

On the right of Table 1 we show the distribution of unique existential strategy
functions after preprocessing with HQSPre [52]. Clearly, only very few unique
Skolem functions are detected by Unique. This may be in part due to the fact
that preprocessing detects and removes gate definitions [27]. Another possibil-
ity is that definitions are simply lost: some of the most powerful preprocessing
techniques for QBF currently used only preserve the truth value and not the set
of strategies [23]. We will return to this topic at the end of the next subsection.

6.2 Solving Formulas Augmented with Definitions

Unique strategy functions of a (D)QBF can be substituted for their variables
without changing the set of winning strategies. This can be used in preprocessing
to reduce the number of quantified variables, typically at the cost of increasing
the size of the matrix. In the following experiments, we substituted definitions
found by Unique for the defined variables and ran QBF and DQBF solvers on
the resulting instances.

First, we considered the 2QBF benchmark set. We picked the QCIR solvers
Quabs [47], QFun [26], and GhostQ [31], along with the dedicated 2QBF
(PCNF) solver CADET [43]. For the QCIR solvers, the performance on
instances constructed by syntactic gate detection with QCIR-conv serves
as a baseline. We compare it with performance on instances obtained by
Unique and—since QCIR-conv also performs circuit-level simplifications that
go beyond gate extraction—with a combination of both where QCIR-conv and
Unique are run in sequence.

For CADET, we compare performance on the original 2QBF instances with
performance on QDIMACS instances augmented with CNF encodings of defi-
nitions extracted by Unique. For each configuration, we report the number of
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instances solved within a time limit of 15 min. To isolate the effect of adding defi-
nitions, the time required by Unique (and QCIR-conv) is not counted towards
the time limit.9 The results are shown in Fig. 3 (left).

Original Preprocessed

QFun QuAbS GhostQ CADET QFun QuAbS GhostQ CADET
0

100

200

Gate Detection QCIR−Conv Unique Both None

Fig. 3. Number of 2QBF instances solved (y-axis) by solvers (x-axis) using different
gate detection methods before (left) and after (right) preprocessing with HQSPre.

QFun, Quabs, and GhostQ benefit considerably from semantic gate extrac-
tion, in particular when applied on top of syntactic gate extraction. By contrast,
CADET solves fewer instances augmented with gate definitions than original
instances. We found this surprising, since variable definitions should be detected
by CADET’s heuristic for identifying unique Skolem functions. Perhaps most
definitions found by Unique are already covered in this way, so that the addi-
tional clauses simply slow down propagation. We believe that explicitly telling
CADET which variables have already been identified as determined should
result in a speedup overall.

Figure 4 takes a closer look at solving times for individual instances (for this
plot, memory outs are treated as timeouts). CADET is slower on instances
augmented by Unique but fairly consistent, while the effect on the other solvers
is more erratic. We conjecture that this is because the set of existential strategies
is preserved and the instances thus “look similar” to CADET.

Next, we tested with PCNF instances and considered the QDIMACS solvers
DepQBF [5] and CAQE [44], as well as the QCIR solvers Quabs [47],
QFun [26], and Qute [40]. Again, we compare the number of instances solved
in 15 min with different options for gate detection. Results are shown in Fig. 5
(left). Again all QCIR solvers benefit from gate detection with Unique when per-
formed on top of syntactic gate detection with QCIR-Conv, while performance

9 The results are qualitatively the same when the running time of Unique is counted
towards the time limit: the largest decrease in the number of solved instances across
all benchmark sets and configurations is 7.
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Fig. 4. Solving time (s) for 2QBF instances with (x-axis) and without Unique (y-axis).

decreases for both QDIMACS solvers. The additional clauses and variables intro-
duced by Unique apparently do not help these solvers and simply result in a
slowdown.

Finally, we tested the impact of Unique on DQBF (DQDIMACS) instances
solved by HQS [19] and DCAQE [48] within 15 min. Since DQBF solvers cur-
rently do not (yet) support non-CNF input, we translate definitions to CNF and
add them to the original formulas. Note that whenever an existential variable x
is defined by (a subset of) its dependency set, we can safely let x depend on
additional variables. This is sound since the response of variable x is already
determined by the variables in the original dependency set and cannot change
depending on other inputs. In particular, we can collect all defined variables (and
auxiliary variables) in an “innermost” existential quantifier block that depends
on all universal variables. Since many existential variables have uniquely deter-
mined strategy functions (see Table 1), this allows us to push many variables
into the innermost quantifier block and get closer to a linear quantifier prefix.
For HQS, this translates into a small increase in the number of solved instances
(208 vs. 189), whereas DCAQE basically solves the same number of instances
(133 vs. 135).

Interaction with Preprocessing. QBF solvers for PCNF are typically paired
with preprocessors such as Bloqqer [6] or HQSPre [52]. These are highly
engineered tools that batter instances with a barrage of techniques and can
often solve formulas completely on their own. Most solvers benefit greatly from
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Original Preprocessed

QFun QuAbS Qute CAQE DepQBF QFun QuAbS Qute CAQE DepQBF
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Fig. 5. PCNF instances solved (y-axis) by solver (x-axis) using different methods for
gate detection before (left) and after (right) preprocessing with HQSPre.

preprocessing. This is evident in Fig. 5 (right), which shows the number of solved
PCNF instances with different forms of gate detection after preprocessing with
HQSPre (within a timeout of 600 s). Here, the number of solved instances
increases significantly for almost all systems.

At the same time, preprocessing appears to obscure or destroy definitions.
Unique hardly finds any definitions in preprocessed instances (cf. Table 1) and
accordingly has little impact on performance. For QFun, which benefitted most
from gate detection in our experiments, this translates to a substantial reduction
in the number of solved instances. On the 2QBF benchmark set (Fig. 3), both
QFun and GhostQ solve significantly fewer instances with HQSPre compared
to the combination of Unique and QCIR-Conv, whereas the number of solved
instances almost doubles for QuAbS. Understanding which preprocessing tech-
niques obscure gate definitions and why certain solvers benefit more from gate
detection than others are important questions for future work.10

7 Related Work

Our semantic gate detection technique is closely related to a method for deter-
minizing Boolean relations by Jiang et al. [29], a problem that essentially corre-
sponds to solving 2QBF. The authors show that, for a (total) relation R(X, y)
with a single output variable y, a functional implementation of y can be obtained
as an interpolant for ¬R(X, 0) ∧ ¬R(X, 1). This can be used to determinize
10 We also ran experiments with QCIR-conv and Unique applied before preprocessing.

The results were significantly worse, so we do not report them in detail. Standard
preprocessing requires PCNF input, so that definitions have to be encoded using
additional clauses and Tseitin variables. Just like the PCNF solvers in the other
experiments, HQSPre appears to be unable to do anything useful with these extra
clauses and variables.
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relations R(X,Y ) with a set of output variables Y = {y1, . . . , yn}. First, an
implementation fn for yn can be computed by treating R as a relation with
inputs X ∪ {y1, . . . , yn−1} and single output yn. Subsequently, the implemen-
tation fn can be substituted for yn to obtain a relation R′(X,Y \ {yn}). By
repeating this process, a functional implementation f1 of y1 can eventually be
obtained. Substituting fi into fi+1 for 1 ≤ i < n results in functional imple-
mentations that only depend on the original input variables X. This approach
does not require for any of the output variables to be defined by X, but an
implementation of yi solely in terms of the input variables X is only available at
the very end of this process. For deterministic relations R(X,Y ) (where every y
is defined in terms of X), the authors show that a functional implementation
of y ∈ Y can be obtained as the interpolant of a formula that corresponds to the
formula in the statement of Padoa’s theorem. Our result stated as Theorem 2 is
more general in that it holds for multi-output relations that are not necessarily
deterministic.

Hofferek et al. use interpolation to synthesize multiple functional implemen-
tations from a single proof and thus avoid the increase in formula size incurred
by repeated substitution [24]. This has an analogue in strategy extraction for
QBF, which allows for implementations of all (existential or universal) variables
to be obtained from a proof [3]. However, strategy extraction requires the input
QBF has been solved, whereas our main interest is in preprocessing QBF.

There is a series of works on recovering gate definitions from CNF formu-
las. Li integrated rules for detecting equivalent literals in a Davis-Putnam style
algorithm [35]. Ostrowski et al. represent formulas as graphs to detect patterns
corresponding to and-gates, or-gates, and equivalences [38]. Roy et al. use CNF
signatures to detect a richer set of gates [45]. Fu and Malik extend this to arbi-
trary (user-specified) gate libraries and ensure that a maximum acyclic circuit
is constructed [16].

In the context of QBF, Bacchus and Goultiaeva showed that circuit recon-
struction can speed up solvers by providing them with a better set of initial
cubes [21]. They also extended the scope of these techniques to CNF formulas
obtained from circuits by the Plaisted-Greenbaum encoding [42]. Scholl and Pig-
orsch developed a QBF solver that manipulates an AIG representation of the
matrix to perform quantifier elimination and relies on circuit reconstruction to
simplify the initial AIG [41].

Balabanov et al. proposed a SAT-based semantic gate extraction tech-
nique [4]. Their approach has the disadvantage that a subset of clauses inducing
a definition has to be guessed. As a more efficient heuristic, they suggest to
identify pseudo definitions instead. A set of clauses (A1 ∨ x), . . . , (Ak ∨ x), (B1 ∨
¬x), . . . , (Bl ∨ ¬x) is a pseudo definition of x if the formula A1 ∧ · · · ∧ Ak ∧
B1 ∧ · · · ∧ Bl is unsatisfiable. Rabe and Seshia use a similar criterion in their
incremental determinization algorithm to identify variables that are (locally)
deterministic [43]. Checking for pseudo definitions is typically efficient but lim-
its the range of definitions that can be detected.
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8 Conclusion

Syntactic gate detection has been shown to benefit SAT solvers [10,16] and
QBF solvers [21]. The underlying algorithms are fast but limited to a predefined
library of gates. By contrast, our semantic gate extraction method can detect any
definition entailed by an input formula but requires an interpolating SAT solver.
In the context of SAT, this overhead likely outweighs any potential benefits.
However—as demonstrated by our experiments—there is significant potential
for application to harder problems such as QBF and DQBF evaluation. Here,
preprocessing is just a first step.

At the same time, our results show that substituting unique strategy func-
tions can slow down solvers. In some sense, this is counter-intuitive: ideally,
providing solvers with unique strategy functions should give them a head start,
or at least not hurt their performance. By analogy, if we give a SAT solver part of
a backbone assignment, it can simply instantiate accordingly and need not con-
sider the corresponding variables for the remainder of its run. With the exception
of CADET, QBF solvers currently cannot “instantiate” variables with strategy
functions in this way, since they are only equipped to reason about assignments.
We believe that designing techniques for reasoning about strategies is a key
challenge in developing the next generation of QBF solvers.

Acknowledgements. The author would like to thank Adrian Rebola-Pardo, Matthias
Schlaipfer, and Georg Weissenbacher for helpful discussions.
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1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: Veloso,
M.M., Kambhampati, S. (eds.) AAAI 2005, pp. 275–281. AAAI Press/The MIT
Press (2005)

2. Balabanov, V., Chiang, H.J.K., Jiang, J.R.: Henkin quantifiers and Boolean formu-
lae: a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)

3. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

4. Balabanov, V., Jiang, J.R., Mishchenko, A., Scholl, C.: Clauses versus gates in
CEGAR-based 2QBF solving. In: Darwiche, A. (ed.) Beyond NP, Papers from the
2016 AAAI Workshop, AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

5. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 14

6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-
6 10

7. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

https://doi.org/10.1007/978-3-642-14186-7_14
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-14295-6_5


526 F. Slivovsky
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Abstract. We present TarTar, an automatic repair analysis tool that,
given a timed diagnostic trace (TDT) obtained during the model check-
ing of a timed automaton model, suggests possible syntactic repairs of the
analyzed model. The suggested repairs include modified values for clock
bounds in location invariants and transition guards, adding or removing
clock resets, etc. The proposed repairs guarantee that the given TDT
is no longer feasible in the repaired model, while preserving the overall
functional behavior of the system. We give insights into the design and
architecture of TarTar, and show that it can successfully repair 69%
of the seeded errors in system models taken from a diverse suite of case
studies.

1 Introduction

A reactive system with requirements pertaining to its timing behavior is often
modeled as a network of timed automata (NTA) [BY03]. Whether a timing
requirement holds in an NTA can be analyzed by timed model checkers such
as Uppaal [BLL+95] or opaal [DHJ+11]. In case of a requirement violation, a
model checker returns a timed counterexample, also called a timed diagnostic
trace (TDT). Until now, developers must manually identify and correct such
violations by analyzing the generated TDTs. It is therefore desirable to support
this process by an automated tool set that not only determines whether timing
requirements are met, but also proposes syntactic repairs of the NTA in case
they are not.

In [KLW19] we presented an automated repair analysis that analyzes a TDT
obtained from the violation of a timed safety property and returns syntactic
repair suggestions that avoid the concrete executions of the TDT violating the
property. The analysis performs an additional admissibility check ensuring that
the repaired model is functionally equivalent with the original NTA, which means
that no action traces are added or omitted by the repair.

To illustrate the repair analysis consider the NTA in Figs. 1(a) and (b). It
describes a client that sends a request req to a database db and expects to receive
a response ser within 4 time units after sending the request. The client contains a
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(a) Timed Automata client (b) Timed Automata db (c) TDT tdt

Fig. 1. Network of timed automata - running example

clock x that measures the time delay between the request creation and the receiv-
ing of a response in location serReceiving. The NTA allows to execute a TDT
that violates the property, illustrated as a sequence diagram with time intervals
in Fig. 1(c). A time interval in the sequence diagram denotes the minimal and
maximal time delay for the message transmission and processing times in db,
respectively. The repair computation analyzes the TDT and produces several
syntactic repairs to the NTA that avoid the property violation. In [KLW19], the
computed repairs aim at the modification of clock bounds in location invariants
and transition guards. An example of such a repair is to reduce the bound in the
time constraint w ≤ 2 from 2 to 1. The modified bound constrains the maximal
transmit time of the req message so that the resulting NTA receives all responses
within the expected time. This repair eliminates the problematic executions of
the TDT in the original NTA without changing the functional behavior of the
system, which is confirmed by an admissibility test defined in [KLW19]. How-
ever, in general, it may not be possible to repair the model using only clock
bound alterations.

Contributions. We present TarTar [tar20], which extends the initial prototype
implementation of the clock bound repair analysis presented in [KLW19] to a
more comprehensive NTA repair tool. Specifically, the extended tool implements
new analyses that can suggest a whole range of repairs in addition to clock
bound variation, such as modifying comparison operators in constraints, clock
references, clock resets, and location urgency. Examples of new repairs computed
for the model in Fig. 1 are:

– Exchanging the comparison operator in the constraint w ≥ 1 to w < 1 ensures
that the time to send a request is below 1 time unit.

– An exchange of clock z in z ≤ 2 with clock y restricts the time of processing
and receiving the response to at most 2 time units.

– To reset the clock y on the previous transition instead ensures that the time
for sending and processing the request is below 1 time unit.
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– Making the location serReceiving urgent reduces the time to receive a response
to 0.

We call a repair admissible if the repaired system is functionally equivalent to
the unrepaired system. The repair analysis implemented in TarTar returns the
complete set of admissible repairs.

The repair analysis combines concepts and algorithms from model checking,
constraint solving, and automata theory. A real-time model checker is used to
generate TDTs for a given NTA that violate a given timed safety property. Tar-
Tar translates the TDT into a linear real arithmetic constraint system. An SMT
solver is used to compute a repair for the generated constraint system by solv-
ing a MaxSMT problem. An automata-based language equivalence test checks
whether the repair is admissible in the NTA model. The collaboration between
these subcomponents yields a complex tool architecture. We provide insights into
the design and implementation of this architecture and the underlying infras-
tructure of supporting tools. We evaluate the new repair analyses by applying
TarTar to a number of NTA models. We systematically inject different mod-
ifications in these correct models and compute repairs for the obtained faulty
models, which results in at least one admissible repair for 69% of the TDTs.

Related Work. Other tools exist that compute repairs. The tool BugAs-
sist [JM11] analyzes C-code by solving a MaxSMT problem. The tool
ReAssert [DDG+11] checks a set of possible modification to repair broken unit
tests. Angelix [MYR16], S3 [LCL+17] and SemFix [NQRC13] compute repairs
by symbolic execution and constraint solving. SketchFix [HZWK18] is based on
lazy candidate generation. All tools are not repairing broken time constraints.
We are not aware of related work on tools for the repair of timed automata
models. A more comprehensive overview of related work on automated repair is
given in [LPR19]. A discussion of work related to the foundations of our repair
analysis can be found in [KLW19].

2 New Types of Repair Analyses

The repair analysis presented in [KLW19] and implemented in the prototype
version of TarTar encodes a TDT as a constraint system in linear real arith-
metic. It computes syntactic correct modifications of the underlying NTA by
introducing bound variation variables v . For example, possible bound modifica-
tions for a clock bound x ≤ 2 are expressed by a modified clock bound x ≤ 2+v .
The repairs are computed by solving a partial SMT problem on the TDT con-
straint system, involving soft-assert constraints on the bound variation variables.
No repair is computed whenever the soft assertion v = 0 holds, otherwise the
computed value of v characterizes the repair. In the following we sketch the new
types of repairs implemented in TarTar. For a more comprehensive description,
which space limitations do not allow us to provide here, we refer to [KLW20].
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Operator Variation Repair Analysis. This analysis is motivated by the assump-
tion that a wrong comparison operator in a location invariant or transition guard
may cause a property violation. We assume for the repair encoding that the oper-
ators ∼ are indexed according to their order in the sequence 〈 <,≤,=,≥, > 〉.
The possible repairs are encoded by a fresh variation variable vov

i where the
value of vov

i is the index of the corresponding comparison operator. If x < 4 is
computed as a repair, then vov

i = 1. Using this repair analysis, TarTar finds
two admissible repairs for the example in Figs. 1(a) and (b) that replace the
comparison operator in the clock constraint w >= 1 by < or <=, respectively.

Clock Reference Repair Analysis. This analysis aims to repair property violations
resulting from errors that stem from the unintended use of a wrong clock variable.
We enumerate all the positions of clock variables in clock bound constraints
using index i and all clock variables using index k. We then introduce for every
position i, a fresh variation variable vcv

i whose value k indicates the clock ck to
be used at that position in the repaired model. For example, if y ≤ 2 is a repaired
constraint, where the position of y in the constraint has index 3 and clock y has
index 1, then vcv

3 = 1. Applying this repair analysis to the examples in Figs. 1(a)
and (b), TarTar finds 13 admissible clock reference modification repairs, each
involving two modifications. Nine repairs exchange y in the constraints y ≤ 1
and y ≥ 1 by a selection from the set of clocks z, x and w. Four repairs exchange
y in the constraint y ≤ 1 by w or x, and w in the constraint w ≥ 1 by y or z.

Reset Clock Repair Analysis. This analysis aims to repair a property violation
by adding or removing clock resets. We introduce a variation variable v rv

i,j for
each clock ci and the transition leaving location λj in the TDT. The reset status
in the extended constraint system is inverted when v rv

i,j �= 0: if ci was not reset
before, it will now be reset, and vice versa. Applying the reset repair analysis to
the examples in Figs. 1(a) and (b), TarTar finds four admissible repairs. One
repair removes the reset of clock y, another removes the reset of clock z and
two repairs add a reset of clock x either on the transitions towards the state
reqProcessing or the transition towards the state serReceiving.

Urgent Location Repair Analysis. This analysis aims to repair cases where a
faulty usage of urgent locations, which are always left with zero delay after
entering, causes a property violation. Urgency of a location is modeled in the
TDT constraint system by setting the location delay δj to 0. We define a fresh
variation variable vuv

i for a location λj . For vuv
i �= 0, the urgency for a location λj

is inverted. Applying the urgency location repair analysis to the examples in
Figs. 1(a) and (b), TarTar finds two inadmissible repairs. The first one makes
the state reqAwaiting urgent, and another repair makes the state serReceiving
urgent.

3 Usage of TarTar

We have implemented all repair analyses described in [KLW19] and in this paper
in a tool named TarTar. It provides a graphical user interface, a command-
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line interface and a web-interface which enables the execution of this resource
intensive software on compute servers. A user selects one of these interfaces via
arguments provided when invoking the Java library implementing TarTar. For
real-time model checking, TarTar relies on Uppaal.

– The argument –web launches the web server and corresponding interface.
– Any other arguments launches the command-line mode. When using the argu-

ment –help, the command-line console prints some help information.
– When no arguments are given, the graphical user interface depicted in

Fig. 2(a) is launched. The interface offers three tabs. New Analysis starts a
repair analysis, New Experiment starts fault seeding which is described later
in Sect. 5, and Version shows the current version number of TarTar.

All tool interfaces expect the same types of inputs in order to start a TarTar
analysis run. The user specifies a file containing the Uppaal model as input
and selects the kind of repair to compute. Optionally, a file with a TDT of
the given Uppaal model can be specified. When no TDT is provided, TarTar
automatically calls Uppaal to compute a TDT. The result of an analysis is
one repaired model file for every computed repair, as well as a text file that
summarizes which repairs are admissible.

(a) TarTar GUI (b) TarTar Architecture

Fig. 2. TarTar tool

4 Software Architecture and Implementation of TarTar

The software architecture of TarTar is depicted in Fig. 2(b). The orange rect-
angles in the figure represent external tools that TarTar calls in the course of
the repair analysis. Uppaal is a state-of-the-art and closed-source model checking
tool, which TarTar uses to compute a TDT for a given model and property.
The SMT solver Z3 [dMB08] is used to solve the generated partial MaxSMT
problems. To check the admissibility of a repair, TarTar uses opaal and the
AutomataLib component of LearnLib [IHS15] since they conveniently provide
functionality used during admissibility checking.



534 M. Kölbl et al.

Data Flow Architecture. TarTar consists of many computation steps. For exam-
ple, a TDT is parsed internally and stored as a Trace. This Trace is then modi-
fied and exported as SMT-LIB2 [BFT17] code. We define a computation step of
TarTar as the computation transforming input into result artifacts. This focus
on artifacts ensures a highly cohesive architecture and clear interfaces between
any two computation steps. Computation steps with identical objectives are
grouped into a project. This results in four projects depicted by blue rectangles
in Fig. 2(b).

– HMI denotes the user interfaces of TarTar. The user inputs a timed model.
TarTar then calls the project Repair Computation using a faulty timed
model as a parameter. In case that the model is correct, TarTar calls the
project Fault Seeding.

– Fault Seeding seeds faults into a correct model and then repairs the faulty
model by computing repairs using Repair Computation. We use this analysis
in Sect. 5 in order to benchmark the Repair Computation analyses.

– Repair Computation computes candidate repairs for a faulty timed model,
applies these repairs to the model and finally automatically calls the Admis-
sibility Test.

– Admissibility Test checks for every repaired model whether the computed
repair is also admissible.

Control Flow Architecture. TarTar computes iteratively a set of repairs for a
given faulty Uppaal model and a given property Π using the following steps:

0. Counterexample Creation. TarTar calls Uppaal to verify the model against
Π. In case Π is violated, it stores a shortest symbolic TDT witnessing the
violation in XML format.

1. Diagnostic Trace Creation. TarTar parses the model and the TDT into a
data structure Trace. To add potential repairs, TarTar copies the trace and
replaces the constraints that will potentially be subject to a repair by their
modified variants. The modified trace is then translated to a logic constraint
system, represented in SMT-LIB2 code.

2. Repair Computation. Z3 [dMB08] then solves a MaxSMT problem on the
modified trace constraint system, computing a repair in which the number
of unmodified constraints on the variation variables of type v = 0 is maxi-
mized. Since Z3 can solve a MaxSMT problem only for quantifier-free linear
real arithmetic, TarTar first runs a quantifier elimination on the constraint
system. It then solves the MaxSMT problem with soft constraints requir-
ing v = 0 for all variation variables. For a more comprehensive presentation
of this construction we refer the reader to [KLW20]. In case no solution is
found, TarTar terminates. Otherwise, TarTar applies the repair to the
faulty model and returns a repaired model.

3. Admissibility Check. TarTar checks the admissibility of a repair and com-
pares the untimed languages of the faulty and repaired models. TarTar
calls the model checker opaal in order to compute the timed transition sys-
tems (TTS) of the original and the repaired Uppaal model. We modified the
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opaal model checker in such a way that it returns the TTS for a model. Tar-
Tar then checks whether the two TTS have equivalent untimed languages,
in which case the repair is admissible. This check is implemented using the
library AutomataLib. In case the two TTS are not equivalent, the admissi-
bility test returns a trace as a witness for the difference.

4. Iteration. TarTar enumerates all repairs, i.e., all combinations of constraint
modifications that correct the TDT. The repairs are iteratively enumerated
starting with the ones that require the smallest number of modifications to
the model. After a repair is computed, the combination of modified variables
that has been found is prevented from being reconsidered for future repairs by
setting these modification variables to 0 using hard asserts. TarTar then pro-
ceeds with attempting to compute further, previously unconsidered repairs.

Fig. 3. TarTar component architecture

Component Architecture. We imple-
mented TarTar with the general
infrastructure depicted in Fig. 3. The
interface Job provides a general
abstraction for an algorithm and spec-
ifies the necessary input and result
values of the algorithm by the class
Description. TarTar contains a Job
for the projects Fault Seeding, Repair
Computations and Admissibility Test.
The class Session executes a Job and derivations of Session provide the different
interfaces to the user. With this infrastructure, the analysis implementation in
TarTar is independent from the implementation of the user interfaces, thus
reducing coupling and improving modifiability of the code.

Implementation Details. We implemented the different projects that constitute
TarTar in Java and use the build-management tool maven [Mav19] to manage
the dependencies between the projects. TarTar interacts differently with the
external tools that are needed for different purposes. It calls Uppaal via the
command-line interface in order to generate a TDT and calls Z3 via its API to
compute a repair. For the admissibility check, it calls opaal using a command-line
script and the AutomataLib as an included Java library. For the implementation
of the TarTar analyses the following two details are essential.

We modify constraints in an Uppaal model in order to apply a repair or
to seed a fault. Since neither clock constraints nor transitions possess explicit
unique identifiers in an Uppaal model, it is not obvious which constraint to
change. We therefore uniquely identify a constraint by traversing the constraints
in the sequence stored in the Uppaal model file and use the constraint index in
this sequence as its identifier.

The complexity of the algorithms for solving quantifier elimination and the
MaxSMT problem increase exponentially with the number of variables in the
SMT model [KLW19]. We therefore reduce the number of variables by exploit-
ing implied equality constraints. For example, a variable cj is created for every
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clock c in every step j of the TDT. We eliminate cj explicitly before quantifier
elimination by replacing it with the term

∑
i∈r..j di, where di is the time delay

at step i in the trace and r is the last step before j where c was reset.

5 Evaluation

Evaluation Strategy. In order to evaluate the repair analyses both qualitatively
and quantitatively, we need to synthesize a set of faulty timed automata. To the
best of our knowledge, no benchmark suite for faulty timed automata exists. We
therefore create faulty models by using the fault seeding strategy from [KLW19]
which is motivated by ideas from mutation testing [JH11]. Mutation testing eval-
uates the quality of a test suite for a given program by systematically corrupting
program code and determining the ratio of corruptions that the test suite is able
to detect. We apply the same principle to evaluate the quality of our repair
technique. As proposed in [KLW19], fault seeding modifies a single clock con-
straint so that the result is a set of models that violate a given property. During
the seeding, the bound of a single clock constraint is modified by an amount
of {−10,−1,+1,+0.1M,+M}, where M is the maximal clock bound occurring
in a given model. Our observation was that making either small modifications
that are close to the bound value or modifications in the order of the maximal
bound value M often introduce actual errors in the model. We have extended
fault seeding to the new types of repairs. In particular, fault seeding addition-
ally exchanges the comparison operator in a clock constraint by {<,≤,=,≥, >},
swap a referenced clock with all other clocks occurring in the given model, mod-
ify the reset clocks of any transition, and switch for any location whether it is
urgent. TarTar checks automatically whether a modified TA violates a given
property. If this is the case, it performs all of the above defined repair analyses.

Results. We applied fault seeding to the models in [KLW19] and analyzed
the obtained TDTs using the above described repair analyses implemented in
TarTar. All analyses were performed on a computer with an i7-6700K CPU
(4.00 GHz), 60 GB of RAM and a 64 bit Linux operating system. We summarize
the results of the experiment per considered model (Table 1) and per type of
considered repair (Table 2). Column Sd contains the count of seeded faults that
result in a number #T of faulty models. TUP is the maximal time that Uppaal
needs to create a TDT for the faulty models, and the longest TDT has a length of
Ln. TarTar computed for the TDTs overall a number #R repairs of which #A
are admissible. An admissible repair is found for #S of the TDTs. The computa-
tion effort for a repair analysis is given by the time TQE for successful quantifier
elimination, the number of timeouts #O of quantifier eliminations after 10 min,
the average time TR to compute a repair and the memory consumption MR. The
constraint system that Z3 solves has the count #Vr of variables and #Cn of con-
straints. The effort for the admissibility check is given in time TAdm and memory
MA. All times are given in seconds and memory consumption in MB. Notice that
we omit the columns pertaining to the fault seeding and TDT computation in
Table 2 as they are irrelevant here.
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Table 1. Experimental results according to model.

Repair #Sd #T TUP Ln #R #A #S TQE #O TR MR #Vr #Cn TAdm MA

db rep. 110 13 0.016 4 229 138 9 89.346 2 0.911 14.53 30 91 2.080 45

csma 191 10 0.012 2 70 26 8 0.049 0 0.023 0.58 16 72 1.825 75

elevator 88 5 0.011 1 7 5 4 0.049 0 0.020 0.53 6 28 1.665 17

viking 310 9 0.015 18 9 7 5 86.539 21 1.436 20.07 120 180 1.952 543

bando 1, 955 40 0.111 279 4, 061 209 21 31.555 46 4.922 20.86 1, 156 8, 144 19.57 1251

Pacemaker 1, 187 12 0.022 9 62 19 10 0.663 20 0.325 2.59 116 988 1.994 206

SBR 353 50 0.027 84 751 660 31 117.057 86 2.686 37.16 765 1, 211 138.004 211

FDDI 314 36 0.014 11 166 105 34 29.859 51 3.074 9.70 116 272 2.241 128

Overall, TarTar seeded 4.508 faults. This resulted in 175 TDTs in total
(60 TDTs due to bound modification, 72 due to operator variation, 27 due to
changing the clock reference, 8 due to complementing the reset of clocks and
8 due to the switching of urgent locations). TarTar found 5,355 repairs, out
of which 1,169 were admissible. It found at least one admissible repair for 122
of the TDTs. The maximal number of modified constraints in the admissible
repairs computed for a single TDT using all types of analysis was 25.

Table 2. Experimental results according to type of repair.

Repair #R #A #S TQE #O TR MR #Vr #Cn TAdm MA

Bound Modification 533 364 85 15.209 8 4.922 20.86 1, 156 2,498 138.004 525

Operator Variation 3, 929 96 51 117.057 44 2.686 37.16 996 8,144 59.117 543

Clock Reference 693 625 35 33.282 61 3.074 14.13 1, 120 5,355 116.944 206

Reset Clock 45 37 13 89.346 113 0.911 14.53 996 2,836 2.051 45

Urgent Location 155 47 37 0.107 0 0.135 3.16 1, 120 2,502 58.551 1, 251

Interpretation. Few of the seeded faults resulted in a property violation. TarTar
seeded 4.508 faults which led to 175 TDTs, thus only 3.9% of these faults result in
a TDT. This supports the hypothesis that, in practice, often times only few time
constraints have an impact on a property violation. TarTar computes at least
one admissible repair by bound modification for 85 (48%) of the 175 TDTs, by
operator variation for 51 (29%), by clock reference for 35 (20%), by clock reset for
13 (7%) and by urgent location for 37 (21%). Every analysis on its own computes
less admissible repairs than the combination of all repair analyses, which solves
122 (69%) of the 175 TDTs. The largest number of modified constraints in all
the admissible repairs for a single TDT was 25, which is less than anticipated.
This low number of modified constraints infer that, for the examples that we
considered, only a few constraints of each TDT combined to admissible repairs.
The number of modified constraints determines the number of possible repairs
that have an impact on whether a property is violated or not. Since it was
observed in [KLW19] that the computational effort for the repair computation is
largely determined by the quantifier elimination step, we expect that in light of
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the observed 226 timeouts a more efficient quantifier elimination would lead to
a significantly higher number of repairs. Furthermore, the number of timeouts,
and thus the computation time needed for the repair, rises with the length of
the analyzed TDT. The model SBR has the most timeouts with 86 and the
third longest trace with a length of 84 steps. The model bando has the third
most timeouts with 46 and the longest trace. Obviously, the longer the TDT,
the larger the resulting constraint system, leading to increased computational
effort. The bando model has the largest constraint system with 1, 156 variables
and 8, 144 constraints. The SBR model has the second largest constraint system
with 765 variables and 1, 211 constraints. The model FDDI has a shorter trace
of length of 11 and a much smaller constraint system with 116 variables and
272 constraints. From this we conclude that the complexity of a repair depends
not only on the trace length, but also on the intrinsic complexity of the model.
Modifying states from urgent to non-urgent during fault seeding resulted in
only 8 TDTs. This low number is due to the observation that the considered
models contain only few urgent states. Modifying non-urgent states to urgent
ones, however, did not lead to a single property violation resulting in a TDT.
The rationale is that urgency ensures to leave a state immediately without a
delay which leads to a restriction rather than a relaxation regarding the time
budget spent along an execution trace. As a consequence, making a state urgent
does not cause a property violation in many models since the type of the checked
properties is typically time bounded reachability, and a restricted time budget
does not make it more likely that the property is violated. We finally observe
that the admissibility check requires more computation resources than the repair
computation. The maximal memory used for the admissibility test was 1, 251MB
in contrast to 37.16MB for the repair computation. This is in line with our
expectation since the admissibility test searches the state space of the full NTA,
while the repair analyses only considers a single TDT.

6 Conclusion

We have presented the TarTar tool, its architecture and implementation, and
illustrated its application to a number of significant case studies. In the course
of our work we have extended the repair analysis that is implemented in Tar-
Tar for bound modification to modifications of comparison operators, clock
references, reset of clocks and missing urgencies. The evaluation of the repair
analyses showed that an admissible repair is computed for at least 69% of the
analyzed TDTs. The integration of various tools with heterogeneous interfaces
posed a particular challenge to the architecture of TarTar which we addressed
by the definition of intermediate artifacts.

