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Preface

It was our privilege to serve as the program chairs for CAV 2020, the 32nd
International Conference on Computer-Aided Verification. CAV 2020 was held as a
virtual conference during July 21–24, 2020. The tutorial day was on July 20, 2020, and
the pre-conference workshops were held during July 19–20, 2020. Due to the
coronavirus disease (COVID-19) outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2020 received a very high number of submissions (240). We accepted 18 tool
papers, 4 case studies, and 43 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured invited talks by David Dill (Calibra) and
Pushmeet Kohli (Google DeepMind) as well as invited tutorials by Tevfik Bultan
(University of California, Santa Barbara) and Sriram Sankaranarayanan (University of
Colorado at Boulder). Furthermore, we continued the tradition of Logic Lounge, a
series of discussions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2020 hosted the following workshops:
Numerical Software Verification (NSV), Verified Software: Theories, Tools, and
Experiments (VSTTE), Verification of Neural Networks (VNN), Democratizing Soft-
ware Verification, Synthesis (SYNT), Program Equivalence and Relational Reasoning
(PERR), Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), Formal
Methods for Blockchains (FMBC), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee (PC) for CAV 2020 consisted of 85 members – a
committee of this size ensures that each member has to review a reasonable number of
papers in the allotted time. In all, the committee members wrote over 960 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2020 PC for their outstanding efforts in evalu-
ating the submissions and making sure that each paper got a fair chance. Like last
year’s CAV, we made the artifact evaluation mandatory for tool paper submissions and
optional but encouraged for the rest of the accepted papers. The Artifact Evaluation
Committee consisted of 40 reviewers who put in significant effort to evaluate each
artifact. The goal of this process was to provide constructive feedback to tool devel-
opers and help make the research published in CAV more reproducible. The Artifact



Evaluation Committee was generally quite impressed by the quality of the artifacts,
and, in fact, all accepted tools passed the artifact evaluation. Among the accepted
regular papers, 67% of the authors submitted an artifact, and 76% of these artifacts
passed the evaluation. We are also very grateful to the Artifact Evaluation Committee
for their hard work and dedication in evaluating the submitted artifacts. The evaluation
and selection process involved thorough online PC discussions using the EasyChair
conference management system, resulting in more than 2,000 comments.

CAV 2020 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2020 a success. First, we would like to thank Xinyu Wang and He Zhu for chairing the
Artifact Evaluation Committee and Jyotirmoy Deshmukh for local arrangements. We
also thank Zvonimir Rakamaric for chairing the workshop organization, Clark Barrett
for managing sponsorship, Thomas Wies for arranging student fellowships, and Yakir
Vizel for handling publicity. We also thank Roopsha Samanta for chairing the Men-
toring Committee. Last but not least, we would like to thank members of the CAV
Steering Committee (Kenneth McMillan, Aarti Gupta, Orna Grumberg, and Daniel
Kroening) for helping us with several important aspects of organizing CAV 2020.

We hope that you will find the proceedings of CAV 2020 scientifically interesting
and thought-provoking!

June 2020 Shuvendu K. Lahiri
Chao Wang
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Abstract. Computer science class enrollments have rapidly risen in the
past decade. With current class sizes, standard approaches to grading
and providing personalized feedback are no longer possible and new tech-
niques become both feasible and necessary. In this paper, we present the
third version of Automata Tutor, a tool for helping teachers and students
in large courses on automata and formal languages. The second version
of Automata Tutor supported automatic grading and feedback for finite-
automata constructions and has already been used by thousands of users
in dozens of countries. This new version of Automata Tutor supports
automated grading and feedback generation for a greatly extended vari-
ety of new problems, including problems that ask students to create reg-
ular expressions, context-free grammars, pushdown automata and Tur-
ing machines corresponding to a given description, and problems about
converting between equivalent models - e.g., from regular expressions to
nondeterministic finite automata. Moreover, for several problems, this
new version also enables teachers and students to automatically gener-
ate new problem instances. We also present the results of a survey run
on a class of 950 students, which shows very positive results about the
usability and usefulness of the tool.

Keywords: Theory of computation · Automata theory · Personalized
education · Automata tutor · Automated grading

1 Introduction

Computer science (CS) class enrollments have been rapidly rising, e.g., CS enroll-
ment roughly triples per decade at Berkeley and Stanford [12] or TU Munich.
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student survey; Tobias Nipkow and his team for allowing us to conduct the user sur-
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Salomon Sickert-Zehnter for their help in developing this project; the TUM fund
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teaching. Loris D’Antoni was supported, in part, by NSF under grants CNS-1763871,
CCF-1750965, CCF-1744614, and CCF-1704117; and by the UW-Madison OVRGE
with funding from WARF.
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Both online and offline courses and degrees are being created to educate students
and professionals in computer science and these courses may soon have thou-
sands of students attending a lecture, or tens of thousands following a Massive
Online Open Course (MOOC). At these scales, standard approaches to grading
and providing personalized feedback are no longer possible and new techniques
become both feasible and necessary. Current approaches for handling this grow-
ing student volume include reducing the complexity of assignments or relying on
imprecise feedback and grading mechanisms. Simpler assessment mechanisms,
e.g., multiple-choice questions, are easier to grade automatically but lack real-
ism [8]. Designing better techniques for automated grading and feedback gener-
ation is therefore a necessity.

Recent advances in formal methods, including program synthesis and verifi-
cation, can help teachers and students in verifiably correct ways that statistical
or rule-based techniques cannot. For example, formal methods have been used
to identify student errors and provide feedback for problems related to intro-
ductory Python programming assignments [17] geometry [9,11], algebra [16],
logic [2], and automata [3,6]. In particular, for this last topic, the tool Automata
Tutor v2 [7] has already been used by more than 9,000 students at more than
30 universities in North America, South America, Europe, and Asia.

In this paper, we present Automata Tutor v3, an online1 tool that extends
Automata Tutor v2 and uses techniques from program synthesis and deci-
sion procedures to improve the quality and effectiveness of teaching courses on
automata and formal languages. Besides being part of the standard CS cur-
riculum, the concepts taught in these courses are rich in structure and applica-
tions, e.g., in control theory, text editors, lexical analyzers, or models of software
interfaces. Concrete topics in such curricula include automata, regular expres-
sions, context-free grammars, and Turing machines. For problems and assign-
ments related to these topics Automata Tutor v3 can automatically: (1) Detect
whether the student’s solution is correct. (2) Detect different types of student’s
mistakes and translate them into explanatory feedback. (3) If possible, generate
new problems together with the corresponding solutions for teachers to use in
class.

Automata Tutor v3 greatly expands its predecessor Automata Tutor v2,
which only provides ways to pose and solve problems for deterministic and non-
deterministic finite automata constructions. This paper describes the new com-
ponents introduced by Automata Tutor v3 and how this new version improves
on its previous one. The key advantages to its competitors are the breadth,
automatic generation and grading of exercises, infrastructure allowing for use
in large courses and a useful feedback to the students, compared to text-based
interfaces used by Autotool [13], rudimentary feedback in JFLAP [14] and none
in Gradience [1].

Since Automata Tutor has already been well received by teachers around the
world, we believe that the readers from the CAV community will find great value
in knowing about this new and fundamentally richer version of the tool and how

1 https://automata.model.in.tum.de.

https://automata.model.in.tum.de
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it can extensively help with teaching the automata and formal languages courses,
a task we know many of the attendees have to face on a yearly basis.

Our contributions are the following:

– Twelve new types of problems (added to the four problems from the
previous version) that can be created by teachers and for which the tool
can assign grades together with feedback to student attempts. While the
previous version of Automata Tutor could only support problems involv-
ing finite automata constructions, Automata Tutor v3 now supports prob-
lems for proving language non-regularity using the pumping lemma, building
regular expressions, context free grammars, pushdown automata and Turing
machines, and conversions between such models.

– Automatic problem generation for five types of problems, with the code
modularity allowing to add it for all the others. This feature allows teachers
to effortlessly create new assignments, or students to practice by themselves
with potentially infinitely many exercises.

– A new and improved user interface that allows teachers and students
to navigate the increased number of problem types and assignments. Fur-
thermore, each problem type comes with an intuitive user interface (e.g., for
drawing pushdown automata).

– An improved infrastructure for the use in large courses, in particular, incor-
porating login systems (e.g. LDAP or OAuth), getting a certified mapping
from users to students and enabling teachers to grade homework or exams.

– A user study run on a class of 950 students to assess the effectiveness and
usability of Automata Tutor v3. In our survey, students report to have learned
quickly, felt confident, and enjoyed using Automata Tutor v3, and found it
easy to use. Most importantly, students found the feedback given by the tool
to be useful and claimed they understood more after using the tool and felt
better prepared for an upcoming exam. In our personal experience, the tool
saves us dozens of thousands of corrections in each single course.

2 Automata Tutor in a Nutshell

Automata Tutor is an online education tool created to support courses teaching
basic concepts in automata and formal languages [7]. In this section, we describe
how Automata Tutor helps teachers run large courses and students learn effi-
ciently in such courses.

Learning Without Automata Tutor. Figure 1 schematically shows a student-
teacher interaction in a course taught without an online tutoring system. The
teacher creates exercises, grades them manually, and (sometimes) manually pro-
vides personalized feedback to the students. This type of interaction has many
limitations: (1) it is asynchronous (i.e., the student has to wait a long time for
what is often little feedback) and does not scale to large classrooms, posing
strenuous amount of work on teachers, (2) it does not guarantee consistency in
the assigned grades and feedback, and (3) it does not allow students to revise
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Exercises

Teacher
Students

creates

grades
solve

feedback

Internet? want more… feedback?
… practice?

Fig. 1. Common structure of practical sessions for CS classes.

their solutions upon receiving feedback as the teachers often release a solution
to all students as part of the feedback and do not grade new submissions.

Another drawback of this interaction is the limited number of problems stu-
dents can practice on. Because teachers do not have the resources to create many
practice problems and provide feedback for them, students are often forced to
search the Internet for old exams and practice sheets or even exercises from
other universities. Due to the lack of feedback, this chaotic search for practice
problems often ends up confusing the students rather than helping them.

Fig. 2. Overview of Automata Tutor v3 (our contributions in green). The teacher
creates exercises on various topics. The students solve the exercises in a feedback cycle:
After each attempt they are automatically graded and get personalized feedback. The
teacher has access to the grade overview. For additional practice, students can generate
an unlimited number of new exercises using the automatic problem generation. (Color
figure online)

Learning with Automata Tutor. Figure 2 shows the improved interaction offered
by Automata Tutor v3. Here, a teacher creates the problem instances with the
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Fig. 3. Creating a new problem of type “PDA Construction”.

help of the tool. The problems are then posed to the students and, no matter how
large a class is, Automata Tutor automatically grades the solution attempts of
students right when they are submitted and immediately gives detailed and per-
sonalized feedback for each submission. If required, e.g. for a graded homework,
it is possible to restrict the number of attempts. Using this feedback, the stu-
dents can immediately try the problem again and learn from their mistakes. As
shown in a large user study run on the first version of Automata Tutor [6], this
fast feedback cycle is encouraging for students and results in students sponta-
neously exploring more practice problems and engaging with the course material.
Additional practice is supported by the automatic problem generation, with the
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Fig. 4. Feedback received when solving the problem created in Fig. 3.

same level of detailed and personalized feedback as before without increasing the
workload of the teacher. Furthermore, automatic problem generation can assist
the teacher in creating new exercises. Finally, whenever necessary, the teacher
can download an overview of all the grades.

Improved User interface. Automata Tutor is an online tool which runs in the
most used browsers. A new collapsible navigation bar groups problems by topic,
facilitating quick access to exercises and displaying the structure of the course
(see Figure 6 in [5, Appendix B]). To create a new exercise, a teacher clicks the
“+”-button and is presented the view of Fig. 3. In this case, the drawing canvas
allows to easily specify the sample solution pushdown automaton. Similarly,
when students solve this exercise, they draw their solution attempt also on the
canvas. After submitting, they receive their personalized feedback and grade (see
example in Fig. 4). For the automatic problem generation, a dropdown menu to
select the problem type and a slider to select the difficulty is displayed together
with the list of all problems the user has generated so far (see the screenshot in
Figure 7 in [5, Appendix B]).

3 Design

3.1 University and Course Management

While Automata Tutor can be used for independent online practice, one of the
main advantages is its infrastructure for large university courses. To this end,
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it is organized in courses. A course is created and supervised by one or more
teachers. Together, they can create, test and edit exercises. The students can-
not immediately see the problems, but only after the teachers have decided to
pose them. This involves setting the maximum number of points, the number of
allowed attempts as well as the start and end date.

To use Automata Tutor, students must have an account. One can either
register by email or, in case the university supports it, login with an external login
service like LDAP or Oauth. When using the login service of their university,
teachers get a certified mapping from users to students and enabling teachers to
use Automata Tutor v3 for grading homework or exams.

Students can enroll in a course using a password. Enrolled students see all
posed problems and can solve them (using the allowed number of attempts). The
final grade can be accessed by the teachers in the grade overview.

3.2 New Problem Types

In this section, we list the problem types newly added to Automata Tutor v3.
They are all part of the course [10] and a detailed description of each problem
can be found in [5, Appendix A], including the basic theoretical concept, how
a student can solve such a problem, what a teacher has to provide to create a
problem, the idea of the grading algorithm, and what feedback the tool gives.

RE/CFG/PDA Words: Finding words in or not in the language of a regular
expression, context free grammar or pushdown automaton.

RE/CFG/PDA Construction: Given a description of a language, construct a
regular expression, context free grammar or pushdown automaton.

RE to NFA: Given a regular expression, construct a nondeterministic-finite
automaton.

Myhill-Nerode Equivalence Classes: There are two subtypes: either, given a reg-
ular expression and two words, find out whether they are equivalent w.r.t.
the language, or, given a regular expression and a word, find further words
in the same equivalence class.

Pumping-Lemma Game: Given a language, the student has to guess whether it
is regular or not and then plays the game as one of the quantifiers.

Find Derivation: Given a context free grammar and a word, the student has to
specify a derivation of that word.

CNF: Given a context free grammar, the student has to transform it into Chom-
sky Normal Form.

CYK: Given a context free grammar in CNF and a word, the student has to
decide whether the word is in the language of the grammar by using the
Cocke–Younger–Kasami algorithm.

While to TM: Given a while-program (a Turing-complete programming language
with very restricted syntax), construct a (multi-tape) Turing machine with
the same input-output behaviour.
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3.3 Automatic Problem Generation

Automatic Problem Generation (APG) allows one to generate new exercises of
a requested difficulty level and problem type. This allows students to practice
independently and supports teachers when creating new exercises. While APG
is currently implemented for four CFG problem types and for the problem type
“While to TM”, it can be easily extended to other problem types by providing
the following components:

– Procedure for generating exercises at random either from given basic
building blocks or from scratch.

– A “quality” metric qual(E) for assessing the quality of the generated exer-
cise E, ranging from trivial or infeasible to realistic.

– A “difficulty” metric diff (E) for assessing the difficulty of E.

Given these components, Automata Tutor generates a new problem with a given
minimum difficulty dmin and maximum difficulty dmax as follows. Firstly, 100
random exercises are generated. Secondly, Automata Tutor chooses exercises E
with the best quality such that dmin ≤ diff (E) ≤ dmax.

Concretely, for the CFG problem types, CFGs with random productions are
generated and sanitized. Resulting CFGs that do not accept any words or have
too few productions are excluded using the quality metric. The difficulty metric
always depends on the number of productions; additionally, depending on the
exact problem type, further criteria are taken into account.

For the problem type “While to TM” we use an approach similar to the
one suggested in existing tools for automatic problem generation [15,18]: We
handcrafted several base programs which are of different difficulty level. In the
generation process, the syntax tree of such a base program is abstracted and
certain modifying operations are executed; these change the program without
affecting the difficulty too much. E.g. we choose different variables, switch the
order of if-else branches or change arithmetic operators. Then several programs
are generated and those of bad quality are filtered out. A program is of bad
quality if its language is trivially small or if it contains infinite loops; since
detecting these properties is undecidable, we employ heuristics such as checking
that the loops terminate for all inputs up to a certain size with a certain timeout.

4 Implementation and Scalability

Automata Tutor v3 is open source and it consists of a frontend, a backend, and
a database. It also provides a developer’s manual for creating new exercises.

The frontend, written in scala, renders the webpage. The drawing canvases
for the different automata and the Turing machines rely on javascript. The fron-
tend and backend communicate using XML objects.

The backend, written in C#, contains methods to unpack the xml of the
frontend to compute the grade and feedback for solutions. It is also used to
check the syntax of exercises and for the automatic problem generation. It relies
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on AutomataDotNet2, a library that provides efficient algorithms for automata
and regular expressions.

The database keeps track of existing users, problems and courses. It uses the
H2 Database Engine.

All the new parts of Automata Tutor v3 were developed and tested over the
last 3 years at TU Munich, where they were used to support the introductory
theoretical computer science course. This local deployment served as an impor-
tant test-bed before publicly deploying the tool online at large scale. Due to its
modular structure, the tool is easily scalable by having multiple frontends and
backends together with a load distributor. This approach has successfully scaled
to 950 concurrent student users; for this, we used 7 virtual machines: 3 host-
ing frontends, 3 hosting backends (each with 2 cores 2.60 GHz Intel(R) Xeon(R)
CPU and 4 GB RAM), and 1 for load distribution and the database (with 4 such
cores and 8 GB RAM). We will scale the number of machines based on need.

5 Evaluation and User Study

Large-Class Deployment. In the latest iteration of the TU Munich course
in 2019, we used Automata Tutor v3 (in the following denoted as AT) in a
mandatory homework system for a course with about 950 students; the home-
work system also included written and programming exercises. In total, we posed
79 problems consisting of 18 homework and 61 practice problems. The teachers
saved themselves the effort of correcting 26,535 homework exercises, and the
students used AT to get personalized feedback for their work 76,507 times. On
average, each student who used AT did so 107 times.

Student Survey Results. At the end of the course, we conducted an
anonymized survey, based on the System Usability Survey [4]. 14.6% of the
students in the course answered the survey, which is an ordinary rate of return
for an online questionnaire, especially given that there was no incentive. The
students were given statements to judge on a Likert scale from 1 to 5 (strongly
disagree to strongly agree). We define “The students agreed with the following
statement” to mean that the average and median scores were at least 4 and less
than 10% of the students chose a score below 3. Dually, if the students disagreed
with the statement with median and average score that was at most 2 and less
than 10% having a score greater than 3, we say that they “agreed with the
negation of the statement”. For all statements that do not satisfy either of the
criteria, we report mixed answers. The full survey results can be found in [5,
Appendix C].

Usability. Regarding the usability of the tool, the students agreed with the
following statements:

2 https://github.com/AutomataDotNet/Automata.

https://github.com/AutomataDotNet/Automata
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– I quickly learned to use the AT.
– I do not need assistance to use the AT.
– I feel confident using the AT.
– The AT is easy to use.
– I enjoy using the AT/the AT is fun to use.

However, there were lots of valuable suggestions for improvements, many of
which we have implemented since then. Moreover, the survey also revealed space
for improvement, in particular for streamlining as documented by the following
statements where the answers were more mixed:

– The AT is unnecessarily complex.
– The canvas for drawing is intuitive.
– The use of AT is self-explanatory.

Usefulness. Regarding how useful AT was for learning, the students agreed with
the following statements:

– I understand more after using the AT.
– I prefer using the AT to using pen and paper exercises (12.9% disagreed, but

median and average are 4).
– The feedback of the AT was helpful and instructive.
– The exercises within the AT are well-designed.
– The AT fits in well with the programming tasks and written homework.
– The AT did not hinder my learning.
– I feel better prepared for the exam after using AT.
– The feedback of the AT was not misleading/confusing.

Note that there are no statements with mixed or negative answers regarding the
usefulness. Additionally, as shown in Fig. 5, when we asked students about their
preferred means of learning, AT gets the highest approval rate, being preferred
to written or programming exercises as well as lectures.

Fig. 5. Question from the survey we conducted to evaluate Automata Tutor, showing
that the tool is preferred by a majority of students.

Overall, this class deployment of Automata Tutor v3 and the accompanying
surveys were great successes, and showed how the tool is of extreme value for
both students and teachers, in particular for such large a course.
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6 Conclusion

This paper presents the third version of Automata Tutor, an online tool helping
teachers and students in large automata/computation theory courses. Automata
Tutor v3 now supports automated grading and feedback generation for a wide
variety of problems and, for some of them, even automatic generation of new
problem instances. Furthermore, it is easy to extend and we invite the community
to contribute by implementing further exercises. Finally, our experience shows
that Automata Tutor v3 improves the economical aspects of teaching greatly as
it scales effortlessly with the number of students.

Earlier versions of Automata Tutor have already been adopted by thousands
of students at dozens of schools and we hope this paper allows Automata Tutor v3
to help even more students and teachers around the world.
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Abstract. We present the second generation of the tool Seminator that
transforms transition-based generalized Büchi automata (TGBAs) into
equivalent semi-deterministic automata. The tool has been extended with
numerous optimizations and produces considerably smaller automata
than its first version. In connection with the state-of-the-art LTL to
TGBAs translator Spot, Seminator 2 produces smaller (on average)
semi-deterministic automata than the direct LTL to semi-deterministic
automata translator ltl2ldgba of the Owl library. Further, Seminator 2
has been extended with an improved NCSB complementation procedure
for semi-deterministic automata, providing a new way to complement
automata that is competitive with state-of-the-art complementation tools.

1 Introduction

Semi-deterministic [24] automata are automata where each accepting run makes
only finitely many nondeterministic choices. The merit of this interstage between
deterministic and nondeterministic automata comes from two facts known since
the late 1980s. First, every nondeterministic Büchi automaton with n states can
be transformed into an equivalent semi-deterministic Büchi automaton with at
most 4n states [7,24]. Note that asymptotically optimal determinization pro-
cedures transform nondeterministic Büchi automata to deterministic automata
with 2O(n logn) states [24] and with a more complex (typically Rabin) acceptance
condition, as deterministic Büchi automata are strictly less expressive. Second,
some algorithms cannot handle nondeterministic automata, but they can handle
semi-deterministic ones; for example, algorithms for qualitative model checking
of Markov decision processes (MDPs) [7,29].

For theoreticians, the difference between the complexity of determinization
and semi-determinization is not dramatic—both constructions are exponential.
However, the difference is important for authors and users of practical automata-
based tools—automata size and the complexity of their acceptance condition often
have a significant impact on tool performance. This latter perspective has recently
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initiated another wave of research on semi-deterministic automata. Since 2015,
many new results have been published: several direct translations of LTL to semi-
deterministic automata [11,15,16,26], specialized complementation constructions
for semi-deterministic automata [4,6], algorithms for quantitative model checking
of MDPs based on semi-deterministic automata [13,25], a transformation of semi-
deterministic automata to deterministic parity automata [10], and reinforcement
learning of control policy using semi-deterministic automata [21].

In 2017, we introduced Seminator 1.1 [5], a tool that transforms nondeter-
ministic automata to semi-deterministic ones. The original semi-determinization
procedure of Courcoubetis and Yannakakis [7] works with standard Büchi
automata (BAs). Seminator 1.1 extends this construction to handle more com-
pact automata, namely transition-based Büchi automata (TBAs) and transition-
based generalized Büchi automata (TGBAs). TBAs use accepting transitions
instead of accepting states, and TGBAs have several sets of accepting tran-
sitions, each of these sets must be visited infinitely often by accepting runs.
The main novelty of Seminator 1.1 was that it performed degeneralization and
semi-determinization of a TGBA simultaneously. As a result, it could translate
TGBAs to smaller semi-deterministic automata than (to our best knowledge)
the only other tool for automata semi-determinization called nba2ldba [26].
This tool only accepts BAs as input, and thus TGBAs must be degeneralized
before nba2ldba is called.

Moreover, in connection with the LTL to TGBAs translator ltl2tgba of
Spot [8], Seminator 1.1 provided a translation of LTL to semi-deterministic
automata that can compete with the direct LTL to semi-deterministic TGBAs
translator ltl2ldba [26]. More precisely, our experiments [5] showed that the com-
bination of ltl2tgba and Seminator 1.1 outperforms ltl2ldba on LTL formulas
that ltl2tgba translates directly to deterministic or semi-deterministic TGBA
(i.e., when Seminator has no work to do), while ltl2ldba produced (on average)
smaller semi-deterministic TGBAs on the remaining LTL formulas (i.e., when the
TGBA produced by ltl2tgba has to be semi-determinized by Seminator).

This paper presents Seminator 2, which changes the situation. With many
improvements in semi-determinization, the combination of ltl2tgba and Semi-
nator 2 now translates LTL to smaller (on average) semi-deterministic TGBAs
than ltl2ldba even for the cases when ltl2tgba produces a TGBA that is not
semi-deterministic. Moreover, this holds even when we compare to ltl2ldgba,
which is the current successor of ltl2ldba distributed with Owl [19].

Further, Seminator 2 now provides a new feature: complementation of
TGBAs. Seminator 2 chains semi-determinization with the complementation
algorithm called NCSB [4,6], which is tailored for semi-deterministic BAs. Our
experiments show that the complementation in Seminator 2 is fully competitive
with complementations implemented in state-of-the-art tools [1,8,20,23,30].

2 Improvements in Semi-determinization

First of all, we recall the definition of semi-deterministic automata and principles
of the semi-determinization procedure implemented in Seminator 1.1 [5].
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deterministicno accepting transition

QD

Fig. 1. Structure of a semi-deterministic automaton. The deterministic part contains
all accepting transitions and states reachable from them. Cut-transitions are magenta.

Let A = (Q,Σ, δ, q0, {F1, . . . , Fn}) be a TGBA over alphabet Σ, with a finite
set of states Q, a transition relation δ ⊆ Q × Σ × Q, an initial state q0 ∈ Q,
and sets of accepting transitions F1, . . . , Fn ⊆ δ. Then A is semi-deterministic
if there exists a subset QD ⊆ Q such that (i) each transition from QD goes
back to QD (i.e., δ ∩ (QD × Σ × (Q � QD)) = ∅), (ii) all states of QD are
deterministic (i.e., for each q ∈ QD and a ∈ Σ there is at most one q′ such that
(q, a, q′) ∈ δ), and (iii) each accepting transition starts in a state of QD (i.e.,
F1, . . . , Fn ⊆ QD × Σ × QD).

The part of A delimited by states of QD is called deterministic, while the
part formed by the remaining states Q�QD is called nondeterministic, although
it could contain deterministic states too. The transitions leading from the nonde-
terministic part to the deterministic one are called cut-transitions. The structure
of a semi-deterministic automaton is depicted in Fig. 1.

Intuitively, a TGBA A with a set of states Q and a single set of accepting
transitions F can be transformed into a semi-deterministic TBA B as follows.
First, we use a copy of A as the nondeterministic part of B. The deterministic
part of B has states of the form (M,N) such that Q ⊇ M ⊇ N and M �= ∅.
Every accepting transition (q, a, q′) ∈ F induces a cut-transition (q, a, ({q′}, ∅))
of B. The deterministic part is then constructed to track all runs of A from each
such state q′ using the powerset construction. More precisely, the first element
of (M,N) tracks all runs while the second element tracks only the runs that
passed some accepting transition of F . Each transition of the deterministic part,
that would reach a state where M = N (so-called breakpoint) is replaced with
an accepting transition of B leading to state (M,N ′), where N ′ tracks only the
runs of A passing an accepting transition of F in the current step.

Seminator 1.1 extended this procedure to construct a semi-deterministic TBA
even for a TGBA with multiple acceptance sets F1, . . . , Fn. States of the deter-
ministic part are now triples (M,N, i), where i ∈ {0, . . . , n − 1} is called level
and it has a similar semantics as in degeneralization. Cut-transitions are induced
by transitions of Fn and they lead to states of the form ({q′}, ∅, 0). The level
i says that N tracks runs that passed a transition of Fi+1 since the last level
change. When the deterministic part reaches a state (M,N, i) with M = N , we
change the level to i′ = (i + 1) mod n and modify N to track only runs passing
Fi′+1 in the current step. Transitions changing the level are accepting.

A precise description of these semi-determinization procedures and proofs of
their correctness can be found in Blahoudek’s dissertation [3]. Now we briefly
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explain the most important optimizations added in Seminator 2 (we work
on a journal paper with their formal description). Each optimization can be
enabled/disabled by the corresponding option. All of them are enabled by default.

--scc-aware approach identifies, for each cut-transition, the strongly connected
component (SCC) of A that contains the target of the transition triggering
the cut-transition. The sets M,N then track only runs staying in this SCC.

--reuse-deterministic treats in a specific way each deterministic SCC from
which only deterministic SCCs are reachable in A: it (i) does not include
them in the nondeterministic part, and (ii) copies them (and their succes-
sors) in the deterministic part as they are, including the original acceptance
transitions. This optimization can result in a semi-deterministic TGBA with
multiple acceptance sets on output.

--cut-always changes the policy when cut-transitions are created: they are
now triggered by all transitions of A with the target state in an accepting
SCC.

--powerset-on-cut applies the powerset construction when computing tar-
gets of cut-transitions. The target of a cut-transition leading from q is con-
structed in the same way as the successor of the hypothetical state ({q}, ∅, 0)
of the deterministic part.

--skip-levels is a variant of the level jumping trick from TGBA degeneraliza-
tion [2]. Roughly speaking, a single transition in the deterministic part can
change the level i directly to i + j where j ≥ 1 if all runs passed acceptance
transitions from all the sets Fi+1, . . . , Fi+j in the current step.

--jump-to-bottommost makes sure that all cut-transitions leading to states
with the same M component lead to the same state (M,N, i) for some N
and i. It relies on the fact that each run takes only one cut-transition, and
thus only the component M of the cut-transition’s target state is important
for determining the acceptance of the run. During the original construction,
many states of the form (M,N ′, i′) may appear in different SCCs. After the
construction finishes, this optimization redirects each cut-transition leading
to (M,N ′, i′) to some state of the form (M,N, i) that belongs to the bot-
tommost SCC (in a topological ordering of the SCCs) that contains such a
state. This is inspired by a similar trick used by Křet́ınský et al. [18] in a
different context.

--powerset-for-weak simplifies the construction for weak accepting SCCs
(i.e., SCCs where all cycles are accepting) of A. For such SCCs it just
applies the powerset construction (builds states of the form M instead of
triples (M,N, i)) with all transitions accepting in the deterministic part.

Note that Seminator 1.1 can produce a semi-deterministic TGBA with multiple
acceptance sets only when it gets a semi-deterministic TGBA as input. Semina-
tor 2 produces such automata more often due to --reuse-deterministic.

3 Implementation and Usage

Seminator 2 is an almost complete rewrite of Seminator [5], and is still distributed
under the GNU GPL 3.0 license. Its distribution tarball and source code history
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Fig. 2. Workflow for the two operation modes of seminator: semi-determinizing and
complementing via semi-determinization.

are hosted on GitHub (https://github.com/mklokocka/seminator). The package
contains sources of the tool with two user-interfaces (a command-line tool and
Python bindings), a test-suite, and some documentation.

Seminator is implemented in C++ on top of the data-structures provided
by the Spot library [8], and reuses its input/output functions, simplification
algorithms, and the NCSB complementation. The main implementation effort
lies in the optimized semi-determinization and an alternative version of NCSB.

The first user interface is a command-line tool called seminator. Its high-
level workflow is pictured in Fig. 2. By default (top-part of Fig. 2) it takes a
TGBA (or TBA or BA) on input and produces a semi-deterministic TGBA
(or TBA or BA if requested). Figure 2 details various switches that control the
optional simplifications and acceptance transformations that occur before the
semi-determinization itself. The pre- and post-processing are provided by the
Spot library. The semi-determinization algorithm can be adjusted by additional
command-line options (not shown in Fig. 2) that enable or disable optimiza-
tions of Sect. 2. As Spot simplification routines are stronger on automata with
simpler acceptance conditions, it sometimes pays off to convert the automa-
ton to TBA or BA first. If the input is a TGBA, seminator attempts three

https://github.com/mklokocka/seminator
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semi-determinizations, one on the input TGBA, one on its TBA equivalent, and
one on its BA equivalent; only the smallest result is retained. If the input is
already a TBA (resp. a BA), only the last two (resp. one) routes are attempted.

The --complement option activates the bottom part of Fig. 2 with two vari-
ants of the NCSB complementation [4]: "spot" stands for a transition-based
adaptation of the original algorithm (implemented in Spot); "pldi" refers to
its modification based on the optimization by Chen et al. [6, Section 5.3] (imple-
mented in Seminator 2). Both variants take a TBA as input and produce a TBA.
The options --tba and --ba apply on the final complement automaton only.

The seminator tool can now process automata in batch, making it possible
to build pipelines with other commands. For instance the pipeline
ltl2tgba <input.ltl | seminator | autfilt --states=3.. >output.hoa
uses Spot’s ltl2tgba command to read a list of LTL formulas from input.ltl
and transform it into a stream of TGBAs that is passed to seminator, which
transforms them into semi-deterministic TGBAs, and finally Spot’s autfilt
saves into output.hoa the automata with 3 states or more.

Python bindings form the second user-interface and are installed by the Sem-
inator package as an extension of Spot’s own Python bindings. It offers several
functions, all working with Spot’s automata (twa graph objects):

semi determinize() implements the semi-determinization procedure;
complement semidet() implements the "pldi" variant of the NCSB comple-

mentation for semi-deterministic automata (the other variant is available
under the same function name in the bindings of Spot);

highlight components() and highlight cut() provide ways to highlight the
nondeterministic and the deterministic parts of a semi-deterministic automa-
ton, and its cut-transitions;

seminator() provides an interface similar to the command-line seminator tool
with options that selectively enable or disable optimizations or trigger com-
plementation.

The Python bindings integrate well with the interactive notebooks of Jupyter [17].
Figure 3 shows an example of such a notebook, using the seminator() and
highlight components() functions. Additional Jupyter notebooks, distributed
with the tool, document the effect of the various optimization options.1

4 Experimental Evaluation

We evaluate the performance of Seminator 2 for both semi-determinization and
complementation of TGBAs. We compare our tool against several tools listed in
Table 1. As ltl2ldgba needs LTL on input, we used the set of 221 LTL formulas
already considered for benchmarking in the literature [9,12,14,22,27]. To provide
TGBAs as input for Seminator 2, we use Spot’s ltl2tgba to convert the LTL
formulas. Based on the automata produced by ltl2tgba, we distinguish three

1 https://nbviewer.jupyter.org/github/mklokocka/seminator/tree/v2.0/notebooks/.

https://nbviewer.jupyter.org/github/mklokocka/seminator/tree/v2.0/notebooks/
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Fig. 3. Jupyter notebook illustrating a case where a nondeterministic TBA (nba, left)
has an equivalent semi-deterministic TBA (sdba, middle) that is smaller than a minimal
deterministic TBA (dba, right). Accepting transitions are labeled by 0 .

categories of formulas: deterministic (152 formulas), semi-deterministic but not
deterministic (49 formulas), and not semi-deterministic (20 formulas). This divi-
sion is motivated by the fact that Seminator 2 applies its semi-determinization
only on automata that are not semi-deterministic, and that some complemen-
tation tools use different approaches to deterministic automata. We have also
generated 500 random LTL formulas of each category.

The scripts and formulas used in those experiments can be found online,2

as well as a Docker image with these scripts and all the tools installed.3 All
experiments were run inside the supplied Docker image on a laptop Dell XPS13
with Intel i7-1065G7, 16 GB RAM, and running Linux.

2 https://github.com/xblahoud/seminator-evaluation/.
3 https://hub.docker.com/r/gadl/seminator.

https://github.com/xblahoud/seminator-evaluation/
https://hub.docker.com/r/gadl/seminator
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Table 1. Versions and references to the
other tools used in our evaluation.

Package (Tool) Version Ref.

Fribourg plugin for GOAL (na) [1,30]

GOAL (gc) 20200506 [28]

Owl (ltl2ldgba) 19.06.03 [11]

ROLL (replaces Buechic) 1.0 [20]

Seminator (seminator) 1.1 [5]

Spot (autfilt, ltl2tgba) 2.9 [8]
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Fig. 4. Comparison of the sizes of the
semi-deterministic automata produced by
Seminator 2 and Owl for the not semi-
deterministic random set.

Table 2. Comparison of semi-determinization tools. A benchmark set marked with
x + y consists of x formulas for which all tools produced some automaton, and y
formulas leading to some timeouts. A cell of the form s (m) shows the cumulative
number s of states of automata produced for the x formulas, and the number m of
formulas for which the tool produced the smallest automaton out of the obtained
automata. The best results in each column are highlighted.

(semi-)deterministic not semi-deterministic

literature random literature random
# of formulas 200+1 1000+0 19+1 500+0

Owl+best 1092 (102) 6335 (454) 281 (6) 5041 (144)
Owl+best+Spot 978 (139) 5533 (724) 234 (11) 4153 (268)
Seminator 1.1 787 (201) 4947 (963) 297 (7) 7020 (60)
Seminator 2 787 (201) 4947 (963) 230 (16) 3956 (356)

4.1 Semi-determinization

We compare Seminator 2 to its older version 1.1 and to ltl2ldgba of Owl. We
do not include Buchifier [16] as it is available only as a binary for Windows.
Also, we did not include nba2ldba [26] due to the lack of space and the fact that
even Seminator 1.1 performs significantly better than nba2ldba [5].

Recall that Seminator 2 calls Spot’s automata simplification routines on con-
structed automata. To get a fair comparison, we apply these routines also to the
results of other tools, indicated by +Spot in the results. Further, ltl2ldgba
of Owl can operate in two modes: --symmetric and --asymmetric. For each
formula, we run both settings and pick the better result, indicated by +best.

Table 2 presents the cumulative results for each semi-determinization tool and
each benchmark set (we actually merged deterministic and semi-deterministic
benchmark sets). The timeout of 30 s was reached by Owl for one formula in
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Table 3. Comparison of tools complementing Büchi automata, using the same con-
ventions as Table 2.

deterministic semi-detereministic not semi-deterministic

literature random literature random literature random
# of formulas 147+5 500+0 47+2 499+1 15+5 486+14

ROLL+Spot 1388 (0) 3687 (0) 833 (0) 5681 (4) 272 (0) 6225 (58)
Fribourg+Spot 627 (137) 2493 (464) 290 (26) 3294 (258) 142 (14) 5278 (238)
GOAL+Spot 617 (143) 2490 (477) 277 (28) 3676 (125) 206 (5) 7713 (96)
Spot 611 (150) 2477 (489) 190 (40) 2829 (354) 181 (9) 5310 (202)
Seminator 2 622 (142) 2511 (465) 210 (37) 2781 (420) 169 (8) 4919 (277)

the (semi-)deterministic category and by Seminator 1.1 for one formula in the
not semi-deterministic category. Besides timeouts, the running times of all tools
were always below 3 s, with a few exceptions for Seminator 1.1.

In the (semi-)deterministic category, the automaton produced by ltl2tgba
and passed to both versions of Seminator is already semi-deterministic. Hence,
both versions of Seminator have nothing to do. This category, in fact, compares
ltl2tgba of Spot against ltl2ldgba of Owl.

Figure 4 shows the distribution of differences between semi-deterministic
automata produced by Owl+best+Spot and Seminator 2 for the not semi-
deterministic random set. A dot at coordinates (x, y) represents a formula for
which Owl and Seminator 2 produced automata with x and y states, respectively.

We can observe a huge improvement brought by Seminator 2 in not semi-
deterministic benchmarks: while in 2017 Seminator 1.1 produced a smaller
automaton than Owl in only few cases in this category [5], Seminator 2 is now
more than competitive despite the fact that also Owl was improved over the
time.

4.2 Complementation

We compare Seminator 2 with the complementation of ROLL based on
automata learning (formerly presented as Buechic), the determinization-based
algorithm [23] implemented in GOAL, the asymptotically optimal Fribourg com-
plementation implemented as a plugin for GOAL, and with Spot (autfilt
--complement). We apply the simplifications from Spot to all results and we
use Spot’s ltl2tgba to create the input Büchi automata for all tools, using
transition-based generalized acceptance or state-based acceptance as appropri-
ate (only Seminator 2 and Spot can complement transition-based generalized
Büchi automata). The timeout of 120 s was reached once by both Seminator 2
and Spot, 6 times by Fribourg, and 13 times by GOAL and ROLL.

Table 3 shows results for complementation in the same way as Table 2 does
for semi-determinization. For the deterministic benchmark, we can see quite
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Fig. 5. Comparison of Seminator 2 against Spot and Fribourg+Spot in terms of the
sizes (i.e., number of states) of complement automata produced for the not semi-
deterministic random benchmark. Note that axes are logarithmic.
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similar results from all tools but ROLL. This is caused by the fact that comple-
mentation of deterministic automata is easy. Some tools (including Spot) even
apply a dedicated complementation procedure. It comes at no surprise that the
specialized algorithm of Seminator 2 performs better than most other comple-
mentations in the semi-deterministic category. Interestingly, this carries over to
the not semi-deterministic category. The results demonstrate that the 2-step
approach of Seminator 2 to complementation performs well in practice. Figure 5
offers more detailed insight into distribution of automata sizes created by Sem-
inator 2, Spot, and Fribourg+Spot for random benchmarks in this category.

Finally, Fig. 6 compares the running times of these tools over the 83 hard
cases of not semi-deterministic random benchmark (a case is hard if at least
one tool did not finish in 10 s). We can see that Seminator 2 and Spot run
significantly faster than the other tools.
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5 Conclusion

We have presented Seminator 2, which is a substantially improved version of
Seminator 1.1. The tool now offers a competitive complementation of TGBA.
Furthermore, the semi-determinization code was rewritten and offers new opti-
mizations that significantly reduce the size of produced automata. Finally, new
user-interfaces enable convenient processing of large automata sets thanks to the
support of pipelines and batch processing, and versatile applicability in educa-
tion and research thanks to the integration with Spot’s Python bindings.
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tor: a tool for semi-determinization of omega-automata. In: LPAR 2017, vol. 46 of
EPiC Series in Computing, pp. 356–367. EasyChair (2017). https://easychair.org/
publications/paper/340360

6. Chen, Y.-F., Heizmann, M., Lengál, O., Li, Y., Tsai, M.-H., Turrini, A., Zhang, L.:
Advanced automata-based algorithms for program termination checking. In: PLDI
2018, pp. 135–150 (2018)

7. Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state
probabilistic programs. In: FOCS 1988, pp. 338–345. IEEE Computer Society
(1988)

8. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
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25. Sickert, S., Křet́ınský, J.: MoChiBA: probabilistic LTL model checking using limit-
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Abstract. The autonomous control of unmanned aircraft is a highly
safety-critical domain with great economic potential in a wide range of
application areas, including logistics, agriculture, civil engineering, and
disaster recovery. We report on the development of a dynamic moni-
toring framework for the DLR ARTIS (Autonomous Rotorcraft Testbed
for Intelligent Systems) family of unmanned aircraft based on the for-
mal specification language RTLola. RTLola is a stream-based specifica-
tion language for real-time properties. An RTLola specification of haz-
ardous situations and system failures is statically analyzed in terms of
consistency and resource usage and then automatically translated into
an FPGA-based monitor. Our approach leads to highly efficient, par-
allelized monitors with formal guarantees on the noninterference of the
monitor with the normal operation of the autonomous system.

Keywords: Runtime verification · Stream monitoring · FPGA ·
Autonomous aircraft

1 Introduction

An unmanned aerial vehicle, commonly known as a drone, is an aircraft with-
out a human pilot on board. While usually connected via radio transmissions
to a base station on the ground, such aircraft are increasingly equipped with
decision-making capabilities that allow them to autonomously carry out com-
plex missions in applications such as transport, mapping and surveillance, or crop
and irrigation monitoring. Despite the obvious safety-criticality of such systems,
it is impossible to foresee all situations an autonomous aircraft might encounter
and thus make a safety case purely by analyzing all of the potential behaviors
in advance. A critical part of the safety engineering of a drone is therefore to
carefully monitor the actual behavior during the flight, so that the health status
of the system can be assessed and mitigation procedures (such as a return to the
base station or an emergency landing) can be initiated when needed.
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In this paper, we report on the development of a dynamic monitoring frame-
work for the DLR ARTIS (Autonomous Rotorcraft Testbed for Intelligent Sys-
tems) family of aircraft based on the formal specification language RTLola.
The development of a monitoring framework for an autonomous aircraft differs
significantly from a monitoring framework in a more standard setting, such as
network monitoring. A key consideration is that while the specification language
needs to be highly expressive, the monitor must operate within strictly limited
resources, and the monitor itself needs to be highly reliable: any interference
with the normal operation of the aircraft could have fatal consequences.

A high level of expressiveness is necessary because the assessment of the
health status requires complex analyses, including a cross-validation of differ-
ent sensor modules such as the agreement between the GPS module and the
accelerometer. This is necessary in order to discover a deterioration of a sensor
module. At the same time, the expressiveness and the precision of the moni-
tor must be balanced against the available computing resources. The reliability
requirement goes beyond pure correctness and robustness of the execution. Most
importantly, reliability requires that the peak resource consumption of the mon-
itor in terms of energy, time, and space needs to be known ahead of time. This
means that it must be possible to compute these resource requirements statically
based on an analysis of the specification. The determination whether the drone
is equipped with sufficient hardware can then be made before the flight, and the
occurrence of dynamic failures such as running out of memory or sudden drops
in voltage can be ruled out. Finally, the collection of the data from the on-board
architecture is a non-trivial problem: While the monitor needs access to almost
the complete system state, the data needs to be retrieved non-intrusively such
that it does not interfere with the normal system operation.

Our monitoring approach is based on the formal stream specification lan-
guage RTLola [11]. In an RTLola specification, input streams that collect
data from sensors, networks, etc., are filtered and combined into output streams
that contain data aggregated from multiple sources and over multiple points in
time such as over sliding windows of some real-time length. Trigger conditions
over these output streams then identify critical situations. An RTLola specifi-
cation is translated into a monitor defined in a hardware description language
and subsequently realized on an FPGA. Before deployment, the specification is
checked for consistency and the minimal requirements on the FPGA are com-
puted. The hardware monitor is then placed in a central position where as much
sensor data as possible can be collected; during the execution, it then extracts
the relevant information. In addition to requiring no physical changes to the
system architecture, this integration incurs no further traffic on the bus.

Our experience has been extremely positive: Our approach leads to highly
efficient, parallelized monitors with formal guarantees on the non-interference of
the monitor with the normal operation of the autonomous system. The monitor
is able to detect violations to complex specifications without intruding into the
system execution, and operates within narrow resource constraints. RTLola is
cleared for take-off.
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1.1 Related Work

Stream-based monitoring approaches focus on an expressive specification lan-
guage while handling non-binary data. Its roots lie in synchronous, declarative
stream processing languages like Lustre [13] and Lola [9]. The Copilot framework
[19] features a declarative data-flow language from which constant space and con-
stant time C monitors are generated; these guarantees enable usage on an embed-
ded device. Rather than focusing on data-flow, the family of Lola-languages puts
an emphasis on statistical measures and has successfully been used to monitor
synchronous, discrete time properties of autonomous aircraft [1,23]. In contrast
to that, RTLola [12,22] supports real-time capabilities and efficient aggrega-
tion of data occurring with arbitrary frequency, while forgoing parametrization
for efficiency [11]. RTLola can also be compiled to VHDL and subsequently
realized on an FPGA [8].

Apart from stream-based monitoring, there is a rich body of monitoring
based on real-time temporal logics [2,10,14–16,20] such as Signal Temporal Logic
(STL) [17]. Such languages are a concise way to describe temporal behaviors
with the shortcoming that they are usually limited to qualitative statements,
i.e. boolean verdicts. This limitation was addressed for STL [10] by introducing
a quantitative semantics indicating the robustness of a satisfaction. To specify
continuous signal patterns, specification languages based on regular expressions
can be beneficial, e.g. Signal Regular Expressions (SRE) [5]. The R2U2 tool [18]
stands out in particular as it successfully brought a logic closely related to STL
onto unmanned aerial systems as an external hardware implementation.

2 Setup

The Autonomous Rotorcraft Testbed for Intelligent Systems (ARTIS) is a plat-
form used by the Institute of Flight Systems of the German Aerospace Center
(DLR) to conduct research on autonomous flight. It consists of a set of unmanned
helicopters and fixed-wing aircraft of different sizes which can be used to develop
new techniques and evaluate them under real-world conditions.

The case study presented in this paper revolves around the superARTIS, a
large helicopter with a maximum payload of 85 kg, depicted in Fig. 1. The high
payload capabilities allow the aircraft to carry multiple sensor systems, com-
putational resources, and data links. This extensive range of avionic equipment
plays an important role in improving the situational awareness of the aircraft [3]
during the flight. It facilitates safe autonomous research missions which include
flying in urban or maritime areas, alone or with other aircraft. Before an actual
flight test, software- and hardware-in-the-loop simulations, as well as real-time
logfile replays strengthen confidence in the developed technology.

2.1 Mission

One field of application for unmanned aerial vehicles (UAVs) is reconnaissance
missions. In such missions, the aircraft is expected to operate within a fixed area
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in which it can cause no harm. The polygonal boundary of this area is called
a geo-fence. As soon as the vehicle passes the geo-fence, mitigation procedures
need to be initiated to ensure that the aircraft does not stray further away from
the safe area.

The case study presented in this paper features a reconnaissance mission.
Figure 2 shows the flight path (blue line) within a geo-fence (red line). Evidently,
the aircraft violates the fence several times temporarily. A reason for this can be
flawed position estimation: An aircraft estimates its position based on several
factors such as landmarks detected optically or GPS sensor readings. In the
latter case, GPS satellites send position and time information to earth. The
GPS module uses this data to compute the aircraft’s absolute position with
trilateration. However, signal reflection or a low number of GPS satellites in
range can result in imprecisions in the position approximation. If the aircraft
is continuously exposed to imprecise position updates, the error adds up and
results in a strong deviation from the expected flight path.

The impact of this effect can be seen in Fig. 3. It shows the velocity of a
ground-borne aircraft in an enclosed backyard according to its GPS module.1

During the reported period of time, the aircraft was pushed across the backyard
by hand. While the expected graph is a smooth curve, the actual measurements
show an erratic curve with errors of up to ±1.5ms−1, which can be mainly
attributed to signals being reflected on the enclosure. The strictly positive trend
of the horizontal velocity can explain strong deviations from the desired flight
path seen in Fig. 3.

A counter-measure to these imprecisions is the cross-validation of several
redundant sensors. As an example, rather than just relying on the velocity
reported by a GPS module, its measured velocity can be compared to the inte-
grated output of an accelerometer. When the values deviate strongly, the values
can be classified as less reliable than when both sensors agree.

2.2 Non-Intrusive Instrumentation

When integrating the monitor into an existing system, the system architecture
usually cannot be altered drastically. Moreover, the monitor should not interfere
with the regular execution of the system, e.g. by requiring the controller to send
explicit messages to it. Such a requirement could offset the timing behavior and
thus have a negative impact on the overall performance of the system.

The issue can be circumvented by placing the monitor at a point where it can
access all data necessary for the monitoring process non-intrusively. In the case
of the superARTIS, the logger interface provides such a place as it compiled
the data of all position-related sensors as well as the output of the position
estimation [3,4]. Figure 4 outlines the relevant data lines of the aircraft. Sensors
were polled with fixed frequencies of up to 100 Hz. The schematic shows that the
logger explicitly sends data to the monitor. This is not a strict requirement of

1 GPS modules only provide absolute position information; the first derivative thereof,
however, is the velocity.
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Fig. 1. DLR’s autonomous superAR-
TIS equipped with optical navigation.

Fig. 2. Reconnaissance mission for a
UAV. The thin blue line represents its
trajectory, the thick red line a geo-
fence.

the monitor as it could be connected to the data buses leading to the logger and
passively read incoming data packets. However, in the present setting, the logger
did not run at full capacity. Thus sending information to the monitor came at
no relevant cost while requiring few hardware changes to the bus layout.

In turn, the monitor provides feedback regarding violations of the specifica-
tion. Here, we distinguish between different timing behaviors of triggers. The
monitor evaluates event-based triggers whenever the system passes new events
to the monitor and immediately replies with the results. For periodic triggers,
i.e. , those annotated with an evaluation frequency, the evaluation is decoupled
from the communication between monitor and system. Thus, the monitor needs
to wait until it receives another event until reporting the verdict. This incurs a
short delay between detection and report.

2.3 StreamLAB

StreamLAB2 [11] is a monitoring framework revolving around the stream-
based specification language RTLola. It emphasizes on analyses conducted
before deployment of the monitor. This increases the confidence in a successful
execution by providing information to aid the specifier. To this end, it detects
inconsistencies in the specification such as type errors, e.g. an lossy conversion
of a floating point number to an integer, or timing errors, e.g. accessing values
that might not exist. Further, it provides two execution modes: an interpreter
and an FPGA compilation. The interpreter allows the specifier to validate their
specification. For this, it requires a trace, i.e. a series of data that is expected to
occur during an execution of the system. It then checks whether a trace complies
with the specification and reports the points in time when specified bounds are
violated. After successfully validating the specification, it can be compiled into
VHDL code. Yet again, the compiled code can be analyzed with respect to the
space and power consumption. This information allows for evaluating whether
the available hardware suffices for running the RTLola monitor.

2 www.stream-lab.eu.

http://www.stream-lab.eu


RTLola Cleared for Take-Off 33

Fig. 3. Line plot of the horizontal and
vertical speed calculated by a GPS
receiver.

. . .
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Monitor HardDisk

Fig. 4. Overview of data flow in system
architecture.

An RTLola specification consists of input and output streams, as well
as trigger conditions. Input streams describe data the system produces asyn-
chronously and provides to the monitor. Output streams use this data to assess
the health state of the system e.g. by computing statistical information. Trig-
ger conditions distinguish desired and undesired behavior. A violation of the
condition issues an alarm to the system.

The following specification declares a floating point input stream height
representing sensor readings of an altimeter. The output stream avg_height
computes the average value of the height stream over two minutes. The aggre-
gation is a sliding window computed once per second, as indicated with the
@1Hz annotation.3 The stream δheight computes the difference between the
average and the current height. A strong deviation of these values constitutes a
suspicious jump in sensor readings, which might indicate a faulty sensor or an
unexpected loss or gain in height. In this case, the trigger in the specification
issues a warning to the system, which can initiate mitigation measures.

input height: Float32

output avg_height @1Hz := height.aggregate(over: 2min, using: avg)

output δheight := abs(avg_height.hold().defaults(to: height) - height)

trigger δheight > 50.0 "WARNING: Suspicious jump in height."

Note that this is just a brief introduction to RTLola and the StreamLAB
framework. For more details, the authors refer to [8,11,12,22].

2.4 FPGA as Monitoring Platform

An RTLola specification can be compiled into the hardware description lan-
guage VHDL and subsequently realized on an FPGA as proposed by Baumeis-
ter et al. [8]. An FPGA as target platform for the monitor has several advantages

3 Details on how such a computation can cope with a statically-bounded amount of
memory can be found in [12,22].
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in terms of improving the development process, reducing its cost, and increasing
the overall confidence in the execution.

Since the FPGA is a separate module and thus decoupled from the con-
trol software, these components do not share processor time or memory. This
especially means that control and monitoring computations happen in parallel.
Further, the monitor itself parallelizes the computation of independent RTLola
output streams with almost no additional overhead. This significantly acceler-
ates the monitoring process [8]. The compiled VHDL specification allows for
extensive static analyses. Most notably, the results include whether the board
is sufficiently large in terms of look-up tables and storage capabilities to host
the monitor, and the power consumption when idle or at peak performance.
Lastly, an FPGA is the sweet spot between generality and specificity: it runs
faster, is lighter, and consumes less energy than general purpose hardware while
retaining a similar time-to-deployment. The latter combined with a drastically
lower cost renders the FPGA superior to application-specific integrated circuits
(ASIC) during development phase. After that, when the specification is fixed,
an ASIC might be considered for its yet increased performance.

2.5 RTLola Specifications

The entire specification for the mission is comprised of three sub-specifications.
This section briefly outlines each of them and explains representative proper-
ties in Fig. 5. The complete specifications as well as a detailed description were
presented in earlier work [6,21] and the technical report of this paper [7].

Sensor Validation. Sensors can produce incorrect values, e.g. when too few
GPS satellites are in range for an accurate trilateration or if the aircraft flies
above the range of a radio altimeter. A simple exemplary validation is to
check whether the measured altitude is non-negative. If such a check fails,
the values are meaningless, so the system should not take them into account
in its computations.

Geo-Fence. During the mission, the aircraft has permission to fly inside a zone
delimited by a polygon, called a geo-fence. The specification checks whether
a face of the fence has been crossed, in which case the aircraft needs to
ensure that it does not stray further from the permitted zone.

Sensor Cross-Validation. Sensor redundancy allows for validating a sensor
reading by comparing it against readings of other sensors. An agreement
between the values raises the confidence in their correctness. An example is
the cross-validation of the GPS module against the accelerometer. Integrat-
ing the readings of the latter twice yields an absolute position which can be
compared against the GPS position.

Figure 5 points out some representative sub-properties of the previously
described specification in RTLola, which are too long to discuss them in detail.
It contains a validation of GPS readings as well as a cross-validation of the GPS
module against the Inertial Measurement Unit (IMU). The specification declares
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input gps x: Float16 // Absolute x positive from GPS module
input num sat : UInt8 // Number of GPS satellites in range
input imu acc x: Float32 // Acceleration in x direction from IMU
// Check if the GPS module emitted few readings in the last 3s.
trigger @1Hz gps x.aggregate(over: 3s, using: count) < 10
”VIOLATION: Few GPS updates ”

// 1 if there are few GPS Satellites in range, otherwise 0.
output few sat: UInt8 := Int(num sat < 9)
// Check if there rarely were enough GPS satellites in range.
trigger @1Hz few sat.aggregate(over: 5s, using: Σ) > 12 ”WARNING:

Unreliable GPS data.”
// Integrate acceleration twice to obtain absolute position.
output imu vel x@1Hz := imu acc x.aggregate(over: ∞, using:

∫
)

output imu x@1Hz := imu vel x.aggregate(over: ∞, using:
∫
)

// Issue an alarm if readings from GPS and IMU disagree.
trigger abs(imu x − gps x) > 0.5 ”VIOLATION: GPS and IMU readings

deviate.”

Fig. 5. An RTLola specification validating GPS sensor data and cross validating
readings from the GPS module and IMU.

three input streams, the x-position and number of GPS satellites in range from
the GPS module, and the acceleration in x-direction according to the IMU.

The first trigger counts the number of updates received from the GPS module
by counting how often the input stream gps_x gets updated to validate the
timing behavior of the module.

The output stream few_sat computes the indicator function for
num_sat < 9, which indicates that the GPS module might report unreliable
data due to few satellites in reach. If this happens more than 12 times within
five seconds, the next trigger issues a warning to indicate that the incoming GPS
values might be inaccurate. The last trigger checks whether the double integral
of the IMU acceleration coincides with the GPS position up to a threshold of
0.5 m.

2.6 VHDL Synthesis

The specifications mentioned above were compiled into VHDL and realized on
the Xilinx ZC702 Base Board4. The following table details the resource con-
sumption of each sub-specification reported by the synthesis tool Vivado. The
number of flip-flops (FF) indicates the memory consumption in bits; neither
specification requires more than 600B of memory. The number of LUTs (Look-
up Tables) is an indicator for the complexity of the logic. The sensor validation,
despite being significantly longer than the cross-validation, requires the least

4 https://www.xilinx.com/support/documentation/boards and kits/zc702 zvik/ug8
50-zc702-eval-bd.pdf.

https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
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Spec FF FF[%] LUT LUT[%] MUX Idle [mW] Peak [W]

Geo-fence 2,853 3 26,181 71 4 149 1.871

Validation 4,792 5 34,630 67 104 156 2.085

Cross 3,441 4 23,261 46 99 150 1.911

amount of LUTs. The reason is that its computations are simple in compari-
son: Rather than computing sliding window aggregations or line intersections,
it mainly consists of simple thresholding. The number of multiplexers (MUX)
reflects this as well: Since thresholding requires comparisons, which translate to
multiplexers, the validation requires twice as many of them. Lastly, the power
consumption of the monitor is extremely low: When idle, neither specification
requires more than 156mW and even under peak pressure, the power consump-
tion does not exceed 2.1W. For comparison, a Raspberry Pi needs between 1.1W
(Model 2B) and 2.7W (Model 4B) when idle and roughly twice as much under
peak pressure, i.e., 2.1W and 6.4W, respectively.5

Note that the geo-fence specification checks for 12 intersections in parallel,
one for each face of the fence (cf. Fig. 2). Adapting the number of faces allows
for scaling the amount of FPGA resources required, as can be seen in Fig. 6a.
The graph does not grow linearly because the realization problem of VHDL
code onto an FPGA is a multi-dimensional optimization problem with several
pareto-optimal solutions. Under default settings, the optimizer found a solution
for four faces that required fewer LUTs than for three faces. At the same time,
the worst negative slack time (WNST) of the four-face solution was lower than
the WNST for the three-face solution as well (cf. Fig. 6b), indicating that the
former performs worst in terms of running time.

3 Results

As the title of the paper suggests, the superARTIS with the RTLola monitor
component is cleared to fly and a flight test is already scheduled. In the mean-
time, the monitor was validated on log files from past missions of the superARTIS
replayed under realistic conditions. During a flight, the controller polls samples
from sensors, estimates the current position, and sends the respective data to the
logger and monitor. In the replay setting, the process remains the same except
for one detail: Rather than receiving data from the actual sensors, the data sent
to the controller is read from a past log file in the same frequency in which they
were recorded. The timing and logging behavior is equivalent to a real execution.
This especially means that the replayed data points will be recorded again in
the same way. Control computations take place on a machine identical to the
one on the actual aircraft. As a result, from the point of view of the monitor,
the replay mode and the actual flight are indistinguishable. Note that the setup

5 Information collected from https://www.pidramble.com/wiki/benchmarks/power-
consumption in January, 2020.

https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
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Fig. 6. Result of the static analysis for different amounts of face of the geo-fence.

is open-loop, i.e. , the monitor cannot influence the running system. Therefore,
the replay mode using real data is more realistic than a high-fidelity simulation.

When monitoring the geo-fence of the reconnaissance mission in Fig. 2, all
twelve face crossings were detected successfully. Additionally, when replaying
the sensor data of the experiment in the enclosed backyard from Sect. 2.1, the
erratic GPS sensor data lead to 113 violations regarding the GPS module on
its own. Note that many of these violations point to the same culprit: a low
number of available GPS satellites, for example, correlates with the occurrence
of peaks in the GPS velocity. Moreover, the cross validation issued another 36
alarms due to a divergence of IMU and GPS readings. Other checks, for example
detecting a deterioration of the GPS module based on its output frequency, were
not violated in either flight and thus not reported.

4 Conclusion

We have presented the integration of a hardware-based monitor into the super-
ARTIS UAV. The distinguishing features of our approach are the high level of
expressiveness of the RTLola specification language combined with the formal
guarantees on the resource usage. The comprehensive tool framework facilitates
the development of complex specifications, which can be validated on log data
before they get translated into a hardware-based monitor. The automatic anal-
ysis of the specification derives the minimal requirements on the development
board needed for safe operation. If they are met, the specification is realized
on an FPGA and integrated into the superARTIS architecture. Our experience
shows that the overall system works correctly and reliably, even without thor-
ough system-level testing. This is due to the non-interfering instrumentation,
the validated specification, and the formal guarantees on the absence of dynamic
failures of the monitor.
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Abstract. We study the expressiveness and reactive synthesis prob-
lem of HyperQPTL, a logic that specifies ω-regular hyperproperties.
HyperQPTL is an extension of linear-time temporal logic (LTL) with
explicit trace and propositional quantification and therefore truly com-
bines trace relations and ω-regularity. As such, HyperQPTL can express
promptness, which states that there is a common bound on the num-
ber of steps up to which an event must have happened. We demonstrate
how the HyperQPTL formulation of promptness differs from the type of
promptness expressible in the logic Prompt-LTL. Furthermore, we study
the realizability problem of HyperQPTL by identifying decidable frag-
ments, where one decidable fragment contains formulas for promptness.
We show that, in contrast to the satisfiability problem of HyperQPTL,
propositional quantification has an immediate impact on the decidability
of the realizability problem. We present a reduction to the realizability
problem of HyperLTL, which immediately yields a bounded synthesis
procedure. We implemented the synthesis procedure for HyperQPTL in
the bounded synthesis tool BoSy. Our experimental results show that a
range of arbiter satisfying promptness can be synthesized.

1 Introduction

Hyperproperties [5], which are mainly studied in the area of secure information
flow control, are a generalization from trace properties to sets of trace proper-
ties. That is, they relate multiple execution traces with each other. Examples are
noninterference [20], observational determinism [34], symmetry [16], or prompt-
ness [24], i.e., properties whose satisfaction cannot be determined by analyzing
each execution trace in isolation.

A number of logics have been introduced to express hyperproperties (exam-
ples are [4,19,25]). They either add explicit trace quantification to a temporal
logic or build on monadic first-order or second-order logics and add an equal-
level predicate, which connects traces with each other. A comprehensive study
comparing such hyperlogics has been initiated in [6].
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The most prominent hyperlogic is HyperLTL [4], which extends classic
linear-time temporal logic (LTL) [26] with trace variables and explicit trace
quantification. HyperLTL has been successfully applied in (runtime) verifica-
tion, (e.g., [15,21,32]), specification analysis [11,14], synthesis [12,13], and pro-
gram repair [1] of hyperproperties. As an example specification, the following
HyperLTL formula expresses observational determinism by stating that for every
pair of traces, if the observable inputs I are the same on both traces, then also
the observable outputs O have to agree

∀π∀π′. (Iπ = Iπ′) → (Oπ = Oπ′) . (1)

Thus, hyperlogics can not only specify functional correctness, but may also
enforce the absence of information leaks or presence of information propa-
gation. There is a great practical interest in information flow control, which
makes synthesizing implementations that satisfy hyperproperties highly desir-
able. Recently [12], it was shown that the synthesis problem of HyperLTL,
although undecidable in general, remains decidable for many fragments, such as
the ∃∗∀ fragment. Furthermore, a bounded synthesis procedure was developed,
for which a prototype implementation based on BoSy [7,9,12] showed promising
results.

HyperLTL is, however, intrinsically limited in expressiveness. For example,
promptness is not expressible in HyperLTL. Promptness is a property stating
that there is a bound b, common for all traces, on the number of steps up to
which an event e must have happened. Additionally, just like LTL, HyperLTL can
express neither ω-regular nor epistemic properties [2,29]. Epistemic properties
are statements about the transfer of knowledge between several components.
An exemplary epistemic specification is described by the dining cryptographers
problem [3]: three cryptographers sit at a table in a restaurant. Either one of the
cryptographers or, alternatively, the NSA must pay for their meal. The question
is whether there is a protocol where each cryptographer can find out whether the
NSA or one of the cryptographers paid the bill, without revealing the identity
of the paying cryptographer.

In this paper, we explore HyperQPTL [6,29], a hyperlogic that is more
expressive than HyperLTL. Specifically, we study its expressiveness and reac-
tive synthesis problem. HyperQPTL extends HyperLTL with quantification over
sequences of new propositions. What makes the logic particularly expressive is
the fact that the trace quantifiers and propositional quantifiers can be freely
interleaved. With this mechanism, HyperQPTL can not only express all ω-
regular properties over a sequences of n-tuples; it truly interweaves trace quantifi-
cation and ω-regularity. For example, promptness can be stated as the following
HyperQPTL formula:

∃b.∀π. b ∧ (¬b U eπ) . (2)

The formula states that there exists a sequence s ∈ (2{q})ω, such that event e
holds on all traces before the first occurrence of b in s. In this paper, we argue
that the type of promptness expressible in HyperQPTL is incomparable to the
expressiveness of Prompt-LTL [24], a logic introduced to express promptness
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Fig. 1. The realizability problem of HyperQPTL. Left and below of the solid line are
the decidable fragments, right above the solid line the undecidable fragments.

properties. It is further known that HyperQPTL also subsumes epistemic exten-
sions of temporal logics such as LTLK [22], as well as the first-order hyperlogic
FO[<,E] [6,19,29]. Its expressiveness makes HyperQPTL particularly interest-
ing. The model checking problem of HyperQPTL is, despite the logic being
quite expressive, decidable [29]. We also explore an alternative definition of
HyperQPTL that would result in an even more expressive logic. However, we
show that the logic would have an undecidable model checking problem, which
constitutes a major drawback in the context of computer-aided verification. Fur-
thermore, satisfiability is decidable for large fragments of the logic [6]. Decidable
HyperQPTL fragments can be described solely in terms of their trace quantifier
prefix. This indicates that propositional quantification has no negative impact
on the decidability, although it greatly increases the expressiveness. We establish
that propositional quantification, in contrast to the satisfiability problem, has
an impact on the realizability problem: it becomes undecidable when combining
a propositional ∀∃ quantifier alternation with a single universal trace quantifier.
However, we show that the synthesis problem of large HyperQPTL fragments
remains decidable, where one of these fragments contains promptness proper-
ties. We partially obtain these results by reducing the HyperQPTL realizability
problem to the HyperLTL realizability problem. Based on this reduction, we
extended the BoSy bounded synthesis tool to also synthesize systems respecting
HyperQPTL specifications. We provide promising experimental results of our
prototype implementation: using BoSy and HyperQPTL specifications, we were
able to synthesize arbiters that respect promptness.

This paper is structured as follows. In Sect. 2, we give necessary preliminaries.
In Sect. 3, we define HyperQPTL. We discuss an alternative approach to define
a logic expressing ω-regular hyperproperties, before pointing out that its model
checking problem is undecidable. Subsequently, we give examples for the expres-
siveness of HyperQPTL, namely by characterizing the type of promptness prop-
erties HyperQPTL can express. Additionally, we recapitulate how HyperQPTL
also subsumes epistemic properties. Section 4 discusses the realizability problem
of HyperQPTL. We describe HyperQPTL fragments in terms of their quanti-
fier prefixes. To present our results, we use the following notation. We write ∀π
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and ∀q for a single universal trace and propositional quantifier, respectively. To
denote a sequence of universal trace and propositional quantifiers, we write ∀∗

π

and ∀∗
q . Furthermore, we use ∀∗

π/q for a sequence of mixed universal quantifica-
tion. We use the analogous notation for existential quantifiers. Lastly, Q∗

π and
Q∗

q denote a sequence of mixed universal and existential trace and propositional
quantifiers, respectively. As an example, the ∀∗

πQ∗
q fragment denotes all formulas

of the form ∀π1. . . . ∀πm.∃/∀q1. . . . ∃/∀qn. ϕ, where ϕ is quantifier free. Figure 1
summarizes our results. We establish that a major factor for the decidability of
the realizability problem consists in the number of universal trace occurring in a
formula. Realizability of HyperQPTL formulas without ∀π quantifiers is decid-
able (Sect. 4.1). Formulas with a single ∀π are decidable if they belong to the
∃∗

q/π∀∗
q∀πQ∗

q fragment. This fragment also contains promptness. For more than
one universal trace quantifier, we show that decidability can be guaranteed for a
fragment that we call the linear ∀∗

πQ∗
q fragment. We also show that all the above

fragments are tight, i.e., realizability of all other formulas is in general undecid-
able. Lastly, Sect. 5 presents experiments for the prototype implementation of
our bounded synthesis algorithm for HyperQPTL.

2 Preliminaries

We use AP for a set of atomic propositions. A trace over AP is an infinite
sequence t ∈ (2AP)ω. For i ∈ N, we write t[i] for the ith element of t and t[i,∞]
for the suffix of t starting from position i. For two traces t, t′ over AP and a set
AP’ ⊆ AP, we write t = AP’t

′ to indicate that t and t′ agree on all a ∈ AP’, and
respectively T = AP’T

′ for two sets of traces T and T ′. Furthermore, we define
a replacement function t[q 	→ tq] that given a trace t and a trace tq ∈ (2{q})ω,
replaces the occurrences of q in t according to tq, such that t[q 	→ tq] = {q}tq
and t[q 	→ tq] = AP\{q}t. We also lift this notation to sets of traces and define
T [q 	→ tq] = {t[q 	→ tq] | t ∈ T}.

QPTL [31] extends Linear Temporal Logic (LTL) with quantification over
propositions. QPTL formulas ϕ are defined as follows.

ϕ ::= ∃q. ϕ | ∀q. ϕ | ψ

ψ ::= q | ¬ψ | ψ ∨ ψ | ψ | ψ

where q ∈ AP and AP is a set of atomic propositions. For simplicity, we assume
that variable names in formulas are cleared of double occurrences. The semantics
of ϕ over AP is defined with respect to a trace t ∈ (2AP)ω.
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t |= q iff q ∈ t[0]
t |= ¬ψ iff t �|= ψ

t |= ψ1 ∨ ψ2 iff t |= ψ1 or t |= ψ2

t |= ψ iff t[1,∞] |= ψ

t |= ψ iff ∃i ≥ 0. t[i,∞] |= ψ

t |= ∃q. ϕ iff ∃tq ∈ (2{q})ω. t[q 	→ tq] |= ϕ

t |= ∀q. ϕ iff ∀tq ∈ (2{q})ω. t[q 	→ tq] |= ϕ

We did not define the until operator U as native part of the logic. It can be
derived using propositional quantification [23]. The boolean connectives ∧,→,↔
and the temporal operators globally and release R are derived as usually.

3 ω-Regular Hyperproperties

Just like LTL, HyperLTL cannot express ω-regular languages [29]. LTL can
be extended to QPTL by adding quantification over atomic propositions. In
QPTL, ω-regular languages become expressible. We therefore study HyperQPTL
[6,29], the extension of HyperLTL with propositional quantification, to express
ω-regular hyperproperties. Given a set AP of atomic propositions and a set V of
trace variables, the syntax of HyperQPTL is defined as follows

ϕ ::= ∀π. ϕ | ∃π. ϕ | ∀q. ϕ | ∃q. ϕ | ψ

ψ ::= aπ | q | ¬ψ | ψ ∨ ψ | ψ | ψ ,

where a, q ∈ AP and π ∈ V. As for QPTL, we assume that formulas are
cleared of double occurrences of variable names. We require that in well-defined
HyperQPTL formulas, each aπ is in the scope of a trace quantifier binding π
and each q is in the scope of a propositional quantifier binding q. Note that
atomic propositions aπ refer to a quantified trace π, whereas quantified propo-
sitional variables q are independent of the traces. The semantics of a well-
defined HyperQPTL formula over AP is defined with respect to a set of traces
T ⊆ (2AP)ω and an assignment function Π : V → T . We define the satisfaction
relation Π, i |=T ϕ as follows:
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Π, i |=T aπ iff a ∈ Π(π)[i]
Π, i |=T q iff ∀t ∈ T. q ∈ t[i]
Π, i |=T ¬ψ iff Π, i �|=T ψ

Π, i |=T ψ1 ∨ ψ2 iff Π, i |=T ψ1 ∨ Π, i |=T ψ2

Π, i |=T ψ iff Π, i + 1 |=T ψ

Π, i |=T ψ iff ∃j ≥ i. Π. j |=T ψ

Π, i |=T ∃π. ϕ iff ∃t ∈ T.Π[π 	→ t], i |=T ϕ

Π, i |=T ∀π. ϕ iff ∀t ∈ T.Π[π 	→ t], i |=T ϕ

Π, i |=T ∃q. ϕ iff ∃tq ∈ (2{q})ω.Π, i |=T [q �→tq ] ϕ

Π, i |=T ∀q. ϕ iff ∀tq ∈ (2{q})ω.Π, i |=T [q �→tq ] ϕ .

Note that the semantics of propositional quantification is defined in such a way
that in the scope of a quantifier binding q, all traces agree on their q-sequence. We
say that a set of traces T satisfies a HyperQPTL formula ϕ if ∅, 0 |=T ϕ, where ∅
is the empty trace assignment. QPTL formulas can be expressed in HyperQPTL
using a single universal trace quantifier. Furthermore, HyperLTL [4] is the syn-
tactic subset of HyperQPTL that does not contain propositional quantification.

While HyperQPTL can express a wide range of properties (see Sect. 3.1),
its model checking problem is still decidable [29]. Furthermore, the syntactic
fragments for which satisfiability is decidable can be expressed solely in terms
of the occurring trace quantifiers: Just like for HyperLTL, satisfiability of a
HyperQPTL formula is decidable if no ∀π is followed by an ∃π [6].

The definition of HyperQPTL is straightforward, however, one could argue
that it is not the only way to extend QPTL to a hyperlogic. The original idea
of QPTL is to “color” the trace by introducing additional atomic propositions.
The way HyperQPTL is defined, that idea is translated to sets of traces by
coloring the traces uniformly. An alternative approach could be to color every
trace individually by introducing a full atomic proposition for every proposi-
tional quantification. This resembles full second-order quantification and would
therefore result in a considerably more expressive logic. In particular, we show
that the model checking problem would become undecidable, which is, especially
in the context of automatic verification, unfavorable. For the remainder of this
section, we call the logic resulting from the alternative definition HyperQPTL+.
The syntax of HyperQPTL+ is similar to the one of HyperQPTL, just without
the rule q for the evaluation of the propositional variables. This accounts for
the idea that the propositional quantification can freely reassign atomic propo-
sitions; thus, there is no need to distinguish between free atomic propositions
and quantified atomic propositions:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ∀a. ϕ | ∃a. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ .
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Semantically, only the rules for the quantification of the propositional quantifiers
change:

Π, i |=T ∃a. ϕ iff ∃T ′ ⊆ (2AP)ω. T ′ =AP\{a} T ∧ Π, i |=T ′ ϕ

Π, i |=T ∀a. ϕ iff ∀T ′ ⊆ (2AP)ω. T ′ =AP\{a} T → Π, i |=T ′ ϕ .

Lemma 1. The HyperQPTL+ model checking problem is undecidable.

Proof. Given a finite Kripke structure K and a HyperQPTL+ formula ϕ, the
model checking problem asks whether the trace set T produced by K satisfies
ϕ. The proof follows the undecidability proof for the model checking problem
of S1S[E] [6], a logic which lifts S1S to the level of hyperlogics. We describe
a reduction from the halting problem of 2-counter machines (which are Turing
complete) to the HyperQPTL+ model checking problem. A 2-counter machine
(2CM) consists of a finite set of serially numbered instructions that modify
two counters. A configuration of a 2CM is a triple (n, v1, v2) ∈ N

3, where n
determines the next instruction to be executed, and v1 and v2 assign the counter
values. Each instruction can either increase or decrease one of the counters; or
test either of the counters for zero and, depending on the outcome, jump to
another instruction. Furthermore, we assume a special instruction ihalt , which
indicates that the machine has reached a halting state. A 2CM halts from initial
configuration s0 if there is a finite sequence s0, . . . , sn of configurations such
that sn is a halting configuration and si+1 is a result of applying the instruction
in si to configuration si. Let M be a 2CM. We describe T and ϕ such that
T |= ϕ iff M halts. We choose AP = {i, c1, c2} and T is the set of all traces
where each atomic proposition holds exactly once. That way, a trace t encodes
a configuration of the machine: If i ∈ t[n], c1 ∈ t[v1], and c2 ∈ t[v2], the machine
is in configuration (n, v1, v2). It is easy to see that T can be produced by a finite
Kripke structure. To describe ϕ, we make two helpful observations. First, using
propositional quantification, we can quantify a trace set Tq ⊆ T : a trace t is in
Tq iff the quantified proposition q eventually occurs on t. Second, for two traces
t, t′ ∈ T , we can state that t′ encodes a configuration which is the successor of
the configuration encoded by t. Using these observations, we define ϕ = ∃q. ϕ′,
where q encodes a set Tq ⊆ T that is supposed to describe a halting computation.
To ensure that Tq describes a halting computation, ϕ′ is a conjunction of the
following requirements: Tq must

1. be finite,
2. contain a halting configuration and the initial configuration,
3. be predecessor closed with respect to the encoded configurations it contains

(except for the initial configuration).

Finiteness of Tq can be expressed by stating that there is an upper bound on the
values of i, c1, and c2 on the traces in Tq. With the observations made before,
stating the above requirements in HyperQPTL+ now remains a straightforward
exercise. ��
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Since the model checking problem of HyperQPTL+ is undecidable, we focus
on HyperQPTL to express ω-regular hyperproperties. In particular, we show
that HyperQPTL can express a range of relevant properties that are neither
expressible in HyperLTL, nor in QPTL.

3.1 The Expressiveness of HyperQPTL

HyperQPTL combines trace quantification with ω-regularity. The interplay
between the two features enables HyperQPTL to express a variety of proper-
ties. In Sect. 1, we showed how HyperQPTL can express a form of promptness.
In this section, we further elaborate on the type of properties HyperQPTL can
express. In particular, we compare it to Prompt-LTL, a logic that extends LTL
with bounded eventualities. Furthermore, HyperQPTL is also able to express
epistemic properties by emulating the knowledge operator known from LTLK.

A straightforward class of properties HyperQPTL can express are ω-regular
properties over n-tuples of quantified traces. Formulas expressing this type of
properties first have a trace quantifier prefix followed by a QPTL formula, i.e.,
they lie in the Q∗

πQ∗
q fragment. This fragment of HyperQPTL corresponds to the

extension of QPTL with prenex trace quantification. However, the true expres-
sive power of HyperQPTL originates from the fact that we allow the trace quan-
tifiers and propositional quantifiers to alternate.

Promptness Properties. Promptness properties are an example for HyperQPTL’s
interplay between trace quantification and propositional quantification. Prompt-
ness expresses that eventualities are fulfilled within a bounded number of steps.
One way to express promptness properties is the logic Prompt-LTL, which
extends LTL with the promptness operator p. A system satisfies a Prompt-
LTL formula ϕ if there is a bound k such that all traces of the system fulfill the
formula where each p in ϕ is replaced by ≤k, i.e., the system must fulfill all
prompt eventualities within k steps. For example, ϕ = p ψ holds in a system
if there is a bound k such that all traces of the system at all times satisfy ψ
within k steps. HyperQPTL can express a different type of promptness proper-
ties. In Sect. 1, Formula 2, we showed how one can state in HyperQPTL that
there is a bound, common for all traces, until which an eventuality has to be
fulfilled. The idea is to quantify a new proposition b, such that the first position
in which b is true serves as the bound. Compared to Prompt-LTL, HyperQPTL
thus expresses a weaker form of promptness, while still being stronger than pure
eventuality. This type of promptness only becomes meaningful when comparing
several traces of the system: HyperQPTL can enforce that there is a common
bound for all traces (the system cannot starve), but it does not make the bound
explicit. The following example shows a more involved promptness property
expressible in HyperQPTL.

Example 1. HyperQPTL can express bounded waiting for a grant. It states that
if the system requests access to a shared resource at point in time t, then it will
be granted access within a bounded amount of time. The bound may depend on
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the point in time t where access to the resource was requested. However, it may
not depend on the current trace. We express this property in HyperQPTL as
follows, also adding that the system will not request access twice without being
granted access in between.

∀π. (rπ → (¬rπ W gπ)) (1)

∀π.∃b.∀π′. (rπ ∧ rπ′ → ( b ∧ (¬b U gπ) ∧ (¬b U gπ′))) (2)

Formula 1 states that no second request is posed before being given a grant.
Formula 2 expresses the bounded waiting property by universally quantifying a
trace, then existentially quantifying a sequence of bounds b. Now, for every trace
π′, whenever π and π′ pose a request at the same point in time, both have to get
access to the resource before b holds next. Therefore, for each point in time, there
is a bound such that all traces posing a request at that point in time get access
within a bounded number of steps. Note that this property differs from saying
“all traces are eventually granted access”, where the bound may also depend on
the trace under consideration. In this scenario, each of the infinitely many traces
could wait arbitrarily long for the grant. In particular, it could happen that with
each trace the waiting time is longer than before.

The above example shows how the interplay of trace quantifiers and proposi-
tional quantifiers can be leveraged to express a new class of promptness proper-
ties. We finally note that compared to Prompt-LTL, HyperQPTL cannot express
that all eventualities must be fulfilled within a fixed k number of steps.

Corollary 1. The expressiveness of HyperQPTL and Prompt-LTL is incompa-
rable.

Epistemic Properties. Another interesting class of properties that are not
expressible in HyperLTL are epistemic properties. Epistemic properties describe
the knowledge of agents that interact with each other in a system. Logics that
express epistemic properties are often equipped with a so-called knowledge oper-
ator, e.g., LTLK, which is LTL extended with the knowledge operator KA ϕ. The
operator denotes that an agent A ⊆ AP knows ϕ. An agent A is characterized in
terms of the atomic propositions he can observe. The semantics of the operator
is described with the following rule

t, i |= KA ϕ iff ∀t′. t[0, i] =A t′[0, i] → t′, i |= ϕ .

The formula is evaluated with respect to a trace t and a position i. We omit
the semantic definition for the rest of the logic, which corresponds to plain LTL.
The semantic definition of the operator captures the idea that an agent knows
some fact ϕ if ϕ holds on all traces that are indistinguishable for the agent.

Example 2 (Dining Cryptographers). The dining cryptographers problem [3] is
an interesting example of how epistemic properties can characterize non-trivial
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Fig. 2. The dining cryptographers problem with three cryptographers.

protocols. The problem describes the following situation (see Fig. 2): three cryp-
tographers C1, C2, and C3 sit at a table in a restaurant and either one of cryp-
tographers or, alternatively, the NSA paid for their meal. The task for the cryp-
tographers is to figure out whether the NSA or one of the cryptographers paid.
However, if one of the cryptographers paid, then the others must not be able
to infer who it was. Each cryptographer Ci receives several bits of information:
paidi indicating whether or not he pays the bill, and two secrets, each shared
with one of the other cryptographers. The secrets can be used to encode the
information they share as output out i. By combining the outputs of all cryptog-
raphers, it must become clear whether the NSA or one of the group paid. The
specification of the protocol can be easily formalized in LTLK. The following
formula describes the desired behavior of agent C1:

DCagent1 :=
(paidgroup ∧ ¬paid1 → (KC1(paid2 ∨ paid3) ∧ ¬KC1 paid2 ∧ ¬KC1 paid3))

∧ (paidNSA → KC1(¬paid1 ∧ ¬paid2 ∧ ¬paid3)) .

The knowledge operator can also be defined for hyperlogics [29]. It receives an
additional parameter π, indicating the trace the knowledge refers to. When added
to HyperQPTL, it has the following semantics:

Π, i |=T KA,πϕ iff ∀t′ ∈ T.Π(π)[0, i] =A t′[0, i] → Π[π 	→ t′], i |=T ϕ .

The knowledge operator, however, can be encoded in HyperQPTL using propo-
sitional quantification. Epistemic problems, such as the dining cryptographers
problem, can thus be expressed in HyperQPTL.

Theorem 1 ([29] ). HyperQPTL can emulate the knowledge operator.
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Proof. We recap the proof from [29]: Let ϕ = Qπ/q . . . Qπ/q. ϕ
′ be a HyperQPTL

formula, equipped with the knowledge operator as defined above. We assume
that ϕ is given in negated normal form, i.e. each KA,π occurs either in positive
position or in negated form. Let u and t be fresh propositions and let π′ be a fresh
trace variable. Recursively, we replace each knowledge operator KA,π occurring
in ϕ in positive position with the following formula

Qπ/q . . . Qπ/q.∃u.∀r.∀π′. ϕ′[KA,πψ 	→ u] ∧
((r U (u ∧ r ∧ ¬r)) ∧ (r → Aπ = Aπ′) → (r ∧ ¬r → ψ[π 	→ π′]))

and each KA,π occurring negatively with the following formula

Qπ/q . . . Qπ/q.∃u.∀r.∃π′. ϕ′[¬KA,πψ 	→ u] ∧
((r U (u ∧ r ∧ ¬r)) → (r → Aπ = Aπ′) ∧ (r ∧ ¬r → ¬ψ[π 	→ π′])),

where we use ϕ′[KA,πψ 	→ u] to denote that in ϕ′, a single occurrence of the
knowledge operator is replaced by u, and ψ[π 	→ π′] to denote the formula
where π is replaced by π′. The existentially quantified proposition u indicates
the points in time where the knowledge operator is supposed to hold/not hold.
The universally quantified proposition r is assumed to change once from r to ¬r
and thereby point at one of the points in time picked by u. It is then used to
compare the prefix of the old trace π and an alternative trace quantified by the
trace variable π′. ��

4 HyperQPTL Realizability

In reactive synthesis, the task is, given a specification ϕ, to construct a sys-
tem that satisfies the specification. More precisely, the system is assumed to
receive some inputs from an environment and has to react with outputs such
that the specification is fulfilled. The realizability problem asks for the exis-
tence of a so-called strategy tree, where the edges are labeled with all possible
inputs and the task is to find a function f that labels the nodes with the corre-
sponding outputs. Figure 3 shows a strategy tree for a single input bit i. We
define strategies following [12]. Let a set AP = I ∪̇ O be given. A strategy
f : (2I)∗ → 2O maps sequences of input valuations 2I to an output valuation
2O. For an infinite word w = w0w1w2 · · · ∈ (2I)ω, the trace corresponding to a
strategy f is defined as (f(ε) ∪ w0)(f(w0) ∪ w1)(f(w0w1) ∪ w2) . . . ∈ (2I∪O)ω.
For any trace w = w0w1w2 . . . ∈ (2I∪O)ω and strategy f : (2I)∗ → 2O, we lift
the set containment operator ∈ defining that w ∈ f iff f(ε) = w0 ∩ O and
f((w0 ∩I) · · · (wi ∩I)) = wi+1 ∩O for all i ≥ 0. We say that a strategy f satisfies
a HyperQPTL formula ϕ over AP = I ∪̇ O iff {w | w ∈ f} satisfies ϕ.

With the definition of a strategy at hand, we can define the realizability
problem of HyperQPTL formally.

Definition 1 (HyperQPTL Realizability). A HyperQPTL formula ϕ over
atomic propositions AP = I ∪̇O is realizable if there is a strategy f : (2I)∗ → 2O

that satisfies ϕ.
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Fig. 3. A strategy tree for the reactive realizability problem.

For technical reasons, we assume (without loss of generality) that quantified
atomic propositions are classified as outputs, not inputs. This complies with the
intuition that propositional quantifiers should be a means for additional expres-
siveness; they should not overwrite the inputs received from the environment.
The definition of realizability of QPTL and HyperLTL specifications is inherited
from the definition for HyperQPTL.

Compared to the standard realizability problem, the distributed realizability
problem is defined over an architecture, containing a number of processes inter-
acting with each other. The goal is to find a strategy for each of the processes.
In the following proofs, we will make use of the distributed realizability problem
of QPTL, which we therefore also define formally.

A distributed architecture [17,27] A over atomic propositions AP is a tuple
〈P, penv , I,O〉, where P is a finite set of processes and penv ∈ P is a designated
environment process. The functions I : P → 2AP and O : P → 2AP define the
inputs and outputs of processes. The output of one process can be the input of
another process. The output of the processes must be pairwise disjoint, i.e., for
all p �= p′ ∈ P it holds that O(p) ∩ O(p′) = ∅. We assume that the environ-
ment process forwards inputs to the processes and has no input of its own, i.e.,
I(penv ) = ∅.

Definition 2 (Distributed QPTL Realizability [17]). A QPTL formula
ϕ over free atomic propositions AP is realizable in an architecture A =
〈P, penv , I,O〉 if for each process p ∈ P , there is a strategy fp : (2I(p))∗ → 2O(p)

such that the combination of all fp satisfies ϕ.

The distributed realizability problem for QPTL is (inherited from LTL) in gen-
eral undecidable [27]. However, we will use the result that the problem remains
decidable for architectures without information forks[17]. The notion of infor-
mation forks captures the flow of data in the system. Intuitively, an architec-
ture contains an information fork if the processes cannot be ordered linearly
according to their informedness. Formally, an information fork in an architecture
A = 〈P, penv , I,O〉 is defined as a tuple (P ′, V ′, p, p′), where p, p′ are two differ-
ent processes, P ′ ⊆ P , and V ′ ⊆ AP is disjoint from I(p) ∪ I(p′). (P ′, V ′, p, p′)
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(a) Information fork: An architecture with
two processes; process p to produces out-
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(b) No information fork: The same archi-
tecture as on the left, where the inputs of
process p′ are changed to i and i′.

Fig. 4. Distributed architectures

is an information fork if P ′ together with the edges that are labeled with at
least one variable from V ′ forms a subgraph rooted in the environment and
there exist two nodes q, q′ ∈ P ′ that have edges to p, p′, respectively, such that
O(q)∩I(p) � I(p′) and O(q′)∩I(p′) � I(p). The definition formalizes the intu-
ition that p and p′ receive incomparable input bits, i.e., they have incomparable
information.

Example 3. Two example architectures are depicted in Fig. 4 [12]. The processes
in Fig. 4a receive distinct inputs and thus neither process is more informed than
the other. The architecture therefore contains an information fork with P ′ =
{env , p, p′}, V ′ = {i, i′}, q = env , q′ = env . The processes in Fig. 4b can be
ordered linearly according to the subset relation on the inputs and thus the
architecture contains no information fork.

In the following sections, we identify tight syntactic fragments of HyperQPTL
for which the standard realizability problem is decidable. We give decidability
proofs and show that formulas outside the decidable fragments are in general
undecidable. An important aspect for decidability is the number of universal
trace quantifiers that appear in the formula. We thus present our findings in three
categories, depending on the number of universal trace quantifiers a formula has.

4.1 No Universal Trace Quantifier

We show that the realizability problem of any HyperQPTL formula without a
∀π quantifier is decidable. The problem is reduced to QPTL realizability.

Theorem 2. Realizability of the (∃∗
πQ∗

q)
∗ fragment of HyperQPTL is decidable.

