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Preface

For many years the series Landolt-Börnstein—Group I Elementary Particles, Nuclei
and Atoms, Volume 21A (Physics and Methods Theory and Experiments, 2008),
Vol. 21B1 (Elementary Particles Detectors for Particles and Radiation. Part 1:
Principles and Methods, 2011), Vol. 21B2 (Elementary Particles Detectors for Par-
ticles and Radiation. Part 2: Systems and Applications), and Vol. 21C (Elementary
Particles Accelerators and Colliders, 2013), has served as a major reference work in
the field of high-energy physics.

When, not long after the publication of the last volume, open access became
a reality for HEP journals in 2014, discussions between Springer and CERN
intensified to find a solution for the “Labö” which would make the content available
in the same spirit to readers worldwide. This was helped by the fact that many
researchers in the field expressed similar views and their readiness to contribute.

Eventually, in 2016, at the initiative of Springer, CERN and the original Labö
volume editors agreed in tackling the issue by proposing to the contributing authors
a new OA edition of their work. From these discussions a compromise emerged
along the following lines: transfer as much as possible of the original material into
open access; add some new material reflecting new developments and important
discoveries, such as the Higgs boson; and adapt to the conditions due to the change
from copyright to a CC BY 4.0 license.

Some authors were no longer available for making such changes, having either
retired or, in some cases, deceased. In most such cases, it was possible to find
colleagues willing to take care of the necessary revisions. A few manuscripts could
not be updated and are therefore not included in the present edition.

We consider that this new edition essentially fulfills the main goal that motivated
us in the first place—there are some gaps compared to the original edition, as
explained, as there are some entirely new contributions. Many contributions have
been only minimally revised in order to make the original status of the field available
as historical testimony. Others are in the form of the original contribution being
supplemented with a detailed appendix relating recent developments in the field.
However, a substantial fraction of contributions has been thoroughly revisited by
their authors resulting in true new editions of their original material.
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We would like to express our appreciation and gratitude to the contributing
authors, to the colleagues at CERN involved in the project, and to the publisher,
who has helped making this very special endeavor possible.

Vienna, Austria Christian Fabjan
Geneva, Switzerland Stephen Myers
Geneva, Switzerland Herwig Schopper
July 2019
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Chapter 1
Accelerators, Colliders and Their
Application

E. Wilson and B. J. Holzer

1.1 Why Build Accelerators?

Accelerators are modern, high precision tools with applications in a broad spectrum
that ranges from material treatment, isotope production for nuclear physics and
medicine, probe analysis in industry and research, to the production of high energy
particle beams in physics and astronomy. At present about 35,000 accelerators exist
world-wide, the majority of them being used for industrial and medical applications.
Originally however the design of accelerators arose from the request in basic physics
research, namely to study the basic constituents of matter.

The first accelerators were inspired by the early experiments in nuclear physics.
In the early years of the twentieth century Rutherford discovered that by using
alpha particles from radioactive disintegration and detecting the pattern of particles
scattered by atoms one might deduce that the nucleus was a tiny but massive central
element in the atom. Alpha particles from disintegration can only be of energies of
10 MeV; comparable with the nuclear binding forces. Higher energies were needed
and a more reliable and steady supply to ease the tedium of counting occasional
flashes of light on the scintillation screen that was Rutherford’s detector. De Broglie
had shown that there was an inverse relationship between the momentum, and
hence the energy of a particle and the wavelength of its representation in quantum
mechanics.

λ = h

p
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2 E. Wilson and B. J. Holzer

where h represents Planck’s constant and p the particles’ momentum which relates
to its energy via the well-known equation of special relativity, E2 = p2c2 + m2c4.
The limit to the scale of detail that experiments can reveal is set by the length of
the wave which is scattered: rather as the wave breaking in the beach can only be
deflected by islands larger than itself. It was argued correctly that higher energy
particle, having the property of shorter wavelengths could better reveal the structure
of the nuclei that Rutherford has detected.

Such arguments led to the invention of the first accelerators and have sustained
the development of particle accelerators of higher and higher energy over the best
part of the last 100 years. At first, physicists used accelerators to probe the structure
of the nucleus, but went on to use higher energy accelerators to search for structure
in the “fundamental” particles—protons, neutrons and electrons they discovered.
Inevitably higher energies implied larger accelerators, for it was quickly discovered
that the best way to accelerate repetitively was to keep particle in a circular path
whose radius was itself proportional to energy, limited by the strength of the
magnetic field one might use to do the bending.

As energies were raised physicists found new and interesting particles to fit into
the pattern of those that their theories might predict. Einstein’s

E = mc2

tells us that only high energies will create the more massive particles. The latest and
largest accelerator, LHC, flagship of the whole community, was designed to search
for the Higgs Boson and the successful discovery of this missing puzzle piece in
2013 allowed us to complete the Standard Model of Particle Physics.

As we write, this machine is carrying on the search for physics beyond the
standard model, seeking to disclose the nature of dark matter and dark energy.

As more powerful accelerators have been developed for high energy particle
physics, advances in the field have been exploited in a whole range of smaller
accelerators for other applications. From the time of the first cyclotrons they have
been used for producing isotopes and for treating cancer. The development of
compact high-frequency linac structures triggered the manufacture of hundreds of
small electron linacs producing X-rays for cancer treatment in hospitals around
the developed and, latterly, the developing world. Electron rings of a few GeV,
specially designed to produce beams of synchrotron radiation have become popular.
Each facility serves scores of experiments to investigate the structure of complex
molecules—particularly the proteins of today’s biomedical studies. Proton accel-
erators of about 1 GeV produce pulsed beams of neutrons by spallation which are
used principally to study the structure of materials. In addition thousands of lower
energy accelerators are used in industry for sterilisation and ion implantation in the
fabrication of sophisticated CPU chips for computers.
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1.2 Types and Evolution of Accelerators

The development of accelerators to ever higher energy is marked by a number of
milestones. Each of these marks the invention of a new type of accelerator or the
invention of a new principle of transverse or longitudinal focusing which enables
a higher energy to be reached for a lower unit cost. The best way to describe
this evolution and introduce the different types of accelerator is to follow the road
charted by these milestones. Each is described in one of the sections which follow.

1.2.1 Early Accelerators

The nineteenth century had produced a number of electrostatic high-voltage gener-
ators. They were unpredictable in performance and electrical breakdown became
a serious problem above a few tens of kV. Early accelerators were simply two
electrodes enclosed in an evacuated tube with external connections to such high
voltage source. A proton or electron source close to one electrode at a potential of V
(or−V for electrons) provided the particles which were then accelerated towards the
second electrode at earth potential. They emerged or were observed through a small
hole in the earthed electrode. The energy acquired by each particle with charge,
e Coulombs, was just e∗V Joules or, in the units commonly used for accelerated
beams, V electron-Volts. An electron Volt is then just 1.6 × 10−19 Joules. If the
particle is a fully stripped ion of an atom with atomic number A and charge Z then
the energy is ZV/A electron Volts per nucleon.

The first high-voltage generator to approach 1 MeV was built by Cockcroft
and Walton [1–3] in the 1930s to accelerate particles for their fission experiments.
Their combination of diodes and capacitors, also known as rectifier circuit, is still
used today to apply high voltage to the ion or proton source at the beginning of
many linacs and synchrotrons although these are gradually being replaced by radio
frequency quadrupoles.

The early 1930s also saw the invention by R.J. Van der Graaf [4] of an
electrostatic generator which used a moving belt to carry charge into the high
voltage terminal until it reaches a potential of several MV (Fig. 1.1). Van der
Graaf accelerators have proved a useful source of low energy particles to this
day but are inevitably limited by problems of voltage breakdown. Voltages up
to 27 MV have been reached, putting the device in a discharge suppressing gas
atmosphere (e.g. SF6). Although it is possible in theory to chain together several
electrostatic accelerators, each with its cathode connected to the anode of the next,
each stage increases the potential between the ends of the device and between the
ends and ground and eventually electrical breakdown discharges the high voltage
terminals.
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Fig. 1.1 Van der Graaf
accelerator

Fig. 1.2 Wideröe’s sketch of
the ray transformer

1.2.2 The Ray Transformer

The earliest idea of how to overcome the limitations of electrostatic acceleration
involved using the time varying property of magnetic fields and came from the
inventive mind of Rolf Wideröe.

Beginning his studies at Karlsruhe Technical University in 1923, he wondered
if electrons in an evacuated ring would flow in the same way as the electrons in
copper if they replaced the secondary winding of a transformer. His notebooks of
that time contain sketches of a device he called a “ray transformer”; the first circular
accelerator and the precursor of the “betatron” [5].

These sketches show a beam tube, in the form of an annulus, R, placed in the
gap between the parallel poles or faces of a small electromagnet (on the left in Fig.
1.2). This magnet is in the form of a “C” and the field between the poles, Bz, guides
particles in a circular orbit in the mid plane between the poles. A circular hole is cut
in each pole through which the yoke of the transformer passes linking the beam tube.
The primary winding of the transformer, labelled W1, is powered with alternative
voltage from the mains. The beam tube is placed where one would normally expect
the secondary winding. The beam within it carries the induced secondary current.
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Unlike almost all accelerators that followed, the ray transformer relied entirely
upon the inductive effect of a varying magnetic field. It is the rate of change of
flux, φ, in the yoke which establishes an accelerating potential difference around
the beam’s path. The windings, that of the C-magnet and of the primary of the
transformer, W1, give independent control of the guide field and accelerating flux.

Wideröe calculated that electrons circulating in a ring of only 10 or 20 cm
diameter could reach several MeV within one quarter wave of the AC excitation
of the transformer. He had to use Einstein’s newly discovered theory of special
relativity to correctly describe the motion of particles close to the speed of light.
He also found an important principle which ensures that the beam radius does not
change as it accelerates. To ensure constant radius during acceleration the total flux
linking the beam including that generated by both sets of the coils, Ba, must be twice
that generated by the left hand coil pair which produces the field keeping the beam
in a circular orbit, Bg.

Ḃa = 2Ḃg

Unfortunately, Wideröe was dissuaded from building the ray transformer by
difficulties with surface fields and by his professor, who wrongly assumed the beam
would be lost because of gas scattering. However, his Ray Transformer and the 2
to 1 ratio, now known as the Wideröe principle, were important discoveries which
were put into practice 15 years later when D.W. Kerst and R. Serber [6] built a series
of betatrons.

Wideröe went on to develop a second basic acceleration method to overcome the
electrostatic limitation: the drift tube linac.

1.2.3 Repetitive Acceleration

There are two broad classes of accelerator characterized by the way they achieve
repetitive acceleration and which overcome the insulation problems of the elec-
trostatic machines. The simplest concept is that of the linear accelerator. Particles
pass though cavities excited by radio frequency generators. They arrive on the
threshold of each cavity with the energy they have already received and gain a
further increment in energy from the electric field in the cavity which points in
their direction of motion. Each cavity performs the function of the gap between the
anode and cathode of an electrostatic accelerator but, unlike the electrostatic case,
the increments of energy may be added together without developing a huge voltage
to ground in any part of the apparatus. Of course, there is a limit to the voltage
(energy increment) each cavity can apply and the length of the device becomes
very long for energies above 1 GeV. Nevertheless, a linac has become the only way
of accelerating highly relativistic electrons which radiate a large fraction of their
energy when bent into a circular path.
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As alternative concept, circular machines, like cyclotrons and synchrotrons use
the same set of accelerating cavities over and over again as the particles make
complete turns around the accelerator, being guided and focused by the magnet
structure of the ring which is thus constraining their orbit. On each turn an increment
of energy is added and, once accelerated, particles may be allowed to circulate
indefinitely at their top energy. Two circulating beams of say protons and antiprotons
or electrons and positrons can be sustained in the same ring and, colliding at
experiments around the circumference, create new particles up to a mass (centre
of mass energy as it is called) that is the sum of the two energies. Colliders are
today the preferred configuration for a high-energy machine. Earlier, new particles
were sought in the debris from a particles collision with a nucleon in a fixed target
but such collisions are limited to a smaller centre of mass energy—which rises only
as the square root of the accelerated beam energy.

1.2.4 Linear Accelerators

Although disappointed by the rejection of his ray-transformer as a subject for his
PhD, Wideröe was led to the idea of a linear accelerator by a paper by G. Ising
[7] who tried to overcome the voltage breakdown problem of a single stage of
acceleration by placing a series of hollow cylindrical electrodes one after another
in a straight line to form what today we would call a ‘drift tube linac’ or linear
accelerator. Wideröe realised that an oscillating potential applied to one drift tube
flanked by two others which are earthed, accelerates at both gaps provided the
oscillator’s phase changes by 180◦ during the flight time between gaps.

In 1927 he built a three-tube model which accelerated sodium ions. At the
wavelengths that radio transmitters generated at that time a particle travelling near
the velocity of light would travel hundreds of meters in the time it would take
for the r.f. to swing by half a sine wave. This would make the length of a drift
tube impractically large. Sodium ions, being rather heavy compared with protons or
electrons, travelled much slower than the velocity of light and this helped keep the
apparatus down to table-top proportions. Although he realised that one might extend
such a series of tubes indefinitely he did not take the idea any further as he was due to
start his professional employment designing high voltage circuit breakers. Between
1931 and 1934, D. Sloan and E.O. Lawrence at Berkeley took up Wideröe’s idea
and constructed linacs with as many as 30 drift tubes to accelerate mercury ions but,
these were never used for research.

Much later, in the mid-1940s, and when suitable high-power high-frequency
oscillators had become available to meet the needs of war-time radar, L.W. Alvarez
(1946) started to build the first serious proton linac at the Radiation Laboratory of
the University of California. Figure 1.3 shows an Alvarez linac. A series of drift
tubes are mounted within a copper-lined cylinder excited by a radio transmitter. As
in Wideröe’s linac, particles gain energy from the accelerating potential differences
between the ends of the drift tube, but now the phase shift between drift tube
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Fig. 1.3 left: The concept of the drift tube linac (from [8]); right: CERN’s Linac 1

gaps is 360◦. Each gap appears to the particle to be an identical field gradient
which accelerates particles from left to right. The particles are protected from the
decelerating phase while inside the metallic drift tubes. Although the particle gains
energy steadily as it passes each gap, the total voltage between parts of the assembly
and ground does not become larger along the length of the device as it would for an
electrostatic machine.

The distances between gaps, or the lengths of the tubes, increase as the particle
is accelerated since it travels an ever increasing distance during one swing of
the radio frequency oscillation. At low energy, we would expect this distance to
increase with the velocity or the root of the kinetic energy but when the energy is
large we find the length of the drift tubes and their spacing no longer increases—
a practical demonstration of special relativity. The Alvarez structure is still widely
used, especially for non-relativistic proton and ion beams.

It was well known at the time that waves might be propagated along a much
simpler smooth waveguide and that some of the modes have an accelerating electric
field in the direction of propagation. Closer examination however shows that the
stumbling block is that the phase velocity of these modes in a wave guide is
always greater than that of light and hence the particle sees a field which sometimes
accelerates and then decelerates as the wave overtakes the particle. It was later found
that the phase velocity could be reduced by a series of iris diaphragms in the pipe.
Such a structure (Fig. 1.4) is very popular in electron linacs and also in storage rings
in which the particle is close to the velocity of light and cavities need not be tuned
to follow the acceleration cycle.

These diaphragm-loaded linac structures have been commonly used as injectors
for circular accelerators to accelerate electrons and protons to energies in the range
10 to 1000 MeV. As compact high frequency structures they have also been widely
used to accelerate electrons to, typically 10 MeV, as a source of X-rays for cancer
therapy. An early and very successful adventure in the electron linac development
was the “two-mile long” Stanford Linear Accelerator at SLAC in California which
has been the work horse for a number of ground breaking fixed target experiments
and circulating beam storage ring projects at 20 to 50 GeV. With the help of two
semi-circular arcs it was used to bring beams of electrons and positrons into head-
on collision in the Stanford Linear Collider Project. This project, is forerunner for
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Fig. 1.4 Iris loaded structure
(from [9]). The ‘chimney’ is
the input waveguide

today’s projected Linear Colliders in which linear accelerators accelerate positrons
and electrons to energies approaching 1 TeV to collide them head on in a bid to
overcome the very considerable energy lost by an electron to synchrotron radiation
in circular lepton rings at high energy.

1.2.5 Cyclotrons

Unlike a linac, whose length must be extended to reach a higher energy, the
cyclotron, as it is called, is a relatively compact accelerator in which the energy
is only limited by the diameter and field strength of the magnet. The cyclotron idea
first occurred to E.O. Lawrence who, reading through Wideröe’s thesis, ruminated
on the possibility of using a magnetic field to recirculate the beam through two of
drift tubes. The cyclotron idea was published in 1930 [10] and another colleague,
M.S. Livingston, who was also later to contribute much to the field, was given the
job of making a working model as his doctoral thesis.

In Fig. 1.5 we see the two ‘Dee’s’ which comprise the positive and negative
electrodes of the accelerating system between the poles of the magnet. These are
like two halves of a closed cylinder divided along its diameter. A radio-frequency
generator excites them with an alternating field of constant frequency. The potential
difference between the ‘Dee’s’ accelerates the ions as they pass the gap between
the two halves of the structure. The fundamental trick is that the field oscillates at
the particle’s circulation frequency and hence the sign of the potential difference at
each gap is always in the accelerating direction.

As long as cyclotrons accelerate ions to modest energies, classical rather than
relativistic mechanics still applies. In Fig. 1.6 we see the balance between centripetal
acceleration of motion in a circle and the force exerted by the vertical magnetic field,

evB = mv2

ρ
, if v � c, (1.1)
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Fig. 1.5 The principle of the
cyclotron

Fig. 1.6 Balance of forces in
a cyclotron

and, rearranging, we can define the magnetic rigidity—the reluctance of the beam
to be bent in a curve:

B� = mv

e
, if v � c. (1.2)

In the relativistic regime if we replace the classical momentum, mv, by the
relativistic momentum, p = γmv, with γ being the Lorentz factor, we obtain the
equation, valid in the relativistic regime:

B� = p

e
. (1.3)

By good fortune the radius of the orbit in a cyclotron is proportional to the
velocity and the frequency of revolution this being the inverse of the time of
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revolution—just the length of one turn divided by the particle’s velocity

f = v

2π�
= v

2π
· eB
mv

. (1.4)

has a numerator and denominator which are both proportional to v. This frequency
remains constant as the particle is accelerated in the low energy, classical, regime.
Thus, the circulating particles stay in synchronisation with the oscillating RF field
and a continuous stream of ions injected in the centre will follow a spiral path to
reach their highest energy at the rim of the poles.

Unfortunately, the synchronism between r.f. voltage and revolution frequency
breaks down as the particles velocity begins to approach that of light and the
relativistic mass in the above equation is no longer constant. This happens over
30 MeV for protons and at double this energy for deuterons. Electrons are much too
light and relativistic to be accelerated in a cyclotron to any significant energy. For
them other acceleration concepts are more adequate, like the disk loaded travelling
wave linac or the betatron that both were described before.

The possible remedy of making the field stronger at the edge of the poles would
have preserved synchronism and continuous beams but, as we shall see, was in
conflict with the need to have a negative radial gradient to the field to provide vertical
weak focusing. As a consequence a more powerful concept had to be developed to
achieve highest particle beam energies: The synchrotron.

1.2.6 The Synchrotron

Meanwhile, in the 1940s, still higher energies were needed to pursue the aims of
physics and the stage was set for the discovery of the synchrotron principle which
opened the way to the series of circular accelerators and storage rings which have
served particles physics up to the present day. It was Australian physicist Mark
Oliphant who synthesized three old ideas into a new concept—the synchrotron. The
ideas were: accelerating between the gaps of resonators, varying the frequency, and
pulsing the magnet. In 1943 he described his invention in a memo to the UK Atomic
Energy Directorate (see [11]).

Particles should be constrained to move in a circle of constant radius thus enabling the use
of an annular ring of magnetic field . . . which would be varied in such a way that the radius
of curvature remains constant as the particles gain energy through successive accelerations
by an alternating electric field applied between coaxial hollow electrodes.

Unlike the cyclotron, the synchrotron accelerates the beam as a series of discrete
pulses or “bunches” as they are called. Each short pulse is injected at low field
and then the field rises in proportion to the momentum of particles as they are
accelerated. This ensures that the radius of the orbit remains constant. In contrast
to cyclotrons and betatrons, the synchrotron needs no massive poles to support a
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Fig. 1.7 A simple
accelerating cavity

magnetic field within the beam’s circular orbit. The guide field is instead provided
by a slender ring of individual magnets. The fact that the machine is pulsed and
the frequency must be controlled to track the increasing speed of particles is a
complication, but it solves the difficulty that isochronous cyclotron builders had
encountered in accelerating relativistic particles.

Instead of the Dees of a cyclotron acceleration is provided in a synchrotron by
fields within a hollow cylindrical resonator or “pillbox” cavity, Fig. 1.7, excited by
a radio transmitter. A particle passes from left to right as it completes each turn of
the synchrotron receiving another increment in energy at each revolution.

The early synchrotrons, like the cyclotron before them, relied on a slight negative
radial gradient in the vertical magnet field to produce field lines which belly
outwards from the magnet gap. A small radial field component deflects any particles
which head off towards the poles back to the median plane. Unfortunately, this
field shape has the opposite (defocusing) effect horizontally but, up to a certain,
rather weak, gradient strength focusing is assured by a slight imbalance between the
central force and the centrifugal acceleration. The gradient cannot be too large—
hence the term “weak focusing”.

Oliphant was the first to start building a proton synchrotron (at Birmingham
University) but he was overtaken by Stan Livingston’s 3 GeV Cosmotron at
Brookhaven National Laboratory and later by the 6 GeV Bevatron at Berkeley.

Due to the weak focusing forces in these first synchrotrons, the particles’
excursions, both horizontally and vertically are large and the magnet pole width
and gap correspondingly so. Strong focusing changed this. It was invented at the
Cosmotron, which was actually the first proton synchrotron to operate, whose
weak focusing ‘C’ shaped magnet was open to the outside. The top energy of the
Cosmotron was limited by the extra fall-off in field caused by the effect of saturation.
Stan Livingston and E.D. Courant wanted to compensate this by re-installing some
of the C magnets with their return yokes towards the outside. They were afraid
of the variations in gradient around the ring but were surprised to calculate that
the focusing seemed to improve as the strength of the alternating component of
the gradient increased. Courant, Livingston, and H.S. Snyder [12, 13] were able to
explain this retrospectively with an optical analogy of alternating focusing by equal
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Fig. 1.8 The CERN 25 GeV proton synchrotron

convex and concave lenses which will transport rays which pass through the centres
of defocusing lenses.

Alternating gradient or strong focusing greatly reduces the beam’s excursions
and so the cross section of the magnet gap by more than an order of magnitude.
Its discovery enabled Brookhaven and CERN to build the next generation of
proton synchrotrons, AGS and PS, to reach 30 GeV—five times the energy of the
Bevatron—yet use beam pipes of only a few centimetres height and width.

This was to lead to huge economies in the cost per unit length of the magnet
system. Figure 1.8 shows how this was applied to the first of the two synchrotrons,
AGS and PS that used this focusing system. From then on all synchrotrons and, later,
storage ring colliders use this scheme. The history of synchrotrons has been always
to seek methods of improving focusing and economizing on magnet aperture. The
only other step function in their development to higher energies has been the use
of superconducting magnets whose higher fields reduce the circumference of the
machine by a factor between 3 and 5.

1.2.7 Phase Stability

When the first synchrotrons were built it was by no means obvious that the
circulating beam and the accelerating voltage would remain in step. There were
those who thought that any slight mistiming of the sine wave of accelerating voltage
in the cavity might build up over many turns until particles would begin to arrive
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within the negative, decelerating, phase of the sine wave and be left behind. Even if
one succeeded in achieving synchronism for the ideal, synchronous particle, others
of slightly different energy would not have the same velocity and take a different
time to circulate around the machine. Would not these particles gradually get out of
step until they were lost? After all, particles had to make many hundred thousand
turns before reaching full energy and while transverse focusing was understood
there was no apparent focusing available in the longitudinal direction. Fortunately
the comforting principle of phase stability, which prevents this happening, was
soon to be independently discovered by V. I. Veksler in Moscow in 1944 [14] and
McMillan in Berkeley in 1945 [15], opening the way to the construction of the first
synchrotrons. We shall return to this later.

When it came to the next generation of synchrotrons, interest focused on
colliding two opposing beams of particles. It had been known for some time that
the energy available in the centre of mass from a collision of particles, one in the
beam with energy E and the other of mass m0 in a fixed target, only increased
with the square root of the accelerators energy,

√
m0E. Two particles of the same

mass and energy E colliding head on made available all their energy in the centre
of mass, 2E. The difficulty was making the two bunches of particles of sufficient
density to have a significant probability of collision or, in technical jargon a high
enough luminosity. Once this problem was solved a series of colliders: ISR, SppS,
LEP, Tevatron, HERA and finally LHC followed. Some of these (ISR, HERA and
LHC) were two separate rings which intersected to collide particles at several points
around the circumference. Others (SppS and LEP) collided protons with antiprotons
and electrons with their anti-particles: positrons. These exploited the fact that beams
of particles and antiparticles will circulate on identical trajectories, but in opposite
directions, in a single ring of bending and focusing magnets.

At present several studies are ongoing, to pave the way to even higher energies,
mainly increasing the size of the machine and using super conducting magnets with
higher critical field, to gain more bending and focusing fields in the lattice. One
example, the Future Circular Collider study, FCC, under the guidance of CERN, is
studying a 100 km proton storage ring to achieve centre of mass energies of up to
100 TeV. The R & D effort of accelerators of this dimension and complexity, in any
case, has to be done by a truly international, in other words worldwide effort.
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Chapter 2
Beam Dynamics

E. Wilson and B. J. Holzer

2.1 Linear Transverse Beam Dynamics

Now let us look in detail at the motion of particles in the transverse coordinates of
the coordinate system defined in Fig. 2.1.

2.1.1 Co-ordinate System

The guide field of a synchrotron is usually vertically directed, causing the particle to
follow a curved path in the horizontal plane (Fig. 2.1). The force guiding the particle
in a circle is horizontal and is given by:

F = e· v ×B, (2.1)

where:

v is the velocity of the charged particle in the direction tangential to its path,
B is the magnetic guide field.

The guide field inside a dipole magnet is uniform and the ideal motion of the
particle is simply a circle of (local) radius of curvature, ρ(s). The trajectory of an
ideal particle (ideal in energy and without any amplitude) that is defined by the
arrangement of the dipole magnets is called design orbit. The machine is usually
designed with this orbit at the centre of its vacuum chamber. Now there is no such
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Fig. 2.1 Charged particle orbit in magnetic field

thing as an ideal particle. Still, we shall suppose that it is possible to find an orbit or
curved path for the non-ideal particle which closes on itself around the synchrotron,
which we call the closed or equilibrium orbit and it should be close enough to the
ideal design orbit.

2.1.2 Displacement and Divergence

A beam of particles enters the machine as a bundle of trajectories spread about the
ideal orbit. At any instant a particle may be displaced horizontally by x and vertically
by z from the ideal position and may also have divergence angles horizontally and
vertically:

x ′ = dx/ds, and z′ = dz/ds. (2.2)

The divergence would cause particles to leave the vacuum pipe except for the
carefully shaped field which restores them back towards the beam centre so that
they oscillate about the ideal orbit. The design of the restoring fields determines the
transverse excursions of the beam and the size of the cross section of the magnets
and is therefore of crucial importance to the cost of a project.

2.1.3 Bending Magnets and Magnetic Rigidity

The design of a synchrotron; the diameter of the ring and its sheer size and cost for
a given energy is driven by the fact that bending particle trajectories depends on a
magnetic rigidity. The rigidity increases with momentum and is a function of the
bending field which, for room temperature magnets, saturates at about 2 T.
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Fig. 2.2 Vector diagram showing differential changes in momentum for a particle trajectory

We will now briefly derive an expression for the magnetic rigidity of a relativistic.
A particle has a relativistic momentum vector p and travels perpendicular to a field
B which is into the plane of the diagram (Fig. 2.2).

We write the Lorentz force on the particle on its circular path as

FLorentz = e ∗ (v ×B)

Assuming an idealized homogeneous dipole magnet along the particle orbit,
having pure vertical field lines, the condition for a perfect circular orbit is defined
as equality between this Lorentz force and the centrifugal force.

F centrif ugal = γmv2

ρ

This yields the following condition for the idealized ring:

Bρ = p

e

where we are referring to protons and have accordingly set q = e. We conclude
that the beam rigidity Bρ, given by the magnetic field and the size of the machine,
defines the momentum of a particle that can be carried in the storage ring, or in
other words, it ultimately defines, for a given particle energy, the magnetic field of
the dipole magnets and the size of the storage ring.

We really should use the units Newton-second for p and express e in Coulombs
to give (Bρ) in Tesla·metres. However, in charged particle dynamics we often talk
in a careless way about the ‘momentum’ pc. This actually has the dimensions of an
energy and is expressed in units of GeV.
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Fig. 2.3 Geometry of a particle trajectory in a bending magnet of length � and deflecting angle θ

A useful rule of thumb formula based on these units is:

Bρ [T ·m ] = 3.3356 pc [GeV ] . (2.3)

2.1.4 Particle Trajectory in a Dipole Bending Magnet

The trajectory of a particle in a bending magnet or dipole of length � is shown in
Fig. 2.3. Usually the magnet is placed symmetrically about the arc of the particle’s
path. One may see from the geometry that:

sin (θ/2) = �

2�
= �B

2 (B�)
, (2.4)

and, if θ << π/2

θ ≈ �B

(B�)
. (2.5)

So the bending angle provided by a dipole magnet is given by the ration of its
integrated field strength and the beam rigidity.
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Fig. 2.4 Two views of a sphere rolling down a gutter as it is focused by the walls

2.1.5 Weak Focusing

We have mentioned that cyclotrons and early synchrotrons relied on weak focusing
to constrain circulating particles within the vacuum chamber. In order to provide
this, the vertical guide field has a slight negative gradient in the radial direction
around the rim of the accelerator. The field lines belly out from the outer gap of
the magnet. It can be shown, by applying ∇ × B = 0, that there will be horizontal
field components in this region. These produce vertically directed forces on errant
particles causing them to oscillate about the median plane in a potential well (Fig.
2.4).

The motion is analogous to a small sphere rolling down a slightly inclined gutter
with constant speed. Figure 2.4 shows two views of this motion and from the bottom
view we recognise the motion as a sine wave. Note too that the sphere makes four
complete oscillations along the gutter. In the language of accelerators, its motion
has a wave number or “tune”, Q = 4.

To complete the analogy of a weak focusing synchrotron we imagine that we
bend the gutter into a circle rather like the brim of a hat. We provide the necessary
instrumentation to measure the displacement of the sphere from the centre of the
gutter each time it passes a given mark on the brim and we also have a means
to measure its transverse velocity. With the aid of a computer, we might convert
this information into the divergence angle, which is used as vertical axis in Fig.
2.5:

x ′ = dx

ds
= v⊥

v‖
. (2.6)

We can make a ring shaped gutter out of a slightly different length of gutter
than is shown so that Q is not an integer. We can plot a point for each arrival of
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Fig. 2.5 The elliptical locus of a particle’s history in phase space as it circulates in a synchrotron

the sphere in a diagram of x′ against x which we call a ‘phase space diagram’ of
transverse motion. The sphere has a large transverse velocity as it crosses the axis
of the gutter and has almost zero transverse velocity as it reaches its maximum
displacement.

If we plot these ‘observations’ they will be an ellipse (Fig. 2.5) and the phase
of the oscillator will advance by Q evolutions each time the particle returns.
Of course, only the fractional part of Q may be deduced from our observations
since our measurements do not reveal what happens round the rest of the hat’s
brim.

Now let us use the analogy to define some of the transverse dynamical quantities
of a particle beam. The area of the ellipse is a measure of how much the particle
departs from the ideal trajectory, represented in the diagram by the origin.

Area = πε [mm · rad] . (2.7)

In accelerator notation we use ε, the product of the semi-axes of the ellipse as a
measure of the area called the emittance. The emittance is usually quoted in units
of π mm·mradians. Thus if the semi-axes are 1 mm and 1 mrad the emittance will
be 1 mm·mradian but the area will be π mm·mradian. The maximum excursion in
displacement, the major axis, of the ellipse is defined as:

x̂ = √εβ, (2.8)

At locations where the beta function reaches an extremum, i.e. α = 0, we obtain
hence

x̂ ′ = √ε/β. (2.9)
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We shall see that β (later to be called the envelope or betatron function) is a
property of the gutter, not the beam. In the synchrotron it varies around the ring
and is the envelope function we have plotted in Fig. 2.10 and again in Fig. 2.11.
By analogy, the “brim of the hat” which represents the alternating gradient focusing
system shown in this figure will vary its width and curvature around the crown and
β will follow this variation in some way.

2.1.6 Alternating Gradient Focusing

In Chap. 1 we described a major break-through in the design of synchrotrons: the
discovery of alternating gradient (AG) focusing (see [1] for an excellent summary
of the dynamics of AG focussing). This allowed designers to use much stronger
focusing systems with considerable savings in the space needed for the beam cross
section.

The principle is shown in Fig. 2.6 which depicts an optical system in which
each lens is concave in one plane while convex in the other and they alternate. It
is possible, even with lenses of equal strength, to find a ray which is always on
axis at the D lenses in the horizontal plane and therefore only sees the F lenses.
To appear like Fig. 2.6 the spacing of the lenses would have to be 2f. If the ray
is also central in the lenses which are vertically defocusing, the same condition
will apply simultaneously in the vertical plane. At least one particular particle
or trajectory corresponding to this ray will never be defocused and be contained
indefinitely.

The alternating gradient idea will work even when the rays in the D lenses do not
pass exactly at their centre and the lenses are not spaced by precisely 2f. In fact it is
sufficient for the lens strengths and spacing to be chosen to ensure that the particle
trajectories tend to be closer to the axis in D lenses than in F lenses as shown in Fig.
2.10.

Fig. 2.6 Optical analogy with an alternating pattern of lenses

http://dx.doi.org/10.1007/978-3-030-34245-6_1
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2.1.7 Quadrupole Magnets

The first alternating gradient synchrotorns used alternating magnetic lenses formed
by bending magnets having the same vertical guide field but a radial gradient of
alternating sign. In a modern synchrotron the functions of guiding and focussing
the beam are separated. The dipole magnets which do the guiding have no gradient.
The principal focusing elements are quite a different kind of magnet with four poles
which produce gradient but no bending. The poles of these quadrupole magnets are
truncated rectangular hyperbolae and alternate in polarity around the aperture circle
which just touches the poles.

Figure 2.7 shows a particle’s view of the fields and forces in the aperture of a
quadrupole as it passes through normal to the plane of the paper. The field shape
is such that it is zero on the axis of the device but its strength rises linearly with
distance from the axis. This can be seen from a superficial examination of Fig. 2.7 if
we remember that the product of field and length of any field line joining the poles
is a constant. Symmetry tells us that the field is vertical in the median plane (and
purely horizontal in the vertical plane of asymmetry). The field must be downwards
on the left of the axis if it is upwards on the right.

The horizontal focusing force, −evBz, has an inward direction on both sides
and, like the restoring force on a weight suspended from a spring, rises linearly
with displacement, x. The strength of the quadrupole is characterised by its gradient
dBz/dx normalised with respect to magnetic rigidity:

k = 1

(B�)

dBz

dx
. (2.10)

Fig. 2.7 Components of field and force in a magnetic quadrupole. Positive ions approach the
reader on paths parallel to the s axis (orthogonal to x and z) [2]



2 Beam Dynamics 23

The angular deflection given to a particle passing through a short quadrupole of
length, � and strength k, at a displacement x is therefore:

Δx ′ = θ = �B/ (Bρ) = �B′x/ (Bρ) = �kx. (2.11)

The use of x′ to indicate the divergence angle of a trajectory is defined in Fig.
2.5. Compare this with a converging lens in optics:

Δx ′ = −x/f (2.12)

and we see that the focal length of a horizontally focusing quadrupole is

f = −1/ (k�) (2.13)

The particular quadrupole shown in Fig. 2.7 would focus positive particles
coming out of the paper or negative particles going into the paper in the horizontal
plane. A closer examination reveals that such a quadrupole deflects particles with
a vertical displacement away from the axis—vertical displacements are defocused.
This can be seen if Fig. 2.7 is rotated through 90◦.

2.1.8 The Equation of Motion

Earlier we derived an expression for the change in divergence of a particle passing
through the quadrupole. A horizontally focusing quadrupole (which is at the same
time vertically defocusing) has a negative k.

We first look at the vertical plane. The angular deflection given to a particle
passing through a short quadrupole of length ds and strength k at a displacement
z is therefore:

dz′ = −kzds. (2.14)

From this we can deduce a differential equation for the motion

z′′ + k(s)z = 0. (2.15)

Here we would like to make a clear statement: While inside a lattice element,
say a quadrupole lens, the normalised gradient k is constant and we get a equation
that we know from Hook’s law in classical mechanics, (see Eq. 2.12), the situation
now is more general. We allow k(s) to change, while our particles are running
through the accelerator. The corresponding equation (2.15) is called Hill’s Equation,
a second order linear equation with a periodic coefficient, k(s) which describes the
distribution of focusing strength around the ring. The above form of Hill’s equation
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applies to the motion in the vertical plane while in the horizontal plane the effect of
the dipole magnets has to be included:

x ′′ +
[

1

ρ2(s)
− k(s)

]
x = 0. (2.16)

Here the sign in front of k(s) is reversed so that the quadrupole focuses. The extra
focusing term 1/ρ2 due to the curvature of the orbit can be significant in small rings.
In the old constant gradient synchrotrons, this weak focusing term was the only form
of horizontal focusing.

We see in Fig. 2.10, the pattern of one cell of a simple synchrotron lattice—a
pattern which is repeated many times around the circumference as may be seen in
Fig. 2.11 which shows—in addition to the focusing and defocusing lenses also the
bending magnets—bending magnets. Within this pattern of dipole and quadrupole
focusing and defocusing (F and D), particles make betatron oscillations within the
envelopes described by βx and βz, or more precisely, the square roots of these
quantities (here we use the variable y to represent either the horizontal or the vertical
coordinate, x or z)

y = √εβ(s) sin (φ(s)+ φ0) . (2.17)

If one tries to verify that this is the solution of Hills Equation an important and
necessary condition emerges:

φ′ = 1/β (2.18)

From which we see that 2πβ is the local wavelength of the transverse oscilla-
tions.

2.1.9 Matrix Description

Usually in alternating gradient (AG) machines, the ring is a repetitive pattern of
focusing fields that we call the “lattice”. Each lattice element may be expressed
by a matrix and whole sections of the ring which transport the beam from place
to place may be represented as the product matrix of the single element matrices
involved, which makes the description of particle trajectories very simple and very
elegant at the same time. Any linear differential equation, like Hill’s Equation, has
solutions which can be traced from one point, s1, to another, s2, by a 2 × 2 matrix,
the transport matrix:

(
y (s2)

y ′ (s2)

)
=
(
a b

c d

)(
y (s1)

y ′ (s1)

)
= M21

(
y (s1)

y ′ (s1)

)
. (2.19)
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The transport matrix M21 has a rather simple form for each focusing quadrupole
that the particle encounters and for the drift length between quadrupoles and it
is easy to compute the four elements numerically once we define the length and
focusing strength. We can trace particles by simply forming the product of these
elementary matrices. But there is also a general relation between the elements a, b,
c, d and the amplitude and phase of transverse motion between any two points. Each
term in M21 can be expressed as a function of β(s) and φ(s). The functions of β(s)
and φ(s) may be calculated by comparing the numerical result of multiplying the
individual matrices for quadrupoles and drift lengths with what we know must be
the general form of each element.

As a first step, we derive the general form of a periodic transport matrix.
To simplify the notation we drop the explicit dependence of β and φ on s from the

expressions—we will just have to remember that they vary with s. We also introduce
a new quantity:

w = √β. (2.20)

just to avoid too many terms in what follows.
In this new notation we can write the solution of the Hill Equation:

y = ε1/2w cos (ϕ + φ0) . (2.21)

Taking the derivative and substituting ϕ′ = 1/β = 1/w2 we have:

y ′ = ε1/2w′ cos (ϕ + φ0)− ε
1
2

w
sin (ϕ + φ0) . (2.22)

Next we substitute these explicit expressions for y and y′ in both sides of the
matrix equation. We do this first with the initial condition ϕ0 = 0, this is the so-called
‘cosine’ solution, and then we do it again for the ‘sine’ solution with ϕ0 = π /2. This
is exactly equivalent to tracing the paraxial and central rays through an optical lens.
We write φ2 − φ1 = φ for each case. Each of the two solutions give us two equations
for y and y′ and thus we obtain four simultaneous equations which can be solved for
a, b, c, d in terms of w, w′, and ϕ. The result is the most general form of the transport
matrix between the positions s1 and s2 :

M12 =
( w2

w1
cosϕ −w2w

′
1 sin ϕ w1w2 sin ϕ

− 1+w1w
′
1w2w

′
2

w1w2
sin ϕ −

(
w′1
w′2
− w2

w1

)
cosϕ w1

w2
cosϕ + w1w

′
2 sin ϕ

)

.

(2.23)

This rather formidable looking expression simplifies a lot, if we refer to a full
circle, in other words, if we restrict M to apply between two identical points
in successive turns or cells of a periodic structure. Then w2 = w1, w′

2 = w′
1,
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and ϕ to become μ, the phase advance per cell. The matrix for one period is
now:

M =
(

cosμ− ww′ sinμ w2 sinμ

− 1+w2w′2
w2 sinμ cosμ+ww′ sinμ

)

. (2.24)

Next we invent some new functions of β:

β = w2,

α = −ww′ = −β ′
2 ,

γ = 1+(ww′)2

w2 = 1+α2

β
.

(2.25)

These functions (which are not the same as the parameters used in special
relativity!) are a complete and compact description of the dynamics. The matrix
now becomes even simpler:

M =
(

cosμ+ α sinμ β sinμ
− γ sinμ cosμ− α sinμ

)
=
(
a b

c d

)
. (2.26)

This is the Twiss matrix. It is the basic matrix for periodic lattices and should be
memorized.

We can imagine that if we can only find an independent way of computing the
numerical values of the four elements we can solve and find:

cosμ = (Tr M) /2 = (a + d) /2,
β = b/ sinμ > 0,
α = (a − b) / (2 sinμ) ,
γ = −c/ sinμ.

(2.27)

These Twiss parameters, μ, β, α, and γ , are therefore rigorously determined
by the overall effect of the focusing properties of the lattice elements. Still, they
vary around the ring and apply to the point chosen in the period as a starting and
finishing point. We shall see that each individual component, quadrupole, dipole, or
drift space in the ring has its own matrix and this provides the independent method of
calculation. We must first choose the starting point, the location, s, where we wish
to know β and the other Twiss parameters. By starting there and multiplying the
element matrices together for one turn we are able to find a, b, c, d numerically for
that location. We can then apply the above four equations to find the Twiss matrix.
If the machine has a natural symmetry in which there are a number of identical
periods, it is sufficient to do the multiplication up to the corresponding point in the
next period. The values of α, β, and γ would be the same if we went on for the
whole ring. By choosing different starting points we can trace β(s) and α(s). We
now give the matrices for the three basic lattice elements.
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2.1.10 Transport Matrices for Lattice Components

An empty space or drift length is the simplest of the lattice component matrices.
Figure 2.8(a) shows the analogy between a particle trajectory and a diverging ray in
optics. The angle of the ray and the divergence of the trajectory are related:

θ = tan−1 (x ′
)
. (2.28)

The effect of a drift length in phase space is a simple horizontal translation from
(x, x′) to (x+�x′, x′) and can therefore be written as a matrix:

(
x2

x ′2

)
=
(

1 �

0 1

)(
x1

x ′1

)
. (2.29)

The next case is that of a thin quadrupole magnet of infinitely small length but
finite integrated gradient:

�k = 1

(Bρ)

∂Bz

∂x
. (2.30)

The optical analogy of a thin quadrupole with a converging lens is illustrated in
Fig. 2.8(b). A ray, diverging from the focal point arrives at the lens at a displacement,
x, and is turned parallel by a deflection:

θ ≈ 1

f
x. (2.31)

This deflection will be the same for any ray at displacement x irrespective of
its divergence. This behaviour can be expressed by a simple matrix, the thin lens
matrix:

(
x2

x ′2

)
=
(

1 0
− 1/f 1

)(
x1

x ′1

)
. (2.32)

a b

Fig. 2.8 The effect of a drift—(a), left side—and a focusing quadrupole lens—(b) right side—on
a particle trajectory. The mathematical expressions are given in Eqs. (2.29) and (2.32)
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A particle arriving at a quadrupole lens at a displacement x obeys Hill’s equation

x ′′ + kx = 0. (2.33)

Hence the small deflection θ is just:

Δx ′ = −kx�. (2.34)

Comparing quadrupoles with optical lenses we remember that �k = 1/f and is
the power of the lens and that the matrix, for a thin lens, can be written:

(
1 0
− k� 1

)
. (2.35)

Under the influence of these focusing and defocusing fields, a particle trajectory
will finally look like a more or less zig-zag shaped curve; which for the example of
eight regular cells it is shown in Fig. 2.9.

Quadrupoles are sometimes not short compared to their focal length. One must
therefore use the matrices for a long quadrupole when one comes to compute the
final machine:

MF =
(

cos �
√
k 1√

k
sin �

√
k

−√
k sin �

√
k cos �

√
k

)

, and

MD =
(

cosh �
√
k 1√

k
sinh �

√
k

−√
k sinh �

√
k cosh �

√
k

)

.

(2.36)

x(mm)

s(m)

10

-10

0 10 20 30 40

Fig. 2.9 A single particle trajectory in a ring: At each part of the lattice the amplitude and angle,
(x, x′) of the particle are described by a matrix transformation, according to Eq. (2.32). The blue
line corresponds to an ideal particle, with x = x′ = 0 and so refers to the ideal orbit
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Fig. 2.10 The focusing effect of trajectory length in a pure sector dipole magnet

We can compare this with the solutions of Hill’s equations within F and D
quadrupoles:

z = cos
√
k� z0 + 1√

k
sin

√
k� z′0,

x = cosh
√
k� x0 + 1√

k
sinh

√
k� x ′0.

(2.37)

We have so far ignored the bending that takes place in dipole magnets and these
may be thought of as drift lengths in a first approximation. An exact calculation
should include the focusing effect of their ends. A pure sector magnet, whose
ends are normal to the beam will give more deflection to a ray which passes at
a displacement x away from the centre of curvature (Fig. 2.10). This particle will
have a longer trajectory in the magnet. The effect is exactly like a lens which focuses
horizontally but not vertically. The matrices for a sector magnet are:

MH =
(

cos θ ρ sin θ
− (1/ρ) sin θ cos θ

)
,

MV =
(

1 ρθ

0 1

)
.

(2.38)

Some bending magnets are not sector magnets as in Fig. 2.9, but have end
faces which are parallel. It is easier to stack laminations this way than on a curve.
The entry and exit angles are therefore, θ /2, and the horizontal focusing effect is
reduced but there is an additional focusing effect for a particle whose trajectory is
displaced vertically. In the computer model one may convert a pure sector magnet
into a parallel faced magnet by simply adding two thin lenses at each face. They are
horizontally defocusing and vertically focusing and their strength is:

k� = − tan (θ/2)

ρ
. (2.39)
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Unlike early lattice designers we have computers to help when we come to
multiply these elements together to form the matrix for a ring or a period of the
lattice [3–5]. A lattice program such as MAD [6] does all the matrix multiplication
to obtain (a, b, c, d) from each specified point, s, and back again. It prints out β
and ϕ and other lattice variables in each plane, and we can plot the result to find
the beam envelope around the machine. This is the way machines are designed.
Lengths, gradients, and numbers of FODO normal periods are varied to match the
desired beam sizes and Q values.

In Fig. 2.8 we saw the trajectory of a particle, oscillating in a pattern of alternating
focussing and defocusing quadrupoles (FODO). The trajectories in general all lie
within an envelope which has the general features of the optical model in Fig. 2.6. If
we were to repeat the observation of the displacement and divergence of a particle
on successive turns we would find the elliptical locus of its motion (Fig. 2.5). The
aspect ratio of this ellipse would depend upon where in the ring we choose to make
the observation. The ellipse would be squat near D lenses and elongated near F’s.
The figure would appear just the same if we were to plot it between what are F
quadrupoles in the vertical plane. Of course, the whole pattern of quadruples and
the envelope is shifted by the distance between adjacent quadrupoles because F-
quadrupoles in one plane are D in the other (et vice versa).

2.1.11 The Betatron Envelopes

To recapitulate, a modern synchrotron consists of pure bending magnets and
quadrupole magnets or lenses which provide focusing. These are interspersed
among the bending magnets of the ring in a pattern called the lattice. By suitable
choice of strength and spacing of the lenses the envelope function β(s) can be made
periodic in such a way that it is large at all F quadrupoles and small at all D’s.
Symmetry will ensure this is true also in the vertical plane. Particles oscillating
within this envelope will always tend to be further off axis in F quadrupoles than
in D quadrupoles and there will therefore be a net focusing action. We have already
seen that β is the aspect ratio of the phase space ellipse (see also [7, 8]).

In Fig. 2.11 we see an example of such a magnet pattern which is one cell, or
about 1% of the circumference, of the 400 GeV SPS at CERN. Although the SPS is
now considered a rather old fashioned machine its simplicity leads us to use it as an
example. The focusing structure is FODO and in this pattern half of the quadrupoles
(F) focus, while the other half, defocus (D) the beam. Bending magnets, which
in a first approximation do no focussing are represented together with other non-
focussing elements by the letter “O”. The envelope of these oscillations follows a
function β(s) which has waists near each defocusing magnet and has a maximum
at the centres of F quadrupoles. Since F quadrupoles in the horizontal plane are
D quadrupoles vertically, and vice versa, the two functions βh(s) and βv(s) are
one half-cell out of register in the two transverse planes. The function β has the
dimensions of length but the units bear no relation at this stage to physical beam
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Fig. 2.11 One cell of the
CERN SPS representing
1/108 of the circumference.
The pattern of dipole (B)
magnets and quadrupole (F
and D) lenses is shown above

size. The reader should be persuaded that particles do not follow the β(s) curves but
oscillate within them in a form of modified sinusoidal motion whose phase advance
is described by φ(s). The phase change per cell in the example shown is close to π/2
but the rate of phase advance is modulated throughout the cell.

2.2 Coupling

Until now we have considered the motion in the vertical and horizontal direction to
be orthogonal and independent. This is the ideal case. Now we look at what happens
when there is a skew quadrupole or solenoidal field in the machine which couples
horizontal motion into vertical and vice versa. This is rather a special case affecting
mainly electron synchrotrons and the reader may choose to skip to Sect. 2.3 and
leave coupling to a second reading.

In a fully coupled machine the betatron oscillations in the two transverse
directions are like two harmonic oscillators which transfer energy from one to the
other with a frequency which is just the difference between their Q’s. They act like
coupled pendula. In this way all the horizontal “emittance” can add to the vertical
emittance and the beam exceeds the available vertical aperture.

The phenomenon is particularly important in electron rings. The electron beam
would damp to zero emittance were it not for quantum emission in the horizontal
plane exciting betatron oscillations. There is no comparable excitation in the vertical
plane and only coupling of the horizontal oscillations into the vertical plane gives
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the beam any vertical dimensions. Vertical emittance, and the magnet gap needed to
accept it, is directly proportional to coupling.

2.2.1 Coupling Fields

There are two principal configurations of field which excite coupling. The first we
shall consider is a skew quadrupole, i.e. a quadrupole whose poles lie symmetrically
in the horizontal and vertical planes (Fig. 2.12).

A particle with horizontal position x, experiences not a Bz as would be the case
in a normal quadrupole and which would change its x′, but a Bx which together with
the paraxial velocity deflects vertically in the direction of v × B. Of course once the
particle has acquired a vertical displacement z after a number of turns it experiences
a vertical field, for in a skew quadrupole the field is:

Bx/ (Bρ) = kx,

Bz/ (Bρ) = −kz. (2.40)

Thus a horizontal displacement couples into the vertical plane leading to a verti-
cal divergence and displacement. The vertical displacement goes on to couple back
into the horizontal plane modifying the horizontal displacement and divergence—
and so it proceeds transferring transverse momentum back and forth from one plane
to the other.

A solenoid is the other field configuration that can couple the two planes but this
kind of coupling is less important in synchrotrons and we leave it to the reader to
consult a more exhaustive treatment of coupling in [9].

Fig. 2.12 The magnetic field and force in a skew quadrupole
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2.2.2 Qualitative Treatment of Coupling

In our treatment the theory is deliberately simplified to reveal the physical mecha-
nisms at work. We assume that the coupling is driven by a single skew quadrupole at
the centre of one of the existing lattice machine quadrupoles where β is maximum
and its derivative zero. We ignore the changes in betatron phase of one plane with
respect to the other within a single turn.

The skew quadrupole gradient is normalized:

k = 1
(Bρ)

(
∂Bx
∂x

)

z=0
,

l = length of the quadrupole.
(2.41)

Figure 2.13 on the left shows the betatron motion in the horizontal plane. We
have normalized the elliptical phase space trajectory into a circle at the location
of the skew quadrupole by multiplying the divergence by βx. On the right we
have done the same for the vertical plane. The angular kick �p, on passing
the skew quadrupole is calculated from a similar diagram for the vertical plane
and

Δpx = βxk�w cosQVθ, (2.42)

where w = √
εVβz is the radius of the circle for vertical motion, and u = √

εHβx
is the radius horizontally.

Fig. 2.13 Phase space diagram
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The kick, projected as an amplitude increment becomes:

δu = wβxk� sinQHθ cosQVθ. (2.43)

When we use:

sinA cosB = 1

2
sin (A− B)+ 1

2
sin (A+ B)

and ignore the second, high frequency term; we obtain the coupled equations for a
single passage:

δw
w
= −
√

εH
εV

√
βxβz

2 k� sin (QH −QV) θ,

δu
u
=
√

εV
εH

√
βxβz

2 k� sin (QH −QV) θ.
(2.44)

These are incremental equations which we must sum over the n turns as the
coupling enhances u at the expense of w.

Figure 2.14 shows diagrammatically the coupled motion. The vertical betatron
amplitude decrease from w + �w to w in one quarter period of the slow oscillation
which takes 1/4|QH − Qv| turns. The mean value of the cosine is taken as 2/π. We
then arrive at the expressions for the maximum excursions in amplitude:

Δw
w

=
√

εH
εV

√
βxβz

4π |QH−Qv|k�,
Δu
u
=
√

εV
εH

√
βxβz

4π |QH−Qv|k�.
(2.45)

We now move from the phase plane into real space. Some machines were
designed to have a rectangular “vacuum chamber” which would accept particles
which simultaneously have large horizontal and vertical “emittances”. In this sense
emittance is defined for a single particle

εH = πu2/βx, εV = πw2/βy. (2.46)

In the presence of coupling, the particle motion is a series of Lissajous figures
filling the rectangular cross-section but always touching it somewhere on each turn
(Fig. 2.15). It is inevitable therefore that if coupling increases either amplitude by
�u/u or �w/w, some fraction of particles will be lost.

A rigorous treatment of coupling is too lengthy to include here but the reader may
consult [9–11] for a complete description. This lengthier treatment leads to a model
in which the modes of betatron oscillations are no longer about the vertical and
horizontal planes but about two orthogonal principal planes inclined with respect to
the vertical and horizontal frame.
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Fig. 2.14 Coupled betatron oscillations for 1/|QH − Qv| turns

2.3 Liouville’s Theorem

Now let us return to the ‘mainstream’ of transverse dynamics. Liouville’s theorem is
a conservation law that applies to the area occupied by a number of particles plotted
in phase space.

We should think of a beam of particles as a cloud of points within a closed
contour in a transverse phase space diagram (Fig. 2.16). Liouville’s theorem tells
us that this area within the contour is conserved. The contour is usually, but not
always, an ellipse. In Fig. 2.5 we came across such an elliptical contour—the locus
of a particle’s motion plotted in phase space (x,x′) and we call its area, the emittance.
We could also think of it as a limiting contour enclosing all the particles in the beam
which we would again call the emittance—not of the particle but of the beam as a
particle ensemble.

We express beam emittance in units of π mm·milliradians. According to
Liouville the emittance area will be conserved as the beam passes down a transport
line or circulates in a synchrotron whatever magnetic focusing or bending operation
we do on the beam—provided that only conservative forces are taken into account.
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Fig. 2.15 Particle lost due to
coupling

Fig. 2.16 Liouville’s
theorem applies to this
contour

Even though the ellipse may appear to have many shapes around the accelerator
its phase space area will not change (Fig. 2.17). The aspect ratio of the ellipse
will change however. At a narrow waist, near a D quadrupole (a) in Fig. 2.17, its
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Fig. 2.17 How the conserved phase space appears at different points in a FODO cell

Fig. 2.18 The parameters of a phase-space ellipse containing an emittance ε at a certain point in
the lattice. The shape and orientation of the ellipse are determined by the Twiss parameters at the
given location

divergence will be large, while in an F quadrupole (d) where the betatron function
is maximum, its divergence will be small. The beam is also seen at a broad waist or
maximum in the beta function and a place where the beam is diverging.

In Fig. 2.18 we see how the various features of the ellipse are related to the
Twiss parameters. The equation of the ellipse, often called the Courant and Snyder
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invariant, has the form

γ (s)y2 + 2α(s)yy ′ + β(s)y ′2 = ε. (2.47)

Here y is used to mean either of the transverse displacements, x or z. It is straight
forward determine the relation between the shape and orientation of the (x,x′) ellipse
and the Twiss parameters α, β, γ as indicated in Fig. 2.18.

The invariance of the (x,x′) space area, as we move to different points in the ring
is an alternative statement of Liouville’s theorem.

A word of caution—another, stricter, version of Liouville’s theorem states that:

In the vicinity of a particle, the particle density in phase space is constant if the particles
move in an external magnetic field or in a general field in which the forces do not depend
upon velocity.

This rules out the application of Liouville’s theorem to situations in which space
charge forces within the beam play a role or when there is a velocity dependent effect
such as when particles emit synchrotron light. However we may apply Liouville
to proton beams which do not normally emit synchrotron light and to electrons
travelling for a few turns in a synchrotron. This is usually too short a time for
electrons to emit enough synchrotron light energy to affect their transverse motion.

Liouville’s theorem does not apply as a proton beam is accelerated. Observations
tell us this is not the case. The beam appears to shrink. This is because the co-
ordinates we have used so far, y and y′, are not ‘canonical’ in the sense defined by
Hamiltonian in his mechanics, which is part and parcel of Liouville’s mathematical
theory of dynamics. We should therefore express emittance in Hamilton’s canonical
phase space and relate this carefully to the co-ordinates, displacement, y, and
divergence, y′, which we have been using so far. We can then define an emittance
which is conserved even as we accelerate.

We shall have to be particularly careful not to confuse Twiss parameters, and
the parameters of special relativity: In special relativity we use β as the ratio of the
particles velocity and the speed of light and the Lorentz factor γ describes the total
energy divided by the rest energy. The reader will have to examine the context to be
sure. For those who have not met Hamiltonian mechanics, it is sufficient to know
that the canonical co-ordinates of relativistic mechanics are:

p = m0ẏ√
1 − v2/c2

, q = y. (2.48)

Here q or y is a general transverse co-ordinate, p its conjugate momentum and
we define β and γ when used in the context of special relativity to be:

β = v/c,

γ = 1/
√

1 − β2,

m0 = rest mass,
c = velocity of light.

(2.49)
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We may find the relationship between canonical momentum and divergence from
the substitution:

py = m0
dy

dt
γ = m0

ds

dt

dy

ds
γ = mc (βγ ) y ′. (2.50)

Writing Liouville’s Theorem expressed in canonical coordinates we can use the
above expression to define a conserved quantity and relate it to the area in (y, y′)
space

∫
pydy = m0c (βγ )

∫
y ′dy = p0

∫
y ′dy (2.51)

where p0 is the momentum in the direction of motion of the particle.
This invariant is the emittance, ε, of our transverse phase space multiplied by

the relativistic βγ which is proportional to momentum. Accelerator physicists often
call this the invariant or ‘normalised’ emittance:

ε∗ = βγ ε [π mm ·mrad] (2.52)

This normalised emittance, ε∗, is conserved as acceleration proceeds in a
synchrotron and the physical emittance within the right-hand side of the equation
must fall inversely with momentum if the whole term is to be conserved. Close to
the velocity of light this implies that it is inversely proportional to energy.

Emittance = πε =
∫
y ′dy = πε∗/ (βγ ) ∝ 1/p0. (2.53)

We therefore expect the beam dimensions to shrink as (Fig. 2.19) a phenomenon
called ‘adiabatic damping’.