In future work we plan to explore the interplay between different repairs that
are computed for a repaired system that still violates a property, and develop
refined strategies to select promising repairs from a repair set. A further gener-
alization of the analysis is to not only compute clock constraint modifications
for faulty models but also to compute possible relaxations of clock constraints
for correct models in order to support design space exploration.
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ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 32

[JH11] Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)

[JM11] Jose, M., Majumdar, R.: Bug-assist: assisting fault localization in ANSI-C
programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 504–509. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22110-1 40

[KLW19] Kölbl, M., Leue, S., Wies, T.: Clock bound repair for timed systems. In: Dil-
lig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 79–96. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 5

[KLW20] Kölbl, M., Leue, S., Wies, T.: Tartar: a timed automata repair tool. CoRR,
abs/2002.02760 (2020). https://www.sen.uni-konstanz.de/publications

[LCL+17] Le, X.-B.D., Chu, D.-H., Lo, D., Goues, C.L., Visser, W.: S3: syntax-
and semantic-guided repair synthesis via programming by examples. In:
ESEC/SIGSOFT FSE, pp. 593–604. ACM (2017)

[LPR19] Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair.
Commun. ACM 62(12), 56–65 (2019)

[Mav19] Apache Software Foundation. Maven (2019). https://maven.apache.org/
[MYR16] Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program

patch synthesis via symbolic analysis. In ICSE, pp. 691–701. ACM (2016)
[NQRC13] Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program

repair via semantic analysis. In: ICSE, pp. 772–781. IEEE Computer Soci-
ety (2013)

[tar20] Tartar 2019–2020. https://github.com/sen-uni-kn/tartar

http://smtlib.cs.uiowa.edu/language.shtml
http://smtlib.cs.uiowa.edu/language.shtml
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-642-20398-5_37
https://doi.org/10.1007/978-3-642-20398-5_37
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-030-25540-4_5
https://www.sen.uni-konstanz.de/publications
https://maven.apache.org/
https://github.com/sen-uni-kn/tartar


540 M. Kölbl et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Hybrid and Dynamic Systems



SAW: A Tool for Safety Analysis
of Weakly-Hard Systems

Chao Huang1(B) , Kai-Chieh Chang2, Chung-Wei Lin2 , and Qi Zhu1

1 Northwestern University, Evanston, USA
{chao.huang,qzhu}@northwestern.edu

2 National Taiwan University, Taipei, Taiwan
551100kk@gmail.com, cwlin@csie.ntu.edu.tw

Abstract. We introduce SAW, a tool for safety analysis of weakly-hard
systems, in which traditional hard timing constraints are relaxed to allow
bounded deadline misses for improving design flexibility and runtime
resiliency. Safety verification is a key issue for weakly-hard systems, as it
ensures system safety under allowed deadline misses. Previous works are
either for linear systems only, or limited to a certain type of nonlinear
systems (e.g., systems that satisfy exponential stability and Lipschitz
continuity of the system dynamics). In this work, we propose a new
technique for infinite-time safety verification of general nonlinear weakly-
hard systems. Our approach first discretizes the safe state set into grids
and constructs a directed graph, where nodes represent the grids and
edges represent the reachability relation. Based on graph theory and
dynamic programming, our approach can effectively find the safe initial
set (consisting of a set of grids), from which the system can be proven safe
under given weakly-hard constraints. Experimental results demonstrate
the effectiveness of our approach, when compared with the state-of-the-
art. An open source implementation of our tool is available at https://
github.com/551100kk/SAW. The virtual machine where the tool is ready
to run can be found at https://www.csie.ntu.edu.tw/∼r08922054/SAW.
ova.

Keywords: Weakly-hard systems · Safety verification · Graph theory

1 Introduction

Hard timing constraints, where deadlines should always been met, have been
widely used in real-time systems to ensure system safety. However, with the
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Fig. 1. A weakly-hard system with perfect sensors and actuators.

rapid increase of system functional and architectural complexity, hard deadlines
have become increasingly pessimistic and often lead to infeasible designs or over
provisioning of system resources [16,20,21,32]. The concept of weakly-hard sys-
tems are thus proposed to relax hard timing constraints by allowing occasional
deadline misses [2,11]. This is motivated by the fact that many system func-
tions, such as some control tasks, have certain degrees of robustness and can
in fact tolerate some deadline misses, as long as those misses are bounded and
dependably controlled. In recent years, considerable efforts have been made in
the research of weakly-hard systems, including schedulability analysis [1,2,5,12–
14,19,25,28,30], opportunistic control for energy saving [18], control stability
analysis and optimization [8,10,22,23,26], and control-schedule co-design under
possible deadline misses [3,6,27]. Compared with hard deadlines, weakly-hard
constraints can more accurately capture the timing requirements of those system
functions that tolerate deadline misses, and significantly improve system feasi-
bility and flexibility [16,20]. Compared with soft deadlines, where any deadline
miss is allowed, weakly-hard constraints could still provide deterministic guaran-
tees on system safety, stability, performance, and other properties under formal
analysis [17,29].

A common type of weakly-hard model is the (m,K) constraint, which spec-
ifies that among any K consecutive task executions, at most m instances could
violate their deadlines [2]. Specifically, the high-level structure of a (m,K)-
constrained weakly-hard system is presented in Fig. 1. Given a sampled-data
system ẋ = f(x, u) with a sampling period δ > 0, the system samples the state
x at the time t = iδ for n = 0, 1, 2, . . . , and computes the control input u with
function π(x). If the computation completes within the given deadline, the sys-
tem applies u to influence the plant’s dynamics. Otherwise, the system stops
the computation and applies zero control input. As aforementioned, the system
should ensure the control input can be successfully computed and applied within
the deadline for at least K−m times over any K consecutive sampling periods.

For such weakly-hard systems, a natural and critical question is whether the
system is safe by allowing deadline misses defined in a given (m,K) constraint.
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There is only limited prior work in this area, while nominal systems have been
adequately studied [4,9,15,31]. In [8], a weakly-hard system with linear dynamic
is modeled as a hybrid automaton and then the reachability of the generated
hybrid automaton is verified by the tool SpaceEx [9]. In [7], the behavior of a lin-
ear weakly-hard system is transformed into a program, and program verification
techniques such as abstract interpretation and SMT solvers can be applied.

In our previous work [17], the safety of nonlinear weakly-hard systems are
considered for the first time. Our approach tries to derive a safe initial set for any
given (m,K) constraint, that is, starting from any initial state within such set,
the system will always stay within the same safe state set under the given weakly-
hard constraint. Specifically, we first convert the infinite-time safety problem into
a finite one by finding a set satisfying both local safety and inductiveness. The
computation of such valid set heavily lies on the estimation of the system state
evolution, where two key assumptions are made: 1) The system is exponentially
stable under nominal cases without any deadline misses, which makes the system
state contract with a constant decay rate; 2) The system dynamics are Lipschitz
continuous, which helps bound the expansion under a deadline miss. Based on
these two assumptions, we can abstract the safety verification problem as a one-
dimensional problem and use linear programming (LP) to solve it, which we call
one-dimension abstraction in the rest of the paper.

In practice, however, the assumptions in [17] are often hard to satisfy and
the parameters of exponential stability are difficult to obtain. In addition, while
the scalar abstraction provides high efficiency, the experiments demonstrate that
the estimation is always over conservative. In this paper, we go one step further
and present a new tool SAW for infinite-time safety verification of nonlinear
weakly-hard systems without any particular assumption on exponential
stability and Lipschitz bound, and try to be less conservative than the scalar
abstraction. Formally, the problem solved by this tool is described as follows:

Problem 1. Given an (m,K) weakly-hard system with nonlinear dynamics ẋ =
f(x, u), sampling period δ, and safe set X, find a safe initial set X0, such that
from any state x(0) ∈ X0, the system will always be inside X.

To solve this problem, we first discretize the safe state set X into grids. We
then try to find the grid set that satisfies both local safety and inductiveness.
For each property, we build a directed graph, where each node corresponds to a
grid and each directed edge represents the mapping between grids with respect
to reachability. We will then be able to leverage graph theory to construct the
initial safe set. Experimental results demonstrate that our tool is effective for
general nonlinear systems.

2 Algorithms and Tool Design

The schematic diagram of our tool SAW is shown in Fig. 2. The input is a model
file that specifies the system dynamics, sampling period, safe region and other
parameters, and a configuration file of Flow* [4] (which is set by default but can
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Fig. 2. The schematic diagram of SAW.

Algorithm 1: Overall algorithm of SAW
Data: Dynamic system f with safe state region X, the control law π,

weakly-hard constraint (m, K), sampling period δ
Result: Safe initial state set X0

1 Γ = partition(X, p);
/* Search the grid set that satisfies local safety. */

2 G1 = constructOneStepGraph() ;
3 ΓS , GK = calculateLocalSafety() ;

/* Search the grid set that satisfies inductiveness. */

4 ΓI = calculateInductivenessSet() ;
5 return ΓI ;

also be customized). After fed with the input, the tool works as follows (shown
in Algorithm 1). The safe state set X is first uniformly partitioned into small
grids Γ = {v1, v2, . . . , vpd}, where X = v1 ∪ v2 ∪ · · · ∪ vdp , vi ∩ vj = φ (∀i �= j),
d is the dimension of the state space, and p is the number of partitions in each
dimension (Line 1 in Algorithm 1). The tool then tries to find the grids that
satisfy the local safety. It first invokes a reachability graph constructor to build
a one-step reachability graph G1 to describe how the system evolves in one
sampling step (Line 2). Then, a dynamic programming (DP) based approach
finds the largest set ΓS = {vs1 , vs2 , . . . , vsn

} from which the system will not go
out of the safe region. The K-step reachability graph GK is also built in the DP
process based on G1 (Line 3). After that, the tool searches the largest subset
ΓI of ΓS that satisfies the inductiveness by using a reverse search algorithm
(Line 4). The algorithm outputs ΓI as the target set X0 (Line 5).

The key functions of the tool are the reachability graph constructor, DP-
based local safety set search, and reverse inductiveness set search. In the following
sections, we introduce these three functions in detail.

2.1 Reachability Graph Construction

Integration in dynamic system equations is often the most time-consuming part
to trace the variation of the states. In this function, we use Flow* to get a valid
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Algorithm 2: Construct one-step graph: constructOneStepGraph()
Data: Dynamic system f , grid set Γ , the control law π, sampling period δ
Result: Directed graph G1(Γ, E1)
/* Initialize the edge set E1 of G1. */

1 E1 ←− ∅;
2 for v ∈ Γ do

/* Consider deadline miss (e = 1)/meet (e = 0) respectively. */

3 for e ∈ {0, 1} do
/* Compute one step reachable set R1(v) from v. */

4 R1(v) = Flow*(v, δ, e);
/* v is unsafe and no edge is added if Xc ∩ R1(v) �= ∅. */

5 if Xc ∩ R1(v) �= ∅ then Conitnue;
/* Add an edge pointing v′ from v if v′ ∩ R1(v) �= ∅. */

6 for v′ ∈ Γ do
7 if v′ ∩ R1(v) �= ∅ then E1 ←− E1 ∪ {(v, e, v′)};

8 return G1(Γ, E1);

overapproximation of reachable set (represented as flowpipes) starting from every
grid after a sampling period δ. Given a positive integer n, the graph constructed
by the reachability set after n sampling period, n · δ, is called a n-step graph
Gn. Since the reachability for all the grids in any sampling step is independent
under our grid assumption, we first build G1 and then reuse G1 to construct GK

later without redundant computation of reachable set.
One-step graph is built with Algorithm 2. We consider deadline miss and

deadline meet separately, corresponding to two categories of edges (Line 3). For
a grid v, if the one-step reachable set R1(v) intersects with unsafe state Xc, then
it is considered as an unsafe grid and we let its reachable grid be ∅. Otherwise,
if R1(v) intersects with another grid v′ under the deadline miss/meet event e,
then we add a directed edge (v, e, v′) from v′ to v with label e. The number
of outgoing edges for each grid node v is bounded by pd. Assuming that the
complexity of Flow* to compute flowpipes for its internal clock ε is O(1), we can
get the overall time complexity as O(|Γ | · pd · δ/ε).

K-step graph GK is built for finding the grid set that satisfies local safety and
inductiveness. To avoid redundant computation on reachable set, we construct
GK based on G1 by traversing K-length paths, as the bi-product of local safety
set searching procedure.

2.2 DP-Based Local Safety Set Search

We propose a bottom-up dynamic programming for considering all the possible
paths, utilizing the overlapping subproblems property (Algorithm3). The reach-
able grid set at step K that is derived from a grid v at step k ≤ K with respect
to the number of deadline misses n ≤ m can be defined as DP(v, n, k). To be
consistent with Algorithm 2, this set is empty if and only if it does not satisfy the
local safety. We need to derive DP(v, 0, 0). Initially, the zero-step reachability is
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Algorithm 3: Search grid set for local safety: calculateLocalSafety()
Data: Directed graph G1(Γ, E1), weakly-hard constraint (m, K)
Result: Grid set ΓS , directed graph GK(Γ, EK)

1 for v ∈ Γ do
2 for n ← 0 to m do
3 DP(v, n, K) ←− {v};

4 for k ← K − 1 to 0 do
5 for v ∈ Γ do
6 for n ← 0 to m do
7 isSafe ← True;
8 for e ∈ {0, 1} do
9 if n + e ≤ m then

10 nextGrids(v) ←− {v′ | (v, e, v′) ∈ E1};
11 if nextGrids(v) = ∅ then isSafe ← False; break;
12 for v′ ∈ nextGrids(v) do
13 R(v′) ←− DP(v, n + e, k + 1);
14 if R(v) = ∅ then isSafe ← False; break;
15 DP(v′, n, k) ←− DP(v′, n, k) ∪ R(v);

16 if isSafe = false then
17 DP(v, n, k) ←− ∅;

18 ΓS ←− {v | DP(v, 0, 0) �= ∅};
19 EK ←− {(v, v′) | v ∈ DP(v, 0, 0)};
20 return ΓS , GK(Γ, EK);

straight forward, i.e., ∀u ∈ Γ, n ∈ [0,m], DP(v, n,K) = {v}. The transition is
defined as:

∀k ∈ [0,K − 1] : DP(v, n, k) =
⋃

∀v′,e:(v,e,v′)∈E1,n+e≤m

DP(v′, n + e, k + 1).

If there exists an empty set on the right hand side or there is no outgoing edge
from v for any e such that n + e ≤ m, we let DP(v, n, k) = ∅. Finally, we have
ΓS = {v | DP(v, 0, 0) �= ∅}, EK = {(v, v′) | v′ ∈ DP(v, 0, 0)}.

We used bitset to implement the set union which can accelerate 64 times
under the 64-bit architecture. The time complexity is O(|Γ |2/bits·pd ·K2+|Γ |2),
where bits depends on the running environment. |Γ |2 is contributed by GK .

2.3 Reverse Inductiveness Set Search

To find the grid set ΓI ⊆ ΓS that satisfies inductiveness, we propose a reverse
search algorithm Algorithm 4. Basically, instead of directly searching ΓI , we
try to obtain ΓI by removing any grid v within ΓS , from which there exists
a path reaching ΓU = Γ − ΓS . Specifically, Algorithm4 starts with initializing
ΓU = Γ −ΓS (line 1). The ΓU iteratively absorbs the grid v that can reach ΓU in
K sampling periods, until a fixed point is reached (line 2–3). Finally ΓI = Γ −ΓU

is the largest set that satisfies inductiveness. It is implemented as a breadth first
search (BFS) on the reversed graph of GK , and the time complexity is O(|Γ |2).
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Algorithm 4: Search grid set for inductiveness: calculateInductiveness-
Set()

Data: Directed graph GK(Γ, EK), Grid set ΓS

Result: Grid set ΓI

1 ΓU ←− Γ − ΓS ;
2 while ∃(v, v′) ∈ EK such that v /∈ ΓU , v′ ∈ ΓU do
3 ΓU ←− ΓU ∪ {v};
4 ΓI = Γ − ΓU ;
5 return ΓI ;

3 Example Usage

Example 1. Consider the following linear control system from [17]:
[
ẋ1

ẋ2

]
=

[
0 1
0 −0.1

] [
x1

x2

]
+ u, where u =

[
0 0

−0.375 −1.15

] [
x1

x2

]
.

δ = 0.2 and step size = 0.01. The initial state set is x1 ∈ [−1, 1] and x2 ∈ [−1, 1].
The safe state set is x1 ∈ [−3, 3] and x2 ∈ [−3, 3]. Following the input format
shown in Listing 1.1. Thus, we prepare the model file as Listing 1.2.

1 <state_dim > <input_dim > <grid_count >
2 <state_var_names > <input_var_names >
3 <state_ode.1>
4 ...
5 <state_ode.state_dim >
6 <input_equa.1>
7 ...
8 <input_equa.input_dim >
9 <period > <step_size >

10 <m> <k>
11 <safe_state.1>
12 ...
13 <safe_state.state_dim >
14 <initial_state .1>
15 ...
16 <initial_state.state_dim >

Listing 1.1. Input format

1 2 1 50
2 x1 x2 u
3 x2
4 -0.1 * x2 + u
5 -0.375 * x1 - 1.15 * x2
6 0.2 0.01
7 2 5
8 -3 3
9 -3 3

10 -1 1
11 -1 1

Listing 1.2. example/model1.txt

Then, we run our program with the model file.
1 ./saw example/model1.txt

To further ease the use of our tool, we also pre-complied our tool for x86 64 linux
environment. In such environment, users do not need to compile our tool and
can directly invoke saw linux x86 64 instead of saw (which is only available
after manually compiling the tool).
1 ./ saw_linux_x86_64 example/model1.txt

The program output is shown in Listing 1.3. Line 6 shows the number of
edges of G1. Lines 8–10 provide the information of GK , including the number of
edges and nodes. Line 12 prints the safe initial set X0. Our tool then determines
whether the given initial set is safe by checking if it is the subset of X0.
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1 [Info] Parsing model.
2 [Info] Building FLOW* configuration.
3 [Info] Building grids.
4 [Info] Building one -step graph.
5 Process: 100.00%
6 [Success] Number of edges: 19354
7 [Info] Building K-step graph.
8 [Success] Start Region Size: 1908
9 End Region: 1208

10 Number of Edges: 102436
11 [Info] Finding the largest closed subgraph.
12 [Success] Safe Initial Region Size: 1622
13 [Info] Calculating area.
14 Initial state region: 4.000000
15 Grids Intersection: 4.000000
16 Result: safe

Listing 1.3. Verification result

Table 1. Benchmark setting. ODE denotes the ordinary differential equation of the
example, π denotes the control law, and δ is the discrete control stepsize.

# ODE π δ Safe state set (m, K)

1
ẋ1 = x2

ẋ2 = −0.1x2 + u
u = −0.375x1 − 1.15x2 0.2

x1 ∈ [−3.0, 3.0]

x2 ∈ [−3.0, 3.0]
(2, 5)

2
ẋ1 = −2x1 + u1

ẋ2 = −0.9x2 + u2

u1 = −x1

u2 = −x1 − x2

0.3
x1 ∈ [−6.0, 6.0]

x2 ∈ [−6.0, 6.0]
(1, 10)

3
ẋ1 = x2 + u

ẋ2 = −2x1 − 0.1x2 + u
u = x1 1.6

x1 ∈ [−3.0, 3.0]

x2 ∈ [−3.0, 3.0]
(2, 10)

4 ẋ = x2 − x3 + u u = −2x 0.6 x ∈ [−4.0, 4.0] (2, 100)

5 ẋ = 0.2x + 0.03x2 + u u = −0.3x3 1.6 x ∈ [−2.0, 2.0] (1, 5)

6
ẋ1 = x2 − x3

1 + x2
1

ẋ2 = u

u = −1.22x1 − 0.57x2

−0.129x3
2

0.1
x1 ∈ [−5.0, 5.0]

x2 ∈ [−5.0, 5.0]
(2, 15)

4 Experiments

We implemented a prototype of SAW that is integrated with Flow*. In this
section, we first compare our tool with the one-dimension abstraction [17], on the
full benchmarks from [17] (#1–#4) and also additional examples with no guaran-
tee on exponential stability from related works (#5 and #6) [24]. Table 1 shows
the benchmark settings, including the (m,K) constraint set for each benchmark.
Then, we show how different parameter settings affect the verification results of
our tool. All our experiments were run on a desktop, with 6-core 3.60 GHz Intel
Core i7.

4.1 Comparison with One-Dimension Abstraction

Table 2 shows the experimental results. It is worth noting that the one-dimension
abstraction cannot find the safe initial set in most cases from [17]. In fact, it only
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Table 2. Experimental results. ExpParam denotes the parameters of the exponential
stability, where “N/A” means that either the system is not exponentially stable or
the parameters are not available. Initial state set denotes the set that needs to be
verified. The last two columns denote the verification results of the one-dimension
abstraction [17] and SAW, respectively. “—” means that no safe initial set X0 is found
by the tool. p represents the partition number for each dimension in SAW. Time (in
seconds) represents the execution time of SAW.

# ExpParam Initial state set One-dimension abstraction SAW

Result p Result Time

1
α = 1.8,

λ = 0.4

x1 ∈ [−1.0, 1.0]

x2 ∈ [−1.0, 1.0]
— 50 Yes 72.913

2
α = 1.1,

λ = 1.8

x1 ∈ [−6.0, 6.0]

x2 ∈ [−6.0, 6.0]

No

(X0 : x2
1 + x2

2 ≤ 1.9472)
30 Yes 10.360

3
α = 2,

λ = 0.37

x1 ∈ [−1.0, 2.0]

x2 ∈ [−1.0, 1.0]
— 100 Yes 183.30

4
α = 1.4,

λ = 1
x ∈ [−4.0, 4.0] — 30 Yes 80.613

5 N/A x ∈ [−1.56, 1.32] — 100 Yes 4.713

6 N/A
x1 ∈ [−5.0, 5.0]

x2 ∈ [−5.0, 5.0]
— 50 Yes 750.77

works effectively for a limited set of (m,K), e.g., when no consecutive deadline
misses is allowed. For general (m,K) constraints, one-dimension abstraction per-
forms much worse due to the over-conservation. Furthermore, we can see that,
without exponential stability, one-dimension abstraction based approach is not
applicable for the benchmarks #5 and #6. Note that for benchmark #2, one-
dimension abstraction obtains a non-empty safe initial set X0, which however,
does not contain the given initial state set. Thus we use “No” instead of “—” to
represent this result. Conversely, for every example, our tool computes a feasible
X0 that contains the initial state set (showing the initial state set is safe), which
we denote as “Yes”.

4.2 Impact of (m, K), Granularity, and Stepsize

(m,K). We take benchmark #1 (Example 1 in Sect. 3) as an example and run
our tool under different (m,K) values. Figures 3a, 3b, 3c demonstrate that, for
this example, the size of local safety region ΓS shrinks when K gets larger. The
size of inductiveness region ΓI grows in contrast. ΓS becomes the same as ΓI

when K gets larger, in which case m is the primary parameter that influences
the size of ΓI .

Granularity. We take benchmark #3 as an example, and run our tool with
different partition granularities. The results (Figs. 3d, 3e, 3f) show that ΓI grows
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(a) (m, K) = (2, 5) (b) (m, K) = (2, 9) (c) (m, K) = (3, 9)

(d) p = 15 (e) p = 20 (f) p = 100

Fig. 3. Results under different (m, K) values (3a, 3b, 3c) and different granularities
(3d, 3e, 3f). The green solid region is ΓI . The slashed region is ΓS . The blue rectangle
is the initial state set that needs to be verified. (Color figure online)

when p gets larger. The choice of p has significant impact on the result (e.g., the
user-defined initial state set cannot be verified when p = 15).

Stepsize. We take benchmark #5 as an example, and run our tool with dif-
ferent stepsizes of Flow*. With the same granularity p = 100, we get the safe
initial state set ΓI = [−1.56, 1.32] when step size = 0.1, but ΓI is empty when
step size = 0.3. The computation times are 4.713 s and 1.835 s, respectively.
Thus, we can see that there is a trade-off between the computational efficiency
and the accuracy.

5 Conclusion

In this paper, we present a new tool SAW to compute a tight estimation of safe
initial set for infinite-time safety verification of general nonlinear weakly-hard
systems. The tool first discretizes the safe state set into grids. By constructing
a reachability graph for the grids based on existing tools, the tool leverages
graph theory and dynamic programming technique to compute the safe initial
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set. We demonstrate that our tool can significantly outperform the state-of-the-
art one-dimension abstraction approach, and analyze how different constraints
and parameters may affect the results of our tool. Future work includes further
speedup of the reachability graph construction via parallel computing.
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Abstract. Reachability analysis is a critical tool for the formal verifica-
tion of dynamical systems and the synthesis of controllers for them. Due
to their computational complexity, many reachability analysis methods
are restricted to systems with relatively small dimensions. One significant
reason for such limitation is that those approaches, and their implementa-
tions, are not designed to leverage parallelism. They use algorithms that
are designed to run serially within one compute unit and they can not uti-
lize widely-available high-performance computing (HPC) platforms such
as many-core CPUs, GPUs and Cloud-computing services.

This paper presents PIRK, a tool to efficiently compute reachable sets
for general nonlinear systems of extremely high dimensions. PIRK can
utilize HPC platforms for computing reachable sets for general high-
dimensional non-linear systems. PIRK has been tested on several systems,
with state dimensions up to 4 billion. The scalability of PIRK’s parallel
implementations is found to be highly favorable.

Keywords: Reachability analysis · ODE integration · Runge-Kutta
method · Mixed monotonicity · Monte Carlo simulation · Parallel
algorithms

1 Introduction

Applications of safety-critical cyber-physical systems (CPS) are growing due
to emerging IoT technologies and the increasing availability of efficient com-
puting devices. These include smart buildings, traffic networks, autonomous
vehicles, truck platooning, and drone swarms, which require reliable bug-free
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software that perform in real-time and fulfill design requirements. Traditional
simulation/testing-based strategies may only find a small percentage of the soft-
ware defects and the repairs become much costly as the system complexity grows.
Hence, in-development verification strategies are favorable since they reveal the
faults in earlier stages, and guarantee that the designs satisfy the specifications
as they evolve through the development cycle. Formal methods offer an attrac-
tive alternative to testing- and simulation-based approaches, as they can verify
whether the specifications for a CPS are satisfied for all possible behaviors from
a set of the initial states of the system. Reachable sets characterize the states
a system can reach in a given time range, starting from a certain initial set
and subjected to certain inputs. They play an important role in several formal
methods-based approaches to the verification and controller synthesis. An exam-
ple of this is abstraction-based synthesis [1–4], in which reachable sets are used
to construct a finite-state “abstraction” which is then used for formal synthesis.

Computing an exact reachable set is generally not possible. Most practical
methods resort to computing over-approximations or under-approximations of
the reachable set, depending on the desired guarantee. Computing these approx-
imations to a high degree of accuracy is still a computationally intensive task,
particularly for high-dimensional systems. Many software tools have been cre-
ated to address the various challenges of approximating reachable sets. Each of
these tools uses different methods and leverages different system assumptions to
achieve different goals related to computing reachable sets. For example, CORA
[5] and SpaceEx [6] tools are designed to compute reachable sets of high accu-
racy for very general classes of nonlinear systems, including hybrid ones. Some
reachability analysis methods rely on specific features of dynamical systems,
such as linearity of the dynamics or sparsity in the interconnection structure
[7–9]. This allows computing the reachable sets in shorter time or for relatively
high-dimensional systems. However, it limits the approach to smaller classes of
applications, less practical specifications, or requires the use of less accurate (e.g.,
linearized) models.

Other methods attack the computational complexity problem by comput-
ing reachable set approximations from a limited class of set representations. An
example of limiting the set of allowed overapproximations are interval reachabil-
ity methods, in which reachable sets are approximated by Cartesian products of
intervals. Interval reachability methods allow for computing the reachable sets of
very general non-linear and high-dimensional systems in a short amount of time.
They also pose mild constraints on the systems under consideration, usually only
requiring some kind of boundedness constraint instead of a specific form for the
system dynamics. Many reachability tools that are designed to scale well with
state dimension focus on interval reachability methods: these include Flow∗ [10],
CAPD [11], C2E2 [12], VNODE-LP [13], DynIbex [14], and TIRA [15].

Another avenue by which reachable set computation time can be reduced,
which we believe has not been sufficiently explored, is the use of parallel com-
puting. Although most reachability methods are presented as serial algorithms,
many of them have some inherent parallelism that can be exploited. One example
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of a tool that exploits parallelism is XSpeed [16], which implements a parallelized
version of a support function-based reachability method. However, this parallel
method is limited to linear systems, and in some cases only linear systems with
invertible dynamics. Further, the parallelization is not suitable for massively
parallel hardware: only some of the work (sampling of the support functions)
is offloaded to the parallel device, so only a relatively small number of parallel
processing elements may be employed.

In this paper, we investigate the parallelism for three interval reachability
analysis methods and introduce PIRK, the Parallel Interval Reachability Ker-
nel. PIRK uses simulation-based reachability methods [17–19], which compute
rigorous approximations to reachable sets by integrating one or more systems
of ODEs. PIRK is developed in C++ and OpenCL as an open-source1 kernel for
pFaces [20], a recently introduced acceleration ecosystem. This allows PIRK to
be run on a wide range of computing platforms, including CPUs clusters, GPUs,
and hardware accelerators from any vendor, as well as cloud-based services like
AWS.

The user looking to use a reachability analysis tool for formal verification
may choose from an abundance of options, as our brief review has shown. What
PIRK offers in this choice is a tool that allows for massively parallel reachability
analysis of high-dimensional systems with an application programming interface
(API) to easily interface with other tools. To the best of our knowledge, PIRK is
the first and the only tool that can compute reachable sets of general non-linear
systems with dimensions beyond the billion. As we show later in Sect. 5, PIRK
computes the reachable set for a traffic network example with 4 billion dimension
in only 44.7 min using a 96-core CPU in Amazon AWS Cloud.

2 Interval Reachability Analysis

Fig. 1. An example of an Interval
Reachability problem for a nonlinear
system. Red rectangle: initial set. Blue
rectangles: reachable sets for several
final times t1. (Color figure online)

Consider a nonlinear system with dynam-
ics ẋ = f(t, x, p) with state x ∈ R

n, a set
of initial states X0, a time interval [t0, t1],
and a set of time-varying inputs P defined
over [t0, t1]. Let Φ(t; t0, x0, p) denote the
state of the system, at time t, of the tra-
jectory beginning at time t0 at initial state
x0 under input p. We assume the systems
are continuous-time.

The finite-time forward reachable set
is defined as

Rt0,t1 = {Φ(t1; t0, x, p)|x ∈ X0, p ∈ P}.
For the problem of interval reachabil-

ity analysis, there are a few more con-
straints on the problem structure. An interval set is a set of the form [a, a] =
1 PIRK is publicly available at https://github.com/mkhaled87/pFaces-PIRK.

https://github.com/mkhaled87/pFaces-PIRK
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{a : a ≤ a ≤ a}, where ≤ denotes the usual partial order on real vectors, that
is the partial order with respect to the positive orthant cone. The vectors a and
a are the lower and upper bounds respectively of the interval set. An interval
set can alternatively be described by its center a∗ = 1

2 (a + a) and half-width
[a] = 1

2 (a−a). In interval reachability analysis, the initial set must be an interval,
and inputs values restricted to an interval set, i.e. p(t) ∈ [p, p], and the reach-
able set approximation must also be an interval (Fig. 1). Furthermore, certain
methods for computing interval reachable sets require further restrictions on the
system dynamics, such as the state and input Jacobian matrices being bounded
or sign-stable.

2.1 Methods to Compute Interval Reachable Sets

PIRK computes interval reachable sets using three different methods, allowing
for different levels of tightness and speed, and which allow for different amounts
of additional problem data to be used.

The Contraction/Growth Bound method [4,21,22] computes the reachable
set using component-wise contraction properties of the system. This method may
be applied to input-affine systems of the form ẋ = f(t, x) + p. The growth and
contraction properties of each component of the system are first characterized
by a contraction matrix C. The contraction matrix is a component-wise gener-
alization of the matrix measure of the Jacobian Jx = ∂f/∂x [19,23], satisfying
Cii ≥ Jx,ii(t, x) for diagonal Jacobian elements Jx,ii(t, x), and Cij ≥ |Jx,ij(t, x)|
for off-diagonal Jacobian elements Jx,ij(t, x). The method constructs a reachable
set over-approximation by separately establishing its center and half-width. The
center is found by simulating the trajectory of the center of the initial set, that
is as Φ(t1; t0, x∗, p∗). The half width is found by integrating the growth dynamics
ṙ = g(r, p) = Cr + [p], where [p] = 1

2 (p − p), over [t0, t1] with initial condition
r(t0) = [x] = 1

2 (x − x).
The Mixed-Monotonicity method [24] computes the reachable set by separat-

ing the increasing and decreasing portions of the system dynamics in an auxiliary
system called the embedding system whose state dimension is twice that of the
original system [25]. The embedding system is constructed using a decomposi-
tion function d(t, x, p, x̂, p̂), which encodes the increasing and decreasing parts
of the system dynamics and satisfies d(t, x, p, x, p) = f(t, x, p). The evaluation
of a single trajectory of the embedding system can be used to find a reachable
set over-approximation for the original system.

The Monte Carlo method computes a probabilistic approximation to the
reachable set by evaluating the trajectories of a finite number m of pairs sam-
ple points (x(i)

0 , p(i)) in the initial set and input set, and selecting the smallest
interval that contains the final points of the trajectories. Unlike the other two
methods, the Monte Carlo method is restricted to constant-valued inputs, i.e.
inputs of the form p(t) = p, where p ∈ [p, p]. Each sampled initial state x

(i)
0 is

integrated over [t0, t1] with its input p(i) to yield a final state x
(i)
1 . The interval

reachable set is then approximated by the elementwise minimum and maximum
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of the x
(i)
1 . This approximation satisfies a probabilistic guarantee of correctness,

provided that enough sample states are chosen [26]. Let [R,R] be the approxi-
mated reachable set, ε, δ ∈ (0, 1), and m ≥ (2n

ε ) log
(

2n
δ

)
. Then, with probability

1−δ, the approximation [R,R] satisfies P (Rt0,t1\[R,R]) ≤ ε, where P (A) denotes
the probability that a sampled initial state will yield a final state in the set A,
and \ denotes set difference. The probability that a sampled initial state will be
sent to a state outside the estimate (the “accuracy” of the estimate) is quanti-
fied by ε. Improved accuracy (lower ε) increases the sample size as O(1/ε). The
probability that running the algorithm will fail to give an estimate satisfying the
inequality (The “confidence”) is quantified by δ. Improved confidence (lower δ)
increases the sample size by O(log(1/δ)).

3 Parallelization

The bulk of the computational work in each method is spent in ODE integration.
Hence, the most effective approach by which to parallelize the three methods is to
design a parallel ODE integration method. There are several available methods
for parallelizing the task of ODE integration. Several popular methods for paral-
lel ODE integration are parallel extensions of Runge-Kutta integration methods,
which are the most popular serial methods for ODE integration.

PIRK takes advantage of the task-level parallelism in the Runge-Kutta equa-
tions by evaluating each state dimension in parallel. This parallelization scheme
is called parallelization across space [27]. PIRK specifically uses a space-parallel
version of the fourth-order Runge-Kutta method, or space-parallel RK4 for
brevity. In space-parallel RK4, each parallel thread is assigned a different state
variable to evaluate the intermediate update equations. After each intermediate
step, the threads must synchronize to construct the updated state in global mem-
ory. Space-parallel RK4 can use as many parallel computation elements as there
are state variables: since PIRK’s goal is to compute reachable sets for extremely
high-dimensional systems, this is sufficient in most cases.