Proof. Let a (∃∗
πQ∗

q)
∗ HyperQPTL formula ϕ over AP = I ∪̇ O = {a0, . . . , ak}

with trace quantifiers π0, . . . πn be given. We reduce the problem to the realiz-
ability problem of QPTL, which is known to be decidable (since QPTL formulas
can be translated to Büchi automata). The idea is to replace each existential
trace quantifier ∃πi with quantification of propositions a0

πi
, a1

πi
, . . . , ak

πi
, one for
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each aj ∈ AP, thereby mimicking the quantification of a trace. To make sure
that only traces from an actual strategy tree are chosen, we add a dependency
formula which forces the outputs to be dependent on the inputs. The following
QPTL formula implements the idea.

ϕQPTL := ϕ[i ≤ n : ∃πi 	→ ∃a0
πi

. . . . ∃ak
πi

. ] ∧
∧

i≤n

∧

j≤n

(Iπi
�= Iπj

)R(Oπi
= Oπj

)

We use the notation [i ≤ n : ∃πi 	→ ∃a0
πi

. . . . ∃ak
πi

. ] to indicate that each πi for
0 ≤ i ≤ n is replaced with the respective series of existential propositional quan-
tification. Furthermore, we write Iπi

�= Iπj
as syntactic sugar for

∨
a∈I aπi

� aπj

(and similarly for Oπi
= Oπj

). We show that ϕ and ϕQPTL are equirealizable.
For the first direction, assume that ϕ is realizable by a strategy f . Notice that all
atomic propositions in ϕQPTL are bound by a propositional quantifier. Therefore,
if the witness sequences for the quantified propositions can be chosen correctly,
any strategy realizes ϕQPTL. Propositions aj

πi
are chosen according to the witness

traces of f |= ϕ. Witnesses for the remaining atomic propositions are also chosen
according to their witnesses from f |= ϕ. Now, the first conjunct of ϕQPTL is
fulfilled since f |= ϕ holds. The second conjunct is fulfilled since any two traces
πi, πj of a strategy tree fulfill by construction (Iπi

�= Iπj
)R(Oπi

= Oπj
). For the

other direction, assume that ϕQPTL is realizable (by construction independently
from the strategy). Let ta0

π0
, . . . , tak

πn
be the witness sequences for the respective

quantified atomic propositions. The following strategy realizes ϕ.

f(σ) =

⎧
⎪⎨

⎪⎩

{taπi
[|σ|] | a ∈ O} if for some i ≤ n,

σ = {taπi
[0] | a ∈ I} . . . {taπi

[|σ|] | a ∈ I}
∅ otherwise

Strategy f chooses the outputs according to the witnesses for the propositions
encoding the traces. Note that because of the second conjunct in ϕQPTL, the
output is always unique, even if several encoded traces start with the same
input sequence. Now, f |= ϕ holds because of the first conjunct of ϕQPTL. ��

4.2 Single Universal Trace Quantifier

In this fragment, we allow exactly one universal trace quantifier. It is particularly
interesting as it contains many promptness properties. For example, the following
promptness formulation mentioned in the introduction lies within the fragment:

∃b.∀π. b ∧ (¬b U eπ) .

Theorem 3. Realizability of the ∃∗
q/π∀∗

q∀πQ∗
q fragment is decidable.

We show the theorem in two steps. First, we generalize a proof from [12], showing
that realizability of the ∃∗

π∀πQ∗
q fragment is decidable. Second, we show that we

can reduce the realizability problem of any HyperQPTL formula to a formula
where some propositional quantifiers are replaced with trace quantifiers.
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Fig. 5. Distributed architecture encoding existential choice of traces.

Lemma 2. Realizability of the ∃∗
π∀πQ∗

q fragment is decidable.

Proof. The reasoning generalizes the proof in [12] showing that realizability
∃∗

π∀π HyperLTL formulas is decidable. We reduce the problem to the dis-
tributed realizability problem of QPTL without information forks, which is—
since QPTL is subsumed by the μ-calculus—decidable [17]. Let a HyperQPTL
formula ϕ = ∃π1. . . . ∃πn.∀π. ψ over AP = I ∪̇ O be given, where ψ is from
the Q∗

q fragment. We define a distributed architecture A over an extended set
of atomic propositions AP′ = I ∪ O ∪ I ′ ∪ O′. Similarly to the proof in Theo-
rem 2, I ′ and O′ are composed of a copy of the atomic propositions for each
existentially quantified variable πj . Formally, I ′ =

⋃
1≤j≤n{iπj

| i ∈ I} and
O′ =

⋃
1≤j≤n{oπj

| o ∈ O}. Now we define A as follows.

A := 〈(penv , p1, p2), penv , I,O, 〉
I := (p1 	→ ∅, p2 	→ I)
O := (penv 	→ I, p1 	→ I ′ ∪ O′, p2 	→ O)

The architecture is displayed in Fig. 5. The idea is that process p1 sets the
values of all iπj

and oπj
(for j ≤ n) and thereby determines the choice for the

existentially quantified traces. Process p1 receives no input and therefore needs
to make a deterministic choice. Process p2 then solves the realizability of formula
∀π. ψ. The following QPTL formula ϕ′ encodes the idea.

ϕ′ := ψ′ ∧ (
∧

1≤j≤n

(Iπj
�= I)R(Oπj

= O)) ,

where ψ′ is defined as ψ, where all aπ are replaced by a (but atomic propositions
aπj

are still part of ψ′!). Note that QPTL formulas implicitly quantify over all
traces universally. Similarly to the proof in Theorem 2, the second conjunct
ensures that process p1 encodes actual paths from the strategy tree of process
p2 (which is also the strategy tree for formula ϕ). Thus, ϕ′ is realizable for the
distributed architecture A iff ϕ is realizable. ��
To state the second lemma, we need to define what it means to replace quantifiers
in a formula. Let ϕ = Qπ/q, . . . , Qπ/q. ψ be a HyperQPTL formula, and J be
a set of indices such that for all j ∈ J , there exists a propositional quantifier
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∃qj or ∀qj in ϕ. Furthermore, assume that no πj with j ∈ J occurs in ϕ and
that a ∈ AP. We denote by ϕ[J ↪→a π] the formula where each propositional
quantifier ∃qj (or ∀qj , respectively) with j ∈ J is replaced with the corresponding
trace quantifier ∃πj (or ∀πj , respectively); and each qj in ψ is replaced by aπj

.

Lemma 3. Let any HyperQPTL formula ϕ over AP = I ∪̇O and a set of indices
J be given. If ϕ[J ↪→i π] is realizable, then so is ϕ, where i ∈ I is an arbitrary
input, assuming w.l.o.g., that I is non-empty.

Proof. Let ϕ and J be given. Formula ϕ[J ↪→i π] replaces the quantification
over sequences (2{q})ω with trace quantification, where the trace is only used for
statements about a single input i. We thus exploit the fact that in the realizability
problem, there is a trace for every input sequence. Therefore, the transformed
formula is equirealizable. ��
Now, we have everything we need to prove Theorem 3.

Proof (of Theorem 3). Let ϕ be a HyperQPTL formula of the ∃∗
q/π∀∗

q∀πQ∗
q frag-

ment. First, observe that in the quantifier prefix of ϕ, the ∀∗
q quantifiers and the

∀π can be swapped. The resulting formula belongs to the ∃∗
q/π∀πQ∗

q fragment.
By Lemma 3, the formula can be transformed to a equirealizable formula of the
∃∗

π∀πQ∗
q fragment, for which realizability is decidable by Lemma 2. ��

Lemma 3 allows us to decide realizability of a HyperQPTL formula by replacing
propositional quantifiers with trace quantifiers. Thus, we can reduce HyperQPTL
realizability to HyperLTL realizability, a fact that we use in Sect. 5 to describe
a bounded synthesis algorithm for HyperQPTL.

Corollary 2. The realizability problem of HyperQPTL can be soundly reduced
to the realizability problem of HyperLTL.

Lastly, we show that the decidable fragment is tight in the class of formulas
with a single universal trace quantifier. We do so by showing that a propositional
∀∗

q∃∗
q quantifier alternation followed by a single trace quantifier ∀π leads to an

undecidable realizability problem. The proof is carried out by a reduction from
Post’s Correspondence Problem.

Theorem 4. Realizability is undecidable for HyperQPTL formulas with a single
∀π quantifier outside the ∃∗

q/π∀∗
q∀πQ∗

q fragment.

Proof. Inherited from HyperLTL, realizability of formulas with a ∀π quantifier
followed by an ∃π quantifier is undecidable [12]. It remains to show that realiz-
ability of formulas from the ∀∗

q∃∗
q∀π fragment is in general undecidable. We give

a reduction from Post’s Correspondence Problem (PCP) [28] to a HyperQPTL
formula from the ∀∗

q∃∗
q∀π fragment. In PCP, we are given two equally long lists α

and β consisting of finite words from some alphabet Σ of size n. PCP is the prob-
lem to find an index sequence (ik)1≤k≤K with K ≥ 1 and 1 ≤ ik ≤ n, such that
αi1 . . . αiK

= βi1 . . . βiK
. Intuitively, PCP is the problem of choosing an infinite

sequence of domino stones (with finitely many different stones), where each stone
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ī

ī

Fig. 6. A sketch of the strategy tree of our PCP reduction: relevant traces are marked
in green. (Color figure online)

consists of two words αi and βi. Let a PCP instance with Σ = {a1, a2, ..., an}
and two lists α and β be given. We choose our set of atomic propositions as
follows: AP := I ∪̇ O with I := {i} and O := (Σ ∪ {ȧ1, ȧ2, ..., ȧn} ∪ #)2, where
we use the dot symbol to encode that a stone starts at this position of the trace.
We write ã to denote either a or ȧ. The single input i spans a binary strategy
tree. We encode the PCP instance into a HyperQPTL formula that is realizable
if and only if the PCP instance has a solution:

∀qi.∀q.∃pi.∃p.∀π. (( π = pi) → ( π = p)) ∧
(( π = (qi, q)) → ϕreduc(qi, q, pi,p)) ,

where q and p are sequences of universally and existentially quantified propo-
sitional variables, such that for each (o, o′) ∈ O, there is a q(o,o′) ∈ q and a
p(o,o′) ∈ p. Together with qi and pi for the input i, they simulate a univer-
sally and an existentially quantified trace from the model. The notation π = q
denotes that for every qa ∈ q, it holds that aπ ↔ qa. As seen before, the premise
( π = (qi, q)) and the conjunct ( π = pi) → ( π = p) ensure that the proposi-
tions (qi, q) and (pi,p) are chosen to represent actual traces from the model. The
universal quantification π thus only ensures that (qi, q) and (pi,p), which are
used for the main reduction, are chosen correctly. The reduction is implemented
in the formula ϕreduc and follows the construction in [10], where it is shown that
the satisfiability and realizability problem of HyperLTL are undecidable for a
∀∃ trace quantifier prefix.

ϕreduc(qi, q, pi,p) := ϕrel(qi) → ϕis++(qi, pi)
∧ ϕstart(ϕstone&shift (q,p), qi) ∧ ϕsol(qi, q)

– ϕrel(qi) := ¬qi U qi defines the set of relevant traces trough the binary
strategy tree (see Fig. 6).

– ϕis++(qi, pi) := (¬qi ∧¬pi)U ( qi ∧¬pi ∧ pi) defines that a relevant trace
is the direct successor trace of another relevant trace.
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– ϕsol(qi, q) := qi → ((
∨n

i=1 q(ȧi,ȧi)) ∧ (
∨n

i=1 q(ãi,ãi))) U q(#,#) ensures that
the path on which globally i holds is a “solution” trace, i.e., encodes the PCP
solution sequence.

– ϕstart(ϕ, qi) := ¬qi U(ϕ ∧ qi) cuts off an irrelevant prefix until ϕ starts.
– ϕstone&shift (q,p) encodes that the trace simulated by q starts with a valid

encoding of a stone from the PCP instance and that the trace simulated by
p encodes the same trace but with the first stone removed (see [10]).

For example, let α with α1 = a, α2 = ab, α3 = bba, and β with β1 = baa, β2 = aa
and β3 = bb be given. A possible solution for this PCP instance is be (3, 2, 3, 1),
since bbaabbbaa = iα = iβ . The full sequence at the trace i represents the
solution with the outputs

(ḃ, ḃ)(b, b)(a, ȧ)(ȧ, a)(b, ḃ)(ḃ, b)(b, ḃ)(a, a)(ȧ, a)(#,#)(#,#) . . .

The next relevant trace, therefore, contains

(ȧ, ȧ)(b, a)(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#,#) . . .

Continuing this, the following relevant traces are:

(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#,#) . . .

(ȧ, ḃ)(#, a)(#, a)(#,#)(#,#) . . .

(#,#)(#,#) . . .

The relevant traces verify the solution provided on the i trace by removing
one stone after the other. Thus, the formula is realizable iff the PCP instance
has a solution. ��

4.3 Multiple Universal Trace Quantifiers

When considering multiple universal trace quantifiers ∀∗
π, the problem becomes

undecidable. This is because in HyperLTL, one can encode distributed architec-
tures – for which the problem is undecidable – directly into the formula without
using any propositional quantification [12].

Corollary 3. Realizability of the ∀∗
π fragment is in general undecidable.

However, we show that the realizability problem for formulas with more than one
universal trace quantifier is decidable if we restrict ourselves to formulas in the
so-called linear fragment, i.e., that does not allow an encoding of a distributed
architecture. We define the linear fragment of HyperQPTL, where the definitions
are adopted from [12].

Let A,C ⊆ AP. We define that atomic propositions c ∈ C do solely depend
on propositions a ∈ A as the HyperQPTL formula

DA �→C := ∀π∀π′.

(
∨

a∈A

(aπ � aπ′)

)
R

(
∧

c∈C

(cπ ↔ cπ′)

)
.
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We define a collapse function, which collapses a HyperQPTL formula with a ∀∗
π

universal quantifier prefix into a formula with a single ∀π quantifier. Proposi-
tional quantifiers are preserved by the operation. Let ϕ be ∀π1 · · · ∀πn. Q∗

q . ψ.
We define the collapsed formula of ϕ as collapse(ϕ) := ∀π.Q∗

q . ψ[π1 	→ π][π2 	→
π] . . . [πn 	→ π] where ψ[πi 	→ π] replaces all occurrences of πi in ψ with π.

Lemma 4. Either ϕ ≡ collapse(ϕ) or ϕ has no equivalent ∀1
π. Q∗

q formula.

Proof. The collapse function solely works on the trace quantification mechanism
of the HyperQPTL formula, by reducing them to a single universal quantifi-
cation. The theorem has been proven for ∀∗ HyperLTL formulas in [12]. Inner
propositional quantification does not interfere with this mechanism, hence, the
proof can be carried out identically. ��

Now we can formally define the linear ∀∗
π fragment. Intuitively, we require

that every input-output dependency can be ordered linearly, i.e., we are
restricted to linear architectures without information forks (see Example 3).

Definition 3. Let O = {o1, . . . , on}. A HyperQPTL formula ϕ is called lin-
ear if for all oi ∈ O there is a Ji ⊆ I such that ϕ ∧ DI �→O ≡ collapse(ϕ) ∧∧

oi∈O DJi �→{oi} and Ji ⊆ Ji+1 for all i ≤ n.

This results in the following corollary. Since the universal quantifiers can be
collapsed, the resulting problem is the realizability problem of QPTL in a linear
architecture, which is decidable [17].

Corollary 4. Realizability of the linear ∀∗
πQ∗

q fragment is decidable.

Remark on Complexities. Our aim was to work out the largest possible fragments
for which the realizability problem of HyperQPTL remains decidable. The three
fragments for which we could prove decidability all subsume the logic QPTL, for
which the realizability problem is known to be non-elementary (already its sat-
isfiability problem is non-elementary [30]). Hence, realizability of the discussed
HyperQPTL fragments has a non-elementary lower bound. Finding interest-
ing fragments for which the problem has a more feasible complexity therefore
remains an open challenge.

5 Experiments

We have implemented a prototype tool that can solve the HyperQPTL realiz-
ability problem using the bounded synthesis approach [18]. More concretely,
we extended the HyperLTL synthesis tool BoSy [7,9,12]. Bosy reduces the
HyperLTL synthesis problem to a SMT constraint system which is then solved
by z3 [8] (for more see [12]). We implemented the reduction of HyperQPTL
synthesis to HyperLTL synthesis (Corollary 2) in BoSy, such that the tool can
also handle HyperQPTL formulas. We evaluated the tool against a range of
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Table 1. Experimental results for prompt arbiter

Instance Bound on system Bound on ∃-strategy Result Time [sec.]

arbiter-2-prompt 2 1 unsat <1

2 2 sat <1

arbiter-2-full-prompt 3 1 unsat 2.4

3 2 sat 6.0

arbiter-3-prompt 3 1 unsat 4.2

3 2 sat 9.5

arbiter-4-prompt 4 1 unsat 97

4 2 ? TO

benchmarks sets, shown in Table 1. The first column indicates the parameter-
ized benchmark name. The second and third columns indicate the bounds given
to the bounded synthesis procedure. The second column is the bound on the size
of the system. The newest version of BoSy also bounds the size of the strategy
for the existential player, this bound is given in column three. For a detailed
explanation of how existential strategies are bounded in BoSy, we refer to [7].

We synthesized a range of resource arbiters. Our benchmark set is parametric
in the number of clients that can request access to the shared resource (written
arbiter-k-prompt where k is the number of clients in Table 1). Unlike normal
arbiters, we require the arbiter to fulfill promptness for some of the clients, i.e.,
requests must be answered within a bounded number of steps [33]. We state
the promptness requirement in HyperQPTL by applying the alternating-color
technique from [24]. Intuitively, the alternating-color technique works as follows:
We quantify a q-sequence that “changes color” between q and ¬q. Each change
of color is used as a potential bound. Once a request occurs, the grant must be
given withing two changes of color. Thus, the HyperQPTL formulation amounts
to the following specifications, here exemplary for 2 clients, where we require
promptness only for client 1.

∀π. ¬(g1π ∧ g2π) (1)

∀π. (r2π → g2π) (2)

∃q.∀π. q ∧ ¬q (3)

∧ (r1π → (q → (q U(¬q U g1π)))

∧ (¬q → (¬q U(q U g1π))))

∀π.(¬g1π W r1π) ∧ (¬g2π W r2π) (4)
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Formula 1 states mutual exclusion. Formula 2 states that client 2 must be served
eventually (but not within a bounded number of steps). Formula 3 states the
promptness requirement for client 1. It quantifies an alternating q-sequence,
which serves as a sequence of global bounds that must be respected on all traces
π. Then, if client 1 poses a request, the grant must be given within two changes
of the value of q. Formula 4 is only added in benchmarks named arbiter-k-full-
prompt. It specifies that no spurious grants should be given.

BoSy successfully synthesizes prompt arbiter of up to 3 states. For a 4-state
prompt arbiter BoSy did not return in reasonable time.

6 Conclusion

We studied the hyperlogic HyperQPTL, which combines the concepts of trace
relations and ω-regularity. We showed that HyperQPTL is very expressive, it
can express properties like promptness, bounded waiting for a grant, epistemic
properties, and, in particular, any ω-regular property. Those properties are not
expressible in previously studied hyperlogics like HyperLTL. At the same time,
we argued that the expressiveness of HyperQPTL is optimal in a sense that
a more expressive logic for ω-regular hyperproperties would have an undecid-
able model checking problem. We furthermore studied the realizability prob-
lem of HyperQPTL. We showed that realizability is decidable for HyperQPTL
fragments that contain properties like promptness. But still, in contrast to the
satisfiability problem, propositional quantification does make the realizability
problem of hyperlogics harder. More specifically, the HyperQPTL fragment of
formulas with a universal-existential propositional quantifier alternation followed
by a single trace quantifier is undecidable in general, even though the projection
of the fragment to HyperLTL has a decidable realizability problem. Lastly, we
implemented the bounded synthesis problem for HyperQPTL in the prototype
tool BoSy. Using BoSy with HyperQPTL specifications, we have been able to
synthesize several resource arbiters. The synthesis problem of non-linear-time
hyperlogics is still open. For example, it is not yet known how to synthesize sys-
tems from specifications given in branching-time hyperlogics like HyperCTL∗.
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automata with applications to temporal logic. In: Brauer, W. (ed.) ICALP 1985.
LNCS, vol. 194, pp. 465–474. Springer, Heidelberg (1985). https://doi.org/10.1007/
BFb0015772

31. Sistla, A.P.: Theoretical issues in the design and verification of distributed systems,
Ph.D. thesis (1983)

32. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

33. Tentrup, L., Weinert, A., Zimmermann, M.: Approximating optimal bounds in
prompt-ltl realizability in doubly-exponential time. In: Proceedings of GandALF,
EPTCS, vol. 226, pp. 302–315 (2016). https://doi.org/10.4204/EPTCS.226.21

34. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of CSFW, p. 29. IEEE Computer Society (2003). https://
doi.org/10.1109/CSFW.2003.1212703

https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1145/3127041.3127058
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1007/BFb0015772
https://doi.org/10.1007/BFb0015772
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.4204/EPTCS.226.21
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703


Realizing ω-regular Hyperproperties 63

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


AdamMC: A Model Checker for Petri
Nets with Transits against Flow-LTL

Bernd Finkbeiner1, Manuel Gieseking2(B),
Jesko Hecking-Harbusch1,
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Abstract. The correctness of networks is often described in terms of
the individual data flow of components instead of their global behavior.
In software-defined networks, it is far more convenient to specify the cor-
rect behavior of packets than the global behavior of the entire network.
Petri nets with transits extend Petri nets and Flow-LTL extends LTL
such that the data flows of tokens can be tracked. We present the tool
AdamMC as the first model checker for Petri nets with transits against
Flow-LTL. We describe how AdamMC can automatically encode con-
current updates of software-defined networks as Petri nets with transits
and how common network specifications can be expressed in Flow-LTL.
Underlying AdamMC is a reduction to a circuit model checking prob-
lem. We introduce a new reduction method that results in tremendous
performance improvements compared to a previous prototype. Thereby,
AdamMC can handle software-defined networks with up to 82 switches.

1 Introduction

In networks, it is difficult to specify correctness in terms of the global behavior
of the entire system. Instead, the individual flow of components is far more
convenient to specify correct behavior. For example, loop and drop freedom can
be easily specified for the flow of each packet. Petri nets and LTL lack this local
view. Petri nets with transits and Flow-LTL have been introduced to overcome
this restriction [10]. A transit relation is introduced to follow the flow induced
by tokens. Flow-LTL is a temporal logic to specify both the local flow of data
and the global behavior of markings. The global behavior as in Petri nets and
LTL is still important for maximality and fairness assumptions. In this paper,

1 AdamMC is available online at https://uol.de/en/csd/adammc [12].
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Fig. 1. Access control at an airport modeled as Petri net with transits. Colored arrows
display the transit relation and define flow chains to model the passengers.

we present the tool AdamMC1 as the first model checker for Petri nets with
transits against Flow-LTL and its application to software-defined networking.

In Fig. 1, we present an example of a Petri net with transits that models the
security check at an airport where passengers are checked by a security guard.
The number of passengers entering the airport is unknown in advance. Rather
than introducing the complexity of an infinite number of tokens, we use a fixed
number of tokens to model possibly infinitely many flow chains. This is done by
the transit relation which is depicted with colored arrows.

The left-hand side of Fig. 1 models passengers who want to reach the ter-
minal. There are three tokens in the places airport, queue, and terminal. Thus,
transitions start and en are always enabled. Each firing of start creates a new
flow chain as depicted by the green arrow. This models a new person arriving at
the airport. Meanwhile, the double-headed blue arrow maintains all flow chains
that are still in place airport. Passengers have to enter the queue and wait until
the security check is performed. Therefore, transition en continues every flow
chain in airport to queue. Checking the passengers is carried out by transition
check which becomes enabled if the security guard works. Thus, passengers resid-
ing in queue have to wait until the guard checks them. Afterwards, they reach
the terminal. The security guard is modeled on the right-hand side of Fig. 1. By
firing comeToWork and thus moving the token in place home, her flow chain
starts and she can repeatedly either idle or work, check passengers, and return.
Her transit relation is depicted in orange and models exactly one flow chain.

In Fig. 1, we define the checkpoints cp1 and cp2 and the booth as a security
zone and require that passengers never enter the security zone and eventually
reach the terminal. The flow formula ϕ = A(airport → ( ¬(cp1 ∨ cp2 ∨ booth)∧

terminal)) specifies this. AdamMC verifies the example from Fig. 1 against
the formula check → ϕ specifying that if passengers are checked regularly
then they cannot access the security zone and eventually reach the terminal.

In this paper, we present AdamMC as a full-fledged tool. First, AdamMC
can handle Petri nets with transits and Flow-LTL formulas in general. Sec-
ond, AdamMC has an input interface for a concurrent update and a software-
defined network and encodes both of them as a Petri nets with transits. Common
assumptions on fairness and requirements for network correctness are also pro-
vided as Flow-LTL formulas. This allows users of the tool to model check the
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correctness of concurrent updates and to prevent packet loss, routing loops, and
network congestion. Third, AdamMC provides algorithms to check safe Petri
nets against LTL with both places and transitions as atomic propositions which
makes it especially easy to specify fairness and maximality assumptions.

The tool reduces the model checking problem for safe Petri nets with transits
against Flow-LTL to the model checking problem for safe Petri nets against LTL.
We develop the new parallel approach to check global and local behavior in
parallel instead of sequentially. This approach yields a tremendous speed-up for
a few local requirements and realistic fairness assumptions in comparison to the
sequential approach of a previous prototype [10]. In general, the parallel approach
has worst-case complexity inferior to the sequential approach even though the
complexities of both approaches are the same when using only one flow formula.

As last step, AdamMC reduces the model checking problem of safe Petri
nets against LTL to a circuit model checking problem. This is solved by ABC
[2,4] with effective verification techniques like IC3 and bounded model checking.
AdamMC verifies concurrent updates of software-defined networks with up to
38 switches (31 more than the prototype) and falsifies concurrent updates of
software-defined networks with up to 82 switches (44 more than the prototype).

The paper is structured as follows: In Sect. 2, we recall Petri nets with transits
and Flow-LTL. In Sect. 3, we outline the three application areas of AdamMC:
checking safe Petri nets with transits against Flow-LTL, checking concurrent
updates of software-defined networks against common assumptions and specifi-
cations, and checking safe Petri nets against LTL. In Sect. 4, we algorithmically
encode concurrent updates of software-defined networks in Petri nets with tran-
sits. In Sect. 5, we introduce the parallel approach for the underlying circuit
model checking problem. In Sect. 6, we present our experimental evaluation.

Further details can be found in the full paper [13].

2 Petri Nets with Transits and Flow-LTL

A safe Petri net with transits N = (P,T ,F , In, Υ ) [10] contains the set of
places P, the set of transitions T , the flow relation F ⊆ (P ×T )∪ (T ×P),
and the initial marking In ⊆ P as in safe Petri nets [27]. In a safe Petri net,
reachable markings contain at most one token per place. The transit relation Υ
is for every transition t ∈ T of type Υ (t) ⊆ (preN (t) ∪ {�}) × postN (t).
With p Υ (t) q, we define that firing transition t transits the flow in place p
to place q. The symbol � denotes a start and � Υ (t) q defines that firing tran-
sition t starts a new flow for the token in place q. Note that the transit relation
can split, merge, and end flows. A sequence of flows leads to a flow chain which
is a sequence of the current place and the fired outgoing transition. Thus, Petri
nets with transits can describe both the global progress of tokens and the local
flow of data.

Flow-LTL [10] extends Linear-time Temporal Logic (LTL) and uses places
and transitions as atomic propositions. It introduces A as a new operator which
uses LTL to specify the flow of data for all flow chains. For Fig. 1, the formula
A(booth → check) specifies that the guard performs at least one check. We call
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Fig. 2. Overview of the workflow of AdamMC: The application areas of the tool are
given by three different input domains: software-defined network/Flow-LTL (Input
I), Petri nets with transits/Flow-LTL (Input II), and Petri nets/LTL (Input III).
AdamMC performs all unlabeled steps. MCHyper creates the final circuit which ABC
checks to answer the initial model checking problem.

formulas starting with A flow formulas. Formulas around flow formulas specify
the global progress of tokens in the form of markings and fired transitions to
formalize maximality and fairness assumptions. These formulas are called run
formulas. Often, Flow-LTL formulas have the form run formula → flow formula.

3 Application Areas

AdamMC consists of modules for three application areas: checking safe Petri
nets with transits against Flow-LTL, checking concurrent updates of software-
defined networks against common assumptions and specifications, and checking
safe Petri nets against LTL. The general architecture and workflow of the model
checking procedure is given in Fig. 2. AdamMC is based on the tool Adam [14].
Petri Nets with Transits. Petri nets with transits follow the progress of
tokens and the flow of data. Flow-LTL allows to specify requirements on both.
For Petri nets with transits and Flow-LTL (Input II), AdamMC extends a parser
for Petri nets provided by APT [30], provides a parser for Flow-LTL, and imple-
ments two reduction methods to create a safe Petri net and an LTL formula.
The sequential approach is outlined in [10] and the parallel approach in Sect. 5.
Software-Defined Networks. Concurrent updates of software-defined net-
works are the second application area of AdamMC. The tool automatically
encodes an initially configured network topology and a concurrent update as a
Petri net with transits. The concurrent update renews the forwarding table. We
provide parsers for the network topology, the initial configuration, the concurrent
update, and Flow-LTL (Input I). In Sect. 4, we present the creation of a Petri
net with transits from the input and Flow-LTL formulas for common network
properties like connectivity, loop freedom, drop freedom, and packet coherence.
Petri Nets. AdamMC supports the model checking of safe Petri nets
against LTL with both places and transitions as atomic propositions. It pro-
vides dedicated algorithms to check interleaving-maximal runs of the system.
A run is interleaving-maximal if a transition is fired whenever a transition is
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enabled. Furthermore, AdamMC allows a concurrent view on runs and can check
concurrency-maximal runs which demand that each subprocess of the system has
to progress maximally rather than only the entire system. State-of-the-art tools
like LoLA [32] and ITS-Tools [29] are restricted to interleaving-maximal runs
and places as atomic propositions. For Petri net model checking (Input III), we
allow Petri nets in APT and PNML format as input and provide a parser for
LTL formulas.

The construction of the circuit in Aiger format [3] is defined in [11]. MCHy-
per [15] is used to create a circuit from a given circuit and an LTL formula.
This circuit is given to ABC [2,4] which provides a toolbox of modern hardware
verification algorithms like IC3 and bounded model checking to decide the initial
model checking question. As output for all three modules, AdamMC transforms
a possible counterexample (CEX) from ABC into a counterexample to the Petri
net (with transits) and visualizes the net with Graphviz and the dot language [9].
When no counterexample exists, AdamMC verified the input successfully.

4 Verifying Updates of Software Defined Networks

We show how AdamMC can check concurrent updates of realistic examples from
software-defined networking (SDN) against typical specifications [19]. SDN [6,25]
separates the data plane for forwarding packets and the control plane for the
routing configuration. A central controller initiates updates which can cause
problems like routing loops or packet loss. AdamMC provides an input interface
to automatically encode software-defined networks and concurrent updates of
their configuration as Petri nets with transits. The tool checks requirements like
loop and drop freedom to find erroneous updates before they are deployed.

4.1 Network Topology, Configurations, and Updates

A network topology T is an undirected graph T = (Sw ,Con) with switches as
vertices and connections between switches as edges. Packets enter the network
at ingress switches and they leave at egress switches. Forwarding rules are of the
form x.fwd(y) with x, y ∈ Sw . A concurrent update has the following syntax:

switch update ::= upd(x.fwd(y/z)) | upd(x.fwd(y/-)) | upd(x.fwd(-/z))
sequential update ::= (update >> update >> ... >> update)
parallel update ::= (update || update || ... || update)
update ::= switch update | sequential update |parallel update

where a switch update can renew the forwarding rule of switch x from switch z
to switch y, introduce a new forwarding rule from switch x to switch y, or remove
an existing forwarding rule from switch x to switch z.
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4.2 Data Plane and Control Plane as Petri Net with Transits

For a network topology T = (Sw ,Con), a set of ingress switches, a set of egress
switches, an initial forwarding table, and a concurrent update, we show how data
and control plane are encoded as Petri net with transits. Switches are modeled
by tokens remaining in corresponding places s whereas the flow of packets is
modeled by the transit relation Υ . Specific transitions is model ingress switches
where new data flows begin. Tokens in places of the form x.fwd(y) configure the
forwarding. Data flows are extended by firing transitions (x,y) corresponding
to configured forwarding without moving any tokens. Thus, we model any order
of newly generated packets and their forwarding. Assuming that each existing
direction of a connection between two switches is explicitly given in Con, we
obtain Algorithm 1 which calls Algorithm 2 to obtain the control plane.

For the update, let SwU be the set of switch updates in it, SeU the set of
sequential updates in it, and PaU the set of parallel updates in it. Depending
on update’s type, it is also added to the respective set. The subnet for the update
has an empty transit relation but moves tokens from and to places of the form
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x.fwd(y). Tokens in these places correspond to the forwarding table. The order
of the switch updates is defined by the nesting of sequential and parallel updates.
The update is realized by a specific token moving through unique places of the
form us, uf , ss, sf , ps, pf for start and finish of each switch update u ∈ SwU , each
sequential update s ∈ SeU , and each parallel update p ∈ PaU . A parallel update
temporarily increases the number of tokens and reduces it upon completion to
one. Algorithm 2 defines the update behavior between start and finish places
and connects finish and start places depending on the subexpression structure.

Fig. 3. Overview of the sequential approach: Each firing of a transition of the original
net is split into first firing a transition in the subnet for the run formula and subse-
quently firing a transition in each subnet tracking a flow formula. The constructed LTL
formula skips the additional steps with until operators.

Fig. 4. Overview of the parallel approach: The n subnets are connected such that for
every transition t ∈ T there are (|Υ (t)| + 1)n transitions, i.e., there is one transition
for every combination of which transit of t (or none) is tracked by which subnet. We
use until operators in the constructed LTL formula to only skip steps not involving the
tracking of the guessed chain in the flow formula.

4.3 Assumptions and Requirements

We use the run formula pre (t) → t to assume weak fairness for every
transition t in our encoding N . Transitions, which are always enabled after
some point, are ensured to fire infinitely often. Thus, packets are eventually
forwarded and the routing table is eventually updated. We use flow formulas to
test specific requirements for all packets. Connectivity (A(

∨
s∈egress s)) ensures

that all packets reach an egress switch. Packet coherence (A( (
∨

s∈initial s) ∨
(
∨

s∈final s))) tests that packets are either routed according to the initial or final
configuration. Drop freedom (A (

∧
e∈egress ¬e → ∨

f∈Con f)) forbids dropped
packets whereas loop freedom (A (

∧
s∈Sw\egress s → (sU ¬s))) forbids rout-

ing loops. We combine run and flow formula into fairness → requirement.
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5 Algorithms and Optimizations

Central to model checking a Petri net with transitsN against a Flow-LTL formula
ϕ is the reduction to a safe Petri netN > and an LTL formula ϕ>. The infinite state
space of the Petri net with transits due to possibly infinitely many flow chains is
reduced to a finite state model. The key idea is to guess and track a violating flow
chain for each flow subformula Aψi, for i ∈ {1, . . . , n}, and to only once check the
equivalent future of flow chains merging into a common place.

AdamMC provides two approaches for this reduction: Fig. 3 and Fig. 4 give
an overview of the sequential approach and the parallel approach, respectively.
Both algorithms create one subnet N >

i for each flow subformula Aψi to track
the corresponding flow chain and have one subnet N >

O to check the run part
of the formula. The places of N >

O are copies of the places in N such that the
current state of the system can be memorized. The subnets N >

i also consist
of the original places of N but only use one token (initially residing on an
additional place) to track the current state of the considered flow chain. The
approaches differ in how these nets are connected to obtain N >.
Sequential Approach. The places in each subnet N >

i are connected with
one transition for each transit (Tfl =

⋃
t∈T Υ (t)). An additional token iterates

sequentially through the subnets to activate or deactivate the subnet. This allows
each subnet to track a flow chain corresponding to firing a transition in N >

O . The
formula ϕ> takes care of these additional steps by means of the until operator:
In the run part of the formula, all steps corresponding to moves in a subnet N >

i

are skipped and, for each subformula Aψi, all steps are skipped until the next
transition of the corresponding subnet is fired which transits the tracked flow
chain. This technique results in a polynomial increase of the size of the Petri
net and the formula: N > has O(|N | · n + |N |) places and O(|N |3 · n + |N |)
transitions and the size of ϕ> is in O(|N |3 · n · |ϕ| + |ϕ|). We refer to [11] for
formal details.
Parallel Approach. The n subnets are connected such that the current
chain of each subnet is tracked simultaneously while firing an original transition
t ∈ T . Thus, there are (|Υ (t)|+1)n transitions. Each of these transitions stands
for exactly one combination of which subnet is tracking which (or no) transit.
Hence, firing one transition of the original net is directly tracked in one step
for all subnets. This significantly reduces the complexity of the run part of the
constructed formula, since no until operator is needed to skip sequential steps. A
disjunction over all transitions corresponding to an original transition suffices to
ensure correctness of the construction. Transitions and next operators in the flow
parts of the formula still have to be replaced by means of the until operator to
ensure that the next step of the tracked flow chain is checked at the corresponding
step of the global timeline of ϕ>. In general, the parallel approach results in an
exponential blow-up of the net and the formula: N > has O(|N |·n+|N |) places
and O(|N |3n+ |N |) transitions and the size of ϕ> is in O(|N |3n · |ϕ|+ |ϕ|). For
the practical examples, however, the parallel approach allows for model checking
Flow-LTL with few flow subformulas with a tremendous speed-up in comparison
to the sequential approach. Formal details are in the full version of the paper [13].
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Table 1. Overview of optimization parameters of AdamMC: The three reduction steps
depicted in the first column can each be executed by different algorithms. The first step
allows to combine the optimizations of the first and second row.

Optimizations. Various optimizations parameters can be applied to the model
checking routine described in Sect. 3 to tweak the performance. Table 1 gives an
overview of the major parameters.

We found that the versions of the sequential and the parallel approach with
inhibitor arcs to track flow chains are generally faster than the versions without.
Furthermore, the reduction step from a Petri net into a circuit with logarith-
mically encoded transitions had oftentimes better performance than the same
step with explicitly encoded transitions. However, several possibilities to reduce
the number of gates of the created circuit worsened the performance of some
benchmark families and improved the performance of others. Consequently, all
parameters are selectable by the user and a script is provided to compare dif-
ferent settings. An overview of the selectable optimization parameters can be
found in the documentation of AdamMC [12]. Our main improvement claims
can be retraced by the case study in Sect. 6.

6 Evaluation

We conduct a case study based on SDN with a corresponding artifact [16]. The
performance improvements of AdamMC compared to the prototype [10] are
summarized in Table 2. For realistic software-defined networks [19], one ingress
and one egress switch are chosen at random. Two forwarding tables between the
two switches and an update from the first to the second configuration are chosen
at random. AdamMC verifies that the update maintained connectivity between
ingress and egress switch. The results are depicted in rows starting with T.
For rows starting with F, we required connectivity of a random switch which is
not in the forwarding tables. AdamMC falsified this requirement for the update.

The prototype implementation based on an explicit encoding can verify
updates of networks with 7 switches and falsify updates of networks with 38
switches. We optimize the explicit encoding to a logarithmic encoding and the
number of switches for which updates can be verified increases to 17. More sig-
nificantly, the parallel approach in combination with the logarithmic encoding
leads to tremendous performance gains. The performance gains of an approach
with inferior worst-case complexity are mainly due to the smaller complexity
of the LTL formula created by the reduction. The encoding of SDN requires
fairness assumptions for each transition. These assumptions (encoded in the run
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Table 2. We compare the explicit and logarithmic encoding of the sequential approach
with the parallel approach. The results are the average over five runs from an Intel i7-
2700K CPU with 3.50 GHz, 32 GB RAM, and a timeout (TO) of 30 min. The runtimes
are given in seconds.

expl. enc. log. enc. parallel appr.

T / F Network #Sw Alg. Time |= Alg. Time |= Alg. Time |=
T Arpanet196912 4 IC3 12.08 ✓ IC3 9.89 ✓ IC3 2.18 ✓

T Napnet 6 IC3 146.49 ✓ IC3 96.06 ✓ IC3 4.75 ✓

· · · · · · · · · · · ·
T Heanet 7 IC3 806.81 ✓ IC3 84.62 ✓ IC3 30.30 ✓

T HiberniaIreland 7 - TO ? - TO ? IC3 26.58 ✓

T Arpanet19706 9 - TO ? IC3 362.21 ✓ IC3 11.33 ✓

T Nordu2005 9 - TO ? - TO ? IC3 12.67 ✓

· · · · · · · · · · · ·
T Fatman 17 - TO ? IC3 1543.34 ✓ IC3 162.17 ✓

· · · · · · · · · · · ·
T Myren 37 - TO ? - TO ? IC3 1309.23 ✓

T KentmanJan2011 38 - TO ? - TO ? IC3 1261.32 ✓

F Arpanet196912 4 BMC3 2.18 ✗ BMC3 1.85 ✗ BMC3 1.97 ✗

F Napnet 6 BMC2 4.17 ✗ BMC2 5.22 ✗ BMC3 1.48 ✗

· · · · · · · · · · · ·
F Fatman 17 BMC3 168.78 ✗ BMC3 169.82 ✗ BMC3 6.72 ✗

· · · · · · · · · · · ·
F Belnet2009 21 BMC2 1146.26 ✗ BMC2 611.81 ✗ BMC3 24.26 ✗

· · · · · · · · · · · ·
F KentmanJan2011 38 BMC3 167.92 ✗ BMC3 86.44 ✗ BMC2 9.35 ✗

· · · · · · · · · · · ·
F Latnet 69 - TO ? - TO ? BMC2 209.20 ✗

F Ulaknet 82 - TO ? - TO ? BMC2 1043.74 ✗

Sum of runtimes (in hours): 82.99 79.15 30.31

Nb of TOs (of 230 exper.): 146 138 6

part of the formula) experience a blow-up with until operators by the sequential
approach but only need a disjunction in the parallel approach. Hence, the size
of networks for which AdamMC can verify updates increases to 38 switches and
the size for which it can falsify updates increases to 82 switches. For rather small
networks, the tool needs only a few seconds to verify and falsify updates which
makes it a great option for operators when updating networks.

7 Related Work

We refer to [21] for an introduction to SDN. Solutions for correctness of updates
of software-defined networks include consistent updates [7,28], dynamic schedul-
ing [17], and incremental updates [18]. Both explicit and SMT-based model
checking [1,5,22,23,26,31] is used to verify software-defined networks. Closest to
our approach are models of networks as Kripke structures to use model checking
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for synthesis of correct network updates [8,24]. The model checking subroutine
of the synthesizer assumes that each packet sees at most one updated switch.
Our model checking routine does not make such an assumption.

There is a significant number of model checking tools (e.g., [29,32]) for Petri
nets and an annual model checking contest [20]. AdamMC is restricted to safe
Petri nets whereas other tools can handle bounded and colored Petri nets. At the
same time, only AdamMC accepts LTL formulas with places and transitions as
atomic propositions. This is essential to express fairness in our SDN encoding.

8 Conclusion

We presented the tool AdamMC with its three application domains: checking
safe Petri nets with transits against Flow-LTL, checking concurrent updates of
software-defined networks against common assumptions and specifications, and
checking safe Petri nets against LTL. New algorithms allow AdamMC to model
check software-defined networks of realistic size: it can verify updates of networks
with up to 38 switches and can falsify updates of networks with up to 82 switches.
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Abstract. Stutter invariant properties play a special role in state-based
model checking: they are the properties that can be checked using par-
tial order reduction (POR), an indispensable optimization. There are
algorithms to decide whether an LTL formula or Büchi automaton (BA)
specifies a stutter-invariant property, and to convert such a BA to a form
that is appropriate for on-the-fly POR-based model checking.

The interruptible properties play the same role in action-based model
checking that stutter-invariant properties play in the state-based case.
These are the properties that are invariant under the insertion or dele-
tion of “invisible” actions. We present algorithms to decide whether an
LTL formula or BA specifies an interruptible property, and show how a
BA can be transformed to an interrupt normal form that can be used in
an on-the-fly POR algorithm. We have implemented these algorithms in
a new model checker named McRERS, and demonstrate their effective-
ness using the RERS 2019 benchmark suite.

Keywords: Model checking · Action · Event · LTL · Stutter-invariant

1 Introduction

To apply model checking to a concurrent system, one must formulate properties
that the system is expected to satisfy. A property may be expressed by specifying
acceptable sequences of states, or by specifying acceptable sequences of actions—
the events that cause the state to change. Each approach has advantages and
disadvantages, and in any particular context one may be more appropriate than
the other.

In the state-based context, there is a rich theory involving automata, logic,
and reduction for model checking. Some of the core ideas in this theory can be
summarized as follows. First, the behavior of the concurrent system is repre-
sented by a state-transition system T . One identifies a set AP of atomic proposi-
tions, and each state of T is labeled by the set of propositions which hold at that
state. An execution passes through an infinite sequence of states, which defines
a trace, i.e., a sequence of subsets of AP. A property is a set of traces, and T
satisfies the property if every trace of T is in P .

Y. Yan—Currently employed at Google.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 77–100, 2020.
https://doi.org/10.1007/978-3-030-53291-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_6&domain=pdf
http://orcid.org/0000-0001-9359-3332
http://orcid.org/0000-0001-7366-2003
https://doi.org/10.1007/978-3-030-53291-8_6


78 S. F. Siegel and Y. Yan

Properties may be specified by formulas in a temporal logic, such as LTL [26].
There are algorithms (e.g., [37]) to convert an LTL formula φ to an equivalent
Büchi automaton (BA) Bφ with alphabet 2AP. (Properties may also be specified
directly using BAs.) The system T satisfies φ if and only if the language of the
synchronous product T ⊗ B¬φ is empty. The emptiness of the language can be
determined on-the-fly, i.e., while the reachable states of the product are being
constructed.

A property P is stutter-invariant if it is closed under the insertion and dele-
tion of repetitions, i.e., s0s1 · · · ∈ P ⇔ si0

0 si1
1 · · · ∈ P holds for any positive

integers i0, i1, · · · . Many algorithms are known for deciding whether an LTL
formula or a BA specifies a stutter-invariant property [22,24]. There is also an
argument that only stutter-invariant properties should be used in practice. For
example, suppose that a trace is formed by sampling the state of a system once
every millisecond. If we sample the same system twice each millisecond, and
there are no state changes in the sub-millisecond intervals, the second trace will
be stutter-equivalent to the first. A meaningful property should be invariant
under this choice of time resolution.

Stutter-invariant properties are desirable for another reason: they admit the
most significant optimization in model checking, partial order reduction (POR,
[15,23,25]). At each state encountered in the exploration of the product space,
an on-the-fly POR scheme produces a subset of the enabled transitions. Restrict-
ing the search to the transitions in those subsets does not affect the language
emptiness question. Recent work has revealed that the BA must have a certain
form—“SI normal form”—when POR is used with on-the-fly model checking,
but any BA with a stutter-invariant language can be easily transformed into SI
normal form [27].

The purpose of this paper is to elaborate an analogous theory for event-
based models. Event-based models of concurrency are widely used and have
been extremely influential for over three decades. For example, process algebras,
such as CSP, are event-based and use labeled transition systems (LTSs) for the
semantic model. Event-based models are the main formalism used in assume-
guarantee reasoning (e.g, [10]), and in many other areas. There are mature model
checking and verification tools for process algebras and LTSs, and which have
significant industrial applications; see, e.g., [13]. Temporal logics, including LTL,
CTL, and CTL*, have long been used to specify event-based systems [3,7,12].

We call the class of properties in the action context that are analogous to
the stutter-invariant properties in the state context the interruptible properties
(Sect. 3). These properties are invariant under “action stuttering” [34], i.e., the
insertion or deletion of “invisible” actions. We present algorithms for deciding
whether an LTL formula or a BA specifies an interruptible property (Theorems
1 and 2); to the best of our knowledge, these are the first published algorithms
for deciding this property of formulas or automata.

Interruptible properties play the same role in action-based POR that stutter-
invariant properties play in state-based POR. In particular, we present an action-
based on-the-fly POR algorithm that works for interruptible properties (Sect. 4).
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As with the state-based case, the algorithm requires that the BA be in a cer-
tain normal form. We introduce a novel interrupt normal form (Definition 11) for
this purpose, and show how any BA with an interruptible language can be trans-
formed into that form. The relation to earlier work is discussed in Sect. 5. The
effectiveness of these reduction techniques is demonstrated by applying them to
problems in the 2019 RERS benchmark suite (Sect. 6).

2 Preliminaries

Let S be a set. 2S denotes the set of all subsets of S. S∗ denotes the set of
finite sequences of elements of S; Sω the infinite sequences. Let ζ = s0s1 · · · be
a (finite or infinite) sequence and i ≥ 0. If ζ is finite of length n, assume i < n.
Then ζ(i) denotes the element si. For any i ≥ 0, ζi denotes the suffix sisi+1 · · · .
(ζi is empty if ζ is finite and i ≥ n).

For ζ ∈ S∗ and η ∈ S∗ ∪ Sω, ζ ◦ η denotes the concatenation of ζ and η.
If S ⊆ T and η is a sequence of elements of T , η|S denotes the sequence

obtained by deleting from η all elements not in S.

2.1 Linear Temporal Logic

Let Act be a universal set of actions. We assume Act is infinite.

Definition 1. Form (the LTL formulas over Act) is the smallest set satisfying:

– true ∈ Form,
– if a ∈ Act then a ∈ Form, and
– if f and g are in Form, so are ¬f , f ∧ g, Xf , and fUg.

Additional operators are defined as shorthand for other formulas: false = ¬true,
f ∨ g = ¬((¬f) ∧ ¬g), f → g = (¬f) ∨ g, Ff = trueUf , Gf = ¬F¬f , and
fWg = (fUg) ∨ Gf . �
Definition 2. The alphabet of an LTL formula f , denoted αf , is the set of
actions that occur syntactically within f . �
Definition 3. The action-based semantics of LTL is defined by the relation
ζ |=A f , where ζ ∈ Actω and f ∈ Form, which is defined as follows:

– ζ |=A true,
– ζ |=A a iff ζ(0) = a,
– ζ |=A ¬f iff ζ �|=A f ,
– ζ |=A f ∧ g iff ζ |=A f and ζ |=A g,
– ζ |=A Xf iff ζ1 |=A f , and
– ζ |=A fUg iff ∃i ≥ 0 . (ζi |=A g ∧ ∀j ∈ 0..i − 1 . ζj |=A f). �
When using the action-based semantics, the logic is sometimes referred to as
“Action LTL” or ALTL [11,12].
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The state-based semantics is defined by a relation ξ |=S f , where ξ ∈ (2Act)ω.
The definition of |=S is well-known, and is exactly the same as Definition 3,
except that ξ |=S a iff a ∈ ξ(0). The action semantics are consistent with
the state semantics in the following sense. Let f ∈ Form, and ζ = a0a1 · · · ∈
Actω. Let ξ = {a0}{a1} · · · ∈ (2Act)ω. Then ζ |=A f iff ξ |=S f . The main
difference between the state- and action-based formalisms is that in the state-
based formalism, any number of atomic propositions can hold at each step. In
the action-based formalism, precisely one action occurs in each step.

Definition 4. Let f, g ∈ Form. Define

– (action equivalence) f ≡A g if (ζ |=A f ⇔ ζ |=A g) for all ζ ∈ Actω

– (state equivalence) f ≡S g if (ξ |=S f ⇔ ξ |=S g) for all ξ ∈ (2Act)ω. �
The following fact about the state-based semantics can be proved by induc-

tion on the formula structure:

Lemma 1. Let f ∈ Form and ξ = s0s1 · · · ∈ (2Act)ω. Let ξ′ = s′
0s

′
1 · · · , where

s′
i = αf ∩ si. Then ξ |=S f iff ξ′ |=S f .

The following shows that action LTL, like ordinary state-based LTL, is a
decidable logic:

Proposition 1. Let f, g ∈ Form, A = αf ∪ αg, and

h = G
[( ∧

a∈A

¬a
) ∨

∨
a∈A

(
a ∧

∧
b∈A\{a}

¬b
)]

.

Then f ≡A g ⇔ f ∧ h ≡S g ∧ h. In particular, action equivalence is decidable.

Proof. Note the meaning of h: at each step in a state-based trace, at most one
element of A is true.

Suppose f ∧ h ≡S g ∧ h. Let ζ = a0a1 · · · ∈ Actω. Let ξ = {a0}{a1} · · · . We
have ξ |=S h. By the consistency of the state and action semantics, we have

ζ |=A f ⇔ ξ |=S f ⇔ ξ |=S f ∧h ⇔ ξ |=S g ∧h ⇔ ξ |=S g ⇔ ζ |=A g,

hence f ≡A g.
Suppose instead that f ≡A g. We wish to show ξ |=S f ∧ h ⇔ ξ |=S g ∧ h for

any ξ = s0s1 · · · ∈ (2Act)ω. By Lemma 1, it suffices to assume si ⊆ A for all i.
Let τ be any element of Act \ A. (Here we are using the fact that Act is infinite,

while A is finite.) If |si| > 1 for some i, then ξ violates h and therefore violates both
f ∧h and g∧h. So suppose |si| ≤ 1 for all i, which means ξ |=S h. Let ζ = a0a1 · · · ,
where ai is the sole member of si if |si| = 1, or τ if |si| = 0. By Lemma 1, ξ |=S f
iff {a0}{a1} · · · |=S f . By the consistency of the action and state semantics, this is
equivalent to ζ |=A f . A similar statement holds for g. Hence

ξ |=S f ∧h ⇔ ξ |=S f ⇔ ζ |=A f ⇔ ζ |=A g ⇔ ξ |=S g ⇔ ξ |=S g ∧h.

The proposition reduces the question of action equivalence to one of ordinary
(state) equivalence of LTL formulas, which is known to be decidable ([26], see
also [36, Thm. 24]). �
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Definition 5. For A ⊆ Act and f ∈ Form with αf ⊆ A, let

L(f,A) = {ζ ∈ Aω | ζ |= f}.

�

2.2 Büchi Automata

Definition 6. A Büchi Automaton (BA) over Act is a tuple (S,Σ,→, S0, F )
where

1. S is a finite set of states,
2. Σ, the alphabet, is a finite subset of Act,
3. →⊆ S × Σ × S is the transition relation,
4. S0 ⊆ S is the set of initial states, and
5. F ⊆ S is the set of accepting states. �

We will use the following notation and terminology for a BA B. The source of
a transition (s, a, s′) is s, the destination is s′, and the label is a. We write s

a−→ s′

as shorthand for (s, a, s′) ∈→, and s
a0a1...an−−−−−−→ s′ for ∃s1, s2, . . . sn ∈ S . s

a0−→
s1

a1−→ s2 . . . sn
an−−→ s′. For a ∈ A and s ∈ S, we say a is enabled at s if s

a→ s′

for some s′ ∈ S. The set of all actions enabled at s is denoted enabled(B, s).
For s ∈ S, a path in B starting from s is a (finite or infinite) sequence π of

transitions such that (1) if π is not empty, the source of π(0) is s, and (2) the
destination of π(i) is the source of π(i + 1) for all i for which these are defined.
If π is not empty, define first(π) to be s; if π is finite, define last(π) to be the
destination of the last transition of π. We say π spells the word a0a1 · · · , where
ai is the label of π(i).

An infinite path is accepting if it visits a state in F infinitely often. An
(accepting) trace starting from s is a word spelled by an (accepting) path starting
from s. An (accepting) trace of B is an (accepting) trace starting from an initial
state. The language of B, denoted L(B), is the set of all accepting traces of B.

Proposition 2. There is an algorithm that consumes any finite subset A of Act
and an f ∈ Form with αf ⊆ A, and produces a BA B with alphabet A such that
L(B) = L(f,A).

Proof. There are well-known algorithms to produce a BA C with alphabet 2A

which accepts exactly the words satisfying f under the state semantics (e.g.,
[37]). Let B be the same as C, except the alphabet is A and there is a transition

s
a−→ s′ in B iff there is a transition s

{a}−−→ s′ in C. We have

a0a1 · · · ∈ L(B) ⇔ {a0}{a1} · · · ∈ L(C)
⇔ {a0}{a1} · · · |=S f

⇔ a0a1 · · · ∈ L(f,A).

�
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In practice, tools that convert LTL formulas to BAs produce an automaton
in which an edge is labeled by a propositional formula φ over αf . Such an edge
represents a set of transitions, one for each P ⊆ A for which φ holds for the
valuation that assigns true to each element of P and false to each element of
A \ P . In this case, the conversion to B entails creating one transition for each
a ∈ A for which φ holds when true is assigned to a and false is assigned to all
other actions.

Definition 7. Let Bi = (Si, Σi,→i, S
0
i , Fi) (i = 1, 2) denote two BAs over Act.

The parallel composition of B1 and B2 is the BA

B1 ‖ B2 ≡ (S1 × S2, Σ1 ∪ Σ2,→, S0
1 × S0

2 , F1 × F2),

where → is defined by

s1
a−→1 s′

1 a �∈ Σ2

〈s1, s2〉 a−→ 〈s′
1, s2〉

s2
a−→2 s′

2 a �∈ Σ1

〈s1, s2〉 a−→ 〈s1, s′
2〉

s1
a−→1 s′

1 s2
a−→2 s′

2

〈s1, s2〉 a−→ 〈s′
1, s

′
2〉

.

�
If we flatten all tuples (e.g., identify (S1 × S2) × S3 with S1 × S2 × S3) then

‖ is an associative operator.
Note that in the special case where the two automata have the same alphabet

(Σ1 = Σ2), every action is synchronizing, and the parallel composition is the
usual “synchronous product.” In this case, L(B1 ‖ B2) = L(B1) ∩ L(B2).

2.3 Labeled Transition Systems

Definition 8. A labeled transition system (LTS) over Act is a tuple (Q,A,→, q0)
for which (Q,A,→, {q0}, Q) is a BA over Act. In other words, it is a BA in which
all states are accepting and there is only one initial state. �
Definition 9. Let M be an LTS with alphabet A, and f an LTL formula with
αf ⊆ A. We write M |= f if L(M) ⊆ L(f,A). �

The following observation is the basis of the automata-theoretic approach to
model checking (cf. [36, §4.2]):

Proposition 3. LetM be anLTSwith alphabetA and f anLTL formulawithαf ⊆
A. Let B be a BA with L(B) = L(¬f,A). Then M |= f ⇔ L(M ‖ B) = ∅.
Proof. M and B have the same alphabet, so L(M ‖ B) = L(M) ∩ L(B), hence

L(M ‖ B) = L(M) ∩ L(¬f,A) = L(M) ∩ (Aω \ L(f,A)) = L(M) \ L(f,A).

This set is empty iff L(M) ⊆ L(f,A). �
There are various algorithms to determine language emptiness of a BA; in this

paper we use the well-known Nested Depth First Search (NDFS) algorithm [2].
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3 Interruptible Properties

3.1 Definition and Examples

An LTS comes with an alphabet, which is a subset A of Act. By a property over
A we simply mean a subset P of Aω. We say a trace ζ ∈ Aω satisfies P if ζ ∈ P .
We have already seen two ways to specify properties. An LTL formula f with
αf ⊆ A specifies the property L(f,A). A Büchi automaton B with alphabet A
specifies the property L(B). We next define a special class of properties:

Definition 10. Given sets V ⊆ A ⊆ Act, we say a property P over A is V -
interruptible if

ζ|V = η|V ⇒ (ζ ∈ P ⇔ η ∈ P ) for all ζ, η ∈ Aω.

An LTL formula f is V -interruptible if L(f,Act) is V -interruptible. We say f is
interruptible if f is αf -interruptible. The set of all interruptible LTL formulas
is denoted Intrpt. �
The set V is known as the visible set. The definition essentially says that the
insertion or deletion of invisible actions (those in A\V ) has no bearing on whether
a trace satisfies P . Put another way, the question of whether a trace belongs to
P is determined purely by its visible actions. The following collects some basic
facts about interruptibility. All follow immediately from the definitions.

Proposition 4. Let V ⊆ A ⊆ Act, P ⊆ Aω and f, g ∈ Form. Then all of the
following hold:

1. P is A-interruptible.
2. If P is V -interruptible, and V ⊆ V ′, then P is V ′-interruptible.
3. If f is interruptible and αf ⊆ A, then L(f,A) is αf-interruptible.
4. f is interruptible iff the following holds:

∀ζ, η ∈ Actω . (ζ|αf = η|αf ∧ ζ |=A f) ⇒ η |=A f.

5. If αf = αg and f ≡A g then f is interruptible iff g is interruptible.

Many, if not most, properties that arise in practice are V -interruptible for
the set V of actions that are mentioned in the property. Assuming a, b, and c
are distinct actions, we have:

– For any n ≥ 0, the property “a occurs at most n times” is {a}-interruptible,
since the insertion or deletion of actions other than a cannot affect whether
a word satisfies that property. The same is true for the properties “a occurs
at least n times” and “a occurs exactly n times.” These are examples of
the bounded existence pattern with global scope in a widely used property
specification pattern system [5]. LTL formulas in this category include G¬a
(a occurs 0 times), Fa (a occurs at least once), and F(a ∧XFa) (a occurs at
least twice).
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– The property “after any occurrence of a, b eventually occurs”, G(a → Fb), is
{a, b}-interruptible. This is the response pattern with global scope [5].

– The property “after any occurrence of a, c will eventually occur, and no b will
occur until c”, G(a → ((¬b)Uc)), is {a, b, c}-interruptible. This is a variation
on the absence pattern with after-until scope, and is used to specify mutual
exclusion [5].

On the other hand, the property “a occurs at time 0”, (LTL formula a) is
not {a}-interruptible. Neither is “an event other than a occurs at least once”
(F¬a) nor “only a occurs” (Ga). The property “every occurrence of a is followed
immediately by b,” formula G(a → Xb), is not {a, b}-interruptible. The property
“after any occurrence of a, c eventually occurs and until then only b occurs,”
G(a → X(bUc)), is not {a, b, c}-interruptible.

The following provides a useful way to show that two interruptible properties
are equal:

Lemma 2. Suppose V ⊆ A ⊆ Act and P1 and P2 are V -interruptible properties
over A. Let F = V ω ∪ V ∗ ◦ (A \ V )ω. Then P1 = P2 iff P1 ∩ F = P2 ∩ F .

Proof. Assume P1 ∩ F = P2 ∩ F . Let ζ ∈ P1. If ζ|V is infinite, then since
ζ|V |V = ζ|V , and P1 is V -interruptible, ζ|V ∈ P1. But ζ|V ∈ V ω, so ζ|V ∈ P1∩F ,
and therefore ζ|V ∈ P2. Since P2 is V -interruptible, ζ ∈ P2.

If ζ|V is finite, there is a prefix θ of ζ such that ζ = θ ◦ η, with η ∈ (V \ A)ω.
Let ξ = θ|V ◦ η. We have ξ ∈ V ∗ ◦ (A \ V )ω and ξ|V = ζ|V , hence ξ ∈ P1 ∩ F .
Therefore ξ ∈ P2, and since P2 is V -interruptible, ζ ∈ P2. �
The elements of F are known as the V -interrupt-free words over A.

3.2 Decidability of Interruptibility of LTL Formulas

We next show that interruptibility is a decidable property of LTL formulas.
Define intrpt : Form → Form as follows. Given f ∈ Form, let V = αf and V̂ =∨

a∈V a, and define β : Form → Form by

β(true) = true

β(a) = (¬V̂ )Ua

β(¬f1) = ¬β(f1)
β(f1 ∧ f2) = β(f1) ∧ β(f2)

β(Xf1) = ((¬V̂ )U(V̂ ∧ Xβ(f1))) ∨ ((G¬V̂ ) ∧ Xβ(f1))
β(f1Uf2) = β(f1)Uβ(f2).

for a ∈ Act and f1, f2 ∈ Form. Let intrpt(f) = β(f).

Theorem 1. Let f be an LTL formula over Act. The following hold:

1. intrpt(f) is interruptible.
2. f is interruptible iff intrpt(f) ≡A f .

In particular, interruptibility of LTL formulas is decidable.
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Before proving Theorem 1, we give some intuition regarding the definition of
intrpt. Function β can be thought of as consuming a property on V -interrupt-free
words (i.e., words in V ω ∪ V ∗ ◦ (A \ V )ω) and extending it to a property on all
words (Aω). It is designed so that β(g) is V -interruptible and agrees with g on
V -interrupt-free words. For example, the formula a means “a is the first action”
(in an interrupt-free word), which extends to the property “a is the first visible
action” (in an arbitrary word). The formula Xf1 states “f1 holds after removing
the first action,” so β(Xf1) should declare “β(f1) holds after removing the prefix
ending in the first visible action.” That is almost correct, but there is also the
possibility that an element of Aω has no visible action, which is the reason for
the second clause in the definition of β(Xf1).

The remainder of this subsection is devoted to the proof of Theorem 1. First
note that intrpt(f) and f have the same alphabet, i.e., αintrpt(f) = V .

Proof of Part 1. Say a subformula g of f is good if β(g) is V -interruptible,
i.e.,

∀ζ, η ∈ Actω . ζ|V = η|V ⇒ (ζ |=A β(g) ⇔ η |=A β(g)).

We show by induction on formula structure that every subformula of f is good.
The case g = f will show that intrpt(f) is interruptible. Assume throughout that
ζ|V = η|V .

If g = true then β(g) = true, so g is clearly good.
If g = a for some a ∈ Act, then ζ |=A β(g) = (¬V̂ )Ua iff ζ|V is non-empty

and ζ|V (0) = a. Since this depends only on ζ|V , g is good.
If g = ¬f1 and f1 is good, then g is good because

ζ |=A β(g) ⇔ ζ �|=A β(f1) ⇔ η �|= β(f1) ⇔ η |=A β(g).

If g = f1 ∧ f2, and f1 and f2 are good, then g is good because

ζ |=A β(g) ⇔ ζ |=A β(f1) ∧ ζ |=A β(f2)
⇔ η |=A β(f1) ∧ η |=A β(f2) ⇔ η |=A β(g).

Suppose g = Xf1 and f1 is good. There are two cases:

– Case 1: ζ|V is empty. Then no suffix of ζ or η satisfies V̂ . Hence

θ |=A β(g) ⇔ θ |=A Xβ(f1) ⇔ θ1 |=A β(f1) (θ ∈ {ζ, η}).

Moreover, ζ1|V = η1|V (as both are empty), and β(f1) is good, so we have
ζ1 |=A β(f1) ⇔ η1 |=A β(f1). These show ζ |=A β(g) ⇔ η |=A β(g).

– Case 2: ζ|V is nonempty. Let i be the index of the first occurrence of an
element of V in ζ, and j the similar index for η. We have

ζi+1|V = (ζ|V )1 = (η|V )1 = ηj+1|V .

As f1 is good, it follows that ζi+1 |=A β(f1) ⇔ ηj+1 |=A β(f1). Hence

ζ |=A β(g) ⇔ ζi+1 |=A β(f1) ⇔ ηj+1 |=A β(f1) ⇔ η |=A β(g).
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Suppose g = f1Uf2 and f1 and f2 are good. We have β(g) = β(f1)Uβ(f2).
If ζ |=A β(g) then there exists i ≥ 0 such that ζi |=A β(f2) and ζj |=A β(f1)
for j < i. Now there is some i′ ≥ 0 such that ηi′ |V = ζi|V and for all j′ < i′,
there is some j < i such that ηj′ |V = ζj |V . It follows that η |= β(g). Hence g is
good.

Proof of Part 2. Suppose first that intrpt(f) ≡A f . From part 1, intrpt(f) is
interruptible, so Proposition 4(5) implies f is interruptible.

Suppose instead that f is interruptible. We wish to show intrpt(f) ≡A f . By
Lemma 2, it suffices to show the two formulas agree on V -interrupt-free words.
We will show by induction that for each subformula g of f , ζ |=A g ⇔ ζ |=A

β(g) for all V -interrupt-free ζ. The case g = f will complete the proof.
If g = true, β(g) = true and the condition clearly holds.
If g = a for some a ∈ Act, ζ |=A β(g) ⇔ ζ |=A (¬V̂ )Ua ⇔ ζ |=A a, as ζ

is V -interrupt-free.
If g = ¬f1 and the inductive hypothesis holds for f1, then

ζ |=A β(g) ⇔ ζ �|=A β(f1) ⇔ ζ �|=A f1 ⇔ ζ |=A g.

If g = f1 ∧ f2 and the inductive hypothesis holds for f1 and f2 then

ζ |=A β(g) ⇔ ζ |=A β(f1)∧ζ |=A β(f2) ⇔ ζ |=A f1∧ζ |=A f2 ⇔ ζ |=A g.

Suppose g = Xf1 and the inductive hypothesis holds for f1. Note that any
suffix of a V -interrupt-free word, e.g., ζ1, is also V -interrupt-free. If ζ|V is empty,

ζ |=A β(g) ⇔ ζ |=A Xβ(f1) ⇔ ζ1 |=A β(f1) ⇔ ζ1 |=A f1 ⇔ ζ |=A g.

If ζ|V is nonempty, then ζ |=A V̂ , so

ζ |=A β(g) ⇔ ζ |=A (¬V̂ )U(V̂ ∧ Xβ(f1)) ⇔ ζ |=A Xβ(f1)

⇔ ζ1 |=A β(f1) ⇔ ζ1 |=A f1 ⇔ ζ |=A g.

If g = f1Uf2, then applying the inductive hypothesis to f1 and f2 yields

ζ |=A g ⇔ ∃i > 0 . ζi |=A f2 ∧ ∀j < i . ζj |=A f1

⇔ ∃i > 0 . ζi |=A β(f2) ∧ ∀j < i . ζj |=A β(f1)
⇔ ζ |=A β(g).

Decidability follows from part 2 and Proposition 1. This completes the proof
of Theorem 1.

Remark 1. The definition of β(Xf1) is convenient for the proof but shorter def-
initions also work. If the formula f1 is satisfied by some word ζ ∈ (A \V )ω, then
all such ζ satisfy f1, and the clause (G¬V̂ ) ∧ Xβ(f1) can be replaced by G¬V̂ .
Otherwise, that clause can be removed altogether. One can determine whether a
formula is satisfied by such a word by replacing every occurrence of every action
with false.
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3.3 Generation of Interruptible LTL Formulas

The following can be used to show that many formulas are interruptible. It
establishes a kind of parity pattern involving a class of positive formulas (Pos)
and a class of negative formulas (Neg). It is proved in [28].

Proposition 5. There exist Pos,Neg ⊆ Form such that (i) for all f, f ′ ∈ Form,

(f ∈ Pos ∧ f ′ ≡A f) ⇒ f ′ ∈ Pos

(f ∈ Neg ∧ f ′ ≡A f) ⇒ f ′ ∈ Neg,

and (ii) for all a ∈ Act, f1, f2 ∈ Intrpt, g1, g2 ∈ Pos, and h1, h2 ∈ Neg,

false, a, ¬h1, g1 ∧ g2, g1 ∨ g2, a ∧ f1, a ∧ Xf1 ∈ Pos

true, ¬a, ¬g1, h1 ∧ h2, h1 ∨ h2, ¬a ∨ f1, ¬a ∨ Xf1 ∈ Neg

true, false, f1 ∧ f2, f1 ∨ f2, ¬f1, Fg1, Gh1, f1Uf2, h1Ug1, h1Uf1 ∈ Intrpt.

Consider the examples from Sect. 3.1. The formula a is positive, so Fa is inter-
ruptible. Since ¬a is negative, G¬a is interruptible. Since Fa is interruptible,
a ∧ XFa is positive, hence F(a ∧ XFa) is interruptible.

Formula G(a → Fb) is seen to be interruptible as follows. Since b ∈ Pos,
Fb ∈ Intrpt, whence ¬a ∨ Fb ∈ Neg. Since this last formula is action-equivalent
to a → Fb, we have a → Fb ∈ Neg. Therefore G(a → Fb) ∈ Intrpt.

Similarly, (¬b)Uc ∈ Intrpt, so a → X((¬b)Uc) ∈ Neg. This negative formula
is action-equivalent to a → ((¬b)Uc), whence G(a → ((¬b)Uc)) ∈ Intrpt.

Note that Intrpt and the set of stutter-invariant formulas are not comparable.
For example, f = F(a ∧ XFa) is interruptible, but not stutter-invariant. In
fact f is not action-equivalent to any stutter-invariant formula g, since if there
were such a g, the sequence aabω would satisfy g, but the stutter-equivalent
sequence abω cannot satisfy g. Conversely, the formulas a and Ga are both
stutter-invariant, but neither is interruptible. The formula Fa is both stutter-
invariant and interruptible. Finally, the formula Xa is neither stutter-invariant
nor interruptible.

3.4 Decidability of Interruptibility of Büchi Automata

Definition 11. Let B be a BA with alphabet A, V ⊆ A (the visible actions),
and I = A \ V (the invisible actions). We say B is in V -interrupt normal form
if the following hold for any x ∈ I, a ∈ A, and states s1, s2, and s3:

1. If s1
a→ s2 then B has a state s′

1 such that s1
x→ s′

1
a→ s2.

2. If s1
x→ s2

a→ s3 then s1
a→ s3 and if s2 is accepting then s1 or s3 is accepting.

3. If s1
x→ s2 then s1

y→ s2 for all y ∈ I.

Proposition 6. Suppose B is in V -interrupt normal form. Then L(B) is V -
interruptible.
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Proof. Suppose ζ, η ∈ Aω, ζ ∈ L(B), and ζ|V = η|V . We wish to show η ∈ L(B).
Let π be an accepting path for ζ.

Assume ζ|V is infinite. By Definition 11(2), we can remove all invisible tran-
sitions from the accepting path π, and the result is an accepting path that spells
ζ|V . By Definition 11(1), we can insert any arbitrary finite sequence of invisible
transition between two consecutive visible transitions; we can therefore construct
an accepting path for η.

If ζ|V is finite, proceed as above to form an accepting path which spells a finite
prefix of η followed by an infinite word of invisible actions. By Definition 11(3),
that infinite suffix can be transformed to spell any infinite word of invisibles,
and in that way one obtains an accepting path for η. �

Given any BA B = (S,A, T, S0, F ) and a visible set V ⊆ A, define a BA
norm(B, V ) as follows: if V = A, norm(B, V ) = B, otherwise norm(B, V ) is
B̂ = (Ŝ, A, T̂ , Ŝ0, F̂ ), where

D = {s ∈ S | there is an accepting path from s with all labels in I}
Ŝ = {û | u ∈ S} ∪ {u� | u ∈ F \ D} ∪ {DIV}

Ŝ0 = {û | u ∈ S0}
F̂ = {û | u ∈ F} ∪ {DIV}
T̂ = {(û, a, v̂) | a ∈ V ∧ u, v ∈ S ∧ (u, a, v) ∈ T } ∪

{(û, x, û) | x ∈ I ∧ u ∈ D ∪ (S \ F ) } ∪
{(DIV, x,DIV) | x ∈ I } ∪
{(û, x,DIV) | x ∈ I ∧ u ∈ D \ F } ∪
{(û, x, u�), (u�, x, u�) | x ∈ I ∧ u ∈ F \ D } ∪
{(u�, a, v̂) | a ∈ V ∧ u ∈ F \ D ∧ v ∈ S ∧ (u, a, v) ∈ T }

The set Ŝ consists of the original states û, the sharp states u�, and one
additional state DIV. The mapping from S to Ŝ defined by u �→ û is injective
and preserves acceptability and visible transitions, i.e., for any u, v ∈ S and
a ∈ V , u

a→ v ⇔ û
a→ v̂. It follows that paths in B in which all labels are

visible correspond one-to-one with paths through original states in B̂ in which
all labels are visible. Note that every invisible transition in B̂ is a self-loop or
ends in a sharp state or DIV. Moreover, all transitions in B̂ ending in a sharp
state or DIV are invisible.

Proposition 7. For any BA B with alphabet A, and any visible set V ⊆ A,
norm(B, V ) is in V -interrupt normal form.

Proof. To see Definition 11(1), suppose s1
a→ s2. If s1

x→ s1, take s′
1 = s1.

Otherwise, s1 = û for some u ∈ F \ D, and we can take s′
1 = u�.

For Definition 11(2), suppose s1
x→ s2

a→ s3. We need to show s1
a→ s3 and if

s2 is accepting then s1 or s3 is accepting. If s1 = s2, the result is clear, so assume
s1 �= s2. There are then two cases: s2 = DIV or s2 = u� for some u ∈ F \ D.
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If s2 = DIV, then a ∈ I and s3 = DIV, and we have s1
a→ DIV. As DIV is

accepting, the desired conclusion holds.
If s2 = u�, then s1 = û, which is accepting. There are again two cases: either

s3 = u� or s3 = v̂ for some v ∈ S. If s3 = u� then a ∈ I and û
a→ u�, as required.

If s3 = v̂, then a ∈ V and therefore u
a→ v, hence û

a→ v̂, as required.
Definition 11(3) is clear from the definition of T̂ . �

Theorem 2. L(B) is V -interruptible iff L(norm(B, V )) = L(B). In particular
interruptibility for Büchi Automata is decidable.

Proof. Let P1 = L(B) and P2 = L(norm(B, V )). By Proposition 7, norm(B, V )
is in V -interrupt normal form, so by Proposition 6, P2 is V -interruptible. Hence
one direction is clear: if P1 = P2, then P1 is V -interruptible.

So suppose P1 is V -interruptible. We wish to show P1 = P2. By Lemma 2, it
suffices to show the two languages contain the same V -interrupt-free words.

Suppose ζ is a V -interrupt-free word in P1. If ζ ∈ V ω then an accepting path
θ in B maps to the accepting path θ̂ in B̂, and ζ ∈ P2. So assume ζ ∈ V ∗Iω.
Then an accepting path in B has a prefix θ of visible transitions ending in a
state u ∈ D. That prefix corresponds to a path θ̂ in B̂ ending in û. As u ∈ D,
û

x→ û for all x ∈ I. If u is accepting, we get an accepting path for ζ that follows
θ̂ and then loops at û. If u is not accepting then u ∈ D \ F , and û

x→ DIV for
all x ∈ I. Since DIV is accepting and DIV

x→ DIV for all x ∈ I, we again get an
accepting path for ζ in B̂.

Suppose now that ζ is a V -interrupt-free word in P2. Assume ζ ∈ V ω. An
accepting path for ζ cannot pass through a sharp state or DIV, because only
invisible transitions end in those states. So the path passes through only original
states, and therefore corresponds to an accepting path in B.

Suppose ζ ∈ V ∗Iω. An accepting path for ζ in B̂ consists of a prefix θ̂ of
visible transitions followed by an infinite accepting path ξ of invisible transitions.
As above, θ̂ corresponds to a path θ in B ending in a state u.

We claim that ξ cannot pass through a sharp state. This is because all invis-
ible transitions departing from a sharp state are self loops. But sharp states are
not accepting, while ξ is an accepting path of invisible transitions. It follows that
each transition in ξ is a self-loop or terminates in DIV.

We now claim u ∈ D. For suppose the first transition in ξ is a self-loop on û.
According to the definition of T̂ , this implies u ∈ D ∪ (S \ F ). Hence, if u �∈ D
then u is not accepting, and all invisible transitions departing from û are self-
loops, contradicting the fact that ξ is an accepting path. If, on the other hand,
the first transition in ξ is û

x→ DIV, for some x ∈ I, then the definition of T̂
implies u ∈ D, establishing the claim.

So u ∈ D, i.e., there is an accepting path ρ in B starting from u and consisting
of all invisible transitions. The accepting path obtained by concatenating θ and
ρ spells a word which, projected onto V , equals ζ|V . Since P1 is V -interruptible,
ζ ∈ P1. This completes the proof that P1 = P2.

The theorem reduces the problem of determining V -interruptibility to a prob-
lem of determining equivalence of two Büchi Automata, which can be done using
language intersection, complement, and emptiness algorithms for BAs [37]. �
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4 On-the-Fly Partial Order Reduction

4.1 General Theory and Soundness Theorem

Let M = (Q,A, T, q0) be an LTS, V ⊆ A, and B = (S,A, δ, S0, F ) a
V -interruptible BA. The goal of on-the-fly POR is to explore a sub-automaton R′

of R = M ‖ B with the property that L(R) = ∅ ⇔ L(R′) = ∅.
A function amp : Q×S → 2A is an ample selector if amp(q, s) ⊆ enabled(M, q)

for all q ∈ Q, s ∈ S. Each amp(q, s) is an ample set. An ample selector determines
a BA R′ = reduced(R, amp) which has the same states, accepting states, and
initial state as R, but only a subset of the transitions:

R′ = (Q × S,A, δ′, {q0} × S0, Q × F )
δ′ = {((q, s), a, (q′, s′)) | a ∈ amp(q, s) ∧ (q, a, q′) ∈ T ∧ (s, a, s′) ∈ δ}.

We now define some constraints on an ample selector that will be used to
guarantee the reduced product space has nonempty language if the full space
does. First we need the usual notion of independence:

Definition 12. Let M be an LTS with alphabet A, and a, b ∈ A. We say a and
b are independent if both of the following hold for all states q and q′ of M :

1. (q a→ q′ ∧ b ∈ enabled(M, q)) ⇒ b ∈ enabled(M, q′)
2. q

ab−→ q′ ⇔ q
ba−→ q′.

We say a and b are dependent if they are not independent. �
Note that, in contrast with [1], we do not assume actions are deterministic. We
can now define the four constraints:

C0 For all q ∈ Q, s ∈ S: enabled(M, q) �= ∅ ⇒ amp(q, s) �= ∅.
C1 For all q ∈ Q, s ∈ S: on any trace in M starting from q, no action outside

of amp(q, s) but dependent on an action in amp(q, s) can occur without an
action in amp(q, s) occurring first.

C2 For all q ∈ Q, s ∈ S: if amp(q, s) �= enabled(M, q), then amp(q, s) ∩ V = ∅.
C3 For all a ∈ A: on any cycle in R′ for which a is enabled in R at each state,

there is some state (q, s) on the cycle for which a ∈ amp(q, s).

Theorem 3. Let M be an LTS with alphabet A, V ⊆ A, B a BA with alphabet A
in V -interrupt normal form, R = M ‖ B, and amp an ample selector satisfying
C0–C3. Then L(reduced(R, amp)) = ∅ ⇔ L(R) = ∅.

The requirement that B be in interrupt normal form is necessary. A coun-
terexample when that condition is not met is given in Fig. 1. Note a and b are
independent, and a is invisible. The ample set for product states 0 and 1 is {a};
the ample set for product state 2 is {a, b}. Hence C3 holds because a state on
the sole cycle is fully enabled. After normalizing B (and removing unreachable
states), this problem goes away: in any reduced space, the ample sets must retain
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the a-transitions, and state 0� must be fully enabled since it has an a-self-loop,
so the accepting cycle involving the two states will remain.

The remainder of this section is devoted to the proof of Theorem 3. The
proof is similar to that of the analogous theorem in the state-based case [27],
but some changes are necessary and we include the proof for completeness.

Let θ be an accepting path in R. An infinite sequence of accepting paths
π0, π1, . . . will be constructed, where π0 = θ. For each i ≥ 0, πi will be decom-
posed as ηi ◦ θi, where ηi is a finite path of length i in R′, θi is an infinite path,
and ηi is a prefix of ηi+1. For i = 0, η0 is empty and θ0 = θ.

Assume i ≥ 0 and we have defined ηj and θj for j ≤ i. Write

θi = 〈q0, s0〉 a1−→ 〈q1, s1〉 a2−→ · · · (1)

Then ηi+1 and θi+1 are defined as follows. Let E = amp(q0, s0). There are two
cases:

Case 1: a1 ∈ E. Let ηi+1 be the path obtained by appending the first transition
of θi to ηi, and θi+1 the path obtained by removing the first transition from θi.

Case 2: a1 �∈ E. Then there are two sub-cases:

Case 2a: Some operation in E occurs in θi. Let n be the index of the first such
occurrence. By C1, aj and an are independent for 1 ≤ j < n. By repeated
application of the independence property, there is a path in M of the form

q0
an→ q′

1
a1→ q′

2
a2→ · · · an−2→ q′

n−1

an−1→ qn
an+1→ qn+1

an+2→ · · · .

By C2, an is invisible. By Definition 11, B has an accepting path of the form

s0
an→ s′

0
a1→ s1

a2→ · · · an−2→ sn−2
an−1→ sn−1

an+1→ sn+1
an+2→ · · · .

Composing these two paths yields a path in R. Removing the first transition
(labeled an) yields θi+1. Appending that transition to ηi yields ηi+1.

a b

0

2

b

b

1

a
a

a

a

0

2

b

b

1

a
a

a

a

0

0#

b

ab
a

(a) (b) (c) (d)

Fig. 1. Counterexample to Theorem 3 if B is not in interrupt normal form: (a) the
LTS M , (b) the BA B representing GFb, (c) the product space—dashed edges are in
the full, but not reduced, space, and (d) the result of normalizing B and removing
unreachable states, which also depicts the resulting full product space.



92 S. F. Siegel and Y. Yan

Case 2b: No operation in E occurs in θi. By C0, E is nonempty. Let b ∈ E.
By C2, every action in θi is independent of b. As in the case above, we obtain a
path in R

〈q0, s0〉 b→ 〈q′
1, s

′
0〉 a1→ 〈q′

2, s1〉 a2→ 〈q′
3, s2〉 a3→ · · · .

and define θi+1 and ηi+1 as above.
Let η be the limit of the ηi, i.e., η(i) = ηi+1(i). It is clear that η is an infinite

path in R′, but we must show it passes through an accepting state infinitely
often. To see this, define integers di for i ≥ 0 as follows. Let ξi = s0s1 · · · be the
sequence of BA states traced by θi. Let di be the minimum j ≥ 0 such that sj

is accepting. Note that di = 0 iff last(ηi) is accepting.
Suppose i ≥ 0 and di > 0. If Case 1 holds, then di+1 = di−1, since ξi+1 = ξ1i .

It is not hard to see that if Case 2 holds, di+1 ≤ di. Note that in Case 2a, if
di = n, the accepting state sn is removed, but Definition 11(2) guarantees that at
least one of sn−1 and sn+1 is accepting. In the worst case (sn−1 is not accepting),
we still have di+1 = n.

We claim there are an infinite number of i ≥ 0 such that Case 1 holds.
Otherwise, there is some i > 0 such that Case 2 holds for all j ≥ i. Let a be the
first action in θi. Then for all j ≥ i, a is the first action of θj and a is not in
the ample set of last(ηj). Since the number of states of R is finite, there is some
k > i such that last(ηk) = last(ηi). Hence there is a cycle in R′ for which a is
always enabled but never in the ample set, contradicting C3.

If η does not pass through an accepting state infinitely often, there is some
i ≥ 0 such that for all j ≥ i, first(θj) is not accepting. But then (dj)j≥i is
a nondecreasing sequence of positive integers which strictly decreases infinitely
often, a contradiction.

4.2 Ample Sets for a Parallel Composition of LTSs

We now describe the specific method used by McRERS to select ample sets.
Since this method is similar to existing approaches, such as [32, Algorithm 4.3],
we just outline the main ideas.

Let n ≥ 1, P = {1, . . . , n}, and let M1, . . . , Mn be LTSs over Act. Write
Mi = (Qi, Ai,→i, q

0
i ) and

M = M1 ‖ · · · ‖ Mn = (Q,A,→, q0).

For a ∈ A, let procs(a) = {i ∈ P | a ∈ Ai}. It can be shown that if a and b are
dependent actions, then procs(a) ∩ procs(b) �= ∅.

Let q = (q1, . . . , qn) ∈ Q and Ei = enabled(Mi, qi) for i ∈ P . Let

Rq = {(i, j) ∈ P × P | Ei ∩ Aj �= ∅}.

Suppose C ⊆ P is closed under Rq, i.e., for all i ∈ C and j ∈ P , (i, j) ∈ Rq ⇒
j ∈ C. This implies that if a ∈ Ei for some i ∈ C then procs(a) ⊆ C. Define

enabled(C, q) = enabled(M, q) ∩
⋃
i∈C

Ai.
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Let E = enabled(C, q). Note E ⊆ ⋃
i∈C Ei. Hence for any a ∈ E, procs(a) ⊆ C.

Lemma 3. On any trace in M starting from q, no action outside of E but
dependent on an action in E can occur without an action in E occurring first.

Proof. Let ζ be a trace in M starting from q, such that no element of E occurs in
ζ. We claim no action involving C (i.e., an action a for which procs(a) ∩ C �= ∅)
can occur in ζ. Otherwise, let x be the first such action. Then x ∈ Ei, for
some i ∈ C, so procs(x) ⊆ C. As x �∈ E, x �∈ enabled(M, q). So some earlier
action y in ζ caused x to become enabled, and therefore procs(x)∩ procs(y) �= ∅,
hence procs(y)∩C �= ∅, contradicting the assumption that x was the first action
involving C in ζ.

Now any action b dependent on an action a ∈ E must satisfy procs(a) ∩
procs(b) is nonempty. Since procs(a) ⊆ C, procs(b) ∩ C is nonempty. Hence no
action dependent on an action in E can occur in ζ. �

We now describe how to find an ample set in the context of NDFS. Let (q, s)
be a new product state that has just been pushed onto the outer DFS stack. The
relation Rq defined above gives P the structure of a directed graph. Suppose that
graph has a strongly connected component C0 such that all of the following hold
for E = enabled(C0, q):

1. E �= ∅,
2. E ∩ V = ∅,
3. enabled(C ′, q) = ∅ for all SCCs C ′ reachable from C0 other than C0, and
4. E does not contain a “back edge”, i.e., if (q, s) a→ σ for some a ∈ E and

σ ∈ Q × S, then σ is not on the outer DFS stack.

Then set amp(q, s) = E. If no such SCC exists, set amp(q, s) = enabled(M, q). It
follows that C0–C4 hold. Note that the union C of all SCCs reachable from C0

is closed under Rq, and enabled(C, q) = E, so Lemma 3 guarantees C1. For C3,
we actually have the stronger condition that in any cycle in the reduced space, at
least one state is fully enabled. In our implementation, the SCCs are computed
using Tarjan’s algorithm. Among all SCCs C0 satisfying the conditions above,
we choose one for which |enabled(C0, q)| is minimal.

One known issue when combining NDFS with on-the-fly POR is that the
inner DFS must explore the same subspace as the outer DFS, i.e., amp must be
a deterministic function of its input (q, s) [18]. To accomplish this, McRERS
stores one additional integer j in the state: j is the root node of the SCC C0, or
−1 if the state is fully enabled. The outer search saves j in the state, and the
inner search uses j to reconstruct the SCC C0 and the ample set E.

5 Related Work

There has been significant earlier research on the use of partial order reduction
to model check LTSs (or the closely related concept of process algebras); see, e.g.,
[14,16,30–33,35]. To understand how this previous work relates to this paper,
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we must explain a subtle, but important, distinction concerning how a property
is specified. In much of this literature, a property of an LTS with alphabet A
is essentially a pair π = (V, T ), where V ⊆ A is a set of visible actions and T
is a set of (finite and infinite) words over V . A property in this sense specifies
acceptable behaviors after invisible actions have been removed. (See, e.g., Def.
2.4 and preceding comments in [32].) We can translate π to a property P in our
sense by taking its inverse image under the projection map:

P = {ζ ∈ Aω | ζ|V ∈ T}.

Note that P is V -interruptible by definition. Hence the need to distinguish inter-
ruptible properties does not arise in this context.

Much of the earlier work on POR for LTSs deals with the “offline” case, i.e.,
the construction of a subspace of M that preserves certain classes of properties.
In contrast, Theorem 3 deals with an on-the-fly algorithm, i.e., the construction
of a subspace of M ‖ B. The on-the-fly approach is an essential optimization in
model checking, but recent work in the state-based formalism has shown that
offline POR schemes do not always generalize easily to on-the-fly algorithms [27].

One work that does describe an on-the-fly model checking algorithm for LTSs
is [32] (see also [17], which deals with the same ideas in a state formalism). The
property is specified by a tester process B. Consistent with the notion of property
described above, the alphabet of B does not include the invisible actions. Hence,
in the parallel composition M ‖ B, the tester does not move when M executes
an invisible action. In order to specify both finite and infinite words of visible
actions, the tester has two kinds of accepting states: “livelock monitor states”
and “infinite trace monitor states.” (Two additional classes of states for detecting
other kinds of violations are not relevant to the discussion here.) A version of the
stubborn set theory is used to define the reduced space, and a special condition is
used to solve the “ignoring problem” (instead of our C3). It would be interesting
to compare this algorithm with the one described here.

There are many algorithms for reducing or even minimizing the size of an
LTS while preserving various properties, e.g., bisimulation equivalence [8] or
divergence preserving bisimilarity [6]. These algorithms could be applied to the
individual components of a parallel composition (taking all visible and commu-
nication actions to be “visible”), as a preprocessing step before beginning the
model checking search. An exploration of these algorithms, and how they impact
POR, is beyond the scope of this paper, but we hope to explore that avenue in
future work.

The RERS Challenge [9,19–21] is an annual event involving a number of
different categories of large model checking problems. The “parallel LTL cate-
gory,” offered from 2016 on, is directly relevant to this paper. Each problem in
that category consists of a Graphviz “dot” file specifying an LTS as a parallel
composition, and a text file containing 20 LTL formulas. The goal is to identify
the formulas satisfied by the LTS. The solutions are initially known only to the
organizers, and are published after the event. The RERS semantics for LTSs,
LTL, and satisfiability are exactly the same as in this paper.
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The methods for generating the LTS and the properties are complicated, and
have varied over the years, but are designed to satisfy certain hardness guaran-
tees. The approach described in [29] is “. . . based on the weak refinement . . . of
convergent systems which preserves an interesting class of temporal properties.”
It can be seen that the properties preserved by weak refinement are exactly the
interruptible properties. While [29] does not describe a method for determin-
ing whether a property is interruptible, the authors have informed us that they
developed a sufficient condition for an LTL formula to be interruptible, and used
this in combination with a random method to generate the formulas for 2016
and 2019. Our analysis (Sect. 6) confirms that all formulas from 2016 and 2019
are interruptible, while 2017 and 2018 contain some non-interruptible formulas.