2.3.1 Chains of Accelerators

As a consequence of the adiabatic shrinking, the beam emittance is largest at low
energy, and so is the beam dimension. Proton accelerators need their full aperture
at injection and it is then that their design is most critical. For this reason it is
economic to split a single large ring into a chain of accelerators—the smaller
radius rings having a large aperture while the higher energy rings with large radius
can have smaller apertures. In these chains of proton accelerators, such as the
CERN accelerator complex, Linac – Booster – PS – SPS, the invariant emittance,
determined by the parameters of the beam as it leaves the ion source at the beginning
of the linac, may be conserved to several hundred GeV. Of course one must
guard against mismatches between machines or non-linear fields which dilate the
emittance.
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Fig. 2.19 Adiabatic
shrinking of the beam as
function of the beam
momentum during
acceleration

2.3.2 Exceptions to Liouville’s Theorem

The invariance of normalised emittance of a proton beam and the shrinking of its
physical emittance with energy is quite the opposite of what happens in an electron
machine. Liouville’s theorem only applies to conservative systems, where particles
are guided by external fields and not to electron machines where particles emit
some of their own energy. Electrons, being lighter than protons and hence more
relativistic, emit quanta of radiation as they are accelerated. This quantised emission
causes particles to jump around in momentum, leading to changes in the trajectories
amplitude and angle. These changes couple into both planes of transverse phase
space. At the same time, there is a steady tendency for particles near the edge of the
emittance to lose transverse energy and fall back towards the centre. In an electron
machine the emittance is determined not by the Liouville but by the equilibrium
between these two effects. In fact, it grows with E2.

Consider a number of protons which have the maximum amplitude present in the
beam. They follow trajectories at the perimeter of the ellipse but at any instant have
a random distribution of initial phases φ0. If we were able to measure y and y′ for
each and plot them in phase space, they would lie around the ellipse of area πε and
their co-ordinates would lie in the range of

−√βε ≤ y ≤ √
βε,

−√
εγ ≤ y ′ ≤ √

εγ .
(2.54)

Particles in a beam are usually distributed in a population which appears
Gaussian when projected on a vertical or horizontal plane. In a proton machine
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the emittance boundary used to be conventionally chosen to be that of a proton
with amplitude 2σ. This would include about 90% (strictly 87%) of a Gaussian
beam where σ is the standard distribution. In an electron machine a 2σ boundary
would be too close to the beam and an aperture stop placed at this distance would
rather rapidly absorb most of the beam as particles redistribute themselves, moving
temporarily into the tails due to quantum emission and damping. The safe physical
boundary for electrons depends on the lifetime required but is in the region of 6σ

to 10σ. The emittance which is normally quoted for an electron beam corresponds
to an electron with the amplitude of σ in the Gaussian projection. We are then free
to choose how many σ’s we must allow. There is consequently a factor 4 between
emittance defined by electron and proton experts.

2.4 Momentum Dependent Transverse Motion

In the previous chapters, we have studied the motion of a particle as it swings from
side to side about the ideal orbit around the synchrotron: the transverse motion.
Nothing is perfect, however, and so we cannot assume that each and every proton
in a large ensemble of up to 1011 particles will have exactly the ideal momentum.
Instead we expect a certain momentum spread in the beam and therefore we have
to study how transverse motion depends on small departures, �p/p0, from the
synchronous momentum p0.

2.4.1 Dispersion

The central closed orbit of a synchrotron is matched to an ideal (synchronous)
momentum p0. A particle of this momentum and of zero betatron amplitude will
pass down the centre of each quadrupole, be bent by exactly 2π by the bending
magnets in one turn of the ring and remain synchronous with the r.f. frequency. Its
path is called the central (or synchronous) momentum closed orbit. In Fig. 2.8 this
ideal orbit is the horizontal axis and we see particles executing betatron oscillations
about it but these oscillations do not replicate every turn. The synchronous orbit,
however, closes on itself so that x and x′ remain zero.

We now consider a closed orbit which is distorted in the horizontal plane by
non-ideal bends in the dipole. Figure 2.20 shows a particle with a lower momentum
�p/p < 0 and which is bent horizontally more in each dipole of a FODO lattice. We
could argue that the total deflection, being more than 2π would cause it to spiral
inwards and hit the vacuum chamber wall. On the other hand there is a closed orbit
for this lower momentum in which the extra bending forces are compensated by
extra focusing forces as the orbit is displaced inwards in the F quadrupoles and
less so in the defocusing in the D’s (Fig. 2.20). We may describe the shape of
this new closed orbit for a particle of unit �p/p by a dispersion function D(s). The
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Fig. 2.20 The extra inward
force given to a low
momentum particle by the
dipoles is balanced by the
focusing the quadrupoles and
defines a dispersion function

Fig. 2.21 The beam cross
sections in real space for
beams of three different
momenta at a point where the
dispersion function is large

displacement of the closed orbit is:

x(s) = D(s)
Δp

p0
. (2.55)

In Fig. 2.21 we see how the effect of dispersion for off momentum orbits adds to
the betatron motion to widen the beam cross section. The betatron motion of each
of the three particles: �p/p < 0, �p/p = 0, and �p/p > 0, is within an ellipse in
physical (x, z) space. The ellipses for each momentum are separated by a distance
D(s)�p/p. The semi-aperture required will be:

aV = √βVεV, aH = √βHεH +D(s)
Δp

p
. (2.56)

2.4.2 Chromaticity

This effect is equivalent to the chromatic aberration in a lens. It is defined as a
quantity Q′:

ΔQ = Q′Δp
p
. (2.57)
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The chromaticity [12] arises because the focusing strength of a quadrupole has
(Bρ) in the denominator and is therefore inversely proportional to momentum:

k = 1

(Bρ)

dBz

dx
. (2.58)

A small spread in momentum in the beam, ± �p/p, causes a spread in focusing
strength:

Δk

k
= ∓Δp

p
. (2.59)

Integrated over all focusing (and defocusing) elements in the ring, we obtain a
change in the tune of the machine

ΔQ = 1

4π

∫
β(s)δk(s)ds. (2.60)

This enables us to calculate Q′:

ΔQ = 1

4π

∫
β(s)δk(s)ds =

[ −1

4π

∫
β(s)k(s)ds

]
Δp

p
. (2.61)

The quantity in square brackets is the chromaticity Q′. To be clear, this is
called the natural chromaticity. For most alternating gradient machines, its value
is about −1.3Q. Of course there are two Q values relating to horizontal and vertical
oscillations and therefore two chromaticities. Chromaticity may be corrected with
sextupole magnets (see Chap. 3, and Sects. 6.1 and 8.1).

2.5 Longitudinal Motion

2.5.1 Stability of the Lagging Particle

Suppose two particles are well below the velocity of light. A particle A, that arrives
at the right moment to in the RF resonator and thus will obtain exactly the right
acceleration voltage. We call this particle “synchronous” (see Fig. 2.22). A second
particle, B, arrives late, and so receives an extra energy increment which will cause it
to speed up and overtake the synchronous particle, A. In so doing, its energy defect,
�E, grows and, provided the amplitude is not too large, its trajectory will follow an
ellipse in phase space. This describes this motion up and down the r.f. wave (Fig.
2.22) and may remind some readers of the representation of a simple harmonic
oscillator, or pendulum. When plotted in a phase space diagram of velocity versus
longitudinal displacement we indeed obtain a shape that is elliptical. The trajectory

http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_6
http://dx.doi.org/10.1007/978-3-030-34245-6_8
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Fig. 2.22 The limiting trajectory for a particle in a ‘moving’ or accelerating bucket when the
stable phase is not zero

of this longitudinal movement in phase space is closed and over many turns the
average deviation from the synchronous energy is zero. This phase stability depends
upon the fact that δE is positive when φ − φs is small and positive [13, 14].

When a particle reaches the non-linear part of the r.f. wave and over the top of
the wave, it will still be restored and oscillate about the stable phase provided it
does not reach and pass the point where it receives less incremental energy than the
synchronous particle. On this non-linear part of the curve the motion is no longer
an ellipse but is distorted into a fish-shape but its trajectory is still closed and stable.
However, if a particle, C, oscillates with such large amplitude that it falls below
the synchronous voltage, an increase in φ will cause a negative �E which in turn
causes φ to move further away from the synchrotron particle. This particle is clearly
unstable and will be continuously decelerated. There is a particle which, starting at
φ = π− φs, would trace out a limiting fish-shaped trajectory which is the boundary
or separatrix between stable and unstable motion. The region within this separatrix
is called the r.f. bucket and is shown in the lower half of Fig. 2.22. Formulae for the
calculation of the parameters of moving buckets are to be found in [15].

Let us look more carefully at the argument that a particle, arriving late because
of its lower energy, would see a higher RF voltage from the rising waveform and,
accelerated to a higher velocity, would catch up with the synchronous particle.
Dispersion may make the situation more complicated. Giving the errant particle
more energy will speed it up but may also send it on an orbit of larger radius.

The path length that the particle, B, must travel around the machine, or more
correctly, the change in path length with momentum, must depend upon the
dispersion function. The closed orbit will have a mean radius:

R = R0 +D
Δp

p
. (2.62)

Close to the velocity of light where acceleration can increase momentum but not
velocity, the longer path length will more than cancel the small effect of velocity
and the particle, instead of catching up with its synchronous partner, will arrive
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even later than it did on the previous turn. This seems to defeat the whole idea of
phase stability. Depending on how the synchrotron is designed and which particles
it accelerates, there can be a certain energy where our initial ideas of phase stability
break down. This is called the transition energy. Fortunately there is also a way of
ensuring stability above transition.

2.5.2 Transition Energy

The rigorous argument to resolve the question of velocity versus path length is to
examine how the revolution time (or its reciprocal, the revolution frequency) varies
as the particle is given extra acceleration. The revolution frequency is:

f = βc

2πR
, (β = v/c) . (2.63)

This revolution frequency, f, depends on two momentum dependent variables,
the relativistic β=v/c and R, the mean radius. The penultimate equation gives the
change in the radius. The momentum dependence of β is determined by:

p = E0β√
1 − β2

. (2.64)

The rate of “catching up” depends upon a “slip factor”, η, which is defined as
logarithmic differential of frequency as a function of momentum. The procedure of
partial derivatives tells us there must be two terms. Hence:

ηrf = Δf/f

Δp/p
= p

β

dβ

dp
− p

R

dR

dp
= 1

γ 2 −
D

R0
. (2.65)

The first term on the right-hand side describes the increase in speed with p and
the other (negative), how the path to be completed increases with p.

The second term is energy independent while the first term shrinks as acceleration
proceeds. At low energy this is largest and η is >0. But, since γ = E/E0, the first term
becomes smaller than the second at high energy so that η changes sign from positive
to negative. During the acceleration process there is a certain energy, the transition
energy, at which η is momentarily zero. At transition, the value of γ satisfies:

1

γ 2
tr
= D

R
. (2.66)

In proton synchrotron design this condition tends to be encountered mid–way
through the acceleration cycle and can only be avoided with some ingenuity in the
design of the lattice. This was a worry to the designers of the PS and AGS, the
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Fig. 2.23 Shows how
changing the phase of the RF
voltage waveform can give
the lagging particle, B, less
energy rather than more and
lead to stability above
transition

first proton synchrotrons of high enough energy to encounter this problem during
acceleration but it was then realised that one could, almost instantaneously, change
the phase of the voltage wave in the RF cavities to be falling rather than rising at the
moment of the synchronous particles arrival (see Fig. 2.23). With such a reversed
slope, particles arriving late are given less than their ration of energy and take a
inner circular path—a short cut—to arrive earlier next time.

Electron machines are fortunate in that due to the small rest mass their Lorentz
factor γ , being 2000 times higher, ensures that the first term may be neglected and
such machines operate always above transition.

2.5.3 Synchrotron Motion

If we consider the motion of a particle on the linear part of the voltage wave of
an r.f. cavity it is not difficult to imagine that it approximates rather closely to a
harmonic oscillator. Unlike to the situation in the transverse plane, however, the
motion becomes more complicated when the oscillation amplitude is larger, and the
particle feels the non-linear part of the sinusoidal RF wave, or even more, for part
of its motion it finds itself over the crest of the wave. But first let us focus on a small
amplitude solution.

It is not hard to deduce from special relativity that the momentum may be written

p = m0c (βγ ) . (2.67)

The quantity �(βγ ) serves as the momentum co-ordinate in longitudinal phase
space. The other co-ordinate is the particle’s arrival phase, φ, with respect to the
zero crossing of the r.f. voltage at the cavity. Let us consider the simplest case of
a small oscillation in a stationary bucket, φs = 0 (when the particle is not being
accelerated).
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A particle with a small phase error will describe an ellipse in phase space which
one may write parametrically as

Δ(βγ ) = Δ̂(βγ ) sin 2πfst,

φ = φ̂ cos 2πfst,
(2.68)

where fs is the frequency of execution of these oscillations in phase which we call
the synchrotron frequency.

To reveal the differential equation behind this motion we must first remember that
the angular frequency 2πf of an oscillator is nothing other than the rate of change of
phase, φ̇ or to be exact −φ̇. (The negative sign stems from the fact that φ is a phase
lag.) We may therefore relate the rate of change in arrival phase to the difference in
revolution frequency of the particle, compared to that of the synchronous particle.

φ̇ = −2πh [f (Δβγ )− f (0)] = −2πhΔf. (2.69)

We have multiplied by, h, the harmonic number of the r.f. since φ is the phase
angle of the r.f. swing while f (�βγ ) is the revolution frequency. Here we can use
the definition of the slip factor η and then simply use some standard relativistic
relations to end up with �f as a function of �E, the energy defect with respect to
the synchronous particle:

Δf = ηf
Δp

p
= ηf

Δ (βγ )

(βγ )
= ηf

β2

Δγ

γ
= ηf

E0β2γ
ΔE. (2.70)

where E0 the total energy (including its rest mass) of the synchronous particle.
We differentiate once more to obtain a second order differential equation which

we hope to resemble a simple oscillator.

φ̈ = −2πhηf

E0β2γ

(
ΔĖ
)
. (2.71)

The extra energy given per turn to a particle whose arrival phase is φ will be

ΔE = eV0 (sin φ − sin φs) , (2.72)

and the rate of change of energy will be this times, f, the revolution frequency. So
we can write

φ̈ = −2πeV0hηf
2

E0β2γ
(sinφ − sinφs) . (2.73)

This is a fundamental and exact description of the motion provided the param-
eters should change slowly (the adiabatic assumption). We can simply integrate to
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find its solution numerically but to see an analytic solution for small amplitudes we
set φs = 0 and φ ≈ sinφ :

φ̈ + 2πeV0hηf
2

E0β2γ
φ = 0. (2.74)

The frequency of these synchrotron oscillations in longitudinal phase space is

fs =
√

|η| heV0

2πE0β2γ
f, (2.75)

or writing frf = hf we could equally express

fs =
√

|η| eV0

2πE0β2γ h
frf. (2.76)

In analogy to the transverse plane, we define a synchrotron tune, Qs, as the
number of such oscillations per revolution of the machine. This is analogous to
Q in transverse phase space.

Qs = fs

f
=
√
|η| ehV0 cosφs

2πE0β2γ
. (2.77)

Usually Qs is less than 10% of the revolution frequency. It drops down to zero at
γ transition where η is zero and then rises again. In large proton machines it can be
in the region 0 to 100 Hz and, but for the vacuum, one might hear it!

Close to γ tr we cannot strictly assume that β, γ , η, and f vary slowly in
comparison with the synchrotron oscillation which this equation describes. Hence
we should use a more exact form of the equation of motion and approximate only
when it seems that this is justified:

d

dt

[
E0β

2γ φ̇

2πηhf 2

]
+ eV0 (sin φ − sinφs) = 0. (2.78)

In a stationary bucket, when φs = 0, this exact differential equation for large
amplitude motion is identical to that for a rigid pendulum:

�
d2θ

dt2
+ g sin θ = 0. (2.79)

There is an extra term, sinφs, on the right hand side of the synchrotron equation
which is not there in the pendulum case but it could be introduced too for the
pendulum by using a magnetic ‘bob’ and biasing its equilibrium position to one
side by attaching a weight on a cantilever at right angles to the rod of the pendulum.
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Fig. 2.24 Adiabatic trapping
of coasting beam in growing
stationary bucket

In fact the unbiased pendulum corresponds to synchrotron motion when there is
no acceleration—we say the bucket is stationary. In Fig. 2.22 we saw how particles
close to the edge of the stable area of the bucket follow a fish-shaped trajectory
when φs = 0; before acceleration starts or when the beam is held at the same energy
in collider mode (see Fig. 2.24).

In order to accelerate φs must be made finite, in which case the figure changes
somewhat. The stable area becomes smaller and shaped like a fish—or rather a series
of fish chasing each other’s tails. Small amplitude motion will still be sinusoidal but
the ellipse will be centred on the stable phase φs and not on φ = 0.

2.5.4 Stationary Buckets

The size of the bucket depends on how close the stable phase, φs is to the crest of
the sine-wave. It shrinks to zero if φs = 90◦. There is a special case if φs is zero.
This is often the case as a beam injected into a synchrotron before acceleration has
started or in a collider where the r.f. simply holds the bunches together. The bucket
is then said to be ‘stationary’ stretching over all phases from −π to π. Its height is
the range of energies 2�E which the r.f. wave can constrain and this turns out to be
dependent on

√
V for a given φs. If V is reduced, the more energetic particles spill

out of the bucket.
Very often the particles are injected as a continuous ribbon without any longitu-

dinal structure crosshatched in Fig. 2.24. Usually acceleration has not yet started,
the magnetic field B is constant, and φs is zero. If V is increased slowly, the height
of the stationary bucket grows, and more and more of the energy spread in the beam,
�E, is trapped (Fig. 2.24). This is called “adiabatic trapping”.
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Chapter 3
Non-linear Dynamics in Accelerators

Werner Herr and Etienne Forest

3.1 Introduction

Non-linear effects in accelerator physics are important both during the design stage
and for successful operation of accelerators. Since both of these aspects are closely
related, they will be treated together in this overview. Some of the most important
aspects are well described by methods established in other areas of physics and
mathematics. Given the scope of this handbook, the treatment will be focused on
the problems in accelerators used for particle physics experiments. Although the
main emphasis will be on accelerator physics issues, some of the aspects of more
general interest will be discussed. In particular to demonstrate that in recent years
a framework has been built to handle the complex problems in a consistent form,
technically superior and conceptually simpler than the traditional techniques. The
need to understand the stability of particle beams has substantially contributed to the
development of new techniques and is an important source of examples which can
be verified experimentally. Unfortunately the documentation of these developments
is often poor or even unpublished, in many cases only available as lectures or
conference proceedings.

This article is neither rigorous nor a complete treatment of the topic, but rather an
introduction to a limited set of contemporary tools and methods we consider useful
in accelerator theory.
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3.1.1 Motivation

The most reliable tools to study (i.e. description of the machine) are simulations
(e.g. tracking codes).

• Particle Tracking is a numerical solution of the (nonlinear) Initial Value Problem.
It is a “integrator” of the equation of motion and a vast amount of tracking codes
are available, together with analysis tools (Examples: Lyapunov, Chirikov, chaos
detection, frequency analysis, . . . )

• It is unfortunate that theoretical and computational tools exist side by side
without an undertaking how they can be integrated.

• It should be undertaken to find an approach to link simulations with theoretical
analysis, would allow a better understanding of the physics in realistic machines.

• A particularly promising approach is based on finite maps [1].

3.1.2 Single Particle Dynamics

The concepts developed here are used to describe single particle transverse dynam-
ics in rings, i.e. circular accelerators or storage rings. This is not a restriction for the
application of the presented tools and methods. In the case of linear betatron motion
the theory is rather complete and the standard treatment [2] suffices to describe the
dynamics. In parallel with this theory the well known concepts such as closed orbit
and Twiss parameters are introduced and emerged automatically from the Courant-
Snyder formalism [2]. The formalism and applications are found in many textbooks
(e.g. [3–5]).

In many new accelerators or storage rings (e.g. LHC) the description of the
machine with a linear formalism becomes insufficient and the linear theory must be
extended to treat non-linear effects. The stability and confinement of the particles is
not given a priori and should rather emerge from the analysis. Non-linear effects are
a main source of performance limitations in such machines. A reliable treatment is
required and the progress in recent years allows to evaluate the consequences. Very
useful overview and details can be found in [6–8].

3.1.3 Layout of the Treatment

Following a summary of the sources of non-linearities in circular machine, the basic
methods to evaluate the consequences of non-linear behaviour are discussed. Since
the traditional approach has caused misconception and the simplifications led to
wrong conclusions, more recent and contemporary tools are introduced to treat
these problems. An attempt is made to provide the physical picture behind these
tools rather than a rigorous mathematical description and we shall show how the



3 Non-linear Dynamics in Accelerators 53

new concepts are a natural extension of the Courant-Snyder formalism to non-linear
dynamics. An extensive treatment of these tools and many examples can be found
in [7]. In the last part we summarize the most important physical phenomena caused
by the non-linearities in an accelerator.

3.2 Variables

For what follows one should always use canonical variables!
In Cartesian coordinates:

R = (X, PX, Y, PY ,Z, PZ, t) (3.1)

If the energy is constant (i.e. PZ = const.), we use:

(X, PX, Y, PY ,Z, t) (3.2)

This system is rather inconvenient, what we want is the description of the particle
in the neighbourhood of the reference orbit/trajectory:

Rd = (X, PX, Y, PY ,Z, t) (3.3)

which are considered now the deviations from the reference and which are zero for
a particle on the reference trajectory

It is very important that it is the reference not the design trajectory!
(so far it is a straight line along the Z-direction)

3.2.1 Trace Space and Phase Space

A confusion often arises about the terms Phase Space (x, px, . . .) or Trace Space
(x, x ′, . . .)

It is not laziness nor stupidity to use one or the other:

– Beam dynamics is strictly correct only with (x, px, . . .), (see later chapter) but in
general quantities cannot be measured easily

– Beam dynamics with (x, x ′, . . .) needs special precaution, but quantities based
on these coordinates are much easier to measure

– Some quantities are different (e.g. emittance)

It comes back to a remark made at the beginning, i.e. that we shall use rings
for our arguments. In single pass machine, e.g. linac, beam lines, spectrometers,
the beam is not circulating over many turns and several hours, therefore there is no
interest in stability issues. Instead for most of these applications what counts is the
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coordinates and angles at a given position (x, x ′, y, y ′), e.g. at the end of a beam
line or a small spot one an electron microscope. When “accelerator physicists” talk
about concepts such as tune, resonances, β-functions, equilibrium emittances etc.,
all these are irrelevant for single pass machine. There is no need to study iterating
systems. In these cases the use of the trace space is fully adequate, in fact preferred
because the quantities can be measured. In the end, the mathematical tools are very
different from the ones discussed in this article.

3.2.2 Curved Coordinate System

For a “curved” trajectory, in general not circular, with a local radius of curvature
ρ(s) in the horizontal (X–Z plane), we have to transform to a new coordinate system
(x, y, s) (co-moving frame) with:

X = (x + ρ) cos
(
s
ρ

)
− ρ

Y = y

Z = (x + ρ) sin
(
s
ρ

) (3.4)

The new canonical momenta become:

px = PX cos
(
s
ρ

)
+ PZ sin

(
s
ρ

)

py = PY

ps = PZ

(
1 + x

ρ

)
cos
(
s
ρ

)
− PX

(
1 + x

ρ

)
sin
(
s
ρ

) (3.5)

3.3 Sources of Non-linearities

Any object creating non-linear electromagnetic fields on the trajectory of the
beam can strongly influence the beam dynamics. They can be generated by the
environment or by the beam itself.

3.3.1 Non-linear Machine Elements

Non-linear elements can be introduced into the machine on purpose or can be
the result of field imperfections. Both types can have adverse effects on the beam
stability and must be taken into account.



3 Non-linear Dynamics in Accelerators 55

3.3.1.1 Unwanted Non-linear Machine Elements

The largest fraction of machine elements are either dipole or quadrupole magnets.
In the ideal case, these types of magnets have pure dipolar or quadrupolar fields
and behave approximately as linear machine elements. Any systematic or random
deviation from this linear field introduces non-linear fields into the machine lattice.
These effects can dominate the aperture required and limit the stable region of the
beam. The definition of tolerances on these imperfections is an important part of
any accelerator design.

Normally magnets are long enough that a 2-dimensional field representation is
sufficient. The components of the magnetic field can be derived from the potential
and in cylindrical coordinates (r,�, s = 0) can be written as:

Br(r,�) =
∞∑

n=1

(Bnsin(n�)+ Ancos(n�))

(
r

Rref

)n−1

, (3.6)

B�(r,�) =
∞∑

n=1

(Bncos(n�)− Ansin(n�))

(
r

Rref

)n−1

, (3.7)

where Rref is a reference radius and Bn and An are constants. Written in Cartesian
coordinates we have:

B(z) =
∞∑

n=1

(Bn + iAn)

(
r

Rref

)n−1

(3.8)

where z = x + iy = rei�. The terms n correspond to 2n-pole magnets and the
Bn and An are the normal and skew multipole coefficients. The beam dynamics set
limits on the allowed multipole components of the installed magnets.

3.3.1.2 Wanted Non-linear Machine Elements

In most accelerators the momentum dependent focusing of the lattice (chromaticity)
needs to be corrected with sextupoles [3, 4]. Sextupoles introduce non-linear fields
into the lattice that are larger than the intrinsic non-linearities of the so-called linear
elements (dipoles and quadrupoles). In a strictly periodic machine the correction can
be done close to the origin and the required sextupole strengths can be kept small.
For colliding beam accelerators usually special insertions are foreseen to host the
experiments where the dispersion is kept small and the β-function is reduced to a
minimum. The required sextupole correction is strong and can lead to a reduction
of the dynamic aperture, i.e. the region of stability of the beam. In most accelerators
the sextupoles are the dominant source of non-linearity. To minimize this effect is
an important issue in any design of an accelerator.
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Another source of non-linearities can be octupoles used to generate amplitude
dependent detuning to provide Landau damping in case of instabilities.

3.3.2 Beam–Beam Effects and Space Charge

A strong source of non-linearities are the fields generated by the beam itself. They
can cause significant perturbations on the same beam (space charge effects) or on
the opposing beam (beam-beam effects) in the case of a colliding beam facility.

As an example, for the simplest case of round beams with the line density n and
the beam size σ the field components can be written as:

Er = − ne

4πε0
· ∂
∂r

∫ ∞

0

exp(− r2

(2σ 2+q) )
(2σ 2 + q)

dq, (3.9)

and

B� = −neβcμ0

4π
· ∂
∂r

∫ ∞

0

exp(− r2

(2σ 2+q) )
(2σ 2 + q)

dq. (3.10)

In colliding beams with high density and small beams these fields are the dominating
source of non-linearities. The full treatment of beam-beam effects is complicated
due to mutual interactions between the two beams and a self-consistent treatment is
required. in the presence of all other magnets in the ring.

3.4 Map Based Techniques

In the standard approach to single particle dynamics in rings, the equations of
motion are introduced together with an ansatz to solve these equations. In the case
of linear motion, this ansatz is due to Courant-Snyder [2]. However, this treatment
must assume that the motion of a particle in the ring is stable and confined. For
a non-linear system this is a priori not known and the attempt to find a complete
description of the particle motion must fail.

The starting point for the treatment of the linear dynamics in synchrotrons is
based on solving a linear differential equation of the Hill type.

d2x(s)

ds2
+
(

a0 + 2
∞∑

n=1

an · cos(2ns)

)

︸ ︷︷ ︸
K(s)

x(s) = 0 .
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Each element at position s acts as a source of forces, i.e. we must write for the
forces K → K(s) which is assumed to be a periodic function, i.e. K(s +
C) = K(s)ring

The solution of this Boundary Value Problem must be periodic too!
It is therefore not applicable in the general case (e.g. Linacs, Beamlines, FFAG,

Recirculators, . . . ), much better to treat it as an Initial Value Problem.
In a more useful approach we do not attempt to solve such an overall equation

but rather consider the fundamental objects of an accelerators, i.e. the machine
elements themselves. These elements, e.g. magnets or other beam elements, are the
basic building blocks of the machine. All elements have a well defined action on a
particle which can be described independent of other elements or concepts such as
closed orbit or β-functions. Mathematically, they provide a “map” from one face of
a building block to the other, i.e. a description of how the particles move inside and
between elements. In this context, a map can be anything from linear matrices to
high order integration routines.

A map based technique is also the basis for the treatment of particle dynamics as
an Initial value Problem (IVP).

It follow immediately that for a linear, 1st order equation of the type

dx(s)

ds
= K(s) x(s) (and initial values at s0)

the solution can always be written as:

x(s) = a · x(s0) + b · x ′(s0)

x ′(s) = c · x(s0) + d · x ′(s0)
�⇒
(
x

x ′
)

s

=

A︷ ︸︸ ︷(
a b

c d

)(
x

x ′
)

s0

where the functionK(s) does not have to be periodic. Furthermore, the determinant
of the matrix A is always 1. Therefore it is an advantage to use maps (matrices)
for a linear systems from the start, without trying to solve a differential equa-
tion.

The collection of all machine elements make up the ring pr beam line and
it is the combination of the associated maps which is necessary for the descrip-
tion and analysis of the physical phenomena in the accelerator ring or beam
line.

For a circular machine the most interesting map is the one which describes
the motion once around the machine, the so-called One-Turn-Map. It contains all
necessary information on stability, existence of closed orbit, and optical parameters.
The reader is assumed to be familiar with this concept in the case of linear beam
dynamics (Chap. 2) where all maps are matrices and the Courant-Snyder analysis
of the corresponding one-turn-map produces the desired information such as e.g.
closed orbit or Twiss parameters.
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It should therefore be the goal to generalize this concept to non-linear dynamics.
The computation of a reliable one-turn-map and the analysis of its properties will
provide all relevant information.

Given that the non-linear maps can be rather complex objects, the analysis of the
one-turn-map should be separated from the calculation of the map itself.

3.5 Linear Normal Forms

3.5.1 Sequence of Maps

Starting from a position s0 and combining all matrices to get the matrix to position
s0 + L (shown for 1D only):

(
x

x ′
)

s0 + L

= MN ◦ MN−1 ◦ . . . ◦ M1︸ ︷︷ ︸
M(s0,L)

◦
(
x

x ′
)

s0

(3.11)

For a ring with circumference C one obtains the One-Turn-Matrix (OTM) at s0

(
x

x ′
)

s0 + C

=
(
m11 m12

m21 m22

)

︸ ︷︷ ︸
MOTM

◦
(
x

x ′
)

s0

(3.12)

Without proof, the scalar product:

(
x

x ′
)

s0

·MOTM

(
x

x ′
)

s0

= const. = J (3.13)

is a constant of the motion: invariant of the One Turn Map.
With this approach we have a strong argument that the construction of the One

Turn Map is based on the properties of each element in the machine. It is entirely
independent of the purpose of the machine and their global properties. It is not
restricted to rings or in general to circular machine.

Once the One Turn Map is constructed, it can be analysed, but this analysis does
not depend on how it was constructed.

As a paradigm: the construction of a map (being for a circular machine or not)
and its analysis are conceptual and computational separated undertakings.
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3.5.2 Analysis of the One Turn Map

The key for the analysis is that matrices can be transformed into Normal Forms.
Starting with the One-Turn-Matrix, and try to find a (invertible) transformation A
such that:

AMA−1 = R (or : A−1RA = M)

• The matrix R is:

– A “Normal Form”, (or at least a very simplified form of the matrix)
– For example (most important case): R becomes a pure rotation

• The matrix R describes the same dynamics as M , but:

– All coordinates are transformed by A
– This transformationA “analyses” the complexity of the motion, it contains the

structure of the phase space

M = A ◦ R ◦ A−1 or : R = A−1 ◦M ◦ A

The motion on an ellipse becomes a motion on a circle (i.e. a rotation): R is the
simple part of the map and its shape is dumped into the matrix A. R can be obtained
by the evaluation of the Eigenvectors and Eigenvalues.

One finds for the two components of the original map:

A =
⎛

⎜
⎝

√
β(s) 0

− α(s)√
β(s)

1√
β(s)

⎞

⎟
⎠ and R =

⎛

⎜
⎝

cos(�μ) sin(�μ)

− sin(�μ) cos(�μ)

⎞

⎟
⎠ (3.14)

Please note that the normal form analysis gives the eigenvectors (3.14) without any
physical picture related to their interpretation. The formulation using α and β is due
to Courant and Snyder. Amongst other advantages it can be used to “normalise” the
position x: the normalised position xn is the “non-normalized” divided by

√
β. The

variation of the normalised position xn is then smaller than in the non-normalized
case. This is also better suited for analytical calculation, e.g. involving perturbation
theory.

The Normal Form transformation together with this choice gives the required
information:

– μx is the “tune” Qx · 2π (now we can talk about phase advance!)
– β, α, . . . are the optical parameters and describe the ellipse
– The closed orbit (an invariant, identical coordinates after one turn!):
– MOTM ◦ (x, x ′)co ≡ (x, x ′)co
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3.5.3 Action-Angle Variables

More appropriate for studies of beam dynamics is the use of Action-Angle variables.
Once the particles “travel” on a circle, the motion is better described by the

canonical variables action Jx and angle �x :

2J

ψ

with the definitions and the choice is (3.14):

x = √
2Jxβx cos(�x)

px = −
√

2Jx
βx

(sin(�x)+ αx cos(�x))

Jx = 1
2 (γxx

2 + 2αxxpx + βxp
2
x)

(3.15)

– the angular position along the ring � becomes the independent variable!
– The trajectory of a particle is now independent of the position s!

– The constant radius of the circle
√

2J defines the action J (invariant of motion)

3.5.4 Beam Emittance

A sad and dismal story in accelerator physics is the definition of the emittance.
Most foolish in this context is to relate emittance to single particles. This is true in
particular when we have a beam line which is not periodic. In that case the Courant-
Snyder parameters can be determined from the beam. These parameters are related
to the moments of the beam, e.g. the beam size is directly related to the second order
moment < x2 >. Using the expression above for the action and angle, we can write
for this expression:

< x2 > = < 2Jxβx · cos2(�x) > = 2βx < Jx · cos2(�x) > . (3.16)
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The average of cos2 can immediately be evaluated as 0.5 and defining the emittance
as:

εx = < Jx >, (3.17)

we write

< x2 > = βx · εx. (3.18)

Using a similar procedure (details and derivation in e.g. [3], and to a much lesser
extent in [1]) one can determine the moments

< p2
x > = γx · εx, (3.19)

and

< x · px > = − αx · εx. (3.20)

Using these expressions, the emittance becomes readily

εx =
√
< x2 >< p2

x > − < x · px >2 (3.21)

Therefore, once the emittance is measured, the Courant-Snyder parameters are
determined by Eqs. (3.18), (3.19), and (3.20).

Since other definitions often refer to the treatment by Courant and Snyder, here
a quote from Courant himself in [9]:

Interlude 1

The invariant J is simply related to the area enclosed by the ellipse:

Area enclosed = 2πJ. (3.22)

In accelerator and storage ring terminology there is a quantity called the emittance
which is closely related to this invariant. The emittance, however, is a property of
a distribution of particles, not a single particle. Consider a Gaussian distribution in
amplitudes. Then the (rms) emittance, ε, is given by:

(xrms )
2 = βx(s) · εx. (3.23)

In terms of the action variable, J , this can be rewritten

εx = < J > . (3.24)

where the bracket indicates an average over the distribution in J .
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Other definitions based on handwaving arguments or those approximately valid
only in special cases, should be discarded, in particular those relying on presumed
distributions, e.g. Gaussian.

3.6 Techniques and Tools to Evaluate and Correct
Non-linear Effects

The key to a more modern approach shown in this section is to avoid the prejudices
about the stability and other properties of the ring. Instead, we must describe the
machine in terms of the objects it consists of with all their properties, including
the non-linear elements. The analysis will reveal the properties of the particles
such as e.g. stability. In the simplest case, the ring is made of individual machine
elements such as magnets which have an existence on their own, i.e. the interaction
of a particle with a given element is independent of the motion in the rest of
the machine. Also for the study of non-linear effects, the description of elements
should be independent of concepts such as tune, chromaticity and closed orbit. To
successfully study single particle dynamics, one must be able to describe the action
of the machine element on the particle as well as the machine element.

3.6.1 Particle Tracking

The ring being a collection of maps, a particle tracking code, i.e. an integrator of
the equation of motion, is the most reliable map for the analysis of the machine. Of
course, this requires an appropriate description of the non-linear maps in the code.
It is not the purpose of this article to describe the details of tracking codes and the
underlying philosophy, such details can be found in the literature (see e.g. [6]). Here
we review and demonstrate the basic principles and analysis techniques.

3.6.1.1 Symplecticity

If we define a map through �z2 = M12( �z1) as a propagator from a location “1” to a
location “2” in the ring, we have to consider that not all possible maps are allowed.
The required property of the map is called “symplecticity” and in the simplest case
where M12 is a matrix, the symplecticity condition can be written as:

M ⇒ MT · S ·M = S where S =

⎛

⎜⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟
⎠ (3.25)
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The physical meaning of this condition is that the map is area preserving in the
phase space. The condition can easily be derived from a Hamiltonian treatment,
closely related to Liouville’s theorem.

3.6.2 Approximations and Tools

The concept of symplecticity is vital for the treatment of Hamiltonian systems. This
is true in particular when the stability of a system is investigated using particle
tracking. However, in practice it is difficult to accomplish for a given exact problem.
As an example we may have the exact fields and potentials of electromagnetic
elements. For a single pass system a (slightly) non-symplectic integrator may be
sufficient, but for an iterative system the results are meaningless.

To track particles using the exact model may result in a non-symplectic tracking,
i.e. the underlying model is correct, but the resulting physics is wrong.

It is much better to approximate the model to the extend that the tracking is
symplectic. One might compromise on the exactness of the final result, but the
correct physics is ensured.

As a typical example one might observe possible chaotic motion during the
tracking procedure. However, there is always a non-negligible probability that this
interpretation of the results may be wrong. To conclude that it is not a consequence
of non-symplecticity of the procedure or a numerical artifact it is necessary to
identify the physical mechanism leading to this observation.

This may not be possible to achieve using the exact model as input to a
(possibly) non-symplectic procedure. Involving approximations to the definition of
the problem should reveal the correct physics at the expense of a (hopefully) small
error. Staying exact, the physics may be wrong.

As a result, care must be taken to positively identify the underlying process.
This procedure should be based on a approximations as close as possible to the

exact problem, but allowing a symplectic evaluation.
An example for this will be shown in Sect. 3.6.3.4.

3.6.3 Taylor and Power Maps

A non-linear element cannot be represented in the form of a linear matrix and more
complicated maps have to be introduced [5]. In principle, any well behaved, non-
linear function can be developed as a Taylor series. This expansion can be truncated
at the desired precision.

Another option is the representation as Lie transformations [8, 10]. Both types
are discussed in this section.



64 W. Herr and E. Forest

3.6.3.1 Taylor Maps

A Taylor map can be written using higher order matrices and in the case of two
dimensions we have:

zj (s2) =
4∑

k=1

Rjkzk(s1) +
4∑

k=1

4∑

l=1

Tjklzk(s1)zl(s1) (3.26)

(where zj , j = 1, . . . , 4, stand for x, x ′, y, y ′). Let us call the collec-
tion: A2 = (R, T ) the second order map A2. Higher orders can be defined
as needed, e.g. for the 3rd order map A3 = (R, T ,U) we add a third order matrix:

+
4∑

k=1

4∑

l=1

4∑

m=1

Ujklmzk(s1)zl(s1)zm(s1) (3.27)

Since Taylor expansions are not matrices, to provide a symplectic map, it is the
associated Jacobian matrix J which must fulfill the symplecticity condition:

Jik = ∂zi(s2)

∂zk(s1)
and J must fulfill : J t · S · J = S (3.28)

However, in general Jik �= const and for a truncated Taylor map it can
be difficult to fulfill this condition for all z. As a consequence, the number of
independent coefficients in the Taylor expansion is reduced and the complete,
symplectic Taylor map requires more coefficients than necessary [7].

The explicit maps for a sextupole is:

x2 = x1 + Lx ′1 − k2

(
L2

4 (x
2
1 − y2

1)+ L3

12 (x1x
′
1 − y1y

′
1)+ L4

24 (x
′2
1 − y ′21 )

)

x ′2 = x ′1 − k2

(
L
2 (x

2
1 − y2

1)+ L2

4 (x1x
′
1 − y1y

′
1)+ L3

6 (x
′2
1 − y ′21 )

)

y2 = y1 + Ly ′1 + k2

(
L2

4 x1y1 + L3

12 (x1y
′
1 + y1x

′
1)+ L4

24 (x
′
1y

′
1)
)

y ′2 = y ′1 + k2

(
L
2 x1y1 + L2

4 (x1y
′
1 + y1x

′
1)+ L3

6 (x
′
1y

′
1)
)

(3.29)

Writing the explicit form of the Jacobian matrix:

Jik =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂x2
∂x1

∂x2
∂x ′1

∂x2
∂y1

∂x2
∂y ′1

∂x ′2
∂x1

∂x ′2
∂x ′1

∂x ′2
∂y1

∂x ′2
∂y ′1

∂y2
∂x1

∂y2
∂x ′1

∂y2
∂y1

∂y2
∂y ′1

∂y ′2
∂x1

∂y ′2
∂x ′1

∂y ′2
∂y1

∂y ′2
∂y ′1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

→ k2 = 0

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 L 0 0

0 1 0 0

0 0 1 L

0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

(3.30)
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For k2 �= 0 coefficients depend on initial values, e.g.:

∂y2

∂y1
= 1 + k2

(
L2

4
x1 + L3

12x1

′)
→ Power series are not symplectic, cannot be used

The non-symplecticity can be recovered in the case of elements with L = 0. It
becomes small (probably small enough) when the length is small.

As a result, the model is approximated by a small amount, but the symplecticity
(and therefore the physics) is ensured. An exact model but compromised integration
can fabricate non-existing features and conceal important underlying physics.

The situation is rather different in the case of single pass machines. The long
term stability (and therefore symplecticity) is not an issue and the Taylor expansion
around the closed orbit is what is really needed. Techniques like the one described
in Sect. 3.7.6 provide exactly this in an advanced and flexible formalism.

3.6.3.2 Thick and Thin Lenses

All elements in a ring have a finite length and therefore should be treated as “thick
lenses”. However, in general a solution for the motion in a thick element does not
exist. It has become a standard technique to avoid using approximate formulae to
track through thick lenses and rather perform exact tracking through thin lenses.
This approximation is improved by breaking the thick element into several thin
elements which is equivalent to a numerical integration. A major advantage of this
technique is that “thin lens tracking” is automatically symplectic. In this context
it becomes important to understand the implied approximations and how they
influence the desired results. We proceed by an analysis of these approximations
and show how “symplectic integration” techniques can be applied to this problem.

We demonstrate the approximation using a quadrupole. Although an exact
solution of the motion through a quadrupole exists, it is a useful demonstration since
it can be shown that all concepts developed here apply also to arbitrary non-linear
elements.

Let us assume the transfer map (matrix) for a thick, linearized quadrupole of
length L and strength K:

Ms→s+L =
(

cos(L · √K) 1√
K
· sin(L · √K)

−√K · sin(L · √K) cos(L · √K)

)

(3.31)

This map is exact and can be expanded as a Taylor series for a “small” length L:

Ms→s+L = L0 ·
(

1 0
0 1

)
+ L1 ·

(
0 1
−K 0

)
+ L2 ·

(− 1
2K 0
0 − 1

2K

)
+ . . . (3.32)
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If we keep only terms up to first order in L we get:

Ms→s+L = L0 ·
(

1 0
0 1

)
+ L1 ·

(
0 1
−K 0

)
+O(L2) (3.33)

Ms→s+L =
(

1 L

−K · L 1

)
+O(L2) (3.34)

This map is precise to order O(L1), but since we have det M �= 1, this truncated
expansion is not symplectic.

3.6.3.3 Symplectic Matrices and Symplectic Integration

However, the map (3.34) can be made symplectic by adding a term −K2L2. This
term is of order O(L2), i.e. does not deteriorate the approximation because the
inaccuracy is of the same order.

Ms→s+L =
(

1 L

−K · L 1−KL2

)
(3.35)

Following the same procedure we can compute a symplectic approximation precise
to order O(L2) from (3.32) using:

Ms→s+L =
(

1 − 1
2KL

2 L

−K · L 1− 1
2KL

2

)
⇒
(

1 − 1
2KL

2 L− 1
4 KL3

−K · L 1 − 1
2KL

2

)

(3.36)

It can be shown that this “symplectification” corresponds to the approximation of a
quadrupole by a single kick in the centre between two drift spaces of length L/2:

(
1 1

2L

0 1

)(
1 0

−K · L 1

)(
1 1

2L

0 1

)
=
(

1 − 1
2KL

2 L− 1
4KL

3

−K · L 1 − 1
2KL

2

)
(3.37)

It may be mentioned that the previous approximation to 1st order corresponds to a
kick at the end of a quadrupole, preceded by a drift space of length L. Both cases
are illustrated in Fig. 3.1.

One can try to further improve the approximation by adding 3 kicks like in
Fig. 3.2 where the distance between kicks and the kick strengths are optimized to
obtain the highest order. The thin lens approximation in Fig. 3.2 with the constants:

a ≈ 0.675602, b ≈ − 0.175602, α ≈ 1.351204, β ≈ − 1.702410 (3.38)

provides an O(L4) integrator [11].
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Fig. 3.1 Schematic representation of a symplectic kick of first order (left) and second order (right)

.a L .a L

b L. b L.
β

αα

K  L.

. .K  L K  L

Fig. 3.2 Schematic representation of a symplectic integration with thin lenses of fourth order. The
figure shows the size of drifts and thin lens kicks

This process is a Symplectic Integration [12] and is a formal procedure to
construct higher order integrators from lower order ones. From a 2nd order scheme
(1 kick) S2(t) we construct a 4th order scheme (3 kicks = 3 × 1 kick) like:
S4(t) = S2(x1t) ◦ S2(x0t) ◦ S2(x1t) with:

x0 = −21/3

2 − 21/3
≈ − 1.702410 x1 = 1

2 − 21/3
≈ 1.351204 (3.39)

In general: If S2k(t) is a symmetric integrator of order 2k, then we obtain a
symmetric integrator of order 2k + 2 by: S2k+2(t) = S2k(x1t) ◦ S2k(x0t) ◦
S2k(x1t) with:

x0 = − 2k+1
√

2

2 − 2k+1
√

2
x1 = 1

2− 2k+1
√

2
(3.40)

Higher order integrators can be obtained in a similar way in an iterative procedure.
A very explicit example of the iterative construction of a higher order map from a
lower order can be found in [7].

This method can be applied to any other non-linear map and we obtain the same
integrators. The proof of this statement and the systematic extension can be done in
the form of Lie operators [12].

It should be noted that higher order integrators require maps which drift
backwards (3.38) as shown in Fig. 3.2 right. This has two profound consequences.
First, a straightforward “physical” interpretation of thin lens models representing
drifts and individual small “magnets” (a la MAD) makes no sense and prohibits the
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Fig. 3.3 Poincare section for tracking through a quadrupole. Comparison between exact solution,
non-symplectic (left) and symplectic (right) tracking. Shown are symplectic integrators of order 1
and 2

use of high order integrators. Secondly, models which require self-consistent time
tracking or s tracking (e.g. space charge calculations) must use integrators for which
s(t) is monotonic in the magnets.

3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration

A demonstration of a non-symplectic tracking is shown in Fig. 3.3. A particle is
tracked through a quadrupole and the poincare section is shown. A quadrupole
is chosen because it allows a comparison with the exact solution. The non-
symplecticity causes the particle to spiral outwards. As comparison to the exact
tracking is shown. In Fig. 3.3 (right) the symplectic integrators of order 1 and
2 as derived above are used instead. The trajectory is now constant and the
difference to the exact solution is small. Although the model is approximated
but symplectic, the underlying physics (i.e. constant energy in this case)
is correct at the expense of a small discrepancy with respect to the exact
solution.

3.7 Hamiltonian Treatment of Electro-Magnetic Fields

A frequently asked question is why one should not just use Newton’s laws and the
Lorentz force. Some of the main reasons are:

– Newton requires rectangular coordinates and time, trajectories with e.g. “curva-
ture” or “torsion” need to introduce “reaction forces”. (For example: LHC has
locally non-planar (cork-screw) “design” orbits!).

– For linear dynamics done by ad hoc introduction of new coordinate frame.
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– With Hamiltonian it is free: The formalism is “coordinate invariant”, i.e. the
equations have the same form in every coordinate system.

– The basic equations ensure that the phase space is conserved

3.7.1 Lagrangian of Electro-Magnetic Fields

3.7.1.1 Lagrangian and Hamiltonian

It is common practice to use q for the coordinates when Hamiltonian and Lagrangian
formalisms are used. This is deplorable because q is also used for particle charge.

The motion of a particle is usually described in classical mechanics using the
Langrange functional:

L( q1(t), . . . qn(t), q̇1(t), . . . q̇n(t), t ) short : L(qi, q̇i , t) (3.41)

where q1(t), . . . qn(t) are generalized coordinates and q̇1(t), . . . q̇n(t) the corre-
sponding generalized velocities. Here qi can stand for any coordinate and any
particle, and n can be a very large number.

The integral

S =
∫
L( qi(t), q̇i (t), t ) dt . (3.42)

defines the action S.
The action S is used with the Hamiltonian principle: a system moves along a path

such that the action S becomes stationary, i.e. δS = 0
Is fulfilled when:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (Euler − Lagrange equation) (3.43)

It is unfortunate that the term action is used in different contexts and must not
be confused with the action-angle variables defined earlier. The action above is a
functional rather than a variable.

Without proof or derivation it should be stated thatL = T−V = kinetic energy−
potential energy.

Given the Lagrangian, the Hamiltonian can be derived as:

H(�q, �p, t) =
∑

i

[pi q̇i − L(�q, �̇q, t)]. (3.44)
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The coordinates qi are identical to those in the Lagrangian (3.41), whereas the
conjugate momenta pi are derived from L as:

pi = ∂L

∂q̇i
. (3.45)

3.7.2 Hamiltonian with Electro-Magnetic Fields

Readers only interested in the final result can skip Eqs. (3.46)–(3.54).
A key for the correct Hamiltonian is the relativistic treatment. An intuitive

derivation is presented here, a simpler and elegant derivation should be based on
4-vectors [13]. The action S must be a relativistic invariant and becomes (now using
coordinates x and velocities v):

S =
∫
L( xi(t), vi (t), t ) γ · dτ. (3.46)

since the proper time τ is Lorentz invariant, and therefore also γ · L.
The Lagrangian for a free particle is usually a function of the velocity (see

classical formula of the kinematic term), but must not depend on its position.
The only Lorentz invariant with the velocity is [13]:

UμUμ = c2 (3.47)

where U is the four-velocity.
For the Lagrangian of a (relativistic) free particle we must write

Lf ree = −mc2
√

1 − β2
r = −mc2

√
1 − (

v

c
)2 = − mc2

γ
(3.48)

Using for the electromagnetic Lagrangian a form (without derivation, any
textbook):

L = e

c
v · �A − eφ (3.49)

Combining (3.48) and (3.49) we obtain the complete Lagrangian:

L = − mc2

γ
+ e

c
· �v · �A − e · φ (3.50)
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thus the conjugate momentum is derived as:

�P = ∂L

∂vi
= �p + e

c
�A

(
or �P = �p − q

c
�A
)

(3.51)

where �p is the ordinary kinetic momentum.
A consequence is that the canonical momentum cannot be written as:

Px = mcγβx (3.52)

Using the conjugate momentum the Hamiltonian takes the simple form:

H = �P · �v − L (3.53)

The Hamiltonian must be a function of the conjugate variables P and x and after a
bit of algebra one can eliminate �v using:

�v = c �P − e �A
√
( �P − e �A

c
)2 + m2c2

(3.54)

With (3.50) and (3.54) we write for the Hamiltonian for a (ultra relativistic, i.e.
γ � 1, β ≈ 1) particle in an electro-magnetic field is given by:

H(�x, �p, t) = c

√
( �P − e �A(�x, t))2 +m2c2 + e�(�x, t) (3.55)

where �A(�x, t), �(�x, t) are the vector and scalar potentials.

Interlude 2
A short interlude, one may want to skip to Eq. (3.60)

Equation (3.55) is the total energy E of the particle where the dif-
ference is the potential energy eφ and the new conjugate momentum
�P = ( �p − e

c
�A), replacing �p.

From the classical expression

E2 = p2c2 + (mc2)2 (3.56)

one can re-write

(W − eφ)2 − (c �P − e �A)2 = (mc2)2 (3.57)

(continued)
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The expression (mc2)2 is the invariant mass [13], i.e.

pμp
μ = (mc)2 (3.58)

with the 4-vector for the momentum [13]:

pμ = (
E

c
, �p) =

(
1

c
(W − eφ), �P − (

e

c
�A)
)

(3.59)

The changes are a consequence using 4-vectors in the presence of electro-
magnetic fields (potentials).

An interesting consequence of (3.51) is that the momentum is linked to the fields
( �A) and the angle x ′ cannot easily be derived from the total momentum and the
conjugate momentum. That is using (x, x ′) as coordinate are strictly speaking not
valid in the presence of electromagnetic fields.

In this context using (x, x ′) or (x, px) is not equivalent. A general, strong
statement that (x, x ′) is used in accelerator physics is at best bizarre.

3.7.3 Hamiltonian Used for Accelerator Physics

In a more convenient (and useful) form, using canonical variables x and px, py and
the design path length s as independent variable (bending field B0 in y-plane) and
no electric fields (for details of the derivation see [14]):

H =
due to t → s︷ ︸︸ ︷
−(1 + x

ρ
)

︸ ︷︷ ︸
·

kinematic︷ ︸︸ ︷√
(1 + δ)2 − p2

x − p2
y +

due to t → s︷ ︸︸ ︷
x

ρ
+ x2

2ρ2
︸ ︷︷ ︸

−
normalized︷ ︸︸ ︷
As(x, y)

B0ρ
(3.60)

where p = √
E2/c2 − m2c2 total momentum, δ = (p − p0)/p0 is

relative momentum deviation and As(x, y) (normalized) longitudinal (along s)
component of the vector potential. Only transverse field and no electric fields are
considered.
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After square root expansion and sorting the As contributions:

H =

kinematic︷ ︸︸ ︷
p2
x + p2

y

2(1+ δ)
−

dipole︷ ︸︸ ︷
xδ

ρ
︸︷︷︸
bending

+ x2

2ρ2
︸︷︷︸

f ocusing

+
quadrupole︷ ︸︸ ︷
k1

2
(x2 − y2)+

sextupole︷ ︸︸ ︷
k2

6
(x3 − 3xy2) + . . .

(3.61)

using : kn = k(n)n = 1

Bρ

∂nBy

∂xn

(
k(s)n = 1

Bρ

∂nBx

∂xn

)
(3.62)

– The Hamiltonian describes the motion of a particle through an element
– Each element has a component in the Hamiltonian
– Basis to extend the linear to a nonlinear formalism

A short list of Hamiltonians of some machine elements (3D)
In general for multipoles of order n:

Hn = 1

1 + n
Re
[
(kn + ik(s)n )(x + iy)n+1

]
+ p2

x + p2
y

2(1 + δ)
(3.63)

We get for some important types (normal components kn only):

drift space : H = −
√
(1 + δ)2 − p2

x − p2
y ≈ p2

x + p2
y

2(1 + δ)
(3.64)

dipole : H = −−xδ
ρ

+ x2

2ρ2 +
p2
x + p2

y

2(1 + δ)
(3.65)

quadrupole : H = 1

2
k1(x

2 − y2)+ p2
x + p2

y

2(1+ δ)
(3.66)

sextupole : H = 1

3
k2(x

3 − 3xy2)+ p2
x + p2

y

2(1 + δ)
(3.67)

octupole : H = 1

4
k3(x

4 − 6x2y2 + y4)+ p2
x + p2

y

2(1 + δ)
(3.68)
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Interlude 3
A few remarks are required after this list of Hamiltonian for particular
elements.

– Unlike said in many introductory textbooks and lectures, a multipole of
order n is not required to drive a nth order resonance—nothing could be
more wrong!!

– In leading order perturbation theory, only elements with an even order
(and larger than 2) in the Hamiltonian can produce an amplitude depen-
dent tune shift and tune spread.

3.7.3.1 Lie Maps and Transformations

In this chapter we would like to introduce Lie algebraic tools and Lie transforma-
tions [15–17]. We use the symbol zi = (xi, pi)where x and p stand for canonically
conjugate position and momentum. We let f (z) and g(z) be any function of x, p and
can define the Poisson bracket for a differential operator [18]:

[f, g] =
n∑

i=1

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
(3.69)

Assuming that the motion of a dynamic system is defined by a Hamiltonian H , we
can now write for the equations of motion [18]:

[xi,H ] = ∂H

∂pi
= dxi

dt
(3.70)

[pi,H ] = −∂H

∂xi
= dpi

dt
(3.71)

If H does not explicitly depend on time then:

[f,H ] = 0 (3.72)

implies that f is an invariant of the motion. To proceed, we can define a Lie operator
: f : via the notation:

: f : g = [f, g] (3.73)

where : f : is an operator acting on the function g.
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We can define powers as:

(: f :)2g =: f : (: f : g) = [f, [f, g]] etc. (3.74)

One can collect a set of useful formulae for calculations:
Some common special (very useful) cases for f :

: x : = ∂
∂p

: p : = − ∂
∂x

: x :2 =
applied twice︷ ︸︸ ︷: x :: x : = ∂2

∂p2 : p :2 =
applied twice︷ ︸︸ ︷: p :: p : = ∂2

∂x2

: xp : = p ∂
∂p
− x ∂

∂x
: x :: p : = : p :: x : = − ∂2

∂x∂p

: x2 : = 2x ∂
∂p

: p2 : = − 2p ∂
∂x

: xn : = n · xn−1 ∂
∂p

: pn : = − n · pn−1 ∂
∂x

(3.75)

Once powers of the Lie operators are defined, they can be used to formulated an
exponential form:

e:f : =
∞∑

i=0

1

i! (: f :)i (3.76)

This expression is call a “Lie transformation”.
Give the Hamiltonian H of an element, the generator f is this Hamiltonian

multiplied by the length L of the element.
To evaluate a simple example, for the case H = −p2/2 using the exponential

form and (3.75):

e: −Lp2/2 :x = x − 1

2
L : p2 : x + 1

8
L2(: p2 :)2x + ..

= x + Lp (3.77)

e: −Lp2/2 :p = p − 1

2
L : p2 : p + . . .

= p (3.78)

One can easily verify that for 1D and δ = 0 this is the transformation of a drift space
of length L (if p ≈ x ′) as introduced previously. The function f (x, p) = −Lp2/2
is the generator of this transformation.
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Interlude 4
The exact Hamiltonian in two transverse dimensions and with a relative
momentum deviation δ is (full Hamiltonian with �A(�x, t) = 0):

H = −
√
(1 + δ)2 − p2

x − p2
y −→ fdrif t = L ·H

The exact map for a drift space is now:

xnew = x + L · px√
(1 + δ)2 − p2

x − p2
y

pnewx = px

ynew = y + L · py√
(1 + δ)2 − p2

x − p2
y

pnewy = py

In 2D and with δ �= 0 it is more complicated than Eq. (3.78). In practice the
map can (often) be simplified to the well known form.

More general, acting on the phase space coordinates:

e:f :(x, p)1 = (x, p)2 (3.79)

is the Lie transformation which describes how to go from one point to another.
While a Lie operator propagates variables over an infinitesimal distance, the Lie

transformation propagates over a finite distance.
To illustrate this technique with some simple examples, it can be shown easily,

using the formulae above, that the transformation:

e
: − 1

2f x
2 :

(3.80)

corresponds to the map of a thin quadrupole with focusing length f , i.e.

x2 = x1

p2 = p1 − 1

f
x1
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A transformation of the form:

e
: − 1

2L(k
2x2 + p2) : (3.81)

corresponds to the map of a thick quadrupole with length L and strength k:

x2 = x1cos(kL)+ p1

k
sin(kL) (3.82)

p2 = −kx1sin(kL)+ p1cos(kL) (3.83)

The linear map using Twiss parameters in Lie representation (we shall call it : f2 :
from now on) is always of the form:

e: f2 : with : f2(x) = −μ

2
(γ x2 + 2αxp + βp2) (3.84)

In case of a general non-linear function f(x), i.e. with a (thin lens) kick like:

x2 = x1 (3.85)

p2 = p1 + f (x1) (3.86)

the corresponding Lie operator can be written as:

e: h : = e
: ∫ x0 f (u)du : or e: F : with F =

∫ x

0
f (u)du. (3.87)

An important property of the Lie transformation is that the one turn map is the
exponential of the effective Hamiltonian and the circumference C:

Mring = e:−CHeff :. (3.88)

The main advantages of Lie transformations are that the exponential form is always
symplectic and that a formalism exists for the concatenation of transformations. An
overview of this formalism and many examples can be found in [7]. As for the Lie
operator, one can collect a set of useful formulae. Another neat package with useful
formulae:

With a constant and f, g, h arbitrary functions:

: a : = 0 −→ e: a : = 1

: f : a = 0 −→ e: f :a = a
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e: f : [g, h] = [e: f :g, e: f :h]

e: f : (g · h) = e: f :g · e: f :h

and very important:

M g(x) = e: f : g(x) = g(e: f : x) e.g. e: f : x2 = (e: f : x)2

M−1 g(x) = (e: f :)−1 g(x) = e− : f : g(x) note : 1

e: f : �= (e: f :)−1

(3.89)

3.7.3.2 Concatenation of Lie Transformations

The concatenation is very easy when f and g commute (i.e. [f, g] = [g, f ] = 0)
and we have:

e: h : = e: f : e: g : = e: f + g : (3.90)

The generators of the transformations can just be added.
To combine two transformations in the general case (i.e. [f, g] �= 0) we can

use the Baker–Campbell–Hausdorff formula (BCH) which in our convention can be
written as:

h = f + g + 1
2 : f : g + 1

12 : f :2 g + 1
12 : g :2 f

+ 1
24 : f :: g :2 f − 1

720 : g :4 f
− 1

720 : f :4 g + 1
360 : g :: f :3 g + . . .