The space-parallel scheme is not hardware-specific, and may be used with any
parallel computing platform. PIRK is similarly hardware-agnostic: the pFaces
ecosystem, for which PIRK is a kernel, provides a common interface to run on
a variety of heterogeneous parallel computing platforms. The only difference
between platforms that affects PIRK is the number of available parallel processing
elements (PEs).

4 Complexity of the Parallelized Methods

The parallelized implementations of the three reachability methods described
in Sect. 2.1 use space-parallel RK4 to perform almost all computations other
than setting up initial conditions. We can therefore find the time and memory
complexity of each method by analyzing the complexity of space-parallel RK4
and counting the number of times each method uses it.
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For a system with n dimensions, space-parallel RK4 scales linearly as the
number of PEs (denoted by P ) increases. In a computer with a single PE (i.e.,
P = 1), the algorithm reduces to the original serial algorithm. Then, suppose
that a parallel computer has P ≤ n PEs of the same type. We assume a com-
putational model under which instruction overhead and latency from thread
synchronization are negligible, memory space has equal access time from all
processing elements, and the number of parallel jobs can be evenly distributed
among the P processing elements.2 Under this parallel random-access machine
model [28], the time complexity of space-parallel RK4 is reduced by a factor of
P : each PE is responsible for computing n/P components of the state vector.
Therefore, for fixed initial and final times t0 and t1, the time complexity of the
algorithm is O( n

P ).
The parallel version of the contraction/growth bound method uses space-

parallel RK4 twice. First, it is used to compute the solution of the system’s
ODE f for the center of the initial set X0. Then, it is used to compute the
growth/contraction of the initial set X0 by solving the ODE g of the growth
dynamics. Since this method uses a fixed number of calls of space-parallel RK4,
its time complexity is also O( n

P ) for a given t0 and t1.
The parallelized implementation of the mixed-monotonicity method uses

space-parallel RK4 only once, in order to integrate the 2n-dimensional embed-
ding system. This means that the mixed-monotonicity method also has a time
complexity of O( n

P ) for fixed t0 and t1. However, the mixed-monotonicity method
requires twice as much memory as the growth bound method, since it runs space-
parallel RK4 on a system of dimension 2n.

The parallelized implementation of the Monte Carlo method uses space-
parallel RK4 m times, once for each of the m sampled initial states. The imple-
mentation uses two levels of parallelization. The first level is a set of parallel
threads over the samples used for simulations. Then, within each thread, another
parallel set of threads are launched by space-parallel RK4. This is realized as
one parallel job of m × n threads. Consequently, the Monte Carlo method has
a complexity of O(mn

p ). Since only the elementwise minima and maxima of the
sampled states need to be stored, this method only requires as much memory as
the growth bound method.

Remark 1. A pseudocode of each parallel algorithm and a detailed discussion of
their time and space complexities are provided in an extended version of this
paper [29]. The extended version also contains additional details for the case
studies that will be presented in the next section.

5 Case Studies

In each of the case studies to follow, we report the time it takes PIRK to compute
reachable sets for systems of varying dimension using all three of its methods on

2 While these non-idealities will be present in real systems and slow down computation,
they should not affect the asymptotic complexity.
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Fig. 2. Logarithmic plots of the results for speed tests of the traffic model (first row)
and the quadrotor swarm (second row). Speed test results for the serial interval reach-
ability toolbox TIRA are also shown for the traffic model.

a variety of parallel computing platforms. We perform some of the same tests
using the serial tool TIRA, to measure the speedup gained by PIRK’s ability to
use massively parallel hardware.

We set a time limit of 1 h for all of the targeted case studies, and report
the maximum dimensions that could be reached under this limit. The Monte
Carlo method is given probabilistic parameters ε = δ = 0.05 in each case study
where it is used. We use four AWS machines for the computations with PIRK:
m4.10xlarge which has a CPU with 40 cores, c5.24xlarge which has a CPU
with 96 cores, g3.4xlarge which has a GPU with 2048 cores, and p3.2xlarge
which has a GPU with 5120 cores. For the computations with TIRA, we used a
machine with a 3.6 GHz Intel i7 CPU.

5.1 n-link Road Traffic Model

We consider the road traffic analysis problem reported in [30], a proposed bench-
mark for formal controller synthesis. We are interested in the density of cars along
a single one-way lane. The lane is divided into n segments, and the density of cars
in each segment is a state variable. The continuous-time dynamics are derived
from a spatially discretized version of the Cell Transmission Model [31]. This is
a nonlinear system with sparse coupling between state variables.

The results of the speed test are shown in the first row of Figure 2. The
machines m4.10xlarge and c5.24xlarge reach up to 2 billion and 4 billion
dimensions, respectively, using the growth/contraction method, in 47.3 min and
44.7 min, respectively. Due to memory limitations of the GPUs, the machines
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g3.4xlarge and p3.2xlarge both reach up to 400 million in 106 s and 11 s,
respectively.

The relative improvement of PIRK’s computation time over TIRA’s is sig-
nificantly larger for the growth bound method than for the other two. This
difference stems from how each tool computes the half-width of the reachable
set from the radius dynamics. TIRA solves the radius dynamics by computing
the full matrix exponential using MATLAB’s expm, whereas PIRK directly inte-
grates the dynamics using parallel Runge-Kutta. This caveat applies to Sect. 5.2
as well.

5.2 Quadrotor Swarm

The second test system is a swarm of K identical quadrotors with nonlinear
dynamics. The system dynamics of each quadrotor model are derived in a sim-
ilar way to the model used in the ARCH-COMP 18 competition [32], with the
added simplification of a small angle approximation in the angular dynamics
and the neglect of Coriolis force terms. A derivation of both models is avail-
able in [33]. Similar to the n-link traffic model, this system is convenient for
scaling: system consisting of one quadrotor can be expressed with 12 states, so
the state dimension of the swarm system is n = 12K. While this reachability
problem could be decomposed into K separate reachability problems which can
be solved separately, we solve the entire 12K-dimensional problem as a whole to
demonstrate PIRK’s ability to make use of sparse interconnection.

The results of the speed test are shown in Fig. 2 (second row). The machines
m4.10xlarge and c5.24xlarge reach up to 1.8 billion dimensions and 3.6 bil-
lion dimensions, respectively, (using the growth/contraction method) in 48 min
and 32 min, respectively. The machines g3.4xlarge and p3.2xlarge both reach
up to 120 million dimensions in 10.6 min and 46 s, respectively.

5.3 Quadrotor Swarm with Artificial Potential Field

The third test system is a modification of the quadrotor swarm system which
adds interactions between the quadrotors. In addition to the quadrotor dynamics
described in Sect. 5.2, this model augments each quadrotor with an artificial
potential field to guide it to the origin while avoiding collisions. This controller
applies nonlinear force terms to the quadrotor dynamics that seek to minimize
an artificial potential U that depends on the position of all of the quadrotors.
Due to the interaction of the state variables in the force terms arising from the
potential field, this system has a dense Jacobian. In particular, at least 25% of
the Jacobian elements will be nonzero for any number of quadrotors.

Table 1 shows the times of running PIRK using this system on the four
machines m4.10xlarge, c5.24xlarge, g3.4xlarge and p3.2xlarge in Amazon
AWS. Due to the high density of this example, we focus on the memory-light
growth bound and the Monte-Carlo methods. PIRK computed the reach sets
of systems up to 120,000 state variables (i.e., 10,000 quadrotors). Up to 1,200
states, all machines solve the problems in less than one second. Some of the
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Table 1. Results for running PIRK to compute the reach set of the quadrotors swarm
with artificial potential field. “N/M” means that the machine did not have enough
memory to compute the reachable set.

Method No. of states Memory (MB) Time (seconds)

m4.10xlarge c5.24xlarge g3.4xlarge p3.2xlarge

GB 1200 2.8 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0

GB 12000 275.3 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0

GB 120000 27,473.1 69.6 68.3 N/M N/M

MC 1200 45.7 1.0 ≤ 1.0 2.0 ≤ 1.0

MC 12000 457.5 56.8 23.7 233.1 40.6

MC 120000 4577.6 ≥ 2h 3091.8 N/M 5081.0

machines lack the required memory to solve the problems requiring large mem-
ory (e.g., 27.7 GB of memory is required to compute the reach set of the system
with 120,000 state variables using the growth bound method).

5.4 Heat Diffusion

The fourth test system is a model for the diffusion of heat in a 3-dimensional
cube. The model is based on a benchmark used in [7] to test a method for
numerical verification of affine systems. A model of the form ẋ = f(t, x, p) which
approximates the heat transfer through the cube according to the heat equation
can be obtained by discretizing the cube into an �× �× � grid, yielding a system
with �3 states. The temperature at each grid point is taken as a state variable.
Each spatial derivative is replaced with a finite-difference approximation. Since
the heat equation is a linear PDE, the discretized system is linear.

We take a fixed state dimension of n = 109 by fixing � = 1000. Integration
takes place over [t0, t1] = [0, 20] with time step size h = 0.02. Using the Growth
bound method, PIRK solves the problem on m4.10xlarge in 472 min, and in
350.2 min on c5.24xlarge. This is faster than the time reported in [7] (30 h)
using the same machine.

5.5 Overtaking Maneuver with a Single-Track Vehicle

The remaining case studies focus on models of practical importance with low
state dimension. Although PIRK is designed to perform well on high-dimensional
systems, it is also effective at quickly computing reachable sets for low dimen-
sional systems, for applications that require many reachable sets. The first such
case study is single-track vehicle model with seven states, presented in [34].

We fix an input that performs a maneuver to overtake an obstacle in the
middle lane of a 3-lane highway. To verify that the maneuver was safely com-
pleted, we compute reachable sets over a range of points and ensuring that the
reachable set does not intersect any obstacles. We consider a step-size of 0.005 s
in a time window between 0 and 6.5 s. We compute one reachable set at each
time step, resulting in a “reachable tube” comprising 1300 reachable sets. PIRK
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Fig. 3. Reachable tube for the single-track vehicle.

computed the reachable tube in 0.25 s using the growth bound method on an i7
CPU (Fig. 3).

5.6 Performance on ARCH Benchmarks

In order to compare PIRK’s performance to existing tools, we tested PIRK’s
growth bound implementation on three systems from the ARCH-COMP’18 cat-
egory report for systems with nonlinear dynamics [32]. This report contains
benchmark data from several popular reachability analysis tools (C2E2, CORA,
Flow∗, Isabelle, SpaceEx, and SymReach) on nonlinear reachability problems
with state dimensions between 2 and 12.

Table 2. Results from running PIRK (growth bound method) to compute the reach
sets for the examples reported in the ARCH-2018 competition.

Benchmark model PIRK CORA CORA/SX C2E2 Flow∗ Isabelle SymReach

Van der Pol (2 states) 0.13 2.3 0.6 38.5 1.5 1.5 17.14

Laub-Loomis (7 states) 0.04 0.82 0.85 0.12 4.5 10 1.93

Quadrotor (12 states) 0.01 5.2 1.5 – 5.9 30 2.96

Table 2 compares the computation times for PIRK on the three systems to
those reported by other tools in [32]. All times are in seconds. PIRK ran on an i9
CPU, while the others ran on i7 and i5: see [32] for more hardware details. PIRK
solves each of the benchmark problems faster than the other tools. Both of the
i7 and i9 processors used have 6 to 8 cores: the advantage of PIRK is its ability
to utilize all available cores.

6 Conclusion

Using a simple parallelization of interval reachability analysis techniques, PIRK
is able to compute reachable sets for nonlinear systems faster and at higher
dimensions than many existing tools. This performance increase comes from
PIRK’s ability to use massively parallel hardware such as GPUs and CPU clusters,
as well as the use of parallelizable simulation-based methods. Future work will
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focus on improving the memory-usage of the mixed monotonicity and Monte-
Carlo based methods, including an investigation of adaptive sampling strategies,
and on using PIRK as a helper tool to synthesize controllers for high-dimensional
systems.
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Abstract. Boolean networks (BNs) provide an effective modelling tool
for various phenomena from science and engineering. Any long-term
behaviour of a BN eventually converges to a so-called attractor. Depend-
ing on various logical parameters, the structure and quality of attractors
can undergo a significant change, known as a bifurcation. We present
a tool for analysing bifurcations in asynchronous parametrised Boolean
networks. To fight the state-space and parameter-space explosion prob-
lem the tool uses a parallel semi-symbolic algorithm.

Keywords: Boolean networks · Attractors · Bifurcation analysis

1 Introduction

Boolean networks (BNs) provide an effective mathematical tool to model compu-
tational processes and other phenomena from science and engineering. BNs rep-
resent a generalisation of other relevant mathematical models, which appeared
previously as cellular automata (CA), suggested by Wolfram [39] for computa-
tion modelling, or formal genetic nets [24] and Thomas networks [37], proposed
for gene regulatory networks. This gives an idea of the versatility of BNs in dif-
ferent applications (mathematics, physics chemistry, biology, ecology, etc.) and
engineering (computation, artificial intelligence, electronics, circuits, etc.).

The development of formal methods for analysis and synthesis of Boolean net-
works has recently attracted a lot of attention [11,18,20,28,36]. In this paper, we
are primarily interested in BN models for computational systems biology [29]. In
general, biological processes are emerging from complex inter- and intra-cellular
interactions and they cannot be sufficiently understood and controlled without
the help of powerful computer-aided modelling and analysis methods [38]. BNs
serve an important purpose of describing overall interactions within a living cell
at an appropriate level of abstraction and they provide a systematic approach
to model crucial states of cell dynamics – so-called phenotypes [22].
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The level of abstraction provided by BNs makes them an important tool for
design of targetted therapeutic procedures such as cell reprogramming [36] based
on changing one cell phenotype to another, allowing regeneration of tissues or
neurons [21]. Since phenotypes are determined by long-term behaviour of bio-
logical systems, fully automatised identification of phenotypes by employing BN
models is a necessary step towards the future of modern medicine. Owing to the
fact there is a continuous lack of sufficiently detailed (mechanistic) information
on biological processes, there is definitely a need to work with models involving
uncertain (or insufficient) knowledge. In this paper, we present a unique tool that
makes a significant contribution towards fully automatised analysis of long-term
behaviour of BN models with uncertain knowledge.

We start with giving some intuition on BNs. A BN consists of a set of Boolean
variables whose state is determined by other variables in the network through
a set of Boolean update functions assigned to the variables (different update
functions can be assigned to different variables) and regulations placed on them.
If at each point of time all the update functions are applied simultaneously we
speak about synchronous dynamics, if only one of the update functions is chosen
non-deterministically to modify the corresponding Boolean variable, we speak
of asynchronous dynamics. In this paper we consider asynchronous Boolean net-
works only.

In real-world applications, the update functions for some of the variables are
typically (partially) unknown and are represented as logical parameters of the
network. We speak of parametrised Boolean networks [40] in this case. If all the
parameters are fixed to a concrete Boolean function, a parametrised BN turns
into a (non-parametrised) BN.

The long-term behaviour of a BN, starting from an initial state, has three
possible outcomes. Briefly, the first situation is when the network evolves to
a single stable state. Such states are the fixed points or point attractors or
stable states. The second situation is that the network periodically oscillates
through a finite sequence of states—an oscillating attractor or attractive cycle
(the discrete equivalent of a limit cycle in continuous systems). The third case is
what we call a disordered attractor (or chaotic oscillation [32]), an attractor that
is neither stable not periodically oscillating and in which the system may behave
unpredictably, due to the nondeterminism of the asynchronous semantics of BNs.
Attractors are particularly relevant in the context of biological modelling as they
are used to represent differentiated cellular types or tissues (in the case of fixed
points) [2] and biological rhythms or oscillations (in the case of cycles) [17].

The set of network states that converge to the same attractor forms the
basin of attraction of that attractor [7]. Attractors (and their basins) are dis-
joint entities and the state space is compartmentalised by imaginary “attractor
boundaries”. The entire dynamics of a Boolean network can be represented as a
state transition system in which the trajectories from initial states are depicted,
revealing the basins of attraction and associated attractors. We call such a rep-
resentation the attractor landscape of the network [13].

In parametrised BNs the attractor landscape changes as the parameters are
varied. Some of these changes may lead to a qualitatively different landscape
(defined, e.g., in the count and/or quality of attractors). Such a qualitative
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change is called a bifurcation and the values of parameters for which it occurs
are called bifurcation points. Determining (all) bifurcation points for a network,
called attractor bifurcation analysis, is an important task in the analysis of
BNs [4].

While BN models are intuitive, mathematically simple to describe, and sup-
ported by analytical methods [12], analysis of large models appearing in real cases
is severely limited by the lack of robust computational tools running efficiently on
high-performance hardware. Several computational tools have been developed for
construction, visualisation and analysis of attractors in non-parametrised BNs.
Amongst them, the established tools include ATLANTIS [34], Bio Model Ana-
lyzer (BMA) [6], BoolNet [31], PyBoolNet [27], lnet [7], The Cell Collective [23],
CellNetAnalyzer [25], and ASSA-PBN [30]. Another group of existing tools tar-
gets the parameter synthesis problem for parametrised BNs. The most prominent
tools here are GRNMC [20], GINsim [10] (indirectly through NuSMV [14]), and
TREMPPI [35]. In general, parameter synthesis tools can be used to identify
parameters producing a specified long-term behaviour (depending on the logics
employed), however, they do not provide a sufficient solution for identification
and classification of all attractors in the system. Finally, it is worth noting that
there have recently appeared several tools aiming at control of cell behaviour
through BNs (i.e., driving a cell into the desired state). A well-known represen-
tative of these tools is ViSiBooL [33].

To the best of our knowledge, none of the existing tools is capable of perform-
ing attractor bifurcation analysis in parametrised models. Bifurcation analysis
has been recently recognised as a fundamental approach that provides a new
framework for understanding the behaviour of biological networks. The ability
to make a dramatic change in system behaviour is often essential to organism
function, and bifurcations are therefore ubiquitous in biological networks such
as the switches of the cell cycle. The tool AEON is supposed to fill in the gap
in the existing tools supporting analysis of Boolean network models.

AEON builds on methods and algorithms for asynchronous parametrised BNs
we have introduced in our previous research [1,3–5]. To deal with the state-space
and parameter-space explosion problem, the tool implements a shared-memory
parallel semi-symbolic algorithm. The results the tool provides to the user can
be used for example to the design of “wet” experiments, better understanding
of the system’s dynamics, or to control or re-program the system. As attractors
model phenotypes, one of the most urgent needs for computer aided support,
such as AEON can provide, is in applications in therapeutic innovations.

We believe that attractor bifurcation computed by AEON will shift the cur-
rent technology toward a comprehensive method when integrated with tools
aimed at control or other analysis methods.

2 Attractors in Parametrised Boolean Networks

In this section, we define precisely the problem of attractor bifurcation analy-
sis. We also give an overview of the necessary technical background needed to
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describe the algorithmic solution and its implementation. More details can be
found in [4].

A Boolean network (BN) consists of a finite set of state variables V (whose
elements we denote by A, B, . . . ), a set of regulations R ⊆ V × V, and a family
of Boolean update functions F = {FA | A ∈ V}. If (B, A) ∈ R, we say that B is
a regulator of A. For each A ∈ V, we call the set C(A) = {B ∈ V | (B, A) ∈ R} of
its regulators the context of A. A state of the BN is an assignment of Boolean
values to the variables, i.e. a function V → {0, 1}. The type signature of each
update function FA is given by the context of A as FA : {0, 1}C(A) → {0, 1}.

In Boolean networks, one often describes various properties of the network
regulations. Here, we focus on three most basic types of regulation: We say that
(A, B) ∈ R is observable if there exists a state where changing the value of A
also changes the value of FB. In the tool, edges that might be non-observable are
drawn using dashed lines.

We say that a regulation (A, B) ∈ R is activating if by increasing A, one
cannot decrease the value of FB. Symmetrically, the regulation is inhibiting if by
increasing A, one cannot increase the value of FB. In the tool, activating edges are
denoted using green colour and sharp arrow tips, inhibiting edges are denoted
using red colour and flat arrow tips, and edges that might be neither activating
nor inhibiting are denoted using grey colour.
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Fig. 1. Illustration of a (parametrised) BN and its state transition graph. (Color figure
online)

Let us now consider an example of a BN with V = {A, B, C}, the regulations
R as denoted in Fig. 1 (left) and the update functions: FA = A ∨ ¬B ∨ ¬C, FB =
A ∨ C, FC = ¬B. We can see that all regulations are observable and the colour
(and shape) of the arrows respects the properties of activation and inhibition,
e.g. (B, A) is an inhibition, because by increasing the value of B, we cannot increase
the value of FA.

The semantics of a Boolean network is given as a directed state transition
graph. The state space of the graph is the set of all possible assignments of
Boolean values to the variables, i.e. {0, 1}V . We consider the state of the Boolean
network to evolve in an asynchronous manner, i.e. each variable is updated
independently. We thus add a transition s → t if s �= t and if there exists
a variable A such that t(A) = FA(s) and t(X) = s(X) for all X ∈ V \ {A}. We
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also use the notation →∗ to denote the reflexive and transitive closure of →,
i.e. s →∗ t means that the state t is reachable from the state s.

The semantics of the BN from our example is illustrated in Fig. 1 (middle).
The states are represented as Boolean triples denoting the values assigned to the
variables A, B, and C, respectively.

The long-term behaviour that we are interested in is captured by the notion
of attractors. In discrete-state systems, attractors are represented by terminal
strongly connected components (TSCCs) of the graph. A TSCC is a maximal
set of states S such that for all s, t ∈ S, s →∗ t, and for all s ∈ S, s → t implies
t ∈ S.

To classify the attractors of a given BN, we consider three primary kinds of
long-term behaviour:

– stability (�) We say that an attractor is stable, if it consists of a single state,
in which the network stays forever.

– oscillation (�) We consider an attractor to be oscillating if it is a single cycle
of states. The size of such cyclic attractor is often referred to as its period.

– disorder (�) Finally, an attractor is said to be disordered if it is neither stable
nor oscillating. This means that although the network will stay in the attrac-
tor forever, it will behave somewhat unpredictably due to nondeterminism.

The long-term behaviour of a BN is then characterised by a multi-set over the
universe of the three behaviours {�,�,�}. We call such multi-set a behaviour
class and we denote the set of all possible behaviour classes C. In our example,
the BN has only one attractor, and this attractor is stable; it consists of the
single state 110, see Fig. 1 (middle).

To deal with the fact that the update function family F might not be fully
known, we extend the Boolean network with a set of logical parameters which
determine the exact behaviour of each update function. These parameters have
the form of uninterpreted Boolean functions, which can be used as part of the
update functions’ description.

Formally, we assume a finite set of parameter names P, whose elements we
denote by P, Q, . . . ; we assume that every P ∈ P has an associated arity aP
meaning that P is an aP-ary uninterpreted function over Boolean values. Note
that nullary uninterpreted functions are also allowed and can be seen as sim-
ply Boolean parameters. We call an interpretation that assigns to each P ∈ P
an aP-ary Boolean function a parametrisation. We usually work with a subset of
parametrisations, called the valid parametrisations and denoted by P .

A parametrised Boolean network consists of a set of variables V, a set of reg-
ulations R ⊆ V ×V as in the non-parametrised case, a set of parameter names P,
its associated set of valid parametrisations P , and a family of parametrised update
functions F = { ̂FA | A ∈ V}. Each ̂FA is written as a Boolean expression that
may contain the uninterpreted functions of P.

Let us now modify the previous example so that we view the BN from Fig. 1
(left) as a parametrised one with the following update functions: ̂FA = A∨¬B∨¬C,
̂FB = P(A, C), ̂FC = ¬B, where P is a parameter name with arity 2. The set
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of valid parametrisations is constrained symbolically using the description of
activations and inhibitions in Fig. 1 (left). In this case, there are only two possible
parametrisations p1 (denoted by ♠) and p2 (denoted by �). The parametrisation
p1 assigns to P the function (x, y) 	→ x ∨ y, while p2 assigns to P the function
(x, y) 	→ x∧y. Note that other assignments would violate the description, namely
that both (A, B) and (C, B) are observable and activating.

By fixing a concrete parametrisation p ∈ P , we can interpret all the param-
eter names and thus transform the parametrised update functions into non-
parametrised ones, obtaining a (non-parametrised) BN, called the p-instantiation
of the parametrised BN. We then generalise the definition of attractors to
parametrised BNs, saying that a set of states S is an attractor in parametri-
sation p ∈ P if S is an attractor in the p-instantiation.

The asynchronous semantics of a parametrised BN can be described using an
edge-coloured state transition graph. The transitions of this graph are assigned
a set of so-called colours—in our case, the colours correspond exactly to the
parametrisations. The states are given as in the non-parametrised case. We then
say that s → t if there exists a parametrisation p such that s → t in the p-
instantiation. The set of colours of s → t is the set of all such parametrisations.
In our example, the graph is depicted in Fig. 1 (right; the edges are annotated
with ♠, �, or both).

Problem Formulation. We now formulate the problem of attractor bifurcation
analysis of parametrised BN as follows: Given a parametrised BN with a set of
valid parametrisations P , compute the bifurcation function A : P → C that
assigns to each parametrisation p the behaviour class of the p-instantiation of
the given parametrised BN.

In our example, the function A maps p1 (♠) to {�} (one stable attractor
{110}) and p2 (�) to {�} (one oscillating attractor {100, 101, 111, 110}).

3 Attractor Bifurcation Analysis with AEON

The workflow of our approach, as implemented in the tool, is illustrated in Fig. 2.
As an input, we take a parametrised BN including a graphical description of the
regulations. The tool computes its asynchronous semantics as a symbolic edge-
coloured graph represented using BDDs [8]. This is then used as an input to
a parallel TSCC detecting algorithm based on [1], which extracts the attractors
on the fly. Each attractor is classified as one of the three above-mentioned types
and this information is used to incrementally build the bifurcation function A,
also represented symbolically using BDDs. More details about the algorithm as
well as the classification procedure can be found in [4].

The bifurcation function induces a partitioning of the parameter space in
which two parametrisations are equivalent if their p-instantiations have the same
behaviour class. This partitioning is presented to the user as a list of behaviour
classes together with the cardinality of the respective parameter space partitions,
see Fig. 3. The user can select one of these classes and obtain a witness BN,
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Fig. 2. The workflow of the AEON tool.

i.e. a p-instantiation of the parametrised BN where p is one of the corresponding
parametrisations. Finally, the tool also provides the whole bifurcation function
encoded as BDDs—this output can be used for post-processing by further tools.

4 Implementation

The tool architecture consists of two components as seen in Fig. 4: the compute
engine, and a web-based, user-facing GUI application (the client). The engine
is responsible for the actual computation and acts as a web server to which the
client establishes a connection. Using web-based GUI enables portability across
different platforms, and the separation of the user interface from the compute
engine enables the user to run the computation remotely on high-performance
hardware.

Fig. 3. Screenshot of the tool displaying a parametrised BN together with the bifur-
cation analysis results.
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One of the responsibilities of the client is to provide a user friendly, multi-
platform editor of parametrised BNs, since no popular BN editors currently
support parameters. Architecturally, the client consists of several modules:

– Live Model: In-memory representation of the currently displayed model.
– Compute Engine Connection maintains the communication between the

client and the compute engine.
– Network Editor: An interactive drag-and-drop editor for drawing the struc-

ture of the BN (variables, regulations). The implementation is based on the
popular Cytoscape [19] library for graph visualisation and manipulation.

– Parametrised BN Editor: The update functions can be modified in a sep-
arate parametrised BN editor tab. This module is also responsible for basic
integrity checks and static analysis of the BN, some of which is asynchronously
deferred to the compute engine.

– Import/Export facilitates serialisation and transfer of the BNs to other tools.
We currently provide a compact text-based format specifically designed for
AEON and a universally adopted XML-based SBML level 3 qual standard [9].
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Fig. 4. Overview of the tool architecture showing the main components of the GUI
client and the compute engine. Arrows represent the general flow of information
between individual components.

The compute engine is written entirely in Rust to ensure fast and reliable
operation (as well as easy portability). The functionality of the engine is split
into separate libraries to allow later reuse:

– lib-BDD: Our own robust, thread-safe, scalable Rust-based implementation
of BDDs.

– lib-PBN: A general purpose library for working with parametrised BNs.
It provides serialisation to and from the AEON text format as well as
SBML. Most importantly, it provides a parameter encoder that maps sets
of parametrisations of the parametrised BN to BDDs. Using this encoder,
the library implements an on-the-fly generation of the edge-coloured state
transition graph corresponding to the asynchronous semantics of the given
parametrised BN.
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– TSCC Search algorithm implements the component search algorithm as pre-
sented in [1]. The algorithm uses parallel reachability procedures as well as
asynchronous processing of independent parts of the state space to fully
utilise available CPUs and thus speed up the computation. The algorithm
is extended with appropriate cancellation points so that the user can stop the
computation when needed.

– TSCC Classifier classifies and stores information about the discovered com-
ponents. Specifically, for each non-empty behaviour class, we store a BDD
representation of the parametrisations that result in this type of behaviour.

Aside from the general overview of the tool, we would like to highlight two
additional aspects of AEON:

On-the-Fly Results: The attractors are discovered gradually. At any time during
the computation the user may inspect the partial result, i.e. the bifurcation
function computed so far. Although this is not the final outcome, such partial
information can still prove useful, e.g. if unexpected attractor behaviour is found
and the update functions of the model need to be adjusted.

SBML with Parameters: In our implementation, when dealing with fully instan-
tiated networks, we always output valid SBML. Unfortunately, the current
SBML standard does not allow parameters or uninterpreted functions inside the
update function terms. In fact, the update functions in SBML are represented
using MathML1 which in general allows arbitrary mathematical expressions, but
its use in SBML is restricted. To export parametrised BNs, we intentionally dis-
regard the restriction and our tool produces MathML formulae with parameters.
Note that existing SBML implementations can be easily extended to also support
parametrised BNs, since they already contain MathML parsers.

Both the client2 and the compute engine3 are released as open source under
the MIT License. Furthermore, an online version of the client is available at
https://biodivine.fi.muni.cz/aeon/, including links to pre-built binaries of the
computation engine for all major OSes.

5 Evaluation

We evaluated the efficiency and applicability of AEON tool on a set of real
biological models taken from the GINsim model database [10], ranging from
small toy examples to large real world models. The experiments were performed
on a 32-core AMD Ryzen workstation with 64 GB of memory. All tested models
are available in AEON source code repository (see footnote 3) as benchmark
models.

1 https://www.w3.org/TR/MathML3/.
2 https://github.com/sybila/biodivine-aeon-client.
3 https://github.com/sybila/biodivine-aeon-server.

https://biodivine.fi.muni.cz/aeon/
https://www.w3.org/TR/MathML3/
https://github.com/sybila/biodivine-aeon-client
https://github.com/sybila/biodivine-aeon-server
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The results are reported in Table 1. In general, the results show that the
combination of symbolic representation of parametrisations and shared-memory
parallel exploration of the state space allowed us to handle realistic BNs with
large parameter spaces and non-trivial number of attractor bifurcations in rea-
sonable time. Finally, let us note that the findings provided by AEON are in line
with known properties of these biological models and even have a potential to
provide new insights on the modelled biological processes.

Table 1. The evaluation results. Number of classes refers to the number of distinct
behaviour classes discovered by the algorithm. The times in the form minutes:seconds

refer to total runtime on 1 and two 32 CPU cores respectively.

Model name State
space size

Param. space size No. of classes Time
(1cpu)

Time
(32cpu)

Asymmetric
Cell Division

25 ∼218 11 0:05.62 0:03.39

Budding Yeast
(Orlando)

29 ∼218 6 0:35.22 0:02.93

TCR
Signalisation

210 ∼214 17 0:26.61 0:04.42

Drosophila
Cell Cycle

214 ∼236 8 27:48.1 1:42.28

Fission Yeast
Cell Cycle

210 ∼231 201 25:20.9 4:00.29

Mammalian
Cell Cycle

210 ∼244 176 38:39.6 8:02.14

Budding Yeast
(Irons)

218 ∼226 7 Timeout 52:28.1

In particular, in the case of the TCR Signalisation model, the authors have
shown in [26] that their non-parametrised model produces seven possible stable
states and one non-trivial attractor. By using AEON, we were able to confirm
their findings as well as analyse a fully parametrised version of the model, finding
sixteen other possible behaviours. Interestingly, in this model, all discovered
seventeen behaviour classes consist of exactly eight attractors.

For the Budding Yeast (Orlando) model [16], the authors state that for several
different parametrisations, the model always reaches a stable state (based on
simulation). Our analysis performed with AEON has confirmed that the original
instantiation of the model has indeed a single stable attractor. Moreover, we have
found that in the fully parametrised version of the model, almost ninety thousand
instantiations have a single stable attractor. Additionally, we have also found
there is almost an equal number of instantiations producing disordered attractors
and also several oscillating attractors. AEON is capable to generate witnesses
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for all of these situations thus opening the biological questions targeting the
existence of the corresponding phenotypes in nature.

The Fission Yeast Cell Cycle model [15] is known to contain one primary
stable attractor as well as eleven artificial attractors. It is known that various
multi-valued modifications of the original model exist that remove these arti-
ficial stable attractors from the model while preserving the only single stable
attractor [16]. By parametrising the model adequately and applying our method
using AEON, we have discovered that a large portion of the parameter space of
the model also produces a single stable attractor.
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11. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: beyond generalized asyn-
chronicity. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS, vol.
10875, pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92675-9 3

12. Cheng, D., Qi, H., Li, Z.: Analysis and Control of Boolean Networks. CCE.
Springer, London (2011). https://doi.org/10.1007/978-0-85729-097-7

https://doi.org/10.1007/978-3-319-67471-1_3
https://doi.org/10.1007/978-3-319-48989-6_6
https://doi.org/10.1007/978-3-030-32409-4_22
https://doi.org/10.1007/978-3-642-31424-7_50
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/978-3-319-92675-9_3
https://doi.org/10.1007/978-3-319-92675-9_3
https://doi.org/10.1007/978-0-85729-097-7


580 N. Beneš et al.
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1 Introduction

Cyber-physical systems (CPS) consists of tightly coupled physical components
such as electrical, mechanical, hydraulic, and biological components and software
systems. They are deeply involved in many safety-critical systems, for example,
high confidence medical devices, traffic control and safety systems, advanced
automotive systems and critical infrastructure control systems. Safety verifica-
tion helps to ensure them not to behave dangerously.

Hybrid systems are popular models used in the verification of Cyber-physical
systems, for its ability to describe interacting discrete transitions and continuous
dynamics [18]. Safety verification contributes to checking safety properties by
determining whether a system can evolve to some states violating desired safety
properties when it starts at some initial conditions. A successful verification of
a hybrid system can raise our confidence in its corresponding Cyber-physical
system.

For Cyber-physical systems with real time constraints, fast verification is
a vital requirement. For example, a online verification module in a monitoring
system should return the result before the deadline is reached. The paper aims at
fast verification of hybrid systems to satisfy the requirement of fast verification
of Cyber-physical systems.