There is a well-known way to translate a system and property expressed
in an action-based formalism to a state-based formalism. The idea is to add a
shared variable last which records the last action executed. An LTL formula over
actions can be transformed to one over states by replacing each action a with the
predicate last = a. This is the approach taken in the Promela representations of
the parallel problems provided with the RERS challenges.

This translation is semantics-preserving but performance-destroying. Every
transition writes to the shared variable last, so any state-based POR scheme
will assume that no two transitions commute. Furthermore, since the property
references last, all transitions are visible. This effectively disables POR, even
when the property is stutter-invariant, as can be seen in the poor performance
of Spin on the RERS Promela models (Sect. 6). It is possible that there are
more effective Spin translations; [34, §2.2], for example, suggests not updating
last on invisible actions, and adding a global boolean variable that is flipped on
every visible action (in addition to updating last). We note that this would also
require modifying the LTL formula, or specifying the property in some other
way. In any case, it suggests another interesting avenue for future work.

6 Experimental Results and Conclusions

We implemented a model checker named McRERS based on the algorithms
described in this paper. McRERS is a library and set of command line tools.
It is written in sequential C and uses the Spot library [4] for several tasks: (1)
determining equivalence of LTL formulas, (2) determining language equivalence
of BAs, and (3) converting an LTL formula to a BA. The source code for McR-
ERS as well as all artifacts related to the experiments discussed in this section,
are available at https://vsl.cis.udel.edu/cav2020. The experiments were run on
an 8-core 3.7GHz Intel Xeon W-2145 Linux machine with 256 GB RAM, though
McRERS is a sequential program and most experiments required much less
memory.

As described in Sect. 5, each edition of RERS includes a number of prob-
lems, each of which comes with 20 LTL formulas. The numbers of problems for
years 2016–2019 are, in order, 20, 15, 3, and 9, for a total of 47 problems, or
47 ∗ 20 = 940 distinct model checking tasks. (Some formulas become identical

https://vsl.cis.udel.edu/cav2020
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after renaming propositions.) We used the McRERS property analyzer to ana-
lyze these formulas to determine which are interruptible; the algorithm used is
based on Theorem 1. The results show that all formulas from 2016 and 2019
are interruptible, which agrees with the expectations of the RERS organizers. In
2017, 22 of the 300 formulas are not interruptible; these include

– GF¬a111_SIGTRAP,
– G[a71_SIGVTALRM → X¬a71_SIGVTALRM], and
– G[(a59_SIGUSR1 ∧ X[(¬a112_SIGHUP)Ua59_SIGUSR1]) → FGa104_SIGPIPE].

In 2018, 3 of the 60 formulas are not interruptible. In summary, only 25 of the
940 tasks involve non-interruptible formulas. The total runtime for the analysis
of all 940 formulas was 6 s.

We next used the McRERS automaton analyzer to create BAs from each of
the interruptible formulas, and then to determine which of these Spot-generated
BAs was not in interrupt normal form. This uses a straightforward algorithm
that iterates over all states and checks the conditions of Definition 11. For each
BA not in normal form, the analyzer transforms it to normal form using function
norm of Sect. 3.4. Interestingly, all of the Spot-generated BAs in 2016 and 2019
were already in normal form. Four of the BAs from interruptible formulas in 2017
were not in normal form; all of these formulas had the form F[a ∨ ((¬b)Wc)].
In 2018, 6 interruptible formulas have non-normal BAs; these formulas have
several different non-isomorphic forms, some of which are quite complex. The
details can be seen on the online archive. The total runtime for this analysis
(including writing all BAs to a file) was 11 s.

The McRERS model checker parses RERS “dot” and property files to con-
struct an internal representation of a parallel composition M = M1 ‖ · · · ‖ Mn

of LTSs and a list of LTL formulas. Each formula f is converted to a BA B; if f
is interruptible and B is not already in normal form, B is transformed to normal
form. The NDFS algorithm is used to determine language emptiness, and if f is
interruptible, the POR scheme described in Sect. 4 is also used. States are saved
in a hash table.

One other simple optimization is used regardless of whether f is interruptible.
Let αM denote the set of actions labeling at least one transition in M , and
define αB similarly. If αM �= αB, then all transitions labeled by an action
in (αM \ αB) ∪ (αB \ αM) are removed from the Mi and B; all unreachable
states and transitions in the Mi and B are also removed. This is repeated until
αM = αB.

We applied the model checker to all problems in the 2019 benchmarks. Inter-
estingly, all 180 tasks completed, with the correct results, using at most 8 GB
RAM; the times are given in Fig. 2.

We also ran these problems with POR turned off, to measure the impact
of that optimization. As is often the case with POR schemes, the difference is
dramatic. The non-POR tests ran out of memory on our 256 GB machine after
problem 106. We show the resources consumed for a representative task in Fig. 3;
this property holds, so a complete search is required. In terms of number of states
or time, the performance differs by about 5 orders of magnitude.
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Problem 101 102 103 104 105 106 107 108 109
Components 8 10 12 15 20 25 50 60 70

Time (s) 1 1 1 1 1 1 14 54 432

Fig. 2. Time to solve RERS 2019 parallel LTL problems using McRERS. Each problem
comprises 20 LTL formulas. Memory limited to 8 GB. Rows: problem number, number
of components in the LTS, and total McRERS wall time rounded up to nearest second.

POR? States saved Transitions Memory (MB) Time (s)
YES 1.55× 104 1.55× 104 1.26× 102 < 0.1
NO 1.89× 109 1.35× 1010 2.61× 105 7865.0

Fig. 3. Performance impact of POR on solving RERS 2019 problem 106, formula 1,
(a6 → Fa7)W(a7 ∨ a88).

Tool States Transitions Memory(MB) Time(s)
Spin 8.16× 107 2.01× 108 1.09× 104 292.0
McRERS 1.80× 102 1.93× 102 5.06× 101 < 0.1

Fig. 4. Performance of Spin v6.5.1 and McRERS on RERS 2019 problem 101, property
1. Both tools used POR. Spin used -DCOLLAPSE for state compression and -m100000000

for search depth bound.

As explained in Sect. 5, the RERS Spin models can not be expected to per-
form well. We ran the latest version of Spin on these using -DCOLLAPSE compres-
sion. We show the result for just the first task in Fig. 4. There is at least a 4
order of magnitude performance difference (measured in states or time) between
the tools. An examination of Spin’s output in verbose mode reveals the problem
to be as described in Sect. 5: the full set of enabled transitions is explored at
each transition due to the update of the shared variable.

The 2016 RERS problems are more challenging for McRERS. The problems
are numbered from 101 to 120. To scale beyond problem 111, with a memory
bound of 256 GB, additional reduction techniques, such as the component min-
imization methods discussed in Sect. 5, must be used. We plan to carry out a
thorough study of those methods and how they interact with POR.
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Abstract. SMT-based model checkers, especially IC3-style ones, are
currently the most effective techniques for verification of infinite state
systems. They infer global inductive invariants via local reasoning about
a single step of the transition relation of a system, while employing SMT-
based procedures, such as interpolation, to mitigate the limitations of
local reasoning and allow for better generalization. Unfortunately, these
mitigations intertwine model checking with heuristics of the underlying
SMT-solver, negatively affecting stability of model checking.

In this paper, we propose to tackle the limitations of locality in a
systematic manner. We introduce explicit global guidance into the local
reasoning performed by IC3-style algorithms. To this end, we extend the
SMT-IC3 paradigm with three novel rules, designed to mitigate funda-
mental sources of failure that stem from locality. We instantiate these
rules for the theory of Linear Integer Arithmetic and implement them on
top of Spacer solver in Z3. Our empirical results show that GSpacer,
Spacer extended with global guidance, is significantly more effective
than both Spacer and sole global reasoning, and, furthermore, is insen-
sitive to interpolation.

1 Introduction

SMT-based Model Checking algorithms that combine SMT-based search for
bounded counterexamples with interpolation-based search for inductive invari-
ants are currently the most effective techniques for verification of infinite state
systems. They are widely applicable, including for verification of synchronous
systems, protocols, parameterized systems, and software.

The Achilles heel of these approaches is the mismatch between the local
reasoning used to establish absence of bounded counterexamples and a global
reason for absence of unbounded counterexamples (i.e., existence of an induc-
tive invariant). This is particularly apparent in IC3-style algorithms [7], such as
Spacer [18]. IC3-style algorithms establish bounded safety by repeatedly com-
puting predecessors of error (or bad) states, blocking them by local reasoning
c© The Author(s) 2020
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about a single step of the transition relation of the system, and, later, using
the resulting lemmas to construct a candidate inductive invariant for the global
safety proof. The whole process is driven by the choice of local lemmas. Good
lemmas lead to quick convergence, bad lemmas make even simple-looking prob-
lems difficult to solve.

The effect of local reasoning is somewhat mitigated by the use of interpo-
lation in lemma construction. In addition to the usual inductive generalization
by dropping literals from a blocked bad state, interpolation is used to further
generalize the blocked state using theory-aware reasoning. For example, when
blocking a bad state x = 1 ∧ y = 1, inductive generalization would infer a sub-
clause of x �= 1 ∨ y �= 1 as a lemma, while interpolation might infer x �= y –
a predicate that might be required for the inductive invariant. Spacer, that is
based on this idea, is extremely effective, as demonstrated by its performance
in recent CHC-COMP competitions [10]. The downside, however, is that the
approach leads to a highly unstable procedure that is extremely sensitive to syn-
tactic changes in the system description, changes in interpolation algorithms,
and any algorithmic changes in the underlying SMT-solver.

An alternative approach, often called invariant inference, is to focus on the
global safety proof, i.e., an inductive invariant. This has long been advocated by
such approaches as Houdini [15], and, more recently, by a variety of machine-
learning inspired techniques, e.g., FreqHorn [14], LinearArbitrary [28], and ICE-
DT [16]. The key idea is to iteratively generate positive (i.e., reachable states)
and negative (i.e., states that reach an error) examples and to compute a can-
didate invariant that separates these two sets. The reasoning is more focused
towards the invariant, and, the search is restricted by either predicates, tem-
plates, grammars, or some combination. Invariant inference approaches are par-
ticularly good at finding simple inductive invariants. However, they do not gen-
eralize well to a wide variety of problems. In practice, they are often used to
complement other SMT-based techniques.

In this paper, we present a novel approach that extends, what we call, local
reasoning of IC3-style algorithms with global guidance inspired by the invariant
inference algorithms described above. Our main insight is that the set of lem-
mas maintained by IC3-style algorithms hint towards a potential global proof.
However, these hints are lost in existing approaches. We observe that letting the
current set of lemmas, that represent candidate global invariants, guide local
reasoning by introducing new lemmas and states to be blocked is often sufficient
to direct IC3 towards a better global proof.

We present and implement our results in the context of Spacer—a solver
for Constrained Horn Clauses (CHC)—implemented in the Z3 SMT-solver [13].
Spacer is used by multiple software model checking tools, performed remarkably
well in CHC-COMP competitions [10], and is open-sourced. However, our results
are fundamental and apply to any other IC3-style algorithm. While our imple-
mentation works with arbitrary CHC instances, we simplify the presentation by
focusing on infinite state model checking of transition systems.

We illustrate the pitfalls of local reasoning using three examples shown in
Fig. 1. All three examples are small, simple, and have simple inductive invariants.
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All three are challenging for Spacer. Where these examples are based on Spacer-
specific design choices, each exhibits a fundamental deficiency that stems from
local reasoning. We believe they can be adapted for any other IC3-style verification
algorithm. The examples assume basic familiarity with the IC3 paradigm. Readers
who are not familiar with it may find it useful to read the examples after reading
Sect. 2.

Fig. 1. Verification tasks to illustrate sources of divergence for Spacer. The call nd()
non-deterministically returns a Boolean value.

Myopic Generalization. Spacer diverges on the example in Fig. 1(a) by itera-
tively learning lemmas of the form (a − c ≤ k) ⇒ (b − d ≤ k) for different values
of k, where a, b, c, d are the program variables. These lemmas establish that
there are no counterexamples of longer and longer lengths. However, the process
never converges to the desired lemma (a − c) ≤ (b − d), which excludes coun-
terexamples of any length. The lemmas are discovered using interpolation, based
on proofs found by the SMT-solver. A close examination of the corresponding
proofs shows that the relationship between (a − c) and (b − d) does not appear
in the proofs, making it impossible to find the desired lemma by tweaking local
interpolation reasoning. On the other hand, looking at the global proof (i.e.,
the set of lemmas discovered to refute a bounded counterexample), it is almost
obvious that (a − c) ≤ (b − d) is an interesting generalization to try. Amusingly,
a small, syntactic, but semantic preserving change of swapping line 2 for line 3
in Fig. 1(a) changes the SMT-solver proofs, affects local interpolation, and makes
the instance trivial for Spacer.

Excessive (Predecessor) Generalization. Spacer diverges on the example
in Fig. 1(b) by computing an infinite sequence of lemmas of the form a+k1×b ≥
k2, where a and b are program variables, and k1 and k2 are integers. The root
cause is excessive generalization in predecessor computation. The Bad states
are a < 0, and their predecessors are states such as (a = 1 ∧ b = −10),
(a = 2 ∧ b = −10), etc., or, more generally, regions (a + b < 0), (a + 2b < −1),
etc. Spacer always attempts to compute the most general predecessor states.
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This is the best local strategy, but blocking these regions by learning their nega-
tion leads to the aforementioned lemmas. According to the global proof these
lemmas do not converge to a linear invariant. An alternative strategy that under-
approximates the problematic regions by (numerically) simpler regions and, as
a result, learns simpler lemmas is desired (and is effective on this example). For
example, region a + 3b ≤ −4 can be under-approximated by a ≤ 32 ∧ b ≤ −12,
eventually leading to a lemma b ≥ 0, that is a part of the final invariant:
(a ≥ 0 ∧ b ≥ 0).

Stuck in a Rut. Finally, Spacer converges on the example in Fig. 1(c), but only
after unrolling the system for 100 iterations. During the first 100 iterations,
Spacer learns that program states with (a ≥ 100 ∧ b �= c) are not reachable
because a is bounded by 1 in the first iteration, by 2 in the second, and so
on. In each iteration, the global proof is updated by replacing a lemma of the
form a < k by lemma of the form a < (k + 1) for different values of k. Again,
the strategy is good locally – total number of lemmas does not grow and the
bounded proof is improved. Yet, globally, it is clear that no progress is made
since the same set of bad states are blocked again and again in slightly different
ways. An alternative strategy is to abstract the literal a ≥ 100 from the formula
that represents the bad states, and, instead, conjecture that no states in b �= c
are reachable.

Our Approach: Global Guidance. As shown in the examples above, in all the
cases that Spacer diverges, the missteps are not obvious locally, but are clear
when the overall proof is considered. We propose three new rules, Subsume,
Concretize, and, Conjecture, that provide global guidance, by considering exist-
ing lemmas, to mitigate the problems illustrated above. Subsume introduces a
lemma that generalizes existing ones, Concretize under-approximates partially-
blocked predecessors to focus on repeatedly unblocked regions, and Conjecture
over-approximates a predecessor by abstracting away regions that are repeatedly
blocked. The rules are generic, and apply to arbitrary SMT theories. Further-
more, we propose an efficient instantiation of the rules for the theory Linear
Integer Arithmetic.

We have implemented the new strategy, called GSpacer, in Spacer and
compared it to the original implementation of Spacer. We show that GSpacer
outperforms Spacer in benchmarks from CHC-COMP 2018 and 2019. More sig-
nificantly, we show that the performance is independent of interpolation. While
Spacer is highly dependent on interpolation parameters, and performs poorly
when interpolation is disabled, the results of GSpacer are virtually unaffected
by interpolation. We also compare GSpacer to LinearArbitrary [28], a tool that
infers invariants using global reasoning. GSpacer outperforms LinearArbitrary
on the benchmarks from [28]. These results indicate that global guidance miti-
gates the shortcomings of local reasoning.

The rest of the paper is structured as follows. Sect. 2 presents the necessary
background. Sect. 3 introduces our global guidance as a set of abstract inference
rules. Sect. 4 describes an instantiation of the rules to Linear Integer Arithmetic
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(LIA). Sect. 5 presents our empirical evaluation. Finally, Sect. 7 describes related
work and concludes the paper.

2 Background

Logic. We consider first order logic modulo theories, and adopt the standard
notation and terminology. A first-order language modulo theory T is defined
over a signature Σ that consists of constant, function and predicate symbols,
some of which may be interpreted by T . As always, terms are constant symbols,
variables, or function symbols applied to terms; atoms are predicate symbols
applied to terms; literals are atoms or their negations; cubes are conjunctions of
literals; and clauses are disjunctions of literals. Unless otherwise stated, we only
consider closed formulas (i.e., formulas without any free variables). As usual, we
use sets of formulas and their conjunctions interchangeably.

MBP. Given a set of constants v, a formula ϕ and a model M |= ϕ, Model Based
Projection (MBP) of ϕ over the constants v, denoted MBP(v, ϕ,M), computes
a model-preserving under-approximation of ϕ projected onto Σ \ v. That is,
MBP(v, ϕ,M) is a formula over Σ \ v such that M |= MBP(v, ϕ,M) and any
model M ′ |= MBP(v, ϕ,M) can be extended to a model M ′′ |= ϕ by providing
an interpretation for v. There are polynomial time algorithms for computing
MBP in Linear Arithmetic [5,18].

Interpolation. Given an unsatisfiable formula A ∧ B, an interpolant, denoted
ITP(A,B), is a formula I over the shared signature of A and B such that
A ⇒ I and I ⇒ ¬B.

Safety Problem. A transition system is a pair 〈Init ,Tr〉, where Init is a formula
over Σ and Tr is a formula over Σ ∪ Σ′, where Σ′ = {s′ | s ∈ Σ}.1 The states
of the system correspond to structures over Σ, Init represents the initial states
and Tr represents the transition relation, where Σ is used to represent the pre-
state of a transition, and Σ′ is used to represent the post-state. For a formula
ϕ over Σ, we denote by ϕ′ the formula obtained by substituting each s ∈ Σ
by s′ ∈ Σ′. A safety problem is a triple 〈Init ,Tr ,Bad〉, where 〈Init ,Tr〉 is a
transition system and Bad is a formula over Σ representing a set of bad states.

The safety problem 〈Init ,Tr ,Bad〉 has a counterexample of length k if the
following formula is satisfiable: Init0 ∧

∧k−1
i=0 Tr i ∧Badk, where ϕi is defined over

Σi = {si | s ∈ Σ} (a copy of the signature used to represent the state of the
system after the execution of i steps) and is obtained from ϕ by substituting
each s ∈ Σ by si ∈ Σi, and Tr i is obtained from Tr by substituting s ∈ Σ by
si ∈ Σi and s′ ∈ Σ′ by si+1 ∈ Σi+1. The transition system is safe if the safety
problem has no counterexample, of any length.

1 In fact, a primed copy is introduced in Σ′ only for the uninterpreted symbols in Σ.
Interpreted symbols remain the same in Σ′.
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Algorithm 1: Spacer algorithm as a set of guarded commands. We use the
shorthand F(ϕ) = U ′ ∨ (ϕ ∧ Tr).
function Spacer:
In: 〈Init,Tr ,Bad〉
Out: 〈safe, Inv〉 or unsafe
Q := ∅ // pob queue
N := 0 // maximum safe level
O0 := Init, Oi := � for all i > 0 // lemma trace
U := Init // reachable states
forever do
Candidate � isSat(ON ∧ Bad) � Q := Q ∪ 〈Bad, N〉
Predecessor � 〈ϕ, i + 1〉 ∈ Q, M |= Oi ∧ Tr ∧ ϕ′ � Q := Q ∪ 〈MBP(x′,Tr ∧ ϕ′, M), i〉
Successor � 〈ϕ, i + 1〉 ∈ Q, M |= F(U) ∧ ϕ′ � U := U ∨ MBP(x, F(U), M)[x′ �→ x]

Conflict � 〈ϕ, i + 1〉 ∈ Q, F(Oi) ⇒ ¬ϕ′ � Oj := (Oj ∧ ITP(F(Oi), ϕ′)[x′ �→ x]) for all j ≤ i + 1

Induction � � ∈ Oi+1, � = (ϕ ∨ ψ), F(ϕ ∧ Oi) ⇒ ϕ′ � Oj := Oj ∧ ϕ for all j ≤ i + 1

Propagate � � ∈ Oi, Oi ∧ Tr ⇒ �′ � Oi+1 := (Oi+1 ∧ �)
Unfold � ON ⇒ ¬Bad � N := N + 1
Safe � Oi+1 ⇒ Oi for some i < N � return 〈safe, Oi〉
Unsafe � isSat(Bad ∧ U) � return unsafe

Algorithm 2: Global guidance rules for Spacer.
Subsume � L ⊆ Oi, k ≥ i, F(Ok) ⇒ ψ′, ∀� ∈ L. ψ ⇒ � �

Oj := (Oj ∧ ψ) for all j ≤ k + 1

Concretize � L ⊆ Oi, 〈ϕ, j〉 ∈ Q, ∀� ∈ L. isSat(ϕ ∧ ¬�), isSat(ϕ ∧ ∧ L), γ ⇒ ϕ, isSat(γ ∧ ∧ L) �
Q := Q ∪ 〈γ, k + 1〉 where k = max{j | Oj ⇒ ¬γ}

Conjecture � L ⊆ Oi, 〈ϕ, j〉 ∈ Q, ϕ ≡ α ∧ β, ∀� ∈ L. � ⇒ ¬β ∧ isSat(� ∧ α), U ⇒ ¬α �
Q := Q ∪ 〈α, k + 1〉 where k = max{j | Oj ⇒ ¬α}

Inductive Invariants. An inductive invariant is a formula Inv over Σ such that
(i) Init ⇒ Inv , (ii) Inv ∧Tr ⇒ Inv ′, and (iii) Inv ⇒ ¬Bad . If such an inductive
invariant exists, then the transition system is safe.

Spacer. The safety problem defined above is an instance of a more general prob-
lem, CHC-SAT, of satisfiability of Constrained Horn Clauses (CHC). Spacer is
a semi-decision procedure for CHC-SAT. However, to simplify the presentation,
we describe the algorithm only for the particular case of the safety problem. We
stress that Spacer, as well as the developments of this paper, apply to the more
general setting of CHCs (both linear and non-linear). We assume that the only
uninterpreted symbols in Σ are constant symbols, which we denote x. Typically,
these represent program variables. Without loss of generality, we assume that
Bad is a cube.

Algorithm 1 presents the key ingredients of Spacer as a set of guarded
commands (or rules). It maintains the following. Current unrolling depth N at
which a counterexample is searched (there are no counterexamples with depth
less than N). A trace O = (O0,O1, . . .) of frames, such that each frame Oi is a
set of lemmas, and each lemma � ∈ Oi is a clause. A queue of proof obligations
Q, where each proof obligation (pob) in Q is a pair 〈ϕ, i〉 of a cube ϕ and a level
number i, 0 ≤ i ≤ N . An under-approximation U of reachable states. Intuitively,
each frame Oi is a candidate inductive invariant s.t. Oi over-approximates states
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reachable up to i steps from Init . The latter is ensured since O0 = Init , the trace
is monotone, i.e., Oi+1 ⊆ Oi, and each frame is inductive relative to its previous
one, i.e., Oi ∧ Tr ⇒ O′

i+1. Each pob 〈ϕ, i〉 in Q corresponds to a suffix of a
potential counterexample that has to be blocked in Oi, i.e., has to be proven
unreachable in i steps.

The Candidate rule adds an initial pob 〈Bad , N〉 to the queue. If a pob 〈ϕ, i〉
cannot be blocked because ϕ is reachable from frame (i − 1), the Predecessor
rule generates a predecessor ψ of ϕ using MBP and adds 〈ψ, i − 1〉 to Q. The
Successor rule updates the set of reachable states if the pob is reachable. If the
pob is blocked, the Conflict rule strengthens the trace O by using interpolation
to learn a new lemma � that blocks the pob, i.e., � implies ¬ϕ. The Induction
rule strengthens a lemma by inductive generalization and the Propagate rule
pushes a lemma to a higher frame. If the Bad state has been blocked at N ,
the Unfold rule increments the depth of unrolling N . In practice, the rules are
scheduled to ensure progress towards finding a counterexample.

3 Global Guidance of Local Proofs

As illustrated by the examples in Fig. 1, while Spacer is generally effective, its
local reasoning is easily confused. The effectiveness is very dependent on the
local computation of predecessors using model-based projection, and lemmas
using interpolation. In this section, we extend Spacer with three additional
global reasoning rules. The rules are inspired by the deficiencies illustrated by
the motivating examples in Fig. 1. In this section, we present the rules abstractly,
independent of any underlying theory, focusing on pre- and post-conditions. In
Sect. 4, we specialize the rules for Linear Integer Arithmetic, and show how
they are scheduled with the other rules of Spacer in an efficient verification
algorithm. The new global rules are summarized in Algorithm 2. We use the
same guarded command notation as in description of Spacer in Algorithm 1.
Note that the rules supplement, and not replace, the ones in Algorithm 1.

Subsume is the most natural rule to explain. It says that if there is a set of
lemmas L at level i, and there exists a formula ψ such that (a) ψ is stronger
than every lemma in L, and (b) ψ over-approximates states reachable in at most
k steps, where k ≥ i, then ψ can be added to the trace to subsume L. This rule
reduces the size of the global proof – that is, the number of total not-subsumed
lemmas. Note that the rule allows ψ to be at a level k that is higher than i. The
choice of ψ is left open. The details are likely to be specific to the theory involved.
For example, when instantiated for LIA, Subsume is sufficient to solve example
in Fig. 1(a). Interestingly, Subsume is not likely to be effective for propositional
IC3. In that case, ψ is a clause and the only way for it to be stronger than L is
for ψ to be a syntactic sub-sequence of every lemma in L, but such ψ is already
explored by local inductive generalization (rule Induction in Algorithm 1).
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Concretize applies to a pob, unlike Subsume. It is motivated by example in
Fig. 1(b) that highlights the problem of excessive local generalization. Spacer
always computes as general predecessors as possible. This is necessary for refu-
tational completeness since in an infinite state system there are infinitely many
potential predecessors. Computing the most general predecessor ensures that
Spacer finds a counterexample, if it exists. However, this also forces Spacer to
discover more general, and sometimes more complex, lemmas than might be nec-
essary for an inductive invariant. Without a global view of the overall proof, it
is hard to determine when the algorithm generalizes too much. The intuition for
Concretize is that generalization is excessive when there is a single pob 〈ϕ, j〉
that is not blocked, yet, there is a set of lemmas L such that every lemma � ∈ L
partially blocks ϕ. That is, for any � ∈ L, there is a sub-region ϕ� of pob ϕ that
is blocked by � (i.e., � ⇒ ¬ϕ�), and there is at least one state s ∈ ϕ that is not
blocked by any existing lemma in L (i.e., s |= ϕ∧

∧
L). In this case, Concretize

computes an under-approximation γ of ϕ that includes some not-yet-blocked
state s. The new pob is added to the lowest level at which γ is not yet blocked.
Concretize is useful to solve the example in Fig. 1(b).

Conjecture guides the algorithm away from being stuck in the same part of the
search space. A single pob ϕ might be blocked by a different lemma at each level
that ϕ appears in. This indicates that the lemmas are too strong, and cannot
be propagated successfully to a higher level. The goal of the Conjecture rule is
to identify such a case to guide the algorithm to explore alternative proofs with
a better potential for generalization. This is done by abstracting away the part
of the pob that has been blocked in the past. The pre-condition for Conjecture
is the existence of a pob 〈ϕ, j〉 such that ϕ is split into two (not necessarily
disjoint) sets of literals, α and β. Second, there must be a set of lemmas L, at a
(typically much lower) level i < j such that every lemma � ∈ L blocks ϕ, and,
moreover, blocks ϕ by blocking β. Intuitively, this implies that while there are
many different lemmas (i.e., all lemmas in L) that block ϕ at different levels, all
of them correspond to a local generalization of ¬β that could not be propagated
to block ϕ at higher levels. In this case, Conjecture abstracts the pob ϕ into
α, hoping to generate an alternative way to block ϕ. Of course, α is conjectured
only if it is not already blocked and does not contain any known reachable states.
Conjecture is necessary for a quick convergence on the example in Fig. 1(c). In
some respect, Conjecture is akin to widening in Abstract Interpretation [12]
– it abstracts a set of states by dropping constraints that appear to prevent
further exploration. Of course, it is also quite different since it does not guarantee
termination. While Conjecture is applicable to propositional IC3 as well, it is
much more significant in SMT-based setting since in many FOL theories a single
literal in a pob might result in infinitely many distinct lemmas.

Each of the rules can be applied by itself, but they are most effective in
combination. For example, Concretize creates less general predecessors, that, in
the worst case, lead to many simple lemmas. At the same time, Subsume combines
lemmas together into more complex ones. The interaction of the two produces
lemmas that neither one can produce in isolation. At the same time, Conjecture
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helps unstuck the algorithm from a single unproductive pob, allowing the other
rules to take effect.

4 Global Guidance for Linear Integer Arithmetic

In this section, we present a specialization of our general rules, shown in
Algorithm 2, to the theory of Linear Integer Arithmetic (LIA). This requires
solving two problems: identifying subsets of lemmas for pre-conditions of the
rules (clearly using all possible subsets is too expensive), and applying the rule
once its pre-condition is met. For lemma selection, we introduce a notion of syn-
tactic clustering based on anti-unification. For rule application, we exploit basic
properties of LIA for an effective algorithm. Our presentation is focused on
LIA exclusively. However, the rules extend to combinations of LIA with other
theories, such as the combined theory of LIA and Arrays.

The rest of this section is structured as follows. We begin with a brief back-
ground on LIA in Sect. 4.1. We then present our lemma selection scheme, which
is common to all the rules, in Sect. 4.2, followed by a description of how the rules
Subsume (in Sect. 4.3), Concretize (in Sect. 4.4), and Conjecture (in Sect. 4.5)
are instantiated for LIA. We conclude in Sect. 4.6 with an algorithm that inte-
grates all the rules together.

4.1 Linear Integer Arithmetic: Background

In the theory of Linear Integer Arithmetic (LIA), formulas are defined over a
signature that includes interpreted function symbols +, −, ×, interpreted predi-
cate symbols <, ≤, |, interpreted constant symbols 0, 1, 2, . . ., and uninterpreted
constant symbols a, b, . . . , x, y, . . .. We write Z for the set interpreted constant
symbols, and call them integers. We use constants to refer exclusively to the unin-
terpreted constants (these are often called variables in LIA literature). Terms
(and accordingly formulas) in LIA are restricted to be linear, that is, multipli-
cation is never applied to two constants.

We write LIA−div for the fragment of LIA that excludes divisiblity (d|h)
predicates. A literal in LIA−div is a linear inequality; a cube is a conjunction of
such inequalities, that is, a polytope. We find it convenient to use matrix-based
notation for representing cubes in LIA−div. A ground cube c ∈ LIA−div with p
inequalities (literals) over k (uninterpreted) constants is written as A · x ≤ n,
where A is a p × k matrix of coefficients in Z

p×k, x = (x1 · · · xk)T is a column
vector that consists of the (uninterpreted) constants, and n = (n1 · · · np)T is a
column vector in Z

p. For example, the cube x ≥ 2 ∧ 2x + y ≤ 3 is written as[ −1 0
2 1

]
· [ x

y ] ≤
[ − 2

3

]
. In the sequel, all vectors are column vectors, super-script T

denotes transpose, dot is used for a dot product and [n1;n2] stands for a matrix
of column vectors n1 and n2.
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4.2 Lemma Selection

A common pre-condition for all of our global rules in Algorithm 2 is the existence
of a subset of lemmas L of some frame Oi. Attempting to apply the rules for every
subset of Oi is infeasible. In practice, we use syntactic similarity between lemmas
as a predictor that one of the global rules is applicable, and restrict L to subsets
of syntactically similar lemmas. In the rest of this section, we formally define
what we mean by syntactic similarity, and how syntactically similar subsets of
lemmas, called clusters, are maintained efficiently throughout the algorithm.

Syntactic Similarity. A formula π with free variables is called a pattern. Note
that we do not require π to be in LIA. Let σ be a substitution, i.e., a mapping
from variables to terms. We write πσ for the result of replacing all occurrences
of free variables in π with their mapping under σ. A substitution σ is called
numeric if it maps every variable to an integer, i.e., the range of σ is Z. We
say that a formula ϕ numerically matches a pattern π iff there exists a numeric
substitution σ such that ϕ = πσ. Note that, as usual, the equality is syntactic.
For example, consider the pattern π = v0a + v1b ≤ 0 with free variables v0 and
v1 and uninterpreted constants a and b. The formula ϕ1 = 3a + 4b ≤ 0 matches
π via a numeric substitution σ1 = {v0 → 3, v1 → 4}. However, ϕ2 = 4b+3a ≤ 0,
while semantically equivalent to ϕ1, does not match π. Similarly ϕ3 = a + b ≤ 0
does not match π as well.

Matching is extended to patterns in the usual way by allowing a substitution
σ to map variables to variables. We say that a pattern π1 is more general than
a pattern π2 if π2 matches π1. A pattern π is a numeric anti-unifier for a
pair of formulas ϕ1 and ϕ2 if both ϕ1 and ϕ2 match π numerically. We write
anti(ϕ1, ϕ2) for a most general numeric anti-unifier of ϕ1 and ϕ2. We say that
two formulas ϕ1 and ϕ2 are syntactically similar if there exists a numeric anti-
unifier between them (i.e., anti(ϕ1, ϕ2) is defined). Anti-unification is extended
to sets of formulas in the usual way.

Clusters. We use anti-unification to define clusters of syntactically similar for-
mulas. Let Φ be a fixed set of formulas, and π a pattern. A cluster, CΦ(π), is
a subset of Φ such that every formula ϕ ∈ CΦ(π) numerically matches π. That
is, π is a numeric anti-unifier for CΦ(π). In the implementation, we restrict the
pre-conditions of the global rules so that a subset of lemmas L ⊆ Oi is a cluster
for some pattern π, i.e., L = COi

(π).

Clustering Lemmas. We use the following strategy to efficiently keep track of
available clusters. Let �new be a new lemma to be added to Oi. Assume there is at
least one lemma � ∈ Oi that numerically anti-unifies with �new via some pattern
π. If such an � does not belong to any cluster, a new cluster COi

(π) = {�new, �}
is formed, where π = anti(�new, �). Otherwise, for every lemma � ∈ Oi that
numerically matches �new and every cluster COi

(π̂) containing �, �new is added
to COi

(π̂) if �new matches π̂, or a new cluster is formed using �, �new, and any
other lemmas in COi

(π̂) that anti-unify with them. Note that a new lemma �new
might belong to multiple clusters.
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For example, suppose �new = (a ≤ 6 ∨ b ≤ 6), and there is already a cluster
COi

(a ≤ v0 ∨ b ≤ 5) = {(a ≤ 5 ∨ b ≤ 5), (a ≤ 8 ∨ b ≤ 5)}. Since �new anti-unifies
with each of the lemmas in the cluster, but does not match the pattern a ≤
v0 ∨b ≤ 5, a new cluster that includes all of them is formed w.r.t. a more general
pattern: COi

(a ≤ v0∨b ≤ v1) = {(a ≤ 6∨b ≤ 6), (a ≤ 5∨b ≤ 5), (a ≤ 8∨b ≤ 5)}.
In the presentation above, we assumed that anti-unification is completely

syntactic. This is problematic in practice since it significantly limits the applica-
bility of the global rules. Recall, for example, that a+b ≤ 0 and 2a+2b ≤ 0 do not
anti-unify numerically according to our definitions, and, therefore, do not cluster
together. In practice, we augment syntactic anti-unification with simple rewrite
rules that are applied greedily. For example, we normalize all LIA terms, take
care of implicit multiplication by 1, and of associativity and commutativity of
addition. In the future, it is interesting to explore how advanced anti-unification
algorithms, such as [8,27], can be adapted for our purpose.

4.3 Subsume Rule for LIA

Recall that the Subsume rule (Algorithm 2) takes a cluster of lemmas L = COi
(π)

and computes a new lemma ψ that subsumes all the lemmas in L, that is ψ ⇒∧
L. We find it convenient to dualize the problem. Let S = {¬� | � ∈ L} be the

dual of L, clearly ψ ⇒
∧

L iff (
∨

S) ⇒ ¬ψ. Note that L is a set of clauses, S is a
set of cubes, ψ is a clause, and ¬ψ is a cube. In the case of LIA−div, this means
that

∨
S represents a union of convex sets, and ¬ψ represents a convex set that

the Subsume rule must find. The strongest such ¬ψ in LIA−div exists, and is the
convex closure of S. Thus, applying Subsume in the context of LIA−div is reduced
to computing a convex closure of a set of (negated) lemmas in a cluster. Full
LIA extends LIA−div with divisibility constraints. Therefore, Subsume obtains
a stronger ¬ψ by adding such constraints.

Example 1. For example, consider the following cluster:

L = {(x > 2 ∨ x < 2 ∨ y > 3), (x > 4 ∨ x < 4 ∨ y > 5), (x > 8 ∨ x < 8 ∨ y > 9)}
S = {(x ≤ 2 ∧ x ≥ 2 ∧ y ≤ 3), (x ≥ 4 ∧ x ≤ 4 ∧ y ≤ 5), (x ≥ 8 ∧ x ≤ 8 ∧ y ≤ 9)}

The convex closure of S in LIA−div is 2 ≤ x ≤ 8∧y ≤ x+1. However, a stronger
over-approximation exists in LIA: 2 ≤ x ≤ 8 ∧ y ≤ x + 1 ∧ (2 | x). ��

In the sequel, we describe subsumeCube (Algorithm 3) which computes a
cube ϕ that over-approximates (

∨
S). Subsume is then implemented by removing

from L lemmas that are already subsumed by existing lemmas in L, dualizing
the result into S, invoking subsumeCube on S and returning ¬ϕ as a lemma
that subsumes L.

Recall that Subsume is tried only in the case L = COi
(π). We further require

that the negated pattern, ¬π, is of the form A · x ≤ v, where A is a coefficients
matrix, x is a vector of constants and v = (v1 · · · vp)T is a vector of p free
variables. Under this assumption, S (the dual of L) is of the form {(A ·x ≤ ni) |
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1 ≤ i ≤ q}, where q = |S|, and for each 1 ≤ i ≤ q, ni is a numeric substitution
to v from which one of the negated lemmas in S is obtained. That is, |ni| = |v|.
In Example 1, ¬π = x ≤ v1 ∧ −x ≤ v2 ∧ y ≤ v3 and

A =

⎡

⎣
1 0

−1 0
0 1

⎤

⎦ x =
[
x
y

]

v =

⎡

⎣
v1
v2
v3

⎤

⎦ n1 =

⎡

⎣
2

−2
3

⎤

⎦ n2 =

⎡

⎣
4

−4
5

⎤

⎦ n3 =

⎡

⎣
8

−8
9

⎤

⎦

Each cube (A · x ≤ ni) ∈ S is equivalent to ∃v. A · x ≤ v ∧ (v = ni).
Finally, (

∨
S) ≡ ∃v. (A · x ≤ v) ∧ (

∨
(v = ni)). Thus, computing the over-

approximation of S is reduced to (a) computing the convex hull H of a set
of points {ni | 1 ≤ i ≤ q}, (b) computing divisibility constraints D that are
satisfied by all the points, (c) substituting H ∧ D for the disjunction in the
equation above, and (c) eliminating variables v. Both the computation of H ∧D
and the elimination of v may be prohibitively expensive. We, therefore, over-
approximate them. Our approach for doing so is presented in Algorithm 3, and
explained in detail below.
Computing the convex hull of {ni | 1 ≤ i ≤ q}. lines 3 to 8 compute the convex
hull of {ni | 1 ≤ i ≤ q} as a formula over v, where variable vj , for 1 ≤ j ≤ p,
represents the jth coordinates in the vectors (points) ni. Some of the coordinates,
vj , in these vectors may be linearly dependent upon others. To simplify the
problem, we first identify such dependencies and compute a set of linear equalities
that expresses them (L in line 4). To do so, we consider a matrix Nq×p, where the
ith row consists of nT

i . The jth column in N , denoted N∗j , corresponds to the jth

coordinate, vj . The rank of N is the number of linearly independent columns (and
rows). The other columns (coordinates) can be expressed by linear combinations
of the linearly independent ones. To compute these linear combinations we use
the kernel of [N ;1] (N appended with a column vector of 1’s), which is the
set of all vectors y such that [N ;1] · y = 0, where 0 is the zero vector. Let
B = kernel([N ;1]) be a basis for the kernel of [N ;1]. Then |B| = p − rank(N),
and for each vector y ∈ B, the linear equality [v1 · · · vp 1] · y = 0 holds in
all the rows of N (i.e., all the given vectors satisfy it). We accumulate these
equalities, which capture the linear dependencies between the coordinates, in
L. Further, the equalities are used to compute rank(N) coordinates (columns
in N) that are linearly independent and, modulo L, uniquely determine the
remaining coordinates. We denote by vL↓ the subset of v that consists of the
linearly independent coordinates. We further denote by n

L↓
i the projection of

ni to these coordinates and by NL↓ the projection of N to the corresponding
columns. We have that (

∨
(v = ni)) ≡ L ∧ (

∨
(vL↓ = n

L↓
i ).

In Example 1, the numeral matrix is N =
[
2 −2 3
4 −4 5
8 −8 9

]
, for which

kernel([N ;1]) = {( 1 1 0 0 )T
, ( 1 0 −1 1 )T }. Therefore, L is the conjunction of

equalities v1 + v2 = 0 ∧ v1 − v3 + 1 = 0, or, equivalently v3 = v1 + 1 ∧ v2 = −v1,
vL↓ =

(
v1

)T , and



Global Guidance for Local Generalization in Model Checking 113

n
L↓
1 =

[
2
]

n
L↓
2 =

[
4
]

n
L↓
3 =

[
8
]

NL↓ =

⎡

⎣
2
4
8

⎤

⎦

Next, we compute the convex closure of
∨

(vL↓ = n
L↓
i ), and conjoin it with

L to obtain H, the convex closure of (
∨

(v = ni)).
If the dimension of vL↓ is one, as is the case in the example above, convex

closure, C, of
∨

(vL↓ = n
L↓
i ) is obtained by bounding the sole element of vL↓

based on its values in NL↓ (line 6). In Example 1, we obtain C = 2 ≤ v1 ≤ 8.
If the dimension of vL↓ is greater than one, just computing the bounds of

one of the constants is not sufficient. Instead, we use the concept of syntactic
convex closure from [2] to compute the convex closure of

∨
(vL↓ = n

L↓
i ) as ∃α. C

where α is a vector that consists of q fresh rational variables and C is defined
as follows (line 8): C = α ≥ 0 ∧ Σα = 1 ∧ αT · NL↓ = (vL↓)T . C states that
(vL↓)T is a convex combination of the rows of NL↓ , or, in other words, vL↓ is a
convex combination of {n

L↓
i | 1 ≤ i ≤ q}.

To illustrate the syntactic convex closure, consider a second example with a
set of cubes: S = {(x ≤ 0∧y ≤ 6), (x ≤ 6∧y ≤ 0), (x ≤ 5∧y ≤ 5)}. The coefficient
matrix A, and the numeral matrix N are then: A = [ 1 0

0 1 ] and N =
[
0 6
6 0
5 5

]
.

Here, kernel([N ;1]) is empty – all the columns are linearly independent, hence,
L = true and vL↓ = v. Therefore, syntactic convex closure is applied to the full
matrix N , resulting in

C = (α1 ≥ 0) ∧ (α2 ≥ 0) ∧ (α3 ≥ 0) ∧ (α1 + α2 + α3 = 1) ∧
(6α2 + 5α3 = v1) ∧ (6α1 + 5α3 = v2)

The convex closure of
∨

(v = ni) is then L ∧ ∃α. C, which is ∃α. C here.

Divisibility Constraints. Inductive invariants for verification problems often
require divisibility constraints. We, therefore, use such constraints, denoted D,
to obtain a stronger over-approximation of

∨
(v = ni) than the convex closure.

To add a divisibility constraint for vj ∈ vL↓ , we consider the column N
L↓
∗j that

corresponds to vj in NL↓ . We find the largest positive integer d such that each
integer in N

L↓
∗j leaves the same remainder when divided by d; namely, there exists

0 ≤ r < d such that n mod d = r for every n ∈ N
L↓
∗j . This means that d | (vj −r)

is satisfied by all the points ni. Note that such r always exists for d = 1. To
avoid this trivial case, we add the constraint d | (vj − r) only if d �= 1 (line 12).
We repeat this process for each vj ∈ vL↓ .

In Example 1, all the elements in the (only) column of the matrix NL↓ , which
corresponds to v1, are divisible by 2, and no larger d has a corresponding r. Thus,
line 12 of Algorithm 3 adds the divisibility condition (2 | v1) to D.
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Eliminating Existentially Quantified Variables Using MBP. By combining the
linear equalities exhibited by N , the convex closure of NL↓ and the divisibility
constraints on v, we obtain ∃α. L ∧ C ∧ D as an over-approximation of

∨
(v =

ni). Accordingly, ∃v.∃α. ψ, where ψ = (A · x ≤ v) ∧ L ∧ C ∧ D, is an over-
approximation of (

∨
S) ≡ ∃v. (A ·x ≤ v)∧(

∨
(v = ni)) (line 13). In order to get

a LIA cube that overapproximates
∨

S, it remains to eliminate the existential
quantifiers. Since quantifier elimination is expensive, and does not necessarily
generate convex formulas (cubes), we approximate it using MBP. Namely, we
obtain a cube ϕ that under-approximates ∃v.∃α. ψ by applying MBP on ψ and
a model M0 |= ψ. We then use an SMT solver to drop literals from ϕ until it
over-approximates ∃v.∃α. ψ, and hence also

∨
S (lines 16 to 19). The result is

returned by Subsume as an over-approximation of
∨

S.
Models M0 that satisfy ψ and do not satisfy any of the cubes in S are

preferred when computing MBP (line 14) as they ensure that the result of MBP
is not subsumed by any of the cubes in S.

Note that the α are rational variables and v are integer variables, which
means we require MBP to support a mixture of integer and rational variables. To
achieve this, we first relax all constants to be rationals and apply MBP over LRA
to eliminate α. We then adjust the resulting formula back to integer arithmetic
by multiplying each atom by the least common multiple of the denominators of
the coefficients in it. Finally, we apply MBP over the integers to eliminate v.

Considering Example 1 again, we get that ψ = (x ≤ v1) ∧ (−x ≤ v2) ∧ (y ≤
v3)∧ (v3 = 1+v1)∧ (v2 = −v1)∧ (2 ≤ v1 ≤ 8)∧ (2 | v1) (the first three conjuncts
correspond to (A · (x y)T ≤ (v1 v2 v3)T )). Note that in this case we do not have
rational variables α since |vL↓ | = 1. Depending on the model, the result of MBP
can be one of

y ≤ x + 1 ∧ 2 ≤ x ≤ 8 ∧ (2 | y − 1) ∧ (2 | x) x ≥ 2 ∧ x ≤ 2 ∧ y ≤ 3
y ≤ x + 1 ∧ 2 ≤ x ≤ 8 ∧ (2 | x) x ≥ 8 ∧ x ≤ 8 ∧ y ≤ 9

y ≥ x + 1 ∧ y ≤ x + 1 ∧ 3 ≤ y ≤ 9 ∧ (2 | y − 1)

However, we prefer a model that does not satisfy any cube in S = {(x ≥ 2∧x ≤
2 ∧ y ≤ 3), (x ≤ 4 ∧ x ≥ 4 ∧ y ≤ 5), (x ≤ 8 ∧ x ≥ 8 ∧ y ≤ 9)}, rules off the two
possibilities on the right. None of these cubes cover ψ, hence generalization is
used.

If the first cube is obtained by MBP, it is generalized into y ≤ x + 1 ∧ x ≥
2 ∧ x ≤ 8 ∧ (2|x); the second cube is already an over-approximation; the third
cube is generalized into y ≤ x + 1 ∧ y ≤ 9. Indeed, each of these cubes over-
approximates

∨
S.

4.4 Concretize Rule for LIA

The Concretize rule (Algorithm 2) takes a cluster of lemmas L = COi
(π) and a

pob 〈ϕ, j〉 such that each lemma in L partially blocks ϕ, and creates a new pob γ
that is still not blocked by L, but γ is more concrete, i.e., γ ⇒ ϕ. In our implemen-
tation, this rule is applied when ϕ is in LIA−div. We further require that the pat-
tern, π, of L is non-linear, i.e., some of the constants appear in π with free variables
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Algorithm 3: An implementation of
the Subsume rule for the dual of a cluster
S = {A · x ≤ ni | 1 ≤ i ≤ q}.
1 function subsumeCube:

In: S = {(A · x ≤ ni) | 1 ≤ i ≤ q},
Out: An over-approximation of (

∨ S).
/* v are integer variables such that:

(
∨ S) ⇐⇒ ∃v . (A · x ≤ v) ∧ (

∨
v = ni) */

2 N := [n1; · · · ;nq ]
T

/* Compute the set of linear dependencies
implied by N */

3 B := kernel([N ; 1])
4 L :=

∧
y ∈B( v1 ··· vp 1 ) · y = 0

5 if |vL↓ | = 1 then

// Convex closure over a single constant vi ∈ vL↓

6 C := min(N∗i) ≤ vi ≤ max(N∗i)

7 else
// Syntactic convex closure

8 C := (αT ·NL↓ = (vL↓ )T )∧(Σα = 1)∧(α ≥ 0)

/* Compute divisibility constraints */
9 D := �

10 for vj ∈ vL↓ do
11 if

∃d, r. d �= 1∧(∀n ∈ N
L↓
∗j . (n mod d = r)) then

12 D := D ∧ d | (vj − r)

13 ψ := (A · x ≤ v) ∧ L ∧ C ∧ D
/* Under-approximate quantifier elimination */

14 find M0 s.t. M0 |= ψ and, if possible, M0 �|= (
∨

S)
15 ϕ := MBP((α v), ψ, M0)

/* Over-approximate quantifier elimination */
16 while isSat(¬ϕ ∧ ψ) do
17 find M1 s.t. M1 |= (¬ϕ ∧ ψ)
18 ϕ :=

∧{� ∈ ϕ | ¬(M1 |= ¬�)}
19 return ϕ

Algorithm 4: An implementation of
the Concretize rule in LIA.

1 function Concretize:

In: A pob 〈ϕ, j〉 in LIA−div, a cluster of

LIA−div lemmas L = COi
(π) s.t. π is

non-linear, isSat(ϕ ∧ ∧ L)
Out: A cube γ such that γ ⇒ ϕ and

∀� ∈ L. isSat(γ ∧ �)
2 U := {x | coeff(x, π) ∈ Vars(π)}
3 find M s.t. M |= ϕ ∧ ∧ L
4 γ := �
5 foreach lit ∈ ϕ do
6 if Consts(lit) ∩ U �= ∅ then

γ := γ ∧ Concretize lit(lit, M, U)
7 else γ := γ ∧ lit

8 γ := rm subsume(γ)
9 return γ

10 function Concretize lit:

In: A literal lit = Σinixi ≤ bj in LIA−div,
model M |= lit, and a set of constants U

Out: A cube γlit that concretizes lit
/* Construct a single literal using all the

constants in Consts(lit) \ U */

11 γlit := ∅
12 s := 0
13 foreach xi ∈ Consts(lit) \ U do
14 s := s + nixi

15 γlit := (s ≤ M [s])
/* Generate one dimensional literals for each

constant in U */
16 foreach xi ∈ Consts(lit) ∩ U do

17 γlit := γlit ∧ (nixi ≤ M [nixi])

18 return γlit

as their coefficients. We denote these constants by U . An example is the pattern
π = v0x + v1y + z ≤ 0, where U = {x, y}. Having such a cluster is an indication
that attempting to block ϕ in full with a single lemma may require to track non-
linear correlations between the constants, which is impossible to do inLIA. In such
cases, we identify the coupling of the constants in U in pobs (and hence in lemmas)
as the potential source of non-linearity. Hence, we concretize (strengthen) ϕ into
a pob γ where the constants in U are no longer coupled to any other constant.

Coupling. Formally, constants u and v are coupled in a cube c, denoted u �c v,
if there exists a literal lit in c such that both u and v appear in lit (i.e., their
coefficients in lit are non-zero). For example, x and y are coupled in x + y ≤
0 ∧ z ≤ 0 whereas neither of them are coupled with z. A constant u is said to
be isolated in a cube c, denoted Iso(u, c), if it appears in c but it is not coupled
with any other constant in c. In the above cube, z is isolated.

Concretization by Decoupling. Given a pob ϕ (a cube) and a cluster L,
Algorithm 4 presents our approach for concretizing ϕ by decoupling the con-
stants in U—those that have variables as coefficients in the pattern of L (line 2).
Concretization is guided by a model M |= ϕ∧

∧
L, representing a part of ϕ that

is not yet blocked by the lemmas in L (line 3). Given such M , we concretize ϕ
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into a model-preserving under-approximation that isolates all the constants in
U and preserves all other couplings. That is, we find a cube γ, such that

γ ⇒ ϕ M |= γ ∀u ∈ U. Iso(u, γ) ∀u, v �∈ U. (u �ϕ v) ⇒ (u �γ v) (1)

Note that γ is not blocked by L since M satisfies both
∧

L and γ. For example,
if ϕ = (x+y ≤ 0)∧ (x−y ≤ 0)∧ (x+ z ≥ 0) and M = [x = 0, y = 0, z = 1], then
γ = 0 ≤ y ≤ 0 ∧ x ≤ 0 ∧ x + z ≥ 1 is a model preserving under-approximation
that isolates U = {y}.

Algorithm 4 computes such a cube γ by a point-wise concretization of the
literals of ϕ followed by the removal of subsumed literals. Literals that do not
contain constants from U remain unchanged. A literal of the form lit = t ≤ b,
where t =

∑
i nixi (recall that every literal in LIA−div can be normalized to this

form), that includes constants from U is concretized into a cube by (1) isolating
each of the summands nixi in t that include U from the rest, and (2) for each
of the resulting sub-expressions creating a literal that uses its value in M as a
bound. Formally, t is decomposed to s+

∑
xi∈U nixi, where s =

∑
xi �∈U nixi. The

concretization of lit is the cube γlit = s ≤ M [s] ∧
∧

xi∈U nixi ≤ M [nixi], where
M [t′] denotes the interpretation of t′ in M . Note that γlit ⇒ lit since the bounds
are stronger than the original bound on t: M [s] +

∑
xi∈U M [nixi] = M [t] ≤ b.

This ensures that γ, obtained by the conjunction of literal concretizations,
implies ϕ. It trivially satisfies the other conditions of Eq. (1).

For example, the concretization of the literal (x + y ≤ 0) with respect to
U = {y} and M = [x = 0, y = 0, z = 1] is the cube x ≤ 0 ∧ y ≤ 0. Applying
concretization in a similar manner to all the literals of the cube ϕ = (x+y ≤ 0)∧
(x−y ≤ 0)∧(x+z ≥ 0) from the previous example, we obtain the concretization
x ≤ 0 ∧ 0 ≤ y ≤ 0 ∧ x + z ≥ 0. Note that the last literal is not concretized as it
does not include y.

4.5 Conjecture Rule for LIA

The Conjecture rule (see Algorithm 2) takes a set of lemmas L and a pob
ϕ ≡ α ∧ β such that all lemmas in L block β, but none of them blocks α, where
α does not include any known reachable states. It returns α as a new pob.

For LIA, Conjecture is applied when the following conditions are met: (1) the
pob ϕ is of the form ϕ1 ∧ ϕ2 ∧ ϕ3, where ϕ3 = (nT · x ≤ b), and ϕ1 and ϕ2 are
any cubes. The sub-cube ϕ1 ∧ ϕ2 acts as α, while the sub-cube ϕ2 ∧ ϕ3 acts as β.
(2) The cluster L consists of {bg ∨ (nT · x ≥ bi) | 1 ≤ i ≤ q}, where bi > b and
bg ⇒ ¬ϕ2. This means that each of the lemmas in L blocks β = ϕ2 ∧ ϕ3, and they
may be ordered as a sequence of increasingly stronger lemmas, indicating that they
were created by trying to block the pob at different levels, leading to too strong
lemmas that failed to propagate to higher levels. (3) The formula (bg ∨ (nT · x ≥
bi)) ∧ ϕ1 ∧ ϕ2 is satisfiable, that is, none of the lemmas in L block α = ϕ1 ∧ ϕ2,
and (4) U ⇒ ¬(ϕ1 ∧ ϕ2), that is, no state in ϕ1 ∧ ϕ2 is known to be reachable. If
all four conditions are met, we conjecture α = ϕ1 ∧ ϕ2. This is implemented by
conjecture, that returns α (or ⊥ when the pre-conditions are not met).
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For example, consider the pob ϕ = x ≥ 10 ∧ (x + y ≥ 10) ∧ y ≤ 10 and a
cluster of lemmas L = {(x + y ≤ 0 ∨ y ≥ 101), (x + y ≤ 0 ∨ y ≥ 102)}. In this
case, ϕ1 = x ≥ 10, ϕ2 = (x + y ≥ 10), ϕ3 = y ≤ 10, and bg = x + y ≤ 0. Each of
the lemmas in L block ϕ2 ∧ ϕ3 but none of them block ϕ1 ∧ ϕ2. Therefore, we
conjecture ϕ1 ∧ ϕ2: x ≥ 10 ∧ (x + y ≥ 10).

4.6 Putting It All Together

Having explained the implementation of the new rules for LIA, we now put all
the ingredients together into an algorithm, GSpacer. In particular, we present
our choices as to when to apply the new rules, and on which clusters of lemmas
and pobs. As can be seen in Sect. 5, this implementation works very well on a
wide range of benchmarks.

Algorithm 5 presents GSpacer. The comments to the right side of a line
refer to the abstract rules in Algorithm 1 and 2. Just like Spacer, GSpacer
iteratively computes predecessors (line 10) and blocks them (line 14) in an infi-
nite loop. Whenever a pob is proven to be reachable, the reachable states are
updated (line 38). If Bad intersects with a reachable state, GSpacer terminates
and returns unsafe (line 12). If one of the frames is an inductive invariant,
GSpacer terminates with safe (line 20).

When a pob 〈ϕ, i〉 is handled, we first apply the Concretize rule, if possi-
ble (line 7). Recall that Concretize (Algorithm 4) takes as input a cluster that
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partially blocks ϕ and has a non-linear pattern. To obtain such a cluster, we first
find, using Cpob(〈ϕ, i〉), a cluster 〈π1,L1〉 = COk

(π1), where k ≤ i, that includes
some lemma (from frame k) that blocks ϕ; if none exists, L1 = ∅. We then filter
out from L1 lemmas that completely block ϕ as well as lemmas that are irrele-
vant to ϕ, i.e., we obtain L2 by keeping only lemmas that partially block ϕ. We
apply Concretize on 〈π1,L2〉 to obtain a new pob that under-approximates
ϕ if (1) the remaining sub-cluster, L2, is non-empty, (2) the pattern, π1, is non-
linear, and (3)

∧
L2 ∧ ϕ is satisfiable, i.e., a part of ϕ is not blocked by any

lemma in L2.
Once a pob is blocked, and a new lemma that blocks it, �, is added to

the frames, an attempt is made to apply the Subsume and Conjecture rules on
a cluster that includes �. To that end, the function Clemma(�) finds a cluster
〈π3,L3〉 = COi

(π3) to which � belongs (Sect. 4.2). Note that the choice of cluster
is arbitrary. The rules are applied on 〈π3,L3〉 if the required pre-conditions are
met (line 49 and line 53, respectively). When applicable, Subsume returns a
new lemma that is added to the frames, while Conjecture returns a new pob
that is added to the queue. Note that the latter is a may pob, in the sense that
some of the states it represents may not lead to safety violation.

Ensuring Progress. Spacer always makes progress: as its search continues, it
establishes absence of counterexamples of deeper and deeper depths. However,
GSpacer does not ensure progress. Specifically, unrestricted application of the
Concretize and Conjecture rules can make GSpacer diverge even on executions
of a fixed bound. In our implementation, we ensure progress by allotting a fixed
amount of gas to each pattern, π, that forms a cluster. Each time Concretize
or Conjecture is applied to a cluster with π as the pattern, π loses some gas.
Whenever π runs out of gas, the rules are no longer applied to any cluster
with π as the pattern. There are finitely many patterns (assuming LIA terms
are normalized). Thus, in each bounded execution of GSpacer, the Concretize
and Conjecture rules are applied only a finite number of times, thereby, ensuring
progress. Since the Subsume rule does not hinder progress, it is applied without
any restriction on gas.

5 Evaluation

We have implemented2 GSpacer (Algorithm 5) as an extension to Spacer. To
reduce the dimension of a matrix (in subsume, Sect. 4.3), we compute pairwise
linear dependencies between all pairs of columns instead of computing the full
kernel. This does not necessarily reduce the dimension of the matrix to its rank,
but, is sufficient for our benchmarks. We have experimented with computing the
full kernel using SageMath [25], but the overall performance did not improve.
Clustering is implemented by anti-unification. LIA terms are normalized using

2 https://github.com/hgvk94/z3/tree/gspacer-cav-ae.

https://github.com/hgvk94/z3/tree/gspacer-cav-ae


Global Guidance for Local Generalization in Model Checking 119

default Z3 simplifications. Our implementation also supports global generaliza-
tion for non-linear CHCs. We have also extended our work to the theory of LRA.
We defer the details of this extension to an extended version of the paper.

To evaluate our implementation, we have conducted two sets of experiments3.
All experiments were run on Intel E5-2690 V2 CPU at 3 GHz with 128 GB mem-
ory with a timeout of 10 min. First, to evaluate the performance of local reasoning
with global guidance against pure local reasoning, we have compared GSpacer
with the latest Spacer, to which we refer as the baseline. We took the bench-
marks from CHC-COMP 2018 and 2019 [10]. We compare to Spacer because it
dominated the competition by solving 85% of the benchmarks in CHC-COMP
2019 (20% more than the runner up) and 60% of the benchmarks in CHC-
COMP 2018 (10% more than runner up). Our evaluation shows that GSpacer
outperforms Spacer both in terms of number of solved instances and, more
importantly, in overall robustness.

Second, to examine the performance of local reasoning with global guidance
compared to solely global reasoning, we have compared GSpacer with an ML-
based data-driven invariant inference tool LinearArbitrary [28]. Compared to
other similar approaches, LinearArbitrary stands out by supporting invari-
ants with arbitrary Boolean structure over arbitrary linear predicates. It is com-
pletely automated and does not require user-provided predicates, grammars, or
any other guidance. For the comparison with LinearArbitrary, we have used
both the CHC-COMP benchmarks, as well as the benchmarks from the artifact
evaluation of [28]. The machine and timeout remain the same. Our evaluation
shows that GSpacer is superior in this case as well.

Comparison with Spacer. Table 1 summarizes the comparison between Spacer
and GSpacer on CHC-COMP instances. Since both tools can use a variety of
interpolation strategies during lemma generalization (Line 45 in Algorithm 5),
we compare three different configurations of each: bw and fw stand for two inter-
polation strategies, backward and forward, respectively, already implemented in
Spacer, and sc stands for turning interpolation off and generalizing lemmas
only by subset clauses computed by inductive generalization.

Any configuration of GSpacer solves significantly more instances than even
the best configuration of Spacer. Figure 2 provides a more detailed comparison
between the best configurations of both tools in terms of running time and depth
of convergence. There is no clear trend in terms of running time on instances
solved by both tools. This is not surprising—SMT-solving run time is highly non-
deterministic and any change in strategy has a significant impact on performance
of SMT queries involved. In terms of depth, it is clear that GSpacer converges
at the same or lower depth. The depth is significantly lower for instances solved
only by GSpacer.

Moreover, the performance of GSpacer is not significantly affected by the
interpolation strategy used. In fact, the configuration sc in which interpolation is

3 Detailed experimental results including the effectiveness of each rule, and the exten-
sions to non-linear CHCs and LRA can be found at https://hgvk94.github.io/
gspacer/.

https://hgvk94.github.io/gspacer/
https://hgvk94.github.io/gspacer/
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disabled performs the best in CHC-COMP 2018, and only slightly worse in CHC-
COMP 2019! In comparison, disabling interpolation hurts Spacer significantly.

Figure 3 provides a detailed comparison of GSpacer with and without inter-
polation. Interpolation makes no difference to the depth of convergence. This
implies that lemmas that are discovered by interpolation are discovered as effi-
ciently by the global rules of GSpacer. On the other hand, interpolation signif-
icantly increases the running time. Interestingly, the time spent in interpolation
itself is insignificant. However, the lemmas produced by interpolation tend to
slow down other aspects of the algorithm. Most of the slow down is in increased
time for inductive generalization and in computation of predecessors. The com-
parison between the other interpolation-enabled strategy and GSpacer (sc)
shows a similar trend.

Table 1. Comparison between Spacer and GSpacer on CHC-COMP.

Bench
SPACER GSPACER

fw bw sc fw bw sc VBS

safe unsafe safe unsafe safe unsafe safe unsafe safe unsafe safe unsafe safe unsafe
CHC-18 159 66 163 69 123 68 214 67 214 63 214 69 229 74
CHC-19 193 84 186 84 125 84 202 84 196 85 200 84 207 85

(a) running time (b) depth explored

Fig. 2. Best configurations: GSpacer versus Spacer.

Comparison with LinearArbitrary. In [28], the authors show that Linear-
Arbitrary, to which we refer as LArb for short, significantly outperforms
Spacer on a curated subset of benchmarks from SV-COMP [24] competition.

At first, we attempted to compare LArb against GSpacer on the CHC-
COMP benchmarks. However, LArb did not perform well on them. Even the



Global Guidance for Local Generalization in Model Checking 121

(a) running time (b) depth explored

Fig. 3. Comparing GSpacer with different interpolation tactics.

baseline Spacer has outperformed LArb significantly. Therefore, for a more
meaningful comparison, we have also compared Spacer, LArb and GSpacer
on the benchmarks from the artifact evaluation of [28]. The results are sum-
marized in Table 2. As expected, LArb outperforms the baseline Spacer on
the safe benchmarks. On unsafe benchmarks, Spacer is significantly better
than LArb. In both categories, GSpacer dominates solving more safe bench-
marks than either Spacer or LArb, while matching performance of Spacer
on unsafe instances. Furthermore, GSpacer remains orders of magnitude faster
than LArb on benchmarks that are solved by both. This comparison shows
that incorporating local reasoning with global guidance not only mitigates its
shortcomings but also surpasses global data-driven reasoning.

Table 2. Comparison with LArb.

Bench SPACER LARB GSPACER VB
safe unsafe safe unsafe safe unsafe safe unsafe

PLDI18 216 68 270 65 279 68 284 68

6 Related Work

The limitations of local reasoning in SMT-based infinite state model checking
are well known. Most commonly, they are addressed with either (a) different
strategies for local generalization in interpolation (e.g., [1,6,19,23]), or (b) shift-
ing the focus to global invariant inference by learning an invariant of a restricted
shape (e.g., [9,14–16,28]).

Interpolation Strategies. Albarghouthi and McMillan [1] suggest to minimize the
number of literals in an interpolant, arguing that simpler (i.e., fewer half-spaces)
interpolants are more likely to generalize. This helps with myopic generalizations
(Fig. 1(a)), but not with excessive generalizations (Fig. 1(b)). On the contrary,
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Blicha et al. [6] decompose interpolants to be numerically simpler (but with more
literals), which helps with excessive, but not with myopic, generalizations. Decid-
ing locally between these two techniques or on their combination (i.e., some parts
of an interpolant might need to be split while others combined) seems impos-
sible. Schindler and Jovanovic [23] propose local interpolation that bounds the
number of lemmas generated from a single pob (which helps with Fig. 1(c)), but
only if inductive generalization is disabled. Finally, [19] suggests using external
guidance, in a form of predicates or terms, to guide interpolation. In contrast,
GSpacer uses global guidance, based on the current proof, to direct different
local generalization strategies. Thus, the guidance is automatically tuned to the
specific instance at hand rather than to a domain of problems.

Global Invariant Inference. An alternative to inferring lemmas for the inductive
invariant by blocking counterexamples is to enumerate the space of potential
candidate invariants [9,14–16,28]. This does not suffer from the pitfall of local
reasoning. However, it is only effective when the search space is constrained.
While these approaches perform well on their target domain, they do not gener-
alize well to a diverse set of benchmarks, as illustrated by results of CHC-COMP
and our empirical evaluation in Sect. 5.

Locality in SMT and IMC. Local reasoning is also a known issue in SMT, and, in
particular, in DPLL(T) (e.g., [22]). However, we are not aware of global guidance
techniques for SMT solvers. Interpolation-based Model Checking (IMC) [20,21]
that uses interpolants from proofs, inherits the problem. Compared to IMC,
the propagation phase and inductive generalization of IC3 [7], can be seen as
providing global guidance using lemmas found in other parts of the search-space.
In contrast, GSpacer magnifies such global guidance by exploiting patterns
within the lemmas themselves.

IC3-SMT-based Model Checkers. There are a number of IC3-style SMT-based
infinite state model checkers, including [11,17,18]. To our knowledge, none
extend the IC3-SMT framework with a global guidance. A rule similar to Subsume
is suggested in [26] for the theory of bit-vectors and in [4] for LRA, but in both
cases without global guidance. In [4], it is implemented via a combination of syn-
tactic closure with interpolation, whereas we use MBP instead of interpolation.
Refinement State Mining in [3] uses similar insights to our Subsume rule to refine
predicate abstraction.

7 Conclusion and Future Work

This paper introduces global guidance to mitigate the limitations of the local rea-
soning performed by SMT-based IC3-style model checking algorithms. Global
guidance is necessary to redirect such algorithms from divergence due to persis-
tent local reasoning. To this end, we present three general rules that introduce
new lemmas and pobs by taking a global view of the lemmas learned so far. The
new rules are not theory-specific, and, as demonstrated by Algorithm 5, can



Global Guidance for Local Generalization in Model Checking 123

be incorporated to IC3-style solvers without modifying existing architecture.
We instantiate, and implement, the rules for LIA in GSpacer, which extends
Spacer.

Our evaluation shows that global guidance brings significant improvements
to local reasoning, and surpasses invariant inference based solely on global rea-
soning. More importantly, global guidance decouples Spacer’s dependency on
interpolation strategy and performs almost equally well under all three inter-
polation schemes we consider. As such, using global guidance in the context of
theories for which no good interpolation procedure exists, with bit-vectors being
a primary example, arises as a promising direction for future research.

Acknowledgements. We thank Xujie Si for running the LArb experiments and col-
lecting results. We thank the ERC starting Grant SYMCAR 639270 and the Wallen-
berg Academy Fellowship TheProSE for supporting the research visit. This research
was partially supported by the United States-Israel Binational Science Foundation
(BSF) grant No. 2016260, and the Israeli Science Foundation (ISF) grant No. 1810/18.
This research was partially supported by grants from Natural Sciences and Engineering
Research Council Canada.

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 22

2. Benoy, F., King, A., Mesnard, F.: Computing convex hulls with a linear solver.
TPLP 5(1–2), 259–271 (2005)

3. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 55

4. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: D’Souza,
D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 263–281.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8 15

5. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: 20th International
Conferences on Logic for Programming, Artificial Intelligence and Reasoning -
Short Presentations, LPAR 2015, Suva, Fiji, 24–28 November 2015, pp. 15–27
(2015)
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Abstract. In software-defined networks (SDN), a controller program is
in charge of deploying diverse network functionality across a large num-
ber of switches, but this comes at a great risk: deploying buggy controller
code could result in network and service disruption and security loop-
holes. The automatic detection of bugs or, even better, verification of
their absence is thus most desirable, yet the size of the network and the
complexity of the controller makes this a challenging undertaking. In this
paper, we propose MOCS, a highly expressive, optimised SDN model that
allows capturing subtle real-world bugs, in a reasonable amount of time.
This is achieved by (1) analysing the model for possible partial order
reductions, (2) statically pre-computing packet equivalence classes and
(3) indexing packets and rules that exist in the model. We demonstrate
its superiority compared to the state of the art in terms of expressivity,
by providing examples of realistic bugs that a prototype implementation
of MOCS in Uppaal caught, and performance/scalability, by running
examples on various sizes of network topologies, highlighting the impor-
tance of our abstractions and optimisations.

1 Introduction

Software-Defined Networking (SDN) [16] has brought about a paradigm shift in
designing and operating computer networks. A logically centralised controller
implements the control logic and ‘programs’ the data plane, which is defined by
flow tables installed in network switches. SDN enables the rapid development
of advanced and diverse network functionality; e.g. in designing next-generation
inter-data centre traffic engineering [10], load balancing [19], firewalls [24], and
Internet exchange points (IXPs) [15]. SDN has gained noticeable ground in the
industry, with major vendors integrating OpenFlow [37], the de-facto SDN stan-
dard maintained by the Open Networking Forum, in their products. Operators
deploy it at scale [27,38]. SDN presents a unique opportunity for innovation and
rapid development of complex network services by enabling all players, not just
vendors, to develop and deploy control and data plane functionality in networks.
This comes at a great risk; deploying buggy code at the controller could result
in problematic flow entries at the data plane and, potentially, service disrup-
tion [13,18,47,49] and security loopholes [7,26]. Understanding and fixing such
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bugs is far from trivial, given the distributed and concurrent nature of computer
networks and the complexity of the control plane [44].

With the advent of SDN, a large body of research on verifying network prop-
erties has emerged [33]. Static network analysis approaches [2,11,30,34,45,51]
can only verify network properties on a given fixed network configuration but this
may be changing very quickly (e.g. as in [1]). Another key limitation is the fact
that they cannot reason about the controller program, which, itself, is respon-
sible for the changes in the network configuration. Dynamic approaches, such
as [23,29,31,40,48,50], are able to reason about network properties as changes
happen (i.e. as flow entries in switches’ flow tables are being added and deleted),
but they cannot reason about the controller program either. As a result, when
a property violation is detected, there is no straightforward way to fix the bug
in the controller code, as these systems are oblivious of the running code. Iden-
tifying bugs in large and complex deployments can be extremely challenging.

Formal verification methods that include the controller code in the model
of the network can solve this important problem. Symbolic execution meth-
ods, such as [5,8,11,12,14,28,46], evaluate programs using symbolic variables
accumulating path-conditions along the way that then can be solved logically.
However, they suffer from the path explosion problem caused by loops and func-
tion calls which means verification does not scale to larger controller programs
(bug finding still works but is limited). Model checking SDNs is a promising area
even though only few studies have been undertaken [3,8,28,35,36,43]. Networks
and controller can be naturally modelled as transition systems. State explosion
is always a problem but can be mitigated by using abstraction and optimisa-
tion techniques (i.e. partial order reductions). At the same time, modern model
checkers [6,9,20,21,25] are very efficient.

netsmc [28] uses a bespoke symbolic model checking algorithm for checking
properties given a subset of computation tree logic that allows quantification
only over all paths. As a result, this approach scales relatively well, but the
requirement that only one packet can travel through the network at any time
is very restrictive and ignores race conditions. nice [8] employs model checking
but only looks at a limited amount of input packets that are extracted through
symbolically executing the controller code. As a result, it is a bug-finding tool
only. The authors in [43] propose a model checking approach that can deal
with dynamic controller updates and an arbitrary number of packets but require
manually inserted non-interference lemmas that constrain the set of packets that
can appear in the network. This significantly limits its applicability in realistic
network deployments. Kuai [35] overcomes this limitation by introducing model-
specific partial order reductions (PORs) that result in pruning the state space
by avoiding redundant explorations. However, it has limitations explained at the
end of this section.

In this paper, we take a step further towards the full realisation of model
checking real-world SDNs by introducing MOCS (MOdel Checking for Soft-
ware defined networks)1, a highly expressive, optimised SDN model which we

1 A release of MOCS is publicly available at https://tinyurl.com/y95qtv5k.

https://tinyurl.com/y95qtv5k
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implemented in Uppaal2 [6]. MOCS, compared to the state of the art in model
checking SDNs, can model network behaviour more realistically and verify larger
deployments using fewer resources. The main contributions of this paper are:

Model Generality. The proposed network model is closer to the Open-
Flow standard than previous models (e.g. [35]) to reflect commonly exhibited
behaviour between the controller and network switches. More specifically, it
allows for race conditions between control messages and includes a significant
number of OpenFlow interactions, including barrier response messages. In our
experimentation section, we present families of elusive bugs that can be efficiently
captured by MOCS.

Model Checking Optimisations. To tackle the state explosion problem we
propose context-dependent partial order reductions by considering the concrete
control program and specification in question. We establish the soundness of
the proposed optimisations. Moreover, we propose state representation optimi-
sations, namely packet and rule indexing, identification of packet equivalence
classes and bit packing, to improve performance. We evaluate the benefits from
all proposed optimisations in Sect. 4.

Our model has been inspired by Kuai [35]. According to the contributions
above, however, we consider MOCS to be a considerable improvement. We model
more OpenFlow messages and interactions, enabling us to check for bugs that [35]
cannot even express (see discussion in Sect. 4.2). Our context-dependent PORs
systematically explore possibilities for optimisation. Our optimisation techniques
still allow MOCS to run at least as efficiently as Kuai, often with even better
performance.

2 Software-Defined Network Model

A key objective of our work is to enable the verification of network-wide proper-
ties in real-world SDNs. In order to fulfill this ambition, we present an extended
network model to capture complex interactions between the SDN controller
and the network. Below we describe the adopted network model, its state and
transitions.

2.1 Formal Model Definition

The formal definition of the proposed SDN model is by means of an action-
deterministic transition system. We parameterise the model by the underlying
network topology λ and the controller program cp in use, as explained further
below (Sect. 2.2).

Definition 1. An SDN model is a 6-tuple Mpλ,cpq = pS, s0, A, ↪→, AP,Lq, where
S is the set of all states the SDN may enter, s0 the initial state, A the set of
2 Uppaal has been chosen as future plans include extending the model to timed actions

like e.g. timeouts. Note that the model can be implemented in any model checker.
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actions which encode the events the network may engage in, ↪→Ď S ˆ A ˆ S
the transition relation describing which execution steps the system undergoes as
it perform actions, AP a set of atomic propositions describing relevant state
properties, and L : S → 2AP is a labelling function, which relates to any state
s P S a set Lpsq P 2AP of those atomic propositions that are true for s. Such
an SDN model is composed of several smaller systems, which model network
components (hosts, switches and the controller) that communicate via queues
and, combined, give rise to the definition of ↪→. The states of an SDN transition
system are 3-tuples pπ, δ, γq, where π represents the state of each host, δ the
state of each switch, and γ the controller state. The components are explained
in Sect. 2.2 and the transitions ↪→ in Sect. 2.3.

Figure 1 illustrates a high-level view of OpenFlow interactions (left side),
modelled actions and queues (right side).

Fig. 1. A high-level view of OpenFlow interactions using OpenFlow specification ter-
minology (left half) and the modelled actions (right half). A red solid-line arrow depicts
an action which, when fired, (1) dequeues an item from the queue the arrow begins
at, and (2) adds an item in the queue the arrowhead points to (or multiple items if
the arrow is double-headed). Deleting an item from the target queue is denoted by
a reverse arrowhead. A forked arrow denotes multiple targeted queues. (Color figure
online)

2.2 SDN Model Components

Throughout we will use the common “dot-notation” ( . ) to refer to components
of composite gadgets (tuples), e.g. queues of switches, or parts of the state. We
use obvious names for the projections functions like s.δ.sw.pq for the packet
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queue of the switch sw in state s. At times we will also use t1 and t2 for the first
and second projection of tuple t.

Network Topology. A location pn, ptq is a pair of a node (host or switch)
n and a port pt. We describe the network topology as a bijective function
λ : pSwitches Y Hostsq ˆ Ports → pSwitches Y Hostsq ˆ Ports consisting of a set
of directed edges 〈pn, ptq, pn′, pt′q〉, where pt′ is the input port of the switch or
host n′ that is connected to port pt at host or switch n. Hosts, Switches and
Ports are the (finite) sets of all hosts, switches and ports in the network, respec-
tively. The topology function is used when a packet needs to be forwarded in
the network. The location of the next hop node is decided when a send, match
or fwd action (all defined further below) is fired. Every SDN model is w.r.t. a
fixed topology λ that does not change.

Packets. Packets are modelled as finite bit vectors and transferred in the net-
work by being stored to the queues of the various network components. A
packet P Packets (the set of all packets that can appear in the network) contains
bits describing the proof-relevant header information and its location loc.

Hosts. Each host P Hosts, has a packet queue (rcvq) and a finite set of ports
which are connected to ports of other switches. A host can send a packet to one
or more switches it is connected to (send action in Fig. 1) or receive a packet
from its own rcvq (recv action in Fig. 1). Sending occurs repeatedly in a non-
deterministic fashion which we model implicitly via the p0, 8q abstraction at
switches’ packet queues, as discussed further below.

Switches. Each switch P Switches, has a flow table (ft), a packet queue (pq),
a control queue (cq), a forwarding queue (fq) and one or more ports, through
which it is connected to other switches and/or hosts. A flow table ft Ď Rules is a
set of forwarding rules (with Rules being the set of all rules). Each one consists
of a tuple ppriority, pattern, portsq, where priority P N determines the priority
of the rule over others, pattern is a proposition over the proof-relevant header
of a packet, and ports is a subset of the switch’s ports. Switches match packets
in their packet queues against rules (i.e. their respective pattern) in their flow
table (match action in Fig. 1) and forward packets to a connected device (or final
destination), accordingly. Packets that cannot be matched to any rule are sent to
the controller’s request queue (rq) (nomatch action in Fig. 1); in OpenFlow, this
is done by sending a PacketIn message. The forwarding queue fq stores packets
forwarded by the controller in PacketOut messages. The control queue stores
messages sent by the controller in FlowMod and BarrierReq messages. FlowMod
messages contain instructions to add or delete rules from the flow table (that
trigger add and del actions in Fig. 1). BarrierReq messages contain barriers to
synchronise the addition and removal of rules. MOCS conforms to the OpenFlow
specifications and always execute instructions in an interleaved fashion obeying
the ordering constraints imposed by barriers.

OpenFlow Controller. The controller is modelled as a finite state automaton
embedded into the overall transition system. A controller program cp, as used
to parametrise an SDN model, consists of pCS, pktIn, barrierInq. It uses its own
local state cs P CS, where CS is the finite set of control program states. Incoming
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PacketIn and BarrierRes messages from the SDN model are stored in separate
queues (rq and brq, respectively) and trigger ctrl or bsync actions (see Fig. 1)
which are then processed by the controller program in its current state. The
controller’s corresponding handler, pktIn for PacketIn messages and barrierIn
for BarrierRes messages, responds by potentially changing its local state and
sending messages to a subset of Switches, as follows. A number of PacketOut
messages (pairs of pkt, ports) can be sent to a subset of Switches. Such a message
is stored in a switch’s forward queue and instructs it to forward packet pkt
along the ports ports. The controller may also send any number of FlowMod
and BarrierReq messages to the control queue of any subset of Switches. A
FlowMod message may contain an add or delete rule modification instruction.
These are executed in an arbitrary order by switches, and barriers are used to
synchronise their execution. Barriers are sent by the controller in BarrierReq
messages. OpenFlow requires that a response message (BarrierRes) is sent to
the controller by a switch when a barrier is consumed from its control queue
so that the controller can synchronise subsequent actions. Our model includes a
brepl action that models the sending of a BarrierRes message from a switch to
the controller’s barrier reply queue (brq), and a bsync action that enables the
controller program to react to barrier responses.

Queues. All queues in the network are modelled as finite state. Packet queues pq
for switches are modelled as multisets, and we adopt p0, 8q abstraction [41]; i.e.
a packet is assumed to appear either zero or an arbitrary (unbounded) amount
of times in the respective multiset. This means that once a packet has arrived
at a switch or host, (infinitely) many other packets of the same kind repeatedly
arrive at this switch or host. Switches’ forwarding queues fq are, by contrast,
modelled as sets, therefore if multiple identical packets are sent by the controller
to a switch, only one will be stored in the queue and eventually forwarded by
the switch. The controller’s request rq and barrier reply queues brq are modelled
as sets as well. Hosts’ receive queues rcvq are also modelled as sets. Controller
queues cq at switches are modelled as a finite sequence of sets of control messages
(representing add and remove rule instructions), interleaved by any number of
barriers. As the number of barriers that can appear at any execution is finite,
this sequence is finite.

2.3 Guarded Transitions

Here we provide a detailed breakdown of the transition relation s
αp�aq

↪́ →́ s′ for
each action αp�aq P Apsq, where Apsq the set of all enabled actions in s in the
proposed model (see Fig. 1). Transitions are labelled by action names α with
arguments �a. The transitions are only enabled in state s if s satisfies certain
conditions called guards that can refer to the arguments �a. In guards, we make
use of predicate bestmatchpsw , r , pktq that expresses that r is the highest priority
rule in sw .ft that matches pkt’s header. Below we list all possible actions with
their respective guards.

sendph, pt, pktq. Guard: true. This transition models packets arriving in the
network in a non-deterministic fashion. When it is executed, pkt is added to
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the packet queue of the network switch connected to the port pt of host h (or,
formally, to λph, ptq1.pq, where λ is the topology function described above). As
described in Sect. 3.2, only relevant representatives of packets are actually sent
by end-hosts. This transition is unguarded, therefore it is always enabled.

recvph, pktq. Guard: pkt P h.rcvq . This transition models hosts receiving (and
removing) packets from the network and is enabled if pkt is in h’s receive queue.

matchpsw, pkt, rq. Guard: pkt P sw.pq^r P sw .ft ^bestmatchpsw, r, pktq. This
transition models matching and forwarding packet pkt to zero or more next hop
nodes (hosts and switches), as a result of highest priority matching of rule r with
pkt. The packet is then copied to the packet queues of the connected hosts and/or
switches, by applying the topology function to the port numbers in the matched
rule; i.e. λpsw, ptq1.pq, @pt P r.ports. Dropping packets is modelled by having a
special ‘drop’ port that can be included in rules. The location of the forwarded
packet(s) is updated with the respective destination (switch/host, port) pair; i.e.
λpsw, ptq. Due to the p0, 8q abstraction, the packet is not removed from sw.pq.

nomatchpsw, pktq. Guard: pkt P sw.pq ^ �r P sw .ft . bestmatchpsw, r, pktq.
This transition models forwarding a packet to the OpenFlow controller when a
switch does not have a rule in its forwarding table that can be matched against
the packet header. In this case, pkt is added to rq for processing. pkt is not
removed from sw.pq due to the supported p0, 8q abstraction.

ctrlpsw, pkt, csq. Guard: pkt P controller .rq . This transition models the exe-
cution of the packet handler by the controller when packet pkt that was pre-
viously sent by sw is available in rq. The controller’s packet handler function
pktInpsw , pkt , csq is executed which, in turn (i) reads the current controller state
cs and changes it according to the controller program, (ii) adds a number of rules,
interleaved with any number of barriers, into the cq of zero or more switches,
and (iii) adds zero or more forwarding messages, each one including a packet
along with a set of ports, to the fq of zero or more switches.

fwdpsw, pkt, portsq. Guard: ppkt, portsq P sw .fq . This transition models for-
warding packet pkt that was previously sent by the controller to sw’s forwarding
queue sw .fq . In this case, pkt is removed from sw .fq (which is modelled as a
set), and added to the pq of a number of network nodes (switches and/or hosts),
as defined by the topology function λpsw, ptq1.pq, @pt P ports. The location of
the forwarded packet(s) is updated with the respective destination (switch/host,
port) pair; i.e. λpn, ptq.
FMpsw, rq, where FM P {add , del}. Guard: pFM , rq P headpsw.cqq. These
transitions model the addition and deletion, respectively, of a rule in the flow
table of switch sw. They are enabled when one or more add and del control
messages are in the set at the head of the switch’s control queue. In this case,
r is added to – or deleted from, respectively – sw .ft and the control message
is deleted from the set at the head of cq. If the set at the head of cq becomes
empty it is removed. If then the next item in cq is a barrier, a brepl transition
becomes enabled (see below).
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breplpsw, xidq. Guard: bpxidq = headpsw .cqq. This transition models a switch
sending a barrier response message, upon consuming a barrier from the head of
its control queue; i.e. if bpxidq is the head of sw .cq , where xid P N is an identifier
for the barrier set by the controller, bpxidq is removed and the barrier reply
message brpsw , xidq is added to the controller’s brq.

bsyncpsw, xid, csq. Guard: brpsw, xidq P controller .brq . This transition models
the execution of the barrier response handler by the controller when a barrier
response sent by switch sw is available in brq. In this case, brpsw , xidq is removed
from the brq, and the controller’s barrier handler barrierInpsw , xid , csq is exe-
cuted which, in turn (i) reads the current controller state cs and changes it
according to the controller program, (ii) adds a number of rules, interleaved
with any number of barriers, into the cq of zero or more switches, and (iii) adds
zero or more forwarding messages, each one including a packet along with a set
of ports, to the fq of zero or more switches.

An Example Run. In Fig. 2, we illustrate a sequence of MOCS transitions
through a simple packet forwarding example. The run starts with a send tran-
sition; packet p is copied to the packet queue of the switch in black. Initially,
switches’ flow tables are empty, therefore p is copied to the controller’s request
queue (nomatch transition); note that p remains in the packet queue of the
switch in black due to the p0, 8q abstraction. The controller’s packet handler is
then called (ctrl transition) and, as a result, (1) p is copied to the forwarding
queue of the switch in black, (2) rule r1 is copied to the control queue of the
switch in black, and (3) rule r2 is copied to the control queue of the switch in
white. Then, the switch in black forwards p to the packet queue of the switch
in white (fwd transition). The switch in white installs r2 in its flow table (add
transition) and then matches p with the newly installed rule and forwards it to
the receive queue of the host in white (match transition), which removes it from
the network (recv transition).

2.4 Specification Language

In order to specify properties of packet flow in the network, we use LTL formulas
without “next-step” operator ©3, where atomic formulae denoting properties of
states of the transition system, i.e. SDN network. In the case of safety properties,
i.e. an invariant w.r.t. states, the LTL\{©} formula is of the form �ϕ, i.e. has
only an outermost � temporal connective.

Let P denote unary predicates on packets which encode a property of a
packet based on its fields. An atomic state condition (proposition) in AP is
either of the following: (i) existence of a packet pkt located in a packet queue
(pq) of a switch or in a receive queue (rcvq) of a host that satisfies P (we
denote this by DpktPn.pq . P ppktq with n P Switches , and DpktPh.rcvq . P ppktq
3 This is the largest set of formulae supporting the partial order reductions used in

Sect. 3, as stutter equivalence does not preserve the truth value of formulae with
the ©.
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Fig. 2. Forwarding p from to . Non greyed-out icons are the ones whose state
changes in the current transition.

with h P Hosts)4; (ii) the controller is in a specific controller state q P CS,
denoted by a unary predicate symbol Qpqq which holds in system state s P S
if q = s.γ.cs. The specification logic comprises first-order formula with equality
on the finite domains of switches, hosts, rule priorities, and ports which are
state-independent (and decidable).

For example, DpktPsw.pq . P ppktq represents the fact that the packet predi-
cate P p q is true for at least one packet pkt in the pq of switch sw. For every
atomic packet proposition P ppktq, also its negation ¬P ppktq is an atomic propo-
sition for the reason of simplifying syntactic checks of formulae in Table 1 in
the next section. Note that universal quantification over packets in a queue
is a derived notion. For instance, @pktPn.pq . P ppktq can be expressed as
�pkPn.pq .¬P ppktq. Universal and existential quantification over switches or
hosts can be expressed by finite iterations of ^ and _, respectively.

In order to be able to express that a condition holds when a certain event
happened, we add to our propositions instances of propositional dynamic logic
[17,42]. Given an action αp·q P A and a proposition P that may refer to any
variables in �x, [αp�xq]P is also a proposition and [αp�xq]P is true if, and only if,
after firing transition αp�aq (to get to the current state), P holds with the variables
in �x bound to the corresponding values in the actual arguments �a. With the help
of those basic modalities one can then also specify that more complex events
occurred. For instance, dropping of a packet due to a match or fwd action can
be expressed by [matchpsw, pkt, rq]pr.fwd port = dropq ∧ [fwdpsw, pkt, ptq]ppt =
dropq. Such predicates derived from modalities are used in [32] (extended version
of this paper, with proofs and controller programs), Appendix B-CP5.

4 Note that these are atomic propositions despite the use of the existential quantifier
notation.
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The meaning of temporal LTL operators is standard depending on the trace
of a transition sequence s0

α1
↪́ → s1

α2
↪́ → . . .. The trace Lps0qLps1q . . . Lpsiq . . . is

defined as usual. For instance, trace Lps0qLps1qLps2q . . . satisfies invariant �ϕ if
each Lpsiq implies ϕ.

3 Model Checking

In order to verify desired properties of an SDN, we use its model as described in
Definition 1 and apply model checking. In the following we propose optimisations
that significantly improve the performance of model checking.

3.1 Contextual Partial-Order Reduction

Partial order reduction (POR) [39] reduces the number of interleavings (traces)
one has to check. Here is a reminder of the main result (see [4]) where we use a
stronger condition than the regular (C4 ) to deal with cycles:

Theorem 1 (Correctness of POR). Given a finite transition system M =
pS,A, ↪→, s0, AP,Lq that is action-deterministic and without terminal states, let
Apsq denote the set of actions in A enabled in state s P S. Let amplepsq Ď Apsq
be a set of actions for a state s P S that satisfies the following conditions:

C1 (Non)emptiness condition: ∅ �= amplepsq Ď Apsq.
C2 Dependency condition: Let s

α1
↪́ → s1...

αn
↪́ → sn

β
↪́→ t be a run in M. If β P

A \ amplepsq depends on amplepsq, then αi P amplepsq for some 0 ă i ď n,
which means that in every path fragment of M, β cannot appear before some
transition from amplepsq is executed.