(3.91)

In many practical cases, non-linear perturbations are localized and small compared
to the rest of the (often linear) ring, i.e. one of f or g is much smaller, e.g. f
corresponds to one turn, g to a small, local distortion.

In that case we can sum up the BCH formula to first order in the perturbation g
and get:

e: h : = e: f : e: g : = exp

[
: f +

( : f :
1 − e−:f :

)
g +O(g2) :

]
(3.92)

When g is small compared to f , the first order is a good approximation.
For example, we may have a full ring e:f2: with a small (local) distortion, e.g. a

multipole e:g: with g = kxn then the expression:

e: h : = e: f2 :e: kxn :, (3.93)
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allows the evaluation of the invariant h for a single multipole of order n in this case.
In the case that f2, f3, f4, are 2nd, 3rd, 4th order polynomials (Dragt-Finn

factorization [19]):

e: f : = e: f2 :e: f3 :e: f4 :, (3.94)

each term is symplectic and the truncation at any order does not violate symplectic-
ity.

One may argue that this method is clumsy when we do the analysis of a linear
system. The reader is invited to prove this by concatenating by hand a drift space
and a thin quadrupole lens. However, the central point of this method is that the
technique works whether we do linear or non-linear beam dynamics and provides a
formal procedure. Lie transformations are the natural extension of the linear matrix
formalism to a non-linear formalism. There is no need to move from one method to
another as required in the traditional treatment.

In the case an element is described by a Hamiltonian H , the Lie map of an
element of length L and the Hamiltonian H is:

e−L : H : =
∞∑

i=0

1

i! (−L : H :)i (3.95)

For example, the Hamiltonian for a thick sextupole is:

H = 1

3
k(x3 − 3xy2)+ 1

2
(p2

x + p2
y) (3.96)

To find the transformation we search for:

e−L : H :x and e−L : H :px i.e. for (3.97)

e−L : H :x =
∞∑

i=0

−Li
i! (: H :)ix (3.98)

We can compute:

: H :ix for each i (3.99)

to get:

: H :1x = −px, (3.100)

: H :2x = −k(x2 − y2), (3.101)
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: H :3x = 2k(xpx − ypy), (3.102)

. . . . (3.103)

Putting the terms together one obtains:

e−L : H :x = x + pxL− 1

2
kL2(x2 − y2)− 1

3
kL3(xpx − ypy)+ . . . (3.104)

3.7.4 Analysis Techniques: Poincare Surface of Section

Under normal circumstances it is not required to examine the complete time
development of a particle trajectory around the machine. Given the experimental
fact that the trajectory can be measured only at a finite number of positions around
the machine, it is only useful to sample the trajectory periodically at a fixed position.
The plot of the rate of change of the phase space variables at the beginning (or
end) of each period is the appropriate method and also known as Poincare Surface
of Section [20]. An example of such a plot is shown in Fig. 3.4 where the one-
dimensional phase space is plotted for a completely linear machine (Fig. 3.4, left)
and close to a 5th order resonance in the presence of a single non-linear element (in
this case a sextupole) in the machine (Fig. 3.4, right).

It shows very clearly the distortion of the phase space due to the non-linearity, the
appearance of resonance islands and chaotic behaviour between the islands. From
this plot is immediately clear that the region of stability is strongly reduced in the

Fig. 3.4 Poincare surface of section of a particle near the 5th order resonances. Left without non-
linear elements, right with one sextupole
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presence of the non-linear element. The main features we can observe in Fig. 3.4 are
that particles can:

• Move on closed curves
• Lie on islands, i.e. jump from one island to the next from turn to turn
• Move on chaotic trajectories

The introduction of these techniques by Poincare mark a paradigm shift from
the old classical treatment to a more modern approach. The question of long
term stability of a dynamic system is not answered by getting the solution to the
differential equation of motion, but by the determination of the properties of the
surface where the motion is mapped out. Independent how this surface of section
is obtained, i.e. by analytical or numerical methods, its analysis is the key to
understand the stability.

3.7.5 Analysis Techniques: Normal Forms

The idea behind this technique is that maps can be transformed into Normal Forms.
This tool can be used to:

• Study invariants of the motion and the effective Hamiltonian
• Extract non-linear tune shifts (detuning)
• Perform resonance analysis

In the following we demonstrate the use of normal forms away from resonances.
The treatment of the beam dynamics close to resonances is beyond the scope of this
review and can be found in the literature (see e.g. [6, 7]).

3.7.5.1 Normal Form Transformation: Linear Case

The strategy is to make a transformation to get a simpler form of the map M , e.g. a
pure rotation R(�μ) as schematically shown in Fig. 3.5 using a transformation like:

M = U ◦ R(�μ) ◦ U−1 or : R(�μ) = U−1 ◦M ◦ U (3.105)

with

U =
⎛

⎜
⎝

√
β(s) 0

− α(s)√
β(s)

1√
β(s)

⎞

⎟
⎠ and R =

⎛

⎜
⎝

cos(�μ) sin(�μ)

− sin(�μ) cos(�μ)

⎞

⎟
⎠ (3.106)

This transformation corresponds to the Courant-Snyder analysis in the linear
case and directly provides the phase advance and optical parameters. The optical
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Fig. 3.5 Normal form transformation in the linear case, related to the Courant-Snyder analysis

parameters emerge automatically from the normal form analysis of the one-turn-
map.

Although not required in the linear case, we demonstrate how this normal form
transformation is performed using the Lie formalism. Starting from the general
expression:

R(�μ) = U−1 ◦M ◦U (3.107)

we know that a linear map M in Lie representation is always:

e: f2 : with : f2 = −μ

2
(γ x2 + 2αxpx + βp2

x) (3.108)

therefore:

R(�μ) = U−1 ◦ e: f2(x) : ◦ U

= eU
−1 : f2 : U = e: U−1f2 : (3.109)

and (with U−1f2) f2 expressed in the new variables X,Px it assumes the form:

f2 = −μ

2
(X2 + P 2

x ) because :
(
X

Px

)
= U−1

(
x

px

)
(3.110)

i.e. with the transformation U−1 the rotation : f2 : becomes a circle in the
transformed coordinates. We transform to action and angle variables J and �,
related to the variables X and Px through the transformations:

X = √2Jβ sin�, Px =
√

2J

β
cos� (3.111)
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With this transformation we get a simple representation for the linear transfer
map f2:

f2 = −μJ and : R(�μ) = e: −�μJ : (3.112)

3.7.5.2 Normal Form Transformation: Non-linear Case

In the more general, non-linear case the transformation is more complicated and
one must expect that the rotation angle becomes amplitude dependent (see e.g. [6]).
A schematic view of this scheme is shown in Fig. 3.6 where the transformation
leads to the desired rotation, however the rotation frequency (phase advance) is now
amplitude dependent.

We demonstrate the power by a simple example in one dimension, but the
treatment is similar for more complex cases. In particular, it demonstrates that this
analysis using the algorithm based on Lie transforms leads easily to the desired
result. A very detailed discussion of this method is found in [6].

From the general map we have made a transformation such that the transformed
map can be expressed in the form e:h2: where the function h2 is now a function only
of Jx, Jy, and δ and it is the effective Hamiltonian.

In the non-linear case and away from resonances we can get the map in a similar
form:

N = e: heff (Jx, Jy, δ) : (3.113)

where the effective Hamiltonian heff depends only on Jx, Jx, and δ.

-3
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Fig. 3.6 Normal form transformation in the non-linear case, leading to amplitude dependent phase
advance. The transformation was done for non-resonant amplitudes
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If the map for heff corresponds to a one-turn-map, we can write for the tunes:

Qx(Jx, Jy, δ) = 1

2π

∂heff

∂Jx
(3.114)

Qy(Jx, Jy, δ) = 1

2π

∂heff

∂Jy
(3.115)

and the change of path length:

�s = −∂heff

∂δ
= αcδ (3.116)

In the non-linear case, particles with different Jx, Jy, δ have different tunes. Their
dependence on Jx, Jy is the amplitude detuning, the dependence on δ are the
chromaticities.

The effective Hamiltonian can always be written (here to 3rd order) in a form:

heff = + μxJx + μyJy + 1

2
αcδ

2 (3.117)

+ cx1Jxδ + cy1Jyδ + c3δ
3 (3.118)

+ cxxJ
2
x + cxyJxJy + cyyJ

2
y + cx2Jxδ

2 + cy2Jyδ
2 + c4δ

4

(3.119)

and then tune depends on action J and momentum deviation δ:

Qx(Jx, Jy, δ) = 1

2π

∂heff

∂Jx
= 1

2π

⎛

⎜
⎝μx +

detuning︷ ︸︸ ︷
2cxxJx + cxyJy +

chromaticity︷ ︸︸ ︷
cx1δ + cx2δ

2

⎞

⎟
⎠

(3.120)

Qy(Jx, Jy, δ) = 1

2π

∂heff

∂Jy
= 1

2π

⎛

⎜
⎝μy +

detuning︷ ︸︸ ︷
2cyyJy + cxyJx +

chromaticity︷ ︸︸ ︷
cy1δ + cy2δ

2

⎞

⎟
⎠

(3.121)

The meaning of the different contributions are:

– μx,μy : linear phase advance or 2π · i.e. the tunes for rings
– 1

2αc, c3, c4: linear and nonlinear “momentum compaction”
– cx1, cy1: first order chromaticities
– cx2, cy2: second order chromaticities
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– cxx, cxy, cyy : detuning with amplitude

The coefficients are the various aberrations of the optics.
As a first example one can look at the effect of a single (thin) sextupole. The map

is:

M = e
− : μJx + μJy + 1

2αcδ
2 :

e
: k(x3 − 3xy2) + p2

x+p2
y

2(1+δ) : (3.122)

we get for heff (see e.g. [6, 7]):

heff = μxJx + μyJy + 1
2αcδ

2 − kD3δ3 − 3kβxJxDδ + 3kβyJyDδ

Then it follows:

Qx(Jx, Jy, δ) = 1

2π

∂heff

∂Jx
= 1

2π
(μx − 3kβxDδ) (3.123)

Qy(Jx, Jy, δ) = 1

2π

∂heff

∂Jy
= 1

2π
(μy + 3kβyDδ) (3.124)

Since it was developed to first order only, there is no non-linear detuning with
amplitude.

As a second example one can use a linear rotation followed by an octupole, the
Hamiltonian is:

H = μ

2
(x2 + p2

x)+ δ(s − s0)
x4

4
= μJ + δ(s − s0)

x4

4
with : J = (x2 + p2

x)

2
(3.125)

The first part of the Hamiltonian corresponds to the generator of a linear rotation
and the second part to the localized octupole.

The map, written in Lie representation becomes:

M = e
(−μ

2 : x2 + p2
x :) e: x

4

4 : = e: −μJ : e: x
4

4 : = R e
: x4

4 : (3.126)

The purpose is now to find a generator F for a transformation

e− : F : M e: F : = e− : F : e: x
4

4 :
e: F : (3.127)

such that the exponents of the map depend only on J and not on x.
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Fig. 3.7 Schematic view of
tracking through a complex
element (x,x’,y,y’,s, δ) (x,x’,y,y’,s, δ)Algorithm

1 2

21
Output  zInput  z

Without going through the algebra (advanced tools exist for this purpose, see e.g.
[6]) we quote the result and with

F = − 1

64
{−5x4+3p4

x+6x2p2
x+x3px(8 cot(μ)+ 4 cot(2μ))+ xp3

x(8 cot(μ)−4 cot(2μ))}
(3.128)

we can write the map:

M = e− : F : e: −μJ + 3
8J

2 :
e: F : (3.129)

the term 3
8J

2 implies a tune shift with amplitude for an octupole.

3.7.6 Truncated Power Series Algebra Based on Automatic
Differentiation

It was argued that an appropriate technique to evaluate the behaviour of complex,
non-linear systems is by numerically tracking through the individual elements.
Schematically this is shown in Fig. 3.7 and the tracking through a complicated
system relates the output numerically to the input. When the algorithm depicted
in Fig. 3.7 represents the full turn in a ring, we obtained the most reliable one-
turn-map through this tracking procedure, assuming we have chosen an appropriate
representation of the maps for the individual elements.

3.7.6.1 Automatic Differentiation: Concept

This procedure may not be fully satisfactory in all cases and one might like to
get an analytical expression for the one-turn-map or equivalent. Could we imagine
something that relates the output algebraically to the input? This might for example
be a Taylor series of the type:

z2 =
∑

Cjz
j
1 =
∑

djf
(n)z

j
1 (3.130)

Then we have an analytic map (for all z1).
To understand why this could be useful, we can study the paraxial behaviour. In

Fig. 3.8 we show schematically the trajectories of particles close to the ideal orbit.
The red line refers to the ideal trajectory while the other lines show the motion of
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Fig. 3.8 Pictorial view of a paraxial analysis. Red line represents the ideal trajectory

individual particles with small deviations from the ideal path. The idea is that if we
understand how small deviations behave, we understand the system much better.

If we now remember the definition of the Taylor series:

f (x +�x) = f (x)+
∞∑

n=1

�xn

n! f (n)(x) (3.131)

we immediately realize that the coefficients determine the behaviour of small
deviations�x from the ideal orbit x. Therefore the Taylor expansion does a paraxial
analysis of the system and the main question is how to get these coefficients without
extra work?

The problem is getting the derivatives f (n)(a) of f (x) at a:

f ′(a) = lim
ε→0

f (a + ε)− f (a)

ε
(3.132)

Numerically this corresponds to the need to subtract almost equal numbers and
divide by a small number. For higher orders f ′′, f ′′′.., one must expect numerical
problems. An elegant solution to this problem is the use of Differential Algebra
(DA) [21].

3.7.6.2 Automatic Differentiation: The Algebra

Here we demonstrate the concept, for more details the literature should be consulted
[6, 7, 21].
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1. Define a pair (q0, q1), where q0, q1 are real numbers
2. Define operations on such pairs like:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1) (3.133)

c · (q0, q1) = (c · q0, c · q1) (3.134)

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0) (3.135)

3. We define the ordering like:

(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1) (3.136)

(q0, q1) > (r0, r1) if q0 > r0 or (q0 = r0 and q1 > r1) (3.137)

4. This implies that:

(0, 0) < (0, 1) < (r, 0) (for any r) (3.138)

This means that (0,1) is between 0 and ANY real number, i.e. it is infinitely small,
corresponding to the “ε” in standard calculus.

Therefore we call this special pair “differential unit” d = (0, 1).
With our rules we can further see that:

(1, 0) · (q0, q1) = (q0, q1) and (q0, q1)
−1 =

(
1

q0
,− q1

q2
0

)

(3.139)

In general the inverse of a function f (q0, q1) can de derived like:

f ((q0, q1)) · (r0, r1) = (1, 0) (3.140)

using the multiplication rules. The inverse is then (r0, r1). For example:

(q0, q1)
2 · (r0, r1) = (1, 0) (3.141)

gives for the inverse:

(r0, r1) =
(

1

q2
0

,
−2q1

q3
0

)

(3.142)
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3.7.6.3 Automatic Differentiation: The Application

Of course (q, 0) is just the real number q and we define the “real” and the
“differential part”:

q0 = R(q0, q1) and q1 = D(q0, q1) (3.143)

For a function f (x) we have (without proof, see e.g. [21]):

D[f (x + d)] = D[f ((x, 0)+ (0, 1))] = f ′(x) (3.144)

We use an example instead to demonstrate this with the function:

f (x) = x2 + 1

x
(3.145)

Using school calculus we have for the derivative:

f ′(x) = 2x − 1

x2 and for x = 2 we get : f (2) = 9

2
, f ′(2) = 15

4
(3.146)

We now apply Automatic Differentiation instead. For the variable x in (3.145)
we substitute x → (x, 1) = (2, 1) and using our rules:

f [(2, 1)] = (x, 1)2 + (x, 1)−1 = (2, 1)2 + (2, 1)−1

= (4, 4)+ (
1

2
,−1

4
) = (

9

2
,

15

4
) = (f (2), f ′(2))

we arrive at a vector containing the differentials at x = 2. The computation of
derivatives becomes an algebraic problem, without need for small numbers. No
numerical difficulties are expected and the differential is exact.

3.7.6.4 Automatic Differentiation: Higher Orders

To obtain higher orders, we need higher derivatives, i.e. larger dimension for our
vectors:

1. The pair (q0, 1), becomes a vector of length N and with equivalent rules:

(q0, 1) ⇒ (q0, 1, 0, 0, . . . , 0) (3.147)

(q0, q1, q2, . . . qN) + (r0, r1, r2, . . . rN ) = (s0, s1, s2, . . . sN ) (3.148)
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c · (q0, q1, q2, . . . qN) = (c · q0, c · q1, c · q2, . . . c · qN) (3.149)

(q0, q1, q2, . . . qN) · (r0, r1, r2, . . . rN ) = (s0, s1, s2, . . . sN ) (3.150)

with:

si =
i∑

k=0

i!
k!(i − k)!qkri−k (3.151)

If we had started with:

x = (a, 1, 0, 0, 0 . . .) (3.152)

we would get:

f (x) = ( f (a), f ′(a), f ′′(a), f ′′′(a), . . . f (n)(a) ) (3.153)

Some special cases are:

(x, 0, 0, 0, ..)n = (xn, 0, 0, 0, ..) (3.154)

(0, 1, 0, 0, ..)n = (0, 0, 0, ..,

n+1︷︸︸︷
n! , 0, 0, ..) (3.155)

(x, 1, 0, 0, ..)2 = (x2, 2x, 2, 0, ..) (3.156)

(x, 1, 0, 0, ..)3 = (x3, 3x2, 6x, 6, ..) (3.157)

As another exercise one can consider the function f (x) = x−3

f (x) → f (x, 1, 0, 0, ..) = (x, 1, 0, 0, ..)−3 = (f0, f
′f ′′, f ′′′, ..)

︸ ︷︷ ︸
next : multiply both sides with (x,1,0,0)3

(1, 0, 0, ..) = (x, 1, 0, 0, ..)3 · (f0, f
′, f ′′, f ′′′, . . .)

(1, 0, 0, ..) = (x3, 3x2, 6x, 6, ..) · (f0, f
′, f ′′, f ′′′, . . .) using (3.157)

(1, 0, 0, ..) = (x3 · f0︸ ︷︷ ︸
q0 = 1

, 3x2 · f0 + x3·f ′
︸ ︷︷ ︸

q1 = 0

, 6x · f0 + 2 · 3x2 · f ′ + x3·f ′′
︸ ︷︷ ︸

q2 = 0

, . . .)

This can easily be solved by forward substitution:

1 = x3 · f0 → f0 = x−3

0 = 3x2 · f0 + x3 · f ′ → f ′ = − 3x−4

0 = 6x · f0 + 2 · 3x2 · f ′ + x3 · f ′′ → f ′′ = 12x−5

....

(3.158)
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Using the same procedure for f (x) = x−1 one obtains:

(x, 1, 0, 0, ..)−1 = (
1

x
.− 1

x2 ,
2

x3 , . . .) (3.159)

For the function we have used before (3.145) :

f (x) = x2 + 1

x
(3.160)

and using (adding!) the expressions (3.156) and (3.159) one has:

(f0, f
′, f ′′, f ′′′) = (x2 + 1

x
, 2x − 1

x2
, 2 + 2

x3
, ..) (3.161)

3.7.6.5 Automatic Differentiation: More Variables

It can be extended to more variables x, y and a function f (x, y):

x = (a, 1, 0, 0, 0 . . .) (3.162)

y = (b, 0, 1, 0, 0 . . .) (3.163)

and get (with more complicated multiplication rules):

f ((x + dx), y + dy)) =
(
f,

∂f

∂x
,
∂f

∂y
,
∂2f

∂x2 ,
∂2f

∂x∂y
, . . .

)
(x, y) (3.164)

3.7.6.6 Differential Algebra: Applications to Accelerators

Of course it is not the purpose of these tools to compute analytical expressions
for the derivatives, the examples were used to demonstrate the techniques. The
application of these techniques (i.e. Truncated Power Series Algebra [6, 21]) is
schematically shown in Fig. 3.9. Given an algorithm, which may be a complex
simulation program with several thousands of lines of code, we can use the
techniques to “teach” the code how to compute the derivatives automatically.

Algorithm
(f,f’,f”,f”’,f””,...) (f,f’,f”,f”’,f””,...)

21

21
Input  z Output  z

Fig. 3.9 Schematic view of application of Truncated Power Series Algebra
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When we push f (x) = (a, 1, 0, 0, 0 . . .) through the algorithm, using our rules,
we get all derivatives around a, i.e. we get the Taylor coefficients and can construct
the map!

What is needed is to replace the standard operations performed by the computer
on real numbers by the algebra defined above. The maps are provided with the
desired accuracy and to any order.

Given a Taylor series to high accuracy, the wanted information about stability of
the system, global behaviour and optical parameters can be derived more easily. It
should be stressed again that the origin is the underlying tracking code, just acting
on different data types with different operations.

3.7.6.7 Differential Algebra: Simple Example

A simple example is shown below where the original “tracking code” is shown
in the left column (DATEST1) and the corresponding modified code in the right
column (DATEST2). The operation is rather trivial to demonstrate the procedure
more easily. The code is written in standard FORTRAN 95 which allows operator
overloading, but an object oriented language such as C++ or Python are obviously
well suited for this purpose. Standard FORTRAN-95 is however more flexible
overloading arbitrary operations. The DA-package used for demonstration only is
loaded by the command use myownda in the code. To make the program perform
the wanted operation we have to make two small modifications:

1. Replace the types real by the type mytaylor (defined in the package).
2. Add the “differential unit” (0, 1), the monomial in this implementation to the

variable.
PROGRAM DATEST1
use my_own_da
real(8) x,z, dx
my_order=3
dx=0.0
x=3.141592653_8/6.0_8+dx
call track(x, z)
call print(z,6)
END PROGRAM DATEST1

SUBROUTINE TRACK(a, b)
use my_own_da
real(8) a,b
b = sin(a)
END SUBROUTINE TRACK

PROGRAM DATEST2
use my_own_da
type(my_taylor) x,z, dx
my_order=3
dx=1.0d0.mono.1 ! this is our (0,1)

x=3.141592653_8/6.0_8+dx
call track(x, z)
call print(z,6)
END PROGRAM DATEST2

SUBROUTINE TRACK(a, b)
use my_own_da
type(my_taylor) a,b
b = sin(a)
END SUBROUTINE TRACK

Running these two programs we get the results in the two columns below. In the
left column we get the expected result from the real calculation of the expression
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sin(π/6)) = 0.5, while in the right column we get additional numbers sorted
according to the array index.

(0,0) 0.50000000E+00 (0,0) 0.50000000E+00
(1,0) 0.86602540E+00
(0,1) 0.00000000E+00
(2,0) -0.25000000E+00
(0,2) 0.00000000E+00
(1,1) 0.00000000E+00
(3,0) -0.14433756E+00
(0,3) 0.00000000E+00
(2,1) 0.00000000E+00
(1,2) 0.00000000E+00

The inspection shows that these numbers are the coefficients of the Taylor expansion
of sin(x) around x = π/6:

sin(
π

6
+�x) = sin(

π

6
)+cos(

π

6
)�x1− 1

2
sin(

π

6
)�x2− 1

6
cos(

π

6
)�x3 (3.165)

We have indeed obtained the derivatives of our “algorithm” through the tracking
code.

Some examples related to the analysis of accelerator physics lattices.
In example 1 a lattice with 8 FODO cells is constructed and the quadrupole is

implemented as a thin lens “kick” in the center of the element. Note that the example
is implemented in the horizontal and the longitudinal planes. For the second example
an octupole kick is added to demonstrate the correct computation of the non-linear
effect, i.e. the detuning with amplitude.

The procedure is:

1. Track through the lattice and get Taylor coefficients
2. Produce a map from the coefficients
3. Perform a Normal Form Analysis on the map

program ex1

use my_own_da
use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)

do j = 1,8
z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kf*DL*z(1)/(1 + z(3))
z(1) = z(1)+DL/2*z(2)

z(1) =z(1)+LC*z(2)

z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kd*DL*z(1)/(1 + z(3))
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! set up initial parameters
my_order=4 ! maximum order
4
fix=0.0 ! fixed point
id=1
z=fix+id

! set up lattice parameters
LC=62.5 ! half cell length
DL=3.0 ! quadrupole length
kf= 0.00295278 ! strength
kd=-0.00295278 ! strength

z(1) = z(1)+DL/2*z(2)

z(1) =z(1)+LC*z(2)
enddo

call print(z(1),6)
call print(z(2),6)

M=z ! overloads coefficient with the map
normal=m ! overloads map with normal
form

write(6,*) normal%tune, normal%dtune_da
end program ex1

(0,0,0) 0.9369211296691E-01
(0,0,1) -0.9649503806747E-01

(1,0,0) 0.9083165810508E-01
(0,1,0) 0.1667704101367E+03

(1,0,1) 0.1238115392391E+01
(0,1,1) -0.3527698956093E+02
(1,0,2) -0.1567062442887E+01
(0,1,2) 0.3478356898518E+02
(1,0,3) 0.1896009493384E+01
(0,1,3) -0.3429014840944E+02

(1,0,0) -0.5139797664004E-02
(0,1,0) 0.1572511594903E+01
(1,0,1) 0.1027959532801E-01
(0,1,1) -0.5648018984066E+00
(1,0,2) -0.1541939299201E-01
(0,1,2) 0.5570922019106E+00
(1,0,3) 0.2055919065602E-01
(0,1,3) -0.5493825054146E+01

From the elements in the Taylor expansion,
the result for the matrix per cell:

�xf = 0.09083�xi + 166.77�pi

�pf = −0.00514�xi + 1.5725�pi

The output from the normal form analysis
are (per cell!):
Tune = (0,0,0) = 0.093692
Chromaticity = (0,0,1) = -0.096495

program ex2

use my_own_da

do j = 1,8
z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kf*DL*z(1)/(1 + z(3))
z(1) = z(1)+DL/2*z(2)
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use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)

! set up initial parameters
my_order=4 ! maximum order 4
fix=0.0 ! fixed point
id=1
z=fix+id

! set up lattice parameters
LC=62.5 ! half cell length
DL=3.0 ! quadrupole length
kf= 0.00295278 ! strength
kd=-0.00295278 ! strength

z(2) =z(2)*k3*z(1)**3/1+z(3) ! add
octupole kick
z(1) =z(1)+LC*z(2)

z(1) = z(1)+DL/2*z(2)
z(2) = z(2)-kd*DL*z(1)/(1 + z(3))
z(1) = z(1)+DL/2*z(2)

z(1) =z(1)+LC*z(2)
enddo

call print(z(1),6)
call print(z(2),6)

M=z ! overloads coefficient with the map
normal=m ! overloads map with normal
form

write(6,*) normal%tune, normal%dtune_da
end program ex2

(0,0,0) 0.9369211296691E-01
(0,0,1) -0.9649503806747E-01

(2,0,0) 0.5383744464902E+02
(0,2,0) 0.5383744464902E+02
(0,0,2) 0.1009289258270E+00
(2,0,1) 0.2116575633218E+02
..........
(1,0,0) 0.9083165810508E-01
(0,1,0) 0.1667704101367E+03
(1,0,1) 0.1238115392391E+01
(0,1,1)-0.3527698956093E+02
(3,0,0)-0.1578216232118E+01
(2,1,0)-0.1429958442579E+02
(1,2,0)-0.4318760015031E+02

..........
(1,0,0)-0.5139797664004E-02
(0,1,0) 0.1572511594903E+01
(1,0,1) 0.1027959532801E-01
(0,1,1)-0.5648018984066E+00
(3,0,0)-0.1505298087837E-01

From the elements in the Taylor expansion,
the result for the matrix per cell:

�xf = 0.09083�xi + 166.77�pi

�pf = −0.00514�xi + 1.5725�pi

The output from the normal form analysis
are (per cell!):
Tune = (0,0,0) = 0.093692
Chromaticity = (0,0,1) = -0.096495

The added octupole kick results in a
detuning with amplitude of dQ/dJ = 53.837
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Defined assignments:

M = z, constructs a map M using the coefficients z
NORMAL = M, computes a normal form NORMAL using the map M

In FORTRAN95 derived “type” plays the role of “structures” in C, and NORMAL
contains:

NORMAL%tune is the tune Q
NORMAL%dtune_da is the detuning with amplitude dQ

da

NORMAL%R, NORMAL%A, NORMAL%A**-1 are the matrices
such that: M = A R A−1

from the normal form transformation one obtains α, β, γ . . .

Below a comparison is shown in Fig. 3.10 using the lattice function (e.g. β) obtained
with this procedure and the optical functions from the corresponding MAD-X
output.

One finds that βmax ≈ 300 m, βmin ≈ 170 m and perfect agreement.
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Fig. 3.10 Comparison: β-function from the model and the corresponding result from MAD-X
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3.8 Beam Dynamics with Non-linearities

Following the overview of the evaluation and analysis tools, it is now possible to
analyse and classify the behaviour of particles in the presence of non-linearities.
The tools presented beforehand allow a better physical insight to the mechanisms
leading to the various phenomena, the most important ones being:

• Amplitude detuning
• Excitation of non-linear resonances
• Reduction of dynamic aperture and chaotic behaviour.

This list is necessarily incomplete but will serve to demonstrate the most important
aspects.

To demonstrate these aspects, we take a realistic case and show how the effects
emerge automatically.

3.8.1 Amplitude Detuning

It was discussed in Sect. 3.7.5 that the one-turn-map can be transformed into a
simpler map where the rotation is separated. A consequence of the non-linearities
was that the rotation frequency becomes amplitude dependent to perform this
transformation. Therefore the amplitude detuning is directly obtained from this
normal form transformation.

3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements

Non-linear elements cause an amplitude dependent phase advance. The compu-
tational procedure to derive this detuning was demonstrated in the discussion on
normal for transformations in the case of an octupole Eqs. (3.125) and (3.129). This
formalism is valid for any non-linear element.

Numerous other examples can be found in [6] and [5].

3.8.1.2 Amplitude Detuning due to Beam–Beam Effects

For the demonstration we use the example of a beam-beam interaction because it is
a very complex non-linear problem and of large practical importance [7, 22].

In this simplest case of one beam-beam interaction we can factorize the machine
in a linear transfer map e:f2: and the beam-beam interaction e:F :, i.e.:

e: f2 : · e: F : = e: h : (3.166)
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with

f2 = − μ

2
(
x2

β
+ βp2

x) (3.167)

whereμ is the overall phase, i.e. the tune Q multiplied by 2π , and β is the β-function
at the interaction point. We assume the waist of the β-function at the collision point
(α = 0). The function F(x) corresponds to the beam-beam potential (3.87):

F(x) =
∫ x

0
f (u)du (3.168)

For a round Gaussian beam we use for f (x) the well known expression:

f (x) = 2Nr0

γ x
(1 − e

−x2

2σ 2 ) (3.169)

Here N is the number of particles per bunch, r0 the classical particle radius, γ the
relativistic parameter and σ the transverse beam size.

For the analysis we examine the invariant h which determines the one-turn-
map (OTM) written as a Lie transformation e:h:. The invariant h is the effective
Hamiltonian for this problem.

As usual we transform to action and angle variables J and �, related to the
variables x and px through the transformations:

x = √2Jβsin�, px =
√

2J

β
cos� (3.170)

With this transformation we get a simple representation for the linear transfer map
f2:

f2 = −μJ (3.171)

The function F(x) we write as Fourier series:

F(x)⇒
∞∑

n=−∞
cn(J )e

in� with cn(J ) = 1

2π

∫ 2π

0
e−in�F(x)d�

(3.172)

For the evaluation of (3.172) see [7]. We take some useful properties of Lie operators
(e.g. [6, 7]):

: f2 : g(J ) = 0, : f2 : ein� = inμein�, g(: f2 :)ein� = g(inμ)ein�

(3.173)
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and the CBH-formula for the concatenation of the maps (3.92):

e: f2 : e: F : = e: h : = exp

[
: f2 +

( : f2 :
1− e− : f2 :

)
F +O(F 2) :

]

(3.174)

which gives immediately for h:

h = −μJ +
∑

n

cn(J )
inμ

1 − e−inμ e
in� = −μJ +

∑

n

cn(J )
nμ

2 sin( nμ2 )
e
(in�+ i

nμ
2 )

(3.175)

Equation (3.175) is the beam-beam perturbed invariant to first order in the perturba-
tion using (3.92).

From (3.175) we observe that for ν = μ
2π = p

n
resonances appear for all integers

p and n when cn(J ) �= 0.
Away from resonances a normal form transformation gives:

h = − μJ + c0(J ) = const. (3.176)

and the oscillating term disappears. The first term is the linear rotation and the
second term gives the amplitude dependent tune shift (see (3.114)):

�μ(J ) = − 1

2π

dc0(J )

dJ
(3.177)

The computation of this tuneshift from the equation above can be found in the
literature [7, 23].

3.8.1.3 Phase Space Structure

To demonstrate how this technique can be used to reconstruct the phase space
structure in the presence of non-linearities, we continue with the very non-linear
problem of the beam-beam interaction treated above. To test our result, we compare
the invariant h to the results of a particle tracking program.

The model we use in the program is rather simple:

• linear transfer between interactions
• beam-beam kick for round beams
• compute action J = β∗

2σ 2 (
x2

β∗ + p2
xβ

∗)
• compute phase � = arctan(px

x
)

• compare J with h as a function of the phase �
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Fig. 3.11 Comparison: numerical and analytical model for one interaction point. Shown for 5σx
(left) and 10σx (right). Full symbols from numerical model and solid lines from invariant (3.175)

The evaluation of the invariant (3.175) is done numerically with Mathematica. The
comparison between the tracking results and the invariant h from the analytical
calculation is shown in Fig. 3.11 in the (J ,�) space. One interaction point is used
in this comparison and the particles are tracked for 1024 turns. The symbols are
the results from the tracking and the solid lines are the invariants computed as
above. The two figures are computed for amplitudes of 5 σ and 10 σ . The agreement
between the models is excellent. The analytic calculation was done up to the order
N = 40. Using a lower number, the analytic model can reproduce the envelope of
the tracking results, but not the details. The results can easily be generalized to more
interaction points [22]. Close to resonances these tools can reproduce the envelope
of the phase space structure [22].

3.8.2 Non-linear Resonances

Non-linear resonances can be excited in the presence of non-linear fields and play a
vital role for the long term stability of the particles.

3.8.2.1 Resonance Condition in One Dimension

For the special case of the beam-beam perturbed invariant (3.175) we have seen that
the expansion (3.175) diverges when the resonance condition for the phase advance
is fulfilled, i.e.:

ν = μ

2π
= p

n
(3.178)

The formal treatment would imply to use the n-turn map with the n-turn effective
Hamiltonian or other techniques. This is beyond the scope of this handbook and
can be found in the literature [6, 7]. We should like to discuss the consequences of
resonant behaviour and possible applications in this section.
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3.8.2.2 Driving Terms

The treatment of the resonance map is still not fully understood and a standard
treatment using first order perturbation theory leads to a few wrong conclusions. In
particular it is believed that a resonance cannot be excited unless a driving term
for the resonance is explicitly present in the Hamiltonian. This implies that the
related map must contain the term for a resonance in leading order to reproduce
the resonance. This regularly leads to the conclusion that 3rd order resonances
are driven by sextupoles, 4th order are driven by octupoles etc. This is only a
consequence of the perturbation theory which is often not carried beyond leading
order, and e.g. a sextupole can potentially drive resonances of any order. Such a
treatment is valid only for special operational conditions such as resonant extraction
where strong resonant effects can be well described by a perturbation theory. A
detailed discussion of this misconception is given in [6]. A correct evaluation must
be carried out to the necessary orders and the tools presented here allow such a
treatment in an easier way.

3.8.3 Chromaticity and Chromaticity Correction

For reasons explained earlier, sextupoles are required to correct the chromaticities.
In large machines and in particular in colliders with insertions, these sextupoles
dominate over the non-linear effects of so-called linear elements.

3.8.4 Dynamic Aperture

Often in the context of the discussion of non-linear resonance phenomena the
concept of dynamic aperture in introduced. This is the maximum stable oscillation
amplitude in the transverse (x, y)-space due to non-linear fields. It must be
distinguished from the physical aperture of the vacuum chamber or other physical
restrictions such as collimators.

One of the most important tasks in the analysis of non-linear effects is to provide
answers to the questions:

• Determination of the dynamic aperture
• Maximising the dynamic aperture

The computation of the dynamic aperture is a very difficult task since no
mathematical methods are available to calculate it analytically except for the trivial
cases. Following the concepts described earlier, the theory is much more complete
from the simulation point of view. Therefore the standard approach to compute the
dynamic aperture is done by numerical tracking of particles.
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The same techniques can be employed to maximise the dynamic aperture, in
the ideal case beyond the limits of the physical aperture. Usually one can define
tolerances for the allowed multipole components of the magnets or the optimized
parameters for colliding beams when the dominant non-linear effect comes from
beam-beam interactions.

3.8.4.1 Long Term Stability and Chaotic Behaviour

In accelerators such as particle colliders, the beams have to remain stable for many
hours and we may be asked to answer the question about stability for as many as 109

turns in the machine. This important question cannot be answered by perturbative
techniques. In the discussion of Poincare surface-of-section we have tasted the
complexity of the phase space topology and the final question is whether particles
eventually reach the entire region of the available phase space.

It was proven by Kolmogorov, Arnol’d and Moser (KAM theorem) that for
weakly perturbed systems invariant surfaces exist in the neighbourhood of integrable
ones. Poincare gave a first hint that stochastic behaviour may be generated in non-
linear systems. In fact, higher order resonances change the topology of the phase
space and lead to the formation of island chains on an increasingly fine scale.
Satisfactory insight to the fine structure of the phase space can only be gained with
numerical computation. Although the motion near resonances may be stochastic,
the trajectories are constrained by nearby KAM surfaces (at least in one degree of
freedom) and the motion remains confined.

3.8.4.2 Practical Implications

In numerical simulations where particles are tracked for millions of turns we would
like to determine the region of stability, i.e. dynamic aperture. Since we cannot
track ad infinitum, we have to specify criteria whether a particle is stable or not.
A straightforward method is to test the particle amplitudes against well defined
apertures and declare a particle lost when the aperture is reached. A sufficient
number of turns, usually determined by careful testing, is required with this method.

Usually this means to find the particle survival time as a function of the initial
amplitude. In general the survival time decreases as the amplitude increases and
should reach an asymptotic value at some amplitude. The latter can be identified as
the dynamic aperture.

Other methods rely on the assumption that a particle that is unstable in the long
term, exhibits features such as a certain amount of chaotic motion.

Typical methods to detect and quantify chaotic motion are:

• Frequency Map Analysis [24, 25].
• Lyapunov exponent [26].
• Chirikov criterion [27].
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In all cases care must be taken to avoid numerical problems due to the
computation techniques when a simulation over many turns is performed.
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Chapter 4
Impedance and Collective Effects

E. Metral, G. Rumolo, and W. Herr

As the beam intensity increases, the beam can no longer be considered as a
collection of non-interacting single particles: in addition to the “single-particle
phenomena”, “collective effects” become significant. At low intensity a beam of
charged particles moves around an accelerator under the Lorentz force produced
by the “external” electromagnetic fields (from the guiding and focusing magnets,
RF cavities, etc.). However, the charged particles also interact with themselves
(leading to space charge effects) and with their environment, inducing charges and
currents in the surrounding structures, which create electromagnetic fields called
wake fields. In the ultra-relativistic limit, causality dictates that there can be no
electromagnetic field in front of the beam, which explains the term “wake”. It is
often useful to examine the frequency content of the wake field (a time domain
quantity) by performing a Fourier transformation on it. This leads to the concept
of impedance (a frequency domain quantity), which is a complex function of
frequency. The charged particles can also interact with other charged particles
present in the accelerator (leading to two-stream effects, and in particular to electron
cloud effects in positron/hadron machines) and with the counter-rotating beam in
a collider (leading to beam–beam effects). As the beam intensity increases, all
these “perturbations” should be properly quantified and the motion of the charged
particles will eventually still be governed by the Lorentz force but using the total
electromagnetic fields, which are the sum of the external and perturbation fields.
Note that in some cases a perturbative treatment is not sufficient and the problem has
to be solved self consistently. These perturbations can lead to both incoherent (i.e. of
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a single particle) and coherent (i.e. of the centre of mass) effects, in the longitudinal
and in one or both transverse directions, leading to beam quality degradation or
even partial or total beam losses. Fortunately, stabilising mechanisms exist, such
as Landau damping, electronic feedback systems and linear coupling between the
transverse planes (as in the case of a transverse coherent instability, one plane is
usually more critical than the other).

Beam instabilities cover a wide range of effects in particle accelerators and they
have been the subjects of intense research for several decades. As the machines
performance was pushed new mechanisms were revealed and nowadays the chal-
lenge consists in studying the interplays between all these intricate phenomena, as it
is very often not possible to treat the different effects separately [1, 2]. This field is
still very active as can be revealed by the recent (and future) international workshops
devoted to this subject [3–5].

This chapter is structured as follows: space charge is discussed in Sect. 4.1, wake
fields (and related impedances) in Sect. 4.2, the induced coherent instabilities in
Sect. 4.3 and the Landau damping mechanism in Sect. 4.4. The two-stream effects
are analyzed in Sect. 4.5, concentrating mainly on electron cloud, while beam–beam
effects are reviewed in Sect. 4.6, before concluding in Sect. 4.7 by the numerical
modelling of collective effects.

4.1 Space Charge

E. Metral

4.1.1 Direct Space Charge

Two space charge effects are distinguished: the direct space charge and the indirect
(or image) one ([6–9], and references therein). The direct space charge comes from
the interaction between the particles of a single beam, without interaction with the
surrounding vacuum chamber. Consider two particles with the same charge (for
instance protons) in vacuum. They will feel two forces: the Coulomb repulsion
(as they have the same charge) and the magnetic attraction (as they represent
currents moving in the same direction, leading to an azimuthal magnetic field).
Let’s assume that particle 1 is moving with speed v1 = β1c with respect to the
laboratory frame, with β the relativistic velocity factor and c the speed of light. In its
rest frame, particle 1 produces only an electrostatic field, which can be computed,
and applying the relativistic transformation of the electromagnetic fields between
the rest and laboratory frames, the magnetic contribution can be obtained. Note
that there is no magnetic contribution in the longitudinal plane (Bs = 0), which
leads to the longitudinal Lorentz force Fs = eEs, where e is the elementary charge,
s the azimuthal coordinate and Es the longitudinal electric field. The transverse
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(horizontal and vertical) Lorentz force on particle 2, moving with speed v2 = β2c
with respect to the laboratory frame, is written

Fx,y = eEx,y

{
(1 − β1β2) , if 2 moves in same direction as 1
(1 + β1β2) , if 2 moves in opposite direction as 1

. (4.1)

The first case corresponds to the space charge case where both particles move
in the same direction, while the second corresponds to the beam–beam case (see
Sect. 4.6) where the particles move in opposite direction. In both cases, the first
term comes from the electric field while the second comes from the magnetic one.
The main difference between the two regimes is that for the space charge case there
is a partial compensation of the two forces, while for the beam–beam case the two
forces add. The space charge force is maximum at low energy and vanishes at high
energy, while the beam–beam force is maximum at high energy. Considering the
space charge regime and assuming the same speed for both beams, the Lorentz force
simplifies to

Fx,y = eEx,y

(
1 − β2

)
= e

Ex,y

γ 2
, Fs = eEs, (4.2)

where γ is the relativistic mass factor. Assuming a circular beam pipe with radius b
(which is important only for the computation of the longitudinal force) and applying
Gauss’s law, the electromagnetic fields can be computed for a bunch with Gaussian
radial density (with rms σ x = σ y = σ ) using the cylindrical coordinates (r, θ , s).
The associated Lorentz forces are given by

Fr = e

γ 2Er = eλ(z)

2πε0γ 2

⎛

⎝1−e−
r2

2σ2

r

⎞

⎠ , Fs = − e

2πε0γ 2

dλ(z)

dz

b∫

r ′=r

1 − e−
r′2
2σ2

r ′ dr ′,

(4.3)

where λ(z) is the longitudinal line density, z = s − vt with t being the time, and ε0
the vacuum permittivity. A first observation is that the space charge forces are highly
nonlinear. Another important observation is that the radial force is proportional to
the longitudinal density while the longitudinal one is proportional to the derivative
of the longitudinal density. Linearizing both forces (for very small amplitudes where
r << σ ) leads to

Fr ≈ eλ(z)

2πε0γ 2

r

2σ 2 , Fs ≈ − e

4πε0γ 2

dλ(z)

dz

[
1 + 2 ln

(
b√
2σ

)]
. (4.4)

This means that the transverse space charge force is linear for small amplitudes
and defocusing. Due to the additional space charge force, e.g. the horizontal betatron
tune will no longer be the unperturbed tune Qx0 but will be Qx = Qx0 +�Qx, where
�Qx is the horizontal incoherent betatron tune shift. Similarly, the new synchrotron
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tune will be Qs = Qs0 + �Qs, where �Qs is the incoherent synchrotron tune shift.
The betatron and synchrotron linearized incoherent space charge tune shifts are
given by

ΔQLin
x = − Nbrp

4πβγ 2εnorm
x,rmsB

, ΔQLin
s = + ηNbe

2R2

8π
√

2πε0Etotalβ2γ 2σ 3
z Qs0

[
1 + 2 ln

(
b√
2σ

)]
,

(4.5)

where Nb is the number of protons in the bunch, rp the classical proton radius,
εnorm
x,rms = βγ εx,rms the normalized rms horizontal emittance, with εx, rms = σ 2/βx at a

place of zero dispersion with βx the horizontal betatron function,B = √
2πσz/2πR

is the bunching factor (assuming a Gaussian longitudinal distribution with rms σ z)
with R the average machine radius, η = γ−2

tr −γ−2 the slip factor (where γ tr stands
for γ at transition energy) and Etotal is the total particles’ energy. It is shown from
Eq. (4.5) that the transverse betatron tune shift is always negative, revealing that the
space charge force is always defocusing. Note that for the case of an ion with mass
number A and charge state Z, the transverse tune shift has to be multiplied by Z2/A.

Contrary to the transverse case, the longitudinal space charge is defocusing below
transition (as η < 0) and focusing above (as η > 0). One can therefore already
anticipate some longitudinal mismatch issues when crossing transition with high-
intensity bunches, i.e. the bunch length will not be in equilibrium anymore and
will oscillate inside the RF buckets. Such a case is depicted in Fig. 4.1(left) for the
particular case of the high-intensity bunch in the CERN PS machine, which is sent
to the nTOF (neutron Time-Of-Flight) experiment [10]. The computed quadrupolar
oscillation is induced when transition is crossed and is a consequence of the
longitudinal mismatch: below transition space charge is defocusing which reduces
the bucket height and increases the bunch length, while above transition space
charge is focusing which increases the bucket height and decreases the bunch length.

Fig. 4.1 (Left) Computation of the evolution of the full bunch length vs. time for the case of the
nonadiabatic theory (the adiabatic theory is not valid anymore close to transition) with and without
space charge, applied to the PS nTOF bunch [10]. Tc is the nonadiabatic time, equal to ~2 ms in the
present case. (Right) Evolution of the angle of the tilted ellipse around transition (without space
charge)
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Therefore, there is an intensity-dependent step in the equilibrium bunch length
at transition, which leads to a longitudinal mismatch and subsequent quadrupolar
oscillations. If these bunch shape oscillations are not damped they will eventually
result in filamentation and longitudinal emittance blow-up. It’s worth mentioning
that in presence of significant space charge, the minimum of bunch length is not
reached right at transition anymore, but after about one nonadiabatic time Tc, i.e.
after ~2 ms in the present case [11, 12]. The same kind of mechanism appears
with the inductive part of the longitudinal machine impedance (see Sect. 4.2). The
only difference is that in this case, the equilibrium bunch length is shorter below
transition and longer above transition.

If transition crossing cannot be avoided, the γ t jump is the only (known) method
to overcome all the intensity limitations. It consists in an artificial increase of the
transition crossing speed by means of fast pulsed quadrupoles. The idea is that
quadrupoles at nonzero dispersion locations can be used to adjust the momentum
compaction factor. The change in momentum compaction (called γ t jump) depends
on the unperturbed and perturbed dispersion functions at the kick-quadrupole
locations. These schemes were pioneered by the CERN PS group [13–16]. Such a γ t
jump scheme makes it possible to keep the beam at a safe distance from transition,
except for the very short time during which the transition region is crossed at a speed
increased by one or two orders of magnitude. Looking at Fig. 4.1(left) clearly reveals
why an asymmetric jump was proposed in the past [14] to damp the longitudinal
quadrupolar oscillations arising from the space charge induced mismatch: the idea
is to jump rapidly from an equilibrium bunch length below transition to the same
value above. The amplitude of the jump is defined by the time needed to go to the
same equilibrium bunch length above transition. The minimum amplitude of the
jump corresponds to the case represented with the dashed blue line starting right at
transition. However, in this case the initial longitudinal phase space ellipse is tilted
(see Fig. 4.1(right)), while the final one is almost not, which is not ideal. One might
want therefore to start the jump earlier, when the longitudinal phase space is almost
not tilted, for instance at x ≈ −2, which requires a larger jump (see the dashed
orange line in Fig. 4.1(left)).

Coming back to the transverse space charge, in the case of an elliptical beam
(instead of a round one), one has to replace 2σ x

2 by σ x(σ x + σ y) and 2σ y
2 by

σ y(σ x + σ y). Furthermore, due to the nonlinear nature of the space charge, the
tune shifts of the different particles will not be the same, which will lead to a tune
spread: plotted in the tune diagram it is called a tune footprint. The latter has to
be accommodated in the tune diagram, without crossing harmful resonance lines,
which might lead to emittance growth and/or beam losses. The exact tune footprint
depends on the distribution and to illustrate this effect we consider in the following
a round beam with quasi-parabolic distribution function, whose particle density
extends up to ~3.2σ [17, 18]. The corresponding horizontal 2D (i.e. neglecting
the longitudinal distribution) space charge force is plotted in Fig. 4.2(left), and the
tune footprint in Fig. 4.2(right). The unperturbed (low-intensity) working point is
in the top right corner, the small-amplitude particles have the largest tune shifts
while the largest amplitude particles have the smallest tune shifts. If the longitudinal
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Fig. 4.2 Horizontal 2D (i.e. neglecting the longitudinal distribution) space charge force (left) and
tune footprint for the case of the CERN LHC at injection, assuming the tunes in collision (64.31,
59.32). The parameter n0 is the constant term in the particle density [18]

distribution is taken into account, the longitudinal variation (due to synchrotron
oscillations) of the transverse space-charge force fills the gap until the low-intensity
working point. However, it is interesting to plot it like this to clearly see the region
occupied by the large synchrotron amplitude particles, because the interaction with
a nonlinear resonance will depend on the overlapping position. Several possibilities
exist with core emittance blow-up, creation of tails and/or beam losses. In particular,
if the resonance interacts with the small amplitude particles, there could be a regime
of loss-free (core-)emittance blow-up, while if the resonance interacts with the
particles with large synchrotron amplitudes (i.e. if the resonance line is in the gap
between the 2D tune footprint and the low-intensity working point) there could
be a regime with continuous loss due to the trapping–detrapping mechanisms, as
observed both in the PS [19] and at SIS18 [20].

Finally, another space charge mechanism, which could be important in high-
intensity synchrotrons with unsplit transverse tunes (i.e. having the same integer)
is the Montague resonance which can lead to emittance transfer from one plane to
the other and might lead to losses if the beam fills the aperture [21, 22].

4.1.2 Indirect Space Charge

In the case of a beam off-axis in a perfectly conducting circular beam pipe (with
radius b), a coherent (or dipolar, i.e. of the centre of mass) force arises, which can
be found by using the method of the images (to satisfy the boundary condition on a
perfect conductor, i.e. of a vanishing tangential electrical field). The electric field is
always assumed to be non-penetrating. However, for the magnetic field, the situation
is more complicated as it may or may not penetrate the vacuum chamber: the high-
frequency components, called “ac” will not penetrate, while the low-frequency ones,
called “dc” will penetrate and form images on the magnet pole faces (if there are
some; otherwise they will go to infinity and will not act back on the beam). In the
case of a non-penetrating “ac” magnetic field, one finally obtains (keeping only the
linear terms, i.e. x � b and y � b, where x and y are the transverse displacements
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of the centre of mass):

Fx = Λcx, Fy = Λcy, Λc = λe

2πε0γ 2b2 . (4.6)

It can be seen that the transverse coherent space charge force of Eq. (4.6) is
similar to the transverse incoherent space charge force of Eq. (4.4, left): 2σ 2 has
been replaced by b2.

The same analysis can be performed in the case of two infinite (horizontal)
parallel plates spaced by 2h and the results are the following (assuming that the
transverse beam sizes are much smaller than h, assuming only the “ac” magnetic
part and keeping only the linear terms)

Fx = Λc

(
π2

24
x − π2

24
x

)
, Fy = Λc

(
π2

12
y + π2

24
y

)
. (4.7)

Therefore, compared to the circular case, the coherent force is smaller by
π2/24≈ 0.4 in the horizontal plane and π2/12≈ 0.8 in the vertical one. Furthermore,
there is a second incoherent (or quadrupolar, as it is linear with the particle
position) term with opposite sign in both planes. The coefficients are linked to
the Laslett coefficients usually used in the literature [23], and they are the same
as the ones obtained by Yokoya [24] in the case of a resistive beam pipe under
some assumptions (see Sect. 4.2). General formulae exist for the “real” tune shifts
of coasting or bunched beams in pipes with different geometries, considering both
the “ac” and “dc” magnetic parts and can be found for instance in Refs. [6, 7].

4.2 Wake Fields and Impedances

E. Metral

If the wall of the beam pipe is perfectly conducting and smooth, as it was the
case in the previous section, a ring of negative charges is formed on the walls of
the beam pipe where the electric field ends, and these induced charges travel at the
same pace with the particles, creating the so-called “image” (or induced) current,
which leads to real tune shifts. However, if the wall of the beam pipe is not perfectly
conducting or contains discontinuities, the movement of the induced charges will
be slowed down, thus leaving electromagnetic fields (which are proportional to the
beam intensity) mainly behind: this is why these electromagnetic fields are called
wake fields. The latter will create complex tune shifts leading to instabilities (see
Sect. 4.3). What needs to be computed are the wake fields at the distance z = s − vt
behind the source particle (which is at position ssource = vt; with this convention,
one has z < 0) and their effects on the test or witness particles that compose the
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beam. The computation of these wake fields is quite involved and two fundamental
approximations are introduced:

1. The rigid-beam approximation: The beam traverses a piece of equipment rigidly,
i.e. the wake field perturbation does not affect the motion of the beam during the
traversal of the impedance. The distance z of the test particle behind some source
particle does not change.

2. The impulse approximation: As the test particle moves at the fixed velocity v =
βc through a piece of equipment, the important quantity is the impulse (and not
the force) given by

Δp (x, y, z) =
+∞∫

−∞
dtF (x, y, s = z + βct, t) =

+∞∫

−∞
dte (E + v × B) , (4.8)

where vectors are designated by boldtype letters. Starting from the four Maxwell
equations for a particle in the beam, it can be shown that for a constant β (which
does not need to be 1) [9]

∇ ×Δp (x, y, z) = 0, (4.9)

which is known as Panofsky-Wenzel theorem. This relation is very general, as no
boundary conditions have been imposed. Only the two fundamental approximations
have been made. Another important relation can be obtained when β = 1, taking the
divergence of the impulse, which is

∇⊥·Δp⊥ = 0. (4.10)

Considering the case of a cylindrically symmetric chamber (using the cylindrical
coordinates r, θ , z), yields the following three equations from Panofsky-Wenzel
theorem

1

r

∂Δpz

∂θ
= ∂Δpθ

∂z
,

∂Δpr

∂z
= ∂Δpz

∂r
,

∂ (rΔpθ)

∂r
= ∂Δpr

∂θ
. (4.11)

The fourth relation when β = 1 writes

∂ (rΔpr)

∂r
= −∂Δpθ

∂θ
. (4.12)

Consider now as a source charge density a macro-particle of charge Q = Nbe
moving along the pipe (in the s-direction) with an offset r = a in the ϑ= 0 direction
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and with velocity v = βc

ρ (r, ϑ, s; t) = Q

a
δ (r − a) δp (ϑ) δ (s − vt)

=
∞∑

m=0

Qm cos (mϑ)

πam+1 (1 + δm0)
δ (r − a) δ (s − vt) =

∞∑

m=0

ρm,
(4.13)

with Jm = ρmv, where Qm = Qam and δ is the Dirac function. In this case the whole
solution can be written as, for m ≥ 0 and β = 1 (with q the charge of the test particle
and L the length of the structure)

vΔps (r, θ, z) =
∫ L

0Fsds = −qQamrm cosmθW ′
m(z)

vΔpr (r, θ, z) =
∫ L

0 Frds = −qQammrm−1 cosmθWm(z),

vΔpθ (r, θ, z) =
∫ L

0 Fθds = qQammrm−1 sinmθ Wm(z).

(4.14)

The function Wm(z) is called the transverse wake function (whose unit is
VC−1m−2m) and Wm

′(z) is called the longitudinal wake function (whose unit is
VC−1m−2m+1) of azimuthal mode m. They describe the shock response of the
vacuum chamber environment to a δ-function beam which carries a mth moment.
The integrals (on the left) are called wake potentials. The longitudinal wake function
for m = 0 and transverse wake function for m = 1 are therefore given by

W ′
0(z) = − 1

qQ

∫ L
0 Fsds = − 1

Q

∫ L
0 Esds,

W1(z) = − 1
qQa

∫ L
0 Fxds = − 1

Qa

∫ L
0

(
Ex − vBy

)
ds.

(4.15)

The Fourier transform of the wake function is called the impedance. The idea
of representing the accelerator environment by an impedance was introduced by
Vaccaro [25] and Sessler [26]. As the conductivity, permittivity and permeability of
a material depend in general on frequency, it is usually better (or easier) to treat the
problem in the frequency domain, i.e. compute the impedance instead of the wake
function. It is also easier to treat the case β �= 1. Then, an inverse Fourier transform
is applied to obtain the wake function in the time domain. The different relations
linking the wake functions and the impedances are given by (with k = ω/v, ω = 2πf
with f the frequency, and j the imaginary unit)

Z
‖
m (ω) =

∞∫
−∞

W ′
m(z)e

jkz dz
v
=

∞∫
−∞

W ′
m(t)e

jkse−jωt dt,

Z⊥m (ω) = −j
∞∫
−∞

Wm(z)ejkz dzv = −j
∞∫
−∞

Wm(t)ejkse−jωt dt.

W ′
m(z) = 1

2π

∞∫
−∞

Z
‖
m (ω) e−jkzdω = 1

2π

∞∫
−∞

Z
‖
m (ω) e−jksejωt dω,

Wm(z) = j
2π

∞∫
−∞

Z⊥m (ω) e−jkzdω = j
2π

∞∫
−∞

Z⊥m (ω) e−jksejωt dω.

(4.16)
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The unit of the longitudinal impedance Z‖m (ω) is �m−2m while the unit of the
transverse impedance Z⊥m (ω) is �m−2m+1. Furthermore, two important properties
of impedances can be derived. The first is a consequence of the fact that the wake
function is real, which leads to

[
Z‖m (ω)

]∗ = Z‖m (−ω) , −
[
Z⊥m (ω)

]∗ = Z⊥m (−ω) , (4.17)

where ∗ stands for the complex conjugate. The second is a consequence of Panofsky-
Wenzel theorem

Z‖m (ω) = kZ⊥m (ω) . (4.18)

Another interesting property of the impedances is the directional symmetry
(Lorentz reciprocity theorem): the same impedance is obtained from both sides if
the entrance and exit are the same.

A more general definition of the impedances (still for a cylindrically symmetric
structure) is the following

Z‖m (ω) = − 1

Q2
m

∫
dVE‖

mJ
∗
m, Z⊥m (ω) = − 1

kQ2
m

∫
dVE‖

mJ
∗
m, (4.19)

where dV = rdrdϑds. For the previous ring-shape source it yields

Z
‖
0 (ω) = − 1

Q0

∫ L
0 dsEs (r = a) ejks,

Z⊥1 (ω) = − L
kπaQ1

∫ 2π
0 dϑEs (r = a, ϑ, s) cosϑejks .