Intuitively, safety verification of hybrid systems can be performed by com-
puting the reachable set. Reachable set computation based approaches explic-
itly computes either exact or approximate reachable sets corresponding to the
dynamics in the model, and then compares them with unsafe regions. It has been
successfully adopted in verifying behaviors of a system within a finite horizon.
However, due to their intrinsic computational difficulty, approaches of this kind
can hardly scale up to complex non-linear systems.

Many research efforts have been devoted to barrier certificate generation. A
barrier certificate is a function, of which the zero level set separates the unsafe
region from all reachable states of a system. It requires all system trajectories
starting from some initial conditions fall into one side of the barrier certificate
while the unsafe region resides on the other. As the existence of a barrier cer-
tificate implies that the unsafe region is not reachable, the safety verification
problem can be transformed into the problem of barrier certificate generation.
Compared with reachable set computation [31], barrier certificate generation
requires much less computation, since the unsafe region leads to seeking a bar-
rier certificate. Especially, it behaves very well when a safety property concerns
infinite time horizon [21,34].

Barrier certificate generation is a computation intensive task. A set of ver-
ification conditions corresponding to a specific type of barrier certificates is
given at first. Then they are encoded into some constraints on state variables
and unknown coefficients of barrier certificates of a specific type. Finally, those
unknown coefficients are determined by solving the constraints [27]. Thus, how
to encode verification conditions and solve them in an effective way is a critical
and challenging problem in barrier certificate based verification.
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Acting as the barrier between reachable states and the unsafe region, a bar-
rier certificate should always evaluate to be nonnegative or negative accordingly
in spite of what type it is. To achieve this, the most popular computational
method utilizes the theory of Putinar’s Positivstellensatz to derive a sum of
squares (SOS) program of the barrier certificate, which results in a bilinear
matrix inequality (BMI) solving problem belonging to the class of NP-hard
problems [20,21]. An effective and efficient BMI solver is a prerequisite for suc-
cess in exploiting SOS relaxation based methods.

The general BMI problem can be solved by the commercial BMI solver
PENBMI [14] at the cost of a very high computational complexity, where the
(exterior) penalty and (interior) barrier method incorporates with the augmented
Lagrangian method. To make it more tractable, the convex SOS relaxation based
methods become popular. They transform the BMI problem (non-convex) to a
linear matrix inequality (LMI) problem (convex) by fixing some multipliers and
then solve it quickly via convex optimization such as semidefinite programming
(SDP). Unfortunately, the removal of non-convexity may yield too conservative
verification conditions so that the solution to the original BMI problem is invis-
ible to the derived LMI problem.

The paper focuses on quickly solving the BMI problem derived from SOS
relaxation by directly attacking the problem without relaxing it to a LMI one.
Taking advantage of the special feature of the problem, that is all bilinear terms
are cross ones between different parameter vectors, a sequential iterative scheme
is proposed. It treats the non-convex BMI problem directly so as to avoid the loss
of precision accompanied with non-convexity removing. Meanwhile, it provides
much lower computational complexity than the PENBMI solver. Hence, the
proposed method spends much less time in computation and has the potential
to find solutions beyond the reach of existing methods.

To be specific, a feasible solution to the BMI problem can be found by a dual
augmented Lagrangian iterative framework. At each iteration, the minimization
over the four sets of primal variables is divided into four sequential minimization
problems with respect to one set of primal variables by fixing the other three
sets. On the theoretical side, we show that our method returns the feasible solu-
tion in cubic time, while the PENBMI solver in quartic time. We have developed
a prototyping tool implementing the proposed method and compared it with the
PENBMI solver and the LMI solver: SOSTOOLS [22] over a set of benchmarks
gathered from the literature. The experiment shows that our tool is more effec-
tive than them and provides a much lower computational complexity than the
PENBMI solver.

The paper is organized as follows. Section 2 describes the connection between
safety verification and barrier certificate generation. Section 3 addresses how
to transform the problem of barrier certificate generation into a BMI solving
problem. In Sect. 4, a sequential iterative scheme is presented followed by a
complexity analysis. Section 5 contains detailed examples illustrating the use of
our method as well as the experiment on benchmarks. We compare with related
works in Sect. 6 before concluding in Sect. 7.
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2 Preliminaries

Notations. Let R be the field of real number. R[x] denotes the polynomial ring
with coefficients in R over variables x = [x1, x2, · · · , xn]T . Let Σ[x] ⊂ R[x] be
the space of SOS polynomials. Sn denotes the set of n × n symmetric matrices,
and the notation B � 0 means that the matrix B ∈ Sn is positive semidefinite.
〈A,B〉 denotes the inner product between A and B.

A continuous dynamical system is modeled by a finite number of first-order
ordinary differential equations

ẋ = f(x), (1)

where ẋ denotes the derivative of x with respect to the time variable t, and f(x)
is called vector field f(x) = [f1(x), · · · , fn(x)]T defined on an open set Ψ ⊆ R

n.
We assume that f satisfies the local Lipschitz condition, which ensures that given
x = x0, there exists a time T > 0 and a unique function τ : [0, T ) �→ R

n such
that τ(0) = x0. And x(t) is called a solution of (1) that starts at a certain initial
state x0, that is, x(0) = x0. Namely, x(t) is also called a trajectory of (1) from
x0.

Definition 1 (Continuous System). A continuous system over x consists of
a tuple S : 〈Θ, f , Ψ〉, wherein Θ ⊆ R

n is a set of initial states, f is a vector field
over the domain Ψ ⊆ R

n.

A hybrid system is a system which exhibits mixed discrete-continuous behav-
iors. A popular model for representing hybrid systems is hybrid automata [1],
which combine finite state automata modeling the discrete dynamics, and dif-
ferential equations modeling the continuous dynamics.

Definition 2 (Hybrid Automata). A hybrid automaton is a tuple H : 〈L,
X, F , Ψ,E,Ξ,Δ,Θ, �0〉, where

– L, a finite set of locations (or models);
– X ⊆ R

n is the continuous state space. The hybrid state space of the system
is defined by X = L × X and a state is defined by (�,x) ∈ X ;

– F : L → (Rn → R
n), assigns to each location � ∈ L a locally Lipschitz

continuous vector field f�;
– Ψ assigns to each location � ∈ L a location condition (location invari-

ant) Ψ(�) ⊆ R
n;

– E ⊆ L × L is a finite set of discrete transitions;
– Ξ assigns to each transition e ∈ E a switching guard Ξe ⊆ R

n;
– Δ assigns to each transition e ∈ E a reset function Δe : R

n → R
n;

– Θ ⊆ R
n, an initial continuous state set;

– �0 ∈ L, the initial location. The initial state space of the system is defined by
�0 × Θ.

Trajectories of hybrid systems combine continuous flows and discrete tran-
sitions. Concretely, a trajectory of H is an infinite sequence of states σ =
{s0, s1, s2, · · · } such that
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– [Initiation] s0 = (�0,x0), with x0 ∈ Θ;
Furthermore, for each pair of consecutive state (si, si+1) ∈ σ with si = (�i,xi)
and si+1 = (�i+1,xi+1) satisfies the following one of the two consecution
conditions:

– [Discrete Consecution] e = (�i, �i+1) ∈ E, xi ∈ Ξe and xi+1 = Δe(xi);
– [Continuous Consecution] �i = �i+1, and there exists a time interval δ > 0

such that the solution x(xi; t) to ẋ = f�i
evolves from xi to xi+1, while

satisfying the location invariant Ψ(�i). Formally, x(xi, δ) = xi+1 and ∀t ∈
[0, δ],x(xi, t) ∈ Ψ(�i).

If Σ is the set of all possible trajectories of H, the reachable set is defined by
R = {s|∃ς ∈ Σ : s ∈ ς}, i.e., R contains all states that are elements of at least
one trajectory ς.

In this paper, we focus on semi-algebraic hybrid systems, that is, the cor-
responding vector fields are polynomials and the sets Θ,Ψ(�), Ξe,Δe in H are
semi-algebraic, represented by polynomial equations and inequalities. The semi-
algebraic sets Θ, Ψ(�), Ξe, and Δe in Definition 2 are represented as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Θ : = {x ∈ R
n | θ(x) ≥ 0},

Ψ(�) : = {x ∈ R
n |ψ�(x) ≥ 0},

Ξe : = {x ∈ R
n | ρe(x) ≥ 0},

Δe : = {x′ ∈ R
n | δe(x′) ≥ 0},

where � ∈ L, e ∈ E, θ(x), ψ�(x), ρe(x), and δe(x′) are vectors of polynomials,
and the inequalities are satisfied entry-wise. Suppose that Xu assigns to each
location � ∈ L an unsafe region Xu(�), defined by

Xu(�) := {x ∈ R
n | ζ�(x) ≥ 0},

where ζ� is a vector of polynomials. The safety specification is described over
the trace of state (�,x) w.r.t. unsafe regions Xu(�).

Definition 3 (Safety). Given a hybrid system H : 〈L, X, F , Ψ,E,Ξ,Δ,Θ, �0〉
and unsafe regions Xu(�), the safety property holds if there exist no trajectories
of H starting from the initial set �0 × Θ, can evolve to any state specified by
Xu(�), i.e., ∀� ∈ L∀σ ∈ Σ. s ∈ σ |= s /∈ Xu(�).

For safety verification of hybrid systems, the notion of barrier certificates [21]
plays an important role. A barrier certificate maps all the states in the reachable
set R to non-negative reals and all the states in the unsafe region to negative
reals, thus can be employed to prove safety of hybrid systems. However, the
exact reachable set R is usually intractable for most hybrid systems. In [21], a
sufficient inductive condition for barrier certificates is defined as follows.

Definition 4 (Barrier Certificate). A barrier certificate of hybrid system
H for safety w.r.t. unsafe regions Xu(�) is a set of real functions {B�(x)} such
that, for all � ∈ L and e = (�, �′) ∈ E, the following conditions hold:
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⎧
⎪⎪⎨

⎪⎪⎩

∀x ∈ Θ : B�0(x) ≥ 0,

∀x ∈ Ψ(�) : B�(x) = 0 |= 〈
∂B�

∂x (x), f�(x)
〉

> 0,
∀x ∈ Ξe,∀x′ ∈ Δe(x) : B�(x) ≥ 0 |= B�′(x′) ≥ 0,
∀x ∈ Xu(�) : B�(x) < 0.

(2)

Note that
〈

∂B�

∂x (x), f�(x)
〉

is the Lie derivative of B�(x) with respect to the vector
field f�(x).

3 Transfer to BMI

The problem of generating barrier certificates in Definition 4 is an infinite-
dimensional problem. In order to make it amenable to polynomial optimization,
the barrier certificate {B�(x)} should be restricted to a set of polynomials with
a priori degree bound. Putinar’s Positivstellensatz provides a powerful represen-
tation for polynomial positivity on semi-algebraic sets, which helps to transform
the problem of barrier certificate generation into solving a semidefinite program-
ming via SOS relaxation.

Arising from the second and third conditions of Definition 4, where the
parameters of {B�(x)} appear on the antecedent sides, the associated SOS rep-
resentations using Putinar’s Positvstellensatz form non-convex BMI constraints,
yielded from the polynomial products between the barrier certificate and its
polynomial multipliers.

In what follows, the procedure for transforming barrier certificate generation
into BMI solving is recapped in detail. Firstly, SOS relaxation is applied to
encode the entailment checking in condition (2) as an SOS program. In fact, all
the conditions of Definition 4 can be expressed as a unified type, say, a polynomial
is nonnegative (positive) on a semi-algebraic set, which can be characterized by
Putinar’s Positivstellensatz.

Let K be a basic semi-algebraic set defined by:

K = {x ∈ R
n | g1(x) ≥ 0, . . . , gs(x) ≥ 0}, (3)

where gj ∈ R[x], 1 ≤ j ≤ s. Given the finite family g = {g1(x), . . . , gs(x)},the
polynomial set defined by

M(g) =:= {σ0 +
s∑

i=1

σigi | σi ∈ Σ[x], 0 ≤ i ≤ s}

is called the quadratic module generated by g.

Theorem 1. [Putinar’s Positivstellensatz] Let K ⊂ R[x] be as in (3). Assume
that the quadratic module M(g) is archimedean, namely, there exists u(x) ∈
M(g) such that the set {x ∈ R

n|u(x) ≥ 0} is compact. If f(x) is strictly positive
on K, then f(x) can be represented as

f(x) = σ0(x) +
s∑

i=1

σi(x)gi(x), (4)

where σi ∈ Σ[x], 0 ≤ i ≤ s.
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Following Theorem 1, the existence of the representation (4) provides a suffi-
cient and necessary condition of polynomial positivity on a semi-algebraic set K

[23]. Although the number of auxiliary polynomials in the representation (4) is
only one more than the number of polynomials that define K, the degree bound
for σi(x) is exponential with n and deg(f). From a computational point of view,
the method for finding the above representation has some degree of conserva-
tiveness, say, by fixing a priori much smaller degree bound D for σi(x). Thus,
a sufficient condition for the nonnegativity of the given polynomial f(x) on the
semi-algebraic set K is provided as

f(x) = σ0(x) +
s∑

i=1

σi(x)gi, (5)

with deg(σi) ≤ D, σi ∈ Σ[x], 1 ≤ i ≤ s. The representation (5) ensures that
a polynomial is nonnegative on a given semi-algebraic set. At this point, all
conditions in Definition 4 can be derived as a unified type, i.e., polynomial non-
negativity on a semi-algebraic set. The representation (5) is used to characterize
the conditions of barrier certificate generation, for they are more tractable.

Theorem 2. Let the semi-algebraic hybrid system H and the unsafe regions
Xu(�) be defined as the above. Let D be a positive integer. Suppose there exist
polynomials {B�(x)} and {ν�(x)} with deg(ν�) ≤ D, positive numbers ε�,1 and
ε�,2, and vectors of sums of squares σ(x), λe,i(x), γe(x), ηe(x), φ�(x), μ�(x) with
the degree bound D, such that the following expressions:

B�0(x) − σ(x)θ(x)
B�′(x′) − λe(x)ρe(x) − γe(x′)δe(x′) − ηe(x)B�(x)〈

∂B�

∂x (x), f�(x)
〉 − φ�(x)ψ�(x) − ν�(x)B�(x) − ε�,1

−B�(x) − μ�(x)ζ�(x) − ε�,2

(6)

are SOSes for each � ∈ L and e ∈ E. Then {B�(x)} satisfies the conditions in
Definition 4, and therefore guarantees the safety of H.

Remark that a polynomial f(x) with deg(f) = 2d is a sum of squares if and
only if there exists a real symmetric and positive semidefinite matrix Q, called
as the Gram matrix, such that f(x) = vd(x)T Qvd(x), where vd(x) is the vector
consisting of all the monomials of degree less than or equal to d. In view of the
conditions (6) in Theorem 2, the problem of generating the barrier certificates
requires introducing the auxiliary (Gram matrices) variables. In fact, the decision
variables in the SOS program (6) are the coefficients of all the unknown polyno-
mials in (6), such as B�(x), σ(x), λe(x) and the associated Gram matrices. The
polynomial products, i.e., B�(x)ηe(x) and B�(x)ν�(x), derive some quadratic
terms of the products of these unknown coefficients, which occur in the second
and third constraints of (6). As a consequence, the problem for generating bar-
rier certificates in Theorem 2 derives a non-convex BMI problem. We now show
the transformation by a simple example.
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Example 1. Consider the system ẋ = −x with location invariant Ψ = {x ∈
R : x2 − 1 ≤ 0}. Suppose the barrier certificate B(x) with deg(B) = 1, we
predetermine its template as B(x) = u0 + u1 x with u0, u1 ∈ R and u1 �= 0. For
simplicity, here we consider the second condition in Definition 4, that is, to find
B(x) which satisfies

∀x ∈ Ψ : B(x) = 0 |= ∂B

∂x
· (−x) ≥ 0.

Following the SOS relaxation in (6), we need to find B(x) such that

φ0(x) :=
∂B

∂x
· (−x) − φ1(x) · (1 − x2) − φ2(x) · B(x) − ε (7)

and φ1(x) are SOSes, φ2(x) ∈ R[x], ε ∈ R>0. We assume that φ1 = u2 and φ2 =
v, with u2 ∈ R≥0 and v ∈ R. Then (7) yields φ0(x) = u2x

2 − (u1v +u1)x−u0v −
u2 − ε, and its Gram matrix representation φ0(x) = v1(x)T Qv1(x), where

Q =
[

u2 − 1
2u1 v − 1

2u1

− 1
2u1 v − 1

2u1 −u0 v − u2 − ε

]

and v1(x) =
[
x
1

]

.

Since φ0(x) and φ1(x) must be SOSes, we have Q � 0 and u2 ≥ 0, which is
equivalent to

B(u0, u1, u2, v) =

⎡

⎣
u2 0 0
0 u2 − 1

2u1 v − 1
2u1

0 − 1
2u1 v − 1

2u1 −u0 v − u2 − ε

⎤

⎦ � 0.

Therefore, the requirement that φ0(x) and φ1(x) are SOSes is translated into
the BMI constraint of the form

B = B0,0 +
2∑

i=0

uiBi,0 + vB0,1 +
2∑

i=0

uiv Bi,1 � 0, (8)

where all Bi,j ∈ S3 are constant matrices. �

As illustrated in Example 1, the problem of generating barrier certificates
satisfying condition (6) can be transformed into a BMI problem of the form

Find u ∈ R
p, v ∈ R

q

s.t. B(u,v) = B0,0 +
p∑

i=1

uiBi,0 +
q∑

j=1

vjB0,j +
p∑

i=1

q∑

j=1

uivjBij � 0, (9)

where all Bi,j ∈ St are constant matrices, u = [u1, . . . , up]T , v = [v1, . . . , vq]T

are parameter coefficients of the unknown polynomials occurring in the original
SOS program. Essentially, the BMI problem (9) is NP-hard. To simplify the
problem considerably, the canonical approach is to swap v, corresponding to
the polynomial multipliers ηe(x) and ν�(x), with the fixed vector. This strategy
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can reduce the BMI constraint into the associated LMI one. Unfortunately, the
resulting LMI problem is considerably more conservative than the original BMI
one. To be specific, the fixed ηe(x) and ν�(x) may result in too conservative
verification conditions that rule out barrier certificates satisfy the non-convex
conditions but not the stronger convex conditions.

By investigating (9), we can find a crucial feature of B(u,v), that is, all cross
terms between parameters of u and v are of the form ui vj . The feature motivates
us to design a more efficient approach for the specific type of BMI problems.

4 A Sequential Iterative Scheme for Solving BMI
Problems

The conventional approaches for solving the BMI problem typically employ the
augmented Lagrangian iterative framework, wherein each iteration involves two
optimization problems for primal and dual variables. Due to the existence of
nonlinear terms (quartic terms) in the associated Lagrangian function, the ana-
lytical solutions to the first problem do not exist. The iterative-based nonlinear
solving procedure is introduced to obtain the numerical solutions which results
in a time-consuming computing process.

Observing the BMI problem (9), we can see that all nonlinear terms are
the cross terms between u and v. As a result, the associated dual augmented
Lagrangian function is quartic for all variables, but is quadratic with respect
to each single variable. Having this crucial feature, if we choose one variable
as the independent variable and assign the others with fixed values, we may
get the problem of minimizing the quadratic function. According to the first-
order optimality condition, given a quadratic function f(x), the sufficient and
necessary condition that x̃ is a minimizer of f(x) requires that the gradient of
f(x) to be zero at x̃, i.e., ∇f(x̃) = 0. As a consequence, the analytical solutions
to our studied optimization problem can be easily formulated, since the gradient
of the associated Lagrangian function is affine.

The analytical optimal solutions can be obtained by calling simple matrix
computation, and thus are much more efficient than numerical solutions whose
computation relies on complicated nonlinear optimization methods. The com-
putational advantage is further demonstrated by a complexity analysis of our
scheme against the existing BMI solving algorithm that combines the (exterior)
penalty and (interior) barrier method with the augmented Lagrangian method,
presented later in this section.

To utilize the computational advantage of analytical optimal solutions, for
the first optimization problem (w.r.t primal variables) involved in each iteration
of the augmented Lagrangian iterative framework, rather than using the usual
joint minimization for all primal variables, we introduce a sequential minimiza-
tion scheme, that is, dividing it into four sequential sub-optimization problems
over one independent variable while keeping the others fixed. More concretely,
the sub-optimization problem with one single primal variable is constructed by
replacing the other variables with their optimal solutions obtained from the cur-
rent iteration (if available) or the last iteration.
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This section first introduces an iterative scheme to solve the BMI problem
and then illustrates how to derive analytical solutions to the sub-problems in
each iteration followed by a complexity analysis against the existing algorithm.

4.1 An Iterative Scheme

We start by presenting a straightforward reformulation of the BMI problem (9)
as follows:

⎧
⎨

⎩

λ∗ = min λ
s.t. Z = λ · I + B(u,v)

Z � 0.
(10)

Clearly, there exists a feasible solution (u,v) to the BMI problem (9) if and only
if the optimal value of problem (10) is non-positive, i.e., λ∗ ≤ 0. We try to build
an iterative scheme for dealing with the optimization problem (10).

The augmented Lagrangian function L associated with (10) is defined as:

Lμ(λ,u,v, Z, U) = λ + 〈U,Z − λI − B(u,v)〉 +
1
2μ

‖Z − λI − B(u,v)‖2
F , (11)

where μ > 0, 〈·, ·〉 means the inner product operator, and ‖ · ‖F denotes the
Frobenius norm of a matrix. Let U ∈ St be the Lagrangian multiplier associated
with the equality constraint, the dual function is defined as

g(U) = inf
(λ,u,v,Z)

Lμ(λ,u,v, Z, U),

and the Lagrange dual problem associated with (10) is to maximize this dual
function g(U), i.e., max

U
g(U). Clearly, the dual function yields lower bounds on

the optimal value λ∗ of the problem (10), that is, g(U) ≤ λ∗ for any U .
Applying the dual ascent [17] to the augment Lagrangian function yields the

iterative scheme, consisting of the following updates

(λk+1,uk+1,vk+1, Zk+1) := argmin
λ,u,v,Z

Lμ(λ,u,v, Z, Uk),

s.t. Z � 0,
Uk+1 := argmax

U
Lμ(λk+1,uk+1,vk+1, Zk+1, U),

⎫
⎪⎪⎬

⎪⎪⎭

(12)

where the first step is the primal variables update, and the second step is the
dual variable update.

The first step in (12) consists of quartic terms and is lack of analytical solu-
tion. Thus, it requires jointly minimizing Lμ(λ,u,v, Z, Uk) with respect to λ,u,v
and Z, which can be directly solved by applying the iterative-based nonlinear
optimization procedure at the cost of a high computational complexity. Instead
of the usual joint minimization solving, we separate the minimization over the
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primal variables λ,u,v, Z into four steps, that is, λ,u,v and Z are updated in an
alternating scheme, that is, minimizing Lμ with respect to one primal variable
given the others fixed. In detail, the sequential iterative scheme consists of the
following new iterations:

λk+1 := argmin
λ

Lμ(λ,uk,vk, Zk, Uk), (13)

uk+1 := argmin
u

Lμ(λk+1,u,vk, Zk, Uk), (14)

vk+1 := argmin
v

Lμ(λk+1,uk+1,v, Zk, Uk), (15)

Zk+1 := argmin
Z�0

Lμ(λk+1,uk+1,vk+1, Z, Uk), (16)

Uk+1 := argmax
U

Lμ(λk+1,uk+1,vk+1, Zk+1, U). (17)

The above iterative scheme introduces a sequential minimization that treats
the four primal variables one by one. Benefited from the fact that the explicit
formulae for the minimizer or maximizer (13–17) are available, the analytical
solutions can be directly derived. Furthermore, as the computation of those
analytical solutions involves only simple matrix computation, such as eigenvalue
decomposition and matrix inverse, it will be very efficient.

4.2 Analytical Solutions for the Sequential Iteration

In this subsection, we focus on how to find analytical solutions to problems
(13–17) in terms of the first-order optimality conditions.

Theorem 3. The minimizer λk+1 of (13),i.e.,

λk+1 := argmin
λ

Lμ(λ,uk,vk, Zk, Uk),

has the following analytical formula:

λk+1 :=
1
t

t∑

i=1

(Zk
i,i − Bi,i(uk,vk)) +

μ

t
· (Tr(Uk) − 1), (18)

where Tr(Uk) denotes the trace of Uk.

Proof. The first-order optimality condition for (13) is

∇λLμ = 1 − Tr(Uk) +
t

μ
λ − 1

μ

t∑

i=1

(Zk
i,i − Bi,i(uk,vk)) = 0.

It follows that the specified λk+1 in (18) is the optimal solution of (13), which
concludes the proof. �
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The first-order optimality condition resembling Theorem 3 can also be
invoked to produce the corresponding analytical solutions to (14) and (15),
respectively.

Theorem 4. Let vk = [vk
1 , . . . , vk

q ]T ∈ R
q, and define X [i] = Bi,0 +

∑q
�=1 vk

� Bi,�

for 0 ≤ i ≤ p. Let uk+1 be the minimizer of (14). Then

uk+1 := S−1 · [r1, . . . , rp]T , (19)

where S = [sij ] ∈ R
p×p with sij = 1

μ 〈X [i],X [j]〉, and

ri = 〈Uk +
1
μ

(Zk − λk+1I − X [0]),X [i]〉, 1 ≤ i ≤ p.

Proof. The first-order optimality condition for (14) is

∇uLμ(λk+1,u,vk, Zk, Uk) = (∇u1Lμ,∇u2Lμ, · · · ,∇up
Lμ)T = 0,

and the i-th gradient function ∇ui
Lμ(λk+1,u,vk, Zk, Uk), 1 ≤ i ≤ p is

〈Uk,−
q∑

�=1

vk
� Bi,� − Bi,0〉 +

1
μ

〈Zk − λk+1I − B(u,vk),−
q∑

�=1

vk
� Bi,� − Bi,0〉.

Then we have

∇ui
Lμ(λk+1,u,vk, Zk, UK) = 〈Uk,−X [i]〉 +

1
μ

〈Zk − λk+1I − B(u,vk),−X [i]〉

for i = 1 . . . , p.
Thus, ∇uLμ(λk+1,u,vk, Zk, Uk) = 0 yields (19), which proves the claim. �

Theorem 5. Let uk+1 = [uk+1
1 , . . . , uk+1

p ]T ∈ R
p, and define Y [j] = B0,j +

∑p
�=1 uk+1

� B�,j, for 0 ≤ j ≤ q. Let vk+1 be the minimizer of (15). Then

vk+1 := T−1 · [w1, . . . , wq]T , (20)

where T = [tij ] ∈ R
q×q with tij = 1

μ 〈Y [i], Y [j]〉, and

wi = 〈Uk +
1
μ

(Zk − λk+1I − Y [0]), Y [i]〉, 1 ≤ i ≤ q.

Proof. Similar to the proof of Theorem 4. �

The theorems below demonstrate the analytical solutions to the Z-
minimization and U -maximization, respectively.

Theorem 6. Let Zk+1 be the minimizer of (16), and Uk+1 be the solution of
(17). Denote by P k+1 the matrix P k+1 := λk+1I+B(uk+1,vk+1)−μUk. Suppose
P k+1 = QΣQT is a spectral decomposition, namely,

P k+1 = QΣQT =
[
Q† Q‡

]
[
Σ+ 0
0 Σ−

] [
QT

†
QT

‡

]

,
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where Σ+ and Q† are the nonnegative eigenvalues and the associated orthogonal
eigenvectors, while Σ− and Q‡ are the negative eigenvalues and the associated
orthogonal eigenvectors. Then we have

Zk+1 := Q†Σ+QT
† , (21)

Uk+1 := − 1
μQ‡Σ−QT

‡ . (22)

Proof. The first-order optimality condition for (16) is

∇ZLμ(λk+1,uk+1,vk+1, Z, Uk) = 0. (23)

In view of the terms of (23), the problem (16) is translated to

Zk+1 = argmin
Z�0

‖Z − λk+1I − B(uk+1,vk+1) + μUk‖2
F , (24)

which reads as
Zk+1 = argmin

Z�0
‖Z − P k+1‖2

F .

According to the spectral decomposition of P k+1, the result (21) immediately
follows.

From (17), we have

Uk+1 = Uk +
1
μ

(Zk+1 − λk+1I − B(uk+1,vk+1))

=
1
μ

(Zk+1 − P k+1),

which yields the result (22). �

4.3 Algorithm and Complexity Analysis

From the above observation in Sect. 4.1 and Sect. 4.2, the detailed procedure for
the sequential iterative scheme is summarized in Algorithm 1.

Remark 1. At the beginning of Algorithm 1, u0 ∈ R
p, v0 ∈ R

q are selected
randomly, Z0 = M�

0 · M0 where M0 ∈ R
t is chosen randomly, and heuristically

U0 = δ · It with δ > 0.

Remark 2. There are several options for the stopping criterion of the loop in
Algorithm 1. That is, Algorithm 1 will stop and return the current result when
one of the following cases occurs:

– |λk+1 − λk| ≤ ε,
– ‖Zk+1 − Zk‖ ≤ ε,

where ε is a given tolerance. A reasonable value for the stopping criterion might
be ε = 10−6.
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Algorithm 1: Sequential Iterative Scheme for solving a BMI
(SISBMI)

Input: Problem (9); initial values u0, v0, Z0 and U0.
Output: A feasible solution (u∗,v∗) of (9).

1 while stopping criterion not met do

2 Compute λk+1 according (18);

3 Compute uk+1 and vk+1 according to (19) and (20), respectively;

4 Bk+1 ← B(uk+1,vk+1);

5 Get the minimal eigenvalue of Bk+1, denoted by λ̂;

6 if λ̂ ≥ 0 then

7 (u∗,v∗) ← (uk+1,vk+1);
8 return (u∗,v∗);

9 Compute Zk+1 according to (21);

10 Compute Uk+1 according to (22).

Complexity Analysis
We analyze the complexity of Algorithm 1 and further compare it with the algo-
rithm in PENBMI solver [14], which combines the (exterior) penalty and (inte-
rior) barrier method with the augmented Lagrangian method. The BMI problem
we study corresponds to a nonconvex optimization problem with quartic terms.
For the BMI problems of the special form, neither of the two algorithms can
guarantee to converge. A complete complexity analysis is not available as the
number of iterations is not predictable. Therefore, the computational complex-
ity of one iteration becomes a safe baseline for performance evaluation. In this
paper, we follow the same complexity analysis as that in [14], i.e. analyzing the
complexity in one iteration.

Recall that the dimension of the matrix B(u,v) in (9) is t, and the numbers
of variables u and v are p and q, respectively. We see that each iteration in
Algorithm 1 can be divided into five steps. Firstly, the step of updating λ costs
O(t) flops, which is carried out by 3t + 3 adds. In the step of u−update, the
complexity is clearly dominated by the computation of the inverse of Au ∈
R

p×p, which costs O(p3) flops [5]. Analogously, v−update can be done in O(q3)
flops. In the step of Z−update, the critical issue is to compute the eigenvalue
decomposition of matrix V k+1 ∈ R

t×t, at a cost of about 4
3 t3 flops. So the step

of Z−update requires O(t3) flops. Finally, the step of U−update requires about
O(t) flops by performing Uk+1.

Now, the complexity for the above steps in each iteration of Algorithm 1 is
summarized as follows:

– Calculation of λ → O(t);
– Calculation of u → O(p3);
– Calculation of v → O(q3);
– Calculation of Z → O(t3);
– Calculation of U → O(t).
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The total cost of each iteration in Algorithm 1 is then O(p3 + q3 + t3), while
the cost of the algorithm adopted in PENBMI is approximately O((p + q)t3 +
(p + q)2t2 + (p + q)3), as shown in [14]. Assume that p, q and t are bounded by
T ∈ Z, i.e., T = max{p, q, t}, the complexity of Algorithm 1 is approximately
O(T 3), whereas the complexity of PENBMI is approximately O(T 4).

5 Experiments

In this section, we first show our method by verifying a nonlinear continuous
system and then compare our Sequential Iterative Scheme tool: SISBMI solver
with the other two solvers: PENBMI and SOSTOOLS.

Example 2. Consider the following nonlinear continuous system [28]
⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
10(x2 − x1)

x1(28 − x3) − x2

x1x2 − 8
3x3

⎤

⎦

with the location invariant

Ψ = {x ∈ R
3 | − 20 ≤ x1, x3 ≤ 20,−20 ≤ x2 ≤ 0}.

It is required to verify that all trajectories of the system starting from the initial
set

Θ = {x ∈ R
3 | (x1 + 14.5)2 + (x2 + 14.5)2 + (x3 − 12.5)2 ≤ 16}

will never enter the unsafe region

Xu = {x ∈ R
3 | (x1 + 16.5)2 + (x2 + 14.5)2 + (x3 − 2.5)2 ≤ 38.44}.

It suffices to find a barrier certificate B(x), which satisfies all the conditions in
Definition 3. Suppose that the degree of B(x) is 4, and the degree bound D = 6.
Firstly, we construct a bilinear SOS program (6), which is further transformed
into a BMI problem of the form (9) where the dimension of B(u,v) is 78, and
the number of decision variables is 396. By applying our algorithm, we succeed
to solve the BMI problem and obtain the following barrier certificate

B(x) = −0.0020x4
1 − 0.0013x4

3 − 0.0131x2
1x2

3 − 0.0022x1x2x2
3 + · · · + 0.0938x1 + 62.5702

︸ ︷︷ ︸

28 terms

.

As shown in Fig. 1, the zero level set of the barrier certificate B(x) (the
steelblue surface) separates Xu (the red ball) from all trajectories starting from
Θ (the green ball). Therefore, the safety of the above system is verified.

Alternatively, by applying the PENBMI solver to compute the solution of
the problem (9), we cannot find barrier certificates with degree less than 6. �
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Fig. 1. Phase portrait of the system in Example 2. (Color figure online)

Example 3. Consider the following hybrid system [20] depicted in Fig. 2, where

f1 =

⎡

⎣
−x2

−x1 + x3

x1 + (2x2 + 3x3)(1 + x2
3)

⎤

⎦ , f2 =

⎡

⎣
−x2

−x1 + x3

−x1 − 2x2 − 3x3

⎤

⎦ .

Fig. 2. The hybrid automata of the system in Example 3

The system starts in location �1 with the initial set

Θ = {x ∈ R
3 : x2

1 + x2
2 + x2

3 ≤ 0.01}.

Our task is to verify that the system will never enter the unsafe set

Xu(�2) = {x ∈ R
3 : 5 < x1 < 5.1}.

Applying our SISBMI solver, we obtain the polynomial barrier certificate
with degree 4:
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B�1 (x) = 0.0551x4
1 + 0.0392x4

2 + 0.0079x4
3 + 0.0696x2x2

3 + · · · − 1.1134x1 + 2.701
︸ ︷︷ ︸

35 terms

,

B�2 (x) = 0.0273x1
4 + 0.0541x3

1x2 − 1.098x1x2
2 − 0.521x1x2x3 + · · · − 2.725x1 + 8.197

︸ ︷︷ ︸

35 terms

.