C3 Invisibility condition: If amplepsq �= Apsq (i.e., state s is not fully expanded),
then every α P amplepsq is invisible.

C4 Every cycle in Mample contains a state s such that amplepsq = Apsq.
where Mample = pSa ,A, ↪→→, s0 ,AP ,Laq is the new, optimised, model defined as
follows: let Sa Ď S be the set of states reachable from the initial state s0 under
↪→→, let Lapsq = Lpsq for all s P Sa, and define ↪→→ Ď Sa ˆ A ˆ Sa inductively by
the rule

s
α

↪́→ s′

s
α

↪→→ s′
if α P amplepsq

If amplepsq satisfies conditions (C1)–(C4) as outlined above, then for each path
in M there exists a stutter-trace equivalent path in Mample , and vice-versa,
denoted M st≡ Mample .

The intuitive reason for this theorem to hold is the following: Assume an action
sequence αi...αi`nβ that reaches the state s, and β is independent of {αi, ...αi`n}.
Then, one can permute β with αi`n through αi successively n times. One can
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therefore construct the sequence βαi...αi`n that also reaches the state s. If this
shift of β does not affect the labelling of the states with atomic propositions
(β is called invisible in this case), then it is not detectable by the property to
be shown and the permuted and the original sequence are equivalent w.r.t. the
property and thus don’t have to be checked both. One must, however, ensure,
that in case of loops (infinite execution traces) the ample sets do not preclude
some actions to be fired altogether, which is why one needs (C4 ).

The more actions that are both stutter and provably independent (also
referred to as safe actions [22]) there are, the smaller the transition system,
and the more efficient the model checking. One of our contributions is that we
attempt to identify as many safe actions as possible to make PORs more widely
applicable to our model.

The PORs in [35] consider only dependency and invisibility of recv and bar-
rier actions, whereas we explore systematically all possibilities for applications
of Theorem 1 to reduce the search space. When identifying safe actions, we con-
sider (1) the actual controller program cp, (2) the topology λ and (3) the state
formula ϕ to be shown invariant, which we call the context ctx of actions. It
turns out that two actions may be dependent in a given context of abstrac-
tion while independent in another context, and similarly for invisibility, and we
exploit this fact. The argument of the action thus becomes relevant as well.

Definition 2 (Safe Actions). Given a context ctx = pcp, λ, ϕq, and SDN
model Mpλ,cpq = pS,A, ↪→, s0,AP , Lq, an action αp·q P Apsq is called ‘safe’ if
it is independent of any other action in A and invisible for ϕ. We write safe
actions α̌p·q.
Definition 3 (Order-sensitive Controller Program). A controller pro-
gram cp is order-sensitive if there exists a state s P S and two actions α, β

in {ctrlp·q, bsyncp·q} such that α, β P Apsq and s
α

↪́→ s1
β

↪́→ s2 and s
β

↪́→ s3
α

↪́→ s4
with s2 �= s4.

Definition 4. Let ϕ be a state formula. An action α P A is called ‘ϕ-invariant’
if s |= ϕ iff αpsq |= ϕ for all s P S with α P Apsq.
Lemma 1. For transition system Mpλ,cpq = pS,A, ↪→, s0, AP,Lq and a formula
ϕ P LTL\{©}, α P A is safe iff

∧3
i=1 Safeipαq, where Safei, given in Table 1,

are per-row.

Proof. See [32] Appendix A.

Theorem 2 (POR instance for SDN). Let pcp, λ, ϕq be a context such that
Mpλ,cpq = pS,A, ↪→, s0, AP,Lq is an SDN network model from Definition 1; and
let safe actions be as in Definition 2. Further, let amplepsq be defined by:

amplepsq =
{{α P Apsq | α safe } if {α P Apsq | α safe } �= ∅

Apsq otherwise
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Table 1. Safeness predicates

Action Independence Invisibility

Safe1pαq Safe2pαq Safe3pαq
α = ctrlpsw, pk, csq cp is not order-sensitive if Qpqq occurs in ϕ, where q P CS,

then α is ϕ-invariant

α = bsyncpsw, xid, csq cp is not order-sensitive if Qpqq occurs in ϕ, where q P CS,

then α is ϕ-invariant

α = fwdpsw , pk , portsq � if DpkPb.q . P ppkq occurs in ϕ, for any
b P {sw} Y {λpsw, pq1 | p P ports} and
q P {pq, recvq}, then α is ϕ-invariant

α = breplpsw, xidq � �
α = recvph, pkq � if DpkPh.rcvq . P ppkq occurs in ϕ,

then α is ϕ-invariant

Then, ample satisfies the criteria of Theorem 1 and thus Mpλ,cpq
st≡ Mample

pλ,cpq
5

Proof.

C1 The (non)emptiness condition is trivial since by definition of amplepsq it
follows that amplepsq = ∅ iff Apsq = ∅.

C2 By assumption β P A\amplepsq depends on amplepsq. But with our defini-
tion of amplepsq this is impossible as all actions in amplepsq are safe and by
definition independent of all other actions.

C3 The validity of the invisibility condition is by definition of ample and safe
actions.

C4 We now show that every cycle in Mample
pλ,cpq contains a fully expanded state s, i.e.

a state s such that amplepsq = Apsq. By definition of amplepsq in Theorem 2
it is equivalent to show that there is no cycle in Mample

pλ,cpq consisting of safe
actions only. We show this by contradiction, assuming such a cycle of only
safe actions exists. There are five safe action types to consider: ctrl, fwd, brepl,
bsync and recv. Distinguish two cases.

Case 1.A sequence of safe actions of same type. Let us consider the different
safe actions:

• Let ρ an execution of Mample
pλ,cpq which consists of only one type of ctrl -actions:

ρ = s1
ctrlppkt1,cs1q

↪́ ´́ ´́ ´́ →́→ s2
ctrlppkt2,cs2q

↪́ ´́ ´́ ´́ →́→ ...si´1

ctrlppkti´1,csi´1q
↪́ ´́ ´́ ´́ ´́ ´́→→ si

Suppose ρ is a cycle. According to the ctrl semantics, for each transition

s
ctrlppkt,csq

↪́ ´́ ´́ ´́→→ s′, where s = pπ, δ, γq, s′ = pπ′, δ′, γ′q, it holds that γ′.rq =
γ.rq\{pkt} as we use sets to represent rq buffers. Hence, for the execution
ρ it holds γi.rq = γ1.rq\{pkt1, pkt2, ...pkti´1} which implies that s1 �= si.
Contradiction.

5 Stutter equivalence here implicitly is defined w.r.t. the atomic propositions appearing
in ϕ, but this suffices as we are just interested in the validity of ϕ.
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• Let ρ an execution which consists of only one type of fwd -actions: similar
argument as above since fq-s are represented by sets and thus forward mes-
sages are removed from fq.

• Let ρ an execution which consists of only one type of brepl -actions: similar
argument as above since control messages are removed from cq .

• Let ρ an execution which consists of only one type of bsync-actions: similar
argument as above, as barrier reply messages are removed from brq-s that are
represented by sets.

• Let ρ an execution which consists of only one type of recv -actions: similar
argument as above, as packets are removed from rcvq buffers that are repre-
sented by sets.

Case 2.A sequence of different safe actions. Suppose there exists a cycle with
mixed safe actions starting in s1 and ending in si. Distinguish the following
cases.

i) There exists at least a ctrl and/or a bsync action in the cycle. According
to the effects of safe transitions, the ctrl action will change to a state with
smaller rq and the bsync will always switch to a state with smaller brq. It
is important here that ctrl does not interfere with bsync regarding rq, brq,
and no safe action of other type than ctrl and bsync accesses rq or brq. This
implies that s1 �= si. Contradiction.

ii) Neither ctrl, nor bsync actions in the cycle.
a) There is a fwd and/or brepl in the cycle: fwd will always switch to a state

with smaller fq and brepl will always switch to a state with smaller cq
(brepl and recv do not interfere with fwd). This implies that s1 �= si.
Contradiction.

b) There is neither fwd nor brepl in the cycle. This means that only recv is
in the cycle which is already covered by the first case.

	

Due to the definition of the transition system via ample sets, each
safe action is immediately executed after its enabling one. Therefore,
one can merge every transition of a safe action with its precursory
enabling one. Intuitively, the semantics of the merged action is defined
as the successive execution of its constituent actions. This process can be
repeated if there is a chain of safe actions; for instance, in the case of

s
nomatchpsw,pktq

↪́´́ ´́ ´́ ´́ ´́→→ s′ ctrlpsw,pkt,csq
↪́ ´́ ´́ ´́ ´́ →→ s′′ fwdpsw,pkt,portsq

↪́ ´́ ´́ ´́ ´́ ´́ →→ s′′′ where each transition
enables the next and the last two are assumed to be safe. These transitions can
be merged into one, yielding a stutter equivalent trace as the intermediate states
are invisible (w.r.t. the context and thus the property to be shown) by definition
of safe actions.

3.2 State Representation

Efficient state representation is crucial for minimising MOCS’s memory footprint
and enabling it to scale up to relatively large network setups.
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Packet and Rule Indexing. In MOCS, only a single instance of each packet
and rule that can appear in the modelled network is kept in memory. An index
is then used to associate queues and flow tables with packets and rules, with a
single bit indicating their presence (or absence). This data structure is illustrated
in Fig. 3. For a data packet, a value of 1 in the pq section of the entry indicates
that infinite copies of it are stored in the packet queue of the respective switch.
A value of 1 in the fq section indicates that a single copy of the packet is stored
in the forward queue of the respective switch. A value of 1 in the rq section
indicates that a copy of the packet sent by the respective switch (when a nomatch
transition is fired) is stored in the controller’s request queue. For a rule, a value
of 1 in the ft section indicates that the rule is installed in the respective switch’s
flow table. A value of 1 in the cq section indicates that the rule is part of a
FlowMod message in the respective switch’s control queue.

Fig. 3. Packet (left) and rule (right) indices

The proposed optimisation enables scaling up the network topology by min-
imising the required memory footprint. For every switch, MOCS only requires a
few bits in each packet and rule entry in the index.

Discovering Equivalence Classes of Packets. Model checking with all pos-
sible packets, including all specified fields in the OpenFlow standard, would
entail a huge state space that would render any approach unusable. Here, we
propose the discovery of equivalence classes of packets that are then used for
model checking. We first remove all fields that are not referenced in a statement
or rule creation or deletion in the controller program. Then, we identify packet
classes that would result in the same controller behaviour. Currently, as with the
rest of literature, we focus on simple controller programs where such equivalence
classes can be easily identified by analysing static constraints and rule manip-
ulation in the controller program. We then generate one representative packet
from each class and assign it to all network switches that are directly connected
to end-hosts; i.e. modelling clients that can send an arbitrarily large number of
packets in a non-deterministic fashion. We use the minimum possible number of
bits to represent the identified equivalence classes. For example, if the controller
program exerts different behaviour if the destination tcp port of a packet is 23
(i.e. destined to an ssh server) or not, we only use a 1-bit field to model this
behaviour.
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Bit Packing. We reduce the size of each recorded state by employing bit packing
using the int type supported by Uppaal, and bit-level operations for the entries
in the packet and rule indices as well as for the packets and rules themselves.

4 Experimental Evaluation

In this section, we experimentally evaluate MOCS by comparing it with the
state of the art, in terms of performance (verification throughput and mem-
ory footprint) and model expressivity. We have implemented MOCS in Uppaal
[6] as a network of parallel automata for the controller and network switches,
which communicate asynchronously by writing/reading packets to/from queues
that are part of the model discussed in Sect. 2. As discussed in Sect. 3, this is
implemented by directly manipulating the packet and rule indices.

Throughout this section we will be using three examples of network con-
trollers: (1) A stateless firewall ([32] Appendix B-CP1) requires the controller to
install rules to network switches that enable them to decide whether to forward
a packet towards its destination or not; this is done in a stateless fashion, i.e.
without having to consider any previously seen packets. For example, a controller
could configure switches to block all packets whose destination tcp port is 22
(i.e. destined to an ssh server). (2) A stateful firewall ([32] Appendix B-CP2)
is similar to the stateless one but decisions can take into account previously
seen packets. A classic example of this is to allow bi-directional communication
between two end-hosts, when one host opens a tcp connection to the other.
Then, traffic flowing from the other host back to the connection initiator should
be allowed to go through the switches on the reverse path. (3) A MAC learning
application ([32] Appendix B-CP3) enables the controller and switches to learn
how to forward packets to their destinations (identified with respective MAC
addresses). A switch sends a PacketIn message to the controller when it receives
a packet that it does not know how to forward. By looking at this packet, the
controller learns a mapping of a source switch (or host) to a port of the request-
ing switch. It then installs a rule (by sending a FlowMod message) that will allow
that switch to forward packets back to the source switch (or host), and asks the
requesting switch (by sending a PacketOut message) to flood the packet to all
its ports except the one it received the packet from. This way, the controller
eventually learns all mappings, and network switches receive rules that enable
them to forward traffic to their neighbours for all destinations in the network.

4.1 Performance Comparison

We measure MOCS’s performance, and also compare it against Kuai [35]6 using
the examples described above, and we investigate the behaviour of MOCS as
we scale up the network (switches and clients/servers). We report three metrics:

6 Note that parts of Kuai’s source code are not publicly available, therefore we imple-
mented it’s model in Uppaal.
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Fig. 4. Performance comparison – verification throughput

(1) verification throughput in visited states per second, (2) number of visited
states, and (3) required memory. We have run all verification experiments on an
18-Core iMac pro, 2.3 GHz Intel Xeon W with 128 GB DDR4 memory.

Verification Throughput. We measure the verification throughput when run-
ning a single experiment at a time on one cpu core and report the average and
standard deviation for the first 30 min of each run. In order to assess how MOCS’s
different optimisations affect its performance, we report results for the following
system variants: (1) MOCS, (2) MOCS without POR, (3) MOCS without any
optimisations (neither POR, state representation), and (4) Kuai. Figure 4 shows
the measured throughput (with error bars denoting standard deviation).

For the MAC learning and stateless firewall applications, we observe that
MOCS performs significantly better than Kuai for all different network setups
and sizes7, achieving at least double the throughput Kuai does. The throughput
performance is much better for the stateful firewall, too. This is despite the fact
that, for this application, Kuai employs the unrealistic optimisation where the
barrier transition forces the immediate update of the forwarding state. In other
words, MOCS is able to explore significantly more states and identify bugs that
Kuai cannot (see Sect. 4.2).

The computational overhead induced by our proposed PORs is minimal. This
overhead occurs when PORs require dynamic checks through the safety pred-
icates described in Table 1. This is shown in Fig. 4a, where, in order to decide
about the (in)visibility of fwd(sw,pk,pt) actions, a lookup is performed in the
history-array of packet pk, checking whether the bit which corresponds to switch
sw′, which is connected with port pt of sw, is set. On the other hand, if a POR
does not require any dynamic checks, no penalty is induced, as shown in Figs. 4b

7 S ˆ H in Figs. 4 to 6 indicates the number of switches S and hosts H.
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Fig. 5. Performance comparison – visited states (logarithmic scale)

Fig. 6. Performance comparison – memory footprint (logarithmic scale)

and 4c, where the throughput when the PORs are disabled is almost identical to
the case where PORs are enabled. This is because it has been statically estab-
lished at a pre-analysis stage that all actions of a particular type are always safe
for any argument/state. It is important to note that even when computational
overhead is induced, PORs enable MOCS to scale up to larger networks because
the number of visited states can be significantly reduced, as discussed below.

In order to assess the contribution of the state representation optimisation in
MOCS’s performance, we measure the throughput when both PORs and state
representation optimisations are disabled. It is clear that they contribute signif-
icantly to the overall throughput; without these the measured throughput was
at least less than half the throughput when they were enabled.

Number of Visited States and Required Memory. Minimising the num-
ber of visited states and required memory is crucial for scaling up verification to
larger networks. The proposed partial order reductions (Sect. 3.1) and identifi-
cation of packet equivalent classes aim at the former, while packet/rule indexing
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and bit packing aim at the latter (§3.2). In Fig. 5, we present the results for the
various setups and network deployments discussed above. We stopped scaling up
the network deployment for each setup when the verification process required
more than 24 h or started swapping memory to disk. For these cases we killed
the process and report a topped-up bar in Figs. 5 and 6.

For the MAC learning application, MOCS can scale up to larger network
deployments compared to Kuai, which could not verify networks consisting of
more than 2 hosts and 6 switches. For that network deployment, Kuai visited
∼7 m states, whereas MOCS visited only ∼193 k states. At the same time, Kuai
required around 48 GBs of memory (7061 bytes/state) whereas MOCS needed
∼43 MBs (228 bytes/state). Without the partial order reductions, MOCS can
only verify tiny networks. The contribution of the proposed state representation
optimisations is also crucial; in our experiments (results not shown due to lack of
space), for the 6 ˆ 2 network setups (the largest we could do without these opti-
misations), we observed a reduction in state space (due to the identification of
packet equivalence classes) and memory footprint (due to packet/rule indexing
and bit packing) from ∼7 m to ∼200k states and from ∼6 KB per state to ∼230 B
per state. For the stateless and stateful firewall applications, resp., MOCS per-
forms equally well to Kuai with respect to scaling up.

4.2 Model Expressivity

The proposed model is significantly more expressive compared to Kuai as it
allows for more asynchronous concurrency. To begin with, in MOCS, controller
messages sent before a barrier request message can be interleaved with all other
enabled actions, other than the control messages sent after the barrier. By con-
trast, Kuai always flushes all control messages until the last barrier in one go,
masking a large number of interleavings and, potentially, buggy behaviour. Next,
in MOCS nomatch, ctrl and fwd can be interleaved with other actions. In Kuai,
it is enforced a mutual exclusion concurrency control policy through the wait-
semaphore: whenever a nomatch occurs the mutex is locked and it is unlocked by
the fwd action of the thread nomatch-ctrl-fwd which refers to the same packet;
all other threads are forced to wait. Moreover, MOCS does not impose any limit
on the size of the rq queue, in contrast to Kuai where only one packet can exist
in it. In addition, Kuai does not support notifications from the data plane to
the controller for completed operations as it does not support reply messages
and as a result any bug related to the fact that the controller is not synced to
data-plane state changes is hidden.8 Also, our specification language for states is
more expressive than Kuai’s, as we can use any property in LTL without “next”,
whereas Kuai only uses invariants with a single outermost �.

The MOCS extensions, however, are conservative with respect to Kuai, that
is we have the following theorem (without proof, which is straightforward):

8 There are further small extensions; for instance, in MOCS the controller can send
multiple PacketOut messages (as OpenFlow prescribes).
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Theorem 3 (MOCS Conservativity). Let Mpλ,cpq = pS,A, ↪→, s0, AP,Lq
and MK

pλ,cpq = pSK , AK , ↪→K , s0, AP,Lq the original SDN models of MOCS
and Kuai, respectively, using the same topology and controller. Furthermore,
let TracespMpλ,cpqq and TracespMK

pλ,cpqq denote the set of all initial traces in
these models, respectively. Then, TracespMK

pλ,cpqq Ď TracespMpλ,cpqq.
For each of the extensions mentioned above, we briefly describe an example
(controller program and safety property) that expresses a bug that is impossible
to occur in Kuai.

Control Message Reordering Bug. Let us consider a stateless firewall in
Fig. 7a (controller is not shown), which is supposed to block incoming ssh pack-
ets from reaching the server (see [32] Appendix B-CP1). Formally, the safety
property to be checked here is �p@pkt P S.rcvq .¬pkt.sshq. Initially, flow tables
are empty. Switch A sends a PacketIn message to the controller when it receives
the first packet from the client (as a result of a nomatch transition). The con-
troller, in response to this request (and as a result of a ctrl transition), sends the
following FlowMod messages to switch A; rule r1 has the highest priority and
drops all ssh packets, rule r2 sends all packets from port 1 to port 2, and rule r3
sends all packets from port 2 to port 1. If the packet that triggered the transition
above is an ssh one, the controller drops it, otherwise, it instructs (through a
PacketOut message) A to forward the packet to S. A bug-free controller should
ensure that r1 is installed before any other rule, therefore it must send a barrier
request after the FlowMod message that contains r1. If, by mistake, the Flow-
Mod message for r2 is sent before the barrier request, A may install r2 before r1,
which will result in violating the given property. MOCS is able to capture this
buggy behaviour as its semantics allows control messages prior to the barrier to
be processed in a interleaved manner.

Fig. 7. Two networks with (a) two switches, and (b) n stateful firewall replicas

Wrong Nesting Level Bug. Consider a correct controller program that
enforces that server S (Fig. 7a) is not accessible through ssh. Formally, the safety
property to be checked here is �p@pkt P S.rcvq .¬pkt.sshq. For each incoming
PacketIn message from switch A, it checks if the enclosed packet is an ssh one
and destined to S. If not, it sends a PacketOut message instructing A to forward
the packet to S. It also sends a FlowMod message to A with a rule that allows
packets of the same protocol (not ssh) to reach S. In the opposite case (ssh), it
checks (a Boolean flag) whether it had previously sent drop rules for ssh packets
to the switches. If not, it sets flag to true, sends a FlowMod message with a rule



Towards Model Checking Real-World Software-Defined Networks 145

that drops ssh packets to A and drops the packet. Note that this inner block
does not have an else statement.

A fairly common error is to write a statement at the wrong nesting level ([32]
Appendix B-CP4). Such a mistake can be built into the above program by nesting
the outer else branch in the inner if block, such that it is executed any time
an ssh-packet is encountered but the ssh drop-rule has already been installed
(i.e. flag f is true). Now, the ssh drop rule, once installed in switch A, disables
immediately a potential nomatchpA, pq with p.ssh = true that would have sent
packet p to the controller, but if it has not yet been installed, a second incoming
ssh packet would lead to the execution of the else statement of the inner branch.
This would violate the property defined above, as p will be forwarded to S9.

MOCS can uncover this bug because of the correct modelling of the controller
request queue and the asynchrony between the concurrent executions of control
messages sent before a barrier. Otherwise, the second packet that triggers the
execution of the wrong branch would not have appeared in the buffer before
the first one had been dealt with by the controller. Furthermore, if all rules in
messages up to a barrier were installed synchronously, the second packet would
be dealt with correctly, so no bug could occur.

Inconsistent Update Bug. OpenFlow’s barrier and barrier reply mechanisms
allow for updating multiple network switches in a way that enables consistent
packet processing, i.e., a packet cannot see a partially updated network where
only a subset of switches have changed their forwarding policy in response to
this packet (or any other event), while others have not done so. MOCS is expres-
sive enough to capture this behaviour and related bugs. In the topology shown
in Fig. 7a, let us assume that, by default, switch B drops all packets destined
to S. Any attempt to reach S through A are examined separately by the con-
troller and, when granted access, a relevant rule is installed at both switches
(e.g. allowing all packets from C destined to S for given source and destination
ports). Updates must be consistent, therefore the packet cannot be forwarded
by A and dropped by B. Both switches must have the new rules in place, before
the packet is forwarded. To do so, the controller, ([32] Appendix B-CP5), upon
receiving a PacketIn message from the client’s switch, sends the relevant rule to
switch B (FlowMod) along with respective barrier (BarrierReq) and temporar-
ily stores the packet that triggered this update. Only after receiving BarrierRes
message from B, the controller will forward the previously stored packet back
to A along with the relevant rule. This update is consistent and the packet is
guaranteed to reach S. A (rather common) bug would be one where the con-
troller installs the rules to both switches and at the same time forwards the
packet to A. In this case, the packet may end up being dropped by B, if it
arrives and gets processed before the relevant rule is installed, and therefore the
invariant �(

[dropppkt, swq] .¬ppkt.dest = Sq), where [dropppkt, swq] is a quanti-
fier that binds dropped packets (see definition in [32] Appendix B-CP5), would

9 Here, we assume that the controller looks up a static forwarding table before sending
PacketOut messages to switches.
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be violated. For this example, it is crucial that MOCS supports barrier response
messages.

5 Conclusion

We have shown that an OpenFlow compliant SDN model, with the right opti-
misations, can be model checked to discover subtle real-world bugs. We proved
that MOCS can capture real-world bugs in a more complicated semantics with-
out sacrificing performance.

But this is not the end of the line. One could automatically compute equiv-
alence classes of packets that cover all behaviours (where we still computed
manually). To what extent the size of the topology can be restricted to find
bugs in a given controller is another interesting research question, as is the anal-
ysis of the number and length of interleavings necessary to detect certain bugs.
In our examples, all bugs were found in less than a second.
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Abstract. We propose a general end-to-end deep learning framework
Code2Inv, which takes a verification task and a proof checker as input,
and automatically learns a valid proof for the verification task by inter-
acting with the given checker. Code2Inv is parameterized with an embed-
ding module and a grammar: the former encodes the verification task
into numeric vectors while the latter describes the format of solutions
Code2Inv should produce. We demonstrate the flexibility of Code2Inv by
means of two small-scale yet expressive instances: a loop invariant syn-
thesizer for C programs, and a Constrained Horn Clause (CHC) solver.

1 Introduction

A central challenge in automating program verification lies in effective proof
search. Counterexample-guided Inductive Synthesis (CEGIS) [3,4,17,31,32] has
emerged as a promising paradigm for solving this problem. In this paradigm, a
generator proposes a candidate solution, and a checker determines whether the
solution is correct or not; in the latter case, the checker provides a counterex-
ample to the generator, and the process repeats.

Finding loop invariants is arguably the most crucial part of proof search
in program verification. Recent works [2,9,10,26,29,38] have instantiated the
CEGIS paradigm for synthesizing loop invariants. Since checking loop invariants
is a relatively standard process, these works target generating loop invariants
using various approaches, such as stochastic sampling [29], syntax-guided enu-
meration [2,26], and decision trees with templates [9,10] or linear classifiers [38].
Despite having greatly advanced the state-of-the-art in program verification,
however, there remains significant room for improvement in practice.

We set out to build a CEGIS-based program verification framework and iden-
tified five key objectives that it must address to be useful:

– The proof search should automatically evolve according to a given verification
task as opposed to using exhaustive enumeration or a fixed set of search
heuristics common in existing approaches.
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– The framework should be able to transfer knowledge across programs, that is,
past runs should boost performance on similar programs in the future, which
is especially relevant for CI/CD settings [15,20,25].

– The framework should be able to adapt to generate different kinds of invari-
ants (e.g. non-linear or with quantifiers) beyond linear invariants predomi-
nantly targeted by existing approaches.

– The framework should be extensible to a new domain (e.g. constraint solving-
based) by simply switching the underlying checker.

– The generated invariants should be natural, e.g. avoid overfitting due to
human-induced biases in the proof search heuristic or invariant structure
commonly imposed through templates.

We present Code2Inv, an end-to-end deep learning framework which aims
to realize the above objectives. Code2Inv has two key differences compared to
existing CEGIS-based approaches. First, instead of simply focusing on counterex-
amples but ignoring program structure, Code2Inv learns a neural representation
of program structure by leveraging graph neural networks [8,11,19,28], which
enable to capture structural information and thereby generalize to different but
structurally similar programs. Secondly, Code2Inv reduces loop invariant gener-
ation into a deep reinforcement learning problem [22,34]. No search heuristics or
training labels are needed from human experts; instead, a neural policy for loop
invariant generation can be automatically learned by interacting with the given
proof checker on the fly. The learnable neural policy generates a loop invariant
by taking a sequence of actions, which can be flexibly controlled by a grammar
that defines the structure of loop invariants. This decoupling of the action defini-
tion from policy learning enables Code2Inv to adapt to different loop invariants
or other reasoning tasks in a new domain with almost no changes except for
adjusting the grammar or the underlying checker.

We summarize our contributions as follows:

– We present a framework for program verification, Code2Inv, which leverages
deep learning and reinforcement learning through the use of graph neural net-
work, tree-structured long short-term memory network, attention mechanism,
and policy gradient.

– We show two small-scale yet expressive instances of Code2Inv: a loop invariant
synthesizer for C programs and a Constrained Horn Clause (CHC) solver.

– We evaluate Code2Inv on a suite of 133 C programs from SyGuS [2] by com-
paring its performance with three state-of-the-art approaches and showing
that the learned neural policy can be transferred to similar programs.

– We perform two case studies showing the flexibility of Code2Inv on different
classes of loop invariants. We also perform a case study on the naturalness of
the loop invariants generated by various approaches.

2 Background

In this section, we introduce artificial neural network concepts used by Code2Inv.
A multilayer perceptron (MLP) is a basic neural network model which can
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approximate an arbitrary continuous function y = f∗(x), where x and y
are numeric vectors. An MLP defines a mapping y = f(x; θ), where θ
denotes weights of connections, which are usually trained using gradient descent
methods.

Recurrent neural networks (RNNs) approximate the mapping from a
sequence of inputs x(1), ...,x(t) to either a single output y or a sequence of
outputs y(1), ...,y(t). An RNN defines a mapping h(t) = f(h(t−1),x(t); θ), where
h(t) is the hidden state, from which the final output y(t) can be computed (e.g.
by a non-linear transformation or an MLP). A common RNN model is the long
short-term memory network (LSTM) [16] which is used to learn long-term depen-
dencies. Two common variants of LSTM are gated recurrent units (GRUs) [7]
and tree-structured LSTM (Tree-LSTM) [35]. The former simplifies the LSTM
for efficiency while the latter extends the modeling ability to tree structures.

In many domains, graphs are used to represent data with rich structure,
such as programs, molecules, social networks, and knowledge bases. Graph neu-
ral networks (GNNs) [1,8,11,19,36] are commonly used to learn over graph-
structured data. A GNN learns an embedding (i.e. real-valued vector) for each
node of the given graph using a recursive neighborhood aggregation (or neu-
ral message passing) procedure. After training, a node embedding captures the
structural information within the node’s K-hop neighborhood, where K is a
hyper-parameter. A simple aggregation of all node embeddings or pooling [37]
according to the graph structure summarizes the entire graph into an embed-
ding. GNNs are parametrized with other models such as MLPs, which are the
learnable non-linear transformations used in message passing, and GRUs, which
are used to update the node embedding.

Lastly, the generalization ability of neural networks can be improved by an
external memory [12,13,33] which can be accessed using a differentiable atten-
tion mechanism [5]. Given a set of neural embeddings, which form the external
memory, an attention mechanism assigns a likelihood to each embedding, under
a given neural context. These likelihoods guide the selection of decisions that
are represented by the chosen embeddings.

3 Framework

We first describe the general framework, Code2Inv, and then illustrate two
instances, namely, a loop invariant synthesizer for C programs and a CHC solver.

Figure 1 defines the domains of program structures and neural structures used
in Code2Inv. The framework is parameterized by graph constructors G that pro-
duce graph representations of verification instance T and invariant grammar A,
denoted Ginst and Ginv, respectively. The invariant grammar uses placeholder
symbols H, which represent abstract values of entities such as variables, con-
stants, and operators, and will be replaced by concrete values from the verifica-
tion instance during invariant generation. The framework requires a black-box
function check that takes a verification instance T and a candidate invariant
inv, and returns success (denoted ⊥) or a counterexample cex.
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Domains of Program Structures:
G(T ) = Ginst (Ginst is graph representation of verification instance T )
G(A) = Ginv (Ginv is graph representation of invariant grammar A)

A = 〈Σ � H, N, P, S〉 (invariant grammar)
x ∈ H � N (set of placeholder symbols and non-terminals)
v ∈ Σ (set of terminals)
n ∈ N (set of non-terminals)
p ∈ P (production rule)

S (start symbol)
inv ∈ L(A) (invariant candidate)
cex ∈ C (counterexample)

C ∈ P(C) (set of counterexamples)
check(T, inv) ∈ {⊥} � C (invariant validation)

Domains of Neural Structures:
π = 〈νT, νA, ηT, ηA, αctx, εinv〉 (neural policy)

d (positive integer size of embedding)
νT, ηT(Ginst) ∈ R

|Ginst|×d (graph embedding of verification instance)
νA, ηA(Ginv) ∈ R

|Ginv|×d (graph embedding of invariant grammar)
ctx ∈ R

d (neural context)
state ∈ R

d (partially generated invariant state)
αctx ∈ R

d × R
d → R

d (attention context)
εinv ∈ L(A) → R

d (invariant encoder)
aggregate ∈ R

k×d → R
d (aggregation of embeddings)

νA[n] ∈ R
k×d (embedding of production rules for non-terminal n,

where k is number of production rules of n in Ginv)
νT[h] ∈ R

k×d (embedding of nodes annotated by placeholder h,
where k is number of nodes annotated by h in Ginst)

Fig. 1. Semantic domains. L(A) denotes the set of all sentential forms of A.

The key component of the framework is a neural policy π which comprises
four neural networks. Two graph neural networks, ηT and ηA, are used to com-
pute neural embeddings, νT and νA, for graph representations Ginst and Ginv,
respectively. The neural network αctx, implemented as a GRU, maintains the
attention context ctx which controls the selection of the production rule to apply
or the concrete value to replace a placeholder symbol at each step of invariant
generation. The neural network εinv, implemented as a Tree-LSTM, encodes the
partially generated invariant into a numeric vector denoted state, which captures
the state of the generation that is used to update the attention context ctx.

Algorithm 1 depicts the main algorithm underlying Code2Inv. It takes a
verification instance and a proof checker as input and produces an invariant
that suffices to verify the given instance1. At a high level, Code2Inv learns a
neural policy, in lines 1–5. The algorithm first initializes the neural policy and
the set of counterexamples (line 1–2). The algorithm then iteratively samples a
candidate invariant (line 4) and improves the policy using a reward for the new

1 Fuzzers may be applied first so that the confidence of existence of a proof is high.
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Algorithm 1. Code2Inv Framework
Input: a verification instance T and a proof checker check
Output: a invariant inv satisfying check(T, inv) = ⊥
Parameter: graph constructor G and invariant grammar A

1 π ← initPolicy(T, A)

2 C ← ∅
3 while true do

4 inv ← sample(π, T, A)

5 〈π, C〉 ←improve(π, inv, C)

6 Function initPolicy(T, A)

7 Initialize weights of ηT, ηA, αctx, εinv with random values

8 νT ← ηT(G(T ))

9 νA ← ηA(G(A))
10 return 〈νT, νA, ηT, ηA, αctx, εinv〉

11 Function sample(π, T, A)

12 inv ← A.S

13 ctx ← aggregate(π.νT)
14 while inv is partially derived do

15 x ← leftmost non-terminal or placeholder symbol in inv
16 state ← π.εinv(inv)

17 ctx ← π.αctx(ctx, state)

18 if x is non-terminal then
19 p ← attention(ctx, π.νA[x],G(A))

20 expand inv according to p

21 else
22 v ← attention(ctx, π.νT[x],G(T ))
23 replace x in inv with v

24 return inv

25 Function improve(π, inv, C)

26 n ← number of counter-examples C that inv can satisfy
27 if n = |C| then
28 cex ← check(T, inv)

29 if cex = ⊥ then
30 save inv and weights of π

31 exit // a sufficient invariant is found

32 else
33 C ← C ∪ {cex}

34 r ← n/|C|
35 π ← updatePolicy(π, r)
36 return 〈π, C〉

37 Function updatePolicy(π, r)

38 Update weights of π.ηT, π.ηA, π.αctx, π.εinv, π.νT, π.νA by
39 standard policy gradient [34] using reward r

40 Function attention(ctx, ν, G)

41 Return node t in G such that dot product of ctx and ν[t]
42 is maximum over all nodes of G
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candidate based on the accumulated counterexamples (line 5). We next elucidate
upon the initialization, policy sampling, and policy improvement procedures.

Initialization. The initPolicy procedure (line 6–10) initializes the neural pol-
icy. All four neural networks are initialized with random weights (line 7), and
graph embeddings νT, νA for verification task T and invariant grammar A are
computed by applying corresponding graph neural networks ηT, ηA to their graph
representations G(T ),G(A) respectively. Alternatively, the neural networks can
be initialized with pre-trained weights, which can boost overall performance.

Neural Policy Sampling. The sample procedure (lines 11–24) generates a
candidate invariant by executing the current neural policy. The candidate is
first initialized to the start symbol of the given grammar (line 12), and then
updated iteratively (lines 14–23) until it is complete (i.e. there are no non-
terminals). Specifically, the candidate is updated by either expanding its leftmost
non-terminal according to one of its production rules (lines 19–20) or by replacing
its leftmost placeholder symbol with some concrete value from the verification
instance (lines 22–23). The selection of a production rule or concrete value is done
through an attention mechanism, which picks the most likely one according to
the current context and corresponding region of external memory. The neural
context is initialized to the aggregation of embeddings of the given verification
instance (line 13), and then maintained by αctx (line 17) which, at each step,
incorporates the neural state of the partially generated candidate invariant (line
16), where the neural state is encoded by εinv.

Neural Policy Improvement. The improve procedure (lines 25–36) improves
the current policy by means of a continuous reward. Simply checking whether
the current candidate invariant is sufficient or not yields a discrete reward of
1 (yes) or 0 (no). This reward is too sparse to improve the policy, since most
candidate invariants generated are insufficient, thereby almost always yielding
a zero reward. Code2Inv addresses this problem by accumulating counterexam-
ples provided by the checker. Whenever a new candidate invariant is generated,
Code2Inv tests the number of counterexamples it can satisfy (line 26), and uses
the fraction of satisfied counterexamples as the reward (line 34). If all counterex-
amples are satisfied, Code2Inv queries the checker to validate the candidate (line
28). If the candidate is accepted by the checker, then a sufficient invariant was
found, and the learned weights of the neural networks are saved for speeding
up similar verification instances in the future (lines 29–31). Otherwise, a new
counterexample is accumulated (line 33). Finally, the neural policy (including
the neural embeddings) is updated based on the reward.

Framework Instantiations. We next show two instantiations of Code2Inv by
customizing the graph constructor G. Specifically, we demonstrate two scenarios
of graph construction: 1) by carefully exploiting task specific knowledge, and 2)
with minimum information of the given task.
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Fig. 2. (a) C program snippet in SSA form; (b) its graph representation.

Instantiation to Synthesize Loop Invariants for C Programs. An effective graph
representation for a C program should reflect its control-flow and data-flow infor-
mation. We leverage the static single assignment (SSA) transformation for this
purpose. Figure 2 illustrates the graph construction process. Given a C program,
we first apply SSA transformation as shown in Fig. 2a, from which a graph is
constructed as shown in Fig. 2b. The graph is essentially abstract syntax trees
(ASTs) augmented with control-flow (black dashed) edges and data-flow (blue
dashed) edges. Different types of edges will be modeled as different message pass-
ing channels used in graph neural networks so that rich structural information
can be captured more effectively by the neural embeddings. Furthermore, certain
nodes (marked black) are annotated with placeholder symbols and will be used
to fill corresponding placeholders during invariant generation. For instance, vari-
ables x and y are annotated with VAR, integer values 1000 and 1 are annotated
with CONST, and the operator < is annotated with OP.

Fig. 3. (a) CHC instance snippet; (b) node representation for the CHC example; (c)
example of invariant grammar; (d) node representation for the grammar.

Instantiation to Solve Constrained Horn Clauses (CHC). CHC are a uniform way
to represent recursive, inter-procedural, and multi-threaded programs, and serve
as a suitable basis for automatic program verification [6] and refinement type
inference [21]. Solving a CHC instance involves determining unknown predicates
that satisfy a set of logical constraints. Figure 3a shows a simple example of a
CHC instance where itp is the unknown predicate. It is easy to see that itp in
fact represents an invariant of a loop. Thus, CHC solving can be viewed as a
generalization of finding loop invariants [6].
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Unlike C programs, which have explicit control-flow and data-flow informa-
tion, a CHC instance is a set of un-ordered Horn rules. The graph construction for
Horn rules is not as obvious as for C programs. Therefore, instead of deliberately
constructing a graph that incorporates detailed domain-specific information, we
use a node representation, which is a degenerate case of graph representation and
requires only necessary nodes but no edges. Figure 3b shows the node represen-
tation for the CHC example from Fig. 3a. The top two nodes are derived from
the signature of unknown predicate itp and represent the first and the second
arguments of itp. The bottom two nodes are constants extracted from the Horn
rule. We empirically show that node representation works reasonably well. The
downside of node representation is that no structural information is captured
by the neural embeddings which in turn prevents the learned neural policy from
generalizing to other structurally similar instances.

Embedding Invariant Grammar. Lastly, both instantiations must define the
embedding of the invariant grammar. The grammar can be arbitrarily defined,
and similar to CHCs, there is no obvious information such as control- or data-
flow to leverage. Thus, we use node representation for the invariant grammar
as well. Figure 3c and Fig. 3d shows an example of invariant grammar and its
node representation, respectively. Each node in the graph represents either a
terminal or a production rule for a non-terminal. Note that this representation
does not prevent the neural policy from generalizing to similar instances as long
as they share the same invariant grammar. This is feasible because the invariant
grammar does not contain instance specific details, which are abstracted away
by placeholder symbols like VAR, CONST, and OP.

4 Evaluation

We first discuss the implementation, particularly the improvement over our pre-
vious prototype [30], and then evaluate our framework in a number of aspects,
such as performance, transferability, flexibility, and naturalness.

Implementation. Code2Inv2 consists of a frontend, which converts an instance
into a graph, and a backend, which maintains all neural components (i.e. neural
embeddings and policy) and interacts with a checker. Our previous prototype has
a very limited frontend based on CIL [24] and no notion of invariant grammar
in the backend. We made significant improvements in both the frontend and the
backend. We re-implemented the frontend for C programs based on Clang and
implemented a new frontend for CHCs. We also re-implemented the backend to
accept a configurable invariant grammar. Furthermore, we developed a standard
graph format, which decouples the frontend and backend, and a clean interface
between the backend and the checker. No changes are needed in the backend to
support new instantiations.

Evaluation Setup. We evaluate both instantiations of Code2Inv by comparing
each instantiation with corresponding state-of-the-art solvers. For the task of
2 Our artifacts are available on GitHub: https://github.com/PL-ML/code2inv.

https://github.com/PL-ML/code2inv
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synthesizing loop invariants for C programs, we use the same suite of benchmarks
from our previous work [30], which consists of 133 C programs from SyGuS [2].
We compare Code2Inv with our previous specialized prototype and three other
state-of-the-art verification tools: C2I [29], LoopInvGen [26] and ICE-DT [10].
For the CHC solving task, we collect 120 CHC instances using SeaHorn [14] to
reduce the C benchmark programs into CHCs.3 We compare Code2Inv with two
state-of-the-art CHC solvers: Spacer [18], which is the default fixedpoint engine
of Z3, and LinearyArbitrary [38]. We run all solvers on a single 2.4 GHz AMD
CPU core up to 12 h and using up to 4 GB memory. Unless specified otherwise,
Code2Inv is always initialized randomly, that is, untrained.

Performance. Given that both the hardware and the software environments
could affect the absolute running time and that all solvers for loop invariant
generation for C programs rely on the same underlying SMT engine, Z3 [23],
we compare the performance in terms of number of Z3 queries. We note that
this is an imperfect metric but a relatively objective one that also highlights
salient features of Code2Inv. Figure 4a shows the plot of verification cost (i.e.
number of Z3 queries) by each solver and the number of C programs success-
fully verified within the corresponding cost. Code2Inv significantly outperforms
other state-of-the-art solvers in terms of verification cost and the general frame-
work Code2Inv-G achieves performance comparable to (slightly better than) the
previous specialized prototype Code2Inv-S.

(a) (b)

Fig. 4. (a) Comparison of Code2Inv with state-of-the-art solvers; (b) comparison
between untrained model and pre-trained model.

Transferability. Another hallmark of Code2Inv is that, along with the desired
loop invariant, it also learns a neural policy. To evaluate the performance ben-
efits of the learned policy, we randomly perturb the C benchmark programs by
various edits (e.g. renaming existing variables and injecting new variables and

3 SeaHorn produces empty Horn rules on 13 (out of 133) C programs due to optimiza-
tions during VC generation that result in proving the assertions of interest.
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statements). For each program, we obtain 100 variants, and use 90 for train-
ing and 10 for testing. Figure 4b shows the performance difference between the
untrained model (i.e. initialized with random weights) and the pre-trained model
(i.e. initialized with pre-trained weights). Our results indicate that the learned
neural policy can be transferred to accelerate the search for loop invariants for
similar programs. This is especially useful in the CI/CD setting [25] where pro-
grams evolve incrementally and quick turnaround time is indispensable.

Flexibility. Code2Inv can be instantiated or extended in a very flexible manner.
For one instance, with a simple frontend (e.g. node representation as discussed
above), Code2Inv can be customized as a CHC solver. Our evaluation shows
that, without any prior knowledge about Horn rules, Code2Inv can solve 94
(out of 120) CHC instances. Although it is not on a par with state-of-the-art
CHC solvers Spacer and LinearArbitrary, which solve 112 and 118 instances,
respectively, Code2Inv provides new insights for solving CHCs and could be
further improved by better embeddings and reward design.

As another example, by simply adjusting the invariant grammar, Code2Inv
is immediately ready for solving CHC tasks involving non-linear arithmetic.
Our case study shows that Code2Inv successfully solves 5 (out of 7) non-linear
instances we created4, while both Spacer and LinearArbitrary failed to solve
any of them. Tasks involving non-linear arithmetic are particularly challenging
because the underlying checker is more likely to get stuck, and no feedback
(e.g. counterexample) can be provided, which is critical for existing solvers like
Spacer and LinearArbitrary to make progress. This highlights another strength of
Code2Inv—even if the checker gets stuck, the learning process can still continue
by simply assigning zero or negative reward.

Fig. 5. Comparison of solution naturalness.

Naturalness. Our final case study concerns the naturalness of solutions. As
illustrated in Fig. 5, solutions discovered by Code2Inv tend to be more nat-
ural, whereas Spacer and LinearArbitrary tend to find solutions that unnec-
essarily depend on constants from the given verification instance. Such over-
fitted solutions may become invalid when these constants change. Note that
4 The non-linear instances we created are available in the artifact.
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expressions such as (+ 0 0) in Code2Inv’s solutions can be eliminated by post-
processing simplification akin to peephole optimization in compilers. Alterna-
tively, the reward mechanism in Code2Inv could incorporate a regularizer on the
naturalness.

Limitations. Code2Inv does not support finding loop invariants for programs
with multiple loops, function calls, or recursion. Code2Inv generally runs slower
compared to other contemporary approaches. Specifically, 90% of the solved C
instances took 2 h or less, and the rest could take up to 12 hours to solve. This
could be improved upon by leveraging GPUs, developing more efficient training
algorithms, or leveraging templates [27].

5 Conclusion

We presented a framework Code2Inv which automatically learns invariants
(or more generally unknown predicates) by interacting with a proof checker.
Code2Inv is a general and learnable tool for solving many different verification
tasks and can be flexibly configured with a grammar and a graph constructor.
We compared its performance with state-of-the-art solvers for both C programs
and CHC formulae, and showed that it can adapt to different types of inputs
with minor changes. We also showed, by simply varying the input grammar, how
it can tackle non-linear invariant problems which other solvers are not equipped
to work with, while still giving results that are relatively natural to read.
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MetaVal: Witness Validation via Verification
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LMU Munich, Munich, Germany

Abstract. Witness validation is an important technique to increase trust
in verification results, by making descriptions of error paths (violation
witnesses) and important parts of the correctness proof (correctness wit-
nesses) available in an exchangeable format. This way, the verification
result can be validated independently from the verification in a second
step. The problem is that there are unfortunately not many tools avail-
able for witness-based validation of verification results. We contribute to
closing this gap with the approach of validation via verification, which is
a way to automatically construct a set of validators from a set of existing
verification engines. The idea is to take as input a specification, a program,
and a verification witness, and produce a new specification and a trans-
formed version of the original program such that the transformed program
satisfies the new specification if the witness is useful to confirm the result
of the verification. Then, an ‘off-the-shelf’ verifier can be used to validate
the previously computed result (as witnessed by the verification witness)
via an ordinary verification task. We have implemented our approach in
the validator MetaVal, and it was successfully used in SV-COMP 2020
and confirmed 3 653 violation witnesses and 16 376 correctness witnesses.
The results show that MetaVal improves the effectiveness (167 uniquely
confirmed violation witnesses and 833 uniquely confirmed correctness
witnesses) of the overall validation process, on a large benchmark set. All
components and experimental data are publicly available.

Keywords: Computer-aided verification · Software verification · Program
analysis · Software model checking · Certification · Verification witnesses ·
Validation of verification results · Reducer

1 Introduction

Formal software verificationbecomesmore andmore important in the development
process for software systems of all types. There are many verification tools
available to perform verification [4]. One of the open problems that was addressed
only recently is the topic of results validation [10–12,37]: The verification
work is often done by untrusted verification engines, on untrusted computing
infrastructure, or even on approximating computation systems, and static-analysis
tools suffer from false positives that engineers in practice hate because they are
tedious to refute [20]. Therefore, it is necessary to validate verification results,
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ideally by an independent verification engine that likely does not have the same
weaknesses as the original verifier. Witnesses also help serving as an interface to
the verification engine, in order to overcome integration problems [1].

The idea to witness the correctness of a program by annotating it with
assertions is as old as programming [38], and from the beginning of model checking
it was felt necessary to witness counterexamples [21]. Certifying algorithms [30]
are not only computing a solution but also produce a witness that can be used by
a computationally much less expensive checker to (re-)establish the correctness
of the solution. In software verification, witnesses became standardized1 and
exchangeable about five years ago [10,11]. In the meanwhile, the exchangeable
witnesses can be used also for deriving tests from witnesses [12], such that an
engineer can study an error report additionally with a debugger. The ultimate
goal of this direction of research is to obtain witnesses that are certificates and
can be checked by a fully trusted validator based on trusted theorem provers,
such as Coq and Isabelle, as done already for computational models that are
‘easier’ than C programs [40].

Yet, although considered very useful, there are not many witness validators
available. For example, the most recent competition on software verification
(SV-COMP 2020)2 showcases 28 software verifiers but only 6 witness validators.
Two were published in 2015 [11], two more in 2018 [12], the fifth in 2020 [37], and
the sixth is MetaVal, which we describe here. Witness validation is an interesting
problem to work on, and there is a large, yet unexplored field of opportunities. It
involves many different techniques from program analysis and model checking.
However, it seems that this also requires a lot of engineering effort.

Our solution validation via verification is a construction that takes as input
an off-the-shelf software verifier and a new program transformer, and composes a
witness validator in the following way (see Fig. 1): First, the transformer takes the
original input program and transforms it into a new program. In case of a violation
witness,whichdescribes apath through theprogramto a specific program location,
we transform the program such that all parts that are marked as unnecessary
for the path by the witness are pruned. This is similar to the reducer for a
condition in reducer-based conditional model checking [14]. In case of a correctness
witness, which describes invariants that can be used in a correctness proof, we
transform the program such that the invariants are asserted (to check that they
really hold) and assumed (to use them in a re-constructed correctness proof).
A standard verification engine is then asked to verify that (1) the transformed
program contains a feasible path that violates the original specification (violation
witness) or (2) the transformed program satisfies the original specification and
all assertions added to the program hold (correctness witness).

MetaVal is an implementation of this concept. It performs the transformation
according to the witness type and specification, and can be configured to use
any of the available software verifiers3 as verification backend.

1 Latest version of standardized witness format: https://github.com/sosy-lab/sv-witnesses
2 https://sv-comp.sosy-lab.org/2020/systems.php
3 https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020

https://github.com/sosy-lab/sv-witnesses
https://sv-comp.sosy-lab.org/2020/systems.php
https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020
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Fig. 1. Validator construction using readily available verifiers

Contributions. MetaVal contributes several important benefits:

• The program transformer was a one-time effort and is available from now on.
• Any existing standard verifier can be used as verification backend.
• Once a new verification technology becomes available in a verification tool, it

can immediately be turned into a validator using our new construction.
• Technology bias can be avoided by complementing the verifier by a validator

that is based on a different technology.
• Selecting the strongest verifiers (e.g., by looking at competition results) can

lead to strong validators.
• All data and software that we describe are publicly available (see Sect. 6).

2 Preliminaries

For the theoretical part, we will have to set a common ground for the concepts
of verification witnesses [10,11] as well as reducers [14]. In both cases, programs
are represented as control-flow automata (CFAs). A control-flow automaton
C = (L, l0, G) consists of a set L of control locations, an initial location l0 ∈ L,
and a set G ⊆ L × Ops × L of control-flow edges that are labeled with the
operations in the program. In the mentioned literature on witnesses and reducers,
a simple programming language is used in which operations are either assignments
or assumptions over integer variables. Operations op ∈ Ops in such a language
can be represented by formulas in first order logic over the sets V ,V ′ of program
variables before and after the transition, which we denote by op(V, V ′). In order to
simplify our construction later on, we will also allow mixed operations of the form
f(V ) ∧ (x′ = g(V )) that combine assumptions with an assignment, which would
otherwise be represented as an assumption followed by an assignment operation.
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1 void fun(uint x, uint y, uint z) {
2 if (x > y) {
3 z = 2*x-y;
4 } else {
5 z = 2*y-x+1;
6 }
7 if (z>y || z>x) {
8 return;
9 } else {

10 error();
11 }
12 }

Fig. 2. Example program for both correctness
and violation witness validation

2

53

7

8 10

x<=yx>y

z=2*x-y; z=2*y-x+1;

z>x||z>y !(z>x||z>y)

Fig. 3. CFA C of example program
from Fig. 2

The conversion from the source code into a CFA and vice versa is straight
forward, provided that the CFA is deterministic. A CFA is called deterministic if
in case there are multiple outgoing CFA edges from a location l, the assumptions
in those edges are mutually exclusive (but not necessarily exhaustive).

Since our goal is to validate (i.e., prove or falsify) the statement that a program
fulfills a certain specification, we need to additionally model the property to
be verified. For properties that can be translated into non-reachability, this can
be done by defining a set T ⊆ L of target locations that shall not be reached.
For the example program in Fig. 2 we want to verify that the call in line 10
is not reachable. In the corresponding CFA in Fig. 3 this is represented by the
reachability of the location labeled with 10. Depending on whether or not a
verifier accounts for the overflow in this example program, it will either consider
the program safe or unsafe, which makes it a perfect example that can be used
to illustrate both correctness and violation witnesses.

In order to reason about the soundness of our approach, we need to also
formalize the program semantics. This is done using the concept of concrete
data states. A concrete data state is a mapping from the set V of program
variables to their domain Z, and a concrete state is a pair of control location
and concrete data state. A concrete program path is then defined as a sequence
π = (c0, l0)

g1−→ . . .
gn−→ (cn, ln) where c0 is the initial concrete data state,

gi = (li−1, opi, li) ∈ G, and ci−1(V ), ci(V ′) � opi. A concrete execution ex(π) is
then derived from a path π by only looking at the sequence (c0, l0) . . . (cn, ln)
of concrete states from the path. Note the we deviate here from the definition
given in [14], where concrete executions do not contain information about the
program locations. This is necessary here since we want to reason about the
concrete executions that fulfill a given non-reachability specification, i.e., that
never reach certain locations in the original program.

Witnesses are formalized using the concept of protocol automata [11]. A proto-
col automaton W = (Q,Σ, δ, q0, F ) consists of a set Q of states, a set of transition
labels Σ = 2G × Φ, a transition relation δ ⊆ Q × Σ × Q, an initial state q0, and
a set F ⊆ Q of final states. A state is a pair that consists of a name to identify
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the state and a predicate over the program variables V to represent the state
invariant.4 A transition label is a pair that consists of a subset of control-flow
edges and a predicate over the program variables V to represent the guard
condition for the transition to be taken. An observer automaton [11,13,32,34,36]
is a protocol automaton that does not restrict the state space, i.e., if for each
state q ∈ Q the disjunction of the guard conditions of all outgoing transitions is
a tautology. Violation witnesses are represented by protocol automata in which
all state invariants are true. Correctness witnesses are represented by observer
automata in which the set of final states is empty.

3 Approach

3.1 From Witnesses to Programs

When given a CFA C = (L, l0, G), a specification T ⊆ L, and a witness
automaton W = (Q,Σ, δ, q0, F ), we can construct a product automaton
AC×W = (L × Q, (l0, q0), Γ, T × F ) where Γ ⊆ (L × Q) × (Ops × Φ) × (L × Q).
The new transition relation Γ is defined by allowing for each transition g in the
CFA only those transitions (S, ϕ) from the witness where g ∈ S holds:

Γ =
{(

(li, qi), (op, ϕ), (lj , qj)
) ∣

∣ ∃S :
(
qi, (S, ϕ), qj

) ∈ δ, (li, op, lj) ∈ S
}

We can now define the semantics of a witness by looking at the paths
in the product automaton and mapping them to concrete executions in
the original program. A path of the product automaton AC,W is a se-
quence (l0, q0)

α0−→ . . .
αn−1−−−→ (ln, qn) such that

(
(li, qi), αi, (li+1, qi+1)

) ∈ Γ and
αi = (opi, φi).

It is evident that the automaton AC×W can easily be mapped to a new
program CC×W by reducing the pair (op, ϕ) in its transition relation to an
operation op. In case op is a pure assumption of the form f(V ) then op will
simply be f(V ) ∧ ϕ(V ). If op is an assignment of the form f(V ) ∧ (x′ = g(V )),
then op will be (f(V )∧ϕ(V ))∧ (x′ = g(V )). This construction has the drawback
that the resulting CFA might be non-deterministic, but this is actually not
a problem when the corresponding program is only used for verification. The
non-determinism can be expressed in the source code by using non-deterministic
values, which are already formalized by the community and established in the
SV-COMP rules, and therefore also supported by all participating verifiers. The
concrete executions of CC×W can be identified with concrete executions of C by
projecting their pairs (l, q) on their first element. Let projC(ex(CC×W )) denote
the set of concrete executions that is derived this way. Due to how the relation Γ
of AC×W is constructed, it is guaranteed that this is a subset of the executions
of C, i.e., projC(ex(CC×W )) ⊆ ex(C). In this respect the witness acts in very
much the same way as a reducer [14], and the reduction of the search space is
also one of the desired properties of a validator for violation witnesses.
4 These invariants are the central piece of information in correctness witnesses. While

invariants that proof a program correct can be hard to come up with, they are usually
easier to check.
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Fig. 5. Product automaton AC×WV

3.2 Programs from Violation Witnesses

For explaining the validation of results based on a violation witness, we consider
the witness in Fig. 4 for our example C program in Fig. 2. The program CC×WV

resulting from product automaton AC×WV
in Fig. 5 can be passed to a verifier.

If this verification finds an execution that reaches a specification violation, then
this violation is guaranteed to be also present in the original program. There
is however one caveat: In the example in Fig. 5, a reachable state (10, q0) at
program location 10 (i.e., a state that violates the specification) can be found
that is not marked as accepting state in the witness automaton WV . For a strict
version of witness validation, we can remove all states that are in T ×Q but not
in T × F from the product automaton, and thus, from the generated program.
This will ensure that if the verifier finds a violation in the generated program, the
witness automaton also accepts the found error path. The version of MetaVal

that was used in SV-COMP 2020 did not yet support strict witness validation.

3.3 Programs from Correctness Witnesses

Correctness witnesses are represented by observer automata. Figure 6 shows a
potential correctness witness WC for our example program C in Fig. 2, where
the invariants are annotated in bold font next to the corresponding state. The
construction of the product automaton AC×WC

in Fig. 7 is a first step towards
reestablishing the proof of correctness: the product states tell us to which control
locations of the CFA for the program the invariants from the witness belong.

The idea of a result validator for correctness witnesses is to

1. check the invariants in the witness and
2. use the invariants to establish that the original specification holds.

We can achieve the second goal by extracting the invariants from each state in the
product automaton AC×WC

and adding them as conditions to all edges by which
the state can be reached. This will then be semantically equivalent to assuming
that the invariants hold at the state and potentially make the consecutive proof
easier. For soundness we need to also ensure the first goal. To achieve that, we
add transitions into a (new) accepting state from T × F whenever we transition
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Fig. 7. Product automaton AC×WC

into a state q and the invariant of q does not hold, and we add self-loops such
that the automaton stays in the new accepting state forever. In sum, for each
invariant, there are two transitions, one with the invariant as guard (to assume
that the invariant holds) and one with the negation of the invariant as guard
(to assert that the invariant holds, going to an accepting (error) state if it does
not hold). This transformation ensures that the resulting automaton after the
transformation is still a proper observer automaton.

4 Evaluation

This section describes the results that were obtained in the 9th Competition
on Software Verification (SV-COMP 2020), in which MetaVal participated as
validator. We did not perform a separate evaluation because the results of SV-
COMP are complete, accurate, and reproducible; all data and tools are publicly
available for inspection and replication studies (see data availability in Sect. 6).

4.1 Experimental Setup

Execution Environment. In SV-COMP 2020, the validators were executed in
a benchmark environment that makes use of a cluster with 168 machines, each
of them having an Intel Xeon E3-1230 v5 CPU with 8 processing units, 33 GB
of RAM, and the GNU/Linux operating system Ubuntu 18.04. Each validation
run was limited to 2 processing units and 7 GB of RAM, in order to allow up to
4 validation runs to be executed on the same machine at the same time. The time
limit for a validation run was set to 15 min for correctness witnesses and to 90 s
for violation witnesses. The benchmarking framework BenchExec 2.5.1 was used
to ensure that the different runs do not influence each other and that the resource
limits are measured and enforced reliably [15]. The exact information to replicate
the runs of SV-COMP 2020 can be found in Sect. 3 of the competition report [4].

Benchmark Tasks. The verification tasks5 of SV-COMP can be partitioned
wrt. their specification into ReachSafety, MemSafety, NoOverflows, and Termina-
tion. Validators can be configured using different options for each specification.

5 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
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Table 1. Overview of validation for violation witnesses in SV-COMP 2020

Specification Measure CPAchecker CPA-wtt FShell-wtt MetaVal NITWIT UAutomizer

ReachSafety
(35 652

witnesses)

executed on 35 652 25 812 25 812 35 652 21 636 25 812
uniquely confirmed 3 043 42 175 44 398 547
jointly confirmed 8 019 6 010 6 740 1 566 8 055 3 802

Termination
(9 720

witnesses)

executed on 3 043 9 720 9 720
uniquely confirmed 566 9 235
jointly confirmed 1 539 256 1 493

NoOverflow
(3 149

witnesses)

executed on 3 149 3 149 3 149 3 149 3 149
uniquely confirmed 6 1 31 1 89
jointly confirmed 1 668 1 067 1 267 1 186 1 590

MemSafety
(2 681

witnesses)

executed on 2 681 2 213 2 681 2 681 2 681
uniquely confirmed 278 0 21 113 44
jointly confirmed 737 250 364 478 372

Table 2. Overview of validation for correctness witnesses in SV-COMP 2020

Specification Measure CPAchecker MetaVal UAutomizer

ReachSafety
(66 435 witnesses)

executed on 66 435 66 435 66 435
uniquely confirmed 1 750 391 708
jointly confirmed 17 592 13 862 16 834

NoOverflow
(3 179 witnesses)

executed on 3 179 3 179
uniquely confirmed 44 74
jointly confirmed 870 870

MemSafety
(4 426 witnesses)

executed on 4 426 4 426
uniquely confirmed 398 173
jointly confirmed 811 811

Validator Configuration. Since our architecture (cf. Fig. 1) allows for a
wide range of verifiers to be used for validation, there are many interesting
configurations for constructing a validator. Exploring all of these in order to
find the best configuration, however, would require significant computational
resources, and also be susceptible to over-fitting. Instead, we chose a heuristic
based on the results of the competition from the previous year, i.e., SV-COMP
2019 [3]. The idea is that a verifier which performed well at verifying tasks for a
specific specification is also a promising candidate to be used in validating results
for that specification. Therefore the configuration of our validator MetaVal

uses CPA-Seq as verifier for tasks with specification ReachSafety, Ultimate

Automizer for NoOverflow and Termination, and Symbiotic for MemSafety.

4.2 Results

The results of the validation phase in SV-COMP 2020 [5] are summarized in
Table 1 (for violation witnesses) and Table 2 (for correctness witnesses). For each
specification, MetaVal was able to not only confirm a large number of results
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that were also validated by other tools, but also to confirm results that were not
previously validated by any of the other tools.6

For violation witnesses, we can observe that MetaVal confirms significantly
less witnesses than the other validators. This can be explained partially by
the restrictive time limit of 90 s. Our approach not only adds overhead when
generating the program from the witness, but this new program can also be
harder to parse and analyze for the verifier we use in the backend. It is also the
case that the verifiers that we use in MetaVal are not tuned for such a short
time limit, as a verifier in the competition will always get the full 15 min. For
specification ReachSafety, for example, we use CPA-Seq, which starts with a
very simply analysis and switches verification strategies after a fixed time that
happens to be also 90 s. So in this case we will never benefit from the more
sophisticated strategies that CPA-Seq offers.

For validation of correctness witnesses, where the time limit is higher, this
effect is less noticeable such that the number of results confirmed by MetaVal is
more in line with the numbers achieved by the other validators. For specification
MemSafety, MetaVal even confirms more correctness witnesses than Ultimate

Automizer. This indicates that Symbiotic was a good choice in our configuration
for that specification. Symbiotic generally performs much better in verification
of MemSafety tasks than Ultimate Automizer, so this result was expected.

Before the introduction of MetaVal, there was only one validator for correct-
ness witnesses in the categories NoOverflow and MemSafety, while constructing
a validator for those categories with our approach did not require any addi-
tional development effort.

5 Related Work

Programs from Proofs. Our approach for generating programs can be seen as a
variant of the Programs from Proofs (PfP) framework [27,41]. Both generate
programs from an abstract reachability graph of the original program. The
difference is that PfP tries to remove all specification violations from the graph,
while we just encode them into the generated program as violation of the
standard reachability property. We do this for the original specification and
the invariants in the witness, which we treat as additional specifications.

Automata-Based Software Model Checking. Our approach is also similar to that of
the validator Ultimate Automizer [10]. For violation witnesses, it also constructs
the product of CFA and witness. For correctness witnesses, it instruments the
invariants directly into the CFA of the program (see [10], Sect. 4.2) and passes the
result to its verification engine, while MetaVal constructs the product of CFA
and witness, and applies a similar instrumentation. In both cases, MetaVal’s
transformer produces a C program, which can be passed to an independent verifier.

Reducer-Based Conditional Model Checking. The concept of generating programs
from an ARG has also been used to successfully construct conditional verifiers [14].
6 In the statistics, a witness is only counted as confirmed if the verifier correctly stated

whether the input program satisfies the respective specification.
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Our approach for correctness witnesses can be seen as a special case of this
technique, where MetaVal acts as initial verifier that does not try to reduce the
search space and instead just instruments the invariants from the correctness
witness as additional specification into the program.

Verification Artifacts and Interfacing. The problem that verification results are
not treated well enough by the developers of verification tools is known [1] and
there are also other works that address the same problem, for example, the work
on execution reports [19] or on cooperative verification [17].

Test-Case Generation. The idea to generate test cases from verification coun-
terexamples is more than ten years old [8,39], has since been used to create
debuggable executables [31,33], and was extended and combined to various
successful automatic test-case generation approaches [24,25,29,35].

Execution. Other approaches [18,22,28] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, witness validation does not require
full counterexamples, but works on more flexible, possibly abstract, violation
witnesses from a wide range of verification tools.

Debugging and Visualization. Besides executing a test, it is important to un-
derstand the cause of the error path [23], and there are tools and methods to
debug and visualize program paths [2,9,26].

6 Conclusion

We address the problem of constructing a tool for witness validation in a system-
atic and generic way: We developed the concept of validation via verification,
which is a two-step approach that first applies a program transformation and
then applies an off-the-shelf verification tool, without development effort.

The concept is implemented in the witness validator MetaVal, which has
already been successfully used in SV-COMP 2020. The validation results are
impressive: the new validator enriches the competition’s validation capabilities by
164uniquely confirmedviolation results and834uniquely confirmedcorrectness re-
sults, based on the witnesses provided by the verifiers. This paper does not contain
an own evaluation, but refers to results from the recent competition in the field.

The major benefit of our concept is that it is now possible to configure a
spectrum of validators with different strengths, based on different verification
engines. The ‘time to market’ of new verification technology into validators is
negligibly small because there is no development effort necessary to construct
new validators from new verifiers. A potential technology bias is also reduced.

Data Availability Statement. All data from SV-COMP 2020 are publicly
available: witnesses [7], verification and validation results as well as log files [5], and
benchmark programs and specifications [6]7. The validation statistics in Tables 1
and 2 are available in the archive [5] and on the SV-COMP website8. MetaVal 1.0
is available on GitLab9 and in our AEC-approved virtual machine [16].
7 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
8 https://sv-comp.sosy-lab.org/2020/results/results-verified/validatorStatistics.html
9 https://gitlab.com/sosy-lab/software/metaval/-/tree/1.0

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
https://sv-comp.sosy-lab.org/2020/results/results-verified/validatorStatistics.html
https://gitlab.com/sosy-lab/software/metaval/-/tree/1.0
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Abstract. SPARK is both a deductive verification tool for the Ada
language and the subset of Ada on which it operates. In this paper, we
present a recent extension of the SPARK language and toolset to support
pointers. This extension is based on an ownership policy inspired by
Rust to enforce non-aliasing through a move semantics of assignment.
In particular, we consider pointer-based recursive data structures, and
discuss how they are supported in SPARK. We explain how iteration
over these structures can be handled using a restricted form of aliasing
called local borrowing. To avoid introducing a memory model and to stay
in the first-order logic background of SPARK, the relation between the
iterator and the underlying structure is encoded as a predicate which
is maintained throughout the program control flow. Special first-order
contracts, called pledges, can be used to describe this relation. Finally,
we give examples of programs that can be verified using this framework.

Keywords: Deductive verification · Recursive structures · Ownership

1 Introduction

The programming language SPARK [8] has been designed to be amenable to for-
mal verification, and one of the most impactful design choices was the exclusion
of aliasing. While this choice vastly simplified the tool design and improved the
expected proof performance, it also meant that pointers, as a major source of
aliasing, were excluded from the language. While SPARK over the years had seen
the addition of many language features, adding pointers just seemed impossible
without violating the non-aliasing property. Then came Rust [11] democratizing
a type system based on ownership [5]. Taking inspiration from it, it was possible
to add pointers to the language in a way that still excludes aliasing. We will give
an overview of the rules in this paper.

However, it was unclear if programs traversing recursive data structures such
as lists and trees could be supported in this setting. In particular, iteration using
a loop requires an alias between the traversed structure and the iterator. In this
paper, we detail an approach, inspired by recent work by Astrauskas et al. [1],
that enables proofs about recursive pointer-based data structures in SPARK.
We have implemented this approach in the industrial formal verification tool
SPARK, and, using this tool, developed a number of examples. Some important
restrictions remain - we will also discuss them in this paper.
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 178–189, 2020.
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Ada [2] is a general-purpose procedural programming language. The design
of the Ada language puts great emphasis on the safety and correctness of the
program. This objective is realized by using a readable syntax that uses keywords
instead of symbols where reasonable. The type system is strong and strict and
many potential violations of type constraints can be detected statically by the
compiler. If not, a run-time check is inserted into the program, to guarantee the
detection of incorrect situations.
declare -- Block introducing new declarations

type My_Int is range -100 .. 100;
-- User-defined integer type ranging from -100 to 100
subtype My_Nat is My_Int range 0 .. My_Int’Last;
-- Subtype of My_Int with additional constraints

X : My_Int := 50; -- Static check that 50 is in the bounds of My_Int
Y : My_Nat;

begin -- Part of the block containing statements
...
Y := X; -- Dynamic check that X is in the bounds of My_Nat

end; -- End of scope of the entities declared in the block

Ada 2012 introduced contract based programming to Ada. In particular, it is
possible to attach pre- and postconditions to subprograms1. These conditions
can be checked during the execution of the program, just like assertions.

SPARK is the name of a tool that provides formal verification for Ada. It
uses the user-provided contracts and attempts to prove that the runtime checks
cannot fail and that postconditions are established by the corresponding subpro-
grams. As formal verification for the whole Ada language would be intractable,
SPARK is also the name of the subset of the Ada language that is supported
by the SPARK tool2. This subset contains almost all features of Ada, though
sometimes in a restricted form. In particular, expressions should be free from
side effects, and aliasing is forbidden (no two variables should share the same
memory location or overlap in memory). This restriction greatly simplifies the
memory model used in the SPARK tool: any program variables can be reasoned
about independently from other variables.

The SPARK tool uses the Why3 platform to generate verification conditions
for SMT solvers via a weakest-precondition calculus [4].

2 Support for Pointers

Pointers in Ada are called access types. It is possible to declare an access type
using the access keyword. Objects of an access type are null if no initial values
are supplied. It is possible to allocate an object on the heap using the keyword
new. An initial value can be supplied for the allocated object. A dereference of
a pointer is written as a record component access, but using the keyword all.

1 In Ada, a distinction is made between functions that return a value, and procedures,
which do not. Subprogram is the term that designates both.

2 http://docs.adacore.com/spark2014-docs/html/ug/.

http://docs.adacore.com/spark2014-docs/html/ug/
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declare
type Int_Acc is access Integer; -- Declare a new access type
X : Int_Acc; -- Declare an object of this type
pragma Assert (X = null); -- No initial values provided, X is null
Y : Integer;

begin
X := new Integer; -- Allocation of uninitialized data
X := new Integer’(3); -- Allocation of initialized data
Y := X.all; -- Dereference the access

end;

When a pointer is dereferenced, a runtime check is introduced to make sure
that it is not null. Ada does not mandate garbage collection. Memory allocated
on the heap can be reclaimed manually by the user using a generic function
named Unchecked Deallocation, which also sets its argument pointer to
null. There are several kinds of access types. The basic access types, like Int Acc
defined above, are called pool specific access types. They can only designate
objects allocated on the heap. General access types, introduced by the keyword
all, can also be used to designate objects allocated on the stack or global data.

Pointers were excluded from the SPARK subset until recently. Indeed, allow-
ing pointers in a straightforward way would break the absence of aliasing in
SPARK. In addition, pointers are associated with a list of classes of bugs such
as memory leaks, use-after-free and dereferencing a null-pointer.

To support pointers in SPARK, we designed a subset of Ada’s access types
which does not introduce aliasing and avoids some pointer-specific issues, while
retaining as much expressivity as possible. The first restriction we selected is
the exclusion of general access types. This means that SPARK can only create
pointers designating memory allocated on the heap, and not on the stack. As
a result, pointers can only be made invalid by explicit deallocation, and deal-
location of a valid pointer is always legal. To eliminate aliasing between (heap)
pointers, ownership rules inspired by Rust have been added on top of Ada’s
legality rules. These rules enforce a single writer/multiple readers policy. They
ensure that, when a value designated by a pointer is modified, all other objects
can be considered to be preserved.

The basis of the ownership policy of SPARK is the move semantics of assign-
ments. When a pointer is assigned to a variable, both the source and the target
of the assignment designate the same memory region: assigning an object con-
taining a pointer creates an alias. To alleviate this problem, when an object
containing a pointer is assigned, the memory region designated by the pointer is
said to be moved. The source of the assignment loses the ownership of the des-
ignated data while the target of the assignment gains it. The ownership system
makes sure that the designated data is not accessed again through the source of
the assignment.
Y : Int_Acc := X; -- Ownership of the data designated by X is moved to Y
Y.all := Y.all + 1; -- The data can be read and modified through Y
Z := X.all; -- Illegal: Reading or modifying X.all is not allowed

As the ownership policy ensures that no aliasing can occur between access
objects, it is possible to reason about the program almost as if the pointer
was replaced by the data it points to. When an object containing a pointer is
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assigned to another variable, it is safe to consider that the designated data is
copied by the assignment. Indeed, any effects that could occur because variables
are sharing a substructure cannot be observed because of the ownership rules.

Pointers are handled in the verification model of the SPARK proof tool as
maybe, or option types: access objects are either null, or they contain a value.
In addition, access objects also contain an address, which can be used to handle
comparison (two pointers may not be equal even if the values they designate are
equal). When a pointer is dereferenced, a verification condition is generated to
make sure that the pointer is not null, so that its value can be accessed.
X : Int_Acc; -- X is null
X := new Integer’(3); -- X has a value which is 3
Y := X; -- Y has a value which is 3
Z := Y.all; -- Check that Y is not null, Z is 3

Note that the ownership policy is key for this translation to be correct, as it
prevents the program from observing side-effects caused by the modification of
a shared reference, which would not be accounted for in the verification model.

3 Recursive Data Structures

In Ada, recursivity can only be introduced through pointers. The idea is to
first declare a type, but without giving its definition. This declaration, called an
incomplete declaration, introduces a place-holder for the type, which can only
be used in restricted circumstances. In particular, this place-holder can be used
to declare an access type designating pointers to values of this type. Using this
mechanism, it is possible to declare a recursive data structure, since the access
type can be used in the type definition as it comes afterward.
type List_Cell;
type List is access List_Cell;
type List_Cell is record

Data : Integer;
Next : List;

end record;

There are no specific restrictions concerning recursive types in SPARK. However,
the ownership policy of SPARK implies that it will not be possible to create a
structure which has either cycles (e.g. doubly linked lists) or shared substructures
(e.g. DAGs) in it. The ownership policy may also impact how recursive structures
can be manipulated. In general, working with such structures involves a traversal,
which can be done either recursively, or iteratively using a loop. Algorithms
working in a recursive way are generally compliant with the ownership policy of
SPARK. Indeed, the recursive calls will allow reading or modifying the structure
in depth without having to deconstruct it3.
function Length (L : access constant List_Cell) return My_Nat is

(if L = null then 0 else Length (L.Next) + 1);
function Nth (L : access constant List_Cell; N : My_Pos) return Integer is

(if N = 1 then L.Data else Nth (L.Next, N - 1))
with Pre ⇒ N ≤ Length (L);

3 In Length and Nth, addition on My Nat and My Pos has been redefined to saturate
so as to avoid the overflow checking mandated by Ada.
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Algorithms involving loops are trickier. The declaration of the iterator used
for the loop creates an alias of the traversed data structure. As per SPARK’s
ownership policy, this is considered to be a move, so it makes it illegal to access
the initial structure. Further assignments to the iterator during the traversal
contribute to losing definitively one by one the ownership of every node in the
structure, making it impossible to restore the ownership at the end.
procedure Set_All_To_Zero (X : in out List) is

Y : List := X; -- The ownership of X is transferred to Y
begin

while Y �= null loop
Y.Data := 0;
Y := Y.Next; -- Ownership of the first cell of Y is lost for good

end loop; -- The ownership of X cannot be restored
end Set_All_To_Zero;

To traverse recursive data structures, a move is not what we want. Here we
need a way to lend the ownership of a memory region for a period of time and
automatically restore it at the end. A similar mechanism, called borrowing, is
available in the Rust language. We have adapted it to SPARK.

4 Borrowing Ownership

As Ada is an imperative language, losing the possibility to traverse a linked data
structure using a loop was deemed too restrictive. To alleviate this problem, a
notion of ownership borrowing was introduced in SPARK. It allows the users
to declare a variable, called a borrower, which is initialized with a reference
to a part of an existing data structure. To state that this initialization should
not be considered a move, an anonymous access type is used for the borrower4.
During the scope of the borrower, the borrowed part of the underlying structure
is frozen, meaning that it is illegal to read or modify it. Once the borrower has
gone out of scope, the ownership automatically returns to the borrowed object,
so that it is again fully accessible.
X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X; -- Y has an anonymous access type.
-- Ownership of X is transferred to Y for the duration of its lifetime.

begin
Y.Data := Y.Data + 1; -- Y can be used to read or modify X
pragma Assert (X.Data = 2); -- Illegal, during the lifetime of Y, X

-- cannot be read or modified directly
end;
pragma Assert (X.Data = 2); -- Afterwards, the ownership returns to X

A borrower can be used to modify the underlying structure. This makes it effec-
tively an alias of the borrowed object. To allow the tool to statically determine
the cases of aliasing, SPARK restricts the initial value of a local borrower to be
the name of a part of an existing object. This forbids for example borrowing one
of two structures depending on a condition.

4 A type is said to be anonymous if it does not have a previous declaration. Here
access List Cell is anonymous while List is named.
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It is possible to update a borrower to change the part of the object it desig-
nates (as opposed to modifying the designated object). This is called a reborrow.
In SPARK, the value assigned to the borrower in a reborrow should be rooted
at the borrower. This means that reborrows only go deeper into the structure.
declare

Y : access List_Cell := X; -- Y is X
begin

Y := Y.Next; -- This is a reborrow, Y is now X.Next
end;

Borrowing can be used to allow simple iterative traversals of a recursive data
structure like the loop of Set All To Zero. More complex traversals, involving
stacks for example, cannot be written iteratively in SPARK.
procedure Set_All_To_Zero (X : in out List) is

Y : access List_Cell := X;
-- The ownership of X is transferred to Y for the duration of its lifetime

begin
while Y �= null loop

Y.Data := 0;
Y := Y.Next; -- Reborrow: Y designates something deeper

end loop;
end Set_All_To_Zero; -- The ownership of X is restored

Using reborrows, local borrowers allow one to indirectly modify a data structure
at an arbitrarily-deep position, which may not be statically-known. While in the
scope of the borrower, these indirect modifications can be ignored by the analysis,
as the ownership policy makes them impossible to observe. However, after the
end of the borrow, ownership is transferred back to the borrowed object, and
SPARK needs to take into account whatever modifications may have occurred
through the borrower.
X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X; -- Y is X
begin

Y := Y.Next.Next;
-- Through reborrows, Y designates an arbitrarily-deep part of X
Y.Data := 42; -- Y is used to indirectly modify X

end;
pragma Assert (X.Next.Next.Data = 42); -- The assertion should hold

To be able to reconstruct the borrowed object from the value of the borrower,
we must track the relation between them. As this relation cannot be statically
determined because of reborrows, SPARK handles it as an additional object
in the program. This allows us to take advantage of the normal mechanism
for handling value dependent control-flow in SPARK (the weakest-precondition
calculus of Why3). The idea is the following. When a borrower is declared in Ada,
we create two objects: the borrower itself, which is considered as a stand-alone
structure, independent of the borrowed object, and a predicate. The predicate,
which we call the borrow relation, encodes the most precise relation between the
borrower and the borrowed object which does not depend on the actual value
designated by the borrower. The value of the borrow relation is computed by
the tool from the definition of the borrower, and is updated at each reborrow.
Modifications of the underlying data structure don’t impact this relation. At the
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end of the borrow, the borrowed object is reconstructed using both the borrow
relation and the current value of the borrower.
X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X; -- Create borrow relation to relate X and Y
-- b_rel := λ new_x, new_y. new_x �= null ∧ new_x = new_y

begin
Y := Y.Next.Next; -- Update the predicate to model the new relation
-- b_rel := λ new_x, new_y. new_x �= null ∧ new_x.data = 1 ∧
-- new_x.next �= null ∧ new_x.next.data = 2 ∧ new_x.next.next �= null
-- ∧ new_x.next.next = new_y
Y.Data := 42; -- The borrow relation is not modified

end;
pragma Assert (X.Next.Next.Data = 42);
-- Follows from the fact that X.Next.Next = Y and Y.Data = 42

5 Describing the Borrow Relation

SPARK performs deductive verification, which relies on user-specified invariants
to handle loops. When traversing a linked data structure, the loop body contains
a reborrow, which means that the borrow relation is modified in the loop. As
a general rule, if a variable is modified in a loop, it should be described in the
loop invariant, lest nothing is known about its value afterward. Thus, we need
a way to describe the borrow relation in the loop invariant.

As part of their work on the Prusti proof tool for Rust, Astrauskas et al. found
the need for a similar annotation that they call pledges [1]. In Rust, a pledge is
an assertion associated with a borrower which is guaranteed to hold at the time
when the borrow expires, no matter what may happen in between. In SPARK, a
property guaranteed to hold at the end of the borrow must be a consequence of
the borrow relation, since the borrow relation is the most precise relation which
does not depend on the actual value of the borrower. Therefore, the user-visible
notion of a pledge is suitable to approximate the internally computed borrow
relation. Similar to user-provided postconditions, which must be implied by the
strongest postcondition computed by a verifying tool, the user-provided pledge
should follow from the borrow relation.

Since the Ada syntax has no support for pledges, we have resorted in SPARK
to introducing special functions (dedicated to each access type) called pledge
functions, which mark expressions which should be considered as pledge expres-
sions by the tool. A pledge function is a ghost function (meaning that it is not
allowed to have any effect on the output of the program) which has two param-
eters. The first one is used to identify the borrower on which the pledge should
apply, while the second holds the assertion. Note that a call to a pledge func-
tion isn’t really a call for the SPARK analyzer. It is simply a marker that the
expression in argument is a pledge.
function Pledge

(L : access constant Cell; -- The borrower to which the pledge applies
P : Boolean) -- The property we want to assert in the pledge

return Boolean
is (P) -- For execution, the function evaluates the property
with Ghost,

Annotate ⇒ (GNATprove, Pledge); -- Identifies a pledge function for SPARK
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When a pledge function is called in an assertion, SPARK recognizes it and iden-
tifies its parameter as a pledge. It therefore attempts to show that the property
is implied by the borrow relation (as opposed to implied by the current value of
the borrower).
X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X;
begin

Y := Y.Next.Next;
pragma Assert (Pledge (Y, Y = X.Next.Next));
-- True as this is implied by borrow relation
pragma Assert (Pledge (Y, X.Data = 1 and X.Next.Data = 2));
-- True again as the first 2 elements of X are frozen
pragma Assert (Pledge (Y, X.Next.Next.Data = 3));
-- False, though this is true at the current program point, as it is not
-- guaranteed to hold at the end of the borrow.
...

end;

Using pledges, we can formally verify the Set All To Zero procedure. Its post-
condition states that all elements of the list have been set to 0 using the Nth
function. To be able to express the loop invariant in a similar way, we have intro-
duced a ghost variable C to count the number of iterations. Its value is main-
tained by the first loop invariant. The second and third invariants are pledges,
describing how the value of X can be reconstructed from the value of the iterator
Y. The second invariant gives the length of the list, while the third describes
the value of its elements using the Nth function. Elements which have already
been processed are frozen by the borrow. Their value is known to be 0. Other
elements can be linked to the corresponding position in the iterator Y.
procedure Set_All_To_Zero (X : List) with

Pre ⇒ Length (X) < My_Nat’Last,
Post ⇒ Length (X) = Length (X)’Old

and (for all I in 1 .. Length (X) ⇒ Nth (X, I) = 0);
-- All elements of X are 0 after the call

procedure Set_All_To_Zero (X : List) is
C : My_Nat := 0 with Ghost;
Y : access List_Cell := X;

begin
while Y �= null loop

pragma Loop_Invariant (C = Length (Y)’Loop_Entry - Length (Y));
-- C elements have been traversed
pragma Loop_Invariant

(Pledge (Y, Length (X) = Length (Y) + C));
pragma Loop_Invariant

(Pledge (Y, (for all I in 1 .. Length (X) ⇒
Nth (X, I) = (if I ≤ C then 0 else Nth (Y, I - C)))));

-- All elements are 0 up to C, others are elements of Y
Y.Data := 0;
Y := Y.Next;
C := C + 1;

end loop;
end Set_All_To_Zero;

Note that, in general, it is not necessary to write a pledge to verify a program
using a local borrower. Indeed, the analysis tool is able to precisely track the bor-
row relation through successive reborrows. Pledges need only be provided when
the borrow relation itself cannot be tracked by the tool, for example because of
a loop, like in our example.
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6 Evaluation

We could not try the tool on any pre-existing benchmark since SPARK codebases
do not have pointers, and Ada codebases usually violate some SPARK rules. In
particular, Ada codebases have no reason to abide by the ownership policy of
SPARK. So instead, we mostly had to write new tests to assess the correctness
and performance of our implementation. The public testsuite of SPARK contains
more than 150 tests mentioning access types, be they supported cases or not.

To assess expressivity and provability on programs dealing with recursive
data structures, we have written 6 examples, none of them very big, but ranging
over various levels of complexity5. On all of these examples, we have shown that
the runtime checks imposed by the Ada language are guaranteed to pass and
that no uninitialized value can be read. In addition, we have manually supplied
functional properties.

Figure 1 gives some metrics over these examples. Under the tab Loc are
listed the total number of lines of code in the example, the number of lines of
specification (including contracts and specification functions), and the number of
additional ghost annotations (assertions, loop invariants, ghost variables. . .). The
#Checks column gives the number of checks generated by the tool (contracts,
assertions, invariants, language defined checks...). In the last three columns, we
can see the total running time of SPARK, both from scratch using its default
strategy and only replaying the proofs through the replay facility, as well as the
maximal time needed to prove a single verification condition.

Example #Subp
LOC

#Checks
Analysis time (s)

All Spec Ghost Default Replay Max VC

set all to zero 5 57 19 (33%) 8 (14%) 25 4 3 < 1

linear search 7 136 67 (49%) 24 (17%) 109 10 9 < 1

pointer-based maps 7 130 38 (29%) 12 (9%) 64 6 5 < 1

route shift 8 99 50 (50%) 3 (3%) 64 9 6 < 1

binary search 13 239 99 (41%) 42 (17%) 129 24 17 4

red black trees 37 611 107 (17%) 384 (63%) 920 258 152 16

Fig. 1. Overview of the examples involving recursive data structures

Though these examples are small, we think they demonstrate that it is pos-
sible to define recursive data structures in SPARK, and to verify iterative pro-
grams using them. When writing the algorithms, we found that the limitations
mostly come from the ownership policy of SPARK. Some data structures are not
supported, requiring either to switch to full Ada for their implementations, or
to change the algorithm to work around the missing links. In general, we found

5 https://github.com/AdaCore/spark2014/tree/master/papers/Pledge2020/
examples.

https://github.com/AdaCore/spark2014/tree/master/papers/Pledge2020/examples
https://github.com/AdaCore/spark2014/tree/master/papers/Pledge2020/examples
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that the annotation effort required to describe the borrow relations, though non-
negligible, was acceptable. In particular, it uses the standard SPARK expres-
sions, with no mentions of memory separation or permission.

7 Related Work

Program verification tools for mainstream languages such as C or Java generally
support aliasing, because the concept of pointer or reference is more central. They
deal with it by modeling the heap. The WP plugin of Frama-C uses by default a
typed memory model where different arrays are used for the basic types of C [6].
The VerCors [3] toolset handles high-level programming languages, such as Java,
by extending the annotation language with separation logic with permission [10].
In SPARK we have chosen a different approach, as we avoid modeling the heap
completely by using ownership rules to enforce non-aliasing.

The ownership rules introduced in SPARK are largely inspired by the Rust
language [11]. The differences are mostly motivated by the need to comply with
the preexisting Ada semantics of pointers. In addition, SPARK was aiming at
coming up with a subset as easy to verify as possible. The resulting model
is simpler because it does not make lifetime of borrowers explicit, and aliases
created through borrows are always statically known.

The Prusti verification tool for Rust [1] allows users to verify that a program
complies with its specification. Both tools provide similar guarantees and require
similar annotations. However, they differ in their implementation. Indeed, Prusti
works by translating separation constraints enforced by the Rust type system
to the intermediate verification language of the Viper tool [9]. Our work differs
here, as we use the ownership system to abstract away memory related concerns,
so that the verification process does not need to be aware of them.

In a recent work [7], Matsushita et al. propose a translation to CHCs for
Rust programs. Like in our approach, the restrictions imposed by the ownership
policy are key for the soundness of their method. However, while we introduce
the notion of borrow relation to be able to use a standard WP calculus, they
present a new calculus specifically tailored to Rust references.

8 Conclusion

We have presented a recent extension of the SPARK language and toolset to
support pointers. It is based on an ownership policy enforcing non-aliasing. To
support pointer-based recursive data structures, a restricted form of aliasing is
introduced in SPARK through local borrowers, which can be used to iterate
through a linked data structure in an imperative way. We have described how
local borrowers can be supported by the verification tool, without introducing
a memory model, by using a mutable predicate named the borrow relation.
This borrow relation can be described when necessary using special annotations
named pledges, which solely consist of SPARK standard expressions, and do not
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expose the underlying verification technique. Our work is available in the 20.1
release of SPARK Pro and will be part of the next community release.

As for future work, we would like to extend the subset of Ada pointers sup-
ported in SPARK. In particular, we would like to introduce function pointers to
model callbacks, pointers to constants with a more permissive ownership policy,
and local borrowing of objects allocated on the stack.
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Abstract. Ivy is a multi-modal verification tool for correct design
and implementation of distributed protocols and algorithms, supporting
modular specification, implementation and proof. Ivy supports proving
safety and liveness properties of parameterized and infinite-state systems
via three modes: deductive verification using an SMT solver, abstraction
and model checking, and manual proofs using natural deduction. It sup-
ports light-weight formal methods via compositional specification-based
testing and bounded model checking. Ivy can extract executable dis-
tributed programs by translation to efficient C++ code. It is designed to
support decidable automated reasoning, to improve proof stability and
to provide transparency in the case of proof failures. For this purpose,
it presents concrete finite counterexamples, automatically audits proofs
for decidability of verification conditions, and provides modular hiding
of theories.

1 Introduction

Ivy is an open-source [16] multi-modal verification tool for correct design and
implementation of distributed algorithms, supporting modular specification,
implementation and proof. The motivating principles of Ivy are predictability,
stability and transparency. That is, automated proof steps should provide com-
plexity bounds, should be insensitive to small perturbations, and when they fail
should provide actionable feedback. To the extent consistent with these princi-
ples, Ivy aims to maximize expressiveness and proof automation, and thus to
achieve a high level of user productivity in designing, implementing and prov-
ing programs. A major goal of Ivy is to support decidable reasoning. That is,
automated proof should be restricted to logical fragments for which the tool is
a decision procedure. This greatly improves the stability of automated provers,
which otherwise rely on fragile heuristics to avoid divergence [28]. This is impor-
tant for the maintenance of large proofs, to prevent small changes from creat-
ing unpredictable proof failures. Moreover, on decidable problems, provers fail
transparently by providing true counterexamples, which greatly simplifies the
iterative development of proofs. Ivy supports the decomposition of proofs to
decidable theories by the use of modular abstraction.
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 190–202, 2020.
https://doi.org/10.1007/978-3-030-53291-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_12


Ivy: A Multi-modal Verification Tool for Distributed Algorithms 191

The architecture of Ivy is depicted in Fig. 1. The figure shows the major
components of the tool and the information flow between them. Ivy provides a
language (also called “Ivy”) for the modular description of distributed programs,
along with their specifications and proofs (see Sect. 2). Ivy is a synchronous,
reactive programming language [3], meaning that the program only executes
actions in response to input from its environment, and these actions appear to
execute atomically. From an Ivy program, the tool can extract an asynchronous,
distributed implementation. A program is made up of reactive modules [1], each
having a temporal assume/guarantee-style specification. After parsing of this
description and elaboration of templates, the program is decomposed into its
component modules, each with associated assumptions and proof obligations,
according to a system of proof rules for circular assume/guarantee reasoning
(see Sect. 2.1).