(4.20)

The situation is more involved in the case of non axi-symmetric structures (due
in particular to the presence of the quadrupolar wake field, already discussed in
Sect. 4.1) and for β �= 1, as in this case some electromagnetic fields also appear
in front of the source particle. In the case of axi-symmetric structures, a current
density with some azimuthal Fourier component creates electromagnetic fields with
the same azimuthal Fourier component. In the case of non axi-symmetric structures,
a generalized notion of impedances was introduced by Tsutsui [27], where a current
density with some azimuthal Fourier component may create an electromagnetic field
with various different azimuthal Fourier components. If the source particle 1 and test
particle 2 have the same charge q, and in the ultra-relativistic case, the transverse
wake potentials can be written (taking into account only the linear terms with respect
to the source and test particles and neglecting the constant, coupling and high order
terms) [28]

∫ L
0 Fxds = −q2

[
x1W

driving
x (z)− x2W

detuning(z)
]
,

∫ L
0 Fyds = −q2

[
y1W

driving
y (z)+ y2W

detuning(z)
]
,

(4.21)
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where the driving term is used here instead of dipolar and detuning instead of
quadrupolar (or incoherent). In the frequency domain, Eq. (4.21) leads to the
following generalized impedances

Zx [Ω] = x1Z
driving
x − x2Z

detuning,

Zy [Ω] = y1Z
driving
x + y2Z

detuning.
(4.22)

Note that in the case β �= 1, another quadrupolar term is found [29].
From Eqs. (4.21) and (4.22), the procedure to simulate or measure the driving and

detuning contributions can be deduced. In the time domain, using some time-domain
electromagnetic codes like for instance CST Particle Studio [30], the driving and
detuning contributions can be disentangled. A first simulation with x2 = 0 gives the
dipolar part while a second one with x1 = 0 provides the quadrupolar part. It should
be noted that if the simulation is done with x1 = x2, only the sum of the dipolar
and quadrupolar parts is obtained. The situation is more involved in the frequency
domain, which is used for instance for impedance measurements on a bench [31].
Two measurement techniques can be used to disentangle the transverse driving and
detuning impedances, which are both important for the beam dynamics (this can also
be simulated with codes like Ansoft-HFSS [32]). The first uses two wires excited in
opposite phase (to simulate a dipole), which yields the transverse driving impedance
only. The second consists in measuring the longitudinal impedance, as a function of
frequency, for different transverse offsets using a single displaced wire. The sum
of the transverse driving and detuning impedances is then deduced applying the
Panofsky-Wenzel theorem in the case of top/bottom and left/right symmetry [33].
Subtracting finally the transverse driving impedance from the sum of the transverse
driving and detuning impedances obtained from the one-wire measurement yields
the detuning impedance only. If there is no top/bottom or left/right symmetry the
situation is more involved [34].

Both longitudinal and transverse resistive-wall impedances were already calcu-
lated 40 years ago by Laslett, Neil and Sessler [35]. However, a new physical regime
was revealed by the CERN LHC collimators. A small aperture paired with a large
wall thickness asks for a different physical picture of the transverse resistive-wall
effect from the classical one. The first unstable betatron line in the LHC is around
8 kHz, where the skin depth for graphite (whose measured isotropic DC resistivity
is 10 μ�m) is 1.8 cm. It is smaller than the collimator thickness of 2.5 cm. Hence
one could think that the resistive thick-wall formula would be about right. In fact
it is not. The resistive impedance is about two orders of magnitude lower at this
frequency, as can be seen on Fig. 4.3. A number of papers have been published on
this subject using the field matching technique starting from the Maxwell equations
and assuming a circular geometry [36–40]. New results have been also obtained for
flat chambers, extending the (constant) Yokoya factors to frequency and material
dependent ones [41], as was already found with some simplified kicker impedance
models [42, 43]. Note that the material resistivity may vary with the magnetic field
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Fig. 4.3 Horizontal (driving) impedance of a cylindrical one-meter long LHC collimator (even
if in reality the LHC collimators are composed of two parallel plates), with b = 2 mm and
ρ = 10 μ�m. The real part is in red while the imaginary part is in green (note that in the classical
thick-wall regime, the real and imaginary parts are equal). The dashed curves correspond to the
case with a copper coating of 5 μm [1]

through the magneto-resistance and the surface impedance can also increase due to
the anomalous skin effect ([44] and references therein).

In the case of a cavity, an equivalent RLC circuit can be used with Rs the
longitudinal shunt impedance, C the capacity and L the inductance. In a real cavity,
these three parameters cannot be separated easily and some other related parameters
are used, which can be measured directly such as the resonance (angular) frequency
ωr = 1/

√
LC, the quality factor Q = Rs

√
C/L = Rs/ (Lωr ) = RsCωr and

the damping rate α = ωr/(2Q). When Q = 1, the resonator impedance is called
“broad-band”, and this model was extensively used in the past in many analytical
computations. The longitudinal and transverse impedances and wake functions
(with R⊥ the transverse shunt impedance) are given by [45] (see Fig. 4.4):

Z
‖
m (ω) = Rs

1+jQ
(
ω
ωr
−ωr

ω

) ,W
‖
m(t) = ωrRs

Q
e−αt
[
cos (ωr t)− α

ωr
sin (ωrt)

]

Z⊥m (ω) = ωr
ω

R⊥
1+jQ

(
ω
ωr
−ωr

ω

) ,W⊥
m (t) = ω2

r R⊥
Qωr

e−αt sin (ωr t) , ωr = ωr

√
1 − 1

4Q2 .

(4.23)

Finally, all the transverse impedances (dipolar or driving and quadrupolar or
detuning) should be weighted by the betatron function at the location of the
impedances, as this is what matters for the effect on the beam, i.e. for the beam
dynamics. Furthermore, all the weighted impedances can be summed and lumped
at a single location around the ring (as the betatron phase advance does not play a
role [46]) such that the transverse impedance-induced instabilities can be studied
by considering only one interaction per turn, as it was confirmed in the past
by performing macro-particle tracking simulations and comparing the cases of
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Fig. 4.4 Longitudinal and transverse impedances and wake functions, in the case of resonator
impedances (fr = 1 GHz, Q = 100, Rs = 20 �, and R⊥ = 20 M�/m)

distributed kickers in the CERN SPS with the corresponding lumped impedance:
exactly the same result was obtained [47].

4.3 Coherent Instabilities

E. Metral

The wake fields can influence the motion of trailing particles, in the longitudinal
and in one or both transverse directions, leading to energy loss, beam instabilities,
or producing undesirable secondary effects such as excessive heating of sensitive
components at or near the chamber wall. Therefore, in practice the elements of the
vacuum chamber should be designed to minimise the self-generated electromagnetic
fields. For example, chambers with different cross-sections should be connected
with tapered transitions; bellows need to be separated from the beam by shielding;
plates should be grounded or terminated to avoid reflections; high-resistivity
materials should be coated with a thin layer of very good conductor (such as copper)
when possible; etc.

Two approaches are usually used to deal with collective instabilities. One starts
from the single-particle equation while the other solves the Vlasov equation, which
is nothing else but an expression for the Liouville conservation of phase-space
density seen by a stationary observer. In the second approach, the motion of the
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beam is described by a superposition of modes, rather than a collection of individual
particles. The detailed methods of analysis in the two approaches are different,
the particle representation is usually conveniently treated in the time domain,
while in the mode representation the frequency domain is more convenient, but in
principle they necessarily give the same final results. The advantage of the mode
representation is that it offers a formalism that can be used systematically to treat
the instability problem.

The first formalism was used by Courant and Sessler to describe the transverse
coupled-bunch instabilities [48]. In most accelerators, the RF acceleration mecha-
nism generates an azimuthal non-uniformity of the particle density and consequently
the work of Laslett, Neil and Sessler for continuous beams [35] is not applicable in
the case of bunched beams. Courant and Sessler studied the case of rigid (point-like)
bunches, i.e. bunches oscillating as rigid units, and they showed that the transverse
electromagnetic coupling of bunches of particles with each other can lead (due to
the imperfectly conducting vacuum chamber walls) to a coherent instability. The
physical basis of the instability is that in a resistive vacuum tank, fields due to a
particle decay only very slowly in time after the particle has left (this leads to a long-
range interaction). The decay can be so slow that when a bunch returns after one
(or more) revolutions it is subject to its own residual wake field which, depending
upon its phase relative to the wake field, can lead to damped or anti-damped
transverse motion. For M equi-populated equi-spaced bunches, M coupled-bunch
mode numbers exist (n = 0, 1, . . . , M − 1), characterized by the integer number of
waves of the coherent motion around the ring. Therefore the coupled-bunch mode
number resembles the azimuthal mode number for coasting beams, except that for
coasting beams there is an infinite number of modes. The bunch-to-bunch phase
shift �φ is related to the coupled-bunch mode number n by �φ = 2πn/M.

Pellegrini [49] and, independently, Sands [50, 51] then showed that short-range
wake fields (i.e. fields that provide an interaction between the particles of a bunch
but have a negligible effect on subsequent passages of the bunch or of other bunches
in the beam) together with the internal circulation of the particles in a bunch can
cause internal coherent modes within the bunch to become unstable. The important
point here is that the betatron phase advance per unit of time (or betatron frequency)
of a particle depends on its instantaneous momentum deviation (from the ideal
momentum) in first order through the chromaticity and the slip factor. Considering
a non-zero chromaticity couples the betatron and synchrotron motions, since the
betatron frequency varies around a synchrotron orbit. The betatron phase varies
linearly along the bunch (from the head) and attains its maximum value at the tail.
The total betatron phase shift between head and tail is the physical origin of the
head tail instability. The head and the tail of the bunch oscillate therefore with a
phase difference, which reduces to rigid-bunch oscillations only in the limit of zero
chromaticity. A new (within-bunch) mode number m = . . . , −1, 0, 1, . . . , also
called head–tail (or azimuthal) mode number, was introduced. This mode describes
the number of betatron wavelengths (with sign) per synchrotron period.

The work of Courant and Sessler, or Pellegrini and Sands, was done for particular
impedances and oscillation modes. Using the Vlasov formalism, Sacherer unified
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Fig. 4.5 Signal at the pick-up electrode for three different modes shown for several superimposed
turns (the red line corresponds to one particular turn), for the case of the parabolic amplitude
distribution and a constant inductive impedance (exhibiting therefore no growing oscillations!)

the two previous approaches, introducing a third mode number q ≡ � m � + 2k
(with 0 ≤ k < +∞), called radial mode number, which comes from the distribution
of synchrotron oscillation amplitudes [52, 53]. It can be obtained by superimposing
several traces of the directly observable average displacement along the bunch at a
particular pick-up. The number of nodes is the mode number q (see Figs. 4.5 and
4.8). The advantage of this formalism is that it is valid for generic impedances and
any high order head–tail modes. This approach starts from a distribution of particles
(split into two different parts, a stationary distribution and a perturbation), on which
Liouville theorem is applied. After linearization of the Vlasov equation, one ends
up with Sacherer’s integral equation or Laclare’s eigenvalue problem to be solved
[53]. Because there are two degrees of freedom (phase and amplitude), the general
solution is a twofold infinity of coherent modes of oscillation (m, q). At sufficiently
low intensity, only the most coherent mode (largest value for the coherent tune
shift) is generally considered, leading to the classical Sacherer’s formulae in both
transverse and longitudinal planes. Note that contrary to the space charge case,
these tune shifts are now complex, the imaginary part being linked to the instability
growth rate. For protons a parabolic density distribution is generally assumed and
the corresponding oscillation modes are sinusoidal (or close to it). For electrons,
the distribution is usually Gaussian, and the oscillation modes are described in
this case by Hermite polynomials. In reality, the oscillation modes depend both on
the distribution function and the impedance, and can only be found numerically
by solving the (infinite) eigenvalue problem. However, the mode frequencies are
usually not very sensitive to the accuracy of the eigenfunctions. Similar results are
obtained for the longitudinal plane.

It is worth mentioning that the CERN ISR suffered from a beam instability
brought about by beams having different revolution frequencies. They could be
in the same vacuum chamber or coupled by the beam–beam effect. The name
of “overlap knock-out” [54] has been given to this phenomenon by which the
stack is subjected to transverse kicks from the bunches. This produces blow-up
of the stacked beam when the longitudinal frequency spectrum of the bunches
overlaps with the betatron frequency spectrum of the coasting stacked beam. Similar
problems limit the energy range of RHIC and proton lead in LHC [55].
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4.3.1 Longitudinal

The most fundamental longitudinal instability encountered in circular accelerators is
called the Robinson instability. The (Radio-Frequency) RF frequency accelerating
cavities in a circular accelerator are tuned so that the resonant frequency of the
fundamental mode is very close to an integral multiple of the revolution frequency
of the beam. This necessarily means that the wake field excited by the beam in the
cavities contains a major frequency component near a multiple of the revolution
frequency. The exact value of the resonant frequency relative to the multiple of the
revolution frequency is of critical importance for the stability of the beam. Above
the transition energy, the beam will be unstable if the resonant frequency is slightly
above it and stable if slightly below. This is the opposite below transition. This
instability mechanism was first analyzed by Robinson [56]. Physically, the Robinson
instability comes from the fact that the revolution frequency of an off-momentum
beam is not given by the on-momentum revolution frequency, but by a quantity
slightly different, depending on both the slip factor and the energy deviation.

Let’s assume in the following that the Robinson criterion is met. A bunch is
longitudinally stable if the longitudinal profile observed at a wall-current monitor is
constant turn after turn and it is unstable if the longitudinal profile is not constant
turn after turn. In the case of instability, the way the longitudinal profile oscillates
gives some information about the type of instabilities. This was studied in detail
by Laclare [53], who explained theoretically such pictures of “longitudinal (single-
bunch) instability” starting from the single-particle longitudinal signal at a pick-
up electrode (assuming infinite bandwidth). The current signal induced by the test
particle is a series of impulses delivered on each passage

sz (t, ϑ) = e

k=+∞∑

k=−∞
δ

(
t − τ − ϑ

Ω0
− 2kπ

Ω0

)
, (4.24)

where τ is the time interval between the passage of the synchronous particle
and the test particle, for a fixed observer at azimuthal position ϑ and �0 is the
angular revolution frequency. In the frequency domain, the single-particle spectrum
is therefore a line spectrum at (angular) frequencies ωpm = pΩ0 + mωs0, where
ωs0 is the small-amplitude synchrotron frequency. Around every harmonic of the
revolution frequency pΩ0, there is an infinite number of synchrotron satellites m
(it is different from the one used in Sect. 4.2!), whose spectral amplitude is given
by the Bessel function Jm

(
p�0τ̂

)
, where τ̂ is the synchrotron amplitude. The

spectrum is centred at the origin and because the argument of the Bessel functions is
proportional to τ̂ , the width of the spectrum behaves like τ̂−1. Applying the Vlasov
equation, linearizing it, and studying the effect of the impedance on the unperturbed
distribution leads to the potential-well effect: a new fixed point is reached, with
a new synchronous phase, a new effective voltage, a new synchrotron frequency,
a new bunch length and a new momentum spread, which all depend on intensity.
Studying a perturbation on top of the new stationary distribution, one ends up at low
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intensity, i.e. considering independently the modes m (which is valid up to a certain
intensity), with the following eigenvalue system

Δωcmqσmq(l) =
p=+∞∑

p=−∞
Km
lpσmq(p),with Δωcmq = ωcmq −mωs, (4.25)

where

Km
lp = − 2πIbmωs

�2
0V̂Th cosφs

j
Zl(p)

p

τ̂=+∞∫

τ̂=0

dg0

dτ̂
Jm
(
p�0τ̂

)
Jm
(
l�0τ̂
)
dτ̂ . (4.26)

Here, �ωcmq is the coherent complex synchrotron frequency shift to be deter-
mined, Ib = NbeΩ0/2π is the bunch current, ωs, V̂T and φs are the new synchrotron
frequency, total voltage and synchronous phase (taking into account the potential-
well distortion), Zl = Z

‖
0 is the longitudinal impedance, g0 is the longitudinal

amplitude density function and h the RF harmonic number. The procedure to
obtain first order exact solutions, with realistic modes and a general interaction,
thus consists of finding the eigenvalues and eigenvectors of the infinite complex
matrix whose elements are given by Eq. (4.26). The result is an infinite number
of modes mq of oscillation. To each mode, one can associate a coherent frequency
shift �ωcmq = ωcmq − mωs (which is the qth eigenvalue), a coherent spectrum
σmq(p) (which is the qth eigenvector) and a perturbation distribution gmq

(
τ̂
)
. For

numerical reasons, the matrix needs to be truncated, and thus only a finite frequency
domain is explored. For the case of the parabolic amplitude distribution and a
constant inductive impedance (which leads to real tune shifts only and therefore
no instability), the signal at the pick-up electrode shown for several superimposed
turns is depicted on Fig. 4.5. In the case of a complex impedance, the real part will
lead in addition to a growing amplitude with an associated instability rise-time. The
spectrum of mode mq is peaked at fq ≈ (q + 1)/(2τ b) and extends ∼ ±τ−1

b , where
τ b is the full bunch length (in second). It can be seen from Fig. 4.5 that there are
q nodes on these “standing-wave” patterns. The longitudinal signal at the pick-up
electrode is given by

Smq (t, ϑ) = Sz0 (t, ϑ)+ΔSzmq (t, ϑ) , (4.27)

Sz0 (t, ϑ) = 2πIb

p=+∞∑

p=−∞
σ0(p)e

jp�0te−jpϑ , σ0(p) =
τ̂=+∞∫

τ̂=0

J0
(
p�0τ̂

)
g0
(
τ̂
)
τ̂ dτ̂ ,

(4.28)

ΔSzmq (t, ϑ) = 2πIb

p=+∞∑

p=−∞
σmq(p)e

j(p�0+mωs+Δωcmq)te−jpϑ . (4.29)
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Finding the eigenvalues and eigenvectors of a complex matrix by computer can
be difficult in some cases, and a simple approximate formula for the eigenvalues is
useful in practice to have a rough estimate. This is known as Sacherer’s (longitu-
dinal) formula [52]. Sacherer’s formula is also valid for coupled-bunch instability
with M equally-populated equally-spaced bunches, assuming multi-bunch modes
with only one type of internal motion. In the case of gaps between bunch trains, a
time-domain approach is usually better suited.

As the bunch intensity increases, the different longitudinal modes can no longer
be treated separately and the situation is more involved. In the longitudinal plane, the
microwave instability for coasting beams is well understood. It leads to a stability
diagram, which is a graphical representation of the solution of the dispersion
relation (taking into account the momentum spread) depicting curves of constant
growth rates, and especially a threshold contour in the complex plane of the driving
impedance (see Sect. 4.4) [57]. When the real part of the driving impedance is
much greater than the modulus of the imaginary part, a simple approximation,
known as the Keil-Schnell (or circle) stability criterion, may be used to estimate
the threshold curve [58]. For bunched beams, it has been proposed by Boussard to
use the coasting-beam formalism with local values of bunch current and momentum
spread [59]. A first approach to explain this instability, without coasting-beam
approximations, has been suggested by Sacherer through Longitudinal Mode-
Coupling (LMC) [60]. The equivalence between LMC Instabilities (LMCI) and
microwave instabilities has been pointed out by Sacherer and Laclare [53] in the
case of broad-band driving resonator impedances, when the bunch length is much
greater than the inverse of twice the resonance frequency. Furthermore, due to the
potential well-distortion, a bunch is more stable below transition than above [53,
61, 62]. Typical pictures of LMCI are shown in Fig. 4.6 [63] and a comparison with
macroparticle tracking simulations, which revealed a good agreement, is discussed
in Ref. [64]. Experimentally, the most evident signature of the LMCI is the intensity-
dependent longitudinal beam emittance blow-up to remain just below the threshold
[65], as revealed also by macroparticle tracking simulations (see Fig. 4.7 [64]).

4.3.2 Transverse

A similar analysis as the one done for the longitudinal plane can be done in the
transverse plane [53, 63]. Following the same procedure, the horizontal coherent
oscillations (over several turns) of a “water-bag” bunch (i.e. with constant longitu-
dinal amplitude density) interacting with a constant inductive impedance are shown
in Fig. 4.8.

The main difference with the longitudinal plane is that there is no effect of the
stationary distribution and the bunch spectrum is now centered at the chromatic
frequency fξ = Qx0f0ξ /η, where f0 is the revolution frequency and ξ is the relative
chromaticity. The sign of the chromatic frequency is very important and to avoid
the head–tail instability (of mode 0) it should be slightly positive, meaning that
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Fig. 4.6 (Left) Comparison between GALACLIC Vlasov Solver [63] (in red) and Laclare’s
approach [53] (in black) of the normalised mode-frequency shifts vs. the normalised parameter
x (proportional to the bunch intensity [63]), in the case of a broad-band resonator impedance (with
a quality factor of 1 and a resonance frequency fr such that fr τ b = 2.8), above transition, without
taking into account the potential-well distortion (this is why the intensity-dependent synchrotron
tune Qs is used) and for a “Parabolic Amplitude Density” (PAD) longitudinal distribution [53].
(Right) Similar plot from GALACLIC only, taking into account the potential-well distortion (this
is why the low-intensity synchrotron tune Qs0 is used)

the chromaticity should be negative below transition and positive above. Sacherer’s
formula is also valid for coupled-bunch instability with M equally-populated
equally-spaced bunches, assuming multi-bunch modes with only one type of internal
motion (i.e. the same head–tail mode number). This analysis was extended in Ref.
[66] to include also the coupling between the modes (and the possibility to have
different head–tail modes in the different bunches). In the case of gaps between
bunch trains, a time-domain approach is usually better suited.

At low intensity (i.e. below a certain intensity threshold), the standing-wave
patterns (head–tail modes) are treated independently. This leads to instabilities
where the head and the tail of the bunch exchange their roles (due to synchrotron
oscillation) several times during the rise-time of the instability. The (approximate)
complex transverse coherent betatron frequency shift of bunched-beam modes is
given by Sacherer’s formula for round pipes [52]. For flat chambers a quadrupolar
effect (see Sect. 4.2) has to be added to obtain the real part of the coherent tune
shift, which explains why the horizontal coherent tune shift is zero in horizontally
flat chambers (of good conductors). As an example, a head–tail instability with
mode q = 10 is shown in Fig. 4.9(left). It is worth mentioning that there is also a
head–tail instability in the longitudinal plane. The longitudinal head–tail instability,
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Fig. 4.7 Simulation results from BLonD, SBSC and MuSIC codes [64] corresponding to the case
mentioned above: (upper) evolution of the normalised rms bunch length vs. bunch intensity for
the cases of broad-band resonator and constant inductive impedances; (lower) evolution of the
normalised rms bunch length, energy spread and longitudinal emittance vs. bunch intensity for the
case of the broad-band resonator impedance. Courtesy of M. Migliorati [64]

Fig. 4.8 Transverse signal at the pick-up electrode for four different modes shown for several
superimposed turns, for the case of the “water-bag” bunch (i.e. with constant longitudinal
amplitude density) and a constant inductive impedance. In the present example, the total phase
shift between the head and the tail is given χ = ωξ τ b = 10 (see below)

first suggested by Hereward [67] and possibly observed at the CERN SPS [68]
results from the fact that the slip factor is not strictly a constant: it depends on
the instantaneous energy error just as the betatron frequency does. The longitudinal
beam distribution then acquires a head–tail phase, and instability may arise as a
result.
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Fig. 4.9 (Left) Signal from a radial beam position monitor during 20 consecutive turns observed
in the CERN PS at 1.4 GeV kinetic energy in 1999. Time scale: 20 ns/div. (Right) Fast instability
observed in the CERN PS near transition (~6 GeV total energy) in 2000. Single-turn signals from
a wide-band pick-up. From top to bottom:

∑
, Δx, and Δy. Time scale: 10 ns/div. The head of the

bunch is stable and only the tail is unstable in the vertical plane. The particles lost at the tail of the
bunch can be seen from the hollow in the bunch profile

As the bunch intensity increases, the different head–tail modes can no longer
be treated separately. In this regime, the wake fields couple the modes together
and a wave pattern travelling along the bunch is created: this is the Transverse
Mode Coupling Instability (TMCI). The TMCI for circular accelerators has been
first described by Kohaupt [69] in terms of coupling of Sacherer’s head–tail modes.
This extended to the transverse motion, the theory proposed by Sacherer to explain
the longitudinal microwave instability through coupling of the longitudinal coherent
bunch modes. The TMCI is the manifestation in synchrotrons of the Beam Break-
Up (BBU) mechanism observed in linacs. The only difference comes from the
synchrotron oscillation, which stabilises the beam in synchrotrons below a threshold
intensity by swapping the head and the tail continuously. In fact, several analytical
formalisms exist for fast (compared to the synchrotron period) instabilities, but the
same formula is obtained (within a factor smaller than two) from five, seemingly
diverse, formalisms in the case of a broad-band resonator impedance in the “long-
bunch” regime [70], as recently confirmed in Ref. [71]: (i) Coasting-beam approach
with peak values, (ii) Fast blow-up, (iii) BBU (for 0 chromaticity), (iv) Post head–
tail, and (v) TMCI with 2 modes in the “long-bunch” regime (for 0 chromaticity).
Two regimes are indeed possible for the TMCI according to whether the total bunch
length is larger or smaller than the inverse of twice the resonance frequency of the
impedance. The simple (approximate) formula reveals the scaling with the different
parameters. In particular it can be seen that the instability does not disappear at
high energy but saturates like the slip factor (what is important is not the energy but
the distance from the transition energy) [72]. This means that the TMCI intensity
threshold can be raised by changing the transition energy, i.e. by modifying the
optics. Furthermore, the intensity threshold increases with the resonance frequency
(as high-order head–tail modes will couple), with longitudinal emittance and with
chromaticity. Note that the coherent synchrobetatron resonances, important in large
machines, are not discussed here. This was checked with the MOSES Vlasov solver
[73], which is a program computing the coherent bunched-beam modes. Below is
a comparison between the MOSES code and the HEADTAIL code [74], which is
a tracking code simulating single-bunch phenomena, in the case of a LHC-type
single bunch at SPS injection [75]. As can be seen from Fig. 4.10, a very good
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Fig. 4.10 Comparison between MOSES (in red) and HEADTAIL (in white) in the case of a
broad-band resonator (Courtesy of Benoit Salvant [75]). Evolution of the real (left) and imaginary
(right) parts of the shifts of the transverse modes (with respect to the unperturbed betatron tune),
normalized by the synchrotron tune, vs. bunch intensity

agreement between the two was found. For a general impedance (i.e. not a resonator
impedance) the situation is more involved and MOSES cannot be used: one should
rely on HEADTAIL simulations or on the recently developed Vlasov solvers such
as NHT [76] or DELPHI [77]. In the case of flat chambers, the intensity threshold
is higher in one plane than in the other and linear coupling can be used to raise
the TMCI intensity threshold [78]. Note finally that with many bunches the TMCI
intensity threshold can be considerably reduced [66].

It is worth mentioning also all the work done for the TMCI in LEP, as
Chin’s work (with MOSES) came later. It was proposed to cure the TMCI with
a reactive feedback that would prevent the zero mode frequency from changing
with increasing beam intensity [79]. In [80, 81] a theory of reactive feedback
has been developed in the two-particle approach and with the Vlasov equation.
Theory has revealed that the reactive feedback can really appreciably increase
the TMCI intensity threshold, which was confirmed by simulation [82, 83]. On
the contrary, the resistive feedback was found to be “completely” ineffective as a
cure for the TMCI [81]. An action of a feedback on the TMCI intensity threshold
was later examined experimentally at PEP [84]. It was confirmed that a reactive
feedback is indeed capable to increase the TMCI intensity threshold. But it turned
out unexpectedly that a resistive feedback can also increase the TMCI intensity
threshold and even more effectively [84]. In [85], an attempt was made to develop
an advanced transverse feedback theory capable to elucidate the conditions at which
the resistive or reactive or some intermediate feedback can cure the TMCI. Positive
chromaticity above transition helps, but depending on the coupling impedance,
beam stability may require a large value of the chromaticity either unattainable or
which reduces the beam lifetime. It was proposed to have a negative chromaticity
(what is usually avoided), where the zero mode is unstable (by head–tail instability)
and all the other modes are damped, and stabilise this mode by a resistive feedback,
keeping the higher order modes stable. In this case, the TMCI intensity threshold
could be increased by a factor 3–5 [85]. In the last few years, several Vlasov solvers
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Fig. 4.11 Required Landau octupole current to stabilise the 2018 CERN LHC beam vs. chro-
maticity: (left) with resistive transverse damper and (right) without resistive transverse damper.
Courtsey of N. Mounet [87]
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Fig. 4.12 Usual TMCI plots (for frτ b = 2.8, i.e. in the “long-bunch” regime) showing the real
and imaginary parts of the normalised complex tune shift vs. the normalised parameter x (which is
proportional to the bunch intensity [63]) without (in blue) and with (in red) a transverse damper:
(left) reactive and (right) resistive [86]

were developed to take into account the effect of a transverse damper, such as NHT
[76], DELPHI [77] and GALACTIC [86]. An example of DELPHI for the case of
the LHC in 2018 is shown in Fig. 4.11, where the beneficial effect of the transverse
resistive damper (on the required Landau octupole current needed to stabilise the
beam) can be clearly seen. A comparison between a reactive and a resistive damper
is shown in Figs. 4.12 and 4.13 using GALACTIC [86] (and a comparison between
GALACTIC and Laclare’s approach [53] is discussed in Ref. [63]).
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Fig. 4.13 Usual TMCI plots (for frτ b = 0.8, i.e. in the “short-bunch” regime) showing the real
and imaginary parts of the normalised complex tune shift vs. the normalised parameter x (which is
proportional to the bunch intensity [63]) without (in blue) and with (in red) a transverse damper:
(left) reactive and (right) resistive [86]

As can be seen from Fig. 4.13(right) the resistive transverse damper exhibits a
destabilising effect below the TMCI intensity threshold. This destabilising effect of
(perfect) resistive transverse dampers was analysed in detail for the case of a single
bunch with zero chromaticity [86]: in the presence of a resistive transverse damper
the instability mechanism is completely modified as can be seen from Fig. 4.14. Due
to the features, which are discussed in Ref. [86], the name “ISR (for Imaginary tune
Split and Repulsion) instability” was suggested for this new kind of single-bunch
instability with zero chromaticity.

It is also worth mentioning that in the case of hadrons (compared to leptons),
another ingredient which should be taken into account while studying the transverse
instabilities is space charge. This has been a subject of discussion for the last two
decades as space charge was believed initially to be mainly beneficial as e.g. for the
previous case of the CERN SPS TMCI predicted in the absence of space charge. It
was recently found that space charge is actually destabilising in such a case (“long-
bunch” regime) [88–90], while it is beneficial in the “short-bunch” regime [88, 89].
This is clearly revealed in Figs. 4.15 and 4.16, but still some work is needed to fully
understand what happens.
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Fig. 4.14 Usual TMCI plots
showing the real and
imaginary parts of the
normalised complex tune
shift vs. the normalised
parameter x (which is
proportional to the bunch
intensity [63]) without (in
blue) and with (in red) a
resistive transverse damper
[86]
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4.4 Landau Damping

E. Metral

Several stabilising mechanisms exist which can prevent the previous instabilities
from developing. One of them is Landau damping, which is a general process that
arises when one considers a whole collection of particles or other systems, which
have a spectrum of resonant frequencies, and interact in some way. In accelerators
we are usually concerned with an interaction of a kind that may make the beam
unstable (wake fields), and we want to find out whether or not (and how) the spread
of resonant frequencies will stabilise it. If the particles have a spread in their natural
frequencies, the motion of the particles can lose its coherency. In order to understand
the physical origin of this effect, let us first consider a simple harmonic oscillator,
which oscillates in the x-direction with its natural frequency [8]. Let this oscillator
be driven, starting at time t = 0, by a sinusoidal force. The equation of motion
is

ẍ + ω2
xx = f cos (ωct) , (4.30)
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Fig. 4.15 Simplified model/example of Ref. [86], describing the mode-coupling in the “short-
bunch” regime, i.e. the mode-coupling between modes 0 and−1, extended here to take into account
also space charge, using the parameters mentioned above: (dashed blue) with impedance only,
(green) with impedance and a reactive transverse damper, (red) with impedance and space charge
[88]. The normalised parameter x is proportional to the bunch intensity [63]

where a dot stands for derivative with respect to time and with x(0) = 0 and ẋ(0) =
0. The solution is

x (t > 0) = − f

ω2
c−ω2

x
[cos (ωct)− cos (ωxt)] = f

2ωx0
sin (ωx0t)

sin[(ωc−ωx)t/2]
(ωc−ωx)/2 .

(4.31)

Consider now an ensemble of oscillators (each oscillator represents a single
particle in the beam) which do not interact with each other and have a spectrum of
natural frequency ωx with a distribution ρx(ωx) normalised to unity. Let’s assume
first that the origin of the betatron frequency spread is not specified: an externally
given beam frequency spectrum is supposed. Now starting at time t = 0, subject this
ensemble of particles to the driving force f cos (ωct) with all particles starting with
initial conditions x(0) = 0 and ẋ(0) = 0. We are interested in the ensemble average
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Fig. 4.16 (Left) reduction factor from a simplified model with space charge of the TMCI intensity
threshold, as a function of the ratio between the space charge parameter qsc and the radial mode
number q, in the case of the “long-bunch” regime, as e.g. for the CERN SPS at injection [88].
(Right) simulated stable bunch without space charge (top) and unstable bunch with space charge
(bottom) for the case qsc/q = 13.5 with a bunch intensity a factor 3 lower than the TMCI intensity
threshold without space charge [91] (Courtesy of A. Oeftiger)

of the response, which is given by superposition by

x(t) = f

2ωx0

[
cos (ωct) P.V.

∫ +∞

−∞
ρx (ωx)

ωx − ωc
dωx + πρx (ωc) sin (ωct)

]
,

(4.32)

where P.V. stands for Principal Value. The sinus term has a definite sign relative
to the driving force, because ρx(ωc) is always positive. In particular, ẋ is always in
phase with the force, indicating that work is being done on the system, which always
reacts to the force “resistively”. The Landau damping effect is to be distinguished
from a “decoherence (also called phase-mixing, or filamentation) effect” that occurs
when the beam has nonzero initial conditions. Had we included an initial offset,
we would have introduced two additional terms into the ensemble response, which
do not participate in the dynamic interaction of the beam particles and are not
interesting for our purposes here. In this decoherence effect, individual particles
continue to execute oscillations of constant amplitude, but the total beam response
x decreases with time. As mentioned above, work is continuously being done on
the system. However, the amplitude of x, as given before, does not increase with
time. Where did the energy go? The system absorbs energy from the driving force
indefinitely while holding the ensemble beam response within bounds. The stored
energy is incoherent in the sense that the energy is contained in the individual
particles, but it is not to be regarded as heat in the system. This is because the
stored energy is not distributed more or less uniformly in all particles, but is
selectively stored in particles with continuously narrowing range of frequencies
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around the driving frequency. If one observes two particles, one with the exciting
frequency ωc and one with a frequency slightly different, at the beginning, they
oscillate “coherently” (same amplitude and same phase). However, after a while
the particle with the exciting frequency, being resonantly driven, continues to
increase in amplitude as time increases, whereas the other particle with a slightly
different frequency realizes that its frequency is not the same as the driving one
and the “beating” phenomenon is observed for this particle. If one considers the
phenomenon for a time t, the number of particles which still oscillate coherently
decreases with time as 1/t, while their amplitude increases as t, the net contribution
being constant with time.

The origins of the frequency spread that leads to Landau damping have not
been taken into account till now. The case where the frequency spread comes from
the longitudinal momentum spread of the beam is straightforward (for a coasting
beam), because the longitudinal momentum is a constant, which just affects the
coefficients in the equations of motion of the transverse oscillations, and hence their
frequencies. It can be dealt with the same method as in the previous sections, i.e. it
is the distribution function which is important. The same result applies also if one
considers a tune spread that is due to a non-linearity (e.g. from octupole lenses) in
the other plane. However, this result is no longer valid if the non-linearity is in the
plane of coherent motion. In this case, the steady-state is more involved because
the coherent motion is then a small addition to the large incoherent amplitudes that
make the frequency spread, and it is inconsistent to assume that it can be treated
as a linear superposition [92]. One needs to consider “second order” non-linear
terms and the final result is that in this case it is not the distribution function which
matters but its derivative. Using the Vlasov formalism, this result is recovered more
straightforwardly.

4.4.1 Transverse

Considering the case of a beam having the same normalized rms beam size σ =√
ε in both transverse planes, the Landau damping mechanism from octupoles of

coherent instabilities, e.g. in the horizontal plane, is discussed from the following
dispersion relation [17, 93]

1 = −ΔQx
coh

+∞∫

Jx=0

dJx

+∞∫

Jy=0

dJy
Jx

∂f (Jx,Jy)
∂Jx

Qc −Qx

(
Jx, Jy

)−mQs

, (4.33)

with

Qx

(
Jx, Jy

) = Q0 + a0Jx + b0Jy. (4.34)
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Here, Qc is the coherent betatron tune to be determined, Jx,y are the action vari-
ables in the horizontal and vertical plane respectively, with f (Jx, Jy) the distribution
function, ΔQx

coh is the horizontal coherent tune shift, Qx(Jx, Jy) is the horizontal
tune in the presence of octupoles, m is the head–tail mode number, and Qs is the
small-amplitude synchrotron tune (the longitudinal spread is neglected).

The nth order distribution function is assumed to be

f
(
Jx, Jy

) = a

(
1 − Jx + Jy

b

)n
, (4.35)

where a and b are constants to be determined by normalization, and which
corresponds to a profile extending up to

√
2 (n+ 3)σ . The dispersion relation of

Eq. (4.33) can be re-written as

ΔQx
coh = − a0

nab
I−1
n (c, q) , (4.36)

with

In (c, q) =
1∫

Jx=0

dJx

1−Jx∫

Jy=0

dJy
Jx
(
1 − Jx − Jy

)n−1

q + Jx + cJy
, (4.37)

q = Qc −Q0 −mQs

−ba0
, and c = b0

a0
. (4.38)

It is convenient to write Eq. (4.36) in this way, with the left-hand-side (l.h.s)
containing information about the beam intensity and the impedance and the right-
hand-side (r.h.s) containing information about the beam frequency spectrum only. In
the absence of frequency spread, the r.h.s. of Eq. (4.36) is equal to Qc − Q0 − mQs,
which is thus given by ΔQx

coh (i.e. the l.h.s). Calculation of the l.h.s is now straight-
forward (following Sect. 4.3): for a given impedance (and transverse damper), one
only needs to calculate the complex mode frequency shift, in the absence of Landau
damping. Without frequency spread, the condition for the beam to be stable is thus
simply Im

(
ΔQx

coh

) ≥ 0 (oscillations of the form ejωt are considered). Once its l.h.s
is obtained, Eq. (4.36) can be used to determine the coherent betatron tune Qc in
the presence of Landau damping when the beam is at the edge of instability (i.e. Qc

real). However, the exact value of Qc is not a very useful piece of information. The
more useful question to ask is under what conditions the beam becomes unstable
regardless of the exact value of Qc under these conditions, and Eq. (4.36) can be
used in a reversed manner to address this question. To do so, one considers the real
parameter Qc − Q0 − mQs (stability limit) and observes the locus traced out in the
complex plane by the r.h.s of Eq. (4.36), as Qc − Q0 − mQs is scanned form −∞
to +∞. This locus defines a “stability boundary diagram”. The l.h.s of Eq. (4.36), a
complex quantity, is then plotted in this plane as a single point. If this point lies on
the locus, it means the solution of Qc for Eq. (4.36) is real, and this Qc − Q0 − mQs
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Fig. 4.17 Stability diagrams (for both positive and negative detunings a0) for the LHC at top
energy (7 TeV) with maximum available octupole strength: (Left) for the 2nd order (dashed
curves), the 15th order (full curves), and the Gaussian (dotted curves) distribution; (Right) for the
Gaussian distribution (dotted curve) and a distribution with more populated tails than the Gaussian
(full curve)

is such that the beam is just at the edge of instability. If it lies on the inside of the
locus (the side which contains the origin), the beam is stable. If it lies on the outside
of the locus, the beam is unstable. The stability diagrams for the 2nd order, 15th
order and Gaussian distribution functions are plotted in Fig. 4.17 for the case of the
LHC at top energy (7 TeV) with maximum available octupole strength (ε = 0.5 nm,
|a0| = 270440 and c = −0.65).

The case of a distribution extending up to 6σ (as the 15th order distribution) but
with more populated tails than the Gaussian distribution has also been considered
and revealed a significant enhancement of the stable region compared to the
Gaussian case ([93], see also Fig. 4.17(right)). This may be the case in reality in
proton machines due to diffusive mechanisms.

It is worth reminding that Landau damping of coherent instabilities and maxi-
mization of the dynamic aperture are partly conflicting requirements. On the one
hand, a spread of the betatron frequencies is needed for the stability of the beam
coherent motion, which requires nonlinearities to be effective at small amplitude. On
the other hand, the nonlinearities of the lattice must be minimized at large amplitude
to guarantee the stability of the single-particle motion. A trade-off between Landau
damping and dynamic aperture is therefore usually necessary [87].

Despite the destabilising effect of a resistive transverse damper in the case of a
single bunch with zero chromaticity (as discussed in Sect. 4.3.2) below the TMCI
intensity threshold (in the case of the “short-bunch” regime) without transverse
damper, a transverse damper helps to reduce the amount of tune spread which would
be needed to stabilise the bunch above the TMCI intensity threshold, as it can be
seen in Fig. 4.18.

Note that linear coupling between the transverse planes can also influence the
Landau damping mechanism [95], leading to a sharing of the Landau damping
between the transverse planes, which can have a beneficial effect (i.e. stabilising the
other plane, as it was used in the CERN PS for many years [96]) or a detrimental
effect (i.e. destabilising one or two planes by loss of Landau damping, as it was
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Fig. 4.18 Required
normalised (to the
synchrotron tune Qs) tune
spread �q to stabilise the
bunch in both cases of
instabilities without and with
Transverse Damper (TD),
corresponding to the cases of
Fig. 4.14 [94]. The
normalised parameter x is
proportional to the bunch
intensity [63]
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Fig. 4.19 Reduction of the
tune footprint (and associated
projections on the transverse
tunes axes, responsible for
Landau damping) vs. linear
coupling (described here by
the “closest tune approach”
|C−|) [98]. Courtesy of L.R.
Carver

believed to be the case with the Batman instability of the HERA proton ring
[97]: due to the features discussed in Ref. [97], the name “coupled head–tail
instability” was suggested for this instability in the HERA proton ring). Recently,
linear coupling was also observed to be detrimental in the CERN LHC [98], as
revealed by both measurements and macroparticle simulations (see Fig. 4.19). This
required a careful measurement and correction of linear coupling all along the LHC
cycle to avoid to use much more Landau octupoles current than foreseen. One has
also to remember that linear coupling modifies also the transverse emittances [99,
100].

In the case of additional space-charge nonlinearities, the stability diagram will be
shifted and beam stability can be obtained or lost, depending on the coherent tune.
The influence of space-charge nonlinearities on the Landau damping mechanism of
transverse coherent instabilities has first been studied by Möhl and Schönauer for
coasting and rigid bunched beams [101, 102]. It was studied in detail in the past
years for higher-order head–tail modes from both theory [103–106] and numerical
simulations [107].
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The interplay between Landau octupoles and beam–beam long-range interactions
can be either beneficial or detrimental depending on the sign of the Landau
octupoles current (see Sect. 4.6) [108] and this effect has to be careful taken into
account in the CERN LHC to be able to push its performance.

Another destabilising effect currently under investigation at the CERN LHC (and
which could explain some long latencies observed in the past, of the order of few
minutes or even tens of minutes) is the effect of noise, whose detrimental effect was
predicted in 2012 [109] and confirmed experimentally in 2018 [110].

Some work is being done to try and use the nonlinear optics as a path to high
intensity, providing “infinite (transverse) Landau damping” [111], or electron lenses
[112] or Radio Frequency Quadrupoles (or similarly second order chromaticity)
[113–115]. The latter two methods are believed to be more efficient than Landau
octupoles at high energy due to the adiabatic damping and the associated significant
reduction of the transverse beam sizes.

4.4.2 Longitudinal

When the bunch is very small inside the RF bucket, the motion of the particles
is linear and all the particles have the same (unperturbed, maximum) synchrotron
frequencyωs0. By increasing the bunch length the incoherent synchrotron frequency
spread S is increased (the maximum synchrotron frequency spread is obtained when
the bunch length is equal to the RF bucket length as in this case the synchrotron
frequency of the particles with the largest amplitude is equal to 0: the synchrotron
frequency spread S is equal to ωs0 in this case). In the presence of an impedance,
the coherent synchrotron frequency of the dipole mode ωc11, which is equal to
the low-intensity synchrotron frequency ωs0 without synchrotron frequency spread
(due to the compensation between the incoherent and coherent tune shifts), moves
closer and closer to the incoherent band (stable region). The two possible cases are
represented in Fig. 4.20 (using the rigid-bunch approximation), which is similar to
what was obtained by Besnier (who considered a parabolic distribution function,
which introduces some pathologies in the stability diagram due to its sharp edge)
([116], and references therein): the case of a capacitive impedance below transition
or inductive impedance above transition corresponds to U > 0 (the coherent
synchrotron frequency shift of the dipole mode has been written Δωc11 = U − jV)
and the incoherent synchrotron frequency shift (due to the potential-well distortion)
is Δωs

i < 0 (and thus ωs < ωs0), and the case of a capacitive impedance above
transition or inductive impedance below transition corresponds to U < 0 andΔωs

i > 0
(and thus ωs > ωs0). Motions ∝ejωt are considered, which means that the beam
is unstable when V > 0 (V is called the instability growth rate). The usual case
where the resistive part of the impedance is small compared to the imaginary part
is assumed, i.e. V << |U|. Beam stability is obtained when ωc11 enters into the
incoherent band. In both cases, the stability limit is reached for k = 4, i.e. S = 4|U|,
which is Sacherer’s stability criterion for the dipole mode.
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Fig. 4.20 Evolution of the
coherent synchrotron
frequency for the dipole mode
with respect to the incoherent
frequency spread (using the
rigid-bunch approximation)

4.5 Two-Stream Effects (Electron Cloud and Ions)

G. Rumolo

4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines

The term “electron cloud” is used for describing an accumulation of electrons
inside the beam chamber of a circular accelerator, in which bunched beams of
positively charged particles are accelerated or stored. The electron cloud can affect
the accelerator operation by causing beam tune shift, emittance growth and coherent
instabilities, as well as increase of the vacuum pressure and interference with
beam diagnostics devices. Most of these effects eventually lead to beam quality
degradation and loss. Electrons can be initially produced in the vacuum chamber
by a number of processes. These electrons are called primary because, although
some times their number can be sufficiently high to affect the circulating beam, they
are usually only the seed for an avalanche process (see Fig. 4.21). In general, the
primary electrons rapidly multiply via a beam-induced multipacting mechanism,
which involves acceleration of the electrons in the beam field and secondary
emission from their impact on the chamber wall. In the following, we first give
an overview on the electron cloud formation (or build-up) process. We therefore list
the main primary generation mechanisms and then discuss how the thus generated
electrons can multipact in the presence of a train of bunches. The other important
stages of the build-up of an electron cloud are its equilibrium and successive decay
in the gap behind a bunch train. In the second part, we briefly discuss dynamics and
consequences of the beam instabilities caused by the electron cloud that has formed
in a beam pipe. In conclusion, we will try to give an up-to-date list of the possible
techniques for electron cloud mitigation or suppression.

Primary electrons are the electrons generated during the passage of a bunch. They
can be photo-electrons from synchrotron radiation in bending regions (mainly for
positron beams) or secondary electrons desorbed from beam particles lost at the
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Fig. 4.21 Schematic of electron cloud build-up in the LHC beam pipe during multiple bunch
passages, via photo-emission (due to synchrotron radiation) and secondary emission (Courtesy of
F. Ruggiero). Note that the LHC is the 1st proton storage ring for which synchrotron radiation
becomes a noticeable effect

walls (especially for ion beams). In this case they are emitted from the chamber
wall. Primary electrons can also be created within the volume swept by the beam if
the production mechanism is ionization of the residual gas. The location where the
electrons are created can determine the energy gain of the primary electrons in the
beam potential. The number of electrons created per unit length by synchrotron
radiation or by beam loss during one bunch passage can be comparable to the
average line density of beam particles, in which case these processes can alone give
rise to amounts of electrons critical for the beam stability. The rate of photoemission
(number of photoelectrons created per unit length) can be estimated as the product
of the photo-electron yield Yγ by the photoemission rate dNγ /ds:

dNeγ

ds
= Yγ

dNγ

ds
= Yγ

5αγ

2
√

3ρ
, (4.39)

where α denotes the fine structure constant and ρ the curvature radius of the
beam in the dipole. For many materials, the photo-emission yield can be correctly
approximated as being about 0.1 over a fairly large photon energy range, e.g.
between a few eV and a few tens of keV. The azimuthal distribution of absorbed
photons around the chamber wall and, thus, the launch positions of the emitted
primary photo-electrons depend on the reflective properties of the chamber wall.
The first simulation of an electron cloud build-up for short bunches was written by
K. Ohmi. It served to explain coupled-bunch instabilities observed with positron
beams at the KEK photon factory [117]. Ohmi’s pioneering study considered only
photo-emission at the chamber wall as a source of electrons, though a little later his
initial code was extended to include secondary emission by electrons as well.

Ionization from scattering of individual charged beam particles against molecules
of the residual gas occurs with typical cross sections of 1–2 Mbarn for most of the
gas species that can be found in a beam chamber. However, a lower cross section
of about 0.2 Mbarn applies to the lighter species, like H2 [118]. These numbers
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refer to singly charged particles at ultrarelativistic energies. For fully ionized atoms,
the cross section scales roughly with the square of the atomic number, i.e. like
Z2. Additionally, it increases by several orders of magnitude towards lower beam
energies. If the beam density is sufficiently high, as it will be in certain sections of
the next generation of linear colliders, ionization by the collective electric field of
the bunch replaces single-particle scattering ionization as the dominant ionization
process [119]. When this happens, the beam completely and instantly ionizes the
residual gas in its neighbourhood.

Protons or ions impacting on the wall can be responsible for the generation of a
large number of electrons. The secondary-electron yield from ion impact is approx-
imately proportional to the projectile stopping power and inversely proportional
to the cosine of the angle of incidence [120]. Since the stopping power is in turn
proportional to the square of the charge number divided by the mass number, this
value, usually very high because of the shallow angles at which losses typically
occur, can be further amplified by one or two orders of magnitude for heavy ion
beams. Production of this type of electrons also occurs with a high rate at the
collimators, where significant beam loss routinely occurs by design.

The mechanism responsible for an exponential growth of the number of electrons
is beam induced multipacting. The primary electrons are accelerated by the electric
field of a passing bunch to such high energies that they produce, on average, more
than one secondary electron when they again hit the wall of the vacuum chamber.
The Secondary Emission Yield (SEY) of the chamber material is by definition the
number of secondary electrons produced on average by an electron impact. It is
obviously a function of the impinging electron energy, its angle of incidence, and the
chamber history. For a round chamber of radius h and a short bunch, the resonance
condition for beam-induced multipacting from electrons produced at the pipe walls
takes the simple form [121]

NbreLb = h2, (4.40)

where re denotes the classical electron radius and Lb the bunch spacing in units of
length. However, the condition of Eq. (4.40) is by far too stringent. Most secondary
electrons have low energy and tend to stay in the vacuum chamber for a long time
after a bunch passage. The survival of low energy electrons is made even more likely
by the fact that their probability of being elastically backscattered at the chamber
walls is almost one [122]. Moreover, a different multipacting regime, called “trailing
edge multipacting”, also exists in presence of long bunches. The electrons produced
on the falling edge of the bunch can gain energy as they cross the pipe section and
cause multipacting just during the passage of the second part of the bunch. This is a
special type of single-bunch multipacting, causing electron clouds that can be either
significantly cleared before the arrival of the next long bunch, or accumulate further
in a mixed single-bunch and multi-bunch process.

Many simulation codes have been developed over the years to study numerically
the process of electron cloud build-up and explore different beam/machine param-
eter ranges (e.g. [123–125]). Due to the variety of possible regimes and processes
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involved, simple considerations have usually turned out to be insufficient to predict
the build-up thresholds and the change in electron cloud caused by some specific
parameter change. It was a gratifying confirmation of the predictive power of the
early simulations that the expected electron clouds were indeed observed at both
B factories (PEP-II and KEKB), at the Large Hadron Collider injectors PS and
SPS when operated with LHC-type beams, and finally in the LHC itself when
operation with trains of closely spaced bunches started. In these rings, the electron
cloud was seen to cause tune shift and emittance growth along the bunches of a
train, both coupled and single-bunch instabilities and a degradation of certain beam
diagnostics signals [126–128]. In the SPS and PS, significant beam loss could be
observed at the end of a train if no countermeasures were put in place. As the
electron cloud is potentially one of the main bottlenecks of the SPS after the upgrade
of the LHC injector chain in the framework of the LHC Injectors Upgrade (LIU)
project [129], dedicated electron diagnostics devices are installed in the machine to
measure the electron flux and spatial electron distribution on surfaces with different
coatings, as well as its variation with the time of exposure, i.e. what we call “beam-
induced machine scrubbing” [129]. Since 2011, the electron cloud has been also
observed routinely in the LHC, causing beam instability and emittance growth at
the end of the multi-bunch trains but also additional heat load on the cold beam
screens of the arcs as well as of the matching and final focusing quadrupoles [130].
While the effects linked to electron cloud have quickly disappeared for beams with
50 ns bunch spacing thanks to a relatively rapid beam induced machine scrubbing,
running with 25 ns beams has proved to be rather challenging in this machine.
With this type of beams, even after extensive machine scrubbing, the undesired
effects of the electron cloud have remained visible on the beam and the machine
equipment. In particular, the 25 ns beam needs to be stabilised with high values of
chromaticity in both planes and large octupole settings. Besides, the large heat load
on the cold beam screens still remains very close to the capacity of the cryogenic
system in nominal operating conditions [131, 132]. While these effects have not
prevented running LHC close to the nominal conditions from 2015 to 2018, they
could still be a significant showstopper for future operation with double beam
current in the High Luminosity LHC era [133]. Concerning lepton machines, the
electron cloud is typically associated with a reduction of specific luminosity in e-
p colliders and is expected to be one of the main limiting factors for the damping
rings of future linear collider projects. The Cornell Electron Storage Ring (CESR)
was reconfigured in 2008 as a Test Accelerator (CesrTA) for a program of electron
cloud research with lepton beams. With its new local diagnostics for measurement
of cloud density and improved instrumentation for the characterization of the beam
dynamics of high intensity bunch trains interacting with the cloud, this test facility
provided for many years both a benchmark case for the existing simulation codes
and testing the effectiveness of several types of countermeasures [134]. Since the
processes of secondary electron emission and elastic reflection at the walls play a
fundamental role in causing beam induced multipacting, we now shortly describe
their key parameters. The true secondary yield for perpendicular incidence, δ, can
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be expressed by a universal function [135]

δ(x) = δmax
sx

s − 1 + x2 , (4.41)

where x = E/Emax, with E the energy of the incident electron and Emax the energy
at which the yield assumes the maximum value, and s is a fit parameter that was
measured to be about equal to 1.35 for LHC Cu samples [135]. The two variable
parameters in Eq. (4.41) are δmax, the maximum yield, which typically assumes
values between about 1.0 and 3.0 for conductive materials (but it can be higher
for dielectrics), and Emax. For non-normal incidence of the primary electron these
two parameters are usually both increased by a factor depending on the cosine of
the incidence angle [136]. Elastic reflection of electrons is mostly important at low
energies, i.e. below about 20 eV. The measured electron reflection probability [122]
can be parametrized as

δel(E) =
(√

E −√
E + E0√

E +√
E + E0

)2

, (4.42)

with only one fit parameter, E0. Equation (4.42) implies that the reflection prob-
ability approaches one in the limit of vanishing electron energy, even if presently
no general consensus has been reached around this point, which is still very
controversial, as it is extremely difficult to measure the secondary emission yield
at very low energy.

The electron cloud build-up saturates when the electron losses balance the
electron generation rate. This can happen either at low bunch charges, when
the average neutralization density is reached, or at high bunch currents, when
the electrons rapidly accumulate until the kinetic energy of the newly emitted
ones becomes too low to let them penetrate into the space charge field of the
cloud. Simulations have demonstrated a complex behaviour of the electron cloud
equilibrium, which strongly depends on the combination between bunch length,
charge, spacing and on the chamber radius. First of all, the saturation phase is
generally characterized by an oscillating behaviour of the electron cloud density
over the bunch spacing and the amplitude of this oscillation can be very large.
Furthermore, in some cases the steady-state value of the electron cloud density
has been found not to be monotonically increasing with the bunch intensity. For
instance, a beam with 50 ns spaced bunches in the SPS is predicted to hit its highest
electron cloud equilibrium density for bunch populations of about 1011 p, while this
value decreases both for lower and higher intensities.

The electron density decays after the passage of a bunch train (or in the gap
between bunch trains) and two different regimes can be distinguished during this
phase. In the first one, right after the train passage, the cloud decays quickly
due to the space charge effects and the reminiscent energy distribution from the
last bunch passage. In the second one, only low energy electrons will be left,
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which move slowly and exhibit a dissipation rate depending on their probability
of being elastically reflected at the chamber surface. Due to the second part of
the decay evolution, the electron clearing time between bunch trains can become
painfully long. Three effects are suspected to be responsible for the long memory
and lifetime of the electron cloud. First, nonuniform fields, such as quadrupoles or
sextupoles, may act as magnetic bottles and trap electrons for an indefinite time
period [125, 137]. Second, if the probability of elastic reflection really approaches
one in the limit of zero electron energy, as is suggested by measurements [122], low-
energetic electrons could survive nearly forever, bouncing back and forth between
the chamber walls, independently of the magnetic field. Third, slow ions produced
by residual gas ionization have been also suspected to be long lived in the beam
chamber and, therefore, possibly cause (or help) electron trapping and long survival
time.

4.5.2 The Electron Cloud Instability

When a positron/hadron beam interacts electromagnetically with the electron cloud
that has formed in the beam chamber, a coherent oscillation of both electrons and
beam particles can grow from any small initial perturbation of the beam distribution,
e.g. from the statistical fluctuations due to the finite number of beam particles. This
instability can be considered as a two-stream instability of the same type as studied
in plasma physics. Such instabilities can be very fast, since in the new generation
of high intensity rings operating with many closely spaced bunches, the density of
electrons can become quickly very large. Even machines operating with bunches
spaced by hundreds of ns can actually suffer from electron cloud, because of the
long survival time of low energy electrons in the beam pipe. Electron clouds can
cause single-bunch instabilities as well as multi-bunch dipole mode instabilities. The
multi-bunch instability appears when the electron cloud can carry a sufficiently long
memory as to couple subsequent bunches. The single-bunch phenomenon, instead,
is driven by a pinched electron cloud, which, over one single passage of the bunch
through it, is able to transfer information from an offset bunch head to the bunch
tail. Obviously, although this second type of instability is caused by a single-bunch
mechanism, it can only occur in multi-bunch operation, since the electron cloud
requires a train of several bunches to build up. For single-bunch instabilities caused
by multi-bunch built electron clouds, electrons usually only perform a low number
of oscillations while the bunch is passing (typically between fractions of unit and
few units), and the bunch effectively interacts with a pre-existing cloud produced
by the preceding bunches and filling almost uniformly the beam pipe prior to the
bunch arrival. The number of electrons does not change appreciably during one
bunch passage. In reality, another possible head tail effect resulting into a different
type of two-stream instability was observed in some machines operating with long
bunches. In this case, the instability is intimately related to an electron cloud
from “trailing-edge multipacting”, described in the previous section. The electrons
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multiplication happening over the falling edge of the bunch can reach levels as to
render the beam unstable. Even coasting beams are not immune from electron cloud
problems. The electrons produced from residual gas ionization remain trapped in the
transverse potential of the uniform beam and tend to accumulate to very high central
density values. The electrons created at the chamber walls (e.g. from beam loss) are
accelerated and decelerated in the beam field and eventually hit the chamber with the
same energy with which they were emitted. Multipacting can play here a role, since
electrons can gain energy and create secondaries when hitting the wall, if the beam
line density is perturbed. The interaction of the coasting beam with the electrons can
make noise evolve into an unstable coupled oscillation, called e–p instability, which
was widely studied already at the beginning of the 70s [138, 139]. While the single-
bunch instability described earlier in this section can be treated separately from the
build-up of the electron cloud that causes it, in all other cases the two processes are
coupled together and need to be solved with a joint model.