�

Our SISBMI solver was implemented in Matlab (2018b), and was compared
with two solvers PENBMI and SOSTOOLS over a set of benchmarks in the
literature on barrier certificates generation. Among these benchmark examples,
examples C1–C15 are semi-algebraic continuous systems and examples H1–H7
are semi-algebraic hybrid systems. The performance is reported in Table 1. All
the experiments were performed on 2.6 GHz Intel i5 processor under Windows
10 with 8 GB RAM.

Table 1. Algorithm performance on benchmarks

ID n |L| df BMI LMI

t N SISBMI PENBMI SOSTOOLS

ds Is Ts dp Ip Tp dl Tl

C1 from [33] 2 1 3 21 33 2 32 0.2189 2 24 0.9198 2 0.1949

C2 from [24] 2 1 1 30 58 4 73 0.5475 — —

C3 from [21] 2 1 3 21 39 2 29 0.2761 2 22 1.3353 —

C4 from [30] 3 1 2 32 72 2 44 0.4126 2 23 1.8237 2 0.3245

C5 from [26] 3 1 3 32 72 2 47 0.4761 2 28 1.5435 2 0.3362

C6 from [3] 3 1 2 78 396 4 83 4.3598 — —

C7 from [28] 4 1 3 50 145 2 72 3.9577 2 28 21.0502 2 3.8658

C8 from [9] 3 1 2 32 72 — 2 40 2.4555 —

C9 from [6] 4 1 2 31 86 — 2 42 4.6909 —

C10 from [13] 7 1 2 73 394 2 112 10.7156 2 44 108.5615 2 7.2807

C11 from [13] 9 1 2 102 908 2 264 20.6856 2 30 272.4551 2 15.8167

C12 from [8] 12 1 1 70 123 2 108 3.2712 — —

H1 from [25] 2 2 2 38 65 2 61 0.4899 2 25 2.1499 2 0.2074

H2 from [36] 2 2 3 42 69 2 77 0.6331 2 24 2.2786 2 0.2265

H3 from [15] 2 2 2 75 138 2 115 3.7394 — —

H4 from [2] 2 3 1 42 89 1 70 0.5326 1 21 0.9968 2 0.1856

H5 from [1] 3 3 1 67 64 2 112 1.0864 — —

H6 from [7] 4 6 2 840 2736 2 616 48.0548 — —

H7 from [20] 3 2 3 170 899 4 219 18.7912 4 32 243.9832 —
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In Table 1, n denotes the number of the system variables, and |L| denotes the
number of locations; df denotes the maximal degree of the polynomials in the
vector fields; t is the dimension of the matrix B(u,v), and N refers to the number
of decision variables appearing in the BMI problem (9), namely, dim(u)+dim(v);
ds, dp and dl denote the degrees of the barrier certificates obtained via SISBMI,
PENBMI and SOSTOOLS, respectively; Is and Ip are the numbers of iterations
used by SISBMI and PENBMI, respectively; Ts, Tp and Tl record the time spent
by computation in seconds; the symbol—means that the solver was unable to
return a feasible solution with the degree bound deg(B) ≤ 6.

Table 1 shows that for the 19 examples, our SISBMI solver can successfully
handle 17 of them while the numbers of successful examples of PENBMI and
SOSTOOLS are 13 and 9, respectively. Our SISBMI solver seems to provide the
best solving capability. There are 10 examples that can be treated by BMI solvers
(either SISBMI or PENBMI) unable to be solved by the LMI solver SOSTOOLS
due to the more conservative conditions in the corresponding LMI problems. To
evaluate the best performance of SOSTOOLS, we have tried some widely used
multipliers [16,20], such as 0,±1,±(1+x2

1+ · · ·+x2
n), as well as some polynomial

multipliers with random coefficients and the prior degree bound that guarantee
the degrees of the polynomials involved in the verification conditions (6) do not
increase. Examples C8-C9 show the case where the solver PENBMI performs
better than our SISBMI solver as a result of the fact that both SISBMI and
PENBMI solvers only find local optimal solutions to the BMI problems.

The above analysis on effectiveness can also be used to support that our SIS-
BMI solver is a necessary complement to the existing tools. As shown in Table 1,
PENBMI solver can cover 13 examples. To solve the remaining 6 examples, it
has to resort to the SISBMI solver.

Considering the efficiency, the solver SOSTOOLS performs the best for
almost all the successful examples because of the much lower computational
complexity for solving the relaxed LMI problems. The efficiency comparison
between SISBMI and PENBMI solvers can be made by examining the ratio
between the execution times of these two solvers in Table 1. For the 11 examples
that are solved by both tools, on average, our SISBMI solver costs 3.4 times than
PENBMI solver in the number of iterations while only costs 0.27 times than
PENBMI solver in time. That is for all the successful examples, our SISBMI
solver takes much less time than PENBMI solver even it spends more iterations,
which complies with the complexity analysis of the underlying algorithms. Both
the theoretical analysis and the experiments support that our SISBMI solver is
more efficient than PENBMI solver.

6 Related Work

In theory, the problem of barrier certificate generation is a quantifier elimination
problem. The verification conditions corresponding to a barrier certificate can
be encoded into a set of constraints on state variables and coefficients where
the unknown coefficients are existentially quantified and state variables are uni-
versally quantified. Hence, several symbolic computation approaches [11,19,29],
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such as cylindrical algebraic decomposition (CAD) or Grönber bases computa-
tion, have been directly applied to attack the associated quantifier elimination
problems. However, due to the high computational complexity, they suffer from
the scalability problem.

Due to the relatively low computational complexity, SOS relaxation based
methods become popular. Rather than directly handling quantified constraints,
they transform them to a non-convex bilinear matrix inequality. Z. Yang et al.
[35] relied on the BMI solver PENBMI to compute exact polynomial barrier
certificates. O. Bouissou et al. [3] applied interval analysis to handle the BMI
problem derived from the dynamical systems whose initial and unsafe regions
are restricted to the box form. G. Jessica et al. [10] presented an augmented
Lagrangian framework for the special case of bilinear programs that arise from
data flow constraints and correspond to the construction of numerical abstract
domains aiming at safety verification.

To alleviate its computational intractability, a convex surrogate has been
proposed that behaves fairly well. Specifically, once the multipliers are fixed,
the BMI problem is further transformed into a LMI problem that can be quickly
solved by convex optimization. S. Prajna et al. [20] had first put the idea forward.
A. Sogokon et al. [34] employed the comparison principle associated with the
convex verification conditions, to generate vector barrier certificates in safety
verification.

Inspired by the fact that it is the non-convex feature of verification condi-
tions prevents well-developed convex optimization to be directly applied, many
convex but stronger verification conditions are studied. H. Kong et al. [16] pro-
posed an exponential condition for semi-algebraic hybrid systems. Kapinski et
al. [12] diagnosed convex verification conditions to Lyapunov-based barrier cer-
tificates. C. Sloth et al. [32] considered convex barrier certificates associated with
compositional conditions for a group of interconnected hybrid systems. L. Dai
et al. [4] studied how to balance the convexity of verification conditions with the
expressiveness of barrier certificates. All these convex verification conditions are
equivalent forms of LMI problems. They facilitate problem-solving at the risk of
losing feasible solutions.

7 Conclusion

We have presented a sequential iterative scheme for solving the BMI problem
derived from the barrier certificate generation of semi-algebraic hybrid systems.
Taking advantage of the special feature of the bilinear terms, the proposed app-
roach is more efficient than the existing BMI solver. Furthermore, compared
with popular LMI solving based methods, the solving procedure does not make
the verification condition more conservative, and thus reduces the risk of miss-
ing solutions. In virtue of the two appealing features, our approach can produce
barrier certificates not amenable to existing methods, which is evidenced by a
theoretical complexity analysis as well as the experiment on some benchmarks.
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Abstract. In this paper, we study efficient approaches to reachability
analysis for discrete-time nonlinear dynamical systems when the depen-
dencies among the variables of the system have low treewidth. Reach-
ability analysis over nonlinear dynamical systems asks if a given set of
target states can be reached, starting from an initial set of states. This is
solved by computing conservative over approximations of the reachable
set using abstract domains to represent these approximations. However,
most approaches must tradeoff the level of conservatism against the cost
of performing analysis, especially when the number of system variables
increases. This makes reachability analysis challenging for nonlinear sys-
tems with a large number of state variables. Our approach works by con-
structing a dependency graph among the variables of the system. The
tree decomposition of this graph builds a tree wherein each node of the
tree is labeled with subsets of the state variables of the system. Further-
more, the tree decomposition satisfies important structural properties.
Using the tree decomposition, our approach abstracts a set of states
of the high dimensional system into a tree of sets of lower dimensional
projections of this state. We derive various properties of this abstract
domain, including conditions under which the original high dimensional
set can be fully recovered from its low dimensional projections. Next,
we use ideas from message passing developed originally for belief propa-
gation over Bayesian networks to perform reachability analysis over the
full state space in an efficient manner. We illustrate our approach on
some interesting nonlinear systems with low treewidth to demonstrate
the advantages of our approach.

1 Introduction

Reachability analysis asks whether a target set of states is reachable over a
finite or infinite time horizon, starting from an initial set for a dynamical sys-
tem. This problem is fundamental to the verification of systems, and is known to
be challenging for a wide variety of models. This includes cyber-physical systems,
physical and biological processes. In this paper, we study reachability analysis
algorithms for nonlinear, discrete-time dynamical systems. The key challenge in
analyzing such systems arises from the difficulty of representing the reachable
sets of these systems. As a result, we resort to over-approximations of reach-
able sets using tractable set representations such as intervals [16], ellipsoids,
c© The Author(s) 2020
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polyhedra [19], and low degree semi-algebraic sets [2]. Whereas these represen-
tations are useful for reachability analysis, they also trade off the degree of over-
approximation in representing various sets against the complexity of performing
operations such as intersections, unions, projections and image computations
over these sets. The theory of abstract interpretation allows us to design various
abstract domains that serve as representations for sets of states in order explore
these tradeoffs [17,18,34]. However, for nonlinear dynamical systems, these rep-
resentations often become too conservative or too expensive as the number of
state variables grow.

In this paper, we study reachability analysis using the idea of tree decompo-
sitions over the dependency graph of a dynamical system. Tree decompositions
are a well-known idea from graph theory [37], used to study properties of various
types of graphs. The treewidth of a graph is an intrinsic property of a graph that
relates to how “far away” a given graph is from a tree. For instance, trees are
defined to have a treewidth of 1. Many commonly occurring families of graphs
such as series-parallel graphs have treewidth 2 and so on. Formally, a tree decom-
position of a graph is a tree whose nodes are associated with subsets of vertices
of the original graph along with some key conditions that will be described in
Sect. 2. We use tree decompositions to build an abstract domain. The abstraction
operation projects a set of states in the full system state space along each of the
nodes of the tree, yielding various projections of this set. The concretization com-
bines projections back into the high dimensional set. We study various properties
of this abstract domain. First, we characterize abstract elements that can poten-
tially be generated by projecting some concrete elements along the nodes of the
tree (so called canonical elements, Definition 10). Next we characterize those
sets which can be abstracted along the tree decomposition and reconstructed
without any loss in information (tree decomposable sets, Definition 11). In this
process, we also derive a message passing approach wherein nodes of the tree can
exchange information to help refine sets of states in a sound manner. However,
as we will demonstrate, the abstraction is “lossy” in general since projections of
tree decomposable sets are not necessarily tree decomposable. We discuss some
interesting ways in which precision can be regained by carefully analyzing this
situation.

We combine these ideas together into an approach for reachability analysis of
nonlinear systems using a grid domain that represents complex non convex sets
as a union of fixed size cells using a gridding of the state-space. Although such
a domain would be prohibitively expensive, we show that the tree decomposi-
tion abstract domain can drastically cut down on the complexity of computing
reachable set overapproximations in this domain, yielding precise reachable set
estimation for some nonlinear systems with low treewidth. We demonstrate our
approach using a prototype implementation to show that for a restricted class of
systems whose dependency graphs have low treewidth, our approach can be quite
efficient and precise at the same time. Although some interesting systems have
low treewidth property, it is easy to see that many systems will have treewidths
that are too high for our approach. Our future work will consider how systems
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whose dependency graphs do not have sufficiently low treewidth can still be
tackled in a conservative manner using some ideas from this paper.

1.1 Related Work

As mentioned earlier, the concept of tree decompositions and treewidth origi-
nated in graph theory [37]. The concept of treewidth gained popularity when
it was shown that many NP-complete problems on graphs such as graph col-
oring could be solved efficiently for graphs with small treewidths [5]. Courcelle
showed that the problem of checking if a given graph satisfies a formula in the
monadic second order logic of graphs can be solved in linear time on graphs with
bounded treewidth [15]. Several NP-complete problems such as 3-coloring can be
expressed in this logic. Tree decompositions are also used to solve inference prob-
lems over Bayesian networks leading to representations of the Bayesian networks
such as junction trees that share many of the properties of a tree decomposi-
tion [29]. In fact, belief propagation over junction trees is performed by passing
messages that marginalize the probability distributions at various nodes of the
tree. This is analogous to the message passing approach described here.

Tree decomposition techniques have been applied to model checking prob-
lems over finite state systems. For instance, Obdržálek show that the μ-calculus
model checking problem can be solved in linear time in the size of a finite-state
system whose graph has a bounded treewidth [35]. However, as Ferrara et al.
point out, requiring the state graph of a system to have a bounded treewidth is
often restrictive [24]. Instead, they study concurrent finite state systems wherein
the communication graph has a bounded tree width. However, they conclude
that while it is more reasonable to assume that the communication graph has a
bounded tree width, it does not confer much advantages to verification problems.
For instance, they show that the unrolling of these systems over time potentially
results in unbounded treewidth. In this paper, we consider a different approach
wherein we study the treewidth of dependency graphs of the system. We find
that many systems have small treewidth and exploit this property. At the same
time, we note that some of the benchmarks studied have “sparse” dependency
graphs but treewidths that are too large for our approach.

Tree decomposition techniques have also been studied in static analysis of
programs. The control and data flow graphs of structured programs without
goto-statements or exceptional control flow are known to have small treewidth
that can be exploited to perform compiler optimizations such as register allo-
cation quite efficiently [38]. Chatterjee et al. have shown how to exploit small
treewidth property of the control flow graphs of procedures in programs to per-
form interprocedural dataflow analysis by modeling the execution of programs
with procedures as recursive state machines [11]. However, this approach seems
restricted to control dominated properties such as sequence of function calls. In
a followup work, they study control and data flow analysis problems for concur-
rent systems, wherein each component has constant treewidth [10]. In contrast,
our approach studies dynamical system and consider tree decompositions of the
data dependency graph.
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The use of message passing in this paper closely resembles past work by
Gulwani and Jojic [27]. Therein, a program verification problem involving the
verification pre/post and intermediate assertions in a program is solved by pass-
ing messages that can propagate information between assertions along program
paths in a randomized fashion. The approach is shown to be similar to loopy
belief propagation used in Bayesian inference. The key differences are (a) we
use data dependencies and tree decompositions rather than control flow paths
to pass information along; and (b) we formally prove properties of the message
passing algorithm.

Our approach is conceptually related to a well-known idea of speeding up
static analysis of large programs using “packing” of program variables [4,28].
This approach was used successfully in the Astreé static analyzer [3,4,21].
Therein, clusters of variables representing small sets of dependent local and
global are extracted. The remaining program variables are abstracted away and
the abstract interpretation process is carried out over just these variables. The
usefulness of this approach has borne out in other abstract interpretation efforts,
including Varvel [28]. The key idea in this paper can be seen as a formalization of
the rather informal “clustering” approach using tree decompositions. We demon-
strate theoretical properties as well as the ability to pass messages to improve
the results of the abstract interpretation.

The use of the dependency graph structure to speed up reachability analysis
approaches has been explored in the past for speeding up Hamilton-Jacobi-based
approaches by Mo Chen et al. [12] as well as flowpipe based approaches by
Xin Chen et al. [13]. Both approaches consider the directed dependency graph
wherein xi is connected to xj if the former appears in the dynamical update
equation of the latter variable. The approaches perform a strongly connected
component (SCC) decomposition and analyze each SCC in a topological sorted
order. However, this approach breaks as soon as the system has large SCCs,
which is common. As a result, Xin Chen et al. show how SCCs can themselves
be broken into numerous subsets at the cost of a more conservative solution.
In contrast, the tree decomposition approach can be applied to exploit sparsity
even when the entire dependency graph is a single SCC.

2 Preliminaries

In this section, we will describe the system model under analysis, the dependency
graph structure and the basics of tree decompositions. Let X : {x1, . . . , xn}
be a set of system variables and x : X �→ R represent a valuation to these
system variables. Let D be the domain of all valuations of X, that describes
the state space of the system. For convenience let xi denote x(xi). Also, let
W : {w1, . . . , wm} represent disturbance variables and w : W �→ R represent a
vector of m ≥ 0 external disturbance inputs that take values in some compact
disturbance space W.

Definition 1 (Dynamical Model). A model Π is a tuple 〈X,W,D,W, f,
X0, U〉, wherein X,W,D,W are as defined above, f is an arithmetic expression
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over variables in X,W describing the dynamics, X0 is a set of possible initial
valuations (states) and U is a designated set of unsafe states.

The dynamics are given by x(t + 1) = eval(f,x,w), wherein eval evaluates
a given an expression f , a set of valuations to the system variables x ∈ D and
disturbances w ∈ W, and returns a new set of valuations for each variable in X,
denoted by x(t + 1).

For simplicity, we write f(x,w) to denote eval(f,x,w) for a function expres-
sion f . A state of the system is a valuation x : X �→ R such that x ∈ D.
Given a finite sequence of disturbance inputs w(0), . . . ,w(T ), for some T ≥ 0
and w(i) ∈ W for all i ∈ [0, T ], an execution of the system is a sequence of
states x(0), . . . ,x(T + 1), such that x(0) ∈ X0, x(t) ∈ D for t ∈ [0, T + 1] and
x(t+1) = f(x(t),w(t)) for all t ∈ [0, T ]. According to these semantics, the system
may fail to have an execution for a given disturbance sequence w(t), t ∈ [0, T ]
and initial state x(0) if for some state x(t), we have f(x(t),w(t)) �∈ D.

A state x(t) is reachable (at time t) if there is an execution of the form
x(0), . . . ,x(t), satisfying the constraints above. We say that the unsafe state U
is reachable iff some state x ∈ U is reachable. Furthermore, we say that U is
reachable within a finite time horizon T , iff some state x ∈ U is reachable at
time t ∈ [0, T ].

Example 1. Consider a nonlinear example of a dynamical model Π with state
space x : (x1, x2, x3) and w : (w1). The dynamics can be written as parallel
assignments to the state variables:

x1 := x1 + 0.25x2 − 0.05x1sin(x2), x2 := x2 + w1, x3 := x3 − 0.2x3x2 ,

The assignments are all evaluated in parallel to update the current state x(t)
to a new state x(t + 1). The domain D is xi ∈ [−3, 3] for i = 1, 2, 3 and the
disturbance w1 ∈ [−0.1, 0.1]. The initial set X0 is x1 ∈ [−0.2, 0.2] ∧ x2 ∈
[−0.3, 0] ∧ x3 ∈ [0, 0.4].

We will now define the dependency (hyper)graph of the system Π. For con-
venience, we write the update function (expression) f of a system Π in terms
of individual updates (f1, . . . , fn), wherein x′

j = fj(x,w). We say that system
variable xi (or disturbance variable wj) is a proper input to the expression fk if
xi (or wj) occurs as a subterm in fk. Let inps(fk) denote the set of all proper
input variables to the function (expression) fk.

As an example, consider X = {x1, . . . , x4} and W = {w1, w2} and the expres-
sion f : x1x4−w1. The proper inputs to f are {x1, x4, w1}. We exclude cases such
as g : sin2(x1) + cos2(x1)

sin2(x2) + cos2(x2)
that has {x1, x2} as proper inputs. However a simplifica-

tion using elementary trigonometric rules can eliminate them. We will assume
that all expressions are simplified to involve the least number of variables.

Definition 2 (Dependency Hypergraph). A dependency hypergraph of a
system Π has vertices V : X ∪ W , given by the union of the system and
disturbance variables with hyperedge set E ⊆ 2V given by E = {e1, . . . , en},
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wherein for each update xk := fk(x,w) (k = 1, . . . , n), we have the hyperedge
ek : {xk} ∪ inps(fk). In other words, each update xk := fk(x,w) yields an edge
that includes xk along with all the system/disturbance variables that are proper
inputs to fk.

Example 2. The dependency hypergraph for the system from Example 1 has
the vertices V : {x1, x2, x3, w1} and the edges {e1 : {x1, x2}, e2 : {x2, w1} and
e3 : {x2, x3}}.

2.1 Tree Decomposition

We will now discuss tree decompositions and the associated concept of treewidth
of a hypergraph G : (V,E). The tree decomposition will be applied to the depen-
dency hypergraphs (Definition 2) for systems Π (Definition 1).

Definition 3 (Tree Decomposition and Treewidth). Given a hypergraph
G : (V,E), a tree decomposition is a tree T : (N,C) and a mapping verts : N �→
2V , wherein N is the set of tree nodes, C is the set of tree edges and verts(·)
associates each node u ∈ N with a set of graph vertices verts(n) ⊆ V . The tree
decomposition satisfies the following conditions:

1. For vertex v ∈ V there exists (at least one) n ∈ N such that v ∈ verts(n).
2. For each hyperedge e ∈ E there exists (at least one) n ∈ N : e ⊆ verts(n).
3. For each vertex v, for any two nodes n1, n2 such that v ∈ verts(n1) and

v ∈ verts(n2), then v ∈ verts(n) for each node n along the unique path
between n1 and n2 in the tree. Stated another way, the subset of nodes Nv :
{n ∈ N | v ∈ verts(n)} induces a subtree of T (denoted Tv).

The width of a tree decomposition is given by max{|verts(n)| | n ∈ N} − 1.
In other words, we find the node n in the tree whose associated set of vertices has
the largest cardinality. We subtract one from this maximal cardinality to obtain
the treewidth. A tree decomposition is optimal for a graph G if no other tree
decomposition exists with a strictly smaller width. The treewidth of a hypergraph
G is given by width of an optimal tree decomposition.

It is easy to show that if the graph G is a tree, it has treewidth 1. Likewise,
a cycle has tree width 2.

Example 3. The tree decomposition of the hypergraph G from Example 2 has
three nodes {n1, n2, n3} with edges (n1, n2) and (n2, n3). The nodes along with
the associated vertex sets are as follows:

n2 : {x2, w1} n1 : {x2, x3} n3 : {x1, x2}

Although the tree decomposition is not a rooted tree, we often designate an
arbitrary node r ∈ N as the root node, and consider the tree T as a rooted tree
with root r.
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Finding a Tree Decomposition: Interestingly, the problem of finding the
treewidth of a graph is itself a NP-hard problem. However, many practical
approaches exist for graphs with small treewidths. For instance, Bodlaender
presents an algorithm that runs in time O(kO(k3)) to construct a tree decompo-
sition of width at most k or conclude that the treewidth of the graph is at least
k + 1 [6]. Such an approach can be quite useful if a given graph is suspected to
have a small tree width in the first place. Besides this, many efficient algorithms
exist to approximate the treewidth of a graph to some constant factor. A detailed
survey of these results is available elsewhere [7,8]. Open-source packages such
as HTD can compute treewidth for graphs with thousands of nodes [1]. Finally,
we note that if a tree decomposition of width k can be found, then one can be
found with at most |V | nodes.

Lemma 1. Let T be a tree decomposition for a (multi)graph G with vertices V
and treewidth k. There exists a tree decomposition T̂ of G with the same treewidth
k, and at most |V | nodes.

A proof is provided in the extended version of the paper.

3 Abstract Domains Using Tree Decompositions

In this section, we will define abstract domains using tree decompositions of
the dependency hypergraph of the system under analysis. Let Π be a transition
system over system variables X. The concrete states are given by x ∈ D, wherein
x : X �→ R maps each state variable xj ∈ X to its value x(xj) (denoted xj).

Definition 4 (Projections). The projection of a state x to a subset of state
variables J ⊆ X, denoted as proj(x, J), is a valuation x̂ : J �→ R such that
x̂(xi) = x(xi) for all xi ∈ J . For a set of states S ⊆ D and a subset of state
variables J ⊆ X, we denote the projection of S along (the dimensions of) J as
proj(S, J) : {proj(x, J) | x ∈ S}.
Definition 5 (Extensions). Let R be a set of states involving just the variables
in the set J1 ⊆ X, i.e, R ⊆ proj(D,J1). We define the extension of R into a set
of variables J2 ⊇ J1 as extJ2(R) : {x ∈ proj(D,J2) | proj(x, J1) ∈ R}.

In other words, the extension of a set embeds each element in the larger
dimensional space defined by J2 allowing “all possible values” for the dimensions
in J2 \ J1.

We will use the notation ext(S) to denote the set extX(S), i.e, its extension
to the entire set of state variables X. For a state xS , we will use ext(xS) denote
ext({xS}).

Definition 6 (Product (Join) of Sets). Let R1 ⊆ proj(D,J1) and R2 ⊆
proj(D,J2). We define R1 ⊗ R2 : {x : J1 ∪ J2 �→ R | proj(x, J1) ∈
R1 and proj(x, J2) ∈ R2}.
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Let T : (N,C) be a tree decomposition of the dependency hypergraph of the
system. Recall that for each node n ∈ N we associate a set of system/disturbance
variables denoted by verts(n). Let vertsX(n) denote the set of system vari-
ables: verts(n)∩X. We say that an update function xk := fk(x,w) is associated
with a node n in the tree iff {xk} ∪ inps(fk) ⊆ verts(n).

Lemma 2. For every system variable xk, its update xk := fk(x,w) is associ-
ated with at least one node n ∈ N .

Proof. This follows from those of a tree decomposition that states that every
hyperedge in the dependency hypergraph must belong to verts(n) for at least
one node n ∈ N .

3.1 Abstraction and Concretization

We consider subsets of the concrete states for the system Π, i.e, the set 2D,
ordered by set inclusion as our concrete domain. Given a tree decomposition,
T , we define an abstract domain through projection of a concrete set along
verts(n) for each node n of T .

Definition 7 (Abstract Domain). Each element s of the abstract domain
AT is a mapping that associates each node n ∈ N with a set s(n) ⊆
proj(D,vertsX(n)).

For s1, s2 ∈ AT , s1 � s2 iff s1(n) ⊆ s2(n) for each n ∈ N .

We will use the notation proj(S, n) for a node n ∈ N to denote
proj(S,vertsX(n)).

Definition 8 (Abstraction Map). Given a tree decomposition T , the abstrac-
tion map αT takes a set of states S ⊆ D and produces a mapping that associates
tree node n ∈ N to a projection of S along the variables vertsX(n). Formally,

αT (S) : λn : N. proj(S, n) .

Thus, an abstract state s is a map that associates each node n of the tree to
a set s(n) ⊆ Dn. We now define the concretization map γT .

Definition 9 (Concretization Map). The concretization γT (s) of an
abstract state is defined as γT (s) :

⋂
n∈N ext(s(n)). In other words, we take

s(n) for every node n ∈ N , extend it to the full dimensional space of all system
variables and intersect the result over all nodes n ∈ N .

Example 4. Consider a simple tree decomposition T with 2 nodes n1, n2 and a
single edge (n1, n2). Let verts(n1) : {x1, x2} and verts(n2) : {x2, x3}. Let the

domain D be the set xi ∈ {1, 2, 3} for i = 1, 2, 3. We use the notation (
x1

v1,
x2

v2,
x3

v3)
to denote a state x that maps x1 to the value v1, x2 to the value v2 and so on.
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Now consider the set S = {(
x1

1,
x2

1,
x3

1), (
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3)}. We have that s : α(S)
is the mapping that projects S onto the dimensions (x1, x2) for node n1 and
(x2, x3) for node n2:

n1 �→ {(
x1

1,
x2

1), (
x1

1,
x2

2)}, n2 �→ {(
x2

1,
x3

1), (
x2

1,
x3

2), (
x2

2,
x3

3)} .

Likewise, we verify that the concretization map γ(s) will yields us:

γ(s) : {(
x1

1,
x2

1,
x3

1), (
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3)} .

For convenience, if the tree T is clear from the context, we will drop the
subscripts to simply write α and γ for the abstraction and concretization map,
respectively.

Theorem 1. For any tree decomposition T , the maps α and γ form a Galois
connection. I.e, for all S ⊆ D and s ∈ AT : α(S) � s iff S ⊆ γ(s).

Proof. Let S, s be such that α(S) � s. Therefore, proj(S, n) ⊆ s(n) ∀n ∈ N by
the definition of �. Pick any, x ∈ S. First, proj(x, n) ∈ proj(S, n) and therefore,
proj(x, n) ∈ s(n) for all n ∈ N . Thus, x ∈ ext(s(n)) for each node n ∈ N .
Therefore, x ∈ ⋂

n∈N ext(s(n)), and hence, x ∈ γ(s), by defn. of γ. Therefore,
S ⊆ γ(s).

Conversely, assume S ⊆ γ(s). Since γ(s) =
⋂

n∈N ext(s(n)) (from Defini-
tion 9). Therefore, S ⊆ ext(s(n)) forall n ∈ N . Therefore, for all x ∈ S,
proj(x, n) ∈ s(n). Therefore, proj(S, n) ⊆ s(n) for every n ∈ N . Finally, this
yields α(S) � s.

The meet operation is defined as s1 � s2 : λn. s1(n) ∩ s2(n), and likewise,
the join is defined as s1 � s2 : λn. s1(n) ∪ s2(n). We recall two key facts that
follow from Galois connection between α and γ.
1. For any set S ⊆ D, we have S ⊆ γ(α(S)). Abstracting a concrete set and

concretizing it back again “loses information”. To see why, we start from
α(S) � α(S) and apply the Galois connection to derive S ⊆ γ(α(S)).

2. Likewise, for any abstract domain object s ∈ A, we have α(γ(s)) � s. I.e, for
any element s, taking its concretization and abstracting it “gains informa-
tion”. To prove this, we start from γ(s) ⊆ γ(s) and conclude that α(γ(s)) � s.

Example 5. Returning back to Example 4, now consider the set

Ŝ = {(
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3), (
x1

2,
x2

1,
x3

2), (
x1

2,
x2

2,
x3

4)} .

Its abstraction ŝ : α(Ŝ) is given by the mapping:

n1 �→ {(
x1

1,
x2

1), (
x1

1,
x2

2), (
x1

2,
x2

1), (
x1

2,
x2

2)}, n2 �→ {(
x2

1,
x3

2), (
x2

2,
x3

3), (
x2

2,
x3

4)} .

We note that γ(ŝ) is the set: {(
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3), (
x1

1,
x2

2,
x3

4), (
x1

2,
x2

1,
x3

2), (
x1

2,
x2

2,
x3

3),

(
x1

2,
x2

2,
x3

4)}. Thus Ŝ ⊆ γ(ŝ). Notice that (
x1

2,
x2

2,
x3

3) and (
x1

1,
x2

2,
x3

4) are part of γ(ŝ)
but not the original set Ŝ. Similarly, consider the abstract element s1: n1 �→
{(

x1

1,
x2

1), (
x1

1,
x2

2)}, n2 �→ {(
x2

1,
x3

3)}. We note that γ(s1) : {(
x1

1,
x2

1,
x3

3)} and therefore

α(γ(s1)) yields the abstract element s2 � s1: n1 �→ {(
x1

1,
x2

1)}, n2 �→ {(
x2

1,
x3

3)}.
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3.2 Canonical Elements and Message Passing

In the tree decomposition, various nodes share information about the subsets of
vertices associated with each node. Since the subsets have elements in common,
it is possible that a node n1 has information about a variable x2 that is also
present in some other node n2 of the tree. We will now see how to take an abstract
element s and refine each s(n) by exchanging information between nodes in a
systematic manner.

For each edge (n1, n2) ∈ C of the tree, define the set of variables in com-
mon as CV(n1, n2): verts(n1) ∩ verts(n2) and CVX(n1, n2): vertsX(n1) ∩
vertsX(n2).

Definition 10 (Canonical Elements). An abstract element s is said to be
canonical if and only if for each edge (n1, n2) ∈ C in the tree:

proj(s(n1),CVX(n1, n2)) = proj(s(n2),CVX(n1, n2)) .

In other words, if we took the common variables vertsX(n1)∩vertsX(n2), the
set s(n1) projected along these common variables is equal to the projection of
s(n2) along the common variables.

Example 6. Consider the abstract element s1 from Example 5: n1 �→
{(

x1

1,
x2

1), (
x1

1,
x2

2)}, n2 �→ {(
x2

1,
x3

3)}. proj(s1(n1),CV(n1, n2)) is the set {
x2

1,
x2

2} whereas

proj(s1(n2),CV(n1, n2)) is simply {
x2

1}. Therefore, s1 fails to be canonical.

The key theorem of tree decomposition is that a canonical element in
the abstract domain can be seen as the projection of a concrete set S along
vertsX(n) for each node n of the tree. To prove that we will first establish a
useful property of a canonical element s.

Lemma 3. For every canonical element s ∈ A, node n ∈ N and element xn ∈
s(n), we have that ext(xn) ∩ γ(s) �= ∅.
Stated another way, the lemma claims that for any canonical s, any xn ∈ s(n) can
be extended to form some element of γ(s). A proof is provided in the extended
version.

Theorem 2. An element s is canonical (Definition 10) if and only if s = α(S)
for some concrete set S.

Ideally, in abstract interpretation, we would like to work with abstract
domain objects that satisfy s = α(γ(s)). One way to ensure that is to take
any given domain element s0 and simply calculate out α(γ(s0)) by applying the
maps. However, γ(s0) in our domain takes lower dimensional projections and
reconstructs a set in the full states pace. It may thus be too expensive to com-
pute. Fortunately, canonical objects satisfy the equality s = α(γ(s)). Therefore,
given any object s ∈ A that is not necessarily canonical, we would like to make
it canonical: I.e, we seek an object ŝ such that γ(ŝ) = γ(s), but ŝ is canonical. As
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mentioned earlier, directly computing ŝ = α(γ(s)) can be prohibitively expen-
sive, depending on the domain. We now describe a message passing approach.

First, we convert the tree T to a rooted tree by designating an arbitrary node
r ∈ N as the root of the tree.

Message Passing along Edges: Let (n1, n2) be an edge of the tree and s be
an abstract element. A message from n1 to n2 is defined as the set msg(s, n1 →
n2) : proj(s(n1),CV(n1, n2)). In other words, we project the set s(n1) along the
dimensions that are common to (n1, n2).

Once a node n2 receives M : msg(s, n1 → n2), it processes the message by
updating s(n2) as s(n2) := s(n2) ∩ extverts(n2)(M). In other words, it intersects
the message (extended to the dimensions in n2) with the current set that is
associated with n2.