These proof obligations are passed on to the tactics engine (see Sect. 3). This
engine orchestrates the use of various built-in proof tactics, including decidable
invariant checking with an SMT solver (Sect. 3.1), model checking with eager
abstraction [19] (Sect. 3.2), liveness proof by translation to safety (Sect. 3.3) and
logical deduction rules (Sect. 3.4). Each tactic works by reducing a given proof
goal to a (possibly empty) set of sub-goals, from which the original goal can be
proved. Combined with modular reasoning, the tactics engine makes it possible
to use a variety of proof approaches and proof automation tools in constructing
a proof.

Ivy extracts executable distributed programs by translation to C++ (see
Sect. 5). From the specifications of a module, Ivy can also generate a modular
randomized specification-based tester [7] (see Sect. 4.1). This also makes it pos-
sible to test infrastructure not written in Ivy (including hardware) against Ivy
specifications.

1.1 Related Work

Ivy can be thought of as a hybrid between program verification tools such as
ESC-Java [11] and Dafny [14], based on the Floyd/Hoare approach, composi-
tional model checking tools, such as Mocha [2] and Cadence SMV [17] and proof
assistants based on the LCF model, such as Isabelle [26] or Coq [4]. Compared to
program verification tools that support only procedure modularity, Ivy provides
a richer form of specification that allows complete hiding of internal state, and
provides architectural support for decidable reasoning (see Sect. 2.1). Compared
to compositional tools, Ivy integrates a richer variety of reasoning techniques
(see Sect. 3). Compared to proof assistants, Ivy provides domain-specific support
for decidable proof automation, supporting a greater degree of proof automa-
tion [28]. On the other hand, Ivy relies on a vastly larger trusted computing base
than typical proof assistants. Moreover, Ivy has no mechanism of reflection, and
thus cannot be used for meta-reasoning about programs and program transfor-
mations. In principle, all the techniques in Ivy could be integrated into a tool such
as Isabelle or Coq but the effort would be large. A less foundational tool such as
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Fig. 1. Ivy architecture, showing flow between major components. Red, solid arrows
represent flow of proof goals and assumptions. Green, dashed arrows represent flow of
proofs and/or counterexamples. Not shown is VC generator, shared between Invariant
Checking/BMC and Eager Abstraction components. (Color figure online)

Ivy makes it possible to rapidly experiment with new proof and proof automa-
tion strategies. Compared to all of these tools, Ivy differs in providing native
support for extracting distributed programs, and specification-based testing. A
related tool, mypyvy, focuses on more powerful invariant inference techniques,
but lacks the other features of Ivy [10,29].

2 A Modular Language for Decidable Reasoning

The primary design goal of Ivy’s language is to support decidable reasoning while
maximizing expressiveness and performance. Figure 2 is an example of the basic
unit of verification in Ivy, called an isolate. An isolate is a reactive module that
hides internal state and provides a temporal (that is, stateful) specification of its
interface. An isolate has named traits that include types, properties, variables
and actions. It is divided into a specification part and an implementation part.
The figure shows an example of a simple module that inputs a sequence of
numbers and outputs an upper bound on the numbers received thus far.

Types, Variables and Actions. The native datatypes in Ivy include just the
Boolean type, uninterpreted types, records (structs) over datatypes, and pure
first-order functions. In the figure, line 2 declares an uninterpreted type t. Line
6 declares a state variable ‘seen’ holding a predicate over t. This variable is
initialized at line 9. This assigns ‘seen(X)’ to be the function that returns false
for all values of X.
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Procedures in Ivy are called actions and may have side effects on variables.
Parameters are passed by value and there are no references. This greatly sim-
plifies modular reasoning (see Sect. 2.1) and also allows for aggressive compiler
optimizations due to the absence of aliasing (see Sect. 5).

In the figure, line 3 declares an action ‘ub’ that takes an input x of type t
and outputs y of type t. Its implementation is given at lines 24 to 27. It updates
a state variable ‘max’ holding the maximum value received thus far, and returns
this value by assigning it to the output variable y.

2.1 Modularity and Decidability

The specification part of the isolate (lines 5 to 18) consists of ghost variables and
code that are visible outside the isolate. The implementation part (lines 19 to 30)
consists of real variables and code that are invisible outside the module. At line
15 the ghost predicate ‘seen’ is updated to reflect the fact that value x has been
seen as an input. Specification code contains assume/guarantee specifications in
terms of require and ensure statements. For example, line 12 represents an
assumption that input values are non-negative. Line 16 represents a guarantee
that output values will be an upper bound on all seen values.

Ghost and real code are kept syntactically separate in Ivy. The specification
code is interleaved with the implementation code using the directives ‘before’
(line 11) and ‘after’ (line 14). Thus, in the figure, the ‘require’ statement acts
as a precondition, while the ‘ensure’ statement acts as a postcondition. The
implementation code is not allowed to side effect any externally visible state, so
it is sound to erase (or ‘slice’) this code when verifying other modules. Other
modules see only the ghost code, which provides an abstract model of the isolate.
Similarly, when extracting executable code, it is safe to erase the ghost code
(which must be proven to be terminating). This makes it possible, for example,
to provide a pure, functional specification of a module interface, even though
internally it has state.

Theories can also be hidden inside modules. For example, the implementation
of our example interprets the type t as the integers (line 28). For verification
purposes, this instantiates the theory of Peano arithmetic for type t. This theory
is used only to prove correctness of the isolate, and is invisible to other isolates.
The theory can be used to prove properties (such as the irreflexivity property
at line 7) that provide an abstraction of the type externally. The ability to hide
theories behind abstractions provides an important strategy for keeping proof
obligations decidable.

An isolate with no implementation part (that is, a “ghost” module) can act
as an abstract model of a protocol. Using Ivy’s modular rules, an abstract model
can be refined to an implementation, using properties of the abstract model as
lemmas. In addition to simplifying the proof, abstract models provide another
useful strategy to hide functions, properties or theories that break decidability.
This approach, in combination with theory hiding, was used to verify implemen-
tations of distributed consensus protocols [28]. Modularity provides the primary
means in Ivy of keeping the automated reasoning decidable.
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1 isolate foo = {
2 type t
3 action ub(x:t) returns (y:t)
4

5 specification {
6 relation seen(X:t)
7 property ∀X : t.¬(X < X)
8 after init {
9 seen(X) := false;

10 }
11 before ub {
12 require x ≥ 0;
13 }
14 after ub {
15 seen(x) := true;
16 ensure seen(X) → X ≤ y;
17 }
18 }

19 implementation {
20 var max : t
21 after init {
22 max := 0;
23 }
24 implement ub {
25 max := x if x > max else max;
26 y := max;
27 }
28 interpret t → int
29 invariant seen(X) → X ≤ max
30 }
31 }

Fig. 2. Example of an Ivy isolate.

3 Verification Tactics

Ivy provides a range of automated tactics for discharging proof goals that are
selected for their relatively predictable and stable performance, and for the abil-
ity to fail transparently.

3.1 Invariant Checking with SMT

The default tactic for proving safety properties is proof by inductive invariant,
using the SMT solver Z3 [21]. For example, in Fig. 2, the guarantee at line 16 is
proved using the auxiliary inductive invariant at line 29. The invariant relates the
hidden implementation state variable ‘max’ with the visible specification state
variable ‘seen’. An invariant is a property that is required to hold only between
executions of actions of the isolate. That is, actions may temporarily violate an
invariant, but must re-establish it before terminating. The VC (verification con-
dition) for the isolate holds if all invariants are established by the intializers and
preserved by the interface actions, and if the invariant implies that no assertion
in the code fails. These conditions are verified modulo the visible theories.

Before attempting to prove the VC, the invariance tactic sends it to the
fragment checker, which determines whether the VC is in a logical fragment
called FAU [12] for which Z3 is a decision procedure. If the VC is not in FAU,
Ivy provides an explanation to the user, by pointing to formulas that create a
function cycle or that violate rules for the use of quantifiers and interpreted
operators of the visible theories. A function cycle is a cycle in a graph whose
vertices are types and whose edges are functions (including Skolem functions).
This transparent mode of failure helps the user to reorganize the proof to keep
the VC’s in the decidable fragment.

If a VC in the decidable fragment is false, Z3 fails transparently, producing
a true finite counter-model, which is in turn translated into an execution trace
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that violates an invariant or guarantee. Ivy provides a graphical interactive tool
to help the user in strengthening invariants [25] based on counterexamples. If
the VC is valid, the tactic discharges the proof goal, returning the empty set of
subgoals.

3.2 Eager Abstraction and Model Checking

An alternative tactic to prove safety properties is model checking with eager
abstraction [19]. This technique allows parameterized and infinite-state systems
to be verified with a finite-state model checker. The tactic first propositionally
strengthens the symbolic transition relation by adding instances of axioms of
the logic and theories, or of proved properties. It then propositionally abstracts
the transition relation by converting the atomic predicates to Boolean variables.
The resulting finite-state abstraction is verified by the ABC model checker [8].
If the property is false, the user is presented with an abstract counterexample
expressed in terms of the truth values of the atomic propositions. The user
may refine the abstraction by adding instantiation terms or auxiliary invariants.
In [19] it was shown that this technique can reduce the burden of constructing
auxiliary invariants, simplifying the overall proof of distributed protocols. As
an example, the isolate of Fig. 2 can be proved without the auxiliary invariant.
With eager abstraction, one need not be concerned with function cycles, but on
the other hand, diagnosing abstract counterexamples can be challenging.

This approach is consistent with Ivy’s philosophy of using stable and trans-
parent automation, since the finite-state model checker has a single-exponential
upper complexity bound and terminates with a proof or a counterexample. This
is in contrast to more powerful proof engines such as Horn solvers [6] that suf-
fer from unpredictable divergence. In practice, although eager abstraction is not
fully automated, it can handle problems that are substantially beyond the capa-
bilities of current Horn solvers.

3.3 Liveness-to-Safety Transformation

Ivy supports proofs of temporal properties, e.g., liveness properties, via a
liveness-to-safety transformation. Temporal properties are specified in first-order
linear temporal logic (FO-LTL). The liveness-to-safety tactic reduces a temporal
proof goal into a safety proof goal, which can then be proven using an induc-
tive invariant. For finite-state or parameterized systems, any temporal prop-
erty can be proven by showing the absence of fair cycles, which is a safety
property [27]. For infinite-state systems such an argument is not sound, and
Ivy implements dynamic abstraction which generalizes the notion of fair cycles
to infinite-state systems in a sound and powerful way [23,24]. With dynamic
abstraction, Ivy’s liveness-to-safety tactic supports temporal proofs of infinite-
state systems, including both distributed systems with infinite-state per process
and systems with unbounded parallelism, where new processes can be dynami-
cally created so an infinite trace may involve infinite set of processes.
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1 isolate bar = {
2 finite type t
3 action step(x:t)
4 specification {
5 relation pending(X:t)
6 instance enter : signal
7

8 after init {
9 pending(X) := true;

10 }
11 before step {
12 require pending(x);
13 call enter.raise;
14 pending(x) := false;
15 }

16 temporal property (�♦ enter.now) →
17 ♦ ∀X. ¬pending(X)
18 proof {
19 tactic l2s with
20 invariant ♦ enter.now
21 invariant ($was$ ¬pending(X)) → ¬pending(X)
22 invariant ($happened$ enter.now) →
23 ∃X. ($was$ pending(X)) ∧ ¬pending(X)
24 }
25 }
26 }

Fig. 3. Example of an Ivy isolate with a temporal property.

The liveness-to-safety tactic fits within Ivy’s philosophy of using decidable
reasoning. The more standard way of proving liveness properties is to use rank-
ing functions, but for distributed systems, the required rankings often involve
cardinalities of sets defined via first-order formulas, resulting in verification con-
ditions that fall outside FAU and other decidable fragments. In contrast, the
transformation to safety based on fair cycles and dynamic abstraction results in
verification conditions which are often in the FAU fragment. Furthermore, since
the temporal proof is transformed to a safety verification problem, it is possible
to leverage for liveness proofs all the tactics and mechanisms that Ivy contains
for safety verification.

When the liveness-to-safety tactic is applied, Ivy constructs a symbolic cycle
detection transition system, which tracks fairness constraints and includes a
shadow or saved copy of the state variables, similar to [5]. For finite-state or
parameterized systems, it is enough to show that it is not possible to revisit the
saved state while satisfying all fairness constraints. This can be shown by an
inductive invariant, and Ivy contains special syntax for writing the invariant of
the cycle detection system (e.g., to access the saved copy of state variables). For
infinite-state systems, Ivy’s cycle detection system includes dynamic abstraction,
and invariants may also refer to the state of the abstraction [23].

Figure 3 shows an example of a simple liveness proof of an abstract model in
Ivy. The type t (line 2) is declared as finite, which means it is sound to use a
fair cycle argument without dynamic abstraction. The specification state of the
system consists of a single unary relation, pending, which is initialized to true
for all values of type t. The step action (line 11) removes a single value from the
pending relation. This can model, e.g., execution of tasks from a finite pool of
pending tasks. The temporal property that we prove (line 16) is that if step is
called infinitely often, then eventually nothing is pending. At line 13, we detect
the call by raising a flag enter.now. The proof applies the liveness-to-safety (l2s)
tactic (line 19), and supplies inductive invariants for the cycle detection system.
The special operators $was$ and $happened$ are used to refer to the saved state,
and the fairness constraints, respectively. The crux of the invariant is that after
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1 axiom eid(X) = eid(Y ) → X = Y
2 axiom mgr(X,Y ) ∧ mgr(X,Z) → Y = Z
3 explicit axiom [mgr total] ∃Y. mgr(X,Y )
4 axiom mgr(X,X) → X = ceo
5

6 invariant mgr(X,Y ) ∧ scanned(Y ) → mid(X) = eid(Y )
7

8 action get mid(x:emp) returns (res:id) = {
9 require ∀Y.scanned(Y );

10 res := mid(x);
11 ensure x �= ceo → res �= eid(x);
12 proof {
13 assume mgr total with X = x
14 }
15 }

Fig. 4. Example of manual quantifier instantiation with a tactic

enter.now has happened, there is some element which was pending in the saved
state and is not pending anymore, showing that the system has no fair cycle.

3.4 Logical Tactics

Though most of a proof in Ivy is done with the above automated proof tactics,
there are occasional situations in which a small amount of detailed manually-
guided proof is needed, or is preferable to restructuring the proof. For this
purpose, Ivy provides logical proof tactics that can be applied to properties,
invariants or code assertions, either to complete the proof or to reduce it to
subgoals that can be discharged by the automated tactics. A simple example
is shown in Fig. 4. Here, mgr(X,Y ) indicates that the manager of employee X
is Y and eid(X) is the employee id of X. We assume that employee ids are
unique, each employee has exactly one manager and that only the CEO is her
own manager (lines 1 to 4). Action get mid(x) returns the id of the manager of
employee x. For this purpose, a procedure (not shown) scans the employees m
and sets mid(x) = eid(m) for each x managed by m, establishing the invariant
at line 6. Action get mid(x) requires that all employees have been scanned and
ensures that the return value is not the id of x, unless x is the CEO.

Axiom mgr total states that for all employees there exists a manager (the
universal quantifier on X is implicit). Ivy complains that this quantifier alter-
nation puts the VC outside the decidable fragment. We can solve this with a
manual quantifier instantiation. We first tag the axiom explicit, meaning that it
is not used by the default tactic. We then apply the tactic ‘assume’ (line 13) to
instantiate this axiom for X = x. The resulting assumption ∃Y.mgr(x, Y ) has no
alternation. The modified proof goal is discharged by the default tactic using Z3.
Ivy’s proof engine is based on the λΠ calculus [13] and a deterministic second-
order matching algorithm [30]. The Ivy standard library uses this framework to
define proof rules for natural deduction, similarly to Isabelle/FOL [26]. Logical
tactics also make it possible to perform theory reasoning outside the decidable
fragment, for example, applying the Peano induction axiom.
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4 Light-Weight Formal Methods

4.1 Compositional Specification-Based Testing

Before attempting a formal proof that an isolate satisfies its specification, it is
useful to debug it using testing. For this purpose, Ivy provides compositional
specification-based testing. The testers that Ivy produces generate randomized
input sequences for an isolate that satisfy its assumptions and check the outputs
against the isolate’s guarantees. This is similar in principle to specification-based
testing tools such as QuickCheck [9], but is reactive and compositional. Composi-
tionality provides a kind of completeness for unit testing. That is, if a system fails
its specification, then there is a local test of some component that fails. Unlike
QuickCheck, Ivy does not require the user to provide generators for datatypes,
instead relying on SMT solving for this purpose. Ivy can also be used to gener-
ate specification-based tests for hardware or software systems not written in Ivy.
For example, it has been used to find bugs in memory hierarchy components for
RISC-V processors [18], and the QUIC secure Internet transport protocol [20].

4.2 Bounded and Finite-State Model Checking

For debugging, Ivy supports bounded model checking. This is decidable if the
VC’s are in the decidable fragment. It also allows uninterpreted types to be
finitely instantiated, allowing under-approximate model checking in the style of
TLC [31].

5 Extracting Efficient Executable Code

Compilation. The implementation part of an Ivy program can be extracted as
executable code in C++. To be extractable, the implementation must satisfy cer-
tain computability conditions, for example that all quantifiers in conditionals be
bounded. For functions, the compiler can choose among several representations:
a closure, a dense representation as an array, or a sparse representation as a hash
table. The dense representation is unboxed, allowing a cache-efficient contiguous
representation of an array of structures and reducing allocation overhead.

Because there are no references in Ivy, there is a risk of copying large struc-
tures passed as arguments. However, the lack of aliasing makes it relatively easy
for the compiler to detect linear use of data, allowing call and return by reference
in the extracted code, and in-place update of structures. Subtype polymorphism
in Ivy is implemented by the compiler using smart pointers, allowing structure
sharing (and potentially copy-on-write, though this is not yet implemented).
In addition, the compiler borrows a technique from the Rust language [22] to
introduce references. Consider the Ivy code on the left of Fig. 5 that looks up a
value in a map, operates on it, then writes it back into the map. The compiler
recognizes this as an instance of the “borrowing” pattern and renders it as the
C++ code on the right, which operates on the value in the map by reference.



Ivy: A Multi-modal Verification Tool for Distributed Algorithms 199

1 b := m(x);
2 b := f(b);
3 m(x) := b;

1 auto &b = m[x];
2 f(b);

Fig. 5. Updating a map in place using the borrow pattern.

This is possible because the of lack of aliasing and the fact that the compiler
understands the underlying data structures. A C++ compiler cannot accomplish
this optimization because of the difficulty of pointer analysis in the map imple-
mentation and the called operator f . Benchmarks of an older Ivy compiler [28]
on distributed protocols showed comparable performance to implementation in
OCaml and Go, though Ivy is purely value-based, while these languages support
references.

Concurrency. Although Ivy is a synchronous reactive language, the compiler can
extract parameterized distributed programs from Ivy programs in a sound way.
In a parameterized module, each action and state variable has a first parameter
representing a location. The compiler verifies that different locations do not
interfere with each-other, and then extracts an executable process that takes its
location as a parameter. Ivy guarantees that executing the locations concurrently
is observably equivalent sequential execution, based on a left-mover/right-mover
argument [15,28].

Run-Time Support. Ivy provide a standard library that includes useful abstrac-
tions, such ordered datatypes and arrays, as well as formally specified interfaces
to networking services provided by operating systems. In addition, the com-
piler automatically generates marshaling and unmarshaling code for user-defined
datatypes. These facilities make it relatively straightforward to implement veri-
fied networked protocols in Ivy.

6 Conclusion

Ivy has been designed to provide predictability, stability and transparency in
the process of developing verified systems. For this purpose, it integrates a col-
lection of verification techniques that provide these properties, while attempting
to maximize the expressiveness of the language, the degree of proof automation,
and the efficiency of extracted code. By setting the division of labor between the
human and automated provers appropriately, it aims to increase the productivity
of the overall process of formal development.
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Abstract. We propose an extension of separation logic with fractional
permissions, aimed at reasoning about concurrent programs that share
arbitrary regions or data structures in memory. In existing formalisms,
such reasoning typically either fails or is subject to stringent side condi-
tions on formulas (notably precision) that significantly impair automa-
tion. We suggest two formal syntactic additions that collectively remove
the need for such side conditions: first, the use of both “weak” and
“strong” forms of separating conjunction, and second, the use of nominal
labels from hybrid logic. We contend that our suggested alterations bring
formal reasoning with fractional permissions in separation logic consid-
erably closer to common pen-and-paper intuition, while imposing only a
modest bureaucratic overhead.

Keywords: Separation logic · Permissions · Concurrency · Verification

1 Introduction

Concurrent separation logic (CSL) is a version of separation logic designed
to enable compositional reasoning about concurrent programs that manipu-
late memory possibly shared between threads [6,26]. Like standard separation
logic [28], CSL is based on Hoare triples {A} C {B}, where C is a program and
A and B are formulas (called the precondition and postcondition of the code
respectively). The heart of the formalism is the following concurrency rule:

{A1}C1 {B1} {A2} C2 {B2}
{A1 � A2} C1 ||C2 {B1 � B2}

where � is a so-called separating conjunction. This rule says that if two threads
C1 and C2 are run on spatially separated resources A1�A2 then the result will be
the spatially separated result, B1 � B2, of running the two threads individually.

However, since many or perhaps even most interesting concurrent programs
do share some resources, � typically does not denote strict disjoint separation of
memories, as it does in standard separation logic (where it is usually written as ∗).
c© The Author(s) 2020
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Instead, it usually denotes a weaker sort of “separation” designed to ensure that
the two threads at least cannot interfere with each others’ data. This gives rise to
the idea of fractional permissions, which allow us to divide writeable memory into
multiple read-only copies by adding a permission value to each location in heap
memory. In the usual model, due to Boyland [5], permissions are rational numbers
in the half-open interval (0, 1], with 1 denoting the write permission, and values in
(0, 1) denoting read-only permissions. We write the formula Aπ, where π is a per-
mission, to denote a “π share” of the formula A. For example, (x �→ a)0.5 (typically
written as x

0.5�→ a for convenience) denotes a “half share” of a single heap cell, with
address x and value a. The separating conjunction A�B then denotes heaps realis-
ing A and B that are “compatible”, rather than disjoint: where the heaps overlap,
they must agree on the data value, and one adds the permissions at the overlapping
locations [4]. E.g., at the logical level, we have the entailment:

x
0.5�→ a � x

0.5�→ b |= a = b ∧ x �→ a. (1)

Happily, the concurrency rule of CSL is still sound in this setting (see e.g. [29]).
However, the use of this weaker notion of separation � causes complications

for formal reasoning in separation logic, especially if one wishes to reason over
arbitrary regions of memory rather than individual pointers. There are two par-
ticular difficulties, as identified by Le and Hobor [24]. The first is that, since
� denotes possibly-overlapping memories, one loses the main useful feature of
separation logic: its nonambiguity about separation, which means that desirable
entailments such as A0.5 � B0.5 |= (A � B)0.5 turn out to be false. E.g.:

x
0.5�→ a � y

0.5�→ b �|= (x �→ a � y �→ b)0.5.

Here, the two “half-pointers” on the LHS might be aliased (x = y and a = b),
meaning they are two halves of the same pointer, whereas on the RHS they
must be non-aliased (because we cannot combine two “whole” pointers). This
ambiguity becomes quite annoying when one adds arbitrary predicate symbols
to the logic, e.g. to support inductively defined data structures.

The second difficulty is that although recombining single pointers is straight-
forward, as indicated by Eq. (1), recombining the shares of arbitrary formulae
is challenging. E.g., A0.5 � A0.5 �|= A, as shown by the counterexample

(x �→ 1 ∨ y �→ 2)0.5 � (x �→ 1 ∨ y �→ 2)0.5 �|= x �→ 1 ∨ y �→ 2.

The LHS can be satisfied by a heap with a 0.5-share of x and a 0.5-share of y,
whereas the RHS requires a full (1) share of either x or y.

Le et al. [24] address these problems by a combination of the use of tree shares
(essentially Boolean binary trees) rather than rational numbers as permissions,
and semantic restrictions on when the above sorts of permissions reasoning can
be applied. For example, recombining permissions (A0.5�A0.5 |= A) is permitted
only when the formula is precise in the usual separation logic sense (cf. [28]).
The chief drawback with this approach is the need to repeatedly check these side
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conditions on formulas when reasoning, as well as that said reasoning cannot be
performed on imprecise formulas.

Instead, we propose to resolve these difficulties by a different, two-pronged
extension to the syntax of the logic. First, we propose that the usual “strong”
separating conjunction ∗, which enforces the strict disjointness of memory, should
be retained in the formalism in addition to the weaker �. The stronger ∗ supports
entailments such as A0.5 ∗ B0.5 |= (A ∗ B)0.5, which does not hold when � is
used instead. Second, we introduce nominal labels from hybrid logic (cf. [3,10])
to remember that two copies of a formula have the same origin. We write a
nominal α to denote a unique heap, in which case entailments such as (α ∧
A)0.5 � (α ∧ A)0.5 |= α ∧ A become valid. We remark that labels have been
adopted for similar “tracking” purposes in several other separation logic proof
systems [10,21,23,25].

The remainder of this paper aims to demonstrate that our proposed exten-
sions are (i) weakly necessary, in that expected reasoning patterns fail under
the usual formalism, (ii) correct, in that they recover the desired logical princi-
ples, and (iii) sufficient to verify typical concurrent programming patterns that
use sharing. Section 2 gives some simple examples that motivate our extensions.
Section 3 then formally introduces the syntax and semantics of our extended for-
malism. In Sect. 4 we show that our logic obeys the logical principles that enable
us to reason smoothly with fractional permissions over arbitrary formulas, and
in Sect. 5 we give some longer worked examples. Finally, in Sect. 6 we conclude
and discuss directions for future work.

2 Motivating Examples

In this section, we aim to motivate our extensions to separation logic with per-
missions by showing, firstly, how the failures of the logical principles described in
the introduction actually arise in program verification examples and, secondly,
how these failures are remedied by our proposed changes.

The overall context of our work is reasoning about concurrent programs that
share some data structure or region in memory, which can be described as a
formula in the assertion language. If A is such a formula then we write Aπ to
denote a “π share” of the formula A, meaning informally that all of the pointers
in the heap memory satisfying A are owned with share π. The main question
then becomes how this notion interacts with the separating conjunction �. There
are two key desirable logical equivalences:

(A � B)π ≡ Aπ � Bπ (I)

Aπ⊕σ ≡ Aπ � Aσ (II)

Equivalence (I) describes distributing a fractional share over a separating con-
junction, whereas equivalence (II) describes combining two pieces of a previously
split resource. Both equivalences are true in the |= direction but, as we have seen
in the Introduction, false in the =| one. Generally speaking, � is like Humpty
Dumpty: easy to break apart, but not so easy to put back together again.
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The key to understanding the difficulty is the following equivalence:

x
π�→ a � y

σ�→ b ≡ (x π�→ a ∗ y
σ�→ b) ∨ (x = y ∧ a = b ∧ x

π⊕σ�→ a)

In other words, either x and y are not aliased, or they are aliased and the per-
missions combine (the additive operation ⊕ on rational shares is simply normal
addition when the sum is ≤ 1 and undefined otherwise). This disjunction under-
mines the notational economies that have led to separation logic’s great successes
in scalable verification [11]; in particular, (I) fails because the left disjunct might
be true, and (II) fails because the right disjunct might be. At a high level, � is
a bit too easy to introduce, and therefore also a bit too hard to eliminate.

2.1 Weak vs. Strong Separation and the Distribution Principle

One of the challenges of the weak separating conjunction � is that it interacts
poorly with inductively defined predicates. Consider porting the usual separa-
tion logic definition of a possibly-cyclic linked list segment from x to y from a
sequential setting to a concurrent one by a simple substitution of � for ∗:

lsx y =def (x = y ∧ emp) ∨ (∃z. x �→ z � ls z y).

Now consider a simple recursive procedure foo(x,y) that traverses a linked list
segment from x to y:

foo(x,y) { if x=y then return; else foo([x],y); }

It is easy to see that foo leaves the list segment unchanged, and therefore satisfies
the following Hoare triple:

{(lsx y)0.5} foo(x,y); {(lsx y)0.5}.

The intuitive proof of this fact would run approximately as follows:

{(lsx y)0.5} foo(x,y) {
if x=y then return; {(lsx y)0.5}
else {x �= y ∧ (x �→ z � ls z y)0.5}

{x
0.5�→ z � (ls z y)0.5}

foo([x],y); {x
0.5�→ z � (ls z y)0.5}×{(x �→ z � ls z y)0.5}

{(lsx y)0.5}
} {(lsx y)0.5}

However, because of the use of �, the highlighted inference step is not sound:

x
0.5�→ z � (ls z y)0.5 �|= (x �→ z � ls z y)0.5. (2)
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To see this, consider a heap with the following structure, viewed in two ways:

x
0.5�→ z � z

0.5�→ x � x
0.5�→ z = x �→ z � z

0.5�→ x

This heap satisfies the LHS of the entailment in (2), as it is the �-composition
of a 0.5-share of x �→ z and a 0.5-share of ls z z, a cyclic list segment from z back
to itself (note that here z = y). However, it does not satisfy the RHS, since it is
not a 0.5-share of the �-composition of x �→ z with ls z z, which would require
the pointer to be disjoint from the list segment.

The underlying reason for the failure of this example is that, in going from
(x �→ z � ls z z)0.5 to x

0.5�→ z � (ls z z)0.5, we have lost the information that the
pointer and the list segment are actually disjoint. This is reflected in the general
failure of the distribution principle Aπ � Bπ |= (A � B)π, of which the above
is just one instance. Accordingly, our proposal is that the “strong” separating
conjunction ∗ from standard separation logic, which forces disjointness of the
heaps satisfying its conjuncts, should also be retained in the logic alongside �,
on the grounds that (II) is true for the stronger connective:

(A ∗ B)π ≡ Aπ ∗ Bπ. (3)

If we then define our list segments using ∗ in the traditional way, namely

lsx y =def (x = y ∧ emp) ∨ (∃z. x �→ z ∗ ls z y),

then we can observe that this second definition of ls is identical to the first on
permission-free formulas, since � and ∗ coincide in that case. However, when we
replay the verification proof above with the new definition of ls, every � in the
proof above becomes a ∗, and the proof then becomes sound. Nevertheless, we
can still use � to describe permission-decomposition of list segments at a higher
level; e.g., lsx y can still be decomposed as (lsx y)0.5 � (lsx y)0.5.

2.2 Nominal Labelling and the Combination Principle

Unfortunately, even when we use the strong separating conjunction ∗ to define
list segments ls, a further difficulty still remains. Consider a simple concurrent
program that runs two copies of foo in parallel on the same list segment:

foo(x,y); || foo(x,y);

Since foo only reads from its input list segment, and satisfies the specification
{(lsx y)0.5} foo(x,y); {(lsx y)0.5}, this program satisfies the specification

{lsx y} foo(x,y); || foo(x,y); {lsx y}.

Now consider constructing a proof of this specification in CSL. First we view the
list segment lsx y as the �-composition of two read-only copies, with permis-
sion 0.5 each; then we use CSL’s concurrency rule (see Sect. 1) to compose the
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specifications of the two threads; last we recombine the two read-only copies to
obtain the original list segment. The proof diagram is as follows:

{lsx y}
{(lsx y)0.5 � (lsx y)0.5}

{(lsx y)0.5} {(lsx y)0.5}
foo(x,y); foo(x,y);

{(lsx y)0.5} {(lsx y)0.5}

{(lsx y)0.5 � (lsx y)0.5}
× {lsx y}

However, again, the highlighted inference step in this proof is not correct:

(lsx y)0.5 � (lsx y)0.5 �|= lsx y. (4)

A countermodel is a heap with the following structure, again viewed in two ways:

(x 0.5�→ y � y
0.5�→ y) � x

0.5�→ y = x �→ y � y
0.5�→ y

According to the first view of such a heap, it satisfies the LHS of (4), as it is the
�-composition of two 0.5-shares of lsx y (one of two cells, and one of a single
cell). However, it does not satisfy lsx y, since that would require every cell in
the heap to be owned with permission 1.

Like in our previous example, the reason for the failure of this example is that
we have lost information. In going from lsx y to (lsx y)0.5 � (lsx y)0.5, we have
forgotten that the two formulas (lsx y)0.5 are in fact copies of the same region.
For formulas A that are precise in that they uniquely describe part of any given
heap [12], e.g. formulas x �→ a, this loss of information does not happen and
we do have A0.5 � A0.5 |= A; but for non-precise formulas such as lsx y, this
principle fails.

However, we regard this primarily as a technical shortcoming of the formal-
ism, rather than a failure of our intuition. It ought to be true that we can take
any region of memory, split it into two read-only copies, and then later merge the
two copies to re-obtain the original region. Were we conducting the above proof
on pen and paper, we would very likely explain the difficulty away by adopting
some kind of labelling convention, allowing us to remember that two formulas
have been obtained from the same memory region by dividing permissions.

In fact, that is almost exactly our proposed remedy to the situation. We
introduce nominals, or labels, from hybrid logic, where a nominal α is interpreted
as denoting a unique heap. Any formula of the form α∧A is then precise (in the
above sense), and so obeys the combination principle

(α ∧ A)π � (α ∧ A)σ |= (α ∧ A)σ⊕π, (5)
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where ⊕ is addition on permissions. Thus we can repair the faulty CSL proof
above by replacing every instance of the formula lsx y by the “labelled” formula
α ∧ lsx y (and adding an initial step in which we introduce the fresh label α).

2.3 The Jump Modality

However, this is not quite the end of the story. Readers may have noticed that
replacing lsx y by the “labelled” version α ∧ lsx y also entails establishing a
slightly stronger specification for the function foo, namely:

{(α ∧ lsx y)0.5} foo(x,y); {(α ∧ lsx y)0.5}.

This introduces an extra difficulty in the proof (cf. Sect. 2.1); at the recursive call
to foo([x],y), the precondition now becomes α0.5 ∧ (x 0.5�→ z ∗ (ls z y)0.5)), which
means that we cannot apply separation logic’s frame rule [32] to the pointer
formula without first weakening away the label-share α0.5.

For this reason, we shall also employ hybrid logic’s “jump” modality @ ,
where the formula @αA means that A is true of the heap denoted by the label
α. In the above, we can introduce labels β and γ for the list components x �→ z
and ls z y respectively, whereby we can represent the decomposition of the list
by the assertion @α(β ∗ γ). Since this is a pure assertion that does not depend
on the heap, it can be safely maintained when applying the frame rule, and used
after the function call to restore the label α, using the easily verifiable fact that

@α(β ∗ γ) ∧ (β ∗ γ) |= α.

Similar reasoning over labelled decompositions of data structures is seemingly
necessary whenever treating recursion; we return to it in more detail in Sect. 5.

3 Separation Logic with Labels and Permissions (SLLP)

Following the motivation given in the previous section, here we give the syntax
and semantics of a separation logic, SLLP, with permissions over arbitrary formu-
las, making use of both strong and weak separating conjunctions, and nominal
labels (from hybrid logic [3,10]). First, we define a suitable notion of permissions
and associated operations.

Definition 3.1. A permissions algebra is a tuple 〈Perm,⊕,⊗, 1〉, where Perm
is a set (of “permissions”), 1 ∈ Perm is called the write permission, and ⊕
and ⊗ are respectively partial and total binary functions on Perm, satisfying
associativity, commutativity, cancellativity and the following additional axioms:

π1 ⊕ π2 �= π2 (non-zero)
∀π. π ⊕ 1 is undefined (top)
∀π. ∃π1, π2. π = π1 ⊕ π2 (divisibility)
(π1 ⊕ π2) ⊗ π = (π1 ⊗ π) ⊕ (π2 ⊗ π) (left-dist)
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The most common example of a permissions algebra is the Boyland fractional
permission model 〈(0, 1]∩Q,⊕,×, 1〉, where permissions are rational numbers in
(0, 1], × is standard multiplication, and ⊕ is standard addition but undefined if
p + p′ > 1. From now on, we assume a fixed but arbitrary permissions algebra.

With the permissions structure in place, we can now define the syntax of
our logic. We assume disjoint, countably infinite sets Var of variables, Pred of
predicate symbols (with associated arities) and Label of labels.

Definition 3.2. We define formulas of SLLP by the grammar:

A ::= x = y | ¬A | A ∧ A | A ∨ A | A → A (pure)
| emp | x �→ y | P (x) | A ∗ A | A � A | A −−∗ A | A −−� A (spatial)
| Aπ | α | @αA (perms/labels)

where x, y range over Var, π ranges over Perm, P ranges over Pred, α ranges
over Label and x ranges over tuples of variables of length matching the arity of
the predicate symbol P . We write x

π�→ y for (x �→ y)π, and x �= y for ¬(x = y).

The “magic wands” −−∗ and −−� are the implications adjoint to ∗ and �, as
usual in separation logic. We include them for completeness, but we use −−∗ only
for fairly complex examples (see Sect. 5.3) and in fact do not use −−� at all.

Semantics. We interpret formulas in a standard model of stacks and heaps-
with-permissions (cf. [4]), except that our models also incorporate a valuation
of nominal labels. We assume an infinite set Val of values of which an infinite
subset Loc ⊂ Val are considered addressable locations. A stack is as usual a map
s : Var → Val. A heap-with-permissions, which we call a p-heap for short, is a
finite partial function h : Loc ⇀fin Val×Perm from locations to value-permission
pairs. We write dom (h) for the domain of h, i.e. the set of locations on which h
is defined. Two p-heaps h1 and h2 are called disjoint if dom (h1)∩dom (h2) = ∅,
and compatible if, for all � ∈ dom (h1) ∩ dom (h2), we have h1(�) = (v, π1)
and h2(v, π2) and π1 ⊕ π2 is defined. (Thus, trivially, disjoint heaps are also
compatible.) We define the multiplication π ·h of a p-heap h by permission π by
extending ⊗ pointwise:

(π · h)(�) = (v, π ⊗ π′) ⇔ h(�) = (v, π′).

We also assume that each predicate symbol P of arity k is given a fixed inter-
pretation �P � ∈ (Valk ×PHeaps), where PHeaps is the set of all p-heaps. Here we
allow an essentially free interpretation of predicate symbols, but they could also
be given by a suitable inductive definition schema, as is done in many papers on
separation logic (e.g. [7,8]). Finally, a valuation is a function ρ : Label → PHeaps
assigning a single p-heap ρ(α) to each label α.

Definition 3.3 (Strong and weak heap composition). The strong com-
position h1 ◦ h2 of two disjoint p-heaps h1 and h2 is defined as their union:

(h1 ◦ h2)(�) =
{

h1(�) if � �∈ dom (h2)
h2(�) if � �∈ dom (h1)
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Fig. 1. Definition of the satisfaction relation s, h, ρ |= A for SLLP.

If h1 and h2 are not disjoint then h1 ◦ h2 is undefined.
The weak composition h1 ◦ h2 of two compatible p-heaps h1 and h2 is defined

as their union, adding permissions at overlapping locations:

(h1 ◦ h2)(�) =

⎧⎪⎨
⎪⎩

(v, π1 ⊕ π2) if h1(�) = (v, π1) and h2(�) = (v, π2)
h1(�) if � �∈ dom (h2)
h2(�) if � �∈ dom (h1)

If h1 and h2 are not compatible then h1 ◦ h2 is undefined.

Definition 3.4. The satisfaction relation s, h, ρ |= A, where s is a stack, h a
p-heap, ρ a valuation and A a formula, is defined by structural induction on A in
Fig. 1. We write the entailment A |= B, where A and B are formulas, to mean
that if s, h, ρ |= A then s, h, ρ |= B. We write the equivalence A ≡ B to mean
that A |= B and B |= A.

4 Logical Principles of SLLP

In this section, we establish the main logical entailments and equivalences of SLLP
that capture the various interactions between the separating conjunctions � and
∗, permissions and labels. As well as being of interest in their own right, many of
these principles will be essential in treating the practical verification examples in
Sect. 5. In particular, the permission distribution principle for ∗ (cf. (3), Sect. 2)
is given in Lemma 4.3, and the permission combination principle for labelled
formulas (cf. (5), Sect. 2) is given in Lemma 4.4.
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Proposition 4.1. The following equivalences all hold in SLLP:

A � B ≡ B � A A ∗ B ≡ B ∗ A
A � (B � C) ≡ (A � B) � C A ∗ (B ∗ C) ≡ (A ∗ B) ∗ C

A � emp ≡ A A ∗ emp ≡ A

Additionally, the following residuation laws hold:

A |= B −−� C ⇔ A � B |= C and A |= B −−∗ C ⇔ A ∗ B |= C.

In addition, we can always weaken ∗ to �: A ∗ B |= A � B.

Next, we establish an additional connection between the two separating con-
junctions � and ∗.

Lemma 4.2 (�/∗ distribution). For all formulas A, B, C and D,

(A � B) ∗ (C � D) |= (A ∗ C) � (B ∗ D). (�/∗)

Proof. First we show a corresponding model-theoretic property: for any p-heaps
h1, h2, h3 and h4 such that (h1 ◦ h2) ◦ (h3 ◦ h4) is defined,

(h1 ◦ h2) ◦ (h3 ◦ h4) = (h1 ◦ h3) ◦ (h2 ◦ h4) (6)

Since (h1 ◦ h2) ◦ (h3 ◦ h4) is defined by assumption, we have that h1 ◦ h2 and
h3 ◦ h4 are disjoint and that h1 and h2, as well as h3 and h4 are compatible.
In particular, h1 and h3 are disjoint, so h1 ◦ h3 is defined; the same reasoning
applies to h2 and h4. Moreover, since h1 and h2 are compatible, h1 ◦ h3 and
h2 ◦ h4 must be compatible and so (h1 ◦ h3) ◦ (h2 ◦ h4) is defined.
Now, writing h for (h1 ◦ h2) ◦ (h3 ◦ h4), and letting � ∈ dom (h), we have

h(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(�) if � �∈ dom (h3) , � /∈ dom (h4) and � /∈ dom (h2)
h2(�) if � �∈ dom (h3) , � /∈ dom (h4) and � /∈ dom (h1)
(v, π1 ⊕ π2) if � �∈ dom (h3) , � /∈ dom (h4) and h1(�) = (v, π1)

and h2(�) = (v, π2)
h3(�) if � �∈ dom (h1) , � /∈ dom (h2) and � /∈ dom (h4)
h4(�) if � �∈ dom (h1) , � /∈ dom (h2) and � /∈ dom (h3)
(u, π3 ⊕ π4) if � �∈ dom (h1) , � /∈ dom (h2) and h3(�) = (u, π3)

and h4(�) = (u, π4)

We can merge the first and fourth cases by noting that h(�) = (h1 ◦ h3)(�) if � �∈
dom (h2 ◦ h4), and similarly for the second and fifth cases. We can also rewrite
the last two cases by observing that � /∈ dom (h3) implies h1(�) = (h1 ◦ h3)(�),
and so on, resulting in

h(�) =

⎧⎪⎨
⎪⎩

(h1 ◦ h3)(�) if � �∈ dom (h2 ◦ h4)
(h2 ◦ h4)(�) if � �∈ dom (h1 ◦ h3)
(w, σ1 ⊕ σ2) if (h1 ◦ h3)(�) = (w, σ1) and (h2 ◦ h4)(�) = (w, σ2)

= ((h1 ◦ h3) ◦ (h2 ◦ h4))(�).
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Now we show the main result. Suppose s, h, ρ |= (A�B)∗ (C �D). This gives us
h = (h1 ◦ h2) ◦ (h3 ◦ h4), where s, h1, ρ |= A and s, h2, ρ |= B and s, h3, ρ |= C
and s, h4, ρ |= D. By Eq. (6), we have h = (h1 ◦ h3) ◦ (h2 ◦ h4), which gives us
exactly that s, h, ρ |= (A ∗ C) � (B ∗ D), as required. ��

Next, we establish principles for distributing permissions over various con-
nectives, in particular over the strong ∗, stated earlier as (3) in Sect. 2.

Lemma 4.3 (Permission distribution). The following equivalences hold for
all formulas A and B, and permissions π and σ:

(
Aσ

)π ≡ Aσ⊗π (⊗)
(A ∨ B)π ≡ Aπ ∨ Bπ (∨π)
(A ∧ B)π ≡ Aπ ∧ Bπ (∧π)
(A ∗ B)π ≡ Aπ ∗ Bπ (∗π)

Proof. We just show the most interesting case, (∗π). First of all, we establish
a corresponding model-theoretic property: for any permission π and disjoint p-
heaps h1 and h2, meaning h1 ◦ h2 is defined,

π · (h1 ◦ h2) = (π · h1) ◦ (π · h2). (7)

To see this, we first observe that for any � ∈ dom (h1 ◦ h2), we have that either
� ∈ dom (h1) or � ∈ dom (h2). We just show the case � ∈ dom (h1), since the other
is symmetric. Writing h1(�) = (v1, π1), and using the fact that � �∈ dom (h2),

π · (h1 ◦ h2)(�) = (v1, π ⊗ π1) = (π · h1)(�) = ((π · h1) ◦ (π · h2))(�).

Now for the main result, let s, h and ρ be given. We have

s, h, ρ |= (A ∗ B)π

⇔ h = π · h′ and s, h′, ρ |= A ∗ B
⇔ h = π · h′ and h′ = h1 ◦ h2 and s, h1, ρ |= A and s, h2, ρ |= B
⇔ h = π · (h1 ◦ h2) and s, h1, ρ |= A and s, h2, ρ |= B
⇔ h = (π · h1) ◦ (π · h2) and s, h1, ρ |= A and s, h2, ρ |= B by (7)
⇔ h = h′

1 ◦ h′
2 and s, h′

1, ρ |= Aπ and s, h′
2, ρ |= Bπ

⇔ s, h, ρ |= Aπ ∗ Bπ. ��

We now establish the main principles for dividing and combining permissions
formulas using �. As foreshadowed in Sect. 2, the combination principle holds
only for formulas that are conjoined with a nominal label (cf. Eq. (5)).

Lemma 4.4 (Permission division and combination). For all formulas A,
nominals α, and permissions π1, π2 such that π1 ⊕ π2 is defined:

Aπ1⊕π2 |= Aπ1 � Aπ2 (Split �)

(α ∧ A)π1 � (α ∧ A)π2 |= (α ∧ A)π1⊕π2 (Join �)
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Proof. Case (Split�): Suppose that s, h, ρ |= Aπ1⊕π2 . We have h = (π1⊕π2)·h′,
where s, h′, ρ |= A. That is, for any � ∈ dom (h), we have h′(�) = (v, π) say and,
using the permissions algebra axiom (left-dist) from Definition 3.1,

h(�) = (v, (π1 ⊕ π2) ⊗ π) = (v, (π1 ⊗ π) ⊕ (π2 ⊗ π)).

Now we define p-heaps h1 and h2, both with domain exactly dom (h), by

hi(�) = (v, πi ⊗ π) ⇔ h′(�) = (v, π) for i ∈ {1, 2}.

By construction, h1 = π1 · h′ and h2 = π2 · h′. Since s, h′, ρ |= A, this gives us
s, h1, ρ |= Aπ1 and s, h2, ρ |= Aπ2 . Furthermore, also by construction, h1 and h2

are compatible, with h = h1 ◦ h2. Thus s, h, ρ |= Aπ1 � Aπ2 , as required.

Case (Join �): First of all, we show that for any p-heap h,

(π1 · h) ◦ (π2 · h) = (π1 ⊕ π2) · h. (8)

To see this, we observe that for any � ∈ dom (h), writing h(�) = (v, π) say,

((π1 ⊕ π2) · h)(�)
= (v, (π1 ⊕ π2) ⊗ π)
= (v, (π1 ⊗ π) ⊕ (π2 ⊗ π)) by (left-dist)
= (h1 ⊕ h2)(�) where h1(�) = (v, π1 ⊗ π) and h2 = (v, π2 ⊗ π)
= ((π1 · h) ◦ (π2 · h))(�).

Now, for the main result, suppose s, h, ρ |= (α ∧ A)π1 � (α ∧ A)π2 . We have
h = h1 ◦ h2 where s, h1, ρ |= (α ∧ A)π1 and s, h2, ρ |= (α ∧ A)π2 . That is,
h = (π1 · h′

1) ◦ (π2 · h′
2), where s, h′

1, ρ |= α ∧ A and s, h′
2, ρ |= α ∧ A. Thus

h′
1 = h′

2 = ρ(α) and so, by (8), we have h = (π1⊕π2) ·h′
1, where s, h′

1, ρ |= α∧A.
This gives us s, h, ρ |= (α ∧ A)π1⊕π2 , as required.

Lastly, we state some useful principles for labels and the “jump” modality.

Lemma 4.5 (Labelling and jump). For all formulas A and labels α,

@αA ∧ απ |= Aπ (@ Elim)
(α ∧ A)π |= @αA (@ Intro)

@α(β1
π ∗ β2

σ) ∧ (β1
π � β2

σ) |= α ∧ (β1
π ∗ β2

σ) (@/ ∗ /�)

Proof. We just show the case (@/ ∗ /�), the others being easy. Suppose s, h, ρ |=
@α(β1

π ∗ β2
σ) ∧ (β1

π � β2
σ), meaning that s, ρ(α), ρ |= β1

π ∗ β2
σ and s, h, ρ |=

β1
π � β2

σ. Then we have ρ(α) = (π · ρ(β1)) ◦ (σ · ρ(β2)), while h = (π · ρ(β1)) ◦
(σ · ρ(β2)). Since ◦ is defined only when its arguments are disjoint p-heaps, we
obtain that h = ρ(α) = (π · ρ(β1)) ◦ (σ · ρ(β2)). Thus s, h, ρ |= α ∧ (β1

π ∗ β2
σ).��
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Fig. 2. The key CSL proof rules used in our examples; not shown are standard rules for
consequence, conditionals, load/store, etc. The fresh-labelling rule (Label) and com-
bination of both weak (Frame �) and strong (Frame ∗) frame rules are novel to our
approach. We require weak conjunction � for the parallel rule (Par).

5 Concurrent Program Verification Examples

In this section, we demonstrate how SLLP can be used in conjunction with the
usual principles of CSL to construct verification proofs of concurrent programs,
taking three examples of increasing complexity.

Our examples all operate on binary trees in memory, defined as usual in
separation logic (again note the use of ∗ rather than �):

tree(x) =def (x = null ∧ emp) ∨ (∃d, l, r. x �→ (d, l, r) ∗ tree(l) ∗ tree(r)).

Our proofs employ (a subset of) the standard rules of CSL—with the most impor-
tant being the concurrency rule from the Introduction, the separation logic frame
rules for both ∗ and �, and a new rule enabling us to introduce fresh labels into
the precondition of a triple (similar to the way Hoare logic usually handles exis-
tential quantifiers). These key rules are shown in Fig. 2. We simplify our Hoare
triple to remove elements to handle function call/return and furthermore omit
the presentation of the standard collection of rules for consequence, load, store,
if-then-else, assignment, etc.; readers interested in such aspects can consult [1].
Both of our frame rules have the usual side condition on modified program vari-
ables. The strong frame rule (Frame ∗) has an additional side condition that will
be discussed in Sect. 5.3; until then it is trivially satisfied.

5.1 Parallel Read

Consider the following program:

check(x) {
if (x == null) { return; }
read(x); read(x);

}
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This is intended to be a straightforward example where we take a tree rooted
at x and, if x is non-null, split into parallel threads that run the program read
on x, and whose specification is {απ ∧ tree(x)σ} read(x) {απ ∧ tree(x)σ}. We
prove that check satisfies the specification {tree(x)π} check(x) {tree(x)π}; the
verification proof is in Fig. 3. The proof makes use of the basic operations of our
theory: labelling, splitting and joining. The example follows precisely these steps,
starting by labelling the formula tree(x)π ∧ x �= null with α. The concurrency
rule (Par) allows us to put formulas back together after the parallel call, and the
two copies (α ∧ tree(x)π)0.5 that were obtained are glued back together to yield
tree(x)π, since they have the same label.

Fig. 3. Verification proof of program check in Example 5.1.

5.2 Parallel Tree Processing (Le and Hobor [24])

Consider the following program, which was also employed as an example in [24]:

proc(x) {
if (x == null) { return; }
print(x->d); print(x->d);
proc(x->l); proc(x->l);
proc(x->r); proc(x->r);

}

This code takes a tree rooted at x and, if x is non-null, splits
into parallel threads that call proc recursively on its left and right
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branches. We prove, in Fig. 4, that proc satisfies the specification
{α ∧ tree(x)π} proc(x) {α ∧ tree(x)π}. First we unroll the definition of tree(x)
and distribute the permission over Boolean connectives and ∗. If the tree is
empty the process stops. Otherwise, we label each component with a new label
and introduce the “jump” statement @α(β1 ∗ β2 ∗ β3), recording the decompo-
sition of the tree into its three components. Since such statements are pure, i.e.
independent of the heap, we can “carry” this formula along our computation
without interfering with the frame rule(s). Now that every subregion is labelled,
we split the formula into two copies, each with half share, but after distributing
0.5 over ∗ and ∧ we end up with half shares in the labels as well. We relabel each
subregion with new “whole” labels, and again introduce pure @-formulas that
record the relation between the old and the new labels. At this moment we enter
the parallel threads and recursively apply proc to the left and right subtrees of x.
Assuming the specification of proc for subtrees of x, we then retrieve the original
label α from the trail of crumbs left by the @-formulas. We can then recombine
the α-labelled threads using (Join �) to arrive at the desired postcondition.

5.3 Cross-thread Data Transfer

Our previous examples involve only “isolated tank” concurrency: a program has
some resources and splits them into parallel threads that do not communicate
with each other before—remembering Humpty Dumpty!—ultimately re-merging.
For our last example, we will show that our technique is expressive enough to
handle more sophisticated kinds of sharing, in particular inter-thread coarse-
grained communication. We will show that we can not only share read-only
data, but in fact prove that one thread has acquired the full ownership of a
structure, even when the associated root pointers are not easily exposed.

To do so, we add some communication primitives to our language, together
with their associated Hoare rules. Coarse-grained concurrency such as locks,
channels, and barriers have been well-investigated in various flavours of concur-
rent separation logic [19,26,31]. We will use a channel for our example in this
section but with simplified rules: the Hoare rule for a channel c to send message
number i whose message invariant is Rc

i is {Rc
i (x)} send(c, x) {emp}, while the

corresponding rule to receive is {emp} receive(c) {λret . Rc
i (ret)}. We ignore

details such as identifying which party is allowed to send/receive at a given
time [14] or the resource ownership of the channel itself [18].

These rules interact poorly with the strong frame rule from Fig. 2:

{A} C {B}
(†, ‡) (Frame *){A ∗ F} C {B ∗ F}

(†) ModVars(C) ∩ FreeVars(F ) = ∅
(‡) C does not receive resources

The revealed side condition (‡) means that C does not contain any subcommands
that “transfer in” resources, such as unlock, receive, etc.; this side condition
is a bit stronger than necessary but has a simple definition and can be checked
syntactically. Without (‡), we can reach a contradiction. Assume that the current
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Fig. 4. Verification proof of Le and Hobor’s program from [24] in Example 5.2.
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Fig. 5. Verification proof of the top and bottom of transfer in Example 5.3.

message invariant Rc
i is x

0.5�→ a, which has been sent by thread B. Now thread A,
which had the other half of x

0.5�→ a, can reason as follows:

{emp} receive(c) {x
0.5�→ a}

(Frame *), without (‡){emp ∗ x
0.5�→ a} receive(c) {x

0.5�→ a ∗ x
0.5�→ a}

The postcondition is a contradiction as no location strongly separates from itself.
However, given (‡) the strong frame rule can be proven by induction.

The consequence of (‡), from a verification point of view, is that when
resources are transferred in they arrive weakly separated, by �, since we must use
the weak frame rule around the receiving command. The troublesome issue is
that this newly “arriving” state can thus �-overlap awkwardly with the existing
state. Fortunately, judicious use of labels can sort things out.

Consider the code in Fig. 5. The basic idea is simple: we create some data
at the top (line 101) and then split its ownership 50-50 to two threads. The left
thread finds a subtree, and passes its half of that subtree to the right via a chan-
nel. The right thread receives the root of that subtree, and thus has full ownership
of that subtree along with half-ownership of the rest of the tree. Accordingly,
the right thread can modify that subtree before notifying the left subtree and
passing half of the modified subtree back. After merging, full ownership of the
entire tree is restored and so on line 401 the program can delete it. Figure 5 only
contains the proof and line numbers for the top and bottom shared portions.
The left and the right thread’s proofs appear in Fig. 6.

By this point the top and bottom portions of the verification are straight-
forward. After creating the tree tree(rt) at line 102, we introduce the label α,
split the formula using (Split �), and then pass (α∧ tree(rt))0.5 to both threads.
After the parallel execution, due to the call to modify(sub) in the right thread,
the tree has changed in memory. Accordingly, the label for the tree must also
change as indicated by the (ε∧ tree(rt))0.5 in both threads after parallel process-
ing. These are then recombined on line 400 using the re-combination principle
(Join �), before the tree is deallocated via standard sequential techniques.
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Fig. 6. Verifications of the left (top) and right (bottom) threads of transfer.

Let us now examine the more interesting proofs of the individual threads in
Fig. 6. Line 201 calls the find function, which searches a binary tree for a subtree
rooted with key key. Following Cao et al. [13] we specify find as follows:

{ tree(x)π } find(x) { λret .
(
tree(ret) ∗ (tree(ret) −−∗ tree(x))

)π }
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Here ret is bound to the return value of find, and the postcondition can be
considered to represent the returned subtree tree(ret) separately from the tree-
with-a-hole tree(ret) −−∗ tree(x), using a ∗/−−∗ style to represent replacement as
per Hobor and Villard [20]. This is the invariant on line 202.

Line 203 then attaches the fresh labels β and γ to the ∗-separated subparts,
and line 204 snapshots the formula current at label α using the @ operator; @π

αP
should be read as “when one has a π-fraction of α, P holds”; it is definable using
@ and an existential quantifier over labels. On line 205 we forget (in the left
thread) the label α for the current heap for housekeeping purposes, and then
on line 206 we weaken the strong separating conjunction ∗ to the weak one �
before sending the root of the subtree sub on line 207.

In the transfer program, the invariant for the first channel message is

(β ∧ tree(sub))0.5 ∧ (
@0.5

α ((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5
)

In other words, half of the ownership of the tree rooted at sub plus the (pure)
@-fact about the shape of the heap labeled by α. Comparing lines 206 and 208 we
can see that this information has been shipped over the wire (the @-information
has been dropped since no longer needed). The left thread then continues to
process until synchronizing again with the receive in line 211.

Before we consider the second synchronization, however, let us instead jump
to the corresponding receive in the right thread at line 303. After the receive,
the invariant on line 304 has the (weakly separated) resources sent from the left
thread on line 206. We then “jump” label α using the @-information to reach
line 305. We can redistribute the β inside the ∗ on line 306 since we already know
that β and γ are disjoint. On line 307 we reach the payoff by combining both
halves of the subtree sub, enabling the modification of the subtree in line 308.

On line 310 we label the two subheaps, and specialize the magic wand so that
given the specific heap δ it will yield the specific heap ε; we also record the pure
fact that γ and δ are disjoint, written γ ⊥ δ. On line 311 we snapshot γ and split
the tree sub 50-50; then on line 312 we push half of sub out of the strong ∗. On
line 313 we combine the subtree and the tree-with-hole to reach the final tree ε.
We then send on line 314 with the channel’s second resource invariant:

(δ ∧ tree(sub))0.5 ∧ γ ⊥ δ ∧ (
@0.5

γ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt)))0.5
)

After the send, on line 315 we have reached the final fractional tree ε.
Back in the left-hand thread, the second send is received in line 211, leading

to the weakly-separated postcondition in line 212. In line 213 we “jump” label
γ, and then in line 214 we use the known disjointness of γ and δ to change the
� to ∗. Finally in line 215 we apply the magic wand to reach the postcondition.

6 Conclusions and Future Work

We propose an extension of separation logic with fractional permissions [4] in
order to reason about sharing over arbitrary regions of memory. We identify two
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fundamental logical principles that fail when the “weak” separating conjunc-
tion � is used in place of the usual “strong” ∗, the first being distribution of
permissions—Aπ �Bπ �|= (A�B)π—and the second being the re-combination of
permission-divided formulas, Aπ � Aσ �|= Aπ⊕σ. We avoid the former difficulty
by retaining the strong ∗ in the formalism alongside �, and the latter by using
nominal labels, from hybrid logic, to record exact aliasing between read-only
copies of a formula.

The main previous work addressing these issues, by Le and Hobor [24], uses a
combination of permissions based on tree shares [17] and semantic side conditions
on formulas to overcome the aforementioned problems. The rely-guarantee sepa-
ration logic in [30] similarly restricts concurrent reasoning to structures described
by precise formulas only. In contrast, our logic is a little more complex, but we
can use permissions of any kind, and do not require side conditions. In addition,
our use of labelling enables us to handle examples involving the transfer of data
structures between concurrent threads.

On the other hand, we think it probable that the kind of examples we consider
in this paper could also be proven by hand in at least some of the verification
formalisms derived from CSL (e.g. [16,22,27]). For example, using the “concur-
rent abstract predicates” in [16], one can explicitly declare shared regions of
memory in a fairly ad-hoc way. However, such program logics are typically very
complicated and, we believe, quite unlikely to be amenable to automation.

We feel that the main appeal of the present work lies in its relative
simplicity—we build on standard CSL with permissions and invoke only a modest
amount of extra syntax—which bodes well for its potential automation (at least
for simpler examples). In practical terms, an obvious way to proceed would be
to develop a prototype verifier for concurrent programs based on our logic SLLP.
An important challenge in this area is to develop heuristics—e.g., for splitting,
labelling and combining formulas—that work acceptably well in practice.

An even greater challenge is to move from verifying user-provided specifi-
cations to inferring them automatically, as is done e.g. by Facebook Infer. In
separation logic, this crucially depends on solving the biabduction problem, which
aims to discover “best fit” solutions for applications of the frame rule [9,11]. In
the CSL setting, a further problem seems to lie in deciding how applications of
the concurrency rule should divide resources between threads.

Finally, automating the verification approach set out in this paper will likely
necessitate restricting our full logic to some suitably tractable fragment, e.g.
one analogous to the well-known symbolic heaps in standard separation logic
(cf. [2,15]). The identification of such tractable fragments is another important
theoretical problem in this area. It is our hope that this paper will serve to
stimulate interest in the automation of concurrent separation logic in particular,
and permission-sensitive reasoning in general.
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21. Hóu, Z., Clouston, R., Goré, R., Tiu, A.: Proof search for propositional abstract
separation logics via labelled sequents. In: Proceedings of POPL-41, pp. 465–476.
ACM (2014)

22. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 26

23. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between intuitionistic
BI and Boolean BI: an unexpected embedding. Math. Struct. Comput. Sci. 19,
1–66 (2009)

24. Le, X.-B., Hobor, A.: Logical reasoning for disjoint permissions. In: Ahmed, A.
(ed.) ESOP 2018. LNCS, vol. 10801, pp. 385–414. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89884-1 14

25. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: Pro-
ceedings of POPL-41, pp. 477–490. ACM (2014)

26. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007)

27. Raad, A., Villard, J., Gardner, P.: CoLoSL: concurrent local subjective logic. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 710–735. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 29

28. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of LICS-17, pp. 55–74. IEEE Computer Society (2002)

29. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: Proceed-
ings of MFPS-27, pp. 335–351. Elsevier (2011)

30. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18
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Abstract. There has been a large body of work on local reasoning for
proving the absence of bugs, but none for proving their presence. We
present a new formal framework for local reasoning about the presence of
bugs, building on two complementary foundations: 1) separation logic and
2) incorrectness logic. We explore the theory of this new incorrectness sep-
aration logic (ISL), and use it to derive a begin-anywhere, intra-procedural
symbolic execution analysis that has no false positives by construction. In
so doing, we take a step towards transferring modular, scalable techniques
from the world of program verification to bug catching.

Keywords: Program logics · Separation logic · Bug catching

1 Introduction

There has been significant research on sound, local reasoning about the state
for proving the absence of bugs (e.g., [2,13,26,29,30,41]). Locality leads to tech-
niques that are compositional both in code (concentrating on a program com-
ponent) and in the resources accessed (spatial locality), without tracking the
entire global state or the global program within which a component sits. Com-
positionality enables reasoning to scale to large teams and codebases: reasoning
can be done even when a global program is not present (e.g., a library, or during
program construction), without having to write the analogue of a test or verifi-
cation harness, and the results of reasoning about components can be composed
efficiently [11].

Meanwhile, many of the practical applications of symbolic reasoning have
aimed at proving the presence of bugs (i.e., bug catching), rather than proving
their absence (i.e., correctness). Logical bug catching methods include symbolic
model checking [7,12] and symbolic execution for testing [9]. These methods are
usually formulated as global analyses; but, the rationale of local reasoning holds
just as well for bug catching as it does for correctness: it has the potential to
c© The Author(s) 2020
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benefit scalability, reasoning about incomplete code, and continuous incremental
reasoning about a changing codebase within a continuous integration (CI) sys-
tem [34]. Moreover, local evidence of a bug without usually-irrelevant contextual
information can be more convincing and easier to understand and correct.

There do exist symbolic bug catchers that, at least partly, address scalabil-
ity and continuous reasoning. Tools such as Coverity [5,32] and Infer [18] hunt
for bugs in large codebases with tens of millions of LOC, and they can even
run incrementally (within minutes for small code changes), which is compati-
ble with deployment in CI to detect regressions. However, although such tools
intuitively share ideas with correctness-based compositional analyses [16], the
existing foundations of correctness-based analyses do not adequately explain
what these bug-catchers do, why they work, or the extent to which they work
in practice.

A notable such example is the relation between separation logic (SL) and
Infer. SL provides novel techniques for local reasoning [28], with concise specifi-
cations that focus only on the memory accessed [36]. Using SL, symbolic execu-
tion need not begin from a “main” program, but rather can “begin anywhere”
in a codebase, with constraints on the environment synthesized along the way.
When analyzing a component, SL’s frame rule is used in concert with abductive
inference to isolate a description of the memory utilized by the component [11].
Infer was closely inspired by SL, and demonstrates the power of SL’s local rea-
soning: the ability to begin anywhere supports incremental analysis in CI, and
compositionality leads to highly scalable methods. These features have led to
non-trivial impact: a recent paper quotes over 100,000 Infer-reported bugs fixed
in Facebook’s codebases, and thousands of security bugs found by a composi-
tional taint analyzer, Zoncolan [18]. However, Infer reports bugs using heuristics
based on failed proofs, whereas the SL theory behind Infer is based on over-
approximation [11]. Thus, a critical aspect of Infer’s successful deployment is
not supported by the theory that inspired it. This is unfortunate, especially
given that the begin-anywhere and scalable aspects of Infer’s algorithms do not
appear to be fundamentally tied to over-approximation.

In this paper, we take a step towards transferring the local reasoning tech-
niques from the world of program verification to that of bug catching. To app-
roach the problem from first principles, we do not try to understand tools such
as Coverity and Infer as they are. Instead, we take their existence and reported
impact as motivation for revisiting the foundations of SL, this time re-casting it
as a formalism for proving the presence of bugs rather than their absence.

Our new logic, incorrectness separation logic (ISL), marries local reasoning
based on SL’s frame rule with the recently-advanced incorrectness logic [35], a
formalism for reasoning about errors based on an under-approximate analogue
of Hoare triples [43]. We observe that the original SL model, based on partial
heaps, is incompatible with local, under-approximate reasoning. The problem
is that the original model does not distinguish a pointer known to be dangling
from one about which we have no knowledge; this in turn contradicts the frame
rule for under-approximate reasoning. However, we recover the frame rule for a
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refined model with negative heap assertions of the form x ��→ , read “invalidated
x”, stating that the location at x has been deallocated (and not re-allocated).
Negative heaps were present informally in the original Infer, unsupported by the-
ory but added for reporting use-after-free bugs (i.e., not for proving correctness).
Interestingly, this semantic feature is needed in ISL for logical (and not merely
pragmatic) reasons, in that it yields a sound logic for proving the presence of
bugs: when ISL identifies a bug, then there is indeed a bug (no false positives),
given the assumptions of the underlying ISL model. (That is, as usual, sound-
ness is a relationship between assumptions and conclusions, and whether those
assumptions match reality (i.e., running code) is a separate concern, outside the
purview of logic.)

As well as being superior for bug reporting, our new model has a pleasant fun-
damental property in that it meshes better with intuitions originally expressed of
SL. Specifically, our model admits a footprint theorem, stating that the meaning
of a command is solely determined by its transitions on input-output heaplets
of minimal size (including only the locations accessed), a theorem that was not
true in full generality for the original SL model. Interestingly, ISL supports local
reasoning for technically simpler reasons than the original SL (see Sect. 4.2).

We validate part of the ISL promise using an illustrative program anal-
ysis, Pulse, and use it to detect memory safety bugs, namely null-pointer-
dereference and use-after-free bugs. Pulse is written inside Infer [18] and deployed
at Facebook where it is used to report issues to C++ developers. Pulse is cur-
rently under active development. In this paper, we explore the intra-procedural
analysis, i.e., how it provides purely local reasoning about one procedure at a
time without using results from other procedures; we defer formalising its inter-
procedural (between procedures) analysis to future work. While leaving out the
inter-procedural capabilities of Pulse only partly validates the promise of the
ISL theory, it already demonstrates how ISL can scale to large codebases, and
run incrementally in a way compatible with CI. Pulse thus has the capability to
begin anywhere, and it achieves scalability while embracing under- rather than
over-approximation.

Outline. In Sect. 2 we present an intuitive account of ISL. In Sect. 3 we present
the ISL proof system. In Sect. 4 we present the semantic model of ISL. In Sect. 5
we present our ISL-based Pulse analysis. In Sect. 6 we discuss related work
and conclude. The full proofs of all stated theorems are given in the techni-
cal appendix [38].

2 Proof of a Bug

We proceed with an intuitive description of ISL for detecting memory safety
bugs. To do this, in Fig. 1 we present an example of C++ use-after-lifetime bug,
abstracted from real occurrences we have observed at Facebook, where use-after-
lifetime bugs were one of the leading developer requests for C++ analysis. Given
a vector v, a call to push back(v) in the std::vector library may cause the
internal array backing v to be (deallocated and subsequently) reallocated when v
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void deref_after_pb(std::vector<int> *v) {

int *x = &v->at(1);

v->push_back(42);

std::cout << *x << "\n"; }

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was

potentially invalidated by ’std::vector::push_back()’ on line 6.

5. int *x = &(v->at(1));

6. v->push_back(42);

7. > std::cout << *x << "\n"; }

Fig. 1. The C++ use-after-lifetime bug (above); the Pulse error message (below).

needs to grow to accommodate new elements. If the internal array is reallocated
during the v->push back(42) call, a use-after-lifetime bug occurs on the next
line as x points into the previous array. Note how the Pulse error message (at
the bottom of Fig. 1) refers to memory that has been invalidated. As we describe
shortly, this information is tracked in Pulse with an invalidated heap assertion.

For the theory in this paper, we do not want to descend into the details of
C++, vectors, and so forth. Thus, for illustrative purposes, in Fig. 2 we present
an adaptation of such use-after-lifetime bugs in C rather than C++, alongside its
representation in the ISL language used in this paper. In this adaptation, the
array at v is of size 1, and is reallocated in push back non-deterministically to
model its dynamic reallocation when growing. We next demonstrate how we can
use ISL to detect the use-after-lifetime bug in the client procedure in Fig. 2.

ISL Triples. The ISL theory uses under-approximate triples [35] of the form
[presumption] C [ε : result], interpreted as: the result assertion describes a subset
of the states that can be reached from the presumption assertion by executing C,
where ε denotes an exit condition indicating either normal or exceptional (erro-
neous) termination. The under-approximate triples can be equivalently inter-
preted as: every state in result can be obtained by executing C on a starting
state in presumption. By contrast, given a Hoare triple {pre} C {post}, the post-
condition post describes a superset of states that are reachable from the precon-
dition pre, and may include states unreachable from pre. Hoare logic is about
over-approximation, allowing false positives but not negatives, whereas ISL is
about under-approximation, allowing false negatives but not positives.

Bug Specification of client(v). Using ISL, we can specify the use-after-
lifetime bug in client(v) as follows:

[v �→ a ∗ a �→−] client(v)
[
er(lrx ) : ∃a′. v �→ a′ ∗ a′ �→− ∗ a ��→ ]

(PB-Client)

We make several remarks to illustrate the crucial features of ISL:

• As in standard SL, ∗ denotes the separating conjunction, read “and sepa-
rately”. It implies, e.g., that v, a′ and a are distinct in the result assertion.

• The exit condition er(lrx ) denotes an erroneous termination: an error state
is reached at line lrx , where a is dangling (invalidated).
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void push_back(int **v)

{

if (nondet()) {

free(*v);

*v = malloc(sizeof(int));

}

}

void client(v) {

int* x = *v;

push_back(v);

*x = 88; }

push back(v) �
local z, y in

z := *;
(assume(z �= 0); lrv : y :=[v];
lf : free(y);
y :=malloc(); [v] := y)

+ (assume(z = 0); skip)

client(v) �
local x in

x := [v];
push back(v);
lrx : [x] := 88

Fig. 2. The push back example in C (left); and in the ISL language (right).

• The result is under-approximate: any state satisfying the result assertion can
be reached from some state satisfying the presumption.

• The specification is local: it focuses only on memory locations in the
client(v) footprint (i.e., those touched by client(v)), and ignores other
locations.

Let us next consider how we reason symbolically about this bug. Note that
for the client(v) execution to reach an error at line lrx , the push back(v)
call within it must not cause an error. That is, in contrast to PB-Client,
we need a specification for push back(v) that describes normal, non-erroneous
termination. We specify this normal execution with the ok exit condition as
follows:

[v �→ a ∗ a �→−] push back(v) [ok : ∃a′. v �→ a′ ∗ a′ �→− ∗ a ��→ ] (PB-Ok)

PB-Ok describes the case when push back(v) frees the internal array of v
at a (denoted by a ��→ in the result), and subsequently reallocates it at a′.
Consequently, as a is invalidated after the push back(v) call, the instruction
following the call in client(v) dereferences invalidated memory at lrx, causing
an error.

Note that the result assertion in PB-Ok is strictly under-approximate in
that it is smaller (stronger) than the exact “strongest post”. Given the asser-
tion in the presumption, the strongest post must also consider the else clause
of the conditional, when nondet() returns zero and push back(v) does noth-
ing. That is, the strongest post is the disjunction of the given result and the
presumption. The ability to go below the strongest post soundly is a hallmark
of under-approximate reasoning: it allows for compromise in an analyzer, where
we might choose, e.g., to limit the number of paths explored for efficiency rea-
sons, or to concretize an assertion partially when symbolic reasoning becomes
difficult [35].

We present proof outlines for PB-Ok and PB-Client in Fig. 3, where we
annotate each step with a proof rule to connect to the ISL theory in Sect. 3. For
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legibility, uses of the Frame rule are omitted as it is used in almost every step,
and the consequence rule Cons is usually omitted when rewriting a formula
to an equivalent one. For the moment, we encourage the reader to attempt to
follow, prior to formalization, by mentally executing the program instructions
on the assertions and asking: does the assertion at each program point under-
approximate the states that can be obtained from the prior state? Note that
each step updates assertions in-place, just as concrete execution does on concrete
memory. For example, lf : free(y) replaces a �→− with a ��→ . In-place reasoning
is a capability that the separating conjunction brings to symbolic execution;
formally, this in-place aspect is achieved in the logic by applying the frame rule.

3 Incorrectness Separation Logic (ISL)

As a first attempt, it is tempting to obtain ISL straightforwardly by composing
the standard semantics of SL [41] and the semantics of incorrectness logic [35].
Interestingly, this simplistic approach does not work. To see this, consider the
following axiom for freeing memory, adapted from the corresponding SL axiom:

[x �→ −] free(x) [ok : emp ∧ loc(x)]

Here, emp describes the empty heap and loc(x) states that x is an addressable
location; e.g., x cannot be null. Note that this ISL triple is valid in that any
state satisfying the result assertion can be obtained from one satisfying the
presumption assertion, and thus we do have a true under-approximate triple.

However, in SL one can arbitrarily extend the state using the frame rule:

� [p] C [ε :q] mod(C) ∩ fv(r) = ∅
� [p ∗ r] C [ε :q ∗ r]

(Frame)

Intuitively, the state described by the frame assertion r lies outside the footprint
of C and thus remains unchanged when executing C. However, if we do this with
the free(x) axiom above, choosing x �→ − as our frame, we run into a problem:

[x �→ − ∗ x �→ −] free(x) [ok : (emp ∧ loc(x)) ∗ x �→ −]

Here, the presumption is inconsistent but the result is not, and thus there is no
way to get back to the presumption from the result; i.e., the triple is invalid. In
over-approximate reasoning this does not cause a problem since an inconsistent
precondition renders an over-approximate triple vacuously valid. By contrast, an
inconsistent presumption does not validate under-approximate reasoning.

Our way out of this conundrum is to consider a modified model in which
the knowledge that a location was previously freed is a resource-oriented fact,
using negative heap assertions. The negative heap assertion x ��→ conveys more
knowledge than the loc(x) assertion. Specifically, x ��→ conveys: 1) the knowledge
that x is an addressable location; 2) the knowledge that x has been deallocated;
and 3) the ownership of location x. In other words, x ��→ is analogous to the
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[v �→ a ∗ a �→−]

local y, z in

z :=*; //Havoc

[ok :z=1 ∗ v �→ a ∗ a �→−]

( assume(z �= 0); //Assume

[ok :z=1 ∗ z �=0 ∗ v �→ a ∗ a �→−]

lrv : y := [v]; //Load

[ok :z=1 ∗ y=a ∗ v �→ a ∗ a �→−]

lf : free(y); //Free

[ok :z=1 ∗ y=a ∗ v �→ a ∗ a →�� ]

y := malloc(); //Alloc1,Choice

[ok :z=1 ∗ v �→ a ∗ a →�� ∗ y −→� ]
[v] := y; //Store

[ok :z=1 ∗ v �→ y ∗ a →�� ∗ y −→� ]
) + (. . .) //Choice

[ok :z=1 ∗ v �→ y ∗ a ∗ y −→� ]
//Local

[ok : ∃a′. v �→ a′ ∗ a′ ∗−→� a →�� ]

[v �→ a ∗ a �→−]

local x in

x := [v]; //Load

[ok :x=a ∗ v �→ a ∗ a �→−]

push back(v); //PB-Ok

[ok :∃a′.x=a ∗ v �→a′∗ a′ ∗−→� a →�� ]//Cons

[ok :∃a′.x=a ∗ v �→a′∗ a′ ∗−→� x →�� ]
lrx : [x] := 88; //StoreEr

[er(lrx ) : ∃a′. x=a ∗ v �→ a′ ∗ a′ ∗−→� x →�� ]
//Local

[er(lrx ) : ∃a′. v �→ a′ ∗ a′ ∗−→� a →�� ]

→��

Fig. 3. The proof sketches of PB-Ok (left) and PB-Client (right).

points-to assertion x �→ − and is thus manipulated similarly, taking up space in
∗-conjuncts. That is, we cannot consistently ∗-conjoin x ��→ either with x �→ −
or with itself: x �→ − ∗ x ��→ ⇔ false and x ��→ ∗ x ��→ ⇔ false.

With such negative assertions, we can specify free() as the Free axiom in
Fig. 5. Note that this allows us to recover the frame rule: when we frame x �→ −
on both sides, we obtain the inconsistent assertion x �→ − ∗ x ��→ (i.e., false) in
the result, which always makes an under-approximate triple vacuously valid.

We demonstrated how we arrived at negative heaps as a theoretical solution
to recover the frame rule. However, negative heaps are more than a technical
curiosity. In particular, a similar idea was informally present in Infer and has
been used formally to reason about JavaScript [21]. Moreover, as we show in
Sect. 4, negative heaps give rise to a footprint theorem (see Theorem 2).

Negative heap assertions were previously used informally in Infer. They
were also independently and formally introduced in a separation logic for
JavaScript [21] to state that a field is not present in a JavaScript object, which
is a natural property to express when reasoning about JavaScript.
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Comm�C ::= skip | x :=e | x :=* | assume(B) | local x in C | C1;C2 | C1 + C2 | C�

| x := alloc() | l: free(x) | l:x := [y] | l: [x] := y | l: error

if B then C1 else C2 � (assume(B);C1) + (assume(!B);C2)
while(B) C � (assume(B);C)�; assume(!B)

assert(B) � (assume(!B); error) + assume(B)

x := malloc() � x := alloc() + x := null

Fig. 4. The ISL Language (above); encoding standard constructs in ISL (below).

Programming Language. To keep our presentation concise, we employ a sim-
ple heap-manipulating language as shown in Fig. 4. We assume an infinite set
Val of values; a finite set Var of (program) variables; a standard interpreted
language for expressions, Exp, containing variables and values; and a standard
interpreted language for Boolean expressions, BExp. We use v as a metavariable
for values; x, y, z for program variables; e for expressions; and B for Boolean
expressions.

Our language is given by the C grammar and includes the standard constructs
of skip, assignment (x := e), non-deterministic assignment (x := *, where *
denotes a non-deterministically picked value), assume statements (assume(B)),
scoped variable declaration (local x in C), sequential composition (C1;C2),
non-deterministic choice (C1 + C2) and loops (C�), as well as error statements
(error) and heap-manipulating instructions. Note that deterministic choice
and loops (e.g.,if and while statements) can be encoded using their non-
deterministic counterparts and assume statements, as shown in Fig. 4.

To better track errors, we annotate instructions that may cause an error with
a label l∈Label. When an error is encountered (e.g., in l: error), we report
the label of the offending instruction (e.g., l). As such, we only consider well-
formed programs: those with unique labels across their constituent instructions.
For brevity, we drop the instruction labels when they are immaterial to the
discussion.

As is standard practice, we use error statements as test oracles to detect viola-
tions. In particular, error statements can be used to encode assert statements as
shown in Fig. 4. Heap-manipulating instructions include allocation, deallocation,
lookup and mutation. The x := alloc() instruction allocates a new (unused)
location on the heap and returns it in x, and can be used to represent the
standard, possibly null-returning malloc() from C as shown in Fig. 4. Dually,
free(x) deallocates the location denoted by x. Heap lookup x := [y] reads the
contents of the location denoted by y and returns it in x; heap mutation [x] := y
overwrites the contents of the location denoted by x with y.

Assertions. The ISL assertion language is given by the grammar below, where
⊕∈{=, �=, <,≤, . . .}. We use p, q, r as metavariables for assertions.

Ast � p, q, r ::= false | p ⇒ q | ∃x. p | e ⊕ e′ classical and Boolean assertions
| emp | e �→ e′ | e ��→ | p ∗ q structural assertions
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As we describe formally in Sect. 4, assertions describe sets of states, where each
state comprises a (variable) store and a heap. The classical (first-order logic)
and Boolean assertions are standard. Other classical connectives can be encoded
using existing ones (e.g., ¬p � p ⇒ false). Aside from the highlighted x ��→ ,
structural assertions are as defined in SL [28], and describe a set of states by
constraining the shape of the underlying heap. More concretely, emp describes
states in which the heap is empty; e �→ e′ describes states in which the heap
comprises a single location denoted by e containing the value denoted by e′; and
p ∗ q describes states in which the heap can be split into two disjoint sub-heaps,
one satisfying p and the other q. We often write e �→ − as a shorthand for
∃v. e �→ v.

As described above, we extend our structural assertions with the negative
heap assertion e ��→ (read “e is invalidated”). As with its positive counterpart
e �→ e′, the negative assertion e ��→ describes states in which the heap comprises
a single location at e. However, whilst e �→ e′ states that the location at e
is allocated (and contains the value e′), e ��→ states that the location at e is
deallocated.

ISL Proof Rules (Syntactic ISL Triples). We present the ISL proof rules in
Fig. 5. As in incorrectness logic [35], the ISL triples are of the form � [p] C [ε :q],
denoting that every state in the result assertion q is reachable from some state
in the presumption assertion p with exit condition ε. That is, for each state σq in
q, there exists σp in p such that executing C on σp terminates with ε and yields
σq. As such, since false describes an empty state set, [p] C [ε : false] is vacuously
valid for all p, C, ε. Dually, [false] C [ε :q] is always invalid when q �⇒ false.

An exit condition, ε ∈ Exit, may be: 1) ok , denoting a successful execu-
tion; or 2) er(l), denoting an erroneous execution with the error encountered
at the l-labeled instruction. Compared to [35], we further annotate our error
conditions to track the offending instructions. Moreover, whilst [35] rules only
detect explicit errors caused by error statements, ISL rules additionally allow
us to track errors caused by memory safety violations, namely “use-after-free”
violations, where a previously deallocated location is subsequently accessed in
the program, and “null-pointer-dereference” violations. Although it is straight-
forward to distinguish between explicit and memory safety errors, for brevity we
use er(l) for both.

Thanks to the separation afforded by ISL assertions, compared to incorrect-
ness triples in [35], ISL triples are local in that the states described by their
presumptions only contain the resources needed by the program. For instance,
as skip requires no resource for successful execution, the presumption of Skip
is simply given by emp, which remains unchanged in the result. Similarly,
assume(B) requires no resource and results in a state satisfying B. The Assign
rule is analogous to its SL counterpart. Similarly, x := * in Havoc assigns a non-
deterministic value to x. Although these axioms (and Alloc1, Alloc2) ask for
a single equality x = x′ in their presumption, one can derive more general triples
starting from any presumption p by picking a fresh x′ and applying the axiom,
and the Frame and Cons rules on the equivalent presumption x = x′ ∗ p[x′/x].
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Skip
� [emp] skip [ok :emp]

Assign
�[

x=x′] x :=e
[
ok :x=e[x′/x]

] Havoc
�[

x=x′] x :=* [ok : x=v]

Assume
� [emp] assume(B) [ok : B]

Error
� [emp] l: error [er(l) : emp]

Seq1
� [p] C1 [er(l) : q]

� [p] C1;C2 [er(l) : q]

Seq2
� [p]C1 [ok : r] � [r] C2 [ε :q]

� [p] C1;C2 [ε :q]

Loop1
� [p]C� [ok : p]

Choice
� [p]Ci [ε :q] for some i∈{1, 2}

� [p] C1 + C2 [ε :q]

Exist
� [p]C [ε :q] x �∈ fv(C)

� [∃x.p] C [ε :∃x.q]

Loop2
� [p] C�;C [ε :q]
� [p] C� [ε :q]

Cons
p′ ⇒ p � [

p′]
C

[
ε :q′] q ⇒ q′

� [p] C [ε :q]

Disj
� [p1] C [ε :q1] � [p2] C [ε :q2]

� [p1 ∨ p2] C [ε :q1 ∨ q2]

Subst
� [p] C [ε :q] y �∈ fv(p,C, q)

� [p[y/x]] C[y/x] [ε :q[y/x]]

Local
� [p] C [ε :q]

� [∃x. p] local x in C [ε :∃x. q]

Frame
� [p] C [ε :q] mod(C) ∩ fv(r) = ∅

� [p ∗ r] C [ε :q ∗ r]

Alloc1
� [

x=x′] x := alloc() [ok : x −→� ]

Free
� [x �→ e] l: free(x) [ok : x →�� ]

Alloc2
� [

x=x′ ∗ y →�� ]
x := alloc() [ok : x=y ∗ y −→� ]

FreeEr
� [x →�� ] l: free(x) [er(l) : x →�� ]

FreeNull
� [x=null] l: free(x) [er(l) : x=null]

Load
�[

x=x′∗ y �→e
]
l:x := [y]

[
ok :x=e[x′/x] ∗ y �→e[x′/x]

] Store
� [x �→e] l: [x] := y [ok :x �→y]

LoadEr
� [y →�� ] l:x := [y] [er(l) : y →�� ]

StoreEr
� [x →�� ] l: [x] := y [er(l) : x →�� ]

LoadNull
� [y=null] l:x := [y] [er(l) : y=null]

StoreNull
� [x=null] l: [x] := y [er(l) : x=null]

Fig. 5. The ISL proof rules where x and x′ are distinct variables.

Note that skip, assignments and assume statements always terminate suc-
cessfully (with ok). By contrast, l: error always terminates erroneously (with
er(l)) and requires no resource. The ISL rules Seq1, Seq2, Choice, Loop1,
Loop2, Cons, Disj and Subst are as in [35]. The Seq1 rule captures short-
circuiting when the first statement (C1) encounters an error and thus the pro-
gram terminates erroneously. Analogously, Seq2 states that when C1 executes
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successfully, the program terminates with ε when the subsequent C2 statement
terminates with ε. The Choice rule states that the states in q are reachable from
p when executing C1 + C2 if they are reachable from p when executing either
branch. Loop1 captures immediate exit from the loop; Loop2 states that q is
reachable from p when executing C

� if it is reachable after a non-zero number
of C iterations.

The Cons rule allows us to strengthen the result and weaken the presump-
tion: if q′ is reachable from p′, then the smaller q is reachable from the bigger p.
Note that compared to SL, the direction of implications in the Cons premise are
flipped. Using Cons, we can rewrite the premises of Disj as [p1 ∨ p2] C [ε :q1]
and [p1 ∨ p2] C [ε :q2]. As such, if both q1 and q2 are reachable from p1 ∨ p2,
then q1 ∨ q2 is also reachable from p1 ∨ p2, as shown in Disj. The Exist rule
is derived from Disj; Subst is standard and allows us to substitute x with a
fresh variable y; Local is equivalent to that in [35] but uses the Barendregt
variable convention, renaming variables in formulas instead of in commands to
avoid clashes.

As in SL, the crux of ISL reasoning lies in the Frame rule, allowing one to
extend the presumption and the result of a triple with disjoint resources in r.
The fv(r) function returns the set of free variables in r, and mod(C) returns the
set of (program) variables modified by C (i.e., those on the left-hand of ‘:=’ in
assignment, lookup and allocation). These definitions are standard and elided.

Negative assertions allow us to detect memory safety violations when access-
ing deallocated locations. For instance, FreeEr states that attempting to deal-
locate x causes an error when x is already deallocated; mutatis mutandis for
LoadEr and StoreEr. As shown in Alloc2, we can use negative assertions
to allocate a previously-deallocated location: if y is deallocated (y ��→ holds in
the presumption), then it may be reallocated. The FreeNull, LoadNull and
StoreNull rules state that accessing x causes an error when x is null. Finally,
Load and Store describe the successful execution of heap lookup and mutation,
respectively.

Remark 1. Note that mutation and deallocation rules in SL are given as {x �→ −}
[x] := y {x �→ y} and {x �→ −} free(x) {emp}; i.e., the value of x is existentially
quantified in the precondition. We can similarly rewrite the ISL rules as:

StoreWeak
� [x �→ −] [x] := y [ok : x �→ y]

FreeWeak
� [x �→ −] free(x) [ok : x ��→ ]

However, these rules are too weak. For instance, we cannot use StoreWeak
to prove [x �→ 7] [x] := y [ok : x �→ y]. This is because the implications in the
premise of the Cons rule are flipped from those in their SL counterpart, and
thus to use StoreWeak we must show x �→ − ⇒ x �→ 7 which we cannot. Put
differently, StoreWeak states that for some value v, executing [x] := y on a
state satisfying x �→ v yields a state satisfying x �→ y. However, this statement
is valid for all values of v. As such, we strengthen the presumption of Store to
x �→ e, allowing for an arbitrary (universally quantified) expression e at x.
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In general, in over-approximate logics (e.g., SL) the aim is to weaken the
preconditions and strengthen the postconditions of specifications as much as
possible. This is to ensure that we can optimally apply the Cons rule to adapt
the specifications to broader contexts. Conversely, in under-approximate logics
(e.g., ISL) we should strengthen the presumptions and weaken the results as
much as possible, since the implication directions in the premise of Cons are
flipped.

Remark 2. The backward reasoning rules of SL [28] are generally unsound
for ISL, just as the backward reasoning rules of Hoare logic are unsound
for incorrectness logic [35]. For instance, the backward axiom for store is
{x �→− ∗ (x �→ y −∗ p)} [x] := y {p}. However, taking p = emp yields an incon-
sistent precondition, resulting in the triple {false} [x] := y {emp}, which is valid
in SL but not ISL.

Proving. PB-Ok and PB-Client. We next return to the proof sketch of
PB-Ok in Fig. 3. For brevity, rather than giving full derivations, we follow
the classical Hoare logic proof outline, annotating each line of the code with
its presumption and result. We further commentate each proof step and write
e.g., //Choice to denote an application of Choice. Note that when applying
Choice, we pick a branch (e.g., the left branch in PB-Ok) to execute. Observe
that unlike in SL where one needs to reason about all branches, in ISL it suf-
fices to pick and reason about a single branch, and the remaining branches are
ignored.