Electron cloud instabilities for short bunches have been observed in form of
emittance growth and beam loss at the KEKB LER, at the CERN PS, SPS and
LHC, and at the PEP-II LER. At the KEKB LER a blow-up of the vertical beam
size was already observed at the early commissioning time [140]. This blow-
up was not accompanied by any coherent beam motion, which could be easily
suppressed by transverse feedback and chromaticity, and the blow-up was only
seen in multi-bunch operation with a narrow bunch spacing. The single-bunch
two-stream instability provided a plausible explanation of the observed beam
blow-up [141]. This explanation has since been reinforced by the simultaneous
observation of a tune shift along the bunch train, which appears for the same bunches
exhibiting vertical size blow-up. Also the experimental evidence that the installation
of solenoids around the ring could increase the instability threshold in regular
operation shows the relation between electron cloud and the instability. At the
CERN SPS the electron cloud has been observed since the ring has been regularly
operated with LHC-type bunch trains [142] and it has been held responsible for
strong transverse instabilities. In the horizontal plane a low order coupled bunch
instability develops within a few tens of turns after injection. In the vertical plane,
a single-bunch head tail instability rises on a much shorter time. The reason of the
different behavior in the two transverse planes is ascribed to the confinement of the
electron cloud mostly in dipole regions, which can limit the intra-bunch electron
pinching in the horizontal plane and therefore inhibit the single-bunch mechanism
for instability. The horizontal (coupled-bunch) instability is cured by means of a
transverse feedback system. Similar to the situation at the KEKB LER, running the
SPS at high positive chromaticity can cure the vertical instability [143]. Upstream
from the SPS, when the nominal LHC beam was generated by the PS machine,
one of the standard signatures of the electron cloud was observed shortly before
extraction: a baseline drift in electrostatic devices. However, the beam resided too
shortly in the machine to become unstable, even if a dedicated experiment proved
the onset of an electron cloud instability on the short bunches, if they are kept in
the machine for a sufficiently long time. In the LHC, transverse beam instabilities
affecting the last bunches of long 25 ns trains in both transverse planes have been
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systematically observed at injection [144]. The reason why the instability appears in
both planes is that the integrated central density of electrons causing the instability
comes mainly from the electron cloud in quadrupole magnets and therefore affects
equally both planes. This instability is controlled by means of high chromaticity
and high octupole strength. Besides, electron cloud instabilities have been observed
also at high energy (6.5 TeV) but mainly in the vertical plane and for values of
bunch currents lower than nominal. This has been explained as due to the onset of a
central stripe in all the dipoles (appearing when the bunch intensity decays), which
leads to an integrated electron density capable of making a 6.5 TeV beam unstable
[145]. Concerning long bunches, a great deal of evidence indicates that the primary
instability limiting the performance of the LANL-PSR is an e-p instability [146].
Growth of the electron cloud results from multipacting of the electrons on the walls
of the vacuum chamber during passage of the trailing edge of the proton beam,
when the electrons can receive a net acceleration toward the wall. The instability
was controlled by various measures to enhance Landau damping and transverse
feedback. In coasting beams, an e-p instability was first observed in the LBNL-
Bevatron [147] and CERN-ISR [139]. While in the Bevatron this instability was
combated with active feedback and beam bunching, in the ISR additional pumping
was installed to improve the vacuum from 0.1 to 0.01 nTorr and the number of
clearing electrodes was increased to sweep away the electrons.

Several analytical approaches have been used to study the electron cloud
instability, including few-particles models and an attempt to apply the TMCI theory
to the electron cloud wake field, modeled as a broadband resonator. However
the most widespread and comprehensive approach makes use of particle tracking
simulations with localized electron cloud kicks. The numerical modeling of the
interaction between an electron cloud and a particle bunch is discussed in Sect. 4.7.
Simulation codes have had the merit to reveal interesting features of the electron
cloud instability, which distinguish it from other types of conventional instabilities.
For example, the electron cloud wake field is not only a function of the distance
between source and probe particles, but it depends on the locations of the two
separately. This translates into an impedance with a double frequency dependence
[148]. Another interesting finding was that, for constant beam emittances (transverse
and longitudinal) and constant bunch length, the electron cloud instability threshold
decreases with the beam energy [149]. The reason of this anomalous behaviour
is that, although the beam becomes stiffer at higher energies, its transverse sizes
become smaller and the pinching effect on the electron cloud is amplified.

Concerning the multi-bunch instability, the usual approach is to calculate the
bunch-to-bunch wake field with an electron cloud build-up code (which correctly
models the electron cloud dynamics in the space between two bunches) and then
apply the multi-bunch analytical formula to assess the threshold for the beam
stability. Simulation codes with bunches modeled as single macroparticles, valid
for machines operating with short bunches, have been also developed to study
numerically the multi-bunch instabilities due to electron cloud in a more self-
consistent manner.
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A number of simulation tools have been developed over the years in order to
study the electron cloud single-bunch instability for short bunches via direct particle
tracking. The simulations of electron cloud build-up are generally treated separately,
since they make use of a weak-strong approach, in which the beam is rigid
and is approximated by bunches with static transverse and longitudinal Gaussian
distributions, while the electrons are macroparticles. Build-up simulations need to
be run prior to the instability simulations, because they provide the necessary input
on the transverse distribution of the electron cloud density at saturation just before
the arrival of a bunch. A variety of simulation codes are presently available for this
purpose [150]. Fully self-consistent computations, in which the cloud generation
over a bunch train around the ring as well as the resulting bunch instabilities, are
treated by a single program are still under development. The existing simulation
programs to study the electron cloud instabilities model the interaction of a single
bunch with an electron cloud on successive turns. The cloud is always assumed to
be generated by the preceding bunches, and can be considered initially uniform or
the distribution is imported from a build-up code. The electrons give rise to a head-
to-tail wake field, which amplifies any initial small deformation in the bunch offset,
e.g. due to the finite number of macroparticles in the simulation. All simulation
tools that have been developed for this study are essentially of the strong–strong
type, since the purpose is to investigate how the bunch particles are affected by
the electron cloud via the continuous interaction. In particular, electrons are always
modeled as macroparticles either concentrated at one or several locations along
the ring or uniformly smeared along the axis of the machine. The bunch consists
of macroparticles or of microbunches with a fixed transverse size. The bunch is
then subdivided into slices, which interact in sequence with the electrons of the
cloud, creating the distortion of the initially uniform cloud distribution that can
affect the body and tail of the bunch. The electric fields of the electrons and of
the beam acting mutually on each other are calculated by means of a Particle-
In-Cell (PIC) algorithm. The transformation of the 6D phase-space vectors of the
beam particles between two kick points is achieved using the appropriate transport
matrices or nonlinear tracking. The field of the electron cloud acting on itself can
be optionally included, but in general does not seem to play a significant role in
this type of mechanisms and hence it is neglected. For the purpose of studying the
interplay of electron cloud instability with other mechanisms, the simulation codes
contain synchrotron motion, chromaticity and usually additional options to model
the action of an independent impedance source beside the electron cloud, as well as
space charge and detuning with amplitude.

4.5.3 Mitigation and Suppression

There are at least three possible actions to reduce, or even suppress, the electron
cloud: (i) reducing the production rate of primary electrons or confining their motion
to a region where they are not likely to do any harm; (ii) eliminating the possibility
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of multipacting by lowering the SEY via surface treatment; (iii) alleviating the
effect on the beam or on the diagnostics. In most cases a combined approach
is desirable, that’s why most machines affected by electron cloud problems have
usually chosen to implement more than one of these mitigating techniques. The
primary production of photoelectrons needs to be reduced, because it may be so
high that the electron cloud could reach saturation within a few bunch passages
even without any multipacting. This is the case at KEKB, the photon factory, if no
countermeasures were taken. The obvious solution is an antechamber to intercept
most of the synchrotron radiation, or also photon absorbers (as those designed for
the CLIC Damping Rings). For dipole fields, a saw-tooth pattern impressed on
the chamber wall, as was implemented for the LHC (actually on the beam screen
that forms the inner part of the chamber and serves to protect the cold bore of the
magnets from synchrotron radiation), is used for effectively reducing the photon
reflectivity thanks to the perpendicular impact. Weak solenoids of the order of 50
G are a possibility in field-free regions, which was successfully implemented in
the straight sections of KEKB and in RHIC. The solenoids do not really affect
the photoemission process, but they keep the photoelectrons close to the wall
and, thus, strongly mitigate the subsequent beam–electron interaction. Since the
gas ionization rate is linearly proportional to the vacuum pressure in the beam
chamber, the number of electrons created by gas ionization can only be reduced by
significant factors improving the vacuum. If field ionization is important, however,
a possible cure would be lengthening the bunches, though this will mainly be a
concern for future projects such as linear colliders or X-ray FELs operating with
positrons. Electrons generated by beam loss can be controlled if the localization of
the losses is known with good precision. For example, electrons produced by the
beam losses at a collimator can be controlled by solenoids or clearing electrodes.
A large number of electrons is also generated at the injection stripping foils, for
accelerators employing charge-exchange injection. At the SNS, a 10-kV clearing
voltage is applied to channel the electrons liberated at the stripping foil onto a
collector plate that is monitored by a TV camera, while solenoids are used along
the collimator straights.

The reduction of the SEY of the inner wall of the beam chamber can be achieved
in different manners. First of all, a serendipitous feature of the electron cloud build
up in an accelerator’s chamber is that, while the electrons hit the beam chamber with
high energy and multiply, they also ‘scrub’ the surface by first removing layers of
impurities responsible for high SEY values and eventually graphitising the surface
with a further reduction of the SEY from that of the pure metal [151]. This means
that, if a method is found to run an accelerator with electron cloud and stable beam,
e.g. by stabilising the beam against the electron cloud through appropriate machine
settings, it will be the electron cloud itself to gradually lower the SEY of the inner
wall of the chamber and eventually turn itself off. This obviously relies on that the
final SEY reachable through scrubbing is below the value that sets off the electron
cloud build up in the operational configuration. Besides, it may take a significant
amount of time to reach this condition, because the electron flux is decreasing while
scrubbing and the electron doses required to perform further SEY reduction steps are
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also exponentially increasing when moving to SEYs below 1.3–1.4. The technique
described here is what we call ‘beam induced machine scrubbing’ and machine like
the SPS and LHC fully rely on it to run successfully with 25 ns spaced beams. While
beam induced scrubbing is an important option for already built machines, coatings
with intrinsically low SEY materials can be envisaged at the design stage to limit
the creation of an electron cloud in future machines. A well established method
to reduce multipacting is coating with TiN, a material whose secondary emission
yield becomes quickly low after some conditioning (through illumination under
synchrotron light). The thickness of the coating must be of the order of a μm, such
as not to alter the resistive impedance seen by the beam. A more favorable getter
material made from TiZrV, called Non-Evaporable Getter (NEG), was developed
at CERN. This getter material is characterized by its greater structural stability
than TiN, its pumping capability and its low activation temperature. The warm
sections of the LHC, about 10% of the circumference, have been coated with NEG.
The NEG coating was also tested at several light source insertion devices, where
circumstantial evidence suggests an increase in the effective impedance, presumably
due to a larger surface roughness and low conductivity. The additional contributions
to the ring impedance from the surface roughness and low conductivity impedance
of the coating layer is of no concern for the longer proton bunches in the LHC, but
could significantly affect the stability of the short positron beams in the Damping
Rings of a future linear collider. From 2007 on, new efforts have been put on the
search for coating materials that do not require high temperature activation and do
not suffer from aging. In particular, amorphous carbon (a-C) thin films, deposited
with d.c. magnetron sputtering, have shown to possess all these qualities. Besides,
their maximum secondary emission yields, measured in the lab, reach values even
below one and the films are also stable against mechanical stress. Testing of a-C
coating in accelerator environments (SPS and Cesr-TA) has demonstrated all these
features. Another method to reduce the secondary emission yield of a surface is
to use a naturally rough material. Here the SEY reduction is a geometrical effect
due to the high probability of quick re-absorption of the electrons emitted with low
energy.

Multipacting can also be suppressed by solenoids, though one should pay
attention to the possibility of exciting undesired cyclotron resonances. Electric
clearing fields are an efficient cure, as shown both in simulations and measurements
of electron cloud in the CERN PS. They were already used to cure electron-proton
instabilities for the coasting proton beams in the CERN ISR during the early 70s.
At the SNS operating with long proton bunches all BPMs can be biased with a
clearing voltage of 1 kV. To be effective for the multipacting experienced by short
bunches with close spacing, the clearing electrodes must be mounted all around the
ring, in distances of a few tens of cm and voltages of the order 1 kV are probably
required. The impedance introduced by many such devices could be prohibitive, as
it appeared to be the case in the DA�NE positron ring with the very first clearing
electrode design. Other options for a practical implementation of electric clearing
fields may be splitting the beam pipe into a top and bottom half, isolated from
each other and held at different potential. Biasing the two jaws of a collimator
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against each other is a similar idea. Recently, there is a growing interest towards
the suppression of multipacting by means of grooves on the chamber wall. This
technique, first tested in simulations, has proven to be efficient in KEKB and Cesr-
TA. Similarly to a rough surface, but in a controlled way and on a macroscopic
scale, these grooves essentially act as electron traps. Angle and depth of the grooves
are key parameters and specifications are different in dipole or field-free regions.
Proper tailoring of the bunch filling patterns (bunch spacing, bunch trains and bunch
charges) is yet another way of achieving an acceptable electron density. Examples
include the actual bunch spacing chosen for PEP-II and KEKB operation, which are
twice or three times the design spacing, and satellite bunches proposed for the LHC
[152]. Gaps within or between trains can lower the density and reset the cloud at
least to some extent. Extensive studies of the electron cloud formation as a function
of the bunch filling patterns were also carried out at RHIC, in which the optimization
could be found using the maps approach to quickly scan the build-up for different
configurations.

The electron cloud causes a large variety of undesired effects. Common
stabilising measures can be taken against the resulting instabilities, which include
transverse bunch-to-bunch feedback, increased chromaticity, Landau-damping
octupoles, intra-bunch head–tail feedback, and linear coupling. All these measures
are anyway necessary when a machine is operating in beam-induced scrubbing
mode. Degradation of diagnostics signals due to impacting electrons can be also
overcome with local solenoid windings.

4.6 Beam–Beam Effects

W. Herr

4.6.1 Introduction

The problem of the beam–beam interaction is the subject of many studies since
the introduction of the first particle colliders [153]. It has been and will be one of
the most important limits to the performance and therefore attracts the interest at
the design stage of a new colliding beams facility. A particle beam is a collection
of a large number of charges and represents an electromagnetic potential for other
charges. It will therefore exert forces on itself and other beams. The forces are most
important for high density beams, i.e. high intensity and small beam sizes, which
are the key to high luminosity.

The electromagnetic forces from particle beams are very non-linear and result
in a wide spectrum of consequences for the beam dynamics. Furthermore, as a
result of the interaction, the charge distribution creating the disturbing fields can
change as well. This has to be taken into account in the evaluation of beam–
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beam effects and in general a self-consistent treatment is required. Although
we now have a good qualitative understanding of the various phenomena, a
complete theory does not exist and exact predictions are still difficult. Numerical
techniques such as computer simulations have been used with great success to
improve the picture on some aspects of the beam–beam interaction while for other
problems the available models are not fully satisfactory in their predictive power
[154].

4.6.2 Beam–Beam Force

In the rest frame of a beam we have only electrostatic fields and to find the forces
on other moving charges, we have to transform the fields into the moving frame and
to calculate the Lorentz forces (see [153, 155–160] and references therein).

The fields are obtained by integrating over the charge distributions. The forces
can be defocusing or focusing since the test particle can have the same or opposite
charge with respect to the beam producing the forces.

The distribution of particles producing the fields can follow various functions,
leading to different fields and forces. It is not always possible to integrate the
distribution to arrive at an analytical expression for the forces in which case either
an approximation or numerical methods have to be used. This is in particular true
for hadron beams, which usually do not experience significant synchrotron radiation
and damping. For e− e+ colliders the distribution functions are most likely Gaussian
with truncated tails.

In the two-dimensional case of a beam with bi-Gaussian beam density distribu-
tions in the transverse planes, i.e. ρ(x, y) = ρx(x) ρy(y) with r.m.s. of σ x and σ y

ρu(u) = 1

σu
√

2π
exp

(
− u2

2σ 2
u

)
where u = x, y (4.43)

one can give the two-dimensional potential U(x, y,σ x, σ y) as a closed expression

U
(
x, y, σx, σy

) = ne

4πε0

∫ ∞

0
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(
− x2

2σ 2
x+q −

y2

2σ 2
y+q

)

√
(
2σ 2

x + q
) (

2σ 2
y + q

) dq (4.44)

where n is the line density of particles in the beam, e is the elementary charge and ε0
the permittivity of free space [159]. From the potential one can derive the transverse

fields
−→
E by taking the gradient

−→
E = −∇U (x, y, σx, σy

)
.
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4.6.2.1 Elliptical Beams

For the above case of bi-Gaussian distributions (i.e. elliptical beams with σ x �= σ y)
the fields can be derived and for the case of σ x > σ y we have [160]
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The function erf(t) is the complex error function

erf(t) = exp
(
−t2
) [

1 + 2i√
π

∫ t

0
exp
(
z2
)
dz

]
(4.47)

The magnetic field components follow from

By = −βEx

c
and Bx = β

Ey

c
(4.48)

The Lorentz force acting on a particle with charge q is finally

−→
F = q

(−→
E +−→v ×−→

B
)

(4.49)

4.6.2.2 Round Beams

With the simplifying assumption of round beams (σ x = σ y = σ ), one can re-write
(4.49) in cylindrical coordinates

−→
F = q

(
Er + βcBφ

)×−→r (4.50)
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From (4.44) and with r2 = x2 + y2 one can immediately write the fields from
(4.50) as

Er = − ne

4πε0

δ

δr

∫ ∞

0

exp
(
− r2

2σ 2+q
)

2σ 2 + q
dq (4.51)

and

Bφ = −neβcμ0

4π

δ

δr

∫ ∞

0

exp
(
− r2

2σ 2+q
)

2σ 2 + q
dq (4.52)

δ stands for derivative (Eqs. 4.51 and 4.52) and μ0 is the permeability of free
space (Eq. 4.52).

We find from (4.51) and (4.52) that the force (4.50) has only a radial component.
The expressions (4.51) and (4.52) can easily be evaluated when the derivative is
done first and 1/(2σ 2 + q) is used as integration variable. We can now express the
radial force in a closed form (using ε0μ0 = c−2)

Fr(r) = −ne2
(
1 + β2

)

2πε0

1

r

[
1 − exp

(
− r2
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)]
(4.53)

and for the Cartesian components in the two transverse planes we get

Fx(r) = −ne2
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and

Fy(r) = −ne2
(
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)
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1 − exp
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(4.55)

The forces (4.54) and (4.55) are computed when the charges of the test particle
and the opposing beam have opposite signs. For equally charged beams the forces
change signs. For small amplitudes the force is approximately linear and a particle
crossing a beam at small amplitudes will experience a linear field. This results in
a change of the tune like in a quadrupole. At larger amplitudes (i.e. above ~1σ )
the force deviates strongly from this linear behaviour. Particles at larger amplitudes
will also experience a tune change, however this tune change will depend on the
amplitude. Already from the analytical form (4.55) one can see that the beam–beam
force includes higher multipoles.
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4.6.3 Incoherent Effects: Single Particle Effects

The force we have derived is the force of a beam on a single test particle. It can
be used to study single particle or incoherent effects. For that we treat a particle
crossing a beam like it was moving through a static electromagnetic lens. We have
to expect all effects that are known from resonance and non-linear theory such as

• Unstable and/or irregular motion
• Beam blow up or bad lifetime

4.6.3.1 Beam–Beam Parameter

We can derive the linear tune shift of a small amplitude particle crossing a round
beam of a finite length. We use the force to calculate the kick it receives from the
opposing beam, i.e. the change of the slope of the particle trajectory. Starting from
the two-dimensional force and multiplying with the longitudinal distribution which
depends on both position s and time t, and assuming a Gaussian shape with a width
of σ s

Fr (r, s, t) = −Ne2
(
1 + β2

)

√
(2π)3ε0σs

1
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[
1− exp
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− (s + v t)2

2σ 2
s

]

Now N is the total number of particles. We make use of Newton’s law and
integrate over the collision to get the radial deflection

Δr ′ = 1

mcβγ

∫ ∞

−∞
Fr (r, s, t) dt

The radial kick Δr ′ a particle with a radial distance r from the opposing beam
centre receives is then

Δr ′ = −2Nr0

γ

1

r

[
1− exp

(
− r2

2σ 2

)]
(4.56)

where I have re-written the constants and use the classical particle radius

r0 = e2

4πε0mc2 (4.57)

where m is the mass of the particle. After the integration along the bunch length, N is
the total number of particles. For small amplitudes r one can derive the asymptotic
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limit

Δr ′
∣∣
r→0 = −Nr0r

γ σ 2 = −r f (4.58)

This limit is the slope of the force at r = 0 and the force becomes linear with a
focal length as the proportionality factor.

It is well known how the focal length relates to a tune change and one can derive
a quantity ξ which is known as the linear beam–beam parameter

ξ = Nr0β
∗

4πγσ 2 (4.59)

r0 is the classical particle radius, (e.g.: re, rp) and β∗ is the optical amplitude
function (β-function) at the interaction point.

For small values of ξ and a tune far enough away from linear resonances this
parameter is equal to the linear tune shift �Q.

The beam–beam parameter can be generalized for the case of non-round beams
and becomes

ξx,y =
Nr0β

∗
x,y

2πγσx,y
(
σx + σy

) (4.60)

The beam–beam parameter is often used to quantify the strength of the beam–
beam interaction, however it does not reflect the non-linear nature.

4.6.3.2 Non-linear Effects

Since the beam–beam forces are strongly non-linear, the study of beam–beam
effects encompasses the entire field of non-linear dynamics (see earlier chapter) as
well as collective effects. First, we briefly discuss the immediate effect of the non-
linearity of the beam–beam force on a single particle. It manifests as an amplitude
dependent tune shift and for a beam with many particles as a tune spread. The
instantaneous tune shift of a particle when it crosses the other beam is related
to the derivative of the force with respect to the amplitude δF/δx. For a particle
performing an oscillation with a given amplitude the tune shift is calculated by
averaging the slopes of the force over the range (i.e. the phases) of the particle’s
oscillation amplitudes. An elegant calculation can be done using the Hamiltonian
formalism [156] developed for non-linear dynamics and as demonstrated in the
chapter on non-linear dynamics using the Lie formalism. We get the formula for
the non-linear detuning with the amplitude J

ΔQ(J ) = ξ
2

J

[
1 − I0

(
J

2

)
e−

J
2

]
(4.61)
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Fig. 4.22 Tune shift (non-linear detuning) as a function of the amplitude (left) and 2-dimensional
tune footprint (right)

where I0(x) is the modified Bessel function and J = εβ/2σ 2 in the usual units. Here
ε is the particle “emittance” and not the beam emittance.

In the 2-dimensional case, the tune shifts (�Qx, �Qy) of a particle with
amplitudes x and y depend on both, horizontal and vertical amplitudes. The detuning
must be computed and presented in a 2-dimensional form, i.e. the amplitude (x, y)
is mapped into the tune space (Qx, Qy) or alternatively to the 2-dimensional tune
change (�Qx, �Qy). Such a presentation is usually called a “tune footprint” and
an example is shown in Fig. 4.22(right) and it maps the amplitudes into the tune
space and each “knot” of the mesh corresponds to a pair of amplitudes. Amplitudes
between 0 and 6σ in both planes are used. The cross indicates the original,
unperturbed tunes without the beam–beam interaction.

The maximum tune spread for a single head-on collision is equal to the tune shift
of a particle with small amplitudes and for small tune shifts equal to the beam–
beam parameter ξ . In the simple case of a single head-on collision the parameter ξ
is therefore a measure for the tune spread in the beam.

4.6.3.3 Beam Stability

When the beam–beam interaction becomes too strong, the beam can become
unstable or the beam dynamics is strongly distorted. One can distinguish different
types of distortions and a few examples are

• Non-linear motion can become stochastic and can result in a reduction of the
dynamic aperture and particle loss and bad lifetime.

• Distortion of beam optics: dynamic beta (LEP) [161].
• Vertical blow-up above the so-called beam–beam limit.

Since the beam–beam force is very non-linear, the motion can become “chaotic”.
This often leads to a reduction of the available dynamic aperture. The dynamic
aperture is the maximum amplitude where the beam remains stable. Particles outside
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the dynamic aperture are eventually lost. The dynamic aperture is usually evaluated
by tracking particles with a computer program through the machine where they
experience the fields from the machine elements and other effects such as wake
fields or the beam–beam interaction.

Since the beam–beam interaction is basically a very non-linear lens in the
machine, it distorts the optical properties and it may create a noticeable beating
of the β-function around the whole machine and at the location of the beam–
beam interaction itself. This can be approximated by inserting a quadrupole which
produces the same tune shift at the position of the beam–beam interaction. The
r.m.s. beam size at the collision point is now proportional to

√
β∗p, where β∗pis the

perturbed β-function which can be significantly different from the unperturbed β-
function β∗ . This in turn changes the strength of the beam–beam interaction and the
parameters have to be found in a self-consistent form. This is called the dynamic
beta effect. This is a first deviation from our assumption that the beams are static
non-linear lenses. A strong dynamic beta effect was found in LEP [161] due to its
very large tune shift parameters.

Another effect that can be observed in particular in e+ e− colliders is the blow
up of the emittance which naturally limits the reachable beam–beam tune shifts.

4.6.3.4 Beam–Beam Limit

In e+ e− colliders the beam sizes are usually an equilibrium between the damping
due to the synchrotron radiation and heating mechanisms such as quantum excita-
tion, intra-beam scattering and very importantly, the beam–beam effect. This leads
to a behaviour that is not observed in a hadron collider. When the luminosity is
plotted as a function of the beam intensity, it should increase approximately as the
current squared [162], in agreement with

L = N2kf

4πσxσy
(4.62)

Here k is the number of bunches per beam and f the revolution frequency [162].
At the same time the beam–beam parameter ξ should increase linearly with the
beam intensity according to (4.60)

ξy = Nreβy

2πγσy
(
σx + σy

) (4.63)

In all e+ e− colliders the observation can be made that above a certain current,
the luminosity increases approximately proportional to the current, or at least much
less than with the second power. Another observation is that at the same value
of the intensity the beam–beam parameter ξ saturates. This limiting value of ξ is
commonly known as the beam–beam limit.
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When we re-write the luminosity as

L = N2kf

4πσxσy
= Nkf

4πσx

N

σy
(4.64)

we get an idea of what is happening. In e+ e− colliders the horizontal beam size
σ x is usually much larger than the vertical beam size σ y and changes very little.
In order for the luminosity to increase proportionally to the intensity N, the factor
N/σ y must be constant. This implies that with increasing current the vertical beam
size increases in proportion above the beam–beam limit. This has been observed in
all e+ e− colliders and since the vertical beam size is usually small, this emittance
growth can be very substantial before the life time of the beam is affected or beam
losses are observed [163].

The dynamics of machines with high synchrotron radiation is dominated by the
damping properties and the beam–beam limit is not a universal constant nor can it
be predicted. Simulation of beams with many particles can provide an idea of the
order of magnitude [164, 165].

4.6.4 Studies of Head-on Collisions at the LHC

The layout of experimental regions in the LHC is shown in Fig. 4.23. The beams
travel in separate vacuum chambers and cross in the experimental areas where they
share a common beam pipe. In these common regions the beams experience head-
on collisions as well as a large number of long range beam–beam encounters [166].
This arrangement together with the bunch filling scheme of the LHC as shown in
Fig. 4.24 [166, 167] leads to very different collision pattern for different bunches,
often referred to as “PACMAN” bunches. The number of both, head-on as well
as long range encounters, can be very different for different bunches in the bunch
trains and lead to a different integrated beam–beam effect [167]. This was always
a worry in the LHC design and the effects have been observed in an early stage of
the commissioning. Strategies have been provided to minimize these effects, e.g.
different planes for the crossing angles [166, 167].

4.6.4.1 PACMAN Bunches

The bunches in the LHC do not form a continuous train of equidistant bunches
spaced by 25 ns, but some empty space must be provided to allow for the rise
time of kickers (Fig. 4.24). These gaps and the number of bunches per train are
determined by requirements from the LHC injectors. The whole LHC bunch pattern
is composed of 39 smaller trains (each with 72 bunches) separated by gaps of various
length followed by a large abort gap for the dump kicker. Due to the symmetry,
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Fig. 4.23 Layout of the experimental collision points in the LHC [166]

Fig. 4.24 Bunch filling scheme of the nominal LHC

bunches normally meet other bunches at the head-on collision point. For the long-
range interactions this is no longer the case. Bunches at the beginning and at the end
of a small train will encounter a hole and as a result experience fewer long-range
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interactions than bunches from the middle of a train [168]. Bunches with fewer long-
range interactions have a very different integrated beam–beam effect and a different
dynamics must be expected. In particular they will have a different tune and occupy
a different area in the working diagram, therefore may be susceptible to resonances
which can be avoided for nominal bunches. The overall space needed in the working
diagram is therefore largely increased [166, 168].

4.6.5 Head-on Beam–Beam Tune Shift

The nominal LHC parameters have been chosen to reach the design luminosity
of 1034 cm−2s−1 [166]. The main parameters relevant for beam–beam effects are
summarized in Table 4.1. At a very early stage of the LHC operation it was tested
whether the nominal beam–beam parameters can be achieved. After this has been
successfully demonstrated, we have performed a dedicated experiment to test the
achievable beam–beam tune shift. To that purpose we have filled the LHC with
single bunches per beam, colliding in IP1 and IP5 (see Fig. 4.23). We have used
bunch intensities of ~1.9× 1011 p/b, i.e. well above the nominal and the emittances
have been reduced below 1.20 μm in both planes. It was shown that such bunches
can be collided in both interaction points without significant losses or emittance
increase [169] and we have demonstrated that a beam–beam tune shift of 0.017
for a single interaction and an integrated tune shift of 0.034 for both collision was
possible. These tune shifts have been obtained in the absence of any long range
encounters and it should be expected that the operationally possible tune shifts are
lower.

4.6.6 Effect of Number of Head-on Collisions

Due to the filling pattern in the LHC, different bunches experience different
numbers of head-on as well as long range interactions. Details are given in another
contribution [170]. In Fig. 4.25 we show as illustration the losses of bunches with
very different (0–3) numbers of head-on collisions. The data was taken during a

Table 4.1 LHC nominal
parameters and achieved
during operation and
experiments in 2010/2011

Parameter Nominal Achieved

Intensity (p/bunch) 1.15 × 1011 2.3 × 1011

Emittance 3.75 μm ≤2.00 μm
β∗ 0.55 m 1.5 m
ξ /IP 0.0035 0.0170
Bunch spacing 25 ns 50 ns
Bunches/beam 2808 1380
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Fig. 4.25 Losses of bunches with different number of head-on collisions [170]. Numerology: blue
(3 collisions), red (2 collisions), green (1 collision), black (no collision)

regular operational fill of 10 h duration. The correlation between losses and number
of head-on collisions is apparent and a more detailed analysis is found in [170].
The transverse emittances during normal operation are larger (~2.5 μm) than in
the head-on test. In a second experiment we increased the bunch intensity further
to ~2.3 × 1011 p/b with emittances of ~1.80 μm. Although the tune shift was
slightly lower than in the previous experiment (0.015), the lifetime was worse. We
interprete these results as losses of particles at large amplitudes. This is supported
by the observation that the strongest losses occur at the very beginning of a fill (Fig.
4.25).

4.6.7 Crossing Angle and Long Range Interactions

To reach the highest luminosity, it is desirable to operate a collider with as many
bunches as possible since the luminosity is proportional to their number (4.62)
[162].

In a single ring collider such as the SPS, Tevatron or LEP, the operation with
k bunches leads to 2k collision points. When k is a large number, most of them
are unwanted and must be avoided to reduce the perturbation due to the beam–
beam effects. Various schemes have been used to avoid these unwanted “parasitic”
interactions. In the SPS, Tevatron and in LEP so-called Pretzel schemes were used.
When the bunches are equidistant, this is the most promising method. When two
beams of opposite charge travel in the same beam pipe, they can be moved onto
separate orbits using electrostatic separators. In a well-defined configuration the two
beams cross when the beams are separated. To avoid a separation around the whole
machine, the bunches can be arranged in so-called trains of bunches following each
other closely. In that case a separation with electrostatic separators is only needed
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around the interaction regions. Such a scheme was used in LEP in the second phase
[171].

Contrary to the majority of the colliders, the LHC collides particles of the same
type which therefore must travel in separate beam pipes. At the collision points of
the LHC the two beams are brought together and into collision. During that process
it is unavoidable that the beams travel in a common vacuum chamber for more than
120 m. In the LHC the distance between the bunches is only 25 ns and therefore
the bunches will meet in this region. In order to avoid the collisions, the bunches
collide at a small crossing angle of 285 μrad. While two bunches collide at a small
angle (quasi head-on) at the centre, the other bunches are kept separated by the
crossing angle. However, since they travel in a common beam pipe, the bunches
still feel the electromagnetic forces from the bunches of the opposite beam. When
the separation is large enough, these so-called long-range interactions should be
weak.

4.6.7.1 Long-Range Beam–Beam Effects

Although the long-range interactions distort the beams much less than a head-
on interaction, their large number and some particular properties require careful
studies:

• They break the symmetry between planes.
• While the effect of head-on collisions is strongest for small amplitude particles,

they mostly affect particles at large amplitudes.
• The tune shift caused by long-range interactions has opposite sign in the plane of

separation compared to the head-on tune shift.
• They cause changes of the closed orbit [153].
• They largely enhance so-called PACMAN effects [168].

4.6.7.2 Opposite Sign Tune Shift

The opposite sign of the tune shift can easily be understood when we average the
oscillation of a small amplitude particle as it samples the focusing force of the
beam–beam interaction. When the separation is larger than ~1.5σ , the focusing
(slope of the force as a function of the amplitude) changes the sign and the resulting
tune shift assumes the opposite sign.

To some extend this property could be used to partially compensate long-range
interactions when a configuration is used where the beams are separated in the
horizontal plane in one interaction region and in the vertical plane in another
one.
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4.6.7.3 Strength of Long-Range Interactions

Assuming a separation d in the horizontal plane, the kicks in the two planes can be
written as

Δx ′ = −2Nr0

γ

(x + d)

r2

(
1 − e−

r2

2σ2

)
(4.65)

with r2 = (x + d)2 + y2. The equivalent formula for the plane orthogonal to the
separation is

Δy ′ = −2Nr0

γ

y

r2

(
1 − e

− r2

2σ2

)
(4.66)

The effect of long-range interactions must strongly depend on the separation.
The calculation shows that the tune spread ΔQlr from long-range interactions alone
follows an approximate scaling (for large enough separation, i.e. above ~6σ )

ΔQlr ∝ −N

d2 (4.67)

where N is the bunch intensity and d the separation. Small changes in the separation
can therefore result in significant differences. Since the symmetry between the two
planes is broken, the resulting footprint shows no symmetry. In fact, the tune shifts
have different signs for x and y, as expected.

4.6.7.4 Footprint for Long-Range Interactions

Contrary to the head-on interaction where the small amplitude particles are mostly
affected, now the large amplitude particles experience the strongest long-range
beam–beam perturbations. This is rather intuitive since the large amplitude particles
are the ones which can come closest to the opposing beam as they perform their
oscillations. We must therefore expect a totally different tune footprint. Such a
footprint for only long-range interactions is shown in Fig. 4.26.

4.6.8 Studies of Long Range Interactions in the LHC

To study the effect of long range beam–beam interactions we have performed a
dedicated experiment [172]. The LHC was set up with single trains of 36 bunches
per beam, spaced by 50 ns. The bunch intensities were ~1.2 × 1011 p/b and the
normalized emittances around 2.5 μm. The trains collided in IP1 and IP5, leading to
a maximum of 16 long range encounters per interaction point for nominal bunches.
First, the crossing angle (vertical plane) in IP1 was decreased in small steps and the
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Fig. 4.26 Tune footprint for long-range interactions only. Vertical separation and amplitudes
between 0 and 20σ

10

Fig. 4.27 Integrated losses of all bunches as a function of time during scan of beam separation in
IP1. Numbers show percentage of full crossing angle

losses of each bunch recorded. The details of this procedure are described in [173]
and the results are shown in Fig. 4.27 where the integrated losses for the 36 bunches
in beam 1 are shown as a function of time and the relative change of the crossing
angle is given in percentage of the nominal (100%≡ 240 μrad). The nominal value
corresponds to a separation of approximately 12σ at the parasitic encounters. From
Fig. 4.27 we observe significantly increased losses for some bunches when the
separation is reduced to about 40%, i.e. around 5σ. Not all bunches are equally
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Fig. 4.28 Integrated losses of all bunches along a train of 36 bunches, after reducing the crossing
angle in IP1

affected. At a smaller separation of 30% all bunches experience significant losses
(~4σ). Returning to a separation of 40% reduces the losses significantly, suggesting
that mainly particles at large amplitudes have been lost during the scan due to
a reduced dynamic aperture. Such a behaviour is expected [174]. The different
behaviour is interpreted as a “PACMAN” effect and should depend on the number
of long range encounters, which varies along the train. This is demonstrated in Fig.
4.28 where we show the integrated losses for the 36 bunches in the train at the end of
the experiment. The maximum loss is clearly observed for the bunches in the centre
of the train with the maximum number of long range interactions (16) and the losses
decrease as the number of parasitic encounters decrease. The smallest loss is found
for bunches with the minimum number of interactions, i.e. bunches at the beginning
and end of the train [166, 167]. This is a very clear demonstration of the expected
different behaviour, depending on the number of interactions.

In the second part of the experiment we kept the separation at 40% in IP1 and
started to reduce the crossing angle in the collision point IP5, opposite in azimuth
to IP1. Due to this geometry, the same pairs of bunches meet at the interaction
points, but the long range separation is in the orthogonal plane. This alternating
crossing scheme was designed to compensate first order effects from long range
interactions [166]. The Fig. 4.29 shows the evolution of the luminosity in IP1 as
we performed the scan in IP5. The numbers indicate again the relative change of
separation, this time the horizontal crossing angle in IP5. The luminosity seems to
show that the lifetime is best when the separation and crossing angles are equal for
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Fig. 4.29 Luminosity in IP1 as a function of time during scan of beam separation in IP5

the two collision points. It is worse for smaller as well as for larger separation. This
is the expected behaviour for a passive compensation due to alternating crossing
planes, although further studies are required to conclude.

4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions

For too small separation, the tune spread induced by long-range interactions can
become very large and resonances cannot be avoided any more. The motion can
become irregular and as a result particles at large amplitudes may be lost.

To evaluate the dynamic aperture in the presence of beam–beam interactions,
a simulation of the complete machine is necessary and the interplay between the
beam–beam perturbation and possible machine imperfections is important [174].

For the present LHC parameters we consider the minimum crossing angle to be
285 μrad.

4.6.8.2 Beam–Beam Induced Orbit Effects

When two beams do not collide exactly head-on, the force has a constant contribu-
tion which can easily be seen when the kick Δx

′
from (4.65), for sufficiently large



4 Impedance and Collective Effects 165

separation, is developed in a series

Δx ′ = const

d

[
1 − x

d
+O

(
x2

d2

)]
(4.68)

A constant contribution, i.e. more precisely an amplitude independent contribu-
tion, changes the orbit of the bunch as a whole. When the beam–beam effect is
strong enough, i.e. for high intensity and/or small separation, the orbit effects are
large enough to be observed.

When the orbit of a beam changes, the separation between the beams will change
as well, which in turn will lead to a slightly different beam–beam effect and so
on. The orbit effects must therefore be computed in a self-consistent way [175],
in particular when the effects are sizeable. The closed orbit of an accelerator can
usually be corrected, however an additional effect which is present in some form in
many colliders, sets a limit to the correction possibilities. A particularly important
example is the LHC and therefore it will be used to illustrate this feature.

We have to expect a slightly different orbit from bunch to bunch. The bunches
in the middle of a train have all interactions and therefore the same orbit while the
bunches at the beginning and end of a train show a structure which exhibits the
decreasing number of long-range interactions. The orbit spread is approximately
10–15% of the beam size. Since the orbits of the two beams are not the same, it
is impossible to make all bunches collide exactly head-on. A significant fraction
will collide with an offset. Although the immediate effect on the luminosity is
small [162], collisions at an offset can potentially affect the dynamics and are
undesirable. The LHC design should try to minimize these offsets [168, 176]. A
further consequence of the LHC filling and collision scheme is that not all bunches
experience all head-on collisions [176]. Some of the bunches will collide only in
2 instead of the 4 nominal interaction points, leading to further bunch-to-bunch
differences. In Fig. 4.30 we show a prediction for the vertical offsets in IP1 [166,
167]. The offsets should vary along the bunch train. Although the orbit measurement
in the LHC is not able to resolve these effects, the vertex centroid can be measured
bunch by bunch in the experiment (Fig. 4.31).

4.6.9 Coherent Beam–Beam Effects

So far, we have mainly studied how the beam–beam interaction affects the single
particle behaviour and treated the beam–beam interaction as a static lens. In the
literature, this is often called a “weak–strong” model: a “weak” beam (a single
particle) is perturbed by a “strong” beam (not affected by the weak beam). When
the beam–beam perturbation is important, the model of an unperturbed, strong beam
is not valid anymore since its parameters change under the influence of the other
beam and vice versa. When this is the case, we talk about so-called “strong–strong”
conditions. The first example of such a “strong–strong” situation was the orbit effect
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Fig. 4.30 Computed orbit offsets in IP1 along the bunch train [166, 167]

Fig. 4.31 Measured orbit offsets in IP1 along the bunch train [177, 178]

where the beams mutually changed their closed orbits. These closed orbits had to
be found in a self-consistent way. This represents a static strong–strong effect.

In the next step, we investigate dynamic effects under the strong–strong condition
[179].

When we consider the coherent motion of bunches, the collective behaviour of all
particles in a bunch is studied. A coherent motion requires an organized behaviour
of all particles in a bunch. A typical example are oscillations of the centre of mass
of the bunches, so-called dipole oscillations. Such oscillations can be driven by
external forces such as impedances and may be unstable. At the collision of two
counter-rotating bunches not only the individual particles receive a kick from the
opposing beam, but the bunch as an entity gets a coherent kick. This coherent kick
of separated beams can excite coherent dipole oscillations. Its strength depends on
the distance between the bunch centres at the collision point. It can be computed
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Fig. 4.32 Basic dipole modes of two bunches. Relative position of the bunches at the interaction
point at two consecutive turns

by adding the individual contributions of all particles. For small distances, it can
be shown [153, 180] that it is just one half of the incoherent kick a single particle
would receive at the same distance. For distances large enough the incoherent and
coherent kicks become the same.

4.6.9.1 Coherent Beam–Beam Modes

To understand the dynamics of dipole oscillations we first study the simplest case
with one bunch in each beam. When the bunches meet turn after turn at the collision
point, their oscillation can either be exactly in phase (0 degree phase difference)
or out of phase (180 degrees or π phase difference). Any other oscillation can be
constructed from these basic modes. The modes are sketched very schematically in
Fig. 4.32. The relative positions of the bunches as observed at the interaction point
are shown for two consecutive turns n and n + 1. The first mode is called the 0-
mode (or sometimes called σ -mode) and the second the π-mode. In the first mode,
the distance between the bunches does not change turn by turn and therefore there
is no net force driving an oscillation. This mode must oscillate with the unperturbed
frequency (tune) Q0. For the second mode, the net force difference between two
turns is a maximum and the tune becomes Q0 +ΔQcoh. The sign of ΔQcoh depends
whether the two beams have equal charge (defocusing case) or opposite charge
(focusing case). The calculation of ΔQcoh is non-trivial: when the bunches are
considered as rigid objects, the tune shift can be computed easily using the coherent
kick but is underestimated [181]. The correct calculation must allow for changes of
the density distribution during the collision and moreover, must allow a deviation
from a Gaussian function. The computation requires to solve the Vlasov-equation
of two coupled beams [182–185].
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Self-consistent multi-particle simulations form a complementary study, but
require large computing resources. Furthermore, the fields produced by the beams
must be computed in a self-consistent form before every collision [186].

The 0-mode is found at the unperturbed tune as expected. The π-mode is shifted
by 1.2–1.3ξ . The precise value depends on the ratio of the horizontal and vertical
beam sizes [183]. We have seen before the incoherent tune spread (footprint) the
individual particles occupy and we know that it spans the interval [0.0,1.0]ξ , starting
at the 0-mode.

Here one can make an important observation: under the strong–strong condition
the π-mode is a discrete mode outside the incoherent spectrum [184, 185]. This
has dramatic consequences for the stability of the beams. A coherent mode that is
outside an incoherent frequency spectrum cannot be stabilized by Landau damping.
Under these conditions the coherent beam–beam effect could drive the dipole
oscillation to large amplitudes and may result in the loss of the beam. Observations
of the coherent beam–beam effects have been made at PETRA [181]. Beam–beam
modes have been observed with high intensity coasting beams in the ISR [187], and
recently in a bunched hadron collider at RHIC [188].

Coherent beam–beam modes can be driven by head-on collisions with a small
offset or by long-range interactions. In the first case and for small oscillations,
the problem can be linearized and the theoretical treatment is simplified. The
forces from long-range interactions are very nonlinear but the numerical evaluation
is feasible. Since the coherent shift must have the opposite sign for long-range
interactions, the situation is very different. In particular the π-mode from long-range
interactions alone would appear on the opposite side of the 0-mode in the frequency
spectrum [185, 186]. Both, the incoherent and the coherent spectra include both
types of interactions.

4.6.10 Compensation of Beam–Beam Effects

For the case the beam–beam effects limit the performance of a collider, several
schemes have been proposed to compensate all or part of the detrimental effects.
The basic principle is to design correction devices which act as non-linear “lenses”
to counteract the distortions from the non-linear beam–beam “lens”. For both head-
on and long-range effects schemes have been proposed

• Head on effects:

– Electron lenses
– Linear lens to shift tunes
– Non-linear lens to decrease tune spread

• Long-range effects:

– At large distance: beam–beam force changes like 1/r
– Same force as a wire!
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4.6.10.1 Electron Lenses

The basic principle of a compensation of proton–proton (or antiproton) collisions
with an “electron lens” implies that the proton (antiproton) beam travels through
a counter-rotating high current electron beam (“electron lens”) [189, 190]. The
negative electron space charge can reduce the effect from the collision with the
other proton beam.

An electron beam with a size much larger than the proton beam can be used to
shift the tune of the proton beam (“linear lens”). When the current in the electron
bunches can be varied fast enough, the tune shift can be different for the different
proton bunches, thus correcting PACMAN tune shifts.

When the electron charge distribution is chosen to be the same as the counter-
rotating proton beam, the non-linear focusing of this proton beam can be compen-
sated (“non-linear lens”). When it is correctly applied, the tune spread in the beam
can be strongly reduced.

Such lenses have been constructed at the Tevatron at Fermilab [190] and
experiments are in progress.

4.6.10.2 Electrostatic Wire

To compensate the tune spread from long-range interactions, one needs a non-linear
lens that resembles a separated beam. At large enough separation, the long-range
force changes approximately with 1/r and this can be simulated by a wire parallel
to the beam [191].

In order to compensate PACMAN effects, the wires have to be pulsed according
to the bunch filling scheme. Tests are in progress at the SPS to study the feasibility
of such a compensation for the LHC.

4.6.10.3 Möbius Scheme

The beam profiles of e+ e− colliders are usually flat, i.e. the vertical beam size is
much smaller than the horizontal beam size. Some studies indicate that the collision
of round beams, even for e+ e− colliders, show more promise for higher luminosity
since larger beam–beam parameters can be achieved. Round beams can always be
produced by strong coupling between horizontal and vertical planes. A more elegant
way is the so-called Möbius lattice [192, 193]. In this lattice, the horizontal and
vertical betatron oscillations are exchanged by an insertion. A horizontal oscillation
in one turn becomes a vertical oscillation in the next turn and vice versa. Tests with
such a scheme have been done at CESR at Cornell [193].
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4.7 Numerical Modelling

G. Rumolo

Collective effects can be studied analytically, either through the perturbation
formalism applied to the Vlasov equation or by means of few (typically two
or three) particles models with the basic ingredients such as to reproduce the
essential features of the phenomenon under study. Both ways are usually based
on simplified approaches, in which some assumptions are necessary to make the
models analytically solvable and lead to limited sets of equations relatively easy to
interpret and handy to use.

The analytically solvable two or three particles models can be refined further to
more realistic models, in which more than just few particles are assumed to represent
the full particle beam. However, since the number of coupled differential equations
to be solved grows proportionally with the number of particles used in the model,
the resulting set of equations will rapidly become unmanageable as we increase the
number of macroparticles (which are used to approximate the beam with a reduced
number of particles), unless it is fed into a numerical simulation to be run on a
computer. By using computers, the number of macroparticles necessary to model
a beam can be pushed up to several millions, which is very useful to study the
details of all possible internal oscillation modes of a bunch (or train of bunches),
and also incoherent effects like emittance growth. Although ideally we would like
to develop simulation programs that take into account the highest possible number
of effects, in practice the existing codes narrow down their models to one or few
effects, whose consequences in the beam dynamics are interesting to single out.
For example, to study the effects of electron clouds, the beam will be made to
interact with a given electron cloud at some locations around the accelerator ring,
but in general other possible interactions with impedances, or the concurrent effects
of space charge, beam–beam, Intra Beam Scattering, will be neglected. Although
the study of two or more effects simultaneously is technically possible in most
cases, at the present state of art of the simulations, it is generally preferred to
limit the study of such interplays, because the combined models are difficult to
control and tend to break down. Pushing further on this line, not only different
effects can be decoupled in simulations, but also different regimes can be studied
separately in the beam dynamics. For instance, for some problems only a partial
description of the beam will be sufficient, so that transverse problems can be treated
separately from longitudinal problems as well as single-bunch/multi-turn effects can
be studied ignoring that these bunches are parts of long trains. In some cases, single-
bunch/single- or multi-turn effects can also be modelled to generate driving terms
to be used in reduced studies extending over longer time scales.

To perform a simulation, we will therefore have to define our beam as an
ensemble of macroparticles, identified through arrays containing the phase space
coordinates of each macro-particle (2–6-dimensional). This beam is first initialized
and then transported across selected points of the accelerator ring using the
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appropriate transformation matrices. At each of these points, the interaction with
the desired collective effect will be applied (e.g. the beam’s own space charge field,
an electron cloud, a wake field). It is clear, therefore, that a numerical simulation
requires in the first place the knowledge of the driving term to be applied at each
interaction point. That is why in the following we separate the general simulation
into the solution of an electromagnetic problem, in which the collective interaction
is modelled and the resulting excitation on the beam is calculated (at least, its non-
self-consistent part), and the beam tracking part, in which the evolution of a beam is
studied under the effect of this excitation. Note that most of numerical simulations
including collective effects are based on time domain models, as these are best suited
to describe the usually non-stationary beam evolution under the effect of collective
interactions.

4.7.1 The Electromagnetic Problem

The first step to set up a numerical simulation including a collective effect consists
of identifying the source of the self-induced perturbation acting on the beam and
modelling it in a way that can be subsequently used. We usually distinguish three
different types of collective interactions, which can take place with: (i) space charge
(see Sect. 4.1); (ii) wake fields from an accelerator component or part of the resistive
beam pipe (see Sect. 4.2); (iii) another “beam” of charged particles. This secondary
beam can be either a counter-rotating beam in a collider (see Sect. 4.6), or a static
cloud formed by the accumulation of particles, usually of opposite charge, around
the primary beam (see Sect. 4.5).

If the source of the perturbation is space charge, then two different approaches
are possible to compute its effect. Analytical formulae are available for the elec-
tromagnetic fields of coasting beams with ellipsoidal or Gaussian transverse sizes,
as well as of ellipsoidal or Gaussian bunches (in all dimensions). The additional
kicks given by these electromagnetic fields can be therefore calculated and applied
to the beam macroparticles in a finite number of locations along the ring (even if the
space charge interaction is in reality continuous). When doing that, self-consistency
requires that the sizes of the bunch are updated at every kick point. Another possible
approach consists of using the macroparticle distributions at each selected kick point
to calculate self-consistently the electric field with a Poisson solver and use it to
calculate the electromagnetic kicks on the macroparticles. It is worth noting that
the same approach can be used for beam–beam problems, because the shape of
the required electric field is the same, even if the coefficients need to be adapted
(electric and magnetic forces tend to cancel at ultra-relativistic energies for space
charge, while they add up for beam–beam).

If the source of the perturbation is a wake field from an accelerator component
or resistive wall, the shape of the relative wake function has to be calculated
beforehand. This is done analytically for some specific cases (e.g. resistive wall,
step or tapered transitions), but in general dedicated electromagnetic codes can be
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used for this purpose. Some of them work in time domain, and can provide the wake
potentials for given source bunches (usually chosen to be short enough as to simulate
ideal pulse excitations and thus provide directly the wake functions). Other work in
frequency domain and output impedances, which need then to be back-transformed
into time domain to obtain the wake functions.

If the source of the perturbation is for example an electron cloud, then the
electron distribution of the cloud is usually calculated beforehand by means of an
electron cloud build-up code, and then its interaction with a coming bunch is calcu-
lated. Programs tracking simultaneously electrons and beam particles are presently
under development or test, due to the massive memory and CPU requirements to
solve this type of problems. On the other hand, generation and tracking of the ions
can be included in multi-bunch beam tracking programs to calculate the effect of
ions on bunched electron beams in a fully self-consistent manner. This is due to
the fact that, while ions do not move significantly during the passage of an electron
beam and allow modelling the bunches as charged disks, electrons can even perform
several oscillations during the passage of a bunch, which requires a much more
detailed modelling of the bunch.

4.7.2 Beam Dynamics

Beam dynamics tracking codes simulate the motion of beam particles inside an
accelerator by transporting them across a number of discrete points by means of
transformation matrices. In each of these points, additional kicks can be added,
modelling either nonlinear components and errors of the external fields or the
collective interactions. In the previous subsection, we have outlined the procedure
to calculate the excitation to be applied to the beam to compute its evolution
when it feels one or more collective interactions. To model the effects of space
charge, wake fields and electron clouds, it is certainly necessary to describe the
beam as an ensemble of macroparticles but beside that, its longitudinal structure
needs also to be detailed. In particular, to model coupled bunch instabilities the
relative positions of the macroparticles across the different bunches are necessary
to determine the total effect of the wake acting on each of them. For single-bunch
effects, a possible technique is to subdivide the bunch into several slices, so that the
macroparticles of each slice can feel the integrated effect of the wakes left behind by
the preceding slices (or the space charge from its own and the neighbouring slices,
or the electron cloud as was deformed by the previous slices). A possible scheme of
numerical simulation of a single bunch under the effect of a longitudinal wake field
is illustrated in Fig. 4.33.

The bunch is first divided into N slices and a kick must be applied to each
macroparticle within a given slice at a certain kick point. The kick depends on
the longitudinal wake function and the charge distribution of the preceding slices.
In the longitudinal plane, particles within a slice feel also the effect of the same
slice to which they belong, because the bunch suffers a net energy loss. After all
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Fig. 4.33 Example of numerical simulation with collective effects: schematic view of the
interaction of a single bunch with a longitudinal wake field at several locations in an accelerator
ring

the particles in the bunch feel the effect of the wake at the kick point, they are
subsequently transported to the next kick point in the accelerator optical model.
Since synchrotron motion plays a key role in most of the effects under study, it is
essential that particles are made to execute their synchrotron oscillations and move
across slices from turn to turn. This means that collective effects dealing with single-
bunch problems need to have at least one model of synchrotron motion built in, and
that the bunch binning has to be regularly updated. Since the synchrotron motion
is slow enough, and in reality the RF cavities do really kick the beam particles
once or few times per turn, the longitudinal coordinates and the bunch slicing are
usually not updated more frequently than once per turn. However, the update of the
longitudinal coordinates from kick to kick point within one single turn, based on
the only drift from momentum spread, could become significant especially in space
charge simulations.

The simulation scheme with transverse wakes is basically the same as the one
displayed in Fig. 4.33, except that particles inside one slice do not feel the effect of
the same slice (as the transverse wakes are zero in the origin, for ultra-relativistic
particles) and dipolar and quadrupolar contributions can be separated, making the
wake kicks depending not only on the position of the source slice but also on the
position of the witness macroparticles. The simulation scheme with the electron
cloud is again similar to the one shown in Fig. 4.33, but the fundamental difference
is that there is a mutual action between beam and electron cloud, so that, while
macroparticles within a slice feel the effect of the electron cloud, the electron cloud
itself is also deformed by the action of the passing slice.
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The modelling described in the previous subsections has been frequently applied
to explain collective instabilities observed in running machines, as well as to predict
instability thresholds (both in existing and future machines) and develop strategies
to circumvent limitations from collective effects. For instance, a detailed impedance
model of the SPS comprises the contributions from several accelerator components
and is used for deriving single-bunch wake fields, which are the driving terms for
HEADTAIL simulations. The kicks given to the beam particles by the different
wake fields can be then either applied at the real locations in which the sources
are situated, or weighted by the beta functions, summed up and applied in a
single location using a one-kick approximation. These simulations can be used for
predicting at which intensity transverse mode coupling occurs and the effects of
chromaticity on this threshold value [194]. This is very important to extrapolate
the beam stability limits in different conditions of operation, e.g. with a different
optics or to the upgraded machine, which will be in principle enabled to receive
higher intensity bunches. The mode shift can be plotted as a function of the bunch
intensity, because the main modes are detectable from the Fourier analysis of the
centroid motion. A typical plot of mode shift provided by simulations is displayed
in Fig. 4.10.
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Chapter 5
Interactions of Beams with Surroundings

M. Brugger, H. Burkhardt, B. Goddard, F. Cerutti, and R. G. Alia

With the exceptions of Synchrotron Radiation sources, beams of accelerated
particles are generally designed to interact either with one another (in the case of
colliders) or with a specific target (for the operation of Fixed Target experiments,
the production of secondary beams and for medical applications). However, in
addition to the desired interactions there are unwanted interactions of the high
energy particles which can produce undesirable side effects. These interactions
can arise from the unavoidable presence of residual gas in the accelerator vacuum
chamber, or from the impact of particles lost from the beam on aperture limits
around the accelerator, as well as the final beam dump. The wanted collisions of the
beams in a collider to produce potentially interesting High Energy Physics events
also reduces the density of the circulating beam and can produce high fluxes of
secondary particles.

All of these unwanted interactions affect the performance of an accelerator, in
desorption of gas from the vacuum system, in reduced lifetime of the circulating
beam, in reduction of the collider luminosity and in background for the detectors.
In this chapter the basic physical phenomena of particle interactions with matter
are described, together with the techniques used to simulate the interaction with
matter. The different types of particle interactions with the surroundings are
elaborated in the context of their adverse effects on the accelerator performance
and the mitigation measures. A full description of the effects and mitigation
measures associated with the vacuum systems of accelerators is given separately
in Chap. 8.
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5.1 The Interactions of High Energy Particles with Matter

Modern accelerators use leptons or hadrons (including ions) and have beam energies
spanning the MeV to TeV range. Therefore, the capability of modelling particle
interactions and showers from these energy ranges down to thermal energies is
essential during all stages of the lifetime cycle of an accelerator, from the accelerator
design through operation to its final decommissioning.

Before briefly discussing general aspects of hadronic and electromagnetic show-
ers, a short overview is given of important ingredients for accelerator applications:

• energy deposition for the design of accelerator components and elements (e.g.,
collimators, magnets);

• particle fluences as a function of energy, angle and position (e.g., detector or
radiation damage and radiation to electronics studies);

• distribution of particle interactions, inelastic interaction density (e.g., for tracking
and loss pattern studies);

• residual nuclei production and generation of radioactive isotopes by beam
interactions (e.g., radiation protection aspects like air activation or equipment
handling).

To allow for calculations of related quantities, the underlying physical processes
must not only be well understood and described in models, but also included in
calculation codes able to yield allow reliable estimates within a reasonable time.

5.1.1 Basic Physical Processes in Radiation Transport
Through Matter

Hadron and electromagnetic showers are very complex phenomena, whose descrip-
tion in terms of basic physical interactions requires a detailed and complex
modelling.

As soon as the energy of a primary hadron beam exceeds a few tens of MeV,
inelastic interactions start playing a major role and generate secondary particles
that will have enough energy to trigger further interactions giving rise to hadronic
showers. Furthermore, whenever the beam energy is high enough that significant
pion production can occur, an increasing fraction of the energy will be transferred
from the hadronic to the electromagnetic part due to meson decay (e.g., π0 decaying
into a gamma pair). The pion production threshold for nucleons interacting with
stationary nucleons is around 290 MeV.

Therefore, energetic hadronic showers are always accompanied by significant
electromagnetic showers, where the latter ones tend to develop independently
without further hadronic particle production (with the exception of electro- and
photo-nuclear interactions of lower importance for hadron accelerators, which
however have to be considered for lepton accelerators).
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While electromagnetic interactions can be described in one coherent theory
(QED), the same does not apply to hadronic nuclear interactions.

The development of hadron initiated showers is determined both by atomic
processes (e.g. ionization, multiple Coulomb Scattering, etc.), which take place very
frequently, as well as relatively rare nuclear interactions (both elastic and nonelas-
tic). Electromagnetic showers are determined by the same atomic processes plus
additional ones (e.g., Bremsstrahlung, pair production, Compton scattering, etc.)
which are specific for electrons, positrons or photons. Nuclear interactions coming
from the electromagnetic component usually play a minor role, and whenever the
interest is not in the small fraction of hadrons produced by electromagnetic particles
they can be safely neglected.

Concerning particle production, energetic (shower) particles are concentrated
mainly around the primary beam axis, regardless of their identity. Their ionization
as well as the electromagnetic cascades define the core of the energy deposition
distribution. At the same time, neutrons (since these are the only neutral hadrons
with a long enough lifetime) will dominate at energies where charged particle
ranges become shorter than the respective interaction length. In this sense, the
energy deposition associated with low energy neutron interactions constitute the
peripheral tails of the energy deposition distribution. Most of the interactions are
due to particles (mainly neutrons) of moderate energy.

Pions can be only produced by shower particle interactions, so that they are often
considered as the real indicator of a high energy cascade. Neutrons, and to a lesser
extent protons, are copiously produced also in the final stages of nuclear interactions
(e.g., evaporation) down to projectile energies that are comparable to their nuclear
binding energy.

As previously mentioned, to focus on the relevant processes one usually distin-
guishes between continuous and discrete (or explicit) processes. This distinction
reflects a real physical distinction, between processes which occur very frequently
with mean free paths much shorter than particle ranges in matter, and others
that, however, are often the dominating ones in determining the shower develop-
ment.