Example 7. Consider a tree decomposition with three nodes {n1, n2, n3} and the
edges (n1, n2) and (n2, n3). Let verts(n1) : {x1, x2}, verts(n2) : {x2, x4} and
verts(n3) : {x2, x3}. Let D be the domain {1, 2, 3, 4}4. Consider the abstract
element s:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

A message msg(s, n1 → n2) is given by the set proj(s(n1), {x2}) : {
x2

2,
x2

3,
x2

4}.

This results in the new abstract object s′ wherein the element (
x2

1,
x4

1) is removed
from s(n2):

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

Upwards Message Passing: The upwards message passing works from leaves
up to the root of the tree according to the following two rules:

1. First, each leaf of the tree n passes a message to its parent np. The parent
node np intersects its current value s(np) with the message to update its
current set.

2. After a node has received (and processed) a message from all its children, it
passes a message up to its parent, if one exists.

The upwards message passing terminates at the root since it does not have
a parent to send a message to.

Example 8. Going back to Example 7, we designate n2 as the root and the
upwards pass sends the messages msg(s, n1 → n2) and msg(s, n3 → n2). This
results in the following updated element:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .
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Downwards Message Passing: The downwards message passing works from
the root down to the leaves.

1. To initialize, the root sends a message to all its children.
2. After a node has received (and processed) a message from its parent, it sends

a message to all its children.

The overall procedure to make a given abstract object s canonical is as fol-
lows: (a) perform an upwards message passing phase and (b) perform a down-
wards message passing phase.

Example 9. Going back to Example 8, the downward message passing phase
sends messages from n2 → n1 and n2 → n3. The resulting element ŝ is

n1 �→ {(
x1

1,
x2

2),�
��(

x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x4

4), (
x2

2,
x4

3)} .

On the other hand, it is important to perform message passing upwards first and
then downwards second. Reversing this does not yield a canonical element. For
instance going back to Example 7, if we first performed a downwards pass from
n2, the result is unchanged:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

Performing an upwards pass now yields the element s2:

n1 �→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 �→ {���(
x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 �→ {(
x2

4,
x4

4), (
x2

2,
x4

3)} .

However this is not canonical, since the element (
x1

3,
x2

3) in s2(n1) violates the
requirement over the edge (n1, n2).

Let ŝ be the resulting abstract object after the message passing procedure
finishes.

Theorem 3. The result of message passing ŝ is a canonical object, and it sat-
isfies γ(ŝ) = γ(s).

Proof (Sketch). First, we note that whenever a message is passed for an abstract
value s from node m to n along an edge (m,n) resulting in a new abstract value
s′: (P1) γ(s′) = γ(s); and (P2) the projection of s′(n) along the dimensions
CV(m,n) is now contained in that of s′(m) along CV(m,n). Furthermore, prop-
erty (P2) remains unchanged regardless of any future messages that are passed
along the tree edges.

Next, it is shown that after each upwards pass, when a message is passed,
property (P2) (stated above) holds for each node m and its parent node n since
a message is passed from m to n. During the downwards pass, property (P2)
holds for each node n and its child node m in the tree. Combining the two,
we note that for each edge (m,n) in the tree, we have property (P2) in either
direction guaranteeing that proj(s∗(m),CV(m,n)) = proj(s∗(n),CV(m,n)), for
the final result s∗, or in other words that s∗ is canonical.
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3.3 Decomposable Sets and Post-conditions

We have already noted that for any concrete set over S ⊆ D, the process of
abstracting it by projecting into nodes of a tree T , and re-concretizing it is
“lossy”: I.e, S ⊆ γ(α(S)). In this section, we study “tree decomposable” concrete
sets S for which γ(α(S)) = S. Ideally, we would like to prove that if a set S is
tree decomposable then so is the set post(S,Π) of next states. However, we will
disprove this by showing a counterexample. Nevertheless, we will present an
analysis of why this fact fails and suggest approaches that can “manage” this
loss in precision.

Definition 11 (Decomposable Sets). We say that a set S is tree decompos-
able given a tree T iff γ(α(S)) = S.

This is in fact a “global” definition of decomposability. In fact, a nice “local”
definition can be provided that is reminiscent of the notion of conditional inde-
pendence in graphical models. We will defer this discussion to an extended ver-
sion of this paper due to space limitations.

Example 10. Consider set S : {(
x1

1,
x2

2,
x3

1), (
x1

2,
x2

2,
x2

2)} and tree T below:

n1 : {x1, x2} n2 : {x2, x3}

We wish to check if S is T -decomposable. We have s : α(S) as

s(n1) : proj(S, n1) : {(
x1

1,
x2

2), (
x1

2,
x2

2)} s(n2) : proj(S, n2){(
x2

2,
x3

1), (
x2

2,
x3

2)} .

Now, γ(s):{(
x1

1,
x2

2,
x3

1), (
x1

1,
x2

2,
x2

2), (
x1

2,
x2

2,
x3

1), (
x2

2,
x2

2,
x2

2) .}. We note that the set S is
not tree decomposable. On the other hand, one can verify that the set

S1:{(
x1

1,
x2

2,
x3

2), (
x1

2,
x2

2,
x2

2)} is tree decomposable.

The following lemma will be quite useful.

Lemma 4. Let S1, S2 be tree decomposable sets over T . Their intersection is
tree decomposable.

Let Π be a transition system over system variables in x ∈ D. For a given set
S ⊆ D, us define the post-condition post(S,Π) to be the set of states reachable
in one step starting from some state in S:

post(S,Π) : {x′ | x ∈ S, x′ = eval(f,x)} .

Let us also consider a transition relation R over pairs of states (x,x′) ∈ D⊗D:

R = {(x,x′) | x,x′ ∈ D and x′ = eval(f,x)} .

The relation R can be viewed as the intersection of n relations: R :
⋂

xj∈X Rj ,
wherein

Rj : {(x,x′) | x,x′ ∈ D and x′
j = eval(fj ,x)} .
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In other words, Rj is a component of R that models the update of the system
variable xj . Also for each xj ∈ X, let ej : inps(fj) ∪ xj be the inputs to the
update function fj and the node xj itself.

Given the tree T , we define the extended tree T ′ as having the same node
set N and edge set C as T . However, vertsT ′(n) = vertsT (n) ∪ {x′

j |xj ∈
vertsT (n)}. Note that T ′ with the labeling vertsT ′ satisfies all the condition
of a tree decomposition for a graph G save the addition of vertices x′

i in each
node of the tree. We will write verts′(n) to denote the set vertsT ′(n).

Lemma 5. The transition relation R of a system Π is tree T ′ decomposable.

The proof is provided in the extended version and is done by writing R as an
intersection of tree decomposable relations Rj , and appealing to Lemma 4.

First, we show the negative result that the image of a tree (T ) decomposable
set under a tree (T ′) decomposable transition relation is not tree decomposable,
in general.

Example 11. Let X = {x1, x2, x3} and consider again the tree decomposition
from Example 10. Let S be the set {(

x1∗,
x2∗,

x3∗)}, wherein we use the wild card
character as notation that can be substituted for any element in the set {1, 2}.
Therefore, we take S to be a set with 8 elements. Clearly S is tree decomposable
in the tree T from Example 10.

Consider the transition relation R that will be written as the intersection of
three transition relations:

R1 : {(X,X ′) | x′
1 = x2}, R2 : {(X,X ′) | x′

2 ∈ {1, 2}}, R′
3 : {(X,X ′) | x′

3 = x2} .

Clearly R is tree T ′ decomposable. We can now compute the post-condition
of S under this relation. The reader can verify the post-condition Ŝ :

{(
x1

1,
x2∗,

x3

1), (
x1

2,
x2∗,

x3

2)}. However, Ŝ is not tree decomposable. We note that ŝ : α(Ŝ)
is the set ŝ(n1) : {(

x1∗,
x2∗)} and ŝ(n2) : {(

x1∗,
x2∗)}. Therefore γ(ŝ) is the set {(

x1∗,
x2∗,

x3∗)}.

As noted above, the set R is tree T ′ decomposable. If S is tree decomposable,
we can extend S to a set S′ : extX′(S) that is now defined over X ∪ X ′ and is
also tree decomposable. As a result S′ ∩ R is also tree decomposable. However,
the postcondition of S is the set proj(S′ ∩ R,X ′). Thus, the key operation that
failed was the projection operation involved in computing the post-condition.
This suggests a possible solution to this issue albeit an expensive one: at each
step, we maintain the reachable states using both current and next state vari-
ables, thus avoiding projection. In effect, the reachable states at the ith step will
be entire trajectories of the system expressed over variables X0 ∪ X1 ∪ · · · Xi.
This is clearly not practical. However, a more efficient solution is to note that
some of the current state variables can be projected out without losing the
tree decomposability property. Going back to Example 11, we note that we can
safely project away {x1, x3}, while maintaining the new reachable set in terms
of (x2, x

′
1, x

′
2, x

′
3). In this way, we may recover the lost precision back.
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In conclusion, we note that tree decompositions may lose precision over post-
conditions. However, the loss in precision can be avoided if carefully selected
“previous state variables” are maintained as the computation proceeds. The
question of how to optimally maintain this information will be investigated in
the future.

4 Grid-Based Interval Analysis

We now combine the ideas to create a disjunctive interval analysis using tree
decompositions. The main idea here is to apply tree decompositions not to the
concrete set of states but to an abstraction of the concrete domain by grid-based
intervals.

We will now describe the interval-based abstraction of sets of states dynam-
ical system Π in order to perform over-approximate reachability analysis. Let
us fix a system Π : 〈x,w,D,W, f,X0, U〉 as defined in Definition 1. We will
assume that the domain of state variables D is a hyper-rectangle given by
D : [L(x1), U(x1)]×· · ·× [L(xn), U(xn)] for L(xj), U(xj) ∈ R and L(xj) ≤ U(xj)
for each j = 1, . . . , n. In other words, each system variable xj lies inside the inter-
val [L(xj), U(xj)]. Likewise, we will assume that W :

∏m
k=1[L(wk), U(wk)] such

that L(wk) ≤ U(wk) and L(wk), U(wk) ∈ R.
We will consider a uniform cell decomposition wherein each dimension

is divided into some natural number M > 0 of equal sized subintervals. The
ith subinterval of variable xj is denoted as subInt(xj , i), and is given by
[L(xj) + iδj , L(xj) + (i + 1)δj ] for i = 0, . . . , M − 1 and δj : (U(xj)−L(xj))

M . Sim-
ilarly, we will define subInt(wk, i) for disturbance variables wk whose domains
are also divided into M subdivisions. The overall domain D × W is therefore
divided into Mm+n cells wherein each cell is indexed by a tuple of natural num-
bers i : 〈i1, . . . , in, in+1, . . . , in+m〉, such that ij ∈ {0, . . . , M − 1} and the cell
corresponding to i is given by:

γC(i) :
n∏

j=1

subInt(xj , ij) ×
m∏

k=1

subInt(wk, in+k) (1)

Definition 12 (Grid-Based Abstract Domain). The grid based abstract
domain is defined by the set C : P(i ∈ {0, . . . , M}m+n), wherein each abstract
domain element is a set of grid cells. The sets are ordered simply by set inclusion
⊆ between sets of grid cells. The abstraction map αC : P(D) → C is defined as
follows:

αC(S) : {i ∈ C | γC(i) ∩ S �= ∅} .

The concretization map γC is defined above in (1).

Definition 13 (Interval Propagator). An interval propagator (IP) is a
higher order function that takes in the description of a function f with k real-
valued inputs and p real valued outputs, and an interval I : [l1, u1]×· · ·× [lk, uk]
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and outputs an interval (hyperrectangle over R
p) IntvlProp(f, I) such that the

following soundness guarantees hold:

(∀x ∈ D)
k∧

j=1

xj ∈ [lj , uj ] ⇒ eval(f,x) ∈ IntvlProp(f, I) .

In practice, interval arithmetic approaches have been used to build sound
interval propagators [33]. However, they suffer from issues such as the wrapping
effect that make their outputs too conservative. This can be remedied by either
(a) performing a finer subdivision of the inputs (i.e, increasing M) to ensure
that the intervals I being input into the IntvlProp are sufficiently small to
guarantee tight error bounds; or (b) using higher order arithmetics such as affine
arithmetic or Taylor polynomial arithmetic [25,32].

The interval propagator serves to define an abstract post-condition operation
over sets of cells Ŝ ⊆ C. Given such a set, Ŝ, we compute the post condition in
the abstract domain. Informally, the post condition is given (a) by iterating over
each cell in S; and (b) computing the possible next cells using IntvlProp.
Formally, we define the abstract post operation as follows:

postC(Ŝ,Π) :
⋃

i∈Ŝ

αC(IntvlProp(f, γC(i))) .

Given this machinery, an abstract T -step reachability analysis is performed
in the standard manner: (a) abstract the initial state; (b) compute post condi-
tion for T steps; and (c) check for intersections of the abstract states with the
abstraction of the unsafe set. We can also define and use widening operators to
make the sequence of iterates converge. The grid based abstract domain can offer
some guarantees with respect to the quality of the abstraction. For instance, we
can easily bound the Hausdorff distance between the underlying concrete set
and the abstraction as a function of the discretization sizes δj . However, the
desirable properties come at a high computational cost since the number of cells
grows exponentially in the number of system and disturbance variables.

4.1 Tree Decomposed Analysis

We now consider a tree-decomposed approach based on the concept of nodal
abstractions. The key idea here is to perform the grid-based abstraction not on
the full set of system and disturbance variables, but instead on individual nodal
abstractions over a tree decomposition T .

Definition 14 (Nodal Abstractions). A nodal abstraction Nodal
Abstraction(Π,n) corresponding to a node n ∈ N is defined as follows

1. The set of system variables are given by Xn : vertsX(n) with domain given
by Dn : proj(D,Xn).

2. The initial states are given by proj(X0,Xn).
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3. The unsafe set is given by proj(U,Xn).
4. The set of disturbance variables are Yn : vertsW (n) with domain given by

Wn : proj(W,Wn).
5. The updates are described by a relation R(Xn,X ′

n) that relate the possible
current states Xn and next states X ′

n. The relation is constructed as a con-
junction of assertions over variables xi, x

′
i wherein xi ∈ Xn.

(a) If the update xi := fi(x,w) is associated with the node n, we add the con-
junct x′

i = fi(Xn,Wn), noting that the proper inputs to fi are contained
in verts(n).

(b) Otherwise, x′
i ∈ proj(D, {xi}) that simply states that the next state value

of the variable xi is some value in its domain.

Given a system Π, the nodal abstraction is a conservative abstraction, and
therefore, it preserves reachability properties.

Lemma 6. For any reachable state x of Π at time t, its projection proj(x,Xn)
is a reachable state of NodalAbstraction(Π,n) at time t.

Since each nodal abstraction involves at most ω+1 variables, the abstraction
at each node can involve at most Mω+1 cells where ω is the tree width. Also,
note that a tree decomposition can be found with tree width ω that has at most
|X| + |W | nodes. This implies that the number of nodal abstractions can be
bounded by (|X| + |W |).

Let Π(n) : NodalAbstraction(Π,n) be the nodal abstraction for tree
node n ∈ N . For each node n ∈ N , we instantiate a grid based abstract domain
for Π(n) ranging over the variables vertsX(n). At the ith step of the reachability
analysis, we maintain a map si each node n to a set of grid cells si(n) defined
over verts(n).

1. Compute ŝi(n) : postC(si(n),Π(n)).
2. Make ŝi canonical using message passing between nodes to obtain si+1.

The message passing is performed not over projections of concrete states but
over cells belonging to the grid based abstract domain. Nevertheless, we can
easily extend the soundness guarantees in Theorem 3 to conclude soundness of
the composition.

Once again, we can stop this process after T steps or use widening to force
convergence. We now remark on a few technicalities that arise due to the way
the tree decomposition is constructed.

Intersections with Unsafe Sets: Checking for a non-empty intersection with
the unsafe sets may require constructing concrete cells over the full dimensional
space if the unsafe sets are not tree decomposable for the tree T . However in
many cases, the unsafe states are specified as intervals over individual variables,
which yields a tree decomposable set. In such cases, we need to intersect the
abstraction at each node with the unsafe set and perform message passing to
make it canonical before checking for emptiness.
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Handling Guards and Invariants: We have not discussed guards and invari-
ants. It is assumed that such guards and invariants are tree decomposable over
the tree T . In this case, we can check which abstract cells have a non-empty
intersection with the guard using message passing. The handling of transition
systems with guards and invariants will be discussed as part of future extensions.

5 Experimental Evaluation

In this section, we describe an experimental evaluation of our approach over
a set of benchmark problems. Our evaluation is based on a C++-based proto-
type implementation that can read in the description of a nonlinear dynamical
system over a set of system and disturbance variables. The dynamics can cur-
rently include polynomials, rational functions and trigonometric functions. Our
implementation uses the MPFI library to perform interval arithmetic over the
grid cells [36]. We use the HTD library to compute tree decompositions [1]. The
system then computes a time-bounded reachable set over the first T steps of the
system’s execution. Currently, we plot the results and compare the reachable
set estimates against simulation data. We also compare the reachable sets com-
puted by the tree decomposition approach against an approach without using
tree decompositions. However, we note that the latter approach timed out on
systems beyond 4 state variables.

Table 1 presents the results over a small set of challenging nonlinear systems
benchmarks along with a comparison to two other approaches (a) the approach
without tree decomposition and (b) the tool SAPO [22] which computes time
bounded reachable sets for polynomial systems using the technique of parallelo-
tope bundles described by Dreossi et al. [23]. The benchmarks range in number
of system variables from 3 to 20 state variables. We describe the sources for
each benchmark where appropriate. Note that the SAPO tool does not handle
nonpolynomial dynamics or time varying disturbances at the time of writing.

The treewidths range from 1 for the simplest system (Example 1) to 3 for the
7-state Laub Loomis oscillator example [30]. We note that the tree decomposition
was constructed within 0.01 s for all the examples. We also note that systems
with as many as 20 state variables are handled by our approach whereas the
monolithic approach cannot handle systems beyond 4 state variables. We now
compare the results of our approach to that of the monolithic approach on the
two cases where the latter approach completed.

System # 1: Consider again the system from Example 1 with 3 state variables
and 1 disturbance. We have already noted a tree decomposition of tree width 1
for this example.

System # 2: In this example, we consider a system over 4 state variables
{x, y, z, w} and one disturbance variable w1.

x := 0.5x + y + 0.05xy − w1, y := −0.7y − 0.03x, z := z − 0.4y,
w := w − 0.05xw
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Table 1. Results on benchmark examples. |X|: Number of state variables, |W |: number
of disturbance variables, Tree Decomp.: reachability using tree decompositions, Mono-
lithic: reachability analysis without tree decompositions. SAPO: number of directions
(|L|), number of bundles (|T |) and running time. All timings are reported in seconds
on a Macbook pro laptop running MacOS 10.14 with 16 GB RAM and 3.4 GHz Intel
core i7 processor. Reachability analysis was carried out for 15 time steps.

Name |X| |W | Tree
Width

Tree Decomp. Monolithic SAPO

Time # Cells Time # Cells (|L|, |T |) Time

System # 1 3 1 1 14.4 0.22M 1047.6 7.6M -n/a-

System # 2 4 1 2 2.7 24K 652 3.1M -n/a-

SIR [23,40] 3 0 1 4.1 95K 143 2M (3,1) 0.1

1D-Lattice-10 [39] 10 0 2 99 1.1M TO (1.5 h) (16,6) 679

Ebola-epidemic [14] 5 0 2 799.4 1.9M TO (1.5 h) (5,5) 0.02

p53-gene-reg [31] 6 0 2 135.8 98K TO (1.5 h) -n/a-

Influenza-epidemic [22] 4 0 2 517.9 1.4M TO (1.5 h) (7,4) 0.1

Coupled-vanderpol 6 0 2 10.5 0.1M TO (1.5 h) (10,5) 2.5

Laub-Loomis [20,30] 7 0 3 1755.1 2.6M TO (1.5 h) (12,6) 1.8

Honeybee* [9,23] 6 4 3 206.1 2.1M TO (1.5 h) (8,4) 0.7

Phosporelay [22] 7 0 3 1566.2 7.5M TO (1.5 h) (10,4) 1.2

Coord. Vehicles (1) 5 1 2 150.2 0.5M TO (1.5 h) -n/a-

Coord. Vehicles (2) 10 2 2 1175.2 2M TO (1.5 h) -n/a-

Coord. Vehicles (4) 20 4 2 2206.7 3.9M TO (1.5 h) -n/a-

The domains include (x, y, z, w) ∈ [−1, 1]4 and divided into 16 × 108 grid
cells (200 for each state variable). The disturbance w1 ∈ [−0.1, 0.1]. The ini-
tial conditions are x ∈ [0.08, 0.16], y ∈ [−0.16,−.05], z ∈ [0.12, 0, 31] and
w ∈ [−0.15,−0.1]. We obtain a tree decomposition of width 2, wherein the
nodes include n1 : {x, y, w1}, n2 : {y, z} and n3 : {x,w} with the edges (n1, n2)
and (n1, n3).

Figure 1 compares the resulting reachable sets for the tree decomposed reach-
ability analysis versus the monolithic approach. We note differences between the
two reachable sets but the loss in precision is not significant.

Coordinated Vehicles: In this example, we study nonlinear vehicle models of
vehicles executing coordinated turns. Each vehicle has states (xi, yi, vx,i, vy,i, ω),
representing positions, velocities and the rate of change in the yaw angle, respec-
tively, with a disturbance wi. The dynamics are given by

xi := xi + 0.1vx,i, yi := yi + 0.1vy,i, vx,i = vx,i + 0.1vx,i cos(0.1ωi)
− 0.1vy,i sin(0.1ωi)ωi = 0.5ωi + 0.5ω0 + 0.1wi

The vehicles are loosely coupled with ωi representing the turn rate of the
ith vehicle and ω0 that of the “lead” vehicle. The ith vehicle tries to gradually
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Fig. 1. Reachable set projections (shaded blue) for System# 2 (left) and the SIR
model [22] (right). Top: tree decomposition approach and Bottom: monolithic approach
without tree decompositions. Reachable sets are identical for the SIR model. Note the
difference in range of z for the system #2. The red dots show the results of simulations.
(Color figure online)

align its turn rate to that of the lead vehicle. This model represents a simple
scenario of loosely coupled systems that interact using a small set of state vari-
ables. Applications including models of cardiac cells that are also loosely coupled
through shared action potentials [26]. The variables xi, yi are set in the domain
[−15, 15] and subdivided into 300 parts along each dimension. Similarly, the
velocities range over [−10, 10] and are subdivided into 500 parts each and the
yaw rate ranges over [−0.2, 0.2] radians/sec and subdivided into 25 parts. The
disturbance ranges over [−0.1, 0.1]. Table 1 reports results from models involving
1, 2 and 4 vehicles. Since they are loosely coupled, the treewidth of these models
is 2.

Laub-Loomis Model: The Laub-Loomis model is a molecular network that
produces spontaneous oscillations for certain values of the model parameters.
The model’s description was taken from Dang et al. [20]. The system has 7 state
variables each of which was subdivided into 100 cells yielding a large state space
with 1014 cells. We note that the tree width of the graph is 3, yielding nodes
with upto 4 variables in them.

Comparison with SAPO. SAPO is a state-of-the-art tool that uses polytope
bundles and Bernstein polynomials to represent and propagate reachable sets
for polynomial dynamical systems [22,23]. We compare our approach directly on
SAPO for identical models and initial sets. Note that SAPO does not currently
handle non-polynomial models or models with time-varying disturbances. Table 1
shows that SAPO is orders of magnitude faster on all the models, with the sole
exception of the 1D-Lattice-10 model. Figure 2 shows the comparison of the
reachable sets computed by our approach (shaded blue region) against those
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Fig. 2. Comparison of various projections of the reachable sets computed by our app-
roach shown in blue, the reachable set computed by SAPO shown as black rectangles
and states obtained through random simulation shown in red dots. Top row: ebola
model, second row: phosporelay, third row: 1d-lattice-10, fourth row: vanderpol (35
steps) and bottom row: influenza model. (Color figure online)

computed by SAPO (black rectangles) for five different models. We note that
for three of the models compared, neither reachable set is contained in the other.
For the one dimensional lattice model, SAPO produces a better reachable set,
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whereas our approach is better for the influenza model. We also note that both
for our approach the precision can be improved markedly by increasing the
number of subdivisions, albeit at a large computational cost that depends on
the treewidth of the model. The same is true for SAPO, where the number of
directions and the template sizes have a non-trivial impact on running time.

Models with Large Treewidths. We briefly report on a few models that we
attempted with large treewidths. For such models, our approach of decomposing
the space into cells becomes infeasible due to the curse of dimensionality.

A model of how honeybees select between different sites [9,23] has 6 vari-
ables and its tree width is 5 with a single tree node containing all state vari-
ables. However, the large treewidth is due to two terms in the model which are
replaced by disturbance variables that overapproximate their value. This brings
down the treewidth to 3, making it tractable for our approach. Details of this
transformation are discussed in our extended version. Treewidth reduction using
abstractions is an interesting topic for future work.

We originally proposed to analyze a 2D grid lattice model taken from Vleck
et al [39]. However, a 2D 10×10 lattice model has a dependency hypergraph that
forms a 10×10 grid with treewidth 10. Likewise, the 17-state crazyflie benchmark
for SAPO [22] could not be analyzed by our approach since its treewidth is too
large.

6 Conclusions

We have shown how tree decompositions can define an abstract domain that
projects concrete sets along the various subsets of state variables. We showed
how message passing can be used to exchange information between these subsets.
We analyze the completeness of our approach and show that the abstraction is
lossy due to the projection operation. We show that for small tree width mod-
els, a gridding-based analysis of nonlinear system can be used whereas such
approaches are too expensive when applied in a monolithic fashion. For the
future, we plan to study tree decompositions for abstract domains such as dis-
junctions of polyhedra, parallelotope bundles and Taylor models. The process of
model abstraction to reduce treewidth is another interesting future possibility.
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Abstract. We address the problem of synthesizing a controller for non-
linear systems with reach-avoid requirements. Our controller consists of
a reference controller and a tracking controller which drives the actual
trajectory to follow the reference trajectory. We identify a type of refer-
ence trajectory such that the tracking error between the actual trajectory
of the closed-loop system and the reference trajectory can be bounded.
Moreover, such a bound on the tracking error is independent of the ref-
erence trajectory. Using such bounds on the tracking error, we propose
a method that can find a reference trajectory by solving a satisfiability
problem over linear constraints. Our overall algorithm guarantees that
the resulting controller can make sure every trajectory from the initial
set of the system satisfies the given reach-avoid requirement. We also
implement our technique in a tool FACTEST. We show that FACTEST
can find controllers for four vehicle models (3–6 dimensional state space
and 2–4 dimensional input space) across eight scenarios (with up to 22
obstacles), all with running time at the sub-second range.

1 Introduction

Design automation and safety of autonomous systems is an important research
area. Controller synthesis aims to provide correct-by-construction controllers
that can guarantee that the system under control meets certain requirements.
Controller synthesis is a type of program synthesis problem. The synthesized
program or controller g has to meet the given requirement R, when it is run in
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(closed-loop) composition with a given physical process or plant A. Therefore, a
synthesis algorithm has to account for the combined behavior of g and A.

Methods for designing controllers for asymptotic requirements like stability,
robustness, and tracking, predate the algorithmic synthesis approaches for pro-
grams [3,16,30]. However, these classic control design methods normally do not
provide formal guarantees in terms of handling bounded-horizon requirements
like safety. Typical controller programs are small, well-structured, and at core,
have a succinct logic (“bang-bang” control) or mathematical operations (PID
control). This might suggest that controllers could be an attractive target for
algorithmic synthesis for safety, temporal logic (TL), and bounded time require-
ments [1,9,18,34,38].

On the other hand, motion planning (MP), which is an instance of the con-
troller synthesis for robots is notoriously difficult (see [21] Chapter 6.5). A typi-
cal MP requirement is to make a robot A track certain waypoints while meeting
some constraints. A popular paradigm in MP, called sampling-based MP, gives
practical, fully automatic, randomized, solutions to hard problem instances by
only considering the geometry of the vehicle and the free space [14,15,20,21].
However, they do not ensure that the dynamic behavior of the vehicle will actu-
ally follow the planed path without running into obstacles. Ergo, MP continues
to be a central problem in robotics1.

In this paper, we aim to achieve faster control synthesis with guarantees by
exploiting a separation of concerns that exists in the problem: (A) how to drive
a vehicle/plant to a given waypoint? and (B) Which waypoints to choose for
achieving the ultimate goal? (A) can be solved using powerful control theoretic
techniques—if not completely automatically, but at least in a principled fashion,
with guarantees, for a broad class of A’s. Given a solution for (A), we solve
(B) algorithmically. A contribution of the paper is to identify characteristics
of a solution of (A) that make solutions of (B) effective. Consider nonlinear
control systems A : d

dtx = f(x, u) and reach-avoid requirements defined by a
goal set G that the trajectories should reach, and obstacles O the trajectories
should avoid. The above separation leads to a two step process: (A) Find a
state feedback tracking controller gtrk that drives the actual trajectory of the
closed-loop system ξg to follow a reference trajectory ξref. (B) Design a reference
controller gref, which consists of a reference trajectory ξref and a reference input
uref. The distance between ξg and ξref is called the tracking error e. If we can
somehow know beforehand the value of e without knowing ξref, we can use such
error to bloat O and shrink G, and then synthesize ξref such that it is e away
from the obstacles (inside the goal set). For linear systems, this was the approach
used in [7], but for nonlinear systems, the tracking error e will generally change
with ξref, and the two steps get entangled.

For a general class of nonlinear vehicles (such as cars, drones, and underwater
vehicles), the tracking controller gtrk is always designed to minimize the tracking

1 In the most recent International Conference on Robotics and Automation, among
the 3,512 submissions “Path and motion planning” was the second most popular key
phrase.



Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 631

error. The convergence of the error can be proved by a Lyapunov function for
certain types of ξref. We show how, under reasonable assumptions, we can use
Lyapunov functions to bound the value of the tracking error even when the
waypoints changes (Lemma 2). This error bound is independent of ξref so long as
ξref satisfies the assumptions. For step (B) we introduce a SAT-based trajectory
planning methods to find such ξref and uref by solving a satisfiability (SAT)
problem over quantifier free linear real arithmetic (Theorem1). Moreover, the
number of constraints in the SMT problem scales linearly to the increase of
number of obstacles (and not with the vehicle model). Thus, our methods can
scale to complex requirements and high dimensional systems.

Putting it all together, our final synthesis algorithm (Algorithm2) guarantees
that any trajectory following the synthesized reference trajectory will satisfy the
reach-avoid requirements. The resulting tool FACTEST is tested with four non-
linear vehicle models and on eight different scenarios, taken from MP literature,
which cover a wide range of 2D and 3D environments. Experiment results show
that our tool scales very well: it can find the small covers {Θj}j and the cor-
responding reference trajectories and control inputs satisfying the reach-avoid
requirements most often in less than a second, even with up to 22 obstacles. We
have also compared our SAT-based trajectory planner to a standard RRT plan-
ner, and the results show that our SAT-based method resoundingly outperforms
RRT. To summarize, our main contributions are:

1. A method (Algorithm 2) for controller synthesis separating tracking controller
gtrk and search for reference controller gref.

2. Sufficient conditions for tracking controller error performance that makes the
decomposition work (Lemma 2 and Lemma 3).

3. An SMT-based effective method for synthesizing reference controller gref.
4. The FACTEST implementation of the above and its evaluation showing very

encouraging results in terms of finding controllers that make any trajectories
of the closed-loop system satisfy reach-avoid requirements (Sect. 6).

Related Works. Model Predictive Control (MPC). MPC [4,25,45,49] has to
solve a constrained, discrete-time, optimal control problem. MPC for controller
synthesis typically requires model reduction for casting the optimization problem
as an LP [4], QP [2,36], MILP [33,34,45]. However, when the plant model is
nonlinear [8,22], it may be hard to balance speed and complex requirements as
the optimization problem become nonconvex and nonlinear.

Discrete Abstractions. Discrete, finite-state, abstraction of the control system is
computed, and then a discrete controller is synthesized by solving a two-player
game [10,17,24,42,47]. CoSyMA [28], Pessoa [37], LTLMop [18,46], Tulip [9,48],
and SCOTS [38] are based on these approaches. The discretization step often
leads to a severe state space explosion for higher dimensional models.

Safe Motion Planning. The idea of bounding the tracking error through pre-
computation has been used in several techniques: FastTrack [11] uses Hamilton-
Jacobi reachability analysis to produce a “safety bubble” around planed paths.
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Reachability based trajectory design for dynamical environments (RTD) [44]
computes an offline forward reachable sets to guarantee that the robot is not-
at-fault in any collision. In [40], a technique based on convex optimization is
used to compute tracking error bounds. Another technique [23,43] uses motion
primitives expanded by safety funnels, which defines similar ideas of safety tubes.

Sampling Based Planning. Probabilistic Road Maps (PRM) [15], Rapidly-
exploring Random Trees (RRT) [19], and fast marching tree (FMT) [12] are
widely used in actual robotic platforms. They can generate feasible trajectories
through known or partially known environments. Compared with the determin-
istic guarantees provided by our proposed method, these methods come with
stochastic guarantees. Also, they are not designed to be robust to model uncer-
tainty or disturbances. MoveIT [5] is a tool designed to implement and bench-
mark various motion planners on robots. The motion planners in MoveIT are
from the open motion planning library (OMPL) [41], which implements motion
planners abstractly.

Controlled Lyapunov Function (CLF). CLF have been used to guarantee that
the overall closed-loop controlled system satisfies a reach-while-stay specifica-
tion [35]. Instead of asking for a CLF for the overall closed-loop system, our
method only needs a Lyapunov function for the tracking error, which is a weaker
local requirement. CLF is often a difficult requirement to meet for nonlinear vehi-
cle models.

2 Preliminaries and Problem Statement

Let us denote real numbers by R, non-negative real numbers by R≥0, and natural
numbers by N. The n-dimensional Euclidean space is R

n. For a vector x ∈ R
n,

x(i) is the ith entry of x and ‖x‖2 is the 2-norm of x. For any matrix A ∈ R
n×m,

Aᵀ is its transpose; A(i) is the ith row of A. Given a r ≥ 0, an r-ball around
x ∈ R

n is defined as Br(x) = {x′ ∈ R
n | ||x′ − x||2 ≤ r}. We call r the radius

of the ball. Given a matrix H ∈ R
r×n and a vector b ∈ R

r, an (H, b)-polytope
is denoted by Poly(H, b) = {x ∈ R

n | Hx ≤ b}. Each row of the inequality
H(i)x ≤ b(i) defines a halfspace. We also call H(i)x = b(i) the surface of the
polytope. Let dP(H) = r denotes the number of rows in H. Given a set S ⊆ R

n,
the radius of S is defined as supx,y∈S ‖x − y‖2/2.