As in Hoare logic proof outlines, we assume that Seq2 is applied at every step;
i.e., later instructions are executed only if the earlier ones execute successfully.
In most steps, we apply Frame to frame off the unused resource r, carry out
the instruction effect, and subsequently frame on r. For instance, when verifying
z := * in the proof sketch of PB-Ok, we apply Havoc to pick a non-zero value for
z (in this case 1) after the assignment. As such, since the presumption of Havoc
is emp, we use Frame to frame off the resource v �→ a∗a �→− in the presumption,
apply Havoc to obtain z = 1, and subsequently frame on v �→ a∗a �→−, yielding
z = 1 ∗ v �→ a ∗ a �→ −. For brevity, we keep the applications of Frame and
Seq2 implicit and omit them in our annotations. The proof of PB-Client in
Fig. 3 is then straightforward and applies the PB-Ok specification when calling
push back(v). We refer the reader to the technical appendix [38] where we apply
ISL to a further example to detect a null-pointer-dereference bug in OpenSSL.

4 The ISL Model

Denotational Semantics. We present the ISL semantics in Fig. 6. The seman-
tics of a statement C ∈ Comm under an exit condition ε ∈ Exit, written �C�ε,
is described as a relation on program states. A program state, σ ∈ State, is
a pair of the form (s, h), comprising a (variable) store s ∈ Store and a heap
h ∈ Heap.
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Fig. 6. The ISL denotational semantics (top); the ISL assertion semantics (bottom).

A store is a function from variables to values. Given a store s, expression e
and Boolean expression B, we write s(e) and s(B) for the values to which e and
B evaluate under s, respectively. These definitions are standard and omitted.

A heap is a partial function from locations, Loc, to Val � {⊥}. We model
heaps as partial functions as they may grow gradually by allocating additional
locations. We use the designated value ⊥ �∈ Val to track those locations that
have been deallocated. That is, given l ∈ Loc, if h(l) ∈ Val then l is allocated
in h and holds value h(l); and if h(l) = ⊥ then l has been deallocated. As we
demonstrate shortly, we use ⊥ to model invalidated assertions such as x ��→ .
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The semantics in Fig. 6 closely corresponds to ISL rules in Fig. 5. For instance,
�x := [y]�ok underpins Load, while �x := [y]�er(−) underpins LoadEr and
LoadNull; e.g., if the location at y is deallocated (h(s(y))=⊥), then executing
x := [y] terminates erroneously as captured by �x := [y]�er(−). The semantics of
mutation, allocation and deallocation are defined analogously. As shown, skip,
assignment and assume(B) never terminate erroneously (e.g., �skip�er(−)=∅),
and the semantics of their successful execution is standard. The two disjuncts
in �C1;C2�ε capture Seq1 and Seq2, respectively. The semantics of C1 + C2 is
defined as the union of those of its two branches. The semantics of C� is defined
as the union of the semantics of zero or more C iterations.

Heap Monotonicity. Note that for all C, ε and (σp, σq) ∈ �C�ε, the (domain
of the) underlying heap in σp monotonically grows from σp to σq and never
shrinks. In particular, whilst the heap domain grows via allocation, all other
base cases (including deallocation) leave the domain of the heap (i.e., the heap
size) unchanged – deallocation merely updates the value of the given location in
the heap to ⊥ and thus does not alter the heap domain. This is in contrast to the
original SL model [28], where deallocation removes the given location from the
heap, and thus the underlying heap may grow or shrink. As we discuss shortly,
this monotonicity is the key reason why our model supports a footprint theorem.

ISL Assertion Semantics. The semantics of ISL assertions is given at the
bottom of Fig. 6 via the function �.� : Ast → P(State), interpreting each
assertion as a set of states. The semantics of classical and Boolean assertions are
standard and omitted. As described in Sect. 3, emp describes states in which the
heap is empty; and e �→ e′ describes states of the form (s, h) in which h contains
a single location at s(e) with value s(e′). Analogously, e ��→ describes states of
the form (s, h) in which h contains a single deallocated location at s(e). Finally,
the interpretation of p ∗ q contains a state σ iff it can be split into two parts,
σ = σp • σq, such that σp and σq are included in the interpretations of p and
q, respectively. The function • : State × State ⇀ State given at the bottom
of Fig. 6 denotes state composition, and is defined when the constituent stores
agree and the heaps are disjoint. For brevity, we often write σ ∈ p for σ ∈ �p�.

Semantic Incorrectness Triples. We next present the formal interpretation
of ISL triples. Recall from Sect. 3 that an ISL triple [p] C [ε :q] states that every
state in q is reachable from some state in p under ε. Put formally:

|= [p] C [ε :q] def⇐⇒ ∀σq ∈ q. ∃σp ∈ p. (σp, σq) ∈ �C�ε

Finally, in the following theorem we show that the ISL proof rules are sound : if
a triple � [p]C [ε :q] is derivable using the rules in Fig. 5, then |=[p]C [ε :q] holds.

Theorem 1 (Soundness). For all p,C, ε, q, if � [p] C [ε :q], then |= [p] C

[ε :q].
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4.1 The Footprint Theorem

The frame rule of SL enables local reasoning about a command C by concen-
trating only on the parts of the memory that are accessed by C, i.e., the C

footprint :

‘To understand how a program works, it should be possible for reasoning and
specification to be confined to the cells that the program actually accesses.
The value of any other cell will automatically remain unchanged.’ [36]

Local reasoning is then enabled by semantic observations about the local effect
of heap accesses. In what follows we describe some of the semantic structure
underpinning under-approximate local reasoning, including how it differs from
the classic over-approximate theory. Our main result is a footprint theorem,
stating that the meaning of a command C is determined by its action on the
“small” part of the memory accessed by C (i.e., the C footprint). The overall
meaning of C can then be obtained by “fleshing out” its footprint.

To see this, consider the following example:

1. free(y);
2. l2: free(y) + free(x); (foot)
3. l3: free(x) + skip

For simplicity, let us ignore variable stores for the moment and consider the
executions of foot from an initial heap h � [lx �→ 1, ly �→ 2, lz �→ 3], containing
locations lx, ly and lz, corresponding to variables x, y and z, respectively. Note
that starting from h, foot gives rise to four executions depending on the +
branches taken at lines 2 and 3. Let us consider the successful execution from
h that first frees y, then frees x (the right branch of + on line 2), and finally
executes skip (the right branch of + on line 3). The footprint of this execution
from h is then given by (ok : [lx �→ 1, ly �→ 2], [lx �→ ⊥, ly �→ ⊥]), denoting an ok
execution from the initial sub-heap [lx �→ 1, ly �→ 2], yielding the final sub-heap
[lx �→ ⊥, ly �→ ⊥] upon termination. That is, the initial and final sub-heaps in
the footprint do not include the untouched location lz as it remains unchanged,
and the overall effect of foot is obtained from its footprint by adding lz �→ 3 to
both the initial and final sub-heaps; i.e., by “fleshing out” the footprint.

Next, consider the execution in which the left branch of + on line 2 is taken,
resulting in a use-after free error. The footprint of this second execution from h
is given by (er(l2) : [ly �→ 2], [ly �→ ⊥]), denoting an error at l2. Note that as this
execution terminates erroneously at l2, unlike in the first execution, location lx
remains untouched by foot and is thus not included in the footprint.

Put formally, let foot (.) : Comm → Exit → P(State × State) denote
a footprint function such that foot (C) ε describes the minimal state needed
for some C execution under ε: if ((s, h), (s ′, h ′)) ∈ foot (C) ε, then h contains
only the locations accessed by some C execution, yielding h ′ on termination.
In Fig. 7 we present an excerpt of foot (.), with its full definition given in [38].
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Fig. 7. The foot (.) function (excerpt), where h0 denotes an empty heap (dom(h0) = ∅).

Our footprint theorem (Theorem 2) then states that any pair (σp, σq) resulting
from executing C (i.e., (σp, σq) ∈ �C�ε) can be obtained by fleshing out a pair
(σ′

p, σ
′
q) in the C footprint (i.e., (σ′

p, σ
′
q) ∈ foot (C) ε): (σp, σq) = (σ′

p •σr, σ
′
q •σr)

for some σr.

Theorem 2 (Footprints). For all C and ε: �C�ε = frame (foot (C) ε), where
frame (R) �

{
(σp • σr, σq • σr) (σp, σq) ∈ R

}
.

We note that our footprint theorem is a positive by-product of the ISL model
and not the ISL logic. That is, the footprint theorem is an added bonus of the
heap monotonicity in the ISL model, brought about by negative heap resources,
and is orthogonal to the notion of under-approximation. As such, the footprint
theorem would be analogously valid in the original SL model, were we to alter
its model to achieve heap monotonicity through negative heaps. That said, there
are important differences with the classic SL theory, which we discuss next.

4.2 Differences with the Classic (Over-Approximate) Theory

Existing work [14,40] presents footprint theorems for classical SL based on the
notion of safe states ; i.e., those that do not lead to erroneous executions. This is
understandable as the informal reasoning which led to the frame rule for SL was
based on safety [36,45]. According to the fault-avoiding interpretation of an SL
triple {p}C{q}, deemed invalid when a state in p leads to an error, if C accesses
a location outside p, then this leads to a safety violation. As such, any location
not guaranteed to exist in p must remain unchanged, thereby yielding the frame
rule. The existing footprint theorems were for safe states only.

By contrast, our theorem considers footprints involving both unsafe and safe
states. For instance, given the foot program and an initial state (e.g., h in
Sect. 4.1), we distinguished a footprint leading to an erroneous execution (e.g.,
(er(l2) : [ly �→ 2], [ly �→ ⊥])) from one leading to a safe execution (e.g., (ok :
[lx �→ 1, ly �→ 2], [lx �→ ⊥, ly �→ ⊥])). This distinction is important, as otherwise
we could not distinguish further bugs that follow a safe execution. To see this,
consider a second error in foot, namely the possible use-after-free of x on line
3, following a successful execution of lines 1 and 2.

For reasoning about incorrectness, it is essential that we consider unsafe
states when accounting for why things work; this is a technical difference with
the classic footprint results. But it also points to a deeper conceptual difference
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between the correctness and incorrectness theories. Above, we explained how
safety, and its violation, played a crucial role in justifying the frame rule of over-
approximate SL. However, as we describe below, ISL and its frame rule do not
rely on safety.

As shown in [35], an under-approximate triple can be equivalently defined
as: [p]C [ε :q] def⇐⇒ post(C, p) ⊇ q, where post(C, p) describes the states obtained
by executing C on p. While this under-approximate definition equivalently jus-
tifies the frame rule, the analogous over-approximate (Hoare) triple obtained by
flipping ⊇ (i.e., {p}C {q} def⇐⇒ post(C, p) ⊆ q) invalidates the frame rule:

{true}[x] := 23{true}
{x �→ 17 ∗ true}[x] := 23{x �→ 17 ∗ true} (Frame)

The premise of this derivation is valid according to the standard interpretation
of over-approximate triples, but its conclusion (obtained by framing on x �→ 17)
certainly is not, as it states that the value of x remains unchanged after mutation.

The frame rule is then recovered by strengthening the {p}C {q} interpre-
tation, either by requiring that executing C on p not fault (fault avoidance),
or by “baking in” frame preservation: ∀r. post(C, p ∗ r) ⊆ q ∗ r. Both solutions
then invalidate the premise of the above derivation. We found it remarkable
that our ISL theory is consistent with the technically simpler interpretation of
triples – namely as post(C, p) ⊇ q, the dual of Hoare’s interpretation – and
that it supports a simple footprint theorem at once, again in contrast to the
over-approximate theory.

5 Begin-Anywhere, Intra-procedural Symbolic Execution

ISL lends itself naturally to the definition of forward symbolic execution analy-
ses. We demonstrate that using the ISL rules, it is straightforward to derive
a begin-anywhere, intra-procedural analysis that allows us to infer valid ISL
triples automatically for a given piece of code, with the goal of finding only
true bugs reachable from an initial state. This is implemented in the intra-
procedural-only mode of the Pulse analysis inside Infer [18] (accessible by pass-
ing --pulse --pulse-intraprocedural-only to infer). The analysis follows
principles from bi-abduction [11], but takes its most successful application –
bug catching [18] – as the sole objective. This allows us to make a number of
adjustments and to obtain an analysis that is a much closer fit to the ISL theory
of under-approximation than the original bi-abduction analysis was to the SL
theory of over-approximation.

The original bi-abduction analysis in Abductor [11] and Infer [18] aimed at
discovering fault-avoiding specifications for procedures. Ideally, one would find
specifications for all procedures in the codebase, all the way to an entry-point
(e.g., the main() function), thus proving the program safe. In practice, however,
virtually all sizable codebases have bugs, and known abstract domains are impre-
cise when proving memory safety for large codebases. As such, specifications were
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Fig. 8. Symbolic heaps (above) and selected symbolic execution rules (below).

found for only 40–70% of the procedures in the experiments of [11]. Nonetheless,
proof failures, a by-product of proof search, became practically more valuable
than proofs, as they can indicate errors. Complex heuristics came into play to
classify proof failures and to report to the programmer those more likely to be
errors. These heuristics have not been given a formal footing, contributing to
the gap between the theory of proofs and the practice of bug catching.

Pulse approaches bug reporting more directly: by looking for them. It infers
under-approximate specifications, while recording invalidated addresses. If such
an address is later accessed, a bug is reported soundly, in line with the theory.

Symbolic Execution. In Fig. 8 we present our symbolic execution as big-step,
syntax-directed inference rules of the form [p0]C0 [ε0 :q0] C � [p] C0;C [ε :q],
which can be read as: “having already executed C0 yielding (discovering) the
presumption p0 and the result q0, then executing C yields the presumption p
and result q”. As is standard in SL-based tools [4,11], our abstract states consist
of ∗-conjoined predicates, with the notable addition of the invalidated assertion
and omission of inductive predicates. The latter are not needed because we never
perform the over-approximation steps that would introduce them.

SE-Seq describes how the symbolic execution goes forward step by step.
SE-Choice describes how the analysis computes one specification per path
taken in the program. To ensure termination, loops are unrolled up to a fixed
bound Nloops, borrowing from symbolic bounded model checking [12]. These two
ideas avoid the arduous task of inventing join and widen operators [15]. For added
efficiency, in practice we also limit the maximum number of paths leading to the
same program point to a fixed bound Ndisjuncts. The Nloops and Ndisjunctsbounds
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give us easy “knobs” to tune the precision of the analysis. Note that pruning
paths by limiting disjuncts is also sound for under-approximate reasoning [35].

To analyze a program C, we start from C0 = skip and produce [emp] skip
[ok : emp] C � [p] skip;C [ε :q]. As |= [emp] skip [ok : emp] holds and symbolic
execution rules preserve validity, we then obtain valid triples for C by Theorem 3.

Theorem 3 (Soundness of Symbolic Execution). If |= [p0] C0 [ε :q0] and
[p0]C0 [ε0 :q0] C � [p]C0;C [ε :q], then |= [p] C0;C [ε :q].

Symbolic execution of individual commands follows the derived SymbExec
rule below, with the side-condition that mod(C0)∩fv(M) = mod(C)∩fv(F ) = ∅:

SymbExec

[p0]C0 [ok:q0]
[p0∗M ]C0 [ok:q0∗M ] q0 ∗ M � p ∗ F

[p] C [ε:q]
[p∗F ] C [ε:q∗F ]

[p0 ∗ M ] C0;C [ε :q ∗ F ]

If executing C0 yields the presumption p0 and the current state q0, then
SymbExec allows us to execute the next command C with specification [p] C
[ε :q]. This may 1) materialize a state M that is missing from q0 (and is needed
to execute C); and 2) carry over an unchanged frame F . The unknowns M and
F in the bi-abduction question p ∗ F � q0 ∗ M have analogous counterparts in
over-approximate bi-abduction; but, as in the Cons rule, their roles have flipped:
the frame F is abduced, while the missing M is framed (or anti-abduced).

Bi-abduction and ISL. Bi-abduction is arguably a better fit for ISL than
SL: in SL adding the missing M to the overall precondition p0 is only valid for
straight-line code, and not across control flow branches. Intuitively, there is no
guarantee that a safe precondition for one path is safe for the other. This is
especially the case in the presence of non-determinism or over-approximation
of Boolean conditions, where one cannot find definitive predicates to force the
analysis down one path. It is thus necessary to re-execute the whole procedure
on the inferred preconditions, eliminating those that are not safe for all paths.
By contrast, in our setting SE-Choice is sound, and this re-execution is not
needed!

We allow the analysis to abduce information only for successful execution;
erroneous executions have to be manifest and realizable using only the informa-
tion at hand. We do this by requiring M to be emp in SymbExec when applied
to error triples. We go even further and require that the implication be in both
directions, i.e., that the current state force the error – note that if q � x ��→ ∗true
then there exists F such that x ��→ ∗F � q, and similarly for q � x = null ∗ true.
This is a practical choice and only one of many ways to decide where to report,
trying to avoid blaming the code for issues it did not itself cause. For instance,
thanks to this restriction, we do not report on [x] := 10 (which has error specifica-
tions through StoreEr and StoreNull) unless a previous instruction actively
invalidated x. This choice also chimes well with the fact that the analysis can
start anywhere in a program and give results relevant to the code analyzed.
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Solving the bi-abduction entailment in SymbExec can be done using the
techniques developed for SL [11, §3]. We do not detail them here as they are
straightforwardly adapted to our simpler setting without inductive predicates.

Finding a Bug in client, Automatically. We now describe how Pulse auto-
matically finds a proof of the bug in the unnanotated code of client from
Fig. 3, by automatically applying the only possible symbolic execution rule at
each step. Starting from emp and going past the first instruction x := [v] requires
solving v �→ u ∗ F � emp ∗ M . The bi-abduction entailment solver then answers
with F = emp and M = v �→ u, yielding the inferred presumption v �→ u
and the next current state v �→ u ∗ x = u. The next instruction is the call to
push back(v). For ease of presentation, let us consider this library call as an
axiomatized instruction that has been given the specification in Fig. 3. This cor-
responds to writing a model for it in the analyzer, which is actually the case in
the implementation, although the analysis would work equally well if we were to
inline the code inside client. Applying SymbExec requires solving the entail-
ment v �→ a ∗ a �→ w ∗ F � v �→ u ∗ x = u ∗ M . The solver then answers with the
solution F = (x = u ∗ a = u) and M = u �→ w. Finally, the following instance of
SE-StoreEr is used to report an error, where C = skip;x := [v]; push back(v)
and qrx = v �→ a′ ∗ a′ �→ w ∗ a ��→ ∗ x = u ∗ a = u:

[v �→ u ∗ u �→ w]C [ok : qrx ] lrx : [x] := 88
�[v �→ u ∗ u �→ w] C; lrx : [x] := 88 [er(lrx ) : qrx ]

Preliminary Results. Our analysis handles the examples in this paper, modulo
function inlining. While our analysis shows how to derive a sound static analysis
from first principles, it does not yet fully exploit the theory, as it does not handle
function calls, and in particular summarization. Under-approximate triples pave
the way towards succinct summaries. However, this is a subtle problem, requiring
significant theoretical and empirical work out of the scope of this initial paper.

Pragmatically, we can make Pulse scale by skipping over procedure calls
instead of inlining them, in effect assuming that the call has no effect beyond
assigning fresh (non-deterministic) values to the return address and the param-
eters passed by reference – note that such fresh values are treated optimistically
by Pulse as we do not know them to be invalid. In theory, this may cause false
positives and false negatives, but in practice we observed that such an analysis
reports very few issues. For instance, it reports no issues on OpenSSL 1.0.2d
(with 8681 C functions) at the time of writing, and only 17 issues on our pro-
prietary C++ codebase of hundreds of thousands of procedures. As expected,
the analysis is very fast and scales well (6 s for OpenSSL, running on a Linux
machine with 24 cores). Moreover, 30 disjuncts suffice to detect all 17 issues (in
comparison, using 20 disjuncts misses 1 issue, while using 100 disjuncts detects
no more issues than using 30 disjuncts), and varying loop unrollings between
1–10 has no effect.

We also ran Pulse in production at Facebook and reported issues to devel-
opers as they submit code changes, where bugs are more likely than in mature
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codebases. Over the course of 4 months, Pulse reported 20 issues to developers,
of which 15 were fixed. This deployment relies crucially on the begin-anywhere
capability: though the codebase in question has 10s of MLOC, analysing a code
change starts from the changed files and usually visits only a small fraction of
the codebase.

Under-Approximation in Pulse. Pulse achieves under-approximate rea-
soning in several ways. First, Pulse uses the under-approximate Choice,
Loop1 and Loop2 rules in Fig. 5 which prune paths by considering one exe-
cution branch (Choice) or finite loop unrollings (Loop1 and Loop2). Sec-
ond, Pulse does not use Alloc2, and thus prunes further paths. Third,
Pulse uses under-approximate models of certain library procedures; e.g., the
vector::push back() model assumes the internal array is always deallocated.
Finally, our bi-abduction implementation assumes that memory locations are
distinct unless known otherwise, thus leading to further path pruning. These
choices are all sound thanks to the under-approximate theory of ISL; it is nev-
ertheless possible to make different pragmatic choices.

Although our implementation does not do it, we can use ISL to derive
strongest posts for primitive statements, using a combination of their axioms
and the Frame, Disj and Exist rules. Given the logic fragment we use (which
excludes inductive predicates) and a programming language with Boolean con-
ditions restricted to a decidable fragment, there is likely a bounded decidability
result obtained by unrolling loops up to a given bound and then checking the
strongest post on each path. However, the ability to under-approximate (by for-
getting paths/disjuncts) gives us the leeway to tune a deployment for optimizing
the bugs/minute rate: in one experiment, we found that running Pulse on a code-
base with 100s kLOC and a limit of 20 disjuncts was ∼3.1x user-time faster than
running it with a limit of 50 disjuncts, and yet found 97% of the issues found in
the 50-disjuncts case.

Remark 3. Note that although the underlying heaps in ISL grow monotonically,
the impact on the size of the manipulated states in our analysis is comparable
to that of the original bi-abductive analysis for SL [11]. This is in part thanks
to the compositionality afforded by ISL and its footprint property (Theorem 2),
especially when individual procedures analyzed are not too big. In particular,
the original bi-abduction work for SL already tracks the allocated memory; in
ISL we additionally track deallocated memory which is of the same order of
magnitude.

6 Context, Related Work and Conclusions

Although the foundations of program verification have been mostly developed
with correctness in mind, industrial uses of symbolic reasoning often derive
value from their deployment as bug catchers rather than provers of bug absence.
There is a fundamental tension in correctness-based techniques, most thoroughly
explored in the model checking field, between compact representations versus
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strength and utility of counter-examples. Abstraction techniques are typically
used to increase compactness. This has the undesired side-effect that counter-
examples become “abstract”: they may be infeasible, in that they may not actu-
ally witness a concrete execution that violates a given property. Using proofs of
bugs, this paper aims to provide a symbolic mechanism to express the definite
existence of a concrete counter-example, without committing to a particular one,
while simultaneously enabling sound, compositional, local reasoning. Our work-
ing hypothesis is that bugs are a fundamental enough phenomenon to warrant
a fundamental compositional theory for reasoning positively about their exis-
tence, rather than only being about failed proofs. We hope that future work will
explore the practical ramifications of these foundational ideas more thoroughly.

Amongst static bug-catching techniques, there is a dichotomy between
the highly scalable, compositional static tools such as Coverity [5], Facebook
Infer [18] and those deployed at Google [42], which suffer from false positives
as well as negatives, and the under-approximating global bug hunters such as
fuzzers [23] and symbolic executors [9], which suffer from scalability limitations
but not false positives (at least, ideally). In a recent survey, Godefroid remarks
“How to engineer exhaustive symbolic testing (that is, a form of verification)
in a cost-effective manner is still an open problem for large applications” [23].
The ability to apply compositional analyses incrementally to large codebases has
led to considerable impact that is complementary to that of the global analyses.
But, compositional techniques can have less precision compared to global ones:
examining all call sites of a procedure can naturally lead to more precise results.

Our illustrative analysis, Pulse, starts from the scalable end of the spec-
trum and moves towards the under-approximate end. An equally valid research
direction would be to start from existing under-approximate analyses and make
them more scalable and with lower start-up-cost. There has indeed been valu-
able research in this direction. For example, SMART [22] tries to make symbolic
execution more scalable by using summaries as in inter-procedural static analy-
sis, and UC-KLEE [39] allows symbolic execution to begin anywhere, and thus
does not need a complete program. UC-KLEE uses a “lazy initialization” mech-
anism to synthesize assumptions about data structures; this is not unlike the bi-
abductive approach here and in [10]. An interesting research question is whether
this similarity can be made rigorous. There are many papers on marrying under-
and over-approximation e.g., [1], but they often lack the scalability that is crucial
to the impact of modular bug catchers. In general, there is a large unexplored
territory, relevant to Godefroid’s open problem stated above, between the exist-
ing modular but not-quite-under-approximate bug catchers such as Infer and
Coverity, and the existing global and under-approximate tools such as KLEE [8],
CBMC [12] and DART [24]. This paper provides not a solution, but a step in
the exploration.

Gillian [20] is a platform for developing symbolic analysis tools using a sym-
bolic execution engine based on separation logic. Gillian has C and JavaScript
instantiations for precise reasoning about a finite unwinding of a program, simi-
lar to symbolic bounded model checking. Gillian’s execution engine is currently
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exact for primitive commands (it is both over- and under-approximate); however,
it uses over-approximate bi-abduction for function calls, and is thus open to false
positives (Petar Maksimović, personal communication). We believe Gillian can
be modified to embrace under-approximation more strongly, serving as a gen-
eral engine for proving ISL specifications. Aiming for under-approximate results
rather than exact ones gives additional flexibility to the analysis designer, just
as aiming for over-approximate rather than exact results does for correctness
tools.

Many assertion languages for heap reasoning have been developed, includ-
ing ones not based on SL (e.g., [3,27,31,46]). We do not claim that, compared
to these alternatives, the ISL assertion language in this paper is particularly
advantageous for reasoning along individual paths, or exhaustive (but bounded)
reasoning about complete programs. Rather, the key point is that our analysis
solves abduction and anti-abduction problems, which in turn facilitates its appli-
cation to large codebases. In particular, as our analysis synthesizes contextual
heap assumptions (using anti-abduction), it can begin anywhere in a codebase
instead of starting from main(). For example, it can start on a modified function
that is part of a larger program: this capability enables continuous deployment
in codebases with millions of LOC [18,34]. To our knowledge, the cited asser-
tion languages have only ever been applied in a whole-program fashion on small
codebases (with low thousands of LOC). We speculate that this is not because
of the assertion languages per se: if methods to solve analogues of abduction
and anti-abduction queries were developed, perhaps they too could be applied
to large codebases.

It is natural to consider how the ideas of ISL extend to concurrency. The
RacerD analyzer [25] provided a static analysis for data races in concurrent pro-
grams; this analysis was provably under-approximate under certain assumptions.
RacerD was intuitively inspired by concurrent separation logic (CSL [6]), but did
not match the over-approximate CSL theory (just as Infer did not match SL).
We speculate that RacerD and other concurrency analyses might be seen as
constructing proofs in a yet-to-be-defined incorrectness version of CSL, a logic
which would aim at finding bugs in concurrent programs via modular reasoning.

Our approach supports reasoning that is local not only in code, but also in
state (spatial locality). Spatially local symbolic heap update has led to advances
in scalability of global shape analyses of mutable data structures, where heap
predicates are modified in-place in a way reminiscent of operational in-place
update, and where transfer functions need not track global heap information [44].
Mutable data structures have been suggested as one area where classic symbolic
execution has scaling challenges, and SL has been employed with human-directed
proof on heap-intensive components to aid the overall scalability of symbolic
execution [37]. An interesting question is whether spatial locality in the analysis
can benefit scalability of fully automatic, global, under-approximate analyses.

We probed the semantic fundamentals underpinning local reasoning in
Sect. 4, including a footprint theorem (Theorem 2) that is independent of the
logic. The semantic principles are more deeply fundamental than the surface
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syntax of the logic. Indeed, in the early days of work on SL, it was remarked
that local reasoning flows from locality properties of the semantics, and that
separation logic is but one convenient syntax to exploit these [45]. Since then,
a number of correctness logics with non-SL syntax have been proposed for local
reasoning (e.g., [33] and its references) that exploit the semantic locality of heap
update, and it stands to reason that the same will be possible for incorrectness
logics.

Relating this paper to the timeline of SL for correctness, we have devel-
oped the basic logic (like [36] but under-approximate) and a simple local intra-
procedural analysis (like [19] but under-approximate). We have not yet made the
next steps to relatively-scalable global analyses [44] or extremely-scalable inter-
procedural, compositional ones [11]. These future directions are challenging for
theory and especially practice, and are the subject of ongoing and future work.

Conclusions. Long ago, Dijkstra (in)famously remarked that “testing can be
quite effective for showing the presence of bugs, but is hopelessly inadequate for
showing their absence” [17], and he advocated the use of logic for the latter. As
noted by others, many of the benefits of logic hold for both bug catching and
verification, particularly the ability to cover many states and paths succinctly,
even if not the alluring all. But there remains a frustrating division between
testing and verification, where e.g., distinct tools are used for each. With more
research on the fundamentals of symbolic bug catching and correctness, divi-
sion may be replaced by unified foundations and toolsets in the future. For
under-approximate reasoning in particular, we hope that bug catching eventually
becomes more modular, scalable, easier to deploy and with elegant foundations
similar to those of verification. This paper presents but one modest step towards
that goal.
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20. Fragoso Santos, J., Maksimović, P., Ayoun, S., Gardner, P.: Gillian, part i: a multi-
language platform for symbolic execution. In: Proceedings of the 41st ACM SIG-
PLAN International Conference on Programming Language Design and Imple-
mentation (PLDI 2020), London, UK, 15–20 June 2020 (2020). https://doi.org/
10.1145/3385412.3386014

21. Gardner, P.A., Maffeis, S., Smith, G.D.: Towards a program logic for javascript.
SIGPLAN Not. 47(1), 31–44 (2012). https://doi.org/10.1145/2103621.2103663

22. Godefroid, P.: Compositional dynamic test generation. In: Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2007, Nice, France, 17–19 January 2007, pp. 47–54 (2007). https://doi.org/
10.1145/1190216.1190226

23. Godefroid, P.: Fuzzing: hack, art, and science. Commun. ACM 63(2), 70–76 (2020).
https://doi.org/10.1145/3363824

24. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, 12–15 June 2005, pp. 213–223
(2005). https://doi.org/10.1145/1065010.1065036

25. Gorogiannis, N., O’Hearn, P.W., Sergey, I.: A true positives theorem for a static
race detector. PACMPL 3(POPL), 57:1–57:29 (2019). https://doi.org/10.1145/
3290370

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259
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Abstract. In many settings, such as robotics, demonstrations provide
a natural way to specify tasks. However, most methods for learning from
demonstrations either do not provide guarantees that the learned arti-
facts can be safely composed or do not explicitly capture temporal prop-
erties. Motivated by this deficit, recent works have proposed learning
Boolean task specifications, a class of Boolean non-Markovian rewards
which admit well-defined composition and explicitly handle historical
dependencies. This work continues this line of research by adapting max-
imum causal entropy inverse reinforcement learning to estimate the pos-
teriori probability of a specification given a multi-set of demonstrations.
The key algorithmic insight is to leverage the extensive literature and
tooling on reduced ordered binary decision diagrams to efficiently encode
a time unrolled Markov Decision Process. This enables transforming a
naïve algorithm with running time exponential in the episode length,
into a polynomial time algorithm.

1 Introduction

In many settings, episodic demonstrations provide a natural and robust mech-
anism to partially specify a task, even in the presence of errors. For example,
consider the agent operating in the gridworld illustrated in Fig. 1. Blue arrows
denote intended actions and the solid black arrow shows the agent’s actual path.
This path can stochastically differ from the blue arrows due to a downward
wind. One might naturally ask: “What task was this agent attempting to per-
form?” Even without knowing if this was a positive or negative example, based
on the agent’s state/action sequence, one can reasonably infer the agent’s intent,
namely, “reach the yellow tile while avoiding the red tiles.” Compared with tradi-
tional learning from positive and negative examples, this is somewhat surprising,
particularly given that the task is never actually demonstrated in Fig. 1.
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S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 255–278, 2020.
https://doi.org/10.1007/978-3-030-53291-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_15


256 M. Vazquez-Chanlatte and S. A. Seshia

Fig. 1. Example of an agent
unsuccessfully demonstrating
the task “reach a yellow tile
while avoiding red tiles”. (Color
figure online)

This problem, inferring intent from demon-
strations, has received a fair amount of attention
over the past two decades particularly within the
robotics community [5,22,30,33]. In this litera-
ture, one traditionally models the demonstrator
as operating within a dynamical system whose
transition relation only depends on the current
state and action (called the Markov condition).
However, even if the dynamics are Markovian,
many tasks are naturally modeled in history
dependent (non-Markovian) terms, e.g., “if the robot enters a blue tile, then
it must touch a brown tile before touching a yellow tile”. Unfortunately, most
methods for learning from demonstrations either do not provide guarantees that
the learned artifacts (e.g. rewards) can be safely composed or do not explicitly
capture history dependencies [30].

Motivated by this deficit, recent works have proposed specializing to task
specifications, a class of Boolean non-Markovian rewards induced by for-
mal languages. This additional structure admits well-defined compositions and
explicitly captures temporal dependencies [15,30]. A particularly promising
direction has been to adapt maximum entropy inverse reinforcement learning [33]
to task specifications, enabling a form of robust specification inference, even in
the presence unlabeled demonstration errors [30].

However, while powerful, the principle of maximum entropy is limited to
settings where the dynamics are deterministic or agents that use open-loop poli-
cies [33]. This is because the principle of maximum entropy incorrectly allows
the agent’s predicted policy to depend on future state values resulting in an
overly optimistic agent [19]. For instance, in our gridworld example (Fig. 1), the
principle of maximum entropy would discount the possibility of slipping, and
thus we would not forecast the agent to correct its trajectory after slipping once.

This work continues this line of research by instead using the principle of
maximum causal entropy, which generalizes the principle of maximum entropy to
general stochastic decision processes [32]. While a conceptually straightforward
extension, a naïve application of maximum causal entropy inverse reinforcement
learning to non-Markovian rewards results in an algorithm with run-time expo-
nential in the episode length, a phenomenon sometimes known as the curse
of history [24]. The key algorithmic insight in this paper is to leverage the
extensive literature and tooling on Reduced Ordered Binary Decision Diagrams
(BDDs) [3] to efficiently encode the time unrolled composition of the dynamics
and task specification. This allows us to translate a naïve exponential time algo-
rithm into a polynomial time algorithm. In particular, we shall show that this
BDD has size at most linear in the episode length making inference compara-
tively efficient.
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1.1 Related Work

Our work is intimately related to the fields of Inverse Reinforcement Learning
and Grammatical Inference. Grammatical inference [8] refers to the well-
developed literature on learning a formal grammar (often an automaton) from
data. Examples include learning the smallest automata that in consistent with a
set of positive and negative strings [7,8] or learning an automaton using member-
ship and equivalence queries [1]. This and related work can be seen as extend-
ing these methods to unlabeled and potentially noisy demonstrations, where
demonstrations differ from examples due to the existence of a dynamics model.
This notion of demonstration derives from the Inverse Reinforcement Learning
literature.

In Inverse Reinforcement Learning (IRL) [22] the demonstrator, oper-
ating in a stochastic environment, is assumed to attempt to (approximately)
optimize some unknown reward function over the trajectories. In particular, one
traditionally assumes a trajectory’s reward is the sum of state rewards of the
trajectory. This formalism offers a succinct mechanism to encode and generalize
the goals of the demonstrator to new and unseen environments.

In the IRL framework, the problem of learning from demonstrations can then
be cast as a Bayesian inference problem [25] to predict the most probable reward
function. To make this inference procedure well-defined and robust to demonstra-
tion/modeling noise, Maximum Entropy [33] and Maximum Causal Entropy [32]
IRL appeal to the principles of maximum entropy [13] and maximum causal
entropy respectively [32]. This results in a likelihood over the demonstrations
which is no more committed to any particular behavior than what is required to
match observed statistical features, e.g., average distance to an obstacle. While
this approach was initially limited to rewards represented as linear combina-
tions of scalar features, IRL has been successfully adapted to arbitrary function
approximators such as Gaussian processes [20] and neural networks [5]. As stated
in the introduction, while powerful, traditional IRL provides no principled mech-
anism for composing the resulting rewards.

Compositional RL: To address this deficit, composition using soft optimality
has recently received a fair amount of attention; however, the compositions are
limited to either strict disjunction (do X or Y) [26,27] or conjunction (do X
and Y) [6]. Further, this soft optimality only bounds the deviation from simul-
taneously optimizing both rewards. Thus, optimizing the composition does not
preclude violating safety constraints embedded in the rewards (e.g., do not enter
the red tiles).

Logic Based IRL: Another promising approach for introducing composition-
ality has been the recent research on automata and logic based encodings of
rewards [11,14] which admit well defined compositions. To this end, work has
been done on inferring Linear Temporal Logic (LTL) formulas by finding the
specification that minimizes the expected number of violations by an optimal
agent compared to the expected number of violations by an agent applying
actions uniformly at random [15]. The computation of the optimal agent’s
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expected violations is done via dynamic programming on the explicit prod-
uct of the deterministic Rabin automaton [4] of the specification and the state
dynamics. A fundamental drawback of this procedure is that due to the curse
of history, it incurs a heavy run-time cost, even on simple two state and two
action Markov Decision Processes. Additionally, as with early work on gram-
matical inference and IRL, these techniques do not produce likelihood estimates
amenable to Bayesian inference.
Maximum Entropy Specification Inference: In our previous work [30], we
adapted maximum entropy IRL to learn task specifications. Similar to stan-
dard maximum entropy IRL, this technique produces robust likelihood estimates.
However, due to the use of the principle of maximum entropy, rather than max-
imum causal entropy, this model is limited to settings where the dynamics are
deterministic or agents with open-loop policies [33].
Inference Using BDDs: This work makes heavy use of Binary Decision Dia-
grams (BDDs) [3] which are frequently used in symbolic value iteration for
Markov Decision Processes [9] and reachability analysis for probabilistic sys-
tems [18]. However, the literature has largely relied on Multi-Terminal BDDs to
encode the transition probabilities for a single time step. In contrast, this work
introduces a two-terminal encoding based on the finite unrolling of a probabilis-
tic circuit. To the best of our knowledge, the most similar usage of BDDs for
inference appears in the independently discovered literal weight based encoding
of [10] - although their encoding does not directly support non-determinism or
state-indexed random variables.
Contributions: The primary contributions of this work are two fold. First,
we leverage the principle of maximum causal entropy to provide the likelihood
of a specification given a set of demonstrations. This formulation removes the
deterministic and/or open-loop restriction imposed by prior work based on the
principle of maximum entropy. Second, to mitigate the curse of history, we pro-
pose using a BDD to encode the time unrolled Markov Decision Process that the
maximum causal entropy forecaster is defined over. We prove that this BDD has
size that grows linearly with the horizon and quasi-linearly with the number of
actions. Furthermore, we prove that our derived likelihood estimates are robust
to the particular reward associated with satisfying the specification. Finally, we
provide an initial experimental validation of our method. An overview of this
pipeline is provided in Fig. 8.

2 Problem Setup

We seek to learn task specifications from demonstrations provided by a teacher
who executes a sequence of actions that probabilistically change the system state.
For simplicity, we assume that the set of actions and states are finite and fully
observed. Further, until Sect. 5.3, we shall assume that all demonstrations are a
fixed length, τ ∈ N. Formally, we begin by modeling the underlying dynamics as
a probabilistic automaton.
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Definition 1 A probabilistic automaton (PA) is a tuple (S, s0, A, δ),
where S is the finite set of states, s0 ∈ S is the initial state, A is a finite
set of actions, and δ specifies the transition probability of going from state
s to state s′ given action a, i.e. δ(s, a, s′) = Pr(s′ | s, a).
A tracea, ξ, is a sequence of (action, state) pairs implicitly starting from
s0. A trace of length τ ∈ N is an element of (A × S)τ .

a sometimes referred to as a trajectory or behavior.

Note that probabilistic automata are equivalently characterized as
11/2 player games where each round has the agent choose an action and then
the environment samples a state transition outcome. In fact, this alternative
characterization is implicitly encoded in the directed bipartite graph used to
visualize probabilistic automata (see Fig. 2b). In this language, we refer to the
nodes where the agent makes a decision as a decision node and the nodes
where the environment samples an outcome as a chance node.

Next, we develop machinery to distinguish between desirable and undesirable
traces. For simplicity, we focus on finite trace properties, referred to as specifi-
cations, that are decidable within some fixed τ ∈ N time steps, e.g., “Recharge
before t = 20.”

Fig. 2. Example of gridworld probabilistic automata (PA).

Definition 2 A task specification, ϕ, (or simply specification) is a sub-
set of traces. For simplicity, we shall assume that each trace is of a fixed
length τ ∈ N, e.g.,

ϕ ⊆ (A × S)τ (1)

A collection of specifications, Φ, is called a concept class. Further, we
define true def= (A × S)τ , ¬ϕ

def= true \ ϕ, and false def= ¬true.
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Often specifications are not directly given as sets, but induced by abstract
descriptions of a task. For example, the task “avoid lava” induces a concrete set
of traces that never enter lava tiles. If the workspace/world/dynamics change,
this abstract specification would map to a different set of traces.

2.1 Specification Inference from Demonstrations
The primary task in this paper is to find the specification that best explains/-
forecasts the behavior of an agent. As in our prior work [30], we formalize our
problem statement as:

Definition 3 The specification inference from demonstrations prob-
lem is a tuple (M, X, Φ, D) where M = (S, s0, A, δ) is a probabilistic automa-
ton, X is a (multi-)set of τ -length traces drawn from an unknown distribu-
tion induced by a teacher attempting to demonstrate (satisfy) some unknown
task specification within M , Φ is a concept class of specifications, and D is
a prior distribution over Φ. A solution to (M, X, Φ, D) is:

ϕ∗ ∈ arg max
ϕ∈Φ

Pr(X | M, ϕ) · Pr
ϕ∼D

(ϕ) (2)

where Pr(X | M, ϕ) denotes the likelihood that the teacher would have
demonstrated X given the task ϕ.

Of course, by itself, the above formulation is ill-posed as Pr(X | M, ϕ) is left
undefined. Below, we shall propose leveraging Maximum Causal Entropy Inverse
Reinforcement Learning (IRL) to select the demonstration likelihood distribu-
tion in a regret minimizing manner.

3 Leveraging Inverse Reinforcement Learning
The key idea of Inverse Reinforcement Learning (IRL), or perhaps more accu-
rately Inverse Optimal Control, is to find the reward structure that best explains
the actions of a reward optimizing agent operating in a Markov Decision Process.
We formalize below.

Definition 4 A Markov Decision Process (MDP) is a probabilistic
automaton endowed with a reward map from states to reals, r : S → R.
This reward mapping is lifted to traces via,

R(ξ) def=
∑

s∈ξ

r(s). (3)

Remark 1. Note that a temporal discount factor, γ ∈ [0, 1] can be added into (3)
by introducing a sink state, $, to the MDP, where r($) = 0 and

Pr(s′ = $ | s, a) =
{

γ if s �= $
1 otherwise

. (4)
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Given a MDP, the goal of an agent is to maximize the expected trace reward.
In this work, we shall restrict ourselves to rewards that are given as a linear
combination of state features, f : S → R

n
≥0, e.g.,

r(s) = θ · f(s) (5)

for some θ ∈ R
n. Note that since state features can themselves be rewards, such

a restriction does not actually restrict the space of possible rewards.

Example 1. Let the components of f(s) be distances to various locations on
a map. Then the choice of θ characterizes the relative preferences in avoid-
ing/reaching the respective locations.

Formally, we model an agent as acting according to a policy.

Definition 5 A policy, π, is a state indexed distribution over actions,

Pr(a | s) = π(a | s). (6)

In this language, the agent’s goal is equivalent to finding a policy which maxi-
mizes the expected trace reward. We shall refer to a trace generated by such an
agent as a demonstration. Due to the Markov requirement, the likelihood of a
demonstration, ξ, given a particular policy, π, and probabilistic automaton, M ,
is easily stated as:

Pr(ξ | M, π) =
∏

s′,a,s∈ξ

Pr(s′ | s, a) · Pr(a | s). (7)

Thus, the likelihood of multi-set of i.i.d demonstrations, X, is given by:

Pr(X | M, π) =
∏

ξ∈X

Pr(ξ | M, π). (8)

3.1 Inverse Reinforcement Learning (IRL)

As previously stated, the main motivation in introducing the MDP formalism
has been to discuss the inverse problem. Namely, given a set of demonstrations,
find the reward that best “explains” the agent’s behavior, where by “explain”
one typically means that under the conjectured reward, the agent’s behavior
was approximately optimal. Notice however, that many undesirable rewards sat-
isfy this property. For example, consider the following reward in which every
demonstration is optimal,

r : s �→ 0. (9)

Furthermore, observe that given a fixed reward, many policies are approximately
optimal! For instance, using (9), an optimal agent could pick actions uniformly
at random or select a single action to always apply.
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3.2 Maximum Causal Entropy IRL

A popular, and in practice effective, solution to the lack of unique policy conun-
drum is to appeal to the principle of maximum causal entropy [32]. To
formalize this principle, we recall the definitions of causally conditioned proba-
bility [17] and causal entropy [17,23].

Definition 6 Let X1:τ
def= X1, . . . , Xτ denote a temporal sequence of τ ∈ N

random variables. The probability of a sequence Y1:τ causally conditioned
on sequence X1:τ is:

Pr(Y1:τ || X1:τ ) def=
τ∏

t=1
Pr(Yt | X1:t, Y1:t−1) (10)

The causal entropy of Y1:τ given X1:τ is defined as,

H(Y1:τ || X1:τ ) def= E
Y1:τ ,X1:τ

[− log(Pr(Y1:τ || X1:τ ))] (11)

In the case of inverse reinforcement learning, the principle of maximum causal
entropy suggests forecasting using the policy whose action sequence, A1:τ , has
the highest causal entropy, conditioned on the state sequence, S1:τ . That is, find
the policy that maximizes

H(A1:τ || S1:τ ), (12)

subject to feature matching constraints, E[f ], e.g., does the resulting policy, π∗,
complete the task as seen in the data. Compared to all other policies, this policy
(i) minimizes regret with respect to model/reward uncertainty, (ii) ensures that
the agent’s predicted policy does not depend on the future, (iii) is consistent
with observed feature statistics [32].

Concretely, as proved in [32], when an agent is attempting to maximize the
sum of feature state rewards,

∑T
t=1 θ · f(st), the principle of maximum causal

entropy prescribes the following policy:

Maximum Causal Entropy Policy:

log
(
πθ(at | st)

) def= Qθ(at, st) − Vθ(st) (13)

where

Qθ(at, st)
def= E

st+1
[Vθ(st+1) | st, at] + θ · f(st)

Vθ(st)
def= ln

∑

at

eQθ(at,st) def= softmaxat
Qθ(at, st).

(14)

where, θ is such that (14) results in a policy which matches feature
demonstrations.
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Remark 2. Note that replacing softmax with max in (14) yields the standard
Bellman Backup [2] used to compute the optimal policy in tabular reinforcement
learning. Further, it can be shown that maximizing causal entropy corresponds to
believing that the agent is exponentially biased towards high reward policies [32]:

Pr(πθ | M) ∝ exp
(
E
ξ
[Rθ(ξ) | πθ, M ]

)
, (15)

where (14) is the most likely policy under (15).

Remark 3. In the special case of scalar state features, f : S → R≥0, the maximum
causal entropy policy (14) becomes increasingly optimal as θ ∈ R increases (since
softmax monotonically approaches max). In this setting, we shall refer to θ as
the agent’s rationality coefficient.

3.3 Non-Markovian Rewards

The MDP formalism traditionally requires that the reward map be Markovian
(i.e., state based); however, in practice, many tasks are history dependent, e.g.
touch a red tile and then a blue tile.

A common trick within the reinforcement learning literature is to simply
change the MDP and add the necessary history to the state so that the reward
is Markovian, e.g. a flag for touching a red tile. However, in the case of inverse
reinforcement learning, by definition, one does not know what the reward is.
Therefore, one cannot assume to a priori know what history suffices.

Further exacerbating the situation is the fact that naïvely including the entire
history into the state results in an exponential increase in the number of states.
Nevertheless, as we shall soon see, by restricting the class of rewards to represent
task specifications, this curse can be mitigated to only result in a blow-up that
is at most linear in the state space size and in the trace length!

To this end, we shall find it fruitful to develop machinery for embedding the
full trace history into the state space. Explicitly, we shall refer to the process of
adding all history to a probabilistic automaton’s (or MDP’s) state as unrolling.

Definition 7 Let M = (S, s0, A, δ) be a PA. The unrolling of M is a PA,
M ′ = (S′, s0, A, δ′), where

S′ = {s0} ×
∞⋃

i=0
(A × S)i δ′(ξn+1, a, ξn) = δ(sn+1, a, sn)

ξn =
(

s0, . . . , (an−1, sn)
)

ξn+1 =
(

s0, . . . , (an, sn+1)
) (16)

If R : Sτ → R is a non-Markovian reward over τ -length traces, then we
endow the corresponding unrolled PA with the now Markovian Reward,

r′
(

s0, . . . , (an−1, sn)
)

def=
{

R(s0, . . . , sn) if n = τ

0 otherwise
. (17)
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Further, by construction the reward is Markovian in S′ and only depends only
τ -length state sequences,

∞∑

t=0
r′((s0, a0), . . . sτ

)
= R(s0, . . . , sτ ). (18)

Next, observe that for τ -length traces, the 11/2 player game formulation’s
bipartite graph forms a tree of depth τ (see Fig. 3). Further, observe that each
leaf corresponds to unique τ -length trace. Thus, to each leaf, we associate the
corresponding trace’s reward, R(ξ). We shall refer to this tree as a decision
tree, denoted T.

Fig. 3. Decision tree generated by the PA shown in Fig. 2 and specification “By τ = 2,
reach a yellow tile while avoiding red tiles.”. Here a binary reward is given depending
on whether or not the agent satisfies the specification. (Color figure online)

Finally, observe that the trace reward depends only on the sequence of agent
actions, A, and environment actions, Ae. That is, T can be interpreted as a
function:

T : (A × Ae)τ → R. (19)

3.4 Specifications as Non-Markovian Rewards

Next, with the intent to frame our specification inference problem as an inverse
reinforcement learning problem, we shall overload notation and denote by ϕ the
following non-Markovian reward corresponding to a specification ϕ ∈ (A × S)τ ,

ϕ(ξ) def=
{

1 if ξ ∈ ϕ

0 otherwise
. (20)

Note that the corresponding decision tree is then a Boolean predicate:

Tϕ : (A × Ae)τ → {0, 1}. (21)
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3.5 Computing Maximum Causal Entropy Specification Policies

Now let us return to the problem of computing the policy prescribed by (14). In
particular, note that viewing the unrolled reward (17) as a scalar state feature
results in the following soft-Bellman Backup:

Qθ(at, ξt) = E [Vθ(st+1) | ξt, at]

Vθ(ξt) =
{

θ · ϕ(ξt) if t = τ

softmaxat
Qθ(at, ξt) otherwise

, (22)

where ξi ∈ {s0} × (A × S)i denotes a state in the unrolled MDP.
Equation (22) thus suggests a naïve dynamic programming scheme over T

starting at the t = τ leaves to compute Qθ and Vθ (and thus πθ).

Fig. 4. Computation graph generated from
applying (14) to the decision tree shown
in Fig. 3. Here smax and avg denote the
softmax and weighted average respectively.

Namely, in T, the chance nodes,
which correspond to action/state pairs,
are responsible for computing Q values
and the decision nodes, which corre-
spond to states waiting for an action
to be applied, are responsible for com-
puting V values. For chance nodes this
is done by taking the softmax of the
values of the child nodes. Similarly, for
decision nodes, this is done by taking
a weighted average of the child nodes,
where the weights correspond to the
probability of a given transition. This,
at least conceptually, corresponds to transforming T into a bipartite computation
graph (see Fig. 4).

Next, note that (i) the above dynamic programming scheme can be trivially
modified to compute the expected trace reward of the maximum causal entropy
policy and (ii) the expected reward increases1 with the rationality coefficient θ.

Observe then that, due to monotonicity, bisection (binary search) approxi-
mates θ to tolerance ε in O(log(1/ε)) time. Additionally, notice that the likeli-
hood of each demonstration can be computed by traversing the path of length
τ in T corresponding to the trace and multiplying the corresponding policy and
transition probabilities (8). Therefore, if |Ae| ∈ N denotes the maximum num-
ber of outcomes the environment can choose from (i.e, the branching factor for
chance nodes), it follows that the run-time of this naïve scheme is:

O

(
compute policy︷ ︸︸ ︷(

|A| · |Ae|
)τ

︸ ︷︷ ︸
|T|

· log(1/ε)︸ ︷︷ ︸
Feature Matching

+ τ |X|︸︷︷︸
evaluate demos

)
. (23)

1 Formally, this is due to (a) softmax and average being monotonic (b) trajectory
rewards only increasing with θ, and (c) π exponentially biasing towards high Q-
values.



266 M. Vazquez-Chanlatte and S. A. Seshia

3.6 Task Specification Rewards

Of course, the problem with this naïve approach is that explicitly encoding the
unrolled tree, T, results in an exponential blow-up in the space and time com-
plexity. The key insight in this paper is that the additional structure of task
specifications enables avoiding such costs while still being expressive. In partic-
ular, as is exemplified in Fig. 4, the computation graphs for task specifications
are often highly redundant and apt for compression.

Fig. 5. Reduction of the deci-
sion tree shown in Fig. 3.

In particular, we shall apply the following two
semantic preserving transformations: (i) Eliminate
nodes whose children are isomorphic sub-graphs,
i.e., inconsequential decisions (ii) Combine all iso-
morphic sub-graphs i.e., equivalent decisions. We
refer to the limit of applying these two operations
as a reduced ordered probabilistic decision
diagram and shall denote2 the reduced variant of
T as T .

Remark 4. For those familiar, we emphasize that these decision diagrams are
MDPs, not Binary Decision Diagrams (see Sect. 4). Importantly, more than two
actions can be taken from a node if max(|A|, |Ae|) ≥ 2 and Ae has a state depen-
dent probability distribution attached to it. That said, the above transformations
are exactly the reduction rules for BDDs [3].

As Fig. 5 illustrates, reduced decision diagrams can be much smaller than
their corresponding decision tree. Nevertheless, we shall briefly postpone char-
acterizing |T | until developing some additional machinery in Sect. 4. Computa-
tionally, three problems remain.

1. How can our naïve dynamic programming scheme be adapted to this com-
pressed structure. In particular, because many interior nodes have been elim-
inated, one must take care when applying (22).

2. How do concrete demonstrations map to paths in the compressed structure
when evaluating likelihoods (8).

3. How can one construct T without first constructing T, since failing to do so
would negate any complexity savings.

We shall postpone discussing solutions to the second and third problems
until Sect. 4. The first problem however, can readily be addressed with the tools
at hand. Recall that in the variable ordering, nodes alternate between decision
and chance nodes (i.e., agent and environment decisions), and thus alternate
between taking a softmax and expectations of child values in (22). Next, by
definition, if a node is skipped in T , then it must have been inconsequential.
Thus the trace reward must have been independent of the decision made at that
node. Therefore, the softmax/expectation’s corresponding to eliminated nodes
must have been over a constant value - otherwise the eliminated sequences would
2 Mnemonic: T is a (typographically) slimmed down variant of T.
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be distinguishable w.r.t ϕ. The result is summarized in the following identities,
where α denotes the value of an eliminated node’s children.

softmax(
|A|

︷ ︸︸ ︷
α, . . . , α) = log(eα + . . . + eα) = ln(|A|) + α (24)

E
x

[α] =
∑

x

p(x)α = α (25)

Of course, it could also be the case that a sequence of nodes is skipped in T .
Using (24), one can compute the change in value, Δ, that the eliminated sequence
of n decision nodes and any number of chance nodes would have applied in T:

Δ(n, α) = ln(|A|n) + α = n ln(|A|) + α (26)

Crucially, evaluation of this compressed computation graph is linear in |T | which
as shall later prove, is often much smaller than |T|.

4 Constructing and Characterizing T

Let us now consider how to avoid the construction of T and characterize the
size of the reduced ordered decision diagram, T . We begin by assuming that the
underlying dynamics is well-approximated in the random-bit model.

Definition 8 For q ∈ N, let c ∼ {0, 1}q denote the random variable rep-
resenting the result of flipping q ∈ N fair coins. We say a probabilistic
automata M = (S, s0, A, δ) is (ε, q) approximated in the random bit model
if there exists a mapping,

δ̂ : S × A × {0, 1}q → S (27)

such that for all s, a, s′ ∈ S × A × S:
∣∣∣∣ δ(s, a, s′) − Pr

c∼{0,1}q

(
δ̂(s, a, c) = s′

)∣∣∣∣ ≤ ε. (28)

For example, in our gridworld example (Fig. 2a), if c ∈ {0, 1}3, elements of
s are interpreted as pairs in R

2, and the right/down actions are interpreted as
the addition of the unit vectors (1, 0) and (0, 1) then,

δ̂(s, a, c) =

⎧
⎪⎨

⎪⎩

s if maxi[(s + a)i] > 1
s + (0, 1) else if c = 0
s + a otherwise

, (29)

As can be easily confirmed, (29) satisfies (28) with ε = 0. In the sequel, we shall
take access to δ̂ as given3. Further, to simplify exposition, until Sect. 5.1, we
3 See [31] for an explanation on systematically deriving such encodings.
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shall additionally require that the number of actions, |A|, be a power of 2. This
assumption implies that A can be encoded using exactly log2(|A|) bits.

Under the above two assumptions, the key observation is to recognize that T
(and thus T ) can be viewed as a Boolean predicate over an alternating sequence
of action bit strings and coin flip outcomes determining if the task specification
is satisfied, i.e.,

T : {0, 1}n → {0, 1}, (30)

where n
def= τ · log2(|A × Ae|) = τ · (q + log2(|A|)). That is to say, the result-

ing decision diagram can be re-encoded as a reduced ordered binary decision
diagram [3].

Definition 9 A reduced ordered binary decision diagram (BDD), is a
representation of a Boolean predicate h(x1, x2, . . . , xn) as a reduced ordered
(deterministic) decision diagram, where each decision corresponds to testing
a bit xi ∈ {0, 1}. We denote the BDD encoding of T as B.

Binary decision diagrams are well developed both in a theoretical and prac-
tical sense. Before exploring these benefits, we first note that this change has
introduced an additional problem. First, note that in B, decision and chance
nodes from T are now encoded as sequences of decision and chance nodes. For
example, if a ∈ A is encoded by the 4-length bit sequence b1b2b3b4, then four
decisions are made by the agent before selecting an action. Notice however that
the original semantics are preserved due to associativity of the softmax and E

operators. In particular, recall that by definition,

softmax(α1, . . . , α4) = ln(
4∑

i=1
eαi) = ln(eln(e

α1+eα2 ) + eln(e
α3+eα4 ))

def= softmax(softmax(α1, α2), softmax(α3, α4))

(31)

and thus the semantics of the sequence decision nodes is equivalent to the decision
node in T. Similarly, recall that the coin flips are fair, and thus expectations are
computed via avg(α1, . . . , αn) = 1/n(

∑n
i=1 αi). Therefore, averaging over two

sequential coin flips yields,

avg(α1, . . . , α4) def= 1
4

4∑

i=1
αi = 1

2(1
2(α1 + α2) + 1

2(α3 + α4))

def= avg(avg(α1, α2), avg(α3, α4))

(32)

which by assumption (28), is the same as applying E on the original chance
node. Finally, note that skipping over decisions needs to be adjusted slightly to
account for sequences of decisions. Recall that via (26), the corresponding change
in value, Δ, is a function of initial value, α, and the number of agent actions
skipped, i.e., |A|n for n skipped decision nodes. Thus, in the BDD, since each
decision node has two actions, skipping k decision bits corresponds to skipping
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2k actions. Thus, if k decision bits are skipped over in the BDD, the change in
value, Δ, becomes,

Δ(k, α) = α + k ln(2). (33)
Further, note that Δ can be computed in constant time while traversing the
BDD. Thus, the dynamic programming scheme is linear in the size of B.

4.1 Size of B

Next we return to the question of how big the compressed decision diagram can
actually be. To this aim, we cite the following (conservative) bound on the size of
an BDD given an encoding of the corresponding Boolean predicate in the linear
model computation illustrated in Fig. 6 (for more details, we refer the reader
to [16]).

Fig. 6. Generic network of Boolean modules for which Theorem 1 holds.

In particular, consider an arbitrary Boolean predicate

f : {0, 1}n → {0, 1} (34)

and a sequential arrangement of n Boolean modules, f1, f2, . . . , fn where each
fi has shape:

fi : {0, 1} × {0, 1}ai−1 × {0, 1}bi → {0, 1}ai × {0, 1}bi−1 , (35)

and takes as input xi as well as ai−1 outputs of its left neighbor and bi outputs
of the right neighbor (b0 = 0, an = 1). Further, assume that this arrangement is
well defined, e.g. for each assignment to x1, . . . , xn there exists a unique way to
set each of the inter-module wires. We say these modules compute f if the final
output is equal to f(x1, . . . , xn).

Theorem 1 If f can be computed by a linear arrangement of such modules,
ordered x1, x2, . . . , xn, then the size, S ∈ N, of its BDD (in the same order),
is upper bounded [3] by:

S ≤
n∑

k=1

2ak·(2bk ). (36)
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To apply this bound to our problem, recall that B computes a Boolean func-
tion where the decisions are temporally ordered and alternate between sequences
of agent and environment decisions. Next, observe that because the traces are
bounded (and all finite sets are regular), there exists a finite state machine which
can monitor the satisfaction of the specification.

Remark 5. In the worst case, the monitor could be the unrolled decision tree, T.
This monitor would have exponential number of states. In practice, the compo-
sition of the dynamics and the monitor is expected to be much smaller.

Further, note that because this composed system is causal, no backward
wires are needed, e.g., ∀k . bk = 0. In particular, observe that because the
composition of the dynamics and the monitor is Markovian, the entire system can
be uniquely described using the monitor/dynamics state and agent/environment
action (see Fig. 7). This description can be encoded in log2(2q|A × S × Sϕ|) bits,
where q denotes the number of coin flips tossed by the environment and Sϕ

denotes the monitor state. Therefore, ak is upper bounded by log2(2q|A × S ×
Sϕ|). Combined with (36) this results in the following bound on the size of B.

Corollary 1 Let M = (S, s0, A, δ) be a probabilistic automaton whose prob-
abilistic transitions can be approximated using q coin flips and let ϕ be a
specification defined for horizon τ and monitored by a finite automaton with
states Sϕ. The corresponding BDD, B, has size bounded by:

|B| ≤
# inputs︷ ︸︸ ︷

τ ·
(

log(|A|) + q
)

·
bound on 2ak

︷ ︸︸ ︷(
2q|A × S × Sϕ|

)
(37)

Fig. 7. Generic module in lin-
ear model of computation for B.
Note that backward edges are not
required.

Notice that the above argument implies
that as the episode length grows, |B| grows
linearly in the horizon/states and quasi-
linearly in the agent/environment actions!

Remark 6. Note that this bound actually
holds for the minimal representation of the
composed dynamics/monitor (even if it’s
unknown a-prori!). For example, if the prop-
erty is true, the BDD requires only one state
(always evaluate true). This also illustrates
that the above bound is often very conserva-
tive. In particular, note that for ϕ = true, |B| = 1, independent of the horizon
or dynamics. However, the above bound will always be linear in τ . In general,
the size of the BDD will depend on the particular symmetries compressed.

Remark 7. With hindsight, Corollary 1 is not too surprising. In particular, if
the monitor is known, then one could explicitly compose the dynamics MDP
with the monitor, with the resulting MDP having at most |S × Sϕ| states. If
one then includes the time step in the state, one could perform the soft-Bellman
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Backup directly on this automaton. In this composed automaton each (action,
state) pair would need to be recorded. Thus, one would expect O(|S × Sϕ × A|)
space to be used. In practice, this explicit representation is much bigger than
B due to the BDDs ability to skip over time steps and automatically compress
symmetries.

4.2 Constructing B

One of the biggest benefits of the BDD representation of a Boolean function is
the ability to build BDDs from a Boolean combinations of other BDDs. Namely,
given two BDDs with n and m nodes respectively, it is well known that the
conjunction or disjunction of the BDDs has at most n·m nodes. Thus, in practice,
if the combined BDD’s remain relatively small, Boolean combinations remain
efficient to compute and one does not construct the full binary decision tree!
Further, note that BDDs support function composition. Namely, given predicates
f(x1, . . . , xn) and n predicates gi(y1, . . . , yk) the function

f

(
g1(y1, . . . , yk), . . . , gn(y1, . . . , yk)

)
(38)

can be computed in time [16]:

O(n · |Bf |2 · max
i

|Bgi
|), (39)

where Bf is the BDD for f and Bgi
are the BDDs for gi. Now, suppose

δ̂1, . . . δ̂log(|S|) are Boolean predicates such that:

δ̂(s, a, c) = (δ̂1(s, a, c), . . . , δ̂log(|S|)(s, a, c)). (40)

Theorem 1 and an argument similar to that for Corollary 1 imply then that
constructing B, using repeated composition, takes time bounded by a low degree
polynomial in |A × S × Sϕ| and the horizon. Moreover, the space complexity
before and after composition are bounded by Corollary 1.

4.3 Evaluating Demonstrations

Next let us return to the question of how to evaluate the likelihood of a concrete
demonstration in our compressed BDD. The key problem is that the BDD can
only evaluate (binary) sequences of actions/coin flips, where as demonstrations
are given as sequences of action/state pairs. That is, we need to algorithmically
perform the following transformation.

s0a0s1 . . . ansn+1 �→ a1c1 . . . ancn (41)

Given the random bit model assumption, this transformation can be rewritten
as a series of Boolean Satisfiability problems:

∃ ci . δ̂(si, ai, ci) = si+1 (42)
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While potentially intimidating, in practice such problems are quite simple for
modern SAT solvers, particularly if the number of coin flips used is small. Fur-
thermore, many systems are translation invariant. In such systems, the results of
a single query (42), can be reused on other queries. For example, in (29), c = 0
always results in the agent moving to the right. Nevertheless, in general, if q coin
flips are used, encoding all the demonstrations takes at most O(|X| · τ · 2q), in
the worst case.

4.4 Run-Time Analysis

We are finally ready to provide a run-time analysis for our new inference algo-
rithm. The high-level likelihood estimation procedure is described in Fig. 8.
First, the user specifies a dynamical system and a (multi-) set of demonstra-
tions. Then, using a user-defined mechanism, a candidate task specification is
selected. The system then creates a compressed representation of the composi-
tion of the dynamical system with the task specification. Then, in parallel, the
maximum causal entropy policy is estimated and the demonstrations are them-
selves encoded as bit-vectors. Finally, the likelihood of generating the encoded
demonstrations is computed.

Fig. 8. High level likelihood estimation procedure described in this paper.

There are three computational bottlenecks in the compressed scheme. First,
given a candidate specification, ϕ, one needs to construct B. As argued in
Sect. 4.2, this takes time at most polynomial in the horizon, monitoring automata
size, and MDP size (in the random-bit model). Second is the process of comput-
ing Q and V values by tuning the rationality coefficient to match a particular
satisfaction probability. Just as with the naïve run-time (23), this process takes
time linear in the size of |B| and logarithmic in the inverse tolerance 1/ε. Further,
using Corollary 1, we know that |B| is at most linear in horizon and quasi-linear
in the MDP size. Thus, the policy computation takes time polynomial in the
MDP size and logarithmic in the inverse tolerance. Finally, as before, evalu-
ating the likelihoods takes time linear in the number of demonstrations and
the horizon. However, we now require an additional step of finding coin-flips
which are consistent with the demonstrations. Thus, the compressed run-time is
bounded by:
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O

((
|X|︸︷︷︸

#Demos

·

Feature Matching︷ ︸︸ ︷
log

(
ε−1) )

· POLY
(Horizon︷︸︸︷

τ , |S|, |S|ϕ||, |A|
︸ ︷︷ ︸

Composed MDP size

,

#Coin Flip Outcomes︷︸︸︷
2q

))
(43)

Remark 8. In practice, this analysis is fairly conservative since BDD composition
is often fast, the bound given by Corollary 1 is loose, and the SAT queries under-
consideration are often trivial.

5 Additional Model Refinements

5.1 Conditioning on Valid Actions

So far, we have assumed that the number of actions is a power of 2. Functionally,
this assumption makes it so each assignment to the action decision bits corre-
sponds to a valid action. Of course, general MDPs have non-power of 2 action
sets, and so it behooves us to adapt our method for such settings. The simplest
way to do so is to use a 3-terminal Binary Decision Diagram. In particular, while
each decision is still Boolean, there has now three possible types of leaves, 0, 1,
and ⊥. In the adapted algorithm, edges leading to ⊥ are simply ignored, as
they semantically correspond to invalid assignments to action or coin flip bits.
A similar analysis can be done using these three valued decision diagrams, and
as with BDDs, there exist efficient implementations of multi-terminal BDDs.

Remark 9. This generalization also opens up the possibility of state dependent
action sets, where A is now the union of all possible actions, e.g, disable the
action for moving to the right when the agent is on the right edge of the grid.

5.2 Choice of Binary Co-Domain

One might wonder how sensitive this formulation is to the choice of R(ξ) =
θ · ϕ(ξ). In particular, how does changing the co-domain of ϕ from {0, 1} to any
other real values, i.e.,

ϕ′ : (A × S)τ → {a, b},

change the likelihood estimates in our maximum causal entropy model. We
briefly remark that, subject to some mild technical assumptions, almost any
two real values could be used for ϕ’s co-domain. Namely, observe that unless
both a and b are zero, the expected satisfaction probability, p, is in one-to-one
correspondence with the expected value of ϕ′, i.e.,

E[ϕ′] = a · p + b · (1 − p).

Thus, if a policy is feature matching for ϕ, it must be feature matching for ϕ′

(and vice-versa). Therefore, the space of consistent policies is invariant under
such transformations. Finally, because the space of policies is unchanged, the
maximum causal entropy policies must remain unchanged. In practice, we prefer
the use of {0, 1} as the co-domain for ϕ since it often simplifies many calculations.
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5.3 Variable Episode Lengths (with Discounting)

As earlier promised, we shall now discuss how to extend our model to include
variable length episodes. For simplicity, we shall limit our discussion to the
setting where at each time step, the probability that the episode will end is
γ ∈ (0, 1]. As we previously discussed, this can be modeled by introducing a
sink state, $, representing the end of an episode (4). In the random bit model,
this simply adds a few additional environment coin flips, corresponding to the
environments new transitions to the sink state.

Remark 10. Note that when unrolled, once the end of episode transition hap-
pens, all decisions are assumed inconsequential w.r.t ϕ. Thus, all subsequent
decisions will be compressed by in the BDD, B.

Finally, observe that the probability that the episode ending increases exponen-
tially, implying that the planning horizon need not be too big, i.e., the probability
that the episode has not ended by timestep, τ ∈ N, is: (1 − γ)τ . Thus, letting
τ = �ln(ε/1−γ)� ensures that with probability at least 1−ε the episode has ended.

6 Experiment

Below we report empirical results that provide evidence that our proposed tech-
nique is robust to demonstration errors and that the produced BDDs are smaller
than a naïve dynamic programming scheme. To this end, we created a reference
implementation [29] in Python. BDD and SAT solving capabilities are provided
via dd [21] and pySAT [12] respectively. To encode the task specifications and
the random-bit model MDP, we leveraged the py-aiger ecosystem [28] which
includes libraries for modeling Markov Decision Processes and encoding Past
Tense Temporal Logic as sequential circuits.

Fig. 9. Example Gridworld
(Color figure online)

Problem: Consider a gridworld where an agent can
attempt to move up, down, left, or right; however,
with probability 1/32, the agent slips and moves
left. Further, suppose a demonstrator has provided
the six unlabeled demonstrations shown in Fig. 9
for the task: “Within 10 time steps, touch a yel-
low (recharge) tile while avoiding red (lava) tiles.
Additionally, if a blue (water) tile is stepped on,
the agent must step on a brown (drying) tile before
going to a yellow (recharge) tile.” All of the solid
paths satisfy the task. The dotted path fails because
the agent keeps slipping left and thus cannot dry off by t = 10. Note that due
to slipping, all the demonstrations that did not enter the water are sub-optimal.
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Spec Policy size
(#nodes)

ROBDD
build time

Relative log likelihood
(compared to true)

True 1 0.48s 0
ϕ1 = Avoid lava 1797 1.5s −22
ϕ2 = Eventually Recharge 1628 1.2s 5
ϕ3 = Don’t recharge while wet 850 1.6s −10
ϕ4

def= ϕ1 ∧ ϕ2 523 1.9s 4
ϕ5

def= ϕ1 ∧ ϕ3 1913 1.5s −2
ϕ6

def= ϕ2 ∧ ϕ3 1842 2s 15
ϕ∗ def= ϕ1 ∧ ϕ2 ∧ ϕ3 577 1.6s 27

Results: For a small collection of specifications, we have computed the size of
the BDD, the time it took to construct the BDD, and the relative log likelihoods
of the demonstrations4,

RelativeLogLikelihood(ϕ) def= ln
(

Pr(demos | ϕ)
Pr(demos | true)

)
, (44)

where each maximum entropy policy was fit to match the corresponding specifi-
cation’s empirical satisfaction probability. We remark that the computed BDDs
are small compared to other straw-man approaches. For example, an explicit
construction of the product of the monitor, dynamics, and the current time step
would require space given by:

τ · |S| · |A| · |Sϕ| = (10 · 8 · 8 · 4) · |Sϕ| = 2560 · |Sϕ| (45)

The resulting BDDs are much smaller than (45) and the naïve unrolled deci-
sion tree. We note that the likelihoods appear to (qualitatively) match expecta-
tions. For example, despite an unlabeled negative example, the demonstrated
task, ϕ∗, is the most likely specification. Moreover, under the second most likely
specification, which omits the avoid lava constraint, the sub-optimal traces that
do not enter the water appear more attractive.

Finally, to emphasize the need for our causal extension, we compute the
likelihoods of ϕ∗, ϕ1, ϕ2 for our opening example (Fig. 1) using both our causal
model and the prior non-causal model [30]. Concretely, we take τ = 15, a slip
probability of 1/32, and fix the expected satisfaction probability to 0.9. The
trace shown in Fig. 1 acts as the sole (failed) demonstration for ϕ∗. As desired,
our causal extension assigned more than 3 times the relative likelihood to ϕ∗

compared to ϕ1, ϕ2, and true. By contrast, the non-causal model assigns relative
log likelihoods (−2.83, −3.16, −3.17) for (ϕ1, ϕ2, ϕ∗). This implies that (i) ϕ∗ is
the least likely specification and (ii) each specification is less likely than true!

4 The maximum entropy policy for ϕ = true applies actions uniformly at random.
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7 Conclusion and Future Work

Motivated by the problem of learning specifications from demonstrations, we
have adapted the principle of maximum causal entropy to provide a posterior
probability to a candidate task specification given a multi-set of demonstrations.
Further, to exploit the structure of task specifications, we proposed an algorithm
that computes this likelihood by first encoding the unrolled Markov Decision
Process as a reduced ordered binary decision diagram (BDD). As illustrated
on a few toy examples, BDDs are often much smaller than the unrolled Markov
Decision Process and thus could enable efficient computation of maximum causal
entropy likelihoods, at least for well behaved dynamics and specifications.

Nevertheless, two major questions remain unaddressed by this work. First is
the question of how to select which specifications to compute likelihoods for. For
example, is there a way to systematically mutate a specification to make it more
likely and/or is it possible to systematically reuse computations for previously
evaluated specifications to propose new specifications.

Second is how to set prior probabilities. Although we have largely ignored
this question, we view the problem of setting good prior probabilities as essen-
tial to avoid over fitting and/or making this technique require only one or two
demonstrations. However, we note that prior probabilities can make inference
arbitrarily more difficult since any structure useful for optimization imposed by
our likelihood estimate can be overpowered.

Finally, additional future work includes extending the formalism to infinite
horizon specifications, continuous dynamics, and characterizing the optimal set
of teacher demonstrations.
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Abstract. Approximate Membership Query structures (AMQs) rely on
randomisation for time- and space-efficiency, while introducing a possibil-
ity of false positive and false negative answers. Correctness proofs of such
structures involve subtle reasoning about bounds on probabilities of get-
ting certain outcomes. Because of these subtleties, a number of unsound
arguments in such proofs have been made over the years.

In this work, we address the challenge of building rigorous and reusable
computer-assisted proofs about probabilistic specifications of AMQs. We
describe the framework for systematic decomposition of AMQs and their
properties into a series of interfaces and reusable components. We imple-
ment our framework as a library in the Coq proof assistant and showcase
it by encoding in it a number of non-trivial AMQs, such as Bloom filters,
counting filters, quotient filters and blocked constructions, and mechanis-
ing the proofs of their probabilistic specifications.

We demonstrate how AMQs encoded in our framework guarantee the
absence of false negatives by construction. We also show how the proofs
about probabilities of false positives for complex AMQs can be obtained by
means of verified reduction to the implementations of their simpler counter-
parts. Finally, we provide a library of domain-specific theorems and tactics
that allow a high degree of automation in probabilistic proofs.

1 Introduction

Approximate Membership Query structures (AMQs) are probabilistic data struc-
tures that compactly implement (multi-)sets via hashing. They are a popular
alternative to traditional collections in algorithms whose utility is not affected
by some fraction of wrong answers to membership queries. Typical examples of
such data structures are Bloom filters [6], quotient filters [5,38], and count-min
sketches [12]. In particular, versions of Bloom filters find many applications in
security and privacy [16,18,36], static program analysis [37], databases [17], web
search [22], suggestion systems [45], and blockchain protocols [19,43].

Hashing-based AMQs achieve efficiency by means of losing precision when
answering queries about membership of certain elements. Luckily, most of the
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applications listed above can tolerate some loss of precision. For instance, a static
points-to analysis may consider two memory locations as aliases even if they are
not (a false positive), still remaining sound. However, it would be unsound for
such an analysis to claim that two locations do not alias in the case they do (a
false negative). Even if it increases the number of false positives, a randomised
data structure can be used to answer aliasing queries in a sound way—as long
as it does not have false negatives [37]. But how much precision would be lost if,
e.g., a Bloom filter with certain parameters is chosen to answer these queries?
Another example, in which quantitative properties of false positives are critical,
is the security of Bitcoin’s Nakamoto consensus [35] that depends on the counts
of block production per unit time [19].

In the light of the described above applications, of particular interest are two
kinds of properties specifying the behaviour of AMQs:

– No-False-Negatives properties, stating that a set-membership query for an ele-
ment x always returns true if x is, in fact, in the set represented by the AMQ.

– Properties quantifying the rate of False Positives by providing a probabilistic
bound on getting a wrong “yes”-answer to a membership query, given certain
parameters of the data structure and the past history of its usage.

Given the importance of such claims for practical applications, it is desirable
to have machine-checked formal proofs of their validity. And, since many of the
existing AMQs share a common design structure, one may expect that a large
portion of those validity proofs can be reused across different implementations.

Computer-assisted reasoning about the absence of false negatives in a par-
ticular AMQ (Bloom filter) has been addressed to some extent in the past [7].
However, to the best of our knowledge, mechanised proofs of probabilistic bounds
on the rates of false positives did not extend to such structures. Furthermore, to
the best of our knowledge, no other existing AMQs have been formally verified
to date, and no attempts were made towards characterising the commonalities
in their implementations in order to allow efficient proof reuse.

In this work, we aim to advance the state of the art in machine-checked
proofs of probabilistic theorems about false positives in randomised hash-based
data structures. As recent history demonstrates, when done in a “paper-and-
pencil” way, such proofs may contain subtle mistakes [8,10] due to misinter-
preted assumptions about relations between certain kinds of events. These mis-
takes are not surprising, as the proofs often need to perform a number compli-
cated manipulations with expressions that capture probabilities of certain events.
Our goal is to factor out these reasoning patterns into a standalone library of
reusable program- and specification-level definitions and theorems, implemented
in a proof assistant enabling computer-aided verification of a variety of AMQs.

Our Contributions. The key novel observation we make in this work is the decom-
position of the common AMQ implementations into the following components:
(a) a hashing strategy and (b) a state component that operates over hash out-
comes, together capturing most AMQs that provide fixed constant-time insertion
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and query operations. Any AMQ that is implemented as an instance of those
components enjoys the no-false-negatives property by construction. Furthermore,
such a decomposition streamlines the proofs of structure-specific bounds on false
positive rates, while allowing for proof reuse for complex AMQ implementations,
which are built on top of simpler AMQs [40]. Powered by those insights, this work
makes the following technical contributions:

– A Coq-based mechanised framework Ceramist, specialised for reasoning about
AMQs.1 Implemented as a Coq library, it provides a systematic decomposi-
tion of AMQs and their properties in terms of Coq modules and uses these
interfaces to to derive certain properties “for free”, as well as supporting
proof-by-reduction arguments between classes of similar AMQs.

– A library of non-trivial theorems for expressing closed-form probabilities on
false positive rates in AMQs. In particular, we provide the first mechanised
proof of the closed form for Stirling numbers of the second kind [26, Chap. 6].

– A collection of proven facts and tactics for effective construction of proofs
of probabilistic properties. Our approach adopts the style of Ssreflect reason-
ing [21,31], and expresses its core lemmas in terms of rewrites and evaluation.

– A number of case study AMQs mechanised via Ceramist: ordinary [6] and
counting [46] Bloom filters, quotient filters [5,38], and Blocked AMQs [40].

For ordinary Bloom filters, we provide the first mechanised proof that the prob-
ability of a false positive in a Bloom filter can be written as a closed form
expression in terms of the input parameters; a bound that has often been mis-
characterised in the past due to oversight of subtle dependencies between the
components of the structure [6,34]. For Counting Bloom filters, we provide the
first mechanised proofs of several of their properties: that they have no false neg-
atives, its false positive rate, that an element can be removed without affecting
queries for other elements, and the fact that Counting Bloom filters preserve the
number of inserted elements irrespective of the randomness of the hash outputs.
For quotient filters, we provide a mechanised proof of the false positive rate and
of the absence of false negatives. Finally, alongside the standard Blocked Bloom
filter [40], we derive two novel AMQ data structures: Counting Blocked Bloom fil-
ters and Blocked Quotient filters, and prove corresponding no-false-negatives and
false positive rates for all of them. Our case studies illustrate that Ceramist can
be repurposed to verify hash-based AMQ structures, including entirely new ones
that have not been described in the literature, but rather have been obtained by
composing existing AMQs via the “blocked” construction.

Our mechanised development [24] is entirely axiom-free, and is compatible
with Coq 8.11.0 [11] and MathComp 1.10 [31]. It relies on the infotheo library [2]
for encoding discrete probabilities.

Paper Outline. We start by providing the intuition on Bloom filters, our main
motivating example, in Sect. 2. We proceed by explaining the encoding of their
semantics, auxiliary hash-based structures, and key properties in Coq in Sect. 3.
1 Ceramist stands for Certified Approximate Membership Structures.
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Section 4 generalises that encoding to a general AMQ interface, and provides an
overview of Ceramist, its embedding into Coq, showcasing it by another example
instance—Counting Bloom filters. Section 5 describes the specific techniques that
help to structure our mechanised proofs. In Sect. 6, we report on the evaluation of
Ceramist on various case studies, explaining in detail our compositional treatment
of blocked AMQs and their properties. Section 7 provides a discussion on the
state of the art in reasoning about probabilistic data structures.

2 Motivating Example

Ceramist is a library specialised for reasoning about AMQ data structures in
which the underlying randomness arises from the interaction of one or more
hashing operations. To motivate this development, we thus consider applying it
to the classical example of such an algorithm—a Bloom filter [6].

2.1 The Basics of Bloom Filters

Bloom filters are probabilistic data structures that provide compact encodings of
mathematical sets, trading increased space efficiency for a weaker membership
test [6]. Specifically, when testing membership for a value not in the Bloom
filter, there is a possibility that the query may be answered as positive. Thus
a property of direct practical importance is the exact probability of this event,
and how it is influenced by the other parameters of the implementation.

A Bloom filter bf is implemented as a
binary vector of m bits (all initially zeros),
paired with a sequence of k hash func-
tions f1, . . . , fk, collectively mapping each
input value to a vector of k indices from
{1 . . . m}, the indices determine the bits
set to true in the m-bit array Assuming an
ideal selection of hash functions, we can
treat the output of f1, . . . , fk on new val-
ues as a uniformly-drawn random vector.
To insert a value x into the Bloom filter, we can treat each element of the “hash
vector” produced from f1, . . . , fk as an index into bf and set the corresponding
bits to ones. Similarly, to test membership for an element x, we can check that
all k bits specified by the hash-vector are raised.

2.2 Properties of Bloom Filters

Given this model, there are two obvious properties of practical importance: that
of false positives and of false negatives.
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False Negatives. It turns out that these definitions are sufficient to guarantee the
lack of false-negatives with complete certainty, i.e., irrespective of the random
outcome of the hash functions. This follows from the fact that once a bit is
raised, there are no permitted operations that will unset it.

Theorem 1 (No False Negatives). If x ∈ bf , then Pr [x ∈? bf ] = 1, where
x ∈? bf stands for the approximate membership test, while the relation x ∈ bf
means that x has been previously inserted into bf .

False Positives. This property is more complex as the occurrence of a false
positive is entirely dependent on the particular outcomes of the hash functions
f1, . . . , fk and one needs to consider situations in which the hash functions hap-
pen to map some values to overlapping sets of indices. That is, after inserting a
series of values xs, subsequent queries for y /∈ xs might incorrectly return true.

This leads to subtle dependencies that can invalidate the analysis, and have
lead to a number of incorrect probabilistic bounds on the event, including in the
analysis by Bloom in his original paper [6]. Specifically, Bloom first considered
the probability that inserting l distinct items into the Bloom filter will set a
particular bit bi. From the independence of the hash functions, he was able to
show that the probability of this event has a simple closed-form representation:

Lemma 1 (Probability of a single bit being set). If the only values pre-
viously inserted into bf are x1, . . . , xl, then the probability of a particular single
bit at the position i being set is Pr

[
ith bit in bf is set

]
= 1 − (

1 − 1
m

)kl
.

Bloom then claimed that the probability of a false positive was simply the prob-
ability of a single bit being set, raised to the power of k, reasoning that a false
positive for an element y �∈ bf only occurs when all the k bits corresponding to
the hash outputs are set.

Unfortunately, as was later pointed out by Bose et al. [8], as the bits specified
by f1(x), . . . , fk−1(x) may overlap, we cannot guarantee the independence that
is required for any simple relation between the probabilities. Bose et al. rectified
the analysis by instead interpreting the bits within a Bloom filter as maintaining
a set bits(bf ) ⊆ N[0,...,m−1], corresponding to the indices of raised bits. With
this interpretation, an element y only tests positive if the random set of indices
produced by the hash functions on y is such that inds(y) ⊆ bits(bf ). Therefore,
the chance of a positive result for y �∈ bf resolves to the chance that the random
set of indices from hashing y is a subset of the union of inds(x) for each x ∈ bf .
The probability of this reduced event is described by the following theorem:

Theorem 2 (Probability of False Positives). If the only values inserted
into bf are x1, . . . , xl, then for any y �∈ bf , Pr [y ∈? bf ] = 1

mk(l+1)

∑m
i=1 iki!(

m
i

){
kl
i

}
, where

{
s
t

}
stands for the Stirling number of the second kind, cap-

turing the number of surjections from a set of size s to a set of size t.
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The key step in capturing these program properties is in treating the out-
comes of hashes as random variables and then propagating this randomness to
the results of the other operations. A formal treatment of program outcomes
requires a suitable semantics, representing programs as distributions of such
random variables. In moving to mechanised proofs, we must first fully charac-
terise this semantics, formally defining a notion of a probabilistic computation
in Coq.

3 Encoding AMQs in Coq

To introduce our encoding of AMQs and their probabilistic behaviours in Coq,
we continue with our running example, transitioning from mathematical notation
to Gallina, Coq’s language. The rest of this section will introduce each of the
key components of this encoding through the lens of Bloom filters.

3.1 Probability Monad

Our formalisation represents probabilistic computations using an embedding fol-
lowing the style of the FCF library [39]. We do not use FCF directly, due to its pri-
mary focus on cryptographic proofs, wherein it provides little support for proving
probabilistic bounds directly, instead prioritising a reduction-based approach of
expressing arbitrary computations as compositions of known distributions.

Following the adopted FCF notation, a term of type Comp A represents a
probabilistic computation returning a value of type A, and is constructed using
the standard monadic operators, with an additional primitive rand n that allows
sampling from a uniform distribution over the range Zn:

ret : A → Comp A

bind : Comp A → (A → Comp B) → Comp B

rand : (n : N) → Comp (Zn)

We implement a Haskell-style do-notation over this monad to allow descriptions
of probabilistic computations within Gallina. For example, the following code is
used to implement the query operation for the Bloom filter:

hash_res <-$ hash_vec_int x hashes; (* hash x using the hash functions *)

let (new_hashes, hash_vec) := hash_res in

(* check if all the corresponding bits are set *)

let qres := bf_query_int hash_vec bf in

(* return the query result and the new hashes *)

ret (new_hashes, qres).

In the above listing, we pass the queried value x along with the hash functions
hashes to a probabilistic hashing operation hash_vec_int to hash x over each
function in hashes. The result of this random operation is then bound to hash_res

and split into its constituent components—a sequence of hash outputs hash_vec
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and an updated copy new_hashes of the hash functions, now incorporating the
mapping for x. Then, having mapped our input into a sequence of indices, we
can query the Bloom filter for membership using a corresponding deterministic
operation bf_query_int to check that all the bits specified by hash_vec are set.
Finally, we complete the computation by returning the query outcome qres and
the updated hash functions new_hashes using the ret operation to lift our result
to a probabilistic outcome.

Using the code snippet above, we can define the query operation bf_query

as a function that maps a Bloom filter, a value to query, and a collection of
hash functions to a probabilistic computation returning the query result and
an updated set of hash functions. However, because our computation type does
not impose any particular semantics, this result only encodes the syntax of the
probabilistic query and has no actual meaning without a separate interpretation.

Thus, given a Gallina term of type Comp A, we must first evaluate it into a
distribution over possible results to state properties on the probabilities of its
outcomes. We interpret our monadic encoding in terms of Ramsey’s probability
monad [42], which decomposes a complex distribution into composition of prim-
itive ones bound together via conditional distributions. To capture this inter-
pretation within Coq, we then use the encoding of this monad from the infotheo
library [1,2], and provide a function eval_dist : Comp A → dist A that evaluates
computations into distributions by recursively mapping them to the probability
monad. Here, dist A represents infotheo’s encoding of distributions over a finite
support A, defined as being composed of a measure function pmf : A → R+, and
a proof that the sum of the measure over the support A produces 1.

This mapping from computations to distributions must be done to a program
e (involving, e.g., Bloom filter) before stating its probability bound. Therefore,
we hide this evaluation process behind a notation that allows stating probabilistic
properties in a form closer to their mathematical counterparts:

Pr [e = v] � (eval_dist e) v

Pr [e] � (eval_dist e) true

Above, v is an arbitrary element in the support of the distribution induced by
e. Finally, we introduce a binding operator � to allow concise representation of
dependent distributions: e � f � bind e f .

3.2 Representing Properties of Bloom Filters

We define the state of a Bloom filter (BF) in Coq as a binary vector of a fixed
length m, using Ssreflect’s m.-tuple data type:

Record BF := mkBF { bloomfilter_state: m.-tuple bool }.

Definition bf_new : BF := (* construct a BF with all bits cleared *).

Definition bf_get_int i : BF → bool := (* retrieve BF’s ith bit *).

We define the deterministic components of the Bloom filter implementation as
pure functions taking an instance of BF and a series of indices assumed to be
obtained from earlier calls to the associated hash functions:
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bf_add_int : BF → seq Zm → BF

bf_query_int : BF → seq Zm → bool

That is, bf_add_int takes the Bloom filter state and a sequence of indices to
insert and returns a new state with the requested bits also set. Conversely,
bf_query_int returns true iff all the queried indices are set. These pure oper-
ations are then called within a probabilistic wrapper that handles hashing the
input and the book-keeping associated with hashing to provide the standard
interface for AMQs:

bf_add : B → (HashVec B ∗ BF) → Comp (HashVec B ∗ BF)

bf_query : B → (HashVec B ∗ BF) → Comp (HashVec B ∗ bool)

The component HashVec B (to be defined in Sect. 3.3), parameterised over an
input type B, keeps track of known results of the involved hash functions and is
provided as an external parameter to the function rather than being a part of
the data structure to reflect typical uses of AMQs, wherein the hash operation
is pre-determined and shared by all instances.

With these definitions and notation, we can now state the main theorems of
interest about Bloom filters directly within Coq:2

Theorem 3 (No False Negatives). For any Bloom filter state bf , a vector of
hash functions hs, after having inserted an element x into bf , followed by a series
xs of other inserted elements, the result of query x ∈? bf is always true. That is,
in terms of probabilities: Pr [bf_add x (hs, bf ) � bf_addm xs � bf_query x] = 1.

Lemma 2 (Probability of Flipping a Single Bit). For a vector of hash
functions hs of length k, after inserting a series of l distinct values xs, all unseen
in hs, into an empty Bloom filter bf , represented by a vector of m bits, the proba-
bility of its any index i being set is Pr [bf_addm xs (hs, bf_new) � bf_get i] = 1−
(
1 − 1

m

)kl
. Here, bf_get is a simple embedding of the pure function bf_get_int

into a probabilistic computation.

Theorem 4 (Probability of a False Positive). After having inserted a
series of l distinct values xs, all unseen in hs, into an empty Bloom filter
bf , for any unseen y �∈ xs, the probability of a subsequent query y ∈? bf
for y returning true is given as Pr [bf_addm xs (hs, bf_new) � bf_query y] =

1
mk(l+1)

∑m
i=1 iki!

(
m
i

){
kl
i

}
.

The proof of this theorem required us to provide the first axiom-free mechanised
proof for the closed form for Stirling numbers of the second kind [26].