The most important discrete processes are:

• inelastic nuclear interaction;
• decay;
• elastic nuclear interaction;
• delta-ray production;
• bremsstrahlung;
• annihilation;
• photoelectric effect;
• Compton scattering;
• pair production;
• coherent (Rayleigh) scattering.

In addition to these processes, nuclear interactions with a much lower rate can
occur also for photons (as well as with a reduced rate of about 1/137 for electrons
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and positrons). Bremsstrahlung radiation can also be produced by “heavy” charged
particles even though it is significantly suppressed. Furthermore, charged particles
(light and heavy ones) can produce electron-positron pairs.

5.1.2 Simulation Tools

In all life cycle stages of an accelerator the use of simulation, notably Monte-
Carlo codes, became fundamental. Thanks to the variety of such codes over
different particle physics applications and the associated extensive benchmarking
with experimental data, the modelling has reached an unprecedented accuracy.
Furthermore, most codes allow the user to simulate all aspects of a high energy
particle cascade in one and the same run: from the first interaction over the transport
and re-interactions (hadronic and electromagnetic) of the produced secondaries, to
detailed nuclear fragmentation, the calculation of radioactive decays and even of the
electromagnetic shower from such delayed decays.

In the following we give a brief overview of the most used multi-purpose codes
around accelerator applications.

5.1.2.1 FLUKA

FLUKA is a general-purpose particle interaction and transport code with roots in
radiation protection and respective design and detector studies for high energy
accelerators [1, 2]. It comprises all features needed in this area of application,
such as detailed nuclear interaction models, full coupling between hadronic and
electromagnetic processes and numerous variance reduction options.

The module for hadronic interactions is called PEANUT and consists of a
phenomenological description (Dual Parton Model-based Glauber Gribov cas-
cade) of high energy interactions, through a generalized intranuclear cascade,
pre-equilibrium emissions as well as evaporation, fragmentation, fission and de-
excitation by gamma emission. Interactions of ions are simulated through interfaces
with different codes depending on the energy range (DPMJET3 above 5 GeV/n and
rQMD-2.4 between 0.125 and 5 GeV/n, while the embedded Boltzmann Master
Equation model is applied below 0.125 GeV/n).

The transport of neutrons with energies below 20 MeV is performed by a multi-
group algorithm based on evaluated cross section data (ENDF/B, JEFF, JENDL etc.)
binned into 260 energy groups, 31 of which in the thermal region. For a few isotopes
point-wise cross sections can be optionally used. The detailed implementation of
electromagnetic processes in the energy range between 1 keV and 1 PeV is fully
coupled with the models for hadronic interactions.
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5.1.2.2 GEANT4

GEANT4 is an object-oriented toolkit originally designed to simulate detector
responses of modern particle and nuclear physics experiments [3, 4]. It consists of
a kernel which provides the framework for particle transport, including tracking,
geometry description, material specifications, management of events and interfaces
to external graphics systems.

The kernel also provides interfaces to physics processes. In this regard the
flexibility of GEANT4 is unique as it allows the user to select freely the physics
models which serve best the particular application needs. This freedom comes
with high responsibility as the user must ensure that the most adequate models
are used for a given problem. Implementations of interaction models exist over
an extended range of energies, from optical photons and thermal neutrons to high
energy interactions as required for the simulation of accelerator and cosmic ray
experiments. In many cases complementary or alternative modelling approaches are
offered from which the user can choose.

Descriptions of intranuclear cascades include implementations of the Binary
and the Bertini cascade models (the latter significantly reworked and not at all
linked to the original Bertini model). Both are valid for interactions of nucleons
and charged mesons, the former for energies below 3 GeV and the latter below
10 GeV. The Intranuclear Cascade of Liège (INCL) is also an usable option.
At higher energies (up to 10 TeV), three models are available: a high-energy
parameterized model (using fits to experimental data), a quark-gluon string model
and the Fritiof fragmentation model, both based on string excitations and decay into
hadrons. Nuclear de-excitation models include abrasion-ablation and Fermi-breakup
models. Furthermore, heavy ion interactions can also be simulated if the appropriate
packages are linked.

The package for electromagnetic physics comprises the standard physics pro-
cesses as well as extensions to energies below 1 keV, including emissions of X-rays,
optical photon transport, etc.

5.1.2.3 MARS15

The MARS15 code system [5, 6] is a set of Monte Carlo programs for the simulation
of hadronic and electromagnetic cascades which is used for shielding, accelerator
design and detector studies. Correspondingly, it covers a wide energy range:
100 keV–100 TeV for muons, charged hadrons and heavy ions, 1 keV–100 TeV for
electromagnetic showers and down to 0.00215 eV for neutrons.

Hadronic interactions above 5 GeV can be simulated with either an inclusive
or an exclusive event generator. While the former is CPU-efficient (especially at
high energy) and based on a wealth of experimental data on inclusive interaction
spectra, the latter provides final states on a single interaction level and preserves
correlations. In the exclusive mode, the cascade-exciton model code CEM03,
the Quark-Gluon String Model code LAQGSM03 and the DPMJET3 code are
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implemented, including models for a detailed calculation of nuclide production via
evaporation, fission and fragmentation processes.

Interfaced to MARS, the MCNP4C code handles all interactions of neutrons with
energies below 14 MeV. Produced secondaries other than neutrons are directed back
to the MARS15 modules for further transport.

5.1.2.4 MCNP

MCNP6 [7] originates from the Monte Carlo N-Particle transport (MCNP)-family
of neutron interaction and transport codes and, therefore, features one of the
most comprehensive and detailed description of the related physical processes.
The extension to other particle types, including ions and electromagnetic particles,
allowed an expansion of the areas of application from purely neutronics to, among
others, accelerator shielding design, medical physics and space radiation.

The neutron interaction and transport modules use standard evaluated data
libraries mixed with physics models where such libraries are not available. The
transport is continuous in energy and includes all features necessary for reactor
simulations, including burn-up, depletion and transmutation. Different generalized
intranuclear cascade codes can be linked to explore different physics implementa-
tions, such as CEM03, INCL4 and ISABEL. They either contain fission-evaporation
models or can be coupled to such models (i.e., ABLA) allowing detailed predictions
for radio-nuclide production. While the intranuclear cascade codes are limited to
interaction energies below a few GeV, a link to the Quark-Gluon String Model code
LAQGSM03 extends this energy range to about 800 GeV. The latter code also allows
the simulation of ion interactions.

5.1.2.5 PHITS

The Particle and Heavy-Ion Transport code System PHITS (see [8] and [9] and
references therein) was among the first general-purpose codes to simulate the trans-
port and interactions of heavy ions in a wide energy range, from 10 MeV/nucleon to
100 GeV/nucleon. It is based on the high-energy hadron transport code NMTC/JAM
which was extended to heavy ions by incorporating the JAERI Quantum Molecular
Dynamics code JQMD.

Below energies of a few GeV hadron-nucleus interactions in PHITS are described
through the production and decay of resonances while at higher energies (up to
200 GeV) inelastic hadron-nucleus collisions proceed via the formation and decay
of so-called strings which eventually hadronize through the creation of (di)quark-
anti(di)quark pairs. Both are embedded into an intranuclear cascade calculation.
Nucleus-nucleus interactions are simulated, within a molecular dynamics frame-
work, based on effective interactions between the two self-binding system of
nucleons.
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The generalized evaporation model GEM treats the fragmentation and de-
excitation of the spectator nuclei and includes 66 different ejectiles (up to Mg)
as well as fission processes. The production of radioactive nuclides, both from
projectile and target nuclei, thus follows directly from the microscopic interaction
models.

The transport of low energy neutrons employs cross sections from evaluated
nuclear data libraries such as JENDL below 20 MeV. Electromagnetic interactions
are simulated based on the EGS5 code in the energy range between 1 keV and 1 TeV.

Due to its capability to transport nuclei PHITS is frequently applied in ion-
therapy and space radiation studies. The code is also used for general radiation
transport simulations, such as in the design of spallation neutron sources.

5.1.2.6 Simulation Uncertainties

Depending on the complexity of Monte-Carlo simulations, the size of geometries
and the energy range involved, calculations can carry considerable uncertainties
of various sources which are in many cases difficult to evaluate. While statistical
uncertainties are generally below a few percent thanks to the available computing
power, systematic errors are in most cases very difficult, or even impossible, to
predict in an accurate way.

The main sources of error are:

• Error due to the physics modelling: e.g., in the uncertainty in cross sections,
especially at modern accelerators operating at very high energies or applications
sensitive to other uncertainties in the modelling used in the simulation code. One
can usually expect up to few 10% uncertainty on integral quantities, while for
multi differential quantities the uncertainty can be much worse.

• Further uncertainties due to the assumptions used in the description of the
geometry and of the materials under study. Usually it is difficult to quantify
this uncertainty and experience shows that a factor of 2 can be taken as a safe
limit for general calculations. For special cases, even in case of rather complex
geometries, but when the design is implemented to a very detailed level, the latter
can be reduced to about 10–20%, but rarely significantly below.

• Typical for accelerator applications, additional errors appear when having beams
grazing at small angles to surfaces, where either the surface roughness is not
taken into account, small misalignments can have large effects, or where one is
interested in scattering effects over large distances. Therefore, especially for the
latter, a safety factor of 2–3 has to be considered.

Only a detailed case-by-case analysis and careful evaluation with monitoring data
can reduce the above to very low levels. Such studies are continuously done by code
developers, as well as core code users and nicely show the possible high-accuracy
reached with modern Monte-Carlo codes (see for instance [10]).
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5.1.3 Practical Shielding Considerations

In most of the cases around high-energy hadron accelerator operation, the particle
cascades originate from beam interactions due to four basic source terms:

• beam–beam interactions (at and close to the experiments);
• beam–residual gas interactions (all along the accelerator);
• direct losses: beam cleaning at collimator locations or beam dump;
• spurious losses (random locations around the accelerator).

The emerging secondary particle cascade is then again defining a multi particle-
type and energy spectrum, interacting with the various materials around the
accelerator. Therefore, in order to reduce the radiation levels and the corresponding
fluences, shielding material can be employed to initiate and absorb showers. If
the shielding material is thick, the cascades continue until most of the charged
particles and photons have been absorbed, except for neutrons and secondary
photons.

The following aspects have to be considered in the shielding conceptual design:

5.1.3.1 Radiation Attenuation

The propagation of high-energy hadrons features an exponential decrease due to
nuclear reactions, while their energy loss, in case they are charged, is mostly due to
ionization. The latter accounts for the majority of the energy loss in electromagnetic
showers and for about 2/3 of the energy deposited in hadronic showers. Most of
the other 1/3 of the hadronic energy is carried away by neutrons. Being neutral
these are not affected by ionization losses, are decoupled from the rest of the
shower, are subject to elastic and inelastic collisions and are considerably more pen-
etrating than the charged component. Hadronic showers above 100 MeV progress
through a variety of hadronic and nuclear processes that result in secondaries
that are predominantly pions (π+, π−,π0), followed in importance by nucleons
(protons, neutrons), strange mesons/baryons and photons. The π0 component,
appearing whenever hadron energies are above the pion production threshold,
is particularly important, since it decays immediately to two photons producing
electromagnetic showers and shifting the shower energy from the hadronic to
the electromagnetic sector. Hadrons above few tens of MeV undergo nuclear
reactions that increase the neutron multiplicity. The spallation process breaks the
nucleus into a few large fragments. Additional neutrons may also be produced just
during this process, as well as by the subsequent evaporation from these excited
fragments.

Since the fragments have large mass (M) and total charge (Z) and ionize, they
will be stopped quickly in dense shield materials.
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5.1.3.2 Shielding of Electromagnetic Showers

As mentioned earlier, electromagnetic showers in the multi-GeV range develop
through successive bremsstrahlung and pair production. The particles involved
are photons, electrons and positrons that in dense materials have typical radiation
lengths in the centimeter range. As a result, high-energy electromagnetic showers
are halted by a typical concrete shielding wall having thickness of the order of 1 m or
by a tungsten layer of a few centimeters. It has to be noted that secondary neutrons
are also generated through photo-production, thus associated shielding issues have
to be correctly considered.

5.1.3.3 Shielding of Neutrons

The elastic scattering cross section of neutrons on nuclei is large at all energies and
has a role in attenuating them. The scattered neutron will lose energy on every elastic
collision, especially if the target nucleus is light and so carries away a larger fraction
of the energy as it recoils. Therefore, the presence of hydrogen is most effective in
reducing the neutron kinetic energy. Special care must be taken with respect to:

• neutrons streaming through ventilation channels or other penetrations, where
intermediate and low-energy neutrons readily scatter from the wall. Propagation
down the channel is thus possible via a series of ‘reflections’ even if the channel
is not in the original direction of the neutron;

• the thermalization of neutrons, in the presence of certain elements with high
capture cross-sections (e.g., Boron or Cobalt) that effectively clean the neutron
field but can induce relevant secondary effects (e.g., electronic damage or
activation issues).

Monte Carlo calculations aimed at shielding design optimization may require
dedicated biasing techniques to overcome the associated statistical convergence
challenges.

5.2 Lifetimes, Intensity and Luminosity

Particles which circulate on stable orbits in an accelerator within the geometrical
and energy acceptance can get lost as a result of collisions with other particles. This
leads to a decrease of the number of particles N circulating with time t .

The beam intensity lifetime τ is the inverse of the total loss rate dN/dt ,
normalized to the actual intensity N (at the time t)

1

τ
= − 1

N

dN

dt
. (5.1)
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Fig. 5.1 Schematic view of
beam collisions with the
nuclei (N) of the rest-gas

γ

N

beam

beam pipe

design path

A constant lifetime corresponds to an exponential decay of the intensity with
time t proportional to exp(−t/τ ).

The intensity and beam lifetime can be monitored by measuring the beam current
I which is directly proportional to the intensity, I = Nef , where e is the charge of
the particle and f the revolution frequency in a ring [11].

We can distinguish between several types of collision processes.

• Beam-gas scattering: collisions of beam particles with particles from the residual
gas in the evacuated beam pipe, sketched in Fig. 5.1.

• Thermal photon scattering: inverse Compton scattering of electrons or positrons
with photons from black-body radiation in the beam pipe; relevant for beam
energies> 10 GeV

• Intra-beam scattering: collisions or close encounters with other particles in the
same beam; most relevant at lower energies and for very dense beams

• Quantum lifetime: particles leaving the acceptance by quantum fluctuations in
synchrotron radiation

• Colliding beams: particle collisions or close encounters when beams cross in
colliders

Estimates for the first two types which involve collisions with particles outside the
beam will be given below.

The losses from the different loss mechanism have to be added. This implies, that
the corresponding lifetime contributions add reciprocally

1

τ
=
∑

i

1

τi

An example of observed lifetimes in LEP is listed in Table 5.1, where losses from
intrabeam scattering were negligible.

The single beam lifetime is observed before beams are brought into collisions.
In LEP this was dominated by the thermal photon scattering. LEP was generally
operated with sufficient aperture and over-voltage from the RF-acceleration system,
so that losses from the quantum lifetime were negligible. More details on lifetimes
observed in LEP with a discussion of quantum lifetime and small, but non-negligible
effects which made lifetimes longer than originally anticipated can be found in [12].
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Table 5.1 Example of the
beam lifetime in LEP, fill
4163 from 14-Sep-1997 at
Eb = 91.5 GeV

Component Lifetime τ in hours

Thermal Compton 50

Beam Gas, 0.3 nTorr CO 160

Combined, single beam 38

e+e− collisions, σ = 0.21 barn 8.6

Total 7

5.2.1 Beam-Gas

From ideal gas theory, the density ρm in terms of molecules or atoms per unit volume
is

ρm = p

kT
. (5.2)

Multiplying ρm with the cross section σ for beam-gas collisions, gives us the
collision probability per unit length

Pcoll = σ ρm .

Further multiplication with the velocity of the beam particles v = βc gives us the
collision rate per unit time

βc σ ρm = 1

τ
(5.3)

which corresponds to the inverse lifetime, if σ is the cross section for collisions
which lead to a loss of the beam particles. This will be the case for inelastic
scattering processes and for elastic scattering in which the scattering angle is larger
than the angular acceptance.

For numerical estimates in this section we take ρm = 3.26 × 1013 molecules/m3

which corresponds to a pressure of p = 1 Torr = 1.33 × 10−7 Pa at room
temperature (T = 296.15 K = 23 ◦C) and can be considered as typical number
for good vacuum conditions. At high energy we have β ≈ 1. For a cross section
of σ = 1 b (one barn, where 1b = 10−28 m2), we obtain a beam-gas lifetime
τ = 284 h.

The main beam-gas scattering processes are shown in Fig. 5.2.

eN Scattering Relevant for Electron Rings
The elastic cross section for eN scattering scales strongly with energy (with 1/γ 2)
and scattering angle 1/θ4. Elastic scattering is mostly relevant as a halo production
process for lower energy rings and becomes negligible for lifetime estimates for
high energy electron rings.
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Fig. 5.2 Beam-gas scattering processes; elastic and inelastic eN scattering relevant for e+, e−
machines is shown on the left and pN scattering relevant for proton machines on the right

At high energy, the dominating beam-gas process for electron rings is the
inelastic scattering or bremsstrahlung in which the incident electron interacts with
the field of the residual gas nucleus and radiates a photon.

The high energy cross section for eN scattering can be written in good approxi-
mation in dependently of the electron energy as [13]

σeN = 4α r2
e Z(Z + 1) log(287/

√
Z)

(

−4

3
log kmin − 5

6
+ 4

3
kmin − k2

min

2

)

,

(5.4)

where kmin is the fractional energy loss or minimum photon energy in units of the
electron energy, α the fine-structure constant (1/137) and Z the atomic number
(or number of protons). We can see that the cross section scales with Z(Z + 1).
Numerical values obtained from Eq. 5.4 for kmin = 0.01 are shown in Table 5.4.

pN Scattering Relevant for Electron Rings
At high energies (plab > 10 GeV), the pN cross section is mostly inelastic (> 80%).
It depends only weakly on the proton energy and scales approximately with the
atomic mass ∝ A2/3 [14], as can be expected for the cross-section of a sphere.
Numerical values are listed in Table 5.2. We can see that pN cross sections are
much smaller (∼10×) than eN cross sections. Good beam-gas lifetimes in proton
machines can be several 103 h compared to typically 102 h in high energy electron
machines.

5.2.2 Thermal Photons

Even a perfectly evacuated beam pipe remains “filled” with photons from black
body radiation which can be relevant as source of backgrounds and reduction of
beam lifetime as first pointed out by V. Telnov in 1987 [15]. The photon density
from black-body radiation is
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Table 5.2 Numerical values
for σeN for an energy loss of
at least 1% and for σpN, the
pN cross section at high
energy (plab = 0.01–10 TeV)

Gas σeN σpN

b b

H2 0.28 0.08

He 0.39 0.19

CH4 3.02 0.43

H2O 4.38 0.40

N2 6.47 0.56

CO 6.56 0.56

CO2 10.7 0.87

Ar 17.8 0.60

beam pipe

γ

e Compton

scattering

Fig. 5.3 Schematic view of the inverse Compton scattering with thermal photons. A high energy
beam particle collides and loses energy to a low energy photon radiated from the beam pipe by
black body radiation

ργ = 8π

(
kT

hc

)3 ∫ ∞

0

x2

ex − 1
dx

︸ ︷︷ ︸
= 2.404

(5.5)

where T is the absolute temperature, and k,h,c the Boltzmann, Planck constants and
the speed of light. For a beam pipe at room temperature (23 ◦C), we get a photon
density of ργ = 5.3 × 1014 m−3 which is an order of magnitude higher than the
typical residual gas molecular densities ρm, considered in this chapter for beam gas
estimates (Fig. 5.3).

The lifetime from thermal photon scattering is

τt = 1

ργ c σC︸ ︷︷ ︸
∼26 h

1

floss
(5.6)

where ργ is the photon density, σC the Compton cross section (at high energy ∼
0.665 barn) and floss the fraction of the e± lost after collision. Numerical values
calculated using the program described in [16] are given in Table 5.3. We can see that
thermal photon scattering at room temperature becomes only relevant for electron
beam energies above 10 GeV.
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Table 5.3 Thermal photon
scattering

Eb floss τt

(GeV) (%) (h)

10 0.3 9000

45.6 19 144

100 39 72

250 61 49

Fraction of beam parti-
cles lost and lifetime, for
various electron beam
energies Eb. At room
temperature and for an
energy acceptance of 2%

5.2.3 Luminosity Lifetime

In analogy to Eq. 5.1, the luminosity L lifetime is defined as

1

τL
= − 1

L

dL

dt
. (5.7)

The luminosity for colliding beams depends on the product of the colliding beam
intensities, or N2 in case of equal beam intensities. At constant beam sizes, the
luminosity decreases as dN2/dt = 2dN/dt , so that the luminosity lifetime is half
of the intensity lifetime τL = τ/2. For operation at the beam-beam limit as is typical
for high luminosity e+e− storage rings, beam sizes increase with intensity such that
the beam-beam parameter is constant, and L ∝ N and therefore τL = τ . In proton
machines, beam sizes tend to increase with time due to intrabeam scattering, noise
and vibrations, resulting in luminosity lifetimes τL < τ/2.

5.3 Experimental Conditions

The most important performance parameters for colliders for particle physics are

• the beam energy; higher beam energies allow to study smaller distances and to
produce new heavier particles;

• high luminosity to obtain sufficient collisions rates to observe new processes or
to improve the measurement precisions.

It is also essential to provide good experimental conditions for the particle detectors
installed around the collision regions. Criteria for good experimental conditions
are

• low backgrounds;
• good knowledge and stability of beam parameters;
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• minimize the risk of damage of the detectors by beam loss and irradiation;
• minimize the size of the beam pipe in the detector region to allow for the

installation of vertex detectors as close as possible to the interaction region;
• maximize the space available for the detector and the solid angle coverage down

to low angles close to the beam.

These are rather conflicting requirements. Minimizing the size of the beam pipe
for installation of sensitive vertex detectors close to the beam pipe will increase
the background rates hitting the detector region and increase the risk of damage by
beam loss. The requirements for maximum space and solid angle coverage for the
detectors are also in conflict with the requirements of the accelerator to maximize
luminosity by

• allowing for space close to the interaction point for final focus quadrupoles;
• reducing the β-function at the interaction point, which increases the beam size

in the final focus quadrupoles with the risk to create local aperture limits and
losses and which limits the space and low angle coverage available for particle
detection;

• installation of beam-separators close to the interaction region to allow to fill the
machine with many bunches.

It is essential to consider the accelerator and detector requirements together, both
during the design stage and also later in the optimization of the running parameters.

Experience shows that it typically takes several years to commission and
optimize the performance of a new accelerator. During these first years, it will often
be possible to increase the luminosity without compromising on the experimental
conditions for the detectors. Detailed simulation and continuous monitoring of
the background conditions are important to identify potential limitations, to guide
further optimization and to identify the potential for upgrades towards higher
luminosities or smaller beam pipes.

Different types of backgrounds and their mitigation with examples from LEP and
LHC are now discussed.

5.3.1 Sources of Detector Background and Detector
Performance

It is possible to distinguish between two main types of machine induced back-
grounds

• backgrounds induced by losses of beam particles;
• background from synchrotron radiation, relevant for high energy e+, e− beams.
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Table 5.4 Lifetimes τ and beam loss rates dN/dt in LEP2 and the (nominal) LHC, compared to
the bunch crossing rates fc

Ntot τ (h) −dN/dt (Hz) fc (Hz) − dN
dt
/fc (Hz)

LEP2 3.2e12 5 1.8 × 108 4.5 × 103 4 × 104

LHC 6.5e14 10 1.8 × 1010 3.2 × 107 6 × 102

Machine induced backgrounds by particle loss are relevant for all (circular and
linear) colliders. Even under good conditions, millions of particles will be lost
per second, exceeding by several orders of magnitude the beam crossing rates,
see Table 5.4. A minimum requirement is that only a very small fraction of these
particles gets lost close to the detector, such that the background rate in the
interaction region is small compared to the bunch crossing rates.

To achieve this one has to assure

• good vacuum conditions in the region around the detectors, in order to minimize
local losses by beam-gas scattering in the detector region;

• that there is no aperture limitation which would concentrate losses close to the
detectors.

the latter imposes limits on the minimum β in the interaction region and hence
the maximum luminosity. A standard method to reduce backgrounds from par-
ticle losses is to use aperture limiting collimators to remove high amplitude
halo particles. These should be placed far from the experiments, to minimize
the probability that secondary particles scattered off the collimators reach the
experiments.

For beam energies above about 50 GeV, the production of secondary muons in
electromagnetic showers has to be taken into account. High energy muons are hard
to shield. Muon production and shielding is taken into account in the design studies
for high energy linear colliders [17, 18].

The final focus quadrupoles placed around the interaction regions of colliders
generate a high local chromaticity which can lead to a concentration of losses of
off-momentum particles into the detectors. LEP2 was equipped with momentum
collimators in the dispersion suppressors around all experimental sections to reduce
the flux of off-momentum particle generated by e+e− collisions, bremsstrahlung in
the residual gas and thermal photon scattering.

5.3.2 Synchrotron Radiation Background

The energy spectrum of the synchrotron radiation photons radiated by a high
energy electron (or positron or proton) travelling on a circular orbit of radius ρ
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is characterised by the critical energy

Ec = 3

2
h̄c

γ 3

ρ
. (5.8)

The number of photons radiated in a bending magnet of lengthL and bending radius
ρ is (α = e2/ 4πε0h̄c is the fine-structure constant and γ the Lorentz factor of the
particle) and the energy loss U0 per beam particle and turn are

Nγ,L = 5αγL

2
√

3ρ
, U0 = 4παh̄c γ 4

3ρ
(5.9)

The photon energy increases with γ 3 and the energy loss in synchrotron radiation
over one turn as γ 4. A practical limit was reached with electrons at LEP at beam
energies around 100 GeV, corresponding to a Lorentz factor γ ≈ 2 × 105 when 3%
of the particle energy was lost on a single turn, while for the 1836 times heavier
protons synchrotron radiation only becomes noticeable at TeV energies. Numerical
values for the main synchrotron radiation parameters for several e+e− colliders, the
LHC with protons at 7 TeV and the proposed FCC colliders[23, 24] are shown in
Table 5.5.

The normalised quadrupole power spectrum (for flat beams as typical for e+, e−
colliders) is

sd (k) = 9
√

3

8π
k

∫ ∞

k

K5/3(s) ds , k = E

Ecr
.

Table 5.5 Synchrotron radiation parameters; p is the beam-momentum, ρ the bending radius of
the main dipole magnets

Machine p γ ρ Ec Nγ U0 Ntot Ptot

(GeV/c) (m)

Da�ne 0.51 998 97.7 457 eV 66 9.3 keV 2.1 × 1013 98 kW

PEP-II HER 9.0 17,613 163 9.9 keV 1166 3.57 MeV 4.5 × 1013 3.4 MW

PETRA 23.4 45,792 192 148 keV 3031 138 MeV 1.0 × 1012 3.0 MW

TRISTAN 32. 62,622 244 298 keV 4144 380 MeV 8.8 × 1011 5.3 MW

LEP1 45.6 89,237 3026 70 keV 5906 126 MeV 1.9 × 1012 0.4 MW

LEP2 94.5 184,932 3026 619 keV 12,239 2.3 GeV 3.2 × 1012 13 MW

FCC-ee,Z 45.6 89,237 10,190 22 keV 5973 36 MeV 2.8 × 1015 50 MW

FCC-ee,tt 182.5 357,144 10,190 1323 keV 23,636 9.19 GeV 1.1 × 1013 50 MW

LHC 7000 7460.5 2784 44.1 eV 494 6.7 keV 6.5 × 1014 7.8 kW

FCC-hh 50,000 53,289 10,572 4.24 keV 3733 4.6 MeV 1.1 × 1015 2.5 MW

Nγ ,U0 are the number of photons radiated and the energy loss per beam particle and turn.Ntot, Ptot
are the number of beam particles and the power radiated in the accelerator
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Half of the power is radiated below the critical photon energy.
Quadrupoles can be considered as bending magnets which increase in strength

with the distance from the magnet axis. The equations given above also hold for
quadrupoles for Gaussian beams if we take as ρ the bending radius of the quadrupole
at 1σ offset from the beam axis [19]. The normalised quadrupole power spectrum is

sq (k) = 9
√

3

8π
k

∫ ∞

0

(
1 − erf(k/

√
2s)
)
K5/3(s) ds , k = E

Ecr,1σ
,

and is shown in Fig. 5.4 together with the spectrum for a dipole.
Averaged over the ring, the synchrotron power radiated in the quadrupoles

remains usually very small compared to the power radiated in the main dipole mag-
nets. Due to the vicinity and strength of the quadrupoles around the experiments, it is
mandatory to include these in background estimates and also important to consider
the possibility of non-Gaussian tails which increase the synchrotron radiation from
quadrupoles.

Background estimates for synchrotron radiation depend critically on design
details: the magnet lattice, beam pipe geometry, materials and beam parame-
ters. Estimates were often done using dedicated “home-grown” programs with
ad-hoc interfaces between separated simulations of the accelerator components,
synchrotron radiation generation and simulation of the interactions in the detectors.
More recently it has become feasible with the programs BDSIM and MDISim, both
based on GEANT4, to perform more flexible integrated simulations which include
all relevant components and processes [21, 22].

We will now shortly look at LEP2 which had the strongest synchrotron radiation
of all colliders and still tolerable background levels for the detectors. The amount
of synchrotron radiation in LEP was huge, particularly at LEP2 energies: about
6×1020 photons were emitted per second and a power of 18 MW lost to synchrotron
radiation. The experiments had to be very well screened using a sophisticated
collimation system with about 100 movable collimators and in addition fixed masks
close the experiments [20]. The typical layout of the collimators in a straight section,

Fig. 5.4 Normalised power
spectra for synchrotron
radiation in a dipole and a
quadrupole
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Fig. 5.5 Schematic layout of a straight section at an interaction point (IP) of LEP in the horizontal
(top) and vertical (bottom) planes. Shown are the locations of the quadrupoles (QS), electrostatic
separators (ES) and collimators (COLH, COLV, COLZ). The solid lines mark the inner vacuum
chamber radii

where only scattered synchrotron light could reach the detectors, is shown in
Fig. 5.5. The synchrotron radiation spectrum is broad and photons down to about
20 keV can leave the beam pipe. The lower energy X-ray radiation can undergo
low angle (multiple) reflection. The strong radiation from the main dipoles of LEP
was intercepted close to the arcs, with collimators located between 100 and 220 m
away from the interaction point, before the photons could be scattered at low angle
towards the experiments. To reduce the radiation shining into the straight sections
further, the first dipoles in the arcs had only 10% of the field of the normal arc
dipoles.

Local masks were installed about 2.4 m from the interaction points to improve
the shielding of the experiments from the increased synchrotron radiation at LEP2.
The collimators and masks close to the interaction point were however also a source
of scattered background particles. The surface material and inclination of the masks
was optimized to minimize the scattering towards the experiment: the masks were
made of tungsten and the surface coated with silver and copper layers to reduce the
emission of fluorescence photons.

The background photons observed in the detectors originated mainly from syn-
chrotron radiation in the last quadrupoles and was backscattered into the experiment
from local collimators. The bunch crossing rate in LEP was about 45 kHz and
typically only a few background photons were recorded per bunch crossing in the
large wire chambers of the LEP detectors. There was no problem with detector
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occupancy, but the currents drawn in the gas-chambers were reported to be not too
far from the tolerable limit. The experience gained with LEP has been essential for
the design studies for a possible future circular lepton collider at CERN [23, 25].
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Chapter 6
Design and Principles of Synchrotrons
and Circular Colliders

B. J. Holzer, B. Goddard, Werner Herr, Bruno Muratori, L. Rivkin,
M. E. Biagini, J. M. Jowett, K. Hanke, W. Fischer, F. Caspers, and D. Möhl

6.1 Beam Optics and Lattice Design in High Energy Particle
Accelerators

B. J. Holzer

Lattice design in the context we will describe it here is the design and optimization
of the principle elements—the lattice cells—of a circular accelerator, and it includes
the dedicated variation of the accelerator elements (as for example position and
strength of the magnets in the machine) to obtain well defined and predictable
parameters of the stored particle beam. It is therefore closely related to the theory
of linear beam optics that has been described in Chap. 2 [1].
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6.1.1 Geometry of the Ring

For the bending force as well as for the focusing of a particle beam, magnetic fields
are applied in an accelerator. In principle, electrostatic fields would also be possible
but at high momenta (i.e. if the particle velocity is close to the speed of light) the
usage of magnetic fields is much more efficient. In its most general form, the force
acting on the particles is given by the Lorentz-force

F = q (E + v × B) (6.1)

In high energy accelerators, the velocity v is close to the speed of light and
so represents a nice amplification factor whenever we apply a magnetic field. As
a consequence, it is much more convenient to use magnetic fields for bending
and focusing the particles. Neglecting the E component therefore in Eq. (6.1), the
condition for a circular orbit is defined as the equality of the Lorentz force and the
centrifugal force:

qvB = mv2

�
(6.2)

In a constant transverse magnetic field B, the particle will see a constant
deflecting force and the trajectory will be a part of a circle, whose bending radius ρ
is determined by the particle momentum p = mv and the external B field.

ρ = p

qB
(6.3)

The term Bρ is called beam rigidity. Inside each dipole magnet in a storage
ring the bending angle—sketched out in Fig. 6.1—is given by the integrated field
strength via

α =
∫
Bds

Bρ
(6.4)

Requiring a bending angle of 2π for a full circle, we get the condition for the
magnetic dipole fields in the ring. In the case of the LHC e.g. for a momentum of
p = 7000 GeV/c a number of 1232 dipole magnets are needed each having a length
of ~15 m with a B-field of 8.3 T. As a general rule in high energy rings, about
66% (2/3) of the circumference of the machine should be foreseen to install dipole
magnets, as they define the maximum particle momentum that can be carried by
the machine. This basic dipole structure is completed with focusing elements, beam
diagnostic tools etc. and forms the arcs of the ring. They are connected by long
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Fig. 6.1 B-field in a storage ring dipole magnet and schematic particle orbit

straight sections, so-called insertions, where the optics are modified to establish
conditions needed e.g. for particle injection or extraction and the installation of the
radio-frequency resonators for the particle acceleration. In the case of collider rings
so-called mini-beta insertions are included, where the beam dimensions are reduced
considerably to increase the particle collision rate and where space is needed for the
installation of the particle detectors.

The lattice and correspondingly the beam optics therefore are split in different
characteristic parts: arc structures that are used to guide the particle beam and define
the geometry of the ring; they establish a regular pattern of focusing elements. And
the straight sections, that are optimised for the installation of a manifold of technical
devices, including the high-energy physics detectors.

6.1.2 Lattice Design

An example of such a high-energy lattice and the corresponding beam optics is
shown in Fig. 6.2. In the upper part of the figure the regular pattern of the beta
function is plotted in red and green for the two transverse planes. As a consequence
of the periodic structure of the lattice, the beta function—and so the beam size—
reaches a maximum value in the centre of the focusing, and a minimum in the centre
of the defocusing quadrupoles. The lower part of the figure shows the horizontal and
vertical dispersion function. The lattice of the complete machine is designed on the
basis of small periodic lattice structures—called cells—that repeat many times in
the ring. One of the most widespread lattice cells used in high-energy rings is the
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Fig. 6.3 Basic element of a high-energy storage ring: the FODO cell

so-called FODO cell: A magnet structure consisting of focusing and defocusing
quadrupole lenses in alternating order. In between the focusing elements the dipole
magnets are located and any other machine elements like orbit corrector dipoles,
multipole correction coils or diagnostic instruments can be installed.

In Fig. 6.3 the optical solution of such a FODO cell is plotted: The graph shows
the β-function in the two transverse planes (red curve for the horizontal, green curve
for the vertical plane). In the lower part of the plot the position of the magnet
lenses, the lattice, is indicated schematically. In first order the optical properties
of such a lattice are determined only by the parameters of the focusing (F) and
de-focusing (D) quadrupole lenses. In between these two quadrupole magnets only
lattice elements are installed that have zero (“O”) or negligible influence on the
transverse particle dynamics. Hence the acronym FODO for such a structure. Due
to the symmetry of the cell the solution for the β function is periodic (in general
such a FODO cell is the smallest periodic structure in a storage ring) and it reaches
its extreme values at the position of the quadrupole lenses. As a consequence, at
these locations in the arc, the beam will reach its maximum dimension σ = √

εβ,
and the aperture need will be highest.

Accordingly, the “Twiss” parameter α, which is the derivative of β is generally
zero in the middle of the FODO quadrupoles. Based on the thin lens approximation
a number of scaling laws and rules can be established to understand the properties
of such a FODO structure [2]: How do we arrange the strength and position of the
quadrupole lenses in the lattice to obtain a certain beta-function? How does the cell
length influence the phase advance of the particle trajectories? How do we guarantee
that, turn by turn, a stable particle oscillation is obtained?
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In the following we briefly summarise these rules.

• Stability of the motion: the strengths of the focusing (and defocusing) elements
in the lattice have to be such that the particle oscillation does not increase. This
condition—the stability criterion for a periodic structure in a lattice—is obtained
in a FODO if the focal length of the magnets is larger than a quarter of the cell
length:

f = 1

kl
= Lcell

4
. (6.5)

• The beta function—and so the beam size—is determined by the phase advance
of the cell and its length:

βmax,min = 1 ± sin (ϕcell/2)

sin ϕcell
Lcell . (6.6)

• A similar scaling law is obtained for the dispersion:

Dmax,min = L2
cell

4ρ

1 ± 1
2 sin (ϕcell/2)

sin2 (ϕcell/2)
. (6.7)

In general, small values for the β functions as well as for the dispersion are
desired. It will be the intention of the lattice designer to minimise the beam size, and
so to optimise the aperture need of the beam. In addition the β-function indicates
the sensitivity of the beam with respect to external fields and field errors. A change
in a quadrupole field e.g. will shift the tune of the beam by

�Q = 1

4π

∫
�k(s)β(s)ds. (6.8)

The effect is proportional to the size of the applied change in quadrupole field,
�k but also to the value of the beta function at this position. Therefore, the phase
advance of the FODO cell has to be chosen to obtain smallest values for β in both
transverse planes, which leads in the case of protons or heavy ions to an optimum
phase advance of 90◦ per cell. It will be no surprise that the focusing structure
of typical high energy proton rings like SPS, Tevatron, HERA-p and LHC were
optimised for this value.

In addition to the main building blocks, the dipoles and quadrupole magnets, the
FODO will be equipped with a number of correction magnets for orbit correction,
compensation of higher harmonic field errors of the main magnets, and sextupoles
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Fig. 6.4 FODO cell of LHC. In addition to the two main quadrupoles and six dipole magnets,
diagnostic instruments and multipole compensation coils are included in the arc lattice

for chromaticity compensation of the machine. The FODO cell of LHC, including
these corrector magnets is illustrated in Fig. 6.4.

Six dipoles and two main quadrupoles are forming the basic structure of the cell;
they are complemented by orbit correction dipoles, trim quadrupoles that are used
for fine tuning of the working point and multipole correction coils to compensate
higher order field distortions up to 12 pole [3].

Among the higher order correction coils mentioned above the sextupoles play
the most critical role in the arc structure, as they are indispensable to compensate
the chromatic errors in the lattice. Chromaticity is an optical error that describes the
distortion of the focusing properties in a lattice under the presence of momentum
spread of the particle beam. In general a sextupole magnet will be installed to
support each quadrupole in the arc. At least two sextupole families are required,
one for each transverse plane. In some cases several families per plane are installed
to improve the region of stability in the transverse plane (the so-called dynamic
aperture of the storage ring). They have to be strong enough to correct the
chromaticity created in the arc cells as well as in the insertion sections. The
mechanism of chromaticity correction is based on the combination of the dispersion
function that sorts the particles according to their momentum and the nonlinear field
of a sextupole magnet:

Bz = 1

2
∼
g
(
x2 − z2

)
, (6.9)

where

∼
g = d2Bz

dx2 (6.10)

describes the sextupole “gradient”.
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Normalizing the sextupole field to the beam rigidity we write the contribution of
each sextupole to the chromaticity as

�Q = 1

4π

∫
ksextDβdl (6.11)

and it depends indeed on the value of both, beta function and dispersion. Therefore
the sextupole magnets that are needed to compensate the natural chromaticity in the
ring will be located in the lattice at places where at the same time the dispersion and
the beta function are large, i.e. close to the corresponding quadrupole lenses.

6.2 Lattice Insertions

B. J. Holzer

The arc structure of a storage ring is usually built out of regular patterns like FODO
cells that are repeated periodically and determine the geometry of the machine.
Straight sections are inserted to combine these arcs and provide the space required
for beam injection, extraction, or dispersion free lattice parts to install e.g. RF
systems. Finally space is needed to establish the conditions that are required for the
collisions of the two counter rotating beams. As an example of the general layout
of a storage ring we refer again to the LHC lattice. Eight straight sections connect
eight arcs: four of them are used for beam injection, extraction and collimation,
the remaining four are optimised to house the high-energy detectors (IR1, 5, 2, 8
in Fig. 6.5). Here the storage ring lattice has to provide the free space needed for
the installation of a large modern particle detector and the beam optics has to be
modified to provide the strong focusing needed at the collision point.

6.2.1 Low Beta Insertions

The most important “insertion” for a particle collider ring is the so-called mini beta
structure: The key issue of a collider is its luminosity [4] that defines the rate of
produced collision events (particles or particle reactions of interest) in the machine.
Its value is defined by the machine lattice and under the assumption of equal beam
properties in the two colliding beams it is given by the stored currents in the two
beams, Ip1, Ip2, the revolution frequency f0, the number of stored bunches, nb, and
most of all by the transverse size of the two beams, σ ∗x and σ ∗y . In the simplest case
we get:

L = 1

4πe2f0nb

Ip1Ip2

σ ∗x σ ∗y
. (6.12)
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Fig. 6.5 Lattice geometry of
the LHC

A more general formula that includes geometric and optical reduction factors
is presented in Sect. 6.4 [4]. At the interaction point “IP”, the intention of the
lattice designer will be to reduce the beta function as much as possible in order
to obtain the smallest possible beam. The main limiting factor comes from a
basic principle which is valid for any system of particles under the influence of
conservative forces (“Liouville’s Theorem”): Under conservative forces, the density
of the particle’s phase space volume is constant. Applying this law to a particle
beam in an accelerator it means that the beam dimension and divergence are not
independent of each other. Namely for the design of symmetric drift space in a
storage ring we can deduce a rule for the beta function: Starting from a waist (α∗ = 0
at the collision point) the beta function develops as

β(s) = β∗ + s2

β∗
. (6.13)

The star refers to the value at the waist (e.g. the interaction point “IP”). This
relation is a direct consequence of Liouville’s theorem and therefore of fundamental
nature. As a consequence the behaviour of β in a symmetric drift cannot be changed
and has a strong impact on the design of a storage ring: Small beta functions at
the collision point and a large distance to the first focusing element lead to high
values of the beta function and correspondingly to large beam dimensions at the
first focusing element in front and after the IP.

The preparation of the beam optics for the installation of modern high-energy
detectors therefore needs special treatment in the lattice design to provide the
large space needed for the detector hardware. An illustrative example is shown in
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Fig. 6.6 Layout of a mini beta insertion scheme. The example shows a low beta insertion based
on a quadrupole doublet. The vertical beta function (green line) starting with smaller values at
the IP shows a stronger increase than the beta in the horizontal plane. Accordingly the doublet
quadrupoles are powered in QD-QF polarity

Fig. 6.6: a long symmetric drift space that holds the experiment is centred around
the interaction point of the colliding beams. Depending on the respective value of
beta at the IP the beta functions increase in the horizontal (red) and vertical (green)
plane and are focused back using a couple of strong, large aperture and high quality
quadrupole lenses. Depending on the particular situation (namely the ratio of the
two β∗ values in the two planes a quadrupole doublet or triplet arrangement will
be the adequate choice for these mini beta quadrupoles. Additional independent
quadrupole magnets (i.e. individually powered magnets) will be needed to create a
smooth transition of the optics from the IP to the periodic solution of the FODO
cells in the arc. In general eight parameters have to be optimised: the β and α values
in the two planes, the dispersion and its derivative and the phase advance of the
complete mini beta system. As a consequence such a mini beta insertion will have
to be equipped with at least eight individually powered quadrupole magnets to fulfil
this requirement.

It has been pointed out in the previous chapter that the emittance of a particle
beam is not constant during acceleration but depends on the energy of the particle
beam. In the case of a proton or ion beam the adiabatic shrinking is the dominant
effect and the emittance follows the rule ε ∝ 1/βγ where β and γ are the relativistic
parameters. As a consequence the emittance in a proton storage ring is highest at
injection energy and the beam optics has to be optimised to limit the beta function at
any place in the machine to values that guarantee sufficient aperture. At high energy
(the so-called flat-top) the emittance is small enough that the mini beta concept can
be used to full extend and only here the β∗ can be reduced to the small values that
are required to deliver the design luminosity values. The lattice of the mini beta
insertion therefore has to be optimised in a way, that two quite different beam optics
can be established by corresponding adjustment of the quadrupole gradients: A low
energy optics for injection and the early steps of the acceleration and a true mini
beta optics that will be used for the collider run at high energy.

The procedure to pass from the injection optics to the luminosity case is often
called “beta squeeze” and is a critical situation as optics, orbits and global beam
parameters like tune and chromaticity have to be maintained constant and well
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Fig. 6.7 (Left) Beam optics for the LHC: 450 GeV injection optics optimised for small values
of beta to gain highest aperture in the machine. (Right) Low beta optics for the LHC luminosity
operation: due to the small values at the IP the beta function reaches large values in the low beta
quadrupole lenses. (Note the different scale of the vertical axis)

controlled during the changing quadrupole settings. Several intermediate steps
might be needed to guarantee a smooth transition between the two operation modes.
In the case of the LHC the 450 GeV injection case and the 7 TeV luminosity optics
are compared in Fig. 6.7.

6.2.2 Injection and Extraction Insertions

In addition to the mini beta insertions where the beams are optimised for highest
collision rates, additional insertions are needed in the storage ring for beam injection
and extraction. In these cases the same rules are valid as for the mini beta insertions
but in general the consequences are more relaxed. Additional hardware that has to
be installed for the injection process (fast kicker magnets and septum dipoles to
inject the new beam) is much smaller than the detectors at the collision points. Still,
however, some modifications of the lattice will be needed and the optics will have to
be re-matched to establish the required space. A special additional feature should be
mentioned here: the new beam that is being injected has to match perfectly in energy
and in phase space to the optical parameters of the storage ring or synchrotron. At
the end of the beam transfer line as well as in the storage ring the focusing fields
have to be optimised to obtain the same values of the Twiss functions α and β in both
transverse planes. As in the case of the mini beta insertions additional individually
powered quadrupole magnets are needed. As an example the beam optics of the SPS-
LHC transfer-line is plotted in Fig. 6.8. At the beginning and the end of the lattice
structure—indicated by red markers in the figure—the beta function is modified to
match the optics from the SPS to the FODO channel of the transfer line and from
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Fig. 6.8 Transfer line between the SPS and the LHC. Two matching sections have to be introduced
to adopt the beam optics from the SPS to the transfer line and to the LHC

the FODO to the LHC insertion at IR2 and IR8 where the injection elements are
located.

6.2.3 Dispersion Suppressors

The dispersion function D(s) has already been introduced in Sects. 2.4 and 6.1. It
describes the trajectory in the case of a momentum deviation of the particle and is
the consequence of the corresponding error in the bending strength of the dipole
magnets. In the arc structure with its regular pattern of dipole magnets, dispersive
effects cannot be avoided (but they should be minimised) and the additional
amplitude due to the dispersion has to be considered if we are talking about particle
trajectories or beam sizes. In linear approximation and for a small momentum spread
�p/p in the beam, the amplitude of a particle oscillation is obtained by

x(s) = xβ(s)+D(s)
Δp

p0
, (6.14)

where xβ describes the solution of the homogeneous differential equation (the usual
betatron oscillations of the particle) and the second term—the dispersion term—
corresponds to the additional oscillation amplitude for particles with a relative
momentum error �p/p0. At the interaction point where the smallest beam sizes are
required to obtain the highest luminosity, we intend to suppress the dispersion and
as the collision point is generally located in a straight section of the accelerator,
techniques have been developed to obtain dispersion free sections inside the lattice.
The insertions that are used to reduce the dispersion function from its periodic value
in the arc to zero are called dispersion suppressors [2, 5, 6].

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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It has to be mentioned in this context that especially in the case of synchrotron
light sources a variety of lattice types has been developed with the goal to achieve
small or even zero dispersion in the ring or in parts of it. However, these lattices
are optimised for the purpose of high brilliant synchrotron radiation and are not
ideal for high-energy particle accelerators, where FODO cells are usually the most
appropriate choice.

Referring to high energy colliders we will concentrate therefore on the interaction
region, i.e. a straight section of a ring where two counter rotating beams collide
in a dispersion free part of the storage ring. A non-vanishing dispersion dilutes
the luminosity of the machine and leads to additional stop bands in the working
diagram of the accelerator (“synchro-betatron resonances”), that are driven by the
beam-beam interaction. Therefore sections are inserted in our magnet lattice that are
designed to reduce the function D(s) to zero. Three main techniques are widely used:
the quadrupole based dispersion suppressor, the missing bend scheme and the half
bend scheme. We will not present all of them in detail but instead restrict ourselves
to the basic idea behind it.

6.2.3.1 The “Straightforward” Way: Dispersion Suppression Using
Quadrupole Magnets

Let us assume here that a periodic lattice is given in the arc (see Fig. 6.2) and that
this FODO structure simply is continued through the straight section—but with
vanishing dispersion. Given an optical solution in the arc cells, as for example
shown in Fig. 6.9, we have to guarantee that starting from the periodic solution

Fig. 6.9 Periodic FODO and horizontal dispersion function in a regular FODO structure
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of the optical parameters α(s), β(s) and D(s) we obtain a situation at the end of the
suppressor where we get D(s) = D’(s) = 0 and the values for α and β unchanged.

The boundary conditions after the suppressor section

D(s) = D′(s) = 0,

βx(s) = βx arc, αx(s) = αx arc, (6.15)

βy(s) = βy arc, αx(s) = αy arc,

can be fulfilled by introducing six additional quadrupole lenses whose strengths
have to be matched individually in an adequate way. This can be done by using one
of the beam optics codes that are available today in every accelerator laboratory. An
example is shown in Fig. 6.10, starting from a FODO structure with a phase advance
of ϕ ≈ 70

◦
per cell.

The advantages of this scheme are:

• it works for any phase advance of the arc structure;
• matching works also for different optical parameters α and β before and after the

dispersion suppressor as—within a certain range—the quadrupoles can be used
to match the Twiss functions to different values;

• the ring geometry is unchanged as the number and location of dipole magnets in
the ring is unchanged.

Fig. 6.10 Periodic FODO and horizontal dispersion function in a regular FODO structure
dispersion suppressor scheme based on individually powered quadrupole lenses
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On the other hand there are a number of disadvantages that have to be men-
tioned:

• as the strength of the additional quadrupole magnets have to be matched
individually the scheme needs additional power supplies and quadrupole magnet
types which can be an expensive requirement;

• the required quadrupole fields are in general stronger than in the arc;
• the β function reaches higher values (sometimes really high values) which leads

to higher beam sensitivity and larger aperture needs.

There are alternative ways to suppress the dispersion, which do not need
individually powered quadrupole lenses but instead change the strength of the dipole
magnets at the end of the arc structure.

6.2.3.2 The “Clever” Way: Half Bend Schemes

This dispersion suppressing scheme is made up of n additional FODO cells that are
added to the periodic arc structure but where the bending strength of the dipole
magnets is reduced. As before we split the lattice into three parts: the periodic
structure of the FODO cells in the arc, the lattice insertion where the dispersion
is suppressed, followed by a dispersion free section which can be another FODO
structure without bending magnets or a mini beta insertion.

Starting from the dispersion free straight section the basic idea of this scheme
is to create with a special arrangement of dipole magnets inside the dispersion
suppressor—exactly the dispersion that corresponds to the periodic solution of the
arc FODO cells. The solution will depend on the phase advance of the cells as well
as on the strength of the bending magnets inside the suppressor magnets.

As explained before in the beam optics chapter, the matrix for a periodic part of
the lattice (namely one single cell in our case) can be expressed as

Mcell =
⎛

⎝
C S D

C′ S′ D′
0 0 1

⎞

⎠ =
⎛

⎜
⎝

cosφc βC sinφc D
− 1

βc
sinφC cosφc D′

0 0 1

⎞

⎟
⎠ , (6.16)

where the index “c” reflects the solution of a cell, φc denotes the phase advance for
a single cell and the elements D and D’ correspond to its periodic dispersion.

As usual the dispersion elements are obtained by

D(l) = S(l)

l∫

0

C
(∼
s
)

�
(∼
s
) d

∼
s − C(l)

l∫

0

S
(∼
s
)

�
(∼
s
)d

∼
s . (6.17)
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The functions C(s) and S(s) are the cosine and sine like matrix elements of the
lattice element in the sense that e.g. C(s) =M[1,1], and the integral is executed over
one complete cell.

In the dispersion suppressor section, the dispersion D(s) starts with the value D0
the end of the arc cell and is reduced to zero. Or turning it around and thinking from
right to left: the dispersion has to be created inside the suppressor part by proper
arrangement of the dipole magnets, starting from D = D’ = 0 in the straight section
to reach the values that correspond to the periodic dispersion of the arc cells. Solving
the equation above by integrating over a certain number of cells will determine the
bending strength 1/ρ and the number n of cells in the suppressor part that is needed
to fulfill the boundary condition and get the values of the dispersion in the following
periodic arc cell.

For a given phase advance ϕc per cell two conditions for the dispersion matching
are obtained that combine the number of suppressor cells, n, and the strength of the
suppressor dipoles, δsupr:

2δsuprsin2
(
nφc

2

)
= δarc

sin (nφc) = 0

}

δsupr = 1

2
δarc. (6.18)

If the phase advance per cell in the arc fulfills the condition sin(nφc) = 0, the
strength of the dipoles in the suppressor region is just half the strength of the arc
dipoles. In other words the phase advance has to fulfill the condition

nφc = kπ, k = 1, 3, . . . . (6.19)

There are a number of possible phase advances that fulfill that relation, but clearly
not every arbitrary phase is allowed. Possible constellations would be for example,
φc = 90

◦
, n = 2 cells, or, φc = 60

◦
, n = 3 cells in the suppressor.

Figure 6.11 shows such a half bend dispersion suppressor, starting from a FODO
structure with 60◦ phase advance per cell. The focusing strength of the FODO cells
before and after the suppressor are identical, with the exception that—clearly—the
FODO cells on the right are “empty”, i.e. they have no bending magnets.

It is evident that unlike to the suppressor scheme with quadrupole lenses now the
beta function is unchanged in the suppressor region.

Again this scheme has advantages:

• no additional quadrupole lenses are needed and no individual power supplies;
• in first order the β functions are unchanged; aperture needs and beam sensitivity

are not increased;

and disadvantages:

• it works only for certain values of the phase advance in the structure and therefore
restricts the free choice of the optics in the arc;

• special dipole magnets are needed (having half the strength of the arc types);
• the geometry of the ring is changed.
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Fig. 6.11 Dispersion suppressor based on the half bend scheme

It has to be mentioned here, that in theses equations the phase advance of the
suppressor part is equal to the one of the arc structure—which is not completely
true as the weak focusing term 1/�2 in the arc FODO differs from the term 1/(2ρ)2

in the half bend scheme. As, however, the impact of the weak focusing on the beam
optics can be neglected in many practical cases Eq. (6.18) is nearly correct.

The application of such a scheme is very elegant, but as it has a strong impact on
the beam optics and geometry it has to be embedded in the accelerator design at an
early stage.

6.2.3.3 The “Missing Bend” Dispersion Suppressor Scheme

A similar approach is used in the case of the missing bend dispersion suppressor: It
consists of a number of n cells without dipole magnets at the end of the arc, followed
by m cells that are identical to the arc cells. The matching condition for this missing
bend scheme with respect to the phase advance is

2n+m

2
φc = (2k + 1)

π

2
. (6.20)

For the number m of the required cells after the empty cells we get:

sin
mφc

2
= 1

2
, k = 0, 2, . . . , or sin

mφc

2
= −1

2
, k = 1, 3, . . . . (6.21)

The following example is based on φc = 60
◦
, where the conditions above are

fulfilled for m = n = 1, Fig. 6.12.
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Fig. 6.12 Dispersion suppressor based on the missing bend scheme. The FODO cell without
dipoles and the following standard cell are indicated by blue and green markers in the plot

There are more scenarios for a variety of phase relations in the arc and the
corresponding bending strength needed to reduce D(s), see [2, 3]. In general, one
will combine one of the two schemes (missing or half bend suppressor) with a
certain number of individual quadrupole lenses to guarantee the flexibility of the
system with respect to phases changes in the lattice and to keep the size of the beta-
function moderate.

6.3 Injection and Extraction Techniques

B. Goddard

Transfer of a beam between accelerators or onto external dumps, targets and
measurement devices is a specialized topic and requires dedicated systems for
injection and extraction [7], as well as beam transfer lines. Injection is the final
process of the transfer of beam between one accelerator and another, either from
a linear to a circular accelerator or between circular accelerators. Extraction is the
removal of beam from an accelerator, either for the transfer to another accelerator or
to deposit the beam on a target, dump or measurement system. Both injection and
extraction systems need to be designed to transfer beam with minimum beam loss,
to achieve the desired beam parameters and usually to minimize the dilution of the
beam emittance.

Single-turn injection and extraction methods are rather straightforward for both
lepton and hadron machines. They generally involve a kicker system to deflect the
beam onto or away from the closed orbit, a septum (or series of septa for higher
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energy beams) to deflect the beam into or out of the accelerator aperture, and
frequently also a closed orbit bump to approach the septum and reduce the required
kicker strength. For these single-turn methods, the beam losses can be very low,
and the emittance dilution associated with the injection or extraction can be very
small, defined by the delivery precision, the optics mismatch, the kicker flat top
ripple and septum stability. For both injection and extraction, the circulating beam
can be adversely affected by septum stray fields penetrating into the circulating
beam region and by the kicker field rise time which can overlap temporally with
circulating bunches. Injecting a bunched beam into another accelerator also requires
that the momentum spread and phase be matched to the RF bucket, and that the RF
system can accept the transient beam loading which arises from the sudden change
in beam intensity.

Multiple-turn injection is used to fill the circumference of a receiving accelerator
and to accumulate bunch intensity. A wide variety of multiple-turn injection and
extraction schemes exist, and these can be very different for lepton and hadron
machines. Lepton injection schemes can take advantage of synchrotron radiation
damping to achieve high beam brightness, while for hadron machines space charge
effects dominate, especially at low energy. High brightness proton injection can
make use of phase-space “painting” to precisely tailor the transverse and longitu-
dinal distributions, particularly with H− charge exchange injection or slip stacking;
while resonant multiple-turn extraction schemes have been developed to provide
quasi-continuous particle fluxes for periods which range from milliseconds to hours.
The additional hardware systems required for these more advanced injection and
extraction techniques include multiple RF systems, programmed fast closed-orbit
bumps, stripping foils and non-linear lattice elements.

Overall, injection and extraction techniques share many similarities and hardware
requirements [8]: one important difference between them is that extraction is usually
at higher beam rigidity, which implies less effect from space charge and also
stronger and hence longer deflecting systems, which can have a significant effect
on lattice and insertion design [9–11].

6.3.1 Fast Injection

Fast injection [12–14] is typically used to fill another machine with bunch-to-bucket
transfer, or to fill a collider over several injections with ‘boxcar’ stacking, where
bunches or trains of bunches are added sequentially like boxcars (wagons) to a
train. The system design depends critically on the aperture needed for the beam,
and the kicker rise time, fall time and flat top duration. Very fast kicker rise times
are often required to maximize the amount of beam which can be injected, especially
in machines with small circumferences, since the kicker rise and fall times must be
significantly shorter than the revolution time.
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6.3.2 Slip-Stacking Injection

In slip-stacking [15], two trains of bunches are merged to increase the bunch
intensity, using separate RF systems. A first train of bunches is injected on the closed
orbit and captured by the first RF system. This train of bunches is then decelerated,
and as a result circulates on a different orbit. A second batch is then injected on the
closed orbit and captured by the second RF system. The two trains of bunches have
slightly different energies and can be made to move relative to each other in phase.
When the phase difference reaches zero, both sets of bunches are captured together
and merged, by a rapid change of the RF frequency. The accelerator needs enough
momentum aperture to accept both beams, and sophisticated RF control to make
the manipulations. The final longitudinal emittance is the sum of the two individual
emittances multiplied by an unavoidable blowup factor, typically around 1.5.

6.3.3 H− Charge-Exchange Injection

High brightness, low energy proton machines frequently make use of H− charge
exchange injection [16]. In this technique, a linac accelerates H− ions which are
then merged with the circulating proton beam in a dipole magnet, Fig. 6.13, before
the two loosely-attached electrons are stripped away in a foil which is almost
transparent to the circulating beam.

This technique allows the accumulation of high brightness beams, since unlike
other methods it allows injection into the already occupied phase space area.
Transverse particle distributions can be controlled using phase space painting, to
ameliorate space charge effects, reduce beam losses and increase accumulated
intensity. The stripping is achieved with thin foils of carbon or diamond-like carbon,
with a thickness typically in the micron range, which is a compromise between
obtaining high stripping efficiency and minimizing the beam losses and emittance
growth from scattering.