State Space and Workspace. The state space of control systems will be a subspace
X ⊆ R

n. The workspace is a subspace W ⊆ R
d, for d ∈ {2, 3}, which is the

physical space in which the robots have to avoid obstacles and reach goals.
Given a state vector x ∈ X , its projection to W is denoted by x ↓ p. That is, x ↓
p = [px, py]ᵀ ∈ R

2 for ground vehicles on the plane and x ↓ p = [px, py, pz]ᵀ ∈ R
3

for aerial and underwater vehicles. When x is clear from context we will write
x ↓ p as simply p. The vector x may include other variables like velocity, heading,
pitch, etc., but p only has the position in Cartesian coordinates. We assume that
the goal set G := Poly(HG, bG) and the unsafe set O (obstacles) are specified by
polytopes in W; O = ∪Oi, where Oi := Poly(HO,i, bO,i) for each obstacle i.
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Trajectories and Reach-Avoid Requirements. A trajectory ξ over X of duration T
is a function ξ : [0, T ] → X , that maps each time t in the time domain [0, T ] to a
point ξ(t) ∈ X . The time bound or duration of ξ is denoted by ξ.ltime = T . The
projection of a trajectory ξ : [0, T ] → X to W is written as ξ ↓ p : [0, T ] → W and
defined as (ξ ↓ p)(t) = ξ(t) ↓ p. We say that a trajectory ξ(t) satisfies a reach-
avoid requirement given by unsafe set O and goal set G if ∀t ∈ [0, ξ.ltime], ξ(t) ↓
p /∈ O and ξ(ξ.ltime) ↓ p ∈ G. See Fig. 1 for an example.

Given a trajectory ξ : [0, T ] → X and a time t > 0, the time shift of ξ is a
function (ξ + t) : [t, t + T ] → X defined as ∀t′ ∈ [t, t + T ], (ξ + t)(t′) = ξ(t′ − t).
Strictly speaking, for t > 0, ξ + t is not a trajectory. The concatenation of two
trajectories ξ1 � ξ2 is a new trajectory in which ξ1 is followed by ξ2. That is, for
each t ∈ [0, ξ1.ltime+ξ2.ltime], (ξ1 � ξ2)(t) = ξ1(t) when t ≤ ξ1.ltime, and equals
ξ2(t − ξ1.ltime) when t > ξ1.ltime. Trajectories are closed under concatenation,
and many trajectories can be concatenated in the same way.

2.1 Nonlinear Control System

Definition 1. An (n,m)-dimensional control system A is a 4-tuple 〈X ,Θ,U, f〉
where (i) X ⊆ R

n is the state space, (ii) Θ ⊆ X is the initial set, (iii) U ⊆ R
m

is the input space, and (iv) f : X × U → X is the dynamic function that is
Lipschitz continuous with respect to the first argument.

A control system with no inputs (m = 0) is called a closed system.
Let us fix a time duration T > 0. An input trajectory u : [0, T ] → U, is a

continuous trajectory over the input space U. We denote the set of all possible
input trajectories to be U . Given an input signal u ∈ U and an initial state
x0 ∈ Θ, a solution of A is a continuous trajectory ξu : [0, T ] → X that satisfies
(i) ξu(0) = x0 and (ii) for any t ∈ [0, T ], the time derivative of ξu at t satisfies
the differential equation:

d

dt
ξu(t) = f(ξu(t), u(t)). (1)

For any x0 ∈ Θ, u ∈ U , ξu is a state trajectory and we call such a pair (ξu, u) a
state-input trajectory pair.

A reference state trajectory (or reference trajectory for brevity) is a trajectory
over X that the control system tries to follow. We denote reference trajectories
by ξref. Similarly, a reference input trajectory (or reference input) is a trajectory
over U and we denote them as uref. Note these ξref and uref are not necessarily
solutions of (1). Figure 1 shows reference and actual solution trajectories.

We call a reference trajectory ξref and a reference input uref together as a
reference controller gref. Given gref, a tracking controller gtrk is a function that
is used to compute the inputs for A so that in the resulting closed system, the
state trajectories try to follow ξref.

Definition 2. Given an (n,m)-dynamical system A, a reference trajectory ξref,
and a reference input uref, a tracking controller for the triple 〈A, ξref, uref〉 is a
(state feedback) function gtrk : X × X × U → U.
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At any time t, the tracking controller gtrk takes in a current state of the system
x, a reference trajectory state ξref(t), and a reference input uref(t), and gives an
input gtrk(x, ξref(t), uref(t)) ∈ U for A. The controller g for A is determined by
both the reference controller gref and the tracking controller gtrk. The resulting
trajectory ξg of the closed control system (A closed with gref and gtrk) satisfies:

d

dt
ξg(t) = f (ξg(t), gtrk (ξg(t), ξref(t), uref(t))) ,∀ t ∈ [0, T ]\D, (2)

where D is the set of points in time where the second or third argument of gtrk

is discontinuous2.

2.2 Controller Synthesis Problem

Definition 3. Given a (n,m)-dimensional nonlinear system A = 〈X ,Θ,U, f〉,
its workspace W, goal set G ⊆ W and the unsafe set O ⊆ W, we are required to
find (a) a tracking controller gtrk, (b) a partition {Θj}j of Θ, and (c) for each
partition Θj, a reference controller gj,ref, which consists of a state trajectory ξj,ref

and an input trajectory uj,ref, such that ∀x0 ∈ Θj, the unique trajectory ξg of the
closed system as in Eq. (2) starting from x0 reaches G and avoids O.

Again, ξj,ref and uj,ref in gj,ref are not required to be a state-input pair, but,
for each initial state x0 ∈ Θj , the closed loop trajectory ξg following ξref is a
valid state trajectory with corresponding input u generated by gtrk and gj,ref. In
this paper, we will decompose the controller synthesis problem: Part (a) will be
delivered by design engineers with knowledge of vehicle dynamics, and parts (b)
and (c) will be automatically synthesized by our algorithm. The latter being the
main contribution of the paper.

Example 1. Consider a ground vehicle moving on a 2D workspace W ⊆ R
2 as

shown in Fig. 1.

Fig. 1. Zigzag scenario for a controller syn-
thesis problem. The initial set is blue, the
goal set is green, and the unsafe sets are
red. A valid reference trajectory is shown
in black and a feasible trajectory is shown
in purple. (Color figure online)

This scenario is called Zigzag and
it is adopted from [32]. The red poly-
topes are obstacles. The blue and
green polytopes are the initial set Θ
and the goal set G. There are also
obstacles (not shown in the figure)
defining the boundaries of the entire
workspace. The black line is a projec-
tion of a reference trajectory to the
workspace: ξref(t) ↓ p. This would not
be a feasible state trajectory for a
ground vehicle that cannot make sharp
turns. The purple dashed curve is a

2 ξg is a standard solution of ODE with piece-wise continuous right hand side.
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real feasible state trajectory of the system starting from Θ with a tracking con-
troller gtrk, where gtrk will be introduced in Example 2.

Consider the standard nonlinear bicycle model of a car [31]. The control
system has 3 state variables: the position px, py, and the heading direction θ. Its
motion is controlled by two inputs: linear velocity v and rotational velocity ω.
The car’s dynamics are given by:

d
dtpx = v cos(θ), d

dtpy = v sin(θ), d
dtθ = ω. (3)

3 Constructing Reference Trajectories from Waypoints

If ξref(t) ↓ p is a PWL (PWL) curve in the workspace W, we call ξref(t) a
PWL reference trajectory. In W, a PWL curve can be determined by the
endpoints of each line segment. We call such endpoints the waypoints of the
PWL reference trajectory. In Fig. 1, the black points p0, · · · , p6 are waypoints of
p(t) = ξref(t) ↓ p.

Consider any vehicle on the plane3 with state variables px, py, θ, v (x-position,
y-position, heading direction, linear velocity) and input variables a, ω (acceler-
ation and angular velocity). Once the waypoints {pi}k

i=0 are fixed, and if we
enforce constant speed v̄ (i.e., ξref(t) ↓ v = v̄ for all t ∈ [0, ξref.ltime]), then ξref(t)
can be uniquely defined by {pi}k

i=0 and v̄ using Algorithm 1. The semantics of
ξref and uref returned by Waypoints to Traj is that the reference trajectory
requires the vehicle to move at a constant speed v̄ along the lines connecting
the waypoints {pi}k

i=0. In Example 1, ξref(t), uref(t) can also be constructed using
Waypoints to Traj moving v to input variables and dropping a.

We notice that if k = 1, ξref(t), uref(t) returned by Algorithm1 is a valid
state-input trajectory pair. However, if k > 1, ξref(t), uref(t) returned by Algo-
rithm1 is usually not a valid state-input trajectory pair. This is because θref(t)
is discontinuous at the waypoints and no bounded inputs uref(t) can drive the
vehicle to achieve such θref(t). Therefore, when k > 1, ξref(t) is a PWL reference
trajectory with no uref(t) such that ξref, uref are solutions of (1).

Algorithm 1: Waypoints to Traj({pi}k
i=0, v̄)

input : {pi}k
i=0, v̄

1 ∀t ∈ [0,
∑k

i=1

‖pj−pj−1‖2
v̄

], vref(t) = v̄, aref(t) = 0, ωref(t) = 0;

2 ∀i ≥ 1, ∀t ∈
[∑i−1

j=1

‖pj−pj−1‖2
v̄

,
∑i

j=1

‖pj−pj−1‖2
v̄

)
,

pref(t) = pi−1 + v̄t − ∑i−1
j=1 ‖pj − pj−1‖2,

θref(t) = mod(atan2((py,i − py,i−1), (px,i − px,i−1), 2π);
3 ξref(t) = [pref(t), θref(t), vref(t)];
4 uref(t) = [aref(t), ωref(t)];
5 return ξref(t), uref(t) ;

3 A similar construction works for vehicles in 3D workspaces with additional variables.
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Proposition 1. Given a sequence of waypoints {pi}k
i=0 and a constant speed v̄,

ξref(t), uref(t) produced by Waypoints to Traj({pi}k
i=0, v̄) satisfy:

– pref(t) = ξref(t) ↓ p is a piece-wise continuous function connecting {pi}k
i=0.

– At time ti =
∑i

j=1 ‖pj −pj−1‖2/v̄, pref(ti) = pi. We call {ti})k
i=1 the concate-

nation time.
– ξref(t) = ξref,1(t) � · · · � ξref,k(t) and uref(t) = uref,1(t) � · · · � uref,k(t),

where (ξref,i, uref,i) are state-input trajectory pairs returned by the function
Waypoints to Traj({pi−1, pi}, v̄).

Outline of Synthesis Approach. In this Section, we present an Algo-
rithm Waypoints to Traj for constructing reference trajectories from arbitrary
sequence of waypoints. In Sect. 4, we precisely characterize the type of vehi-
cle tracking controller our method requires from designers. On our tool’s web-
page [27], we show with several extra examples that indeed developing such
controllers is non-trivial, far from automatic, yet bread and butter of control
engineers. In Sect. 5, we present the main synthesis algorithm, which uses the
tracking error bounds from the previous section, to construct waypoints, for
each initial state, which when passed through Waypoints to Traj provide the
solutions to the synthesis problem.

4 Bounding the Error of a Tracking Controller

4.1 Tracking Error and Lyapunov Functions

Given a reference controller gref, a tracking controller gtrk, and an initial state
x0 ∈ Θ, the resulting trajectory ξg of the closed control system (A closed with
gref and gtrk) is a state trajectory that starts from x0 and follows the ODE (2). In
this setting, we define the tracking error at time t to be a continuous function:

e : X × X → R
n.

When ξg(t) and ξref(t) are fixed, we also write e(t) = e(ξg(t), ξref(t)) which makes
it a function of time. One thing to remark here is that if ξref(t) is discontinuous,
then e(t) is also discontinuous. In this case, the derivative of e(t) cannot be
defined at the points of discontinuity. To start with, let us assume that gref =
(ξref, uref) is a valid state-input pair so ξref is a continuous state trajectory. Later
we will see that the analysis can be extended to cases when ξref is discontinuous
but a concatenation of continuous state trajectories.

When (ξref, uref) is a valid state-input pair and e(t) satisfy an differential
equation d

dte(t) = fe(e(t)), we use Lyapunov functions, which is a classic tech-
nique for proving stability of an equilibrium of an ODE, to bound the tracking
error e(t). The Lie derivative ∂V

∂e fe(e) below captures the rate of change of the
function V along the trajectories of e(t).
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Definition 4 (Lyapunov functions [16]). Fix a state-input reference trajec-
tory pair (ξref, uref), assume that the dynamics of the tracking error e for a closed
control system A with gref and gtrk can be rewritten as d

dte(t) = fe(e(t)), where
fe(0) = 0. A continuously differentiable function V : R

n → R satisfying (i)
V (0) = 0, (ii) ∀e ∈ R

n, V (e) ≥ 0, and (iii) ∀e ∈ R
n, ∂V

∂e fe(e) ≤ 0, is called a
Lyapunov function for the tracking error.

Example 2. For the car of Example 1, with a continuous reference trajectory
ξref(t) = [xref(t), yref(t), θref(t)]ᵀ, we define the tracking error in a coordinate
frame fixed to the car [13]:

⎛

⎝
ex(t)
ey(t)
eθ(t)

⎞

⎠ =

⎛

⎝
cos(θ(t)) sin(θ(t)) 0

− sin(θ(t)) cos(θ(t)) 0
0 0 1

⎞

⎠

⎛

⎝
xref(t) − px(t)
yref(t) − py(t)
θref(t) − θ(t)

⎞

⎠ . (4)

With the reference controller function g defined as:

v(t) = vref(t) cos(eθ(t)) + k1ex(t),
ω(t) = ωref(t) + vref(t)(k2ey(t) + k3 sin(eθ(t))),

(5)

it has been shown in [13] when k1, k2, k3 > 0, d
dtωref(t) = 0, and d

dtvref(t) = 0,

V ([ex, ey, eθ]ᵀ) =
1
2
(e2

x + e2
y) +

1 − cos(eθ)
k2

(6)

is a Lyapunov function with negative semi-definite time derivative ∂V
∂x fe =

−k1e
2
x − vrefk3 sin2(eθ)

k2
.

4.2 Bounding Tracking Error Using Lyapunov Functions: Part 1

Consider a given closed control system, A with gref and gtrk, in this section,
we will derive upper bounds on the tracking error e. Later in Sect. 5, we will
develop techniques that take the tracking error into consideration for computing
reference trajectories ξref.

To begin with, we consider state-input reference trajectory pairs (ξref, uref)
where uref is continuous, and therefore, ξref and ξg are differentiable. Let us
assume that the tracking error dynamics ( d

dte(t) = fe(e(t))) has a Lyapunov
function V (e(t)). The following is a standard result that follows from the theory
of Lyapunov functions for dynamical systems.

Lemma 1. Consider any state-input trajectory pair (ξref, uref), an initial state
x0, the corresponding trajectory ξg of the closed control system, and a constant
� > 0. If the tracking error e(t) has a Lyapunov function V , and if initially
V (e(0)) ≤ �, then for any t ∈ [0, ξref.ltime], V (e(t)) ≤ �.

This lemma is proved by showing that V (e(t)) = V (e(0))+
∫ t

0
d
dtV (e(τ))dτ ≤

V (e(0)). The last inequality holds since d
dtV (e(τ)) = ∂V

∂e fe(e) ≤ 0 for any τ ∈
[0, t] according the definition of Lyapunov functions (Definition 4).
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Lemma 1 says that if we can bound V (e(0)) = V (e(x0, ξref(0))), we can bound
V (e(ξg(t), ξref(t))) at any time t within the domain of the trajectories, regardless
of the value of ξref(t). This could decouple the problem of designing the track-
ing controller gtrk and synthesizing the reference controller gref as a state-input
trajectory pair (ξref, uref).

Example 3. Given two waypoints p0, p1 for the car in Example 1, take the
returned value of Waypoints to Traj({p0, p1}, v̄), move vref to uref and drop
aref. Then, the resulting (ξref, uref) is a continuous and differentiable state-input
reference trajectory pair. Moreover, if the robot is controlled by the tracking
controller as in Eq. (5), V (e(t)) = 1

2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))
k2

is a Lyapunov
function for the corresponding tracking error e(t) = [ex(t), ey(t), eθ(t)]ᵀ.

From Eq. (4), it is easy to check that e2
x(t) + ey(t)2 = (xref(t) − px(t))2 +

(yref(t) − py(t))2 for any time t. Assume that initially the position of the vehi-
cle satisfies [px(0), py(0)]ᵀ ∈ B�([xref(0), yref(0)]ᵀ). We check that V (e(0)) =
1
2 (ex(0)2 + ey(0)2) + 1−cos(eθ(0))

k2
≤ �2

2 + 2
k2

.

From Lemma 1, we know that ∀t ∈ [0, ξref.ltime], V (e(t)) ≤ �2

2 + 2
k2

.
Then we have (xref(t) − px(t))2 + (yref(t) − py(t))2 = (ex(t)2 + ey(t)2) ≤
�2 + 4

k2
. That is, the position of the robot at time t satisfies [px(t), py(t)]ᵀ ∈

B√
�2+ 4

k2

([xref(t), yref(t)]ᵀ).

4.3 Bounding Tracking Error Using Lyapunov Functions: Part 2

Next, let us consider the case where ξref is discontinuous. Furthermore, let us
assume that it is a concatenation of several continuous state trajectories ξref,1 �
· · · � ξref,k. In this case, we call ξref a piece-wise reference trajectory. If we have
a sequence of (ξref,i, uref,i), each is a valid state-input trajectory pair and the
corresponding error ei(t) has a Lyapunov function Vi(ei(t)), then we can use
Lemma 1 to bound the error of ei(t) if we know the value of ei(0). However,
the main challenge to glue these error bounds together is that e(t) would be
discontinuous with respect to the entire piece-wise ξref(t).

Without loss of generality, let us assume that the Lyapunov functions
Vi(ei(t)) share the same format. That is, ∀i, Vi(ei(t)) = V (ei(t)). Let ti be the
concatenation time points when ξref(t) (and therefore e(t)) is discontinuous. We
know that limt→t−

i
V (e(t)) 
= limt→t+i

V (e(t)) since limt→t−
i

e(t) 
= limt→t+i
e(t).

One insight we can get from Example 3 is that although e(t) is discontinuous
at time tis, some of the variables influencing e(t) are continuous. For exam-
ple, ex(t) and ey(t) in Example 3, which represent the error of the positions,
are continuous since both the actual and reference positions of the vehicle are
continuous. If we can further bound the term in V (e(t)) that corresponds to
the other variables, we could analyze the error bound for the entire piece-wise
reference trajectory. With this in sight, let us write e(t) as [ep(t), er(t)], where
ep(t) = e(t) ↓ p is the projection to W and er(t) is the remaining components.

Let us further assume that the Lyapunov function can be written in the form
of V (e(t)) = α(ep(t)) + β(er(t)). Indeed, on the tool’s webpage [27] we show
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that four commonly used vehicle models (car, robot, underwater vehicle, and
hovercraft) have Lyapunov functions for the tracking error e(t) of this form. If
β(er(t)) can be further bounded, then the tracking error for the entire trajectory
can be bounded using the following lemma.

Lemma 2. Consider ξref = ξref,1 � · · · � ξref,k, and uref = uref,1 � · · · � uref,k

as a piecewise reference and input with each (ξref,i, uref,i) being a state-input
trajectory pair. Suppose (1) V (e(t)) = α(ep(t))+β(er(t)) be a Lyapunov function
for the tracking error e(t) of each piece (ξref,i, uref,i); (2) ep(t) is continuous and
α(·) is a continuous function; (3) β(er(t)) ∈ [bl, bu], and (4) V (e(0)) ≤ ε0. Then,
the tracking error e(t) with respect to ξref and uref can be bounded by,

V (e(t)) ≤ εi,∀i ≥ 1,∀t ∈ [ti−1, ti),

where ∀ i > 1, εi = εi−1 − bl + bu, ε1 = ε0 being the bound on the initial tracking
error, and ti’s are the time points of concatenation4.

Proof. We prove this by induction on i. When i = 1, we know from Lemma 1
that if the initial tracking error is bounded by V (e(0)), then for any t ∈
[0, t1), V (e(t)) ≤ V (e(0)) ≤ ε0 = ε1, so the lemma holds.

Fix any i ≥ 1. If V (e(ti−1)) ≤ εi, from Lemma 1 we have ∀t ∈ [ti−1, ti),
V (e(t)) ≤ εi. Also, limt→t−

i
V (e(t)) = limt→t−

i
α(ep(t)) + β(er(t)) ≤ εi. Since

∀er(t) ∈ R
n−d, β(er(t)) ∈ [bl, bu], we have limt→t−

i
α(ep(t)) ≤ εi − bl, and

limt→t−
i

α(ep(t)) = limt→t+i
α(ep(t)). Therefore,

εi+1 = lim
t→t+i

V (e(t)) = lim
t→t+i

α(ep(t)) + β(er(t)) ≤ εi − bl + bu.

Another observation we have on the four vehicle models used in this paper is
that not only V (e(t)) can be written as α(ep(t)) + β(er(t)) with β(er(t)) being
bounded, but also α(ep(t)) can be written as α(ep(t)) = ceᵀ

p(t)ep(t) = c‖p(t) −
pref(t)‖2

2, where c ∈ R is a scalar constant; p(t) = ξg(t) ↓ p and pref(t) = ξref(t) ↓ p
are the actual position and reference position of the vehicle. In this case, we can
further bound the position of the vehicle p(t).

Lemma 3. In addition to the assumptions of Lemma2, if α(ep(t)) =
ceᵀ

p(t)ep(t) = c‖p(t) − pref(t)‖2
2, where c ∈ R, p(t) = ξg(t) ↓ p and pref(t) =

ξref(t) ↓ p. Then we have that at time t ∈ [ti−1, ti),

eᵀ
p(t)ep(t) ≤ εi − bl

c
,

where εi and bl are from Lemma2, which implies that

p(t) ∈ B�i
(pref(t)),with �i =

√
εi − bl

c
.

4 ∀t ∈ [ti−1, ti), ξref(t) = ξref,i(t − ∑i−1
j=1 ξref,j .ltime).
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Note that Lemma 2 and 3 does not depend on the concrete values of ξref and
uref. The lemmas hold for any piece-wise reference trajectory ξref and reference
input uref as long as the corresponding error e has a Lyapunov function (for each
piece of ξref and uref).

Example 4. Continue Example 3.

Fig. 2. Illustration of the error
bounds computed from Lemma 3.
The ith line segment is bloated by√

�2 + 4i
k2

. The closed-loop system’s

trajectory p(t) are purple curves and
they are contained by the bloated-
tube. (Color figure online)

Now let us consider the case of
a sequence of waypoints {pi}k

i=0. Let
(ξref, uref) = Waypoints to Traj({pi}k

i=0, v̄).
From Example 3, we know that V (e(t)) =
1
2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))

k2
is a Lya-

punov function for each segment of the piece-
wise reference trajectory ξref(t). We also
know that for any value of eθ, the term
1−cos(eθ(t))

k2
∈ [0, 2

k ]. From Lemma 2, we have
that for t ∈ [ti−1, ti) where ti are the con-
catenation time points, we have V (e(t)) ≤
V (e(0)) + 2(i−1)

k2
Therefore, following Exam-

ple 3, initially V (e(0)) ≤ �2

2 + 2
k2

. Then ∀t ∈
[ti−1, ti), V (e(t)) ≤ �2

2 + 2i
k2

, and the posi-
tion of the robot satisfies [px(t), py(t)]ᵀ ∈
B√

�2+ 4i
k2

([xref(t), yref(t)]ᵀ).

As seen in Fig. 2, we bloat the black reference trajectory pref(t) = ξref(t) ↓ p

by �i =
√

�2 + 4i
k2

for the ith line segment, the bloated tube contains the real
position trajectories (purple curves) p(t) of the closed system.

5 Synthesizing the Reference Trajectories

In Sect. 4.3, we have seen that under certain conditions, the tracking error e(t)
between an actual closed-loop trajectory ξg(t) and a piece-wise reference ξref(t)
can be bounded by a piece-wise constant value, which depends on the initial
tracking error e(0) and the number of segments in ξref. We have also seen an
example nonlinear vehicle model with PWL ξref for which the tracking error can
be bounded.

In this section, we discuss how to utilize such bound on e(t) to help find a
reference controller gref consisting of a reference trajectory ξref(t) and a reference
input uref(t) such that closed-loop trajectories ξg(t) from a neighborhood of
ξref(0) that are trying to follow ξref(t) are guaranteed to satisfy the reach-avoid
requirement. The idea of finding a gref follows a classic approach in robot motion
planning. The intuition is that if we know at any time t ∈ [0, ξref.ltime], ‖ξg(t) ↓
p − ξref(t) ↓ p‖2 will be at most �, then instead of requiring ξref(t) ↓ p to be
at least � away from the obstacles (inside the goal region), we will bloat the
obstacles (shrink the goal set) by �. Then the original problem is reduced to
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finding a ξref(t) such that ξref(t) ↓ p can avoid the bloated obstacles and reach
the shrunk goal set.

5.1 Use PWL Reference Trajectories for Vehicle Models

Finding a reference trajectory ξref(t) such that (a) ξref(t) satisfies the reach-avoid
conditions, and (b) ξref(t) and uref(t) are concatenations of state-input trajectory
pairs {(ξref,i, uref,i)}i and each pair satisfies the system dynamics, is a nontriv-
ial problem. If we were to encode the problem directly as a satisfiability or an
optimization problem, the solver would have to search for over the space of con-
tinuous functions constrained by the above requirements, including the nonlinear
differential constraints imposed by f . The standard tactic is to fix a reasonable
template for ξref(t), uref(t) and search for instantiations of this template.

From Example 4, we see that if ξref is a PWL reference trajectory con-
structed from waypoints in the workspace, the tracking error can be bounded
using Lemma 2. A PWL reference trajectories connecting the waypoints in the
workspace have the flexibility to satisfy the reach-avoid requirement. Therefore,
in this section, we fix ξref and uref to be the reference trajectory and reference
input returned by the Waypoints to Traj(·, ·). In Sect. 5.2, we will see that the
problem of finding such PWL ξref(t) can be reduced to a satisfiability problem
over quantifier-free linear real arithmetic, which can be solved effectively by
off-the-shelf SMT solvers (see Sect. 6 for empirical results).

5.2 Synthesizing Waypoints for a Linear Reference Trajectory

Algorithm 1 says that ξref(t) and uref(t) can be uniquely constructed given a
sequence of waypoints {pi}k

i=0 in the workspace W and a constant velocity v̄.
From Proposition 1, pref(t) = ξref(t) ↓ p connects the waypoints in W. Also, let
ti =

∑i
j=1 ‖pj − pj−1‖2/v̄ be the concatenation time, ∀t ∈ [ti−1, ti), p(t) is the

line segment connecting pi−1 and pi. We want to ensure that p(t) = ξg(t) ↓ p
satisfy the reach-avoid requirements. From Lemma 3, for any t ∈ [ti−1, ti), we
can bound ‖p(t) − pref(t)‖2 with the constant �i, then the remaining problem is
to ensure that, pref(t) is at least �i away from the obstacles and pref(ξref.ltime) is
inside the goal set with �k distance to any surface of the goal set.

Let us start with one segment p(t) with t ∈ [ti−1, ti). To enforce that p(t)
is �i away from a polytope obstacle, a sufficient condition is to enforce both
the endpoints of the line segment to lie out at least one surface of the polytope
bloated by �i.

Lemma 4. If pref(t) with t ∈ [ti−1, ti) is a line segment connecting pi−1 and pi

in W. Given a polytope obstacle O = Poly(HO, bO) and �i > 0, if

dP(HO)∨

s=1

(
(H(s)

O pi−1 > b
(s)
O + ‖H

(s)
O ‖2�i) ∧ (H(s)

O pi > b
(s)
O + ‖H

(s)
O ‖2�i)

)
= True,

then ∀t ∈ [ti−1, ti), B�i
(pref(t)) ∩ O = ∅.
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Proof. Fix any s such that (H(s)
O pi−1 > b

(s)
O + ‖H

(s)
O ‖2�i) ∧ (H(s)

O pi > b
(s)
O +

‖H
(s)
O ‖2�i) holds. The set S = {q ∈ R

d | H
(s)
O q > b

(s)
O + ‖H

(s)
O ‖2�i} defines a

convex half space. Therefore, if pi−1 ∈ S and pi ∈ S, then any point on the
line segment connecting pi−1 and pi is in S. Therefore, for any t ∈ [ti−1, ti),
H

(s)
O pref(t) > b

(s)
O + ‖H

(s)
O ‖2�i > b

(s)
O , which means pref(t) /∈ O.

The distance between pref(t) and the surface H
(s)
O q = b

(s)
O is |H(s)

O pref(t)−b
(s)
O |

‖H
(s)
O ‖2

>

�i. Therefore, for any p ∈ B�i
(pref(t)) we have ‖p− pref(t)‖2 ≤ �i and thus p /∈ O.

Furthermore,
∧dP(HO)

s=1 H
(s)
O q ≤ b

(s)
O +‖H

(s)
O ‖2�i defines of a new polytope that

we get by bloating Poly(HO, bO) with �i. Basically, it is constructed by moving
each surface of Poly(HO, bO) along the surface’s normal vector with the direction
pointing outside the polytope.

Similarly, we can define the condition when pref(ξ.ltime) = pk is inside the
goal shrunk by �k.

Lemma 5. Given a polytope goal set G = Poly(HG, bG) and �k > 0, if

dP(HG)∧

s=1

(
H

(s)
G pk ≤ b

(s)
O − ‖H

(s)
G ‖2�k

)
= True, then B�k

(pk) ⊆ G.

Putting them all together, we want to solve the following satisfiability prob-
lem to ensure that each line segment between pi−1 and pi is at least �i away
from all the obstacles and pk is inside the goal set G with at least distance �k to
the surfaces of G. In this way, ξg(t) starting from a neighborhood of ξref(0) can
satisfy the reach-avoid requirement.

φwaypoints(pref(0), k,O, G, {�i}k
i=1) = ∃p0, · · · , pk,

p0 == pref(0)
dP(HG)∧

s=1

(
H

(s)
G pk ≤ b

(s)
O − ‖H

(s)
G ‖2�k

)

k∧

i=1

(
∧

Poly(H,b)∈O

(
dP(H)∨

s=1

(
H(s)pi−1 > b(s) + �i‖H(s)‖2 ∧ H(s)pi > b(s) + �i‖H(s)‖2

)
))

Notice that the constraints in φwaypoints are all linear over real
arithmetic. Moreover, the number of constraints in φwaypoints is

O

(
∑

Poly(H,b)∈O

kdP(H) + dP(HG)

)

. That is, fixing k, the number of constraints

will grow linearly with the total number of surfaces in the obstacle and goal set
polytopes. Fixing O and G, the number of constraints will grow linear with the
number of line segments k.
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Theorem 1. Fix k ≥ 1 as the number of line segments, pref(0) ∈ W as the
initial position of the reference trajectory. Assume that

(1) A closed with gref and gtrk is such that given any sequence of k+1 waypoints
in W and any v̄, the piece-wise reference ξref (and input uref) returned by
Algorithm1 satisfy the conditions in Lemmas 2 and 3 with Lyapunov func-
tion V (e(t)) for the tracking error e(t).

(2) For the above ξref, fix an ε0 such that V (e(0)) ≤ ε0, let {�i}k
i=1 be error

bounds for positions constructed using Lemma 2 and Lemma 3 from ε0.
(3) φwaypoints(pref(0), k,O, G, {�i}k

i=1) is satisfiable with waypoints {pi}k
i=0.

Let ξref(t), uref(t) = Waypoints to Trajectory ({pi}k
i=0, v̄), and pref(t) = ξref(t) ↓ p.

Let ξg(t) be a trajectory of A closed with gtrk(·, ξref, uref) starting from ξg(0) with
V (e(ξg(0), ξref(0))) ≤ ε0, then ξg(t) satisfies the reach-avoid requirement.

Proof. Since ξref(t), uref(t) are a PWL reference trajectory and a reference input
respectively constructed from the waypoints {pi}k

i=0, they satisfy Assumption
(1). Moreover, V (e(ξg(0), ξref(0))) ≤ ε0 satisfies Assumption (2). Using Lemma 2
and Lemma 3, we know that for t ∈ [ti−1, ti), ‖ξg(t) ↓ p − ξref(t) ↓ p‖2 ≤ �i.

Finally, since {pi}k
i=0 satisfy the constraints in φwaypoints, using Lemma 4 and

Lemma 5, we know that for any time t ∈ [0, tk], ξg(t) ↓ p /∈ O and ξg(tk) ∈ G.
Therefore the theorem holds.

5.3 Partitioning the Initial Set

Starting from the entire initial set Θ, fix ξref(0) ∈ Θ and an ε0 such that ∀x ∈
Θ, V (e(x, ξref(0))) ≤ ε0, then we can use Lemma 2 and Lemma 3 to construct the
error bounds {�i}k

i=1 for positions, and next use {�i}k
i=1 to solve φwaypoints and

find the waypoints and construct the reference trajectory.
However, if the initial set Θ is too large, {�i}k

i=1 could be too conservative
so φwaypoints is not satisfiable. In the first two figures on the top row of Fig. 3,
we could see that if we bloat the obstacle polytopes using the largest �i, then
no reference trajectory is feasible. In this case, we partition the initial set Θ to
several smaller covers Θj and repeat the above steps from each smaller cover Θj .
In Lemma 2 and Lemma 3 we could see that the values of {�i}k

i=1 decrease if ε0

decreases. Therefore, with the partition of Θ, we could possibly find a reference
trajectory more and more easily. As shown in Fig. 3 bottom row, after several
partitions, a reference trajectory for each Θj could be found.



644 C. Fan et al.

Fig. 3. Top row: each step attempting to find a reference trajectory in the space where
obstacles (goal set) are bloated (shrunk) by the error bounds {�i}i. From left to right:
Without partition, {�i}i are too large so a reference trajectory cannot be found. Θ is
partitioned, but {�i}s for the left-top cover are still too large. With further partions,
a reference trajectory could be found. Bottom row: It is shown that the bloated tubes
for each cover (which contain all other trajectories from that cover) can fit between
the original obstacles.

5.4 Overall Synthesis Algorithm

Taking partitioning into the overall algorithm, we have Algorithm2 to solve
the controller synthesis problem defined in Sect. 2.2. Algorithm 2 takes in as
inputs (1) an (n,m)-dimensional control system A, (2) a tracking controller
gtrk, (3) Obstacles O, (4) a goal set G, (5) a Lyapunov function V (e(t)) for the
tracking error e that satisfies the conditions in Lemma 2 and Lemma 3 for any
PWL reference trajectory and input, (6) the maximum number of line segments
allowed Segmax, (7) the maximum number of partitions allowed Partmax, and (8)
a constant velocity v̄. The algorithm returns a set RefTrajs, such that for each
triple 〈Θj , ξj,ref, uj,ref〉 ∈ RefTrajs, we have ∀x0 ∈ Θj , the unique trajectory ξg

of the closed system (A closed with gtrk(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement. The algorithm also returns 〈Cover,None〉, which
means that the algorithm fails to find controllers for the portion of the initial
set in Cover within the maximum number of partitions Partmax.