In the definitions above, we used the output of the hashing operation as the
bound between the deterministic and probabilistic components of the Bloom fil-
ter. For instance, in our earlier description of the Bloom filter query operation
2 bf addm is a trivial generalisation of the insertion to multiple elements.
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in Sect. 3.1, we were able to implement the entire operation with the only prob-
abilistic operation being the call hash_vec_int x hashes. In general, structuring
AMQ operations as manipulations with hash outputs via pure deterministic func-
tions allows us to decompose reasoning about the data structure into a series
of specialised properties about its deterministic primitives and a separate set of
reusable properties on its hash operations.

3.3 Reasoning About Hash Operations

We encode hash operations within our development using a random oracle-based
implementation. In particular, in order to keep track of seen hashes learnt by
hashing previously observed values, we represent a state of a hash function from
elements of type B to a range Zm using a finite map to ensure that previously
hashed values produce the same hash output:

Definition HashState B := FixedMap B ’I_m.

The state is paired with a hash function generating uniformly random outputs
for unseen values, and otherwise returns the value as from its prior invocations:

Definition hash value state : Comp (HashState B * B) :=

match find value state with

| Some(output) ⇒ ret (state, output)

| None ⇒ rnd <-$ rand m;

new_state <- put value rnd state;

ret (new_state, rnd)

end.

A hash vector is a generalisation of this structure to represent a vector of states
of k independent hash functions:

Definition HashVec B := k.-tuple HashState B.

The corresponding hash operation over the hash vector, hash_vec_int, is then
defined as a function taking a value and the current hash vector and then return-
ing a pair of the updated hash vector and associated random vector, internally
calling out to hash to compute individual hash outputs.

This random oracle-based implementation allows us to formulate several
helper theorems for simplifying probabilistic computations using hashes by con-
sidering whether the hashed values have been seen before or not. For example,
if we knew that a value x had not been seen before, we would know that the
possibility of obtaining any particular choice of a vector of indices would be
equivalent to obtaining the same vector by a draw from a corresponding uni-
form distribution. We can formalise this intuition in the form of the following
theorem:

Theorem 5 (Uniform Hash Output). For any two hash vectors hs, hs ′ of
length k, a value x that has not been hashed before, and an output vector ιs of
length m obtained by hashing x via hs, if the state of hs ′ has the same mappings
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as hs and also maps x to ιs, the probability of obtaining the pair (hs ′, ιs) is
uniform: Pr

[
hash_vec_int x hs = (hs ′, ιs)

]
=

(
1
m

)k.

Similarly, there are also often cases where we are hashing a value that we have
already seen. In these cases, if we know the exact indices a value hashes to, we
can prove a certainty on the value of the outcome:

Theorem 6 (Hash Consistency). For any hash vector hs, a value x, if hs
maps x to outputs ιs, then hashing x again will certainly produce ιs and not
change hs, that is, Pr [hash_vec_int x hs = (hs, ιs)] = 1.

By combining these types of probabilistic properties about hashes with the ear-
lier Bloom filter operations, we are able to prove the prior theorems about Bloom
filters by reasoning primarily about the core logical interactions of the determin-
istic components of the data structure. This decomposition is not just applicable
to the case of Bloom filters, but can be extended into a general framework for
obtaining modular proofs of AMQs, as we will show in the next section.

4 Ceramist at Large

Zooming out from the previous discussion ofBloomfilters, we nowpresentCeramist
in its full generality, describing the high-level design in terms of the various inter-
faces it requires to instantiate to obtain verified AMQ implementations.

The core of our framework revolves around the decomposition of an AMQ
data structure into separate interfaces for hashing (AMQHash) and state (AMQ),
generalising the specific decomposition used for Bloom filters (hash vectors and
bit vectors respectively). More specifically, the AMQHash interface captures the
probabilistic properties of the hashing operation, while the AMQ interface cap-
tures the deterministic interactions of the state with the hash outcomes.

4.1 AMQHash Interface

The AMQHash interface generalises the behaviours of hash vectors (Sect. 3.3) to
provide a generic description of the hashing operation used in AMQs.

The interface first abstracts over the specific types used in the prior hash-
ing operations (such as, e.g., HashVec B) by treating them as opaque parame-
ters: using a parameter AMQHashState to represent the state of the hash oper-
ation; types Key and Value encoding the hash inputs and outputs respectively,
and finally, a deterministic operation AMQHash_add_internal : AMQHashState →
Key → Value → AMQHashState to encode the interaction of the state with the out-
puts and inputs. For example, in the case of a single hash, the state parameter
AMQHashState would be HashState B, while for a hash vector this would instead
be HashVec B.

To use this hash state in probabilistic computations, the interface assumes a
separate probabilistic operation that will take the hash state and randomly gen-
erate an output (e.g., hash for single hashes and hash_vec_int for hash vectors):
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Parameter AMQHash_hash: Key → AMQHashState → Comp (AMQHash * Value).

Then, to abstractly capture the kinds of reasoning about the outcomes of hash
operations done with Bloom filters in Sect. 3.3, the interface assumes a few
predicates on the hash state to provide information about its contents:

Parameter AMQHash_hashstate_contains: AMQHashState → Key → Value → bool.

Parameter AMQHash_hashstate_unseen: AMQHashState → Key → bool.

These components are then combined together to produce more abstract formu-
lations of the previous Theorems 5 and 6 on hash operations.

Property 1 (Generalised Uniform Hash Output). There exists a prob-
ability phash, such that for any two AMQ hash states hs, hs ′, a value x that is
unseen, and an output ιs obtained by hashing x via hs, if the state of hs ′ has the
same mappings as hs and also maps x to ιs, the probability of obtaining the pair
(hs ′, ιs) is given by: Pr

[
AMQHash_hash x hs = (hs ′, ιs)

]
= phash.

Property 2 (Generalised Hash Consistency). For any AMQ hash state
hs, a value x, if hs maps x to an output ιs, then hashing x again will certainly
produce ιs and not change hs: Pr [AMQhash_hash x hs = (hs, ιs)] = 1

Proofs of these corresponding properties must also be provided to instantiate
the AMQHash interface. Conversely, components operating over this interface can
assume their existence, and use them to abstractly perform the same kinds of
simplifications as done with Bloom filters, resolving many probabilistic proofs
to dealing with deterministic properties on the AMQ states.

4.2 The AMQ Interface

Building on top of an abstract AMQHash component, the AMQ interface then
provides a unified view of the state of an AMQ and how it deterministically
interacts with the output type Value of a particular hashing operation.

As before, the interface begins by abstracting the specific types and opera-
tions of the previous analysis of Bloom filters, first introducing a type AMQState to
capture the state of the AMQ, and then assuming deterministic implementations
of the typical add and query operations of an AMQ:

Parameter AMQ_add_internal: AMQState → Value → AMQState.

Parameter AMQ_query_internal: AMQState → Value → bool.

In the case of Bloom filters, these would be instantiated with the BF, bf_add_int
and bf_query_int operations respectively (cf. Sect. 3.2), thereby setting the asso-
ciated hashing operation to the hash vector (Sect. 3.3).

As we move on to reason about the behaviours of these operations, the inter-
face diverges slightly from that of the Bloom filter by conditioning the behaviours
on the assumption that the state has sufficient capacity:

Parameter AMQ_available_capacity: AMQState → nat → bool.
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While the Bloom filter has no real deterministic notion of a capacity, this cannot
be said of all AMQs in general, such as the Counting Bloom filter or Quotient
filter, as we will discuss later.

With these definitions in hand, the behaviours of the AMQ operations are
characterised using a series of associated assumptions:

Property 3 (AMQ insertion validity). For a state s with sufficient capac-
ity, inserting any hash output ιs into s via AMQ_add_internal will produce a new
state s′ for which any subsequent queries for ιs via AMQ_query_internal will return
true.

Property 4 (AMQ query preservation). For any AMQ state s with suf-
ficient remaining capacity, if queries for a particular hash output ιs in s via
AMQ_query_internal happen to return true, then inserting any further outputs ιs ′

into s will return a state for which queries for ιs will still return true.

Even though these assumptions seemingly place strict restrictions on the per-
mitted operations, we found that these properties are satisfied by most common
AMQ structures. One potential reason for this might be because they are in fact
sufficient to ensure the No-False-Negatives property standard of most AMQs:

Theorem 7 (Generalised No False Negatives). For any AMQ state s, a
corresponding hash state hs, after having inserted an element x into s, followed
by a series xs of other inserted elements, the result of query for x is always true.
That is, Pr [AMQ_add x (hs, s) � AMQ_addm xs � AMQ_query x] = 1.

Here, AMQ_add, AMQ_addm, and AMQ_query are generalisations of the probabilistic
wrappers of Bloom filters (cf. Sect. 3.1) for doing the bookkeeping associated
with hashing and delegating to the internal deterministic operations.

The generalised Theorem 7 illustrates one of the key facilities of our frame-
work, wherein by simply providing components satisfying the AMQHash and
AMQ interfaces, it is possible to obtain proofs of certain standard probabilistic
properties or simplifications for free.

The diagram in Fig. 1 provides a high-level overview of the interfaces of
Ceramist, their specific instances, and dependencies between them, demonstrat-
ing Ceramist’s take on compositional reasoning and proof reuse. For instance
Bloom filter implementation instantiates the AMQ interface implementation and
uses, as a component, hash vectors, which themselves instantiate AMQHash used
by AMQ. Bloom filter itself is also used as a proof reduction target by Counting
Bloom filter. We will elaborate on this and the other noteworthy dependencies
between interfaces and instances of Ceramist in the following sections.

4.3 Counting Bloom Filters Through Ceramist

To provide a concrete demonstration of the use of the AMQ interface, we now
switch over to a new running example—Counting Bloom filters [46]. A Counting
Bloom filter is a variant of the Bloom filter in which individual bits are replaced
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Fig. 1. Overview of Ceramist and dependencies the between its components.

with counters, thereby allowing the removal of elements. The implementation of
the structure closely follows the Bloom filter, generalising the logic from bits to
counters: insertion increments the counters specified by the hash outputs, while
queries treat counters as set if greater than 0. In the remainder of this section, we
will show how to encode and verify the Counting Bloom filter for the standard
AMQ properties. We have also proven two novel domain-specific properties of
Counting Bloom filters (cf. Appendix A of the extended paper version [25]).

First, as the Counting Bloom filter uses the same hashing strategy as the
Bloom filter, the hash interface can be instantiated with the Hash Vector struc-
ture used for the Bloom filter, entirely reusing the earlier proofs on hash vectors.
Next, in order to instantiate the AMQ interface, the state parameter can be
defined as a vector of bounded integers, all initially set to 0:

Record CF := mkCF { countingbloomfilter_state: m.-tuple Zp }.

Definition cf_new : CF := (* a new CF with all counters set to 0 *).

As mentioned before, the add operation increments counters rather than setting
bits, and the query operation treats counters greater than 0 as raised.

cf_add_int : CF → seq Zm → CF

cf_query_int : CF → seq Zm → bool

To prevent integer overflows, the counters in the Counting Bloom filter are
bounded to some range Zp, so the overall data structure too has a maximum
capacity. It would not be possible to insert any values if doing such would raise
any of the counters above their maximum. To account for this, the capac-
ity parameter of the AMQ interface is instantiated with a simple predicate
cf_available_capacity that verifies that the structure can support l further
inserts by ensuring that each counter has at least k ∗ l spaces free (where k
is the number of hash functions used by the data structure).
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The add operation can be shown to be monotone on the value of any counter
when there is sufficient capacity (Property 3). The remaining properties of the
operations also trivially follow, thereby completing the instantiation, and allow-
ing the automatic derivation of the No-False-Negatives result via Theorem 7.

4.4 Proofs About False Positive Probabilities by Reduction

As the observable behaviour of Counting Bloom filter almost exactly matches
that of the Bloom filter, it seems reasonable that the same probabilistic bounds
should also apply to the data structure. To facilitate these proof arguments, we
provide the AMQMap interface that allows the derivation of probabilistic bounds
by reducing one AMQ data structure to another.

The AMQMap interface is parameterised by two AMQ data structures, AMQ
A and B, using the same hashing operation. It is assumed that corresponding
bounds on False Positive rates have already been proven for AMQ B, while have
not for AMQ A. The interface first assumes the existence of some mapping from
the state of AMQ A to AMQ B, which satisfies a number of properties:
Parameter AMQ_state_map: A.AMQState → B.AMQState.

In the case of our Counting Bloom filter example, this mapping would convert
the Counting Bloom filter state to a bit vector by mapping each counter to a
raised bit if its value is greater than 0. To provide the of the false positive rate
boundary, the AMQMap interface then requires the behaviour of this mapping
to satisfy a number of additional assumptions:

Property 5 (AMQ Mapping Add Commutativity). Adding a hash output
to the AMQ B obtained by applying the mapping to an instance of AMQ A
produces the same result as first adding a hash output to AMQ A and then
applying the mapping to the result.

Property 6 (AMQ Mapping Query Preservation). Applying B’s query
operation to the result of mapping an instance of AMQ A produces the same
result as applying A’s query operation directly.

In the case of reducing Counting Bloom filters (A) to Bloom filters (B), both
results follow from the fact that after incrementing the some counters, all of
them will have values greater than 0 and thus be mapped to raised bits.

Having instantiated the AMQMap interface with the corresponding function
and proofs about it, it is now possible to derive the false positive rate of Bloom fil-
ters for Counting Bloom filters for free through the following generalised lemma:

Theorem 8 (AMQ False Positive Reduction). For any two AMQs A, B,
related by the AMQMap interface, if the false positive rate for B after inserting l
items is given by the function f on l, then the false positive rate for A is also
given by f on l. That is, in terms of probabilities:

Pr [B.AMQ_addm xs (hs, B.AMQ_new) � B.AMQ_query y] = f(length xs) =⇒
Pr [A.AMQ_addm xs (hs, A.AMQ_new) � A.AMQ_query y] = f(length xs).
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5 Proof Automation for Probabilistic Sums

We have, until now, avoided discussing details of how facts about the probabilis-
tic computations can be composed, and thereby also the specifics of how our
proofs are structured. As it turns out, most of this process resolves to reasoning
about summations over real values as encoded by Ssreflect’s bigop library. Our
development also relies on the tactic library by Martin-Dorel and Soloviev [32].

In this section, we outline some of the most essential proof principles facili-
tating the proofs-by-rewriting about probabilistic sums. While most of the pro-
vided rewriting primitives are standalone general equality facts, some of our
proof techniques are better understood as combining a series of rewritings into a
more general rewriting pattern. To delineate these two cases, will use the termi-
nology Pattern to refer to a general pattern our library supports by means of a
dedicated Coq tactic, while Lemma will refer to standalone proven equalities.

5.1 The Normal Form for Composed Probabilistic Computations

When stating properties on outcomes of a probabilistic computation (cf. Sect. 3.1),
the computation must first be recursively evaluated into a distribution, where the
intermediate results are combined using the probabilistic bind operator. Therefore,
when decomposing a probabilistic property into smaller subproofs, we must rely
on its semantics that is defined for discrete distributions as follows:

bind_dist (P : dist A) (f : A → dist B) �
∑

a: A

∑

b: B

P a × (f a) b

Expanding this definition, one can represent any statement on the outcome of a
probabilistic computation in a normal form composed of only nested summations
over a product of the probabilities of each intermediate computational step. This
paramount transformation is captured as the following pattern:

Pattern 1 (Bind normalisation)

Pr [(c1 � . . . � cm) = v] =
∑

v1

· · ·
∑

vm−1

Pr [c1 = v1] × · · · × Pr [cm vm−1 = v]

Here, by ci vi−1 = vi, we denote the event in which the result of evaluating
the command ci vi−1 is vi, where vi−1 is the result of evaluating the previous
command in the chain. This transformation then allows us to resolve the proof
of a given probabilistic property into proving simpler statements on its substeps.
For instance, consider the implementation of Bloom filter’s query operation from
Sect. 3.1. When proving properties of the result of a particular query (as in
Theorem 3), we use this rule to decompose the program into its component parts,
namely as being the product of a hash invocation Pr [hash_vec_int x hs] and the
deterministic query operation bf_query_int. This allows dealing with the hash
operation and the deterministic component separately by applying subsequent
rewritings to each factor on the right-hand side of the above equality.
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5.2 Probabilistic Summation Patterns

Having resolved a property into our normal form via a tactic implementing
Pattern 1, the subsequent reductions rely on the following patterns and lemmas.

Sequential Composition. When reasoning about the properties of composite pro-
grams, it is common for some subprogram e to return a probabilistic result that
is then used as the arguments for a probabilistic function f . This composition
is encapsulated by the operation e � f , as used by Theorems 3, 2, and 4. The
corresponding programs, once converted to the normal form, are characterised
by having factors within its internal product that simply evaluate the probability
of the final statement ret v′ to produce a particular value vk:

∑

v1

· · ·
∑

vm−1

Pr [c1 = v1] × · · · Pr
[
ret v′ = vk

]
︸ ︷︷ ︸

e

· · · × Pr [cm vm−1 = v]︸ ︷︷ ︸
f

Since the return operation is defined as a delta distribution with a peak at the
return value v′, we can simplify the statement by removing the summation over
vk, and replacing all occurrences of vk with v′, via the following pattern:

Pattern 2 (Probability of a Sequential Composition).
∑

v1

· · ·
∑

vm−1

Pr
[
ret v′ = v1

] · · · × Pr [cm vm−1 = v]]

=
∑

v2

· · ·
∑

vm−1

Pr
[
[v′/v1](c2 v1) = v2

] × · · · × Pr
[
[v′/v1]cm vm−1 = v

]

Notice that, without loss of generality, Pattern 2 assumes that the v′-containing
factor is in the head. Our tactic implicitly rewrites the statement to this form.

Plausible Statement Sequencing. One common issue with the normal form, is
that, as each statement is evaluated over the entirety of its support, some of
the dependencies between statements are obscured. That is, the outputs of one
statement may in fact be constrained to some subset of the complete support.
To recover these dependencies, we provide the following theorem, that allows
reducing computations under the assumption that their inputs are plausible:

Lemma 3 (Plausible Sequencing). For any computation sequence c1 � c2,
if it is possible to reduce the computation c2 x to a simpler form c3 x when x is
amongst plausible outcomes of c1, ( i.e., Pr [c1 = x] �= 0 holds) then it is possible
to rewrite c2 to c3 without changing the resulting distribution:

∑

x

∑

y

Pr [c1 = x] × Pr [c2 x = y] =
∑

x

∑

y

Pr [c1 = x] × Pr [c3 x = y]
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Plausible Outcomes. As was demonstrated in the previous paragraph, it is some-
times possible to gain knowledge that a particular value v is a plausible outcome
for a composite probabilistic computation c1 � . . . � cm:

∑

v1

· · ·
∑

vm−1

Pr [c1 = v1] × · · · × Pr [cm vm−1 = v] �= 0

This fact in itself is not particularly helpful as it does not immediately provide
any usable constraints on the value v. However, we can now turn this inequality
into a conjunction of inequalities for individual probabilities, thus getting more
information about the intermediate steps of the computation:

Pattern 3. If
∑

v1
· · · ∑vm−1

Pr [c1 = v1] × · · · × Pr [cm vm−1 = v] �= 0, then
there exist v1, . . . , vm−1 such that Pr [c1 = v1] �= 0 ∧ · · · ∧ Pr [cm = v] �= 0.

This transformation is possible due to the fact that probabilities are always non-
negative, thus if a summation is positive, there must exist at least one element
in the summation that is also positive.

Summary of the Development. By composing these components together, we
obtain a comprehensive toolbox for effectively reasoning about probabilistic com-
putations. We find that our summation patterns end up encapsulating most of
the book-keeping associated with our encoding of probabilistic computations,
which, combined with the AMQ/AMQHash decomposition from Sect. 4, allows
for a fairly straightforward approach for verifying properties of AMQs.

5.3 A Simple Proof of Generalised No False Negatives Theorem

To showcase the fluid interaction of our proof principles in action, let us consider
the proof of the generalised No-False-Negatives Theorem 7, stating the following:

Pr

⎡

⎢
⎣AMQ_add x (hs, s)

︸ ︷︷ ︸
(a),(b)

� AMQ_addm xs︸ ︷︷ ︸
(c)

� AMQ_query x
︸ ︷︷ ︸

(d),(e)

⎤

⎥
⎦ = 1 (1)

As with most of our probabilistic proofs, we begin by applying normalisation
Pattern 1 to reduce the computation into our normal form:

∑

ιs0,hs0

∑

s0

∑

s1,hs1

∑

ιs2,hs2

⎛

⎜⎜⎜⎜⎝

(a) Pr [AMQHash_hash x hs = (ιs0, hs0)] ×
(b) Pr [ret (AMQ_add_internal s ιs0) = s0] ×
(c) Pr [AMQ_addm xs (s0, hs0) = (s1, hs1)] ×
(d) Pr [AMQHash_hash x hs1 = (ιs2, hs2)] ×
(e) Pr [ret (AMQ_query_internal s1 ιs2)]

⎞

⎟⎟⎟⎟⎠

We label the factors to be rewritten as (a)–(e) for the convenience of the pre-
sentation, indicating the correspondence to the components of the statement (1).
From here, as all values are assumed to be unseen, we can use Property 1 in con-
junction with the sequencing Pattern 2 to reduce factors (a) and (b) as follows:
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∑

ιs0

∑

s1,hs1

∑

ιs2,hs2

⎛

⎜⎜⎝

(a) phash ×
(c) Pr [AMQ_addm xs ((s ←add ιs0), (hs ←hash (x : ιs0))) = (s1, hs1)] ×
(d) Pr [AMQHash_hash x hs1 = (ιs2, hs2)] ×
(e) Pr [AMQ_query_internal s1 ιs2]

⎞

⎟⎟⎠

Here, phash is the probability from the statement of Property 1. We also intro-
duce the notations s ←add ιs0 and hs ←hash (x : ιs0) to denote the deterministic
operations AMQ_add_internal and AMQHash_add_internal respectively. Then, using
Pattern 3 for decomposing plausible outcomes, it is possible to separately show
that any plausible hs1 from AMQ_addm must map x to ιs0, as hash operations pre-
serve mappings. Combining this fact with Lemma 3 (plausible sequencing) and
Hash Consistency (Property 2), we can derive that the execution of AMQHash_hash
on x in (d) must return ιs0, simplifying the summation even further:

∑

ιs0

∑

s1,hs1

⎛

⎝
(a) phash ×
(c) Pr [AMQ_addm xs ((s ←add ιs0), (hs ←hash (x : ιs0))) = (s1, hs1)] ×
(e) Pr [AMQ_query_internal s1 ιs0]

⎞

⎠

Finally, as s1 is a plausible outcome from AMQ_addm called on s ←add ιs0, we
can then show, using Property 4 (query preservation), that querying for ιs0 on
s1 must succeed. Therefore, the entire summation reduces to the summation of
distributions over their support, which can be trivially shown to be 1.

6 Overview of the Development and More Case Studies

The Ceramist mechanised framework is implmented as library in Coq proof
assistant [24]. It consists of three main sub-parts, each handling a different
aspect of constructing and reasoning about AMQs: (i) a library of bounded-
length data structures, enhancing MathComp’s [31] support for reasoning about
finite sequences with varying lengths; (ii) a library of probabilistic computations,
extending the infotheo probability theory library [2] with definitions of deeply
embedded probabilistic computations and a collection of tactics and lemmas on
summations described in Sect. 5; and (iii) the AMQ interfaces and instances
representing the core of our framework described in Sect. 4.

Section Size (LOC)
Specifications Proofs

Bounded containers 286 1051
Notation (Sect. 3.1) 77 0
Summations (Sect. 5) 742 2122

Hash operations (Sect. 4.1) 201 568
AMQ framework (Sect. 4.2) 594 695

Bloom filter (Sect. 3.2) 322 1088
Counting BF (Sect. 4.4, [25, Sect. A]) 312 674
Quotient filter (Sect. 6.1) 197 633
Blocked AMQ (Sect. 6.2) 269 522

Alongside these core com-
ponents, we also include four
specific case studies to provide
concrete examples of how the
library can be used for prac-
tical verification. Our first two
case studies are the mechanisa-
tion of the Bloom filter [6] and
the Counting Bloom filter [46],
as discussed earlier. In proving
the false-positive rate for Bloom
filters, we follow the proof by Bose et al. [8], also providing the first mechanised
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proof of the closed expression for Stirling numbers of the second kind. Our third
case study provides mechanised verification of the quotient filter [5]. Our final
case study is a mechanisation of the Blocked AMQ—a family of AMQs with a
common aggregation strategy. We instantiate this abstract structure with each
of the prior AMQs, obtaining, among others, a mechanisation of Blocked Bloom
filters [40]. The sizes of each library component, along with the references to the
sections that describe them, are given in the table above.

Of particular note, in effect due to the extensive proof reuse supported by
Ceramist, the proof size for each of our case-studies progressively decreases, with
around a 50% reduction in the size from our initial proofs of Bloom filters to the
final case-studies of different Blocked AMQs instances.

6.1 Quotient Filter

A quotient filter [5] is a type of AMQ data structure optimised to be more cache-
friendly than other typical AMQs. In contrast to the relatively simple internal
vector-based states of the Bloom filters, a quotient filter works by internally
maintaining a hash table to track its elements.

The internal operations of a quotient filter build upon a fundamental notion
of quotienting, whereby a single p-bit hash outcome is split into two by treating
the upper q-bits (the quotient) and the lower r-bits (the remainder) separately.
Whenever an element is inserted or queried, the item is first hashed over a single
hash function and then the output quotiented. The operations of the quotient
filter then work by using the q-bit quotient to specify a bucket of the hash table,
and the r-bit remainder as a proxy for the element, such that a query for an
element will succeed if its remainder can be found in the corresponding bucket.

A false positive can occur if the outputs of the hash function happen to
exactly collide for two particular values (collisions in just the quotient or remain-
der are not sufficient to produce an incorrect result). Therefore, it is then possible
to reduce the event of a false positive in a quotient filter to the event that at
least one in several draws from a uniform distribution produces a particular
value. We encode quotient filters by instantiating the AMQHash interface from
Sect. 4.1 with a single hash function, rather than a vector of hash functions,
which is used by the Bloom filter variants (Sect. 2). The size of the output of
this hashing operation is defined to be 2q ∗ 2r, and a corresponding quotienting
operation is defined by taking the quotient and remainder from dividing the hash
output by 2q. With this encoding, we are able to provide a mechanised proof
of the false positive rate for the quotient filter implemented using p-bit hash as
being:

Theorem 9 (Quotient filter False Positive Rate). For a hash-function hs,
after inserting a series of l unseen distinct values xs into an empty quotient filter
qf , for any unseen y �∈ xs, the probability of a query y ∈? qf for y returning true

is given by: Pr [qf_addm xs (hs, qf_new) � qf_query y] = 1 − (
1 − 1

2p

)l
.
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6.2 Blocked AMQ

Blocked Bloom filters [40] are a cache-efficient variant of Bloom filters where a
single instance of the structure is composed of a vector of m independent Bloom
filters, using an additional “meta”-hash operation to distribute values between
the elements. When querying for a particular element, the meta-hash operation
would first be consulted to select a particular instance to delegate the query to.

While prior research has only focused on applying this blocking design to
Bloom filters, we found that this strategy is in fact generic over the choice of
AMQ, allowing us to formalise an abstract Blocked AMQ structure, and later
instantiate it for particular choices of “basic” AMQs. As such, this data structure
highlights the scalability of Ceramist wrt. composition of programs and proofs.

Our encoding of Blocked AMQs within Ceramist is done via means of two
higher-order modules as in Fig. 1: (i) a multiplexed-hash component, parame-
terised over an arbitrary hashing operation, and (ii) a blocked-state component,
parameterised over some instantiation of the AMQ interface. The multiplexed
hash captures the relation between the meta-hash and the hashing operations
of the basic AMQ, randomly multiplexing hashes to particular hashing opera-
tions of the sub-components. We construct a multiplexed-hash as a composition
of the hashing operation H used by the AMQ in each of the m blocks, and a
meta-hash function to distribute queries between the m blocks. The state of this
structure is defined as pairing of m states of the hashing operation H, one for
each of the m blocks of the AMQ, with the state of the meta-hash function. As
such, hashing a value v with this operation produces a pair of type (Zm, Value),
where the first element is obtained by hashing v over the meta-hash to select a
particular block, and the second element is produced by hashing v again over the
hash operation H for this selected block. With this custom hashing operation,
the state component of the Blocked AMQ is defined as sequence of m states of
the AMQ, one for each block. The insertion and query operations work on the
output of the multiplexed hash by using the first element to select a particular
element of the sequence, and then use the second element as the value to be
inserted into or queried on this selected state.

Having instantiated the data structure as described above, we proved the
following abstract result about the false positive rate for blocked AMQs:

Theorem 10 (Blocked AMQ False Positive Rate). For any AMQ A with
a false positive rate after inserting l elements estimated as f(l), for a multiplexed
hash-function hs, after having inserted l distinct values xs, all unseen in hs, into
an empty Blocked AMQ filter bf composed of m instances of A, for any unseen
y �∈ xs, the probability of a subsequent query y ∈? bf for y returning true is given
by: Pr [BA_addm xs (hs, BA_new) � BA_query y] =

∑l
i=0

(
l
i

)
( 1
m )i(1 − 1

m )l−if(i).

We instantiated this interface with each of the previously defined AMQ struc-
tures, obtaining the Blocked Bloom filters, Counting Blocked Bloom filters and
Blocked Quotient filter along with proofs of similar properties for them, for free.
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7 Discussion and Related Work

Proofs About AMQs. While there has been a wealth of prior research into approx-
imate membership query structures and their probabilistic bounds, the preva-
lence of paper-and-pencil proofs has meant that errors in analysis have gone
unnoticed and propagated throughout the literature.

The most notable example is in Bloom’s original paper [6], wherein dependen-
cies between setting bits lead to an incorrect formulation of the bound (equation
(17)), which has since been repeated in several papers [9,14,15,33] and even
textbooks [34]. While this error was later identified by Bose et al. [8], their
own analysis was also marred by an error in their definition of Stirling num-
bers of the second kind, resulting in yet another incorrect bound, corrected two
years later by Christensen et al. [10], who avoided the error by eliding Stirling
numbers altogether, and deriving the bound directly. Furthermore, despite these
corrections, many subsequent papers [13,28–30,40,41,46] still use Bloom’s orig-
inal incorrect bounds. For example, in Putze et al. [40]’s analysis of a Blocked
Bloom filter, they derive an incorrect bound on the false positive rate by assum-
ing that the false positive of the constituent Bloom filters are given by Bloom’s
bound. While the Ceramist is the first development that, to the best of our
knowledge, provides a mechanised proof of the probabilistic properties of Bloom
filters, prior research has considered their deterministic properties. In particular,
Blot et al. [7] provided a mechanised proof of the absence of false negatives for
their implementation of a Bloom filter.

Mechanically Verified Probabilistic Algorithms. Past research has also focused on
the verification of probabilistic algorithms, and our work builds on the results and
ideas from several of these developments. The ALEA library tackles the task of
proving properties of probabilistic algorithms [3], however in contrast to our deep
embedding of computations, ALEA uses a shallow embedding through a Giry
monad [20], representing probabilistic programs as measures over their outcomes.
ALEA also axiomatises a custom type to represent reals between 0 and 1, which
means they must independently prove any properties on reals they use, increas-
ing the proof effort. The Foundational Cryptography Framework (FCF) [39] was
developed for proving the security properties of cryptographic programs and
provides an encoding of probabilistic algorithms. Rather than developing tooling
for solving probabilistic obligations, their library proves probabilistic properties
by reducing them to standard programs with known distributions. While this
strategy follows the structure of cryptographic proofs, the simple tooling makes
directly proving probabilistic bounds challenging. Tassarotti et al.’s Polaris [47]
library for reasoning about probabilistic concurrent algorithms, also uses the
same reduction strategy, and thereby inherits the same issues with proving stan-
dalone bounds. Hölzl considers mechanised verification of probabilistic programs
in Isabelle/HOL [27], using a similar composition of probability and computation
monads to encode probabilistic programs. However, his construction defines the
semantics of programs as infinite Markov chains represented as a co-inductive
streams, making it unsuitable for capturing terminating programs. Our previous
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effort on mechanising the probabilistic properties of blockchains also considered
the encoding of probabilistic computations in Coq [23]. While that work also
relied on infotheo’s probability monad, it only considered a restricted form of
probabilistic properties, and did not deliver reusable tooling for the task.

Proofs of Differential Privacy. A popular motivation for reasoning about prob-
abilistic computations is for the purposes of demonstrating differential privacy.
Barthe et al.’s CertiPriv framework [4] extends ALEA to support reasoning using a
Probabilistic Relational Hoare logic, and uses this fragment to prove probabilis-
tic non-interference arguments. More recently, Barthe et al. [44] have developed
a mechanisation that supports a more general coupling between distributions.
Given the focus on relational properties, these developments are not suited for
proving explicit numerical bounds as Ceramist is.

8 Conclusion

The key properties of Approximate Membership Query structures are inherently
probabilistic. Formalisations of those properties are frequently stated incorrectly,
due to the complexity of the underlying proofs. We have demonstrated the fea-
sibility of conducting such proofs in a machine-assisted framework. The main
ingredients of our approach are a principled decomposition of structure defini-
tions and proof automation for manipulating probabilistic sums. Together, they
enable scalable and reusable mechanised proofs about a wide range of AMQs.
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32. Martin-Dorel, É., Soloviev, S.: A formal study of boolean games with random
formulas as payoff functions. In: TYPES 2016. LIPIcs, vol. 97, pp. 14:1–14:22.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

33. Mitzenmacher, M.: Compressed bloom filters. IEEE/ACM Trans. Netw. 10(5),
604–612 (2002)

34. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, 2nd edn. Cambridge University Press, Cam-
bridge (2017). ISBN 978-1-107-15488-9

35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

36. Naor, M., Yogev, E.: Bloom filters in adversarial environments. ACM Trans. Algo-
rithms 15(3), 35:1–35:30 (2019)

37. Nasre, R., Rajan, K., Govindarajan, R., Khedker, U.P.: Scalable context-sensitive
points-to analysis using multi-dimensional bloom filters. In: Hu, Z. (ed.) APLAS
2009. LNCS, vol. 5904, pp. 47–62. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10672-9 6

38. Pagh, A., Pagh, R., Rao, S.S.: An optimal bloom filter replacement. In: SODA,
pp. 823–829. SIAM (2005)

39. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7 4

40. Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient bloom filters.
ACM J. Exp. Algorithmics 14, 108–121 (2009)

41. Qiao, Y., Li, T., Chen, S.: One memory access Bloom filters and their generaliza-
tion. In: INFOCOM, pp. 1745–1753. IEEE (2011)

42. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL, pp. 154–165. ACM (2002)

43. Rush, N.: ETH goes bloom: filling up Ethereum’s bloom filters (2018). https://
medium.com/@naterush1997/eth-goes-bloom-filling-up-ethereums-bloom-filters-
68d4ce237009

44. Strub, P.-Y., Sato, T., Hsu, J., Espitau, T., Barthe, G.: Relational �-liftings for
differential privacy. Log. Methods Comput. Sci. 15(4), 18:1–18:32 (2019)

45. Talbot, J.: What are Bloom filters? (2015). https://blog.medium.com/what-are-
bloom-filters-1ec2a50c68ff

46. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Commun. Surv. Tutor. 14(1), 131–155 (2012)

47. Tassarotti, J., Harper, R.: A separation logic for concurrent randomized programs.
PACMPL 3(POPL), 64:1–64:30 (2019)

https://math-comp.github.io/mcb
https://math-comp.github.io/mcb
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-10672-9_6
https://doi.org/10.1007/978-3-642-10672-9_6
https://doi.org/10.1007/978-3-662-46666-7_4
https://medium.com/@naterush1997/eth-goes-bloom-filling-up-ethereums-bloom-filters-68d4ce237009
https://medium.com/@naterush1997/eth-goes-bloom-filling-up-ethereums-bloom-filters-68d4ce237009
https://medium.com/@naterush1997/eth-goes-bloom-filling-up-ethereums-bloom-filters-68d4ce237009
https://blog.medium.com/what-are-bloom-filters-1ec2a50c68ff
https://blog.medium.com/what-are-bloom-filters-1ec2a50c68ff


Certifying Certainty and Uncertainty in AMQs 303

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Global PAC Bounds for Learning Discrete
Time Markov Chains

Hugo Bazille1, Blaise Genest1, Cyrille Jegourel2(B), and Jun Sun3

1 Univ Rennes, CNRS & Rennes 1, Rennes, France
{hbazille,bgenest}@irisa.fr

2 Singapore University of Technology and Design, Singapore, Singapore
cyrille.jegourel@gmail.com

3 Singapore Management University, Singapore, Singapore
junsun@smu.edu.sg

Abstract. Learning models from observations of a system is a powerful
tool with many applications. In this paper, we consider learning Discrete
Time Markov Chains (DTMC), with different methods such as frequency
estimation or Laplace smoothing. While models learnt with such meth-
ods converge asymptotically towards the exact system, a more practical
question in the realm of trusted machine learning is how accurate a
model learnt with a limited time budget is. Existing approaches provide
bounds on how close the model is to the original system, in terms of
bounds on local (transition) probabilities, which has unclear implication
on the global behavior.

In this work, we provide global bounds on the error made by such a
learning process, in terms of global behaviors formalized using temporal
logic. More precisely, we propose a learning process ensuring a bound on
the error in the probabilities of these properties. While such learning pro-
cess cannot exist for the full LTL logic, we provide one ensuring a bound
that is uniform over all the formulas of CTL. Further, given one time-
to-failure property, we provide an improved learning algorithm. Inter-
estingly, frequency estimation is sufficient for the latter, while Laplace
smoothing is needed to ensure non-trivial uniform bounds for the full
CTL logic.

1 Introduction

Discrete-Time Markov Chains (DTMC) are commonly used in model checking
to model the behavior of stochastic systems [3,4,7,26]. A DTMC is described
by a set of states and transition probabilities between these states. The main
issue with modeling stochastic systems using DTMCs is to obtain the transi-
tion probabilities. One appealing approach to overcome this issue is to observe
the system and to learn automatically these transition probabilities [8,30], e.g.,
using frequency estimation or Laplace (or additive) smoothing [12]. Frequency
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estimation works by observing a long run of the system and estimating each indi-
vidual transition by its empirical frequency. However, in this case, the unseen
transitions are estimated as zeros. Once the probability of a transition is set to
zero, the probability to reach a state could be tremendously changed, e.g., from
1 to 0 if the probability of this transition in the system is small but non-zero.
To overcome this problem, when the set of transitions with non-zero probabil-
ity is known (but not their probabilities), Laplace smoothing assigns a positive
probability to the unseen transitions, i.e., by adding a small quantity both to
the numerator and the denominator of the estimate used in frequency estima-
tion. Other smoothing methods exist, such as Good-Turing [15] and Kneser-Sey
estimations [7], notably used in natural language processing. Notwithstanding
smoothing generates estimation biases, all these methods converge asymptoti-
cally to the exact transition probabilities.

In practice, however, there is often limited budget in observing and learning
from the system, and the validity of the learned model is in question. In trusted
machine learning, it is thus crucial to measure how the learned model differs from
the original system and to provide practical guidelines (e.g., on the number of
observations) to guarantee some control of their divergence.

Comparing two Markov processes is a common problem that relies on a
notion of divergence. Most existing approaches focus on deviations between the
probabilities of local transitions (e.g., [5,10,27]). However, a single deviation in
a transition probability between the original system and the learned model may
lead to large differences in their global behaviors, even when no transitions are
overlooked, as shown in our example 1. For instance, the probability of reaching
certain state may be magnified by paths which go through the same deviated
transition many times. It is thus important to use a measure that quantifies
the differences over global behaviors, rather than simply checking whether the
differences between the individual transition probabilities are low enough.

Technically, the knowledge of a lower bound on the transition probabilities is
often assumed [1,14]. While it is a soft assumption in many cases, such as when
all transition probabilities are large enough, it is less clear how to obtain such a
lower bound in other cases, such as when a very unlikely transition exists (e.g.,
a very small error probability). We show how to handle this in several cases:
learning a Markov chain accurate w.r.t. this error rate, or learning a Markov
chain accurate over all its global behaviors, which is possible if we know the
underlying structure of the system (e.g., because we designed it, although we do
not know the precise transition probabilities which are governed by uncertain
forces). For the latter, we define a new concept, namely conditioning of a DTMC.

In this work, we model global behaviors using temporal logics. We consider
Linear Temporal Logic (LTL) [24] and Computational Tree Logic (CTL) [11].
Agreeing on all formulas of LTL means that the first order behaviors of the
system and the model are the same, while agreeing on CTL means that the
system and the model are bisimilar [2]. Our goal is to provide stopping rules in
the learning process of DTMCs that provides Probably Approximately Correct
(PAC) bounds on the error in probabilities of every property in the logic between



306 H. Bazille et al.

the model and the system. In Sect. 2, we recall useful notions on DTMCs and
PAC-learning. We point out related works in Sect. 3. Our main contributions are
as follows:

– In Sect. 4, we show that it is impossible to learn a DTMC accurate for all
LTL formulas, by adapting a result from [13].

– We provide in Sect. 6 a learning process bounding the difference in probability
uniformly over all CTL properties. To do so, we use Laplace smoothing, and
we provide rationale on choosing the smoothing parameter.

– For the particular case of a time-to-failure property, notably used to compute
the mean time between failures of critical systems (see e.g., [25]), we provide
tighter bounds in Sect. 5, based on frequency estimation.

In Sect. 4, we formally state the problem and the specification that the learn-
ing process must fulfill. We also show our first contribution: the impossibility
of learning a DTMC, accurate for all LTL formulas. Nevertheless, we prove in
Sect. 5 our second contribution: the existence of a global bound for the time-to-
failure properties, notably used to compute the mean time between failures of
critical systems (see e.g., [25]) and provide an improved learning process, based
on frequency estimation. In Sect. 6, we present our main contribution: a global
bound guaranteeing that the original system and a model learned by Laplace
smoothing have similar behaviors for all the formulas in CTL. We show that the
error bound that we provide on the probabilities of properties is close to optimal.
We evaluate our approach in Sect. 7 and conclude in Sect. 8.

2 Background

In this section, we introduce the notions and notations used throughout the
paper. A stochastic system S is interpreted as a set of interacting components
in which the state is determined randomly with respect to a global probability
measure described below.

Definition 1 (Discrete-Time Markov Chains). A Discrete-Time Markov
Chain is a triple M = (S, μ,A) where:

– S is a finite set of states;
– μ : S → [0, 1] is an initial probability distribution over S;
– A : S ×S → [0, 1] is a transition probability matrix, such that for every s ∈ S,∑

s′∈S A(s, s′) = 1.

We denote by m the cardinal of S and A = (aij)1≤i,j≤m = (A(i, j))1≤i,j≤m

the probability matrix. Figures 1 and 2 show the graph of two DTMCs over 3
states {s1, s2, s3} (with μ(s1) = 1). A run is an infinite sequence ω = s0s1 · · · and
a path is a finite sequence ω = s0 · · · sl such that μ(s0) > 0 and A(si, si+1) > 0
for all i, 0 ≤ i ≤ l. The length |ω| of a path ω is its number of transitions.

The cylinder set of ω, denoted C(ω), consists of all the runs starting by a
path ω. Markov chain M underlies a probability space (Ω,F ,P), where Ω is the
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Fig. 1. An example of DTMC M1
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Fig. 2. DTMC M2

set of all runs from M; F is the sigma-algebra generated by all the cylinders
C(ω) and P is the unique probability measure [32] such that P(C(s0 · · · sl)) =
μ(s0)

∏l
i=1 A(si−1, si). For simplicity, we assume a unique initial state s0 and

denote P(ω) = P (C(ω)). Finally, we sometimes use the notation P
A
i to emphasize

that the probability distribution is parameterized by the probability matrix A,
and the starting state is i.

2.1 PAC-Learning for Properties

To analyze the behavior of a system, properties are specified in temporal logic
(e.g., LTL or CTL, respectively introduced in [24] and [11]). Given a logic L and
ϕ a property of L, decidable in finite time, we denote ω |= ϕ if a path ω satisfies
ϕ. Let z : Ω×L → {0, 1} be the function that assigns 1 to a path ω if ω |= ϕ and
0 otherwise. In what follows, we assume that we have a procedure that draws
path ω with respect to P

A and outputs z(ω, ϕ). Further, we denote γ(A,ϕ)
the probability that a path drawn with respect to P

A satisfies ϕ. We omit the
property or the matrix in the notation when it is clear from the context. Finally,
note that the behavior of z(., ϕ) can be modeled as a Bernoulli random variable
Zϕ parameterized by the mean value γ(A,ϕ).

Probably Approximately Correct (PAC) learning [28] is a framework for
mathematical analysis of machine learning. Given ε > 0 and 0 < δ < 1, we
say that a property ϕ of L is PAC-learnable if there is an algorithm A such that,
given a sample of n paths drawn according to the procedure, with probability of
at least 1−δ, A outputs in polynomial time (in 1/ε and 1/δ) an approximation of
the average value for Zϕ close to its exact value, up to an error less than or equal
to ε. Formally, ϕ is PAC-learnable if and only if A outputs an approximation γ̂
such that:

P (|γ − γ̂| > ε) ≤ δ (1)

Moreover, if the above statement for algorithm A is true for every property in
L, we say that A is a PAC-learning algorithm for L.

2.2 Monte-Carlo Estimation and Algorithm of Chen

Given a sample W of n paths drawn according to P
A until ϕ is satisfied or

violated (for ϕ such that with probability 1, ϕ is eventually satisfied or vio-
lated), the crude Monte-Carlo estimator, denoted γ̂W (A,ϕ), of the mean value



308 H. Bazille et al.

for the random variable Zϕ is given by the empirical frequency: γ̂W (A,ϕ) =
1
n

∑n
i=1 z(ωi) ≈ γ(A,ϕ).

The Okamoto inequality [23] (also called the Chernoff bound in the literature)
is often used to guarantee that the deviation between a Monte-Carlo estimator
γ̂W and the exact value γ by more than ε > 0 is bounded by a predefined con-
fidence parameter δ. However, several sequential algorithms have been recently
proposed to guarantee the same confidence and accuracy with fewer samples1.
In what follows, we use the Massart bound [22], implemented in the algorithm
of Chen [6].

Theorem 1 (Chen bound). Let ε > 0, δ such that 0 < δ < 1 and γ̂W be the
crude Monte-Carlo estimator, based on n samples, of probability γ.

If n ≥ 2
ε2 log

(
2
δ

) [
1
4 − (|12 − γ̂W | − 2

3ε)2
]
,

P(|γ − γ̂W | > ε) ≤ δ.

To ease the readability, we write nsucc =
∑n

i=1 z(ωi) and H(n, nsucc, ε, δ) =
2
ε2 log

(
2
δ

) [
1
4 − (|12 − γ̂W | − 2

3ε)2
]
. When it is clear from the context, we only

write H(n). Then, the algorithm A that stops sampling as soon as n ≥ H(n) and
outputs a crude Monte-Carlo estimator for γ(A,ϕ) is a PAC-learning algorithm
for ϕ. The condition over n is called the stopping criteria of the algorithm. As
far as we know, this algorithm requires fewer samples than the other sequential
algorithms (see e.g., [18]). Note that the estimation of a probability close to 1/2
likely requires more samples since H(n) is maximized in γ̂W = 1/2.

3 Related Work

Our work shares similar statistical results (see Sect. 2.3) with Statistical Model
Checking (SMC) [32]. However, the context and the outputs are different. SMC
is a simulation-based approach that aims to estimate one probability for a given
property [9,29], within acceptable margins of error and confidence [17,18,33].
A challenge in SMC is posed by unbounded properties (e.g., fairness) since the
sampled executions are finite. Some algorithms have been proposed to handle
unbounded properties but they require the knowledge of the minimal probability
transition of the system [1,14], which we avoid. While this restriction is light in
many contexts, such as when every state and transition appears with a suffi-
ciently high probability, contexts where probabilities are unknown and some are
very small seems much harder to handle. In the following, we propose 2 solutions
not requiring this assumption. The first one is the closest to SMC: we learn a
Markov chain accurate for a given time-to-error property, and it does not require
knowledge on the Markov chain. The second one is much more ambitious than
SMC as it learns a Markov chain accurate for all its global behaviors, formal-
ized as all properties of a temporal logic; it needs the assumption that the set

1 We recall the Okamoto-Chernoff bound in the extended version (as well as the Mas-
sart bound), but we do not use it in this work.
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of transitions is known, but not their probabilities nor a lower bound on them.
This assumption may seem heavy, but it is reasonable for designers of systems,
for which (a lower bound on) transition probabilities are not known (e.g. some
error rate of components, etc).

For comparison with SMC, our final output is the (approximated) transition
matrix of a DTMC rather than one (approximated) probability of a given prop-
erty. This learned DTMC can be used for different purposes, e.g. as a component
in a bigger model or as a simulation tool. In terms of performances, we will show
that we can learn a DTMC w.r.t. a given property with the same number of sam-
ples as we need to estimate this property using SMC (see Sect. 5). That is, there
is no penalty to estimate a DTMC rather than estimate one probability, and we
can scale as well as SMC. In terms of expressivity, we can handle unbounded
properties (e.g. fairness properties). Even better, we can learn a DTMC accurate
uniformly over a possibly infinite set of properties, e.g. all formulas of CTL. This
is something SMC is not designed to achieve.

Other related work can be cited: In [13], the authors investigate several dis-
tances for the estimation of the difference between DTMCs. But they do not pro-
pose algorithms for learning. In [16], the authors propose to analyze the learned
model a posteriori to test whether it has some good properties. If not, then they
tweak the model in order to enforce these properties. Also, several PAC-learning
algorithms have been proposed for the estimation of stochastic systems [5,10]
but these works focus on local transitions instead of global properties.

4 Problem Statement

In this work, we are interested to learn a DTMC model from a stochastic system
S such that the behaviors of the system and the model are similar. We assume
that the original system is a DTMC parameterized by a matrix A of transition
probabilities. The transition probabilities are unknown, but the set of states of
the DTMC is assumed to be known.

Our goal is to provide a learning algorithm A that guarantees an accurate
estimation of S with respect to certain global properties. For that, a sampling
process is defined as follows. A path (i.e., a sequence of states from s0) of S
is observed, and at steps specified by the sampling process, a reset action is
performed, setting S back to its initial state s0. Then another path is generated.
This process generates a set W of paths, called traces, used to learn a matrix
ÂW . Formally, we want to provide a learning algorithm that guarantees the
following specification:

P(D(A, ÂW ) > ε) ≤ δ (2)

where ε > 0 and δ > 0 are respectively accuracy and confidence parameters and
D(A, ÂW ) is a measure of the divergence between A and ÂW .

There exist several ways to specify the divergence between two transition
matrices, e.g., the Kullback-Leibler divergence [19] or a distance based on a
matrix norm. However, the existing notions remain heuristic because they are
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based on the difference between the individual probabilistic transitions of the
matrix. We argue that what matters in practice is often to quantify the similarity
between the global behaviors of the systems and the learned model.

In order to specify the behaviors of interest, we use a property ϕ or a set
of properties Ψ on the set of states visited. We are interested in the difference
between the probabilities of ϕ (i.e., the measure of the set of runs satisfying ϕ)
with respect to A and ÂW . We want to ensure that this difference is less than
some predefined ε with (high) probability 1 − δ. Hence, we define:

Dϕ(A, ÂW ) = |γ(A,ϕ) − γ(ÂW , ϕ)| (3)

DΨ (A, ÂW ) = max
ϕ∈Ψ

(Dϕ(A, ÂW )) (4)

Our problem is to construct an algorithm which takes the following as inputs:

– confidence δ, 0 < δ < 1,
– absolute error ε > 0, and
– a property ϕ (or a set of properties Ψ),

and provides a learning procedure sampling a set W of paths, outputs ÂW ,
and terminates the sampling procedure while fulfilling Specification (2), with
D = Dϕ (= DΨ ).

In what follows, we assume that the confidence level δ and absolute error ε
are fixed. We first start with a negative result: if Ψ is the set of LTL formulas
[2], such a learning process is impossible.

Theorem 2. Given ε > 0, 0 < δ < 1, and a finite set W of paths randomly
drawn with respect to a DTMC A, there is no learning strategy such that, for
every LTL formula ϕ,

P(|γ(A,ϕ) − γ(ÂW , ϕ)| > ε) ≤ δ (5)

Note that contrary to Theorem 1, the deviation in Theorem 2 is a difference
between two exact probabilities (of the original system and of a learned model).
The theorem holds as long as ÂW and A are not strictly equal, no matter how ÂW

is learned. To prove this theorem, we show that, for any number of observations,
we can always define a sequence of LTL properties that violates the specification
above. It only exploits a single deviation in one transition. The proof, inspired
by a result from [13], is given in the extended version.

Example 1. We show in this example that in general, one needs to have some
knowledge on the system in order to perform PAC learning - either a positive
lower bound 
 > 0 on the lowest probability transition, as in [1,14], or the
support of transitions (but no knowledge on their probabilities), as we use in
Sect. 6. Further, we show that the latter assumption does not imply the former,
as even if no transitions are overlooked, the error in some reachability property
can be arbitrarily close to 0.5 even with arbitrarily small error on the transition
probabilities.
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s1 s2s3
ττ

1− 2τ

s1 s2s3

τ − 1
2
ητ + 1

2
η

1− 2τ

s1

1

Fig. 3. Three DTMCs A, Â, B̂ (from left to right), with 0 < η < 2τ < 1

Let us consider DTMCs A, Â, B̂ in Fig. 3, and formula F s2 stating that s2
is eventually reached. The probabilities to satisfy this formula in A, Â, B̂ are
respectively P

A(F s2) = 1
2 , PÂ(F s2) = 2τ−η

4τ = 1
2 − η

4τ and P
B̂(F s2) = 0.

Assume that A is the real system and that Â and B̂ are DTMCs we learned
from A. Obviously, one wants to avoid learning B̂ from A, as the probability of
F s2 is very different in B̂ and in Â (0 instead of 0.5). If one knows that τ > 

for some lower bound 
 > 0, then one can generate enough samples from s1 to
evaluate τ with an arbitrarily small error η

2 << 
 on probability transitions with
an arbitrarily high confidence, and in particular learn a DTMC similar to Â.

On the other hand, if one knows there are transitions from s1 to s2 and to s3,
then immediately, one does not learn DTMC B̂, but a DTMC similar to DTMC
Â (using e.g. Laplace smoothing [12]). While this part is straightforward with
this assumption, evaluating τ is much harder when one does not know a priori
a lower bound 
 > 0 such that τ > 
. That is very important: while one can
make sure that the error η

2 on probability transitions is arbitrarily small, if τ is
unknown, then it could be the case that τ is as small as η

2(1−ε) > η
2 , for a small

ε > 0. This gives us PÂ(F s2) = 1
2 − 1−ε

2 = ε
2 , which is arbitrarily small, whereas

P
A(F s2) = 0.5, leading to a huge error in the probability to reach s2. We work

around that problem in Sect. 6 by defining and computing the conditioning of
DTMC Â. In some particular cases, as the one discussed in the next section,
one can avoid that altogether (actually, the conditioning in these cases is perfect
(=1), and it needs not be computed explicitly).

5 Learning for a Time-to-failure Property

In this section, we focus on property ϕ of reaching a failure state sF from an
initial state s0 without re-passing by the initial state, which is often used for
assessing the failure rate of a system and the mean time between failures (see
e.g., [25]). We assume that with probability 1, the runs eventually re-pass by s0
or reach sF . Also, without loss of generality, we assume that there is a unique
failure state sF in A. We denote γ(A,ϕ) the probability, given DTMC A, of
satisfying property ϕ, i.e., the probability of a failure between two visits of s0.

Assume that the stochastic system S is observed from state s0. Between
two visits of s0, property ϕ can be monitored. If sF is observed between two
instances of s0, we say that the path ω = s0 · ρ · sF satisfies ϕ, with s0, sF /∈ ρ.
Otherwise, if s0 is visited again from s0, then we say that the path ω = s0 · ρ · s0
violates ϕ, with s0, sF /∈ ρ. We call traces paths of the form ω = s0 · ρ · (s0 ∨ sF )
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with s0, sF /∈ ρ. In the following, we show that it is sufficient to use a frequency
estimator to learn a DTMC which provides a good approximation for such a
property.

5.1 Frequency Estimation of a DTMC

Given a set W of n traces, we denote nW
ij the number of times a transition from

state i to state j has occurred and nW
i the number of times a transition has been

taken from state i.
The frequency estimator of A is the DTMC ÂW = (âij)1≤i,j≤m given by

âij = nW
ij

nW
i

for all i, j, with
∑m

i=1 nW
i =

∑m
i=1

∑m
j=1 nW

ij = |W |. In other words,

to learn ÂW , it suffices to count the number of times a transition from i to j
occurred, and divide by the number of times state i has been observed. The
matrix ÂW is trivially a DTMC, except for states i which have not been visited.
In this case, one can set âij = 1

m for all states j and obtain a DTMC. This has
no impact on the behavior of ÂW as i is not reachable from s0 in ÂW .

Let ÂW be the matrix learned using the frequency estimator from the set
W of traces, and let A be the real probabilistic matrix of the original system S.
We show that, in the case of time-to-failure properties, γ(ÂW , ϕ) is equal to the
crude Monte Carlo estimator γ̂W (A,ϕ) induced by W .

5.2 PAC Bounds for a Time-to-failure Property

We start by stating the main result of this section, bounding the error between
γ(A,ϕ) and γ(ÂW , ϕ):

Theorem 3. Given a set W of n traces such that n = �H(n)	, we have:

P

(
|γ(A,ϕ) − γ(ÂW , ϕ)| > ε

)
≤ δ (6)

where ÂW is the frequency estimator of A.

To prove Theorem (3), we first invoke Theorem 1 to establish:

P (|γ(A,ϕ) − γ̂W (A,ϕ)| > ε) ≤ δ (7)

It remains to show that γ̂W (A,ϕ) = γ(ÂW , ϕ):

Proposition 1. Given a set W of traces, γ(ÂW , ϕ) = γ̂W (A,ϕ).

It might be appealing to think that this result can be proved by induction on
the size of the traces, mimicking the proof of computation of reachability prob-
abilities by linear programming [2]. This is actually not the case. The remaining
of this section is devoted to proving Proposition (1).

We first define qW (u) the number of occurrences of sequence u in the traces
of W . Note that u can be a state, an individual transition or even a path. We
also use the following definitions in the proof.
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Definition 2 (Equivalence). Two sets of traces W and W ′ are equivalent if
for all s, t ∈ S, qW (s·t)

qW (s) = qW ′ (s·t)
qW ′ (s) .

We define a set of traces W ′ equivalent with W , implying that ÂW = ÂW ′ .
This set W ′ of traces satisfies the following:

Lemma 1. For any set of traces W , there exists a set of traces W ′ such that:

(i) W and W ′ are equivalent,

(ii) for all r, s, t ∈ S, qW ′(r · s · t) =
qW ′(r · s) × qW ′(s · t)

qW ′(s)
.

The proof of Lemma 1 is provided in the extended version. In Lemma 1, (i)
ensures that ÂW ′ = ÂW and (ii) ensures the equality between the proportion of
runs of W ′ passing by s and satisfying γ, denoted γ̂s

W ′ , and the probability of
reaching sF before s0 starting from s with respect to ÂW ′ . Formally,

Lemma 2. For all s ∈ S, PÂW ′
s (reach sf before s0) = γ̂s

W ′ .

Proof. Let S0 be the set of states s with no path in ÂW ′ from s to sf without
passing through s0. For all s ∈ S0, let ps = 0. Also, let psf

= 1. Let S1 =
S\(S0∪{sf}). Consider the system of Eq. (8) with variables (ps)s∈S1 ∈ [0, 1]|S1|:

∀ s ∈ S1, ps =
m∑

t=1

ÂW ′(s, t)pt (8)

The system of Eq. (8) admits a unique solution according to [2] (Theorem 10.19.

page 766). Then, (PÂW ′
s (reach sf before s0))s∈S1 is trivially a solution of (8).

But, since W ′ satisfies the conditions of Lemma 1, we also have that (γ̂s
W ′)s∈S1

is a solution of (8), and thus we have the desired equality. �
Notice that Lemma 2 does not hold in general with the set W . We have:

γ̂W (A,ϕ) = γ̂s0
W (by definition)

= γ̂s0
W ′ (by Lemma 1)

= P
ÂW ′
s0

(reach sf before s0) (by Lemma 2)

= P
ÂW
s0

(reach sf before s0) (by Lemma 1)

= γ(ÂW , ϕ) (by definition).

That concludes the proof of Proposition 1. It shows that learning can be as
efficient as statistical model-checking on comparable properties.
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6 Learning for the Full CTL Logic

In this section, we learn a DTMC ÂW such that ÂW and A have similar behav-
iors over all CTL formulas. This provides a much stronger result than on time-
to-failure property, e.g., properties can involve liveness and fairness, and more
importantly they are not known before the learning. Notice that PCTL [2] can-
not be used, since an infinitesimal error on one > 0 probability can change the
probability of a PCTL formula from 0 to 1. (State)-CTL is defined as follows:

Definition 3. Let Prop be the set of state names. (State)-CTL is defined by
the following grammar ϕ ::= ⊥ | � | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | AXϕ |
EXϕ | AFϕ | EFϕ | AFϕ | EGϕ | AGϕ | E(ϕUϕ) | A(ϕUϕ), with
p ∈ Prop. E(xists) and A(ll) are quantifiers on paths, neXt, Globally, Finally
and Until are path-specific quantifiers. Notice that some operators are redundant.
A minimal set of operators is {�,∨,¬,EG,EU,EX}.

As we want to compute the probability of paths satisfying a CTL formula,
we consider the set Ψ of path-CTL properties, that is formulas ϕ of the form
ϕ = Xϕ1, ϕ = ϕ1Uϕ2, ϕ = Fϕ1 or ϕ = Gϕ1, with ϕ1, ϕ2 (state)-CTL formulas.
For instance, the property considered in the previous section is (¬s0)UsF .

In this section, for the sake of simplicity, the finite set W of traces is obtained
by observing paths till a state is seen twice on the path. Then, the reset action
is used and another trace is obtained from another path. That is, a trace ω from
W is of the form ω = ρ · s · ρ′ · s, with ρ · s · ρ′ a loop-free path.

As explained in example 1, some additional knowledge on the system is nec-
essary. In this section, we assume that the support of transition probabilities is
known, i.e., for any state i, we know the set of states j such that aij �= 0. This
assumption is needed both for Theorem 5 and to apply Laplace smoothing.

6.1 Learning DTMCs with Laplace Smoothing

Let α > 0. For any state s, let ks be the number of successors of s, that we
know by hypothesis, and T =

∑
s∈S ks be the number of non-zero transitions.

Let W be a set of traces, nW
ij the number of transitions from state i to state j,

and nW
i =

∑
j nW

ij . The estimator for W with Laplace smoothing α is the DTMC
Âα

W = (âij)1≤i,j≤m given for all i, j by:

âij =
nW

ij + α

nW
i + kiα

if aij �= 0 and âij = 0 otherwise

In comparison with the frequency estimator, the Laplace smoothing adds for
each state s a term α to the numerator and ks times α to the denominator. This
preserves the fact that Âα

W is a Markov chain, and it ensures that âij �= 0 iff
aij �= 0. In particular, compared with the frequency estimator, it avoids creating
zeros in the probability tables.
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6.2 Conditioning and Probability Bounds

Using Laplace smoothing slightly changes the probability of each transition by
an additive offset η. We now explain how this small error η impacts the error on
the probability of a CTL property.

Let A be a DTMC, and Aη be a DTMC such that Aη(i, j) �= 0 iff A(i, j) �= 0
for all states i, j, and such that

∑
j |Aη(i, j)−A(i, j)| ≤ η for all states i. For all

states s ∈ S, let R(s) be the set of states i such that there exists a path from i
to s. Let R∗(s) = R(s)\{s}. Since both DTMCs have the same support, R (and
also R∗) is equal for A and Aη. Given m the number of states, the conditioning
of A for s ∈ S and 
 ≤ m is:

Cond	
s(A) = min

i∈R∗(s)
P

A
i (F≤	¬R∗(s))

i.e., the minimal probability from state i ∈ R∗(s) to move away from R∗(s) in
at most 
 steps. Let 
s be the minimal value such that Cond	s

s (A) > 0. This
minimal 
s exists as Condm

s (A) > 0 since, for all s ∈ S and i ∈ R∗(s), there
is at least one path reaching s from i (this path leaves R∗(s)), and taking a
cycle-free path, we obtain a path of length at most m. Thus, the probability
P

A
i (F≤m¬R∗(s)) is at least the positive probability of the cylinder defined by

this finite path. Formally,

Theorem 4. Denoting ϕ the property of reaching state s in DTMC A, we have:

|γ(A,ϕ) − γ(Aη, ϕ)| <

s · η

Cond	s
s (A)

Proof. Let vs be the stochastic vector with vs(s) = 1. We denote v0 = vs0 . Let
s ∈ S. We assume that s0 ∈ R∗(s) (else γ(A,ϕ) = γ(Aη, ϕ) and the result is
trivial). Without loss of generality, we can also assume that A(s, s) = Aη(s, s) =
1 (as we are interested in reaching s at any step). With this assumption:

|γ(A,ϕ) − γ(Aη, ϕ)| = lim
t→∞ |v0 · (At − At

η) · vs|

We bound this error, through bounding by induction on t:

E(t) = max
i∈R∗(s)

|vi · (At − At
η) · vs|

We then have trivially:

|γ(A,ϕ) − γ(Aη, ϕ)| ≤ lim
t→∞ E(t)

Note that for i = s, limt→∞ vi · (At) · vs = 1 = limt→∞ vi · At
η · vs, and thus

their difference is null.
Let t ∈ N. We let j ∈ R∗(s) such that E(t) = |vj · (At − At

η) · vs|.
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By the triangular inequality, introducing the term vj · A	sAt−k
η · vs − vj ·

A	sAt−k
η · vs = 0, we have:

E(t) ≤ |vj · (At
η − A	sAt−	s

η ) · vs| + |(vj · A	s) · (At−	s
η − At−	s) · vs|

We separate vector (vj · A	s) = w1 + w2 + w3 in three sub-stochastic vectors
w1, w2, w3: vector w1 is over {s}, and thus we have w1 ·At−	s

η = w1 = w1 ·At−	s ,
and the term cancels out. Vector w2 is over states of R∗(s), with

∑
i∈R∗ w2[i] ≤

(1 − Cond	s
s (A)), and we obtain an inductive term ≤ (1 − Cond	s

s (A))E(t − 
s).
Last, vector w3 is over states not in R(s), and we have w3 · At−	s

η · vs = 0 =
w3 · At−	s · vs, and the term cancels out.

We also obtain that |vj · (At
η − A	sAt−	s

η ) · vs| ≤ 
s · η. Thus, we have the
inductive formula E(t) ≤ (1−Cond	s

s (A))E(t− 
s)+ 
s ·η. It yields for all t ∈ N:

E(t) ≤ (
s · η)
∞∑

i=1

(1 − Cond	s
s (A))i

E(t) ≤ 
s · η

Cond	s
s (A) �

We can extend this result from reachability to formulas of the form S0USF ,
where S0, SF are subsets of states. This formula means that we reach the set of
states SF through only states in S0 on the way.

We define R(S0, SF ) to be the set of states which can reach SF using only
states of S0, and R∗(S0, SF ) = R(S0, SF ) \ SF . For 
 ∈ N, we let:

Cond	
S0,SF

(A) = min
i∈R∗(S0,SF )

P
A
i (F≤	¬R∗(S0, SF ) ∨ ¬S0).

Now, one can remark that CondS0,SF
(A) ≥ CondS,SF

(A) > 0. Let
Cond	

SF
(A) = Cond	

S,SF
(A). We have Cond	

S0,SF
(A) ≥ Cond	

SF
(A). As before,

we let 
SF
≤ m be the minimal 
 such that Cond	

SF
(A) > 0, and obtain:

Theorem 5. Denoting ϕ the property S0USF , we have, given DTMC A:

|γ(A,ϕ) − γ(Aη, ϕ)| <

SF

· η

Cond
	SF

SF
(A)

We can actually improve this conditioning: we defined it as the probability to
reach SF or S \R(S, SF ). At the price of a more technical proof, we can obtain a
better bound by replacing SF by the set of states R1(SF ) that have probability
1 to reach SF . We let R∗(SF ) = R(S, SF ) \ R1(SF ) the set of states that can
reach SF with < 1 probability, and define the refined conditioning as follows:

Cond
	

SF
(A) = min

i∈R∗(SF )
P

A
i (F≤	¬R∗(SF ))
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6.3 Optimality of the Conditioning

We show now that the bound we provide in Theorem 4 is close to optimal.
Consider again DTMCs A, Â in Fig. 3 from example 1, and formula F s2

stating that s2 is eventually reached. The probabilities to satisfy this formula in
A, Â are respectively P

A(F s2) = 1
2 and P

Â(F s2) = 1
2 − η

4τ . Assume that A is
the real system and that Â is the DTMC we learned from A.

As we do not know precisely the transition probabilities in A, we can only
compute the conditioning on Â and not on A (it suffices to swap A and Aη in
Theorem 4 and 5 to have the same formula using Cond(Aη) = Cond(Â)). We
have R(s2) = {s1, s2} and R∗(s2) = R∗(s2) = {s1}. The probability to stay in
R∗(s2) after 
s2 = 1 step is (1 − 2τ), and thus Cond1

{s2}(Â) = Cond
1

{s2}(Â) =

1−(1−2τ) = 2τ . Taking Aη = Â, Theorem 5 tells us that |PA(F s2)−P
Â(F s2)| ≤

η
2τ . Notice that on that example, using 
s2 = m = 3, we obtain Cond3

{s2}(Â) =
1 − (1 − 2τ)3 ≈ 6τ , and we find a similar bound ≈ 3η

6τ = η
2τ .

Compare our bound with the exact difference |PA(F s2) − P
Â(F s2)| = 1

2 −
(12 − η

4τ ) = η
4τ . Our upper bound only has an overhead factor of 2, even while

the conditioning is particularly bad (small) in this example.

6.4 PAC Bounds for
∑

j |ÂW (i, j) − A(i, j)| ≤ η

We use Theorem 1 in order to obtain PAC bounds. We use it to estimate indi-
vidual transition probabilities, rather than the probability of a property.

Let W be a set of traces drawn with respect to A such that every ω ∈ W is
of the form ω = ρ · s · ρ′ · s. Recall for each state i, j of S, nW

i is the number of
transitions originating from i in W and nW

ij is the number of transitions ss′ in
W . Let δ′ = δ

mstoch
, where mstoch is the number of stochastic states, i.e., with at

least two outgoing transitions.

We want to sample traces until the empirical transition probabilities nW
ij

nW
i

are
relatively close to the exact transition probabilities aij , for all i, j ∈ S. For that,
we need to determine a stopping criteria over the number of state occurrences
(ni)1≤i≤m such that:

P

⎛

⎝∃i ∈ S,
∑

j

∣
∣
∣
∣
∣
aij − nW

ij

nW
i

∣
∣
∣
∣
∣
> ε

⎞

⎠ ≤ δ

First, note that for any observed state i ∈ S, if aij = 0 (or aij = 1), then with

probability 1, nW
ij

nW
i

= 0 (respectively nW
ij

nW
i

= 1). Thus, for all ε > 0, |aij − nW
ij

nW
i

| <

ε with probability 1. Second, for two distinct states i and i′, the transition

probabilities nW
ij

nW
i

and
nW

i′j′
nW

i′
are independent for all j, j′.

Let i ∈ S be a stochastic state. If we observe nW
i transitions from i such that

nW
i ≥ 2

ε2 log
(

2
δ′

)
[

1
4 −

(

maxj |12 − nW
ij

nW
i

| − 2
3ε

)2
]

, then, according to Theorem 1,
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P

(
∨m

j=1 |aij − nW
ij

nW
i

| > ε

)

≤ δ′. In particular, P
(

maxj∈S |aij − nW
ij

nW
i

| > ε

)

≤ δ′.

Moreover, we have:

P

⎛

⎝
m∨

j=1

max
j∈S

|aij − nW
ij

nW
i

| > ε

⎞

⎠ ≤
m∑

j=1

P

(

max
j∈S

|aij − nW
ij

nW
i

| > ε

)

≤ mstochδ
′

≤ δ

In other words, the probability that “there exists a state i ∈ S such that the
deviation between the exact and empirical outgoing transitions from i exceeds
ε” is bounded by δ as soon as for each state i ∈ S, nW

i satisfies the stopping
rule of the algorithm of Chen using ε and the corresponding δ′. This gives the
hypothesis

∑
j |Aη(i, j) − A(i, j)| ≤ ε for all states i of Sect. 6.2.

6.5 A Matrix ÂW Accurate for all CTL properties

We now use Laplace smoothing in order to ensure the other hypothesis Aη(i, j) �=
0 iff A(i, j) �= 0 for all states i, j. For all i ∈ S, we define the Laplace offset
depending on the state i as αi = (nW

i )2ε

10·k2
i maxj nW

ij
, where ki is the number of transi-

tions from state i. This ensures that the error from Laplace smoothing is at most
one tenth of the statistical error. Let α = (αi)1≤i≤m. From the sample set W ,
we output the matrix Âα

W = (âij)1≤i,j≤m with Laplace smoothing αi for state
i, i.e.:

âij =
nW

ij + αi

nW
i + kiαi

if aij �= 0 and âij = 0 otherwise

It is easy to check that we have for all i, j ∈ S:
∣
∣
∣
∣âij − nW

ij

nW
i

∣
∣
∣
∣ ≤ ε

10·ki

That is, for all states i,
∑

j

∣
∣
∣
∣âij − nW

ij

nW
i

∣
∣
∣
∣ ≤ ε

10 . Using the triangular inequality:

P

⎛

⎝∃i ∈ S,
∑

j

|aij − âij | >
11
10

ε

⎞

⎠ ≤ δ

For all i ∈ S, let H∗(nW
i , ε, δ′) = maxj∈S H(nW

i , nW
ij , ε, δ′) be the max-

imal Chen bound over all the transitions from state i. Let B(Âα
W ) =

maxSF

	SF

Cond
�SF
SF

(Âα
W )

. Since in Theorem 5, the original model and the learned

one have symmetric roles, by applying this theorem on Âα
W , we obtain that:
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Theorem 6. Given a set W of traces, for 0 < ε < 1 and 0 < δ < 1, if for all

i ∈ S, nW
i ≥

(
11
10B(Âα

W )
)2

H∗(nW
i , ε, δ′), we have for any CTL property ϕ:

P(|γ(A,ϕ) − γ(Âα
W , ϕ)|) > ε) ≤ δ (9)

Proof. First, âij �= 0 iff aij �= 0, by definition of Âα
W . Second, P(∃i,

∑
j |aij −

âij | > 11
10ε) ≤ δ. We can thus apply Theorem 5 on Âα

W , A and obtain (9) for ϕ
any formula of the form S1US2. It remains to show that for any formula ϕ ∈ Ψ ,
we can define S1, S2 ⊆ S such that ϕ can be expressed as S1US2.

Consider the different cases: If ϕ is of the form ϕ = ϕ1Uϕ2 (it subsumes
the case ϕ = Fϕ1 = �Uϕ1) with ϕ1, ϕ2 CTL formulas, we define S1, S2 as the
sets of states satisfying ϕ1 and ϕ2, and we have the equivalence (see [2] for more
details). If ϕ = Xϕ2, define S1 = ∅ and S2 as the set of states satisfying ϕ2.

The last case is ϕ = Gϕ1, with ϕ1 a CTL formula. Again, we define S1 the
set of states satisfying ϕ1, and S2 the set of states satisfying the CTL formula
AGϕ1. The probability of the set of paths satisfying ϕ = Gϕ1 is exactly the
same as the probability of the set of paths satisfying S1US2. �

6.6 Algorithm

We give more details about the learning process of a Markov Chain, accurate for
every CTL formula. For completeness, we also provide in the extended version
a similar algorithm for a time-to-failure property.

A path ω is observed from s0 till a state is observed twice. Then ω is added to
W and the reset operation is performed. We use Laplace smoothing to compute

Algorithm 1: Learning a matrix accurate for CTL
Data:
S, s0, δ, ε

1 W := ∅
2 m = |S|
3 for all s ∈ S, nW

s := 0

4 Compute Â := Âα
W

5 Compute B := B(Â)

6 while ∃s ∈ S, nW
s <

(
11
10

B(Â)
)2

H∗(nW
s , ε, δ

m
) do

7 Generate a new trace ω := s0 ρ s1 ρ′ s1, and reset S
8 for all s ∈ S, nW

s := nW
s + n

{ω}
s

9 add ω to W

10 Compute Â := Âα
W

11 Compute B := B(Â)

Output: Âα
W
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the corresponding matrix Âα
W . The error bound is computed on W , and a new

path ω′ is then being generated if the error bound is not as small as desired.
This algorithm is guaranteed to terminate since, as traces are generated,

with probability 1, nW
s tends towards ∞, Âα

W tends towards A, and B(Âα
W )

tends towards B(A).

7 Evaluation and Discussion

In this section, we first evaluate Algorithm 1 on 5 systems which are crafted to
evaluate the algorithm under different conditions (e.g., rare states). The objective
of the evaluation is to provide some idea on how many samples would be sufficient
for learning accurate DTMC estimations, and compare learning for all properties
of CTL and learning for one time-to-failure property.

Then, we evaluate our algorithm on very large PRISM systems (millions or
billions of states). Because of the number of states, we cannot learn a DTMC
accurate for all properties of CTL there: it would ask to visit every single state a
number of times. However, we can learn a DTMC for one specific (unbounded)
property. We compare with an hypothesis testing algorithm from [31] which can
handle the same unbounded property through a reachability analysis using the
topology of the system.

Table 1. Average number of observed events N (and relative standard deviation in
parenthesis) given ε = 0.1 and δ = 0.05 for a time-to-failure property and for the full
CTL logic using the refined conditioning Cond.

System 1 System 2 System 3 System 4 System 5

# states 3 3 30 64 200

# transitions 4 7 900 204 40,000

# events for

time-to-failure

191 (16%) 991 (10%) 2,753 (7.4%) 1,386 (17.9%) 18,335 (7.2%)

# events for full

CTL

1,463 (12.9%) 4,159 (11.7%) 8,404 (3.8%) 1,872,863 79,823 (1.7%)

7.1 Evaluation on Crafted Models

We first describe the 5 systems: Systems 1 and 2 are three-state models described
in Fig. 1 and Fig. 2. Systems 3 (resp. 5) is a 30-state (resp. 200-states) clique
in which every individual transition probability is 1/30 (resp. 1/200). System
4 is a 64-state system modeling failure and repair of 3 types of components
(3 components each, 9 components in total), see the extended version for a
full description of the system, including a PRISM [20] model for the readers
interested to investigate this system in details.

We tested time-to-failure properties by choosing as failure states s3 for
Systems 1, 2, 3, 5, and the state where all 9 components fail for System 4.
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We also tested Algorithm 1 (for full CTL logic) using the refined conditioning
Cond. We performed our algorithms 100 times for each model, except for full
CTL on System 4, for which we only tested once since it is very time-consuming.
We report our results in Table 1 for ε = 0.1 and δ = 0.05. In particular, we output
for each model its number of states and transitions. For each (set of) property,
we provide the average number of observations (i.e. the number of samples times
their average length) and the relative standard deviation (in parenthesis, that is
the standard deviation divided by the average number of observed events).

The results show that we can learn a DTMC with more than 40000 stochas-
tic transitions, such that the DTMC is accurate for all CTL formulas. Notice
that for some particular systems such as System 4, it can take a lot of events
to be observed before Algorithm 1 terminates. The reason is the presence of
rare states, such as the state where all 9 components fail, which are observed
with an extremely small probability. In order to evaluate the probabilities of
CTL properties of the form: “if all 9 components fail, then CTL property ϕ
is satisfied”, this state needs to be explored many times, explaining the high
number of events observed before the algorithm terminates. On the other hand,
for properties that do not involve the 9 components failing as prior, such as
time-to-failure, one does not need to observe this state even once to conclude
that it has an extremely small probability to happen. This suggests that efficient
algorithms could be developed for subsets of CTL formulas, e.g., in defining a
subset of important events to consider. We believe that Theorem 4 and 5 could
be extended to handle such cases. Over different runs, the results stay similar
(notice the rather small relative standard deviation).

Comparing results for time-to-failure (or equivalently SMC) and for the full
CTL logic is interesting. Excluding System 4 which involves rare states, the
number of events that needs to be observed for the full CTL logic is 4.3 to 7 times
more. Surprisingly, the highest difference is obtained on the smallest System 1.
It is because every run of System 1 generated for time-to-failure is short (s1s2s1
and s1s2s3). However, in Systems 2,3 and 5, samples for time-to-failure can be
much longer, and the performances for time-to-failure (or equivalently SMC) is
not so much better than for learning a DTMC accurate for all CTL properties.

For the systems we tested, the unoptimized Cond was particularly large (more
than 20) because for many states s, there was probability 0 to leave R(s), and
hence 
(s) was quite large. These are the cases where Cond is much more efficient,
as then we can choose 
s = 1 as the probability to reach s from states in R(s) is
1 (R1(s) = R(s) and R∗(s) = ∅). We used Cond in our algorithm.

Finally, we evaluate experimental confidence by comparing the time-to-failure
probabilities in the learned DTMC and the original system. We repeat our algo-
rithms 1000 times on System 1 and 2 (with ε = 0.1 and δ = 0.05). These
probabilities differ by less than ε, respectively 999 and 995 times out of 1000.
Specification (2) is thus largely fulfilled (the specification should be ensured 950
out of 1000 times), that empirically endorses our approach. Hence, while our
PAC bound over-approximates the confidence in the learned system (which is
unavoidable), it is not that far from experimental values.
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7.2 Evaluation on Large Models

We also evaluated our algorithm on large PRISM models, ranging from hundreds
of thousands to billions of states. With these numbers of states, we cannot use
the more ambitious learning over all the properties of CTL, which would need
to visit every states a number of times. However, we can use our algorithm for
learning a DTMC which is accurate given a particular (unbounded) property: it
will visit only a fraction of the states, which is enough to give a model accurate
for that property, with a well-learned kernel of states and some other states
representatives for the remaining of the runs. We consider three test-cases from
PRISM, satisfying the property that the sample stops with a conclusion (yes or
no) with probability 1. Namely, herman, leader and egl.

Table 2. Results for ε = 0.01 and δ = 0.001 of our algorithm compared with sampling
with reachability analysis [31], as reported in [14], page 20. Numbers of samples needed
by our method are given by the Massart bound (resp. by the Okamoto-Chernoff bound
in parenthesis). TO and MO means time out (> 15 minutes on an Opteron 6134) and
memory out (> 5GB) respectively.

Model name Size Our learning method Sampling with reachability analysis [31]

Samples Path length Samples Path length

herman(17) 129M 506 (38K) 27 219 30

herman(19) 1162M 506 (38K) 40 219 38

herman(21) 10G 506 (38K) 43 219 48

leader(6, 6) 280K 506 (38K) 7.4 219 7

leader(6, 8) >280K 506 (38K) 7.4 (MO) (MO)

leader(6, 11) >280K 506 (38K) 7.3 (MO) (MO)

egl(15, 10) 616G 38K (38K) 470 1100 201

egl(20, 15) 1279T 38K (38K) 930 999 347

egl(20, 20) 1719T 38K (38K) 1200 (TO) (TO)

Our prototype tool used in the previous subsection is implemented in Scilab:
it cannot simulate very large systems of PRISM. Instead, we use PRISM to gen-
erate the samples needed for the learning. Hence, we report the usual Okamoto-
Chernoff bound on the number of samples, which is what is implemented in
PRISM. We also compare with the Massart bound used by the Chen algorithm
(see Sect. 2.2), which is implemented in our tool and is more efficient as it takes
into account the probability of the property.

For each model, we report its parameters, its size, i.e. its number of states, the
number of samples needed using the Massart bound (the conservative Okamoto-
Chernoff bound is in parenthesis), and the average path length. For comparison,
we consider an hypothesis testing algorithm from [31] which can also handle
unbounded properties. It uses the knowledge of the topology to do reachabil-
ity analysis to stop the sampling if the property cannot be reached anymore.
Hypothesis testing is used to decide with high confidence whether a probabil-
ity exceeds a threshold or not. This requires less samples than SMC algorithms
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which estimate probabilities, but it is also less precise. We chose to compare
with this algorithm because as in our work, it does not require knowledge on
the probabilities, such as a lower bound on the transition probabilities needed
by e.g. [14]. We do not report runtime as they cannot be compared (different
platforms, different nature of result, etc.).

There are several conclusions we can draw from the experimental results
(shown in Table 2). First, the number of samples from our algorithm (Chen algo-
rithm implementing the Massart bound) are larger than in the algorithm from
[31]. This is because they do hypothesis testing, which requires less samples than
even estimating the probability of a property, while we learn a DTMC accurate
for this property. For herman and leader, the difference is small (2.5x), because
it is a case where the Massart bound is very efficient (80 times better than
Okamoto-Chernoff implemented in PRISM). The egl system is the worst-case
for the Massart bound (the probability of the property is 1

2 ), and it coincides
with Okamoto-Chernoff. The difference with [31] is 40x in that case. Also, as
shown in egl, paths in our algorithm can be a bit larger than in the algorithm
from [31], where they can be stopped early by the reachability analysis. How-
ever, the differences are never larger than 3x. On the other hand, we learn a
model representative of the original system for a given property, while [31] only
provide a yes/no answer to hypothesis testing (performing SMC evaluating the
probability of a property with the Massart bound would give exactly the same
number of samples as we report for our learning algorithm). Last, the reachabil-
ity analysis from [31] does time out or memory out on some complex systems,
which is not the case with our algorithm.

8 Conclusion

In this paper, we provided theoretical grounds for obtaining global PAC bounds
when learning a DTMC: we bound the error made between the behaviors of
the model and of the system, formalized using temporal logics. While it is not
possible to obtain a learning framework for LTL properties, we provide it for the
whole CTL logic. For subsets of CTL, e.g. for a fixed timed-to-failure property,
we obtain better bounds, as efficient as Statistical MC. Overall, this work should
help in the recent trends of establishing trusted machine learning [16].

Our techniques are useful for designers of systems for which probabilities are
governed by uncertain forces (e.g. error rates): in this case, it is not easy to have
a lower bound on the minimal transition probability, but we can assume that
the set of transitions is known. Technically, our techniques provides rationale to
set the constant in Laplace smoothing, otherwise left to an expert to set.

Some cases remain problematic, such as systems where states are visited very
rarely. Nevertheless, we foresee potential solutions involving rare event simula-
tion [21]. This goes beyond the scope of this work and it is left to future work.
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17. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-540-88009-7_13
https://doi.org/10.1007/978-3-540-88009-7_13
https://doi.org/10.1007/978-3-642-28891-3_22
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-540-24622-0_8


Global PAC Bounds for Learning Discrete Time Markov Chains 325

18. Jegourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist estimation
of properties in statistical model checking. In: Bertrand, N., Bortolussi, L. (eds.)
QEST 2017. LNCS, vol. 10503, pp. 333–350. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66335-7 23

19. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

21. Legay, A., Sedwards, S., Traonouez, L.-M.: Rare events for statistical model check-
ing an overview. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS,
vol. 9899, pp. 23–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45994-3 2

22. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann.
Probab. 18, 1269–1283 (1990)

23. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29–35 (1958)

24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, pp. 46–57 (1977)

25. Ridder, A.: Importance sampling simulations of Markovian reliability systems using
cross-entropy. Ann. OR 134(1), 119–136 (2005)

26. Dorsa Sadigh, K. et al.: Data-driven probabilistic modeling and verification of
human driver behavior. In: Formal Verification and Modeling in Human-Machine
Systems - AAAI Spring Symposium (2014)

27. Sherlaw-Johnson, C., Gallivan, S., Burridge, J.: Estimating a Markov transition
matrix from observational data. J. Oper. Res. Soc. 46(3), 405–410 (1995)

28. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
29. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–

186 (1945)
30. Wang, J., Sun, J., Yuan, Q., Pang, J.: Should we learn probabilistic models for

model checking? A new approach and an empirical study. In: Huisman, M., Rubin,
J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 3–21. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54494-5 1

31. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19829-8 10

32. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

33. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to stateflow/simulink verification. FMSD 43(2), 338–367 (2013)

https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-662-54494-5_1
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17


326 H. Bazille et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Unbounded-Time Safety Verification
of Stochastic Differential Dynamics

Shenghua Feng1,2(B) , Mingshuai Chen3(B) , Bai Xue1,2(B) ,
Sriram Sankaranarayanan4(B) , and Naijun Zhan1,2(B)

1 SKLCS, Institute of Software, CAS, Beijing, China
{fengsh,xuebai,znj}@ios.ac.cn

2 University of Chinese Academy of Sciences,
Beijing, China

3 Lehrstuhl für Informatik 2, RWTH Aachen
University, Aachen, Germany
chenms@cs.rwth-aachen.de

4 University of Colorado, Boulder, USA
sriram.sankaranarayanan@colorado.edu

Abstract. In this paper, we propose a method for bounding the prob-
ability that a stochastic differential equation (SDE) system violates a
safety specification over the infinite time horizon. SDEs are mathemat-
ical models of stochastic processes that capture how states evolve con-
tinuously in time. They are widely used in numerous applications such
as engineered systems (e.g., modeling how pedestrians move in an inter-
section), computational finance (e.g., modeling stock option prices), and
ecological processes (e.g., population change over time). Previously the
safety verification problem has been tackled over finite and infinite time
horizons using a diverse set of approaches. The approach in this paper
attempts to connect the two views by first identifying a finite time bound,
beyond which the probability of a safety violation can be bounded by a
negligibly small number. This is achieved by discovering an exponential
barrier certificate that proves exponentially converging bounds on the
probability of safety violations over time. Once the finite time interval is
found, a finite-time verification approach is used to bound the probabil-
ity of violation over this interval. We demonstrate our approach over a
collection of interesting examples from the literature, wherein our app-
roach can be used to find tight bounds on the violation probability of
safety properties over the infinite time horizon.

Keywords: Stochastic differential equations (SDEs) · Unbounded
safety verification · Failure probability bound · Barrier certificates

This work was partially funded by NSFC under grant No. 61625206, 61732001 and
61872341, by the ERC Advanced Project FRAPPANT under grant No. 787914, by
the US NSF under grant No. CCF 1815983 and by the CAS Pioneer Hundred Talents
Program under grant No. Y8YC235015.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 327–348, 2020.
https://doi.org/10.1007/978-3-030-53291-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_18&domain=pdf
http://orcid.org/0000-0002-5352-4954
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0001-9717-846X
http://orcid.org/0000-0001-7315-4340
http://orcid.org/0000-0003-3298-3817
https://doi.org/10.1007/978-3-030-53291-8_18


328 S. Feng et al.

1 Introduction

In this paper, we investigate the problem of verifying probabilistic safety proper-
ties for continuous stochastic dynamics modeled by stochastic differential equa-
tions (SDEs). The study of SDEs dates back to the 1900s when, e.g., Einstein
used SDEs to model the phenomenon of Brownian motion [10]. Since then, SDEs
have witnessed numerous applications including models of disturbances in engi-
neered systems ranging from wind forces [37] to pedestrian motion [14]; models
of financial instruments such as options [5]; and models of biological/ecological
processes for instance predator-prey models [25]. In the meantime, SDEs are
hard to reason about: they are defined using ideas from stochastic calculus that
reimagine basic concepts such as integration in order to conform to the basic
laws of probability and stochastic processes [24].

There are many important verification problems for SDEs. Prominent topics
include the safety verification problem which seeks to know the probability that
a given SDE with specified initial conditions will enter an unsafe region (or leave
a safe region) over a given time horizon. Generally, safety verification can be per-
formed over a finite-time horizon setting, wherein the probability is sought over
a finite time interval [0, T ]. On the other hand, the infinite-time horizon problem
seeks a bound on the probability of satisfying a safety property over the unbounded
time horizon [0,∞). A handful of methods have been proposed for verifying SDE
systems, such as the barrier certificate-based methods over both the infinite time
horizon [27] and finite time horizons [35], the moment optimization-based method
over finite time horizons [33] and the Hamilton-Jacobi-based method over the infi-
nite time horizon [16]. The novelty of our work lies in the reduction of infinite-time
horizon verification problems to finite time problems.

In this paper, we propose a novel reduction-based method to verify
unbounded-time safety properties of stochastic systems modeled as nonlinear
polynomial SDEs. We employ a similar idea as in [11] (for verifying delay dif-
ferential equations) that reduces the safety verification problem over the infinite
time horizon to the one over a finite time interval. This is achieved by comput-
ing an exponential stochastic barrier certificate which witnesses an exponentially
decreasing upper bound on the probability that a target system violates a given
safety specification. Consequently, for any ε > 0, we can identify a time instant
T beyond which the violation (a.k.a. failure) probability is smaller than the
negligibly small cutoff ε. The reduced bounded-time safety verification problem
over [0, T ] can hence be tackled by any of the available methods. We further-
more present an alternative method to address the reduced finite-time hori-
zon verification problem based on the discovery of a time-dependent stochastic
barrier certificate. We show that both the exponential and the time-dependent
stochastic barrier certificate can be synthesized by respectively solving a perti-
nent semidefinite programming (SDP) [38] optimization problem. Experimental
results on some interesting examples taken from the literature demonstrated the
effectiveness of the reduction and that our method often produces tighter bounds
on the failure probability. Our approach has some broad similarities to related
approaches in symbolic execution of probabilistic programs that conclude facts
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about infinitely many behaviors by analyzing finitely many paths in the program
that account for a sufficient probability among all the behaviors [31].