Fast painting bumpers or kickers in both planes are used to displace the
circulating beam access with respect to the foil, and the waveform of the bumper

Fig. 6.13 Merging H− and
p+ beams in H− charge
exchange injection H-

p+ p+

Stripping foil

Merging 
dipole
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field can be varied to achieve the desired phase space density distribution. This is
the process of phase space painting, where the small emittance LINAC beam is the
brush and the large acceptance of the receiving machine is the canvas.

In addition to beam loss from scattering at the foil, another significant source of
beam loss can be the field-stripping in the third chicane magnet of excited H0. In
ISIS [17] the injection is made on the ramp, and the dispersion at the foil provides
some of the transverse phase space painting. For SNS [18], where the average beam
power is over 1 MW, the uncontrolled beam losses must be kept extremely low and
the accumulation is made over 1160 turns.

The use of stripping foils is disadvantageous for several reasons, in particular
the associated uncontrolled beam losses, but also due to the simple mechanical
and radiological difficulties in handling such fragile objects. A foil-free method
of H− stripping using a high-powered laser to resonantly excite neutral H0 before
field stripping in a dipole has been proposed and demonstrated in principle, and is
promising for very high energy H− injection systems [19].

6.3.4 Lepton Accumulation Injection

Injection of leptons can take advantage of the strong damping which is present
from synchrotron radiation to accumulate intensity. This is very commonly used
at Synchrotron Radiation rings, where top-up operation [20] consists of frequently
injecting small amounts of beam to replace beam losses and keep the beam and
synchrotron radiation intensities stable in a very small range.

In betatron injection, Fig. 6.14, the injected bunch or train is injected with an orbit
offset with respect to the circulating beam, which is moved towards the injection
septum with a fast closed-orbit bump. The offset between the injected beam and the
circulating beam must be large enough to accommodate the injection septum. The
particles of the newly-injected bunches then perform damped betatron oscillations

Fig. 6.14 Betatron injection.
The injected beam is
mismatched and performs
betatron oscillations until
damped by emission of
synchrotron radiation
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Fig. 6.15 Synchrotron injection. The injected beam has a momentum offset, and the injection
trajectory is matched to the local dispersion orbit. The beam then performs oscillations about the
closed orbit determined by the dispersion function, as the momentum changes with the synchrotron
oscillations

around the closed orbit, until they merge with the already circulating beam. This
technique has the disadvantage that the betatron amplitude may be large in regions
of the accelerator where the β-function is large. In the alternative synchrotron
injection [21], Fig. 6.15, the new particles are injected with a momentum offset δp
and a position offset X into a region with dispersion D, such that X = δp × D.
The particles are injected onto the matched betatron orbit for their momentum,
and thus only perform synchrotron oscillations around the stored particles, with
the transverse offsets following the dispersion function. For LEP a combination of
betatron and synchrotron injection was preferred [22], since the dispersion in the
long straight sections was very small and the background to the experiments could
be significantly improved.

6.3.5 Fast Extraction

Fast extraction is typically used to provide beam to a higher energy machine with
bunch-to-bucket transfer. As for fast injection, the system design depends critically
on the aperture needed for the beam, and the kicker rise time, fall time and flat
top duration. Achieving fast kicker rise time with sufficient deflection angle at high
beam rigidity is a common challenge, as is the design of the extraction insertion
where the septum strength must be sufficient to provide enough clearance at the next
downstream accelerator element. As beam energies increase, protection from mis-
steered beam of the extraction septum and of other accelerator components becomes
important; for the LHC beam extraction system at 7 TeV [23], the synchronization
of the kicker system and protection from asynchronous kicker firing is a critical
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Fig. 6.16 Schematic of fast
extraction system with kicker,
septum and orbit bumpers.
For higher energy machines,
protection devices to intercept
and dilute any mis-kicked
extracted beam are placed in
front of the septum and
downstream QF quadrupole

Extracted beam

Bumper
magnet

Bumper
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system design feature. Closed orbit bumps can be used to move the beam closer to
the septum, to reduce the required kick strength, Fig. 6.16.

6.3.6 Resonant Extraction

Many rate-limited applications such as physics experiments, test beams or medical
treatment beams require a slow flux of particles with as uniform a time structure as
possible. Resonant extraction using the third integer is the most common method of
providing such uniform spills. In this ‘slow’ extraction [24], a triangular stable area
in phase space (usually horizontal) is defined by exciting sextupole elements, and
by moving the machine tune close to the third integer resonance. Before the start of
the extraction process, particles remain stable if their single-particle emittances are
smaller than the area of the stable triangle.

The beam is extracted by driving some particles unstable in a controlled way.
The unstable particle amplitudes increase rapidly, following the outward-going
separatrix every three turns, and the particles eventually move into the high-field
region of a very thin electrostatic septum and are extracted, Fig. 6.17. The rate of
extraction is controlled either by modulating the excitation process or by controlling
the stable area. Several techniques for driving the particles unstable are possible:

i) the stable area can be reduced by increasing the resonance (sextupole) strength
or by moving the tune closer to the third integer. Increasing the resonance
strength reduces the stable area, but the smallest amplitude particles cannot
be extracted, and changing the resonance affects the machine optics. Crossing
the resonant tune offers the advantage that all of the beam can be extracted;
however, the optics is still perturbed and in addition the position of the extracted
beam in phase space changes as particles are extracted;
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Fig. 6.17 Resonant
extraction in normalised
phased space. The amplitudes
of particles outside the stable
area grow rapidly, following
the outward-going separatrix
lines every three turns until
they reach the electrostatic
septum
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ii) the particle amplitudes can be increased by use of a transverse excitation.
The stable area is kept fixed and the particle amplitudes increased, as in
RF-knockout [25] where a high-frequency damper is used near the betatron
resonance frequency to excite the beam. The machine optics is not changed
and this method allows very fine control of the spill flux, suitable for medical
machines;

iii) the particles can be accelerated into the resonance where the chromaticity
couples the momentum and the tune. A betatron core can be used [26] to
accelerate the beam smoothly through the resonance. As the momentum of
the beam changes, this is coupled via the chromaticity into a tune change.
This method provides stability and insensitivity to power supply ripple. An
alternative method (Constant Optics Slow Extraction) is to change the strengths
of all machine elements to achieve the same effect, where the beam momentum
remains fixed but the accelerator momentum changes [27];

iv) RF noise can be applied to gradually diffuse particles longitudinally, which
through the chromaticity are brought into resonance. This stochastic extraction
[28] allows extremely long and uniform spills, and again has the advantage of
leaving the machine lattice functions unchanged.

It should be noted that extraction can also be made using the second order
resonance, where octupole fields are used to define a stable area in phase space.
The amplitude growth with time is much faster, and the beam can be extracted in
several hundred turns.

The use of a physical septum means that losses and activation are key perfor-
mance aspects for slow extraction. Several interesting techniques exist to reduce
beam losses at extraction [29], including the use of scatterers to reduce the particle
density at the septum, multipoles to manipulate the separatrix density and techniques
to reduce the angular spread of the beam and reduce the effective septum width.
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6.3.7 Continuous Transfer Extraction

A frequent requirement in an accelerator complex is to fill a large circumference
machine with the contents of a smaller machine. One way of doing this is boxcar
stacking; another technique is continuous transfer [30], where the beam in the first
machine is extracted over a number of turns, like peeling the skin from an orange
in a continuous strip. The machine tune is brought near to the appropriate integer n,
where the beam will be extracted in n+1 turns. A fast closed bump is then applied
to the circulating beam with kickers to move the beam partly across a septum,
such that a fraction of the beam is cut and extracted. The machine tune rotates the
beam in phase space such that subsequent slices are extracted—when the nth turn
is extracted, the bump amplitude is increased to extract the remaining central part.
This process is of use where the injector can service other machines or experiments
while the receiving machine is accelerating the beam, since it minimises the time
spent filling. The disadvantage of the technique is that large beam losses occur at
the septum, with the transfer efficiency typically 85%. The transfer can be made
with a bunched beam, leaving space for the kicker rise time, but this means that the
receiving machine will need to capture a beam with strong intensity modulation.
Another feature of this extraction is that the extracted slices all have different
emittances, as the slices in phase space are all different.

6.3.8 Resonant Continuous Transfer Extraction

To reduce the beam losses from continuous transfer, a hybrid technique has
been developed and deployed called Multi-Turn Extraction [31] where non-linear
resonances are excited which define stable areas in phase space. These are populated
by the controlled crossing of a resonance, and the islands are then separated by
varying the multipole strength to provide a physical separation at the septum, to
reduce or avoid transverse losses. The beam needs to be bunched with a gap to avoid
losses during the kicker rise time. In addition to the lower losses, another advantage
of this technique is that the extracted islands all have the same emittance.

6.3.9 Other Injection and Extraction Techniques

More exotic injection and extraction techniques also exist as working systems or
concepts. These include radio-frequency stacking [32], pion-decay injection into
muon storage rings [33] and combined cooling and stacking [34]. Charge exchange
extraction [35] is used in cyclotrons, with a stripping foil, to convert for example
H− to p+, or H+

2 to H 2+
2 so that the beam is then deflected out of the accelerator.

Finally, very high energy particle extraction can be envisaged with a bent crystal
replacing the septum [36].
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6.4 Concept of Luminosity

Werner Herr · Bernhard Holzer · Bruno Muratori

6.4.1 Introduction

In particle physics experiments the energy available for the production of new
effects is the most important parameter. Besides the energy the number of useful
interactions (events), is important. The quantity that measures the ability of a
particle accelerator to produce the required number of interactions is called the
luminosity (see Chap. 2) and is the proportionality factor between the number of
events per second dR/dt and the cross section σ p:

dR

dt
= L · σp (6.22)

The unit of the luminosity is therefore cm−2 s−1.
Here we will derive a general expression for the luminosity and give formulae for

basic cases. Additional complications such as crossing angle and offset collisions
are added to the calculation. Other effects such as the hourglass effect are estimated
from the generalized expression.

In the final section we will discuss the measurement and calibration of the
luminosity for both e+e− as well as hadron colliders.

6.4.2 Computation of Luminosity

In the case of two colliding bunches, both serve as “target” as well as “incoming”
beam at the same time. A schematic picture is shown in Fig. 6.18. The overlap
integral which is proportional to the luminosity L can be written as [37]:

L ∝ KN1N2 ·
∫ ∫ ∫ ∫ +∞

−∞
ρ1 (x, y, s,−s0) ρ2 (x, y, s, s0) dxdydsds0 (6.23)

Here ρ1(x, y, s, s0) and ρ2(x, y, s, s0) are the time dependent beam density distri-
bution functions and N1 and N2 the number of particles per bunch. We assume, that
the two bunches meet at s0 = 0 and s0 = c · t is used as the “time” variable. Because
the beams are moving against each other, we have to introduce the kinematic factor
[38]:

K =
√(−→ν 1 −−→ν 2

)2 − (−→ν 1 ×−→ν 2
)2
/c2 (6.24)

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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Fig. 6.18 Schematic view of a colliding beam interaction

This factor is needed to make the luminosity and therefore the cross section
relativistically invariant.

For the calculation we assume Gaussian profiles in all dimensions of the form:

ρiz(z) = 1

σz
√

2π
exp

(
− z2

2σ 2
z

)
where i = 1, 2, z = x, y (6.25)

in the transverse planes and

ρs (s ± s0) = 1

σs
√

2π
exp

(

− (s ± s0)
2

2σ 2
s

)

(6.26)

in the longitudinal plane.
We further assume that the distributions are independent in the three coordinates

and can be factorized. The integral (6.23) can then be evaluated. For the general
case of: σ 1x �= σ 2x, σ 1y �= σ 2y, but assuming approximately equal bunch lengths
σ 1s ≈ σ 2s we get the formula:

L = N1N2fc

2π
√
σ 2

1x + σ 2
2x

√
σ 2

2y + σ 2
2y

(6.27)

Where N1 and N2 are the bunch intensities and fc the repetition rate. In the case
of a circular collider with Nb bunches and a revolution frequency of frev, we have
fc = frev · Nb.

6.4.3 Luminosity with Correction Factors

The Eq. (6.26) requires correction factors when the beam do not fully overlap
(crossing angle and offset), the beam size varies in the longitudinal plane (hour
glass effect) or in the case of non-Gaussian beams.
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6.4.3.1 Effect of Crossing Angle and Transverse Offset

Here we give the correction to the luminosity calculation in the case where two
bunches do not collide exactly head-on, but with a crossing angle and/or transverse
offset. In that case the luminosity is reduced and we must apply a correction factor
to compute the correct value. For simplicity we assume crossing angle and offset
in the horizontal (x) plane, but this is not a restriction. The integration (6.23) can
be carried out by rotating the coordinate systems of the two beams each by half the
crossing angle [37] and can be simplified introducing the factors:

A = sin2 φ
2

σ 2
x

+ cos2 φ
2

σ 2
s

, B = (d2−d1) sin(φ/2)
2σ 2

x
, W = e

− 1
4σ2
x
(d2−d1)

2

(6.28)

S = 1
√

1 +
(
σs
σx

tan φ
2

)2
≈ 1
√

1 +
(
σs
σx

φ
2

)2
(6.29)

where �/2 is half the crossing angle and d1 and d2 are the transverse offsets of the
two beams (Fig. 6.19).

We can re-write the luminosity with three correction factors:

L = N1N2fNb

4πσxσy

N1N2fNb

4πσxσy
·W · e B2

A · S (6.30)

This factorization enlightens the different contributions and allows straightfor-
ward calculations. The last factor S is the luminosity reduction factor for a crossing
angle. One factor W reduces the luminosity in the presence of beam offsets and the

factor e
B2
A is only present when we have a crossing angle and offsets simultaneously

in the same plane. The formulae for the luminosity under very general conditions
can be found in [39]. A popular interpretation of this result is to consider it a
correction to the beam size and to introduce an “effective beam size” like:

σeff = σ/

√

1 +
(
σs

σ

φ

2

)2

(6.31)

(x,y,s,s  )
2

ρ(x,y,s,−s  )1ρ 0 0

Φ

Fig. 6.19 Schematic view of a colliding beam interaction at a crossing angle
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Fig. 6.20 Scheme of crab crossing with transversely deflecting cavities

This equation is valid when σ z � σ . The effective beam size can then be used
in the standard formula for the beam size in the crossing plane. This concept of an
effective beam size is interesting because it also applies to the calculation of beam-
beam effects of bunched beams with a crossing angle [40, 41].

In the case of flat beams, (i.e. σ z � σ z) a more general expression has to be used,
(see e.g. [39]).

To avoid the loss of luminosity, the use of crab cavities is an option, where the
bunches are deflected transversely before and after the collision Fig. 6.20.

6.4.3.2 Hour Glass Effect

In a low-β region the β-function varies with the distance s to the minimum like:

β(s) = β∗
(

1 +
(
s

β∗

)2
)

(6.32)

For very small β∗ comparable to the bunch length, the β-function is not a constant
along the longitudinal dimension of the bunch. It cannot be considered a constant in
Eq. (6.23). It follows a parabola and rises very fast and can become very large for
small β∗ .

In our formulae we have to replace σ by σ (s) and get a more general expression
for the luminosity (assuming equal parameters in both beams, the most general
expression can be found in [39]):

L (σs)
L(0) =

∫ +∞

−∞
1√
π

e−u2

√[
1 +
(
u
ux

)2
]
·
[

1 +
(
u
uy

)2
]du (6.33)
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Using the expressions: ux = β∗x /σs and uy = β∗y /σs
For the case of round beams it can be simplified and the integral becomes:

L (σs)
L(0) =

∫ +∞

−∞
1√
π

e−u2

[
1 +
(
u
ux

)2
]du = √

π · ux · eu2
x · erfc (ux) (6.34)

Here erfc(u) is the complex error function. The hourglass effect depends strongly
on the relative value of β∗ and the bunch length σ s. For small β∗ the effect becomes
relevant since the beam size varies rapidly along the longitudinal bunch direction,
i.e. when s becomes comparable to the bunch length in Eq. (6.32). A loss of
luminosity according to Eq. (6.34) is the consequence.

6.4.3.3 Crabbed Waist Scheme

In the case of a large crossing angle, the collision point of particles is displaced.
Schematically this is shown in Figs. 6.21 and 6.22.

IP

CP

x

Fig. 6.21 Collision with large crossing angle and longitudinally displaced collison point

IP

x x
x

β
y

Fig. 6.22 Collision with large crossing angle and longitudinally displaced collison point. Shown
for three particles with different amplitudes
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Fig. 6.23 Collisions with different vertical β-functions
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x

Fig. 6.24 All collisions at a minimum of the vertical β-functions using a crabbed waist scheme

One possible consequence can be the coupling between the transverse and and
longitudinal plane. Such a coupling is particularly bad for flat beams since the
vertical beam size will increase significantly.

In Fig. 6.23 the vertical β-function is indicated and the result of this effect is that
the particles collide at positions with different vertical β-functions.

This can be mitigated [42] by making the vertical waist (βminy ) amplitude
dependent in the horizontal plane Fig. 6.24. All particle collide now at the minimum
of the vertical β-function.

It should be emphasized that the main purpose of such a scheme is not to reduce
a geometrical loss but to reduce the coupling. Therefore it is of interest only for flat
beams.

This scheme is established using two sextupoles.

6.4.4 Integrated Luminosity and Event Pile Up

The maximum luminosity, and therefore the instantaneous number of interactions
per second, is very important, but the final figure of merit is the so-called integrated
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luminosity:

Lint =
∫ T

0
L (t ′) dt ′ (6.35)

because it directly relates to the number of observed events:

Lint · σp = number of events of interest (6.36)

The integral is taken over the sensitive time, i.e. excluding possible dead time.
The unit of the integrated luminosity is cm−2 and often expressed in inverse barn
(1 barn−1 = 1024 cm−2).

Another important parameter for a beam with high luminosity and bunched
beams are the number of collisions per bunch crossing, the so-called pile up. In
particular for collisions with a large cross section this can become a problem. In
the case of the LHC, bunch crossings occur every 25 ns and the expected pile up is
more than 20 for proton-proton collisions. The challenge is to maximise the useful
luminosity while keeping the pile up to a level that can be handled by the particle
detectors.

6.4.5 Measurement and Calibration of Luminosity

To obtain the exact integrated luminosity, it has to be recorded continuously. It is
rather straightforward to obtain a counting rate directly proportional to the total
interaction rate dR/dt. This relative signal has to be calibrated to deliver the absolute
luminosity. We have already seen some effects that affect the absolute luminosity
and therefore to a large extent the luminosity measurement. In particular the
crossing angle and the luminous region are of importance since they have immediate
implications for the geometrical acceptance of the instruments.

In principle one can determine the absolute luminosity when all relevant beam
parameters are known, i.e. the bunch intensities, beam sizes (r.m.s. in case of
unknown beam profiles) and the exact geometry. However the precise measurement
of beam sizes is a challenge, in particular for hadron colliders when a non-
destructive measurement is required. When the energy spread in the beams is large
(e.g. some e+e− colliders), a residual dispersion at the interaction point increases
significantly the beam size and must be included.

There exist other methods which relate the counting rate to well known processes
which can be used for calibration. We shall discuss several methods for both, lepton
and hadron colliders.
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Fig. 6.25 Principle of luminosity measurement using Bhabha scattering for e+e− colliders

6.4.6 Absolute Luminosity: Lepton Colliders

Once the relative luminosity is known, a very precise method is to compare the
counting rate to well known and calculable processes. In case of e+e− colliders
these are electromagnetic processes such as elastic scattering (Bhabha scattering).
The principle is shown in Fig. 6.25. Particle detectors are used to measure the
trajectories at very small angles and with a coincidence of particles on both sides of
the interaction point. For a precise measurement one has to go to very small angles
since the elastic cross section σ el has a strong dependence on the scattering angle
(σ el ∝ �−3).

Furthermore, the cross section diminishes rapidly with increasing energy (σel ∝
1
E2 ) and the result may be small counting rates. At LEP energies with L = 1030

cm−2 s−1 one can expect only about 25 Hz for the counting rate. Background from
other processes can become problematic when the signal is small.

6.4.7 Absolute Luminosity: Hadron Colliders

For hadron colliders two types of calibration have become part of regular operation,
the measurement of the beam size by scanning the beam and the calibration with the
cross section for small angle scattering. The determination of the bunch intensities
is usually easier, although non-trivial in the case of a collider with several thousand
bunches.

6.4.7.1 Measurement by Profile Monitors and Beam Displacement

Typical profile measurement devices are wire scanners where a thin wire is moved
through the beam and the interaction of the beam with the wire gives the signal. For
high intensity hadron beams this has however limitations. Non-destructive devices
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Fig. 6.26 Principle of luminosity measurement using transverse beam displacement

such as synchrotron light monitors are available but the emitted light from hadrons
is often not sufficient for a precise measurement.

An alternative is to measure the beam size by displacing the two beams against
each other. The relative luminosity reduction due to this offset can be measured and
is described by the formula (6.28) developped earlier:

L(d)/L0 W = e
− d2

4σ2 (6.37)

where d is the separation between the beams and the measurement of the luminosity
ratio is a direct measurement of W. This method was already used in the CERN
Intersection Storage Rings (ISR) and known as “van der Meer scan”.

The expected counting rate of such a scan is shown in Fig. 6.26. A fit to the
above formula gives the beam size. A drawback of this method is the distortion of
the beam optics in case of very strong beam-beam interactions [40]. This effect has
to be evaluated carefully.

6.4.7.2 Absolute Measurement with Optical Theorem

This method is similar to the measurement of Bhabha scattering for e+e− colliders
but requires dedicated experiments and often special machine conditions.

The total elastic and inelastic counting rate is related to the luminosity and the
total cross section (elastic and inelastic) by the expression:

σtot · L = Ninel +Nel (Total counting rate) (6.38)
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The key to this method is that the total cross section is related to the elastic cross
section for small values of the momentum transfer t by the so-called optical theorem
[43]:

lim
t→0

dσel

dt
=
(

1 + ρ2
) σ 2

tot

16π
= 1

L
dNel

dt

∣∣∣∣
t=0

(6.39)

Therefore the luminosity can in principle be calculated directly from experimen-
tal rates through:

L =
(
1 + ρ2

)

16π

(Ninel + Nel)
2

(dNel/dt)t=0
(6.40)

All counting rates, the total number of events Ninel + Nel and the differential
elastic counting rate dNel/dt at small t have to be measured with high precision. This
requires a very good detector coverage of the whole space (4π) for the inelastic rate
and the possibility to measure to very small values of t.

A slightly modified version of the above uses the Coulomb scattering amplitude
which can be precisely calculated. The elastic scattering amplitude is a superposition
of the strong (fs) and Coulomb (fc) amplitudes, the latter dominates at small t. We
can re-write the differential elastic cross section dσel

dt
:

lim
t→0

dσel
dt

= 1
L
dNel
dt

∣∣∣∣
t=0

= π |fc + fs |2 � π | 2αem−t + σtot
4π (ρ + i) eB

t
2

∣∣∣∣
2 � 4πα2

em

t2

∣∣∣∣|t |→0
(6.41)

If the differential cross section is measured over a large enough range, the
unknown parameters σ tot, ρ, B and L can be determined by a fit. A measurement
[44–46] together with some crude fits is shown in Fig. 6.27 to demonstrate the
principle. The advantage of this method is that it can be performed measuring only
elastic scattering without the need of a full coverage to measure Ninel. It is therefore
a good way to measure the luminosity (and total cross section σ tot and interference
parameter ρ!) although the previous method is of more practical importance for
regular use.

The measurement of the Coulomb amplitude usually requires dedicated exper-
iments with detectors very close to the beam (e.g. with so-called Roman Pots)
and therefore special parameters such as reduced intensity and zero crossing angle.
Furthermore, in order to measure very small angle scattering, one has to reduce
the divergence in the beam itself (σ ′ = √

ε/β). For that purpose special running
conditions with a high β∗ at the collision point are often needed (β∗> 1000 m) [45].
The precision of such a measurement is however as good as a few percent.
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Fig. 6.27 Principle of
luminosity measurement
using optical theorem in
proton proton (antiproton)
collisions
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6.4.8 Luminosity in Linear Colliders

In linear colliders the beams collide only once and to get a high luminosity a very
small beam size and therefore small β at the collision point are required.

This implies additional effects such a beam disruption and an enhanced luminos-
ity due to the so-called pinch effect.

Due to very strong field of the quadrupoles of the final focusing, significant
synchrotron radiation is produced.

6.4.8.1 Disruption and Luminosity Enhancement Factor

The basic formula for the luminosity of a linear collider is shown in Eq. (6.42).

L = N2 frep nb

4πσx σy
→ L = HD · N2 frep nb

4πσx σy
(6.42)

The revolution frequency has to be reaplced by the repetition rate frep of the
colliding bunches.
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The luminosity is increased by the enhancement factor HD which takes into
account the reduction of the nominal beam size by the disruptive field (pinch
effects).

This enhancement foctor is related to the beam disruption parameter

Dx,y = 2reNσz
γ σx,y

(
σx + σy

) (6.43)

For weak disruption (D� 1) and round beams the enhancement factor can be
written as:

HD = 1 + 2

3
√
π
D +O

(
D2
)

(6.44)

When the disruption is strong or for flat beams, computer simulations are
necessary.

6.4.8.2 Beamstrahlung

The strong synchrotron radiation (beamstrahlung) has two main effects:

– Spread of the centre of mass energy.
– Pair creation and background in the detectors.

It is parametrized by the parameter Y which can be written as the mean field
strength in the rest frame, normalized to the critical field Bc:

Y = < E + B >

Bc
≈ 5

6

r2
e γN

ασz
(
σx + σy

) (6.45)

Bc = m2c3

e�
≈ 4.4 × 1013G (6.46)

6.5 Synchrotron Radiation and Damping

L. Rivkin

6.5.1 Basic Properties of Synchrotron Radiation

Charged particles radiate when they are deflected in the magnetic field [47]
(transverse acceleration) [see also Sect. 11.1 for a more detailed treatment]. In the

http://dx.doi.org/10.1007/978-3-030-34245-6_11
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ultra-relativistic case, when the particle speed is very close to the speed of light,
β ≈ c, most of the radiation is emitted in the forward direction [48] into a cone
centred on the tangent to the trajectory and with an opening angle of 1/γ , where γ
is the Lorentz factor (since for a few GeV electron or a few TeV proton, γ ≈ 1000,
the photon emission angles are within a milliradian of the tangent to the trajectory).

The power emitted by a particle is proportional to the square of its energy E and
to the square of the deflecting magnetic field B:

PSR ∝ E2B2, (6.47)

and in terms of Lorentz factor γ and the local bending radius ρ can be written as
follows:

PSR = 2

3
α �c2 γ 4

ρ2 , (6.48)

where α is the fine-structure constant and the Plank’s constant is given in a
convenient conversion constant:

α = 1

137
and �c = 197 MeV fm. (6.49)

The emitted power is a very steep function of both the particle energy and particle
mass, being proportional to the fourth power of γ .

Integrating the above expression around the machine we obtain the amount of
energy lost per turn:

U0 = 4π

3
α �c

γ 4

ρ
. (6.50)

The emitted radiation spectrum consists of harmonics of the revolution frequency
and peaks near the so-called critical frequency or critical photon energy. It is defined
such that exactly half of the radiated power is emitted below it:

εc = 2

3
�c

γ 3

ρ
. (6.51)

On the average a particle then emits nc ≈ 2παγ photons per turn.

6.5.2 Radiation Damping

In a storage ring the steady loss of energy to synchrotron radiation is compensated in
the RF cavities, where the particle receives each turn the average amount of energy
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lost. The energy lost per turn is normally a small fraction of the total particle energy,
typically of the order of one part per thousand.

Transverse Oscillations
Since the radiation is emitted along the tangent to the trajectory, only the amplitude
of the momentum changes. As the RF cavities increase the longitudinal component
of the momentum only, the transverse component is damped exponentially with the
damping rate of the order of U0 per revolution time. A typical transverse damping
time corresponds simply to the number of turns it would take to lose the amount of
energy equal to the particle energy. The damping times are very fast, in case of a
few GeV electron ring being on the order of a few milliseconds.

A⊥ = A0e
− t

τ ,where
1

τ
= U0

2ET0
. (6.52)

In a given storage ring the damping time is inversely proportional to the cube of
the particle energy.

Longitudinal or Synchrotron Oscillations
Synchrotron oscillations are damped because the energy loss per turn is a quadratic
function of the particle’s energy. The damping rate is typically twice the rate for
transverse oscillations.

Damping Partition Numbers and Robinson Theorem
For particles that emit synchrotron radiation the dynamics is characterized by
the damping of particle oscillations in all three degrees of freedom. In fact, the
total amount of damping (Robinson theorem [49]), i.e. the sum of the damping
decrements depends only on the particle energy and the emitted synchrotron
radiation power:

1

τx
+ 1

τy
+ 1

τε
= 2U0

ET0
= U0

2ET0

(
Jx + Jy + Jε

)
(6.53)

where we have introduced the usual notation of damping partition numbers that
show how the total amount of damping in the system is distributed among the three
degrees of freedom. A typical set of the damping partition numbers is (1,1,2) and
their sum is, according to the Robinson theorem, a constant.

Jx + Jy + Jε = 4. (6.54)

Adjustment of Damping Rates
The partition numbers can differ from the above values, while their sum remains
a constant. In fact, under certain circumstances, the motion can become “anti-
damped”, i.e. the damping time can become negative, leading to an exponential
growth of the oscillations amplitudes. From a more detailed analysis of damping
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rates [50] the damping time can be written as

1
τε
= U0

2ET0
(2 +D) , and 1

τx
= U0

2ET0
(1 −D) , where D ≡

∮
D
ρ

(
2k+ 1

ρ2

)
ds

∮
ds

ρ2
.

(6.55)

The constant introduced above is an integral of the dispersion function D and the
magnetic guide field functions, i.e. bending radius and gradient around the ring and
is independent of the particle energy. It deviates substantially from zero only when
a particle encounters combined function elements, i.e. where the product of the field
gradient and the curvature is non-zero. The damping partition numbers then are:

Jx = 1 −D, Jε = 2 +D, Jx + Jε = 3. (6.56)

The vertical damping partition number is usually unchanged as the vertical
dispersion is zero in storage rings that are built in one (horizontal) plane.

The amount of damping can be repartitioned between the horizontal and energy-
time oscillations by altering the value of the D constant [50]. This can be
achieved by either using combined function magnetic elements in the lattice, or
by introducing a special combined function wiggler magnet (so-called Robinson
wiggler). Values of horizontal partition number as high as 2.5 have been obtained
that way. Values of D > 1 lead to anti-damping of horizontal betatron oscillations,
while for D < −2 the synchrotron oscillations become unstable.

6.6 Computer Codes for Beam Dynamics

Werner Herr

6.6.1 Introduction

The design and operation of an accelerator today is unthinkable without the help
of computer codes, the reason being large, complex structures (like in the case of
big accelerators and colliders, e.g. LHC) or complications in the beam dynamics of
small or special purpose machines (e.g. FFAG). Their complexity does not allow
the computation with pencil and paper. Here we address only the codes for beam
dynamics, i.e. special codes for the design of accelerators components such as
magnets or RF equipment will not be treated but can be found in the literature.
The main fields where beam dynamics codes are essential are:

• Determination of parameters and the design of beam lines and accelerators
• Evaluation of performance
• Control, machine protection and operation
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Different classes of codes are used in these fields which also resemble the life
cycle of an accelerator.

Given the scope of this handbook and the rapid evolution of computer codes and
software techniques, we do not attempt to provide a list of existing codes, but rather
will describe the main features, techniques and applications of the different types of
codes. Details and access to existing codes can be found in computer code libraries
on the internet. A supported library is provided by the Los Alamos Accelerator Code
Group (LAACG) [51], another one supported by Astec (UK) [52]. It contains links
to popular and frequently used codes from many laboratories and institutions.

6.6.2 Classes of Beam Dynamics Codes

The different classes of codes can be divided according to their application:

• General purpose optics codes
• Beam dynamics of single particles
• Beam dynamics of multi particles

Optics codes are used mainly in the initial design phase of an accelerator, rings
as well as beam lines and linear accelerators. The evaluation of the performance
(stability etc.) is done using codes to simulate the beam dynamics of single particles
as well as ensembles of particles and their interaction with the environment or other
particles in the beam(s).

6.6.3 Optics Codes

A large group of computer codes for beam dynamics are used to design the lattice
of an accelerator or beam line and to compute and optimize the optical parameters.
The range of available codes extends from small codes for pedagogical purpose to
large general purpose programs. Such codes can have easily 100,000 lines of codes
or more. The accelerator physics is described in the existing literature [53] and in
this handbook. The main applications of general purpose optics codes are:

• Determination of main parameters and the computation of linear and non-linear
optics. This implies to find periodic solutions for the optical parameters and the
closed orbit.

• Parameter matching (optical/geometrical) and lattice optimization, i.e. the prop-
erties of elements are varied until the optical functions assume their desired
values.

• Simulation of imperfections and algorithms for their corrections.
• Simulation of synchrotron radiation and evaluation of radiation integrals to derive

estimates for parameters (e.g. equilibrium emittances) in lepton machines.
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The result should be a consistent set of parameters fulfilling the design require-
ments. They are the basis for the design of machine elements.

Depending on the complexity of the problem, different techniques are in use
for optics codes. The majority of these codes rely on the description of machine
elements using maps, which can be of higher order for non-linear elements. In
the simplest case for the description of linear machines the maps become matrices
and are therefore often referred to as “matrix codes” [54]). The concatenation of
the matrices provide a matrix for the entire ring and its analysis gives the optical
parameters, closed orbit etc.

Another technique is to follow the particles through the accelerator, i.e. integrat-
ing the equation of motion in the electromagnetic fields of the machine elements.
The analysis of the results of these “tracking programs” provides the required
parameters and information about the stability of the machine (for some details see
[54]).

Dealing with complex machines, other considerations may become important
such as e.g.:

• Definition of an input language which can be used by other programs. This input
language defines the sequence of elements, i.e. the ring or a beam line, as well
as the properties of the elements such as e.g. their types (dipole, quadrupole,..),
lengths and strengths.

• For large machines with a large number of elements the interface to a data base
may be required. Large machines such as the LHC or future colliders have several
thousand elements.

• An interface to the control system for on-line modelling is desirable

6.6.4 Single Particle Tracking Codes

To evaluate the performance of accelerators, in particular multi pass, i.e. circular
machines, one has to deal with complex iterative processes. The standard pertur-
bation theories can fail to correctly describe the behaviour beyond leading orders.
Single particle tracking codes are successfully used when analytical methods fail
to describe the effect of non-linear forces on the stability of the particles. Many
tracking codes have been developed together with the necessary tools to analyse
the results and from the simulation point of view the treatment of non-linear effects
is well established. Conceptually, in a tracking code the equation of motion of a
particle in an accelerator element is solved and the phase space coordinates of the
particle are followed through all elements of the accelerator or beam line. To obtain
the desired information, it may be necessary to repeat this process for up to 107 turns
which require appropriate algorithms and techniques to avoid numerical problems.
Similar problems exist and some of these techniques have been developped for
celestial mechanics. In order to draw conclusions from the tracking data it is
necessary to provide tools to allow a qualitative and quantitative understanding of
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the results [55]. The outcome of the analysis allows to answer the most important
questions for the design of a machine such as:

• Stability of particle motion
• Dynamic aperture
• Specifications for the properties of machine elements
• Optimization or the particle stability

In general the results of these studies are used in an iterative procedure to improve
and optimize the design of the machine.

6.6.4.1 Techniques

A requirement for all techniques employed for particle tracking is that the associated
maps must be symplectic. To solve the equation of motion, most programs use
explicit canonical integration techniques, e.g.:

• Thin lens tracking (most common since they are automatically symplectic and
fast)

• Ray tracing (accuracy by slicing into large number of steps, but time consuming)
• Symplectic integration (see [54] and references therein)

6.6.4.2 Analysis of Tracking Data

Some of the analysis techniques are discussed in the chapter on non-linear dynamics
in this handbook in more detail and some are mentioned here for completeness:

• Taylor maps using Truncated Power Series Algebra (TPSA, [54])
• Lie algebraic maps [54, 56]
• Normal form analysis

The results of the analysis include non-linear resonances and distortion, non-
linear tuneshift with amplitude and an evaluation of the long term stability. In all
cases the interpretation of the results requires a careful analysis of the range where
the data is meaningful to avoid wrong conclusions. Typical problems are numerical
effects which can lead to unphysical features.

6.6.5 Multi Particle Tracking Codes

Multi particle tracking codes are used when we are concerned with the behaviour of
an ensemble of particle. The calculations largely rely on techniques developped for
single particle dynamics. Typical applications are the simulation of:

• Space charge effects, mutual interaction of particles within the same beam.
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• Collective instabilities and interaction with environment (impedance)
• Beam-beam effects in case of particle colliders, i.e. the interactions with the fields

produced by the counter-rotating beam.
• Electron cloud effects, i.e. secondary electron production by synchrotron radia-

tion

A key issue for multi particle simulation codes is the evaluation of the electro-
magnetic fields produced by the beams or the environment. New techniques and the
availability of parallel computing facilities have allowed vast progress in this field
in the last 20 years.

6.6.6 Machine Protection

For large energy and high intensity machines the protection of the machine elements
becomes an important part of the design. Simulation codes have to include the
interaction of particles with matter.

6.7 Electron-Positron Circular Colliders

M. E. Biagini · J. M. Jowett

Electron-positron (e+e−) collider rings have been a mainstay of both discovery
and precision physics for half a century: discovery, since the simple initial state
can create any particle coupled to the electromagnetic field; precision, from the
combination of high luminosity and large cross-sections at a rich spectrum of
resonances up to

√
s � 200GeV. While the fundamentals of these machines have

remained in essence the same, the technology has matured to the point where
luminosities of the latest “factories” exceed what was thought possible in the 1970s
and early 1980s by 2–3 orders of magnitude.

These colliders are based on the principle of the synchrotron (Sect. 1.2.6)
although the name is barely appropriate for those which enjoy the advantage of
full-energy injection. Beams are necessarily bunched by an RF system, which must
provide sufficient voltage to compensate the energy lost by synchrotron radiation.

6.7.1 Physics of Electron-Positron Rings

Consider an ideal storage ring constructed with bending and focussing magnets
such that a particle of charge e and constant momentum p0 could circulate on a
stable closed orbit, Oxy, in transverse phase space (x, px, y, py), with local radius of

http://dx.doi.org/10.1007/978-3-030-34245-6_1
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curvature ρ(s). The orbits and optical functions (βx, y(s), dispersion Dx, y(s), etc.,
Chap. 2) of such hypothetical, non-radiating particles are a construct useful in the
description of e± dynamics. Real, radiating, e+ of energy E = √p2c2 +m2c4 �
pc � p0c can circulate in a phase-space neighbourhood of Oxy provided RF cavities
of a proper frequency and sufficient voltage are added to compensate the average
radiative energy loss and provide longitudinal phase stability (e− can circulate in
the opposite direction). In a semi-classical picture [49, 53, 57, 58], e± emit photons
at random times according to the classical synchrotron radiation spectrum [47,
48] and make stochastic transitions between betatron trajectories corresponding to
their instantaneous momenta. This picture can be understood [59] by recognising
that a storage ring differs from an atom in that changes, �n = n u/E, in orbital
quantum number, n, corresponding to typical photon emissions of energy u, satisfy
n � �n � 1.

There is no deterministic closed orbit but the full 6D central orbit, Oxyz of a bunch
of many electrons normally coincides with the attractive stable orbit calculated by
averaging over photon emissions to include only the classical deterministic part
of the synchrotron radiation (this includes the stable phase with respect to the RF
system). If the domain of attraction of this orbit is large enough, the beam can have
a good lifetime (Eq. 6.60 below). Because of the energy variation round the ring
(localised RF cavities giving “energy-sawtooth”), the transverse projection of Oxyz

does not coincide with Oxy. Figure 6.28 shows an example.
Neglecting intensity-dependent phenomena, the equilibrium dimensions of the

beam are macroscopic quantum effects determined by the balance between radiation
damping (the dependence of the classical radiation lost in magnetic fields on the
energy, [49, 57, 58] and Sect. 6.5), and the quantum fluctuations (discrete photon
nature) of the synchrotron radiation [57, 58]. Generally, the effects are linear enough
that the core of the distribution is gaussian in each normal mode coordinate.

The mean-square fractional energy spread in the beam is

σ 2
E

E2 =
55

32
√

3

�

mc

(
E0

mc2

)2 ∮ ∣∣G3
∣∣ ds

Jz
∮
G2ds

� 1

2
γ 2 λe

ρ0
, (6.57)

where G = eB/p0c = ρ−1 is the inverse of the local bending radius of Oxy,
∮ · · · ds

denotes an integral around Oxy, Jz is the longitudinal damping partition number
(Sect. 6.5), λe = �/mc is the reduced Compton wavelength of the electron and
the last equality holds to the extent that G(s) is zero or has a constant value 1/ρ0
(isomagnetic ring).

Economic arguments, balancing construction cost against power consumption,
are sometimes invoked to derive a scaling of radius with energy squared but this
only applies for the highest energy rings with a few bunches (see [60] for the scaling
of design parameters). More generally, the chromaticity correction and dynamic
aperture constraints (Sect. 3.4) in collider rings require 6σE/E � 1%, so imposing
a minimum radius ρ/m ≈ 0.26(E0/GeV)2. The spread in centre-of-mass energies of
collisions σ√s =

√
2σE (if Dx = 0 at the collision point) should also be kept small.

http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_3
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Fig. 6.28 The cumulative RF voltage (black dashed line) around the ring and four components
of the ideal six-dimensional closed orbit of the e+ beam in CERN’s LEP collider, at a central
beam energy of 94 GeV in an optics used in 1998. The fractional deviation of the beam energy
on the closed orbit ptc (red) exhibits the “energy sawtooth” due to the energy lost by synchrotron
radiation in the eight arcs and its replenishment by RF systems located around the experimental
interaction points. The conjugate time-lag coordinate tc (green) reflects the corresponding path-
length changes. The horizontal closed orbit xc = Dxptc + xcB (blue) is a combination of the local
dispersion orbit and a forced betatron oscillation and its conjugate pxc. Without radiation, these
four orbit components would be zero. LEP was a single ring collider with e+ and e− beams of
similar intensity circulating in the same beam pipe. In normal operation, the average xc for the two
beams, which were approximately equal and opposite, x+c � −x−c , was measured and corrected to
the central trajectory. At higher energies, these orbits could be separated by a few cm near the RF
systems

The equilibrium horizontal emittance for flat rings without betatron coupling is

εx = 55

32
√

3
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mc

(
E0

mc2

)2 ∮ ∣∣HG3
∣∣ ds

Jx
∮
G2ds

, (6.58)

where H = βxDx
2 + 2αxDxD

′
x + γxD

′2
x is a quadratic form constructed from the

dispersion and betatron matrix (Sect. 2.1). Together, Eqs. (6.57) and (6.58) give the
mean-square equilibrium beam size at any point in the ring

σ 2
x =
〈(
xβ +Dx (E − E0) /E0

)2〉 = βxεx +D2
x(σE/E)

2. (6.59)

The vertical emittance is usually smaller and due to some coupling of horizontal
betatron motion into the vertical and vertical dispersion from orbit errors or other
vertical bends. More general formalisms [53, 61] describe the radiation-generated
emittances for the eigenmodes of linear oscillations about general six-dimensional
central orbits.

A true equilibrium (strictly, stationary) state does not exist because the quantum
fluctuations lead to loss from the tails of the beam with lifetimes for the three modes

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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given by

τq,u = 1

2
τu
eξu

ξu
, where ξu = A2

u

2σ 2
u

, for u = x, y, z, ξu � 20, (6.60)

where the τ u are the radiation damping times and Au are appropriate acceptances
[53, 57, 58]. For the synchrotron mode, Az is the RF bucket half-height

(
Az

E0

)2

= 2U0

π |η|hRFE0

[√
(eV RF/U0)

2 − 1− arccos (U0/eV RF)

]
. (6.61)

For adequate lifetime at small intensity, the mechanical and dynamic apertures
and RF voltage must be large enough.

The bunch length is given by σ z = c|η|σE/(ωsE0) where ωs is the angular
synchrotron frequency and η � αc the frequency slip factor ([53], Sects. 2.5.2 and
2.5.3).

6.7.2 Design of Colliders

Colliders are designed from the interaction point outwards. The classical design is
based on head-on collisions of flat beams. However a number of other configurations
have been explored and the most promising among them is described in the
following section. In the classical scheme, luminosity (Sect. 6.4) is maximised
by achieving very flat beams, κ = εy/εx � 1; we consider only beams of equal
energy, size and single bunch population, Nb, colliding head-on, with σ ∗y � β∗y ;
for generalisations see [53]. The beam-beam effect (Sect. 4.6.1) generally imposes
maximum attainable values on the horizontal and vertical beam-beam parameters

ξx,y =
reNbβ

∗
x,y

2π
(
E0/mc2

)
σ ∗x,y
(
σ ∗x + σ ∗y

) , (6.62)

where re is the electron classical radius, β∗x,y and σ ∗x,y,z are the optical functions and
beam sizes at the collision point. Typically, one finds maxξ y = 0.03 − 0.1 with the
highest values attained when the machine is very well corrected (favourable tunes,
central orbits close to design, minimised vertical dispersion) and when radiation
damping is strong. Then the luminosity (Sect. 6.4) can be expressed as

L = fcNb

2re

(
E0

mc2

)
(1 + κ) ξy

β∗y
, (6.63)

where fc is the frequency at which identical bunches collide; in the simplest case
fc = kbf0 where kb is the number of bunches per beam.

http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_4
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The number of bunches in a single-ring collider is limited by the possibilities
for separating the opposing beams at unwanted encounters, e.g., by local or long-
range (“pretzel scheme”) electrostatic orbit bumps [53]. Collective effects limiting
the single-bunch intensity (bunch-lengthening, transverse mode-coupling, see Chap.
4) are a major concern. In recent double-ring colliders, many more bunches can be
stored. A crossing angle at the collision point separates the beams at encounters
in the adjacent common section of the beam pipe. In recent years, the highest
luminosity collider designs have adopted a new scheme described in the following
section.

Multi-bunch collective effects and other limits related to total beam current (e.g.,
component heating by wakefields or synchrotron radiation, beam-loading, electron-
cloud, ion-trapping [53]) tend to dominate. The impedance and surface properties
of the vacuum chamber are critical.

Integrated luminosity can be further maximised in moderate energy rings for
which a full-energy injector is available by topping up the intensity of the stored
beam rather than dumping and refilling. The static magnetic configuration (no ramp
and squeeze cycle) simplifies operation dramatically.

The arcs of collider rings are usually composed of FODO cells whose length and
phase advance determine the emittance through Eq. (6.58). To minimise radiation
power, the bending magnets are made as long as possible. In the highest energy
rings, the quadrupoles must also be lengthened.

Low-β insertions (Sect. 6.2.1) provide small values of β∗y at the interaction
point(s) of the experiment(s) in long straight sections. These can also accommodate
the accelerating cavities of the RF system, beam instrumentation and wiggler
magnets and are connected to the arcs via dispersion suppressors.

Wiggler magnets modify the radiation damping, bunch length and/or emittance
by contributing additional terms [53] with large |G| to the integrals in Eqs. (6.57) and
(6.58), so providing additional flexibility to maximise performance (e.g., at lower
energy).

Sextupoles incorporated in the arcs must correct the large chromatic aberrations
generated in the low-β quadrupoles while preserving adequate dynamic aperture
(Sect. 3.4.4).

Many variations on this classical e+e− collider design are possible with new
interaction region concepts showing promise (Sect. 6.4) in overcoming the need for
ever-increasing beam current and ever-shorter bunches.

At higher intensities, phenomena such as the Touschek effect and intra-beam
scattering [53], sometimes in combination with non-linear single particle dynamics
or beam-beam effects, can reduce the lifetime below the values implied by Eq.
(6.60); see Chap. 3 and Sect. 4.6.

http://dx.doi.org/10.1007/978-3-030-34245-6_4
http://dx.doi.org/10.1007/978-3-030-34245-6_6
http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_4
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6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme

The need for precision measurements of rare decay modes with small cross sections
at e+e− factories has driven requirements on peak luminosity to unprecedented
levels. Conventional collision schemes, see Eq. (6.63), are based on pushing up
the beam currents, lowering the β∗y , and increasing the beam emittance so as not to
exceed the beam-beam tune-shift limits. Passing from single to double ring colliders
allowed the number of bunches to be increased considerably. However in order
to avoid luminosity reduction due to parasitic (or long-range) bunch encounters
near the collision point, beams had to be collided with a small horizontal crossing
angle rather than head-on. However, this approach has come to a dead end since
high currents result in high power losses, beam instabilities and increased power
consumption.

Because of the parabolic variation of βy(s) = β∗y + s2/β∗y in the vicinity
of the interaction point (IP), the longitudinal region in which individual particle
collisions occur will include places where the effective βy(s)>>β∗y at the IP, and
will therefore contribute less to the luminosity. This so-called hour-glass effect
imposes a condition on the bunch-length: σ z � ßy(s). Unfortunately, shortening the
bunch length is costly since it requires high voltage in the RF cavities, can excite
collective instabilities, induce higher-order mode (HOM) heating in the beam pipe,
and lead to coherent synchrotron radiation emission, which in turn deteriorates the
bunch shape. On the other hand, increasing the bunch current leads to coupled bunch
instabilities, HOM heating of the beam pipe, and higher wall-plug power.

A solution to these problems came with the idea of a new collision scheme, called
“Large Piwinski Angle and Crab Waist Sextupoles” (LPA&CW), by P. Raimondi in
2006 [62]. This scheme has two main ingredients:

1. A large horizontal crossing angle at the IP, combined with very small horizontal
beam size, resulting in a large Piwinski angle;

2. a pair of sextupoles, each placed on one side of the IP at a specific betatron phase
from it.

The Piwinski angle is defined as:

� = σz tan (θ)

σx
≈ θ

σz

σx
. (6.64)

Consider two bunches with RMS beam size σ x and bunch length σ x, colliding
at a horizontal crossing angle 2θ . For flat beams colliding at a small crossing angle
θ � 1 and large Piwinski angle � � 1, the luminosity L and the tune-shifts scale
as [63]:

L ∝ Nξy

β∗y
(6.65)
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ξy ∝ N

2θσ z

√
β∗y /εy (6.66)

ξx ∝ N

(2θσz)2
(6.67)

In the LPA scheme the Piwinski angle is increased by decreasing σ x and
increasing θ . The most relevant consequence is that the overlap area of the two
colliding beams is now reduced, since it is proportional to σ x/θ . As a plus, as can be
seen from Eq. (6.67), the horizontal tune shift in this case drops like (2θσ z)2, so the
beam-beam interaction can be considered as one-dimensional and only the vertical
plane is relevant.

Now, the vertical β∗y function at the IP can be decreased, as much as the focussing
magnet technology allows, to be comparable to the overlap area size that, in this
case, is smaller than the bunch length. In this case that is much smaller the bunch
length, so relaxing the problems of HOM heating, coherent synchrotron radiation
and excessive power consumption:

β∗y ≈
σx

2θ
� σz (6.68)

This scheme has several advantages:

• a smaller spot size at the IP, leading to higher luminosity,
• a reduction of the vertical tune-shift parameter,
• the mitigation of synchro-betatron resonances.

Long range beam-beam interactions no longer limit the maximum achievable
luminosity when the distance between bunches is short. These parasitic crossings
become negligible because of the larger crossing angle and the smaller horizontal
beam size. The separation at each encounter is larger in terms of σ x.

However the large Piwinski angle itself may introduce new beam-beam reso-
nances which can limit the maximum achievable tune shifts. The second ingredient
of the LPA&CW scheme, the pair of Crab Waist sextupoles, is designed to solve
this problem. The CW transformation causes the horizontal oscillations to modulate
the vertical motion modulation and thereby suppresses the betatron and synchro-
betatron resonances. The CW scheme is realised by installing a couple of sextupole
magnets on the two sides of the IP, preferably in a high β and zero dispersion region.
To provide the exact compensation the sextupoles be at π horizontal and a π /2
vertical betatron phase advance from the IP.

The CW transformation can be described by the Hamiltonian:

H = H0 + 1

2θ
xp2

y (6.69)

where H0 is the Hamiltonian of the particle’s motion without the CW, x is the
horizontal particle coordinate and py the vertical momentum. The effect of the CW



6 Design and Principles of Synchrotrons and Circular Colliders 255

Fig. 6.29 Crab Waist collision scheme

transformation is a vertical betatron function twist according to:

βy = β∗y +
(s − x/2θ)2

β∗y
(6.70)

In this case, the βy waist of one beam is twisted to be oriented along the central
trajectory of the other beam. As a consequence, all particles, independently of
their x position, collide at the minimum βy spot of both beams, with an increase
of few percent in the geometric luminosity due to the βy redistribution along the
overlapping beams area. A sketch of this shown in Fig. 6.29.

However the main CW effect is to suppress the betatron and synchro-betatron
resonances which would arise due to the vertical motion modulation induced by
the horizontal oscillations. This increases the space for the working betatron tunes
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of the collider. Moreover beam-beam simulations showed that beam tails are very
much reduced and the beam-beam blow-up is also suppressed.

The CW sextupoles strength should satisfy the following condition:

K = 1

2θ

1

β∗yβy

√
β∗x
βy

(6.71)

where starred β values are those at the IP and the others are at the sextupole
location. The CW sextupoles can reduce the dynamic aperture if there are other
non-linearities between them. For this reason they should ideally be installed before
the chromaticity correction sextupoles.

The (LPA&CW) collision scheme was first tested at the DA�NE �-Factory in
Frascati (Italy) in 2008 [64], by modifying the interaction region to increase the
crossing angle, decrease both the β∗ and allocate space for the sextupoles. The result
was a boost in luminosity of about a factor of 4 and measurement of the beam
profile showed that the bunches kept their Gaussian shape. This scheme has since
then been adopted by all new collider designs worldwide (SuperKEKB, FCC-ee,
various τ -charm Factory proposals). The collider SuperKEKB in Japan, however,
has adopted the LPA scheme (which they called “nano-beams”) without the CW
sextupoles because of the lack of space in the IR.

6.8 Hadron Colliders and Electron-Proton Colliders

K. Hanke · B. J. Holzer

6.8.1 Principles of Hadron Colliders

Hadron colliders are discovery machines which provide high centre-of-mass energy
and cover a wide energy range. Contrary to electron-positron colliders, where the
energy and quantum state of the initial particles is precisely known, the input
conditions are less well defined in the case of proton-proton or proton-antiproton
collisions. In fact, such collisions are, unlike e+e− annihilation, collisions of quarks
and antiquarks the momenta of which are distributed according to the structure
function of the hadron and are hence not precisely defined. As far as the analysis
of the events is concerned, hadronic collisions result in a much larger number
of tracks in the detector than in the case of e+e− annihilation, providing an
additional challenge. From a machine physics point of view hadron machines have
the enormous advantage that the particle beam energy is not limited by synchrotron
radiation. This is because the proton mass is 2000 times higher than the one of the
electron, and the energy loss due to synchrotron radiation scales with m−4. What
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is limiting the achievable beam energy in a hadron collider is the magnetic field to
be provided by the dipole magnets in order to bend the particle beam on a circular
trajectory. The radius of curvature of a particle in a dipole field is given by

1

ρ

[
m−1
]
= eB

p
p = 0.2998

B [T ]

p [GeV/c]

where ρ is the radius of curvature, B is the magnetic field, e is the elementary
charge and p is the particle momentum. The quantity Bρ is called the rigidity
[65, 66]. The beam rigidity determines the B-field required to bend the beam on
a circular trajectory with given bending radius. The maximum achievable B-field
being limited to about 2 Tesla for normal conducting magnets, today’s high-energy
hadron colliders use superconducting bending magnets.

The quasi absence of synchrotron radiation leads to another feature of hadron
colliders, which is the fact that there is no synchrotron radiation damping and the
transverse emittance is hence determined and preserved throughout the injector
chain. Emittance blow up, e.g. via injection mismatch, is therefore critical.

6.8.2 Proton-Antiproton Colliders

A machine with one single vacuum chamber, e.g. the Super Proton Synchrotron SPS
(“SppbarS in this operation mode) in the 1980s or the Tevatron can accomplish the
acceleration of protons and antiprotons.

During the years 1981–1987, the CERN SPS was operated as a proton-antiproton
collider, providing high energy collisions for two major experiments located in
adjacent sextants of the accelerator. This operation was first with three dense
bunches of protons in collision with three rather weak bunches of antiprotons,
with no separation of the beams at the unused crossing points. After increasing
the antiproton production rate, six bunches per beam were used. The SPS has
normal conducting bending magnets and a circumference of 6.9 km. The beam
energy provided by the SPS as proton-antiproton collider was 315 GeV [67, 68].
The SppS was the first hadron collider operating with bunched beams. Before the
commissioning of the machine it was debated if it was possible to collide proton
and antiproton bunches, or if the beams would become unstable due to the presence
of the beam-beam interaction without damping as in e+e− colliders. Its success
demonstrated the feasibility of high energy hadron colliders [69].

Higher energy was achieved by the Tevatron, using superconducting magnets
with a maximum B field of 4.5 T. The circumference of the machine is 6.28 km;
comparable to that of the SPS. In the final stage of operations (“run II”), beams are
injected at 150 GeV and accelerated to 980 GeV. The bunches (36+36) circulate
in the same aperture, the protons clockwise and the antiprotons anticlockwise. The
machine has a lattice with four dipoles followed by a quadrupole, with a total of
772+2 dipoles and 90+90 quadrupoles, plus a number of corrector magnets.
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6.8.3 Proton-Proton Colliders

Proton-proton colliders require a dedicated magnet design with two separate vac-
uum chambers for the two equally charged beams. The first proton-proton collider
was the ISR (Intersecting Storage Rings) at CERN. It consisted of two rings of
943 m length which were intersecting at eight points. Out of these eight intersection
points six were used for experiments. The ISR was operated between 1970 and
1984. The top energy achieved for protons was 31.4 GeV/c. The ISR allowed not
only proton-proton collisions, but stored and collided later also deuterons, alpha
particles and antiprotons. The ISR pioneered a number of techniques which were
beneficial which paved the path for future high energy colliders like the SPS.

The proton-proton collider with the highest energy ever built is the Large Hadron
Collider (LHC) at CERN [70]. It uses superconducting magnets with two separate
vacuum chambers for the two equally charged beams. The design field is 8.36 T,
and the machine circumference 26.659 km which yields a design beam energy of
7 TeV. Higher field levels are being studied in the frame of possible further energy
upgrades.

A machine with an even higher beam energy of up to 50 TeV is presently being
studied by an international collaboration. The Future Circular Collider (FCC) has
a hadron-hadron option (FCC-hh) with a beam energy of 50 TeV [71]. The latest
design features a machine circumference of 97.75 km with a maximum dipole field
of 15.7 T. The size of the machine is a compromise of civil engineering constraints
and dipole feasibility.

6.8.4 Electron-Proton Colliders

Collisions between electrons and protons are used to study the inner structure
of the proton e.g. the quark gluon distribution underneath the valence quarks.
The electrons are used as a point like probe to determine the inner structures in
the target. This deep inelastic scattering studies were performed in the beginning
using an accelerated electron beam colliding on a fixed target. Due to kinematic
considerations however a much higher resolution is obtained if two accelerated
beams are brought into collision.

Due to the different nature and beam dynamics of the two particles an electron-
proton collider cannot be built as a single ring machine: It consists of two storage
rings of equal circumference, one being optimised for the acceleration and storage
of electrons, the other for a high energy proton beam. The design of these two rings
looks quite different and completely different effects determine the performance
limitations of the rings. Figure 6.30 shows the two storage rings of the HERA
collider:

HERA was built as a 6.3 km long double ring collider with beam energy
of 27.5 GeV for the electron beam, and 920 GeV for the proton beam [72].
The fundamental layout was based on four arcs and four straight sections where
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Fig. 6.30 View of the two independent storage rings for electron and proton acceleration in
HERA. The super conducting proton lattice is placed on top of the conventional electron ring

the high-energy detectors were located. The proton machine was designed as a
superconducting magnet lattice in the arcs to achieve the highest possible beam
rigidity (or particle energy). The electron storage ring was built in conventional
magnet technology: here the limiting factor was the synchrotron radiation emitted by
the electrons which was too strong to justify super conducting magnet technology.
Basic limits for the achievable beam energy therefore were in the case of the protons
the magnetic field of the bending magnets (B = 5.1 T) and for the electron ring the
available RF power that was needed to compensate the synchrotron radiation losses.
Both rings had been built on top of each other to guarantee an equal revolution time
of the circulating particle bunches.

The interaction region of such a two ring collider deserves special attention:
While the two beams are brought into collision in a common vacuum system and
magnet lattice, they have to be separated after the IP and guided into their respective
magnet lattices. Especially in the case of the electron beams the separation has to
be performed fast enough, as the strong focusing fields of proton mini beta magnets
can only be applied after a full separation of the beams.

Two mini beta insertions therefore have to be installed and combined with an
effective beam separation scheme. In the case of HERA the separation has been
achieved by using the different momenta of the beams: The mini beta quadrupoles
of the electron beam have been placed offset with respect to their magnetic axis
and acted as combined function magnets. Consequently the electron beam was bent
due to its smaller beam rigidity to the inner side of the ring and at a distance
s∗ = 20 m the first proton magnet could be installed. A schematic view of this
nested interaction region is shown in Fig. 6.31.