In Algorithm 2, Cover is the collection of covers in Θ that the corresponding
ξref and uref have not been discovered. Initially, Cover only contains Θ. The for-
loop from Line 2 will try to find a ξref and a uref for each Θ ∈ Cover until the
maximum allowed number for partitions is reached. At line 3, we fix the initial
state of ξref(0) = ξinit to be the center of the current cover Θ. Then at Line 4,
we get the initial error bounds ε0 after fixing ξinit. Using ε0 and the Lyapunov
function V (e), we can construct the error bounds {�i}k

i=1 for the positions of the
vehicle using Lemma 2 and Lemma 3 at Line 5.
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Algorithm 2: Controller synthesis algorithm
input : A = 〈X , Θ, U, f〉, gtrk, O, G, V (e(t)), Segmax, Partmax, v̄
initially: Cover ← {Θ}, prt ← 0, k ← 1, RefTrajs ← ∅

1 while (Cover �= ∅) ∧ (prt ≤ Partmax) do
2 for Θ ∈ Cover do
3 ξinit ← Center(Θ) ;
4 ε0 ← a such that ∀x ∈ Θ, V (e(x, ξinit)) ≤ a ;

5 {�i}k
i=1 ← GetBounds(V (e(t)), ε0) ;

6 while k ≤ Segmax do

7 if CheckSAT(ξinit ↓ p, k, O, G, {�i}k
i=1)) == SAT then

8 p0, · · · , pk ← GetValue(φwaypoints) ;

9 ξref, uref ← Waypoints to Traj({pi}k
i=0, v̄) ;

10 RefTrajs ← RefTrajs ∪ 〈Θ, ξref, uref〉 ;
11 Cover ← Cover \ {Θ};
12 k ← 1 ;
13 Break ;

14 else
15 k ← k + 1

16 if k > Segmax then
17 Cover ← Cover ∪ Partition(Θ) \ {Θ} ;
18 prt ← prt + 1;
19 k ← 1 ;

20 return RefTrajs, 〈Cover, None〉 ;

If the if condition at Line 7 holds with {pi}k
i=0 being the waypoints that

satisfy φwaypoints, then from Theorem 1 we know that the ξref, uref constructed
using {pi}k

i=0 at Line 9 will be such that, the unique trajectory ξg of the closed
system (A closed with gtrk(·, ξref, uref)) starting from x0 ∈ Θ satisfies the reach-
avoid requirement. Otherwise the algorithm will increase the number of segments
k in the PWL reference trajectory (Line 15). When the maximum number of line
segments allowed is reached but the algorithm still could not find ξref, uref that
can guarantee the satisfaction of reach-void requirement from the current cover
Θ, we will partition the current Θ at Line 17 and add those partitions to Cover.
At the same time, k will be reset to 1.

Theorem 2 (Soundness). Suppose the inputs to Algorithm2, A, gtrk, O, G,
V (e(t)), v̄ satisfy the conditions of Theorem1. Let the output be RefTrajs =
{〈Θj , ξj,ref, uj,ref〉}j and 〈Cover,None〉, then we have (1). Θ ⊆ ∪Θj ∪Cover, and
(2). for each triple 〈Θj , ξj,ref, uj,ref〉, we have ∀x0 ∈ Θj, the unique trajectory ξg

of the closed system (A closed with gtrk(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement.

The theorem follows directly from the proof of Theorem 1.

6 Implementation and Evaluation

We have implemented our synthesis algorithm (Algorithm2) in a prototype open
source tool we call FACTEST5 (FAst ConTrollEr SynThesis framework). Our

5 All models and source code of FACTEST are available at [27].
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implementation uses Pypoman6, Yices 2.2 [6], SciPy7 and NumPy8 libraries.
The inputs to FACTEST are the same as the inputs in Algorithm 2. FACTEST
terminates in two ways. Either it finds a reference trajectory ξj,ref and reference
input uj,ref for every partition Θj of Θ so that Theorem 2 guarantees they solved
the controller synthesis problem. Otherwise, it terminates by failing to find ref-
erence trajectories for at least one subset of Θ after partitioning Θ up to the
maximum specified depth.

6.1 Benchmark Scenarios: Vehicle Models and Workspaces

We will report on evaluating FACTEST in several 2D and 3D scenarios drawn
from motion planning literature (see Figs. 4). Recall, the state space X dimen-
sion corresponds to the vehicle model, and is separate from the dimensionality
of the workspace W. We will use four nonlinear vehicle models in these different
scenarios: (a) the kinematic vehicle model (car) [31] introduced in Example 1,
(b) a bijective mobile robot (robot) [13], (c) a hovering robot (hovercraft), and
(d) an autonomous underwater vehicle (AUV) [29]. The dynamics and tracking
controllers (gtrk) of the other three models are described on the FACTEST web-
site [27]. Each of these controllers come with a Lyapunov function that meets
the assumptions of Lemmas 2 and 3 so the tracking error bounds given by the
lemmas {�}k

i=1 can be computed.

(a) Zigzag [32] (b) Maze [32] (c) SCOTS [38] (d) Barrier

(e) Simple Env (f) Difficult Env (g) L-tunnel [32] (h) Z-tunnel [32]

Fig. 4. 2D and 3D workspaces with initial (blue) and goal (green) sets. The scenar-
ios run in the two-dimensional W use the car model. The scenarios run in the three
dimensional W use the hovercraft model. The black lines denote ξref and the dotted
violet lines denote ξg. (Color figure online)

6 https://pypi.org/project/pypoman/.
7 https://www.scipy.org/.
8 https://numpy.org/.

https://pypi.org/project/pypoman/
https://www.scipy.org/
https://numpy.org/
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6.2 Synthesis Performance

Table 1 presents the performance of FACTEST on several synthesis problems.
Several points are worth highlighting. (a) The absolute running time is at the
sub-second range, even for 6-dimensional vehicle models with 4-inputs, operating
in a 3D workspace. This is encouraging for online motion-control applications
with dynamic obstacles. (b) The running time is not too sensitive to dimensions
of X and U because the waypoints are only being generated in the lower dimen-
sional workspace W. Additionally, the construction of ξref from the waypoints
does not add significant time. However, since different models have different
dynamics and Lypunov functions, they would have different error bounds for
position. Such different bound could influence the final result. For example, the
result for the Barrier scenario differs between the car and the robot. The car
required 25 partitions to find a solution over all of Θ and the robot required
22. (c) Confirming what we have seen in Sect. 5.2, the runtime of the algorithm
scales with the number of segments required to solve the scenario and the num-
ber of obstacles. (d) As expected and seen in Zigzag scenarios, all other things
being the same, the running time and the number of partitions grow with larger
initial set uncertainty.

Table 1. Synthesis performance on different scenarios (environment, vehicle). Dimen-
sion of state space X (n), input (m), radius of initial set Θ, number of obstacles O,
running time (in seconds).

Scenario n, m Radius of Θ # O Time (s) # segments per ξref # partitions

Zigzag, car 1 3, 2 0.200 9 0.037 6.0 1.0

Zigzag, car 2 3, 2 0.400 9 0.212 4.0 6.0

Zigzag, car 3 3, 2 0.800 9 0.915 5.0–6.0 16.0

Zigzag, robot 1 4, 2 0.200 9 0.038 6.0 1.0

Zigzag, robot 2 4, 2 0.400 9 0.227 4.0 6.0

Zigzag, robot 3 4, 2 0.800 9 0.911 5.0–6.0 16.0

Barrier car 3, 2 0.707 6 0.697 2.0–4.0 25.0

Barrier, robot 4, 2 0.707 6 0.645 2.0–4.0 22.0

Maze, car 3, 2 0.200 22 0.174 8.0 1.0

Maze, robot 4, 2 0.200 22 0.180 8.0 1.0

SCOTS, car 3, 2 0.070 19 1.541 26.0 1.0

SCOTS, robot 4, 2 0.070 19 1.623 26.0 1.0

L-tunnel, hovercraft 4, 3 0.173 10 0.060 5.0 1.0

L-tunnel, AUV 6, 4 1.732 10 0.063 5.0 1.0

Z-tunnel, hovercraft 4, 3 0.173 5 0.029 4.0 1.0

Z-tunnel, AUV 6, 4 1.732 10 0.029 4.0 1.0

Comparison with Other Motion Controller Synthesis Tools: A Chal-
lenge. Few controller synthesis tools for nonlinear models are available for direct
comparisons. We had detailed discussions with the authors of FastTrack [11],
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but found it difficult to plug-in new vehicle models. RTD [44] is implemented in
MatLab also for specific vehicle models. Pessoa [26] and SCOTS [38] are imple-
mented as general purpose tools. However, they are based on construction of
discrete abstractions, which requires several additional user inputs. Therefore,
we were only able to compare FACTEST with SCOTS and Pessoa using the sce-
nario SCOTS. This scenario was originally built in SCOTS and is using the same
car model.

The results for SCOTS and Pessoa can be found in [38]. The total runtime
of SCOTS consists of the abstraction time tabs and the synthesis time tsyn. The
Pessoa tool has an abstraction time of tabs = 13509 s and a synthesis time of
tsyn = 535 s, which gives a total time of ttot = 14044 s. The SCOTS tool has a has
an abstraction time of tabs = 100 s and a synthesis time of tsyn = 413 s, which
gives a total time of ttot = 513 s. FACTEST clearly outperforms both SCOTS
and Pessoa with a total runtime of ttot = 1.541 s. This could be attributed to
the fact that FACTEST does not have to perform any abstractions, but even by
looking sole at tsyn, FACTEST is significantly faster. However, we do note that
the inputs of FACTEST and SCOTS are different. For example, SCOTS needs
a growth bound function β for the dynamics but FACTEST requires Lyapunov
functions for the tracking error.

6.3 RRT vs. SAT-Plan

To demonstrate the speed of our SAT-based reference trajectory synthesis algo-
rithm (i.e. only the while-loop from Line 6 to Line 15 of Algorithm2 which we
call SAT-Plan), we compare it with Rapidly-exploring Random Trees (RRT) [20].
The running time, number of line segments, and number of iterations needed to
find a path were compared. RRT was run using the Python Robotics library [39],
which is not necessarily an optimized implementation. SAT-Plan was run using
Yices 2.2. The scenarios are displayed in Fig. 4 and the results are in Fig. 5.

Fig. 5. Comparison of RRT and SAT-Plan. The left plot shows the runtime and the
right plot shows the number of necessary iterations. Note that RRT timed out on the
SCOTS scenario.
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Each planner was run 100 times. The colored bars represent the average
runtime and average number of iterations. The error bars represent the range of
minimum and maximum. The RRT path planner was given a maximum of 5000
iterations and a path resolution of 0.01. SAT-Plan was given a maximum of 100
line segments to find a path. RRT timed out for the SCOTS scenario, unable
to find a trajectory within 5000 iterations. The maze scenario timed out about
10% of the time.

Overall SAT-Plan scales in time much better as the size of the unsafe set
increases. Additionally, the maximum number of iterations that RRT had to
perform was far greater than the average number of line segments needed to
find a safe path. This means that the maximum number of iterations that RRT
must go through must be sufficiently large, or else a safe path will not be found
even if one exists. SAT-Plan does not have randomness and therefore will find a
reference trajectory (with k segments) in the modified space (bloated obstacles
and shrunk goal) if one (with k segments) exists. Various examples of solutions
found by RRT and SAT-Plan can be found on the FACTEST’s website [27].

7 Conclusion and Discussion

We introduced a technique for synthesizing correct-by-construction controllers
for a nonlinear vehicle models, including ground, underwater, and aerial vehicles,
for reach-avoid requirements. Our tool FACTEST implementing this technique
shows very encouraging performance on various vehicle models in different 2D
and 3D scenarios.

There are several directions for future investigations. (1) One could explore
a broader class of reference trajectories to reduce the tracking error bounds. (2)
It would also be useful to extend the technique so the synthesized controller can
satisfy the actuation constraints automatically. (3) Currently we require user to
provide the tracking controller gtrk with the Lyapunov functions, it would be
interesting to further automate this step.

References

1. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada, P.:
Control barrier functions: theory and applications. In: 2019 18th European Control
Conference (ECC), pp. 3420–3431. IEEE (2019)

2. Ardakani, M.M.G., Olofsson, B., Robertsson, A., Johansson, R.: Real-time trajec-
tory generation using model predictive control. In: IEEE International Conference
on Automation Science and Engineering, pp. 942–948. IEEE (2015)
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Abstract. Chemical reaction networks (CRNs) play a fundamental role
in analysis and design of biochemical systems. They induce continuous-
time stochastic systems, whose analysis is a computationally intensive
task. We present a tool that implements the recently proposed semi-
quantitative analysis of CRN. Compared to the proposed theory, the
tool implements the analysis so that it is more flexible and more precise.
Further, its GUI offers a wide range of visualization procedures that facil-
itate the interpretation of the analysis results as well as guidance to refine
the analysis. Finally, we define and implement a new notion of “mean”
simulations, summarizing the typical behaviours of the system in a way
directly comparable to standard simulations produced by other tools.

1 Introduction

Chemical Reaction Networks (CRNs) are a language widely used for modelling
and analysis of biochemical systems [10] as well as for high-level programming of
molecular devices [6,33]. They provide a compact formalism equivalent to Petri
nets [30], vector addition systems [24] and distributed population protocols [3].
A CRN consists of a set of chemical reactions of given species, each running at
a certain rate (intuitively, speed).

Example 1 (Gene expression). Our running example is the classic simple expres-
sion of a protein given by the reactions of production (p) and degradation (d) of
proteins and blocking (b) the DNA, over three species: protein (P), active DNA
(DNAon), and blocked DNA (DNAoff):

p: Don
10−→ Don + P d: P 0.1−−→ ∅ b: Don + P 0.001−−−→ Doff

Using mass-action kinetics (the reaction rate is multiplied by the populations of
the reactants), the CRN induces a infinite population Markov chain in Fig. 1.
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Fig. 1. The Markov chain for Gene expression, displaying the population of P. To
simplify the exposition, Don and Doff are displayed as discrete “states” of the system,
but in fact the two “states” are just shorthands for 1,0 and 0,1, respectively.

In order to facilitate numerous applications in systems and synthetic biology,
various techniques for simulation and formal analysis of CRNs have been pro-
posed, e.g. [2,7,15,18,32]. We pinpoint several specifics of this setting, necessary
to motivate and understand the features of the tool:

1. The analysis is notoriously difficult and computationally expensive due
to several aspects: state-space explosion (exponential growth in the number
of species, possibly infinite spaces due to unbounded populations as in Fig. 1,
different rates for different populations, again as in Fig. 1), stochasticity (races
between reactions), stiffness (rates of different magnitudes), multimodality
(qualitatively different behaviours such as extinction of predators only, or
also of preys in the predator-prey models) [17,34]. Consequently, even for
small CRNs, simulations may take minutes and analyses hours.

2. We have to face imprecise inputs. In particular, even if all relevant reactions
are known, the rates are typically not. It is then not clear what behaviours
can be induced by all possible values.

3. The analysis output need not be precise numerically, but only qualita-
tively. For instance, it is important to know that initial growth is followed by
extinction and what the order of magnitude of the peak population is, but not
necessarily what the exact distribution at an exact time is. Unfortunately, it
is hard to compute the qualitative information without the quantitative one.

4. Biologists and engineers often seek for plausible explanations of why the
system under study features or not the discussed behaviour. In many cases, a
set of system simulations/trajectories or population distributions is not suf-
ficient and the ability to provide an accurate explanation for the temporal or
steady-state behaviour is another major challenge for the existing techniques.

SeQuaiA1 is a tool for analysis of CRN addressing these issues:

1. It features unprecedented scalability, analysing standard complex bench-
marks within a fraction of a second.

2. It is robust w.r.t. concrete rates, not depending on the exact values but only
on their orders of magnitude.

3. Its semi-quantitative analysis is precise enough to conclude on the qualita-
tive behaviour of the system including rare behaviours and on rough estimates
of the quantities (population sizes, times).

1 Available at https://sequaia.model.in.tum.de.

https://sequaia.model.in.tum.de
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4. It produces small abstract models (Markov chains) that are explicit, yet
interpretable, making the behaviour more explainable.

It is based on the technique presented in [9], relying on two cornerstones. Firstly,
it computes a system abstraction with acceleration, abstracting not only states
and single transitions, but taking into account segments of paths. The resulting
models are small enough to allow for a synoptic observation of the model dynam-
ics. Secondly, it performs semi-quantitative analysis, focusing on the most
probable behaviours and more qualitative, global descriptions, such as oscilla-
tion, rather than fully quantitative sequences of exact transient distributions.
This yields explainable models and is a sufficient and computationally cheaper
technique. While the basic theory is derived from [9], there are a number of new
features and differences in our tool, not just the implementation:

Method: (i) The abstraction is more precise now that the tool can also com-
pute numerical outputs, whereas [9] focuses on a manually feasible, and hence
imprecise, abstraction. (ii) It suggests how to refine the abstractions, provid-
ing a knob for trading precision for computational resources.

Visualization: The GUI provides a number of ways to display the results, facil-
itating understanding the models, including (i) identification of strongly con-
nected parts of ‘iterations’, corresponding to ‘temporarily stable’ behaviours,
(ii) quantitative information on transient times and steady-state distribu-
tions, or (iii) visual qualitative explanations, such as semantic grouping of
states or tracking correlations between populations.

Additional analysis instruments: (i) The new notion of envelope provides an
explicit knob to consider not only the most probable, but also less probable
behaviours. (ii) The novel concept of mean simulation yields summaries of
most probable runs and an analysis output directly comparable to classic
simulation-based tools.

Related Work. Since a direct analysis of the Markov chains induced by CRN
does not scale well [19], deterministic approximations through fluid (mean-field)
techniques can be applied [4,8] to large populations, but cannot adequately
capture the stochasticity of CRNs caused by low population species. To this
end, both can be combined in hybrid approaches [7,18,21], typically involving
a computationally demanding numerical analysis. Reduction techniques such as
[1,12] are based on approximate bisimulation [11], on aggregation according to
the CRN-specific structure [13,27,35], or state truncation [20,28,29].

Despite the plethora of techniques, the practical analysis of CRNs often
relies on the stochastic simulation [15] and its multi-scale improvements [5,14,17,
22,31,32]. The widely used tool include the platform-independent Copasi [23],
DSD [25] with a convenient web-based graphical interface, or StochPy [26] easily
extensible using Python scientific libraries. In contrast, our approach (i) provides
a compact explanation of the system behaviour in the form of tiny models allow-
ing for a synoptic observation (ii) can easily reveal less probable behaviours, and
iii) as shown in [9], is able to analyse standard complex benchmarks in seconds
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and thus provides the unprecedented scalability compared to other numerical as
well as simulation-based techniques.

2 Workflow and Key Functionality

In this section, we guide the reader through the workflow, discuss the key features
of the tool and demonstrate them on examples. The GUI is structured into
several tabs and panels reflecting the workflow of the tool. First, a CRN is either
retrieved from a file in the Open model tab or a new one is created. Either way, the
model can be changed in the Editor panel together with the analysis parameters.
The process continues in the Analysis tab. The analysis follows in two steps. First,
the semi-quantitative abstraction of the Markov chain for the CRN is generated;
second, the semi-quantitative analysis is performed on the abstraction. The tool
offers an explicit option to display the abstraction as a .dot file or to directly
run both steps. After the complete analysis is executed, the Visualization panel
offers a range of options to display the results, including various quantitative
properties. Finally, the analysed model can be used to generate concrete runs
on the Simulation tab, which we call mean simulations since they display the
“average-case” behaviour. In the following we detail on these key elements.

Fig. 2. Left: The abstract Markov chain for Gene expression with population dis-
cretization thresholds 20, 50 and the population bound 1000. Top: The classic may
transition function. Bottom: The semi-quantitative version with accelerated transi-
tions (denoted by prefix “A”). Right: The full blue line shows a typical simulation
of the model (population of P), obtained using DSD tool [25]. The dotted green line
corresponds to the fast variant of the model with the rate of b being 10−2. (Color figure
online)
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2.1 Semi-quantitative Abstraction

Key Idea. The abstraction of the state space is simply given by a discretization of
the population for each species into finitely many intervals, see Fig. 2 (left). The
classic may abstraction of the transition function results in non-deterministic
self-loops as in Fig. 2 (left top) in red, which make impossible to conclude any-
thing useful (except for some safety properties) on the behaviour once we reach
such a state, even whether it is ever left at all. Instead, [9] considers sequences
of transitions: in this case, sequences of prevalently growing transitions (those
increasing the population) are significantly more probable than the prevalently
decreasing ones. Consequently, the self-looping transitions are accelerated (taken
multiple times) to get a “combined” transition that brings a typical represen-
tative of this population interval into a higher interval, see Fig. 2 (left bottom)
also in red. Hence the new rate reflects (i) the mass-action kinetics with the
typical population in the interval and (ii) the typical number of the transition
repetitions before another interval is reached. These accelerated transitions are
the key idea of the semi-quantitative abstraction and are denoted by a prefix A.

Tool Inputs. Technically, the tool requires, for each species, a (possible empty)
list of increasing population thresholds t1, t2, . . . tn and a population bound tb.
The thresholds split the concrete population to the intervals [0, 0], (0, t1], (t1, t2],
. . . (tn−1, tn], (tn,∞). Here 0 is taken separately to reflect enabledness of actions;
the representatives, used for consequent computations, are chosen to be in the
middle of the intervals and derived from tb for the last one. (For the empty list
we have only one non-zero interval (0,∞)). The input numbers are supposed to
reflect the monitored property of interest and the required precision, the bound
tb should give a probable upper bound on the maximal population. How to obtain
and iteratively improve these is discussed in Sect. 2.5 on refinement.

Example 2. Consider Gene expression, now with a ‘fast’ blocking where the rate
of b equals 10−2. A typical simulation can be seen in Fig. 2 (right, dotted green
line): the number of proteins grows until several dozen, then blocking takes place
until extinction. The semi-quantitative abstraction for thresholds 10, 20, 50 yields
the model in Fig. 3(a). In contrast to classic abstractions, there are no self-loops
and the abstract transitions are assigned concrete rates. One can see that the
blocking can in principle take place at any population and that population can
decrease also when DNA is on, i.e. in states [1, 0, ·]. However, all this happens
with very low probabilities and the model captures this only indirectly through
the numerical labelling. This is made explicit during the semi-quantitative
analysis.

2.2 Semi-quantitative Analysis

Key Idea. The aim is to prune the abstraction so that only reasonably probable
behaviour is reflected, see the thick transitions in the abstraction in Fig. 2 (left
bottom). To this end, we preserve in each state only the transitions with the
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Fig. 3. (a) and (b): ‘Fast’ Gene expression with thresholds 10, 20, 50. (a) depicts the
full abstraction and (b) depicts envelope = 3. (c)–(e): ‘Slow’ Gene expression with
thresholds 20, 50, 80, 150. (d) and (e) depicts the pruned abstraction with envelope = 3
and 1, respectively.
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highest rate h or almost highest rates, i.e. with h′ > h/envelope where envelope >
1 is a parameter. Parameter values in [1, 10] ensure we can only look at rates of
the same order of magnitude, thus the most probable events and those with e.g.
only 20% chance of happening. Higher values then allow for inspection of even
less probable behaviours.

Consequently, the method can naturally handle uncertainty in the reaction
rates since typically only the relative magnitudes of the rates are important,
actually, only their orders of magnitude. This robustness w.r.t. the input is very
beneficial for biologists as the precise rates are often not known.

Example 3. The analysis of the previous ‘fast’ Gene expression with envelope = 3
is depicted in Fig. 3(b). As such it shows the most probable behaviours: the fast
growth until the intervals 2 and 3 (i.e. 10–20 and 20–50) and not beyond to
4 (over 50), followed by a slower decline. The computed rates induce expected
times to pass through a state, matching closely those of the simulation Fig. 2
(right, dotted green line). Moreover, we see that the blocking transition from
interval 2 has a lower probability than the production, is thus less probable. As
such it would not even appear as a probable one, for a stricter envelope = 2.

Example 4. A more complicated behaviour arises when the blocking is slow, with
rate 10−3 as in Sect. 1. A simulation run for this case is depicted in Fig. 2 (right,
full blue line). One can observe a more balanced competition between blocking
and oscillation around 70–100 proteins. Similarly, while the full abstraction (not
shown here) features arbitrary oscillations (also back to no proteins at all), after
analysis the pruned abstraction is faithfully modelling the initial growth, subse-
quent oscillation only in the range of higher populations, followed by blocking
and gradual extinction of proteins, see Fig. 3(c).

Technically, the analysis relies on repeated alternation of transient and
steady-state analysis. First, starting from the initial state, we follow in each
state only the transitions with highest rates (most probable ones), until the set
of explored state reaches a fixpoint. A part of the created graph is recurrent and
forms a bottom strongly connected component (BSCC) or a collection thereof.
The system temporarily settles in the steady state of this BSCC. After some
time has passed, also a less probable transition happens almost surely and the
“BSCC” is exited. These exit points are identified by a steady-state analysis of
the BSCC, taking the magnitudes of exiting and non-exiting transition rates into
account. The exit points trigger a new iteration of the transient and then the
steady-state analysis.

Example 5. Figure 3(d) illustrates a situation with two iteration using the slow
variant of the model. Decreasing envelope to 1 caused that the blocking reaction
is explored in the second iteration – as an exit of the BSCC found in the first
iteration. Before that exit happens, the “BSCC” represents a “temporary” steady
state of the system.
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Note on Correctness. As discussed in [9], the semi-quantitative analysis provides
guarantees in the form of limit behaviour and convergence: firstly, the precision
grows with the differences in the orders of magnitudes of involved rates: as
their ratios tend to infinity, the error tends to zero; secondly, as the population
discretization gets finer, the error in the new “accelerated” transitions is reduced,
trivially being zero for complete refinement into singletons.

2.3 Visualization of Qualitative Information

A proper visualization is essential for clear presentation and easy interpretation
of the results of our analysis. To this end, the tool and its GUI offer various
options for visualizing the results. The basic ones, related to the graph structure,
are the following. Further options, with more quantitative flavour, are discussed
in the next section, followed by an example illustrating all of them.

Iterations. As the complete abstract model is typically very large and chaotic,
further structuring is necessary. Therefore, the default view shows the states
arranged and grouped into separate blocks, one for each iteration, additionally
coloured distinctly for each iteration. Besides, we can restrict which iterations we
show. This is useful to zoom in and investigate a particular part of the behaviour.

Intra-iteration SCCs (IISCCs). Additionally, the arrangement and colouring
can be based on aggregating SCCs within each iteration (IISCCs). This helps to
understand the emergence of repetitive behaviour patterns, such as oscillation or
(temporary) steady state. It can be also combined with the iteration grouping.

Collapsed Views. In order to understand the system behaviour, one typically
needs to have a synoptic overview of the system. For more complex systems,
even the pruned abstraction could become too large and the view of the fully
expanded system might not be sufficiently compact. In such cases, the aggregates
discussed in the previous views, i.e., iterations and IISCCs, can be collapsed
into a single nodes, hiding the complexity of the exact behaviour pattern within
these areas. This allows us, for instance, to ignore the particular (temporary)
oscillation or steady state in these states and to focus on more global behaviour,
such as what happened before and after this behaviour and how often does it
arise. In contrast to zooming in by restricting to certain iteration(s) only, the
collapsed views provide a means to zoom out.

2.4 Visualization of Quantitative Information

The produced graphs are also labelled by numerical information. While the
quantities cannot be precise due to the simplifications of the extremely scalable
analysis, they match the orders of magnitudes of the observed quantities, which
is often precise enough for biological purposes; for instance, the peak of protein
growth happens after units vs. dozens of seconds in the fast and slow variants
of Gene expression, respectively.
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Transient Analysis. Firstly, each abstract transition is labelled with a rate cor-
responding (in the order of magnitude) to the rate of the concrete transition
(or accelerated transition, i.e. a “sequence” of transitions) of a “typical” rep-
resentative of the abstract state. These rates induce the expected time spent
in each transient state of each iteration. Indeed, the waiting time is simply the
inverse of the sum of the outgoing rates. Further, each BSCC of each iteration
is labelled by an estimate of time before it is left into the next iteration. This is
a key notion, which allows us to easily provide transient timing information for
very stiff systems (working at different time scales). Consider the simple gene
model. From Fig. 3(b) and (d) we can easily compute the expected time to the
extinction (as the sum of the exit time for all SCC on the inspected path). Our
analysis correctly estimates that the expected extinction time is around 24 and
for the fast variant and 40 for the slow variant.

Steady State Analysis. In many biological models, the natural steady state is
either extinction or unbounded explosion. Hence it does not say much about the
“seemingly steady” state (the temporary steady state), i.e., behaviour that is
stable for a long but finite time. Therefore, the tool provides information not only
on the steady state of the whole system, but also for each iteration separately
since they represent the temporary steady states discussed above. Both can
be visualized as colouring of states, with higher probabilities corresponding to
darker colours, immediatelly giving a synoptic view on frequent behaviours.

Correlations. Finally, correlations between population sizes can be observed as
follows. The GUI can be given a set of equivalences of the form m∼n for species
i, j, meaning that if a state has (abstract) population m of species i and n of j
then it is regarded as satisfying the correlation in question. It is coloured accord-
ingly and the overall colouring of the system provides further indication under
which behaviour or in which phases the correlation holds.

Example 6. We demonstrate these visualization options on a more complicated
gene expression model [16], widely used model for benchmarking CRN analyzers,
in Fig. 4. As reported in [16,18], the behaviour oscillates between two steady
states with DNA on and DNA off. Moreover, there is a correlation between high
amounts of RNA present and DNA being on, and no RNA with DNA off.

The complete system and its steady state distribution is depicted in the
part a) using the iteration and IISCC arrangement. This view shows immedi-
ately without seeing any details that the only interesting states are in iteration 1
including all states with a high steady-state probability (the red colouring).
Therefore, in part b), we zoom in to iteration 1 and use the IISCC arrangement.
In order to observe the interesting switches between the temporary steady states,
we collapse the IISCCs, in the part c), and thus ignore the internal (non-
interesting) behaviour of the big IISCC. Finally, in part d), we use the cor-
relation colouring to identify states where the required correlation holds (i.e.
the blue states). Comparing part c) and d) immediately reveals that the system
spends the majority of the time in the states where the correlation holds.
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Fig. 4. A visualisation of the workflow for the extended gene expression model. (Color
figure online)

2.5 Precision and Refinement

So far, we have illustrated the concepts and the functionality on models with
an appropriate level of abstraction. However, it often happens that we start
the investigations with a too coarse abstraction. Whenever this happens, it is
important to notice this and appropriately refine the abstraction. While [9] does
not discuss this issue, the tool provides support also for that.

Precision Parameters. There are several knobs for trading the size and the
precision of the abstraction. They all come as input in the lower half of the
Editor tab: discretization, bound, and envelope.

Example 7. Recall the initial abstraction for the Gene expression of Fig. 2 (with
rate 10−3). The abstraction, using thresholds 20, 50 predicts an oscillation includ-
ing low populations of P (1–20) which is not correct (recall that the P oscillates
on high populations before the blocking reaction occurs). Figure 3(c) and (d)
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show the abstraction and the consequent analysis and visualization for a refined
model using thresholds 20, 50, 80, 150 (instead of just 20, 50). As already dis-
cussed, this abstraction already correctly predicts the system behaviour.

Discretization. The basic building block of each abstraction is the degree of
details it preserves in the abstract states. Firstly, it determines how precisely
we can observe the evolution of the population. For instance, whenever we want
to detect whether a population typically grows beyond a bound or oscillates in
a certain interval, such an interval should be present in the discretization. Sec-
ondly, the discretization should be fine enough so that in each state, the rates are
reasonably (in orders of magnitude) precise. Fortunately, in our analysis their
absolute precision is not vital. In contrast, we only need relative proportions of
the rates to have the right magnitude to decide which behaviour is probable. Con-
sequently, too rough abstraction is reflected in “non-determinism” when a state
has two transitions under similar rate. In such a case, the probable behaviour
cannot be determined. Therefore, the Visualization tab provides in the Coloriza-
tion pane an option to provide suggestions for refinement, including highlighting
non-deterministic states, pointing at the natural candidates for refinement. Note
that we highlight only the states where the two transitions lead to mutually dif-
ferent SCCs so that a significant change in behaviour may occur.

Bounds. Similarly, for the single infinite interval (tn,∞), the tool inputs a bound
which is a believed safe upper bound on the population of the species. Of course,
it may be wrong. This is irrelevant in case when the population explodes beyond
all bounds. However, whenever there are transitions from the highest level back
to a lower one, its feasibility and rate are in question. Optimally, such states
do not even occur in the pruned abstraction. If they do, we also highlight them
using the Colorization for Refinement suggestions (in another colour).

Envelope. As too rough abstractions introduce too much non-determinism,
dually, the degree of the non-determinism is determined (even defined) by the
envelope, the factor between rates so that even the less probable option is still
taken into account (and thus introduces non-determinism). Consequently, high
values of envelope introduce non-determinism, making the analysis take also less
important behaviour into account; in contrast, low values make the analyzed
system deterministic, showing only the most probable behaviour. The choice of
the envelope thus depends on whether such behaviours should also be reported.

2.6 Mean Simulations

Since our models, although abstract, have an operational semantics, we can even
run simulations on them. Moreover, the accelerated transitions, as “sequences”
of transitions, have a low variance in the expected time, by the law of large num-
bers. Hence their execution time can be chosen quite precisely in a deterministic
way. Similarly, the time to leave an IIBSCC is quite deterministic. Thus we can
generate simulation where the only random decisions are choices of transitions,
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but the timing follows the mean time of the respective events. Moreover, runs
within the pruned abstraction reflect the most important behaviours only.

Fig. 5. Mean simulation for the slow
variant of Gene expression, directly
comparable to Fig. 2 (right, full line).

Such mean simulations2, which can
thus be generated from our analysis, repre-
sent groups of typical runs (modulo small
time shifts and order of transitions within
an SCC, which are not very relevant).
Therefore, a few such simulation reflect
all the present behaviours (on a level of
desired significant probability) and can
serve to observe multi-modalities, bifurca-
tions, rough transient timing as well as fre-
quencies in the steady-state and tempo-
rary steady-state. To our best knowledge,
such a concept has not yet been considered
for simulation of stochastic systems.

Example 8. Figure 5 shows an abstract simulation for our running example with
discretisation thresholds 20, 50, 80, 150. One can readily observe its validity with
respect to the typical stochastic simulation in Fig. 2 (right, full blue line).

3 Conclusion

We have presented SeQuaiA, a scalable tool for robust and explainable analysis
of CRNs. The analysis is precise enough as cross-validated with simulation-based
results on several models widely used in the literature. One of the key contribu-
tions of the tool is the visualization, which is essential for clear presentation and
easy interpretation of the results of our analysis.
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2. Abate, A., Brim, L., Češka, M., Kwiatkowska, M.: Adaptive aggregation of Markov
chains: quantitative analysis of chemical reaction networks. In: Kroening, D.,
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