Contributions. The main contributions of this work can be summarized as fol-
lows: (1) We reduce the unbounded-time safety verification of stochastic systems
to a bounded one, based on an exponentially decreasing bound on the failure
probability which guarantees the dominance of the overall failure probability by
the truncated finite time horizon. (2) We show how the obtained bound on the
overall failure probability is tighter than that produced by existing methods for
some interesting SDEs.

Related Work. The use of mathematical models of processes–ranging from
finite state machines to various types of differential equations–has allowed us to
reason about rich behaviors of Cyber-Physical Systems produced by the inter-
action between digital computers and physical plants [29]. In this regard, many
modeling formalisms have been studied including finite state machines, ordinary
differential equations (ODEs), timed automata, hybrid automata, etc. [8], on top
of which a large variety of verification problems have been extensively investi-
gated, e.g., safety verification through reachability analysis and temporal logic
verification [3].

In the existing literature on formal verification, ODEs are often used to
describe the behavior of deterministic continuous-time systems. However, these
models have been shown over-simplistic in many applications that involve time
delays, nondeterministic inputs and stochastic noises. SDEs hence arose as an
important class of models that have been employed in practical domains cover-
ing, among others [24], financial models such as the famous Black-Scholes model
used extensively in the theory of options pricing [5], wind disturbances [37],
human pedestrian motion [14] and ecological models [25].

In what follows, we place our work in the context of formal verification tech-
niques tailored for stochastic differential dynamics modeled as SDEs, and discuss
contributions thereof that are highly related to our approach. Unbounded-time
stochastic safety verification of SDE systems was first studied by Prajna et al.
in [27,28], where a typical supermartingale was employed as a stochastic barrier
certificate followed by computational conditions derived from Doob’s martin-
gale inequality [15]. Thereafter, the stochastic barrier certificate-based method
was extended to cater for bounded-time safety verification by Steinhardt and
Tedrake [35] by leveraging a relaxed formulation called c-martingale for locally
stable systems. The barrier certificate-based method by Prajna et al. (ibid.) for
unbounded-time safety verification often leads to conservative bound on the fail-
ure probability. On the other hand, Steinhardt and Tedrake (ibid.) established
impressive probability bounds but only for finite time horizons. In order to reduce
the conservativeness, we propose a method of reducing the unbounded safety ver-
ification to a bounded one. Although our method in this paper is also based on
the construction of stochastic barrier certificates, the gain of stochastic barrier
certificates only helps to identify a finite time interval such that the violation
probability of interest beyond this time interval is arbitrarily negligibly small.
A time-dependent barrier certificate is further proposed to solve the resulting
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bounded-time safety verification. The Unbounded-time safety verification prob-
lem has also been studied by Koutsoukos and Riley [16], who linked the reachabil-
ity probability to the viscosity solution of certain Hamilton-Jacobi partial differ-
ential equations, under restrictions on bounded state space and non-degenerate
diffusion. Grid-based numerical approaches, e.g., the finite difference method
in [16] and the level set method in [22], are traditionally used to solve these
equations, leading to the fact that the Hamilton-Jacobi reachability method
only scales well to systems of special structures. More recently, a novel con-
straint solving-based method has been proposed in [20] for algebraically over- and
under-approximating the reachability probability, which is nevertheless limited
to bounded-time safety verification. In addition to the abovementioned methods,
we refer the readers to [7] for a Dirichlet form-based method for stochastic hybrid
systems featuring “nice” Markov properties, while to [6,18,39] and [1,17] respec-
tively for related contributions in statistical and discrete/numerical methods for
stochastic verification and control.

Finally, we mention a relation between the ideas in this paper and previously
proposed ideas for (non-stochastic) ODEs due to Sogokon et al. [34]. The key
similarity lies in the use of a non-negative matrix through which a vector of
functions whose derivatives are related to their current value. Whereas Sogokon
et al. explored this idea for ODEs, we do so for SDEs. Another significant dif-
ference, in our work, is that we use the super-martingale functions to identify a
time horizon [0, T ] and bound the probability of safety violation beyond T .

The reminder of this paper is structured as follows. Section 2 introduces
stochastic differential dynamics modeled by SDEs and the unbounded-time
safety verification problem of interest. Section 3 elucidates the reduction of
unbounded safety verification to bounded ones based on the witness of stochastic
barrier certificates. Section 4 presents the SDP formulation for discovering such
barrier certificates over the reduced bounded time interval. After demonstrating
our method on several examples in Sect. 5, we conclude the paper in Sect. 6.

2 Problem Formulation

Notations. Let R be the set of real numbers. For a vector x ∈ R
n, xi refers

to its i-th component and |x| denotes the �2-norm. Particularly, 0 and 1 denote
respectively the vector of zeros and ones of appropriate dimension, and the com-
parison between vectors, e.g., x ≤ 0, is component-wise. We define for δ > 0,
B(x, δ) =̂ {x′ ∈ R

n | |x′ − x| ≤ δ} as the δ-closed ball centered at x. We abuse

the notation |·| for an m × n matrix M as |M | =̂
√

∑m
i=1

∑n
j=1 |Mij |2. The

exponential of a square matrix M ∈ R
n×n, denoted by eM , is the n × n matrix

given by the power series eM =̂
∑∞

k=0
1
k!M

k. For a set X ⊆ R
n, ∂X , X and X o

denote respectively the boundary, the closure and the interior of X . Let Ck be
the space of functions on R with continuous derivatives up to order k; a function
f(t, x) : R×R

n → R is in C1,2(R×R
n) if f ∈ C1 w.r.t. t ∈ R and f ∈ C2 w.r.t.

x ∈ R
n.
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Let (Ω,F , P ) be a probability space, where Ω is a sample space, F ⊆ 2Ω is a
σ-algebra on Ω, and P : F → [0, 1] is a probability measure on the measurable
space (Ω,F). A random variable X defined on the probability space (Ω,F , P ) is
an F-measurable function X : Ω → R

n; its expectation (w.r.t. P ) is denoted by
E[X]. Every random variable X induces a probability measure μX : B → [0, 1] on
R

n, defined as μX(B) =̂ P (X−1(B)) for Borel sets B in the Borel σ-algebra B on
R

n. μX is called the distribution of X; its support set is supp(μX) =̂
⋃

μX(B)>0 B,
which will also be referred to as the support of X.

A (continuous-time) stochastic process is a parametrized collection of random
variables {Xt}t∈T where the parameter space T is interpreted as, unless explicitly
notated in this paper, the halfline [0,∞). We sometimes further drop the brackets
in {Xt} when it is clear from the context. A collection {Ft | t ≥ 0} of σ-algebras
of sets in F is a filtration if Ft ⊆ Ft+s for t, s ∈ [0,∞). Intuitively, Ft carries the
information known to an observer at time t. A random variable τ : Ω → [0,∞)
is called a stopping time w.r.t. some filtration {Ft | t ≥ 0} of F if {τ ≤ t} ∈ Ft

for all t ≥ 0. A stochastic process {Xt} adapted to a filtration {Ft | t ≥ 0} is
called a supermartingale if E[Xt] < ∞ for any t ≥ 0 and E[Xt | Fs] ≤ Xs for
all 0 ≤ s ≤ t. That is, the conditional expected value of any future observation,
given all the past observations, is no larger than the most recent observation.

Stochastic Differential Dynamics. We consider a class of dynamical systems
featuring stochastic differential dynamics governed by time-homogeneous SDEs
of the form1

dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0 (1)

where {Xt} is an n-dimensional continuous-time stochastic process, {Wt}
denotes an m-dimensional Wiener process (standard Brownian motion),
b : R

n → R
n is a vector-valued polynomial flow field (called the drift coeffi-

cient) modeling deterministic evolution of the system, and σ : R
n → R

n×m is a
matrix-valued polynomial flow field (called the diffusion coefficient) that encodes
the coupling of the system to Gaussian white noise dWt.

Suppose there exists a Lipschitz constant D s.t. |b(x) − b(y)| + |σ(x) −
σ(y)| ≤ D |x − y| holds for all x, y ∈ R

n. Then, given an initial state (a ran-
dom variable) X0, an SDE of the form (1) has a unique solution which is a
stochastic process Xt(ω) = X(t, ω) : [0,∞) × Ω → R

n satisfying the stochastic
integral equation (à la Itô’s interpretation)

Xt = X0 +
∫ t

0

b(Xs) ds +
∫ t

0

σ(Xs) dWs. (2)

The solution {Xt} in Eq. (2) is also referred to as an (Itô) diffusion process, and
will be denoted by X0,X0

t (or simply XX0
t ), if necessary, to indicate the initial

condition X0 at t = 0.
A great deal of information about a diffusion process can be encoded in a

partial differential operator termed the infinitesimal generator, which generalizes
1 The general time-inhomogeneous case with time-dependent b and σ can be reduced

to this form (cf. [24, Chap. 10]).
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the Lie derivative that captures the evolution of a function along the diffusion
process:

Definition 1 (Infinitesimal generator [24]). Let {Xt} be a (time-
homogeneous) diffusion process in R

n. The infinitesimal generator A of Xt is
defined by

Af(s, x) = lim
t↓0

Es,x [f(s + t,Xt)] − f(s, x)
t

, x ∈ R
n.

The set of functions f : R × R
n → R s.t. the limit exists at (s, x) is denoted by

DA(s, x), while DA denotes the set of functions for which the limit exists for all
(s, x) ∈ R × R

n.

In subsequent sections, the readers may find applications of the operator A
to a vector-valued function in a component-wise manner. The relation between
A and the coefficients b, σ in SDE (1) is captured by the following result:

Lemma 1 [24]. Let {Xt} be a diffusion process defined by Eq. (1). If f ∈
C1,2(R × R

n) with compact support, then f ∈ DA and

Af(t, x) =
∂f

∂t
+

n
∑

i=1

bi(x)
∂f

∂xi
+

1
2

∑

i,j

(σσT)ij
∂2f

∂xi∂xj
.

As a stochastic generalization of the Newton-Leibniz axiom, Dynkin’s formula
gives the expected value of any adequately smooth function of an Itô diffusion
at a stopping time:

Theorem 1 (Dynkin’s formula [9]). Let {Xt} be a diffusion process in R
n.

Suppose τ is a stopping time with E[τ ] < ∞, and f ∈ C1,2(R×R
n) with compact

support. Then

Eh,x [f(τ,Xτ )] = f(h, x) + Eh,x

[∫ τ

0

Af(s,Xs) ds

]

.

In order to specify the behavior of an Itô diffusion across the domain bound-
ary, we introduce the concept of stopped process, which is a stochastic process
that is forced to have the same value after a prescribed (possibly random) time.

Definition 2 (Stopped process [12]). Given a stopping time τ and a stochas-
tic process {Xt}, the stopped process {Xτ

t } is defined by

Xτ (t, ω) =̂ Xt∧τ (ω) =

{

X(t, ω) if t ≤ τ(ω),
X(τ(ω), ω) otherwise.

Remark 1. By definition, a stopped process preserves, among others, continuity
and the Markov property, and hence the aforementioned results on a stochastic
process apply also to a stopped process.
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Now consider a stochastic system modeled by an SDE of the form (1) that
evolves “within” a not necessarily bounded set X ⊆ R

n. Since the solution {Xt}
of Eq. (1) may escape from X at any time instant t > 0, due to the unbounded
nature of Gaussian, we define a stopped process X̃t =̂ Xt∧τX with τX =̂ inf{t |
Xt /∈ X}. X̃t hence represents the process that will stop at the boundary of X .
Denote the infinitesimal generator of the stopped process as Ã. One plausible
property here is that, for all compactly-supported f ∈ C1,2(R × R

n),

Ãf(t, x) =

{

Af(t, x) for x ∈ X o,
∂f
∂t (t, x) for x ∈ ∂X .

(3)

The ∞-Safety Problem. Given an SDE of the form (1), a (not necessarily
bounded2) domain set X ⊆ R

n, an initial set X0 ⊂ X , and an unsafe set Xu ⊂ X .
We aim to bound the failure probability

P
(

∃t ∈ [0,∞) : X̃t ∈ Xu

)

,

for any initial state X0 whose support lies within X0. Accordingly, the T -safety
problem, with T < ∞, refers to the problem where one aims to bound the failure
probability within the finite time horizon [0, T ].

Remark 2. Roughly speaking, if we denote by φ the proposition “X̃t evolves
within X” and by ψ the proposition “X̃t evolves into Xu”, then the above ∞-
safety problem asks for a bound on the probability that the LTL formula φ Uψ
holds.

3 Reducing ∞-Safety to T -Safety

We dedicate this section to the reduction of the ∞-safety problem to its bounded
counterpart. Observe that for any 0 ≤ T < ∞,

P (∃t ≥ 0: X̃t ∈ Xu) ≤ P (∃t ∈ [0, T ] : X̃t ∈ Xu) + P (∃t ≥ T : X̃t ∈ Xu).

The key idea behind our approach is to first compute an exponentially decreasing
bound on the tail failure probability over [T ∗,∞) (the computation of T ∗ ≥ 0
will be shown later), and then for any constant ε > 0, we can identify (out of
the exponentially decreasing bound) a time instant T̃ ≥ T ∗ such that P (∃t ≥
T̃ : X̃t ∈ Xu) ≤ ε. The overall bound on the failure probability over [0,∞) can
consequently be obtained by solving the truncated T̃ -safety problem.

2 In practice, if we can specify X based on prior knowledge when modeling a physical
system, then the larger X we choose, the greater (bound on) failure probability we
will obtain.
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3.1 Exponentially Decreasing Bound on the Tail Failure Probability

We first state a result that gives conditions when a linear map keeps vector
inequality:

Lemma 2 [4, Chap. 4]. For a matrix M ∈ R
n×n,

– ∀x, y ∈ R
n : x ≤ y =⇒ Mx ≤ My iff M is non-negative, i.e., Mij ≥ 0 for

all 1 ≤ i, j ≤ n.
– The matrix eMt is non-negative for all t ≥ 0 iff M is essentially non-negative,

i.e., Mij ≥ 0 for i �= j.

The existence of an exponentially decreasing bound on the tail failure prob-
ability relies on a witness of a supermartingale of the exponential type:

Theorem 2. Suppose there exists an essentially non-negative matrix Λ ∈
R

m×m, together with an m-dimensional polynomial function (termed expo-
nential stochastic barrier certificate) V (x) = (V1(x), V2(x), . . . , Vm(x))T, with
Vi : R

n → R for 1 ≤ i ≤ m, satisfying3,4

V (x) ≥ 0 for x ∈ X , (4)
AV (x) ≤ −ΛV (x) for x ∈ X , (5)
ΛV (x) ≤ 0 for x ∈ ∂X . (6)

Define a function
F (t, x) =̂ eΛtV (x),

then every component of F (t, X̃t) is a supermartingale.

Proof. For cases with a bounded domain X , one can trivially extend the domain
of F (t, x) s.t. F is compactly-supported, and thus Dynkin’s formula in Theorem 1
applies immediately. For cases where X is unbounded, we introduce a stopping
time

τδ =̂ inf
{

t
∣

∣ F
(

t, X̃t

)

≥ B(0, δ)
}

,

and denote by X
(δ)
t =̂ (t ∧ τδ, X̃t∧τδ

) the corresponding stopped process involving
the timeline, and by A(δ) the corresponding infinitesimal generator. Then X

(δ)
t

evolves within the δ-closed ball B(0, δ) and hence boils down to the case with a
bounded domain. Moreover, by Eq. (3), we have

A(δ)F
(

X
(δ)
t

)

= A(δ)F
(

t ∧ τδ, X̃t∧τδ

)

=

⎧

⎪

⎨

⎪

⎩

0 if τδ(ω) ≤ t,
∂F
∂t (t,Xt) + eΛtAV (Xt) ≤ 0 if τδ(ω) > t ∧ τX (ω) > t,
∂F
∂t (t,Xt) ≤ 0 if τδ(ω) > t ∧ τX (ω) ≤ t,

3 Condition (5) is slightly stronger than the corresponding one used in [27,28], yet will
lead to an exponentially decreasing bound on the tail failure probability in return.

4 Condition (6) is to ensure that when X̃t stops at the boundary of X , we still have
ÃV (x) ≤ −ΛV (x) for x ∈ ∂X . If X = R

n, however, this condition can be omitted.
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where τX represents the time instant when escaping from the state space X . Note
that the second and the third case hold due to the non-negativity of eΛt (as Λ is
essentially non-negative), which implies that eΛt preserves vector inequalities (5)
and (6). Hence by Dynkin’s formula (in a component-wise manner), for fixed
t, h ∈ [0,∞), we have

E
[

F
(

(t + h) ∧ τδ, X̃(t+h)∧τδ

)

∣

∣ Fh

]

= EX
(δ)
h

[

F
(

X
(δ)
t+h

)]

= F
(

X
(δ)
h

)

+ EX
(δ)
h

[∫ t

0

A(δ)F
(

X(δ)
s

)

ds

]

≤ F
(

X
(δ)
h

)

= F
(

h ∧ τδ, X̃h∧τδ

)

.

Since F (t, x) > 0, by Fatou’s lemma, we have

E
[

F
(

t + h, X̃t+h

)

∣

∣ Fh

]

= E

[

lim inf
δ→∞

F
(

(t + h) ∧ τδ, X̃(t+h)∧τδ

)

∣

∣ Fh

]

≤ lim inf
δ→∞

E
[

F
(

(t + h) ∧ τδ, X̃(t+h)∧τδ

)

∣

∣ Fh

]

≤ lim inf
δ→∞

F
(

h ∧ τδ, X̃h∧τδ

)

≤ F
(

h, X̃h

)

.

It follows consequently that every component of F (t, X̃t) is a supermartingale. ��
We will show in Sect. 4 that the synthesis of the exponential stochastic bar-

rier certificate V (x) (and thereby the function F (t, x)) boils down to solving a
pertinent SDP optimization problem.

In order to further establish the relation between the exponential super-
martingale F (t, X̃t) (and thereby V (x)) and the bound on tail failure probability,
we recall Doob’s maximal inequality for supermartingales, which gives a bound
on the probability that a non-negative supermartingale exceeds some given value
over a given time interval:

Lemma 3 (Doob’s supermartingale inequality [15]). Let {Xt}t>0 be a
right continuous non-negative supermartingale adapted to a filtration {Ft | t >
0}. Then for any λ > 0,

λP

(

sup
t≥0

Xt ≥ λ

)

≤ E[X0].

The following theorem claims an intermediate fact that will later reveal the
exponentially decreasing bound on the tail failure probability.

Theorem 3. Suppose the conditions in Theorem 2 are satisfied. Then for any
T ≥ 0 and any positive vector γ ∈ R

m,

P

(

sup
t≥T

V
(

X̃t

)

≥ sup
t≥T

(

e−Λtγ
)

)

≤ E [Vi(X0)] /γi (7)
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holds for all i ∈ {1, . . . , m}.
Proof. Observe the following chain of (in-)equalities:

P

(

sup
t≥T

V
(

X̃t

)

≥ sup
t≥T

(

e−Λtγ
)

)

≤ P
(

∃t ≥ T : V
(

X̃t

)

≥ e−Λtγ
)

≤ P
(

∃t ≥ T : eΛtV
(

X̃t

)

≥ γ
)

[non-negative eΛt]

= P

(

sup
t≥T

F
(

t, X̃t

)

≥ γ

)

≤ P

(

sup
t≥T

Fi

(

t, X̃t

)

≥ γi

)

≤ E
[

Fi

(

T, X̃T

)]

/γi [Lemma 3]

≤ E [Vi (X0)] /γi [Theorem 2]

which holds for any i ∈ {1, 2, · · · ,m}. This completes the proof. ��
Now, we are ready to give the exponentially decreasing bound on the tail

failure probability derived from Theorem 3. We start by considering the simple
case where the barrier certificate V (x) is a scalar function, i.e., with m = 1.

Proposition 1. Suppose there exists a positive constant Λ ∈ R and a scalar
function V : R

n → R satisfying Theorem 2. Then,

P

(

sup
t≥T

V
(

X̃t

)

≥ γ

)

≤ E [V (X0)]
eΛT γ

(8)

holds for any γ > 0 and T ≥ 0. Moreover, if there exists l > 0 such that

V (x) ≥ l for all x ∈ Xu,

then

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ E[V (X0)]
eΛT l

(9)

holds for any T ≥ 0.

Proof. Equation (8) holds since

P

(

sup
t≥T

V
(

X̃t

)

≥ γ

)

= P

(

sup
t≥T

V
(

X̃t

)

≥ e−ΛT
(

eΛT γ
)

)

≤ P

(

sup
t≥T

V
(

X̃t

)

≥ sup
t≥T

(

e−Λt
(

eΛT γ
))

)

[monotonicity on t]

≤ E[V (X0)]
eΛT γ

. [Theorem 3]
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For Eq. (9), it is immediately obvious that

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ P

(

sup
t≥T

V
(

X̃t

)

≥ l

)

≤ E[V (X0)]
eΛT l

.

This completes the proof. ��
Now we lift the results to the slightly more involved case with m > 1.

Proposition 2. Suppose there exists an essentially non-negative matrix Λ ∈
R

m×m and an m-dimensional polynomial function V : R
n → R

m satisfying The-
orem 2. If all of the eigenvalues of Λ have positive real parts, i.e.,

min
1≤i≤m

{R(λi) | λi is an eigenvalue of Λ} > 0,

then for any positive vector γ ∈ R
m, there exists T ∗ = T ∗(γ,M,Λ) ∈ R such

that for any T ≥ T ∗,

P

(

sup
t≥T

V
(

X̃t

)

≥ γ

)

≤ E[Vi(X0)]
(eMT γ)i

(10)

holds for all i ∈ {1, . . . , m}. Here, M is an essentially non-negative matrix s.t.
all of the eigenvalues of Λ−M have positive real parts5. Moreover, if there exists
a positive vector l ∈ R

m such that

V (x) ≥ l for all x ∈ Xu,

then for any T ≥ T ∗,

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ E[Vi(X0)]
(eMT l)i

(11)

holds for all i ∈ {1, . . . , m}.
Proof. By substituting γ in Eq. (7) with eMT γ, we have that for all T ≥ 0,

E[Vi(X0)]
(eMT γ)i

≥ P

(

sup
t≥T

V
(

X̃t

)

≥ sup
t≥T

(

e−ΛteMT γ
)

)

= P

(

sup
t≥T

V
(

X̃t

)

≥ sup
t≥T

(

e−Λ(t−T )e−(Λ−M)T γ
)

) (12)

holds for any γ ∈ R
m with γ > 0. Observe that

∣

∣

∣

∣

sup
t≥T

(

e−Λ(t−T )e−(Λ−M)T γ
)

∣

∣

∣

∣

∞
=

∣

∣

∣

∣

sup
t≥0

(

e−Λte−(Λ−M)T γ
)

∣

∣

∣

∣

∞

≤
∣

∣

∣

∣

sup
t≥0

(

e−Λt
)

∣

∣

∣

∣

∞

∣

∣

∣e−(Λ−M)T γ
∣

∣

∣

∞
,

5 Such matrix M always exists, for instance, M =̂ Λ/2.
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where |·|∞ denotes the infinity norm. Moreover, since all of the eigenvalues of
Λ − M have positive real parts, then by the Lyapunov stability established in
the theory of ODEs, we have

lim
T→∞

e−(Λ−M)T γ = 0.

There hence exists T ∗ s.t. for all T ≥ T ∗,

sup
t≥T

(

e−Λ(t−T )e−(Λ−M)T γ
)

≤ γ. (13)

By Combining Eq. (13) and Eq. (12), we obtain Eq. (10). For Eq. (11), it follows
immediately that

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ P

(

sup
t≥T

V
(

X̃t

)

≥ l

)

≤ E[Vi(X0)]
(eMT l)i

.

This completes the proof. ��
Remark 3. Proposition 2 argues the existence of T ∗ that suffices to “split off”
the tail failure probability. From a computational perspective, this is algorith-
mically tractable as the matrix exponential involved in Eq. (13) is symbolically
computable (cf., e.g., [23]).

The following theorem states the main result of this section, that is, for
any given constant ε, there exists T̃ ≥ 0 such that the truncated T̃ -tail failure
probability is bounded by ε:

Theorem 4. Suppose the conditions in Proposition 1 and 2 are satisfied. If there
exists α > 0, s.t. ∀x ∈ X0 : Vi(x) ≤ α holds for some i ∈ {1, . . . , m}. Then for
any ε > 0, there exists T̃ ≥ 0 such that

P
(

∃t ≥ T̃ : X̃t ∈ Xu

)

≤ ε.

Proof. Observe that for Eq. (11) in Proposition 2, the assumption ∀x ∈
X0 : Vi(x) ≤ α guarantees an upper bound on the numerator E[Vi(X0)], while
the essential non-negativity of M (with all its eigenvalues having positive real
parts) ensures that the denominator (eMT l)i → +∞ as T → ∞. An analogous
argument applies to Eq. (9) in Proposition 1. The claim in this theorem then
follows immediately. ��

3.2 Bounding the Failure Probability over [0, T ]

The reduced T -safety problem can be solved by existing methods tailored
for bounded verification of SDEs, e.g., [32,35]. In what follows, we propose
an alternative method leveraging time-dependent polynomial stochastic bar-
rier certificates. Our method requires constraints (on the barrier certificates)
of simpler form compared to [35]; meanwhile, it yields strictly more expressive
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form of barrier certificates, against the approach on unbounded verification as
in [27,28], thus leading to theoretically non-looser (usually tighter) failure bound.
A detailed argument will be given at the end of this section.

The following theorem states a sufficient condition, i.e., a collection of con-
straints on the time-dependent polynomial stochastic barrier certificates H(t, x),
under which the failure probability of a stochastic system over a finite time hori-
zon can be explicitly bounded from above.

Theorem 5. Suppose there exists a constant η > 0 and a polynomial function
(termed time-dependent stochastic barrier certificate) H(t, x) : R × R

n → R,
satisfying6

H(t, x) ≥ 0 for (t, x) ∈ [0, T ] × X , (14)
AH(t, x) ≤ 0 for (t, x) ∈ [0, T ] × (X \ Xu) , (15)
∂H

∂t
≤ 0 for (t, x) ∈ [0, T ] × ∂X , (16)

H(t, x) ≥ η for (t, x) ∈ [0, T ] × Xu. (17)

Then,

P
(

∃t ∈ [0, T ] : X̃t ∈ Xu

)

≤ E[H(0,X0)]
η

. (18)

Proof. Assume in the following that the system evolves within a bounded domain
X 7. Define a stopping time

τu =̂ inf
{

t
∣

∣ X̃t /∈ X \ Xu

}

,

and denote by X
(u)
t =̂ (t ∧ τu ∧ T, X̃t∧τu∧T ) the corresponding stopped process,

and by A(u) the corresponding infinitesimal generator. By Eq. (3), we have

A(u)H
(

X
(u)
t

)

= A(u)H
(

t ∧ τu ∧ T, X̃t∧τu∧T

)

=

⎧

⎪

⎨

⎪

⎩

0 if t ≥ T ∨ t ≥ τu(ω),
AH(t,Xt) ≤ 0 if t < min{T, τu(ω), τX (ω)},
∂H
∂t (t,Xt) ≤ 0 if t < min{T, τu(ω)} ∧ t ≥ τX (ω).

By Dynkin’s formula, for fixed t, h ∈ [0, T ], we have

E
[

H
(

X
(u)
t+h

)

∣

∣ Fh

]

= EX
(u)
h

[

H
(

X
(u)
t+h

)]

= E
[

H
(

X
(u)
h

)]

+ EX
(u)
h

[∫ t

0

A(u)H
(

X(u)
s

)

ds

]

≤ E
[

H
(

X
(u)
h

)]

.

6 Condition (16) is to ensure that when X̃t stops at the boundary of X , we still have
ÃH(t, x) ≤ 0 for x ∈ ∂X . If X = R

n, however, this condition can be dropped.
7 For cases with an unbounded X , the same proof technique of introducing a δ-closed

ball as in the proof of Theorem 2 applies.
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Thus H(X(u)
t ) is a non-negative supermartingale. Then by Doob’s maximal

inequality in Lemma 3, we have

P
(

∃t ∈ [0, T ] : X̃t ∈ Xu

)

= P
(

∃t ≥ 0: X̃t∧τu∧T ∈ Xu

)

≤ P
(

∃t ≥ 0: H
(

X
(u)
t

)

≥ η
)

≤ E[H(0,X0)]
η

.

This completes the proof. ��
The following fact is then immediately obvious:

Corollary 1. Suppose the conditions in Theorem 5 hold, and there exists β > 0,
s.t. H(0, x) ≤ β for x ∈ X0. Then,

P
(

∃t ∈ [0, T ] : X̃t ∈ Xu

)

≤ β

η
.

Proof. This is a direct consequence of Theorem 5. ��

Remarks on Potentially Tighter Bound. There exists already in the lit-
erature a barrier certificate-based method proposed in [27,28] that can deal
with the ∞-safety problem. It is worth highlighting, however, that our bound
on the overall failure probability derived from Proposition 1, 2 and Theorem 5
(with appropriate T̃ chosen) is at least as tight as (and usually tighter than, as
can be seen later in the experiments) that in [27,28]. The reasons are twofold:
(1) the reduction to a finite-time horizon T̃ -safety problem substantially “trims
off” verification efforts pertaining to t > T̃ ; (2) our method for the reduced
T̃ -safety problem admits time-dependent barrier certificates, which are strictly
more expressive than those time-independent ones exploited in [27,28], in the
sense that any feasible solution thereof shall also be a feasible solution satisfying
Theorem 5.

Remark 4. Roughly speaking, by setting the diffusion coefficients σ in SDEs to
zero, our method applies trivially to ODE dynamics with either a known or an
unknown probability distribution over the initial set of states. For the former,
we can even obtain a tighter bound on the failure probability, since in this case
we do not need to compute a bound on the barrier certificate over all possible
initial distributions.

4 Synthesizing Stochastic Barrier Certificates Using SDP

In this section, we encode the synthesis of the aforementioned exponential and
time-dependent stochastic barrier certificates into semidefinite programming [38]
optimizations, and thus a solution thereof yields an upper bound on the failure
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probability over the infinite-time horizon. Specifically, an SDP problem is for-
mulated, for each of the two barrier certificates, to encode the constraints for
“being an exponential/time-dependent stochastic barrier certificate”, while in
the meantime optimizing the tightness of the failure probability bound.

It is worth noting that SDP is a generalization of the standard linear pro-
gramming in which the element-wise non-negativity constraints are replaced by a
generalized inequality w.r.t. the cone of positive semidefinite matrices. The gen-
eralization preserves convexity, leading to the fact that SDP admits polynomial-
time algorithms, say the well-known interior-point methods, that can efficiently
solve the synthesis problem, albeit numerically. We remark that the numerical
computation employed in off-the-shelf SDP solvers and the use of interior-point
algorithms may potentially lead to erroneous results and thereby unsoundness
in the verification/synthesis results. There have been numerous attempts to val-
idate the results from the solver through a-posteriori numerical verification of
the solution. For more details, we refer the readers to [30] and the references
therein.

Exponential Stochastic Barrier Certificate V (x). To encode the synthesis
problem into an SDP optimization, we first fix the dimension m together with Λ
satisfying Proposition 1 or 2 (depending on m), and then assume a polynomial
template V a(x) of certain degree k with unknown parameters a, as the barrier
certificate to be discovered. It then suffices to solve the following SDP problem8:

minimize
a,α

α (19)

subject to V a(x) ≥ 0 for x ∈ X (20)
AV a(x) ≤ −ΛV a(x) for x ∈ X (21)
ΛV a(x) ≤ 0 for x ∈ ∂X (22)
V a(x) ≥ 1 for x ∈ Xu (23)
V a(x) ≤ α1 for x ∈ X0 (24)

Here, the constraints (20)–(22) encode the definition of an exponential stochastic
barrier certificate (cf. Theorem 2), while constraint (23) (resp., (24)) corresponds
to the lower (resp., upper) bound of V (x) as in Proposition 1 and 2 (resp.,
Theorem 4)9. Hence, minimizing the upper bound α of (each component of)
V a(x) gives a tight exponentially decreasing bound on the tail failure probability,
as claimed in Proposition 1 and 2.

Remark 5. If Λ is chosen as a non-negative matrix, the combination of condi-
tion (20) and (22) will force V a(x) = 0 for x ∈ ∂X , whereof the strict equality

8 SDP problems in this paper refer to those that can be readily translated into the
standard form of SDP, through, e.g., Stengle’s Positivstellensatz [36] and sum-of-
squares decomposition [26].

9 The lower bound l of V (x) in Proposition 1 and 2 is normalized to a vector with all
its components no less than 1, based on the observation that, for any c > 0, V a(x)
is a feasible solution implies cV a(x) is also a feasible solution.
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may be violated due to numerical computations in SDP. In practice, however,
this issue can be well addressed by looking for a barrier certificate of the form
g(x)V (x), where g(x) satisfies ∂X ⊆ {x | g(x) = 0}, namely, an overapproxima-
tion of the boundary of X .

Remark 6. The choice of m is arbitrary, while the choices of Λ and k can be
heuristic: If Λ1 admits no feasible solution, neither will Λ2 ≥ Λ1 (point-wise,
with all the rest parameters fixed); similarly, if k1 admits no feasible solution,
neither will k2 ≤ k1 (with all the rest parameters fixed). Therefore, one may
decrease Λ (say, by a half) or increase k (say, by one) whenever a valid barrier
certificate was not found.

Time-Dependent Stochastic Barrier Certificate H(t, x). Given the results
established in Sect. 3, the corresponding synthesis problem can be analogously
encoded as the following SDP problem:

minimize
b,β

β (25)

subject to Hb(t, x) ≥ 0 for (t, x) ∈ [0, T ] × X (26)

AHb(t, x) ≤ 0 for (t, x) ∈ [0, T ] × (X \ Xu) (27)

∂Hb

∂t
≤ 0 for (t, x) ∈ [0, T ] × ∂X (28)

Hb(t, x) ≥ 1 for (t, x) ∈ [0, T ] × Xu (29)

Hb(0, x) ≤ β for x ∈ X0 (30)

Similarly, the constraints (26)–(29) encode the definition of a time-dependent
stochastic barrier certificate (cf. Theorem 5), while constraint (30) corresponds
to the upper bound of H(t, x) as in Corollary 1 (with η being normalized to 1,
as in constraint (29)). Consequently, minimizing the upper bound β of Hb(t, x)
produces a tight bound on the failure probability over the reduced finite-time
horizon, as stated in Corollary 1.

Remark 7. The state-of-the-art interior-point methods solve an SDP problem
up to an error ε in time that is polynomial in the program description size
(number of variables) and log(1/ε). The former is exponential in the degree
of V a and Hb, as it corresponds to the number of monomials in the template
polynomials.

5 Implementation and Experimental Results

To further demonstrate the practical performance of our approach, we have
carried out a prototypical implementation in Matlab R2019b, with the tool-
box Yalmip [21] and Mosek [2] equipped for formulating and solving the under-
lying SDP problems. Given an ∞-safety problem as input, our implementation
works toward an upper bound on the failure probability over the infinite time
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horizon, leveraging the reduction to a T -safety problem based on a computed
exponentially decreasing bound on the tail failure probability. A collection of
benchmark examples from the literature has been evaluated on a 1.8 GHz Intel
Core-i7 processor with 8 GB RAM running 64-bit Windows 10. Each of the exam-
ples has been successfully tackled within 30 s. In what follows, we demonstrate
the applicability of our techniques to SDEs featuring different dimensionalities
and nonlinear dynamics, and show particularly that our approach usually pro-
duces tighter bounds compared to existing methods.

Example 1 (Population growth [25]). Consider the stochastic system

dXt = b (Xt) dt + σ (Xt) dWt,

which is a stochastic model of population dynamics subject to random fluctua-
tions that, possibly, can be attributed to extraneous or chance factors such as
the weather, location, and the general environment. Suppose that the state space
is restricted within X = {x | x ≥ 0} with b(Xt) = −Xt and σ(Xt) =

√
2/2Xt.

We instantiate the ∞-safety problem as X0 = {x | x = 1} and Xu = {x | x ≥ 2},
namely, we expect that the population does not diverge beyond 2.

Let Λ = 1 (with m = 1) and set the polynomial template degree of the
exponential stochastic barrier certificate V a(x) to 4, the SDP solver gives

V a(x) = 0.000001474596322 − 0.000044643990040x

+ 0.125023372121222x2 + 0.000000001430428x3,

which satisfies

V a(x) ≥ 1 for x ∈ Xu and V a(x) ≤ 0.12498 for x ∈ X0.

Thus by Proposition 1, we obtain the exponentially decreasing bound

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ 0.12498
eT

for all T > 0.

The user then may choose any T > 0 and solve the reduced T -safety problem.
As depicted in the left of Fig. 1, different choices lead to different bounds on the
failure probability. Nevertheless, one may surely select an appropriate T that
yields a way tighter overall bound on the failure probability than that produced
by the method in [27,28].

Example 2 (Harmonic oscillator [13]). Consider a two-dimensional harmonic
oscillator with noisy damping:

dXt =
(

0 ω
−ω −k

)

Xt dt +
(

0 0
0 −σ

)

Xt dWt,

with constants ω = 1, k = 7 and σ = 2. We instantiate the ∞-safety problem
as X = R

n, X0 = {(x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4} and Xu =
{(x1, x2) | |x1| ≥ 2}.
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Fig. 1. Different choices of T lead to different bounds on the failure probability (with
the time-dependent stochastic barrier certificates of degree 4). Note that ‘◦’ = ‘×’ +
‘�’ and ‘•’ depicts the overall bound on the failure probability produced by the method
in [27,28].

Let Λ =
(

0.45 0.1
0.1 0.45

)

and set the polynomial template degree of the expo-

nential stochastic barrier certificate V a(x) to 4, the SDP solver produces a two-
dimensional V a(x) (abbreviated for clear presentation) satisfying

V a(x) ≤
(

0.19946
0.19946

)

for x ∈ X0 and V a(x) ≥ l =
(

1.000237
1.000236

)

for x ∈ Xu.

According to the proof of Proposition 2, we set M =
(

0.3 0.1
0.1 0.3

)

and aim to find

T ∗ ≥ 0 such that for all T ≥ T ∗,

sup
t≥0

(

e−Λte−(Λ−M)T

(

1.000237
1.000236

))

≤
(

1.000237
1.000236

)

. (31)

Symbolic computation on the matrix exponential gives

sup
t≥0

(
e−Λte−(Λ−M)T

(
1.000237
1.000236

))
= sup

t≥0

(
e−0.15T (1.0002365e−0.55t + 0.0000005e−0.35t)
e−0.15T (1.0002365e−0.55t − 0.0000005e−0.35t)

)

≤
(
1.0002365e−0.15T

1.0002365e−0.15T

)
.

Therefore, T ∗ = 1 satisfies condition (31). Further by Corollary 2, for any T ≥
T ∗ = 1, we have

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ E[V1(X0)]
(eMT l)1

≤ 0.19946
0.0000005e0.2T + 1.00024e0.4T

.

Analogously, a comparison with existing methods concerning the tightness of
the synthesized failure probability bound (under different choices of T ) is shown
in the right of Fig. 1.
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Example 3 (Nonlinear drift [27]). We consider in this example a stochastic sys-
tem involving nonlinear dynamics in its drift coefficient:

dx1(t) = x2(t) dt

dx2(t) = −x1(t) − x2(t) − 0.5x3
1(t) dt + 0.1 dWt.

As in [27], let X = {(x1, x2) | |x1| ≤ 3, |x2| ≤ 3, x2
1 +x2

2 ≥ 0.52}, X0 = {(x1, x2) |
(x1 + 2)2 + x2

2 ≤ 0.12} and Xu = {(x1, x2) ∈ X | x2 ≥ 2.25}. With Λ = 1.5
(m = 1), we obtain an exponential stochastic barrier certificate V a(x) of degree
8 satisfying

V a(x) ≤ 4.00014 for x ∈ X0 and V a(x) ≥ 1.05248 for x ∈ Xu.

Thus by Corollary 1, we have for any T ≥ 0,

P
(

∃t ≥ T : X̃t ∈ Xu

)

≤ 3.80070
e1.5T

.

Setting, for instance, T = 6, we have

P
(

∃t ≥ 0: X̃t ∈ Xu

)

≤ P
(

∃t ∈ [0, 6] : X̃t ∈ Xu

)

+
3.80070

e9
.

For the reduced T -safety problem with T = 6, a time-dependent stochastic barrier
certificate of degree 8 is synthesized, thereby yielding P

(

∃t ∈ [0, 6] : X̃t ∈ Xu

)

≤
0.196124, thus together we get

P
(

∃t ≥ 0: X̃t ∈ Xu

)

≤ 0.196593,

which is tighter than 0.265388 produced (on the same machine) by the method
in [27] under the same template degree.

6 Conclusion

We proposed a constructive method, based on the synthesis of stochastic barrier
certificates, for computing an exponentially decreasing upper bound, if existent,
on the tail probability that an SDE system violates a given safety specification.
We showed that such an upper bound facilitates a reduction of the verifica-
tion problem over an unbounded temporal horizon to that over a bounded one.
Preliminary experimental results on a set of interesting examples from the liter-
ature demonstrated the effectiveness of the reduction and that our method often
produces tighter bounds on the failure probability.

For future work, we plan to investigate a possible convergence result in the
sense that the derived failure probability bound may converge to the exact one
as increasing the degree of the barrier certificates. Extending our technique to
tackle SDEs with control inputs will also be of interest. Moreover, checking
whether a given parametric (polynomial) formula keeps probabilistic invariance
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plays a central in the verification of SDEs. Several kinds of sufficient conditions
on probabilistic barrier certificates were proposed, including the ones given in
this paper. It consequently deserves to investigate a necessary and sufficient
condition for checking the probabilistic invariance of a given template, like for
ODEs in [19]. Apart from that, we are interested in carrying our results to the
verification of probabilistic programs without conditioning, which can be viewed
as discrete-time stochastic dynamics.
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Abstract. Solving stochastic games with the reachability objective is a
fundamental problem, especially in quantitative verification and synthe-
sis. For this purpose, bounded value iteration (BVI) attracts attention
as an efficient iterative method. However, BVI’s performance is often
impeded by costly end component (EC) computation that is needed to
ensure convergence. Our contribution is a novel BVI algorithm that con-
ducts, in addition to local propagation by the Bellman update that is
typical of BVI, global propagation of upper bounds that is not hindered
by ECs. To conduct global propagation in a computationally tractable
manner, we construct a weighted graph and solve the widest path prob-
lem in it. Our experiments show the algorithm’s performance advantage
over the previous BVI algorithms that rely on EC computation.

1 Introduction

1.1 Stochastic Game (SG)

A stochastic game [13] is a two-player game played on a graph. In an SG, an
action a of a player causes a transition from the current state s to a successor s′,
with the latter chosen from a prescribed probability distribution δ(s, a, s′). Under
the reachability objective, the two players (called Maximizer and Minimizer)
aim to maximize and minimize, respectively, the reachability probability to a
designated target state.

Stochastic games are a fundamental construct in theoretical computer sci-
ence, especially in the analysis of probabilistic systems. Its complexity is interest-
ing in its own: the problem of threshold reachability—whether Maximizer has a
strategy that ensures the reachability probability to be at least given p—is known
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to be in UP ∩ coUP [19], but no polynomial algorithm is known. The practical
significance of SGs comes from the number of problems that can be encoded
to SGs and then solved. Examples include the following: solving deterministic
parity games [8], solving stochastic games with the parity or mean-payoff objec-
tive [1], and a variety of probabilistic verification and reactive synthesis problems
in different application domains such as cyber-physical systems. See e.g. [25].

SGs are often called 2.5-player games, where probabilistic branching is
counted as 0.5 players. They generalize deterministic automata (0-player),
Markov chains (MCs, 0.5-player), nondeterministic automata (1-player), Markov
decision processes (MDPs, 1.5-player) and (deterministic) games (2-player).
Many theoretical considerations on these special cases carry over smoothly to
SGs. However, SGs have their peculiarities, too. One example is the treatment
of end components in bounded value iteration, as we describe later.

1.2 Value Iteration (VI)

In an SG, we are interested in the optimal reachability probability, that is, the
reachability probability when both Maximizer and Minimizer take their optimal
strategies. The function that returns these optimal reachability probabilities is
called the value function V (G) of the SG G; our interest is in computing this
value function, desirably constructing optimal strategies for the two players at
the same time. For this purpose, two principal families of solution methods
are strategy iteration (SI) [19] and value iteration (VI) [10,13]—the latter is
commonly preferred for performance reasons.

The mathematical principle that underpins VI is the charac-
terization of the value function V (G) as the least fixed point (lfp)
of an function update operator X called the Bellman operator.
The Bellman operator X back-propagates function values by one
step, using the average. For the simple case of Markov chains
shown on the right, it is defined by (Xf)(s) =

∑
i pi · f(si), turning a function

f : S → [0, 1] (i.e., assignment of “scores” to states) to Xf : S → [0, 1].
Since V (G) is the lfp μX, Kleene’s fixed point theorem tells us the sequence

⊥ ≤ X⊥ ≤ X
2⊥ ≤ · · · , (1)

where ⊥ is the least element of the function space S → [0, 1], converges to V (G) =
μX. VI consists of the iterative approximation of V (G) via the sequence (1).

An issue from the practical point of view, however, is that X
i⊥ never becomes

equal to V (G) in general. Even worse, one cannot know how close the current
approximant X

i⊥ is to the desired function V (G) [18]. In summary, VI as an
iterative approximation method does not give any precision guarantee.

1.3 Bounded Value Iteration (BVI) and End Components

Bounded value iteration (BVI) has been actively studied as an extension of VI
that comes with a precision guarantee [2,3,5,16,18,20,23]. Its core ideas are the
following two.
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Firstly, BVI computes not only iterative
lower bounds Li = X

i⊥ for V (G), but also iter-
ative upper bounds Ui, as shown on the right
in (2). This gives us a precision guarantee—V (G)
must lie between the approximants Li and Ui.

Secondly, for computing upper bounds Ui, BVI uses the Bellman operator
again: Ui = X

i� where � is the greatest element of the function space S → [0, 1].
This leads to the following approximation sequence that is dual to (1):

� ≥ X� ≥ X
2� ≥ · · · . (3)

The sequence (3) converges to the greatest fixed point (gfp) νX of X, which must
be above the lfp V (G) = μX. Therefore the elements in (3) are all above V (G).

The problem, however, is that the gfp νX is not necessarily the same as μX.
Therefore the upper bounds U0 ≥ U1 ≥ · · · given by (3) may not converge to
V (G). In other words, for a given threshold ε > 0, the bounds in (2) may fail to
achieve Ui − Li ≤ ε, no matter how large i is.

sI

1

s

1

1 0

Fig. 1. A Markov chain
(MC) for which the naive
BVI fails to converge

In the literature, the source of this convergence
issue has been identified to be end components
(ECs) in MCs/MDPs/SGs. ECs are much like loops
without exits—an example is in Fig. 1, where we use
a Markov chain (MC) for simplicity. Any function
f that assigns the same value to the states sI and s
can be a fixed point of the Bellman operator X (that
back-propagates f by averages); therefore, the gfp
νX assigns 1 to both sI and s. In contrast, (μX)(sI) = (μX)(s) = 0, which says
one never reaches the target 1 from sI or s (which is obvious).

Most previous works on BVI have focused on the problem of how to deal with
ECs. Their solutions are to get somehow rid of ECs. For example, ECs in MDPs
are discovered and collapsed in [5,18]; ECs in SGs cannot simply be collapsed,
and an elaborate method is proposed in the recent work [20] that deflates them.
This is the context of the current work, and we aim to enhance BVI for SGs.

1.4 Contribution: Global Propagation in BVI with Widest Paths

The algorithms in [20] seem to be the only BVI algorithms known for SGs. In
their performance, however, EC computation often becomes a bottleneck. Our
contribution in this paper is a new BVI algorithm for SGs that is free from the
need for EC computation.

The key idea of our algorithm is global propagation for upper bounds, as
sketched below. In each iteration for upper bounds U0 ≥ U1 ≥ · · · , we conduct
global propagation, in addition to the local propagation in the usual BVI. The
latter means the application of X to X

i�, leading to X
i+1�; this local propaga-

tion, as we previously discussed, gets trapped in end components. In contrast,
our global propagation looks at paths from each state s to the target 1, ignoring
end components. For example, in Fig. 1, our global propagation sees that there
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is no path from sI to the target 1, and consequently assigns 0 as an upper bound
for the value function V (G)(sI).

Such global propagation is easier said than done—in fact, the very advan-
tage of VI is that the global quantities (namely reachability probabilities) get
computed by iterations of local propagation. Conducting global propagation in
a computationally tractable manner requires a careful choice of its venue. The
solution in this paper is to compute widest paths in a suitable (directed) weighted
graph.

More specifically, in each iteration where we compute an upper bound Ui, we
conduct the following operations.

– (Player reduction) We turn the given SG G into an MDP Mi, by restricting
Minimizer’s actions to the empirically optimal ones. The latter means they
are optimal with respect to the current under-approximation Li of V (G).

– (Local propagation) The MDP Mi is then turned into a weighted graph
(WG) Wi. The construction of Wi consists of the application of X to the
previous bound Ui−1 (i.e. local propagation), and forgetting the information
that cannot be expressed in a weighted graph (such as the precise transition
probabilities δ(s, a, s′) that depend on the action a).
Due to this information loss, our analysis in Wi is necessarily approximate.
Nevertheless, the benefit of Wi’s simplicity is significant, as in the following
step.

– (Global propagation) In the WG Wi, we solve the widest path problem. This
classic graph-theoretic problem can be solved efficiently, e.g., by the Dijkstra
algorithm. The widest path width gives a new upper bound Ui.

We prove the correctness of our algorithm: soundness (V (G) ≤ Ui), and con-
vergence (Ui → V (G) as i → ∞). That the upper bounds decrease (U0 ≥ U1 ≥
· · · ) will be obvious by construction. These correctness proofs are technically
nontrivial, combining combinatorial, graph-theoretic, and analytic arguments.

We have also implemented our algorithm. Our experiments compare its per-
formance to the algorithms from [20] (the original one and its learning-based
variation). The results show our consistent performance advantage: depending
on SGs, our performance is from comparable to dozens of times faster. The
advantage is especially eminent in SGs with many ECs.

1.5 Related Works

VI and BVI have been pursued principally for MDPs. The only work we know
that deals with SGs is [20]—with the exception of [26] that works in a restricted
setting where every end component belongs exclusively to either player. The
work closest to ours is therefore [20], in that we solve the same problem.

For MDPs, the idea of BVI is first introduced in [23]; they worked in a
limited setting where ECs do not cause the convergence issue. Its extension to
general MDPs with the reachability objective is presented in [5,18], where ECs
are computed and then collapsed. BVI is studied under different names in these
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works: bounded real time dynamic programming [5,23] and interval iteration [18].
The work [20] is an extension of this line of work from MDPs to SGs.

The work [20] has seen a few extensions to more advanced settings: black-box
settings [3], concurrent reachability [16], and generalized reachability games [2].

Most BVI algorithms involve EC computation (although ours does not). The
EC algorithm in [14,15] is used in [18,20]; more recent algorithms include [7,9].

1.6 Organization

In Sect. 2 we present some preliminaries. In Sect. 3 we review VI and BVI with
an emphasis on the role of Kleene’s fixed point theorem. This paves the way
to Sect. 4 where we present our algorithm. We do so in three steps, and prove
the correctness—soundness and convergence—in the end. Experiment results are
shown in Sect. 5.

2 Preliminaries

We fix some basic notations. Let X be a set. We let X∗ denote the set of finite
sequences over X, that is, X∗ =

⋃
i∈N

Xi. We let X+ = X∗ \ {ε}, where ε
denotes the empty sequence (of length 0). The set of infinite sequences over X
is denoted by Xω. The set of functions from X to Y is denoted by X → Y .

2.1 Stochastic Games

In a stochastic game, two players (Maximizer � and Minimizer ©) play against
each other. The goals of the two players are to maximize and minimize the value
function, respectively. Many different definitions are possible for value functions.
In this paper (as well as all the works on (bounded) value iteration), we focus
on the reachability objective, in which case a value function is defined by the
reachability probability to a designated target state 1.

Definition 2.1 (stochastic game (SG)). A stochastic game (SG) is a tuple
G = (S, S�, S©, sI , 1,0, A,Av, δ) where

– S is a finite set of states, partitioned into S� and S© (i.e., S = S� ∪ S©,
S� ∩ S© = ∅). s ∈ S� is Maximizer’s state; s ∈ S© is Minimizer’s state.

– sI ∈ S is an initial state, 1 ∈ S� is a target, and 0 ∈ S© is a sink.
– A is a finite set of actions.
– Av : S → 2A defines the set of actions that are available at each state s ∈ S.
– δ : S × A × S → [0, 1] is a transition function, where δ(s, a, s′) gives a prob-

ability with which to reach the state s′ when the action a is taken at the
state s. The value δ(s, a, s′) is non-zero only if a ∈ Av(s); it must satisfy∑

s′∈S δ(s, a, s′) = 1 for all s ∈ S and a ∈ Av(s).
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We assume that each of 1 and 0 allows only one action that leads to a self-loop
with probability 1. Moreover, for theoretical convenience, we assume that all
SGs are non-blocking. That is, Av(s) = ∅ for each s ∈ S.

We introduce some notations: post(s, a) = {s′ | δ(s, a, s′) > 0}, and for
S′ ⊆ S, we let S′

� = S′ ∩ S� and S′
© = S′ ∩ S©.

Definition 2.2 (Markov decision process (MDP), Markov chain
(MC)). An SG such that S� = S \ {0} (i.e. Minimizer is absent) is called
a Markov decision process (MDP). We often omit the second and third compo-
nents for MDPs, writing M = (S, sI ,1,0, A,Av, δ).

An SG such that |Av(s)| = 1 for each s ∈ S—both Maximizer and Minimizer
are absent—is called a Markov chain (MC). It is also denoted simply by a tuple
G = (S, sI ,1,0, δ) where its transition function is of the type δ : S × S → [0, 1].

Every notion for SGs that appears below applies to MDPs and MCs, too.

Example 2.3. Figure 2 presents an example of an SG. At the state s1 of Mini-
mizer, two actions α and β are in Av(s1). If Minimizer chooses α, the next state
is s2 with probability δ(s1, α, s2) = 1. If Minimizer instead chooses β, the next
state is 1 with probability δ(s1, β,1) = 0.8 or 0 with probability δ(s1, β,0) = 0.2.

Maximizer’s goal is to reach 1 as often as possible by choosing suitable
actions. Minimizer’s goal is to avoid reaching 1—this can be achieved, for exam-
ple but not exclusively, by reaching 0.

s1

sI

s2

1

0

α

1

α

1

α
1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.
9

Fig. 2. A stochastic game (SG), an example

Both players choose their
actions according to their
strategies. It is well-known [13]
that positional (also called
memoryless) and determinis-
tic (also called pure) strate-
gies are complete for finite
SGs with the reachability
objective.

Definition 2.4 (strategy, path). Let G be the SG in Definition 2.1. A strategy
for Maximizer in G is a function σ : S� → A such that σ(s) ∈ Av(s) for each
s ∈ S�. A strategy for Minimizer is defined similarly. The set of Maximizer’s
strategies in G is denoted by strG

�; that of Minimizer’s is denoted by strG
©.

Strategies τ ∈ strG
� and σ ∈ strG

© in G turn the game G into a Markov chain,
which is denoted by Gτ,σ. Similarly, a strategy τ for Maximizer (who is the only
player) in an MDP M induces an MC, denoted by Mτ .

An infinite path in G is a sequence s0a0s1a1s2a2 . . . ∈ (S ×A)ω such that for
all i ∈ N, ai ∈ Av(si) and si+1 ∈ post(si, ai). A prefix s0a0s1 . . . sk of an infinite
path ending with a state is called a finite path. If G is an MC, then we omit
actions in a path and write s0s1s2 . . . or s0s1 . . . sk.

Given a game G and strategies τ, σ for the two players, the induced MC Gτ,σ

assigns to each state s ∈ S a probability distribution P
τ,σ
s . The distribution is

with respect to the standard measurable structure of Sω; see, e.g., [4, Chap. 10].
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For each measurable subset X ⊆ Sω, P
τ,σ
s (X) is the probability with which Gτ,σ,

starting from the state s, produces an infinite path π that belongs to X.

It is well-known that all the LTL properties are measurable in Sω. In the cur-
rent setting with the reachability objective, we are interested in the probability
of eventually reaching 1, denoted by P

τ,σ
s (♦1).

Definition 2.5 (value function V (G)). Let G be the SG in Definition 2.1.
The value function V (G) of G is defined by

V (G)(s) = max
τ∈strG

�
min

σ∈strG
©

P
τ,σ
s (♦1) = min

σ∈strG
©

max
τ∈strG

�
P

τ,σ
s (♦1),

where the last equality is shown in [13].
We say a strategy τ of Maximizer’s is optimal if V (G)(s) = minσ P

τ,σ
s (♦1) for

each s ∈ S; similarly, we say a strategy σ of Minimizer’s is optimal if V (G)(s) =
maxσ P

σ,τ
s (♦1) for each s ∈ S.

We write V for V (G) when the dependence on G is clear from the context.
The set of states with a non-zero value is denoted by S♦1. That is, S♦1 =

{s ∈ S | V (G)(s) > 0}.

Example 2.6. Consider the SG G from Fig. 2. At s2, Maximizer’s action should
be α. Hence, V (G)(s2) = 0.9. At s1, if Minimizer chooses α, then the probability
of reaching 1 will be 0.9 by V (G)(s2). Thus, Minimizer should choose β at s1,
which yields V (G)(s1) = 0.8. Finally, at sI , γ is the best choice, since Maximizer
can choose this action infinitely often until it gets to s2. We have V (G)(sI) = 0.9.

2.2 The Widest Path Problem

Definition 2.7 (weighted graph (WG)). A (directed) weighted graph is a
triple W = (V,E,w) of a finite set V of vertices, a set E ⊆ V × V of edges, and
a weight function w : E → [0, 1] where [0, 1] is the unit interval.

A (finite) path in a WG is defined in the usual graph-theoretic way.

In the widest path problem, an edge weight w(v, v′) is thought of as its
capacity, and the capacity of a path is determined by its bottleneck. The problem
asks for a path with the greatest capacity. In this paper, we use the following
all-source single-destination version of the problem.

Definition 2.8 (the widest path problem (WPP)). A (finite) path in W =
(V,E,w) is a sequence v0v1 . . . vn of vertices such that (vi, vi+1) ∈ E for each
i ∈ [0, n − 1]. The width of a path v0v1 . . . vn is given by mini∈[0,n−1] w(vi, vi+1).

The widest path problem is the following problem.

Given: a WG W = (V,E,w) and a target vertex vt ∈ V.
Answer: for each v ∈ V , the widest width of the paths from v to vt, that is,

max
n∈N,v=v0,v1,...,vn=vt

min
i∈[0,n−1]

w(vi, vi+1),
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We let WPW(W, vt) denote a function that solves this problem, and let
WPath(W, vt) denote a function that assigns to each v ∈ V a widest
path to vt. Furthermore, we assume the following property of WPath: if
WPath(W, vt)(v0) = v0v1 . . . vkvt, then WPath(W, vt)(vi) = vivi+1 . . . vkvt for
each i ∈ [0, k].

Efficient algorithms are known for WPW(W, vt). An example is the Dijkstra
search algorithm with Fibonacci heaps [17]; it is originally for the single-source
all-destination version but its adaptation is easy. The algorithm runs in time
O(|E| + |V | log |V |). It returns a widest path in addition to its width, too, com-
puting the function WPath(W, vt) with the property required in the above.

3 (Bounded) Value Iteration

3.1 Bellman Operator and Value Iteration

The following construct—used for “local propagation” in computing the value
function—is central to formal analysis of probabilistic systems and games.

Definition 3.1 (Bellman Operator). Let G = (S, S�, S©, sI ,1,0, A,Av, δ)
be a stochastic game. For each state s ∈ S, an available action a ∈ Av(s), and
f : S → [0, 1], we define a function Xaf : S → [0, 1] by the following.

(Xaf)(s) =

⎧
⎪⎨

⎪⎩

1 if s = 1,

0 if s = 0,
∑

s′∈S δ(s, a, s′) · f(s′) if s = 0,1.

These functions are used in the following definition of the Bellman operator
X : (S → [0, 1]) → (S → [0, 1]) over G:

(Xf)(s) =

{
maxa∈Av(s)(Xaf)(s) if s ∈ S� is a Maximizer state,
mina∈Av(s)(Xaf)(s) if s ∈ S© is a Minimizer state.

The function space S → [0, 1] inherits the usual order ≤ between real numbers
in the unit interval [0, 1], that is, f ≤ g if f(s) ≤ g(s) for each s ∈ S. The Bellman
operator X over S → [0, 1] is clearly monotone; it is easily seen to preserve max
and min, using the fact that the state space S of an SG is finite. Therefore we
obtain the following, as consequences of Kleene’s fixed point theorem.

Lemma 3.2. Assume the setting of Definition 3.1.

1. The Bellman operator X has the greatest fixed point (gfp) νX : S → [0, 1]. It
is obtained as the limit of the descending ω-chain

� ≥ X� ≥ X
2� ≥ · · · ,

where � is the greatest element of S → [0, 1] (i.e., �(s) = 1 for each s ∈ S).
In other words, we have (νX)(s) = infi∈N

(
(Xi�)(s)

)
for each s ∈ S.
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Algorithm 1: Value iteration (VI) for a stochastic game G =
(S, S�, S©, sI ,1,0, A,Av, δ) and a stopping threshold Δ > 0

1 procedure VI(G, Δ)
2 L0 ← ⊥ // Initialize lower bound

3 while Li(sI) − Li−1(sI) < Δ do // Typical stopping criterion

4 i++
5 Li ← XLi−1 // Bellman update

6 return Li(sI)

2. Symmetrically, X has the least fixed point (lfp) μX : S → [0, 1], obtained as
the limit of the ascending chain

⊥ ≤ X⊥ ≤ X
2⊥ ≤ · · · , (4)

where ⊥(s) = 0 for each s ∈ S. That is, we have (μX)(s) = supi∈N

(
(Xi⊥)(s)

)

for each s ∈ S. ��
The following characterization is fundamental. See, e.g., [10].

Theorem 3.3. Let G be a stochastic game. The value function V = V (G) (Def-
inition 2.5) coincides with the least fixed point μX. ��
The fact that V (G) is the least fixed point of X implies the following: a strategy
τ of Maximizer is optimal if and only if

(
Xτ(s)

(
V (G)

))
(s) = V (G)(s) holds for

each s ∈ S�; similarly for Minimizer. We say a ∈ Av(s) is optimal at s if
XaV (G)(s) = V (G)(s) holds; otherwise a is suboptimal.

Lemma 3.2.2 & Theorem 3.3 suggest iterative under-approximation of V (G)
by ⊥ ≤ X⊥ ≤ X

2⊥ ≤ · · · . This is the principle of value iteration (VI); see
Algorithm 1.

Example 3.4. The values Li computed by Algorithm 1, for the SG in Fig. 2,
are shown in the following table. The values at 0 and 1 are omitted.

s L0 L1 L2 L3 L4 L5 ... V (G)

sI 0 0 0.54 0.83 0.872 0.8888 0.9

s1 0 0 0.8 0.8 0.8 0.8 ... 0.8

s2 0 0.9 0.9 0.9 0.9 0.9 0.9

Li(sI) converges to, but is never equal to, V (G)(sI). The converges rate
can be arbitrarily slow: for any ε ∈ (0, 1) and k ∈ N there is an SG G and a
state s such that V (G)(s) − Lk(s) > ε. One sees this by modifying Fig. 2 with
δ(sI , γ, s2) = ε′ and δ(sI , γ, sI) = 1 − ε′, where ε′ > 0 is an arbitrary small
positive constant.
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Algorithm 2: Bounded value iteration (BVI) for a stochastic game G =
(S, S�, S©, sI ,1,0, A,Av, δ) and a stopping threshold ε > 0—a naive pro-
totype that suffers from end components
1 procedure VI(G, ε)
2 L0 ← ⊥, U0 ← � // Initialize lower and upper bound

3 while Ui(sI) − Li(sI) > ε do // Check the gap at the initial state

4 i++
5 Li ← XLi−1, Ui ← XUi−1 // Bellman update

6 return Li(sI)

There is no known stopping criterion for VI (Algorithm 1) with a precision
guarantee, besides the one in [10] that is too pessimistic to be practical. The one
shown in Line 3 (“little progress”) is a commonly used heuristic, but it is known
to lead to arbitrarily wrong results [18].

3.2 Bounded Value Iteration

When we turn back to Lemma 3.2, Lemma 3.2.1 suggests another iterative
approximation, namely over-approximation of the value function V by � ≥
X� ≥ X

2� ≥ · · · . The chain converges to the gfp νX that is necessarily above
the lfp μX. This is the principle that underlies bounded value iteration (BVI);
see Algorithm 2 for its naive prototype. BVI has been actively studied in the
literature [2,3,5,16,18,20,23], sometimes under different names (such as bounded
real time dynamic programming [5,23] or interval iteration [18]).

BVI comes with a precision guarantee: since V (G) lies between Li and Ui

(whose gap is at most ε), the approximation Li is at most ε apart from V (G).
The catch, however, is that μX and νX may not coincide, and therefore the

overapproximation might not converge to the desired μX. This means Algo-
rithm 2 might not terminate. This is the main technical challenge addressed in
the previous works on BVI, including [5,20].

In those works, the source of the failure of convergence is identified to be
end components. See the (very simple) Markov chain in Fig. 1, where the reach-
ability probability from sI to 1 is clearly 0. However, due to the loop between
sI and s, the values Ui(sI) and Ui(s)—these get updated to the average of
Ui−1 at successors—are easily seen to remain 1. Roughly speaking, end com-
ponents generalize such loops defined in MDPs and SGs (the definitions are
graph-theoretic, in terms of strongly connected components). End components
cause non-convergence of naive BVI, essentially for the reason we just described.

The solutions previously proposed to this challenge have been to “get rid
of end components.” For MDPs (1.5 players), the collapsing technique detects
end components and collapses each of them into a single state [5,18]. After
doing so, the Bellman operator X has a unique fixed point (therefore μX = νX),
assuring convergence of BVI (Algorithm 2). In the case of SGs (2.5 players),
end components cannot simply be collapsed into single states—they must be
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handled carefully, taking the “best exits” into account. This is the key idea of
the deflating technique proposed for SGs in [20].

4 Our Algorithm: Bounded Value Iteration with Upper
Bounds Given by Widest Paths

In our algorithm, like in other BVI algorithm, we iteratively construct upper
and lower bounds Ui, Li of the value function V (G) at the same time. See (2).
In updating Ui, however, we go beyond the local propagation by the Bellman
update and conduct global propagation, too. This frees us from the curse of end
components. The outline of our algorithm is as follows.
– The lower bound Li is given by Li = X

i⊥, following Lemma 3.2.2 and Theo-
rem 3.3. This is the same as the other VI algorithms.

– The upper bounds Ui is constructed in the following three steps, using a global
propagation that takes advantage of fast widest path algorithms.

• (Player reduction) Firstly, we turn the SG G into an MDP Mi by
fixing Minimizer’s strategy to a specific one σi.
Any choice of σi would do for the sake of soundness (that is, V (G) ≤ Ui).
However, for convergence (that is, Ui → V (G) as i → ∞), it is important
to have σ0, σ1, . . . eventually converge to Minimizer’s optimal strategy
σ©. Therefore we let Li—the current lower estimate of V (G)—induce σi.
Recall that Li converges to V (G) (Lemma 3.2.2, Theorem 3.3).

• (Preprocessing by local propagation) Secondly, we turn the MDP
Mi into a weighted graph (WG) Wi.
The construction here is local propagation of the previous upper bound
Ui−1, from each state s to its predecessors in Mi. This is much like an
application of the Bellman operator X.

• (Global propagation by widest paths) Finally, we solve the widest
path problem in the WG Wi, from each state s to the target state 1. The
maximum path width from s to 1 is used as the value of the upper bound
Ui(s).
This way, we conduct global propagation of upper bounds, for which end
components pose no threats. Our global propagation is still computation-
ally feasible, thanks to the preprocessing in the previous step that turns
a problem on an MDP into one on a WG (modulo some sound approxi-
mation).

The use of global propagation for upper bounds is a distinguishing feature of
our algorithm. This is unlike other BVI algorithms (such as [5,20]) where upper-
bound propagation is only local and stepwise. The latter gets trapped when it
encounters an EC—therefore some trick such as collapsing [5] and deflating [20]
is needed—while our global propagation looks directly at the target state 1.

The above outline is presented as pseudocode in Algorithm 3. We describe
the three steps in the rest of the section. In particular, we exhibit the definitions
of MPlRd and WLcPg (WPW has been defined and discussed in Definition 2.8),
providing some of their properties towards the correctness proof of the algorithm
(Sect. 4.3).
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Algorithm 3: Our BVI algorithm via widest paths. Here G =
(S, S�, S©, sI ,1,0, A,Av, δ) is an SG; ε > 0 is a stopping threshold.

1 procedure BVI WP(G, ε)
2 L0 ← ⊥, U0 ← �, i ← 0

3 while Ui(sI) − Li(sI) > ε do
4 i++
5 Li ← XLi−1 // value iteration for lower bounds

6 Mi ← MPlRd(G, Li) // player reduction

7 Wi ← WLcPg(Mi, Ui−1) // local propagation

8 Ui ← min{Ui−1, WPW(Wi)} // widest path computation

9 return Ui(sI)

4.1 Player Reduction: From SGs to MDPs

The following general definition is not directly used in Algorithm 3. It is used in
our theoretical development below, towards the algorithm’s correctness.

Definition 4.1 (the MDP M(G,Av′)). Let G be the game in Algorithm 3,
and Av′ : S → 2A be such that ∅ = Av′(s) ⊆ Av(s) for each s ∈ S.

Then the MDP given by the tuple (S, S \ {0}, {0}, sI ,1,0, A,Av′, δ) shall be
denoted by M(G,Av′), and we say it is induced from G by restricting Av to Av′.

The above construction consists of 1) restricting actions (from Av to Av′), and
2) turning Minimizer’s states into Maximizer’s.

The following class of action restrictions will be heavily used.

Definition 4.2 (Minimizer restriction). Let G be as in Algorithm 3. A Min-
imizer restriction of Av is a function Av′ : S → 2A such that 1) ∅ = Av′(s) ⊆
Av(s) for each s ∈ S, and 2) Av′(s) = Av(s) for each state s ∈ S� of Maximizer’s.

In Algorithm 3, we will be using the MDP induced by the following specific
Minimizer restriction induced by a function f .

Definition 4.3 (the MDP MPlRd(G, f)). Let G be the game in Algorithm 3,
and f : S → [0, 1] be a function. The MDP MPlRd(G, f) is defined to be
M(G,Avf ) (Definition 4.1), where the function Avf : S → 2A is defined as
follows.

Avf (s) = Av(s) for s ∈ S�,

Avf (s) = {a ∈ Av(s) | ∀b ∈ Av(s). (Xaf)(s) ≤ (Xbf)(s)} for s ∈ S©. (5)

The function Avf is a Minimizer restriction in G (Definition 4.2).

The intuition of (5) is that a = arg minb∈Av(s)(Xbf)(s). In the use of this con-
struction in Algorithm 3, the function f will be our “best guess” Li of the value
function V (G). In this situation, arg minb∈Av(s)(Xbf)(s) is the best action for
Minimizer based on the guess f = Li.
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Definition 4.4 (the MDP Mi, and Avi). In Algorithm 3, the MDP Mi is
given by MPlRd(G, Li) = M(G,AvLi

). We write Avi for available actions in Mi,
that is, Mi = (S,1,0, A,Avi, δ).

In the case of Algorithm 3, the MDPs M0,M1, . . . do not only “converge”
to G, but also “reach G in finitely many steps,” in the following sense. The proof
is deferred to [24]. The proof relies crucially on the fact that the set Av(s) of
available actions is finite—there is uniform ε > 0 such that every suboptimal
action is suboptimal by a gap at least ε.

Lemma 4.5. In Algorithm 3, there exists iM ∈ N such that, for each i ≥ iM,
we have V (G) = V (Mi). ��

4.2 Local Propagation: From MDPs to WGs

Here is a technical observation that motivates the function WLcPg.

Lemma 4.6. Let G be the game in Algorithm 3, and Av′ : S → 2A be a Mini-
mizer restriction (Definition 4.2).

1. For each state s ∈ S, we have V (G)(s) ≤ maxa∈Av′(s)
(

Xa

(
V (G)

) )
(s).

2. For each k ∈ N, we have

V (G)(s0) ≤ max
s0

a0−→s1
a1−→ ···

ak−→ in Av′

(
Xak

(
V (G)

) )
(sk), (6)

where the maximum is taken over a0, s1, a1, . . . , sk, ak such that a0 ∈
Av′(s0), s1 ∈ post(s0, a0), a1 ∈ Av′(s1), . . . , sk ∈ post(sk−1, ak−1), ak ∈
Av′(sk).

Proof. For the item 1, recall that V (G) is the least fixed point of the Bellman
operator (Theorem 3.3). For each Minimizer state s ∈ S©, we have

V (G)(s) = min
a∈Av(s)

(
Xa

(
V (G)))(s) ≤ min

a∈Av′(s)

(
Xa

(
V (G)))(s) ≤ max

a∈Av′(s)

(
Xa

(
V (G)))(s).

For each Maximizer state s ∈ S�, we have

V (G)(s) = max
a∈Av(s)

(
Xa

(
V (G)

))
(s) = max

a∈Av′(s)

(
Xa

(
V (G)

))
(s).

The latter equality is because Av′ does not restrict Maximizer’s actions. This
proves the item 1.

The item 2 is proved by induction as follows, using the item 1 in its course.
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V (G)(s0)

≤ max
a0∈Av′(s0)

(
Xa0(V (G))

)
(s0) by the item 1.

= max
a0∈Av′(s0)

∑

s1∈post(s0,a0)

δ(s0, a0, s1) · V (G)(s1)

≤ max
a0∈Av′(s0)

∑

s1∈post(s0,a0)

δ(s0, a0, s1) ·
(

max
s1

a1→ ··· ak→ in Av′

(
Xak

(
V (G)

) )
(sk)

)

by the induction hypothesis (for k − 1) (7)

≤ max
a0∈Av′(s0)

max
s1∈post(s0,a0)

(
max

s1
a1→ ··· ak→ in Av′

(
Xak

(
V (G)

) )
(sk)

)

= max
s0

a0−→s1
a1−→ ···

ak−→ in Av′

(
Xak

(
V (G)

) )
(sk). (8)

The inequality in (8) holds since an average over s1 on the left-hand side is
replaced by the corresponding maximum on the right-hand side. Note that the
value max

s1
a1→ ··· ak→ in Av′ mini∈[1,k]

(
Xai

(
V (G)

) )
(si) that occurs on both sides is

determined once s1 is determined. This concludes the proof. ��
Lemma 4.6.2, although not itself used in the following technical development,
suggests the idea of global propagation for upper bounds. Note that a bound is
given in (6) for each k; it is possible that a bound for some k > 1 is tighter than
that for k = 1, motivating us to take a “look-ahead” further than one step.

However, the bound in (6) is not particularly tuned for tractability: compu-
tation of the maximum involves words whose number is exponential in k, and
moreover, we want to do so for many k’s.

In the end, our main technical contribution is that a similar “look-ahead”
can be done by solving the widest path problem in the following weighted graph.
The soundness of this method is not so easy as for Lemma 4.6.2—see Sect. 4.3.

Definition 4.7 (the WG WLcPg(M, f)). Let M = (S,1,0, A,Av′, δ) be an
MDP, and f : S → [0, 1]. The WG WLcPg(M, f) is the following triple (S,E,w).

– Its set of vertices is S.
– We have (s, s′) ∈ E if and only if, for some a ∈ Av′(s), we have s′ ∈ post(s, a)

(i.e., δ(s, a, s′) > 0).
– The weight function w : E → [0, 1] is given by

w(s, s′) = max
{

Xaf(s)
∣
∣ a ∈ Av′(s), s′ ∈ post(s, a)

}
. (9)

In (9), the function f—that is, the previous upper bound Ui−1 in Algorithm 3—
is propagated one step by the application of Xa. This way of encoding these
propagated values as weights in a WG seems pretty rough. For example, in case
both s′ and s′′ are in post(s, a) for each a ∈ Av′(s), we have w(s, s′) = w(s, s′′),
no matter what the transition probabilities from s to s′, s′′ are. The return
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Algorithm 4: A construction of PATH : S♦1 → S+ for Lemma 4.8
1 Sv ← {1}, PATH(1) ← 1

2 while S♦1 \ Sv �= ∅ do
3 Choose a pair of states (sc, sp) that satisfies the following:

sc ∈ S \ Sv, sp ∈ Sv, V (G)(sc) = maxs∈S\Sv V (G)(s), and
for an optimal action a at sc in M, sp ∈ post(sc, a)

4 PATH(sc) ← sc · PATH(sp), Sv ← Sv ∪ {sc}
5 return PATH

for this paid price (namely the information lost in the rough encoding) is that
the resulting data structure (WG) allows fast global analysis via the widest path
problem. Our experiment results in Sect. 5 demonstrate that this rough yet global
approximation can make upper bounds quickly converge.

4.3 Soundness and Convergence

In Algorithm 3, an SG G is turned into an MDP Mi and then to a WG Wi.
Our claim is that computing a widest path in Wi gives the next upper bound Ui

in the iteration. Here we prove the following correctness properties: soundness
(V (G) ≤ Ui) and convergence (Ui → V (G) as i → ∞).

We start with a technical lemma. The choice of the MDP M(G,Av′) and
the value function V (G) (for G, not for M(G,Av′)) in the statement is subtle; it
turns out to be just what we need.

Lemma 4.8. Let G be as in Algorithm 3, and Av′ : S → 2A be a Minimizer
restriction (Definition 4.2). Let s0 ∈ S♦1 be a state with a non-zero value (Def-
inition 2.5). Consider the MDP M(G,Av′) (Definition 4.1), for which we write
simply M. Then there is a finite path π = s0a0s1a1 . . . an−1sn in M that satisfies
the following.

– The path π reaches 1, that is, sn = 1.
– Each action is optimal in M with respect to V (G), that is,

(
Xai

(
V (G)

))
(si) =

maxa∈Av′(si)

(
Xa

(
V (G)

))
(si) for each i ∈ [0, n − 1].

– The value function V (G) does not decrease along the path, that is, V (G)(si) ≤
V (G)(si+1) for each i ∈ [0, n − 1].

Proof. We construct a function PATH : S♦1 → S+ by Algorithm 4. It is clear
that PATH assigns a desired path to each s0 ∈ S♦1. In particular, V (G) does
not decrease along PATH(s0) since always a state with a smaller value of V (G)
is prepended.

It remains to be shown that, in Line 3, a required pair (sc, sp) is always
found. Let Sv � S♦1 be a subset with 1 ∈ Sv; here Sv is a proper subset of S♦1

since otherwise we should be already out of the while loop (Line 2).
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Let Smax = {s ∈ S \ Sv | V (G)(s) = maxs′∈S\Sv V (G)(s′)}. Since Sv � S♦1,
we have ∅ = Smax ⊆ S♦1 and thus V (G)(s) > 0 for each s ∈ Smax. We also have
1 ∈ Smax since 1 ∈ Sv.

We argue by contradiction: assume that for any s ∈ S \ Sv, s′ ∈ Sv, we have
s′ ∈ post(s, as), where as is any optimal action at s in M with respect to V (G).

Now let s ∈ Smax be an arbitrary element. It follows that V (G)(s) > 0.
V (G)(s) ≤ (

Xas

(
V (G)))(s)

using Lemma 4.6; here as is an optimal action at s in M with respect to V (G),
=

∑
s′∈S\Sv

δ(s, as, s′) · V (G)(s′)

by the assumption that s′ �∈ post(s, as) for each s′ ∈ Sv

≤ ∑
s′∈S\Sv

δ(s, as, s′) · V (G)(s)
since s ∈ Smax and hence V (G)(s′) ≤ V (G)(s)

= V (G)(s) since
∑

s′∈S\Sv
δ(sc, a, s′) = 1. (10)

Therefore both inequalities in the above must be equalities. In particular, for
the second inequality (in (10)) to be an equality, we must have the weight for
each suboptimal s′ to be 0. That is, δ(s, as, s

′) = 0 for each s′ ∈ (S \ Sv) \ Smax.
The above holds for arbitrary s ∈ Smax. Therefore, for any strategy that is

optimal in M with respect to V (G), once a play is in Smax, it never comes out
of Smax, hence the play never reaches 1. Moreover, an optimal strategy in M
with respect to V (G) is at least as good as an optimal strategy for Maximizer
in G (with respect to V (G)), that is, the latter reaches 1 no more often than the
former. This follows from Lemma 4.6. Altogether, we conclude that a Maximizer
optimal strategy in G does not lead any s ∈ Smax to 1, i.e., V (M)(s) = 0 for
each s ∈ Smax. Now we come to a contradiction. ��

In the following lemma, we use the value function V (G) in the position of f
in Definition 4.7. This cannot be done in actual execution of Algorithm 4: unlike
Ui−1 in Algorithm 3, the value function V (G) is not known to us. Nevertheless,
the lemma is an important theoretical vehicle towards soundness of Algorithm 3.

Lemma 4.9. Let G be the game in Algorithm 3, and Av′ : S → 2A be
a Minimizer restriction (Definition 4.2). Let M = M(G,Av′), and W =
WLcPg

(M, V (G)
)
. Then, for each state s ∈ S, we have WPW(W)(s,1) ≥

V (G)(s).

Proof. In what follows, we let the WG W = WLcPg

(M, V (G)
)

be denoted by
W = (S,E,w). Let π = s0a0s1a1 . . . an−1sn be a path of the MDP M such
that sn = 1, each action is optimal in M with respect to V (G), and V (G)(si) ≤
V (G)(si+1) for each i ∈ [0, n − 1]. Existence of such a path π is shown by
Lemma 4.8. Let π′ = s0s1 . . . sn−11 be the path in the WG W induced by π—we
simply omit actions.
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The path π′ satisfies the following, for each i ∈ [0, n − 1].
w(si, si+1) = max

{ (
Xa

(
V (G)))(si)

∣
∣ a ∈ Av′(si), si+1 ∈ post(si, a)

}
by Definition 4.7

=
(
Xai

(
V (G)))(si) since ai is optimal wrt. V (G);

note that ai ∈ Av′(si), si+1 ∈ post(si, ai) hold since π is a path in M
= maxa∈Av′(s)

(
Xa

(
V (G)) )

(si) since ai is optimal wrt. V (G)
≥ V (G)(si) by Lemma 4.6.

This observation, combined with V (G)(s0) ≤ V (G)(s1) ≤ · · · ≤ V (G)(sn) (by
the definition of π), implies that the width of the path π′ is at least V (G)(s0).
The widest path width is no smaller than that. ��
Theorem 4.10 (soundness). In Algorithm 3, V (G) ≤ Ui holds for each i ∈ N.

Proof. We let the function

min
{

U, WPW
(WLcPg

( M(G,Av′), U
))

( ,1)
}

: S −→ [0, 1]
denoted by T (Av′, U) : S −→ [0, 1],

clarifying its dependence on Av′ and U : S → [0, 1]. Clearly, for each i ∈ N, we
have Ui = T (AvLi

, Ui−1).

The rest of the proof is by induction. It is trivial if i = 0 (U0 = �).

Ui+1 = T (AvLi
, Ui)

≥ T (AvLi
, V (G)) by ind. hyp., and T (AvLi

, ) is monotone

= min
{

V (G), WPW
(WLcPg

( M(G,AvLi
), V (G)

))
( ,1)

}

= V (G) by Lemma 4.9.

��
It is clear that Ui decreases with respect to i (U0 ≥ U1 ≥ · · · ), by the presence

of min in Line 8. It remains to show the following.

Theorem 4.11 (convergence). In Algorithm 3, let the while loop iterate for-
ever. Then Ui → V (G) as i → ∞.

Proof. We give a proof using the infinitary pigeonhole principle. The proof is
nonconstructive—it is not suited for analyzing the speed of convergence, for
example—but the proof becomes simpler.

In what follows, we let Xσ : (S → [0, 1]) → (S → [0, 1]) denote the Bellman
operator on an MDP M induced by a strategy σ, i.e., (Xσf)(s) := (Xσ(s)f)(s).
The MC obtained from an MDP M by fixing a strategy σ is denoted by Mσ.

Towards the statement of the theorem, for each i ∈ N, we choose a (posi-
tional) strategy σi in the MDP Mi as follows.
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– For each s ∈ S♦1, take the widest path WPath(Wi,1)(s) = ss1 . . .1 in Wi

from s to 1 (Definition 2.8). Such a path from s to 1 exists—otherwise we
have Ui(s) = 0, hence V (G)(s) = 0 by Theorem 4.10.
Let σi(s) be an action that justifies the first edge in the chosen widest path,
that is, a ∈ Avi(s) such that s1 ∈ post(s, a).

– For each s ∈ S \ S♦1, σi(s) is freely chosen from Avi(s).

It is then easy to see that

WPW(Wi)(s) ≤ (Xσi
Ui−1)(s) for each i ∈ N and s ∈ S♦1. (11)

Indeed, by the definition of σi, the right-hand side is the weight of the first edge
in the chosen widest path. This must be no smaller than the widest path width,
that is, the width of the chosen path.

Now, since there are only finitely many strategies for the SG G, the same
is true for the MDPs M0,M1, . . . that are obtained from G by restricting
Minimizer’s actions. Therefore, by the infinitary pigeonhole principle, there are
infinitely many i0 < i1 < · · · such that σi0 = σi1 = · · · =: σ†. Moreover, we
can choose them so that they are all beyond iM in Lemma 4.5, in which case we
have

V (Mσ†
im) ≤ V (G) for each m ∈ N. (12)

Indeed, Minimizer’s actions are already optimized in Mi (Lemma 4.5), and thus
the only freedom left for σ† is to choose suboptimal actions of Maximizer’s.

In what follows, we cut down the domain of discourse from S → [0, 1] to
S♦1 → [0, 1], i.e., 1) every function of the type f : S → [0, 1] is now seen as the
restriction over S♦1, and 2) the Bellman operator only adds up the value of the
input function over S♦1, namely it is now defined by X̂af(s) =

∑
s′∈S♦1

δ(s, a, s′)·
f(s′). The operator X̂σ is also defined in a similar way to Xσ.

Now proving convergence in S♦1 → [0, 1] suffices for the theorem. Indeed,
for each i ≥ iM, we have V (Mi)(s) = V (G)(s) = 0 for each s ∈ S \ S♦1. This
implies that there is no path from s to 1 in Mi, thus neither in the WG Wi.
Therefore Ui ≤ WPW(Wi) = 0.

A benefit of this domain restriction is that the Bellman operator X̂σ has a
unique fixed point in S♦1 → [0, 1] if the set of non-sink states in Mσ is exactly
S♦1, i.e., V (Mσ)(s) > 0 holds if and only if s ∈ S♦1. Furthermore, this unique
fixed point is the value function V (Mσ) restricted to S♦1 ⊆ S [4, Theorem 10.19].
Therefore V (Mσ) is computed by the gfp Kleene iteration, too:

� ≥ X̂σ� ≥ (X̂σ)2� ≥ · · · −→ V (Mσ) in the space S♦1 → [0, 1]. (13)

We show the following by induction on m.

Uim ≤ (X̂σ†)m� for each m ∈ N. (14)
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It is obvious for m = 0. For the step case, we have the following. Notice that the
inequality (11) holds in the restricted domain for i ≥ iM .

Uim+1 ≤ WPW(Wim+1) by Line 8 of Algorithm 3

≤ X̂σ†Uim+1−1 by (11)

≤ X̂σ†Uim by monotonicity of X̂σ† , decrease of Ui and im < im+1

≤ (X̂σ†)m+1� by the induction hypothesis.

We have proved (14) which proves infi Ui ≤ infm(X̂σ†)m�.
Lastly, we prove that V (Mσ†

im
)(s) > 0 holds if and only if s ∈ S♦1 for each

m ∈ N, and thus σ† follows the characterization in (13). This proves

inf
i

Ui ≤ V (Mσ†
im) for each m ∈ N. (15)

Implication to the right is clear as Minimizer restriction is done optimally in
Mim . Conversely, if s ∈ S♦1, then there is a path from s to 1 in Wim . Let
WPath(Wim ,1)(s) = s0s1 . . . sk, where s0 = s, k ∈ N and sk = 1. Then by the
property of WPath and σ†, we have δ(sj , σ

†(sj), sj+1) > 0 for each j < k. Thus,
the probability that the finite path WPath(Wim ,1)(s) is obtained by running
Mσ†

im
starting from s, which is apparently at most V (Mσ†

im
)(s), is nonzero. Hence

we have implication to the left.
Combining (12), (15) and Theorem 4.10, we obtain the claim. ��

5 Experiment Results

Experiment Settings. We compare the following four algorithms.

– WP is our BVI algorithm via widest paths. It avoids end component (EC)
computation by global propagation of upper bounds.

– DFL is the implementation of the main algorithm in [20]. It relies on EC
computation for deflating.

– DFL m is our modification of DFL, where some unnecessary repetition of EC
computation is removed.

– DFL BRTDP is the learning-based variant of DFL. It restricts bound update
to those states which are visited by simulations. See [20] for details.

The latter three—coming from [20]—are the only existing BVI algorithms
for SGs with a convergence guarantee, to the best of our knowledge. The imple-
mentation of DFL and DFL BRTDP is provided by the authors of [20].

The four algorithms are implemented on top of PRISM-games [21] version
2.0. We used the stopping threshold ε = 10−6. The experiments were conducted
on Dell Inspiron 3421 Laptop with 4.00 GB RAM and Intel(R) Core(TM) i5-
3337U 1.80 GHz processor.

In the implementations of DFL and DFL BRTDP, the deflating operation is
applied only once every five iterations [20, Sect. B.3]. Following this, our WP also
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solves the widest path problem (Line 8) only once every five iterations, while
other operations are applied in each iteration.

For input SGs, we took four models from the literature: mdsm [11], cloud [6],
teamform [12] and investor [22]. In addition, we used our model manyECs—an
artificial model with many ECs—to assess the effect of ECs on performance. The
model manyECs is presented in the appendix in [24]. Each of these five models
comes with a model parameter N .

There is another model called cdmsn in [20]. We do not discuss cdmsn since
all the algorithms (ours and those from [20]) terminated within 0.001 seconds.

Results. The number i of iterations and the running time for each algorithm and
each input SG is shown in Table 1. For DFL BRTDP, the ratio of states visited
by the algorithm is shown in percentage; the smaller it is, the more efficient
the algorithm is in reducing the state space. Each number for DFL BRTDP (a
probabilistic algorithm) is the average over 5 runs.

Table 1. Experimental results, comparing WP (our algorithm) with those in [20]. N
is a model parameter (the bigger the more complex). #states, #trans, #EC show the
numbers of states, transitions and ECs in the SG, respectively. itr is the number i
of iterations at termination; time is the execution time in seconds. For each SG, the
fastest algorithm is shaded in green. The settings that did not terminate are shaded in
gray; TO is time out (6 h), OOM is out of memory, and SO is stack overflow.

model N #states #trans #EC DFL DFL m DFL BRTDP WP

itr time itr time itr visit% time itr time

mdsm 3 62245 151143 1 121 3 121 4 17339 49.3 15 120 5

4 335211 882765 1 125 15 125 47 91301 42.1 86 124 38

cloud 5 8842 60437 4421 7 7 7 1 167 6.9 14 7 <1

6 34954 274965 17477 11 177 11 5 41 0.6 3 11 1

7 139402 1237525 69701 11 19721 11 62 41 0.2 4 11 5

teamform 3 12475 15228 2754 2 <1 2 <1 972 49.0 137 2 <1

4 96665 116464 19800 2 <1 2 <1 4154 34.6 9603 2 <1

5 907993 1084752 176760 2 <1 2 <1 TO 2 <1

investor 50 211321 673810 29690 441 184 441 249 TO 364 48

100 807521 2587510 114390 801 3318 OOM TO 688 736

manyECs 500 1004 3007 502 6 7 6 7 TO 5 <1

1000 2004 6007 1002 6 51 6 51 TO 5 <1

5000 10004 30007 5002 SO SO TO 5 <1

Discussion. We observe consistent performance advantage of our algorithm
(WP). Even in the mdsm model where the DFL algorithms do not suffer from
EC computation (#EC is just 1), WP’s performance is comparable to DFL. The
cloud model is where the learning-based approach in [20] works well—see visit%
that are very small. Our WP performs comparably against DFL BRTDP, too.

The performance advantage of our WP algorithm is eminent, not only in the
artificial model of manyECs (where WP is faster by magnitudes), but also in
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the realistic model investor that comes from a financial application scenario [22].
The results for these two models suggest that WP is indeed advantageous when
EC computation poses a bottleneck for other algorithms.

Overall, we observe that our WP algorithm can be the first choice when it
comes to solving SGs: for some models, it runs much faster than other algorithms;
for other models, even if the performances of other algorithms differs a lot, WP’s
performance is comparable with the best algorithm.

6 Conclusions and Future Work

In this paper, we presented a new BVI algorithm for solving stochastic games. It
features global propagation of upper bounds by widest paths, via a novel encod-
ing of the problem to a suitable weighted graph. This way we avoid computation
of end components that often penalizes the performance of the other BVI-based
algorithms. Our experimental comparison with known BVI algorithms for SGs
demonstrates the efficiency of our algorithm. For correctness of the algorithm,
we presented proofs for soundness and convergence.

Extending the current algorithm for more advanced settings is future work—
this is much like the results in [20] are extended and used in [2,3,16]. In doing so,
we hope to make essential use of structures that are unique to those advanced
problem settings. Another important direction is to push forward the idea of
global propagation in verification and synthesis, seeking further instances of
the idea. Finally, pursuing the global propagation idea in the context of rein-
forcement learning—where problems are often formalized using MDPs and the
Bellman operator is heavily utilized—may open up another fruitful collaboration
between formal methods and statistical machine learning.
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