The advantage of this scheme is its compactness as beam separation and focusing
are obtained at the same time. Special care however is needed as the electron
quadrupoles of the mini beat section will have an effect on the proton beam that
depends on the corresponding energy of the electron beam. This dynamic influence
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Fig. 6.31 Layout of the HERA interaction region: The inner triplet of the electron lattice is
combined with the beam separation scheme and embedded inside the doublet quadrupoles of the
proton mini beta insertion

on the optics and orbit of the protons therefore has to be compensated during the
acceleration of the electrons as well as during the beta squeeze.

The luminosity formula for such a double ring collider is given by

L = 1

2πe2f0
∗

∑

i

(
Ipi ∗ Iei

)

√
σ 2
xp + σ 2

xe ∗
√
σ 2
yp + σ 2

ye

It depends on the product of the single bunch currents Ipi and Iei and the sum of
this contribution over the overall number i of colliding bunches in the rings. As the
beams are guided in different magnet lattices the beam sizes σ are independent of
each other. Nevertheless the beams have to be matched, i.e. the beam sizes of the
two beams at the IP have to be equal in both planes: σxp = σxe and σyp = σye. This
condition deserves special attention as the beam emittances of protons and electrons
are quite different and independent beam optics have to be established to achieve
matched beam sizes.

Another special feature of an electron proton collider is the synchrotron radiation
that is emitted by the electron beam. Usually this effect is present in the arc structure
where the dipole fields bend the beam on the design orbit. Due to the separation
fields needed in the interaction region the synchrotron radiation is also emitted close
to the IP and special care is needed to shield the high energy detector from the
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Fig. 6.32 Synchrotron radiation emitted during beam separation in the HERA interaction region.
The plot shows schematically the interaction region lattice, the beam dimension and the direction
and density of the synchrotron light

emitted photons. For the HERA collider this problem has been studied in detail (see
Fig. 6.32) and a combination of absorbers and movable collimation masks have been
used to avoid hits from direct or back scattered photons into the detector parts.

The performance limitations of such an e-p-collider are given by the singe bunch
intensity of the protons (limited by the particle source), the overall current of the
electrons (limited by RF power or beam instabilities), the number of bunches that
can be stored in the machine (limited by technical reasons of the injection elements)
and the usual limits of the mini beta insertions that have been mentioned above.

The main parameters of HERA are summarised in Table 6.1:

Table 6.1 Summary of the
main parameters of HERA

Electrons Protons

Energy 27.5 GeV 920 GeV
Beam current 58 mA 140 mA
Particles per bunch 4 × 1010 1 × 1011

Number of bunches 189 180
Beta function at IP x/y 0.63 m/0.26 m 2.45 m/0.18 m
Hor. emittance 20 nm 5.1 nm
Emittance ratio εy/εx 0.18 1.0
Beam size (IP) σx/σy 112/30 μm 112/30 μm
Luminosity 7 × 1031 cm−2 s−1
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6.9 Ion Colliders1

W. Fischer · J. M. Jowett

Ion colliders are research tools for high-energy nuclear physics. The collisions of
fully stripped high-energy ions, that is, atomic nuclei, create matter of a temperature
and density that existed in the first microseconds after the Big Bang. The matter
created in these high-energy ion collisions is known as the Quark Gluon Plasma
(QGP), and interactions between the quarks and gluons is the subject of the
theory of quantum chromodynamics (QCD). The basic interactions are studied in
simpler collisions such as e+e− or pp but heavy-ion collisions allow the study of
more complex collective phenomena in QCD. The collisions in ion colliders can
create hadronic matter at much higher densities and temperatures than fixed target
experiments although at a much lower luminosity.

The collisions of heavy ions in RHIC and the LHC have yielded a number of
new results and revealed phenomena that were unexpected on the basis of previous
theoretical understanding. The QGP generated in the heavy ion collisions in RHIC
was expected to be weakly interacting, but found to be strongly interacting like an
almost perfect liquid [73, 74]. Hadronic jets created in the collisions have a rather
short mean free path in the QGP leading to a phenomenon termed “jet quenching”
[74], and the largest ever measured vorticity was seen in heavy ion collisions [75].
The collisions also created the heaviest artificially made antimatter nuclei, anti-
helium-4 [76, 77]. The higher energies in the LHC create many more hard probes
and heavy bound states such as charmonium (J/ψ) or bottomonium (ϒ) and, in
the highest-energy p-Pb collisions, toponium. Z and W bosons, particles that do not
interact with the QGP via the strong interaction, were never before seen in heavy ion
collisions. The ALICE experiment also reported the highest temperatures directly
measured in the laboratory [78].

The colliding nuclei also have high electric charges (Z ~ 80). Together with the
powerful Lorentz-compression at high energies, these generate enormous electro-
magnetic fields outside the nuclear radius. As first shown by Fermi, Weizsäcker
and Williams, these fields can be represented as a beam of high energy quasi-
real photons, leading to so-called ultraperipheral photonuclear and photon-photon
collisions. Besides their intrinsic interest, the high cross-sections for these processes
have consequences for the operation of the collider. The ATLAS experiment at the
LHC has published the first evidence for light-on-light elastic scattering, a long-
predicted fundamental process of nonlinear quantum electrodynamics, transcending
Maxwell’s equations.

1This section has been authored by Brookhaven Science Associates, LLC under Contract No. DE-
SC0012704 with the U.S. Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.
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The first ion collider was the CERN Intersecting Storage Rings (ISR), which
briefly collided light ions [79, 80] in the late 1970s. The BNL Relativistic Heavy
Ion Collider (RHIC) has been in operation since 2000 and collided a number of
species at numerous energies. The CERN Large Hadron Collider (LHC) started its
Run 1 heavy ion program in 2010 and has provided mainly p-p, p-Pb and Pb-Pb at
increasing luminosity with a substantial increase in energy in Run 2 (2015–2018).
Both RHIC and the LHC have an expected operating time exceeding 20 years.
Further upgrades to the LHC, its injector complex and its experiments, foreseen
in the shutdown after Run 2, should allow the integrated luminosity in Runs 3
and 4 (up to 2029) to exceed Runs 1 and 2 by an order of magnitude. Table 6.2
shows all species combinations and energy ranges demonstrated to date for the ISR,
RHIC and LHC. All three machines also collide protons. In RHIC the protons are
spin-polarized, making the machine the only collider of spin-polarized protons ever
built. The LHC is the highest energy proton-proton and heavy-ion collider ever built.
Critically, proton-proton collisions at the same energy per nucleon provide reference
data for heavy ion collisions. In the following, we will limit our comments to the
ion operation in RHIC and the LHC.

Ion colliders differ from proton or antiproton colliders in a number of ways:
the preparation of the ions in the source and the pre-injector chain is limited
by other effects than for protons; frequent changes in the collision energy and
particle species, including asymmetric species, are typical; and the interaction of

Table 6.2 Ion species and
energies achieved in ISR,
RHIC and LHC as of 2017

Machine Species Energies [GeV/nucleon]

ISR α–α

p–α

d–d

13.3–15.7
26.6–31.4 (p), 13.3–15.7 (α)
13.3–15.7

p–d 26.6–31.4 (p), 13.3–15.7 (d)
p–p 13.5–31.2

RHIC U–U
Au–Au

96.4
3.85–100

Cu–Au
Cu–Cu
h–Au
d–Au

100
11.2–100
103.5 (h)–100 (Au)
9.9–100

p↑–Au 103.9 (p)–98.6 (Au)
p↑–Al
p↑–p↑

103.9 (p)–98.7 (Al)
31.2–255

LHC Pb–Pb
Xe–Xe

1380–2511 (2563 briefly)
2721

p–Pb
p–p

4000–6500 (p), 1577–2563 (Pb)
3500–6500

p, d, h and α denote the nuclei of the hydrogen, deuterium,
helium-3 and helium-4 atoms respectively. All three machines
also collide proton beams, which are spin-polarized in RHIC.
The quoted energy is the sum of rest and kinetic energy per
nucleon
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Fig. 6.33 Achieved nucleon-pair luminosity LNN , averaged over a store, for all species combina-
tion and energies in RHIC

ions with each other and accelerator components is different from protons. This has
implications for collision products, collimation, the beam dump, and intercepting
instrumentation devices such as profile monitors. Thus, the performance limitations
of heavy-ion colliders are also different from proton-proton colliders.

Figure 6.33 shows the achieved nucleon-pair luminosities LNN , averaged over a
store, for all species combinations and energies in RHIC. The plot demonstrates the
flexibility of RHIC in colliding different species combinations (all of them at or near
the center of mass energy

√
sNN = 100 GeV), energy scans for a number of species

combinations (Au+Au, Cu+Cu, d+Au p↑+p↑), and a luminosity that is strongly
decreasing with the collision energy.

In the preparation for the collider use, the charge state Z of the ions is
successively increased. A high charge state Z increases the bending and acceleration
efficiency, but also increases the effects of space charge and intrabeam scattering
(IBS). The direct space charge tune shift ΔQ, typically limited to values of less than
0.5, is given by [81]

�Q = − λR

2εnβγ 2

r0Z
2

A
,

where λ is the particle line density, R the machine circumference, εn the normalized
emittance, β and γ the relativistic factors, r0 the classical proton radius, and A the
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Table 6.3 Preparation of the heavy ions for RHIC and LHC

RHIC (Au) LHC (Pb)

Charge state Z
Ion energy
[eV/nucleon] Charge state Z

Ion energy
[eV/nucleon]

LIONa 1+ 150 ECR 27+ 2.5 k
EBISb 32+ 0.9 M LINAC3 54+ 4.2 M
Booster 77+ 101 M LEIR 54+ 72.2 M
AGS 79+ 8.8 G PS 82+ 5.9 G
RHIC 79+ 99 G SPS 82+ 177 G

LHC 82+ 2.51 T

For each accelerator, the kinetic energy of the ions is given at extraction, and the charge state in
the following transfer line
aLaser Ion Source; bElectron Beam Ion Source

mass number. IBS growth rates 1/Tx,y,s scale like [81]

1

Tx,y,s
∝ Z4

A2

Nb

γ εxεyεs

where Nb is the bunch intensity, and εx,y,s are the normalized emittances. High
charge states also reduce the electron stripping probability, and electron stripping
at higher energies is generally more efficient.

Table 6.3 shows the charge states and energies in the RHIC and LHC injector
chains for the Au and Pb respectively, the heavy ion species most often used in these
machines. For RHIC singly charge ions are generated in a hollow cathode or laser
ion source (LION) [82], and transferred into an Electron Beam Ion Source (EBIS)
[83]. With EBIS, beams of almost any element can be prepared for RHIC including
uranium and spin-polarized 3He. After increasing the charge state to Z = +32 the
ions are accelerated through an RFQ and short linac, and injected into the Booster.
After acceleration in the Booster, all but two electrons are stripped before injection
into the AGS, and the ions are further accelerated. To increase the intensity of the ion
bunches, bunches are merged in both the Booster and AGS. The last two electrons
are stripped in the transfer line from the AGS to RHIC. In RHIC all ions except
protons have to cross the transition energy, when bunches become short and peak
currents high. In addition, the longitudinal motion is frozen for a short period, and
the short bunches can trigger the creation of an electron cloud [84]. This situation
makes the beams vulnerable to instabilities [85], which limited the bunch intensity
for a number of years [84].

At CERN an ECR ion source is used, followed by an RFQ and the heavy ion
LINAC3 [86, 87]. After passing a carbon foil that strips electrons, the ions are then
accumulated in Low Energy Ion Ring (LEIR) [88]. During the 71-turn injection and
before acceleration the ions are cooled with an electron beam, with a transverse
cooling time of 0.2 s. To minimize dynamic vacuum effects from charge-change
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processes the LEIR vacuum system is designed for a dynamic pressure of less than
10−12 mbar. From LEIR the ions are injected into the PS where the bunches are
split to obtain the bunch spacing needed for the LHC. After acceleration in the PS
the last remaining electrons are stripped before injection into the SPS. In the SPS
at injection space charge and intrabeam scattering were a concern, and an emittance
growth of about 20% is observed at injection. Acceleration in the SPS requires a
special fixed frequency acceleration scheme since the main 200 MHz RF system
does not have the frequency range required to accelerate heavy ions with a constant
harmonic number. The SPS acceleration scheme takes advantage of the fact than the
ion bunch train only fills a fraction of the circumference allowing for an adjustment
of the RF phase during the time without beam [89].

The luminosity is given by

L = (βγ )
frev

4π
kc
Nb1Nb2

εnβ∗
H

where frev is the revolution frequency, kc the number of bunch-bunch collisions
per turn, Nb1 and Nb2 the bunch intensities in the two beams respectively, and β∗

the lattice envelope function at the interaction point. The factor H accounts for
the hourglass effect and crossing angles, and is smaller than and of order 1. The
luminosity is limited by different effects in RHIC and the LHC.

In RHIC bunches of fully stripped heavy ions like Au79+ with the same number
of charges as proton bunches have IBS growth rates an order of magnitude larger.
In RHIC at injection IBS leads to bunch lengthening, and at store to particle loss
out of the RF buckets and an increase in the transverse emittance. Longitudinal
and transverse bunched beam stochastic cooling at store has been implemented [90]
to counteract IBS. This and an increase in the bunch intensity have significantly
increased the average store luminosity (Fig. 6.34). Table 6.4 shows the latest RHIC
parameters for Au–Au operation.

Fig. 6.34 RHIC
instantaneous Au+Au
luminosity in 2007 with
longitudinal stochastic
cooling in the Yellow ring
only, and in 2014 with 3D
cooing in both rings. The
increase in the initial
luminosity is due to an
increase in the bunch
intensity
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Table 6.4 Main operating parameters achieved for the most commonly heavy ions in RHIC and
LHC as of 2017

Parameter Unit RHIC LHC

Circumference C km 3.8 26.7
Ion species 197Au79+ 208Pb82+
Maximum energy GeV/nucleon 100 2511
Bunch intensity 109 2.0 0.20
Number of colliding bunches 111 492
Peak luminosity 1026 cm−2s−1 155 36
Average store luminosity 1026 cm−2s−1 87 17

Other effects that have limited the heavy ion performance in the past include:
the availability of high intensity bunches from the injector chain, instabilities at
transition [91] driven by the machine impedance and electron clouds (RHIC is
the only superconducting accelerator that crosses the transition energy), dynamic
pressure increases including pressure instabilities caused by electron clouds [84],
beam loading in the storage RF system (bunches are accelerated with h = 360 and
transferred into a h = 7×360 system at store), and chromatic lattice aberrations at
β∗ < 70 cm.

The LHC heavy ion operation started in 2010 and the luminosity is principally
limited by two effects [92, 93]. Firstly, secondary beams generated in collision and
having a Z/A ratio different from the primary beam will be lost in the dispersion
suppressor, a location with superconducting magnets with a limited ability to absorb
heat [94]. Secondly, the collimation efficiency for ions is lower than for protons
leading again to losses in uncontrolled regions [95]. Expected LHC ion parameters
are shown in Table 6.4. The two most important processes for the generation of
secondary beams in collisions are Bound-Free Pair Production (BFPP),

208Pb82+ + 208Pb82+ γ→ 208Pb82+ + 208Pb81+ + e+, (6.72)

with a cross section of 281 barn; and Electromagnetic Dissociation (EMD) with a
total cross section of 226 barn, about half of which is from the 1-neutron reaction

208Pb82+ + 208Pb82+ γ→ 208Pb82+ + 207Pb81+ + n. (6.73)

Beam losses due to BFPP were observed in RHIC with 63Cu29+ ions [96] and
effective mitigation measures have now been implemented at the LHC [97, 98].
These have allowed Pb-Pb luminosities far beyond the design value from 2015
onwards. Collimation of heavy ions is fundamentally different from protons. Protons
are scattered at a primary collimator and collected at a secondary collimator. Heavy
ions undergo nuclear fragmentation and electromagnetic dissociation in the primary
collimator. The fragments created have a wide range of Z/A ratios that are not
collected by the secondary collimators. Measurements of collimation efficiency
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were done in the CERN SPS and compared with detailed simulations to obtain
reliable estimates of the heavy ion collimation efficiency in the LHC [95].

The LHC also collided Xe nuclei in 2017 [98] and may collide other species in
future, generally with a view to increasing the nucleon-nucleon luminosity.

In the collision of asymmetric species the 2-in-1 magnet design of the LHC
requires that the magnetic fields in two rings are the same (the two RHIC rings are
independent and can have different fields). For p–Pb operation it is then necessary to
have different revolution frequencies at injection and during the energy ramp [99].
Lead beams in the LHC at design energy have noticeable synchrotron radiation
damping times (6 h and 13 h longitudinally and transversally) that are of the
same order as the IBS emittance growth times (8 h and 13 h longitudinally and
transversally) [92].

6.10 Beam Cooling

F. Caspers · D. Möhl

6.10.1 Introduction

Beam cooling aims at reducing the size and the energy spread of a particle beam
circulating in a storage ring or in an ion trap. This reduction of size should not
be accompanied by beam loss; the goal is to increase the particle density [100].
Since the beam size varies with the focusing properties of the storage ring, it is
useful to introduce normalized measures of size and density. Such quantities are
the (horizontal, vertical and longitudinal) emittances and the phase-space density.
For our present purpose they may be regarded as the (squares of the) horizontal
and vertical beam diameters, the energy spread, and the density, normalized by the
focusing strength and the size of the ring to make them independent of the storage
ring properties. Phase-space density is then a general figure of merit of a particle
beam, and cooling improves this figure of merit. The terms beam temperature
and beam cooling have been taken over from the kinetic theory of gases. For
visualization one may imagine a beam of particles going around in a storage ring.
Particles will oscillate around the beam centre in much the same way that particles
of a hot gas bounce back and forth between the walls of a container. The larger
the mean square of the velocity of these oscillations in a beam, the larger the beam
size. The mean square velocity spread is used to define the beam temperature in
analogy to the temperature of the gas which is determined by the kinetic energy of
the molecules.
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There are several basic motivations for the application and development of
different beam cooling techniques:

• Collection and accumulation of rare particles, e.g. antiprotons or short lived
particles such as muons.

• Improvement of interaction rate and resolution, e.g. collision experiments with
antiprotons or with ions; increase in luminosity. For fixed target experiments:
sharply collimated and/or highly mono-energetic beams for precision experi-
ments.

• Preservation of beam quality, mitigation and suppression of beam blow-up.
• Preparation of crystalline beams.

Several cooling techniques are operational or have been discussed:

• Radiation cooling (often referred to as radiation damping); linked to energy
loss of particles via synchrotron radiation (used in virtually all modern electron
synchrotrons).

• Stochastic cooling (works well for “hot” beams to get them “tempered).
• Electron cooling (most suitable for “tempered” beams to get them “cold”).
• Laser cooling (essentially for ions where two level transitions of electrons can be

excited).
• Ionization- and friction-cooling (mainly discussed in the context of muon

cooling).
• Resistive cooling; used to cool charged particles in a trap where the kinetic energy

of the particle is dissipated in the resistive losses of a resonant circuit.
• Coherent electron cooling, a kind of blend from stochastic cooling at very high

frequencies and electron cooling (under development at BNL theses days)

The use of the terms cooling and damping is not always well distinguished
and unambiguous in the literature. Even in the context of stochastic cooling the
authors were using the term damping in the early days. A similar observation can be
made for radiation damping and cooling. One may consider defining any action on
individual particles as “cooling” and any action on groups of particles as damping.
Examples are the feedback systems in circular machines which are commonly
referred to as dampers and which prevent emittance blow up, while a very similar
feedback system just having a much higher electronic gain can work as (stochastic)
cooler and reduce the emittance. However typically such damper systems have a
much smaller bandwidth and lower operation frequency as compared to stochastic
cooling hardware.

6.10.2 Beam Cooling Techniques

6.10.2.1 Radiation Cooling

Back in 1956, A.A. Kolomenski and A.N. Lebedev [101] pointed out that the
‘synchrotron light’ emitted by an electron moving on a curved orbit can have a
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Fig. 6.35 The principle of
transverse cooling by
synchrotron radiation
(transverse velocities
exaggerated)
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damping effect on the motion of the particle. This is because the radiation is sharply
peaked in the forward direction. The continuous emission of synchrotron radiation
leads to a friction force opposite to the direction of the motion. For a particle
moving on the design orbit, the energy loss is restored and the friction force is
on average compensated by the RF-system. For a real particle the residual friction
force tends to damp the deviation from the design orbit (Fig. 6.35). This cooling
force is counteracted by the ‘radiation excitation’: synchrotron light is really emitted
in discrete quanta and these many small kicks tend to heat the particle. The final
emittances result from the equilibrium of radiation damping and excitation. We will
see that a similar interplay between a specific cooling and heating mechanism is
characteristic also for the other cooling methods.

The theory of cooling by synchrotron radiation is in a mature state. Following up
on Sands’ classical treatment on “the physics of electron storage rings”, radiation
cooling has found its place in text books. The immense success of modern
electron–positron machines, both ‘synchrotron light facilities’ (e.g. ESRF, ALS,
APS, BESSY, SPRING8) and colliders (e.g. LEP, PEP II, KEKB) would not have
been possible without the full understanding of radiation effects. Virtually all these
machines depend critically on radiation cooling to attain the minute emittances
necessary in their application. Linear e+e−-collider schemes (like CLIC, TESLA,
NLC, JLC) too, have to rely on ‘damping rings’ in their injector chain to produce the
ultra-high phase-space density required. For historical reasons the reduction of beam
emittance due to the emission of synchrotron radiation (typically from leptons) is
usually referred to as radiation damping, although the term “cooling “might be more
consistent.

The cooling rates as well as the final beam size and momentum spread depend on
the lattice functions in regions where the orbit is curved. The art is then to ‘arrange’
these functions such that the desired beam property results. The strategy for ‘low
emittance lattices’ is well developed and ‘third-generation machines’ providing
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beams of extremely high brightness have come into operation. To enhance the
cooling, wiggler magnets are used, producing a succession of left and right bends.
This increases the radiation and thereby the damping rates. The heating can be kept
small by placing the wiggler at locations where the focusing functions of the ring
are appropriate to make the particle motion insensitive to kicks. More details for
cooling by synchrotron radiation are given in Sect. 6.5.

Radiation cooling and lattice properties of the storage ring are thus intimately
linked and by smart design, orders of magnitude in the equilibrium emittances have
been gained. This may serve as example for other cooling techniques for which the
art of ‘low emittance lattices’ is only now emerging.

6.10.2.2 Microwave Stochastic Cooling

For (anti-)protons and heavier ions, radiation damping is almost negligible at
the energies currently accessible in accelerators except for the LHC. One of the
‘artificial’ cooling methods devised for these heavy particles is stochastic cooling
by a broadband feedback system (Fig. 6.36). The name “stochastic damping” was
coined by Simon van der Meer who invented this method in 1968 (first published
in 1972) [102] to underline the statistical basis of the method. First successful
tests and observations were done at the CERN ISR (Intersecting Storage Rings)
[102] followed by a dedicated “Initial Cooling Experiment” ICE [103]. In 1984
Simon van der Meer shared the Nobel Prize [104] in physics with Carlo Rubbia
for his contribution to the observation of the intermediate vector boson. Microwave
stochastic cooling was considered a key ingredient for reaching sufficient phase
space density of the precious and rare antiprotons to produce a small number
of W- and Z-Bosons in the CERN Super Proton-Antiproton Synchrotron (SppS)
experiment in 1982. At the core of stochastic cooling is the observation, that the
phase-space density can be increased by a system that acts to reduce the deviation
of small sections, called samples, of the beam. By measuring and correcting the
statistical fluctuations (‘Schottky noise’) of the sample averages, the spreads in the
corresponding beam properties are gradually reduced. Stochastic cooling may thus
be viewed as a ‘sampling procedure’ where samples are continuously taken from the
beam and the average of each sample is corrected. The basic principle of (transverse)
stochastic cooling is sketched in Fig. 6.36.

A somewhat different picture is based on the behavior of a test particle. At each
passage it receives its own ’coherent’ kick plus the ‘incoherent’ random kicks due
to all other sample members. The sample length Ts (response-time) is given by the
bandwidth W of the system through Ts ≈ 1/2W and the number Ns of particles per
sample is proportional to Ts. Hence a large bandwidth is important to work with
small samples. Present day cooling rings have a revolution time between a fraction
of a μs (e.g. CERN AD) up to about 20 μs (Relativistic Heavy Ion Collider (RHIC),
Fermilab bunched beam cooling systems). The sample length Ts amounts usually to
less than 1 ns which corresponds to a cooling system bandwidth of 500 MHz in
this case assuming the generalized Nyquist criterion for band-limited signals under
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Fig. 6.36 The basic set up for (horizontal) stochastic cooling

ideal assumptions. Thus each sample contains only a small fraction of the total beam
population circulating in the machine. Another important ingredient is ‘mixing’, i.e.
the renewal of the sample population due to the spread of the particle revolution
frequencies.

Based on the ‘sampling’ and/or the ‘test particle picture’ one derives in a few
steps [105] a simplified relation for the cooling rate 1/τ of the transverse emittance
ε with (1/τ = (1/ε)dε/dt) or for longitudinal phase space the momentum deviation
(1/τ = (1/�p)d�p/dt):

1

τ
= W

N

[
2g
(

1 − M̃−2
)

<coherent effect>

− g2
(
M + U/Z2

)]

<incoherent effect>

. (6.74)

The parameters appearing in Eq. (6.74) have the following significance:

N number of particles in the coasting beam
W cooling system bandwidth
g gain parameter (fraction of sample error corrected per turn) (g < 1)
M desired mixing factor (mixing on the way kicker–pick-up = good mixing) (M > 1)
M̃ undesired mixing factor (slippage on the way pick-up–kicker = bad mixing) (M̃ > 1)
U noise to signal power ratio (for single charged particles) (U > 0)
Z charge number of beam particles (≤ atomic number of the ion!) (Z ≥ 1)
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There is an optimum value of g for which Eq. (6.74) has a maximum. As to the
other parameters, N and Z are properties of the beam, W is a property of the cooling
system and M, M̃ and U depend on the interplay of cooling system-, beam- and
storage ring characteristics. The term in the bracket can at best be 1 but is more like
1/10 to 1/100 in real systems, depending on how well the mixing and noise problems
are solved. The ideal cooling rate W/N can be interpreted as the maximum rate at
which information on single particles can be acquired. Note that the gain parameter
g (fractional sample error correction) should not be confounded with the electronic
gain of cooling system which is typically 120 db or 12 orders of magnitude in power.

Lattice parameters are especially important for the achievement of ‘good’ values
of M, M̃ and U, maximising the bracket in Eq. (6.74). In addition to the struggle for
large bandwidth, the advance in stochastic cooling is intimately linked to progress in
dealing with the noise and mixing factors. In summary it can be said that present-day
systems are working with a bandwidth of around 1 GHz for an individual cooling
system with the possibility of extensions up to nearly 10 GHz by using several
cooling bands in the same ring. Limitations on W are discussed in [106].

Turning to the mixing dilemma discussed at length in [107], we note that
stochastic cooling only works if after each correction the samples (at least partly) re-
randomise (desired mixing), and at the same time a particle on its way from pick-up
to kicker does not slip too much with respect to its own signal (undesired mixing).
The mixing rates 1/M and 1/M̃ are related to the fraction of the sample length
by which a particle with the typical momentum deviation slips with respect to the
nominal particle. Here M refers to the way from kicker to pick-up (‘K to P’), and M̃
to the way pick-up to kicker (‘P to K’). Both depend on the flight-time dispersion
which in turn is given by the local ‘off-momentum factors’,

ηkp =
(
dT

T
/
dp

p

)

kp
, (6.75)

and the similar quantity ηpk respectively. For a regular lattice the beam paths ‘K to
P’ and ‘P to K’ consist of a number of identical cells and one has

ηkp ≈ ηpk ≈ η =
∣∣∣γ−2

tr − γ−2
∣∣∣ , (6.76)

i.e. the local η-factors are close to the off-momentum factor for the whole ring. In
this situation the ratio M̃/M is simply given by the corresponding path lengths (Tpk
and Tkp). Then, e.g. in the case of the CERN AD (antiproton decelerator) where the
cooling loop cuts diagonally across the ring, one has M̃ ≈ M instead of the desired
M̃ � 1, M = 1. The usual compromise is to accept imperfect mixing, letting both
M̃ and M be in the range of 3–5, say. The price to pay is a slower cooling rate, for
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example 1/τ ≤ 0.28W/N in the case of M̃ = M instead of 1/τ ≤ W/N for perfect
mixing.

‘Optimum mixing lattices’ (also referred to as ‘split ring designs’) have been
proposed for the 10 GeV ‘SuperLEAR’ ring [108] (which was, however, never
built). The idea is to make the path P to K isochronous (ηpk = 0) and the path
K to P strongly flight-time dispersive (ηkp � 0). These lattice properties have
to be reconciled with the many other requirements of the storage ring. The next
generation of stochastic cooling rings will use such split rings lattices. They were
discussed for RIKEN in Japan [109] and are under construction for GSI and FAIR
in Germany [110, 111]. It should be mentioned that the condition ηpk = 0, ηkp � 0
can increase the cooling rate for transverse and for longitudinal ‘Palmer-Hereward’
cooling where the transverse displacement concurrent with the betatron amplitude
and the momentum error of the particles is used. For momentum cooling by the
filter (‘Thorndahl’) method, the split ring design brings less improvement since
here the time of flight over a full revolution is used as a measure of momentum. A
storage ring with ηpk = 0 and η ≈ 1–2% is under construction for GSI and FAIR in
Germany, meeting best conditions for both transverse cooling and filter momentum
cooling of antiprotons [112].

Regarding the situation at GSI it should be mentioned that a first successful
experiment was performed at the ESR to measure the nuclear radius of the
radioactive nucleus 56Ni. To this purpose stochastic precooling and subsequent
electron cooling were used in order to accumulate enough intensity for a sufficient
S/N in a scattering experiment with an internal hydrogen target [113].

This is not the end of the mixing dilemma: during momentum cooling, as �p/p
decreases, the M-factors increase (c.f. Eq. 6.75) and the mixing situation tends to
degrade. One can in principle stay close to the optimum by changing η (‘dynamic
transition tuning’) as cooling proceeds. Similar considerations hold for machines
with variable working energy where, through a change of η, good mixing can be
maintained. Again these improvements might be incorporated in the next generation
of cooling rings (e.g. at FAIR [112]).

As for the noise, from Eq. (6.74) it is clear that a balanced design aims at
U/Z2 � M. The noise to signal (power-)ratio depends on the technology of the pre-
amplifier and other ‘low level components’ on the one hand and on the sensitivity
of the pick-up device on the other hand. There has been great progress in the
design of the pick-up and kicker structures and the other components of the cooling
loop. These components developed in different labs (e.g. BNL [114], CERN [107],
Fermilab [115], Forschungszentrum Jülich (FZJ) [116], GSI [112, 117]) are in fact
formidable ‘high-fidelity (HiFi) systems’ with an unprecedented combination of
high sensitivity, low noise, great bandwidth, large amplification, very linear phase
response, and excellent compatibility with the ultra-high vacuum of the storage ring.

A more detailed discussion of stochastic cooling hardware progress over the last
30 years can be found in [118]. Regarding pick-up and kicker structures we have
seen printed versions arriving in the late 1980s of the classical λ/4 strip-line couplers
which are referred to as printed loop or printed slotline couplers which are normally
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used as “phased arrays” [119, 120]. As for travelling wave structures starting from
the TEM type slotted line version of Faltin [121] McGinnis developed a related
device [122] not based on a TEM line, but essentially a waveguide directional
coupler with slots masks for the coupling. Those waveguide type slot array couplers
have the advantage (in contrast to the Faltin version) that they can operate efficiently
also for highly relativistic beams and they exhibit a very high longitudinal and
transverse sensitivity over a bandwidth of several 100 MHz in the GHz region. As
a particular development the kicker structure for the BNL RHIC bunched beam
stochastic cooling system [123–125] is worth mentioning. It consists of an array
of cavities which are cut in length and can be opened by a mechanical plunging
mechanism in order to let the injected beam pass without aperture limitations.

Another travelling wave structure is the perforated structure which was originally
proposed in 2011 [126] and later developed for HIRFL-CSRe stochastic cooling. A
large number of small slots in the electrode provides distributed inductive loading,
slowing down the phase velocity of the travelling wave structure for the low beta
beams. This device is very broadband and operates from low frequencies onwards
as a forward coupler. Even for 2.76 m long electrodes used in HIFRL-CSRe, it can
be used from a few MHz to 1.2 GHz [127].

Another very promising recent development for pick-ups and kickers are “slot
ring” structures [128]. These structures were originally developed for the High
Energy Storage Ring (HESR) of the FAIR project at GSI, Germany and successfully
tested at the Nuclotron (JINR, Russia) for longitudinal cooling and at COSY (FZJ)
for longitudinal and transverse cooling. Slot ring couplers have a fixed aperture and
can be used for all three cooling planes simultaneously [128].

In CERN’s anti-proton decelerator AD stochastic cooling is employed at
3.57 GeV/c and 2 GeV/c in both transverse planes and for the longitudinal plane
(filter cooling) [129]. The current system uses a set of two kickers and pick-ups,
each combining one transverse plane and the longitudinal cooling, with a total of
4.8 kW installed power. It is undergoing a consolidation and upgrade [130] which
is including a notch filter with optical delay lines. Cooling times of 15–20 s reduce
transverse emittances to 3–4 π mm rad and Dp/p to ±0.3 × 10−3 at 3.57 GeV/c
and to ±0.08 × 10−3 at 2 GeV/c at intensities of 5 × 107 antiprotons. The system
uses a bandwidth of one octave between 850 MHz and 1.7 GHz. This is the actual
status in early 2019.

In parallel, CLASS A solid state amplifiers [131] (kicker driver) gradually took
over from TWT (travelling wave tube) units, although TWTs are still in operation for
stochastic cooling e.g. at Fermilab where they work reliably. Notch filters, required
for Thorndahl type longitudinal cooling (filter cooling) are implemented since about
1990 with good success in optical fibre technology [125, 132].

Optical signal transmission across the ring (Fermilab de-buncher) has been
realized with a laser beam in an evacuated metal pipe (no signal fluctuation from
temperature effects of air and humidity on the laser beam). The driving force to
select this method of signal transmission was the very tight requirement in terms of
transmission delay and delay stability. Anything slower than speed of light would
not have permitted timely arrival of the correction signal at the kicker. In 2017 very
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fast (around 99% speed of light) hollow optical fibres were applied successfully
for analog and wideband signal transmission across the ring at COSY (FZ-Jülich,
Germany) [133].

Front end amplifiers showed slow but steady progress and these days we can
easily get an uncooled 1–2 GHz or 2–4 GHz device with a noise temperature of
30 K.

Examples of remarkable recent progress in the field of microwave stochastic
cooling are

• bunched beam stochastic cooling at RHIC and Fermilab [134–137],
• the impressive improvements of the performance and the interplay of all stochas-

tic cooling and stacking systems at Fermilab together with elaborate beam
handling methods such as “slip stacking” [135, 136].

It should be noted that there have been unsuccessful attempts to get bunched
beam stochastic cooling operational in large machines despite the fact that one of
the first evidence on stochastic cooling at all, in ICE [137] already worked with a
bunched beam. However the bunch length was very large. Attempts which failed
were in the frame of the SPS p-pbar program at CERN [124] and later (around
1990) also in the Tevatron [138, 139]. Bunched beam cooling is of course hampered
by the higher particle density in the bunch. In fact in Eq. (6.74) the number N for
the coasting beam has to be replaced by Nb/Bf = Nb·1.4·2πR/lb (with R radius and
lb length of bunch) for a rough estimate [137, 140]. In addition to those expected
effects the direct (coherent) bunch signal (proportional to N at low frequencies)
tends to mask the very weak Schottky signals required for cooling [137, 140]. This
is one of the reasons to place the cooling bands towards high frequencies. In addition
a subtle but important difficulty is related to the presence of unexpected and rather
strong coherent signals in the bunched beam spectrum which lead to saturation of
the front end amplifiers via intermodulation [139, 140]. A theoretical treatment of
these persisting “turbulence islands” in the bunch was given by Blaskiewiecz [141].
Just in the recent years this problem became mastered at BNL (gold ions) [135]
and also in the Fermilab recycler [140]. However, bunched beam stochastic cooling
has always been working reasonably well in small machine like the CERN AC
[107], LEAR [142], Fermilab de-buncher and accumulator [143] and others since
the relative intensity of those coherent signals was less violent compared to large
machines. However for the small machines there was little interest in bunched beam
stochastic cooling.

New applications of stochastic cooling may include:

• fast cooling and stacking of low intensity radioactive ion beams with cooling
times of 100 ms or less as discussed for RIKEN [109] and under construction at
GSI [110],

• fast optical stochastic cooling [144–146] (e.g. of intense muon beams but also
for bunched beam cooling in large rings) for which a bandwidth of 1012–1013 Hz
and a new pick-up, kicker and amplifier technology, and new lattice designs have
been contemplated.
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Fig. 6.37 Sketch of cooling
time vs. intensity (for the
‘mixing limit’ τ = 10 N/W is
taken in the figure)

Let us have a quick look at these developments. The challenge of fast low-
intensity cooling can be discussed with reference to Fig. 6.37 [108], which illustrates
the optimum cooling time vs. intensity N. For large N the cooling time increases

linearly with N with the slope 1/W

[
M/
(

1 − M̃−2
)2
]

. This is the mixing and

bandwidth limit. For small N, cooling time levels off to a constant ‘noise limited’
value reached for U/Z2 � M (note that U ∝ 1/N).

The art is to shift the levelling off to small N by improving the signal to noise
ratio. Theoretically, short cooling times are then possible (e.g. 10 ms for N = 105

Sn50+ ions and a few 100 MHz bandwidth as discussed for RIKEN). However, other
difficulties like the broadband power needed for such a rapid emittance decrease,
and the residual RF-structure after debunching may pose new problems for fast
cooling and stacking.

Optical stochastic cooling (OSC) proposed by Mikhailchenko, Zholents and
Zolotorev [144, 145] in 1993 is an extension of certain basic concepts of microwave
stochastic cooling into the optical frequency range using different pickup and kicker
mechanism and structures. It is a potentially very promising technique but has not
been tested in practice so far. Challenges may be amongst other items the stability
and linearity of the optical signal transmission chain as well as of the circulating
hadron beam. Maybe we shall soon see important steps towards this technology at
BNL in a forthcoming “coherent electron cooling experiment”.

At BNL stochastic cooling has been implemented at top energy in the RHIC
[147]. The bunch cores have full length 5 ns and are spaced by 100 ns. The root
mean square Schottky voltage is typically 10% of the coherent voltage generated
by the average bunch shape and multi-kilovolt kicker voltages are required for
optimal longitudinal cooling. Several novel technologies were required to meet the
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challenges. The kicker voltage was obtained by periodically extending the pickup
signal, passing it through narrow band filters spaced by 200 MHz (1/5 ns) and driv-
ing individual cavities. Taming coherent lines while meeting timing requirements
was a serious challenge [148]. When all was said and done the cooling system
increased the integrated luminosity of uranium-uranium collisions by a factor of
five and typically doubled the gold-gold luminosity.

At Fermilab, OSC is being pursued at the IOTA facility [149]. In OSC a particle
emits electromagnetic radiation in the first (pickup) wiggler. Then, the radiation
amplified in an optical amplifier (OA) makes a longitudinal kick to the same particle
in the second (kicker). A magnetic chicane is used to make space for the OA and
to delay a particle so that to compensate for a delay of its radiation in the OA
resulting in simultaneous arrival of the particle and its amplified radiation to the
kicker wiggler. The chosen optical wavelength is 800 nm, resulting in bandwidths
approaching 1014 Hz. In the proposed test, the use of 100-MeV (γ = 200) electrons
instead of protons greatly reduces the cost of the experiment but does not limit its
generality and applicability to hadron colliders. Conceptual design of the system is
complete, with engineering design of the wiggler and optical hardware underway.

Already in late 1970s the need for “stochastic stacking” has been realized [150].
In the “old” CERN AA (antiproton accumulator) [151] early stacking methods were
tested and applied in routine operation. In the CERN AAC (antiproton accumulator
complex) [152] the antiprotons (pbar or p) coming from the AC (collector ring)
were transferred to the inner ring (AA = accumulator). There dedicated stack tail
and stack core systems took over the antiprotons after they have passed a pre-
cooling system in the AA and were transferred to another orbit by means of RF
manipulations. At Fermilab [138] stacking is done in the accumulator ring and later
also in the recycler. For the future stacking with stochastic cooling is planned in the
frame of the FAIR project [110]. Stochastic stacking of rare radioactive ions has
been considered during the planning phase of RIKEN [110] upgrades between 1900
and about 2000 and for FAIR [110].

At Fermilab huge progress has been made since the year 2000 [153], this
includes stacking with stochastic cooling was done in three separate machines.
The debuncher [154], which accepted ~1.5 × 108 antiprotons every 2.1 s, used the
McGinnis waveguide directional couplers in eight bands over the frequency range
4–8 GHz for a factor of 10 reduction in longitudinal and transverse size. A key
piece was the implementation of ramping the amplifier gain down during the cycle,
to counter act noise to signal for the momentum bands in the notch filters. A 6 dB
decrease in gain resulted in a 12% decrease in the 95% momentum width after 2 s
of cooling. The Accumulator [154] accepted the same ~1.5 × 108 antiprotons and
used the Palmer method to build a ‘stack’. Peak performance reached 2.6 × 1011

antiprotons in an hour, with regular transfers to the Recycler to mitigate the known
decrease in performance with larger stacks. The Recycler, using a combination of
stochastic and electron cooling [155], reached intensities of greater than 4 × 1012

regularly, with peak intensity of 6.1 × 1012 and delivering over 4 × 1013 per week
to the collider program.



6 Design and Principles of Synchrotrons and Circular Colliders 279

6.10.2.3 Electron Cooling

The concept of cooling a “hot” beam of ions by mixing it over a short distance in
a circular machine with a cold electron beam had been developed by Budker [156]
in 1966. It was first tested in 1974 with 68 MeV protons at the NAP-M storage
ring at in Novosibirsk. The notions of ‘beam temperature’ and ‘beam cooling’ were
introduced and become lucid in the context of electron cooling, which is readily
viewed as temperature relaxation in the mixture of a hot ion beam with a co-
moving cold electron ‘fluid’. The equilibrium emittances, obtainable when other
‘heating mechanisms’ are negligible, can easily be estimated from this analogy,
assuming equalisation of the temperatures ((M�v2)/ion → (m�v2)/electron). For a
simple estimate of the cooling time, another resemblance, namely the analogy with
slowing down of swift particles in matter, can be helpful. A nice presentation of
this subject is given in Jackson’s book [157]: the energy loss in matter is due to
the interaction with the shell electrons and in first approximation these electrons are
regarded as free rather than bound. Results for this case can be directly applied to the
‘stopping of the heavy particles in the co-moving electron plasma’. The calculations
are performed assuming ‘binary collisions’ involving only one ion and one electron
at a time.

Using this approximation the cooling time can be written as

1

τ
≈ 1

k

q2

A
ηcLCrerp

j

e

1

β4γ 5θ3
, (6.77)

where

k = 0.6: for a Gaussian distribution (not realistic),
k = 0.16: for a flattened distribution,
q: ion charge number,
A: ion mass number,
ηc: length of cooling section/circumference,
LC ≈ 10: Coulomb logarithm (log of max/min impact parameter),
re ≈ 2.8 × 10−13 cm: classical electron radius,
rp ≈ 1.5 × 10−16 cm: classical proton radius,
j (A/cm2): electron beam current density,
e ≈ 1.6 × 10−19 C: elementary charge

θ = (θ2
e + θ2

i

)1/2 =
(

Te
mec2 + Ti

mic2

)
: r.m.s. angle between electron and ion beams,

β, γ : relativistic factors.

The cooling rate (1/τ ) thus obtained exhibits the dependence on the main
beam and storage ring parameters [158]. Notable is the dependence on both the
electron and the ion (both longitudinal and transverse) velocity spreads: τ ∝ θ3 ∝(∣∣Δverms

∣∣3 + ∣∣Δvirms

∣∣3
)

. This indicates an ‘ion spread dominated regime’, where

cooling gets faster as the ions cool down until it saturates for
∣∣Δvirms

∣∣ <
∣∣Δverms

∣∣
(‘electron dominated regime’). Remarkable also is the strong energy dependence
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predicted in this model: τ ∝ β4γ 5, with all other parameters (including the electron
current density j) kept constant [159].

Neglected in the simple theory are the ‘flattened distribution’, the ‘magnetisation’
and the ‘electron space-charge’ effects, all three (also) discovered and explained
at Novosibirsk [159, 160]. In essence the flattened distribution effect takes into
account that (due to the acceleration) the electron velocity spread is not isotropic but
contracted (by [Ecathode/Efinal]1/2) in the longitudinal direction. The magnetisation
effect is due to the spiraling (Larmor-) motion of the electrons in the magnetic
field of the solenoid that is used to guide the electron beam. Then for electron-
ion encounters with long ‘collision times’ (impact parameter � Larmor radius),
the transverse electron velocity spread averages to zero. Finally the electron space-
charge induces a potential that leads to a parabolic velocity profile v(r) over the
beam whereas the ions exhibit a linear dependence v(x) and v(y) given by the storage
ring lattice. Hence the difficulty arises to match the ion and electron velocities.
Flattening and magnetisation can have a beneficial outcome, whereas space-charge
has a hampering influence on the cooling process. All three effects complicate the
theory, spoil the hope for simple analytical formulae and obscure the comparison
between measurements at different machines, and even different situations at the
same cooler. As an example the cooling assembly used in the low energy antiproton
ring (LEAR) is sketched in Fig. 6.38.

The electrons are produced in a gun and directed into the cooling region where
they overlap the ion beam over a length 1 m. At the end of the cooling section
the electrons are steered away from the ions into a collector where their energy is
recuperated. On their whole way from the cathode of the gun to the collector the
electrons are usually immersed in a longitudinal magnetic guiding field. This field
is constant over the full length or stronger in the gun region. In the latter case the
transverse electron temperature in the overlap region decreases (due to “magnetic
expansion”) at the expense of the longitudinal temperature. This can reduce the
cooling time in situations where the electron temperature dominates.

Fig. 6.38 An electron cooling assembly (LEAR electron cooler) from [158]
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An important technical problem is electron beam power consumption. To reduce
direct losses of the beam power the recuperation (recovering) method is used. It
assumes biasing of the collector to negative potential slightly above the cathode
potential. Then the power consumption is defined mainly by product of the beam
current by the difference of the collector and gun potentials.

In the two toroidal sections, adjacent to the overlap region, the solenoid to create
the longitudinal field is curved to guided the electron beam parallel to the ions at the
entrance and away from them at the exit. Also in the toroidal regions the solenoid
has a larger diameter to permit the penetration of the ion beam.

Many papers deal with the ‘exact and general theory’ [161] and computer
programs like BETACOOL [162] try to include all the subtle effects. Numerous
also are the experimental results from 11 (or so) present and past cooling rings. It
is not easy to compare the data from different experiments because the cooling in
each plane depends in a complicated way on the emittances in all three directions
both of the ion and the electron beam. Moreover different quantities are used to
measure/define ‘cooling strength’ (examples: cooling of a large injected beam,
response of a cold beam to a ‘kick’ or to a transverse or an energy displacement,
equilibrium with heating by noise).

In the context of the accumulation of lead ions for the future Large Hadron
Collider (LHC) [163], a program of experiments [164] was performed at the
LEAR ring to determine optimum lattice functions [165]. Results indicate rather
small optimum betatron functions (3–5 m instead of the expected 10 m) and
large dispersion (D = 2–3 m instead of the expected 0–1 m). The dependence on
dispersion is not fully reproduced by simple analytical formulae. There are other
old questions: e.g. the (dis)advantage of magnetic expansion, the dependence of
the cooling time on the charge of the ion, the (dis)advantage of neutralising the
electron beam, the enigma of the stability of the cooled beam [166], the puzzle of
the anomalously fast recombination of certain ions with cooling electrons [167], the
(dis)advantage of a hollow electron beam [168].

Considerations so far concern electron cooling at ‘low energies’ (Te = 2–
300 keV) where cooling rings have flourished since the 1980s. More recently
medium energy cooling (Te = 1–10 MeV) has re-gained a lot of interest [167–
169]. Clearly the higher energy requires new technology and extrapolation to a
new range of parameters. At Fermilab high energy e-cooling (with up to 5 MeV
electrons using electrostatic acceleration for cooling of 8 GeV bunched antiprotons
in the recycler) has been successfully developed and implemented. The generation
and recirculation of the 4.3 MeV and 0.5 Ampere electron beam and its adaptation
to the antiproton beam over a cooling length of 20 m are remarkable achievements.
Finally the idea of ‘very high energy electron cooling’ (Te ≥ 50 MeV) has been
revived as this might improve the luminosity of RHIC [168, 170]. At this energy the
electron beam could circulate in a small ‘low-emittance storage ring’ with strong
radiation damping. An attractive alternative is a scheme [170], in which the low-
emittance beam after acceleration is re-decelerated after the passage through the
cooling section to recuperate its energy.
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In summary: 45 years after its invention, the field of electron cooling continues
to expand with exciting old and new questions to be answered. Bunched beam
cooling is no longer a magic barrier and even a merger between electron cooling and
stochastic cooling i.e. the “coherent electron cooling” [171] appears at the horizon.
In the concept of coherent electron information of the particle distribution of the
hadron beam to be cooled is sampled by the electron beam, amplified and further
downstream fed back onto the hadron beam.

6.10.2.4 Laser Cooling

Due to the pioneering work of the Heidelberg (TSR) [172] and Aarhus (ASTRID)
[173] groups in the 1990s, laser cooling in storage rings has evolved into a very
powerful technique. Longitudinal cooling times as short as a few milliseconds
and momentum spreads as small as 10−6 are reported. These bright perspectives
are somewhat mitigated by two specific attributes [174]: laser cooling takes place
(mainly) in the longitudinal plane and it works (only) for special ions that have
a closed transition between a stable (or meta-stable) lower state and a short-lived
higher state. The transition is excited by laser light, and the return to the lower
state occurs through spontaneous re-emission (Fig. 6.39). ‘Unclosed’ transitions,
where the de-excitation to more than one level is possible, are not suited because
ions decaying to the ‘wrong’ states are lost for further cooling cycles. This limits
the number of ion candidates (although extended schemes with additional lasers
to ‘pump back’ from the unwanted states could enlarge the number of ion species
susceptible to cooling). Up to now, a few singly charged ions (like Li1+, Be1+ or
Mg1+) have been used with ‘normal’ transitions accessible to laser frequencies.
Transitions between fine structure, or even hyperfine levels of highly-charged heavy
ions have also been considered, but in that case the cooling force is less pronounced
and not so much superior to the electron cooling force which increases with charge
(like Q1.5 or even Q2).

The laser irradiates the circulating ions co-linearly over the length of a straight
section of the storage ring [174]. The absorption is very sharply resonant at the
transition frequency. Then the Doppler shift (ω = (1 ± v/c)γωlaser) seen by

Fig. 6.39 Sketch of Laser–ion interaction
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Fig. 6.40 Force F(v) due to a single laser and different schemes for cooling to a fixed velocity

the ion makes the interaction strongly dependent on its velocity. This leads to
a sharp resonance of the absorption as a function of the velocity (Fig. 6.40).
The corresponding recoil (friction) force accelerates/decelerates the ions with a
maximum rate at the resonant momentum. To obtain cooling to a fixed momentum, a
second force f(v) is necessary. It can be provided by a second (counter-propagating)
laser or by a betatron core or by an RF-cavity, which decelerate the ions ‘towards the
resonance of the first laser’ (Fig. 6.40). The interaction with the laser photons (and
hence the cooling) takes place in the direction of the laser beam (longitudinal plane
of the ions). De-excitation proceeds by re-emission of photons in all directions and
this leads to heating of the ions in all three planes.

Through transverse-to-longitudinal coupling, part of the cooling can be trans-
ferred to the horizontal and vertical planes. Intra-beam scattering [175], dispersion
[176] and special coupling cavities [177] have been considered for this purpose.
Transfer by scattering and by dispersion has been demonstrated at the cooling rings,
although the transverse cooling thus obtained was weak, a fact explainable by the
weakness of the coupling.

The main motivation for laser cooling has been the goal of achieving ultra-cold
crystalline beams [178] where the ions are held in place because the Coulomb
repulsion overrides the energy of their thermal motion. A second application,
cooling of low-charge states of heavy ions, was proposed [179] in order to prepare
high-density drive beams for inertial confinement fusion. Several years ago a study
[180] on the use of laser cooling of ions for the LHC was published. All these
applications for the moment meet with difficulties: crystallisation, in full three-
dimensional beauty, is hampered by the lattice properties of (present) storage rings
and by the relative weakness of transverse cooling. Cooling for fusion is not fast
enough [181] to ‘compress’ the high-intensity large-momentum-spread beam during
the few milliseconds lifetime given by intra-beam charge exchange between the
ions. And, finally laser cooling of highly charged ions for colliders meets with
the competition of electron cooling and also with the restrictions on the choice of
suitable ion species and states [180]. The investigations on laser cooling to obtain
crystalline beams continue [182] and a special storage ring (S-LSR) with lattice
properties apt to reach this goal [183, 184] has been built at Kyoto university.
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Fig. 6.41 Basic setup for (transverse) ionisation cooling (adapted from [186])

In conclusion: laser cooling in storage rings has led to very interesting and
important results concerning the physics of cooling and cooling rings and, also
atomic and laser physics. However, ‘accelerator applications’ like for electron or
stochastic cooling are not realistic for the near future. The goal to obtain crystalline
beams in special storage rings is under intense investigation.

6.10.2.5 Ionisation Cooling

Excellent reviews of ionisation cooling are given in papers by Skrinsky [185] and
Neuffer [186]. The basic setup (Fig. 6.41) consists of a block of material (absorber)
in which the particles lose energy, followed by an accelerating gap (RF-cavity)
where the energy loss is restored. Losses in the absorber reduce both the longitudinal
and the transverse momentum of the particle. The RF-cavity (ideally) only restores
the longitudinal component and the net result is transverse cooling (Fig. 6.41). There
is an obvious resemblance to radiation damping (Fig. 6.35), in which energy loss by
synchrotron radiation followed by RF-acceleration results in cooling. Longitudinal
ionisation cooling is also possible, especially in the range where the loss increases
with energy (i.e. above the energy where the minimum of dE/ds occurs). At the
expense of horizontal cooling, the longitudinal effect can be enhanced by using a
wedge-shaped absorber in a region where the orbits exhibit dispersion with energy.

The statistical fluctuations (‘straggling’) of the loss and the angular (multiple)
scattering introduce heating of the longitudinal and transverse emittances. The
ratio of ionisation loss due to angular scattering favours light absorber material.
Equilibrium emittances depend strongly on the lattice functions at the position of the
absorber and the cavity. As in the case of radiation damping, the sum of the cooling
rates (also in the case of a wedge absorber) is invariant with a value Jx + Jy +
JE ≈ 2 + JE ≈ 2 for the ‘damping partition numbers’, instead of Jx + Jy + JE = 4
for radiation damping. The quantity JE depends on the slope of the dE/ds vs. E
curve and is about constant and roughly equal to 0.12 for light materials above the
minimum of dE/ds, but is strongly negative below. In terms of the partition numbers,
the three emittance damping rates can be expressed by the energy loss �Eμ of the



6 Design and Principles of Synchrotrons and Circular Colliders 285

muons in the absorber and the length �s of the basic cell (Fig. 6.41) as:

1

εi

dεi

ds
= Ji

1

Eμ

ΔEμ

Δs
. (6.78)

A large number of cells or traversals through a cell is necessary to obtain
appreciable emittance reduction.

Almost by a miracle, the muon mass falls into a narrow ‘window’ where
ionisation cooling within the short life of the particle looks possible (although not
easy). For electrons as well as for protons and heavier particles, the method is not
practical, because the effect of bremsstrahlung (for e’s) and non-elastic processes in
the absorber (for p’s), leads to unacceptable loss.

With the revival of interest for muon colliders and, related to that, neutrino
factories [187], large collaborations (including more than 15 institutes, [188]) is
undertaking a demonstration experiment. The ISIS accelerator at the Rutherford
lab. is chosen for this task. Neutrino factory and muon collider proposals have to
rely critically on muon cooling: typically 50 m to several 100 m long channels with
solenoidal focussing (superconducting solenoids) are foreseen to reduce the phase-
space of the muons emerging from pion decay. Liquid hydrogen absorbers, each
0.5–1 m in length, alternate with high-field accelerating cavities.

The variant selected by MICE is a ‘single particle experiment’ where one muon
at a time is traced. Fast spectrometers, capable of resolving 1 muon per 25 ns,
record/compare the three position coordinates and the three velocity components
of the muon at the entrance and the exit of a short cooling section. Typically such
a test-section should lead to 10% emittance reduction. The emittance pattern is
‘painted’ by a scatterer or a steering magnets changing the entrance conditions of
the particle at random (scatterer) or in a programmed manner. A large number of
muons are necessary to establish the six-dimensional phase-space reduction with
sufficient statistics.

Apart from the spectrometers, other challenges can be identified: long term
mechanical stability, muon decay and birth, contamination with other particles and
non-linarites in focussing which deform the emittance pattern. In the coming years
we will see a large effort on muon cooling scenarios and tests.

6.10.2.6 Cooling of Particles in Traps

In many experiments utilizing ion traps, the ions must first be cooled in order to
perform high precision measurements. Cooling refers here to the reduction of kinetic
energy of confined particles. A detailed review of cooling traps is given in [189] and
the implementation of several cooling methods into a big project is described in
[190].

With adequate modifications, most of methods discussed above for storage rings
stochastic- [191], electron- [192], or laser cooling [193] can also be applied to traps.
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Some (like stochastic cooling) are more difficult others (e.g. laser cooling) are much
more powerful in the traps.

There are however several techniques which are especially adapted to or even
working only in the environment of particles confined in a trap which is frequently
cryogenically cooled. A gross classification is to divide them into lossy and lossless
methods in terms of conservation of number of particles. A lossy technique (which
in the strict definition of [100] would not be classified as “phase density cooling”)
is evaporative cooling. In this case, just as in the evaporation of water, the more
energetic molecules leave the trap and the temperature of the condensate is thereby
strongly reduced. Experiments at the forefront of physics making Bose-Einstein
condensates at a temperature of a tiny fraction of a degree have thus become possible
[194].

An example of a widely used lossless process is resistive cooling: the trap
electrodes are connected to an external circuit to dissipate energy from the ions
through induced currents [189, 195] (Fig. 6.42).

In other words the particle’s kinetic energy is dampened by I2R losses in a
resistive circuit [195, 196]. Idealistically speaking, the resistor or the losses in a
resonant circuit and absorb the particle’s energy to create a thermal equilibrium
when there is no other heating source involved. Since the resistor has a specific
physical temperature, it generates Johnson noise that in turn stochastically drives
the trapped particles. Resistive cooling was first applied by H. Dehmelt and
collaborators in 1975 [195].

To estimate the cooling time, a simple single particle model is used, where-by it
is harmonically bound between two capacitor plates [195]. Due to this model, the
energy is dampened with a time constant τ calculated by:

τ = 4mz0

q2R
. (6.79)

Here 2z0 is the separation of the capacitor plates (the electrodes of the trap) and
R stands for the real part of the impedance from the attached external circuit, q is the
charge and m the mass of the trapped particles. From Eq. (6.79) [189] one can easily
conclude that light, highly charged particles are efficiently cooled. The cooling rate
can be further improved by developing a high resistance in the external circuit.

Fig. 6.42 Principle of resistive cooling of a trapped ion
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In general, the external circuit which is often in vacuum and at cryo-temperature
includes a low-noise amplifier to couple the induced current signal to room
temperature, and thus enable plasma diagnostics. The input noise temperature of
the amplifier is, depending on its coupling to the resonant circuit, closely related to
the minimum achievable temperature of the particles in the trap. Most frequently, the
impedance Z (with the real part R) shown in Fig. 6.42 is implemented as inductance
L so that the circuit becomes resonant at the oscillation frequency of the ions. This
is to tune out (compensate at resonance) the parasitic capacitance of the electrodes.
This inductance may be implemented as discrete solenoid coil made of copper or
superconducting wire. The quality factor Q = R/ωL of the tuned circuit has to be
large to guarantee efficient resistive cooling A high Q in turn means to incorporate a
low loss network. As a caveat it should be mentioned that extremely high Q values
(above say 105) may be problematic if the bandwidth of the resonance becomes
smaller than the width of the particle spectrum. For further reading we refer to [197],
where Shockley presents the basic equations for trapped and charged particles in a
Penning trap.

There exist a large number of other cooling techniques used in traps, such as
collisional cooling, RF- and optical sideband cooling (resolved and unresolved
sideband methods) and sympathetic cooling. The list of examples given here is
certainly not exhaustive and a detailed description can be found in review articles
[189]. As for the term RF cooling (which may be confounded with RF-sideband
cooling) [189] it should be pointed out that this refers to a reduction of temperature
or vibration amplitude of a microscopic cantilevered bar in vacuum using an RF
resonant circuit which is fed externally with a few milli-Watt of RF power [198].
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